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Abstract 

Background: Continuous, long-term measurement of energy balance 

behaviours is a significant challenge and of great scientific interest to the 

field of energy balance and a multitude of related fields. Methodologies such 

as doubly labelled water (DLW) are infeasible in large scale studies because 

of their expense. Recent developments in wearable technologies may offer 

an opportunity to overcome this issue, but uncertainty exists regarding their 

accuracy. Should accurate estimates of energy expenditure (EE) be 

obtainable from such devices, it will be possible to incorporate estimates into 

validated mathematical models to estimate the change in energy intake (EI), 

in free-living subjects.   

Objectives: This thesis aimed to examine methods to estimate EE from 

wearable sensors in free-living subjects participating in the NoHoW trial, a 

weight loss maintenance intervention.  

Methods: A series of studies were conducted to investigate the validity of 

EE estimates from the manufacturer estimates of the Fitbit charge 2, and 

machine learning models trained on the sensor outputs. Both manufacturer 

estimates and model predictions were compared in free-living and used to 

estimate PAEE and ∆𝐸𝐼 in the NoHoW trial.   

Results: Laboratory validation studies indicated that the manufacturer 

estimates of the Fitbit charge 2™ were inaccurate and subsequently, that 

machine learning models could provide more accurate estimates of EE. 

Comparisons were made to an established research-grade armband, the 

SenseWear armband mini™ which showed that the manufacturer estimates 

were in slightly better agreement than the developed algorithms. In the 

application of several EE estimation methods to the NoHoW dataset, ∆𝐸𝐼 

could be estimated and this demonstrated that caloric restriction was 

greatest in the earlier phases of the intervention and this diminished as time 

progressed.                                                                                                                                                                                                                                                                                                                                                                                         

Conclusions: Digital tracking technologies are providing novel opportunities 

for physiological research. This thesis took positive steps towards 

developing a methodological framework for the estimation of free-living EE, 

which will have implications for energy balance and related fields. Future 

work will examine the models developed in this thesis against DLW 
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measurements, and evaluate energy balance modelling in a wider range of 

subjects and circumstances. 
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Chapter 1 – General Introduction  

The prevalence of overweight and obesity has increased by three-fold in the 

last 40 years (Ells et al., 2018) and it has been estimated that by 2050, 60% 

of males and 50% of females may have obesity (Agha & Agha, 2017; 

Lobstein, 2007). Overweight and obesity, which are conditions characterised 

by an accumulation of excess adipose tissue in the body, represent a public 

health concern owing to the associated comorbidities, which include 

hypertension, type 2 diabetes, non-alcoholic fatty liver disease, coronary 

heart disease, stroke, cancer and osteoarthritis (Greenway, 2015; 

Heymsfield & Wadden, 2017). Obesity is associated with an increase in all-

cause mortality (Flegal et al., 2013), impaired quality of life (Taylor et al., 

2013) and substantial economic burden, estimated to be near 2.8% of the 

global gross domestic product (Tremmel et al., 2017). The personal, health 

and economic implications of the obesity epidemic are monumental.  

A bodyweight loss of 5% is considered the minimum weight loss required to 

produce a clinically significant improvement in metabolic health outcomes 

and is, therefore, a common goal in weight loss interventions (Magkos et al., 

2016). Although approximately 40% of adults are attempting to reduce their 

body weight in the western world (Santos et al., 2017), such attempts are 

typically unsuccessful in the long term as recidivism to baseline weight or 

beyond is common (Wing & Phelan, 2005). Indeed, less than 20% of 

individuals are successful in maintaining a 10% body weight loss for a year 

or more (Kraschnewski et al., 2010). A weight regain of 2-6% is associated 

with a return to baseline in the health markers that initially improved with 

weight loss (Swift et al., 2018). In this sense, the prevention of weight regain 

after weight loss may be considered the most pressing problem in obesity 

therapeutics (MacLean et al., 2015). Though that is not to undermine the 

importance of other factors, namely weight loss and the prevention of weight 

gain.  

The regain of body weight after weight loss is the product of a prolonged 

positive energy balance, as dictated by the laws of thermodynamics (Bray & 

Bouchard, 2020). Despite this ineluctable truth, viewing weight change in 

such terms exclusively ignores how genetics, psychology, physiology and 

environmental factors interact to determine energy balance and body weight 

(Butland et al., 2007; MacLean et al., 2015). Our understanding of the 
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mechanisms by which energy balance is achieved and weight regain is 

prevented is yet to be fully elucidated.  

1.1 Energy balance 

According to the first law of thermodynamics, energy is neither created nor 

destroyed, it is converted between forms. In human physiology, this 

suggests that any perturbation of energy stores (ES) corresponds to the 

difference between energy intake (EI) and energy expenditure (EE) (Hill et 

al., 2012):  

 

𝐸𝑆 = 𝐸𝐼 − 𝐸𝐸 

    

The rate of EI is determined by the ingestion of dietary macronutrients and 

the rate of EE through immediate heat loss or via chemical, mechanical or 

electrical work. If the sum of energy contained within the body is consistent 

over a sustained period (i.e. ∆ ES ≈ 0), EI must be in equilibrium with EE, a 

state referred to as energy balance. If EI is consistently greater than EE (i.e. 

positive energy balance), energy will be stored. In a negative energy 

balance, EI is less than EE, resulting in a net loss of energy from the body.  

1.1.1 Energy intake 

Humans energy intake is the sum of dietary macronutrient intake: 

carbohydrate, protein, and fat and whilst not a macronutrient, alcohol intake 

contributes a variable amount to EI. The term ‘gross energy’ refers to the 

total chemical energy within a particular food and is distinct from 

‘metabolisable energy’ which refers to the difference between the gross 

energy and the losses and therefore denotes the amount of energy available 

for biological processes. These losses are via faecal and combustible gases, 

urinary loses and body surfaces heat losses (Elia & Cummings, 

2007). Digestibility of foodstuffs influences the metabolisable energy and 

varies markedly between foods depending on several factors including the 

physical structure and its fibre content, which hinder the access of digestive 

enzymes (Hall et al., 2012). Commonly used metabolisable energy 

coefficients for the macronutrients are carbohydrate ~4 kcal/g,  protein ~4 

kcal/g,  fat ~9 kcal/g and alcohol ~7 kcal/g though these represent rounded 

population averages and can vary considerably between individuals (Hall et 

al., 2012) and nutrient subtypes (Elia & Livesey, 1992). These 
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macronutrients contribute to the production of energy directly from their 

dietary forms or are mobilised from their stored forms, to enter energetic 

pathways. Glucose from dietary carbohydrate provides energy via glycolysis, 

which produces two adenosine-triphosphate (ATP) anaerobically and 

pyruvate molecules. Pyruvate is then converted to acetyl coenzyme A, which 

enters the metabolic pathway known as the Krebs cycle alongside fatty 

acids. The cycles produce the cofactors NADH and FADH2, which shuttle 

electrons in the electron transport chain (Medeiros and Wildman, 2018, pp 

13-17). The transfer of electrons to oxygen in the electron transfer chain 

provides 34 ATP molecules (Cooper, 2018. pp 81- 85).  

1.1.2 Energy expenditure 

Before discussing the components of EE at a high level, it is important to 

define precisely why and how energy is expended from a thermodynamic 

and bioenergetic perspective. Almost all cellular activity requires energy to 

proceed. The second law of thermodynamics states that entropy (i.e. 

disorder or randomness) will increase within a closed system (Dulloo, 2010). 

However, many cellular processes do not appear to adhere to this law and 

move towards a more orderly, low entropy state. This contradiction is 

explained by the open (i.e. not isolated) nature of cells; they can dissipate 

heat to the external environment, such that entropy can decrease. 

Thermodynamically, the change in Gibbs free energy (ΔG) of a reaction 

combines enthalpy (i.e. heat, ΔH), entropy (ΔS) and temperature (T) and is 

formulated as ΔG = ΔH – TΔS. Biological activity proceeds toward 

minimising free energy (i.e. ΔG < 0)  though many reactions themselves are 

thermodynamically unfavourable in nature (i.e. ΔG > 0). To permit biological 

reactions in the necessary direction, a coupled energetically favourable 

reaction is required (Cooper, 2018. pp 81- 85). This role is fulfilled by the 

free energy-storing molecule, ATP. This molecule, which is comprised of an 

adenine base, a ribose and three anhydride-bound phosphates provides 

energy by the hydrolysis of anhydride bonds to yield adenosine-diphosphate 

(ADP) and ΔG = –7.3 kilocalories/mol. The second hydrolysis of ADP 

provides adenosine-monophosphate (AMP) and ΔG = −3.4 kilocalories/mol. 

Though favourable cellular conditions mean that the ΔG is closer to –12 

kcal/mol for the hydrolysis of ATP (Medeiros and Wildman, 2018, pp 13-17). 

The free energy provided by these reactions provides the essential energy 

for reactions involved in membrane transport, molecular synthesis and 

mechanical work.  
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At a higher level, EE may be divided into three distinct components; resting 

metabolic rate (RMR), dietary-induced thermogenesis (DIT) and activity 

energy expenditure (AEE) and the latter can be further subdivided into the 

EE during physical activity (PAEE) and non-exercise activity thermogenesis 

(NEAT). The summation of these components over 24 hours represents the 

total daily EE (TDEE) of a biological system (Ravussin et al., 1986). Figure 

1.1 provides a simulated illustration of how variance in these components 

determines TDEE, which is informed by a previous illustration (Frayn & 

Evans, 2019. pp 335).  

 

 

Figure 1.1  A simulated dataset to illustrate how the components of TDEE 

can vary in a group of subjects.  

A) Typical distribution of DIT, PAEE and RMR.  

B) A simulation providing an example of how TDEE can vary depending 
upon their constituents. The SMR is held constant at 6500 KJ/day and 
DIT represents 10% of TDEE. The RMR is the sum of arousal and SMR 
per day. The simulation allowed arousal, PAEE and NEAT to vary. The 
x-axis represents each of the simulated subjects, ordered by TDEE.   

C) The physical activity level (PAL) is calculated as TDEE/RMR. The x-
axis represents each of the simulated subjects, ordered by TDEE.  
Abbreviations: Dietary induced thermogenesis (DIT), non-exercise 
activity thermogenesis (NEAT), physical activity energy expenditure 
(PAEE), Resting metabolic rate (RMR), sleeping metabolic rate (SMR), 
total daily energy expenditure (TDEE).  

1.1.2.1 Resting metabolic rate 

In a typical western adult, RMR represents the largest component of TDEE, 

comprising 60-75% of TDEE (Lam & Ravussin, 2016). It refers to the 

energetic cost to maintain physiological function whilst at rest (Westerterp, 
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2000). The RMR is measured under resting conditions when a subject is 

awake, supine, fasted and free from any physical or mental arousal, to 

ensure the measured value represents the sum of the metabolic cost of 

essential functions in the resting state (McArdle et al., 2010. pp 191-202). An 

important distinction is made between RMR and metabolic rate during 

sleeping; the latter can be up to 20% less than the metabolic rate during 

waking, explained primarily by the effects of arousal (Dulloo, 2010), though 

the average sleeping metabolic rate is ~95% of the RMR (Goldberg et al., 

1988). Approximately 70%-80% of individual variation in RMR is attributable 

to the metabolic rate of fat-free mass (FFM), as FFM is comprised of 

metabolically active organs such as the liver, brain, kidney and skeletal 

muscle mass (Dulloo, 2010). In a healthy reference adult, fat mass (FM) 

contributes minimally to overall metabolic rate (Wang et al., 2011) and 

further variance is attributable to sex, age, ethnicity, metabolic adaption and 

environmental factors (Bogardus et al., 1986; Fothergill et al., 2016; Weyer 

et al., 1999). 

1.1.2.2 Activity energy expenditure  

To perform spontaneous or voluntary exercise, muscular work is required. 

The absolute energy requirement of a particular activity varies depending on 

the duration, intensity and body mass of the subject and therefore AEE is 

often normalised relative to RMR. The most intense activities demand 

energy costs of >14 x RMR (Ainsworth et al., 2011; Durnin, 1991), though 

world record standard performances are likely to be higher, depending on 

the duration of the event (Thurber et al., 2019). Variability in behaviour and 

lifestyle of individuals means that the physical activity level (i.e. TDEE/RMR) 

can range from 1.2 to 5, or even higher in the most extreme examples (Black 

et al., 1996; Westerterp, 2001). Some additional variance may be 

attributable to exercise economy, a phenomenon whereby the EE for a given 

volume of physical activity is reduced and this is a common adaption to 

exercise training (Hunter et al., 2015). NEAT, which is considered by some 

as distinct from AEE, refers to EE through non-volitional movements such as 

fidgeting or postural control (Lam & Ravussin, 2017) although the definition 

of NEAT remains inconsistent, with some researchers including daily tasks 

such as walking (Garland et al., 2011). Recent work has compiled a body of 

data collected during endurance events to demonstrate the relationship 

between duration and physical activity level (PAL) = EE/RMR (Thurber et al., 

2019). The parameters from the logarithmic regression reported in this work 

are plotted in unlogged form in figure 1.2. Though the contributing data to 
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these models is not extensive, a clear curvilinear pattern emerges, which is 

to say that the potential intensity with which an activity can be performed 

decreases with increasing duration.  

 

 

Figure 1.2 Predicted maximal EE/RMR relationship for epochs ranging from 

minutes to 300 days.  

EE/Basal metabolic rate (BMR) values are obtained by separate 
models of < 0.1 days and 0.5-300 days (see Thurber et al., 2019).  

1.1.2.3 Dietary induced thermogenesis 

Increases in EE above fasting levels following the ingestion of a meal is 

referred to as DIT. This is the obligatory energetic costs associated with the 

gastrointestinal tract activity, conversion of gross energy to metabolisable 

energy and the energy cost associated with storing foods. For example, the 

formation of glycogen for storage from glucose is an energy-consuming 

process, requiring the hydrolysis of ATP and uridine-triphosphate (Frayn and 

Evans, 2019. pp 335). This is a challenging process to measure accurately 

(Ruddick-Collins et al., 2013) although it is generally proportional to the total 

EI, thus it is often approximated at 10% of the TDEE (Westerterp et al., 

2004), assuming that TDEE ≈ EI. Despite this approximation, DIT varies 

based on the macronutrient composition of the meal and can be increased 

by exercise training (Byrne & Hills, 2018), proportionately reduced in people 

with obesity compared to lean subjects (de Jonge & Bray, 1997) and 

increases in response to extreme overfeeding (Pasquet et al., 1992).  
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1.1.3 Energy storage 

A change in ES (i.e. ΔES ≠ 0) represents the net change of the dietary 

macronutrients stored within the body. Energy imbalances are accounted for 

by deposition or metabolism of body fat, protein, and glycogen and change 

in mass is determined by the tissues comprising the loss or gain. Energy 

densities of glycogen, protein and fat approximate to 17.6, 19.7, and 39.5 

MJ/kg, respectively (Livesey & Elia, 1988). Carbohydrate is stored as 

intracellular glycogen in the liver and skeletal muscle and despite 

carbohydrate being the primary provider of dietary energy in typical western 

diets, the total amount of stored glycogen is comparatively small with 

approximately 400 grams in skeletal muscle and 100 grams in the liver 

(McArdle et al., 2010. pp 13-15). In non-diabetic subjects, blood glucose is 

extremely tightly maintained and glycogen fluctuates markedly to facilitate 

this (Galgani & Ravussin, 2008). Each gram of glycogen is associated with 

~3 grams of water and this highlights one mechanism by which short-term 

body weight fluctuations may not reflect true changes in ES (Bhutani et al., 

2017). The storage of protein represents approximately 30% of the ES of an 

adult man however this value is subject to change in response to weight gain 

and non-dietary stimuli (i.e. resistance training) (Galgani & Ravussin, 2008). 

As with carbohydrate, protein is associated with water and is therefore not a 

particularly energy-dense storage medium. Most proteins serve essential 

biological functions and thus, protein balance is very tightly maintained in 

humans when at or close to energy balance (Abbott et al., 1988). Lipid is 

stored as triglycerides in adipocytes and represents the largest potential 

energy store in humans. Adipose tissue functions as the primary ‘energy 

buffer’ for the body and is used as the primary deposit for long-term energy 

imbalances (Abbott et al., 1988). The mechanism for increasing the ES in fat 

is through increases in the number and capacity of adipocytes and adults 

with morbid obesity may have 4 times the adipocytes as lean adults and 

twice the triglyceride per adipocyte (Hirsch & Knittle, 1970). Importantly, the 

loss of stored energy from the body is largely accounted for by a change in 

the size rather than the number of adipocytes (Maclean et al., 2015).  

Assuming a typical western diet being consumed in a man weighing 70kg 

~10.5 MJ/day EI is required to maintain energy balance, although this value 

has substantial scope to vary with physical activity. Energy obtained from 

dietary fat and carbohydrate is ~4.2 MJ/day and a further 2.1 MJ/day is 

obtained from dietary protein. The storage components of carbohydrate are 

~8 MJ, protein is ~170 MJ and fat is ~525 MJ (Lam & Ravussin, 2017). The 
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proportion of the stored energy oxidised daily for carbohydrate, protein and 

fat is ~50%, ~1.3% and <1%, respectively. In a positive energy balance, the 

oxidation rates (as a proportion of stored energy) of carbohydrate and 

protein increase, reflecting a tighter homeostatic regulation of these stores. 

By contrast, the oxidation of fat is relatively constant whilst the adipose mass 

expands, manifesting in weight gain (Lam & Ravussin, 2017).  

1.1.4 Interactions between the components of energy balance  

Energy balance is a dynamic system and therefore any behaviour which 

alters one component of the energy balance equation cannot be simply 

considered as an additive change to ES (Hall, 2008). Indeed, the magnitude 

of an energy deficit or surfeit decreases as energy is accumulated or 

metabolised as a fuel because the mass of the subject changes (Melby et 

al., 2017). Longitudinal changes in both FM and FFM are determined by 

initial ES, body composition, the magnitude of the energy imbalance and the 

physical activity status of the subject (Forbes, 2000). During negative energy 

balances, both behavioural and physiological adaptions occur, with TDEE 

decreasing by up to 25% after 10% body weight loss (Rosenbaum & Leibel, 

2010). The marked reduction may exceed what would be predicted based on 

body composition changes (Leibel et al., 1995) and this phenomenon is 

termed adaptive thermogenesis (Müller & Bosy-Westphal, 2013). Adaptive 

thermogenesis is thought to be attributable to decreases in NEAT, increases 

in skeletal muscle efficiency and decreases in RMR (Rosenbaum & Leibel, 

2010), although much of the research is equivocal and substantial inter-

individual differences exist (Melby et al., 2017). Adaptive responses to 

changes in weight are asymmetric in their intensity, favouring weight regain 

(Müller et al., 2010). Notable investigations of the adaptive and behavioural 

responses to weight loss include research conducted on the participants in 

the ‘Biggest Loser’ television program, in which subjects lost ~60kg from a 

baseline weight of ~150kg, followed by a subsequent regain of ~40kg at 6 

years. After this regain period, RMR was suppressed at ~500 kcal below 

predicted values based on body composition, implying substantial adaptation 

to RMR (Fothergill et al., 2016). Second, the CALERIE trial required subjects 

to reduce their caloric intake by 25% and showed that this was accompanied 

by reductions in activity related EE (Martin et al., 2011) and this is probably 

in addition to adaptive changes in body composition and the function of 

tissues (Stubbs & Turicchi, 2021). Indeed, it may be that conscious dietary 

restraint and careful attention to lifestyle choices are necessary to 
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counterbalance these adaptive responses to weight loss (Marlatt et al., 

2017).  

Positive energy balance appears to elicit smaller physiological compensatory 

responses to prevent further weight gain, when compared to weight loss. 

These responses may include a small increase in NEAT (Levine et al., 

1999), as well as DIT associated with increased EI and the energetic cost of 

tissue synthesis (Westerterp, 2013). This asymmetry in energy balance 

regulation has been illustrated in a recent review of the literature, in which 

Bray and Bouchard show a strong linear association (R2 = 0.88) between the 

energy overfed and the ∆ES (Bray & Bouchard, 2020).  

When a subject is at or close to energy balance, the relationship between EI 

and EE on a daily basis is variable, however it becomes increasingly 

balanced as the timeframe in consideration increases. Edholm showed that 

there is no association between EE and EI on a given day but as this 

measurement period extends to two weeks, the relationship becomes far 

stronger (Edholm et al., 1955, 1970). This seminal work implies that energy 

imbalance is tolerable over short time frames but less so as time increases. 

To capture the fundamental importance of time in the understanding of 

energy balance, the static energy balance equation can be modified (Alpert, 

1990):  

 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐸𝑆 = 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐸𝐼 − 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐸𝐸 

        

This subtle but important adaption to the energy balance equation 

encompasses the importance of the time domain in changing ES (Galgani & 

Ravussin, 2008). Relatively short-term interventions in which EE and EI are 

perturbed by exercise and dietary energy density to create energy 

imbalances of 5–6 MJ/day result in compensation to EI and EE of 0.2 and 

0.35 MJ/day, respectively (Stubbs et al., 2004). If extrapolated linearly 

beyond the data, up to 4 weeks would be taken to compensate fully. 

Subsequent investigations confirm that an exercise-induced negative energy 

balance compensation occurs over two weeks with clear evidence of inter-

subject differences, which mechanistically remain unexplained (Whybrow et 

al., 2008).  
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1.2 Measures of energy intake   

Prolonged energy imbalance is the determinant of a systematic change in 

body weight and therefore quantifying the components of energy balance 

has been the subject of scientific research since the 18th century, when 

Lavoisier and Seguin pioneered the methodology of indirect calorimetry. 

Today, in both laboratory and free-living settings, it is feasible to derive 

accurate and precise estimates of EE, ES and EI (Hills et al., 2014; Lam & 

Ravussin, 2016). However, longitudinal research in weight management is 

limited by the lack of scalable tools to accurately quantify both EI and EE in 

free-living human subjects, over months and years. The lack of such 

measurement tools limits quantitative understanding of the extent and 

mechanisms by which weight maintenance is achieved and contributes to 

uncertainties and debate regarding the aetiology of human obesity (Williams 

and Frühbeck, 2009. pp 187 - 208). The remainder of this review provides a 

critical, but non-exhaustive overview of methodologies currently used in 

energy balance research. Tables 1.1 and 1.2 summarise methodologies for 

the assessment of energy or food intake and EE/physical activity, 

respectively. A distinction is made between self-report measures and more 

objective approaches throughout because the error associated with self-

report measures is often large and unpredictable. When self-report EI and 

EE estimates are used together, the errors can compound, increasing the 

probability of erroneous conclusions. This bias creates serious concerns 

over potentially misguided national health policy. Indeed, prominent 

researchers have argued that these assessment tools are so inaccurate that 

they are inappropriate for use in scientific research (Dhurandhar et al., 

2015). This issue, as well as potential solutions, are discussed herein.  

1.2.1 Quantifying energy intake with self-report measures 

1.2.1.1 Measurement tools  

Self-report measures of EI are ubiquitous within medical and health research 

settings. These tools include a broad range of assessments which require 

input from a participant in an attempt to understand their food intake or 

eating behaviour. These measures vary significantly in their ease of 

dissemination, participant burden, required researcher expertise and 

accuracy of EI estimates. Traditional assessment techniques include food 

diaries, in which subjects record the food and beverages consumed over a 

period (typically up to 7 days) and food recalls, in which a trained researcher 

interviews a subject about their previous consumption. With these 
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assessments and the many varieties of self-report tools, the quality of the 

assessment is highly dependent on the technical skill of the experimenters 

and the recall of the subjects (Lam & Ravussin, 2016). More recently, food 

photography methods have emerged. These techniques require a subject to 

provide photographs of a meal, which is then analysed relative to known 

portion sizes by a semi-automated process. The real-time nature of this 

method allows for reminders and prompts to be sent by researchers, which 

in theory should minimise recall bias. Food photography has shown promise 

in small studies relative to a doubly labelled water (DLW) criterion, with a 

mean underestimate in EI of <10% when customised prompts delivered at 

meal times are used (Martin et al., 2012), and this could be related to the 

elimination of biases associated with retrospective recall. These methods 

only capture small periods of an individual’s diet (Johnson, 2002) and 

evidence suggests that participants may alter intake behaviour over a 

measurement period (Trabulsi & Schoeller, 2001), both of these issues 

create uncertainty around whether these tools are representative of the 

subject’s typical diet. 

1.2.1.2 Misreporting of energy intake   

Dietary misreporting has been recognised for at least 30 years (Lissner et 

al., 1989). Misreporting is a phenomenon in which reported EI deviates from 

the true EI, and this is generally in the direction of underreporting (Murakami 

& Livingstone, 2015). Two processes are likely to be at play in the degree of 

misreporting. First, the ‘reporting effect’ is characterised by an incomplete 

recording of intake and the ‘observation effect’ describes the alteration of 

dietary behaviours during the period of study (Stubbs et al., 2014). The 

prevalence of low energy reporting has been illustrated in the NHANES 

study (n=~63,000), in which estimates of EI for 67.3% of women and 58.7% 

of men were considered to be physiologically implausible (i.e. EI <1.35 x 

RMR), leading to the conclusion that these measures are ‘pseudo-

quantitative’ (Archer et al., 2013), though this plausibility cut-off, which is 

discussed below, is highly arbitrary (Stubbs et al., 2014). In a pooled 

analysis of 5 large validation studies conducted on variable U.S. samples, 

less than 10% of the variance in EI (assumed to equal TDEE from DLW) 

was explained by the values obtained by self-report (Freedman et al., 2014).  

Several cut-offs have been proposed to estimate the plausibility of reported 

EI. The ‘Goldberg cut-off 1’ considers a value of 1.35 x RMR as the minimal 

plausible EI (Goldberg et al., 1991). This is a widely used approach but is 

subject to criticism (Stubbs et al., 2014) owing to its arbitrary nature and 
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limited capability to identify misreporting. A subsequent, more involved cut-

off (cut-off 2) was proposed which considers the number of days over which 

self-report is obtained, coefficients of variation for EI, physical activity level 

and sample size and was designed to detect both high and low energy 

reporting (Goldberg et al., 1991). Whilst these methods were designed to 

assess the plausibility of self-report data, and may identify the most 

substantial misreporting, their application to identify misreporting assumes 

that each subject is either misreporting or not and therefore fail to identify 

those misreporting to a lesser degree or misreporting particular 

macronutrients.   

Theoretically, if strong and consistent predictive characteristics associated 

with the degree of misreporting could be identified, it may be possible to 

correct the biases associated with self-report measures. Both gender 

(Murakami & Livingstone, 2015) and body mass index (BMI) (Rasmussen et 

al., 2007) have been associated with the magnitude of misreporting of EI. 

Some studies have reported that females misreport to a greater degree than 

males (Mendez et al., 2004; Pfrimer et al., 2015). However, others find no 

differences between genders (Rasmussen et al., 2007). Regarding BMI, 

those with a higher BMI have tended to under-report to a greater extent 

(Mendez et al., 2004; Rasmussen et al., 2007), although some studies also 

report no relationship between BMI and magnitude of misreporting (Asbeck 

et al., 2002). The identification or prediction of misreporting on the individual 

level is currently impossible as reliable predictors remain elusive and 

therefore self-report EI (not necessarily diet composition) is of limited use to 

quantitative energy balance research.  

1.2.2 Quantifying energy intake with intake balance methods 

Thermodynamic principles applied to human physiology make it possible to 

solve the energy balance equation if two of the three components are 

known. The two measured components do not matter necessarily; it is 

possible to vary EI until ∆𝐸𝑆 = 0, thereby establishing maintenance 

requirements (Heymsfield et al., 2017). This approach is practically 

challenging and only provides information on the subject’s maintenance 

requirements. A more widely used approach is to estimate the ∆𝐸𝑆 and EE 

and to solve for EI. This technique, commonly referred to as the ‘intake-

balance method’ requires two body composition measures, from which the 

energy density of the ∆𝐸𝑆 can be estimated and if EE of the subject is 

known, EI can then be calculated.  
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Implementing the intake-balance method using DLW and Dual-energy x-ray 

absorptiometry (DEXA) can be considered a gold-standard for deriving EI 

(Racette et al., 2012). However, the error associated with the intake-balance 

method is not 0, and analytical and physiological errors are often assumed 

to sum to ~5% for DLW (Black & Cole, 2000; Trabulsi et al., 2003) and ~1% 

for DEXA (Sanghvi et al., 2015). The analysis for these techniques can also 

take several months depending on the facility, making real-time analysis 

impossible. With this in mind, research groups are exploring alternative 

methods for the quantification of the components of the energy balance 

equation. Activity monitors are recognised as the most viable opportunity to 

accurately estimate EE in large groups of free-living individuals. Shook and 

colleagues investigated whether the expensive DLW measures can be 

replaced with TDEE estimates from a SenseWear armband mini (SWA) 

which is a research-grade, arm-worn activity monitor (Shook et al., 2018). 

The results were promising, with TDEE, PAEE and therefore EI differing by 

<2 kcal/day on average, though an R2 value of .44 implies imperfect 

agreement (Shook et al., 2018). The observed accuracy in EI estimates is 

almost entirely dependent on the SWA, given the smaller error associated 

with the DEXA method. It is therefore important to note that the errors 

increased with increasing TDEE, with a bias of 160 kcal/day relative to DLW 

in the highest TDEE group, so this method will require further validation in 

independent samples. Critically, the SWA is no longer in production (Gibbs & 

Davis, 2018) and is therefore unlikely to offer a scalable solution for future 

studies. However, the work of Shook and colleagues provides evidence that 

wearables could offer an alternative to DLW for energy balance studies.  

A mathematical strategy to estimate EE during a positive energy balance 

has been proposed and this method could offer a cost-effective alternative 

for DLW measures in the typical intake-balance protocol. This model, 

proposed by Gilmore et al., accounts for increases in DIT and tissue 

deposition and has been used to estimate the EI of subjects in a metabolic 

ward study (n=8) and an outpatient free-living DLW validation (n = 35). No 

differences were observed in the inpatient study but a small significant 

underestimation was seen in the outpatient study (Gilmore et al., 2014). This 

approach has been criticised for failing to account for all the necessary 

components of EE, such as the increased EE attributable to physical activity 

during overfeeding, increased maintenance energy requirements and NEAT, 

all of which likely contribute in different degrees to EE during weight gain 

(Hall, 2014).  
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Table 1.1 Methodologies to estimate energy or food intake.   

Method Description Observation 
period  

 Advantages Limitations 

Food  

records 

A log of all foods eaten is 
recorded by a subject. Food 
records require coding by 
trained personnel. 

Up to 1 week • Not subject to recall bias 

• 7-day food record 
provides a quantitative 
estimate of energy and 
macronutrient intake 

• May capture diet 
variability 
 

• Expensive  

• Requires trained dietitians to code 
responses 

• Subject to experimenter error 

• Large participant burden 

• Subject to misreporting 

Food  

recalls 

Food and drink consumption 
over a predefined period (i.e. 
previous day) is determined 
by interview or software. 

1 day • Ease of administration 
facilitates use in large 
studies 

• Can be conducted by 
telephone or by computer 
programmes  

• Subject to recall bias  

• Subject to misreporting  

• Requires trained dietitians or 
software to code responses 

• Subject to experimenter error   

• Repeated measures required to 
assess variability  

Food frequency 
questionnaire  

A list of foods is presented 
and subjects report the 
frequency of consumption 
during a specified period (up 
to one year). 

Up to 1 year  • Ease of administration 
facilitates use in large 
studies 

• Standardised 
questionnaires can be 
scanned electronically 

• Cheap 

• Low participant burden  
 

• Subject to recall bias  

• Subject to misreporting 

• Does not provide quantitative 
estimates of energy intake 

Photography 
methods 

Respondents photograph 
meals before and after eating/ 
Images may be accompanied 
by a marker in the images (for 

Variable  • Objective estimation of 
portion size  

• Allows for the 
identification of data entry 

• Privacy considerations  

• Requires cameras or smartphone  

• Requires trained dietitians or 
software to code responses 
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Method Description Observation 
period  

 Advantages Limitations 

portion size estimation).  errors 

• Not subject to recall bias 
• Subjects may forget to photograph 

meals 

Observed intake  Trained researchers observe 
food intake in a controlled 
clinical environment, often 
food is available ad libitum 

Variable  • High level of objectivity 
and accuracy 

• Expensive  

• Low ecological validity 

• Subject to Hawthorne effect  

Mathematical 
models 

Linearised mathematical 
models of body weight 
dynamics are used to 
estimate the change in energy 
intake from baseline 
maintenance requirements 
from repeated body weight 
measures  

 

Years  • Cheap  

• Very low participant 
burden 

• Not subject to recall bias 

• Not subject to 
misreporting  

 

• Complicated to implement 

• Associated with numerous 
assumptions which may not hold for 
all individuals 

• Validation studies are rare   

Biomarker or 
metabolomic 
methods 

Samples are collected (e.g. 
saliva, urine) that are 
associated with dietary intake 
or the status of these nutrients 

Variable  • Highly accurate for some 
dietary components (i.e. 
nitrogen intake) 

• Not subject to recall bias  

• Not subject to 
misreporting 

• Can not provide a quantitative 
estimate of total energy or dietary 
intake  

• Technical expertise required 

• Large participant burden 

• Expensive 

• Participant and lifestyle factors 
influence metabolites  

• Validity of metabolomic approaches 
is unclear  
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Method Description Observation 
period  

 Advantages Limitations 

Intake-balance 
method 

Energy intake is calculated 
based on the change in 
energy stored (fat mass and 
fat-free mass) and average 
daily energy expenditure. 
Body composition is assessed 
at two points and energy 
expenditure is assessed in the 
interim.  

14 days • Highly precise and 
accurate (DLW and 
DEXA)  

• The method can be 
applied with wearable 
devices  

• Not subject to recall bias  

• Not subject to 
misreporting  

• DLW is expensive 

• Provides no information on the 
nutrient intake  

• Provides average energy intake 
over the measurement period 

• High participant burden    
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1.3 Measure of energy expenditure  

1.3.1 Quantifying energy expenditure with self-report measures 

Similar to the measurement of EI, a variety of self-report tools for EE and 

physical activity are available. Methods involve variants on 7-day and yearly 

recall questionnaires, as well as an array of logs and diaries (Helmerhorst et 

al., 2012). Many of the questionnaires involve conversion steps between the 

subject’s qualitative reports and the energetic work of activities and this is 

achieved by looking up values in the compendium of physical activities 

(Ainsworth et al., 2011) which are population estimates with limited 

applicability at the individual level (Hills et al., 2014). A 2012 review 

investigating the validity of 96 existing physical activity questionnaires 

relative to objective measures reported maximal correlation coefficients of 

0.76 for reliability and 0.41 for validity (Helmerhorst et al., 2012). A recent 

comparison of self-report measures of physical activity converted to 

estimates of EE (n=78) with DLW showed a significant difference for PAEE 

of 414.6 kJ/day (range: 78.7, 750.5 kJ/day), though in this case, the mean 

may be deceptive, as none of the tested measures were correlated with 

DLW across a population or individually (Sharifzadeh et al., 2020).  

1.3.2 Quantifying energy expenditure with wearables 

The growth in wearable technologies and algorithmic approaches in recent 

years is revolutionising EE assessments, with potentially enormous 

implications for biomedical sciences (Wright et al., 2017). Using wearable 

devices to monitor human behaviour has been a research interest for many 

years (Ceesay et al., 1989) but very recent technological and engineering 

advancements have allowed current wearables to incorporate GPS sensors, 

respiratory sensors, heat sensors, goniometers, accelerometers, heart rate 

monitors and gyroscopes (Yang & Hsu, 2010). All of which can generate 

extremely detailed time-series datasets of human movement and 

physiological signals. The following section details recent advances in 

accelerometer-based or physiological devices. 

1.3.2.1 Metabolic equivalents  

In most predictive accelerometry research the aim is to predict metabolic 

equivalents (METs) rather than an absolute value of EE. Much of EE is 

determined by RMR, which is determined by the subject’s body composition, 

age, gender, and environmental conditions (Hopkins & Blundell, 2016) rather 

than mechanical work. One MET is the VO2 at rest, which has generally 
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been assumed to be 3.5 mL/O2/min/kg body weight (Hills et al., 2014). 

Standardisation of physical activities in this manner allows consistency and 

comparability of the energy cost for subjects of different weights and the 

compendium of physical activities provides a comprehensive list of METs 

estimations for numerous physical activities (Ainsworth et al., 2011) which 

can subsequently be used to derive EE. Despite the prevalence of the 3.5 

mL/O2/min/kg assumption, research is indicating that this may be a poor 

reflection of the true resting EE (Byrne et al., 2005) as wide variation in body 

composition and size exists. This assumption may be invalid, particularly in 

people with obesity (Hills et al., 2014).  

1.3.2.2 Heart rate methods  

The monitoring of heart rate has been used for the estimation of EE because 

of the relatively linear relationship it shows with VO2 above moderate-

intensity activity, but this relationship is not observed at lower intensities 

(Strath et al., 2000). Tracking heart rate is not costly and is highly portable, 

facilitating the assessment of free-living individuals (Leonard, 2003). 

Unfortunately, due to variability in cardiorespiratory fitness, age and 

genetics, the linear relationship (both the intercept and slope) between VO2 

and heart rate varies significantly between individuals (Leonard, 2003). The 

potential differences in heart rate at various levels of physical activity is so 

large that individual-level calibration procedures appear to be necessary 

(Brage et al., 2007).  

Considering this, the pioneering ‘flex-HR’ method was developed (Spurr et 

al., 1988). Determination of the flex-HR parameters requires an individual 

calibration protocol in which VO2 and heart rate are measured 

simultaneously. This protocol defines the ‘flex point’, the slope and intercept 

of the heart rate and VO2 regression for a single subject (Welk, 2002). The 

flex point is defined as the average of the highest resting heart rate value 

and the lowest exercising heart rate (Leonard, 2003) which serves as a cut-

point above which VO2 and EE can be inferred from the regression 

parameters. Below the flex point, average resting VO2 is often defined based 

on the average of resting postures, also measured during the calibration 

protocol (Spurr, 1990). With these parameters, a VO2 prediction is 

obtainable given a measured heart rate. Early validations of the method 

against whole-body calorimetry showed reasonable agreement across a 

range of activities (R2 = 0.87) and an inter-individual variation between 20% 

and -15% for TDEE (Spurr et al., 1988). These results were subsequently 
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replicated (Ceesay et al., 1989) and have been validated against DLW in 

adults (Livingstone et al., 1990).  

A central limitation of the method is the time-consuming nature of the 

calibration protocols, which must be repeated for every subject (Brage et al., 

2007). Attempts have been made to estimate the flex point, the intercept and 

slope of the regression line based on more easily obtained values such as 

sex, age, body weight, BMI, FM% and sitting heart rate (Rennie et al., 2001). 

This study reported that physical activity level estimated with these 

parameters was highly correlated (r = 0.82) with the estimates obtained 

using the calibrated values in a sample of 97 adults, indicating a potential 

means of bypassing the burdensome calibration process.  

Further limitations of the flex-HR method include the lack of correlation 

between heart rate and EE at low-intensity activity and because of this EE is 

assumed for sedentary behaviours, which represents most of the day for 

western adults. The method is also subject to variability in heart rate 

response to environmental conditions, both of which are likely to reduce the 

accuracy and precision of the method (Welk, 2002). Another limitation is the 

variation seen in the relationship between heart rate and VO2 depending on 

musculature recruited (Hills et al., 2014). As technology has developed the 

flex-HR method has become less frequently used in research, however, the 

underlying principle of linearity plays an important role in more modern EE 

estimation methods (Brage et al., 2015).   

1.3.2.3 Accelerometers  

Micro-electromechanical system technology underlies most modern 

accelerometers and this has facilitated the development of tiny yet accurate 

accelerometers capable of measuring both static and dynamic accelerations 

(Plasqui, 2017). Accelerometers represent the most common sensor within 

wearable devices, with the vast majority incorporating an accelerometer in 

2016 (de Arriba-Pérez et al., 2016) and many of these modern devices 

register movement in three planes (anteroposterior, mediolateral, and 

vertical) (Chen & Bassett, 2005). 

As there is a nearly linear relationship between the energy cost of muscular 

force generation and acceleration, the measurement of acceleration can be 

used to infer the intensity of activity (Ridgers & Fairclough, 2011). 

Acceleration is typically measured in gravitational acceleration units (g) 

where 1 g is equal to 9.8 meters/second2. The raw g output is commonly 

converted to ‘counts’ and is expressed relative to a unit of time, ‘epochs’ 
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(Chen & Bassett, 2005). From here, counts per epoch are converted to more 

relevant parameters, such as steps, activity classification or EE (Hills et al., 

2014). Before the derivation of activity metrics, the raw acceleration signal 

passes through several steps including filtering to minimise artefacts in the 

signal, an integration step, an extraction step over defined time frames and 

the application of algorithms or cut-points to derive the variable of interest 

(Chen & Bassett, 2005). The assumptions and methods used at each of 

these steps vary substantially between manufacturers and analysis software, 

which makes comparability between studies challenging (Plasqui, 2017).  

Deriving estimates of PAEE from movement signals is of great research 

interest and the aggregated signal from tri-axial accelerometers has a 

relatively linear relationship with EE in many activity modalities (Crouter, 

Churilla, et al., 2006), making it a potentially useful tool in the assessment of 

EE. A simple linear model was proposed over 20 years ago which is used to 

transform counts to EE (Freedson et al., 1998). The proposed model, which 

was derived from data collected during a treadmill protocol, generalises well 

to ambulatory activity but not to non-ambulatory activity such as household 

tasks (Hendelman et al., 2000) or running at very high velocities (Kozey et 

al., 2010). Prediction equations were subsequently developed on more 

diverse training data; Swartz et al. (2000) used a protocol comprised of 

walking tasks and a number of lifestyle activities to develop regression 

equations (Swartz et al., 2000), which explained 34% of the variance in a hip 

and wrist combined model. Two-regression models were subsequently 

developed which utilise two different models, depending on the measured 

counts. Crouter et al used cut-offs (>/<10 coefficient of variation of 

counts/10s) to select either a walk/run model or a lifestyle model, which led 

to considerable improvements in estimations of METs, compared with a 

single model (Crouter et al., 2010). Crouter’s refined method was observed 

to have no significant difference from measured METs for any activity except 

cycling when compared to an indirect calorimeter (Crouter et al., 2010).  

A comprehensive comparison amongst these algorithms and 9 other 

equations was conducted in a protocol consisting of treadmill activities and 

daily living tasks; overall these models were shown to be inadequate for EE 

prediction as well as classification across a range of intensities (i.e. light, 

moderate or vigorous) (Lyden et al., 2011). To advance this area of research 

it is important to consider the sources of error and inconsistency. Firstly, EE 

is estimated based on time spent at various intensities and there is no 

standardisation of the number of ‘counts’ required to define each intensity 
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(Hills et al., 2014). Many cut-points have been developed for different 

populations and have limited applicability to others (Troiano et al., 2014). 

The incorporation of physiological signals with accelerometer data offers an 

exciting opportunity to improve the modelling of EE.   

1.3.2.4 Multisensory approaches  

Both heart rate and accelerometer methods have method-specific limitations 

(Schutz et al., 2001) and combining numerous sensor outputs could improve 

estimates of free-living EE. Combination approaches can refer to either 

multiple accelerometer sensors or accelerometers combined with 

physiological sensors and both of these approaches are considered below.  

The intelligent device for energy expenditure and activity (IDEEA) has been 

used to derive EE and activity through data obtained through multiple 

accelerometers attached to multiple body sites (sternum, thighs, and both 

feet) (Zhang et al., 2004). In one validation study, the IDEEA monitor (using 

measured RMR) demonstrated a significant underestimation relative to a 

whole room calorimeter (~0.9 MJ) (Whybrow, Ritz, Horgan, & Stubbs, 2013). 

Although the device has been applied to estimate EE in free-living 

participants in the DiOGenes study (Larsen et al., 2010), the cumbersome 

nature of attaching multiple sensors has probably contributed to the limited 

usage of the IDEEA and this must be an important consideration for 

research utilising wearables.  

The linear relationship between heart rate and VO2 is not observed at low 

intensity, and accelerometers generally have little ability to distinguish the 

higher energy cost associated with factors such as carrying a load or walking 

at an incline. In theory, this means that they can complement each other 

(Hills et al., 2014). The Actiheart (Brage et al., 2005) is a chest-worn device 

which is capable of measuring acceleration and heart rate and was novel in 

that it combines heart rate sensing and acceleration in one device (Crouter 

et al., 2008). The Actiheart’s algorithm has been published and predictions 

are generated via a branched model; based on the observed acceleration 

and heart rate, EE is estimated by different linear models utilising 

accelerometry only, heart rate only or a combination of both (Brage et al., 

2004). The parameters of the prediction model can be derived for each 

subject in a submaximal test and if this is not possible, group-level estimates 

can be used. However, research has generally shown that the accuracy and 

precision of the Actiheart are improved when the device is individually 

calibrated (Brage et al., 2015). A free-living validation of the Actiheart in a 

Cameroonian population of 33 adults demonstrated a small mean bias of 
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−5.4 and −9.1 kJ/kg/day relative to DLW for the individual and group level 

calibrations, respectively (Assah et al., 2011). Another DLW study reported 

correlations of r = 0.67 and non-significant bias with individually calibrated 

models in 46 healthy adults (Brage et al., 2015).  

The SWA (BodyMedia, Inc., Pittsburg, PA) has been available in several 

forms for many years (Fruin & Rankin, 2004). The device is worn on the 

upper arm and includes a triaxial accelerometer (newer models only), a 

galvanic skin response sensor, skin and air temperature sensors (Slinde et 

al., 2013), all of which are combined in a proprietary algorithm to derive EE 

predictions at the minute level (Santos-Lozano et al., 2017). The proprietary 

algorithms (which have been incrementally updated) and alterations to  

hardware configurations are known to produce different estimates of EE 

(Bhammar et al., 2016). Under free-living conditions, the device has 

generally agreed well with DLW with correlations of r = 0.66-0.80 reported 

(Farooqi et al., 2013; Johannsen et al., 2010; Koehler et al., 2011) and near-

perfect agreement at the group level in one study (Shook et al., 2018). 

Concerning accuracy in specific activities, a substantial bias of > 1.5 METs 

has been observed in high-intensity ambulatory exercise (Santos-Lozano et 

al., 2017) and correlations with indirect calorimetry varied from r=0.39 to 

0.93 in a running protocol (Drenowatz & Eisenmann, 2011). The SWA has 

been extensively used in physical activity research and the large body of 

validation literature suggests a good accuracy at the daily level in 

moderately active adults (Myers et al., 2019; Nymo et al., 2018; Shook et al., 

2018). The tool is minimally invasive, which undoubtedly contributes to its 

popularity relative to more cumbersome devices such as the Actiheart or 

IDEEA. Unfortunately, these devices and others are limited by the recording 

capacity. They must be returned to the laboratory for charging or download, 

which limits their use over long durations. Many of these devices can collect 

data over periods of 14-days maximally. Thus, researchers effectively 

assume that the period of observation is representative of the behaviours in 

the weeks or months where the device is not worn, which is likely to vary 

with social and environmental factors  (Aspvik et al., 2018; Chan et al., 2006; 

Merchant et al., 2007; Shiroma et al., 2019).  

1.3.2.5 Commercial activity monitors  

A limitation of research-grade devices is both scalability and limited duration 

of the measurement. By contrast, commercial devices are cloud-connected 

through Bluetooth and smartphone apps, allowing a continuous upload from 

a device, which provides a constant stream of data into an application 



- 23 - 

programming interface (API). Furthermore, commercial monitors are 

designed to be minimally burdensome and many are now worn on the wrist, 

which is likely to further promote compliance (Troiano et al., 2014).  

Sales and production of these devices have been increasing drastically 

despite concerns regarding their accuracy. Wallen and colleagues, in a 

simple laboratory protocol involving resting, ambulatory and cycling tasks 

reported a substantial error in EE estimates relative to indirect calorimetry 

(9–43%) for several wearables including the Apple Watch and Fitbit Charge 

HR (Wallen et al., 2016). An earlier systematic review in this area concluded 

that commonly used activity monitors typically show low validity but excellent 

reliability (Evenson et al., 2015). A later review focussing exclusively on 

Fitbit devices found that across 18 studies, average errors within 3% were 

rarely achieved and generally an overestimation of EE during 

activity behaviour was observed (Feehan et al., 2018). Variation in 

ambulation (speed, incline, surface types) impacted the accuracy of the 

devices and most resting comparisons showed that Fitbit devices 

underestimate EE (Feehan et al., 2018). Few DLW comparisons have been 

made for Fitbit devices, but one suggests an underestimate of ~ 7% in TDEE 

(Murakami et al., 2016) 

It appears Fitbit and other commercial monitors are limited in their ability to 

predict EE, however, a redeeming characteristic of these devices appears to 

be the accuracy achieved in estimating heart rate. One study reported that 

the majority of estimates falling within 5% of a gold-standard measurement 

for a range of activities  (Shcherbina et al., 2017) and another reported 

modest errors of ~5 bpm in a cycling based protocol (Benedetto et al., 2018). 

However, differences in BMI and skin tone may influence measurement error 

(Stahl et al., 2016). A characteristic of commercial monitors is that the rate of 

hardware and software updates is regular compared to research-grade 

devices and silent changes in algorithms are therefore possible.   

1.3.2.6 Statistical combination approaches  

The limitations of simple linear models applied to count data for estimation of 

EE are well documented. In recent years, fuelled by computational 

advancement, data availability and the implementation of complex 

algorithms in high-level programming libraries, machine learning approaches 

have emerged as a promising opportunity for the estimation of EE. In studies 

applying these methods, signals are extracted, and algorithms are used to 

learn complex, nonlinear functions mapping sensor data to EE or activity 

category (Sardinha & Júdice, 2017). These techniques can enhance the 
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precision of signal processing and movement assessment (Farrahi et al., 

2019).  

In one of the first studies in the area, researchers trained artificial neural 

networks to predict METs and reported a root-mean-squared error (RMSE) 

of ~ 1.2 METs relative to an indirect calorimeter, which reduced the EE 

estimation error substantially relative to the Crouter two-regression model 

(Staudenmayer et al., 2009). Ellis and colleagues compared estimates 

derived from random forests trained on data from hip or wrist devices and 

were one of the first to incorporate heart rate in their models. The use of 

heart rate improved MET estimation, achieving a RMSE of ~1 MET relative 

to a portable indirect calorimeter in a series of household, resting and 

exercise tasks (Ellis et al., 2014). Similar findings have been reported with 

neural networks applied to accelerometer data collected from the hip, thigh 

and wrist in a semi-structured protocol; the authors report the smallest error 

at the thigh attachment site (RMSE = 1.04 METs), which was closely 

followed by wrist and hip worn devices, in terms of RMSE (Montoye et al., 

2015). The authors compared linear and non-linear (artificial neural 

networks) models for predictive accuracy in a follow-up study. The 

performance advantage of the complex approaches was only seen when 

processing wrist accelerometer data, correlations relative to indirect 

calorimetry were up to r = 0.84 for the neural networks and r=0.73 for linear 

models (Montoye, Begum, et al., 2017). Indeed, the wrist experiences 

inconsistent and variable accelerations when compared to other tested body 

sites and this likely requires more complex modelling approaches.  

Research has also treated estimating EE and physical activity as an intensity 

classification problem by predicting an activity class (sedentary, light, 

moderate and vigorous), given some sensor input. In the most 

comprehensive study to date, Farrahi et al collated 5 independent studies 

and trained a series of artificial neural networks to classify sedentary, light or 

moderate-to-vigorous physical activities based on the accelerometer signals. 

High predictive accuracy was observed when the datasets were combined, 

reaching up to 90.7% accuracy but substantial performance degradation was 

observed when these models were applied to independent datasets (Farrahi 

et al., 2020). Whilst time in activity categories is an important metric on 

which interpretable public health guidelines are based (Ostendorf et al., 

2018), it does not facilitate estimates of TDEE. However, segmentation of 

activities into specific categories has been a recurring theme in 
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accelerometer research and it may offer an opportunity to refine TDEE 

estimates.  

Machine learning approaches to date have relied on small training datasets, 

the neural network architectures have had relatively few parameters and 

attempts at tuning hyperparameters have not been particularly 

comprehensive, all of which limit the capacity for feature extraction and 

predictive accuracy (Cao et al., 2018). Another important observation of 

these models to date is a tendency for predictions to regress towards the 

mean of the training data and therefore result in an overestimation of the 

energetic cost of resting/sedentary epochs (O’Driscoll, Turicchi, Hopkins, et 

al., 2020). Overall, these methods are in their infancy within computational 

bioenergetic and energy balance modelling fields and despite promising 

laboratory results, their free-living potential is not yet clear.  

1.3.3 Gold-standard measure of energy expenditure 

1.3.3.1 Direct and indirect calorimeter methods 

Direct calorimetry, indirect calorimetry and non-calorimetric methods 

represent the categories of methods used to estimate EE (Westerterp, 

2015). Neither indirect nor direct calorimetry can be considered suitable for 

continuous, longitudinal free-living measures, and the intricacies of these 

methods are beyond the scope of this chapter. However, they serve as 

important validation and development tools for many of the methods 

discussed later and are therefore introduced below. 

Historically, the quantification of EE in humans has targeted the 

measurement of heat production, as energy utilised for metabolic purposes 

is ultimately lost as heat (Lam & Ravussin, 2017). Direct calorimeters 

capture this heat production within a whole-room or body-suit calorimeter in 

which adults can reside in for short metabolic studies (Shephard, 2017). 

Direct calorimeters historically have offered a highly accurate means of 

quantifying TDEE but the extremely high cost to build and maintain mean 

that very few facilities exist worldwide (Tamura, 2019). Indirect calorimetry is 

the method most commonly used for the quantification of EE and does not 

directly measure heat production, but instead the oxidation rates of dietary 

substrates through the measurement of consumption of oxygen (VO2) and/or 

production of carbon dioxide (VCO2) (Haugen et al., 2007). The VO2 and 

VCO2 reflect macronutrient oxidation rates and therefore can be used to infer 

heat production (da Rocha et al., 2006). When VCO2 and VO2 are measured 
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EE can be calculated through the application of the Weir equation (Weir, 

1949) or alternatives (Tamura, 2019).  

Laboratory-based indirect calorimetry methods, in which the participant 

wears a face mask connected to a metabolic system, are widely used 

oweing to a high level of precision and accuracy but are associated with a 

limited duration of measurement due to the discomfort of the apparatus 

(Westerterp, 2015). They are extremely accurate and precise over epochs 

as short as 15 seconds (Tamura, 2019), making them ideal for validation of 

wearable activity monitors (Chowdhury et al., 2017) and the development 

and validation of new prediction algorithms for EE (Staudenmayer et al., 

2009). It is also possible to apply the theory of indirect calorimetry to 

portable devices in which such systems can be used with backpacks and 

facemasks to facilitate EE measurement outside of laboratory environments 

(Gupta et al., 2017). However, the duration of the measurement is still 

restricted to a few hours (Lam & Ravussin, 2016) and the precision and 

accuracy are poor when compared to more established stationary systems 

(Tamura, 2019). Refinement of these technologies will likely facilitate more 

ecologically valid data for algorithmic development.  

1.3.3.2 Doubly labelled water  

Estimation of TDEE with the DLW method is a form of indirect calorimetry, in 

which TDEE is derived from estimates of CO2 production, rather than the 

measurement of heat production (Lanningham-Foster et al., 2005). The 

method was first applied to humans in 1982, approximately 30 years after its 

invention, mostly attributable to the high cost of the method (Speakman, 

1998) and it has been widely applied in human energetics research since. 

The DLW method is currently considered the gold-standard for the 

assessment of free-living TDEE and in combination with gold-standard 

measures of body composition (see section 1.4.3), can give a gold-standard 

EI estimate in free-living subjects (Dhurandhar et al., 2015). The method has 

facilitated investigations into the rates of TDEE in elite cyclists participating 

in the Tour de France (Westerterp et al., 1986), the energetic cost of 

Antarctic expeditions (Stroud et al., 1997) and Hadza hunter-gatherers living 

in northern Tanzania (Pontzer et al., 2012).  

The DLW method is based on the premise that two labelled isotopes, 

deuterium (2H) and oxygen-18 (18O), equilibrate with total body water. Both 

of the isotopes are eliminated over time but because 2H exits the body as 

water exclusively and 18O equilibrates with the body water and the carbon 

dioxide pool through the carbonic anhydrase reaction, it leaves the body as 
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both H2O and CO2. The difference in the elimination rate of the two isotopes 

is an estimate of CO2 production (Westerterp, 2017). The method requires 

the collection of a baseline urine sample and subsequently a bodyweight 

specific dose of DLW is administered, marking the start of an assessment 

(Park et al., 2014). The duration of the measurement period is dependent on 

the water turnover, with higher water turnovers (i.e. endurance athletes) 

having a reduced period of measurement for a given isotopic dose (Ekelund 

et al., 2002; Schoeller et al., 1986). During the free-living observation period, 

participants provide urine or bodily fluid samples and the rates of elimination 

of the isotopes are calculated for the subjects by mass spectrometry 

(Delany, 2012). Once the CO2 production is known, EE can be calculated 

through the Weir equation (Weir, 1949) and divided by the number of days to 

give the average TDEE (Livingstone et al., 2003). Further methodological 

discussion, including assumptions of the DLW method, is provided in 

section 3.4.2.4.  

Early validations relative to a respiratory chamber reported that the method 

has a precision between 2-8% (Schoeller et al., 1986) and subsequent 

evaluation in lean and obese subjects reported an average difference of 

<3%, with greater underestimates observed in the most overweight subjecs 

(Ravussin et al., 1991). More recently, De Jonge, et al. demonstrated the 

accuracy of the measure during caloric restriction, with a mean difference of 

1.3 ± 8.9%, relative to a respiratory chamber in subjects following 3 weeks of 

caloric restriction (de Jonge et al., 2007). The CALERIE study has provided 

a novel opportunity for investigation of the method; Wong et al. showed 

turnover rates were repeatable to within 1% and 5% for 2H and 18O, 

respectively, providing strong evidence that the method is suitable for 

longitudinal energy balance research (Wong et al., 2014).  

The excellent precision and accuracy stated in these studies are dependent 

on meeting the methodological and theoretical assumptions of the method. 

For example, the CO2 production rate and the size of the bodily water pool 

are assumed to be constant for the duration of measurement (Speakman, 

2018). Furthermore, in many experimental conditions, the respiratory 

quotient of the diet is assumed rather than measured. The respiratory 

quotient value is variable depending on the dietary patterns, physical activity 

level and energy balance of the subject (Elia, 1991) and recent work 

suggests that failure to account for this in low carbohydrate diets may bias 

DLW estimates (Hall et al., 2019). Inconsistency in methodologies (i.e. 

multiple urine samples vs two-point urine samples) may also limit 
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comparability between findings of independent studies. Relative to two-point 

samples, daily urine sampling has been reported to improve precision and 

accuracy (Berman et al., 2020).  

Some further limitations of the DLW method must be acknowledged. First, it 

is currently impossible to validate field assessments and validation studies 

must be conducted in laboratory settings. Second, the substantial costs of 

isotopes and analysis limit the number of participants it is feasible to study. 

Third, the relatively short period of assessment (7-21 days) is often assumed 

to represent habitual behaviours outside the measurement period. It is 

impossible to eliminate the Hawthorne effect, whereby the act of observation 

leads to behavioural changes in subjects (McCambridge et al., 2014) and 

therefore researchers must exercise caution in generalising beyond the 

observation period. Perhaps the most significant limitation of the DLW 

method is that it only provides an average TDEE value. Physical activity is 

highly variable in terms of intensity, duration and frequency throughout the 

day. Different patterns of physical activities can produce different metabolic 

(Gonzalez et al., 2013) and appetitive/EI (Höchsmann et al., 2020) 

responses, which the DLW method cannot be used to study. Many other 

methods of EE assessment are not associated with the same limitations but 

carry their own limitations. A summary of commonly used methods is shown 

in table 1.2.  
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Table 1.2 Methodologies to estimate EE or physical activity.   

Method Description Observation period Advantages Limitations 

Self-report 
activity logs  

A log of all activity is kept by 
subjects. Logs are coded by 
researchers.  

Weeks – months  • Fast 

• Cheap 

• Low participant burden  

• Subject to misreporting  

Direct 
observation  

Participants are observed in a 
laboratory by researchers or they 
wear a camera, which is converted 
to activities by researchers.  

Hours - Days • Highly accurate estimates 
of time in physical activity 

• Biomechanical software 
can assist in coding 
activities   

• High researcher burden 

• Verification required 

• Hawthorne effect may 
influence behaviour 

• Limited validation studies 

• Translating activities to 
energy expenditure may be 
inaccurate 

Heart rate 
monitoring 

Participants perform a calibration 
procedure in which heart rate and 
VO2 are measured continuously. A 
linear model is used to estimate 
energy expenditure based on 
measured heart rate.  

10-14 days, determined 
by battery life  

• Not subject to 
misreporting 

• High ecological validity  

• Requires individual 
calibration 

• Calibration parameters may 
depend on the activity 
performed 

• High participant burden  

• Sensors may produce 
erroneous data 

• High error at the individual 
level    
 
 

Research-grade 
accelerometers  

Activity monitors are initialised by 
researchers and sent or given to 
participants. Activity monitors track 
movement in 1-3 axes and outputs 

10-14 days, determined 
by battery life 

• High ecological validity 

• Raw data may be 
available for modelling  

• Proprietary algorithms in 
some devices limit 
understanding of outputs 

• Most devices estimate energy 
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Method Description Observation period Advantages Limitations 

are converted to physical activity 
or energy expenditure by cut-point 
methods. Some devices also 
incorporate physiological sensors. 
Activity monitors are worn on the 
wrist, hip, chest or back.  

expenditure on accelerometer 
signal only  

Commercial-
grade wearables  

Activity monitors track movement 
in 1-3 axes and typically heart 
rate. Outputs are converted to 
physical activity or energy 
expenditure by proprietary 
algorithms. Activity monitors are 
most commonly worn on the wrist. 

Years  • Cloud connectivity 
facilitates long term 
measurements 

• Low researcher burden  

• Low participant burden 

• High ecological validity    

• Proprietary algorithms in 
some devices limit 
understanding of outputs 

• Hardware and firmware may 
be updated regularly 

• Manufacturer estimates are 
poor in many cases  

• Motivational aspects of 
devices may alter behaviour 

• Missing data is likely over 
long periods of measurement  

Direct 
calorimetry 

Whilst a subject is enclosed in a 
chamber, all heat transfer 
including radiation, convection, 
conduction, evaporation is 
measured. Heat production is 
typically obtained by observing the 
differences in air temperature and 
humidity between the input and 
output.  

Up to 1 Week  • Directly measures heat 
production 

• High accuracy and 
precision 

• Accuracy may decrease for 
high-intensity activity 

• Technical expertise required  

• High participant burden 

• Low ecological validity 

Whole-room 
respiratory 
chamber 

Subject resides in a chamber and 
air of known composition is 
pumped in. The outflowing air is 
analysed to determine the oxygen 
consumption and carbon dioxide 

Up to 1 Week • High accuracy and 
precision 

• High cost to maintain and 
install 

• High participant burden  

• Low ecological validity 
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Method Description Observation period Advantages Limitations 

production.  

Metabolic carts Oxygen consumption and carbon 
dioxide production are measured 
via a facemask or ventilated hood, 
which is analysed by the metabolic 
system,  

Hours  • Moderate to low 
maintenance costs  

• High accuracy and 
precision  

• Low response time (<30s) 

• Semi-portable  

• High purchase cost 

• Not suitable for long-term 
measures 

• Low ecological validity 

Doubly labelled 
water  

Subjects are dosed with stable 
isotopes (2H and 18O), these 
isotopes equilibrate with hydrogen 
and oxygen in total body water.  
Urine samples are collected and 
analysed to determine the 
differential elimination rates of the 
isotopes, which indicates carbon 
dioxide production, and energy 
expenditure.  

Up to 3 weeks, 
depending on the water 
turnover 

• The gold standard for 
energy expenditure 
measures in free-living 
environments  

• Applied in a wide range of 
subjects and 
environments 

• High ecological validity  

• Provides average energy 
expenditure over the 
observation period 

• Accuracy and precision 
depend on a series of 
assumptions and calculations  

• High participant burden 

• High cost for isotopes 

• Technical expertise required 
for analysis   
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1.4 Measure of energy storage 

Since energy metabolism in humans adheres to the principle of energy 

conservation, a change in the composition of the body has an energetic 

value, which is equivalent to the energy imbalance. Thus, a change in the 

weight or composition of the body is used to infer the energy balance status 

of individuals.  

1.4.1 Bodyweight  

Approximately constant body weight over time (i.e. ± 1 kg) implies EI ≈ EE 

and weight stability is therefore used to illustrate energy balance (Heymsfield 

et al., 2017). However, this provides no detail on the degree of rate of EE 

and EI (Hand & Blair, 2014) or the energetic cost of weight change, which is 

of interest to most weight management studies. Arguably the most prevalent 

method for approximating the energy density of weight change in clinical 

settings has been the ‘3500 kcal rule’, which erroneously assumes an 

energy deficit or surplus of 3500 kcal will lead to 1 pound of weight change 

and is derived from historic work approximating the energy content of fat 

(Hall, 2008; Wishnofsky, 1958). The uniformity of this rule predicts continued 

weight loss without a plateau (Thomas et al., 2013) and ignores factors 

influencing the composition of weight change, including the initial body 

composition, rate of weight change (Heymsfield et al., 2014) or the short-

term fluctuations in glycogen and water.  

A frequently used coefficient for the energetic cost of weight change is 7.4 

kcal/g (Gilmore et al., 2014; Tataranni et al., 2003), which considers the 

partitioning of energy imbalance between FM and FFM. Racette et al., 

working with a subsample of 40 subjects in the CALERIE study, investigated 

whether body weight can be used to approximate ∆𝐸𝑆. The authors 

regressed body weight over time and used a coefficient of 7.4 kcal/g to 

approximate the energy cost of weight change (Racette et al., 2012). This 

approach was not significantly different from the reference ∆body 

composition by DEXA for 4-week changes; indicating the potential for weight 

alone to provide reasonable estimates of ∆𝐸𝑆. This coefficient is likely to 

vary between individuals, direction of weight change and probably becomes 

less valid at the extremes of energy imbalance, body composition and 

exercise. For example, a value of 8.4 kcal/g was calculated in an adult 

overfeeding study (Gilmore et al., 2014). Though constant coefficients such 

as these fail to recognise the distinction between the different phases of 

weight change. The phases of weight loss and their physiological 
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characteristics have been comprehensively examined previously 

(Heymsfield et al., 2011). In summary, the initial phase of weight change is 

characterised by a rapid rate of change in FFM (via water, electrolytes and 

nitrogen losses) and as weight loss progresses towards a second phase, the 

provision of energy is increasingly met by stored lipid (Heymsfield et al., 

2011), therefore the energy content associated with a weight change is 

variable. 

1.4.2 Mathematical models  

Many thermodynamic models have been proposed which can be applied to 

quantify body weight dynamics in humans and these models can be solved 

for EI (Thomas et al., 2019). The advantage of these approaches is that they 

do not require laboratory measurements and can be easily applied to large 

groups of participants with a minimal associated cost.  

Thomas et al. proposed a mathematical model for estimating EI (Thomas et 

al., 2010), which is derived from a differential equation approach for 

calculating weight dynamics (Thomas et al., 2011). The model requires 

inputs of age, gender, height at baseline and body weight throughout the 

observation period and incorporates expected fluctuations in RMR and 

PAEE in response to altered body mass. The predictive accuracy of the 

Thomas model was investigated in 23 subjects who were restricting caloric 

intake but maintaining physical activity levels. Estimates derived from the 

model were compared to EI values obtained by provision of food and 

secondly with the DLW and DEXA intake-balance method. Relative to food 

provision, errors were 41 ± 118 kcal/d for the initial 4 weeks and -22 ± 230 

kcal/d weeks 4-12. Similar accuracy was observed relative to a gold-

standard intake-balance method, with a maximum mean difference of -71 

kcal/d, all of which were non-significant (Thomas et al., 2010). Despite these 

promising results, the Thomas model has had limited experimental 

application relative to an alternative model developed at the National 

Institute of Diabetes and Digestive and Kidney Disease (NIDDK). 

Hall and Chow showed that any change in body weight over a given interval 

can be used to derive estimates of change in EI (Chow & Hall, 2008; Hall & 

Chow, 2011). The parameters and assumptions of this model are complex 

and derived from a body of physiological research conducted over many 

decades, and these components are detailed in the methods of this thesis 

(section 3.5.1). In brief, given an initial body weight value, a differential 

equation can be derived which includes terms for the energetic cost of 

synthesis of FM and FFM (𝜂𝐹𝐹𝑀; 230 kcal/kg), the energy density of FM and 
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FFM and parameters to capture DIT and adaptive changes to the rate of EE 

associated with a change in body weight (Polidori et al., 2016). The model 

also includes a parameter which describes the relationship between 

changes in FM and FFM and is defined 𝛼 = 10.4/FM (Chow & Hall, 2008) 

where the constant (10.4) controls the composition of weight change. Given 

a larger initial FM, the parameter 𝛼 goes towards 0 and therefore the model 

predicts that those with a higher initial FM will partition a higher proportion of 

a given energy imbalance to FM (Forbes, 1987). Hall altered the Forbes 

equation to approximate the non-linear changes in FM which is thought to be 

more applicable in large weight losses (Hall, 2007). The model also has 

terms relating EE to body weight as determined by the quantity of FM and 

FFM. The parameter 𝛿0 refers to PAEE estimates at baseline and is 

generally approximated as 10 kcal/kg/day (a physical activity level of ~1.6). 

The ∆𝛿 term describes changes in PAEE from baseline and it is assumed 

that ∆𝛿 =0, in the absence of objective or subjective estimates of activity 

(Guo et al., 2019). Based on these calculations the NIDDK model can be 

solved to estimate the ∆𝐸𝐼  over an interval relative to the baseline 

maintenance requirement, where each interval is associated with an average 

weight and rate of change, determined by a linear regression over the 

weights in that interval (Sanghvi et al., 2015). To calculate ∆𝐸𝐼 inputs of age, 

gender, weight and height are required, and the mathematical model is fully 

implemented in an accessible Java application (Guo, Personal 

communication). Notably, the primary outcome of the model is ∆𝐸𝐼 relative to 

baseline requirements, rather than the more intuitive approach of absolute 

EI. The motivation for this is that estimating maintenance energy 

requirement is challenging without gold-standard measures. It is estimated 

that if no objective measures of TDEE are available, a 95% confidence 

interval may reach 400-500 kcals for baseline EI (Hall & Chow, 2011), which 

would substantially decrease the precision of the model.   

The primary validation of the NIDDK model has been conducted in the 

CALERIE dataset, which is novel in that it has repeated body composition 

and DLW measures. Over 104 weeks in 140 subjects (minimum n=115 by 

week 104) the ∆𝐸𝐼 estimates from the NIDDK model were compared to the 

intake-balance method (DLW and DEXA) at 4 time points (Sanghvi et al., 

2015). Encouragingly, the model produced errors of ~40 kcal/d and root 

mean square deviation (RMSD) of 215 kcal/d, which was not statistically 

different from the criterion. Although the majority of the subject comparisons 

errors were < 132 kcal/day, limits of agreement reached ~ 1000 kcal/d 

implying that the NIDDK model has limited utility at the individual level. The 
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model also tended to underestimate the extent of the decrease in 𝐸𝐼 during 

weight loss and the explanation for this may lie in the assumption of a 

constant rate of PAEE (Sanghvi et al., 2015).  

After this validation, the NIDDK model has been applied in a range of 

cohorts. Combining the results of 15 obesity pharmacotherapy trials, the 

model was used to demonstrate 2-year trajectories of EI in placebo and 

drug-treated patients. In both groups, EI was calculated to reduce greatly at 

the beginning of treatment followed by a gradual return towards baseline 

(Göbel et al., 2014). In another application, patterns of EI were modelled in 

subjects treated with canagliflozin, a drug which leads to the excretion of 

glucose via urine, compared to a placebo. In this study, the treatment group 

was demonstrated to increase EI but decrease body weight owing to the loss 

of calories via urinary glucose excretion until a stable body weight was 

reached (Polidori et al., 2016). Next, the NIDDK model was used to estimate 

the magnitude of misreporting from 24-hour recalls in the DIETFITS trial over 

a year. A similar EI trajectory to the aforementioned studies was observed, 

where subjects initially reduced EI significantly (~800 kcal/d) and then 

exponentially returned to baseline by the final interval, day 360 (Guo et al., 

2019). In contrast, self-reported EI was relatively constant, suggesting a 

greater degree of misreporting as weight relapsed. This study was novel as 

it incorporated self-reported PAEE data in a subset of participants, rather 

than assuming a constant rate of PAEE. This subset was observed to be 

within 70 kcal/day of the EI values derived from the assumed PAEE, 

implying a negligible difference with the incorporation of self-reported PAEE 

data (Guo et al., 2019). 

A recognised limitation of these approaches is the lack of objective physical 

activity information and the assumption of a constant rate of PAEE (Polidori 

et al., 2016; Sanghvi et al., 2015). This assumption contributes to the limited 

individual-level predictive ability as the PAEE response to diet alterations is 

likely to be highly variable between subjects (Sanghvi et al., 2015). It is 

important to note that both the Thomas and NIDDK models have been 

validated in the CALERIE dataset, as their validation requires longitudinal 

body composition and DLW measures, which are uniquely offered by the 

CALERIE study. The CALERIE study was designed to assess caloric 

restriction in non-obese adults (Kraus et al., 2019) and the validity of these 

models in different groups and states of energy balance remains somewhat 

uncertain.  
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1.4.3 Body composition 

If accurate and precise estimates of body composition are available, it is 

possible to quantify ∆𝐸𝑆 with more objectivity and fewer assumptions than 

the aforementioned modelling approaches. The outcome measure of interest 

in the context of the present discussion is ∆𝐹𝐹𝑀 and ∆𝐹𝑀, so a precise and 

valid measure, is needed. Many techniques are theoretically applicable to 

estimate ∆𝐸𝑆, the subsequent discussion considers methodologies suited to 

and frequently used in energy balance research currently.  

Bioelectrical impedance analysis (BIA) is a simple and accessible method 

with limited participant burden. It estimates FM, FFM and total body water 

through population-specific equations incorporating impedance values and 

anthropometric measurements (Mcguire & Ross, 2010). It is unlikely to be 

useful for individual-level estimates owing to its wide variability; one study 

reported  a bias in FM of 0.8 kg, but wide variation, (2SD = 7.9 kg) relative to 

a four-compartment model (Jebb et al., 2000). Air displacement 

plethysmography (ADP) is a widely used, non-invasive technique which 

estimates body volume through the application of Boyle’s Law, which 

describes volume and pressure relationships (Baracos et al., 2012). The 

measurement of body volume, together with body mass, permits calculation 

of body density (Fields et al., 2002) and subsequent estimation of FM% and 

FFM% with the models of Brozek or Siri (Brožek et al., 1963; Siri, 1961). The 

most common commercial ADP technology is the BodPod (Dempster & 

Aitkens, 1995). The BodPod shows good precision; one review found a 

mean within-subject coefficient of variation for FM% of less than 2.3% 

between measurements on different days (Fields et al., 2002). The same 

review compared the validity of the BodPod to hydrostatic weighing and 

reported a difference of <4% for FM% in all of the included 12 studies (Fields 

et al., 2002). It has been argued that variation between laboratories and 

testing conditions may explain the small variations observed (Fields et al., 

2002) and repeated measures within laboratories may yield a better 

agreement. Thus, ADP using BodPod is a valid and reliable tool for body 

composition and therefore ∆𝐸𝑆 in energy balance research. However, any 

two compartment model of body composition in the initial phase of weight 

loss, where fluctuations in glycogen, nitrogen and water are large, can 

introduce errors (Heymsfield et al., 2011).  

Another potential approach to determine ∆𝐸𝑆 is to estimate the total body 

water of a subject following the intake of a dose of labelled isotope and 

collection of biological samples to determine isotope quantity (Al-Ati et al., 
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2015). The total body water method assumes water is maintained in 

consistent balance with FFM and as such, measurement of isotope dilution 

volumes facilitates the estimation of FFM (Duren et al., 2008). Estimates of 

total body water are converted to FFM based on the assumption of 73.2% 

hydration (Pace & Rathbun, 1945). This hydration factor holds amongst most 

populations with notable exceptions being pregnancy and oedema, where 

hydration will vary (Duren et al., 2008). A variable proportion of total body 

water is located in adipose tissue as extracellular fluid, therefore variability in 

the proportion of adiposity has the potential to reduce the accuracy of FFM 

estimates (Chumlea, 2006). Nevertheless, estimates give a precision (i.e. ±1 

SD) close to 0.5 kg, corresponding to an error of ± 19.7 MJ in the energy 

content of FFM (Elia et al., 2003).  

DEXA involves the administration of two low-energy x-rays and measures 

differences in attenuation through bodily tissues, permitting estimates of FM, 

FFM, bone mineral content and soft tissue for the whole body or specific 

regions (Mcguire & Ross, 2010). The measurement process takes less than 

20 minutes and exposes the subject to tiny amounts of radiation, facilitating 

repeated measurements (Genton et al., 2002). The method shows excellent 

precision in short-term studies, with a coefficient of variation of <1% for 

determining the composition of bodily segments (i.e. limbs, trunk, etc)  

(Baracos et al., 2012). Yet, in a longer study of 7 days, de Jonge et al., 

(2007) reported an error of ± 300 g for FM, which would introduce a potential 

error of ± 2790 kcal in energy stored as fat. The authors also outline the 

potential for a large caloric deficit and the associated fluctuations in water 

balance to introduce error in DEXA measurements (de Jonge et al., 2007). 

The accuracy and the ability to measure repeatedly contribute to the 

popularity of DEXA for energy balance research (Ries et al., 2018; Shook et 

al., 2018) and as a gold-standard comparator for other methods (Heymsfield, 

1997). It is however important to note some limitations such as the 

substantial cost of the scanners and potential inconsistencies between 

specific algorithms employed by manufacturers (Genton et al., 2002). Of the 

discussed body composition methods, ADP, TBW and DEXA all carry 

assumptions and these must be considered when estimating the ∆𝐸𝑆. If 

these are not violated, these methods can offer an effective means of 

deriving individual-level estimates of ∆𝐸𝑆, which is a necessity to estimate EI 

with intake-balance methods.  
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1.5 Conclusion  

This chapter provided an introduction to the components of energy balance 

in humans as well as the potential for interaction between these 

components. Given the centrality of energy balance to an array of health and 

obesity-related fields there is a continued research interest in the ability to 

accurately and precisely estimate the EI, EE and ES of subjects. To ‘solve’ 

the energy balance equation and calculate the EI of a subject, these 

methods will need to include estimates of TDEE. Using currently available 

tools, it is not feasible to longitudinally estimate two of these three 

components. Mathematical modelling approaches show promise at the 

group level and are implementable in computer programs, but their 

individual-level accuracy is limited owing to the lack of objective estimates of 

TDEE. Wearable devices, which incorporate accelerometers and 

physiological sensors, offer a cost-effective means of capturing physical 

activities of people in free-living settings and when partnered with statistical 

learning techniques, they can theoretically be used to refine estimates of 

TDEE. Through wearable monitors and time-series body weight data, it is 

probably possible to provide objective and accurate estimates of changes in 

EI for large groups of subjects enrolled in weight maintenance trials.  
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Chapter 2 – Aims and Objectives  

This thesis aims to advance the measurement of energy balance in free-

living subjects using wearable devices. A series of studies are conducted to 

develop and evaluate methodologies to provide continuous and accurate 

estimates of TDEE at the individual level. These estimates of TDEE will be 

incorporated into validated mathematical models of body weight dynamics to 

derive EI estimates for adults participating in a large, multi-centre weight loss 

maintenance trial (NoHoW trial). The aims of this thesis can be summarised 

as follows:  

 

Aim 1: To investigate the validity of current wearable tracking technologies, 

against criterion measures for the estimation of heart rate and EE.  

Objective 1: To investigate the validity of current wrist and arm-worn 

devices for the prediction of EE compared to gold-standard methods 

in different activity modalities in previously published research 

(chapter 4). 

Objective 2: To compare the EE estimates for different sensor 

configurations utilised in previous devices /studies (chapter 4). 

Objective 3: To evaluate the minute-level accuracy of EE and heart 

rate estimates of the Fitbit Charge 2 (chapter 5) compared to indirect 

calorimetry and a Polar heart rate monitor, respectively.  

Aim 2: To investigate methods to impute missing data in commercial activity 

monitors.  

Objective 4: To propose an imputation algorithm for imputing missing 

physical activity and EE data (NoHoW algorithm) and explore its 

validity relative to alternative imputation methods. Imputation bias is 

evaluated with different proportions of missing data, occurring at 

varying times of the day and days of the week (chapter 6). 

Aim 3: To develop and validate machine learning algorithms for the 

prediction of EE.  

Objective 5:  To evaluate machine learning algorithms for their ability 

to predict EE based on movement and physiological signals obtained 

from wearable devices, using indirect calorimetry as a reference 

standard (chapter 7). 
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Objective 6: To evaluate the predictive performance of the developed 

algorithms in a 14-day, free-living study (chapter 8).  

Aim 4: To quantify EE, EI and energy balance in the NoHoW trial. 

Objective 7: To utilise validated mathematical models, in combination 

with estimates of TDEE to provide a time-series of EI and EE for 

participants in the NoHoW trial (chapter 9).  
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Chapter 3 – General Methods 

3.1 Overview of projects  

Three research studies contributed to this thesis and this chapter provides 

an overview of the methods employed throughout. The study descriptions in 

this chapter are not exhaustive and provide a general overview of the 

projects. The exact methods are clarified in the respective chapters.  

3.1.1 Device validation study 

The device validation study involved a laboratory study in which 59 adults 

were recruited. Body composition, anthropometric and RMR measures were 

made, and participants subsequently performed a standardised physical 

activity protocol, consisting of a series of submaximal activities including 

common household tasks, lying, sitting, walking, running, and cycling. 

Concurrently, EE was measured by a metabolic cart and simultaneous heart 

rate data and accelerometer counts were collected from wearable 

technologies (ActiGraph GT3-X, SenseWear Armband Mini, Fitbit Charge 2 

and a Polar H7 chest strap). The study therefore has the aim of i) Validating 

the Fitbit Charge 2 and the SenseWear armband estimates of EE against 

indirect calorimetry (aim 1, objective 3) ii) Validating the heart rate estimates 

of the Fitbit charge 2 against a Polar heart rate chest strap (aim 1, objective 

3)  iii) Development of predictive models of EE (aim 3, objective 5). Further 

details of the activity protocol are provided in chapter 7.  

3.1.2 TEED study 

The total daily energy expenditure from wearables (TEED) study recruited 

healthy adult participants (n=30) for a two-part study. First, participants 

performed a submaximal exercise protocol with a more diverse set of 

activities than the device validation study. In the second part of the study, 

participants undertook a free-living component in which TDEE will be 

estimated over 14 days by the DLW method (detailed in section 3.4.2.3) 

and will ultimately serve as a free-living validation of a series of predictive 

models (detailed in section 3.5.2). Body composition measures at the start 

and end of the free-living period facilitated estimates of EI, in combination 

with TDEE estimates from each of the developed models.  The aims of the 

TEED study were to understand the extent to which EE and EI can be 

estimated using inputs wearable devices in free-living humans.  
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3.1.3 NoHoW Study 

The Horizon 2020 funded NoHoW project (Scott et al., 2019) 

(https://nohow.eu/) (ISRCTN88405328) included a randomised controlled 

trial testing the efficacy of an ICT-based toolkit to support WLM in European 

adults situated in the United Kingdom (Leeds), Denmark (Copenhagen), or 

Portugal (Lisbon). Participants were allocated to one of 4 arms after 

achieving ≥5% weight loss: (1) self-monitoring only (self-weighing and 

activity tracker), (2) self-regulation plus motivation, (3) emotion regulation, or 

(4) combined self-regulation, motivation, and emotion regulation. 

Participants were followed-up at 6, 12 and 18 months for a change in body 

weight, body composition, biomarkers, dietary intake, physical activity, sleep, 

and psychological factors, the primary outcome of body weight was 

measured at 12 months.  

3.2 Ethics and recruitment 

3.2.1 Device validation study 

Recruitment for the device validation study was primarily from the Leeds 

centre of the NoHoW trial (discussed below) and an additional 15 

participants were recruited from the University of Leeds and surrounding 

areas by recruitment posters, emails, and word of mouth. The device 

validation study was approved by the University of Leeds, School of 

Psychology ethics committee (PSC-407, 18th August 2018).  

3.2.2 TEED study 

The TEED study recruited participants by email invitation. Potential 

participants were identified as those that had expressed an interest in 

participating in future studies conducted at the University. Participants were 

also recruited within the University of Leeds research staff via word of 

mouth, email and recruitment posters. The TEED study was approved by the 

University of Leeds, School of Psychology ethics committee (PSC-744, 14th 

August 2019)   

3.2.3 NoHoW Study 

The NoHoW study was conducted between March 2017 and September 

2019 at the participating institutions (detailed in section 3.1.3). Centre-

specific recruitment strategies were adopted for 12 months (March 2017–

March 2018) and included a commercial weight loss programme (UK, 

Slimming World); the Copenhagen Municipality weight management 

https://nohow.eu/
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services, Dieticians from the Danish Association for Dieticians and 

commercial slimming companies (e.g., Sense, Henrik Duer and Per 

Nielsen); registered clinical dieticians/nutritionists who provide weight 

management services in Lisbon; leisure centres; and local/national media 

coverage and advertisements. The trial was registered with the ISRCTN 

registry (ISRCTN88405328). Ethical approval was granted by each 

institutional ethics committee before study commencement; the Universities 

of Leeds (17–0082; 27 February 2017), Lisbon (17/2016; 20 February 2017) 

and Capital Region of Denmark (H-16030495, 8 March 2017). In total, 1627 

participants (approximately balanced across centres) were enrolled. All 

participants provided informed consent before participation.  

3.3 Inclusion and exclusion criteria  

3.3.1 Device validation study 

The device validation study included participants > 18 years of age, as 

determined by a screening questionnaire upon registration of interest. 

Exclusion criteria for the device validation study were:  

• Medications associated with alteration to metabolic rate. 

• The inability to ambulate without assistance. 

• The presence or sign of cardiovascular, metabolic, renal disorders, 

illness or injury that provide an increased risk of medical events 

during low-to-moderate physical activity. 

 

3.3.2 TEED study 

The TEED study included participants > 18 years of age, as determined by a 

screening questionnaire upon registration of interest. Exclusion criteria for 

the TEED study were: 

• Inability to attend HARU at required intervals.  

• Diets not typical of a western diet which may influence respiratory 

quotient (i.e. very low calorie, ketogenic, high fat or high 

carbohydrate).  

• Medications associated with alteration to metabolic rate. 

• Inability to ambulate without assistance. 

https://bmjopen.bmj.com/external-ref?link_type=ISRCTN&access_num=ISRCTN88405328


- 44 - 

• The presence or sign of cardiovascular, metabolic, renal disorders, 

illness or injury that provide an increased risk of medical events 

during low-to-moderate physical activity.  

• Participants without mobile phones compatible with the devices used 

in this study.  

 

3.3.3 NoHoW study 

To be included in the NoHoW trial participants must have been at least 18 

years old, have a BMI (before weight loss) of ≥25 kg/m2. Be able to verify 

≥5% of weight loss in the last 12 months and remain 5% below their highest 

weight. The ability to use a smartphone and have access to a smartphone, 

tablet or computer with internet access and Wi-Fi. Ability to use standing 

scales for weight measurements and must not be over 150 kg. These were 

identified in a screening questionnaire and a subsequent phone screen.    

Exclusion criteria for the NoHoW trial were:  

• Inability to give informed consent. 

• Lost weight through illness or surgical procedures.  

• Pregnant or breastfeeding.  

• Participation in another research intervention study that confounds 

with the aims of NoHoW (excluding local health interventions and 

weight management services).  

• Inability to follow written material or telephone conversations in the 

language of the centre.  

• Diagnosed with an eating disorder (e.g., anorexia nervosa, bulimia 

nervosa or purging disorder).  

• Diagnosed with any condition that may interfere with increasing mild 

to moderate physical activities.  

• Recent diagnosis with type 1 diabetes.  

• Planned travel of more than 4 weeks.  

• Living in the same household as an existing participant in the trial. 
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3.4 Physical and metabolic measurements   

3.4.1 Anthropometric and physical measures  

3.4.1.1 Height 

Height was measured to the nearest 0.1 cm with a Seca 704 s instrument 

(SECA, Germany). Measures were taken barefoot when participants were 

standing with their heels and back upright on the stadiometer.  

3.4.1.2 Waist and hip 

Waist and hip circumference were measured in a private room to the nearest 

0.1 cm in line with the navel and hip circumference was measured 

horizontally at the point of the greatest circumference of the hip.  

3.4.1.3 Blood pressure and resting heart rate  

Systolic and diastolic blood pressure and resting heart rate were measured 

with a sphygmomanometer (Microlife BP A2 Basic, Gentle Technology, 

Microlife, Clearwater, FL, USA) when the participant was in a resting 

condition. The cuff was attached on the upper arm and three measures were 

conducted and averaged.   

3.4.1.4 Body mass and body mass index  

Bodyweight was collected during the NoHoW trial to the nearest 0.1 kg using 

a SECA 704s instrument (SECA, Germany) with participants barefoot and 

wearing light clothing. For the device validation study and the TEED study, 

weight was obtained during the laboratory visits with the BodPod scales 

(discussed below). Body mass index (BMI) was calculated as follows:  

 

BMI (kg/m2)  =  
Body Mass 

Height2
 

 

3.4.1.5 Body composition  

Body composition (2 compartment model) estimates were obtained whilst 

participants were wearing skin-tight clothing (i.e. swimming costume) and a 

swim cap. Measures were conducted with the BodPod (BodPod, Life 

Measurement, Inc., Concord, USA) which uses ADP to estimate body 

composition in two compartments. Before measures, the BodPod was 

calibrated for consistency and validity using a cylinder of known volume 

(50.03 L) and scales were calibrated regularly with two known weights (2 x 

10kg), following the manufacturer instructions. The participant details 
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(height, age, gender and ethnicity) were entered into the software and then 

the participant was weighed using the calibrated BodPod scale. Participants 

were instructed to sit in the chamber and stay as still as possible but were 

instructed to breathe normally. Two measures were conducted and 

averaged if the measures agreed (difference < 150 ml), and if not a third 

measure was conducted and the three measures were averaged. The 

BodPod measures the displacement of air by the participant's body (thoracic 

gas volume is estimated) and body volume is calculated according to Boyle’s 

law. The density of the participant’s body is then estimated by dividing the 

mass by the volume. Body fat (%) is then estimated by the equation of Siri 

(Siri, 1961):  

 

𝐵𝑜𝑑𝑦 𝐹𝑎𝑡 (%) =  (
4.95

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 − 4.5
 ) × 100 

 

3.4.2 Energy expenditure  

3.4.2.1 The principles of indirect calorimetry  

Indirect calorimetric measures were used throughout this thesis and each of 

these is described below. The basis of indirect calorimetry is that all of the 

biological processes, in which an organic substrate is oxidised and energy is 

produced, require the consumption of O2 and the production of both CO2 and 

H2O. Therefore, the measurement of O2 consumption (VO2) and/or CO2 

production (VCO2) can be used to infer the heat production (EE) associated 

with these processes (Elia & Livesey, 1992). When the term ‘energy 

production’ is used, it is in reference to the metabolic process whereby 

adenosine triphosphate (ATP) is produced from the free energy of dietary 

nutrients (Ferrannini, 1988). Indirect calorimetry measures VO2 and VCO2to 

infer the heat production of the body. Specifically, when any of the 

predominant energy sources (carbohydrate, protein or fat) are metabolised 

by bomb calorimetry, the amount of O2 consumed and CO2 produced differs, 

which gives a different respiratory quotient (RQ; where RQ = CO2/O2) per 

macronutrient. Slight differences exist in the specific heat equivalents, O2  

equivalents and RQ of macronutrients in the published literature (Ferrannini, 

1988; Livesey & Elia, 1988; Weir, 1949) although in practice these produce 

tiny differences in EE estimates stated (Montoye et al., 1996. pp. 15 - 21). 

Using O2 equivalents (i.e. heat produced per litre of O2), it is possible to 

solve a system of standard stoichiometric equations (for specific equations 

see (Ferrannini, 1988)) to obtain an estimate of the EE rate, given a 
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measure of VO2, VCO2 and nitrogen excretion (Ferrannini, 1988). An error of 

100% in the nitrogen excretion value is thought to lead to an EE bias of ~1% 

and therefore when subjects are consuming mixed diets, it may be excluded 

from heat production equations (Montoye et al., 1996; Weir, 1949).  

The general assumptions of indirect calorimetry are as follows (McLean & 

Tobin, 1988; Mtaweh et al., 2018): 

1. The metabolite ultimately results in heat/energy production (i.e. 

oxidation of nutrients is complete). 

2. The combustion or synthesis of the dietary macronutrients is the end 

result of all the biochemical reactions occurring in the body. 

3. The oxidation of glucose, fat, or protein results in a specific RQ.  

4. The loss of substrates to faeces and urine is minimal. 

These assumptions are not violated in healthy subjects and extremely close 

agreement between indirect calorimetry and direct calorimetry has been 

shown on numerous occasions since the early 19th century (McArdle et al., 

2015; McLean & Tobin, 1988). In the open indirect calorimetry systems used 

in this thesis, the ventilation rate and the content of the inspired air are 

measured, and subsequently, VO2, VCO2, RQ and the rate of EE are 

calculated. Thus, the accuracy of indirect calorimetry is largely dependent on 

the system-specific sensors (Montoye et al., 1996; Mtaweh et al., 2018).   

3.4.2.2 Resting metabolic rate 

Resting metabolic rate was estimated using the GEM indirect calorimeter 

((GEM, NutrEn Technology Ltd, Cheshire, UK), an open circuit stationary 

indirect calorimetry system which uses a ventilated canopy. The transparent 

canopy hood is placed over the subject’s head such that air is drawn through 

a Nafion tube. Next, the exhaled air mixes with ambient air in a chamber, 

where VCO2  and VO2 can then be estimated (Kennedy et al., 2014).  

Measures were conducted in the early morning, following an overnight fast 

and before the participation in physical activity. Before each measure, the 

GEM was calibrated against reference gases, which was conducted over 

approximately 10 minutes, following manufacturer instructions whilst the 

participant lay flat. The RMR was estimated whilst the participant lay supine 

(and without talking, moving or falling asleep) for 30 minutes. The estimation 

of RMR is obtained by a 5-minute method (Sanchez-Delgado et al., 2018); 

RMR was calculated by removing the first 5-minute interval and selecting the 

5-minute interval in which the coefficient of variation was the lowest across 
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VCO2, VO2 and respiratory exchange ratio. The RMR is then estimated by 

the GEM software by the modified Wier equation (Weir, 1949):  

 

𝑅𝑀𝑅 =  (3.94 × 𝑉𝑂2 ) + (1.11 × 𝑉𝐶𝑂2) 

 

3.4.2.3 Exercise energy expenditure  

In the laboratory exercise studies, VO2, VCO2 and EE were derived during 

activities with a stationary metabolic cart: Vyntus CPX, (Jaeger-CareFusion). 

Breath-by-breath VO2 and VCO2 were collected with a facemask, which was 

connected to the Vyntus system. The accuracy with which such systems can 

estimate breath-by-breath EE is highly dependent on the sampling time 

delay, as a slowed delay time can result in errors in  VO2 at high rates of 

ventilation (Overstreet et al., 2017). The Vyntus CPX has an extremely short 

delay time for VO2 and VCO2  (Perez-Suarez et al., 2018). The Vyntus is, 

however, a relatively new system and the majority of the relevant 

experimental validation studies have been conducted in the predecessor, the 

JAEGER Oxycon Pro, which was demonstrated to measure at < 1.1 % error 

for VO2 compared to a Douglas bag criterion for a large range of ventilatory 

rates in cycling activity in elite athletes (Foss & Hallén, 2005). Perez-Suarez 

and colleagues conducted comprehensive butane experiments, simulating 

low, moderate and intense exercise at 0.8, 1.3, and 6.4 L/min-1  VO2. They 

showed that the RQ deviated by <1.5% for all comparisons and 

subsequently stated that the Vyntus is “exceptionally accurate and precise 

for measuring the stoichiometric RQ of butane combustion” (Perez-Suarez et 

al., 2018). Before each measurement, the Vyntus was calibrated 

automatically for volume and gas relative to a reference. Breath by breath 

EE data was calculated by the system, (assuming a minimal contribution of 

protein oxidation) (Péronnet & Massicotte, 1991) which was aggregated to 

the minute level and used as the outcome variable in chapter 5. Rather than 

absolute EE (kcal), the machine learning models trained in chapter 7 used 

metabolic equivalents (METs) as the outcome variable, which is defined as 

the minute-level EE as a multiple of each participant’s minute-level RMR.  

3.4.2.4 Doubly labelled water  

At the time of submission, the analysis of the DLW samples collected in this 

thesis is not complete. Data collection was completed by March of 2020 in 

anticipation of submitting this thesis in February 2021, but university 

closures, lockdown laws and logistical issues have prevented this from being 
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completed. It is anticipated that the affected chapters (chapters 8 and 9) will 

be published in an academic journal after this return of this result. It is likely 

that these models will be continuously refined in light of new evidence. 

The criterion method of TDEE in this thesis was the DLW method, which can 

be considered to be a form of indirect calorimetry as heat production is 

estimated by indirect means. The DLW method is based on calorimetric 

principles to estimate the TDEE based on the energy equivalents of CO2. 

CO2 production is estimated from isotope elimination rates of two stable 

isotopes, deuterium (2H) and oxygen 18 (18O). The method involves the 

ingestion of 2H and 18O (typically orally). The body water of the subject 

becomes enriched with the isotopes and over the course of the 

measurement period, the difference in washout kinetics for each isotope is 

determined from isotopic enrichments of urine samples taken at regular 

intervals after isotopic equilibration in body pools (Westerterp, 2017). The 2H 

isotope only labels the body water pool and is excreted as H2O only.  18O 

exchanges with CO2 in the body’s bicarbonate pools, equilibrates with the 

body’s CO2 and H2O pools and as such is lost as CO2 and H2O. This means 

that 18O is lost at a higher rate than 2H, and the difference in elimination 

corresponds to the CO2 production (Westerterp, 2017). Several assumptions 

and potential sources of error for the DLW method must be stated (Montoye 

et al., 1996. pp 15-21; Speakman, 1997; Speakman, 1998):  

1. The number of water molecules in the body is constant (i.e. there are 

no large fluctuations in hydration during a period of measurement) 

2. There is no exchange of 2H or 18O with nonaqueous bodily tissues 

3. 2H and 18O only leave the body via H2O or CO2 

4. Turnover rates of the isotopes are constant for the duration of the 

measurement 

5. The method of sampling (i.e. urine or saliva) is representative of the 

TBW 

6. The isotopes once excreted do not re-enter the body 

7. The RQ of the diet can be estimated with accuracy 

8. The abundance of isotopes in the background sample is typical of the 

true values 

For assumption 1, the body water must not fluctuate markedly although it 

has been suggested that this error would be negligible if the water pool 

remains within ± 10% (Nagy, 1980). Concerning assumption 2, associations 
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between TBW for each of the isotopes has been reported at r = 0.998 with a 

difference of ~1% (Schoeller & Van Santen, 1982), so this is not likely to 

introduce large errors. Assumption 3 presents as an issue if the isotopes are 

lost disproportionally (i.e. through alternative excretion pathways), though 

the associated error for this is thought to be in the region of 2% (Montoye et 

al., 1996. pp 15-21). For assumption 4, fitting a regression model to the 

observed data is likely an effective strategy to overcome any issues with 

variance (Cole & Coward, 1992) and for assumption 7, estimating or 

measuring RQ in people consuming mixed diets should not produce an error 

above 2% (Black et al., 1986). Recent evidence suggests that ketogenic 

diets may bias the measure, although the errors associated with these 

dietary practices are small and are likely to be smaller than the precision 

expected with modern analytical technology (Hall et al., 2019). With these, 

and other analytical considerations in mind, it was stated that the theoretical 

coefficient of variation for DLW is between 4 and 8% (Schoeller, 1983), and 

this is thought to still be the case (Westerterp, 2017). Extensive 

consideration has been given to these sources of error elsewhere (Cole & 

Coward, 1992; Speakman, 1997).  

The use of the method in the present thesis was as follows:  

Participants provided a background urine sample upon arrival at the 

laboratory for visit 2 of the TEED study, which was not the first void of the 

day. Baseline samples were labelled with the time, date and identification 

and information was stored in a locked spreadsheet. Next, participants 

consumed a bodyweight-specific dose of 2H and 18O and the exact time and 

date of consumption were recorded, a sample of the dose was also retained 

at the University of Aberdeen for analysis (see below). Participants 

consumed the entire dose under the supervision of a researcher and each 

vessel was swilled with water twice to collect any remaining drops. 

Participants were required to provide their initial sample 6-8 hours after the 

dose and to ensure this was not missed researchers called the participant 

and alarms were set on their phone. Participants were then instructed to 

collect samples every 48 hours, which must not have been the first void of 

the day. Participants were required to seal, label (identification, time, date) 

and freeze samples and store them in provided bags. Participants returned 

all samples to the laboratory on their third visit of the TEED study. All 

samples were kept frozen until analysis. Analysis of the isotopic enrichment 

of urine was performed blind, using a Liquid Isotope Water Analyser (Los 

Gatos Research, USA) (Berman et al., 2012). Initially, the urine was vacuum 
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distilled, and the resulting distillate was used for analysis. Samples were run 

alongside five lab standards for each isotope and International standards to 

correct delta values to ppm. Daily isotope enrichments were loge converted 

and the elimination constants (ko and kd) were calculated by fitting a least-

squares regression model to the loge converted data. The back extrapolated 

intercept was used to calculate the isotope dilution spaces (No and Nd). A 

two-pool model, specifically equation A6 from Schoeller et al (Schoeller et 

al., 1986) as modified by Schoeller (Schoeller, 1988) was used to calculate 

rates of CO2 production as recommended for use in humans (Speakman, 

1993).  

3.4.3 Digital tracking technologies  

All of the experimental studies conducted in this thesis utilised wearable 

devices or digital tracking technologies and each of these is discussed 

below. Inclusion criteria and data processing for each of the analyses is 

further specified in the respective chapters. 

3.4.3.1 Fitbit Charge 2  

The FB (Fitbit Inc., San Francisco, CA, USA) is a wrist-worn activity monitor 

which estimates heart rate, steps, EE and physical activity, based on data 

obtained from incorporated sensors via proprietary algorithms. Acceleration 

is measured in three axes and heart rate estimates are obtained through a 

patented technology called ‘PurePulse’, which uses light-emitting diodes on 

the surface of the skin to monitor blood volume continuously (Benedetto et 

al., 2018). Data are aggregated to the minute-level and synced via the Fitbit 

mobile application to Fitbit servers through an application programming 

interface. The device was fitted a finger’s width above the non-dominant 

wrist and was configured with participant weight, height, sex and date of 

birth. 

3.4.3.2 SenseWear armband 

The SWA (BodyMedia Inc., Pittsburgh, PA) is a small, non-invasive activity 

monitor which is worn on the upper arm and estimates tri-axial 

accelerometry, galvanic skin response, skin temperature and heat flux at the 

minute level. The SWA is a research focussed model and represents one of 

the most recent iterations from these devices, progressing from bi-axial 

models previously (Reeve et al., 2014). These outputs are processed by 

proprietary algorithms to derive variables of interest (i.e. EE, minutes spent 

in activity categories, steps, sleep etc). Data were downloaded and 

processed using the SenseWear® Pro 8.0 software, algorithm v5.2. The 
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SWA was fitted with an elastic strap around the non-dominant arm and 

initialised using participant weight, height, sex, date of birth and smoking 

status and the software estimates the participants RMR using a world health 

organisation (WHO) equation.  

3.4.3.3 Actigraph GT3-x & GT9-x 

An Actigraph GT3-x accelerometer (AG; ActiGraph Corp., Pensacola, FL) 

measured acceleration along vertical, horizontal and perpendicular axes at a 

sample rate of 30 Hz. In the TEED study, participants wore an ActiGraph 

GT9-x Link accelerometer, which uses the exact same accelerometer, 

sampling and filtering methods as the GT3-x in the device validation study. 

The GT9-x differs in terms of size and also features bluetooth connectivity, 

which allows continuous integration of heart rate data from a polar heart rate 

strap. The actigraph models were always worn on the non-dominant wrist. 

Accelerometer data were downloaded and features were extracted at the 

minute-level using the feature extraction tool within the ActiLife software 

(Version 6.11.9).  

3.4.3.4 Polar heart rate 

Heart rate was assessed during the laboratory protocols using a Polar m400 

Monitor Watch (Polar Electro, Kempele, Finland) and a Polar H7 chest strap 

(Polar Electro, Kempele, Finland), which transmitted second-level data via a 

Bluetooth connection. Data were uploaded to the Polar flow online 

application, then downloaded and aggregated to minute-level for analysis. 

The Polar H7 was used in the device validation study and it has been shown 

to have a near-perfect correlation with an electrocardiogram during many 

exercise modalities (Gillinov et al., 2017). For the TEED study, a Polar H10 

heart rate sensor was used and data were obtained via the ActiLife software 

(Version 6.11.9), as the monitor transmits heart rate data via a bluetooth 

connection directly to the Actigraph.  

3.4.3.5 Aria scales 

In the NoHoW study, participants were provided with a Fitbit aria scale, 

which was used to obtain body weights from participants between clinical 

investigation days. Data were synced via the Fitbit mobile application to 

Fitbit servers through an application programming interface and 

subsequently obtained by the NoHoW datahub from the Fitbit API which was 

run by the James Hutton Institute. In a previous validation study, the Fitbit 

Aria as been shown to be highly accurate, relative to research-grade scales 

across a range of weights (Shaffer et al., 2014). All participants were 
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required to weigh themselves twice per week, after emptying their bladder 

and whilst wearing light/no clothing. Data were also screened for outliers by 

removing any instance in which weight deviated from the first observation by 

± 5% in a single week  (Turicchi, O’Driscoll, Horgan, Duarte, Palmeira, et al., 

2020). Next, to obtain a daily weight value, linear interpolation was used to 

fill gaps in between bodyweight measurements, where the gap was less than 

182 days which is equivalent to one body weight every clinical investigation 

day in the NoHoW trial. Body weight data were then ‘smoothed’ using a 

locally estimated smoothing regression model. The purpose of this is to 

smooth through small fluctuations which are unlikely to be due to energy 

imbalance and more likely reflect slight differences in weighing conditions 

(clothing, nutritional status, hydration). This was conducted with the Python 

module “Statsmodels” (Seabold & Perktold, 2010).  

3.5 Modelling approaches and statistical methods  

3.5.1 A mathematical model of energy intake  

A linearised model was used to approximate the change in EI in the study 

reported in chapter 9. The model has previously been validated (Sanghvi et 

al., 2015) and has been applied in experimental settings (Guo et al., 2019; 

Polidori et al., 2016). The model is used to approximate change in Δ𝐸𝐼 over 

a predefined interval 𝑖 relative to the rate of EI required for baseline weight 

maintenance. The parameters are detailed below (table 3.1):   

 

Δ𝐸𝐼𝑖 = 𝜌
𝑑𝐵𝑊𝑖

𝑑𝑡
+ 𝜀𝑖(𝐵𝑊𝑖 − 𝐵𝑊0) +

Δ𝛿𝑖

1 − 𝛽
𝐵𝑊0 

 

Here, ρ is the energy density associated with the change in body weight, 

BW, and is defined: 

 

𝜌 =
𝜂𝐹𝑀 + 𝜌𝐹𝑀 + 𝛼𝜂𝐹𝐹𝑀 + 𝛼𝜌𝐹𝐹𝑀

(1 − 𝛽)(1 + 𝛼)
 

 

and εi defines how EE depends on BW: 

 

𝜀𝑖 =
1

(1 − 𝛽)
[
𝛾𝐹𝑀 + 𝛼𝛾𝐹𝐹𝑀

(1 + 𝛼)
+ 𝛿0 + Δ𝛿𝑖] 
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The parameters 𝛾𝐹𝐹𝑀  and 𝛾𝐹𝑀are the EE coefficients for FFM and FM, 

respectively. Parameters 𝜌𝐹𝑀  and 𝜌𝐹𝐹𝑀  describe the energy densities of 

changes to FM and FFM. The parameter δ0 represents the PAEE at baseline 

which was set to the mean of the observations of the first two weeks of the 

study. The parameter Δδi is the change in PAEE for the ith interval relative to 

baseline, both PAEE parameters are measured in kcal/kg/day. 

Parameters 𝜂𝐹𝑀and 𝜂𝐹𝐹𝑀  account for the energetic cost of tissue deposition 

and the parameter α describes the relationship between changes of FFM 

and FM, 𝛼=dFFM/dFM = CFM and the parameter 𝐶 = 10.4 kg is the Forbes 

parameter (Forbes, 2000). The interval specific change of mean body weight 

versus baseline over each interval is denoted 𝐵𝑊𝑖 − 𝐵𝑊0, and the moving 

average of the measured body weight time course is used to estimate the 

change in body weight per interval, dBWi/dt. A time interval of 28 days was 

used for analyses which provides a more granular analysis than previous 

uses of the model with self-report PAEE measures (Guo et al., 2019), but 

would be less likely to be subject to errors associated with short term weight 

fluctuations (Bhutani et al., 2017). The model was implemented using a Java 

application developed by researchers at the NIDDK. Table 3.1 shows the 

numeric terms of the model (Sanghvi et al., 2015).  

Table 3.1 Parameters of the mathematical model. 

Parameter Value  Summary 

𝛿0 Average of activity in the first 
two weeks of the study 
(kcal/kg/d)  

Estimated physical activity at baseline 

Δ𝛿𝑖 Difference between 𝛿0 and the 
average of available days in 
the interval (kcal/kg/d) 

Physical activity changes in the interval 

𝜌𝐹𝑀 9300 kcal/kg Assumed energy density of fat mass 

𝜌𝐹𝐹𝑀 1100 kcal/kg Assumed energy density of fat-free mass  

𝛾𝐹𝑀 3.2 kcal/kg/d Estimated caloric expenditure rate of fat 
mass  

𝛾𝐹𝐹𝑀  22 kcal/kg/d Estimated caloric expenditure rate of fat-
free mass 

𝜂𝐹𝑀 180 kcal/kg Assumed caloric cost of fat synthesis 

𝜂𝐹𝐹𝑀 230 kcal/kg Assumed caloric cost of protein 
synthesis 

𝛽 0.24 Assumed dietary and adaptive 
thermogenesis 
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3.5.2 Predictive algorithms   

Chapter 7 involves the development of several algorithms, some of which 

are applied in chapter 8. For each of the algorithms, tuning experiments 

were conducted to identify the optimal hyperparameters of the model and 

the methods and results of this analysis are shown in chapter 7. A general 

summary of the algorithms used in this thesis follows below:   

3.5.2.1 Random forest  

For regression and classification tasks the random forest algorithm was used 

(Breiman, 2001). The random forest is a powerful machine learning 

algorithm which is a generalisation of the ‘bagging’ technique. In bagging, 

the general premise is that the average of a large number of noisy decision 

trees serves to produce an ensemble estimator with low bias. Random 

forests train multiple decision trees on subsamples of the data and 

importantly when splitting these decision trees only a subsample of the 

potential predictors is used, which serves to ‘decorrelate’ the trees. The 

predictions of each tree can then be combined to produce a majority vote 

(classification) or a continuous prediction (regression) (Hastie et al., 2009. 

pp 587-601). The optimal hyperparameters of the algorithm were estimated 

in the tuning experiments and included: the number of trees (B), number of 

samples required to split a tree, number of samples per leaf, total predictors 

and the depth of trees. In regression, the quality of a split was assessed with 

mean squared error and in classification, Gini impurity was used. Algorithms 

were implemented using the ‘RandomForestClassifier’ and 

‘RandomForestRegressor’ classes in Scikit Learn (Pedregosa et al., 2011).  

A general algorithm of the random forest is shown in algorithm 3.1.  
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for b=1 to B: 

 Draw a bootstrapped sample Z* of size N from the training data  

 Train a tree Tb on this bootstrapped sample. To train this tree, repeat 
the following steps until the minimum node size is reached 

  Select m variables at random from the p predictors 

  Select the best variable and split-point amongst the m variables 

  Split the node into daughter nodes 

Output the ensemble model {𝐓𝐛}𝟏
𝐁 

To make a regression prediction:  

𝐟𝐫𝐟
𝐁 (𝐱)   =  

𝟏

𝐁
∑ 𝐓𝐛(𝐱)

𝐁

𝐛=𝟏

 

And to make a classification prediction:  

�̂�𝐫𝐟
 𝐁(𝐱) = 𝐦𝐚𝐣𝐨𝐫𝐢𝐭𝐲 𝐯𝐨𝐭𝐞 {�̂�𝐛(𝐱)}

𝟏

𝐁
 

 

Algorithm 3.1. A representation of the random forest algorithm. Adapted 

from (Hastie et al., 2009. pp 587-601).  

3.5.2.2 Gradient boosting  

For regression and classification tasks the gradient boosting algorithm was 

employed. Like random forests, this algorithm is a tree-based ensemble 

method. However, where random forests may be considered to use a 

'bagging’ approach, gradient boosting uses ‘boosting’ to make predictions. A 

general algorithm for gradient boost regression is shown in algorithm 3.2. 

For classification approaches, a similar but more complex approach is taken, 

where one tree is grown per class, which can be used to probabilistically 

assign the most likely class (Hastie et al., 2009. pp 337-384). Boosting 

involves growing small (weak) decision trees sequentially and does not 

involve bootstrapping. Each tree is trained using residuals (r) of the previous 

estimator and subsequently added into the fitted function to update the 

residuals. In the boosting phase, a learning rate/ shrinkage parameter λ 

penalises the contribution of each tree to the overall model, thereby slowing 

the learning (Hastie et al., 2009. pp 337-384). The trees grown can be 

extremely small and this size is controlled by the parameter d in the 

algorithm. Gradient boosting hyperparameters were tuned in the random 

search experiments and included the number of boosting stages, the 

learning rate, the number of samples required to split a node and number of 
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samples per leaf.  In regression, the loss function was least squares and in 

classification, deviance was used. Algorithms were implemented using the 

‘GradientBoostingClassifier’ and ‘GradientBoostingRegressor’ classes in 

Scikit Learn (Pedregosa et al., 2011).  

 

Set 𝐟(x) = 0 and 𝐫𝐢 = 𝐲𝐢 for each observation 

for b=1 to B: 

 Fit a tree f̂ bwith d splits and (d + 1 terminal nodes) to the training data  

 Update f̂ by adding a shrunken version of the new tree:  

 

f̂(x)  ←  f̂(x)  +  λf̂ b(x)  

 Update the residuals:  

ri ← ri  −  λf̂ b(xi)  

Output the model:  

𝐟(𝐱)  =  ∑  𝛌𝐟𝐛(𝐱)

𝐁

𝐛=𝟏

 

Algorithm 3.2. A representation of the gradient boosting algorithm for 

Regression. Adapted from (James et al., 2013. pp 321-324).  

3.5.2.3 Neural networks   

The third algorithm used in both regression and classification tasks was 

artificial neural networks. Neural networks allow for complex, non-linear 

functions to be modelled and are comprised of layers of interconnected 

‘neurons’, which may be compared to biological neurons.  Many ‘hidden 

units’ or ‘neurons’ serve as unobserved variables, which are linear 

combinations of the input variables. At each hidden neuron, inputs are 

subjected to a numerical activation function and then passed through hidden 

layers of neurons to an output layer (Kuhn & Johnson, 2013. pp 141 & 333).  

 

hk(𝐱)  =  g (β0k + ∑ xjβjk 

P

i=1

) 

 

Here, the linear function is subject to an activation function 𝑔(). In the above 

equation, 𝛽𝑗𝑘  represents the jth input variable of the kth neuron (Kuhn & 

Johnson, 2013). The output of this first hidden layer is then passed to 
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another hidden layer or to an output layer, where the output is modelled by 

another activation function to produce a prediction. In the training process, 

the inter-neuronal weights of the network are refined relative to a loss 

function (i.e. mean squared error or cross-entropy). Neural networks in the 

classification studies sought to minimise the sparse categorical cross-

entropy and in the regression setting the loss was mean squared error. The 

learning rate of each network, the number of layers and the number of 

neurons were all selected based on the results of a randomised search, 

which is detailed in chapter 7. Regression neural networks used the ‘relu’ 

activation function in the hidden layers and classification models used a 

‘softmax’ activation in the output layer, both classification and regression 

networks used the Adam optimiser. 

3.5.2.4 K Nearest Neighbors   

For classification tasks, the k-nearest neighbors (KNN) algorithm was 

used. This algorithm assigns a given point to a particular class based on the 

majority class of the k-nearest neighbors, where the neighbors of a given 

point are defined by a distance metric (i.e. Euclidian, Minkowski or 

Manhattan). Hyperparameters adjusted in the training process included the 

number of neighbours in each neighbourhood (k), distance metrics and the 

weight applied to each of the observations in a neighbourhood. The KNN 

algorithm was implemented with Scikit learn (Pedregosa et al., 2011), using 

the ‘KNeighborsClassifier’ class. 

3.5.2.5 Support vector machine 

The final classification model tested was the support vector machine 

classifier with the Radial Basis Function (Kuhn & Johnson, 2013. pp 343). A 

support vector machine aims to find a separating hyperplane between 

classes by maximising the distance between the points and the hyperplane. 

In chapter 7, the cost of misclassification of points in training  (c) and 

‘gamma’ which defines the magnitude of the effect of specific training 

examples, were tuned in randomised search experiments. The support 

vector machine classifier was implemented with the ‘SVC’ class in Scikit 

Learn (Pedregosa et al., 2011). 

3.5.3 Computational methods  

3.5.3.1 Datahub  

A NoHoW data-hub was developed and maintained by the James Hutton 

Institute (Edinburgh). The data-hub is a data architecture with the role of 

collating, monitoring and storing the data collected at clinical investigation 



- 59 - 

days, or from the digital tracking technologies. Data from each centre were 

entered into trial management software (Easy Trial: www.easytrial.net) and 

researchers at each centre conducted quality and consistency checks.  

3.5.3.2 Computing hardware  

The simulation analyses conducted in this thesis were undertaken on ARC3, 

part of the High-Performance Computing cluster at the University of Leeds, 

UK. ARC3 is a Linux- based system using the CentOS 7 distribution. Most of 

the analyses conducted in this thesis were performed locally on a Windows-

based computer with an intel i7-8750H with 32GB RAM and 12 logical 

processors or more frequently, a Windows-based computer with an Intel i9-

9900K with 64GB RAM, 16 logical processors and an NVIDIA GeForce RTX 

2080 Super graphics processing unit. The graphics processing unit in the PC 

facilitates the training of the neural network models utilised in chapter 7 and 

8.  

3.5.4 Statistical analysis  

3.5.4.1 Validation methods  

 

Root mean squared error (RMSE) is reported throughout this thesis and was 

defined as:  

𝑅𝑀𝑆𝐸  =  √
1

𝑛
∑(�̂�𝑖  −  𝑦𝑖)2

𝑛

𝑖=1

 

 

and mean absolute percentage error (MAPE), which is defined as:  

MAPE  =  
1

𝑛
 ∑ |

�̂�𝑖  −  𝑦𝑖

𝑦𝑖
|

𝑛

𝑖=1

 

These methods were implemented with the metrics package in R (Hamner et 

al., 2018). In RMSE and MAPE, the predicted value is denoted �̂�𝑖 and the 

reference value is 𝑦𝑖. Equivalence tests (Lakens et al., 2018) were employed 

to determine if the true and predicted values were statistically equivalent. 

The tests used equivalence bounds of ± 10% and to be considered 

equivalent the 90% confidence interval must fall within the equivalence 

bounds (Lee et al., 2014), and all equivalence tests were conducted with the 

‘TOSTER’ package in R..  

http://www.easytrial.net/
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For classification tasks, the Kappa statistic was employed, which compares 

the accuracy of the predictions to that of a random system. Also, accuracy, 

where accuracy is the proportion of the cases that were classified correctly 

and the F1-Score, defined as:  

 

F1 − score = 2 ∙
(precision ∙  recall)

(precision + recall)
 

Where precision and recall are defined as:  

Precision =
TP

(TP + FP)
 

Recall =  
TP

(TP + FN) 
 

 

Where TP = True positive, FP = False Positive, FP = False positive, FN =

False negative. Classification statistics were calculated with the Caret 

package in R (Kuhn, 2008). 

3.5.4.2 General statistical reporting  

Unless otherwise stated, data are presented as means ± standard deviation. 

Statistical analyses, visualisations and data processing steps were 

conducted in Python (van Rossum & Drake, 2009), within a Jupyter 

notebook or Jupyter Lab environment and R, within an RStudio environment 

and the specific versions are stated within the chapters. A wide range of 

packages, modules and statistical methods were utilised and these are 

referenced where necessary in specific chapters. A p-value of <0.05 is used 

to determine statistical significance where p-values are reported.  
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Chapter 4 – A meta-analysis of the validity of activity 

monitors for the measurement of energy expenditure 

4.1  Introduction 

The first chapter of this thesis highlighted the increasing prevalence of 

obesity around the world (Ells et al., 2018) and the concerning projection 

that by 2050, 60% of males and 50% of females may be obese (Agha & 

Agha, 2017). The physiological, psychological and environmental factors 

which result in a chronic imbalance between EI and EE (and therefore a 

weight increase) must be studied to facilitate the development of effective 

interventions and treatments. However, to comprehensively and precisely 

map these relationships, and improve behaviour change interventions 

themselves, accurate, objective measures of energy balance behaviours are 

required.  

The DLW method (See section 1.3.3.2 and 3.4.2.3) is considered the gold 

standard for the measurement of free-living EE (Seale et al., 1993); 

however, the considerable costs and analytical requirements of the method 

limit its feasibility in large cohort studies (Delany, 2012). Indirect calorimetry 

methods (See section 1.3.3.1 and 3.4.2) represent the most commonly 

employed criterion measures for the assessment of the energy cost of 

activities but are limited to structured protocols, usually within a laboratory 

(Hills et al., 2014). 

Wearable devices which use triaxial accelerometry to derive an estimate of 

EE have been available for research purposes for some time (Lyden et al., 

2011). These devices are worn on the hip, thigh or lower back, as proximity 

to the centre of mass is thought to more accurately reflect the energy cost of 

movement (Chen et al., 2003). However, participant comfort and compliance 

is a recognised issue (Diaz, Krupka, Chang, Shaffer, et al., 2016) and 

therefore traditional wearable devices have limited long-term, free-living 

measurement capability. The use of wrist-worn activity monitors by both 

consumers and researchers has dramatically increased (Wright et al., 2017) 

facilitated by improved battery longevity and miniaturisation of hardware 

required to produce interpretable data (Shcherbina et al., 2017). Recent 

consumer devices include triaxial accelerometers, heat sensors and 

photoplethysmography heart rate sensors (Woodman et al., 2017). This 

information can potentially be incorporated into predictive models to improve 
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the estimation of EE relative to accelerometry alone (Silva et al., 2015). 

Though evidence suggests that the accuracy of incorporated sensors and 

the derived activity metrics within commercial activity monitors, when 

compared with criterion measures, is variable (Evenson et al., 2015; Stahl et 

al., 2016) and may vary with the type and intensity of activity (Koehler & 

Drenowatz, 2017).  

4.1.1 Chapter aims  

Given the recent popularity of wrist and arm-worn activity monitors, it is 

critical to determine their validity for the estimation of EE (Evenson et al., 

2015). The meta-analysis conducted in this chapter aimed to investigate the 

accuracy of EE estimates from wrist or arm-worn devices in different 

activities. Secondary aims were to investigate the importance of specific 

sensors within devices and to compare commercial and research-grade 

devices for their accuracy in estimating EE relative to criterion measures. It 

was hypothesised that the inclusion of physiological sensors in addition to 

accelerometry would provide a more accurate estimate of EE (Brage et al., 

2015). Further, it was hypothesised that the performance of research-grade 

devices would be superior to commercial devices.   

4.2  Methods  

This systematic review and meta-analysis adhered to PRISMA diagnostic 

test accuracy guidelines (McInnes et al., 2018) (See online supplementary 

material 1 (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 2020)) and was 

prospectively registered in the PROSPERO database (CRD42018085016). 
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Figure 4.1 A flow diagram of the study selection for the meta-analysis.  

4.2.1 Search strategy 

SportDISCUS (EBSCOHost), PubMed, Medline (Ovid), PsycINFO 

(EBSCOHost), EMBASE (Ovid) and CINAHL (EBSCOHost) were searched 

for studies published up to 1st December 2017 using terms relevant to the 

validation of EE estimates from activity monitors against criterion measures 

with the following strategy ((tracker AND EE) AND validation). The search 

was updated on 15th January 2018. The specific keywords and the full 

search strategy can be found in appendix 1.1. No language restrictions were 

applied and in the case of studies available only as an abstract, attempts 

were made to contact the authors to request the full text.  

4.2.2 Inclusion and exclusion criteria 

The analysis conducted here included only laboratory or field validation 

studies conducted in healthy adults (≥18 years) comparing a criterion 

measure of EE to an estimate of EE in kilocalories (kcal), kilojoules (kJ) or 

megajoules (MJ) from an activity monitor. Only wrist or arm-worn devices 

were included because there is a clear tendency towards wrist-worn devices 

amongst consumer devices and devices worn on alternative anatomical 

locations produce different accelerometry patterns and therefore estimates 
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of EE (Nelson et al., 2016). Studies must have reported concurrent EE 

estimates from one of the following criterion measures to be included: DLW, 

indirect calorimetry devices and metabolic chambers (Hills et al., 2014). 

Adults with conditions deemed to produce atypical movement patterns were 

excluded, including Parkinson’s disease, chronic obstructive pulmonary 

disease, cerebral palsy and amputees. These conditions are often 

associated with abnormal gait pattern and thus reduce accuracy in EE 

estimates (Van Remoortel et al., 2012). Devices requiring external sensors 

or components were also excluded. Studies reporting only accelerometer 

counts or studies involving post-hoc manipulation of the device output were 

excluded.  

4.2.3 Study selection 

Two authors (ROD and JT) independently assessed 100% of titles and 

abstracts for potential inclusion, with 10% screened independently by a third 

author (GF). In the case of disagreements between reviewers, the paper 

was retrieved in full-text and a mutual consensus was reached. Remaining 

articles were screened independently for inclusion at the full-text level by two 

authors (ROD and JT), with a third author (SS) screening 10%. Similarly, 

conflicts were resolved by discussion between reviewers.  

4.2.4 Data extraction 

From each of the included studies, characteristics of participants, validation 

protocol, criterion measure and the devices tested including model, wear site 

and output were extracted. Mean difference or EE estimates from the 

criterion measure and the device were extracted, along with standard 

deviation (SD), standard error (SE) or 95% confidence intervals (95% CI). If 

only SE was provided, SE was converted to SD. If data were not provided, 

authors were contacted to request the raw data. Where values were only 

presented in figures, a digitiser tool was used (Rohatgi, 2017). Data were 

extracted to a specialised spreadsheet and entered into Comprehensive 

Meta-analysis (CMA) (CMA, version 2; Biostat, Englewood, NJ) for analysis. 

All data extraction and data entry to CMA was performed by a single author 

(ROD) and was cross-checked for errors by a second author (JT). 

4.2.5 Quality assessment 

Risk of bias in included studies was determined using a modified version of 

the Downs and Black checklist for non-randomised studies (Downs & Black, 

1998). The Downs and Black instrument is an established tool for 

determination of the quality of a study within a systematic review and meta-
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analysis (Deeks et al., 2003). The modified version used in the present study 

carried a maximum score of 18 and was quantified as low (≤9, <50%), 

moderate (>9–14 points, 50–79%), or high (≥15 points, ≥80%) (MacDonald 

et al., 2016). The modified tool contained 17 questions, 10 related to 

reporting, three to external validity and four to internal validity. The risk of 

bias assessment was performed independently by two authors (ROD and 

JT), disagreements were resolved by discussion.  

4.2.6 Statistical analysis 

Descriptive statistics were calculated for studies included within the meta-

analysis. The EE estimates from the device and criterion, SD or 95% CI, 

sample sizes and correlation coefficients for within-activity comparisons for 

each device were used to calculate effect sizes. Correlation coefficients 

were based on raw data from previously published studies or were 

conservatively estimated based on the mean of similar devices (See online 

supplementary material 3, (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 

2020)). Where a study provided data for more than one comparison for one 

device, the selected outcomes were pooled to provide a single mean and 

prevent overpowering of a study. Hedges’ g (ES) (Hedges, 1981) and 95% 

CIs were calculated using CMA, following the majority of studies in the 

literature testing the mean bias between activity monitors and criterion 

measures. A negative ES represents an underestimation relative to the 

criterion and a positive value represents an overestimation. Interpretation of 

ES was as follows: <0.20 as trivial, 0.20-0.39 as small, 0.40-0.80 as 

moderate and >0.80 as large (Cohen, 1977). A random-effects model was 

employed for all analyses based on the assumption that heterogeneity would 

exist between included studies due to the variability in study design (Higgins 

et al., 2009). To quantify heterogeneity, the I2 statistic (Higgins & Thompson, 

2002) was utilised and >75% was considered to represent large 

heterogeneity. To determine susceptibility to bias from one study, a leave 

one out analysis was conducted where the removal of one study would leave 

at least three studies. The study associated with the greatest change to the 

significance of the effect is reported. To assist interpretation of the error 

associated with each device, the percentage error was calculated using the 

percentage difference and weight within each meta-analysis.  

4.2.7 Exploration of small study effects 

To examine small study effects, data were visually inspected with funnel 

plots and subsequently, the effects were quantified by using Egger’s linear 
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regression intercept (Egger et al., 1997). A significant Egger’s statistic 

indicates the presence of a small study effect.  

4.2.8 Moderators and subgroups 

As well as overall, which represents a combination of all subgroups, 

subgroup meta-analyses were performed for specific activities/categories: 1) 

activity energy expenditure (AEE) which included comparisons of EE 

estimates from the device to a criterion during non-specific exercise 

protocols, circuits, arm ergometer, rowing and resistance exercises; 2) 

ambulation and stair climbing; 3) cycling; 4) running; 5) sedentary 

behaviours and household tasks and 6) total energy expenditure (TEE), 

representing comparisons to DLW. Moderator analyses were conducted 

between the sensors and all devices were grouped based on the inclusion of 

the following sensor hardware: 1) accelerometry alone (ACC); 2) heart rate 

alone (HR); 3) accelerometry and heart rate (ACC+HR); 4) accelerometry 

and heat-sensing or galvanic skin response (ACC+HS) and 5) 

accelerometry, heart rate sensors and heat-sensing or galvanic skin 

response sensors (ACC+HR+HS). Secondly, moderator analyses were 

conducted by the grade of devices. Devices produced by Actical, Actigraph 

and Bodymedia were considered as research-grade and all other devices 

included in the analysis were considered commercial devices. Comparisons 

between each moderator employed a random-effects model. 

4.3  Results 

A summary of the studies included in the systematic review is shown in 

appendix 1.2. Four studies could not be synthesised by meta-analysis as the 

mean difference between activity monitors and criterion measurements were 

not provided (Lopez et al., 2018; Machač et al., 2013; Reeve et al., 2014; 

Shcherbina et al., 2017). The remaining studies were included in the meta-

analysis  (Alsubheen et al., 2016; Bai et al., 2018; Benito et al., 2012; 

Berntsen et al., 2010; Berntsen et al., 2011; Bhammar et al., 2016; 

Boudreaux et al., 2018; Brazeau et al., 2016; Brazeau et al., 2011, 2014; 

Brugniaux et al., 2010; Calabro et al., 2015; Calabró et al., 2014; Casiraghi 

et al., 2013; Chowdhury et al., 2017; Colbert et al., 2011; Correa et al., 2016; 

Diaz, Krupka, Chang, Peacock, et al., 2016; Diaz, Krupka, Chang, Shaffer, 

et al., 2016; Dondzila & Garner, 2016; Dooley et al., 2017; Drenowatz & 

Eisenmann, 2011; Erdogan et al., 2010; Fruin & Rankin, 2004; Furlanetto et 

al., 2010; Gastin et al., 2018; Heiermann et al., 2011; Imboden et al., 2018; 

Jakicic et al., 2004; Johannsen et al., 2010; Kim & Welk, 2015; King et al., 
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2004; Koehler et al., 2011b; Lee et al., 2011; Lee et al., 2014; MacKey et al., 

2011; Martien et al., 2015; McMinn et al., 2012; Melanson et al., 2009; 

Montoye, Mitrzyk, et al., 2017; Murakami et al., 2016; Nelson et al., 2016; 

Papazoglou et al., 2006; Price et al., 2017; Reece et al., 2015; Rousset et 

al., 2015; Ryan & Gormley, 2013; Slinde et al., 2013; Smith et al., 2012; 

Soric et al., 2012; St-onge et al., 2007; Stackpool et al., 2014; Tucker et al., 

2015; Van Hoye et al., 2014, 2015; Vanhelst et al., 2012; Vernillo et al., 

2015; Wahl et al., 2017; Wallen et al., 2016; Woodman et al., 2017). A total 

of 1946 participants were included, with a mean age of 35 years (range 20 to 

86 years). The mean BMI was 24.9 kg/m2 (range 21.8 to 31.6 kg/m2). Within 

the included studies, 104 comparisons between devices and a criterion were 

included. This represented 58 commercial and 46 research-grade device 

comparisons. ACC was comprised of 35 comparisons, 1 in HR devices, 20 

in ACC+HR devices, 45 in ACC+HS and 3 in ACC+HR+HS. Concerning the 

activity performed, 35 comparisons were classed as AEE, ambulation and 

stairs included 55 comparisons, 23 were cycling tasks and 38 were running 

tasks. Sedentary and low-intensity was comprised of 30 comparisons and 

TEE included 16 comparisons.  

4.3.1 Devices  

A total of 40 devices were tested in the included studies. One device was 

forearm-worn, 6 were worn on the upper arm (triceps) and 33 were wrist-

worn. Characteristics of the devices, the number of studies and weighted 

percentage error for each device is shown in appendix 1.2.  

4.3.2 Meta-analysis 

Individual study effect sizes and allocation to moderator variables are 

provided in the online supplement for this publication (See online 

supplementary material 6 (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 2020)). 

A minimum of three comparisons was required for meta-analysis and as 

such, pooled ES for individual devices or moderators where three or more 

comparisons were available are reported. Statistical outputs for each device 

are presented online (See online supplementary material 7 (O’Driscoll, 

Turicchi, Beaulieu, Scott, et al., 2020)).  

4.3.3 Quality assessment  

The modified Downs and Black scores revealed a median score of 13, with 

one study being classed as low quality (Melanson et al., 2009), 48 classed 

as moderate and 11 classed as high quality (supplementary materials 8). 

The questions included in the modified tool and the percentage of studies 
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fulfilling each question is shown online (See online supplementary material 

9, (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 2020)).   

4.3.4 Overall 

A forest plot of individual devices for all activities is shown in figure 4.2. 

Overall, devices underestimated EE (ES: −0.23,95% CI −0.44 to −0.03; 

n=104; p=0.03) and showed significant heterogeneity between devices (I2 

=92.18%; p=<0.001). Significant underestimations relative to criterion 

measures were observed for the Garmin Vivofit (GVF; ES: −1.09, 95% 

CI−1.60 to −0.57; n=5; p<0.001) and the Jawbone UP24 (ES:−1.16, 95% CI 

−1.78 to −0.54; n=3; p<0.001).). The SenseWear Armband Pro3 (SWA p3) 

also underestimated EE (ES:−0.32. 95% CI −0.62 to −0.01; n=12; p=0.04).). 

Sensitivity analysis revealed that the removal of six comparisons altered the 

significance of the SWA p3 (p>0.05), the most influential of which decreased 

the ES to -0.19 (95% CI: -0.50 to 0.11; p=0.21) (Soric et al., 2012). The 

Apple watch (AW) Bodymedia CORE armband (BMC), Fitbit charge HR 

(FCHR), Fitbit Flex (FF), Jawbone UP (JU), Nike Fuelband (NF), SenseWear 

Armband (SWA) SenseWear Armband Pro2 (SWA p2), and Mini (SWAM) 

did not differ significantly from criterion measures. However, sensitivity 

analysis showed the FCHR differed significantly with the removal of one 

study (ES: 0.34, 95% CI: 0.20 to 0.49; p<0.001) (Wallen et al., 2016). The 

NF was the only device that did not display significant heterogeneity 

between studies (I2 =25.44%; p=0.26), with the remaining devices having I2 

values  66.91% (all p0.05). No device showed evidence of small-study 

effects.  
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Figure 4.2 Pooled Hedges’ g and 95% confidence intervals (CI) for 
estimates of energy expenditure relative to the criterion for each device 
for the overall comparison.  

Total refers to the number of effect sizes. A negative Hedges’ g statistic 
represents an underestimation and a positive Hedges’ g represents an 
overestimation.  

4.3.5 Activity energy expenditure  

A forest plot of individual devices during activities classed as AEE is shown 

in figure 4.3. For AEE, the pooled estimate of all devices was a non-

significant tendency to underestimate EE compared with criterion measures 

(ES: -0.34, 95% CI: -0.71 to 0.04; n=35; p=0.08) and significant 

heterogeneity was observed between devices (I2 =94.96%; p<0.001). The 

SWA p2 underestimated EE (ES: -0.78, 95% CI: -1.48 to -0.08; n=3; p=0.03) 
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and had moderate, non-significant heterogeneity (I2 =64.19%; p=0.06). The 

BMC, NF, SWA and SWAM did not differ significantly from criterion 

measures but all displayed significant heterogeneity. No device showed 

evidence of small-study effects.  

 

Figure 4.3 Pooled Hedges’ g and 95% confidence intervals (CI) for 
estimates of energy expenditure relative to the criterion for each device 
for the activity energy expenditure comparison.  

Total refers to the number of effect sizes. A negative Hedges’ g statistic 
represents an underestimation and a positive Hedges’ g represents an 
overestimation.  

4.3.6 Ambulation and stairs 

A forest plot of individual devices during ambulation and stair climbing is 

shown in figure 4.4. The pooled estimate of all devices did not differ from 

criterion measures (ES: -0.09, 95% CI: -0.45 to 0.27; n=55; p=0.62) and 

significant heterogeneity was observed between devices (I2 =93.74%; 

p<0.01). The FCHR (ES: 0.78, 95% CI 0.28 to 1.29; n=5; p=0.002) and FF 

(ES: 1.10, 95% CI: 0.43 to 1.77; n=3; p=0.001) overestimated EE. The GVF 

underestimated EE (ES: -1.24, 95% CI: -1.86 to -0.62; n=4; p<0.001), 

however, sensitivity analysis revealed that the removal of two comparisons 

significantly altered the mean effect (p>0.05) the most influential significantly 

altered the mean effect to ES: -1.32 (95% CI: -2.73 to 0.08; p=0.07) 

(Alsubheen et al., 2016). Further, there was evidence of small-study effects 

(intercept= -13.76, 95% CI: -19.72 to -7.80; p=0.01). The SWA 
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overestimated EE (ES: 0.79, 95% CI: 0.25 to 1.33; n=5; p=0.004) and 

sensitivity analysis revealed that the removal of four comparisons 

significantly altered the mean effect (p>0.05) the most influential significantly 

altered the mean effect to ES: 0.33 (95% CI: -0.26 to 0.92; p=0.28) (Gastin 

et al., 2018). The AW, JU, SWA p3 and SWAM did not differ significantly 

from criterion measures. The mean effect of the SWAM was significantly 

altered by the removal of two studies; the removal of the most influential 

study yielded a significant overestimation (ES: 0.57, 95% CI: 0.20 to 0.94; 

p=0.003) (Wahl et al., 2017). All devices showed significant heterogeneity.  

 

Figure 4.4 Pooled Hedges’ g and 95% confidence intervals (CI) for 

estimates of energy expenditure relative to the criterion for each device 
for the ambulation and stairs comparison.  

Total refers to the number of effect sizes. A negative Hedges’ g statistic 
represents an underestimation and a positive Hedges’ g represents an 
overestimation.  

 

4.3.7 Cycling 

A forest plot of individual devices during cycling is shown in Figure 4.5. The 

pooled estimate of all devices was significantly lower than criterion 

measures (ES: -0.73, 95% CI: -1.39 to -0.06; n=23; p=0.03) and significant 
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heterogeneity was observed between devices (I2 =94.74%; p<0.01). The 

SWA did not differ significantly from criterion but showed significant 

heterogeneity (I2 =89.39%; p<0.001). The SWA p3 did not differ from 

criterion measures and showed moderate heterogeneity (I2 =54.95%; 

p=0.11).  

 

Figure 4.5 Pooled Hedges’ g and 95% confidence intervals (CI) for 
estimates of energy expenditure relative to the criterion for each device 
for the cycling comparison.  

Total refers to the number of effect sizes. A negative Hedges’ g statistic 
represents an underestimation and a positive Hedges’ g represents an 
overestimation.  

4.3.8 Running  

A forest plot of individual devices during running is shown in Figure 4.6. The 

pooled estimate was not statistically different from criterion measures (ES: -

0.08, 95% CI: -0.41 to 0.25; n=38; p=0.65) and significant heterogeneity was 

observed between devices (I2 =92.05%; p=<0.001). The FCHR, GVF and 

SWA did not differ from criterion measures. Sensitivity analysis revealed the 
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removal of one study changed the overall effect for the FCHR (ES: 0.59, 

95% CI: 0.28 to 0.90; p<0.001) (Wahl et al., 2017). Significant heterogeneity 

was observed for the FCHR (I2 =66.8%; p=0.03) and SWA (I2 =96.79; 

p<0.001), but not for the GVF (I2 =46.39%; p=0.15).  

 

 

Figure 4.6 Pooled Hedges’ g and 95% confidence intervals (CI) for 
estimates of energy expenditure relative to the criterion for each device 
for the running comparison.  

Total refers to the number of effect sizes. A negative Hedges’ g statistic 
represents an underestimation and a positive Hedges’ g represents an 
overestimation.  

 

4.3.9 Sedentary and household tasks 

A forest plot of individual devices during sedentary and household tasks is 

shown in figure 4.7. The pooled effect was not statistically different from 

criterion measures (ES: -0.09, 95% CI: -0.51 to 0.32; n=30; p=0.66) and 
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significant heterogeneity was observed between devices (I2 =94.84%; 

p<0.001). The AW, FCHR and SWAM were not statistically different from 

criterion measures. The SWA p3 overestimated EE (ES: 0.67, 95% CI: 0.00 

to 1.34; p=0.049). Sensitivity analysis revealed that the removal of three 

studies changed the mean effect, the most influential of which decreased the 

ES to 0.41 (95% CI: -0.01 to 0.82; p=0.05) (Brazeau et al., 2014). Observed 

heterogeneity was significant for the AW, SWA p3 and SWAM. The FCHR 

had moderate, non-significant heterogeneity (I2 =59.60%; p=0.06).  

 

Figure 4.7 Pooled Hedges’ g and 95% confidence intervals (CI) for 
estimates of energy expenditure relative to the criterion for each device 
for the sedentary and household comparison.  

Total refers to the number of effect sizes. A negative Hedges’ g statistic 
represents an underestimation and a positive Hedges’ g represents an 
overestimation.  

4.3.10 Total energy expenditure  

A forest plot of individual devices for the measurement of TEE is shown in 

Figure 4.8. The pooled effect for TEE showed a significant underestimation 

of EE (ES: -0.68, 95% CI: -1.15 to -0.21; n=16; p=0.005) and significant 

heterogeneity was observed between devices (I2 =92.17%; p<0.01). The 

SWA p3 did not differ significantly from criterion measures and showed 

significant heterogeneity (I2 =94.20%; p=0.001).  
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Figure 4.8 Pooled Hedges’ g and 95% confidence intervals (CI) for 

estimates of energy expenditure relative to the criterion for each device 
for the TEE comparison.  

Total refers to the number of effect sizes. A negative Hedges’ g statistic 
represents an underestimation and a positive Hedges’ g represents an 
overestimation.  

 

4.3.11 Moderator analyses  

The results of moderator analyses are shown in table 4.1. Overall, there was 

a significant difference between sensors (p=0.003). The pooled estimate of 

EE from ACC+HR and ACC+HS was not statistically different from criterion 

but ACC+HS showed a non-significant tendency for underestimation, and 

ACC and ACC+HR+HS both significantly underestimated EE. In the AEE 

comparison, there was no statistical difference between sensors, but 

ACC+HS significantly underestimated EE, ACC showed a non-significant 

tendency for underestimation and ACC+HR did not differ significantly from 

criterion measures. During ambulation and stair climbing, a significant 

difference between sensors was observed, with estimates of EE from 

ACC+HR and ACC+HS being significantly higher than the criterion. In 
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cycling, significant differences were observed between sensors, with ACC 

devices underestimating EE. During running activities, none of the pooled 

mean estimates were significantly different from criterion. For sedentary and 

household tasks, a significant difference was observed between sensors; 

ACC+HR was not different from criterion measures whereas ACC and 

ACC+HS underestimated and overestimated EE respectively. For TEE, 

sensors differed significantly; ACC underestimated EE, whereas ACC+HS 

did not differ significantly from criterion.  

 When analysed by commercial and research-grade devices, no 

significant difference was observed overall, for AEE, cycling or running. For 

both the ambulation and stairs comparison and the sedentary and household 

tasks comparison, commercial devices were closer to criterion 

measurements, with research-grade devices significantly overestimating. For 

TEE, research-grade devices were superior, with commercial devices 

significantly underestimating EE. 
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Table 4.1 Moderation analysis for the level of sensors and grade of the 
device by subgroup. 

Data are shown where at least 3 comparisons were included. P-value 
refers to a between subgroup comparison. *Significant effect size at the 
subgroup level (p<.05). 

Moderator variable Subgroup level p-value  Hedges’ g (95% CI) 

Overall activities 

Sensors ACC (n=35) <0.01 -0.36 (-0.55, -0.17)* 
 

ACC + HR (n=20) 
 

0.06 (-0.18, 0.31) 
 

ACC + HR + HS (n=3) 
 

-0.99 (-1.65, -0.33)* 
 

ACC + HS (n=45) 
 

-0.15 (-0.32, 0.01) 

Device grade Commercial (n=58) 0.27 -0.27 (-0.42, -0.12)* 
 

Research (n=46) 
 

-0.14 (-0.31, 0.03) 

AEE 

Sensors ACC (n=8) 0.19 -0.40 (-0.84, 0.04) 
 

ACC + HR (n=9) 
 

-0.04 (-0.47, 0.38) 
 

ACC + HS (n=16) 
 

-0.32 (-0.63, -0.01)* 

Device grade Commercial (n=18) 0.62 -0.38 (-0.67, -0.08)* 
 

Research (n=17) 
 

-0.27 (-0.57, 0.04) 

Ambulation and stairs 

Sensors ACC (n=24) 0.01 -0.23 (-0.51, 0.06) 
 

ACC + HR (n=10) 
 

0.44 (0.02, 0.87)* 
 

ACC + HS (n=19) 
 

0.40 (0.08, 0.72)* 

Device grade Commercial (n=35) 0.05 -0.04 (-0.28, 0.20) 
 

Research (n=20) 
 

0.37 (0.05, 0.68)* 

Cycling 

Sensors ACC (n=3) <0.01 -3.75 (-4.65, -2.85)* 
 

ACC + HR (n=9) 
 

-0.03 (-0.47, 0.40) 
 

ACC + HS (n=9) 
 

-0.41 (-0.84, 0.02) 

Device grade Commercial (n=14) 0.28 -0.82 (-1.30, -0.35)* 
 

Research (n=9) 
 

-0.41 (-0.99, 0.17) 

Running 

Sensors ACC (n=19) 0.18 -0.06 (-0.36, 0.24) 
 

ACC + HR (n=7) 
 

0.34 (-0.15, 0.82) 
 

ACC + HS (n=10) 
 

-0.36 (-0.77, 0.05) 

Device grade Commercial (n=28) 0.08 0.06 (-0.18, 0.30) 
 

Research (n=10) 
 

-0.36 (-0.76, 0.04) 

Sedentary and household 

Sensors ACC (n=6) <0.01 -0.56 (-1.16, -0.13)* 
 

ACC + HR (n=9) 
 

0.14 (-0.27, 0.55) 
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ACC + HS (n=13) 

 
0.39 (0.06, 0.73)* 

Device grade Commercial (n=17) <0.01 -0.27 (-0.59, 0.05) 
 

Research (n=13) 
 

0.41 (0.05, 0.77)* 

TEE (DLW)    

Sensors ACC (n=5) <0.01 -1.24 (-1.66, -0.81)* 

 ACC + HS (n=10)  -0.13 (-0.40, 0.14) 

Device grade Commercial (n=6) <0.01 -1.13 (-1.51, -0.76)* 

 Research (n=10)  -0.13 (-0.39, 0.14) 

    

 

4.4  Discussion   

Given the clinical and consumer uptake of wrist and arm-worn activity 

monitors, which can be used for the estimation of EE, the aims of this meta-

analysis were (i) to determine the relative accuracy of current devices for the 

estimation of EE when compared to criterion measures (aim 1, objective 1) 

(ii) to investigate the importance of specific sensors within devices (aim 1, 

objective 2) and (iii) to compare commercial and research-grade devices.  

For devices with sufficient comparisons to be analysed separately from the 

main pooled effect, significant error relative to criterion measures was 

observed for Garmin, Fitbit, Jawbone and Bodymedia/SenseWear products. 

Garmin, Fitbit and Jawbone represent a major share of the commercial 

wearable market at the time of writing (Price et al., 2017) and iterations of 

Bodymedia/SenseWear products are widely used in research and have been 

since 2004 (Jakicic et al., 2004). Whilst it is initially encouraging that the ES 

for many devices was not significantly different from the respective criterion, 

the 95% CI observed in many cases indicates the potential for these devices 

to produce erroneous estimates of EE and as such none of these devices 

should be considered sufficiently accurate. The SenseWear armband Mini 

was the most accurate device overall but error reported in studies ranged 

from -21% to 15%, and the 95% CI spans from -0.33 to 0.37, indicating that 

the measure could be improved. Studies in this analysis followed the 

manufacturer’s instructions for setup, with researchers ensuring the position 

of the device and characteristics such as height, weight, sex and age were 

correct. In free-living environments, the lack of researcher presence could 

yield greater error than observed in this analysis (Evenson et al., 2015), as 

indicated by the moderate, significant underestimation for the pooled effect 

in the TEE subgroup analysis.   
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An accurate yet affordable measure of free-living EE, with a measure of the 

change in energy storage, can be used to estimate free-living EI in large 

cohorts (Sanghvi et al., 2015). In this context, TEE may be considered the 

most important activity subgroup in this meta-analysis.  However, as 

described in chapter 1, TEE is simply the sum of its components and the 

most variable and unpredictable component is EE during activity (Hills et al., 

2014). In agreement with previous studies (Calabró et al., 2014; Dondzila & 

Garner, 2016; Woodman et al., 2017), the accuracy of devices differs by 

activity and this may be related to the inability of devices to differentiate 

between activity types. The Fitbit Charge HR was the most tested 

commercial device in this analysis, and it showed a trivial, non-significant ES 

overall and during sedentary tasks but a moderate to large and significant 

overestimation during ambulatory activity. Considering that ambulatory 

activity is central to public health guidelines worldwide (Pollard & Wagnild, 

2017) an error in the estimation of the EE associated with ambulation may 

have implications for estimates of TEE in a range of populations.  

The observed error for different activity types may be because current 

algorithms do not take physical activity type or bodily posture into account 

(Schneller et al., 2015). Indeed, activity recognition is considered an 

important direction for wearable technology (Wright et al., 2017) and has 

been used to improve estimates of EE (Welk et al., 2007). Montoye et al 

have shown that accelerometers worn on the wrists and thigh can be used to 

predict activity type (Montoye et al., 2016) and similarly, the SenseWear 

software employs complex pattern-recognition algorithms to determine 

activity type (Calabró et al., 2014). It may be that such activity recognising 

capabilities contribute to the trivial or small ES observed for the SenseWear 

Armband Mini in all comparisons. The challenges associated with activity 

recognition have been reviewed previously (Plasqui, 2017) and as this 

technology develops, activity-specific EE prediction equations may offer the 

opportunity to reduced errors associated with activity types.  

4.3.1 Sensors 

A 2012 review concluded that multisensory and triaxial accelerometry 

devices improve estimates of EE, relative to uniaxial devices (Van 

Remoortel et al., 2012). Due to recent technological advancements, triaxial 

accelerometry, as well as heart rate or heat sensing technology are now 

commonplace in wearables (Chowdhury et al., 2017) but it was unclear 

exactly whether the same pattern of improvement would emerge in the 

present analysis. It was hypothesised that the addition of this technology to 
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accelerometry would improve estimates of EE and the current results 

indicate that this is the case. It is established that accelerometry is limited for 

non-weight-bearing activities (Van Hoye et al., 2014), and again, this was 

confirmed by the observation that accelerometry underestimated EE during 

cycling activities. Significant underestimations were also observed during 

sedentary and household tasks and TEE, which is likely a product of the 

limited arm movements associated with some of these activities.  

Accelerometer and heart rate devices moderately overestimated EE during 

ambulation and stair climbing. Some of this error may be attributable to the 

individual variability in the relationship between heart rate and EE. Individual 

calibration of this relationship in the Actiheart device is associated with 

improved estimates of EE (Brage et al., 2007) and may offer a means for 

further reducing the error observed in wrist and arm-worn devices. An 

alternative explanation for this is the variability in estimates of heart rate from 

photoplethysmography heart rate sensors. A recent study reported a small 

mean error of -5.9 bpm in the Fitbit Charge 2, but wide limits of agreement of 

-28.5 to 16.8 bpm (Benedetto et al., 2018) and this variability is a common 

finding (Bai et al., 2018; Boudreaux et al., 2018).  

4.3.2 Device Grade   

The third aim of this meta-analysis was to compare commercial and 

research-grade devices. Commercial devices may be developed with 

affordability and comfort as a primary focus, and as a consequence, it may 

be unreasonable to expect commercial devices to match the validity of 

research-grade devices. Recent consumer monitors share similar 

technology with established research-grade multi-sensor devices 

(Chowdhury et al., 2017) and the positive implications this can have for EE 

estimates can be seen in the present results. A benefit of research-grade 

devices for TEE was observed, but commercial devices were statistically 

superior in ambulation and during sedentary tasks, thus this hypothesis is 

not completely supported. The present results question the use of wrist or 

arm-worn research-grade devices for the validation of newer devices. 

Comparisons to criterion measures such as DLW or indirect calorimetry are 

more appropriate when absolute accuracy is required (Hills et al., 2014). 

Further, it is important to highlight that other research-grade devices, for 

instance, the Actiheart, which is worn on the chest (Brage et al., 2007), are 

likely to be more accurate than research-grade devices included in this study 

(Chowdhury et al., 2017). Further research is needed to establish whether 
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research-grade devices that are worn in other locations such as the chest, 

hip or thigh outperform consumer-based devices. 

4.4.3 Limitations 

Separate pooled analyses to determine the accuracy of individual activity 

monitors were performed for a limited number of devices due to the small 

number of comparisons available for the remaining devices (i.e., less than 

three comparisons). This limitation is inevitable considering the large number 

of activity monitors included in this review. Nevertheless, the inclusion of all 

devices in the overall pooled analysis provides an extensive and robust 

evaluation of the difference in EE outcomes between activity monitors and 

criterion measures.  

The majority of analyses conducted within this review demonstrated large 

heterogeneity within and between devices. Such heterogeneity is not 

unexpected and in many cases may be attributable to a disparity in the 

protocols employed (Higgins, 2008). The rate of EE is likely to be elevated in 

the period following higher intensity exercise and the inclusion of only the 

steady-state period may influence the extent to which devices differ from 

criterion measures (Gastin et al., 2018). There is also the possibility that the 

discrepancy between device estimates relates to populations studied 

(Koehler & Drenowatz, 2017). As few devices currently provide open-access 

EE algorithms, the potential for this to create heterogeneity remains 

uncertain. Despite the heterogeneity, the statistically significant outcomes in 

many cases suggest a consistent direction in effect sizes. 

External validity was low in 46 studies pooled in this meta-analysis, which 

must be considered when interpreting the present results. It must also be 

noted that the present analysis was limited to healthy individuals and 

therefore our results cannot be generalised to populations with conditions 

that produce abnormal gait patterns. Lastly, there is a lag between product 

release and testing in research environments (Boudreaux et al., 2018) and 

some of the devices included in this meta-analysis are no longer in 

production so the continued validation of newer devices is imperative. 

4.5 Conclusion   

This meta-analysis collated studies evaluating the validity of EE estimates by 

wrist or arm-worn devices. Devices vary in accuracy depending on activity 

type and the significant heterogeneity means caution must be exercised 

when interpreting these results. Devices with heart rate sensors often 
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produced better estimates than devices using accelerometry only. However, 

this was not consistent across all activities. Wrist and arm-worn research-

grade devices were more accurate than commercial devices for estimates of 

TEE but researchers should be aware that such devices do not guarantee 

superior accuracy. Future research should aim to understand and reduce the 

error in EE estimates from wrist or arm-worn devices in different activity 

types. This may be achieved through activity recognition techniques, 

incorporating physiological measures and exploring the potential for 

individual calibration of these relationships.    

 

 



- 83 - 

Chapter 5 – A validation study of the Fitbit charge 2 for the 

measurement of energy expenditure and heart rate 

5.1 Introduction  

The case has been made throughout this thesis that whilst gold standard 

measures for EE are available, they are associated with constraints which 

prevent their use at scale. Unlike indirect calorimetry or expensive stable 

isotopic measures, wearable devices can provide estimates of EE over small 

epochs, in ecologically valid environments and large populations. This could 

bring a new dimension to the assessment of free-living EE across a range of 

population groups in health and disease. Despite this promise, inaccurate 

instruments are undesirable as they may bias the outcomes and conclusions 

of a study (Dhurandhar et al., 2015). Indeed, the previous chapter confirmed 

that the accuracy of almost all currently available devices is variable 

between activity types, and this is consistent with an existing body of 

literature validating wearable devices (Dooley et al., 2017; Drenowatz & 

Eisenmann, 2011; Evenson et al., 2015; Feehan et al., 2018).  

The release of new commercial devices is often faster than validation 

studies (Boudreaux et al., 2018) and thus, the accuracy of newer devices 

remains unclear. Physiological sensors, including heart rate sensors (Yang 

& Hsu, 2010) are commonplace in newer activity monitors (O’Driscoll, 

Turicchi, Beaulieu, Scott, et al., 2020) and such innovation may be bringing 

the accuracy of commercial devices in line with more established research-

grade devices (Chowdhury et al., 2017). The reason heart rate monitoring is 

important to the assessment of EE is that a linear relationship exists 

between oxygen consumption (VO2) and heart rate during moderate to high-

intensity activities (Ceesay et al., 1989; Spurr et al., 1988) and therefore 

monitoring heart rate at the minute-level enables relative physical activity 

intensity estimates (Karvonen et al., 1957; Schrack et al., 2018) or EE 

(Achten & Jeukendrup, 2003) to be estimated. As such, it is not unexpected 

to observe that multivariate approaches, in which physiological and 

movement variables are incorporated into predictive algorithms, improve the 

estimation of physical activity or EE relative to accelerometry alone (Brage et 

al., 2015; O’Driscoll, Turicchi, Beaulieu, et al., 2020). Of course, the integrity 

of EE estimates depends on the validity of the heart rate estimates in the 

populations and activities of interest.  
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5.1.1 Chapter aims  

The purpose of the present study was to evaluate the heart rate and EE 

estimates of the FB, a modern commercial-grade wearable device. The 

second aim was to validate the EE estimates of the research-grade SWA.  

Validations are conducted during sedentary, household, ambulatory and 

cycling tasks in a heterogeneous population.   

5.2 Methods  

5.2.1 Participants 

A total of 59 participants were enrolled in this study (age range: 22-73 years, 

weight range 49.2 - 105.99 kg) and participant characteristics are presented 

in table 5.1. Participants were primarily recruited from the Leeds centre of 

the NoHoW trial (n = 44; see section 3.1.3). A further 15 participants were 

recruited from the local area. For further details on the inclusion/exclusion 

criteria and ethics, please see sections 3.1.1, 3.2.1 and 3.3.1   

Table 5.1 Descriptive characteristics of the included sample. 

FM = Fat mass, FFM = Fat free mass, RMR = Resting metabolic rate, 
SBP = Systolic blood pressure, DBP = diastolic blood pressure. Data 
are shown as means ± SD. 

 
N Age Weight FM% FFM% FM 

(kg) 
FFM 
(kg) 

RMR 
(kcal) 

SBP DBP Resting 
heart 
rate  

 
59 44.41 

± 14.1 
75.7 ± 
13.6 

32.5± 
10.3 

67.5 ± 
10.3 

24.8 
± 
10.7 

49.8 
± 
8.9 

1581.8 
± 
280.4 

121.9 
±  

11.5 

 

78.1 

±  

8.5 

 

64.9 

 ± 10  

F 41 46.6 
±13.1 

71.5 ± 
12.9 

35.6  
± 8.8 

64.4 ± 
8.8 

26.3 
±10.6 

45.2 
±4.8 

1466.6 
± 
223.9 

118.4 
±  

11.5 

 

77.4 

± 9 

 

67.1 

±10 

 

M 18 39.8 
±15.5 

84.7 
±10.6 

24.5 
± 9.9 

75.5 ± 
9.9 

21.1 
± 
10.5 

61.7 
± 
4.7 

1830.5 
± 
225.6 

129.4 
± 7 

79.5 
± 
7.5 

60.3 ± 
8.6 
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5.2.2 Protocol 

Following body composition and RMR measurements, participants 

transitioned to the exercise laboratory where a physical activity protocol was 

performed. Participants were initially seated for 5 minutes, followed by 5 

minutes standing. Next, participants performed 5 minutes of treadmill 

walking, incline walking (4 km/h, 5% incline), running and incline running (6-

8 km/h, 5% incline). Participants were then given a 3-minute resting period 

and then transitioned to a cycle ergometer and performed 5 minutes of low-

intensity (30 watts), and moderate-intensity cycling (60 watts). Lastly, after 

another resting period, participants performed a 5-minute folding task and a 

5-minute sweeping task. Throughout this protocol, participants wore a polar 

heart rate monitor, FB and a SWA at all times whilst breath by breath 

respiratory data was collected using a stationary metabolic cart (see below). 

5.2.3 Physical measurements  

Participants arrived at the laboratory in the morning and in a fasted state 

having refrained from the intake of food, caffeine and exercise in the 12 

hours prior. After completing a medical screening questionnaire and 

providing informed consent, height was measured without shoes using a 

stadiometer (Leicester height measure, SECA; UK). Blood pressure and 

resting heart rate were measured using an automatic sphygmomanometer 

(Microlife BP A2 Basic, Gentle Technology, Microlife, Clearwater, FL, USA, 

Inc.). Next, body composition was estimated using a 2-compartment model 

via air displacement plethysmography (BodPod, Life Measurement, Inc.; 

USA), as described in section 3.4.1.5. The RMR of each subject was 

obtained by the method described in section 3.4.2.2. If RMR data were 

unavailable (n=2), RMR was estimated with a body mass index specific 

RMR algorithm (Müller et al., 2004).  

5.2.4 Wearable monitors  

Several wearable devices were used in this study and more detailed 

descriptions of them can be found in chapter 3. Heart rate was assessed 

during the physical activity protocol using a Polar m400 heart rate monitor 

watch (Polar Electro, Kempele, Finland) and a Polar H7 chest strap (Polar 

Electro, Kempele, Finland), which transmitted second-level data via a 

Bluetooth connection (See section 3.4.3.4). The FB (Fitbit Inc, San 

Francisco, CA, USA), a wrist-worn activity monitor was worn on the non-

dominant wrist in this study to estimate EE and heart rate (see section 

3.4.3.1). Lastly, the SWA (BodyMedia Inc., Pittsburgh, PA) was fitted by an 
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elastic strap around the non-dominant arm and was used to estimate EE 

rate (See section 3.4.3.2).  

5.2.5 Vyntus CPX (Jaeger)  

A stationary metabolic cart fitted with a respiratory facemask (Vyntus CPX, 

Jaeger-CareFusion, UK) was used as the criterion measure of EE in the 

present study. Full details of the experimental methodology for this system 

can be found in section 3.4.2.3.  

5.2.6 Statistical analysis  

All analyses were conducted in R version 3.5.1 and Rstudio Version 1.1.447. 

Statistical significance was accepted at p < 0.05 for all analyses. Descriptive 

statistics (mean ± SD) were calculated for age, weight, height, FM, FFM and 

RMR. Data from the devices and criterion measures were averaged to 

provide a mean heart rate in beats per minute (BPM) or EE (kcal/min-1) for 

each participant. Data for each of the outputs were matched by time for each 

participant. Next, the first minute of data from each activity performed in the 

activity protocol was removed leaving minutes 2-5, which were considered 

steady-state. These data were then averaged for each participant’s activity 

bout and this figure was used in analyses. Analyses for each of the devices, 

heart rate and EE were conducted separately. In line with previous research 

(Bai et al., 2018) a range of statistical tests were used. Firstly, the 

agreement between the criterion measure and devices was assessed 

with Pearson’s correlation coefficient. Second, the method of Bland-Altman 

(Altman & Bland, 1983) was used to investigate the mean difference 

between criterion and device estimates, using the ‘BlandAltmanLeh’ 

package in R. Root mean squared error (RMSE), mean absolute error 

(MAE) and mean absolute percentage error (MAPE) (See section 3.5.4.1), 

were calculated. Lastly, ‘equivalence tests’ were conducted. These methods 

are explained in further detail in section 3.5.4.1. Differences in absolute 

percentage error were investigated by analysis of variance (ANOVA) and a 

post-hoc Tukey honest significant difference test, with homogeneity of 

variance assessed with Levene’s test, from the ‘car’ package in R. The 

relationship between continuous variables (age, RMR, height, weight, FM, 

FFM, resting heart rate, systolic and diastolic blood pressure) and absolute 

error rate in EE and heart rate was investigated with Pearson’s correlations, 

using the ‘cor’ function, from the ‘stats’ package in R.  
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5.3 Results  

The physical activity protocol was performed by all participants (n = 59) 

however the running task (n=49), the 5% incline run (n=30) and the 

moderate cycling tasks (n=58) were not performed by all participants due to 

ranges in physical fitness within the sample.  

5.3.1 Fitbit Charge 2  

Synchronisation errors occurred for two participant’s FB data and therefore 

57 participants data were included in FB analyses. The pooled result of all 

available bouts showed a mean overestimation in EE by the FB of 0.8 

(kcal/min-1), RMSE = 2.3 (kcal/min-1), correlation coefficient of r = 0.77, 

MAPE = 44% and a non-significant equivalence test (p > 0.05) indicating 

that the FB was not equivalent to the criterion measure overall. The activity-

specific statistics and the number of bouts included in the analyses are 

presented in table 5.2. The poorest accuracy was observed in the folding 

and sweeping tasks, in which the FB overestimated EE. The MAPE values 

were 93% and 81% for sweeping and folding, respectively (figure 5.1). The 

best accuracy and statistical equivalence was observed in incline running 

tasks (MAPE = 12%). A Bland-Altman plot of the overall error is shown in 

figure 5.2 (right), for which the 95% Limits of agreement were: -3.52, 5.14 

(kcal/min-1). 

 

Figure 5.1 A bar plot detailing the mean absolute percentage error (MAPE) 
of EE from the SWA (yellow) and FB (grey) for each of the activities 
performed in this study.
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Table 5.2 Statistics detailing the validity of EE estimates obtained from the FB and SWA. 

Activity is laid out in the order dictated by the physical activity protocol. ‘Bouts’ refers to the number of minute activity bouts 
included, and ‘ID’ refers to the number of participants included in each comparison. ‘Correlation’ refers to Pearson’s R. 
‘Equivalence’ refers to the results of the equivalence tests and the absence of text implies a non-significant equivalence test. 
Data are shown as means ± SD. MAPE = Mean absolute percentage error, RMSE = Root mean squared error, MAE = Mean 
absolute error.  

Device Activity Bouts ID Device Criterion RMSE MAPE MAE Correlation Equivalence 

FC2 sit 228 57 1.08 ± 0.24 1.30 ± 0.31 0.32 19 0.26 0.66   

stand 228 57 1.15 ± 0.29 1.47 ± 0.35 0.44 24 0.37 0.56   

walk 228 57 7.10 ± 1.97 4.27 ± 0.86 3.35 69 2.83 0.39   

walk incline 228 57 7.32 ± 2.39 5.66 ± 1.02 2.56 31 1.75 0.59   

run 191 48 9.91 ± 1.91 9.18 ± 1.83 1.61 15 1.29 0.7   

run incline 120 30 10.61 ± 2.57 11.14 ± 2.22 1.58 12 1.27 0.81 Equivalent 

cycle low 225 57 3.78 ± 2.17 4.49 ± 1.23 2.15 40 1.7 0.38   

cycle mid 217 56 4.35 ± 2.50 5.59 ± 1.54 2.69 39 2.14 0.37   

folding 228 57 5.57 ± 1.88 2.96 ± 0.61 3.11 93 2.7 0.42   
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Device Activity Bouts ID Device Criterion RMSE MAPE MAE Correlation Equivalence 

sweeping 228 57 5.98 ± 1.69 3.38 ± 0.83 2.94 81 2.64 0.58   

SWA sit 236 59 1.43 ± 0.31 1.29 ± 0.31 0.25 17 0.2 0.75   

stand 236 59 1.67 ± 0.36 1.47 ± 0.34 0.33 20 0.26 0.71   

walk 236 59 4.47 ± 0.79 4.28 ± 0.85 0.73 14 0.59 0.62 Equivalent 

walk incline 236 59 5.12 ± 0.82 5.67 ± 1.00 1.02 13 0.78 0.56   

run 195 49 9.73 ± 1.99 9.18 ± 1.81 1.6 15 1.34 0.69   

run incline 120 30 9.69 ± 1.94 11.14 ± 2.22 2.14 15 1.76 0.71   

cycle low 233 59 3.17 ± 1.19 4.51 ± 1.22 1.63 31 1.4 0.7   

cycle mid 225 58 4.13 ± 1.98 5.60 ± 1.52 2.42 35 1.93 0.41   

folding 236 59 5.31 ± 2.18 2.97 ± 0.60 3.06 83 2.43 0.43   

sweeping 236 59 4.33 ± 1.70 3.37 ± 0.82 1.8 41 1.3 0.43   
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5.3.2 SenseWear Armband 

All 59 participants data were available and were included in the SWA 

analyses. The pooled result of all available bouts was a mean 

overestimation of 0.03 (kcal/min-1), RMSE = 1.7 (kcal/min-1) correlation 

coefficient of r = 0.82, MAPE = 29% and a significant equivalence test (p < 

0.001), indicating that the SWA was equivalent to the criterion measure 

overall. The activity-specific statistics and the number of bouts included in 

the analyses are presented in table 5.2. The SWA demonstrated the poorest 

accuracy in the folding task, in which it overestimated EE (MAPE = 83%). 

The lowest MAPE values were observed in the walking (MAPE = 14%) and 

walk 5% incline tasks (MAPE = 13%), which were overestimations and 

underestimations relative to the criterion measure, respectively. Equivalence 

testing showed statistical equivalence between the SWA and the criterion 

measure during walking only. A Bland-Altman plot of the overall error is 

shown in figure 5.2 (left), for which the 95% Limits of agreement were: -3.33, 

3.38 (kcal/min-1). 

 

 

 

Figure 5.2  Overall Bland-Altman plots of EE estimates from the SWA (left) 

and FB (right) relative to the criterion indirect calorimetry measure 
(Vyntus CPX). 

Data are displayed as kcal/min. ‘Differences’ represents the difference 
between device and criterion estimates and is shown by the middle 
dashed line. The upper and lower dashed lines represent the upper and 
lower 95% limits. Mean of measures represents the average value of 
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the criterion and device estimate. The density plots visualise the 
distribution of data points over the differences between the measures 
and the means of the measures.  

5.3.3 Fitbit charge 2 heart rate  

Polar heart rate connectivity error occurred for one participant and thus heart 

rate analyses were conducted with 56 of the 57 participants with FB data. 

The pooled result of all available bouts was 98 ± 27 BPM (polar) vs 99 ± 29 

BPM (FB), RMSE = 20 BPM, correlation coefficient of r = 0.75, MAPE = 13% 

and a significant equivalence test (p < 0.001), indicating statistical 

equivalence. A Bland-Altman plot for errors in heart rate illustrates the 

agreement between criterion heart rate and FB heart rate by displaying the 

mean difference and 95% limits of agreement (figure 5.3), the 95% Limits of 

Agreement were: -37.94, 39.73 (BPM). Activity specific Bland-Altman plots 

are presented for all tasks in figure 5.4 and accuracy statistics are presented 

in table 5.3.  
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Table 5.3 Statistics detailing the validity of heart rate estimates obtained from the FB, measured in beats per minute. 

Activity is laid out in the order dictated by the physical activity protocol. ‘Bouts’ refers to the number of minute activity bouts 
included, and ‘ID’ refers to the number of participants included in each comparison. ‘Correlation’ refers to Pearson’s R. 
‘Equivalence’ refers to the results of the equivalence tests and the absence of text implies a non-significant equivalence test. 
Data are shown as means ± SD. MAPE = Mean absolute percentage error, RMSE = Root mean squared error, MAE = Mean 
absolute error. 

 
Bouts (ID) 
 

Device  Criterion  RMSE MAPE MAE Correlation Equivalence  

Sit 224  

(56) 

62.29 ± 8.38 64.80 ±10.25 4.52 4 2.79 0.94 Equivalent 

Stand 224 

(56) 

66.44 ± 9.49 69.54 ±11.54 5.51 4 3.31 0.92 Equivalent 

Walk 224 

(56) 

101.80 ± 20.59 84.40 ±12.95 27.63 25 19.50 0.23 
 

Walk incline 224 

(56) 

108.06 ± 22.94 97.19 ± 14.84 25.68 17 16.10 0.29 
 

Run 191 

(48) 

136.15 ± 19.12 131.04 ± 20.93 17.16 8 10.02 0.66 Equivalent 

Run incline 120 

(30) 

142.13 ± 19.00 142.26 ± 20.15 11.85 5 6.81 0.81 Equivalent 

Cycle low 217 

(55) 

95.09 ± 20.55 105.40 ± 17.40 20.80 12 13.12 0.55 
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Bouts (ID) 
 

Device  Criterion  RMSE MAPE MAE Correlation Equivalence  

Cycle mid 209 

(54) 

97.29 ± 24.44 114.73 ± 19.68 26.25 16 18.17 0.62 
 

Folding 224 

(56) 

106.67 ± 12.91 102.03 ± 17.94 19.20 15 14.38 0.29 Equivalent 

Sweeping 224 

(56) 

102.27 ± 14.76 98.55 ± 18.78 20.17 16 14.40 0.31 Equivalent 
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Figure 5.3 Overall Bland-Altman plots of heart rate estimates from the 
FB relative to the criterion measure (Polar chest strap).  

Data are displayed as beats per minute. ‘Differences’ represents device 
estimates – criterion estimates and is shown by the middle dashed line. 
The upper and lower dashed lines represent the upper and lower 95% 
limits. Mean of measures represents the average value of the criterion 
and device estimate. The density plots visualise the distribution of data 
points over the differences between the measures and the means of 
the measures 
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Figure 5.4 Activity specific Bland-Altman plots for heart rate estimates from 

the FB relative to the criterion measure (Polar chest strap). 

Activity specific Bland-Altman plots for heart rate estimates from the 
FB relative to the criterion measure (Polar chest strap). Data are 
displayed as beats per minute. ‘Differences’ represents device 
estimates – criterion estimates and is shown by the middle-dashed line. 
The upper and lower dashed lines represent the upper and lower 95% 
limits. Mean of measures represents the average value of the criterion 
and device estimate. The density plots visualise the distribution of data 
points over the differences between the measures and the means of 
the measures.  

5.3.4 Predictors of absolute percentage error  

Using the available data, no significant correlations were observed for any 

continuous variables and the absolute percentage error for heart rate and 

EE. ANOVA tests for the sex differences were not significant for absolute 

percentage errors in EE for the SWA or FB. In the heart rate comparison, a 

significant difference was observed between male bouts and female bouts 

with the absolute percentage error for males being significantly higher (F = 

4.158, p = 0.042).  
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5.4 Discussion 

Commercial activity monitors can potentially be used to study the EE of free-

living subjects, however, a critical barrier to their use is uncertainty regarding 

their accuracy. This study was necessary because scientific validations of 

the newest commercial devices (i.e. FB) are rare, especially in the context of 

more accurate devices such as the SWA. The study reported in this chapter 

investigated the validity of EE and heart rate estimates from the FB and EE 

estimates from the SWA. Comparisons for heart rate were made relative to a 

chest strap (Polar) and EE was compared to a stationary metabolic cart 

(Vyntus CPX). The principal findings are i) the research-grade SWA was 

observed to be more accurate than the commercial-grade FB overall ii) the 

heart rate estimates of the FB are generally in closer agreement with the 

criterion measures compared to EE estimates.  

5.4.1 Energy expenditure  

The FB, one of the newest Fitbit activity monitors, has been investigated 

previously for its validity in estimating EE, relative to indirect calorimetry 

(Boudreaux et al., 2018; Reddy et al., 2018), but this study provides a direct 

comparison with the SWA, a more established and commonly used, 

research-grade device. The results in this chapter substantiate previous 

research concluding that the SWA is more valid for the estimation of EE 

when compared to commercial activity monitors (Chowdhury et al., 2017; 

O’Driscoll, Turicchi, Beaulieu, et al., 2020). This being said, the SWA was 

not accurate across the range of activities performed, with MAPE values 

>25% in some activities. Specifically, low and moderate-intensity cycling, 

folding and sweeping.  

Large overestimations were observed for the FB during household tasks. 

This most likely originates from the reliance on wrist accelerometry and this 

is a recognised limitation of devices located at this wear site (Ellis et al., 

2016). Movements such as folding and sweeping involve rapid movements 

of the hand but are not particularly energetically demanding (typically ~4 

METs) (Ainsworth et al., 2011). Importantly, the ‘sedentary and household’ 

meta-analysis reported in chapter 4 showed a non-significant effect for the 

Fitbit Charge HR (prior model to the FB device tested here). In this analysis, 

the FB underestimated sedentary EE but tends to overestimate household 

tasks. It could be that the effects are ‘counter-balancing’ each other in the 

meta-analysis, where the two activities were combined. The overestimation 

of EE in household tasks is opposite to the issue faced by more traditional 
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devices, which were worn on the hip and tended to underestimate the 

energy cost of tasks with limited ambulation (i.e. household tasks) 

(Hendelman et al., 2000; Nelson et al., 2016).  

Notably, the MAPE values for the FB were lowest in running activities 

(indicating a high degree of accuracy) and higher during walking activities. 

This finding is reflective of the results of the analysis reported in chapter 4, 

in which the pooled results from five comparisons for the Fitbit Charge HR 

showed significant, moderate to large overestimation relative to criterion 

measures of EE for ambulatory activity and a non-significant overestimation 

during running (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 2020). It is not 

possible to confidently comment on the underlying cause of this error due to 

the proprietary nature of the algorithms. However, it is interesting to note that 

the greatest overestimate in heart rate estimates was also observed in the 

walking tasks. If heart rate is incorporated in the FB EE prediction algorithm, 

this could partially explain this result.  

The performance of the SWA for the estimation of TDEE is well recognised 

(Casiraghi et al., 2013; Johannsen et al., 2010; Slinde et al., 2013). 

However, its accuracy in specific activity types is less established (Koehler & 

Drenowatz, 2017). Indeed, significant underestimations relative to indirect 

calorimetry when running at higher speeds (> 9.9 km/h) have been reported 

(Drenowatz & Eisenmann, 2011) and in a validation study involving cycling, 

the SWA again significantly underestimated EE (Koehler et al., 2011).The 

complementary results in comparisons to DLW may be largely influenced by 

the accuracy of the resting EE equations selected by the manufacturers, 

which are derived from participant characteristics (Nelson et al., 2016) and 

are generally specific to the population on which they were derived 

(Schofield et al., 2019). The present results offer some support for this 

supposition.  

5.4.2 Heart rate  

The conclusion that the estimates of heart rate from the FB are typically 

more accurate than EE estimates is reflective of previous research 

(Shcherbina et al., 2017; Wallen et al., 2016). When heart rate estimates 

were aggregated across all available bouts, the heart rate estimates of the 

FB were statistically equivalent to the criterion measure. Error in specific 

activity types was greater but the FB was statistically equivalent in most 

activity types. A recent study reported that erratic movements and a greater 

heart rate were associated with an increased error in heart rate (Nelson & 

Allen, 2019) and another concluded that the error was exacerbated with 
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increasing exercise intensity (Thomson et al., 2019). In contrast, the present 

results showed the highest error in the walking task, yet the greatest 

accuracy in the running tasks. The observation of the greatest error in 

walking is similar to that reported in a previous study investigating the Fitbit 

Surge device, where a greater error was observed during ambulatory tasks 

(Shcherbina et al., 2017). In contrast, two other studies investigating the FB 

report small underestimations in heart rate during walking (Nelson & Allen, 

2019; Reddy et al., 2018).  

No significant continuous correlates of the error for each device were 

identified and this includes body composition, which appears to be a novel 

investigation within this field. However, the percentage error in heart rate 

was significantly greater in males, when compared to females. Whilst the 

proprietary nature of the smoothing algorithms makes understanding the 

observed error challenging, photoplethysmography technology is likely to be 

influenced by device position and skin conditions which may differ between 

males and females (Stahl et al., 2016). Before the exercise condition, the 

position and tightness of the FB were standardised for all participants and it, 

therefore, seems unlikely that the position of the device played a role in the 

observed error. It remains to be seen whether the free-living performance of 

the FB will differ between participants in less controlled environments and 

this should be addressed in future research.   

The seeming inability of the ‘out of the box’ FB estimates to accurately 

estimate EE is a primary limitation for energy balance research, particularly 

when the numerous benefits of cost, cloud storage and acceptance from 

participants are considered (Gualtieri et al., 2016; Wright et al., 2017). The 

results presented here indicate that it may be more appropriate to use 

commercial activity trackers, in their current format, to infer physical activity 

from step counts, or to estimate heart rate, as both of these metrics are 

typically observed to be more valid than EE estimates (Feehan et al., 2018). 

Alternatively, the application of metrics such as the heart rate reserve 

(Schrack et al., 2018), which can be used to define minute level relative 

intensity from heart rate data may be of greater use to researchers.    

Considering that it is possible to access minute-level data from commercial 

wearables in many instances, this raises the possibility of the application of 

non-linear modelling to improve estimates of EE from commercial wearable 

devices. Advanced statistical learning techniques are being used to estimate 

EE and physical activity of tasks with better accuracy than linear regression 

approaches (Ellis et al., 2014; Montoye, Conger, et al., 2017; Staudenmayer 
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et al., 2009) and future research should investigate whether data from 

commercial activity monitors can be used to more accurately predict EE from 

sensor outputs. Further, the incorporation of body composition and 

participant characteristics into non-linear models could improve estimates of 

EE beyond the estimates of current activity monitors (Weyer et al., 1999).  

5.4.3 Limitations 

In this study, several different FB devices were used and data were synced 

with each participant’s mobile phone application. The lack of standardisation 

of devices may be considered a limitation, as different firmware could 

potentially have been employed for different participants. However, this 

reflects the use of wearable devices in research environments, in which 

firmware updates are released sporadically. Secondly, whilst this study 

offers an analysis of the accuracy of two activity monitors for a relatively 

limited number of prescribed activities, it provides little insight into the 

ecological validity of these devices. Substantial over and underestimations 

from the FB, depending on the specific activity in question, were observed 

and therefore the error in free-living individuals will vary depending on the 

activities performed. Given that wearable devices will be used in free-living 

research, validation studies in free-living conditions are urgently required. 

Thirdly, this study was conducted in healthy, ambulatory individuals who 

were not pregnant, using medications associated with alteration to metabolic 

rate, and did not have cardiovascular, metabolic or renal disorders, illness or 

injury. The results may vary as the characteristics of study populations differ, 

however, except for gender difference in heart rate error, no evidence was 

found indicating that this was the case. 

5.5 Conclusion 

The SWA is more valid for the estimation of EE when compared to the 

commercial-grade FB, yet neither activity monitor can consistently estimate 

EE with equivalence to a criterion measure. The FB provides better 

estimates of heart rate than it does EE. The heart rate estimates are broadly, 

but not always, equivalent to criterion estimates across a range of activity 

types. It may therefore be more appropriate to focus on heart rate metrics for 

the assessment of physical activity, rather than EE in the FB. Mathematical 

models to estimate EI from bodyweight have been developed and validated 

(Sanghvi et al., 2015), and discussed extensively in chapter 1 and 3. 

However, these models make assumptions about the PAEE levels, which 

are unlikely to be constant between and within individuals during weight loss 
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and maintenance interventions (Kerns et al., 2017). An inexpensive, 

objective estimate of PAEE will therefore improve EI estimates from 

mathematical models and whilst devices such as the FB show large 

inaccuracies, it is likely that in their current form, they would be superior to 

an estimation of constant PAEE. This being said, the encouraging results in 

the heart rate analyses raise the possibility of estimating EE through new 

algorithms, which take the FB outputs (heart rate, movement etc) as input 

variables (Staudenmayer et al., 2009). Such approaches developed in an 

academic setting would be transparent concerning their development and 

assumptions.  
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Chapter 6 – A methodology to account for missingness in 

physical activity data collected from commercial activity 

monitors 

6.1 Introduction  

The introduction of this thesis highlighted how technological advances in 

terms of size, data aggregation capabilities and the associated fall in cost 

has facilitated the use of tri-axial accelerometers in most new devices (Hills 

et al., 2014), creating opportunities for energy balance and related fields. 

The preceding chapters of this thesis have exclusively considered the errors 

associated with the sensor outputs or the derived EE estimates. However, 

accuracy is closely related to the amount of data available for analysis and 

this chapter seeks to investigate methods to minimise the biases brought 

about by missing data.  

Missing data is a well-recognised phenomenon in accelerometer research 

(Troiano et al., 2008) and it is attributable to behavioural (i.e. removal for 

aesthetic reasons) and non-behavioural factors (i.e. device technical failures, 

charging). Non-wear time in accelerometery research has previously been 

detected by defining periods in which the signal of acceleration in each axis 

falls below a threshold for some time, often a predefined period between 10-

120 minutes (Choi et al., 2011; Ridgers & Fairclough, 2011). Researchers 

then permit a maximum amount of non-wear time per day, which may be up 

to 14 hours (Tudor-Locke et al., 2012). The aim of defining such a period is 

to determine the amount of missing data which minimally influences the 

inferences of the study (Liu et al., 2016). It is also common to define a 

minimum number of valid days within a measurement period and if these 

criteria are met, an average or total value for physical activity metrics can be 

estimated (Doherty et al., 2017; Kapteyn et al., 2018).  

Missing accelerometer data may detrimentally influence the conclusions of a 

study in several ways. If EE or physical activity is calculated from incomplete 

data, true physical activity or EE may be under-estimated (depending on the 

assumptions made about missing data). If missing periods occur in 

individuals that differ behaviourally or demographically from those with more 

complete data then the study’s conclusions may be compromised (Loprinzi 

et al., 2013). A range of strategies have been developed to limit the bias 

introduced by missing accelerometer data (Stephens et al., 2018). These 
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methods make use of the observed (non-missing) data to build predictive 

models of missing data points and have utilised mean imputation (Meng et 

al., 2020), combined multivariate strategies (Lee, 2013; Staudenmayer et al., 

2012) or normalisation by the amount of wear-time (Chen et al., 2009; 

Katapally & Muhajarine, 2014).  

Some differences exist between research and commercial-grade devices 

which prevent the application of previous strategies to devices such as the 

FB; First, commercial activity monitors are cloud-connected, facilitating the 

assessment of physical activity for longer periods than research-grade 

equivalents, which typically measure physical activity maximally over a 

single week (Thraen-Borowski et al., 2017), meaning that subjects need to 

remove the devices for recharging. Commercial activity monitors are also 

increasingly equipped with heart rate monitoring devices (Benedetto et al., 

2018), which can facilitate the estimation of the relative intensity of physical 

activity or EE, through heart rate reserve (HRR) or flex methodologies 

(Bassett et al., 2012; Rennie et al., 2001; Schrack et al., 2018; Silva et al., 

2015) but also creates different patterns of missingness. For example, 

missing data may be identified through the loss of contact with the wrist (and 

therefore no measured heart rate), indicating that the device has most likely 

been removed. This results in the detection of smaller windows of removal, 

compared to longer periods used when the accelerometer signal is the 

determinant of missingness (Choi et al., 2011; Ridgers & Fairclough, 2011). 

These differences highlight an important need to develop methods to limit 

the bias associated with missing data from these devices. There has been 

no attempt to develop or apply imputation methodologies to commercially 

available multisensory activity monitors (e.g. FB).   

6.1.1 Chapter aims 

The purpose of the present study was to propose and evaluate a 

methodology designed to minimise the bias introduced by missing data 

collected from a commercial activity monitor (FB). Firstly, a series of intra-

class correlation analyses were performed to investigate the minimum data 

required to achieve a reasonably non-biased aggregation of physical activity 

data collected by a FB. Next, the results of an autocorrelation analysis are 

presented, which serve as the rationale for the development of a method 

which scales temporally proximate data to produce summaries over a given 

measurement period. Lastly, in a series of simulation experiments using real 

datasets with simulated missingness, the performance of the proposed 

methodology was compared to alternative imputation strategies.  
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6.2 Methods  

6.2.1 Participants  

Data were collected as part of the NoHoW trial (ISRCTN88405328) (Scott et 

al., 2019) (Detailed in sections 3.1.1, 3.1.2 and 3.1.3). For the simulation 

experiments conducted in this study, FB data from 109 participants each 

wearing a FB for 14 days (minutes = 2,197,440, hours = 36,624, days = 

1526) were used. This sample was selected based on the quantity of non-

wear time (<2.5% data missing within the first 14 days). Utilising a sample 

with minimal degrees of missingness allows ‘true’, near-complete data to be 

held back for comparison with imputation methods.  

6.2.2 Fitbit Charge 2 (FB) 

All participants enrolled in the NoHoW trial were provided with a FB (Fitbit 

Inc, San Francisco, CA, USA), which is detailed in section 3.4.3.1. In the 

present study, non-wear time is defined by the absence of a heart rate 

measure and all devices were set to ‘auto’ mode by default, which ensured 

that no heart rate reading was transmitted when the device was not on the 

wrist.  

6.2.3 Autocorrelation analyses  

The algorithm proposed in this study was initially based on a series of 

autocorrelation analyses which are presented below. In autocorrelation 

analyses, the correlations between values in the time series are computed 

as a function of the time lag between them, defined in minutes in this case. 

For these analyses, autocorrelation values for time lags of up to 7 days 

(10080 minutes) were calculated for each participant individually, indicating 

time points within a week with the highest correlation. Figure 6.1 illustrates 

the autocorrelation for steps and heart rate for 90 minutes and 10081 

minutes, respectively.  

The average of the autocorrelation values (ACF) reached within 60 minutes 

for steps were: 15 mins: ACF = 0.31, 30 mins: ACF = 0.21, 45 mins: ACF = 

0.15, 60 mins: ACF = 0.12, comparatively, heart rate values are higher: 15 

mins: ACF = 0.62, 30 mins: ACF = 0.52, 45 mins: ACF = 0.46, 60 mins: ACF 

= 0.41. Although there is evidence of periodic patterns on subsequent days, 

the value does not exceed ACF = 0.09 for steps, which is observed at a lag 

of 1441 minutes and ACF = 0.25 is observed for heart rate at 1440 minutes, 
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the differences in these values are likely attributable to the stochastic nature 

of steps when compared to heart rate. Notably, the value at 10081 mins (7 

days) is ACF = 0.05 for steps and ACF = 0.13 for heart rate. Thus, the 

greatest autocorrelation values are observed locally for both steps and heart 

rate.   

 

Figure 6.1 Autocorrelation (ACF) values for steps with time lags of 90 
minutes (A), 10,080 minutes (B) and heart rate with time lags of 90 
minutes (C) and 10,080 minutes (D). 

Average ACF values are shown in red and the blue ribbon represents ± 
1 standard deviation.  

 

6.2.4 Wear time requirements  

To investigate the minimum amount of wear-time required for a valid hour, 

day or 14-day period, intraclass correlation (ICC) analyses were conducted, 

as ICC is a widely used and accepted means of determining measurement 

agreement (Koo & Li, 2016). In each of these experiments, data were 

deleted incrementally and at random and the ICC was calculated between 

the partially deleted data and the ‘true’ steps at each increment. An ICC 

threshold of 0.9 was used as the selection criterion, to align with a previous 

related publication in the Biobank study (Doherty et al., 2017).  The first 

investigation was to determine the minimum time required within a single 

hour with adjustment for wear time, and thus the remaining data was divided 

by the proportion of the wear time and this adjusted value was used for ICC 
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analyses. In the daily and 14-day analyses, adjustments for wear time were 

not made. For all analyses, two-way mixed-effects agreement models were 

used (Koo & Li, 2016) and this was conducted with the ‘icc’ function from the 

‘rel’ package in R. Figure 6.2a demonstrates that if 5 minutes of data are 

present and scaled to 60 minutes, the ICC threshold of 0.9 is reached. In the 

daily analysis, the ICC threshold was met at 18-19 hours per day (Figure 

6.2b). It is important to note that the ICC comparisons for each day include 

non-scaled data despite using scaled data in the algorithm (outlined below). 

When scaling by the proportion of wear time per day, the number of hours 

required will be lower. 18 hours were used to ensure that true data are 

available from different parts of the day (i.e. morning, afternoon, evening) 

and this is a conservative requirement in line with previous research (Shook 

et al., 2018). To establish minimum 14-day requirements, the ICC threshold 

was met at 3 days (Figure 6.2c). For the final algorithm, 4 days were 

required including at least one weekend day as the minimum criteria for 

inclusion, owing to the potential for differential patterns of physical activity 

between weekdays and weekend days (Shiroma et al., 2019).  

 

 

 

Figure 6.2 Intraclass correlations (ICC) for incrementally deleted data and 
‘true’ data. Data are presented for scaled minutes per hour (A), for 
hours per day (B) and for the number of days per 14 days (C).  
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6.2.5 NoHoW algorithm 

Based on these analyses a scaling algorithm is proposed, referred to from 

hereon as ‘NoHoW algorithm’ as follows:  

1: If non-missing minutes per hour < 5 then remove hour from dataset else 

sum available minutes to provide hourly total  

2: Divide the number of available minutes per hour by 60 to give the 

proportion of wear time per hour 

3: Divide hourly total by the proportion of wear time per hour to provide a 

scaled hourly total 

4: If available hours per day < 18 then remove day from dataset else sum all 

available hours to give daily total  

5: Divide the number of available hours by 24 to give proportion of wear time 

per day 

6: Divide daily total by the proportion of wear time per day to provide a 

scaled daily total  

7: If available days per 14 days < 4 or < 1 weekend day then remove 14-day 

period from dataset else average all valid days  

 

6.2.6 Simulation study 1 

In order to test the algorithm, two simulation experiments were performed. In 

the first experiment, traditional imputation methods and the proposed 

algorithm were tested. This was achieved by creating datasets with 

simulated missingness from each of the included participant’s true data and 

holding back this true data to be compared to the imputed datasets. The 

time point at which the data were removed was random and the length of 

each deleted period was uniformly sampled between one and 120 minutes in 

duration. The decision to insert missing data at random positions was 

informed by observing the proportion of missing FB data for each hour in the 

first 14 days of the NoHoW study, on average 22.83% was missing with a 

range of 21.1% at 13:00-13:59 to 25.96% at 23:00-23:59 (Figure 6.3). To 

determine the length of missing periods in this study, the length of each 

missing period in the first 14 days of the NoHoW study was determined, 

where the length was less than an entire day (1440 minutes). Of the 146,165 

missing periods,139,213 (95.24%) were less than 60 minutes and 3882 

(2.7%) were greater than 120 minutes (Figure 6.4), thus 120 minutes was 
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set as the upper limit for the length of insertions. The final parameter in the 

missing data algorithm was the number of missing periods, which was set to 

40. This resulted in the amount of missing data per day being 13.7% 

(11.76% inserted) on average and ranging up to 44.4% (36.81% inserted) in 

simulation study 1.  

 

Figure 6.3 The percentage of missing data for each hour of the day in the 
NoHoW trial.  
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Figure 6.4 A density plot detailing the lengths of missing data in the 
NoHoW trial.  

Data are presented for missing periods less than 1440 minutes in 
length. The mean is represented by the red dashed line and the median 
is represented by the blue dashed line. 

6.2.7 Imputation methods  

Utilising the same simulated missing datasets, the first simulation study 

tested the methodologies below for dealing with missing data.  

6.2.7.1 Removal 

The effect of no imputation or adjustment strategy was demonstrated by 

simply reporting the physical activity summaries for the simulated missing 

datasets.   

6.2.7.2 Mean imputation 

Missing data were imputed with the i) mean of all the remaining data and ii) 

with the mean of the individuals remaining data. This was conducted with the 

Hmisc package in R. 

6.2.7.3 Random forest imputation  

Random forest imputation was utilised, utilising the ‘missForest’ package in 

R. This is a non-parametric imputation method, which implements the 

original random forest algorithm (Breiman, 2001). Random forest imputation 

was performed to predict the missing values for steps, heart rate and 
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calories on each participants data using weekday and hour as observed, 

non-missing variables. Hyperparameters were selected with consideration of 

computational feasibility; 100 trees were used in each forest, the number of 

randomly sampled variables at each split was set to the square root of the 

number of variables and the maximum number of iterations was set to 5.  

6.2.7.4 Multiple imputation   

We tested multiple imputation with the use of bootstrapping and predictive 

mean matching utilising i) the entire sample and ii) individual-level data. In 

the case of the overall model, age, gender and day of the week were 

covariates, as they have previously been shown to be associated with 

differential patterns of physical activity (Berkemeyer et al., 2016; Doherty et 

al., 2017). In the individual models, the hour of the day was used as an 

additional covariate. An advantage of multiple imputation is the repetition of 

the imputation process thus attempting to address the uncertainty 

associated with a single imputation. A total of 5 imputations were used in the 

overall model, and in the individual level model, 7 imputations were used. 

Multiple imputation was implemented with the Hmisc package in R. 

6.2.7.5 Kalman imputation   

Lastly, Kalman smoothing imputation using a structural time series model 

was tested. Kalman imputation was implemented with the imputeTS 

package in R to impute caloric expenditure, steps and heart rate.  

6.2.8 Simulation study 2 

In simulation study 2, the aim was to investigate how the bias introduced by 

the NoHoW algorithm, Kalman imputation and individual level multiple 

imputation may vary depending on the quantity and position of missing data. 

Individual centred approaches were selected as they were the only 

individualised approaches that were statistically equivalent to the true data 

across all activity types in simulation study 1. As in the first simulation study, 

14-days (20160 minutes) of data were utilised for each participant. 

Missingness was simulated randomly throughout the day and in all 

iterations, the maximum length of each insertion was set to 120 minutes. 

The simulations were split into 10 windows of missingness, where the 

number of missing periods inserted for each participant increased 

incrementally with each simulation window. In the first window, the number 

of missing periods per participant was sampled from a uniform distribution 

between 0-10, the second between 10-20 up to the tenth which inserted 90-

100 missing periods in each iteration. Within each window, 20 simulations 
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were conducted per participant, for a total of 21,800 iterations of each 

algorithm overall.  

6.2.9 Physical activity metrics 

Each of the imputation methods tested in both simulation studies were used 

to address several distinct physical activity metrics including total steps, 

TDEE and minutes of sedentary, light, moderate and vigorous physical 

activity. Both steps and TDEE for a given interval are extracted from the FB 

and time in each of sedentary, light, moderate and vigorous are defined by 

the heart rate reserve (HRR) method which is computed for each minute in 

the dataset. To facilitate this method, maximum heart rate was estimated for 

each participant using the Tanaka method; (208 - 0.7 x age) (Tanaka et al., 

2001). To define resting heart rate, the sleeping heart rate was determined, 

which was defined as the mean of the lowest 20 consecutive minutes 

observed between 00:00 and 08:00 am, when steps/min were < 5. After 

sleeping heart rate was defined, an 8% increase was used because this 

represents an estimate of the difference between resting and sleeping heart 

rate (Kräuchi & Wirz-Justice, 2001). The relative intensity of each minute 

was then calculated: 

 

% 𝐻𝑅𝑅 =
(𝐻𝑅 − 𝐻𝑅𝑅𝐸𝑆𝑇  )

( 𝐻𝑅𝑀𝐴𝑋 − 𝐻𝑅𝑅𝐸𝑆𝑇)
×  100 

 

The following cut points were applied: Sedentary (<20% HRR), light (20–

40% HRR), moderate (40–60% HRR), and vigorous (≥60% HRR) (Schrack 

et al., 2018). For each missing minute in the dataset, each of the imputation 

methods described above were used to impute or scale steps, caloric 

expenditure and heart rate to produce hourly, daily and average physical 

activity estimates.  

6.2.10 Statistical analysis  

All data are presented as means and standard deviations unless otherwise 

stated and a flowchart detailing both simulation studies is available in figure 

6.5. To evaluate the performance of each method, RMSE was calculated for 

all physical activity metrics for hourly, daily and 14-day averages, relative to 

the observed data. Equivalence tests were performed to investigate whether 

the models were statistically equivalent to the true data. These methods are 

further explained in section 3.4.5. Statistical analyses were conducted with 

R version 3.6.3 using a p-value of < 0.05 to determine statistical significance.    



- 111 - 

 

 

  

Figure 6.5 A flowchart detailing the simulation procedures conducted in this 
study.  

6.3 Results  

The participants meeting the minimum criteria were predominantly female 

(n= 93, male = 16) and were primarily from the Danish centre (DK = 69, UK 
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= 23, Portugal = 17), table 6.1 presents the demographic and physical 

activity results for the included sample. The computation time for each of the 

included algorithms in the first simulation was as follows: Overall mean 

imputation: 18.23 Minutes, Individual mean imputation: 1.27 Minutes, Overall 

multiple imputation: 17.61 Hours, Individual multiple imputation: 17.04 

Minutes, Random forest imputation: 4.36 Hours, Kalman imputation: 2.16 

Minutes, NoHoW method: 2.12 Seconds.  

Table 6.2 illustrates the results of the first simulation study for 14-day, daily 

and hourly comparisons and table 6.3 presents the results of equivalence 

tests for each of the methods. For TDEE, Individual multiple imputation had 

the smallest RMSE for 14-day (36.32 kcal), followed by the NoHoW method 

(39.51 kcal), and for the hourly comparison, Kalman imputation was superior 

(14.11 kcal). In the daily comparison, the smallest RMSE was observed for 

the NoHoW method (115.86 kcal). All methods except removal (mean 

difference: -343.44 kcal) were statistically equivalent to the true data, with 

the smallest mean difference observed for Individual multiple imputation. For 

steps, the lowest RMSE was observed for the NoHoW method for 14-day 

(397.83 steps) and daily comparison (1366.92 steps) and Kalman imputation 

for hourly comparison (173.78 steps). All methods except removal (mean 

difference: -1320.74 steps, p-value >0.05), were statistically equivalent to the 

true data. In the HRR analysis, multiple imputation methods, Kalman 

imputation and the NoHoW algorithm were statistically equivalent for all 

sedentary, light, moderate and vigorous comparisons.  
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Table 6.1 Demographic data and physical activity averages for the included 
sample (n=109). 

Total daily EE (TDEE) is presented is kcals/day, sedentary, light, 
moderate and vigorous are presented in minutes/day.  

 
Mean ± SD Minimum Maximum 

Age (years) 47.46 ± 9.62 22 75 

Height (M) 1.69 ± 0.08 1.54 1.87 

Weight (kg) 84.76 ± 15.59 50.5 148.4 

BMI (kg/m2) 29.64 ± 5 20.2 44.8 
    

TDEE (Kcal/day) 2626.59 ± 504.66 1754.24 4492.25 

Steps (Steps/day) 10570.34 ± 3208.67 3202.50 19941.07 

Sedentary (Mins/day) 1087.76 ± 112.72 847.21 1284.64 

Light (Mins/day) 266.77 ± 94.83 102.29 484.14 

Moderate (Mins/day) 50.24 ± 31.6 6.43 132.86 

Vigorous (Mins/day) 7.29 ± 9.09 0.00 47.07 
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Table 6.2 Mean ± standard deviation estimates for each of the imputation methods tested in simulation study 1. 

Total daily EE (TDEE) is presented is kcals, sedentary, light, moderate and vigorous are presented in minutes.  
 

 
 

True Removal Overall 
mean 

Individual 
mean  

Overall 
Multiple 

Individual 
Multiple 

Random 
Forest 

Kalman NoHoW 

TDEE 14-
day 

 
2626.59 
± 504.66 

2283.15 
± 
445.78 

 
2645.66 
± 443.93 

 
2645.49 
± 515.87 

 
2649.59 
±457.11 

 
2638.06 
± 513.24 

 
2658.48 
± 
571.72 

 
2660.96 
± 518.63 

 
2653.61 
± 515.8 

 

 
Day 

 
2626.59 
±607.05 

2283.15 
± 583.3 

 
2645.66 
± 545.14 

 
2645.49 
± 602.91 

 
2649.59 
± 555.65 

 
2638.06 
± 600.29 

 
2658.48 
± 
654.09 

 
2660.96 
±632.27 

 
2653.61 
± 627.21 

 

 
hour 

 
109.7 ± 
65.24 

100.12 
± 65.22 

 
110.23 ± 
61.53 

 
110.25 ± 
62.03 

 
110.36 ± 
61.7 

 
110.01 ± 
62.31 

 
110.61 
± 63.2 

 
110.69 ± 
66.86 

 
110.61 ± 
67.58 

 

Steps 14-
day 

 
10570.34 
± 
3208.67 

9249.6 
± 
2867.46 

 
10718.22 
± 
2860.93 

 
10716.67 
± 
3309.78 

 
10741.09 
± 
2817.02 

 
10593.71 
± 
3274.98 

 
10049.5 
± 
3472.95 

 
10755.97 
± 
3249.79 

 
10791.34 
± 
3309.09 

 

 
Day 

 
10570.34 
+ 
4775.05 

9249.6 
± 4447 

 
10718.22 
± 
4360.78 

 
10716.67 
± 4657.6 

 
10741.09 
± 
4343.52 

 
10593.71 
± 
4637.29 

 
10049.5 
± 
4804.18 

 
10755.97 
± 
5013.85 

 
10791.34 
± 
5009.86 

 

 
hour 

 
442.55 ± 
738.52 

405.61 
± 
699.45 

 
446.55 ± 
694.48 

 
446.58 ± 
696.27 

 
447.17 ± 
695.47 

 
442.93 ± 
697.7 

 
428.19 
± 
700.15 

 
448.23 ± 
751.38 

 
449.94 ± 
763.31 

 

Sedentary 14-
day 

 
1087.76 
± 112.72 

956.05 
± 
101.01 

 
1139.11 
± 109.98 

 
1151.53 
± 105.13 

 
1118.75 
± 100.63 

 
1120.96 
± 110.35 

 
1138.12 
± 
112.52 

 
1101.93 
± 117.73 

 
1105.57 
± 116.03 

 

 
Day 

 
1087.76 
± 170.63 

956.05 
± 
174.15 

 
1139.11 
± 160.95 

 
1151.53 
± 156.73 

 
1118.75 
± 152.3 

 
1120.96 
± 157.97 

 
1138.12 
± 
165.97 

 
1101.93 
± 175.74 

 
1105.57 
± 173.68 
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True Removal Overall 

mean 
Individual 
mean  

Overall 
Multiple 

Individual 
Multiple 

Random 
Forest 

Kalman NoHoW 

 
hour 

 
45.51 ± 
17.82 

41.93 ± 
19.1 

 
47.03 ± 
16.83 

 
47.38 ± 
16.61 

 
46.46 ± 
16.44 

 
46.54 ± 
16.52 

 
47.01 ± 
17 

 
45.99 ± 
18.04 

 
46.07 ± 
17.89 

 

Light 14-
day 

 
266.77 ± 
94.83 

235.5 ± 
84.53 

 
247.25 ± 
93.15 

 
236.96 ± 
86.51 

 
264.11 ± 
84.32 

 
261.72 ± 
91.8 

 
247.05 
± 94.01 

 
269.32 ± 
96.42 

 
274.66 ± 
96.81 

 

 
Day 

 
266.77 ± 
139.25 

235.5 ± 
127.82 

 
247.25 ± 
134.98 

 
236.96 ± 
129.6 

 
264.11 ± 
126.65 

 
261.72 ± 
131.03 

 
247.05 
± 
137.41 

 
269.32 ± 
143.71 

 
274.66 ± 
144.45 

 

 
hour 

 
11.17 ± 
14.15 

10.33 ± 
13.59 

 
10.65 ± 
13.86 

 
10.36 ± 
13.62 

 
11.11 ± 
13.47 

 
11.03 ± 
13.54 

 
10.63 ± 
13.92 

 
11.2 ± 
14.54 

 
11.44 ± 
14.69 

 

Moderate 14-
day 

 
50.24 ± 
31.6 

44.63 ± 
28.42 

 
44.63 ± 
28.42 

 
44.63 ± 
28.42 

 
48.81 ± 
28.63 

 
48.25 ± 
31.18 

 
44.65 ± 
28.43 

 
48.76 ± 
31.17 

 
52.22 ± 
33.37 

 

 
Day 

 
50.24 ± 
47.85 

44.63 ± 
43.95 

 
44.63 ± 
43.95 

 
44.63 ± 
43.95 

 
48.81 ± 
44.07 

 
48.25 ± 
45.54 

 
44.65 ± 
43.95 

 
48.76 ± 
49.15 

 
52.22 ± 
51.02 

 

 
hour 

 
2.11 ± 
5.53 

1.96 ± 
5.29 

 
1.96 ± 
5.29 

 
1.96 ± 
5.29 

 
2.07 ± 
5.29 

 
2.06 ± 
5.3 

 
1.96 ± 
5.29 

 
2.07 ± 
5.67 

 
2.18 ± 
5.88 

 

Vigorous 14-
day 

 
7.29 ± 
9.09 

6.51 ± 
8.38 

 
6.51 ± 
8.38 

 
6.51 ± 
8.38 

 
6.92 ± 
8.35 

 
6.86 ± 
9.13 

 
6.51 ± 
8.38 

 
7.17 ± 
9.03 

 
7.55 ± 
9.57 

 

 
Day 

 
7.29 ± 
15.48 

6.51 ± 
14.61 

 
6.51 ± 
14.61 

 
6.51 ± 
14.61 

 
6.92 ± 
14.59 

 
6.86 ± 
14.99 

 
6.51 ± 
14.61 

 
7.17 ± 
15.66 

 
7.55 ± 
16.62 

 

 
hour 

 
0.3 ± 
2.45 

0.29 ± 
2.36 

 
0.29 ± 
2.36 

 
0.29 ± 
2.36 

 
0.3 ± 
2.36 

 
0.3 ± 
2.37 

 
0.29 ± 
2.36 

 
0.31 ± 
2.52 

 
0.32 ± 
2.6 
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Table 6.3 Mean ± standard deviation estimates and equivalence test results for each of the imputation methods tested in simulation 

study 1.  

Total daily EE (TDEE) is presented is kcals. Sedentary, light, moderate and vigorous are presented in minutes.  
  

True Imputed  Mean difference  Bounds  P-value lower P-value upper 

TDEE Removal 2626.59 ± 504.66 2283.15 ± 445.78 -343.44  ± 262.66 1 0 
 

Overall mean 2626.59 ± 504.66 2645.66 ± 443.93 19.08  ± 262.66 0 0 
 

Individual mean 2626.59 ± 504.66 2645.49 ± 515.87 18.9  ± 262.66 0 0 
 

Overall Multiple 2626.59 ± 504.66 2649.59 ± 457.11 23.01  ± 262.66 0 0 
 

Individual Multiple 2626.59 ± 504.66 2638.06 ± 513.24 11.48  ± 262.66 0 0 
 

Random Forest 2626.59 ± 504.66 2658.48 ± 571.72 31.89  ± 262.66 0 0 
 

Kalman 2626.59 ± 504.66 2660.96 ± 518.63 34.37  ± 262.66 0 0 
 

NoHoW 2626.59 ± 504.66 2653.61 ± 515.8 27.02  ± 262.66 0 0 
        

Steps Removal 10570.34 ± 3208.67 9249.6 ± 2867.46 -1320.74  ± 1057.03 1 0 
 

Overall mean 10570.34 ± 3208.67 10718.22 ± 2860.93 147.88  ± 1057.03 0 0 
 

Individual mean 10570.34 ± 3208.67 10716.67 ± 3309.78 146.33  ± 1057.03 0 0 
 

Overall Multiple 10570.34 ± 3208.67 10741.09 ± 2817.02 170.75  ± 1057.03 0 0 
 

Individual Multiple 10570.34 ± 3208.67 10593.71 ± 3274.98 23.37  ± 1057.03 0 0 
 

Random Forest 10570.34 ± 3208.67 10049.5 ± 3472.95 -520.84  ± 1057.03 0 0 
 

Kalman 10570.34 ± 3208.67 10755.97 ± 3249.79 185.63  ± 1057.03 0 0 
 

NoHoW 10570.34 ± 3208.67 10791.34 ± 3309.09 221  ± 1057.03 0 0 
        

Sedentary Removal 1087.76 ± 112.72 956.05 ± 101.01 -131.71  ± 108.78 1 0 
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True Imputed  Mean difference  Bounds  P-value lower P-value upper 

 
Overall mean 1087.76 ± 112.72 1139.11 ± 109.98 51.36  ± 108.78 0 0 

 
Individual mean 1087.76 ± 112.72 1151.53 ± 105.13 63.78  ± 108.78 0 0 

 
Overall Multiple 1087.76 ± 112.72 1118.75 ± 100.63 30.99  ± 108.78 0 0 

 
Individual Multiple 1087.76 ± 112.72 1120.96 ± 110.35 33.2  ± 108.78 0 0 

 
Random Forest 1087.76 ± 112.72 1138.12 ± 112.52 50.36  ± 108.78 0 0 

 
Kalman 1087.76 ± 112.72 1101.93 ± 117.73 14.17  ± 108.78 0 0 

 
NoHoW 1087.76 ± 112.72 1105.57 ± 116.03 17.81  ± 108.78 0 0 

        

Light Removal 266.77 ± 94.83 235.5 ± 84.53 -31.27  ± 26.68 1 0 
 

Overall mean 266.77 ± 94.83 247.25 ± 93.15 -19.51  ± 26.68 0.046 0 
 

Individual mean 266.77 ± 94.83 236.96 ± 86.51 -29.8  ± 26.68 0.949 0 
 

Overall Multiple 266.77 ± 94.83 264.11 ± 84.32 -2.65  ± 26.68 0 0 
 

Individual Multiple 266.77 ± 94.83 261.72 ± 91.8 -5.05  ± 26.68 0 0 
 

Random Forest 266.77 ± 94.83 247.05 ± 94.01 -19.72  ± 26.68 0.001 0 
 

Kalman 266.77 ± 94.83 269.32 ± 96.42 2.55  ± 26.68 0 0 
 

NoHoW 266.77 ± 94.83 274.66 ± 96.81 7.89  ± 26.68 0 0 
        

Moderate Removal 50.24 ± 31.6 44.63 ± 28.42 -5.61  ± 5.02 0.938 0 
 

Overall mean 50.24 ± 31.6 44.63 ± 28.42 -5.61  ± 5.02 0.938 0 
 

Individual mean 50.24 ± 31.6 44.63 ± 28.42 -5.61  ± 5.02 0.938 0 
 

Overall Multiple 50.24 ± 31.6 48.81 ± 28.63 -1.44  ± 5.02 0 0 
 

Individual Multiple 50.24 ± 31.6 48.25 ± 31.18 -1.99  ± 5.02 0 0 
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True Imputed  Mean difference  Bounds  P-value lower P-value upper 

 
Random Forest 50.24 ± 31.6 44.65 ± 28.43 -5.59  ± 5.02 0.933 0 

 
Kalman 50.24 ± 31.6 48.76 ± 31.17 -1.48  ± 5.02 0 0 

 
NoHoW 50.24 ± 31.6 52.22 ± 33.37 1.98  ± 5.02 0 0 

        

Vigorous Removal 7.29 ± 9.09 6.51 ± 8.38 -0.78  ± 0.73 0.672 0 
 

Overall mean 7.29 ± 9.09 6.51 ± 8.38 -0.78  ± 0.73 0.672 0 
 

Individual mean 7.29 ± 9.09 6.51 ± 8.38 -0.78  ± 0.73 0.672 0 
 

Overall Multiple 7.29 ± 9.09 6.92 ± 8.35 -0.37  ± 0.73 0.002 0 
 

Individual Multiple 7.29 ± 9.09 6.86 ± 9.13 -0.43  ± 0.73 0.005 0 
 

Random Forest 7.29 ± 9.09 6.51 ± 8.38 -0.78  ± 0.73 0.672 0 
 

Kalman 7.29 ± 9.09 7.17 ± 9.03 -0.12  ± 0.73 0 0 
 

NoHoW 7.29 ± 9.09 7.55 ± 9.57 0.26  ± 0.73 0 0 
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In the second simulation study, which is visually represented as boxplots in 

Figure 6.6, the aggregated RMSE for each of the tested approaches tended 

to increase with the proportion of missing data. For the TDEE estimation 

(Figure 6.6a), the first iteration (1% missingness added) resulted in a mean 

RMSE of 31.14 kcal/day for the NoHoW method (range 28.82 – 33.12 

kcal/day) compared to multiple imputation: 21.30 kcal/day (range 19.20 – 

23.11 kcal/day) and Kalman imputation: 37.44 kcal/day (range 35.49– 39.90 

kcal/day). Comparatively, at the 10th insertion of missingness (~28% 

missingness added) a maximum RMSE of 68.89 kcal/day, 68.05 kcal/day 

and 72.55 kcal/day was observed for NoHoW, multiple imputation and 

Kalman imputation, respectively. For steps (Figure 6.6b), evidence of slightly 

superior performance was observed for multiple imputation at the lower 

levels of missingness (<19%). However, mean RMSE values for each of the 

methods remained similar and did not differ by more than 86 steps/day. In 

the HRR analysis, differences were the greatest in the sedentary 

comparison (Figure 6.6c), with the NoHoW and Kalman methods having a 

lower mean RMSE than multiple imputation at each window. The largest 

difference was observed at 28% missingness, where the mean RMSE 

values were 24.87 mins/day (range: 23.15 – 26.39 mins/day)  for the 

NoHoW method, 55.56 (range 53.69- 57.76) mins/day for multiple imputation 

and 23.73 mins/day (range 21.46- 26.89 mins/day) for Kalman imputation. 

For light (Figure 6.6d) and moderate (Figure 6.6e) the NoHoW method 

showed the lowest mean RMSE values after 13% missingness. Its largest 

mean RMSE of 15.19 mins/day (range 12.81- 17.42 mins/day) for light 

activity and 5.38 mins/day (range 4.72- 6.26 mins/day) for moderate activity 

were observed at 28 % missingness. Lastly, in the vigorous activity 

simulation (Figure 6.6f), multiple imputation had the lowest mean RMSE with 

<7% added missingness but Kalman and NoHoW methods were superior at 

higher levels of missingness. In the 28 % missingness window, NoHoW 

reached a mean RMSE of 2.25 mins/day (range 1.84 – 3.03 mins/day) 

mins/day and Kalman reached 2.28 mins/day (range 1.85-2.95 mins/day). 

An extensive table of results from the second simulation study is available in 

appendix 2.1.  
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Figure 6.6 Boxplots detailing root mean squared error (RMSE) values from 
simulation study 2 for each window of missingness.      

Data are presented for TDEE (A), Steps (B), Sedentary (C), Light (D), 
Moderate (E), Vigorous (F). Mean missing data refers to the additional 
data added in the simulations.   

6.4 Discussion 

The use of commercial activity monitors in research environments is 

proliferating, creating new research opportunities within the fields of energy 

balance or physical activity. It is necessary to take steps to ensure the 

integrity of these data is not challenged by missing data. The purpose of the 

present study was to develop and test a methodology to account for 

missingness in EE/physical activity data collected with a commercial activity 

monitor in a free-living environment. In the first set of experiments, ICC 

analyses were used to show that if data are scaled within an hour, the 

relative data requirements to meet an ICC threshold of 0.9 are minimal (~5 

minutes). This relates to the relative similarity between ‘local’ data points, as 

confirmed by the autocorrelation analyses. It is shown that if the data are not 

scaled by wear time the relative requirements for a day equates to 

approximately 18 hours per day. This is in contrast to a previous study, 

which showed that relative to a 14 hours/day criterion, at least 13 hours/day 

of accelerometer data are required (Herrmann et al., 2013). This slight 

discrepancy in the proportion of the day required may relate to the inclusion 
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of night hours in this sample. Given the likelihood that this is a highly 

sedentary period, missing data at night is likely to be less influential on daily 

totals.  

In simulation study 1, each of the tested methods were used to impute 

metrics that are likely to be of importance depending on the specific 

research aims. The results suggest different outcomes depending on the 

metric selected, for instance, random forest imputation, overall mean and 

individual mean methods did not impute vigorous or moderate minutes 

regularly, as reflected in the non-significant equivalent results (indicating 

these methods are not statistically equivalent). This is likely due to the low 

proportion of the day in which these activities are performed. In the first 

simulation study, a slight tendency for the NoHoW method to overestimate 

minutes of moderate and vigorous activity was observed. This may relate to 

the position of the missing data in simulation 1; For example, if missing data 

occurs in the sedentary period after an exercise bout then this period will be 

overestimated. As exercise is infrequent in non-athlete populations this is 

unlikely to result in a large error in mean differences. Indeed, the estimates 

for moderate and vigorous differed by < 2 minutes/day in the 14-day 

comparison. Researchers should consider imputation strategies based on 

observed activity data from their sample or should select methodologies 

which are statistically equivalent in the specific activities of interest. 

All tested methods resulted in a RMSE which was lower than no imputation 

(i.e. removal). Making no attempt to adjust for missingness effectively 

assumes that activity was 0 and the results presented here demonstrate the 

potential implications of this. In the first experiment, ~14% of the day was 

missing on average with ~12% inserted, equating to a wear time of 20-22 

hours, which falls within the acceptable levels of missingness for most 

accelerometer research (Choi et al., 2011; Ridgers & Fairclough, 2011) and 

therefore evidences the importance of using one of these methods even in 

the case of relatively small quantities of missing data. Of the imputation 

methods tested, an advantage of individual-centred methods was observed, 

specifically Kalman imputation, individual multiple imputation and the 

NoHoW algorithm. Indeed, in the second simulation study, in which the 

maximal missingness approached double the quantity of the first simulation 

study the RMSE for TDEE was lower than the values observed for removal, 

overall mean and random forest imputation in simulation study 1, indicating 

the efficacy of these methods.   
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 Missingness was simulated approximately evenly throughout the entire 24-

hour period because of the observed patterns of missingness in the NoHoW 

trial. This is contrary to a previous study observing that missing data patterns 

more frequently occur at the beginning and end of the day (Xu et al., 2018). 

It is of note that the present study used wrist-worn devices compared to the 

aforementioned study, which utilised hip worn accelerometers. Unlike wrist-

worn monitors, hip-worn accelerometers are generally removed with 

changing of clothes and sleeping . This may encourage compliance in wrist-

worn monitors (Diaz, Krupka, Chang, Shaffer, et al., 2016) and contribute to 

a more uniform distribution of missingness throughout the day.  

The relative computational simplicity of the NoHoW method is a significant 

advantage. Accelerometer data of this kind can be extremely high volume 

and researchers must select their imputation strategy with consideration of 

both error reduction and computational feasibility. It may be possible to 

utilise advanced machine learning techniques to impute missing data, but 

these methods are computationally expensive and may be technically 

inaccessible to many researchers. Also, more information (e.g. physiological, 

psychological or behavioural factors) may allow for more accurate 

multivariate imputation techniques but in free-living settings this information 

is likely to be limited, thus the method presented here is likely to be widely 

applicable. A further advantage of the present study is the testing of 

numerous activity metrics in addition to steps. Steps are a highly 

interpretable and relatable metric produced by wearable devices and some 

evidence suggests that estimates of steps from Fitbit devices are more valid 

and reliable than other derived variables, i.e. TDEE (Feehan et al. 2018; 

O’Driscoll et al. 2020; O’Driscoll et al. 2020) although machine learning 

techniques may facilitate the refinement of EE estimates (O’Driscoll et al. 

2020). Nevertheless, the metric of interest to researchers will vary 

depending on the aims and hypotheses of a study and the NoHoW method, 

Kalman imputation and individual level multiple imputation perform 

particularly well across a variety of physical activity metrics. 

6.4.1 Limitations 

Key limitations of the present study are the utilisation of participants with a 

high proportion of wear time (>97.5%). Whilst highly adherent participants 

were required to have a near-complete dataset to validate against, the 

included participants may be in some way behaviourally different from the 

participants that remove the FB more frequently. Second, missing data were 

inserted at random positions, and it remains uncertain how representative 
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this is of free-living data in other studies. Participants may remove devices 

for comfort, aesthetic reasons, charging or under conditions where they 

would not wish to have measurements made (e.g. extreme sedentariness) 

and thus, it is possible that missingness is not completely at random (Sterne 

et al., 2009) and may differ between populations and research studies. 

Unfortunately, no definitive method exists to test if data are missing at 

random (Lee & Gill, 2018) and many imputation strategies have limited 

capabilities to overcome this. However, our second simulation study 

simulates a wide variety of missing patterns in an attempt to identify such 

biases and worst-case scenarios in the selected methods. Lastly, the sample 

is made up predominantly of females with overweight/obesity.  

6.5 Conclusions  

Incorporation of activity monitoring devices is a necessary step in improving 

physical activity and energy balance tracking in research and clinical 

settings. A simple and accessible methodology has been proposed in this 

chapter which effectively reduces the bias introduced to physical activity 

estimates by non-wear time and may improve the validity of research 

conclusions. Other imputation strategies (i.e. multiple imputation and Kalman 

imputation) performed comparatively well and importantly, all the methods 

tested in this study are superior to data removal. Researchers and clinicians 

utilising commercial activity monitors longitudinally should account for 

missingness and the algorithm presented in this study offers an approach to 

this.  

Performance for TDEE, steps and heart rate show similar trends for the 

NoHoW algorithm as these metrics are closely related. Despite this, it must 

be stated that TDEE is the metric of primary interest in this thesis. In terms 

of performance, a slight advantage of the NoHoW algorithm was observed 

as missingness increased. Though the error remained small for all 

experiments (RMSE < 80kcal/day). Substantial differences exist in the speed 

of computation, however, with the NoHoW algorithm computing orders of 

magnitude faster than Kalman or Multiple imputation.  

 



- 124 - 

Chapter 7 – Development and validation of machine learning 

models to estimate energy expenditure from wearable 

sensors 

7.1 Introduction  

The case has been made throughout this thesis that activity tracking devices 

have some significant advantages which make them a potentially interesting 

tool for use in research environments. For energy balance research 

specifically, these benefits are certainly offset if the accuracy of EE 

measures is poor. As indicated in chapter 4 and 5, the accuracy of activity 

trackers varies greatly between devices and activities (O’Driscoll, Turicchi, 

Beaulieu, et al., 2020; O’Driscoll, Turicchi, Hopkins, et al., 2020; Shcherbina 

et al., 2017), which limits their use when quantifying energy balance and 

activity behaviours. 

The potential of machine learning techniques to model the complex 

interactions between accelerometer data, physiological variables and rate of 

EE has been recognised for some time. An early study showed that an 

artificial neural network can be trained using accelerometer data as input to 

predict EE in a whole-body indirect calorimetry chamber (Rothney et al., 

2007). Furthermore, Pober et al. utilised quadratic discriminant analysis and 

hidden Markov models to classify activity and subsequently estimate the 

proportion of time at different rates of EE (Pober et al., 2006). Research 

groups have built on these early findings and reported highly accurate 

algorithms in a variety of activities (Ahmadi et al., 2020; Ellis et al., 2014, 

2016; Montoye, Begum, et al., 2017; Staudenmayer et al., 2009). 

Researchers may take two broad approaches when modelling physical 

activity; First, attempting to predict the rate of EE as a continuous variable 

(i.e. METs) or second, classifying a minute as sedentary, light or moderate 

to vigorous physical activity (MVPA) and both of these approaches are 

important for health research. Regression approaches could be used to 

derive total EE for a subject and this estimate can subsequently be 

incorporated into energy balance models to calculate EI (Shook et al., 2018). 

Alternatively, accurately determining the time an individual spends in 

broader categories of activity and/or the intensity of that activity can be 

important for public health guidance. For example, successful weight 

maintenance in the National Weight Control Registry and weight 
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management recommendations are often defined based on the time an 

individual spends in MVPA (Ostendorf et al., 2018). Machine learning 

algorithms have the potential to enhance physical activity assessment 

beyond traditional count-based methods, which despite being more 

accessible, may not be sufficiently accurate for the assessment of EE and 

intensity classifications (Lyden et al., 2011).  

Recently, it has been demonstrated in a laboratory validation study that 

accelerometer and physiological sensor outputs can be modelled using 

random forests to predict the rate of ‘steady-state’ EE in commercial and 

research-grade activity monitors, with the accuracy surpassing the 

proprietary algorithms of the SWA (O’Driscoll, Turicchi, Hopkins, et al. 2020). 

A limitation of this work was that the number of activities in which EE was 

measured was limited and the generalisability of these algorithms remains 

uncertain.  

A method for continued refinement of predictive algorithms is to aggregate 

more than one dataset to provide larger, more diverse training data with 

more activities (Chowdhury et al., 2017). More data presents a new 

optimisation problem, which (because of different assumptions made by 

different algorithms) means there is no guarantee that any algorithm will 

minimise error on all problems (Wolpert & Macready, 1997). For machine 

learning models to be used in general health research settings it is critical to 

evaluate the generalisability of prediction algorithms. The extent to which an 

algorithm will generalise is influenced by the characteristics of the sample, 

the activity types as well as the size and quality of the training data. One 

approach which addresses each of these limitations is to evaluate prediction 

algorithms on different samples, using data collected under different 

conditions. In addition to generalisability, a combination of variable datasets 

collected under different experimental conditions (Farrahi et al., 2020) may 

help to increase the accuracy of predictions.  

7.1.1 Chapter aims  

This study aggregates two distinct datasets of concurrent inputs from 

multiple wearable devices and measured EE (indirect calorimetry). The 

primary aims were to develop and evaluate classification and regression 

algorithms to i) predict the rate of EE and ii) classify a single minute as 

sedentary, light or MVPA. Algorithms were validated using leave-one-

subject-out cross-validation (LOSO) as well as an out-of-sample validation. 

Concurrently, the SWA is evaluated as this is a device which has been 

shown to outperform accelerometer-based monitors when classifying activity 
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minutes (Calabró et al., 2014) and is one of the most accurate wrist or arm-

based monitors for estimating EE (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 

2020). 

7.2 Methods  

7.2.1 Studies and protocols  

The present study aggregated data collected as part of two separate studies 

at The Human Appetite Research Unit, University of Leeds. Both studies are 

described in chapter 3 (See device validation study in section 3.1.1, 3.2.1 

and 3.3.1 and ‘TEED study’ in sections 3.1.2, 3.2.2 and 3.3.2). Participant 

information for both samples is shown in table 7.1. On average, the sample 

in study 2 (TEED study) had proportionately more males, a lower age, a 

lower average percentage of FM and a higher RMR, compared to study 1 

(Device validation study).  

Table 7.1 Characteristics of the included sample.  

Data are presented as mean ± SD. Abbreviations: FFM = Fat free 
mass, FM = Fat mass, RMR = Resting metabolic rate. Weight refers to 
the weight measured at visit 1 for exercise testing, whereas body 
composition was collected at a later date. Body composition was not 
available for all participants in study 1.  

Study N 
(Female) 

Age 
(years) 

Height 
(cm) 

Weight 
(kg) 

FFM 
(kg) 

FM (kg) FM (%) RMR 
(kcal/d) 

1 59 

(41) 

44.4 ± 
14.1 

167.5 ± 
8.9 

75.7 ± 
13.6 

49.8 
± 8.9  

24.8 ± 
10.7 

32.5 ± 1
0.3 

1581.8 
± 280.4 

          

2 30 

(13) 
31.9 ± 
10.2 

171.9 ± 
9.2 

70.6 ± 
12.9 

55 ± 
12.6 

15.1 ± 
7.1 

21.7 ± 
8.7 

1769.3 
± 435.8 

 

7.2.1.1 Study 1 

Full details of study 1 have been published previously (O’Driscoll, Turicchi, 

Hopkins, et al. 2020). The protocol of study 1 consisted of 10 activities, each 

performed for 5 minutes in the following set order: sitting, standing, treadmill 

walking and incline walking (4 km/h), jogging and incline jogging (6–8 km/h). 

Participants then rested for 3 minutes and transitioned to a cycle ergometer 

for low and moderate-intensity cycling. After another period of recovery, 

participants performed a folding task and a sweeping task. Due to variation 
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in physical fitness, the jogging task (n = 49), incline jogging (n = 30) and the 

moderate cycling tasks (n = 58) were not performed by all participants.  

7.2.1.2 Study 2 

In study 2 (TEED study), participants visited the lab having refrained from 

eating or consuming caffeine for at least 4 hours. Weight and height were 

obtained from a SECA 704s stadiometer and electronic scale (SECA, 

Germany) and subsequently an activity protocol was performed. All activities 

were performed in 5-minute increments and the order was identical for all 

participants. Firstly, resting tasks were performed where participants lay 

supine, then sat in a backed chair and then stood. Next, after a 2-minute 

unstructured transitional period, participants performed seated typing, 

standing ironing and wiping surfaces whilst standing. After another 2-minute 

transition, participants walked on a treadmill at 4 km/h, walked at an incline 

of 5% at 4 km/h and subsequently jogged at 7 km/h. Participants then rested 

for 10 minutes. After the unstructured resting period, participants performed 

low-intensity and moderate-intensity cycling, low-intensity and moderate-

intensity rowing and low-intensity and moderate-intensity cross-training 

(elliptical), with 1-minute transitions between each. The intensity was 

determined by self-selected perceived exertion. In study 2, one participant 

did not perform rowing or elliptical tasks.    

7.2.2 Body composition assessment  

In both studies, body composition was estimated using ADP (BodPod, Life 

Measurement, Inc.; USA), n=57 in study 1 and n=30 in study 2, by the 

method described in section 3.4.1.5. 

7.2.3 Energy expenditure  

In both studies, RMR was determined by the methods described in section 

3.4.2.2. If RMR data were unavailable (n=3 across both studies) RMR was 

approximated with BMI specific equations (Müller et al., 2004). During the 

activity sessions, minute-level EE was obtained from a stationary metabolic 

cart (Vyntus CPX, Jaeger-CareFusion, UK) which is discussed further in 

section 3.4.2.3 and these data were expressed relative to each subject’s 

measured RMR to derive METs, which served to eliminate the proportion of 

EE attributable to RMR. 

7.2.4 Devices  

Accelerometer and physiological data were collected by various sensors 

throughout both protocols. The Polar H7 chest strap (Polar Electro, 
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Kempele, Finland) was used to measure heart rate. An ActiGraph GT3-X 

accelerometer (AG; Actigraph, Pensacola, FL, USA) and a Fitbit charge 2 

(FB; Fitbit Inc, San Francisco, CA, USA) were attached securely on the non-

dominant wrist. Participants also wore the SenseWear Armband Mini (SWA; 

BodyMedia Inc., Pittsburgh, PA, USA) on the upper arm. The devices used 

in this study are all detailed in section 3.5.2.  

7.2.5 Data aggregation  

The sensor outputs were obtained from the device-specific software, 

aggregated to the minute-level and time-matched to the criterion EE data. 

Data loss attributable to device malfunction were as follows: In study 1, two 

participant’s FB data, one participant’s AG data and one participant’s polar 

heart rate data were lost. In study 2, one SWA and one FB dataset were lost 

due to device failure. Given the slightly different data availability in each 

model, the results report the number of minutes used and the number of 

participants. All minutes in which EE data were available (i.e. face mask was 

not removed) were included in this analysis, and the aggregation of the 

datasets by time was conducted in Python 3.7.6 and R version 3.6.3.   

For activity-specific analyses, activities were grouped into broader 

categories. Specifically, ‘Activities of daily living’ (ADL), which involved 

folding, sweeping, typing, ironing and wiping surfaces. Distinct categories 

were assigned for ‘Cycling’, ‘Elliptical’, ‘Rowing’, ‘Running’ and ‘Walking’. 

The ‘Sedentary’ activities involved all sitting, standing and supine tasks. The 

‘Transitional’ category refers to unstructured resting or transitional minutes. 

7.2.6 Model features  

Predictive models were built for FB, AG and SWA and the features used in 

each model are detailed in table 7.2. Each device used a combination of 

subject-level features, accelerometer features and physiological features, 

which have all been related to the rate of EE in previous literature (Brage et 

al., 2005; Ceesay et al., 1989; O’Driscoll, Turicchi, Beaulieu, et al., 2020; 

Rothney et al., 2007; Whybrow, Ritz, Horgan, & Stubbs, 2013). The exact 

features varied depending on features available in each device. Where small 

(<5 minutes) heart rate gaps existed (e.g. loss of signal between the 

respective heart rate sensor and the skin), linear interpolation was used to fill 

gaps. As activity in the preceding minutes influences the rate of EE at the 

measurement point (McArdle et al., 2010, pp 192 - 234), several time-lagged 

features were computed; for steps (FB and SWA), vector magnitude (AG), 

FB heart rate (FB) and polar heart rate (SWA and AG) the change, for t-1 
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minutes through to t-5 minutes were included as predictive features. Also, 

the mean and standard deviation of the last 5 minutes were used as 

predictive features. If time-lagged variables could not be computed due to 

data missing (i.e. for the first minutes for each subject), backwards 

imputation was performed using the next available observation.  

As a constant variance is a central requirement of some of the algorithms 

tested in this study, all numeric features were standardised before training 

by the formula 𝑧 =
(𝑥−𝜇)

𝑠𝑑
 where 𝜇 and 𝑠𝑑 refer to the variable mean and 

standard deviation, respectively.  

 Table 7.2 Predictive features used in each of the models.  

For each device, the subject characteristics, acceleration features and 

physiological features are listed. 

Device Category  Features  

FB  Subject features Gender, age, height, weight, sitting heart rate 

 Acceleration 
features 

Steps: 

Steps mean,  

Steps difference (t-1, t-2, t-3, t-4, t-5 minutes), 

Steps mean of last 5 minutes,  

Steps standard deviation of last 5 minutes 

 Physiological 
features  

Fitbit heart rate features:  

Fitbit heart rate above sitting heart rate, 

Fitbit heart rate percentage of maximum heart rate, 
Fitbit heart rate mean,  

Fitbit heart rate difference (t-1, t-2, t-3, t-4, t-5),  

Fitbit heart rate mean of last 5 minutes,  

Fitbit heart rate standard deviation of last 5 minutes 

AG  Subject features Gender, age, height, weight 

 Acceleration 
features 

X,Y,Z Features:  

Minimum, Maximum, Mean, Standard Deviation,  

Median Crossings,  

10th, 25th, 50th, 75th, 90th Percentiles,  

Correlations (XY, XZ, YZ),  

Dominant frequency,  

Dominant frequency magnitude 

First order differential of X,Y,Z Features:  

Minimum, Maximum, Mean, Standard Deviation,  

Median Crossings,  

10th, 25th, 50th, 75th, 90th Percentiles,  
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Device Category  Features  

Correlations (XY, XZ, YZ),  

Dominant frequency,  

Dominant frequency magnitude  

Vector magnitude:   

Vector magnitude mean,  

Vector magnitude difference (t-1, t-2, t-3, t-4, t-5 Minutes), 
Vector magnitude mean of last 5 minutes,  

Vector magnitude standard deviation of last 5 minutes 

 Physiological 
features 

Polar heart rate features:  

Polar heart rate above sitting heart rate,  

Polar heart rate percentage of maximum heart rate, 
Polar heart rate mean,  

Polar heart rate difference (t-1, t-2, t-3, t-4, t-5 Minutes),  

Polar heart rate mean of last 5 minutes,  

Polar heart rate standard deviation of last 5 minutes 

SWA Subject features Gender, age, height, weight 

 Acceleration 
features 

X, Y, Z Features:  

Peaks, Mean of absolute deviation, Average 

Steps: 

Steps mean, Steps difference (t-1, t-2, t-3, t-4, t-5 
Minutes), Steps mean of last 5 minutes,  

Steps standard deviation of last 5 minutes 

 Physiological 
features  

Polar heart rate features:  

Polar heart rate above sitting heart rate,  

Polar heart rate percentage of maximum  heart rate, 
Polar heart rate mean,  

Polar heart rate difference (t-1, t-2, t-3, t-4, t-5 Minutes),  

Polar heart rate mean of last 5 minutes,  

Polar heart rate standard deviation of last 5 minutes 

SenseWear sensors:  

Near body temperature average, Galvanic skin response 
average, Skin temperature average   

 

7.2.7 Statistical analyses  

For all analyses and algorithms, two validation approaches were conducted. 

First, in LOSO validations, algorithms are trained on all but one participant’s 

data and that participant is held back for validation. This process is repeated 

until all participants have served as the validation participant once. Second, 

an out-of-sample validation was performed in which the entire dataset from 

one study is used as training data and the second study is used for 
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validation. Regression algorithms were evaluated by RMSE and MAPE (See 

section 3.4.5) and concordance correlation coefficient (CCC) with the 

‘DescTools’ package in R. Equivalence tests were employed to determine if 

the true METs and predicted METs were statistically equivalent and these 

are explained further in section 3.5.4. For classification tasks, the Kappa 

statistic, accuracy and the F1-Score are reported (see section 3.5.4 for 

further details). A p-value threshold of <0.05 is used to determine statistical 

significance where p-values are reported.  

7.2.7.1 Algorithms and hyperparameter selection 

The SWA outputs a METs estimate which was evaluated in this study (SWA 

manufacturer). Several machine learning algorithms for the regression and 

classification tasks were tested, which are described in section 3.5.3. In the 

regression tasks, algorithms predicted a MET value for each minute and in 

the classification tasks algorithms classified activity categories for each 

minute. The activity classifications were: Sedentary (≤1.5 METs), Light (> 1.5  

and  < 3 METs) and MVPA (≥3 METs) which are standard cut-offs (Beaulieu 

et al., 2017; Blair et al., 2014; Farrahi et al., 2020). For each algorithm, the 

hyperparameters were informed by a random search through a range of 

potential hyperparameters in preliminary tuning experiments. Random 

search iterates over a grid of randomly selected combinations of 

hyperparameters, rather than exploring every possible combination of 

features and therefore offers a significant computational advantage over a 

grid-search approach (Géron, 2019. pp 78). Each random search was 

conducted with the RandomizedSearchCV class in Scikit Learn (Pedregosa 

et al., 2011), using three-fold cross-validation. The specific parameters for 

each algorithm are detailed in Appendix 3.1 and except for Neural Network 

models (See section 3.5.2.2) the scoring/loss criterion was the respective 

loss or scoring metrics within Scikit Learn. All algorithms were trained using 

Keras-GPU (Chollet, 2015) or Scikit Learn (Pedregosa et al., 2011). The 

specific algorithms are detailed in section 3.5.2.   

7.2.7.2 Permutation importance 

Permutation importance is computed for random forests using the 

sklearn.inspection.permutation_importance class. This method provides a 

means of investigating the importance of each of the predictive variables. A 

single random forest model is fitted for the FB dataset, the SWA dataset and 

the AG dataset. A baseline metric is determined for the estimator (R2 of the 

prediction). After a feature is permuted the metric is calculated again and the 

outcome is the difference between these two scores.  
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7.2.7.3 Simulation  

It is important to consider the potential implications of having relative 

extremes in variables. For example, age, weight and height may be 

considered important variables that lead to variability in EE outputs. As such 

a simulation experiment was conducted to examine this. First, a dataset was 

simulated based on the activities conducted in the TEED study (i.e. it 

followed a similar but not identical pattern of movement and heart rate). A 

male and female participant was simulated with approximately average age, 

height and weight. This was achieved by setting the standardised score to 0 

for each of these variables. Next, each of these were replaced by a value for 

weight, age and height which varied from –2SD to +2SD, in increments of 

0.5SD. Predictions are made by the gradient boost algorithm used in chapter 

8 and 9 and these predictions are saved. This process is repeated 100 times 

for each value and each variable, but a slightly different dataset is used, for 

example, a male with height -2SD from the mean will have 100 datasets 

generated. Variation in the datasets was achieved by adding Gaussian noise 

to each input variable (Mean = 0, SD = 0.3).  

7.3 Results  

7.3.1 Regression 

A total of 89 participant activity sessions were included in this sample and all 

models could be evaluated on at least 5448 minutes of data in LOSO 

validations. The regression algorithms predicting measured EE are 

presented in table 7.3 and visually displayed in figure 7.1. The greatest error 

in METs was observed for the manufacturer provided SWA estimates; with a 

MAPE and RMSE of 34.54 and 1.86, respectively. For the AG, RMSE was 

lowest for gradient boost (0.93 METs), which also achieved the lowest 

MAPE of any AG model (17.88%). Of the FB models, the random forest and 

gradient boost had equal RMSE (1.36 METs), but a slightly lower MAPE was 

achieved by the random forest. For the SWA the gradient boost had the 

lowest RMSE value (0.91 METs) and the lowest RMSE of all those tested. In 

general, the neural network models were associated with greater RMSE 

overall for AG, FB and SWA models. 
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Figure 7.1 Boxplots demonstrating the RMSE overall for each of the tested 
models. RMSE is calculated at the level of the subject before plotting.       

Abbreviations: Root mean squared error (RMSE), Fitbit (FB), AG = 
ActiGraph (AG), SenseWear (SWA).  
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Table 7.3 Results for each of the regression models computed across all available minutes. 

Abbreviations: Fitbit (FB), ActiGraph (AG), SenseWear (SWA). Root mean squared error (RMSE), Mean absolute percentage 
error (MAPE), concordance correlation coefficient (CCC). Minutes refers to the number of minutes the algorithms are validated 
on CCC is presented with 95% confidence intervals. Equivalence implies model was statistically equivalent to the criterion.   

Model Minutes  Participants Predicted (METs) True (METs) MAPE RMSE CCC (95% CI) Equivalence 

SWA Manufacturer 5533 88 3.8 ± 2.49 4.04 ± 2.59 34.54 1.86 

0.73 (0.72, 
0.74) 

 

AG Gradient Boost 5517 87 4.04 ± 2.35 4.04 ± 2.59 17.88 0.93 

0.93 (0.93, 
0.93) 

Equivalent 

AG Neural Network 5517 87 4.05 ± 2.55 4.04 ± 2.59 21.65 1.14 

0.9 (0.9, 
0.91) 

Equivalent 

AG Random Forest 5517 87 4.05 ± 2.32 4.04 ± 2.59 18.36 0.94 

0.93 (0.92, 
0.93) 

Equivalent 

FB Gradient Boost 5448 86 4.03 ± 2.19 4.01 ± 2.58 30.22 1.36 

0.84 (0.83, 
0.84) 

Equivalent 

FB Neural Network 5448 86 4.02 ± 2.28 4.01 ± 2.58 32.27 1.45 

0.82 (0.82, 
0.83) 

Equivalent 

FB Random Forest 5448 86 4.03 ± 2.14 4.01 ± 2.58 30.10 1.36 

0.84 (0.83, 
0.84) 

Equivalent 

SWA Gradient Boost 5492 87 4.04 ± 2.39 4.04 ± 2.6 17.83 0.91 

0.93 (0.93, 
0.94) 

Equivalent 

SWA Neural Network 5492 87 4.05 ± 2.47 4.04 ± 2.6 19.56 0.96 

0.93 (0.92, 
0.93) 

Equivalent 

SWA Random Forest 5492 87 4.05 ± 2.35 4.04 ± 2.6 18.25 0.92 

0.93 (0.93, 
0.93) 

Equivalent 
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Activity-specific MET predictions are presented for minute-level data in 

appendix 3.2 and summarised in figure 7.2. For all activities tested, tree-

based models (gradient boost or random forest) applied to AG or SWA data 

were superior as measured by RMSE. The manufacturer estimates of the 

SWA had the highest RMSE for all activities aside from sedentary activities, 

in which only the AG gradient boost and random forest had a lower RMSE. 

Notably, all FB models overestimated sedentary activities and had the 

highest RMSE in this category. An example of the model predictions for a 

single subject is shown in Figure 7.3.  

Table 7.4 demonstrates the statistics for between study predictions. Notably 

larger errors were observed relative to the LOSO validations, with a FB 

model reaching a RMSE of 1.92 (Neural network) when study 1 was used as 

the training data.  
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Figure 7.2 Boxplots demonstrating the RMSE overall for each of the tested models in specific activities. RMSE is calculated at the 
level of the subject and activity before plotting.       

Abbreviations: Root mean squared error (RMSE), Fitbit (FB), AG = ActiGraph (AG), SenseWear (SWA).  
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Figure 7.3 A time series plot showing METs predicted by the models tested in this study and by indirect calorimetry (black dashed 
line), for a single subject in study 2.  

The x-axis represents the time of measurement.  Minutes 1-15 = Sedentary, minutes 16-17=transitional/unstructured, minutes 18-32 = 

activities of daily living (typing, wiping surfaces and ironing), minutes 33-34 = Transitional/unstructured, minutes 35-44 = Walking, 

minutes 45-49 = Running, minutes 50-59 = Transitional/unstructured, minutes 60-69 = Cycling, minutes 71-80 = Rowing and minutes 
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82-91 = Elliptical. Participants performed cycling, rowing and elliptical at self-selected low and moderate intensity for 5 minutes each. 

Abbreviations: Metabolic equivalents (METs), Fitbit (FB), ActiGraph (AG), SenseWear (SWA). 
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7.3.2 Permutation importance  

To estimate the relative importance of each of the features used in each 

model, permutation importance has been reported. The boxplots below 

represent the most important features according to this measure from 20 

iterations and the results are shown in figures 7.4 for FB, 7.5 for SWA and 

7.6 for AG. In all cases, it appears that heart rate variables are most 

important. A clear difference is noted between FB and AG/SWA models. In 

AG/SWA, heart rate is by far the most important whereas in the FB models 

the difference from the next best variable is small.  

 

 

Figure 7.4 Permutation importance for the top 10 variables in the FB 
dataset.  

The axes represent the R2 change with the permutation of the variable. 
Abbreviations: Heart rate above sitting (HRAS), heart rate (HR), 
standard deviation (SD). 
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Figure 7.5 Permutation importance for the top 10 variables in the SWA 

dataset.  

The axes represent the R2 change with the permutation of the variable. 
Abbreviations: Heart rate above sitting (HRAS), heart rate (HR), Mean 
of absolute deviation (MAD). 
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Figure 7.6 Permutation importance for the top 10 variables in the AG 
dataset.  

The axes represent the R2 change with the permutation of the variable. 
Abbreviations: Heart rate above sitting (HRAS), heart rate (HR), X-Axis 
(X), first order differential (FOD). 

 

7.3.3 Simulation of model performance  

The results of the simulation are presented in figure 7.7, which represent the 

effect of varying static, demographic inputs and this is explained further in 

section 7.2.7.3. These plots demonstrate that the METs outputs are 

relatively constant between the genders, and across the range of height, 

weight and age. The apparent greatest difference occurs at the end of the 

protocol (Elliptical) for the iteration using male data and varying the weight in 

the input data. The mean METs here for weight -2 SD from the mean was 

6.57, compared to 5.24 for 1.5 SD from the mean. 
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Figure 7.7 A time series plot showing METs predicted by the Fitbit Gradient boost for a Male and Female, with varying input features.  

100 simulations were conducted for each input. Line colours represent each increment in standard deviation from the mean. 
Lines are shown with standard error. Minutes 1-15 = Sedentary,  minutes 18-32 = activities of daily living (typing, wiping surfaces 
and ironing), minutes 33-34 = Transitional/unstructured, minutes 35-44 = Walking, minutes 45-49 = Running, minutes 50-59 = 
Transitional/unstructured, minutes 60-69 = Cycling, minutes 71-80 = Rowing and minutes 82-91 = Elliptical. Participants 
performed cycling, rowing and elliptical at self-selected low and moderate intensity for 5 minutes each.  
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Table 7.4 Out-of-sample results for each of the regression models.  

Abbreviations: Fitbit (FB), ActiGraph (AG), SenseWear (SWA). Metabolic equivalents (METs), Root mean squared error 
(RMSE), Mean absolute percentage error (MAPE), concordance correlation coefficient (CCC). Minutes refers to the number of 
minutes the algorithms are validated on CCC is presented with 95% confidence intervals. Equivalence implies model was 
statistically equivalent to the criterion.   

Model Training data Minutes Predicted (METs) True (METs) MAPE RMSE CCC (95% CI) Equivalence 

AG Gradient Boost Study 1 2690 4.03 ± 1.9 3.93 ± 2.66 36.35 1.37 0.82 (0.81, 0.83) Equivalent 

AG Neural Network Study 1 2690 4.07 ± 2.48 3.93 ± 2.66 29.75 1.33 0.87 (0.86, 0.88) Equivalent 

AG Random Forest Study 1 2690 3.97 ± 1.79 3.93 ± 2.66 39.50 1.51 0.78 (0.77, 0.79) Equivalent 

FB Gradient Boost Study 1 2630 3.76 ± 1.7 3.88 ± 2.65 47.55 1.89 0.64 (0.62, 0.66) Equivalent 

FB Neural Network Study 1 2630 3.65 ± 1.86 3.88 ± 2.65 47.40 1.92 0.65 (0.63, 0.67) 
 

FB Random Forest Study 1 2630 3.76 ± 1.66 3.88 ± 2.65 47.45 1.87 0.64 (0.63, 0.66) Equivalent 

SWA Gradient Boost Study 1 2633 3.92 ± 2.13 3.94 ± 2.68 27.35 1.23 0.87 (0.86, 0.88) Equivalent 

SWA Neural Network Study 1 2633 3.88 ± 2.26 3.94 ± 2.68 27.07 1.22 0.88 (0.87, 0.89) Equivalent 

SWA Random Forest Study 1 2633 3.91 ± 2.07 3.94 ± 2.68 29.54 1.28 0.86 (0.85, 0.87) Equivalent 

       
 

 

AG Gradient Boost Study 2 2827 4.46 ± 2.14 4.15 ± 2.52 31.49 1.36 0.83 (0.82, 0.84) 
 

AG Neural Network Study 2 2827 4.24 ± 2.56 4.15 ± 2.52 29.00 1.42 0.84 (0.83, 0.85) Equivalent 
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Model Training data Minutes Predicted (METs) True (METs) MAPE RMSE CCC (95% CI) Equivalence 

AG Random Forest Study 2 2827 4.45 ± 2.1 4.15 ± 2.52 31.47 1.38 0.82 (0.81, 0.84) 
 

FB Gradient Boost Study 2 2818 4.11 ± 2.06 4.13 ± 2.51 34.38 1.66 0.74 (0.72, 0.75) Equivalent 

FB Neural Network Study 2 2818 4.01 ± 2.04 4.13 ± 2.51 33.10 1.56 0.77 (0.75, 0.78) Equivalent 

FB Random Forest Study 2 2818 4.21 ± 2.04 4.13 ± 2.51 33.79 1.62 0.75 (0.73, 0.77) Equivalent 

SWA Gradient Boost Study 2 2859 4.15 ± 2.13 4.14 ± 2.51 24.90 1.25 0.86 (0.85, 0.87) Equivalent 

SWA Neural Network Study 2 2859 3.94 ± 2.36 4.14 ± 2.51 25.65 1.25 0.87 (0.86, 0.88) Equivalent 

SWA Random Forest Study 2 2859 4.2 ± 2.13 4.14 ± 2.51 25.72 1.26 0.85 (0.84, 0.86) Equivalent 
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7.3.4 Classification  

Figure 7.8 presents the results of LOSO classification experiments for all 

classification algorithms and the SWA manufacturer estimates. Classes 

were slightly imbalanced, the dataset with the most availability was 

comprised of 19.4% Sedentary, 22.4% Light and 58.2% MVPA and there 

were small differences between devices due to data availability. The highest 

accuracy for FB models was the random forest (78.21%), for the AG models 

the random forest achieved the highest accuracy (84.56%) and for SWA 

models, the gradient boost (85.49%) was most accurate.  

Table 7.5 provides class-specific (activity intensity) statistics for each of the 

models. Models tended to perform worse in light activity with F1-scores 

ranging from 0.20 (SWA Neural Network) to 0.66 (SWA gradient boost). In 

sedentary activities, the F1-score was improved with a range of 0.54 (AG 

support vector machine) – 0.83 (four models). For MVPA, the F1-score 

ranged from 0.80 (AG support vector machine) - 0.93 (three models).  

Between-study classification accuracy is presented in table 7.6. Generally, 

when study 1 served as the training data, a lower accuracy was observed. 

When study 1 served as the training data the accuracy ranged from 0.55 

(AG support vector machine) to 0.80 (two models). When study 2 served as 

the training data accuracy ranged from 0.65 (AG support vector machine) to 

0.79 (three models).  
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Figure 7.8 A confusion matrix detailing the classification accuracies for each of the tested models.  

Abbreviations: Fitbit (FB), ActiGraph (AG), SenseWear (SWA), Moderate to vigorous physical activity (MVPA). 
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Table 7.5 LOSO results for each of the classification models. 

Abbreviations: Fitbit (FB), ActiGraph (AG), SenseWear (SWA), Moderate to vigorous physical activity (MVPA). 
 

Model Sensitivity Specificity Precision F1 Balanced 
Accuracy 

Sedentary AG Gradient 
Boost 

0.84 0.95 0.81 0.83 0.90 

 AG K Nearest 
Neighbors 

0.85 0.94 0.78 0.81 0.90 

 AG Neural 
Network 

0.82 0.95 0.79 0.81 0.88 

 AG Random 
Forest 

0.85 0.95 0.81 0.83 0.90 

 AG Support 
Vector Machine 

0.39 0.98 0.85 0.54 0.69 

 FB Gradient Boost 0.79 0.93 0.74 0.76 0.86 

 FB K Nearest 
Neighbors 

0.88 0.87 0.63 0.74 0.88 

 FB Neural 
Network 

0.59 0.94 0.72 0.65 0.77 

 FB Random 
Forest 

0.81 0.93 0.74 0.77 0.87 

 FB Support Vector 
Machine 

0.68 0.93 0.72 0.70 0.81 

 SWA 0.81 0.90 0.67 0.74 0.86 
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Model Sensitivity Specificity Precision F1 Balanced 

Accuracy 

 SWA Gradient 
Boost 

0.84 0.96 0.82 0.83 0.90 

 SWA K Nearest 
Neighbors 

0.87 0.94 0.77 0.82 0.91 

 SWA Neural 
Network 

0.77 0.91 0.68 0.72 0.84 

 SWA Random 
Forest 

0.84 0.96 0.82 0.83 0.90 

 SWA Support 
Vector Machine 

0.75 0.95 0.79 0.77 0.85 

       

Light AG Gradient 
Boost 

0.59 0.92 0.68 0.63 0.76 

 AG K Nearest 
Neighbors 

0.60 0.89 0.62 0.61 0.75 

 AG Neural 
Network 

0.62 0.90 0.63 0.62 0.76 

 AG Random 
Forest 

0.57 0.93 0.70 0.63 0.75 

 AG Support 
Vector Machine 

0.18 0.97 0.67 0.28 0.58 

 FB Gradient Boost 0.40 0.91 0.55 0.46 0.65 

 FB K Nearest 0.25 0.94 0.53 0.34 0.59 
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Model Sensitivity Specificity Precision F1 Balanced 

Accuracy 

Neighbors 

 FB Neural 
Network 

0.18 0.93 0.43 0.25 0.56 

 FB Random 
Forest 

0.41 0.92 0.59 0.48 0.66 

 FB Support Vector 
Machine 

0.32 0.91 0.52 0.39 0.62 

 SWA 0.37 0.84 0.41 0.39 0.61 

 SWA Gradient 
Boost 

0.61 0.93 0.70 0.66 0.77 

 SWA K Nearest 
Neighbors 

0.59 0.92 0.67 0.63 0.75 

 SWA Neural 
Network 

0.13 0.95 0.42 0.20 0.54 

 SWA Random 
Forest 

0.60 0.93 0.70 0.65 0.76 

 SWA Support 
Vector Machine 

0.52 0.91 0.61 0.57 0.71 

       

MVPA AG Gradient 
Boost 

0.94 0.86 0.91 0.92 0.90 

 AG K Nearest 
Neighbors 

0.90 0.88 0.91 0.91 0.89 



- 150 - 

 
Model Sensitivity Specificity Precision F1 Balanced 

Accuracy 

 AG Neural 
Network 

0.92 0.88 0.92 0.92 0.90 

 AG Random 
Forest 

0.95 0.85 0.90 0.92 0.90 

 AG Support 
Vector Machine 

0.99 0.34 0.68 0.80 0.66 

 FB Gradient Boost 0.91 0.77 0.84 0.87 0.84 

 FB K Nearest 
Neighbors 

0.90 0.77 0.84 0.87 0.84 

 FB Neural 
Network 

0.96 0.55 0.74 0.84 0.75 

 FB Random 
Forest 

0.92 0.76 0.84 0.88 0.84 

 FB Support Vector 
Machine 

0.94 0.68 0.80 0.86 0.81 

 SWA 0.82 0.79 0.85 0.83 0.80 

 SWA Gradient 
Boost 

0.95 0.88 0.91 0.93 0.91 

 SWA K Nearest 
Neighbors 

0.93 0.90 0.93 0.93 0.91 

 SWA Neural 
Network 

0.96 0.63 0.78 0.86 0.79 

 SWA Random 0.95 0.87 0.91 0.93 0.91 
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Model Sensitivity Specificity Precision F1 Balanced 

Accuracy 

Forest 

 SWA Support 
Vector Machine 

0.94 0.81 0.88 0.91 0.88 
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Table 7.6 Out-of-sample results for each of the classification models. 

Abbreviations: Fitbit (FB), ActiGraph (AG), SenseWear (SWA). 

Training 
data  

Model Accuracy  Kappa  

Study 1 AG Gradient Boost 0.75 0.55 

 
AG K Nearest Neighbors 0.61 0.35 

 
AG Neural Network 0.72 0.52 

 
AG Random Forest 0.74 0.53 

 
AG Support Vector Machine 0.55 0.06 

 
FB Gradient Boost 0.67 0.43 

 
FB K Nearest Neighbors 0.68 0.47 

 
FB Neural Network 0.67 0.47 

 
FB Random Forest 0.67 0.41 

 
FB Support Vector Machine 0.67 0.45 

 
SWA Gradient Boost 0.80 0.67 

 
SWA K Nearest Neighbors 0.74 0.57 

 
SWA Neural Network 0.79 0.66 

 
SWA Random Forest 0.80 0.66 

 
SWA Support Vector Machine 0.68 0.43 

    
Study 2 AG Gradient Boost 0.79 0.56 

 
AG K Nearest Neighbors 0.72 0.48 

 
AG Neural Network 0.75 0.51 

 
AG Random Forest 0.79 0.57 

 
AG Support Vector Machine 0.65 0.07 

 
FB Gradient Boost 0.73 0.48 

 
FB K Nearest Neighbors 0.72 0.47 

 
FB Neural Network 0.71 0.44 

 
FB Random Forest 0.73 0.48 

 
FB Support Vector Machine 0.73 0.48 

 
SWA Gradient Boost 0.78 0.57 

 
SWA K Nearest Neighbors 0.76 0.55 

 
SWA Neural Network 0.76 0.55 

 
SWA Random Forest 0.79 0.58 

 
SWA Support Vector Machine 0.78 0.55 
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7.4 Discussion  

This study aggregated two laboratory datasets to build on previous work 

demonstrating the potential for machine learning algorithms to produce accurate 

estimates of METs and intensity class in a diverse set of activities and participants. 

In both regression and classification settings, the smallest errors were seen when 

applying tree-based algorithms (i.e. random forest and gradient boosting) to SWA 

and AG outputs with the RMSE and classification errors generally being higher for 

FB models. In almost all cases the error was smaller than the SWA manufacturer 

estimates. In out-of-sample generalisability experiments, greater errors and lower 

accuracies were observed when compared to the LOSO validations. This is the first 

study to classify intensity using machine learning algorithms in FB devices and 

accuracies up to ~78% (Kappa = 0.6) were seen in LOSO validations, with superior 

performance observed for sedentary and MVPA classifications. These were 

generally less accurate than AG and SWA models, where up to ~85% accuracy 

(Kappa = 0.74) was achieved. Taken together and if these results are verified in free-

living studies, these findings imply that highly accurate estimates of EE, sedentary 

and MVPA behaviours can be estimated by all the wearables tested here.     

7.4.1 Regression  

In regression tasks, neural networks, random forests and gradient boosting were 

used. In previous works, neural networks and random forests have been shown to 

be effective in modelling EE (Ellis et al., 2014; Montoye, Begum, et al., 2017) and the 

present results confirm this to an extent. The RMSE values observed in the trained 

models ranged from 0.91 METs to 1.45 METs which improve upon the SWA 

manufacturer value of 1.86 METs. However, when the average METs in this study is 

considered (~ 4 METs), it is evident that EE prediction can be further improved. It is 

of note that neural networks resulted in the highest RMSE for all three devices. 

Similarly, Kate et al showed that neural networks resulted in bias significantly 

different from 0, compared with bagged decision trees and numerous other 

algorithms, which were not statistically different from 0 in energy cost estimation 

(Kate et al., 2016). Despite the utility of deep neural networks to model highly non-

linear functions in some use cases, the ‘no free lunch’ theorems broadly state that 

there will not be an optimal algorithm for all tasks (Wolpert & Macready, 1997). 

Indeed, for the datasets used here, it appears tree-based ensemble models are 

superior for both learning tasks. It may be that the neural network models are 

overfitted to the training data or are being trained on insufficiently large datasets. 

These models are considered to have issues with overfitting in some situations, 
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which in some cases may be remedied by larger training sets (DeGregory et al., 

2018). 

Lagged accelerometer and heart rate variables were used in each model. The rate of 

EE depends not just on the rate of work at the point of measurement, but also on the 

rate of work in preceding minutes (McArdle et al., 2010, pp 172 - 234) and the 

relative importance of these metrics is evidenced in the variable importance 

analyses. Including time-lagged features allows for a clearer distinction between 

minutes that are relatively similar in their accelerometer pattern but differ in their 

measured EE, i.e. sitting for a prolonged period vs sitting after running. Transitional 

minutes were on average ~ 3 METs (largely attributable to the activity in the 

preceding minutes), compared to sedentary minutes which average ~1.3 METs, yet 

the error statistics were comparable to those observed in sedentary minutes, 

indicating that algorithms could distinguish between those minutes. This argument is 

further substantiated by the high placing of lagged variables in each of the 

permutation analyses. More advanced neural network architectures (i.e. recurrent 

neural networks) (Paraschiakos et al., 2020) may further the ability of models to 

capture the temporal dependencies of EE.   

7.4.2 Generalisability  

While many studies have reported low errors when using machine learning 

approaches in the estimation of EE or classification of activity, external (out-of-

sample) validations are rarer and the opportunity to identify cases of overfitting has 

been limited. Therefore, out-of-sample validation was used between the two 

datasets. In all cases, degradation of performance was observed when compared to 

LOSO validations. Some of this reduction in accuracy is probably attributable to 

differences in protocols, activities and participants which means that algorithms do 

not have ‘similar’ minutes on which to train. Also, it is possible that the algorithms are 

overfitting the data. Overfitting occurs when a complex model learns the ‘noise’ in the 

training data that does not represent the true underlying function between inputs and 

the output (Vabalas et al., 2019). Previous studies have utilised out-of-sample 

validation or application of machine learning to accelerometer data in free-living 

environments (Ellis et al., 2016; Sasaki et al., 2016; Willetts et al., 2018) and errors 

often increase when out of sample validation is employed. Concerning the 

classification of physical activity intensity in multiple samples, a previous study 

reported reductions in out-of-sample accuracy relative to the within-sample validated 

models, in some algorithm and dataset comparisons (Montoye et al., 2018). 

However, the machine learning models still outperformed the GGIR/ENMO 

classification method in out of sample testing. The GGIR/ENMO method is an 
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established methodology based on accelerometer thresholds, which has been 

detailed previously (Bai et al., 2016). In another comprehensive generalisability 

study, 5 lab-based heterogeneous data sets were utilised to predict exercise 

intensity; this study found that when models were applied to a different data set than 

those they were generated on, model accuracy decreased from between 72-95% to 

between 41-60% (Farrahi et al., 2020). These drops are notably higher than in the 

present study and this is probably attributable to the greater differences in the 

accelerometer models, wear position and samples across the 5 datasets. However, 

caution must be exercised in a comparison between studies, as the balance of 

classes is likely to differ and therefore influence the evaluation metrics.  

7.4.3 Classification  

Most of the models tested in the LOSO validations show high predictive accuracy 

(75-85%). However, the research-grade device models (AG and SWA) were 

superior. FB devices provide estimates of time in each category (i.e. sedentary, light, 

MVPA) but the criteria and algorithms remain proprietary. Feehan et al compared 

estimates of time in intensities with devices such as AG, ActivPal and SWA and 

concluded that 80% of studies report errors of > 10% with mean differences ranging 

between 44% and 632% for estimations of activity above light intensity (Feehan et 

al., 2018). Importantly, the devices used for comparison in many studies have 

varying cut points and are not necessarily ‘gold-standards’ (Feehan et al., 2018). 

These results indicate that the application of machine learning to intensity 

classification can refine the large errors observed in previous studies. Despite the 

promising results, it must be emphasised that laboratory studies have limited 

ecological validity and future research should seek to address this. Whole-room 

indirect calorimetry would likely allow more realistic behaviours to be studied via 

appropriate protocols whilst providing a gold-standard comparator.  

7.4.4 Simulation and permutation analyses 

Applying these models to other datasets, where participants may have a higher or 

lower weight, height and age may result in substantial deviations from the expected 

MET output. As a MET is a standardised output relative to the subjects RMR, the 

MET should be relatively constant for a specific activity, indeed, the daily equivalent 

of this phenomena is seen in the observation that with increasing BMI, EE is 

increased, but as a multiple of RMR remains far more constant (Prentice et al., 

1996). The standardised measures of the compendium imply that the MET output is 

relatively constant for a particular activity (Ainsworth et al., 2011). With this in mind, it 

is instructive to observe that the models produce a consistent output despite 

substantial variance in the subject characteristics.   
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The variable importance plots show the critical importance of heart rate measures, 

particularly for the SWA and AG models, which reflects the established relationship 

between heart rate and VO2 (Ceesay et al., 1989). In contrast, the FB model had a 

smaller gap to the next most important variable. The polar heart rate strap, which 

was used in AG and SWA models is known to be extremely close to 

electrocardiogram criterion measures (Gillinov et al., 2017). Conversely, 

photoplethysmography-based heart rate sensors may produce “spurious” heart rate 

measurements (Reddy et al., 2018), which increases noise in the training and testing 

data sets and probably plays a significant role in reducing the importance of this 

variable.  

7.4.5 Strengths  

A strength of the present study is the aggregation of two data sets to provide a more 

comprehensive and variable data set on which to train models. Whilst the measures 

(sensors and indirect calorimetry) were the same between studies, the tested 

cohorts differed demographically and the protocols were different, which provides a 

good estimate of the applicability of the tested models. Combining data sets also 

leads to a larger number of participants (n=89), and a larger sample size than much 

of the previous literature (Ellis et al., 2016; Lu et al., 2018; Montoye et al., 2018; 

Montoye, Begum, et al., 2017; Staudenmayer et al., 2009; Zhang et al., 2012). In 

general, an increase in training observations is considered a mechanism of 

enhancing performance (Vabalas et al., 2019) and the results of the present study 

provide evidence that this is the case in both commercial and research-grade 

accelerometers.  

Another strength of this study is testing numerous algorithm and device 

combinations. A previous study developed a multilayer neural network which was 

trained on a wearable system including a vest for electrocardiogram measures and 4 

accelerometers (one on each wrist and thigh) (Lu et al., 2018). Despite the small 

bias, this is unlikely to be a feasible means of assessing free-living energy balance 

behaviours. Participant discomfort and sensor removal present additional biases and 

this may require additional modelling approaches to address (Lee, 2013; O’Driscoll, 

Turicchi, Duarte, et al., 2020; Xu et al., 2018). This threshold of practicality will vary 

depending on the size, duration, computational resource and specific aims of the 

research study. Therefore, the development of three models with varying 

requirements is a central advantage in this study.  

Lastly, testing both classification and regression algorithms in the same devices 

enhances the use cases of the results of this study. One area of future work is to 

explore combined classification and regression approaches, similar to the branched 
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models of the Actiheart (Brage et al., 2004) or stacked ensemble approaches. This 

may be effective in producing refined estimates of TDEE in free-living subjects, given 

that most of a day is comprised of resting/sedentary minutes and some of these 

models slightly overestimate sedentary activities, although depending on the 

classification/regression methods, this could incur additional computational costs on 

large datasets. 

7.4.6 Limitations 

A limitation of this study was the lack of a true testing set. Rather, an estimate of the 

true test error is sought by i) testing on unseen participants and ii) testing on an 

unseen dataset. In the former, the within-subject data is far more correlated than 

between-subject data and this method represents the closest approximation of how 

such a model would perform on true test participants (Ellis et al., 2014). In the latter, 

this was extended so that the training set and the testing set are comprised of 

different participants and protocols. Beyond these validation approaches, the 

ultimate test of the results presented here is a free-living validation for EE and 

intensity class. Total daily EE can be validated with the DLW method over a 7-14 day 

period (Black & Cole, 2000) and the results presented here are part of a wider 

project discussed in the subsequent chapter. Whilst free-living validations are critical, 

the resolution required to evaluate activity-specific errors is obtainable from indirect 

calorimetry only. Regarding activity categories, no gold-standard method exists to 

validate time in sedentary, light and MVPA activities outside of a controlled 

environment and the generalisability of classification models to free-living studies is 

somewhat uncertain. Authors have highlighted the limitations of accelerometer data 

collected within a laboratory (Bastian et al., 2015; Kerr et al., 2013), the activities 

performed in a free-living environment are more diverse and this further necessitates 

the need for more naturalistic (i.e. free-living) validation studies or at least validation 

studies conducted over several days using diverse activity protocols in a residential 

facility. Lastly, to replicate predictions made by the present algorithms in free-living 

subjects measured RMR may be required, which increases the researcher and 

participant burden. A suitable alternative in the absence of measured RMR may be 

prediction equations derived from BMI, age, height and gender, rather than 

assuming a resting value of 3.5 ml O2 · kg−1 · min−1 (Kim et al., 2017).   

7.5 Conclusion   

This study builds on previously published work to demonstrate that machine learning 

techniques can be used to learn the complexities of human movement and 

physiological data in the study of human EE. The superior performance when 
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datasets were combined indicates that the incorporation of additional training 

datasets can improve predictions. Classification and regression errors were greater 

when comparisons were made between studies, which may indicate a tendency to 

overfit a training dataset. Single-sample, cross-sectional studies generating EE 

models show acceptable accuracy however, it is likely that these models are 

overfitted to a given sample and as such, improving generalisability is essential. To 

extend the utility of EE estimates beyond lab conditions, more cross-testing between 

datasets is required, in addition to validation in free-living samples by DLW.  
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Chapter 8 – Free-living validation of energy expenditure prediction 

models from wearable devices, a doubly labelled water study 

8.1 Introduction 

For many years, researchers have taken a wide range of approaches to model the 

complex phenomenon that is EE using wearable technologies. The significant 

milestones in this path (e.g., flex-hr, IDEEA, SWA and actigraphy models) have been 

outlined in section 1.3.2 of this thesis, along with their respective limitations. In 

recent years, there has been a proliferation of both cloud-connected tracking devices 

and advanced signal processing algorithms capable of learning complex patterns in 

large accelerometer and physiological signal datasets (Ellis et al., 2014). Taken 

together, these developments could provide a method to quantify EE, and if 

measures of ES are available, EI in free-living humans.    

The previous chapter of this thesis described the development and validation of a 

series of algorithms trained to predict METs, given an input of movement, 

demographic and physiological data. For EE prediction, accurate and precise 

estimates of oxygen consumption, carbon dioxide production or respiratory 

exchange are required for the training of algorithms, and therefore models must be 

trained on data collected in less ecologically valid environments (i.e., laboratories). 

The considerable potential of machine learning models for the estimation of EE in 

laboratory environments is clear (Ellis et al. 2014; O’Driscoll, Turicchi, Hopkins, et al. 

2020) and this has been discussed extensively in section 1.3.2 and shown in the 

models proposed in section 7.1. However, performance likely degrades when 

algorithms trained on laboratory data are applied in free-living settings, that is, the 

distribution of the training and testing data differ. Outside of the laboratory, 

behaviours are far more variable, both in terms of the type and the duration of the 

activity. A single minute may contain numerous activities, and behaviours may not be 

of a defined length as in experimental studies (Lyden et al., 2014). Furthermore, the 

distribution of EE in a laboratory protocol, in which participants tend to engage in 

moderate-to-vigorous activities, is different from what would be expected over 24 

hours, where the majority of the day is spent in sleeping or sedentary activities 

(Matthews et al., 2008; Saidj et al., 2015). This may explain previous observations 

that model predictions regress towards the mean of the training data and therefore 

overestimate the energetic cost of resting or sedentary epochs (Montoye et al., 2015; 

Staudenmayer et al., 2015).  
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Previous studies have investigated the validity of machine learning algorithms for the 

estimation of EE or physical activity recognition in a simulated free-living 

environment. For example, Lyden et al used various machine learning algorithms in 

a small sample (n=13) to predict MET-hours compared to direct observation (Lyden 

et al., 2014). However, truly free-living studies or comparisons to the gold standard 

(DLW) are far rarer. In one example, White et al (White et al., 2019) investigated the 

validity of regression approaches to predict PAEE, comparing the estimates to DLW 

in a subsample from the Fenland study (Lindsay et al., 2019). The results indicated a 

strong agreement with a RMSE of ~ 1MJ/day for most of the models tested when 

resting EE estimates were included. It remains to be seen whether machine learning 

algorithms, which are superior to linear models in wrist-worn devices (Montoye, 

Begum, et al., 2017), are capable of estimating TDEE in free-living subjects.  

In addition to TDEE, many health research fields are limited by the current inability to 

accurately derive EI in large groups of subjects (Dhurandhar et al., 2015). This is 

possible given two components of the energy balance equation (i.e. change in ES 

and TDEE). Accurate and precise estimates of ES are available through techniques 

such as DEXA and BodPod (see section 1.1.3), and therefore what is needed to 

‘solve’ the energy balance equation is a similarly accurate estimate of TDEE. A 2018 

study demonstrated that the SWA can be used to derive estimates of EI in 

combination with body composition data from DEXA (Shook et al., 2018). 

Unfortunately, the technology underlying the SWA was acquired by a competitor and 

production has been ceased (Welk et al., 2017). Furthermore, the methods of 

estimating TDEE in the SWA are completely proprietary and researchers are unclear 

on the methodological assumptions of this method. Thus, alternative means for 

estimating TDEE are required for longitudinal, large scale energy balance research.  

8.1.1 Chapter aims  

This chapter aims to evaluate several hierarchical algorithmic approaches to predict 

free-living TDEE in a sample of healthy adults. Subsequently, TDEE estimates are 

incorporated into an energy balance model as reported previously (Shook et al., 

2018) to derive EI and all comparisons are compared amongst tertiles of BMI and 

TDEE. This chapter compares the manufacturer estimates of the FB and SWA, 

which also provide estimates of EE, though the methods of estimation (i.e. 

development cohort, development activities, algorithms) are unknown.  

8.2 Methods 

The TEED study was conducted to investigate the utility of wearable monitors 

coupled with statistical learning algorithms to estimate TDEE and EI. The protocol 
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consisted of an initial laboratory visit in which participants completed a structured 

exercise task consisting of a series of sedentary, light and moderate to vigorous 

activities. During the laboratory component EE was measured using indirect 

calorimetry. The data collected in this part of the study combined with a previously 

published laboratory study (O’Driscoll, Turicchi, Hopkins, et al. 2020) served to 

develop the predictive algorithms. Full details of the algorithm development and 

laboratory evaluation have been discussed in chapter 7. At a maximum of two 

months after the laboratory visit, participants returned to the laboratory where 

physiological measures, DLW dosing and device set up (detailed below) were 

completed.   

8.2.1 Participants  

The TEED study recruited 30 participants from the University of Leeds and the 

surrounding areas by email and word of mouth. Descriptive characteristics of the 

recruited sample are presented in table 8.1. This sample size was based on an 

equivalence test power calculation using values taken from a previous publication 

(Shook et al., 2018) and the alpha and beta to 5% and 20%, respectively. This test 

indicated that ~26 participants were required, but an additional 4 participants were 

recruited on the assumption that data would be lost due to device or sampling errors. 

Full eligibility, inclusion and recruitment procedures can be found in chapter 3, 

specifically sections 3.1.2, 3.2.2 and 3.3.2.  

8.2.2 Physical measurements  

All participants arrived at the laboratory for visits 2 and 3 in the fasted state and 

having abstained from physical activity, food intake, alcohol and caffeine for at least 

12 hours. Visits 2 and 3 occurred 14 days apart. At both visits, FM and FFM in 

kilograms and percentage of body mass were estimated via ADP, using the BodPod 

and the application of the Siri model (Siri 1956). Bodyweight (± 0.1 kg) was also 

obtained from the BodPod scales and the change in FM and FFM over time was 

calculated as the difference between these two body composition measures 

(∆FFM =  FFM(visit 3)  −  FFM(visit 2)). For further details on body composition 

measures please see section 3.4.1.5. Each subject’s RMR was measured on the 

second visit to the laboratory, with a ventilated hood indirect calorimeter system 

(GEM, Nutren Technology Ltd; UK) by the method described in section 3.4.2.3. 

RMR data were unavailable for one participant and in this case, RMR was 

approximated with BMI-specific equations (Müller et al., 2004).  
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8.2.3 Wearable devices  

Participants wore several devices in the free-living component of this study. These 

devices are briefly explained below, but further information can be found in section 

3.5.2. All participants were provided with a booklet describing wearing and charging 

instructions. Participants were instructed to remove the devices during water-based 

activities (i.e. showering/swimming). Participants wore a FB activity monitor securely 

on the non-dominant wrist. All participants were provided with a study-specific Fitbit 

account and were requested to synchronise their data via the mobile application 

daily. Minute level FB data were retrieved from the Fitbit API and stored for analysis. 

Participants also wore the SWA on the non-dominant upper arm and all data were 

downloaded upon return of the devices to the laboratory via the SWA software. Both 

devices were initialised with demographic information. Participants were provided 

with a charging cable for both the SWA and FB, should the devices run out of battery 

during the free-living period. If devices were removed for charging, participants were 

instructed to put the device back on immediately after recharging.  

The Polar H10 chest strap (Polar Electro, Kempele, Finland) was used to measure 

heart rate continually. An ActiGraph GT9-X accelerometer (AG; ActiGraph, 

Pensacola, FL, USA) was worn on the non-dominant wrist, which served as a 

Bluetooth receiver for heart rate data and recorded acceleration at 30 Hz. Where 

possible, participants brought the AG and polar devices back to the laboratory for 

data downloading and recharging before the battery died, given the limited battery 

life of the AG whilst connected to a continuous heart rate monitor. Unfortunately, 

individual charging ports were not available for this study. Participants were asked to 

remove the AG and heart rate chest strap immediately before bed and put it on 

immediately upon waking, this places the device in ‘idle’ mode and facilitates a 

longer data collection period without a recharge. Upon return of devices to the 

laboratory data were retrieved and were downloaded for analysis via the Actilife 

software.  

8.2.4 Data requirements, inclusion and imputation  

Given that some participants removed devices overnight for comfort reasons, 

inclusion criteria were set based on availability in waking hours, which was defined 

as 08:00 am – 22:00 pm. A maximum of 3 hours of missing data was permitted 

during waking hours and any day in which this criterion was not met was not 

included in the analyses. This is a more stringent criterion than previous studies, (i.e. 

> 10 hours of waking time (Ostendorf et al., 2019)). For device/model TDEE 

averages to be included in this analysis participants must have provided at least 4 

days of valid data including at least one weekend day. For considerations relating to 
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data availability please see chapter 6. Participants were provided with an activity 

log, in which they entered details about device removal (i.e. date, time, activity 

descriptions and duration) if they had to remove the device for any reason. The 

number of observed days for each of the models is reported in the results of this 

chapter. Where no signal was obtained from the devices (implying non-wear time)  

and the participant recorded activity in the missing data log, the activities were coded 

according to nearest matches in the compendium of physical activities (Ainsworth et 

al., 2011). The MET values obtained were multiplied by RMR to provide estimates of 

caloric expenditure in the period of removal and the non-resting component of this 

value was appended to the participant data, as RMR had already been used to fill 

missing periods (see below for justification). Where the logged missingness 

overlapped with observed data (e.g. a participant reported that they were not 

wearing the device when the sensors reported that they were), the observed device 

data was utilised rather than the diary estimates. The number of logged minutes 

used in the analysis is reported in the results of this chapter. Small missing periods 

occurring in heart rate data used by the models were filled by linear interpolation for 

instances where the gap was <10 minutes, assuming that this represented loss of 

contact to the wrist. Imputation strategies do exist to address missingness (Maeda et 

al. 2019;  O’Driscoll, Turicchi, Duarte, et al. 2020) although a conscious decision was 

made in this chapter to fill missing gaps with resting values (i.e., RMR per minute), 

rather than utilising imputation algorithms. The reason for this is that the SWA and 

FB manufacturer estimates are by default filled with resting values and this 

minimises the potential for imputation strategies to influence the TDEE results, rather 

than actual estimates of EE.  

8.2.5 Prediction settings 

The algorithms presented in this chapter can be considered to be hierarchical 

approaches to making predictions on multivariate time-series data, as the method of 

prediction depends on a prior classification. For each minute in the dataset, many 

inputs were available including subject characteristics, acceleration, physiological 

and time-lagged features and the goal was to estimate a MET value, which can 

subsequently be converted to kilocalories and summed to provide TDEE. In the 

development studies described in chapter 7, it was evident that most EE models 

result in overestimates of EE for the most sedentary activities (i.e. <1.5 METs) 

(O’Driscoll, Turicchi, Hopkins, et al. 2020). Given that a substantial amount of time 

can be spent in sedentary behaviours (Jefferis et al., 2015) this is likely to result in 

overestimates of true TDEE. With this in mind and the knowledge that the variation in 

EE with resting behaviours is much lower than activity behaviours, a k-nearest 

neighbors (k-NN) classifier was used in each model to classify activities as 
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sedentary, light or moderate-to-vigorous activity. The details of the respective k-NN 

classifiers are outlined in section 3.5.2 and section 7.2.7.1. Minutes classified as 

sedentary are assigned a MET value from a distribution which was weighted such 

that 1000 draws yielded a mean (SD) of 1.157 (0.123) METs. The rationale for this 

parameter is that sedentary minutes are most likely to be sitting (closer to 1 MET) 

than standing (closer to 1.5 METs) as suggested by a recent study observing healthy 

European office workers (Johansson et al., 2020). Minutes, where the heart rate was 

below the sitting heart rate, were assigned MET values from a slightly different 

distribution, 1000 draws of which gave a mean (SD) of 1.056 (0.113) METs. This 

distribution was parameterised like this because the reduced heart rate compared to 

the sitting heart rate implies that the subject was engaged in prolonged 

sedentariness or lying flat (Jones et al., 2003) and this is associated with a reduced 

energetic cost (closer to RMR), compared to sitting (de Almeida Mendes et al., 

2018). The third distribution used for METs estimates was used to estimate sleeping 

minutes. Sleeping minutes also represent a deviation from the training data and were 

identified differently depending on the device. For FB models, minutes of sleep was 

determined by the FB sleeping algorithm, from sleep start time to sleep end time. In 

using the FB’s sleep algorithm for FB models only the FB models can be considered 

to be ‘stand-alone’, so they do not require additional sensor inputs. For SWA and AG 

models, a different method to identify sleep was used. First, a period of sleep was 

identified from the last observation of heart rate at night between 21:00 and 5:00, 

where the period of removal was greater than 120 minutes, to the first observation of 

heart rate from the polar device the next morning, as participants were required to 

put them on immediately upon waking. As some participants wore devices all night, 

the SWA’s sleeping algorithm was used to identify sleeping periods. If the SWA 

algorithm reported that the subject was sleeping but the polar heart rate was worn 

(participants were instructed to remove this when sleeping), this was considered to 

be sleep. Given the reduced metabolic rate during sleep (Goldberg et al., 1988) the 

distribution of METs added had a mean (SD) of 0.958 (0.11) based on 1000 draws. 

To each of these distributions, Gaussian noise (Mean=0, SD=0.1) was added to 

simulate natural variation in minute by minute EE. The data collected for the 

algorithm development showed variance in EE measured by indirect calorimetry 

within-subjects at the minute level and adding noise to the expected mean values 

simulates these occurrences. The resulting distributions are shown as histograms in 

appendix 4.1. Minutes classified as light or MVPA (i.e. > 1.5 METs) were predicted 

using the regression algorithms, this method is summarised and described in figure 

8.1.  
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8.2.5.1 Maximum heart rate 

To estimate maximum heart rate, the Tanaka method was used (heart rate maximum 

= 208 - 0.7 x age) (Tanaka et al., 2001). However, in some instances, participants 

were observed to have higher heart rates than the equation predicted. In this case, 

the maximum heart rate was considered to be the mean of the 5 highest 

observations observed in the 14-day free-living period. This process was conducted 

for the FB heart rate (used in FB models) and separately for the polar heart rate 

(used in SWA and AG models). Again, a distinction is made between the feature 

inputs for the SWA/AG models and the FB models, where the polar heart rate is 

used for all heart rate variables in the SWA/AG models and the FB heart rate is used 

for FB models. This ensures that the FB models are ‘stand-alone’ models, requiring 

no external sensor inputs.  

8.2.5.2 Sitting heart rate 

The models used in this study are calibrated relative to the sitting heart rate. This 

was motivated by the established relationship between the sitting heart rate and the 

flex point (Rennie et al., 2001). Indeed, the importance of this is shown in the 

variable importance plots in chapter 7 (Figures 7.4 – 7.6), where the heart rate above 

sitting heart rate variables show higher permutation importance than absolute heart 

rate. Heart rate and cardiac function can vary with alcohol consumption, 

environmental factors and stress (Lee et al., 2014; Ryan & Howes, 2002; Schnell et 

al., 2013) and therefore required updating throughout the observation period. A time 

series was initialised with the laboratory-measured sitting heart rate. Next, sitting 

heart rate on each day was estimated by taking non-moving, non-sleeping minutes 

and averaging those heart rates for the Fitbit and polar independently. The data were 

subsequently smoothed by fitting a locally weighted smoothing regression model 

using a fraction value of 30% of the data.  

8.2.5.3 Classification and regression 

The last step in the classification of all minutes was to use a k-NN classifier, which 

was specific to each device. The purpose of this algorithm was to segment the 

dataset into sedentary or non-sedentary minutes and details of the k-NN classifiers 

have been outlined in chapter 7. After this classification, three machine learning 

models per device were used to predict the MET values on the ‘prediction’ minutes. 

Specifically, prediction minutes refers to non-sedentary, non-sleeping minutes where 

sensor data was available. The algorithms employed were artificial neural networks, 

gradient boosting regression and random forest regression and each of these 

models were tested per device, for a total of 9 algorithms. The hyperparameters and 

features used are the same as the leave one subject out cross-validations in chapter 
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7 and a flowchart of the computation approach used in this study is shown in figure 

8.1.  

 

 

Figure 8.1 A flowchart demonstrating the derivation of METs predictions. 

The input matrix 𝐗 contains 𝑛 time points and 𝑚 predictive features, which 

varies by device. Minutes are defined as ‘prediction minutes’ or ‘non-prediction 

minutes’ by the classification algorithm. Non-prediction minutes are sampled 

from a relevant distribution and this is determined by the sleeping detection 

algorithms or the K-NN classifiers. The specific distributions are i) Sleeping, ii) 

Highly sedentary (heart rate below sitting heart rate), iii) Sedentary. If a subject 

reports removal of the devices for a specific reason (i.e. showering), the 

algorithm will replace missing minutes with the relevant MET value obtained 

from the compendium of physical activities. The regression algorithms (Neural 

networks, Gradient boost, Random forest) are applied to all other minutes. The 

time series are subsequently concatenated to provide a vector of METs 

estimates �̂�. 

8.2.5.4 Derivation of kilocalories and physical activity level 

Metabolic equivalents were converted into minute-level caloric expenditure by 

multiplying by the RMR value per minute. All minutes were subsequently summed to 

provide a daily TDEE and divided by 0.9, as a rough approximation of the additional 

energy costs of digestion, digestive and biological processes associated with food 
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intake (see justification below). In addition to evaluating the TDEE estimates, the 

PAL is also reported, where PAL = TDEEmodel/RMRmeasured.  

8.2.6 Dietary induced thermogenesis 

Dietary induced thermogenesis, which is discussed in section 1.1.2.3, represents 5-

15% of TDEE, assuming a mixed diet and is often approximated at 10% in energy 

balance research (Westerterp et al. 2004). Based on this, 10% adjustments were 

made to the TDEE values predicted by the models. The rationale for this is 

considered below.  

Previous studies have taken different approaches to this issue depending on the 

calibration data, for instance: The Actiheart calibration data was collected when the 

subjects were in the fed state. One study states that: ‘According to guidance 

provided by the manufacturer, calibration was conducted with subjects in the fed 

state to provide estimates of AEE with DIT included (T. Evans, CamNtech Ltd, 

personal communication)’ (Löf et al., 2013), and therefore DIT adjustment is not 

made in some instances  (Löf et al., 2013). By contrast, Whybrow and colleagues 

add 10% of EI to the IDEEA system’s estimate of TDEE as it does not account for 

TDEE (Whybrow, Ritz, Horgan, & Stubbs, 2013) and White and colleagues adjust 

their estimates to account for DIT (White et al., 2019).   

The calibration data and the development of the models used in this study have 

been described in chapter 7. The two studies contributing the calibration datasets 

have been described in the ‘TEED study’ and ‘Device validation study’ paragraphs 

between sections 3.1 – 3.3 and in section 7.2.1. In the first study (Device validation 

study, n=59) all participants arrived having fasted for at least 12 hours, then body 

composition and RMR measures were conducted before the exercise test. In the 

TEED study, participants were required to attend the laboratory after fasting for at 

least 4 hours or after an overnight fast where possible, which surpasses the 3 hours 

recommended for exercise testing (Fletcher et al., 2001). It is important to 

contemplate the extent to which this may be influencing the results of this study. 

Based on an analysis of 131 test meals of varying composition, Reed and Hill 

conclude that the effects of DIT may last beyond 5 hours and provide an equation 

describing the EE above RMR attributable to DIT: 𝐸𝐸 𝑎𝑏𝑜𝑣𝑒 𝑅𝑀𝑅 (𝐾𝑗/ℎ)  =

 175.9 ×  𝑡 × 𝑒−𝑡/1.3 (Reed & Hill, 1996). Figure 8.2 shows this model converted to 

kcal/min. Based on this, consider a subject with an RMR of ~2000kcal, (based on the 

mean weight and age of 88.6kg and 38.1 years reported in this study (Reed & Hill, 

1996)), who had eaten exactly 4 hours before arrival. At 4.5 hours, if this subject was 

standing at an EE of 1.35 METs, the effect of DIT would increase the METs estimate 

by 5.27%. As EE increases (e.g. 4 METs) percentage error would decrease to 
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~1.78% and at 8 METs, the error would be ~0.89%. It is important to state that this 

represents a ‘worst-case scenario’ and most of the participants included in this 

training data would be unaffected. The average estimate is likely to be far closer to 

the estimate of 10%. Nonetheless, an analysis has been reported in this chapter 

which presents the results across a range of DIT from 0-10% of TDEE.   

 

 

Figure 8.2 A plot demonstrating the kcal/min above RMR after the consumption of 
food.  

The model used for this plot is 𝐸𝐸 𝑎𝑏𝑜𝑣𝑒 𝑅𝑀𝑅 (𝐾𝑗/ℎ)  =  175.9 ×  𝑡 × 𝑒−𝑡/1.3 

estimates are then converted to kcal and divided by 60 to give kcal/min (Reed 

& Hill, 1996). 

8.2.7 Energy expenditure with the SWA rather than doubly labelled water  

The DLW method, as described in chapter 3, was intended to be the criterion 

measure of TDEE in this study. Unfortunately, the COVID-19 pandemic has delayed 

the analysis of the DLW samples and at the time of writing, DLW results to validate 

TDEE, PAL and EI estimates against are unavailable. This chapter, therefore, takes 

a comparative approach between models and to the SWA. In some populations, the 

SWA has been demonstrated to provide accurate estimates of TDEE (O’Driscoll, 

Turicchi, Beaulieu, Scott, et al., 2020). However, some evidence suggests that the 

accuracy of the SWA may differ depending on the activity status of the individual 

(with limitations in highly active subjects and high-intensity activity), and a tendency 

towards underestimation with increasing TDEE (Koehler et al., 2015; Shook et al., 
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2018). Thus, the SWA is used as a comparator in this chapter, rather than a 

criterion.  

8.2.8 Energy intake  

Using all TDEE estimates, the energy balance principle was applied to approximate 

the EI of each subject during the 14-day free-living study by the following equation 

(Shook et al., 2018).  

 

𝐸𝐼  =  1020 
∆𝐹𝐹𝑀

∆𝑡
 +  9500 

∆𝐹𝑀

∆𝑡
 +  𝐸𝐸 

Where ∆FFM and ∆FM represent changes to body composition (kg),  between the 

start and end of the assessment period, 1020 (kcal/kg) and 9500 (kcal/kg) are the 

assumed energy densities of FFM and FM, respectively (Thomas et al., 2010). The 

parameter ∆𝑡 represents days between body composition measurements.  The EE 

term is derived from each of the algorithms as well as the SWA and FB manufacturer 

estimates. This analysis is similar to the TDEE analysis explained above, however, it 

is included to align with previous studies  (Shook et al., 2018) and because a change 

in weight or body composition (i.e. 
∆𝐹𝐹𝑀

∆𝑡
 ≠ 0 or 

∆𝐹𝑀

∆𝑡
 ≠ 0) would imply tissue gain or 

loss and therefore EI ≠ EE.   

8.2.9 Statistical analyses 

Unless otherwise stated, data are presented as means ± sd. Agreement between 

measures was assessed by the method of Bland and Altman (Altman & Bland, 1983) 

relative to the SWA. Statistical equivalence tests with a ± 10 % equivalence bound 

were used to determine if methods were equivalent. The metrics RMSE, MAPE and 

Pearson correlations were also used to evaluate the agreement. Patterns in EE 

predictions were compared between each of the models across different levels of 

activity. These cut-offs were determined by the SWA METs estimate and the cut-offs 

were: Sedentary ≤1.5 METs, Light >1.5 METs and <3 METs and MVPA ≥ 3 METs, 

for this analysis, the average EE estimate for each model in each MET cut-off was 

used.  

Variable importance plots in chapter 7 confirmed that heart rate is an important 

predictor of EE. Indeed, the relationship shows extremely close associations during 

activity and has been recognised for many decades (Leonard, 2003). Thus, 

estimates of EE should be highly correlated with the subject’s measured heart rate. 

To investigate this, within-subject Pearson’s correlations for the relationship between 

polar heart rate and EE predictions are reported for all minutes classified as MVPA. 
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 To compare models at different levels of TDEE (estimated by SWA) and BMI, the 

sample was tertiled into approximately equally sized groups as has been done 

previously (Shook et al., 2018). Pre-processing and application of algorithms were 

conducted in Python 3.7.6, using the Keras-GPU (Chollet, 2015) library for neural 

networks or Scikit Learn (Pedregosa et al., 2011) for other machine learning 

algorithms. Statistical analysis and visualisations were conducted in R version 3.6.3. 

A p-value of <0.05 is used to determine statistical significance where p-values are 

reported.  

8.3 Results  

8.3.1 Sample 

The descriptive characteristics of the whole sample, split by gender, and as tertiles of 

BMI and TDEE, are presented in table 8.1 and the sample and tertiled averages for 

TDEE are presented in table 8.2. Based on the inclusion criteria stated above, 28 

participants could be included in the AG and SWA machine learning models 

analysis, 29 participants were available for the SWA manufacturer, 30 for the FB 

machine learning models and 30 for the FB manufacturer. Generally, participants 

were weight stable over the 14-day measurement period with a mean change in 

weight of +0.3 ± 1.1 kg. Participants in all groups averaged above 10,000 steps/day 

(as measured by the SWA, calculated on included days only and all participants 

were included), however, a wide range was observed in average steps/day from 

2580 steps/day to 21798 steps/day for individual participants. 
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Table 8.1 Descriptive characteristics of the included sample.  

Weight refers to the weight recorded at visit 2 of the teed study. Abbreviations: Total daily energy expenditure (TDEE), Body 

mass index (BMI), Fat-free mass (FFM), Fat mass (FM), Resting metabolic rate (RMR), Male (M), Female (F). TDEE high has 

n=9 as one participant did not meet the inclusion criteria for the SWA.  

Group N 
(female) 

Age Height Weight BMI 
(kg/m2) 

FFM 
(kg) 

FM 
(kg) 

FM 
(%) 

RMR 
(kcal/day) 

Steps/day 

All 30 (13) 31.87 ± 
10.23 

171.86 ± 9.21 70.15 ± 
12.88 

23.68 ± 
3.59 

55.01 ± 
12.56 

15.14 ± 7.1 21.74 ± 8.73 1769.29 ± 
435.82 

12030.27 ± 
4635.18 

           

F 13 (13) 33.31 ± 
10.65 

164.52 ± 5.29 60.97 ± 
11.01 

22.6 ± 4.46 43.78 ± 5.65 17.19 ± 
7.86 

27.35 ± 7.41 1444.69 ± 
238.45 

13446.93 ± 
5933.45 

M 17 (0) 30.76 ± 
10.09 

177.48 ± 7.45 77.17 ± 9.42 24.51 ± 
2.61 

63.6 ± 8.99 13.57 ± 
6.25 

17.45 ± 7.19 2017.51 ± 
387.99 

10946.95 ± 
3107.96            

TDEE 
low 

10 (9) 31.8 ± 8.78 163.96 ± 3.15 60.52 ± 
11.58 

22.59 ± 4.8 44.47 ± 5.56 16.05 ± 
9.07 

25.48 ± 8.57 1522.36 ± 
187.84 

11801.37 ± 
6433.39 

TDEE 
med 

10 (3) 35.5 ± 
12.71 

173.92 ± 8.92 70.15 ± 9.68 23.25 ± 
3.16 

55.51 ± 8.59 14.64 ± 
5.74 

20.8 ± 7.09 1699.46 ± 
399.05 

12019.27 ± 4122 

TDEE 
high 

9 (0) 28.67 ± 
8.79 

179.56 ± 6.51 81.92 ± 7.82 25.42 ± 
2.12 

68.03 ± 9.43 13.89 ± 
6.64 

16.98 ± 8.1 2197.94 ± 
347.97 

12245.39 ± 
3472.94            

BMI  
low 

10 (7) 27 ± 4.32 171.5 ± 9.71 58.87 ± 9.16 19.93 ± 1.7 46.91 ± 
10.57 

11.96 ± 
3.16 

20.85 ± 6.16 1479.42 ± 
387.77 

13643.72 ± 
4959.16 

BMI 
med 

10 (4) 30.1 ± 7.59 170.56 ± 8.13 69.65 ± 7.14 23.89 ± 0.6 55.59 ± 
10.25 

14.07 ± 
5.13 

20.64 ± 8.65 1787.39 ± 
351.3 

11359.75 ± 
3771.79 
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BMI 
high 

10 (2) 38.5 ± 
13.51 

173.52 ± 
10.39 

81.92 ± 
10.19 

27.23 ± 
2.94 

62.54 ± 
12.44 

19.38 ± 
9.68 

23.73 ± 
11.23 

2041.05 ± 
403.06 

11087.35 ± 
5101.9 
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Table 8.2 Total daily energy expenditure (TDEE) estimates for each model included in this study 

Results are presented as kcal/day for low, medium and high tertiles for TDEE and BMI cut-offs. Abbreviations: ActiGraph (AG), 

Fitbit (FB), SenseWear (SWA), Total daily energy expenditure (TDEE), Body mass index (BMI). N describes the number of 

participants used to derive means and standard deviations. 
 

AG 

Gradient 

Boost 

AG  Neural 

Network 

AG 

Random 

Forest 

FB 

Gradient 

Boost 

FB 

Neural 

Network 

FB 

Random 

Forest 

FB 

Manufacturer 

SWA 

Gradient 

Boost 

SWA 

Neural 

Network 

SWA 

Random 

Forest 

SWA 

Manufacturer 

All 3291.14 ± 

787.21 , 

n= 28 

3303.4 ± 

811.52 , n= 

28 

3288.51 

± 774.87 

, n= 28 

3038.06 ± 

723.18 , 

n= 30 

2993.04 

± 736.99 

, n= 30 

3058.11 

± 740.77 

, n= 30 

2781.48 ± 

608.61 , n= 30 

3089.7 ± 

698.41 , 

n= 28 

3074.88 

± 694.06 

, n= 28 

3104.76 

± 697.89 

, n= 28 

2927.94 ± 

492.38 , n= 29 

            

TDEE low 2837.32 ± 

432.53 , 

n= 10 

2886.28 ± 

548.96 , n= 

10 

2861.02 

± 436.98 

, n= 10 

2647.98 ± 

407.97 , 

n= 10 

2589 ± 

421.48 , 

n= 10 

2668.83 

± 418.97 

, n= 10 

2218.59 ± 

230.35 , n= 10 

2711.42 ± 

451.43 , 

n= 10 

2750.46 

± 510.01 

, n= 10 

2742.96 

± 458.84 

, n= 10 

2400.31 ± 

225.54 , n= 10 

TDEE med 3083.61 ± 

559.84 , 

n= 10 

3046.18 ± 

546.81 , n= 

10 

3077.4 ± 

590.36 , 

n= 10 

2860.45 ± 

539.92 , 

n= 10 

2845.55 

± 551.96 

, n= 10 

2883.95 

± 575.36 

, n= 10 

2808.99 ± 

337.47 , n= 10 

2883.85 ± 

515.12 , 

n= 10 

2835.29 

± 499.97 

, n= 10 

2892.88 

± 539.63 

, n= 10 

2971.89 ± 

155.27 , n= 10 
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AG 

Gradient 

Boost 

AG  Neural 

Network 

AG 

Random 

Forest 

FB 

Gradient 

Boost 

FB 

Neural 

Network 

FB 

Random 

Forest 

FB 

Manufacturer 

SWA 

Gradient 

Boost 

SWA 

Neural 

Network 

SWA 

Random 

Forest 

SWA 

Manufacturer 

TDEE high 4117.81 ± 

781.04 , 

n= 8 

4146.32 ± 

783.07 , n= 

8 

4086.76 

± 754.54 

, n= 8 

3765.05 ± 

680.19 , 

n= 9 

3720.56 

± 682.9 , 

n= 9 

3790.22 

± 689.26 

, n= 9 

3432.5 ± 

499.16 , n= 9 

3819.87 ± 

635.61 , 

n= 8 

3779.89 

± 633.89 

, n= 8 

3821.87 

± 628.23 

, n= 8 

3465.35 ± 

298.1 , n= 9 

 

           

BMI low 2833.14 ± 

689.2 , 

n= 10 

2900.02 ± 

742.44 , n= 

10 

2827.26 

± 695.67 

, n= 10 

2662 ± 

582.24 , 

n= 10 

2663.46 

± 615.46 

, n= 10 

2666.42 

± 601.65 

, n= 10 

2405.51 ± 

399.35 , n= 10 

2680.67 ± 

675.96 , 

n= 10 

2697.13 

± 662.57 

, n= 10 

2691.49 

± 687.47 

, n= 10 

2657.34 ± 

399.25 , n= 10 

BMI med 3511.81 ± 

722.38 , 

n= 9 

3567.61 ± 

779.69 , n= 

9 

3514.3 ± 

683.93 , 

n= 9 

3029.19 ± 

563.19 , 

n= 10 

2973.52 

± 626.66 

, n= 10 

3055.76 

± 576.69 

, n= 10 

2870.17 ± 

614.59 , n= 10 

3284.25 ± 

599.68 , 

n= 9 

3318.5 ± 

623.07 , 

n= 9 

3301.31 

± 583.27 

, n= 9 

3013.33 ± 

526.05 , n= 9 

BMI high 3579.36 ± 

790.47 , 

n= 9 

3487.39 ± 

821.34 , n= 

9 

3575.22 

± 773.59 

, n= 9 

3422.99 ± 

840.93 , 

n= 10 

3342.12 

± 849.79 

, n= 10 

3452.15 

± 854.77 

, n= 10 

3068.74 ± 

631.54 , n= 10 

3349.64 ± 

666.98 , 

n= 9 

3250.99 

± 680.93 

, n= 9 

3367.4 ± 

661.3 , 

n= 9 

3121.68 ± 

467.45 , n= 10 
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8.3.2 Data availability  

The data available for modelling differs between the sensors used. Of the 

included participants, AG models had a mean of 8.9 ± 2.1 days, FB models 

had a mean of 12.4 ± 2.1 days, SWA models had a mean of 8.6 ± 2 days, 

SWA manufacturer estimates had 10.8 ± 1.5 days and FB manufacturer had 

11.9 ± 2.1 days. To display days of data available per subject, an empirical 

cumulative distribution plot is shown in figure 8.3.  

 

 

Figure 8.3 An empirical cumulative distribution plot demonstrating the data 

availability for each of the reported models.  

 Abbreviations: ActiGraph (AG), Fitbit (FB), SenseWear (SWA). 

8.3.3 Energy expenditure 

Agreement statistics for TDEE are presented in table 8.3. In general, the FB 

manufacturer estimates were lower than the SWA Manufacturer estimates 

and algorithm predictions were higher. The FB manufacturer’s estimation of 

EE had the best agreement with SWA in terms of RMSE, MAPE and mean 

difference. Figure 8.4 shows Bland-Altman plots for each model relative to 

the SWA. Most of the developed models showed visual evidence of 

underestimates at the lower end of the means of measures and 

overestimates at higher means of measures. The distribution of TDEE for 

each predictive model is shown in histograms in figure 8.5, which 

demonstrates comparable distributions for most estimation methods, with 

the means shifted upwards for all the machine learning models. Notably, the 

AG model produced estimates of TDEE higher than any other model.  
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Table 8.3 Equivalence and agreement statistics for algorithms relative to the 
SenseWear armband for TDEE.  

Equivalence refers to statistical equivalence tests (p<0.05). 

Abbreviations: Root mean squared error (RMSE), Mean absolute 

percentage error (MAPE). ActiGraph (AG), Fitbit (FB), SenseWear 

(SWA). 
 

n Predicted 

(kcal/day) 

SWA 

Manufacturer 

(kcal/day) 

MAPE RMS

E 

Equivalenc

e 

AG Gradient 

Boost 

28 3291.14 ± 

787.21 

2906.56 ± 

487.52 

16.65 635.5

2 

 

AG Neural 

Network 

28 3303.4 ± 

811.52 

2906.56 ± 

487.52 

16.87 663.5

9 

 

AG Random 

Forest 

28 3288.51 ± 

774.87 

2906.56 ± 

487.52 

17.05 637.4

8 

 

FB Gradient 

Boost 

29 3067.92 ± 

716.9 

2927.94 ± 

492.38 

13.03 494.9

7 

 

FB 

Manufacturer  

29 2798.91 ± 

611.71 

2927.94 ± 

492.38 

8.98 287.7

1 

Equivalent 

FB Neural 

Network 

29 3028.64 ± 

723.3 

2927.94 ± 

492.38 

12.94 480.9

3 

Equivalent 

FB Random 

Forest 

29 3091.03 ± 

731.21 

2927.94 ± 

492.38 

13.52 519.0

0 

 

SWA 

Gradient 

boost 

28 3089.7 ± 

698.41 

2906.56 ± 

487.52 

13.47 486.4

9 

 

SWA Neural 

Network 

28 3074.88 ± 

694.06 

2906.56 ± 

487.52 

13.62 490.4

3 

 

SWA 

Random 

forest 

28 3104.76 ± 

697.89 

2906.56 ± 

487.52 

14.17 504.0

7 
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Figure 8.4 Bland-Altman plots detailing the differences between the respective models and the SenseWear armband for total daily 

energy expenditure (kcal/day).  

Abbreviations: ActiGraph (AG), Fitbit (FB), SenseWear (SWA) 
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Figure 8.5 Bland-Histograms detailing the distribution of TDEE (kcal/day) for 

each of the models. 
 

8.3.3.1 BMI & TDEE analysis 

The boxplots in Figure 8.6 shows each model’s predictions per tertile of BMI 

and TDEE. For all comparisons of BMI and TDEE, the AG models produced 

a higher estimate of TDEE than the SWA manufacturer.  

The deviations (SWA TDEE – Model TDEE) closest to 0 for the FB models 

occurred in the low BMI group (all models deviating by less than 10 kcal) 

and for the SWA models it was the SWA random forest (overestimation of 23 

kcal/day) in the low BMI group.  

For FB models, the largest mean difference in TDEE was seen in the low 

TDEE groups where the FB models overestimated by between 269 

(Random Forest) and 189 (Neural network) kcal/day. In the high TDEE 

group, where overestimation was between 190 (Neural network) and 250 

(Random Forest) kcal/day and in the high BMI group, where overestimates 

were between 159 (Neural network) and 264 (Random Forest). Similar 

patterns and directions in these deviations were seen in the SWA estimates, 

where the largest overestimate was the SWA random forest, in the high 

TDEE comparison (364 kcal/day).  
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Figure 8.6 Boxplots detailing the total daily energy expenditure for each of 
the models split by BMI (left) and TDEE (right) tertiles. 

The top row (1) refers to the lowest BMI and TDEE and bottom (3) 

refers to the largest. The SWA manufacturer estimates can be seen in 

the ‘SenseWear’ group. Data are presented for participants for whom 

TDEE could be approximated by all models.  

  



- 180 - 

8.3.3.2 Sensitivity analysis: DIT  

The effect of scaling DIT by different values is visually represented in figure 

8.7. Above a ~5% DIT it appears that the AG/SWA models produce higher 

estimates of TDEE that the SWA manufacturer and at around 7.5% DIT 

adjustment all models were higher than the mean SWA manufacturer 

estimate.  

 

 

Figure 8.7 A figure representing the effect of different DIT estimates on the 
final TDEE outcomes. 

The black dashed line represents the mean estimate of the SWA 

armband and TDEE is presented in kcal/day. Abbreviations: ActiGraph 

(AG), Fitbit (FB), SenseWear (SWA). Gradient boost (GB), Neural 

network (NN), Random Forest (RF), Total daily energy expenditure 

(TDEE), Dietary induced thermogenesis (DIT).  

 

8.3.3.3 Sensitivity analysis: Outlier removal  

It was noted that some participants removed the device for comfort reasons 

at night-time. These participants appeared to have higher PAL values when 

compared to the model predictions. As the SWA manufacturer algorithm is 

proprietary it is not possible to determine how the algorithm behaves in this 

instance. As such, table 8.4 reports the TDEE agreement statistics with 
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those participants (n=2) removed. When compared to table 8.3 it is evident 

that the MAPE values tend to decrease for most estimators, but the FB 

manufacturer remains in closest agreement to the SWA.  

Table 8.4 Equivalence and agreement statistics for algorithms relative to the 
SenseWear armband for TDEE after removing potential outliers.  

Equivalence refers to statistical equivalence tests (p<0.05). 

Abbreviations: Root mean squared error (RMSE), Mean absolute 

percentage error (MAPE). ActiGraph (AG), Fitbit (FB), SenseWear 

(SWA). 

 

n 
Predicted 

(kcal/day) 

SWA Manufacturer 

(kcal/day) 

MA

PE 

RM

SE 

Equival

ence 

AG Gradient 

Boost 

26 3382.1 ± 

740.53 

2905.48 ± 502.79 14.9

3 

614.

56 

 

AG Neural 

Network 

26 3393.54 ± 

769.99 

2905.48 ± 502.79 15.3

1 

649.

22 

 

AG Random 

Forest 

26 3383.41 ± 

718.83 

2905.48 ± 502.79 15.0

6 

610.

45 

 

FB Gradient 

Boost 

27 3150.38 ± 

671.62 

2928.48 ± 507.3 10.3

2 

435.

79 

 

FB 

Manufacturer  

27 2823.59 ± 

624.74 

2928.48 ± 507.3 8.27 271.

25 

Equivale

nt 

FB Neural 

Network 

27 3109 ± 

682.76 

2928.48 ± 507.3 10.1

8 

416.

98 

 

FB Random 

Forest 

27 3177.74 ± 

680.05 

2928.48 ± 507.3 10.6

4 

458.

49 

 

SWA Gradient 

boost 

26 3178.93 ± 

640.69 

2905.48 ± 502.79 10.5

1 

415.

75 

 

SWA Neural 

Network 

26 3164.22 ± 

635.37 

2905.48 ± 502.79 10.5

7 

417.

97 

 

SWA Random 

forest 

26 3197.41 ± 

632.88 

2905.48 ± 502.79 11.0

7 

432.

10 
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8.3.3.4 Sensitivity analysis: Predicted RMR   

A further sensitivity analysis explored the effect of utilising the WHO 

(Schofield) RMR equations (Miller et al., 2013; Schofield, 1985; World Health 

Organization, 1985) in each of the predictive models rather than the 

measured RMR. This was conducted to investigate the extent to which the 

WHO RMR value used in the SWA contributes to the observed differences. 

The FB manufacturer estimates are not included in these results because it 

is not clear which RMR equation is used. One participant is also excluded 

here as RMR data were not available. A paired t-test revealed a significant 

difference between the two estimates (t = 3.27, df = 28, p-value = 0.003), 

with the RMR values used in this study being 161 kcal/day higher on 

average.   

Models utilising the predicted rather than measured RMR values are shown 

in table 8.5. Only the AG Neural Network was not equivalent, and the mean 

TDEE for all other models decreased. The MAPE and RMSE fall notably 

when compared to the comparisons presented in table 8.3 with percentage 

decreases in RMSE reaching 63% (AG random forest). Figure 8.8 

demonstrates the agreement between the WHO predicted RMR and the 

values used in this study. Visually, evidence of an underestimate of RMR by 

the WHO equation at the higher end of RMR, and an overestimate of RMR 

by the WHO equation at the lower end of RMR was observed.  

 

Figure 8.8 A comparison between the RMR values used in this study and 
those predicted by the WHO equation. 
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RMR (GEM) refers to the measured RMR values and RMR (WHO) 

refers to values predicted by the RMR equation. A line of identity 

represents y=x.  

Table 8.5 Equivalence and agreement statistics for algorithms relative to the 
SenseWear for TDEE utilising predicted RMR. 

RMR is predicted by the WHO equations. Equivalence refers to 

statistical equivalence tests (p<0.05). Abbreviations: Root mean 

squared error (RMSE), Mean absolute percentage error (MAPE).  

 

n 
Predicted 
(kcal/day) 

SWA Manufacturer 
(kcal/day) 

MA
PE 

RMS
E 

Equival
ence 

AG Gradient 
Boost 

28 
3015.07 ± 
540.51 2906.56 ± 487.52 

6.2
7 

238.
63 

Equivale
nt 

AG Neural 
Network 

28 
3025.43 ± 
564.09 2906.56 ± 487.52 

7.2
5 

270.
90 

Equivale
nt 

AG Random 
Forest 

28 
3010.45 ± 
519.6 2906.56 ± 487.52 

6.3
5 

235.
10 

Equivale
nt 

FB Gradient 
Boost 

29 
2783.33 ± 
452.86 2927.94 ± 492.38 

7.5
4 

267.
48 

Equivale
nt 

FB Neural 
Network 

29 
2747.07 ± 
462.83 2927.94 ± 492.38 

8.6
4 

282.
18 

Equivale
nt 

FB Random 
Forest 

29 
2801.96 ± 
457.74 2927.94 ± 492.38 

7.4
5 

263.
02 

Equivale
nt 

SWA 
Gradient 
boost 28 

2831.03 ± 
477.88 2906.56 ± 487.52 

6.6
9 

221.
10 

Equivale
nt 

SWA Neural 
Network 

28 
2816.68 ± 
470.88 2906.56 ± 487.52 

7.3
9 

240.
23 

Equivale
nt 

SWA Random 
forest 

28 
2842.83 ± 
467.87 2906.56 ± 487.52 

6.8
7 

222.
09 

Equivale
nt 

 

8.3.3.5 Patterns in EE estimates  

Patterns amongst the different models of EE estimation are shown in the 

pairs plot in figure 8.9. Comparisons are made between models for 

sedentary, light and MVPA represented by green, yellow and red, 

respectively. Between model comparisons overall showed high correlations 

(r > 0.88). The greatest associations for the algorithms tended to be within a 

device (e.g. FB random forest, FB gradient boost and FB neural network). 
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The SWA manufacturer was most highly correlated with the FB 

manufacturer estimates (r=.915 to r=.947) for specific activities.  

Next, figure 8.10 shows a density plot of subject-level Pearson’s correlations 

between the EE predictions in kcal/min and the heart rate measure by the 

Polar heart rate monitor.  Notably, the distribution of correlations between 

the SWA manufacturer EE predictions and heart rate trends closer to 0. The 

SWA and AG (Random forest and gradient boost) models appear to have 

the greatest correlations, with the peak of the distribution closest to 1, 

however, this is to be expected because the Polar heart rate is a predictive 

feature in the SWA and AG models. Lastly for EE, the behaviour of each of 

the models is shown by a time-series plot in figure 8.11. This represents the 

minute level predictions of each estimator for a single day and participant. A 

notable pattern in the AG models is the frequency of spikes in EE at 5-7 

kcal/min, where other models are estimating the subject is closer to resting 

EE.   
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Figure 8.9 A pairs plot demonstrating the associations between the models tested in this study. 
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Data are shown in kcal/min and coloured by activity with sedentary = green, light = yellow and MVPA= red. The bottom left plots 

are scatter plots for all paired comparisons, the diagonal plots are density plots, displaying the distribution of each model’s 

predictions and the upper right panels represent pairwise Pearson’s correlations (r). Abbreviations: Abbreviations: ActiGraph 

(AG), Fitbit (FB), SenseWear (SWA). Gradient boost (GB), Neural network (NN), Manufacturer (M), Random Forest (RF).  

Sedentary (Sed), moderate to vigorous physical activity (MVPA).



- 187 - 

 

 

Figure 8.10 Density plots demonstrating the distribution of the individual 

level correlations between heart rate (Polar) and EE predictions.  

The plot is faceted by each of the included models and correlations are 

calculated on minutes classified as ‘MVPA’ by the SWA. Abbreviations: 

Abbreviations: ActiGraph (AG), Fitbit (FB), SenseWear (SWA), 

Moderate to vigorous physical activity (MVPA). 
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Figure 8.11 A time series plot of minute level EE for a random subject and 

day (4 am – 10 pm) for each of the included models. 

 

8.3.4 Physical activity level 

Agreement statistics for PAL are presented in table 8.6, with RMSE and 

MAPE for each of the predictions relative to the SWA manufacturer. The FB 

manufacturer estimates were lower than estimates of the SWA manufacturer 

but equivalence between these measures was observed. Figure 8.12 shows 

Bland-Altman plots for each model relative to the SWA manufacturer. It is 

important to note a large deviation for two points at > 2 PAL, and aside from 

these outliers, most points for most models fall within limits of agreement. 

The distribution of PAL for each model is shown in histograms in figure 8.13. 

A notable difference is that the SWA manufacturer and FB manufacturer 

have a lower mean PAL than the machine learning models and that the 

SWA manufacturer has two participants between 2.5 and 3, which is not 

seen for the other models.  
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Table 8.6 Equivalence and agreement statistics for algorithms relative to the 
SenseWear armband for PAL.  

Equivalence refers to statistical equivalence tests (p<0.05). 

Abbreviations: Root mean squared error (RMSE), Mean absolute 

percentage error (MAPE). Abbreviations: ActiGraph (AG), Fitbit (FB), 

SenseWear (SWA).  

 

n 
Predict

ed  

SWA 

Manufacturer  

MAP

E 

RMS

E 

Equivalen

ce 

AG Gradient 

Boost 28 

1.87 ± 

0.2 1.7 ± 0.38 

16.6

5 0.38 
 

AG Neural 

Network 28 

1.88 ± 

0.24 1.7 ± 0.38 

16.8

7 0.39 
 

AG Random 

Forest 28 

1.87 ± 

0.19 1.7 ± 0.38 

17.0

5 0.39 
 

FB Gradient 

Boost 29 

1.72 ± 

0.17 1.69 ± 0.38 

13.0

3 0.33 Equivalent 

FB Manufacturer  
29 

1.59 ± 

0.29 1.69 ± 0.38 8.98 0.19 Equivalent 

FB Neural 

Network 29 

1.7 ± 

0.18 1.69 ± 0.38 

12.9

4 0.33 Equivalent 

FB Random 

Forest 29 

1.73 ± 

0.17 1.69 ± 0.38 

13.5

2 0.34 Equivalent 

SWA Gradient 

boost 28 

1.76 ± 

0.19 1.7 ± 0.38 

13.4

7 0.35 
 

SWA Neural 

Network 28 

1.76 ± 

0.21 1.7 ± 0.38 

13.6

2 0.35 Equivalent 

SWA Random 

forest 28 

1.77 ± 

0.19 1.7 ± 0.38 

14.1

7 0.36 
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Figure 8.12 Bland-Altman plots detailing the differences between the respective models and the SWA for PAL.  

Abbreviations: ActiGraph (AG), Fitbit (FB), SenseWear (SWA) 
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Figure 8.13 Histograms detailing the distribution of PAL for each of the 

models. 

 

8.3.5 Energy intake  

Agreement statistics for EI are presented in table 8.7. All the developed 

machine learning models resulted in a mean EI value which was higher than 

the SWA manufacturer, whereas the Fitbit manufacturer estimates were 

lower. In appendix 4.2.1, Bland-Altman plots for each model relative to the 

SWA manufacturer are presented. Visually, it was apparent that the biggest 

differences for most models were at the lower and upper mean of measures, 

which indicates proportional bias. The distribution of EI for each predictive 

model is shown in histograms in appendix 4.2.2. The AG models have 

higher mean than the other models, as attributable to the high TDEE 

estimates of these models.  
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Table 8.7 Equivalence and agreement statistics for algorithms relative to the 
SenseWear armband for energy intake (kcal/day).  

Equivalence refers to statistical equivalence tests (p<0.05). 

Abbreviations: Root mean squared error (RMSE), Mean absolute 

percentage error (MAPE).  

 

n 
Predicted 

(kcal/day) 

SWA Manufacturer 

(kcal/day) 

MA

PE 

RMS

E 

Equivale

nce 

AG Gradient 

Boost 28 

3141.7 ± 

1085.41 2757.13 ± 871.71 

18.

07 

635.

52 
 

AG Neural 

Network 28 

3153.97 ± 

1103.81 2757.13 ± 871.71 

17.

99 

663.

59 
 

AG Random 

Forest 28 

3139.08 ± 

1071.6 2757.13 ± 871.71 

18.

53 

637.

48 
 

FB Gradient 

Boost 29 

2882.05 ± 

996.64 2742.06 ± 859.84 

14.

14 

494.

97 
 

FB 

Manufacturer  29 

2613.03 ± 

948.03 2742.06 ± 859.84 

9.5

2 

287.

71 

Equival

ent 

FB Neural 

Network 29 

2842.77 ± 

997.41 2742.06 ± 859.84 

14.

40 

480.

93 

Equival

ent 

FB Random 

Forest 29 

2905.15 ± 

1004.51 2742.06 ± 859.84 

14.

71 

519.

00 
 

SWA Gradient 

Boost 28 

2940.27 ± 

1024.64 2757.13 ± 871.71 

14.

44 

486.

49 
 

SWA Neural 

Network 28 

2925.45 ± 

1017.97 2757.13 ± 871.71 

14.

75 

490.

43 
 

SWA Random 

Forest 28 

2955.33 ± 

1019.62 2757.13 ± 871.71 

15.

24 

504.

07 
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8.4 Discussion 

This chapter aimed to evaluate TDEE predictions from a series of machine 

learning models in a free-living environment. The results show that TDEE 

estimates were, on average, higher than the SWA manufacturer algorithm 

and deviated from these estimates by more than FB manufacturer estimates, 

as measured by RMSE and MAPE. Within devices, machine learning 

models produced similar results, and this was particularly true of the tree-

based algorithms (random forest and gradient boost). When these TDEE 

estimates were used to derive EI and PAL, similar patterns were observed, 

and this is expected given the centrality of the TDEE estimates to these 

calculations. Sensitivity analyses highlighted the potentially large differences 

in TDEE estimates attributable to the use of the WHO RMR equations and 

how the disparities between the developed algorithms and the SWA is often 

greatest in the highest BMI and TDEE groups.  

It is important to consider the potential reasons for the difference in 

estimates of TDEE (and therefore PAL and EI) between the SWA and the 

models used in this study. One reason may be the addition of 10% to the 

sum of model predictions to account for the energetic cost of digestive 

processes (Westerterp et al. 2004). It is unclear whether DIT adjustments 

are made in the SWA manufacturer model. If the calibration data was 

collected when the subjects were in the fed state then it would be 

unnecessary to make such an adjustment (Löf et al., 2013).  This highlights 

an issue with the use of proprietary algorithms. If researchers are interested 

in estimating PAEE in a group with an atypical rate of EE attributable to DIT 

(e.g., high protein or alcohol intake (Westerterp et al. 2004)), considerable 

uncertainty would exist in TDEE, DIT and PAEE estimates. By contrast, 

when details regarding the calibration data and model assumptions are 

provided, adjustments could be more precisely adapted to specific 

experimental subjects.  

When compared within devices the machine learning models produce similar 

estimates of EE, for example, the FB random forest performs similarly to the 

FB gradient boost. The AG models tended to overestimate more notably. In 

chapter 7, the potential for models to overfit the training data was 

discussed, which will ultimately lead to poorer performance when a model is 

used to predict an outcome on a new dataset, and this could be a source of 

error. The data being used for predictions in this study was collected in a 

free-living environment, where the distribution of movement is likely to differ 

from the training data and this disparity could negatively influence prediction 
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accuracy (Kuhn and Johnson 2013, pp 61-64). The large number of 

accelerometer variables in the AG models (detailed in chapter 7) creates a 

more complex model, which also could lead to overfitting, and this is an 

issue of neural networks in particular (Hastie, Tibshirani, and Friedman 

2009. pp 398). Variable selection methods specific to neural networks (May 

et al., 2011) and methodologies such as dropout (Srivastava et al., 2014) 

may assist in addressing this in future research in this field. In any case, 

there is no guarantee that a particular algorithm will perform best (Wolpert & 

Macready, 1997) and this highlights the advantage of testing numerous 

algorithms within devices.   

It may be possible that the SWA underestimates RMR (and therefore 

TDEE). The RMR equation used by the SWA software is the WHO equation 

and these models have been criticised as being inaccurate previously, for 

example in males aged 40-49 and 50-59 the WHO equation gives an error in 

RMR of more than 6% (Müller et al., 2004). This is not surprising given that 

the model is a linear function of bodyweight, with separate models 

depending on gender and age (Rao et al., 2012). It is thought that RMR may 

be more appropriately described as a power law relative to mass, i.e. 

RMR =  a ×  Weightb where a is a coefficient and b is a power coefficient 

(Heymsfield et al., 2012; Kleiber, 1947; Livingston & Kohlstadt, 2005). This 

means that linear equations are unlikely to predict RMR accurately across a 

wide range of subjects. Indeed, the scatter plot comparing the two RMR 

estimates show deviations from the y=x line at the lower and upper ends of 

RMR. The mean RMR estimated by the WHO equation was 1611 ± 

271kcal/day compared to the measured value of 1772 ± 443 kcal/day, and 

11 subjects differed by at least ± 300 kcal/day, with a maximum difference of 

730 kcal/day. This observation is important in the context of the relatively 

wide limits of agreement observed in the Bland-Altman analyses. A 

sensitivity analysis directly investigated this hypothesis and a far closer 

agreement was achieved when predicted rather than measured RMR was 

used to convert METs to kcals, indicating that the WHO equations are 

indeed a critically important factor in the TDEE estimates of the SWA. This 

may not present as an issue in some studies, where the sample is reflective 

of the development cohort for the WHO equations but it is clearly imperative 

in the present sample. An alternative explanation here may relate to 

inaccuracy in the GEM indirect calorimeter, which is taken to be the gold-

standard measure. Indeed, compared to a reference Deltatrac II Metabolic 

Monitor (Datex-Ohmeda Inc.), one study reported that the GEM significantly 

overestimated EE, despite a high degree of repeatability in healthy subjects ( 
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Kennedy et al., 2014). Nonetheless, the analyses presented here provide 

strong evidence that RMR estimates play a large role in determining model 

differences.  

The fact that the greatest difference between the SWA and the machine 

learning algorithms was seen in the highest TDEE group is enlightening in 

the context of the previous literature. A recent review reported that the 

manufacturer estimates of the SWA produce valid estimates of EE in the 

general population, but consistent underestimations in more athletic 

populations, with higher rates of EE (Koehler & Drenowatz, 2017). This 

chapter reports steps/day for the entire sample and each of the TDEE/BMI 

groups to use as an indicator of physical activity (ambulatory only) and to 

facilitate comparisons with other studies utilising the same device. The study 

of Shook, et al. also took a tertiled approach to their analysis. Their highest 

TDEE group had an RMR of 1690 ± 277 kcal/day, averaged 8138 ± 3011 

steps/day and their TDEE value (measured by DLW) was 3170 ± 519 

kcal/day and the SWA underestimated TDEE by ~160 kcal (Shook et al., 

2018). In the present study, the sample RMR was 79 kcal/day higher and 

averaged nearly 3900 steps/day more. Most of the predictive models 

overestimated TDEE relative to the SWA. Based on this observation, it 

would be reasonable to assume that the DLW estimates would be 

comparable or higher than the 3170 kcal/day value reported by Shook and 

colleagues.   

Despite the lack of DLW data (discussed in limitations below), this work has 

explored intra-day relationships between models, devices, and algorithms, 

which DLW will not be able to provide. In the time series plot of intra-day 

predictions, the patterns of EE are extremely similar between models, with 

some being slightly more sensitive and producing more frequent ‘spikes’ in 

EE estimates. Correlational analyses indicated that the SWA and FB 

manufacturer estimates are more closely related than any of the developed 

machine learning algorithms, which are more closely associated with each 

other. Given that the machine learning algorithms were trained on very 

similar datasets, this is easy to understand. It is likely that the lack of a heart 

rate measure in the SWA is also a central factor in creating differences 

between the developed algorithm estimates and the SWA. It is known that 

heart rate and EE are tightly related during physical activity (Bonomi et al. 

2015; Brage et al. 2007; O’Driscoll, Turicchi, Beaulieu, et al. 2020; 

O’Driscoll, Turicchi, Hopkins, et al. 2020; Ceesay et al. 1989; Ekelund et al. 

2002) and in chapter 7 this was confirmed by showing that the machine 
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learning models put significant emphasis on heart rate variables for the 

prediction of EE. By correlating each model’s predicted EE with measured 

heart rate during MVPA (as determined by the SWA), it was shown that the 

SWA manufacturer’s EE predictions are most weakly related to measured 

heart rate. Chapter 4, 5 and 7 show that whilst the SWA is accurate on 

aggregate, it does not accurately predict the EE of all activities, and this is 

particularly true in non-ambulatory activities. By contrast, the machine 

learning algorithms appear to be capable of modelling a wide range of 

activities, albeit in a controlled laboratory. Again, for these reasons, the SWA 

must not be considered to be a criterion in this analysis.  

Some advantages and limitations of this work must be discussed. A 

significant advantage is the free-living nature of this study, which is the first 

to explore the validity of machine learning models in a truly free-living setting 

(up to 14 days, depending on data availability). A clear limitation of this work 

is the temporary lack of DLW data due to COVID-19, which forced 

comparison to the TDEE predictions of the SWA. The SWA is arguably one 

of the most accurate wearables for the estimation of TDEE in the general 

population (O’Driscoll, Turicchi, Hopkins, et al. 2020; Shook et al. 2018; 

O’Driscoll, Turicchi, Beaulieu, et al. 2020) but it is not a criterion measure. 

For example, previous work has considered the individually calibrated 

Actiheart device to be a criterion measure rather than the BodyMedia Core 

(a similar device from the same manufacturer) (Chowdhury et al., 2017). A 

further limitation of this study lies in the calibration data. Whilst the training 

data did incorporate a relatively wide and representative set of activities, 

simulating truly naturalistic behaviours in a laboratory is a challenge. It was 

therefore necessary to make assumptions about the EE of subjects outside 

the range of the training data (i.e. prolonged sedentariness, sleeping), which 

was identified by a classification algorithm. Previous studies have shown a 

tendency for models to overpredict sedentary activities (Montoye et al. 2015; 

Staudenmayer et al. 2015; O’Driscoll, Turicchi, Hopkins, et al. 2020) and as 

western adults spend the majority of their day in sleeping/sedentary 

behaviours, this has the potential to result in large overestimates in TDEE. It 

is anticipated that protocols involving whole room calorimeters will allow 

further improvement of predictive capabilities, particularly in extreme 

sedentariness and sleeping behaviours, rather than the sampling approach 

taken here.  

Another potential limitation is the assumption of 10% DIT for all subjects. In 

the methods, attempts were made to gain a quantitative understanding of 
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the ‘worst-case scenario’ related to the protocols used to collect calibration 

data, based on a model reported in a previous study (Reed & Hill, 1996). 

Furthermore, estimates of each model on a continuum from 0% to 10% DIT 

are reported, where most models trended towards and then below the 

average SWA estimate as DIT estimates go towards 0%. In reality, DIT 

estimates of 10% are a very rough approximation and vary widely based on 

nutrient and alcohol intake (Westerterp et al. 2004) and perhaps body 

composition and activity status (de Jonge & Bray, 1997). Large variation 

may also exist within-subjects, with variation in DIT from ventilated hood 

assessments and whole room calorimeter studies suggesting a wide 

variation (Ravussin et al., 1986; Segal et al., 1992; Tataranni et al., 1995; 

Weststrate, 1993). Future work should investigate the predictors of DIT 

under controlled conditions (i.e., whole room calorimeters) and consider how 

this could refine TDEE prediction models.  

Next, the composition of weight change was approximated with the BodPod. 

Whilst this is a widely used tool for two-compartment body composition 

measurements, with a high degree of precision and accuracy (Fields et al., 

2002), it may not compare to the accuracy of other measurement tools such 

as DEXA (Racette et al., 2012). Therefore, the possibility remains that this 

measure adds bias to the EI assessments, although there is no reason to 

expect that this would disproportionately affect any one of the models. Also, 

a two-compartment model of body composition considers FFM to be a 

single, uniform compartment and cannot account for the non-energetic 

fluctuations in weight (i.e. hydration, total body water changes), which could 

fluctuate markedly before or between the two measurement points in this 

study (Bhutani et al., 2017).  Lastly, caution must be exercised in extending 

these results to different populations. The sample in this study was highly 

active (as measured by steps/day) with steps nearly double previously 

reported values in some European (Althoff et al., 2017), and North American 

adult populations (Bassett et al., 2010; Tudor-Locke et al., 2009). 

Furthermore, the percentage of FM (21.7%) is considerably lower than might 

be expected in the general population, for example, the Biobank study 

reports 24.4% and 35.5% FM for men and women, respectively (Bradbury et 

al., 2017). It is of great importance to evaluate and perhaps refine these 

models for use in different populations.  
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8.5 Conclusion  

This study has presented estimates of TDEE from novel hierarchical 

machine learning models in a group of healthy adults. In general, the 

presented models overestimated TDEE, PAL and EI relative to the SWA and 

this was particularly true in the AG models. Considering that the SWA has 

been demonstrated to underestimate in those with the highest rates of EE 

and that the RMR equations used by the SWA are established to have 

shortcomings, these results may be considered to be encouraging.  Whilst 

the DLW data is pending caution must be exercised in stating that either the 

machine learning models, or the manufacturer estimates offer an advantage 

of accuracy. However, machine learning methods have a significant 

advantage in that the assumptions and techniques used to estimate EE are 

far more transparent.  
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Chapter 9 – Modelling the components of energy balance in 

the NoHoW cohort. 

9.1 Introduction 

Physiological and behavioural responses to a reduction in body weight 

contribute to the high probability of weight regain after weight loss 

(Kraschnewski et al., 2010). A prolonged negative energy balance (resulting 

in weight loss) alters circulating hormones (e.g. leptin, CCK, ghrelin) 

(Chearskul et al., 2008; Cummings et al., 2002; Geldszus et al., 1996) and 

increases appetite (Keim et al., 1998; Sumithran et al., 2011). With weight 

loss, the rate of EE also tends to decrease (Leibel & Hirsch, 1984) and this 

occurs through several pathways: First, weight loss reduces FFM and 

therefore RMR (Rosenbaum & Leibel, 2010). Reduced body mass also 

decreases the absolute EE for weight-bearing physical activity and non-

exercise thermogenesis is also thought to decrease (MacLean et al., 2011). 

Taken together, these factors make successful weight loss maintenance 

extremely challenging and atypical (Melby et al., 2017). To prevent weight 

regain as a subject transitions from a period of weight loss to a period of 

habitual maintenance, consistent and diligent self-monitoring of energy 

balance behaviours will likely be required, perhaps extending over many 

years (Klem et al., 2000; Stubbs et al., 2019).  

Achieving weight loss maintenance is extremely challenging and many 

models have been proposed which aim to explain how bodyweight is 

regulated in humans. Debate exists around the extent to which body weight 

is indeed regulated although evidence consistently shows that physiological 

and behavioural responses are asymmetric, with defence against weight 

loss being far stronger than weight gain (Stubbs & Turicchi, 2021). Here, 

three of the more prevalent models are briefly discussed. First, the ‘set-point’ 

model (Kennedy, 1953) suggests that a particular level of adiposity is 

‘defended’, and appears to be supported by the frequency with which people 

regain weight after weight loss. The set-point, however, centralises adiposity 

and gives little consideration to other factors (i.e. FFM, environment, etc) 

(Speakman et al., 2011) and is contradicted by the increasing prevalence of 

obesity worldwide (Agha & Agha, 2017). An alternative model called the 

‘settling-point’ model has been proposed which also relates to body 

composition but does not define a single equilibrium around which 
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bodyweight is regulated. The settling-point model, therefore, permits a role 

for societal and environmental factors in bodyweight regulation (Speakman 

et al., 2002). Importantly, the set and settling point theories do not account 

for the interactions between environmental and genetic factors and their 

impact on EI and therefore bodyweight (Müller, Geisler, Heymsfield, et al., 

2018). The ‘general model of intake regulation’ (de Castro & Plunkett, 2002) 

hypothesises that ‘uncompensated’ and ‘compensated’ factors contribute to 

feeding behaviours and bodyweight in humans. A ‘compensated’ factor is 

typically physiological and can influence EI and be influenced by EI. By 

contrast, ‘uncompensated’ factors, which are primarily societal or 

environmental in nature, can influence EI but is not influenced by EI. Rather 

than proposing that body weight is regulated around some predefined and 

unalterable set point, this model suggests that the point at which bodyweight 

is defended is changeable. After a change in weight (i.e. the weight loss 

required to participate in the NoHoW trial), a drive towards the restoration of 

the previous weight is typical. However, the likelihood of this weight 

becoming a new defended weight depends on genetic factors interacting 

with the compensated and uncompensated factors (de Castro, 2010). Whilst 

it is generally accepted that there is some control of bodyweight in humans 

and that biological and behavioural factors and interactions between them 

are implicated (Melby et al., 2017), a widely accepted framework does not 

yet exist (Müller, Geisler, Heymsfield, et al., 2018). It is obvious that at the 

most fundamental level, weight regain results from EI exceeding EE. As 

such, the ability to measure EE and EI continuously would be an important 

development in elucidating the physiological and behavioural correlates of 

long-term weight outcomes after a period of weight loss (MacLean et al., 

2015) and may allow for models of bodyweight regulation to be more 

rigorously evaluated and refined.   

The estimation of EI has most frequently been achieved through self-report 

measures, which can be biased by misreporting (EI is typically 

underreported) (Stubbs et al., 2014). Unfortunately, predictors of the biases 

inherent to self-report data remain elusive (Rasmussen et al., 2007), so 

correcting for misreporting bias is currently not possible. Despite this, the 

accessibility and relatively low cost of self-report measures mean they are a 

popular choice in large scale epidemiological studies. A similarly scalable 

method is the mathematical modelling of EI. A notable and validated 

(Sanghvi et al., 2015) EI model is the NIDDK model, which is grounded in 

thermodynamic principles and empirical physiological data published over 

many decades (Hall & Chow, 2011) (for further details, see sections 1.4.2 
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and 3.5.1). Modelling EI mathematically requires basic demographic 

information and the bodyweight of the subject at regular intervals, which 

makes it inexpensive and allows measures to be scaled up to large 

epidemiological studies. Indeed, the validated NIDDK EI model has been 

applied in a variety of contexts and populations (Göbel et al., 2014; Guo et 

al., 2019; Polidori et al., 2016).  

Mathematical modelling shares some benefits with self-report methods (i.e. 

ease of dissemination and low cost) but in a critical distinction, the NIDDK 

model shows high predictive accuracy. Indeed, relative to gold-standard 

measures (i.e. intake balance method with DLW and DEXA) a negligible 

average deviation of ~40 kcal/day has been observed, although wide limits 

of agreement indicate limited precision at the individual level (Sanghvi et al., 

2015). Two factors are likely to refine the models further: First, the 

confidence interval associated with model estimates can be minimised with 

more frequent bodyweight measurements (Sanghvi et al., 2015). Second, 

quantitative and continuous estimates of PAEE will overcome the limitations 

associated with assuming PAEE is constant within and between subjects 

(Foright et al., 2018; Sanghvi et al., 2015). Both factors can be overcome 

with the recent developments in digital tracking technologies.  

9.1.1. Chapter aims  

Mathematical modelling of energy balance behaviours over time facilitates 

novel investigations into the factors contributing to longitudinal weight 

outcomes after weight loss. Until now, applications of the NIDDK 

mathematical model have used sparse body weight measures and have 

lacked objective measures of PAEE. This study utilised a validated 

mathematical model and for the first time, integrates objective estimates of 

PAEE to derive changes in EI in a large sample of European adults engaged 

in a weight loss maintenance trial. Estimates of EI were compared amongst 

a series of algorithms developed and tested in chapters 7 and 8 and 

amongst participants in different states of energy balance, specifically those 

gaining, maintaining and losing weight over 18 months.  
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9.2 Methods 

9.2.1 Participants and bodyweight data  

This chapter utilised data from the NoHoW trial. The inclusion criteria, 

recruitment and relevant components of the protocol have been discussed in 

chapter 3 of this thesis. The full experimental procedure and protocol have 

been published elsewhere (Scott et al., 2019). Regular bodyweight 

estimates were obtained from the Fitbit Aria digital scales (See section 

3.4.3.5). To be included in this analysis, at least one weight measure every 

182 days was required (which would be equivalent to one weight every 

clinical investigation day), although the minimum number of weights for any 

participant in this analysis was 33 weights in the period of observation. The 

body weights were smoothed by a locally weighted regression, as discussed 

in section 3.4.3.5, using a fraction value of 10%.   

9.2.2 Energy expenditure estimation  

Total daily EE was estimated using a number of approaches in this study. 

Firstly, in the method described in chapter 8 using the gradient boost, neural 

network and random forest algorithms. One distinction from the method of 

chapter 8 lay in the smoothing of estimated resting heart rate, the fraction 

value was decreased to 5% because of the larger datasets used in this study 

compared to the TEED study, and therefore the proportion of data used in 

the LOESS regression needed to be reduced. Estimates were then scaled to 

account for missingness within a day by the method described in chapter 6. 

As described in chapter 6, at least 18 hours per day after hourly scaling 

were required to be included. Any day in which no minutes could be 

predicted, or the sleep detection algorithm reported >20 hours of sleep were 

considered to be anomalous and were excluded. Furthermore, some days 

within the FB manufacturer estimates had extremely high PAEE values, 

therefore any day with PAEE > 200 kcal/kg/d or < 0 kcal/kg/d was 

considered to be physiologically implausible. These values would imply that 

the subject did not move at all in a day, or they spent every minute of the 

day performing vigorous activity. For example, 200 kcal/kg/day would be 

15,000 kcal/day of PAEE for a 75 kg person, if this person had an RMR of 

1800 kcal/day this would equate to 9-10 METs (EE/RMR) on average before 

any additional thermogenic costs are considered. This is roughly equivalent 

to running at 11– 14km/h for 24 hours continuously (Ainsworth et al., 2011). 

Further details on maximal time vs EE relationships is shown in chapter 1, 

figure 1.2. 
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Next, values were scaled to account for the EE associated with digestion, by 

dividing the daily estimates by 0.9. As RMR was not measured in the 

NoHoW trial, RMR was estimated continuously (as new weight data was 

observed) with the equation of Mifflin-St Jeor, which is effective in nonobese 

and obese individuals when compared with other common prediction 

equations, specifically it has been shown to more frequently fall within 10% 

of measured RMR (Frankenfield et al., 2005). Secondly, TDEE obtained 

from the FB manufacturer estimates is reported. This was calculated as the 

sum of minute level EE for each day and subject. Wear time was calculated 

as the sum of minutes where a heart rate value was measured (implying 

attachment on the wrist) and a valid day was one in which 1080 minutes (18 

hours) were available, as per the inclusion criteria determined in chapter 6. 

As the FB manufacturer algorithm is proprietary, no additional adjustments 

for wear time or DIT were made. To be included in the analysis at least 6 

valid days for TDEE data were required over the period of study. The first 

valid TDEE observation must have occurred in the first 12 days and a 

complete observation after day 360 must have been available, thereby 

ensuring that the participant had some data in the last third of the study. 

Lastly, the participants that were included in this analysis are those that 

could be included according to the requirements of both the FB and the 

hierarchical approaches, which allowed for paired comparisons to be made.  

9.2.3 Modelling energy intake 

After the above steps, EI was estimated by the mathematical model 

described in section 3.5.1, which was implemented in a Java application 

developed by researchers at the NIDDK. A time interval of 28 days was used 

to estimate ∆EI, as justified in section 3.5.1. For the machine learning 

models PAEE was calculated as PAEE = ((TDEE x 0.9) – RMR) /Weight) 

and for the FB, PAEE = (TDEE – RMR) /Weight. It remains unclear whether 

DIT adjustments are made by the FB and thus estimates were not altered.  

9.2.4 Statistical analyses  

All participants were assigned to one of three groups dependant on their 18-

month percentage weight changes, that is the percentage change in weight 

from their first weight until their last weight. Outcomes were: i) weight losers 

(WL) < -3% weight change, ii) weight maintainers (WLM) ≥-3% to ≤3% 

weight change and iii) weight gainers (WG), >3% weight change from the 

bodyweight at the start of the trial. The rationale for a 3% cut-off is based on 

a previous recommendation that the definition of weight maintenance in 

adults is a weight change of <3% (Stevens et al., 2006). Data were visually 
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represented as percentage weight change from the subject’s baseline 

weight. At each time point, paired t-tests tested for statistical differences 

between models. To test for statistical differences between weight 

outcomes, Kruskal-Wallis rank-sum tests were used and post-hoc 

comparisons were conducted with Dunn’s test, using the ‘FSA’ package in 

R. Where comparisons are made at numerous time-intervals, p-values were 

adjusted by the Bonferroni correction for multiple comparisons and 

significance was accepted at p<0.05.  All statistical comparisons were 

conducted in R 4.0.0.  

9.3 Results  

The descriptive characteristics for the entire sample, as well as the three 

weight outcome groups, are shown in table 9.1. Averaged across all 

participants, 248 weight measures were available, 376 valid days for the 

machine learning algorithms and 358 valid days of FB manufacturer data 

were available.  
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Table 9.1 Descriptive characteristics of the included sample.  

Weight measures describe the number of weight measures included 

in the analysis, algorithm days describes the number of days 

available for the machine learning algorithms and FB days describes 

the number of days available for the FB manufacturer estimates. 

 

n 
Age 

(Years) 

Height 

(cm) 

Weigh

t (kg) 

BMI 

(kg/m

2) 

Weight 

measure

s 

Algorith

m days 

FB 

days  
(Fem

ale) 

All 

786 

(562) 

45.59 ± 

11.73 

168.66 

± 8.7 

84.03 ± 

16.5 

29.49 ± 

5.16 

248.28 ± 

134 

376.3 ± 

146.15 

358.31 ± 

149.83 

         

F 

562 

(562) 

46.57 ± 

11.91 

165.15 

± 6.66 

80.85 ± 

15.61 

29.63 ± 

5.45 

249.64 ± 

132.73 

387.66 ± 

145.21 

369.8 ± 

149.47 

M 

224 

(0) 

43.13 ± 

10.9 

177.47 

± 6.77 

92 ± 

15.99 

29.15 ± 

4.35 

244.86 ± 

137.4 

347.79 ± 

144.91 

329.47 ± 

147.15 

         

WG 

325 

(242) 

44.61 ± 

11.32 

168.76 

± 8.51 

82.63 ± 

15.67 

28.95 ± 

4.72 

226.84 ± 

127.98 

367.77 ± 

147.7 

349.89 ± 

151.15 

WL 

171 

(131) 

46.26 ± 

11.54 

167.34 

± 9.02 

86.98 ± 

17.25 

31.06 ± 

5.86 

276.1 ± 

141.99 

379.59 ± 

163.44 

361.9 ± 

166.41 

WLM 

290 

(189) 

46.29 ± 

12.24 

169.33 

± 8.66 

83.87 ± 

16.78 

29.17 ± 

5.04 

255.91 ± 

132.36 

383.92 ± 

133.05 

365.62 ± 

137.59 

 

9.3.1 Weight outcomes  

The distribution of weight outcomes for the groups is shown in figure 9.1 (A). 

At 18 months, the mean weight change overall was 1.68% and the data 

appear to be approximately Gaussian, with an SD of 7.85%. The observed 

changes in bodyweight from the start of the trial to the last weight available 

for each subject ranged from 31.8% gain to one 33.1% loss. Figure 9.1 (B) 

shows the trajectories of the groups over the 18-month observation period. 

In the WL group, weight loss was most rapid at the start of the observation 

period, with weight change from baseline of -6.2 % achieved by day 266 and 

reaching - 8.8% at day 546. The WLM group also showed evidence of an 

initial energy deficit with an average weight loss until day 322 (-0.1%) and 
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then a slight gain in weight towards the end of the observation. Lastly, the 

WG group show a more linear trajectory, gaining weight (as a % change 

from baseline) relatively constantly, reaching 8.2% by day 546. 

 

 

Figure 9.1 A) a histogram detailing the distribution of weight change (%) for 
all included participants and B) a time series of weight change (% 
change from baseline), split by weight outcomes. 

Weight outcomes are those losing weight (WL, n=171), maintaining 

weight (WLM, n=290) or gaining weight (WG, n=325), data are 

presented as means ± standard error.  

9.3.2 Energy intake and expenditure changes  

The change of EI between EE prediction models and weight outcome groups 

is shown in figure 9.2 and the variance in EI estimates at each time point is 

shown as boxplots and line plots in appendix 5.1. Regarding figure 9.2, it is 

evident that those in the WL outcome group initially changed their EI 

substantially, with the machine learning model predictions averaging 

between –413 and -411 kcal/day and the FB manufacturer estimating -427 

kcal/day. At day 238, the machine learning model estimates indicated that 

the change in EI was positive for the WL group and the subsequent intervals 

tend to fluctuate close to 0. The FB manufacturer model indicated that the 

WL group ∆EI values were negative for all but two of the intervals examined, 

at day 266, where ∆EI =6 and day 462, where ∆EI =50 kcal/day.  

In the first time interval for the WG group, EI increased by 43 to 44 kcal/day 

for the machine learning model predictions and by 26 kcal/day according to 

the FB manufacturer estimates.  Subsequently, the remaining intervals had 

positive ∆EI values ranging up to 153 kcal/day (random forest, day 210). 
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One exception to this was at the final interval (day 546), where the ∆EI value 

was -27 kcal/day for the FB manufacturer. The WLM group ∆EI values in the 

first interval were between -90 and -89 kcal/day for the model predictions 

and -106 kcal/day according to the FB manufacturer. All models 

subsequently indicate a trend towards increasing EI in the middle intervals, 

for example at time point labelled day 210, the machine learning models 

predicted ∆EI of 86 – 95 kcal/day and the FB manufacturer predicted 54 

kcal/day. Towards the last interval, ∆EI tends to decrease. The values at 

timepoint 546 were between 33 and 42 kcal/day for each of the models and -

33 kcal/day for the FB manufacturer.  

Using the EI calculated with the PAEE estimates from the gradient boost 

model, the Kruskal-Wallis tests and all adjusted pairwise comparisons 

between the ∆EI estimates for each weight outcome were significant 

(adjusted p<0.05) for all intervals prior to the interval labelled day 42, when 

the WLM and WG were not significantly different (adjusted p=0.27). The 

pairwise comparisons for WL vs WLM were significant (adjusted p<0.05) for 

comparisons before day 154, at which point the comparison revealed no 

significant difference (adjusted p=0.075) and WL vs WG were significantly 

different for all comparisons before day 238, at which point there was no 

significant difference (adjusted p=0.053).  

The 𝛿0 values (PAEE at baseline), for the machine learning models were as 

follows: Gradient boost =  8.01 ± 3.2 kcal/kg/day, Random forest =  8.21 ± 

3.26 kcal/kg/day, Neural network =  7.1 ± 3.05 kcal/kg/day and for the FB 

manufacturer 𝛿0  =  13.62 ± 4.3 kcal/kg/day. The ∆EE values are plotted for 

each of the groups and models in Figure 9.2. The ∆EE in the first interval 

(day 14) was observed to decrease in the WL group, with model predictions 

averaging -106 to -104 kcal/day and the FB manufacturer predicted -123 

kcal/day. The WLM group also decrease their EE in the first interval, albeit to 

a lesser degree, with predictions averaging between -15 and -16 kcal/day for 

the machine learning models and the FB manufacturer predicted ∆EE = -33 

kcal/day. The WG group initially increased their EE by 11-12 kcal/day 

according to all models but decreased according to the FB manufacturer 

estimates, ∆EE = -7 kcal/day.  

After the first interval, each of the machine learning models predicts that the 

EE of the subjects in the WG and WLM group returns to slightly above their 

baseline for the remainder of the intervals, and the WL group trend towards 

0 in the middle intervals. The FB manufacturer estimates indicate clear 

differences between the weight outcome groups over time, specifically, the 
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WL group have negative ∆EE values for the remainder of the observation 

period. The WLM group trend towards ∆EE = 0kcal/day, with the estimates 

ranging between -32 kcal/day (day 42) to 13 kcal/day (day 210). The WG 

group show more positive ∆EE values, which reached a peak of 63 kcal/day, 

at day 518.  
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Figure 9.2 Mean estimates of energy intake changes (kcal/day) (left panels) and energy expenditure changes(kcal/day) (right panels) 
from each of the models.  
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Weight outcomes are those losing weight (WL, n=171), maintaining weight (WLM, n=290) or gaining weight (WG, n=325), data 

are presented as means ± standard error.  
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9.3.3 TDEE and PAL estimates  

The average estimates of TDEE and PAL are shown in figure 9.3. The PAL 

estimates for each model demonstrate visual evidence of a positive skew, 

with ranges of 1.26 – 2.21 for the gradient boost, 1.26 – 2.27 for the FB 

neural network, 1.26 -2.17 for the random forest and 1.22 – 2.37 for the FB 

manufacturer.  

Estimates derived from the Gradient boost gave an average PAL value of 

1.59 ±0.15 and a TDEE of 2470 ± 490 kcal/day (n=786). The neural network 

estimates were PAL = 1.53 ± 0.14, TDEE = 2389 ± 500 and the random 

forest, PAL = 1.60 ± 0.15, TDEE = 2491 ± 495. These machine learning 

estimates were notably smaller than the FB manufacturer estimates of PAL 

= 1.71 ± 0.18  and TDEE = 2663 ± 558 kcal/day (n=786), paired t-tests 

between each of the model predictions revealed that all TDEE and PAL 

estimates were significantly different (p<0.001).  

For brevity, a single machine learning model is utilised to compare amongst 

weight outcomes. The Gradient Boost algorithm estimated PAL values were 

as follows WG = 1.57 ± 0.14, WL = 1.59 ± 0.15, WLM = 1.61 ± 0.15. The 

Kruskal-Wallis test revealed a significant difference amongst groups (H = 

10.74 (2), p = 0.005), with WLM significantly differing from WG (p = 0.001) 

but all other comparisons were not significantly different.  

The FB manufacturer comparison revealed a significant Kruskall-wallis test 

(H = 6.49 (2), p=0.04) and the mean PAL values were: WG = 1.69 ± 0.17, 

WL = 1.71 ± 0.2, WLM = 1.73 ± 0.19.  A significant difference was observed 

between the WG and WLM groups (p = 0.01) but not between the other 

comparisons.  
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Figure 9.3.Density plots showing the distribution of PAL (left) and TDEE 

(right) for each of the methods of estimating TDEE. 

9.4 Discussion 

In a novel contribution to the fields of energy balance and weight loss 

maintenance, this chapter utilised digital tracking technologies to provide 

high-frequency estimates of PAEE and bodyweight and mathematical 

modelling approaches to estimate the change in EI in subjects attempting to 

maintain their weight. These modelling approaches demonstrated differential 

patterns of EI and EE depending on the long-term weight outcomes (i.e. WL, 

WLM or WG). It was apparent that the differences were greatest between 

the weight outcome groups in the first 6-months of observation. The machine 

learning models (i.e. neural network, random forest and gradient boost) 

predict that as time progressed, the EI returned to slightly above the 

baseline maintenance requirement (see section 3.5.1 for further details on 

how this is defined) for WLM and WL groups. Similarly, the machine learning 

models predict that EE, which had decreased in the WL group when EI was 

being restricted, returns to slightly above baseline for the WLM and WG 

groups, and stays very close to baseline in the WL group. Each of the 

hierarchical approaches developed in this thesis performed similarly, but 

some differences were observed between the ∆EI calculated using these 

hierarchical approaches and the FB manufacturer estimates.  

The previous literature using mathematical models consistently shows a 

large restriction of EI at the onset of a trial or intervention and a slow return 

towards baseline as time progresses (Göbel et al., 2014; Guo et al., 2019; 
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Polidori et al., 2016), which drives bodyweight upwards or causes a plateau 

in weight loss (Thomas et al., 2014). This pattern was observed in the WL 

and to a lesser extent, the WLM group, indicating a challenge in restricting 

EI over prolonged periods. From an evolutionary perspective, the invocation 

of physiological processes which tend to oppose weight loss and lead to 

regain has been selected to minimise the risk of starvation (Speakman et al., 

2011; Speakman, 2007) but the extent to which these processes (i.e. 

increased appetite, decreased EE, etc.,) determine energy balance 

behaviours varies between individuals (Speakman et al., 2011) and this is 

apparent in these data. At baseline, participants had all been successful in 

achieving clinically significant weight loss, losing an average of 11.8 %  in 

the 12 months prior to the study (Turicchi, O’Driscoll, Horgan, Duarte, 

Santos, et al., 2020), but the subsequent trajectories over the 18-month 

observation period reported in this study differ substantially. As highlighted in 

the introduction of this chapter, the general model of intake regulation is a 

model that permits a role for an array of physiological and environmental 

factors to influence EI variably, through interactions with genetic factors (de 

Castro & Plunkett, 2002). Indeed, the wide variability in EI at any time point, 

and the inconsistent trajectories in EI (see appendix 5.1) provide evidence 

for a strong role for societal and environmental factors, beyond 

physiological/body composition factors to influence energy balance 

behaviours and therefore weight outcomes. Unfortunately, understanding of 

the interactions between individual-level psychology, physiology, energy 

balance behaviours and the environment is far from complete (Stubbs et al., 

2019) and the extent to which homeostatic mechanisms act on humans is 

contested (Müller, Geisler, Heymsfield, et al., 2018). After further validation, 

the objective tracking methodologies presented here could be incorporated 

into experiments to provide a quantitative framework of energy balance. This 

framework would allow other markers of human behaviour and psychology 

to be modelled and allow for more rigorous investigations of theories of body 

weight regulation. 

When comparing PAL between the groups, the WLM group were observed 

to have the highest average PAL, although this was only statistically different 

from the WG group. The association between weight maintenance and 

PAEE has been shown previously, with those avoiding the regain of 

bodyweight tending to be more physically active (Catenacci et al., 2011; 

Jakicic et al., 2008; Ostendorf et al., 2018) and the results presented here 

indicate that WLM were the most physically active on average (measured by 

PAL), but only significantly different from the WG group. In one notable 
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example, conducted in a female population, Schoeller et al. report that 

higher PAL values (measured by DLW) after a period of weight loss were 

associated with less regain after a year  (Schoeller et al., 1997). Similarly, 

Kerns et al. investigated the PAEE behaviours of contestants participating in 

a televised weight loss competition 6 years after the show had finished. The 

analysis showed that those most successful in achieving weight 

maintenance had a greater PAEE increase than those regaining weight 

(Kerns et al., 2017). One theory, termed the “energy gap” theory proposes 

that the reduction in TDEE from weight loss creates a “void” (i.e. change in 

the energy balance point needed to maintain a new reduced weight) which 

must be filled in order to avoid an energy surplus and weight regain (Hill et 

al., 2009). A higher rate of PAEE may help to fill such a void (Hill et al., 

2009), thus providing a potential explanation for the associations between 

PAEE and WLM.  

Physical activity EE may reduce in response to low energy availability 

(Rosenbaum & Leibel, 2010), and this offers a potential explanation for why 

the WL group were observed to have the lowest ∆EE in the early stages of 

the trial when their rate of weight loss was at its fastest. As time progressed, 

the machine learning models predict that the changes in EE return towards 

0, whereas the FB manufacturer estimates do not and the WL group remain 

at values < 0. Several factors may explain this disparity. First, PAEE (which 

is used in the NIDDK model calculations) is calculated by taking away the 

predicted RMR and DIT from TDEE estimates for the machine learning 

models. In the FB models, no adjustment for DIT is made because it was 

unclear whether this is already part of the FB manufacturer algorithm. 

Furthermore, the Mifflin St. Jeor equation was used to estimate RMR. If the 

FB manufacturer incorporates a different RMR equation, which scales 

differently with weight changes, this step could contribute to the observed 

differences. Both of these factors again highlight an issue with proprietary 

algorithms in research studies. Also, when discussing the ∆EE values, the 𝛿0 

must be considered as this value is central to ∆EE calculations. The PAEE 

predicted by the FB manufacturer is far higher than the machine learning 

models (~7-8 kcal/kg/day vs 13.6 kcal/kg/day). The NIDDK models are 

calculated relative to a baseline requirement, which eliminates the need to 

estimate energy requirements and avoids the associated loss of precision 

(Hall & Chow, 2011). However, measures before the study were unavailable 

and this must be considered when interpreting these results. The fact that 

the machine learning models predict the ∆EE is close to 0 despite a 

relatively large decrease in weight in the WL group is perhaps unexpected. 
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Weight loss is often accompanied by changes in body composition, which 

should cause a decrease in EE via the loss of metabolic mass (Wang et al., 

2000). It must, however, be recognised that a change in 8% of body weight 

for a 75kg, 175cm male, would result in a change in the RMR of ~60 

kcal/day, depending on the regression equation used and assuming no other 

adaptive thermogenic processes. A small increase in structured exercise 

could feasibly offset this. It is also important to consider that the models are 

initialised with the average of the model predictions in the first 14 days of the 

study, 𝛿0. Behaviour in this period could be related to the recent weight loss 

required for inclusion into the trial or through initial ‘feedback’ from the 

wearable devices.  

It is important to consider the difference in the PAL values between the 

hierarchical approaches and the FB manufacturer in the context of typical 

PAL values. The lower sustainable limit for PAL in humans is considered to 

be in the region of 1.2, seen in non-ambulatory adults or those confined to a 

calorimeter without exercise. By contrast, the upper limit is thought to be 

approximately 4.5 seen in the most physically demanding endurance events 

(Shetty, 2005). The typical categorisation is as follows: 1.40–1.69 for a 

sedentary or light-active lifestyle; 1.70–1.99 for moderately active lifestyles; 

and > 2 for regular vigorous activity or a highly active job (FAO/WHO/UNU, 

2004). A seminal paper by Black et al. (Black et al., 1996) collated 

thousands of DLW measurements and report the average PAL values for 

healthy, non-athlete adults. Their results showed the 40–64 years category 

had the lowest average PAL values of 1.69 and 1.64 for females and males, 

respectively. This category is the average age category of the sample 

analysed in the present study however, this sample had a higher BMI of ~29 

kg/m2 compared to ~25 kg/m2 in the study of Black (Black et al., 1996). In the 

more recent SACN report, the distribution of PAL is reported based on two 

large studies (OPEN (Subar et al., 2003; Tooze et al., 2007) and Beltsville 

(Moshfegh et al., 2008),  combined n=929) (SACN, 2011). The PAL values 

reported in this report are lower than that of Black (Black et al., 1996), with a 

mean PAL of 1.64 and a median of 1.62, ranging from 1.01 to 2.61. When 

these values are trimmed according to ‘sustainable values’ (PAL = 1.27 – 

2.5), 39 subjects were lost, and the mean shifts upwards to PAL = 1.66 and 

the median= 1.63. The similarity to the PAL values in this study is 

encouraging, but further validations are undoubtedly required. Participants 

had a verified weight loss of approximately 11% in the NoHoW trial (Turicchi, 

O’Driscoll, Horgan, Duarte, Santos, et al., 2020), and it is known from data 

published as part of the CALERIE phase 1 trial that the caloric restriction 
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required to elicit such a weight reduction is associated with reductions in 

PAEE (Martin et al., 2011). These factors could indicate that the population 

in this study would have a lower PAL than previously published reference 

databases. When considering such reference databases it must be noted 

that the measured PAL values are contingent on the quality of the numerator 

and denominator in the PAL equation (i.e. TDEE and RMR) and the rather 

large assumption that the behaviours observed in the measurement period 

are reflective of the typical lifestyle behaviour.  

9.4.1 Strengths 

Some advantages of this work must be highlighted. This is the first time that 

such high-frequency body weight data has been utilised in the NIDDK 

mathematical model. Such regular measures, collected with digital tracking 

smart scales, facilitates the modelling of the variable nature of body weight 

(Turicchi, O’Driscoll, Horgan, Duarte, Palmeira, et al., 2020) which may be 

missed when less frequent measures are used (i.e. collected at clinical 

investigation days). Indeed, acute fluctuations in water can lead to 

substantial weight fluctuations (Bhutani et al., 2017) so single point or 

infrequent measurements are prone to error. Also, objective data from 

activity trackers were used and the presented data shows how widely PAEE 

varies in this sample. This takes steps towards minimising the biases 

associated with i) assuming a constant PAEE or ii) using self-report tools 

(Dhurandhar et al., 2015). These advantages make important inroads 

towards using these models on an individual level creating potential 

opportunities for personalised health research (Sheth et al., 2018).  

9.4.2 Limitations 

This study has some limitations to consider. Firstly, there was no gold-

standard measure to compare the model predictions to. Although the 

plausibility of TDEE estimates has been shown in the previous chapter of 

this thesis, the TEED study population differ demographically from the 

NoHoW cohort  and therefore the validity in the NoHoW dataset is not clear. 

Second, the mathematical model used in this study was validated in the 

CALERIE dataset (Sanghvi et al., 2015), which was absent of people with 

obesity (Rickman et al., 2011), so generalisability to the NoHoW cohort is 

uncertain. Next, the NIDDK model makes several assumptions about factors 

involved in body weight dynamics in humans, (see section 3.5.1 for details). 

For example, the parameter for dietary and adaptive thermogenesis 𝛽=0.24 

is likely to vary between subjects (Dulloo et al., 2012; Westerterp et al., 

2004). It also does not include terms for factors such as the composition of 
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FFM and organ size which can influence the parameters in the model, 

namely the EE rate of FFM (Sparti et al., 1997). It is uncertain how these 

examples and other factors contribute to individual-level error, and therefore 

estimates of ∆𝐸𝐼 are associated with precision estimates (Sanghvi et al., 

2015). Unfortunately, such uncertainties are likely to remain because their 

measurement is often invasive and expensive (Dulloo et al., 2012). Lastly, 

the NoHoW sample may not be typical of the general population or even 

those engaged in an attempt to maintain lost weight. It has been suggested 

that as little as 20% of subjects who are overweight and then lose weight are 

successful in maintaining their weight loss (Wing & Phelan, 2005) and those 

that do may differ in psychological and behavioural characteristics 

(Varkevisser et al., 2019). Given that more than half of the group in this 

study were not classed as regainers, caution must be exercised when 

generalising these results to other populations.  

9.5 Conclusion 

This study combined high-frequency body weight and objectively tracked 

PAEE data to derive estimates of changes in EI in adults engaged in a WLM 

study. The modelling approaches showed variable time courses depending 

on the weight outcome (i.e. WL, WLM or WG). Importantly, after an initial 

reduction in EI in the maintenance group, evidence of increasing EI over 

time was observed in those losing or maintaining weight which could indicate 

compensatory increases in appetite in response to prior weight loss. Wide 

variation exists in modelled ∆𝐸𝐼 between and within-subjects and the 

determinants of this variation should be examined in future studies. 

Differences were observed between the proprietary FB manufacturer 

estimates and the estimates derived through the modelling approach 

developed in this thesis. Gold-standard validation approaches are needed to 

determine which of these two offers the most precise and accurate means of 

deriving ∆EI and ∆EE and whether these are sufficient for individual-level 

research.   
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Chapter 10 – General discussion 

10.1 Summary of PhD findings  

This PhD had the overarching objective of advancing the quantification of 

the components of the energy balance equation in free-living subjects. 

Energy balance in humans obeys the first law of thermodynamics and 

therefore, the rate of change in energy stored within the body is equal to the 

difference between the rates of EI and EE, per some unit of time. Given the 

inviolability of this law, it is possible to ‘solve’ the energy balance equation 

with an accurate and precise estimate of any two of the three components 

(i.e. ES, EE and EI). Obtaining accurate and precise estimates of these 

components is challenging, and as yet, a framework does not exist to 

achieve this in large, free-living studies. The approach taken in this thesis 

was to utilise advanced statistical approaches to learn patterns in movement 

and physiological data in an attempt to improve estimates of EE. Estimating 

EE with wearable devices has garnered much interest in health research 

because of the affordability, ease of use and storage capacity of many 

devices, but their inaccuracy represents a major barrier to their use in 

research settings. A mathematical modelling approach developed by 

researchers at the NIDDK offers an inexpensive and potentially accurate 

solution for modelling the dynamics of ∆ES in humans, which can be 

linearised and solved for ∆EI. A major limitation of this approach to date has 

been the assumption that the PAEE of subjects is constant, in the absence 

of objective estimates. This is a limitation that can be overcome with 

wearable devices if PAEE estimates are sufficiently accurate. Therefore, 

accurate estimates of EE are not just important in and of themselves but can 

be incorporated into mathematical models to refine ∆EI estimates. Through a 

series of experiments, significant steps were taken towards modelling EE 

and subsequently EI and these are further discussed in this chapter.  

Speaking in a lecture, Lord Kelvin once said:  

‘When you cannot measure it, when you cannot express it in numbers, your 

knowledge is of a meagre and unsatisfactory kind: it may be the beginning of 

knowledge, but you have scarcely, in your thoughts, advanced to the stage 

of science, whatever the matter may be’.  

This quote (Kelvin, 1883) captures an issue within weight loss maintenance 

research currently. The field is very limited in the extent to which estimates 
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of EI and EE can be accurately and precisely estimated during weight 

management interventions.  

Faced with physiological resistance to weight loss and an obesogenic 

environment, the status quo is to regain weight after weight loss (Wing & 

Phelan, 2005). This is despite numerous evidence-based behaviour change 

interventions and public health policies. Regaining weight fundamentally 

implies that a subject’s rate of EI exceeds their rate of EE over some time. 

Behaviour change interventions aiming to assist in weight management seek 

to influence a subject’s energy balance behaviours, which are likely to be 

subconscious and potentially undetectable with self-report tools (Bargh & 

Chartrand, 1999; Stubbs et al., 2019). Thus, a situation currently exists 

where behavioural scientists are unable to quantify the very outcome they 

are seeking to influence. The ineffectiveness of weight management 

interventions in the long term is most likely related to the inability to precisely 

and accurately measure energy balance behaviours, continuously and over 

long durations. It is likely that should such methodologies emerge, a 

quantitative framework for behavioural interventions could be recognised 

and significant steps could be taken towards improving models and 

elucidating the mechanisms of action of weight management interventions. 

This could be achieved by linking mediators of behaviour change to 

objectively quantified changes in energy balance behaviours and 

subsequent weight outcomes (Stubbs et al., 2021).  

This thesis was motivated by the need to advance measurement capabilities 

within the field of energy balance and the following aims were conceived: 

• Investigate the validity of current wearable tracking technologies for 

the estimation of heart rate and EE 

• Investigate methods to impute or address missing data in commercial 

activity monitors 

• Development and validation of machine learning algorithms to predict 

EE, which are validated in laboratory and free-living settings 

• Quantification of EE and EI in free-living subjects participating in the 

NoHoW trial 

The following paragraphs consider these aims and the research conducted 

to address them. The potential implications and assumptions of this work are 

then presented in the context of the literature, with recommendations for 

future research. Lastly, the limitations of the thesis are highlighted.  
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10.1.1 Aim 1: Investigate the validity of current wearable tracking 

technologies for the estimation of heart rate and EE 

The principles of energy balance and the recent development in physical 

activity trackers were discussed in the introduction (Chapter 1). If EE can be 

accurately estimated with these devices, then they can be used in free-living 

studies to overcome the limitations of self-report measures. Chapter 4, (aim 

number 1), reviewed the available wrist or arm-worn devices and their 

validity for the estimation of EE relative to criterion measures (i.e. DLW, 

indirect calorimeters and metabolic chambers). The trend towards utilising 

the wrist as a measurement site in commercial devices (Wright et al., 2017) 

was the motivation behind this inclusion criterion. A systematic search of 

scientific databases revealed 109 comparisons between different devices 

and a criterion. Using a random-effects meta-analysis, it was shown that the 

aggregate estimate of all devices was a small, but significant 

underestimation of EE (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 2020). 

Moderator analyses demonstrated that the inclusion of heart rate sensors 

within a device reduced the error in most activities, particularly cycling. 

Indeed, this was hypothesised because of the well-evidenced association 

between EE and heart rate (Ceesay et al., 1989). Moderation analyses were 

also conducted to investigate whether newer, commercially available 

devices were as accurate as research-grade monitors. No significant 

difference was observed overall, but commercial devices were statistically 

superior in ambulation and during sedentary/household tasks whereas 

TDEE was better approximated by research-grade monitors. There was 

considerable heterogeneity within devices i.e., the errors within a device 

differed between experimental studies with different participants, activities 

and protocols, in addition to the large biases associated with many devices. 

If a device is to be utilised in energy balance research to estimate TDEE it 

needs to be able to provide reasonably accurate estimates across a range of 

activity modalities, especially those that have been traditionally challenging 

for accelerometry based devices to estimate (i.e. cycling). Here, the term 

‘reasonably accurate’ is deliberately ambiguous and what is considered 

sufficiently accurate will vary depending on funding constraints and the aims 

of the study. For instance, an energy balance study applying intake-balance 

methodology may prioritise the most accurate estimates of EE (at a higher 

economic and computational cost), and therefore minimise uncertainty in EI 

estimates.  
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A significant limitation of this work relates to the academic research cycle 

and the development and release of new products from commercial 

providers. Many of the devices included in the analysis had been 

discontinued and newer editions had been released. This is true of the FB 

device used in the NoHoW study, and only one validation study of this 

device could be included in the meta-analysis. The characteristics of the FB 

have been introduced in chapter 3 and a critical distinction between this 

model compared to some previous models was the inclusion of a heart rate 

sensor, which allowed continuous monitoring of this physiological variable at 

the minute-level. The results of the meta-analysis implied that this could 

contribute to an increase in accuracy in EE estimates. Although the potential 

for accelerometer and heart rate combination approaches to improve 

estimates of EE has been recognised in previous devices (Strath et al., 

2005), it was uncertain whether this would be the case in the FB. 

In chapter 5, an experimental study was presented, which aimed to 

overcome the research question left open by the meta-analysis, specifically, 

how valid is the FB for estimating EE and heart rate. This study evaluated 

the FB, relative to criterion measures (indirect calorimetry for EE and Polar 

heart rate strap for heart rate). The accuracy of the FB was poor for EE in 

the vast majority of activity types (with a MAPE value of 44% overall) and it 

was only statistically equivalent to the criterion in one activity, namely 

running at a 5% incline (mean underestimation by the FB was ~0.5 kcal/min) 

(O’Driscoll, Turicchi, Hopkins, et al., 2020). In household tasks, MAPE 

values as high as 93% were observed. The formal definition of MAPE is 

presented in chapter 3 but for additional interpretation, this would be 

approximately equivalent to a mean prediction of 9.3 kcal/min (assuming a 

constant direction of error), where the true EE was 5 kcal/min. The heart rate 

estimates were in far greater agreement with the respective comparator than 

the EE estimates, which aligned with the results of previous studies 

(Shcherbina et al., 2017; Wallen et al., 2016).  

If the FB is utilising linear modelling to estimate EE, the direction of errors 

would be as observed. A characteristic of household tasks (e.g. sweeping, 

wiping, folding etc.) is the high velocity of movement but the low energetic 

cost (Ellis et al., 2016). This is different from cycling, where the movement of 

the wrist is minimal but the energetic cost can be large. In many activities, 

acceleration at the wrist is positively correlated with EE (Hills et al., 2014), 

and these two examples would be deviations from this general association. 

A small body of literature has used non-linear, machine learning approaches 
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to model EE in research-grade devices (Ellis et al., 2014; Montoye et al., 

2015; Staudenmayer et al., 2009). These studies highlight the potential for 

machine learning algorithms to ‘learn’ the complex, activity-specific functions 

mapping movement, subject characteristics and physiological variables to 

EE, but these approaches were yet to be applied within commercial devices. 

10.1.2 Aim 2: Investigate methods to impute missing data in 

commercial activity monitors 

When quantifying TDEE in free-living subjects over periods longer than the 

battery life of activity monitors, missing data is an inevitability. Devices are 

removed for recharging, for water-based activities and other reasons often 

unknown to researchers. Thus, even if the most accurate and precise activity 

monitor is used, the occurrence of intermittent periods of missingness can 

bias activity estimates (Catellier et al., 2005) and even study conclusions 

(Borghese et al., 2019). This raises an important question: how might these 

biases be minimised? One strategy could be to permit each subject a small 

number of non-wear minutes and make no attempt to impute these gaps. To 

illustrate the problem with this approach, consider a subject with a RMR of 

1800 kcal/d, who removed a device for just two hours for charging. During 

this time, they average ~2 METs through sedentary behaviours and office 

activity. This would correspond to >300 kcal expended during the period of 

removal although they would have 92% wear time, which falls well within the 

minimum requirements of most research studies. This error would be far 

larger if any physical activity was performed in this period of missingness or 

the duration of removal was larger. If the same subject performed moderate 

activity during this period (~4 METs), the underestimate in EE would grow to 

> 600 kcal. Means of addressing missingness are needed when dealing with 

free-living accelerometer datasets.  

Research exists investigating imputation strategies in research-grade 

accelerometry data in short-term studies (Lee & Gill, 2018; Katapally & 

Muhajarine, 2014; Lee, 2013) but no research had been published relating to 

the commercial activity monitor data collected in long-term studies such as 

the NoHoW study. Therefore, it was necessary to conduct experiments to 

determine the optimal imputation strategy, minimum number of hours, days 

or weeks for valid measurements. The analysis presented in chapter 6  

(O’Driscoll, Turicchi, Duarte, et al., 2020) was conducted for these reasons 

and to address aim number 2. To complete this analysis a subsample of the 

most adherent participants in the NoHoW study (>97.5 % data availability) 

was used, providing over 2 million data points. Intra-class correlation 
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analyses provided insight into the minimum amount of data required to 

derive estimates of activity and the results of this analysis indicated the 

number of minutes, hours and days required to meet a predefined threshold 

of agreement (ICC = 0.9). Next, based on autocorrelation analyses it was 

determined that temporally proximate datapoints were far more informative 

in terms of imputation. With this knowledge, a simple scaling algorithm was 

proposed (NoHoW algorithm, see chapter 6 for the algorithm) with the aims 

of a) minimising the biases of missing data and b) being computationally 

feasible to use in large datasets such as the NoHoW study, which has 

billons of minutes of accelerometer data. The algorithm was evaluated in a 

simulation experiment, alongside numerous other imputation algorithms 

varying in complexity. By holding back the ‘complete’ data for all subjects, 

then deleting data at random and using the algorithms to impute these 

simulated missing data, it was possible to test the bias associated with each 

algorithm. Secondly, a more detailed simulation study was conducted to 

compare the most effective individual-centred algorithms (NoHoW, Kalman 

imputation and multiple imputation). In this analysis, over 21,800 simulations 

were performed allowing rigorous investigations of the validity of the 

methods at varying proportions of missing data. For TDEE, comparable 

errors were observed between the NoHoW algorithm and multiple imputation 

above ~16% missingness, with maximal RMSE values of ~69 kcal/day in the 

simulation with the largest proportion of missing data. Critically, the 

computation time of multiple imputation was over 450 times greater than the 

NoHoW algorithm (17 minutes vs 2.1 seconds per iteration). In attempting to 

apply this to a dataset the size of the NoHoW study, exponential growth in 

run time may be observed, which would make this approach infeasible with 

current computing capabilities. In addition to being a novel methodology in 

this field, there are important implications beyond EE estimation, for 

example, it was shown to be an accurate imputation method for both steps 

and physical activity categories. The subsequent chapters consider methods 

to model EE from wearable devices. However, if the devices are not worn, 

there is no data on which EE can be modelled and even the most accurate 

model would be of limited use. The clear implication of this work is a simple 

and accessible method, which offers a means to offset a potentially large 

contributor to errors in physical activity and TDEE summaries collected from 

a FB.  



- 224 - 

10.1.3 Aim 3: Development and validation of machine learning 

algorithms to predict EE 

The main findings from chapters 4 and 5, and aim 1, were that commercial 

activity monitors such as the FB provide inadequate estimates of EE. The 

extent to which researchers can address these issues in commercial devices 

is limited because of the proprietary nature of the prediction algorithms. 

Despite the FB’s accuracy limitations, several important characteristics of 

this device make it a scalable solution (in terms of duration and the number 

of participants) for real-world medical and health research. The devices are 

economically viable at ~£100 per device, they are durable and have cloud 

storage capabilities (Rosenberg et al., 2016; Vooijs et al., 2014; Wright et al., 

2017). It was known that complex, non-parametric learning algorithms i.e. 

tree-based methods (Ellis et al., 2014) and artificial neural networks 

(Montoye, Begum, et al., 2017; Staudenmayer et al., 2009) can be used to 

model accelerometer data but whether these advanced techniques could be 

used to improve estimates of EE in commercial devices was uncertain. This 

work was the first attempt at such approaches in commercial devices 

(O’Driscoll, Turicchi, Hopkins, et al., 2020).  

To develop models in a supervised setting, predictor variables are required 

as well as a gold-standard outcome variable, which is to be predicted based 

on the time-matched inputs. At present, gold-standard EE data can only be 

provided by indirect calorimetry at the required epochs (1 minute or less) 

and thus, a pair of laboratory studies (described in chapter 3) were 

combined in chapter 7. Both studies provided accelerometer data, as well 

as numerous physiological inputs from 3 different device configurations. In 

the combined protocols which consisted of sedentary, household and 

exercise tasks, the predictive accuracy of the algorithms used (random 

forests, gradient boosting or deep neural networks) for EE and activity 

intensity exceeded that of one of the more accurate research-grade devices, 

the SWA (O’Driscoll, Turicchi, Beaulieu, Scott, et al., 2020). In the 

generalisability studies, when applied to out-of-sample datasets, some 

degradation of performance was observed although these models still 

tended to produce RMSE values below the SWA manufacturer estimates, 

despite the reduced training data and notable differences in protocols and 

participants. This observation raises important considerations; it may be the 

validation method used (LOSO) provides an overestimate of the accuracy 

that could reasonably be expected in unseen participants. Alternatively, the 

degradation of performance may relate to the differences between the 
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activities performed in the protocols, and generalisability would be improved 

with more activities contributing to the training set. 

Whilst the model development and training phase needed to be in a 

controlled laboratory setting, the true test of these models would be in a 

more ecologically valid, free-living environment, where the type and duration 

of the behaviour of the subject are not controlled or known. Indeed, the 

development of obesity occurs in a free-living environment and this 

illustrates the importance of more ecologically valid validation studies. A 14-

day study was conducted in which 30 subjects wore several wearable 

devices to provide minute-level movement and heart rate data. The 

algorithms presented in chapter 7 were utilised to derive minute-level 

estimates of EE and through a hierarchical modelling approach, TDEE. This 

study was the first time machine learning models have been evaluated in 

this manner and will be the first comparison with the gold-standard (DLW), 

the analysis of which has been unfortunately delayed due to the disruption 

caused by the ongoing COVID-19 pandemic. The SWA was utilised as the 

next best solution, though this is not considered to be a gold-standard 

comparator. 

The hierarchical models tended to overestimate TDEE relative to the SWA 

manufacturer estimates, which was also seen in the PAL and EI estimates, 

as TDEE is central to the calculation of these outcomes. This chapter probed 

the potential causes of this disparity and highlighted some important points 

which may aid in gauging the plausibility of these estimates. First, the SWA 

has known limitations in athletic populations (Koehler & Drenowatz, 2017), 

which many of the subjects tested in this chapter were likely to have been 

(as indirectly indicated by a relatively high step count and a relatively low 

body fat percentage). This is potentially attributable to the use of the WHO 

equation in the manufacturer models. This widely used RMR prediction 

equation was derived on 7000 individuals from 23 countries but its accuracy 

has been called into question previously (Müller et al., 2004). In a sample 

with a higher than average percentage FFM for their body weight, it is 

expected that RMR would be higher than predicted by a linear model based 

on body weight (Schofield et al., 2019). Indeed, the WHO prediction 

equations systematically overestimate RMR at low RMR values but 

underestimate RMR at high RMR values according to a previous study 

(Müller et al., 2004), and the plots in figure 8.8 of this thesis indicate this. 

The effect of utilising predicted rather than measured RMR was directly 

investigated by running the hierarchical models with the WHO equations and 
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agreement improved substantially, providing strong evidence that the RMR 

equations may explain the substantial proportions of the difference between 

the SWA and machine learning model predictions.  

Second, comparisons were made to a similar study where DLW data were 

reported (Shook et al., 2018). It was argued that as the average RMR and 

step count in the TEED study were both notably higher, it would be 

reasonable to assume that the TDEE values (measured by DLW) would be 

higher than the 3170 kcal/day value reported in the highest TDEE group 

(Shook et al., 2018). Nonetheless, DLW data are required to confirm these 

suppositions. A subsequent and important distinction here between the 

manufacturer estimates (SWA and FB) and the modelling approaches is the 

transparency of the analysis. When the method of producing estimates of EE 

is completely proprietary, researchers applying these models have no 

understanding of the ‘under the hood’ assumptions and therefore cannot 

ascertain whether these models are appropriate for their experimental 

settings. Whilst the specific algorithms used in the models presented in this 

thesis are highly technical, the assumptions of the models, development 

cohorts and data are transparent which will aid interpretation to an extent.  

10.1.4 Aim 4: Estimation of EE, EI and energy balance in the 

NoHoW trial 

A central concern in the literature related to this thesis was that EI and 

physical activity data are typically collected with self-report questionnaires 

and these are of limited validity. It has been argued that they ‘no longer have 

a justifiable place in scientific research aimed at understanding actual EI and 

actual PAEE’ (Dhurandhar et al., 2015. pp 2). Quantitative mathematical 

approaches for estimating EI do exist and have been reviewed in chapter 1, 

however, the lack of an objective PAEE measurement almost certainly 

contributes to the limited precision observed at the individual level (Sanghvi 

et al., 2015). If TDEE could be estimated continuously and accurately it 

would almost certainly refine estimates of EI using such models (Sanghvi et 

al., 2015).   

The aims and studies discussed above may be considered as prerequisites 

for achieving the final aim of this thesis: to model the components of energy 

balance in the participants of the NoHoW study over weeks, months and 

years. By incorporating different means of estimating TDEE in the 

mathematical models (described in chapter 3 and 9), change in EI could be 

estimated and compared between groups with different weight outcomes as 

well as between predictive models. In applying these modelling approaches 



- 227 - 

to the NoHoW dataset, it became clear that patterns of EI vary over the time 

course of the study, particularly in the WL and WLM groups. This trajectory 

in ∆EI was remarkably similar to previous modelling studies (Göbel et al., 

2014; Guo et al., 2019; Polidori et al., 2016). The results suggested that EI 

was restricted to the greatest degree in the WL group.  The EE also fell and 

gradually increased towards and above baseline as the restriction subsided, 

although the FB manufacturer estimates did not show such a pattern. The 

changes in the group averages over time were slight, but the variability in 

PAEE (expressed in PAL) at the individual-level confirms that these 

estimates are important to include in these modelling studies. Future 

modelling work will aim to gain a more quantitative understanding of the 

importance of high-frequency body weight measures and PAEE, with 

particular consideration to the effect of having varying degrees of data 

availability. Nonetheless, the change in PAEE was relatively minor when 

compared to that of the EI changes, which is exactly as suggested in 

previous mathematical modelling studies (Polidori et al., 2016).   

10.2 Implications of this work and areas of future research 

The estimation of TDEE in energy balance research to date has involved a 

trade-off. If accuracy is the primary objective then the DLW method can be 

used to obtain the average TDEE over a period of ~14 days. The price of 

this method in addition to participant and researcher burden means that 

small groups of subjects must be studied and repeated measures are often 

not possible. Research-grade accelerometers may also be used, but the 

requirement for recharging means that they are also limited to relatively 

short-term measures and many lack the required precision and accuracy. 

Lastly, if scale and longitudinal measures are required then self-report tools 

can be used, but they also have substantial accuracy issues. With the recent 

developments in consumer wearable devices and the internet of things, it is 

now possible to overcome the limitations of scale and so-called ‘snapshot’ 

measures with relative ease, paving a new path for research in this area. 

What is broadly lacking, however, is an understanding of how these devices 

can be integrated into energy balance research. This thesis has taken 

important steps towards progressing wearables research within the field of 

energy balance by combining novel approaches and adaptations of previous 

mathematical modelling studies. The subsequent paragraphs consider the 

potential applications within the field of energy balance and related health 

research fields.  
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One of the most important benefits of being able to quantify EE continuously 

is the potential to further understanding of the relationships between PAEE 

and long-term health outcomes. It is important to state here the distinction 

between physical activity and EE; The former is defined as any bodily 

movement that results in EE (Caspersen et al., 1985) and thus EE increases 

with physical activity (Hills et al., 2014). It is known that physical activity 

(resulting in EE) and the minimisation of physical inactivity can positively 

impact non-communicable disease and mortality risk (Lee et al., 2012). 

However, many of the studies contributing to this evidence recruit large 

samples and follow these samples over many years, and have therefore had 

no other option but to assess sedentary and activity behaviours with self-

report measures (Physical Activity Guidelines Advisory Committee, 2018). 

As with dietary self-report measures, these estimates are often misreported 

although the bias tends to be an overestimate and this is related to social 

desirability biases (Adams et al., 2005). This is problematic because mis-

reported measures distort the observed relationships between biomarkers of 

health and disease and activity behaviours. For example, Celis-Morales et 

al., report that regression coefficients for the relationship between MVPA 

and HOMA-IR, insulin and triglyceride are up to 50% lower when using self-

reported physical activity (IPAQ), rather than accelerometer-derived 

estimates (Celis-Morales et al., 2012). Of the relatively rare studies that do 

objectively estimate physical activity with accelerometers, the vast majority 

use research-grade devices (Dohrn et al., 2018; LaMonte et al., 2018; Lee et 

al., 2018), and are therefore restrained to very short measurement periods. 

In a recent meta-analysis, long-term health outcomes are inferred based on 

measurement periods meeting the following criteria: ‘We included all 

participants who recorded a wear time of 10 or more hours each day for four 

or more days’ (Ekelund et al., 2019). Assessing PAEE by the methods 

presented in this thesis gives a clear opportunity to extend these observation 

periods over weeks, months and years, whilst still retaining the capability to 

assess EE at the minute-level.   

Currently, reference DLW databases are extremely expensive and resource-

intensive to obtain. Indeed, the international atomic energy agency (IAEA) 

DLW database is a relatively recent venture which has collated DLW 

measurements published since 1981, and at the time of writing this stands at 

7479 subjects from 361 studies and 31 countries (IAEA DLW database, 

2021). Given the time and resource invested in these studies, this is a 

relatively small sample compared with what can be achieved with activity 

monitoring devices, which can be used to track the behaviours of hundreds 
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of thousands of subjects (Doherty et al., 2017). Indeed, there were an 

estimated 29.57 million Fitbit users between 2012 and 2019 (Statista, 2021).  

By bridging the gap between these devices and the quantification of EE, as 

this thesis has attempted to do, it is likely to be possible to increase the size 

and information contained within such datasets by many orders of 

magnitude. A natural extension of TDEE estimates is the estimation of 

dietary reference values or EI requirements of groups of subjects (SACN, 

2011). This is a critical area of research that currently has large gaps in the 

available evidence, specifically for adults aged 18-30 years and >80 years 

(SACN, 2011). The ease of measurement with tracking technologies may fill 

this gap and allow large datasets to be collected in previously understudied 

groups. Moreover, DLW data offer limited insight into hourly, daily, weekly or 

seasonal EE in subjects. There is variation in participation in physical activity 

depending on climate and day of the week (Aspvik et al., 2018; Chan et al., 

2006; Doherty et al., 2017; Merchant et al., 2007; Shiroma et al., 2019) and 

it may be feasible to add these dimensions into reference databases in the 

future. The above is conditioned on repeated and robust evaluations of the 

accuracy of tracking technologies for EE estimates in a range of populations.  

Longitudinal tracking of EE and EI has implications for fields related to 

energy balance. The knowledge of a subject’s energy balance over time is a 

critical but often overlooked component in health research. Both acute and 

longer-term fluctuations in energy balance are implicated in blood lipid and 

glucose dynamics (Frayn & Evans, 2019. pp 277 - 301) but estimates of 

energy balance are infrequently incorporated in such studies. For example, 

studies (Hjorth et al., 2017; Ritz et al., 2019) have investigated the 

interactions between fasting blood glucose and weight outcomes and have 

produced results suggesting that impaired glucose uptake leads to reduced 

satiety in high carbohydrate diets. Insulin and glucose metabolism are 

seemingly altered at different rates of energy throughput, irrespective of 

whether a subject is in energy balance or not (Büsing et al., 2019). High vs 

low energy turnover may influence sensations of hunger and hormones 

related to appetite (i.e. GLP-1 and Ghrelin) (Hägele et al., 2019) or EI 

(Beaulieu et al., 2018; Edholm et al., 1955) and energy imbalances are also 

known to impact glucose metabolism (Lagerpusch et al., 2012). In the 

absence of an energy balance framework, there is the potential for the 

energy balance of the subject to confound the outcomes of such metabolic 

research, and this limits the conclusions that can be drawn.  
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In a recent landmark study, Berry et al report the results of a random forest 

model predicting the rise in triglyceride at 6 hours postprandially (Berry et al., 

2020). Despite a comprehensive set of features fed into the machine 

learning model, including microbiome, sleep, anthropometric, dietary, 

immunological and physical activity variables, the predictive ability for 

triglycerides was unremarkable (r=0.47 in the training cohort and r=0.42 in 

the validation cohort). Triglyceride responses are particularly sensitive to EE 

and energy balance status, as well as the activity status of the individual 

(Maraki & Sidossis, 2010) but in this study, no measures of energy balance 

were available. Minutes of physical activity were estimated by a research-

grade accelerometer, but accelerometer methods alone have been 

demonstrated to have limited accuracy for the classification of activity 

(Montoye et al., 2018). It is likely that the lack of physiological variables in 

the prediction of activity intensity may make it challenging to distinguish 

between the activities with similar acceleration patterns but different energy 

cost (i.e. walking on a flat surface vs carrying a load or walking on an incline) 

(Lyden et al., 2011). Based on the methods presented in this thesis, it may 

be possible to incorporate important measures of energy balance behaviours 

in future studies of glucose dynamics, where energy balance is likely to be 

implicated.  

A further implication of this work is the potential for advancing other scientific 

fields related to weight management. The field of genetics has seen 

substantial expansion in recent decades due to advances in sequencing 

technology, as well as statistical and computational techniques to process 

the datasets. Genome-wide association studies are exploring the genetic 

basis of EI, EE and associated health outcomes (Cole et al., 2020; Jiang et 

al., 2018). Some have argued that this methodology has not added much to 

our understanding, in part due to crude measures of the behavioural 

phenotype (Müller, Geisler, Blundell, et al., 2018). These studies require 

extremely large samples, which has necessitated estimates of energy or 

dietary intakes by self-reported measures over small time frames. This 

leaves little to no possibility to investigate the interactions between genetics, 

energy balance behaviours and chronic cardiometabolic conditions such as 

diabetes and heart disease (Jiang et al., 2018). Advancing such research, by 

incorporating objectively tracked measures of energy balance behaviours, 

would allow novel investigations into the determinants of weight and health 

outcomes, and the rigorous assessment of theories of body weight 

regulation which implicate genetic factors, such as the general model of 
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intake regulation (de Castro & Plunkett, 2002) which was discussed in 

chapter 9.  

Another example would be the psychological and behavioural sciences 

related to weight management. It is evident from the plots presented in 

chapter 9 and appendix 5.1 that there exists a wide range of EI at any 

given time point and hidden within weight trajectories are periods of over and 

undereating on an individual level (Chow & Hall, 2014). The argument has 

been made that measurement of psychometric variables at fixed time points 

(i.e. clinical investigation days at 6-month increments) is oversimplistic 

because they ignore the periods between measurement days (Stubbs et al., 

2019). This is problematic because the autonomous processes which are 

implicated in fluctuating energy balance behaviours (e.g. emotions) can 

change rapidly (Bargh & Chartrand, 1999; Stubbs et al., 2019). To establish 

a causal understanding between these factors, continuous measures of the 

predictor and outcome variables are necessary. Continuous ecological 

measures (real-time psychometric measurements in ecologically valid 

environments) collected with mobile applications have been used previously 

but it seems the methodological quality of these tools is poor and there is a 

lack of standardisation between studies (Degroote et al., 2020). The 

integration of high-quality momentary assessment tools with objective 

measures of energy balance can potentially contribute to a greater 

understanding of cause-effect relationships between psychological states 

and behaviour and the necessary refinement of interventions (Stubbs et al., 

2019). Though emphasis must be placed on the reliability and validity of the 

assessment tools used in this work, a review of >450 papers showed no 

correspondence between EI and appetite ratings in >50% of included papers 

(Holt et al., 2017). 

At this point, it is important to reflect on what the models presented estimate 

and where they can and cannot be applied. Concerning EE/activity, these 

measures give minute level estimates. They do not provide information on 

the types of activity being performed. To understand the determinants and 

barriers to physical activity and design effective interventions to improve this 

outcome, understanding the type and context of activity being performed will 

be important (Burton et al., 2012; Doherty et al., 2013; Koorts et al., 2011). 

As with EE, categorisation of activity behaviours represents a significant but 

not insurmountable computational challenge and significant progress has 

been made using wearable cameras to collect ecologically valid labelled 

training data (Doherty et al., 2013). Harmonisation of these approaches 
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would offer exciting avenues to understand how, where and when EE is 

accumulated in individuals or groups, which could be extended to 

personalised strategies to change physical activity behaviours.  

Concerning EI, the precision of estimates from the NIDDK models would 

probably become unacceptably low at <1-2 weeks. The work presented here 

is entirely focussed on estimating EI from EE and physiological models, 

however, this is just one piece of this puzzle and these methods say nothing 

about the short-term pattern of EI, meal composition and macronutrient 

intake, which are all associated with an array of metabolic processes, 

behaviours and health outcomes (Beaulieu et al., 2017; Byrne et al., 2017; 

Holt et al., 1995). Food groups tend to be misreported also, although the 

specific relationship between the degree of misreporting and food groups or 

even the ‘healthiness’ of the food is uncertain (Garden et al., 2018). The 

solution to this problem may lie in combining the methodologies presented 

here with recent developments in urinary metabolic phenotyping, which is 

showing potential to estimate dietary patterns of subjects. A recent study 

conducted in nearly 2000 US adults showed that some urinary metabolites 

covary with the consumption of self-reported dietary nutrients, although 

associations are moderate (r = 0.1 – 0.6) (Posma et al., 2020). An alternative 

may lie in the use of ecological momentary assessment with smartphone 

apps. The ‘Smart-intake application’ prompts participants via e-mail before 

each meal, reminding subjects to take a photograph of the meals they are 

consuming  (Martin et al., 2012). The omnipresence of mobile phones 

makes them a useful tool to capture eating behaviours in an ecologically 

valid environment. Importantly, this is still subject to participants 

remembering to photograph their foods and uncertainty remains regarding 

the accuracy of these methods. In a validation study compared to DLW, EI 

was 63% of the TDEE value in a sample of 23 women with obesity, although 

in this study, this value could be improved with the removal of some 

erroneous days (defined as days where reported energy intake was 1) <60% 

of TDEE, 2) <1000 kcal, or 3) <2 meals (not including snacks) were 

consumed (Most et al., 2018). A potential limitation of food photography 

approaches is that researcher time is likely required to process or verify 

photographs. Substantial progress has been made in the area of computer 

vision, in which deep neural networks can be used to derive the energy and 

macronutrient content of foods, based on a recording or static images. This 

approach requires algorithms to classify the type of food based on surface 

colours, shapes and texture and then estimate the volume of the food, both 

of which are associated with significant challenges, which have been 
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reviewed recently (Lo et al., 2020). Errors in volume estimation using state of 

the art methods vary, but are typically <20%  (Lo et al., 2020). Classification 

of foods in images is slightly more advanced. Training and testing on the 

Food-101 database, which consists of ~100,000 food images (25% of foods 

are retained for testing), benchmarks currently stand at accuracies of > 95% 

(Foret et al., 2020). Both metabolomics and food photography approaches 

create substantial researcher burden and do not appear, currently, to 

provide the level of accuracy required. Food recognition approaches are 

rapidly developing but are not yet established. As these approaches 

continue to develop and evolve, exciting opportunities to integrate dietary 

intake estimates within an energy balance framework will surely arise.  

10.3 Assumptions and considerations  

Research progresses through technological advancement, scientific 

breakthroughs and collaboration between fields. The models presented here 

are more sophisticated than models such as ‘flex-HR’ (introduced in chapter 

1) and other similar linear modelling approaches. This complexity appears to 

result in more accurate estimates of EE, at least as shown in the laboratory 

studies conducted in this thesis. However, as with any predictive model, they 

are associated with several assumptions, which may not necessarily hold for 

all subjects in all situations. A critical step in refining methodologies is to 

understand the potential consequences of the assumptions, thus, the work 

here must be ‘stress-tested’ to further understand their limitations and 

applications.  

The case has been made throughout this thesis that there is a significant 

advantage to the transparency of the modelling approach taken. It must be 

stated that there are some inputs to the models which rely on proprietary 

algorithms. The movement and heart rate variables in the models are 

extracted from Fitbit. Fitbit utilises proprietary algorithms to convert raw 

acceleration and photoplethysmography signals into activity estimates and 

heart rate, respectively. These algorithms probably apply filtering and 

cleaning steps and importantly, have the potential to be altered with firmware 

updates (Nelson & Allen, 2019). The solution to this issue would be the 

open-access of the raw data from commercial companies and products, as 

is offered by some research-oriented companies (Bassett et al., 2012). 

Without access to this information, it will be important to conduct agreement 

studies between different firmware versions to ensure consistency in 

outputs. This leads to a consideration of what the ‘ideal’ device might look 
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like for research studies. Undoubtedly, cloud-connectivity, long-battery life, 

comfort and acceptance by participants is imperative for use in research 

studies, to facilitate long-term assessment. An ideal device would also 

provide access to raw accelerometer and physiological signal data, at 

sufficiently small epochs and the cleaning steps applied by the 

manufacturers, with any alterations made to with software updates. Lastly, it 

would be possible to hide self-monitoring and motivational capacities of the 

device and the respective apps, therefore allowing researchers to untangle 

the effects of interventions and that of simply wearing a device and 

interacting with commercial applications, which often include motivational 

content.  

When generalising these models to free-living, it is assumed that sleeping 

metabolic rate is ~95% of RMR because this is the average value observed 

in humans. However, there is likely to be variance around this value and the 

sleeping metabolic rate can feasibly range between  0.85 - 1.02 x RMR 

(Goldberg et al., 1988), and may vary based on the composition of the diet 

(Lejeune et al., 2006). Next, the models are centred around RMR, which was 

not measured in the NoHoW trial. Some evidence suggests that as weight is 

lost, metabolic adaption occurs to give a metabolic rate lower than what 

might be expected based on the composition of the weight lost (Wolfe et al., 

2018). This metabolic adaption might persist over many years and even after 

the regain of lost weight (Fothergill et al., 2016), though others report 

contrary results, with limited or no evidence of metabolic adaptation after 

weight has stabilised (Amatruda et al., 1993; Das et al., 2003; Wolfe et al., 

2018). These contradictory results mean it is challenging to precisely 

quantify the effects this might be having in the NoHoW cohort without direct 

measurement. Prediction equations for RMR such as Harris-Benedict, WHO 

or Mifflin-St Jeor may provide reasonable predictive accuracy at the group 

level, but are often associated with large errors at the individual level, 

indeed, a study conducted in 30 healthy adults reported that common 

prediction equations had a small mean bias (-14 kcal/day) for Harris-

Benedict but wide limits of agreement (> 300 kcal/d)  (Flack et al., 2016). 

Where RMR data are unavailable, which is typical in large scale studies 

such as NoHoW, predicting RMR is unavoidable. Unfortunately, errors in 

RMR estimates may silently propagate through the models, as the 

denominator for METs is RMR. The Mifflin-St Jeor equation was used in 

chapter 9 and it appears to be one of the most reliable equations in obese 

and non-obese subjects (Frankenfield et al., 2005) but any linear model is 

likely to have limited accuracy at the individual level. Indeed, errors of up to 
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~600 kcal/day were observed when comparing the WHO equation to RMR 

measured by the GEM in chapter 8. Some recent evidence suggests 

machine learning approaches may predict RMR more accurately in clinical 

populations (Ponce et al., 2020).  

There will naturally be subjects that deviate from the assumptions of the 

NIDDK model (see chapter 3), even though rigorous work has been 

conducted to consider these issues (Hall & Chow, 2011). This is also true of 

the EE algorithms which will tend to reproduce the training data and the 

complex function within that data. This thesis combined these two modelling 

approaches and the potential for model errors to be compounded must be 

recognised. Another significant limitation in this work is the assumption of a 

constant rate of DIT for all subjects. The extent to which some EE 

attributable to digestion may be incorporated in the calibration data has 

received extensive consideration throughout chapter 8, and those analyses 

and considerations are not repeated here. This issue has been investigated 

in the development of the NIDDK model. To account for digestive and 

adaptive processes, the model uses a value of 0.24. This value is estimated 

on data collected in 8 longitudinal weight-loss studies and 157 subjects (Hall 

& Jordan, 2008). Importantly, Hall and Jordan report an associated standard 

deviation of 0.13 based on Monte-Carlo simulations, indicating a relatively 

large degree of uncertainty in this estimate. An alternative approach used in 

previous studies is to estimate DIT based on the self-reported energy and 

macronutrient dietary intakes (Brage et al., 2015). Utilising this approach 

may allow researchers to account for dietary factors which alter the DIT of a 

subject (i.e. high protein intake (Westerterp et al., 2004)). As with EI, 

macronutrients can be over or under-reported (Macdiarmid & Blundell, 

1998), which could introduce substantial error in DIT estimates. It is 

therefore unclear whether using self-report data would offer any benefit 

beyond assuming a constant DIT factor amongst participants. 

An alternative source of error may relate to the phenomena of exercise 

economy, which describes the energy cost of mechanical work, independent 

of body weight (Pontzer, 2017). Very generally, the energetic cost of 

locomotion appears to be negatively correlated with the training status of the 

individual (Morgan et al., 1989; Saunders et al., 2004) although this finding is 

not completely consistent, with other studies reporting no differences based 

on the distribution of body mass (Browning et al., 2006). Those classified as 

obese may have worse economy during locomotion (Chen et al., 2004) 

although again, this difference is not always observed (Browning et al., 
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2013). Weight loss in combination with an exercise regime may serve to 

increase economy of exercise in previously sedentary adults, although this is 

not seen if exercise is not included in the weight loss regime (Amati et al., 

2008). Weight loss may serve to decrease the metabolic cost of isometric 

muscular contractions (Peyrot et al., 2012) or may act on exercise economy 

via hormonal pathways, perhaps by a reduction in leptin concentrations and 

associated adrenal and thyroidal changes (MacLean et al., 2011; 

Rosenbaum & Leibel, 2010). Overall, it appears that characteristics such as 

age, weight, sex, and cardiorespiratory fitness explain some of the variation 

in exercise economy (Chen et al., 2004) but the mechanisms remain 

uncertain.  

At present, factors such as DIT and exercise economy are not measurable 

to the degree that they may be used as input variables in prediction models. 

It must be recognised that all of the above may lead to errors for individual 

subjects and future work must aim to gain a quantitative understanding of 

these phenomena, to model TDEE and EI more accurately. It is of 

paramount importance that future research considers the above and 

quantitatively investigates the implications of these assumptions. This will be 

necessary to move towards applications in clinical populations. 

10.4 Limitations of this PhD 

In each chapter of this thesis, specific limitations have been raised for the 

methodology employed in that specific chapter. The aim here is to consider 

general limitations which apply to the body of research overall but not repeat 

study-specific limitations. Furthermore, the above assumptions can also be 

considered as limitations of the models in their current form.  

First, the sample used to study energy balance and WLM in chapter 9 may 

limit the generalisability of results. The sample analysed were those that i) 

lost a substantial amount of body weight before the trial ii) on average, 

maintained lost weight (though substantial individual differences exist) and 

iii) did not drop out of the trial. The potential that this sample is of limited 

representativeness must be considered. Furthermore, the sample used for 

development in chapter 8 were healthy adults, for whom the relationship 

between the input vectors and outputs (i.e. EE or activity classification) may 

differ from samples with various diseases. Above, it was suggested that 

wearables may be used to study the energy requirements of previously 

understudied age groups and if this extended to various disease states, the 

collection of new or additional calibration data would be required. 



- 237 - 

Almost all the results and arguments made throughout are relevant to the 

use of the FB device. This may be considered a limitation because devices 

themselves could be influencing the subject’s behaviour. Mobile applications 

provide the subject with various rewards and goals, delivered through apps, 

which can motivate the subject (Lyons et al., 2014). It may also mean that 

these methods would disproportionately apply to certain groups that are 

most likely to engage or be able to engage with this technology. Research 

has implicated gender, ethnicity and psychosocial metrics in user 

engagement (Lewis et al., 2020) and it may be that factors like education 

status, body weight and physical activity level may be predictive of 

decreased ownership of wearable devices (Macridis et al., 2018). It will be 

important to ensure representativeness across all of the aforementioned 

strata in future uses of these models.  

 A further limitation of this work relates to the methodology for the collection 

of body weights. The Aria scales were used (see Chapter 3), however, 

controlling each measurement is infeasible and subjects may have weighed 

themselves in different clothes, or at different times of the day. To overcome 

this, a smoothing regression was fitted to the weight data although it is 

currently impossible to accurately quantify the degree of noise in this data. In 

free-living subjects, EI can fluctuate markedly (Bray et al., 2008; Tarasuk & 

Beaton, 1991), which, because of the associated carbohydrate and sodium, 

causes fluctuations in total body water and weight (Durnin, 1961; Edholm et 

al., 1970; Hall & Chow, 2011). Water fluctuations play an important part in 

the composition of weight change. Bhutani et al used biomarker methods 

and DEXA to show body water fluctuates significantly with weight change 

and that short-term weight change was composed of 84% FFM (Bhutani et 

al., 2017). Such issues could bias the EE models (as weight is a predictive 

variable), although the simulation studies reported in chapter 8 imply large 

variance in weight leads to small or no changes to the METs output. 

Regarding the EI models, Hall and Chow, using simulated data, illustrate the 

effects of water balance changes on the NIDDK model (which does not 

currently account for large fluctuations in body water) (Hall & Chow, 2011). 

Their results indicate that change in EI is likely overestimated when weight 

loss is rapid because this phase of weight loss is characterised by a 

proportionately high loss of body water (Heymsfield et al., 2011). Hall and 

Chow suggest that an increased frequency of body weight sampling can 

overcome this limitation (as linear regression is fitted to the weights), and in 

this sense, the data used in this thesis is unrivalled in the published literature 

on mathematical modelling of EI.  
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10.5 Conclusions   

Some research within and related to energy balance has been in crisis 

because of an inability to quantify both EI and EE longitudinally. If accurate 

estimates of EE could be obtained from wearable devices (e.g. FB) they 

could be used to estimate EI and EE in large samples in free-living 

environments. This thesis began by investigating the validity of wearable 

devices, and it was shown that many are inaccurate for the estimation of EE. 

Subsequently, a computational approach was taken to develop and evaluate 

algorithms to address missing data and then to improve estimates of EE, by 

learning the non-linear relationships between EE, movement, and 

physiological variables. Taken together, the developed methodologies were 

applied to approximate TDEE and were incorporated into mathematical 

models to provide ∆EI estimates in participants in the NoHoW study. These 

studies provided strong evidence that EI varies more than EE in subjects 

gaining, losing or maintaining weight. Furthermore, it was shown that in 

those losing or maintaining weight, an initially large change in EI slowly 

returns towards baseline, indicating a slow relaxation of energy restriction. 

Whilst this thesis illustrates the potential value and utility of such 

approaches, much work is required to further develop accurate, precise and 

accessible methods for energy balance modelling. These methods would be 

enhanced by cloud-connected devices that provide raw acceleration in three 

axes and physiological signal sensor data. If these methodologies are 

developed, tested and validated further, they could potentially offer a 

scalable solution to objectively quantify energy balance behaviours across a 

multitude of life sciences.   
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List of Abbreviations 

 

 

Device abbreviations specific to chapter 4  

ACT, Actical;  

AGT3X, Actigraph GT3X;  

AW, Apple watch;  

AWS2, Apple Watch series 2;  

BA, Beurer AS80;  

BMC, Bodymedia CORE armband;  

BP, Basis Peak;  

EP, Epson Pulsense;  

EPUL, ePulse Personal Fitness Assistant;  

FB, Fitbit Blaze;  

FC, Fitbit Charge;  

FC2, Fitbit Charge 2;  

FCHR, Fitbit Charge HR;  

FF, Fitbit Flex;  

GF225, Garmin Forerunner 225;  

GF920XT, Garmin Forerunner 920XT;  

GVA, Garmin Vivoactive;  

GVF, Garmin Vivofit;  

GVS, Garmin vivosmart;  

GVHR, Garmin Vivosmart HR;  

JU, Jawbone UP; 

 JU24, Jawbone UP24;  

LC, LifeChek calorie sensor;  

MA, Mio Alpha;  

MB, Microsoft band;  

MS, Misfit Shine;  

NF, Nike FuelBand;  

PL, Polar Loop;  

Polar AW200, Polar, AW200;  

PA360, Polar, AW360;  
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SG, Samsung Gear S;  

SWA, SenseWear Armband;  

SWA p2, SenseWear Armband Pro 2;  

SWA p3, SenseWear Armband Pro 3;  

SWAM, SenseWear Armband Mini;  

TT, TOMTOM Touch;  

V, Vivago;  

WP, Withings Pulse;  

WPO, Withings Pulse O2 

Abbreviations used consistently throughout the thesis  

Actigraph, AG; 

Activity energy expenditure, AEE; 

Adenosine-monophosphate, AMP; 

Adenosine triphosphate, ATP; 

Analysis of variance, ANOVA; 

Air displacement plethysmography, ADP; 

Application programming interface, API; 

Basal metabolic rate, BMR; 

Beats per minute, BPM; 

Body mass index, BMI;  
Dual-energy x-ray absorptiometry, DEXA; 

Diastolic blood pressure, DBP; 

Dietary induced thermogenesis, DIT; 

Doubly labelled water DLW; 

Energy expenditure, EE; 

Energy intake, EI; 

Energy storage, ES; 

Fitbit Charge 2, FB; 

Fat mass, FM; 

Fat-free mass, FFM; 

Gradient boost, GB; 

k-nearest neighbors, KNN; 

Kilocalorie, KCAL; 

Kilogram, KG; 

Kilojoule, KJ; 

Mean absolute error, MAE; 
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Bioelectrical impedance analysis; BIA 

Mean absolute percentage error, MAPE 

Megajoule, MJ; 

Metabolic equivalent (MET); 

Moderate-to-vigorous physical activity, MVPA; 

National Institute of Diabetes and Digestive and Kidney Disease, NIDDK; 

Neural network, NN; 

Non-exercise activity thermogenesis, NEAT; 

Physical activity energy expenditure, PAEE; 

Physical activity level, PAL; 

Random Forest, RF;  

Resting metabolic rate, RMR; 
Resting heart rate, RHR; 

Root mean squared error, RMSE; 

SenseWear Armband Mini, SWA; 

Standard deviation, SD;  

Standard error, SE;  

Systolic blood pressure, SBP; 

Support vector machine, SVM; 

Total body water, TBW; 

Total daily energy expenditure, TDEE; 

Total energy expenditure from wearable devices (study), TEED; 

Volume of carbon dioxide consumption, VCO2; 

Volume of oxygen consumption, VO2; 

World health organisation, WHO;  

Weight gainer, WG; 

Weight loser, WL;  

Weight loss maintainer, WLM; 
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Appendices 

Appendix 1.1 Search strategy 

Population: Healthy adult populations (>18). Free from factors that impact physical movement.  
Intervention: activity monitors + all research grade accelerometers (must be wearable on wrist or arm) 

Comparison: Validated method: metabolic cart, DLW, DC, all IC systems,  
Outcome: validity of energy expenditure (kcal/kj/met/correlation) 
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FITNESS TRACKERS 

(CINHAL) 

ACCELEROMETRY 

(MESH)  

ACCELEROMETER 

AMBULATORY 

MONITOR* 

FITBIT 

ACTIVITY MONITOR 

 

 

VALID*  

COMPAR* 

TEST 

  

 

ENERGY 

METABOLISM 

(MESH) 

CALORIES 

ENERGY 

EXPENDITURE 

CALORIC 

EXPENDITURE 

TOTAL DAILY 

ENERGY 

EXPENDITURE 

TDEE 

AEE  

 

Terms to 

include 

in search 

 

  

 

 

1. Activity tracker 

2. Activity Monitor 

3. Health tracker 

4. Health monitor 

5. Fitness tracker 

6. Fitness monitor 

7. Physical activity 

tracker 

8. Physical activity 

monitor 

9. Exercise tracker  

10. Exercise monitor  

11. Electronic 

tracker  

12.  Electronic 

monitor  

13. acceleromet 

14.  Step tracker  

 

1. Doubly 

labelled water 

2. Dlw 

3. Indirect 

caliomet* 

4. Caliomet* 

5. Direct 

caliomet*  

6. Metabolic 

chamber 

7. Metabolic cart 

8. Gold standard 

9. Criterion  

 

Energy expenditure  

1. Energy 

metabolism 

2. Calori*  

3. Calori* 

expenditure 

4. Total 

energy 

expenditure 

5. Activity 

energy 

expenditure 

6. AEE  

7. TDEE 
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(Tracker AND EE) AND Validation  

1. Activity tracker 

2. Activity Monitor 

3. Health tracker 

4. Health monitor 

5. Fitness tracker 

6. Fitness monitor 

7. Physical activity tracker 

8. Physical activity monitor 

9. Exercise tracker  

10. Exercise monitor  

11. Electronic tracker  

12. Electronic monitor  

13. acceleromet 

14. Step tracker  

15. Wearable  

 

AND  

1. Energy expenditure  

2. Energy metabolism 

3. Calori*  

4. Calori* expenditure 

5. Total energy expenditure 

6. Activity energy expenditure 

7. AEE  

8. TDEE 

AND 

1. Doubly labelled water 

2. Dlw 

3. Indirect caliomet* 

4. Caliomet* 

5. Direct caliomet*  

6. Metabolic chamber 

7. Metabolic cart 

8. Gold standard 

9. Criterion  

 

 

Database Search Results 

Sport discus ( activity tracker or activity monitor or 

health tracker or health monitor or 

154 

15.  Wearable  
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fitness tracker or fitness monitor or 

physical activity tracker or physical 

activity monitor or exercise tracker or 

exercise monitor or electronic tracker 

or electronic monitor or acceleromet* 

or step tracker or wearable tracker ) 

AND ( energy expenditure or energy 

metabolism or calori* or calori* 

expenditure or total energy 

expenditure or activ* energy 

expenditure or AEE or TDEE ) AND ( 

doubly labelled water or DLW or 

indirect caliomet* or caliomet* or direct 

caliomet* or metabolic chamber or 

metabolic cart or gold standard or 

criterion ) 

 

 

Pubmed 

 

 

((((((((((((((((((activity tracker) OR 

activity monitor) OR health tracker) OR 

health monitor) OR fitness trackers) 

OR fitness monitor) OR physical 

activity tracker) OR physical activity 

monitor) OR exercise trained) OR 

exercise monitor) OR electronic 

trackers) OR electronic monitor) OR 

acceleromet*) OR step tracer) OR 

wearable trackers)) AND ((((((((energy 

expenditure) OR energy metabolism) 

OR calori*) OR calori* expenditure) OR 

total energy expenditure) OR activ* 

energy expenditure) OR AEE) OR 

tdee))) AND (((((((((doubly labelled 

water) OR DLW) OR indirect 

caliomet*) OR caliomet*) OR direct 

caliomet*) OR metabolic chamber) OR 

metabolic cart) OR gold standard) OR 

criterion). 

605  
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MEDLINE ((activity tracker or activity monitor or 

health tracker or health monitor or 

fitness tracker or fitness monitor or 

physical activity tracker or physical 

activity monitor or exercise tracker or 

exercise monitor or electronic tracker 

or electronic monitor or acceleromet* 

or step tracker or wearable 

tracker).mp. AND (energy expenditure 

or energy metabolism or calori* or 

calori* expenditure or total energy 

expenditure or activ* energy 

expenditure or AEE or TDEE).mp. 

AND (doubly labelled water or DLW or 

indirect caliomet* or caliomet* or direct 

caliomet* or metabolic chamber or 

metabolic cart or gold standard or 

criterion).mp. [mp=title, abstract, 

heading word, drug trade name, 

original title, device manufacturer, drug 

manufacturer, device trade name, 

keyword, floating subheading word] 

 

 

228 

Psycinfo ((activity tracker or activity monitor or 

health tracker or health monitor or 

fitness tracker or fitness monitor or 

physical activity tracker or physical 

activity monitor or exercise tracker or 

exercise monitor or electronic tracker 

or electronic monitor or acceleromet* 

or step tracker or wearable 

tracker).mp. AND (energy expenditure 

or energy metabolism or calori* or 

calori* expenditure or total energy 

expenditure or activ* energy 

expenditure or AEE or TDEE).mp. 

26 
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AND (doubly labelled water or DLW or 

indirect caliomet* or caliomet* or direct 

caliomet* or metabolic chamber or 

metabolic cart or gold standard or 

criterion).mp. [mp=title, abstract, 

heading word, drug trade name, 

original title, device manufacturer, drug 

manufacturer, device trade name, 

keyword, floating subheading word] 

 

Embase ((activity tracker or activity monitor or 

health tracker or health monitor or 

fitness tracker or fitness monitor or 

physical activity tracker or physical 

activity monitor or exercise tracker or 

exercise monitor or electronic tracker 

or electronic monitor or acceleromet* 

or step tracker or wearable 

tracker).mp. AND (energy expenditure 

or energy metabolism or calori* or 

calori* expenditure or total energy 

expenditure or activ* energy 

expenditure or AEE or TDEE).mp. 

AND (doubly labelled water or DLW or 

indirect caliomet* or caliomet* or direct 

caliomet* or metabolic chamber or 

metabolic cart or gold standard or 

criterion).mp. [mp=title, abstract, 

heading word, drug trade name, 

original title, device manufacturer, drug 

manufacturer, device trade name, 

keyword, floating subheading word] 

 

317 

CINHAL ( activity tracker or activity monitor or 

health tracker or health monitor or 

fitness tracker or fitness monitor or 

physical activity tracker or physical 

142 
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activity monitor or exercise tracker or 

exercise monitor or electronic tracker 

or electronic monitor or acceleromet* 

or step tracker or wearable tracker ) 

AND ( energy expenditure or energy 

metabolism or calori* or calori* 

expenditure or total energy 

expenditure or activ* energy 

expenditure or AEE or TDEE ) AND ( 

doubly labelled water or DLW or 

indirect caliomet* or caliomet* or direct 

caliomet* or metabolic chamber or 

metabolic cart or gold standard or 

criterion ) 

 

Obtained from reference lists  63 

  AFTER REMOVAL OF 

DUPLICATES: 825 

Exclusions: 

1 = not comparison to criterion  

2 = not comparison to accelerometer  

3 = not healthy adult population 

4 = review  

5 = not kcal/kj 

6= duplicate 
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Appendix 1.2 Study systematic review 

 

 Sample characteristics Study protocol Setting 

(Lab/ 

Field) 

Criterion comparison Device Device 

placement  

Results (overall error 

relative to criterion)  

Alsubheen, 

2016 

N=13 (5 F) 

Age: 40 ± 11.9 y  

BMI: 27 ± 4.3 kg/m2 

Subjects performed a graded treadmill test.  Lab IC – Sable system 

(Sable Systems 

International, Las 

Vegas NV) 

Garmin vivofit (Garmin ltd, 

Olathe, Kansas, USA)  

 

Wrist Garmin vivofit:  

-41.63% 

 

Bai, 2017 N=39 (16 F) 

Age: 32 ± 11 y 

BMI: 24.7 ± 4 kg/m2 

Subjects performed a semi-structured 

activity protocol consisting of sedentary 

activity, aerobic exercise, and light intensity 

physical activity on a treadmill. 

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

Apple watch (Apple Inc, 

Cupertino, California, USA) 

 

Fitbit charge HR (Fitbit Inc, 

San Francisco, California, 

USA) 

Wrist Apple Watch:  

-10.79% 

 

Fitbit Charge HR:  

17.88% 

 

Benito, 2012 N=29 (17 F) 

Age: 22.5 y 

Subjects performed circuits of resistance 

exercise at 30%, 50% and 70% of 15 

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

SenseWear Pro2 Armband 

(HealthWear, Bodymedia, 

Upper arm  SenseWear Pro2 

Armband: -46.60%  
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BMI: 22 kg/m2 repetition maximum.  Viasys Healthcare, 

Germany) 

Pittsburgh, PA, USA)   

Berntsen, 

2010  

  

N=20 (6 F) 

Age: 35 y 

BMI: 24 kg/m2 

Subjects performed lifestyle and sporting 

activities including strength exercises, ball 

games, occupational and home-based 

activities. 

Lab IC – MetaMax II (Cortex 

Biophysic, Leipzig, 

Germany) 

SenseWear Pro2 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro2 

Armband: -9.00% 

 

Berntsen, 

2011 

N=29 (29 F) 

Age: 31 ± 4.1 y 

BMI: 27 ± 3.2 kg/m2 

Subjects participated in a period of 

sedentary behaviour. 9 subjects then 

performed callisthenics and cycling on a 

bicycle ergometer. The other 20 subjects 

performed outdoor walking followed by 

relaxing, cycling and callisthenics. 

Lab IC – MetaMax II (Cortex 

Biophysic, Leipzig, 

Germany) 

SenseWear Pro2 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro2 

Armband: -10.34% 

 

Bhammar, 

2016 

N=34 (26 F) 

Age: 30.1 ± 8.7 y 

BMI: 26.2 ± 5.1 kg/m2 

 

Subjects performed a semi structured and 

a structured routine. 

Semi-structured: 12 activities including 4 

sedentary/light-intensity activities, 4 

moderate-intensity activities, and 4 

vigorous-intensity activities. The activities 

performed were randomly selected from a 

list of common activities. 

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA)  

 

 

Upper arm SenseWear Mini 

Armband: 14.76% 
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Structured: A period of rest, followed by 7 

activities of 8 minutes each. The activities 

performed were randomly selected from a 

list of common activities. 

Boudreaux, 

2018  

N=50 (28 F) 

Age: 22.4 y 

BMI: 26.5 kg/m2 

Subjects performed separate trials of 

graded cycling and 3 sets of 4 resistance 

exercises at a 10-repetition maximum load.  

Lab  IC – Parvo TrueOne 

2400 (Parvo Medics, 

East Sandy, UT, USA) 

 

Apple Watch 2 (Apple Inc, 

Cupertino, California, USA) 

 

Fitbit Blaze (Fitbit Inc, San 

Francisco, California, USA) 

 

Fitbit Charge 2 (Fitbit Inc, San 

Francisco, California, USA) 

 

Garmin Vivosmart HR 

(Garmin ltd, Olathe, Kansas, 

USA)  

 

Polar: the Activity Watch 360 

 Apple Watch 2: 48.20% 

 

Fitbit Blaze: 28.66% 

 

Fitbit Charge 2:  

-30.97% 

 

Garmin Vivosmart HR:  

16.85% 

 

Polar: the Activity 

Watch 360:  
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(Polar Electro Oy, Kempele, 

Finland) 

 

Tomtom touch (TomTom, 

Amsterdam, the Netherlands)  

28.68% 

 

Tomtom Touch: 28.66% 

 

Brazeau, 

2011  

N=31 (16 F) 

Age: 26.7 y 

BMI: 27.5 kg/m2 

Subjects performed 45 minutes of 

stationary cycling at 50% VO2peak. 

Lab IC – Ergocard exercise 

test station (MediSoft, 

Dinant, Belgium) 

SenseWear Pro3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro3 

Armband: -10.56% 

 

Brazeau, 

2014 

N=38 (18 F) 

Age: 28.6 y 

BMI: 23.8 kg/m2 

Subjects performed 45 minutes of treadmill 

exercise at 40% VO2peak then exercised on 

a stationary bike ergometer for 45 minutes 

at 50% VO2peak. 

Lab IC – Ergocard exercise 

test station (MediSoft, 

Dinant, Belgium) 

SenseWear Pro3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro3 

Armband:  

14.94% 

 

Brazeau, 

2016  

N=20 (0 F) 

Age: 26.2 ± 3.6 y 

BMI: 23.1 ± 2.3 kg/m2 

Subjects completed a field observation and 

a lab protocol.  

 

Field: 7-day comparison to DLW.  

 

Lab: Subjects performed 60 minutes rest 

Lab/ 

Field 

DLW – 7 days 

 

IC – Ergocard exercise 

test station (MediSoft, 

Dinant, Belgium) 

SenseWear Pro3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro3 

Armband:  

7.06% 
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followed by treadmill exercise for 45 

minutes at 22-41% VO2peak then stationary 

cycling for 45 minutes at 50% VO2peak.  

Brugniaux, 

2010 

N=31 (16 F) 

Age: 42.9 y 

BMI: 22.7 kg/m2 

Subjects performed a 9.7km outdoor hike. Field IC – Metablograph with 

Hans Rudolph 

facemask (Hans 

Rudolph, Kansas City, 

MO, USA) 

Polar: the Activity Watch 200 

(Polar Electro Oy, Kempele, 

Finland) 

Wrist Polar: the Activity 

Watch 200: -13.17% 

 

Calabro, 

2014  

N=40 (19 F) 

Age: 27.4 y 

BMI: 22.8 kg/m2 

Subjects performed 60 minutes of 

structured activities including stationary 

biking, walking/ running on a treadmill, 

road biking, elliptical exercise and stair 

stepping and unstructured movements. 

The semi-structured measurement periods 

were performed in 5, 10, 10, 10, and 25-

minute intervals and included sitting, 

walking, standing, stair climbing or light 

movements. 

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

SenseWear Pro3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Mini 

Armband: 0.89% 

 

SenseWear Pro3 

Armband:  

2.33% 

 

 

Calabro, 

2015 

N=29 (17 F) 

Age: 68.8 ± 6.3 y 

14-day comparison to DLW. Field DLW – 14 days SenseWear Mini Armband  

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Mini 

Armband: -0.86% 
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BMI: 26.3 ± 4.9 kg/m2  

Casiraghi, 

2013 

N=18 (11 F) 

Age: 48.6 ± 21 y 

BMI: 24.6 ± 2.6 kg/m2 

Subjects performed a cycling protocol with 

three components: 

1) Baseline where the subject sat on the 

cycle ergometer.  

2)  A 2-minute warm-up at 40 rpm at 40 

watts.  

3)  Exercise increased to 60 rpm and 

intensity progressed by 7 watts/minute until 

exhaustion.  

Lab IC – SensorMedics 

Vmax 229 

(SensorMedics Inc, 

Yorba Linda, CA, USA). 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

 

Upper arm 

 

 

SenseWear Armband: -

8.00% 

 

Chowdhry, 

2017  

N=30 (15 F) 

Age: 27 ± 1.6 y 

BMI: 23.4 ± 2.5 kg/m2 

Subjects performed two components:  

1) A protocol of 4 activities of designed to 

replicate daily living tasks 

2) 4 activities of 10 minutes in duration. 

These activities were walking on a 

treadmill, walking at the same speed with 

shopping bags, cycling on an ergometer 

and jogging on the treadmill.  

Lab IC – COSMED K4b2 

(COSMED, Rome, Italy)  

Apple watch (Apple Inc, 

Cupertino, California, USA) 

 

Microsoft Band (Microsoft 

Corporation, Redmond, 

Washington, USA)  

 

Fitbit Charge HR (Fitbit Inc, 

San Francisco, California, 

Wrist  

 

Bodymedia 

core: 

Upper arm 

Apple watch: -6.9% 

 

Microsoft Band:  

-49.15% 

 

Fitbit Charge HR:  

15.49% 
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USA) 

 

Jawbone UP24 (Jawbone, 

San Francisco, California, 

USA) 

 

Bodymedia Core 

(HealthWear, Bodymedia, 

Pittsburg, PA, USA) 

Jawbone UP24:  

-21.01% 

 

 

Bodymedia Core:  

7.98% 

 

 

 

 

 

Colbert, 

2011 

N=56 (45 F) 

Age: 74.7 ± 6.5 y 

BMI: 25.8 ± 4.2 kg/m2 

10-day comparison to DLW.  Field  DLW – 10 days SenseWear Pro 3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Pro 3  

Armband:  58.53%  

 

Correa, 2016 N=87 (72 F) 

Age: 42 ± 13 y 

BMI: 31.6 ± 4.5 kg/m2 

7-day comparison to DLW.  Field  DLW – 7 days SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm 

 

Wrist  

SenseWear Armband 

−416.95 kcal 
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Actical (Phillips Respironics 

Inc, Murrysville, PN, USA) 

Actical: 194.52 kcal 

 

Diaz, 2015 N=23 (13 F) 

Age: N/A 

BMI: N/A 

Subjects performed a treadmill protocol 

consisting of walking at slow, moderate 

and brisk paces and jogging.  

Lab IC – Ultima CPX 

(Medgraphics, Saint 

Paul, MN, USA) 

 

Fitbit Flex (Fitbit Inc, San 

Francisco, CA, USA) 

Wrist Fitbit Flex: 17.36% 

 

Diaz, 2016 N=13 (13 F) 

Age: 32.0 ± 9.2 y 

BMI: 24.2 ± 3.4 kg/m2 

Subjects performed a treadmill protocol 

consisting of walking at slow, moderate 

and brisk paces and jogging.  

Lab IC – Ultima CPX 

(Medgraphics, Saint 

Paul, MN, USA) 

 

Fitbit Flex (Fitbit Inc, San 

Francisco, CA, USA) 

Wrist Fitbit Flex: 30.27% 

 

Dondzila, 

2016 

N=19 (5 F) 

Age: 24.6 ± 3.1 y 

BMI: 28.0 ± 3.8 kg/m2 

Subjects performed 5-minute stages of 

jogging on a treadmill at increasing 

velocity.  

Lab IC – Parvo TrueOne 

2400 (Parvo Medics, 

East Sandy, UT, USA) 

 

Fitbit Charge (Fitbit Inc, San 

Francisco, California, USA) 

 

Wrist Fitbit Charge: -13.01% 
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Dooley, 

2017 

N=62 (36 F) 

Age: 22.46 y 

BMI: 24.86 kg/m2 

Subjects performed 4 stages of treadmill 

exercise followed by a seated recovery 

period. The activity routine consisted of an 

unmeasured warm-up walking period and 

measured stages of slow, then brisk 

walking and jogging. 

Lab IC – Parvo TrueOne 

2400 (Parvo Medics, 

East Sandy, UT, USA) 

 

Apple watch (Apple Inc, 

Cupertino, CA, USA) 

 

Fitbit charge HR (Fitbit Inc, 

San Francisco, CA, USA) 

 

Garmin Forerunner 225  

(Garmin ltd, Olathe, Kansas, 

USA)  

Wrist Apple watch: 64.55% 

 

Fitbit charge HR: 

18.70% 

 

Garmin Forerunner 225: 

44.23% 

 

Drenowatz, 

2011  

N=20 (10 F) 

Age: 24.3 y 

BMI: N/A 

Subjects performed three treadmill runs at 

65, 75, and 85% VO2max. 

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Armband: -

32.80% 

 

Erdogan, 

2010 

N=43 (27 F) 

Age: 34.9 ± 5.5 y 

BMI: 31.2 ± 3.7 kg/m2 

Subjects performed rowing exercises at 

50% and 70% VO2max on an ergometer. 

Lab IC – COSMED K4b2 

(COSMED, Rome, Italy) 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Armband: 

5.23% 

 



- 307 - 

Fruin, 2010  Experiment 1: N=13 (0 

F) 

Experiment 2: N=20 (10 

F) 

Age: 20.2 ± 1 y 

BMI: N/A 

 

Experiment 1: Subjects performed two 

resting and a cycle ergometer session at 

60% VO2peak.  

Experiment 2: Subjects completed a 

treadmill protocol of jogging, running and 

uphill running.   

Lab IC – SensorMedics 

Vmax 229 

(SensorMedics Inc, 

Yorba Linda, CA, USA). 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Armband: -

1.76% 

 

Furlanetto, 

2010  

  

N=30 (15 F) 

Age: 68 ± 7 y 

BMI: 25 ± 3 kg/m2 

Subjects performed a walking protocol on a 

treadmill at three intensities. 

 

Lab IC – VO2000 aerograph 

(Medgraphics, Saint 

Paul, MN, USA) 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Armband: -

6.99% 

 

Gastin, 2017 N=26 (12 F) 

Age: 21.3 ± 2.4 y 

BMI: 23.2 ± 2 kg/m2 

 

Subjects performed a protocol Involving 

resting periods, walking, jogging, running 

or a sport-simulated circuit.  

Lab IC – MetaMax 3b 

(Cortex Biophysic, 

Leipzig, Germany) 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Armband: -

19.90% 

 

Heiermann, 

2011 

N=32 (19 F) 

Age: 68.6 y 

BMI: 26.4 kg/m2 

Subjects were required to rest. Lab IC – Vmax Spectra 

(SensorMedics Viasys 

Healthcare, Bilthoven, 

The Netherlands) 

SenseWear Pro2 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro2 

Armband: 10.80% 
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Imboden, 

2017  

N=30 (15 F) 

Age: 49.2 ± 19.2 y 

BMI: 26.2 kg/m2 

Subjects performed a semi-structured 

activity protocol, performing ≥12 activities 

for subject-selected duration and pace. 

Activities were selected from a list of 

sedentary, household activities ambulatory 

and cycling activities.   

Lab IC – COSMED K4b2 

(COSMED, Rome, Italy) 

Fitbit flex (Fitbit Inc, San 

Francisco, California, USA) 

 

Jawbone UP24 (Jawbone, 

San Francisco, California, 

USA) 

 

 

Wrist Fitbit flex: -15.29% 

 

Jawbone UP24:  

-40.00% 

 

Jakicic, 2004  N=40 (20 F) 

Age: 23.2 ± 3.8 y  

BMI: 23.8 ± 3.1 kg/m2 

Subjects performed 4 separate exercise 

protocols including treadmill walking, stair 

stepping, cycle ergometry, and arm 

ergometry. 

Lab IC – SensorMedics 

Vmax 229 

(SensorMedics Inc, 

Yorba Linda, CA, USA). 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Armband:  -

11.76% 

 

Johannsen, 

2010 

N=30 (15 F) 

Age: 38.2 ± 10.6 y 

BMI: 24 ± 3.4 kg/m2 

14-day comparison to DLW. Field  DLW – 14 days SenseWear Pro3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

SenseWear Mini Armband 

HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Pro3 

Armband: -2.48% 
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Kim, 2015 N=52 (19 F) 

Age: 23.8 ± 5.2 

BMI: N/A 

Subjects performed 15 activities including 

resting, stair climbing, cycling, walking and 

jogging. Each activity was performed for 5 

minutes, with 1-minute resting intervals.  

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

Bodymedia Core 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm Bodymedia Core: 

5.80% 

 

King, 2004  N=21 (10 F) 

Age: 37.55 y 

 

Subjects performed 10 minutes of treadmill 

walking and running at various speeds. 

Lab IC – TrueMax 2400 

(Consentius 

Technologies, Sandy, 

UT, USA) 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

Upper arm  SenseWear Armband: 

20.33% 

 

Koehler. 

2011 

N=14 (0 F) 

Age: 30.4 ± 6.2 y 

BMI: 23.2 ± 1.4 kg/m2 

7-day comparison to DLW. Field  DLW – 7 days SenseWear Pro3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm  SenseWear Pro3 

Armband: -1.83% 

 

Lee, 2011  N=46 (21 F) 

Age: 24.8 ± 5.6 y 

BMI: 24.3 ± 3.6 kg/m2 

Subjects completed 4-minute periods of 

standing, walking, jogging, and running.  

Lab IC – Parvo TrueOne 

2400 (Parvo Medics, 

East Sandy, UT, USA) 

ePulse Personal Fitness 

Assistant (ePulse) (Impact 

Sports Technologies, San 

Diego, CA, USA) 

Forearm ePulse Personal Fitness 

Assistant -3.46% 
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Lee, 2014 N=60 (30 F) 

Age: 26.4 y 

BMI: 23.05 kg/m2 

Subjects performed 13 activities for 5 

minutes. Activities were categorized into 

sedentary, treadmill walking, treadmill 

jogging and moderate-to-vigorous activities 

(ascending and descending stairs, 

stationary bike, elliptical exercise, Wii 

tennis play, and basketball).  

Lab IC – Oxycon Mobile 5.0 

(Erich Jaeger, Viasys 

Healthcare, Germany) 

BodyMedia CORE 

(BodyMedia Inc., Pittsburgh, 

PA, USA)  

 

Jawbone UP (Jawbone, San 

Francisco, California, USA) 

 

Basis B1 Band (Basis 

Science Inc, San Francisco, 

CA, USA) 

 

Nike Fuel Band (Nike Inc., 

Beaverton, OR, USA)  

Upper arm 

 

Wrist 

 

 

BodyMedia CORE:-

5.31% 

 

Jawbone UP:  

-6.92% 

 

Basis B1 Band:  

-31.65% 

 

Nike Fuel Band: -1.91% 
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Lopez, 20171  

 

 

N=36 (16 F) 

Age: 37.7 ± 9.8 y 

BMI: 23.4 ± 2.8 kg/m2 

Subjects performed a structured protocol 

including rest, computer use, standing, 

slow walking, running, basketball and 

overground cycling.  

Lab 

 

IC – MetaMax 3x 

(Cortex Biophysic, 

Leipzig, Germany) 

SenseWear Mini Armband  

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA)  

 

 

Upper arm SenseWear Mini 

Armband: -16.00% 

 

Mackey, 

2011 

N=19 (8 F) 

Age: 82 ± 3.3 y 

BMI: 28.1 ± 3.8 kg/m2  

12.5-day comparison to DLW.  Field  DLW – 12.5 days SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

 

Upper arm SenseWear Armband: -

0.05% 

 

Martien, 

2015 

N=60 (47 F) 

Age: 85.5 ± 5.5 y 

BMI: N/A 

Subjects performed activity for 4 minutes 

and separated by 4 minutes seated rest. 

Activities included: Walking, rising and 

sitting in chairs positioned 5 meters apart 

and moving light objects.   

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

Upper arm  SenseWear Mini 

Armband: -12.00% 
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Maschac, 

20131 

N=19 (13 F) 

Age: 55.65 y 

BMI: 31.5 ± 3.6 kg/m2 

Subjects performed three walking sessions 

on a treadmill with different combinations 

of speed and incline.  

Lab IC – VO2000 aerograph 

(Medgraphics, Saint 

Paul, MN, USA) 

 

SenseWear Pro 3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

Upper arm SenseWear Pro 3 

Armband: 50.69% 

McMinn, 

2013 

N=19 (6 F) 

Age: 30 y 

BMI: 23.6 kg/m2 

Subjects completed 3 treadmill walking 

trials at self-selected slow, medium, and 

fast speeds. 

Lab IC – Ultima CPX 

(Medgraphics, Saint 

Paul, MN, USA) 

Actigraph GT3X+ (Actigraph 

Inc, Pensacola, FL, USA) 

Wrist Actigraph GT3X+ : -

8.84% 

 

Melanson, 

2009 

  

N=7 (3 F) 

Age: 31.8 ± 7.2 y 

BMI: 27.8 ± 7.9 kg/m2 

Subjects performed individualised 

protocols, including bench stepping and 

stationary cycling. 

Lab MC – 22.8 hours LifeChek Calorie Sensor 

(LifeChek, LLC, Pittsburgh, 

PA, USA) 

Wrist LifeChek calorie sensor 

-4.87% 

 

Soric, 2011 N=19 (11 F) 

Age: 28 ± 6 y 

BMI: 23 ± 3 kg/m2 

Subjects performed in-line skating 

exercises on a circular track at a self-

selected pace.  

Field IC – COSMED K4b2 

(COSMED, Rome, Italy) 

SenseWear Pro 3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro 3 

Armband : -73.33% 

 

Montoye, 

2017 

N=32 (14 F) 

Age: 23.7 y 

BMI: 25.5 kg/m2 

Subjects completed 14 exercises, 11 in the 

laboratory including walking, jogging and 

cycling ergometry and 3 track exercises 

included self-paced walking at both a 

leisure and brisk pace for 200 meters and 

Lab IC – Parvo TrueOne 

2400 (Parvo Medics, 

East Sandy, UT, USA) 

 

Fitbit Charge HR (Fitbit Inc, 

San Francisco, California, 

USA) 

 

Upper arm Fitbit Charge HR: 

7.59% 
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self-paced jogging for 400 meters. Each 

was 5 minutes in duration. 

Murakami, 

2016 

N=19 (10 F) 

Age: N/A 

BMI: N/A 

1) 12.5-day comparison to DLW. 

 

2) 24 hours in metabolic chamber where 

subjects where subjects were required to 

perform deskwork, watch television, 

housework, treadmill walking, and 

sleeping.  

 

Lab/ 

Field 

DLW – 12.5 days 

 

MC – 24 hours 

Withings Pulse O2 (Withings, 

Issy-les-Moulineaux, France) 

 

Garmin vivofit (Garmin ltd, 

Olathe, Kansas, USA) 

 

Fitbit Flex (Fitbit Inc, San 

Francisco, California, USA) 

 

Misfit Shine (Misfit, San 

Francisco, California, USA) 

 

Epson Pulsense (Epson, 

Suwa, Nagano Prefecture, 

Japan) 

Wrist Withings Pulse O2:  

-22.03% 

 

Garmin vivofit: -20.55% 

 

 

Fitbit Flex: -1.04% 

 

Misfit Shine: -2.36% 

 

Epson Pulsense: -

4.28% 
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Nelson, 

2016  

N=30 (15 F) 

Age: 48.9  ± 19.4 y 

BMI: 26.3 ± 5.2 kg/m2 

Subjects performed a structured protocol 

consisting of sedentary, household, and 

ambulatory activities. 

Lab IC – COSMED K4b2 

(COSMED, Rome, Italy) 

Jawbone UP (Jawbone, San 

Francisco, California, USA) 

 

Fitbit Flex (Fitbit Inc, San 

Francisco, California, USA) 

Wrist Jawbone UP: -2.12% 

 

Fitbit Flex: 12.74% 

 

 

Papazoglou, 

2006 

N=29 

Age: N/A 

BMI: N/A 

Subjects performed a resting protocol in a 

larger sample and 29 of the obese subjects 

participated in low intensity modes of 

exercise including cycle ergometry, stair 

Lab IC – SensorMedics 

Vmax 229 

(SensorMedics Inc, 

Yorba Linda, CA, USA) 

SenseWear Pro 2 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Wrist SenseWear Pro 2 

Armband: 21.54% 
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stepping and treadmill walking.  

Price, 2017 

 

N=14 (3 F) 

Age: 23 y 

BMI: 22.8 kg/m2 

Subjects walked on a treadmill at 

increasing velocities.  

 

Lab IC – Parvo TrueOne 

2400 (Parvo Medics, 

East Sandy, UT, USA) 

Jawbone UP (Jawbone, San 

Francisco, California, USA) 

 

Garmin vivofit (Garmin ltd, 

Olathe, Kansas, USA)  

Upper arm Jawbone UP: 56.91% 

 

Garmin vivofit: 18.16% 

 

Reece, 2015 

  

N=22 (11 F) 

Age: N/A 

BMI: N/A 

Subjects performed a protocol including 

rest, sedentary activities and walking.  

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Wrist SenseWear Mini 

Armband:  

-3.79% 

 

Reeve, 

20141 

 

N: 18 (7 F) 

Age: 22.6 y 

BMI: 22.9 kg/m2 

 

Subjects performed 2 resistance training 

sessions that included 9 different 

exercises. The weight lifted was 70% of 1 

repetition max with 90-second rest 

intervals. 

Lab IC – COSMED K4b2 

(COSMED, Rome, Italy) 

BodyMedia CORE 

(BodyMedia Inc., Pittsburgh, 

PA, USA)  

 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

Upper arm BodyMedia CORE: 

13.8% 

 

SenseWear Mini 

Armband: 23.7% 
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Rousset, 

2015  

Free-living: N=41 (20 F) 

Lab: N=49 (26 F) 

Age: N/A 

BMI: N/A 

1) 10-day comparison to DLW.  

 

2) 24 hours in metabolic chamber, which 

included eating, deskwork, watching 

television, housework, treadmill walking, 

and sleeping.  

Lab/ 

Field 

DLW – 12.5 days 

 

MC – 17 hours 

SenseWear Pro 3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro 3 

Armband: -2.80% 

 

Ryan, 2013 N=26 (15 F) 

Age: 24.7 y 

BMI: 22.8 kg/m2 

 

Subjects performed ambulatory activities 

on a treadmill.  

Lab IC – COSMED Quark 

CPNET (COSMED, 

Rome, Italy 

SenseWear Pro 2 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro 2 

Armband: - 

-16.62% 

 

Shcherbina, 

20171 

 

N=60 (31 F) 

Age: 38.5 y 

BMI: 23.65 kg/m2 

Subjects performed treadmill flat and 

incline running and cycle ergometry at low 

and moderate intensity.  

Lab IC – COSMED Quark 

CPNET (COSMED, 

Rome, Italy) 

 

 

Apple watch (Apple Inc, 

Cupertino, CA, USA) 

 

Basis Peak (Basis Science 

Inc, San Francisco, CA, USA) 

 

 

Wrist Apple watch: -

38.23% 
 

Basis Peak: -

12.94% 

Fitbit Surge: 

-3.86% 
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Fitbit surge (Fitbit Inc, San 

Francisco, CA, USA) 

 

 

Microsoft band (Microsoft 

Corporation, Redmond, WA, 

USA)  

 

 

PulseOn (PulseOn Oy, Espoo 

Finland) 

 

 

Microsoft Band 

-19.64% 
 

PulseOn: -

24.47% 
 

Slinde, 2013  N=62 (62 F) 

Age: 33.2 ± 4.2 y 

BMI: 30 ± 2.8 kg/m2 

7-day comparison to DLW 

 

Field DLW – 7 days 

 

SenseWear Pro 2 Armband  

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

 

Wrist SenseWear Pro 2 

Armband: -2.90% 
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Smith, 2012  N=30 (30 F) 

Age: 29.0 ± 4.3 y 

BMI: 24.1 ± 3.0 kg/m2 

Subjects performed a series of activities of 

daily living activities and treadmill walking 

at increasing intensities.   

Lab IC – Parvo TrueOne 

2400 (Parvo Medics 

East Sandy, UT, USA) 

 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Algorithm v2.2  

 

 

Upper arm  SenseWear Mini 

Armband: 18.43% 

 

Stackpool, 

2014 

N=20 (10 F) 

Age: N/A 

BMI: N/A 

Subjects performed treadmill walking, 

treadmill running, elliptical exercise and an 

agility drills.  

Lab  IC – Oxycon pro Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

Nike Fuel Band (Nike Inc, 

Beaverton, OR, USA) 

 

Jawbone UP (Jawbone, San 

Francisco, California, USA) 

 

Bodymedia Core 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm Nike Fuel Band: -3.99% 

 

Jawbone UP: 3.09% 

 

 

St-Onge, 

2007 

N=45 (32 F) 

Age: 35.1 ± 14 y 

BMI: 23.9 ± 4.0 kg/m2 

10-day comparison to DLW. 

 

Field DLW – 10 days SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Armband: 

4.70% 
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Tucker, 2015 N=24 (13 F) 

Age: 28.4 ± 7.8 y 

BMI: 23.8 ± 3.9 kg/m2 

 

Subjects performed two, 60-minute semi-

structured routines consisting of 

sedentary/light-intensity, moderate-

intensity and vigorous-intensity physical 

activity. 

Lab IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

Nike Fuel Band (Nike Inc., 

Beaverton, OR, USA) 

 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm   

Nike Fuel Band:  

1.22% 

 

 

SenseWear Armband: -

2.10% 

 

Van Helst, 

2012  

N=21 (10 F) 

Age: 29.3 ± 5.1 y 

Subjects performed a treadmill protocol 

involving slow and moderate walking, 

running slowly, vigorously running and 

periods of rest.  

 

Lab  IC – Gas analyzer 

(Respironics 

Novametrix Medical 

SystemW inc, NICO 

7300, Wallingford, USA) 

Vivago (Vivago Wellness, 

Paris, France) 

Wrist  

 

 

Vivago: -8.02% 

 

Van Hoye, 

2014 

N=44 (20 F) 

Age: 21.1 ± 1.4 y 

BMI: 21.8 ± 1.4 kg/m2 

Subjects performed an incremental running 

test on a treadmill.  

Lab IC – Metalyzer 3B 

(Cortex Biophysic, 

Leipzig, Germany) 

SenseWear Pro 3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper arm SenseWear Pro 3 

Armband: -32.96% 

 

Van Hoye, 

2015 

N=39 (18 F) Subjects performed exercise consisting of 

5 minutes standing followed by alternating 

Lab IC – Metalyzer 3B 

(Cortex Biophysic, 

SenseWear Armband  

(HealthWear, Bodymedia, 

Upper arm  SenseWear Pro 3 

Armband: - 
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Age: 21.1 ± 1.4 y 

BMI: 21.8 ± 1.4 kg/m2 

walking and running at 35% and 65% 

VO2max.  

Leipzig, Germany) Pittsburgh, PA, USA)  

Algorithm v2.2  

 

SenseWear Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Algorithm v5.2 

-15.23% 

 

Vernillo, 

2015 

 

N=20 (8 F) 

Age: 30.1 ± 7.2 y 

BMI: 22.1 ± 2.4 kg/m2 

 

Subjects performed randomized pole 

walking activities at a constant speed and 

a variety of gradients.  

Lab IC – COSMED Quark 

b2 (COSMED, Rome, 

Italy) 

SenseWear Pro 3 Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

 

Upper arm  SenseWear Pro 3 

Armband:  

-9.76% 

 

 

SenseWear Mini 

Armband: -12.50 

 

Wahl, 2017  N=20 (10 F) 

Age: 25.2 y 

BMI: 22.8 kg/m2 

Subjects performed a running protocol 

consisting of four 5-minute stages of 

treadmill running at different velocities 

followed by a period of intermittent running 

Lab/ 

Field 

IC – Metalyzer 3B 

(Cortex Biophysic, 

Leipzig, Germany) 

SenseWear Mini Armband 

(HealthWear, Bodymedia, 

Pittsburgh, PA, USA) 

Upper 

arm/Wrist 

SenseWear Mini 

Armband:  

-21.27% 
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and then a 2.4 km outdoor run.   

Beurer AS80 (Beurer GmbH, 

Ulm, Germany) 

 

Polar Loop (Polar Electro, 

Kempele, Finnland) 

 

Garmin vivofit (Garmin ltd, 

Olathe, Kansas, USA)  

 

Garmin vivosmart (Garmin ltd, 

Olathe, Kansas, USA)  

 

Garmin vivoactive (Garmin 

ltd, Olathe, Kansas, USA)  

 

Garmin Forerunner 920XT 

(Garmin ltd, Olathe, Kansas, 

 

Beurer AS80:  

-58.07% 

  

 

Polar Loop:  

18.05% 

 

Garmin vivofit:  

-13.67%  

 

Garmin vivosmart:  

5.98%  

 

Garmin vivoactive:  

3.42%  
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USA)  

 

Fitbit Charge (Fitbit Inc, San 

Francisco, California, USA) 

 

Fitbit charge HR (Fitbit Inc, 

San Francisco, California, 

USA) 

 

Withings Pulse (Withings, 

Issy-les-Moulineaux, France) 

 

Garmin Forerunner 

920XT:  

-21.02%  

 

Fitbit Charge:  

3.58% 

 

 

Fitbit charge HR:  

7.58%  

 

Withings Pulse O2:  

-15.98% 
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Wallen 2016 N=22 (11 F) 

Age: 24.9 y 

BMI: 24.3 kg/m2 

Subjects performed a protocol including 

treadmill exercise and cycling ergometry.   

Lab IC – Metalyzer 3B 

(Cortex Biophysic, 

Leipzig, Germany) 

Apple watch (Apple Inc, 

Cupertino, California, USA) 

 

Fitbit charge HR (Fitbit Inc, 

San Francisco, California, 

USA) 

 

Samsung Gear S (Samsung 

Electronics Co, Ltd,  Suwon, 

South Korea) 

 

Mio Alpha (Mio Global, 

Wrist Apple watch: -75.71 

 

Fitbit charge HR:  

-26.31%  

 

Samsung Gear S:  

-9.98%  

 

Mio Alpha:  

-53.19%  
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Canada)  

 

 

Woodman, 

2017 

N=28 (8 F) 

Age: 24.85 y 

BMI: 24.25 kg/m2 

Subjects performed a range of activities 

including: supine rest, household tasks, 

treadmill walking, stair stepping, outdoor 

walking, cycling, and running at a self-

selected pace. Seated rest, and ergometer 

cycling.  

Lab/ 

Field 

IC – Oxycon Mobile 

portable metabolic 

system (Erich Jaeger, 

Viasys Healthcare, 

Germany) 

Withings Pulse (Withings, 

Issy-les-Moulineaux, France) 

 

Basis Peak (Basis Science 

Inc, San Francisco, CA, USA) 

 

Garmin vivofit  

(Garmin ltd, Olathe, Kansas, 

USA)  

Wrist Withings Pulse: -

133.33% 

 

Basis Peak:  

0.59% 

   

 

Garmin vivofit:  

-80.59%  
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Appendix 1.3 Device information 

 

Device Price Wear site Device grade Input setup data Sensors Output Battery life  Number of 

comparisons in 

meta-analysis 

Weighted 

percent error  

Actical (Phillips 

Respironics Inc, 

Murrysville, PN, 

USA) 
 

€678 (incl. 

software)/ 

€321 (unit) 

Hip, ankle, 

wrist 

Research Age, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

Activity 

intensity 

Kcals, steps  

194 days 1  

Actigraph GT3X+ 

(Actigraph Inc, 

Pensacola, FL, 

USA) 
 

$250 Hip, ankle, 

wrist 

Research Age, Gender, Race, H, 

W 

Accelerometer: 

Triaxial 

 

Heart rate: 

 

Activity 

intensity 

Kcals, 

sleep, steps  

31 days 1 -8.84%  
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Heat sensors: 

 
 

Apple watch (Apple 

Inc, Cupertino, 

California, USA) 

£249  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors: 

 
 

Steps, 

distance 

tracking, 

Kcals, HR, 

minutes of 

brisk activity 

18 Hours 4 -6.59%  

Apple watch 2 

(Apple Inc, 

Cupertino, 

California, USA) 

£315 Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

Steps, 

distance 

tracking, 

Kcals, HR, 

minutes of 

brisk activity 

18 Hours 1 48.20% 
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Basis b1 (Basis 

Science Inc, San 

Francisco, CA, 

USA) 

£149  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors: Yes 

 

 

 

Steps, 

distance, 

Kcals,  

HR, active 

minutes, 

sleep 

5 days 1 -31.65% 
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Basis Peak  (Basis 

Science Inc, San 

Francisco, CA, 

USA) 

£170  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors: Yes 

 
 

Steps, 

distance, 

Kcals,  

HR, active 

minutes, 

sleep 

5 days 1 0.59% 

 

Beurer AS80 

(Beurer GmbH, Ulm, 

Germany) 

£29.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep 

14 days 1 -58.07% 

 

BodyMedia CORE  

(BodyMedia Inc., 

Pittsburgh, PA, 

$150 Upper left 

arm  

Research 

(commercially 

Age, Gender, H, W Accelerometer: 

Triaxial  

Steps, 

activity 

intensity, 

14 days 4 -1.06% 
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USA) available)   

Heart rate:  

 

Heat sensors: Yes 

 

 
 

Kcals, sleep 

Epson Pulsense 

(Epson, Suwa, 

Nagano Prefecture, 

Japan) 
 

£79.99  Wrist Commercial Age, Gender, H, W, 

RHR 

Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 

 
 

Steps, 

distance, 

kcals, active 

minutes, 

HR, sleep 

36 hours 1 -4.28% 

 

ePulse Personal 

Fitness Assistant 

(ePulse) (Impact 

Sports 

$129.95 Forearm Commercial Age, Gender, H, W, 

RHR 

Accelerometer: 

Triaxial  

 

Kcals, HR 

 

1 -3.46% 
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Technologies, San 

Diego, CA, USA) 

 

 
 

Heart rate: Yes 

 

Heat sensors:  

 

 
 

Fitbit blaze (Fitbit 

Inc, San Francisco, 

California, USA 

£134.99 Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 

 

Triaxial 

accelerometer, 

altimeter, optical 

HR 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep, HR, 

steps 

5 days 1 28.66% 
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Fitbit charge (Fitbit 

Inc, San Francisco, 

California, USA) 

 

£109.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 

 

Triaxial 

accelerometer, 

altimeter 

Steps, 

distance, 

Kcals, active 

minutes,  

sleep 

5 days 2 -5.06%  

Fitbit charge 2 (Fitbit 

Inc, San Francisco, 

California, USA) 

£109.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

Steps, 

distance, 

Kcals, active 

minutes, 

sleep, HR, 

steps 

5 days 1 -30.97% 
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Fitbit charge HR 

(Fitbit Inc, San 

Francisco, 

California, USA) 

£139.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep, HR, 

steps 

5 days 6 1.3%  
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Fitbit Flex (Fitbit Inc, 

San Francisco, 

California, USA) 

£79.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 

 

 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep 

5 days 5 8.22%  

Fitbit Surge (Fitbit 

Inc, San Francisco, 

California, USA) 

£289.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

altimeter, 

GPS 

5 days   
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Garmin Forerunner 

225 (Garmin ltd, 

Olathe, Kansas, 

USA)  

£199.99  Wrist Commercial Age, Gender, H, W, 

RHR, HRmax 

Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 
 

Steps, HR, 

distance, 

Kcals, active 

minutes, 

altimeter, 

GPS 

7-10 Hours 1 44.23% 

 

Garmin Forerunner 

920XT (Garmin ltd, 

Olathe, Kansas, 

USA)  

£450  Wrist Commercial Age, Gender, H, W, 

RHR, HRmax 

Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

altimeter, 

sleep, HR, 

GPS 

3 Days 1 -21.02% 
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Garmin vivoactive 

(Garmin ltd, Olathe, 

Kansas, USA)  

£250  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

altimeter, 

sleep, GPS 

7 Days 1 3.42% 

 

Garmin vivofit 

(Garmin ltd, Olathe, 

Kansas, USA)  

£79.99  Wrist Commercial Age, Gender, H, W 

 
 

Accelerometer: 

Triaxial  

Heart rate:  

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep 

1 Year 5 -26.09%  

Garmin Vivosmart 

(Garmin ltd, Olathe, 

Kansas, USA)  

£139.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

Steps, 

distance, 

Kcals, active 

minutes, 

sleep 

7 Days 1 5.98% 
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Heat sensors:  

 

 
 

Garmin Vivosmart 

HR (Garmin ltd, 

Olathe, Kansas, 

USA) 

£129.99 Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, HR, 

intensity 

minutes, 

sleep 

7 Days  1 16.85% 

Jawbone UP 

(Jawbone, San 

Francisco, CA, 

USA) 

£99.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Distance 

(app), 

Kcals, 

Steps, sleep 

10 days 4 10.90%  
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Heat sensors:  

 

 

 

Jawbone UP24 

(Jawbone, San 

Francisco, CA, 

USA) 

£89.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 

 
 

Distance 

(app), 

Kcal, 

Steps, sleep 

14 Days 3 -29.58%  

LifeChek calorie 

sensor (LifeChek, 

LLC, Pittsburgh, PA, 

USA) 

 

Upper right 

arm  

Commercial 

 

Accelerometer: 

Triaxial  

 

Heart rate:  

 

Kcals 

 

1 -4.87% 
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Heat sensors: Yes  

 

 
 

Microsoft band 

(Microsoft 

Corporation, 

Redmond, WA, 

USA)  

£169.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors: Yes  

 

 

 
 

Steps, 

distance, 

kcals, active 

minutes, 

sleep, HR, 

GPS 

48 Hours 1 -49.15% 

 

Mio Alpha (Mio 

Global, Canada) 

£119.99  Wrist Commercial Age, Gender H, W, 

HRMAX, RHR 

Accelerometer:  

 

Heart rate: Yes 

 

Heat sensors:  

Kcals, HR 24 Hours 1 -53.19% 
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Misfit Shine (Misfit, 

San Francisco, 

California, USA) 

£99.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep  

 

1 -2.36%  

 

Nike Fuel Band 

(Nike Inc, 

Beaverton, OR, 

USA) 

£129.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep 

4 days 3 -0.48% 
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Polar Loop (Polar 

Electro, Kempele, 

Finnland) 

£49.99  Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep 

12 days 1 18.05% 

Polar: AW200 (Polar 

Electro Oy, 

Kempele, Finland 

€152 

(watch+softwar

e)  

Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial 

  

Heart rate:  

 

Heat sensors:  

 

 

 

Steps, 

distance, 

Kcals, active 

minutes 

 

1 -13.17% 
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Triaxial 

accelerometer 

Polar: AW360 (Polar 

Electro Oy, 

Kempele, Finland 

£149.99 Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 

 
 

Steps, 

distance, 

Kcals, active 

minutes, 

sleep, HR  

12 Days 1 28.68% 

 

 

Samsung Gear S 

(Samsung 

Electronics Co, Ltd,  

Suwon, South 

Korea) 

 

Wrist Commercial Age, Gender, H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

Steps, 

distance, 

Kcals, active 

minutes, 

sleep, HR, 

GPS 

2 Days  1 -9.98% 
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SenseWear 

Armband 

(HealthWear, 

Bodymedia, 

Pittsburgh, PA, 

USA) 
 

€800 

(device)+ 

€1597 

(software) 

Upper right 

arm  

Research Age, Gender H, W,  Accelerometer: 

Biaxial  

 

Heart rate:  

 

Heat sensors: Yes 

 

 
 

Steps, 

activity 

intensity, 

Kcals, sleep 

14 days 12 -4.31%  

 

SenseWear Mini 

Armband 

(HealthWear, 

Bodymedia, 

Pittsburgh, PA, 

USA) 
 

 

Upper left 

arm  

Research Age, Gender H, W, 

smoking status 

Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors: Yes 

 

Steps, 

activity 

intensity, 

Kcals, sleep 

28 days 9 -1.44%  
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SenseWear Pro 2 

Armband 

(HealthWear, 

Bodymedia, 

Pittsburgh, PA, 

USA) 
 

 

Upper right 

arm  

Research Age, Gender H, W, 

smoking status 

Accelerometer: 

Biaxial  

 

Heart rate:  

 

Heat sensors: Yes 

 

 
 

Steps, 

activity 

intensity, 

kcal, sleep 

14 days 7 -7.54%   

SenseWear Pro 3 

Armband 

(HealthWear, 

Bodymedia, 

Pittsburgh, PA, 

USA) 

 

Upper right 

arm  

Research Age, Gender H, W, 

smoking status 

Accelerometer: 

Biaxial  

 

Heart rate:  

 

Heat sensors: Yes 

 

Steps, 

activity 

intensity, 

kcal, sleep 

14 days 12 -4.56%  
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TomTom Touch 

(TomTom, 

Amsterdam, the 

Netherlands)  

£129.99 Wrist  Commercial Age, Gender H, W Accelerometer: 

Triaxial  

 

Heart rate: Yes 

 

Heat sensors:  

 

 
 

Steps, 

distance, 

activity 

intensity, 

Kcal, sleep, 

HR,  

5 Days 1 28.66%  

Vivago (Vivago 

WellnessW, Paris, 

France). 

 

 

 Wrist Commercial  Accelerometer: 

Triaxial  

 

Heart rate:  

 

Heat sensors:  

Steps, 

activity 

intensity, 

Kcal, sleep 

 1 -8.02%  
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Withings Pulse 

(Withings, Issy-les-

Moulineaux, France) 

 
 

£39.99  Wrist, 

pocket or 

clip on 

Commercial Age, Gender H,  Accelerometer: 

Triaxial  

 

Heart rate: (non  

continuous) 

 

Heat sensors:  

 

 

 
 

Steps, 

distance, 

Kcal, sleep 

14 days 1 -133.33% 

 

Withings Pulse 02 

(Withings, Issy-les-

Moulineaux, France) 

£79.99  Wrist Commercial Age, Gender H, W Accelerometer: 

Triaxial  

Heart rate: (non 

Steps, 

distance, 

activity 

intensity, 

14 days 2 -19.42% 
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Characteristics of devices included in the meta-analysis. Weighted percentage error represents the sum of percentage difference multiplied by the relative weight within each meta-analysis.  

Abbreviations:  Height (H), Weight (W), Kilocalories (Kcal), Heart Rate (HR), Global Positioning System (GPS).  

 

continuous) 

Heat sensors: 

 
 

Kcal, sleep, 

HR, blood 

oxygen 
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Appendix 1.4 Risk of bias  
 

Reporting (/11) External validity (/3) Internal validity (/4) 

Alsubheen, 2016 10 0 4 

Bai, 2017 9 0 4 

Benito, 2012 8 0 4 

Berntsen, 2010 9 0 4 

Berntsen, 2012 9 2 4 

Bhammar, 2016 11 0 4 

Boudreaux, 2018 10 0 4 

Brazeau, 2011 10 0 4 

Brazeau, 2014 11 0 3 

Brazeau, 2016 11 1 4 

Brugniaux, 2010 8 1 3 

Calabro, 2014 9 0 4 

Calabro, 2015 11 1 4 

Casiraghi, 2013 11 0 4 

Choudhry, 2017 9 0 4 

Colbert, 2011 10 1 3 

Correa, 2016 10 0 3 

Diaz, 2015 7 0 4 

Diaz, 2016 9 0 4 

Dondzilla, 2016 8 0 4 

Dooley, 2017 10 0 4 

Drenowatz, 2011 9 0 4 

Erdogan, 2010 9 0 3 

Fruin, 2010 9 0 3 

Furlanetto, 2010 11 0 4 

Gastin, 2017 8 0 4 



- 348 - 

Heiermann, 2011 8 2 4 

Imboden, 2017 9 0 4 

Jakicic, 2004 10 0 4 

Johannsen, 2010 9 1 4 

Kim, 2015 8 0 4 

King, 2004 9 0 4 

Koehler, 2011 10 1 4 

Lee, 2011 9 0 4 

Lee, 2014 9 0 4 

Mackey, 2011 11 3 4 

Martien, 2015 9 2 4 

McMinn, 2013 9 0 4 

Melanson, 2009 5 0 2 

Mikulic, 2011 10 0 4 

Montoye, 2017 10 0 4 

Murakami, 2016 7 1 4 

Nelson, 2016 10 0 4 

Papazoglou, 2006 9 0 4 

Price, 2017 9 0 4 

Reece, 2015 9 0 4 

Rousset, 2015 9 1 4 

Ryan, 2013 10 0 2 

Slinde, 2013 10 2 4 

Smith, 2012 10 0 4 

St-Onge, 2007 9 1 3 

Stackpool, 2015 9 0 4 

Tucker, 2015 11 0 4 

Van helst, 2012 9 0 4 

Van Hoye, 2014 9 0 4 
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Van Hoye, 2015 10 0 4 

Vernillo, 2015 8 0 4 

Wahl, 2017 9 0 4 

Wallen 2016 9 0 4 

Woodman, 2017 8 0 4 
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Appendix 2.1 Simulation study results  

 
 

NoHoW  

    

Multiple Imputation  

    

Kalman 

    

Metric Wind

ow 

Mean  SD Differe

nce 

RM

SE 

mea

n 

RMS

E 

med

ian 

RMSE 

mini

mum 

RMSE 

maxi

mum 

Mean  SD Differe

nce 

RM

SE 

mea

n 

RMS

E 

med

ian 

RMSE 

mini

mum 

RMSE 

maxi

mum 

Mean  SD Differe

nce 

RM

SE 

mea

n 

RMS

E 

med

ian 

RMSE 

mini

mum 

RMSE 

maxi

mum 

                       

TDEE 1 2653.

42 

0.9

5 

26.83 31.1

4 

30.9

4 

28.82 33.12 2642.

21 

1.0

1 

15.63 21.3

0 

21.0

8 

19.20 23.11 2658.

34 

0.9

5 

31.75 37.4

4 

37.2

9 

35.49 39.90 

 

2 2653.

27 

1.7

4 

26.69 33.3

7 

33.5

4 

30.89 36.53 2639.

92 

1.8

0 

13.33 24.6

3 

24.4

2 

21.95 28.31 2658.

06 

1.5

3 

31.47 39.3

0 

39.4

3 

35.24 43.27 

 

3 2652.

90 

2.1

9 

26.31 36.5

2 

36.5

5 

31.54 40.64 2637.

42 

2.6

3 

10.84 28.6

5 

28.4

7 

23.87 34.02 2658.

35 

2.4

3 

31.76 42.2

0 

42.4

6 

34.15 45.32 

 

4 2653.

45 

2.5

0 

26.86 39.0

1 

39.1

1 

33.44 43.29 2634.

83 

2.6

4 

8.25 32.3

3 

32.2

3 

28.66 37.27 2658.

98 

2.1

0 

32.39 46.4

2 

46.0

5 

43.11 53.72 

 

5 2653.

59 

2.6

5 

27.00 43.3

0 

42.8

6 

39.59 50.00 2633.

03 

3.0

2 

6.44 37.5

2 

37.3

4 

30.65 41.80 2657.

87 

2.9

5 

31.28 48.6

0 

49.3

3 

41.11 54.41 
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6 2653.

22 

3.9

4 

26.64 45.3

0 

45.2

6 

37.85 54.86 2630.

24 

4.5

0 

3.65 39.7

5 

40.0

2 

36.01 44.82 2657.

30 

3.5

9 

30.71 48.5

7 

48.9

4 

42.93 53.31 

 

7 2652.

13 

3.6

0 

25.55 48.0

5 

48.5

9 

43.40 53.25 2628.

40 

3.3

7 

1.81 46.1

0 

45.9

6 

41.59 51.91 2658.

16 

3.3

9 

31.58 53.5

4 

53.2

7 

47.40 58.81 

 

8 2650.

41 

2.9

5 

23.82 49.9

1 

49.8

0 

42.38 55.95 2622.

22 

3.7

3 

-4.37 48.7

8 

48.9

9 

43.34 57.54 2657.

17 

4.9

1 

30.59 54.7

0 

55.1

4 

44.74 64.58 

 

9 2653.

40 

4.3

5 

26.81 55.5

1 

55.6

9 

47.55 61.92 2622.

73 

4.4

1 

-3.86 52.7

9 

53.3

0 

44.13 57.52 2658.

04 

5.0

0 

31.45 59.3

9 

59.8

5 

51.06 70.90 

 

10 2651.

04 

4.0

4 

24.46 59.0

7 

59.0

5 

51.20 68.89 2619.

06 

3.9

0 

-7.52 59.2

0 

60.9

0 

48.71 68.05 2658.

21 

4.3

4 

31.62 64.6

0 

65.1

5 

54.88 72.55 

                       

Steps 1 1080

5.61 

13.

05 

235.27 291.

90 

291.

66 

271.6

0 

317.28 1069

4.98 

13.

10 

124.64 206.

34 

205.

75 

187.7

5 

232.66 1076

3.98 

13.

12 

193.64 267.

59 

266.

09 

246.4

1 

296.26 

 

2 1080

2.20 

24.

73 

231.86 330.

03 

329.

13 

302.9

1 

360.77 1066

0.89 

22.

33 

90.55 260.

79 

256.

41 

224.0

8 

338.79 1076

1.57 

20.

11 

191.23 316.

96 

313.

37 

281.8

2 

366.37 

 

3 1080

0.53 

26.

97 

230.18 377.

08 

376.

18 

328.6

0 

434.21 1062

6.34 

28.

23 

56.00 311.

35 

312.

92 

262.8

0 

376.98 1076

8.55 

30.

02 

198.21 388.

04 

394.

35 

322.7

7 

427.97 

 

4 1080

8.87 

32.

32 

238.53 417.

16 

411.

94 

361.6

7 

472.68 1059

0.14 

34.

71 

19.80 372.

87 

358.

84 

308.9

0 

443.73 1077

7.31 

28.

40 

206.97 451.

00 

448.

51 

418.4

1 

495.35 
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5 1081

1.60 

30.

96 

241.26 474.

52 

472.

84 

420.7

8 

527.34 1056

8.00 

33.

75 

-2.34 437.

90 

436.

41 

396.3

1 

484.87 1076

6.82 

34.

30 

196.48 498.

83 

497.

95 

443.0

8 

571.46 

 

6 1079

9.77 

45.

28 

229.43 500.

57 

501.

42 

433.7

4 

550.42 1052

1.42 

49.

32 

-48.92 476.

90 

470.

89 

410.5

1 

582.31 1076

8.88 

45.

63 

198.54 523.

26 

522.

33 

475.8

3 

604.44 

 

7 1080

1.73 

52.

73 

231.39 550.

51 

550.

33 

494.6

7 

606.38 1050

9.06 

49.

57 

-61.28 551.

31 

543.

59 

457.3

8 

637.15 1077

4.76 

44.

13 

204.42 595.

22 

588.

24 

511.0

2 

681.06 

 

8 1077

4.72 

48.

87 

204.38 560.

91 

554.

54 

508.3

5 

663.75 1042

7.40 

59.

47 

-

142.94 

611.

23 

601.

73 

551.3

5 

762.66 1076

5.56 

66.

49 

195.22 602.

33 

599.

08 

520.6

7 

749.52 

 

9 1080

9.24 

55.

23 

238.90 629.

84 

625.

40 

560.6

1 

704.13 1042

8.41 

49.

33 

-

141.93 

649.

65 

638.

63 

587.0

5 

727.25 1077

8.26 

74.

12 

207.92 690.

48 

686.

65 

580.7

0 

829.83 

 

10 1078

7.69 

67.

94 

217.35 692.

79 

700.

76 

590.0

1 

797.25 1038

7.58 

51.

53 

-

182.76 

718.

92 

738.

28 

618.8

2 

844.70 1077

6.60 

80.

49 

206.26 771.

70 

755.

71 

672.6

5 

930.92 

                       

Seden

tary 

1 1105.

81 

0.2

4 

18.05 19.4

0 

19.4

0 

19.04 19.83 1112.

04 

0.3

5 

24.29 25.2

4 

25.1

9 

24.51 25.90 1101.

75 

0.2

7 

13.99 16.1

5 

16.1

6 

15.74 16.66 

 

2 1105.

84 

0.4

5 

18.08 19.6

6 

19.6

8 

18.74 20.50 1115.

04 

0.5

1 

27.29 28.5

0 

28.4

0 

27.52 29.37 1101.

93 

0.4

1 

14.18 16.9

2 

16.8

9 

16.09 17.56 

 

3 1105.

92 

0.4

1 

18.16 20.0

8 

20.1

5 

19.15 20.88 1118.

16 

0.7

2 

30.40 31.8

7 

31.8

6 

30.54 33.01 1102.

02 

0.6

9 

14.27 17.6

9 

17.8

1 

16.73 18.41 
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4 1105.

97 

0.6

6 

18.21 20.4

3 

20.4

3 

19.55 21.28 1121.

32 

0.8

4 

33.57 35.4

9 

35.5

0 

33.48 36.95 1101.

84 

0.7

2 

14.08 18.1

0 

18.0

5 

16.94 19.54 

 

5 1105.

87 

0.6

7 

18.11 20.9

7 

20.9

7 

19.80 21.93 1124.

17 

0.8

5 

36.41 38.8

6 

38.5

5 

37.60 41.09 1102.

40 

0.9

8 

14.64 19.3

2 

19.3

4 

16.97 20.84 

 

6 1105.

96 

0.8

5 

18.20 21.4

4 

21.4

0 

20.13 22.67 1127.

17 

1.2

3 

39.42 42.0

6 

42.2

7 

39.48 43.82 1102.

69 

1.0

9 

14.93 20.2

1 

20.3

4 

18.87 21.55 

 

7 1106.

10 

0.7

6 

18.34 22.0

4 

22.0

0 

20.54 23.70 1129.

74 

0.9

6 

41.98 45.1

9 

45.3

8 

42.45 47.14 1102.

47 

1.2

7 

14.71 20.8

5 

20.9

0 

18.91 22.17 

 

8 1106.

79 

1.0

2 

19.03 23.1

9 

23.0

9 

21.38 25.75 1133.

91 

1.1

8 

46.15 49.6

7 

49.4

5 

48.27 51.61 1102.

66 

1.1

3 

14.90 21.6

9 

21.8

0 

18.68 23.86 

 

9 1105.

58 

1.1

3 

17.83 22.9

4 

23.1

0 

21.07 24.62 1135.

52 

1.4

3 

47.77 51.6

8 

51.6

2 

48.97 53.99 1103.

27 

1.5

5 

15.52 22.9

2 

23.0

0 

20.12 24.79 

 

10 1106.

56 

1.0

3 

18.80 24.8

7 

24.8

9 

23.15 26.39 1138.

91 

1.0

1 

51.15 55.5

6 

55.5

6 

53.69 57.76 1102.

98 

1.3

9 

15.22 23.7

3 

23.8

4 

21.46 26.89 

                       

Light 1 274.6

7 

0.1

9 

7.91 9.30 9.34 8.73 9.60 270.2

9 

0.2

8 

3.52 5.80 5.79 5.30 6.24 278.6

6 

0.2

6 

11.90 13.5

4 

13.5

5 

13.14 14.02 

 

2 274.5

8 

0.3

8 

7.81 9.60 9.64 8.72 10.23 268.0

8 

0.4

2 

1.31 6.20 6.29 5.04 7.36 279.1

3 

0.4

8 

12.37 14.6

2 

14.6

0 

13.82 16.02 
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3 274.6

0 

0.3

4 

7.83 10.1

1 

10.0

3 

9.51 10.82 265.9

3 

0.6

0 

-0.84 7.70 7.73 6.63 8.52 279.7

6 

0.6

2 

13.00 15.9

6 

15.9

7 

14.90 16.98 

 

4 274.4

6 

0.4

6 

7.69 10.4

4 

10.3

2 

9.53 11.39 263.6

4 

0.6

6 

-3.13 9.93 9.96 8.18 11.05 280.5

6 

0.6

6 

13.79 17.1

3 

17.2

6 

15.70 18.51 

 

5 274.5

7 

0.6

3 

7.80 11.1

9 

11.0

6 

10.12 12.36 261.6

0 

0.6

8 

-5.17 12.4

5 

12.4

3 

10.77 14.50 280.6

8 

0.9

3 

13.91 17.8

2 

17.9

1 

15.65 19.86 

 

6 274.4

9 

0.6

9 

7.72 11.7

3 

11.6

3 

10.47 13.36 259.5

7 

1.0

1 

-7.20 14.5

3 

14.5

4 

12.46 15.95 281.2

3 

1.0

3 

14.46 19.1

1 

18.9

0 

17.10 21.23 

 

7 274.5

2 

0.5

5 

7.75 12.3

9 

12.3

7 

11.29 13.60 257.8

2 

0.7

2 

-8.95 16.9

0 

16.8

9 

14.92 19.96 282.0

5 

1.2

4 

15.29 20.7

0 

20.7

8 

18.32 22.27 

 

8 273.9

5 

1.0

0 

7.18 12.7

4 

12.7

0 

11.55 14.18 254.6

3 

1.0

5 

-12.14 20.1

1 

19.8

1 

18.33 21.90 282.5

1 

1.1

9 

15.74 21.6

3 

21.6

7 

20.01 23.61 

 

9 274.8

4 

1.0

8 

8.08 14.1

8 

14.2

4 

11.86 16.32 253.6

9 

1.2

3 

-13.07 21.7

3 

22.0

1 

18.96 23.77 282.5

6 

1.5

0 

15.80 22.5

0 

22.6

8 

19.90 24.15 

 

10 274.3

5 

0.9

3 

7.58 15.1

9 

15.1

1 

12.81 17.42 251.4

6 

0.9

9 

-15.31 24.5

1 

24.4

8 

21.41 26.54 283.6

6 

1.2

5 

16.89 24.4

1 

24.3

2 

21.89 26.33 

                       

Moder

ate 

1 51.96 0.0

9 

1.72 2.33 2.34 2.04 2.53 50.41 0.1

0 

0.16 1.16 1.16 0.95 1.42 51.98 0.1

0 

1.74 2.89 2.88 2.59 3.15 
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2 52.01 0.1

7 

1.77 2.73 2.72 2.43 3.04 49.75 0.1

6 

-0.49 1.94 1.90 1.50 2.54 51.41 0.1

7 

1.17 2.90 2.96 2.19 3.39 

 

3 51.95 0.2

2 

1.71 3.01 3.01 2.26 3.56 48.94 0.2

4 

-1.30 2.87 2.91 2.31 3.51 50.83 0.2

2 

0.59 3.05 3.00 2.53 4.06 

 

4 51.99 0.2

9 

1.75 3.24 3.24 2.59 3.78 48.27 0.2

5 

-1.97 3.56 3.59 2.95 4.23 50.32 0.2

9 

0.08 3.50 3.53 3.08 4.06 

 

5 51.96 0.2

7 

1.72 3.70 3.68 3.18 4.69 47.60 0.2

8 

-2.64 4.54 4.60 4.10 4.93 49.73 0.3

6 

-0.51 3.99 3.96 3.31 4.57 

 

6 51.97 0.3

1 

1.73 4.05 4.03 3.49 4.94 46.80 0.4

0 

-3.44 5.51 5.63 4.60 6.21 49.06 0.3

6 

-1.18 4.50 4.40 3.94 5.30 

 

7 51.90 0.4

0 

1.66 4.19 4.20 3.72 4.92 46.14 0.3

5 

-4.11 6.34 6.29 5.47 6.92 48.57 0.4

4 

-1.67 5.01 5.01 4.60 5.68 

 

8 51.71 0.4

0 

1.47 4.56 4.52 3.97 5.48 45.31 0.4

0 

-4.94 7.47 7.35 6.53 8.36 47.96 0.4

3 

-2.28 5.74 5.62 4.89 7.20 

 

9 51.98 0.3

7 

1.74 5.04 5.04 4.28 5.68 44.76 0.3

8 

-5.48 8.03 8.05 7.21 8.75 47.44 0.5

4 

-2.80 6.14 6.16 5.33 7.07 

 

10 51.63 0.4

6 

1.39 5.38 5.23 4.72 6.26 43.85 0.3

3 

-6.39 9.14 9.06 8.68 10.10 46.80 0.5

0 

-3.44 7.25 7.28 6.40 8.17 
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Vigoro

us 

1 7.56 0.0

4 

0.27 0.63 0.63 0.53 0.78 7.26 0.0

3 

-0.03 0.39 0.35 0.26 0.65 7.61 0.0

3 

0.32 0.81 0.80 0.71 1.01 

 

2 7.57 0.0

7 

0.28 0.83 0.83 0.69 0.99 7.12 0.0

7 

-0.17 0.70 0.62 0.48 1.13 7.52 0.0

8 

0.23 0.97 0.94 0.78 1.31 

 

3 7.54 0.0

8 

0.25 1.01 1.03 0.74 1.20 6.97 0.0

9 

-0.32 1.01 1.02 0.74 1.33 7.39 0.0

9 

0.09 1.01 1.01 0.85 1.23 

 

4 7.58 0.1

0 

0.29 1.25 1.25 0.94 1.48 6.77 0.0

7 

-0.52 1.36 1.33 1.12 1.93 7.28 0.0

8 

-0.01 1.32 1.31 1.02 1.76 

 

5 7.60 0.1

1 

0.31 1.44 1.40 1.08 1.80 6.64 0.0

9 

-0.65 1.50 1.44 1.27 1.95 7.19 0.1

2 

-0.10 1.40 1.41 1.09 1.74 

 

6 7.58 0.1

4 

0.29 1.58 1.48 1.40 1.94 6.46 0.1

2 

-0.83 1.85 1.82 1.44 2.18 7.03 0.1

3 

-0.26 1.58 1.54 1.26 2.13 

 

7 7.48 0.1

6 

0.19 1.64 1.66 1.24 1.99 6.31 0.1

7 

-0.98 2.13 2.15 1.68 2.62 6.91 0.1

6 

-0.38 1.88 1.86 1.36 2.73 

 

8 7.55 0.1

3 

0.26 1.81 1.82 1.44 2.13 6.16 0.1

4 

-1.13 2.33 2.32 1.64 2.85 6.87 0.1

5 

-0.42 1.92 1.90 1.41 2.38 

 

9 7.60 0.2

4 

0.31 2.05 2.06 1.37 2.29 6.02 0.1

9 

-1.27 2.59 2.59 1.90 3.04 6.73 0.1

6 

-0.56 2.21 2.15 1.57 3.29 

 

10 7.47 0.3 0.18 2.25 2.24 1.84 3.03 5.79 0.2 -1.50 2.91 2.82 2.38 3.71 6.57 0.1 -0.72 2.28 2.21 1.85 2.95 
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Appendix 3.1 Algorithm hyperparameters  

Algorithm parameters  

 

Fitbit Regression models  

Study 1 as training 

Random Forest 

{'n_estimators': 600, 
 'min_samples_split': 2, 

 'min_samples_leaf': 4, 

 'max_features': 'sqrt', 

 'max_depth': 60, 

 'bootstrap': True} 

Gradient boost 

{'n_estimators': 1000, 
 'min_samples_split': 6, 

 'min_samples_leaf': 2, 

 'max_features': 'log2', 

 'max_depth': 20, 

 'loss': 'ls', 

 'learning_rate': 0.01} 

Neural network 

{'n_neurons': 65, 
 'n_hidden': 2,  
'learning_rate': 0.0001} 
Study 2 as training 

Random forest 

{'n_estimators': 200, 
 'min_samples_split': 2, 
 'min_samples_leaf': 2, 
 'max_features': 'sqrt', 
 'max_depth': 30, 
 'bootstrap': True} 
Gradient boost 

{'n_estimators': 1000, 
 'min_samples_split': 4, 
 'min_samples_leaf': 8, 
 'max_features': 'auto', 
 'max_depth': 2, 
 'loss': 'ls', 
 'learning_rate': 0.01} 
Neural network  

{'n_neurons': 15, 
 'n_hidden': 3,  
'learning_rate': 0.0001} 
LOSO 

Random forest 
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{'n_estimators': 800, 
 'min_samples_split': 10, 

 'min_samples_leaf': 1, 

 'max_features': 'sqrt', 

 'max_depth': 60, 

 'bootstrap': True} 

Gradient boost 

{'n_estimators': 1000, 
 'min_samples_split': 10, 

 'min_samples_leaf': 1, 

 'max_features': 'sqrt', 

 'max_depth': 15, 

 'loss': 'ls', 

 'learning_rate': 0.01} 

Neural network 

{'n_neurons': 65,  
'n_hidden': 2, 
'learning_rate': 0.0001} 
 
Sensewear regression models 

Study 1 as training 

Random forest 

{ 'n_estimators': 200, 
 'min_samples_split': 5, 

 'min_samples_leaf': 4, 

 'max_features': 'sqrt', 

 'max_depth': 40, 

 'bootstrap': True} 

Gradient boost 

{ 'n_estimators': 10000, 
 'min_samples_split': 10, 

 'min_samples_leaf': 1, 

 'max_features': 'log2', 

 'max_depth': 15, 

'learning_rate': 0.01} 

Neural network 

{'n_neurons': 15,  
'n_hidden': 3,  
'learning_rate': 0.0001} 
 

Study 2 as training  

Random forest 

{‘n_estimators': 800, 
 'min_samples_split': 10, 

 'min_samples_leaf': 1, 
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 'max_features': 'sqrt', 

 'max_depth': 60, 

 'bootstrap': True} 

Gradient boost 

{'n_estimators': 1000, 
 'min_samples_split': 10, 

 'min_samples_leaf': 1, 

 'max_features': 'sqrt', 

 'max_depth': 15, 

'learning_rate': 0.01} 

Neural network 

{'n_neurons': 65, 
 'n_hidden': 2, 
 'learning_rate': 0.0001} 
 

LOSO 

Random forest 

{'n_estimators': 800, 

 'min_samples_split': 5, 

 'min_samples_leaf': 1, 

 'max_features': 'sqrt', 

 'max_depth': 30, 

 'bootstrap': True} 

Gradient boost 

{'n_estimators': 10000, 

 'min_samples_split': 6, 

 'min_samples_leaf': 12, 

 'max_features': 'log2', 

 'max_depth': 15, 

'learning_rate': 0.01} 

Neural network 

{'n_neurons': 15, 
 'n_hidden': 3, 
 'learning_rate': 0.0001} 
 

ActiGraph Regression models  

 

Study 1 as training 

 

Random Forest 

{'n_estimators': 1000, 
 'min_samples_split': 5, 

 'min_samples_leaf': 2, 
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 'max_features': 'sqrt', 

 'max_depth': 50, 

 'bootstrap': False} 

Gradient Boost 

{'n_estimators': 10000, 
 'min_samples_split': 10, 

 'min_samples_leaf': 12, 

 'max_features': 'sqrt', 

 'max_depth': 10, 

 'loss': 'ls', 

 'learning_rate': 0.01} 

Neural Network 

{'n_neurons': 55, 

 'n_hidden': 3, 

 'learning_rate': 0.003} 
Study 2 as training 

Random forest 

{'n_estimators': 200, 
 'min_samples_split': 2, 

 'min_samples_leaf': 1, 

 'max_features': 'sqrt', 

 'max_depth': 60, 

 'bootstrap': True} 

Gradient boosting 

{'n_estimators': 10000, 
 'min_samples_split': 20, 
 'min_samples_leaf': 2, 
 'max_features': 'sqrt', 
 'max_depth': 20, 
 'learning_rate': 0.01} 
Neural network 

{ 'n_neurons': 65, 'n_hidden': 2, 'learning_rate': 0.0001} 
LOSO 

Random forest 

{'n_estimators': 1000, 
 'min_samples_split': 5, 

 'min_samples_leaf': 1, 

 'max_features': 'sqrt', 

 'max_depth': 60, 

 'bootstrap': False} 

Gradient Boost 

{'n_estimators': 10000, 

 'min_samples_split': 6, 

 'min_samples_leaf': 12, 
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 'max_features': 'log2', 

 'max_depth': 15, 

'learning_rate': 0.01} 

Neural Network 

{ 'n_neurons': 55, 
 'n_hidden': 2, 
 'learning_rate': 0.003 
} 

Classification models 

Fitbit classification models  

Study 1 as training 

 

KNN 

{'weights': 'uniform',  

'n_neighbors': 15,  

'metric': 'minkowski'} 

Random forest 

{'n_estimators': 1000, 
 'min_samples_split': 10, 
 'min_samples_leaf': 4, 
 'max_features': 'auto', 
 'max_depth': 80, 
 'bootstrap': True} 
Gradient boost 

{'n_estimators': 1000, 
 'min_samples_split': 2, 
 'min_samples_leaf': 1, 
 'max_features': 'log2', 
 'max_depth': 15, 
 'learning_rate': 0.1} 
Neural network 

{ 'n_neurons': 65, 
 'n_hidden': 2,  
'learning_rate': 0.0001} 
SVM 

{ 'C': 5.046137691733707, 
 'gamma': 0.19767211400638388} 
Study 2 as training 

KNN 

{'weights': 'uniform',  

'n_neighbors': 33,  

'metric': 'manhattan'} 

Random forest 

{'n_estimators': 800, 
 'min_samples_split': 5, 
 'min_samples_leaf': 4, 
 'max_features': 'auto', 
 'max_depth': 80, 
 'bootstrap': True} 
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Gradient boost 

{'n_estimators': 1000, 
 'min_samples_split': 6, 
 'min_samples_leaf': 2, 
 'max_features': 'sqrt', 
 'max_depth': 2, 
 'learning_rate': 0.01} 
Neural network 

{ 'n_neurons': 15, 'n_hidden': 3, 'learning_rate': 0.0001} 
 

SVM 

{ 'C': 7.924145688620425, 'gamma': 0.14645041271999773} 
 

LOSO 

 

KNN 

{ 'weights': 'distance', 'n_neighbors': 73, 'metric': 'manhattan'} 
Random forest  

{ 'n_estimators': 400, 
 'min_samples_split': 5, 

 'min_samples_leaf': 4, 

 'max_features': 'sqrt', 

 'max_depth': 70, 

 'bootstrap': True} 

Gradient boost 

{ 'n_estimators': 1000, 
 'min_samples_split': 4, 

 'min_samples_leaf': 8, 

 'max_features': 'auto', 

 'max_depth': 2, 

 'learning_rate': 0.01} 

Neural network 

{ 'n_neurons': 70, 'n_hidden': 2, 'learning_rate': 0.1} 
SVM 

{'C': 6.319450186421157, 'gamma': 0.3912291401980419} 
 

Sensewear classification models 

Study 1 as training  

KNN  

{'weights': 'uniform',  

'n_neighbors': 27,  

'metric': 'manhattan'} 

Random Forest  

{'n_estimators': 800, 
 'min_samples_split': 10, 
 'min_samples_leaf': 4, 
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 'max_features': 'auto', 
 'max_depth': 40, 
 'bootstrap': False} 
Gradient boost 

{'n_estimators': 1000, 
 'min_samples_split': 4, 
 'min_samples_leaf': 4, 
 'max_features': 'log2', 
 'max_depth': 10, 
 'learning_rate': 0.1} 
Neural network 

{ 'n_neurons': 15, 'n_hidden': 3, 'learning_rate': 0.0001} 
SVM 

{ 'C': 7.924145688620425, 'gamma': 0.14645041271999773} 
Study 2 as training 

KNN 

{'weights': 'uniform', 'n_neighbors': 53, 'metric': 'manhattan'} 
Random forest 

{ 'n_estimators': 1000, 
 'min_samples_split': 5, 

 'min_samples_leaf': 4, 

 'max_features': 'sqrt', 

 'max_depth': 40, 

 'bootstrap': True} 

Gradient boost 

{ 'n_estimators': 10000, 
 'min_samples_split': 6, 

 'min_samples_leaf': 12, 

 'max_features': 'sqrt', 

 'max_depth': 20, 

 'learning_rate': 0.1 

} 
Neural network 

{ 'n_neurons': 15, 'n_hidden': 3, 'learning_rate': 0.0001} 
SVM  

{ 'C': 7.924145688620425, 'gamma': 0.14645041271999773} 
 

LOSO 

KNN 

{'weights': 'uniform',  

'n_neighbors': 33,  

'metric': 'manhattan'} 

Random forest  
'n_estimators': 400, 

 'min_samples_split': 5, 

 'min_samples_leaf': 4, 

 'max_features': 'sqrt', 



- 365 - 

 'max_depth': 70, 

 'bootstrap': True 

} 
Gradient boost 

{ 'n_estimators': 1000, 
 'min_samples_split': 4, 

 'min_samples_leaf': 2, 

 'max_features': 'log2', 

 'max_depth': 10, 

 'learning_rate': 0.05 

} 
Neural network 

{'n_neurons': 65,  
'n_hidden': 2, 
'learning_rate': 0.0001 
} 
SVM 

{ 'C': 7.924145688620425,  
'gamma': 0.14645041271999773} 
 
ActiGraph classification models 
Study 1 as training  

KNN 

{'weights': 'uniform',  

'n_neighbors': 41,  

'metric': 'manhattan'} 

Random forest 

{'n_estimators': 200, 

 'min_samples_split': 2, 

 'min_samples_leaf': 1, 

 'max_features': 'sqrt', 

 'max_depth': 90, 

 'bootstrap': False} 

Gradient boost 

{'n_estimators': 1000, 

 'min_samples_split': 20, 

 'min_samples_leaf': 4, 

 'max_features': 'sqrt', 

 'max_depth': 10, 

 'learning_rate': 0.1} 

Neural network 

{ 'n_neurons': 65,  
'n_hidden': 2,  
'learning_rate': 0.0001} 
SVM 
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{ 'C': 7.924145688620425,  
'gamma': 0.14645041271999773} 
Study 2 as training 

KNN 

{ 'weights': 'uniform', 'n_neighbors': 17, 'metric': 'manhattan'} 
 

Random forest 

{ 'n_estimators': 800, 
 'min_samples_split': 5, 

 'min_samples_leaf': 4, 

 'max_features': 'auto', 

 'max_depth': 80, 

 'bootstrap': True 

} 

Gradient boost 

{ 'n_estimators': 1000, 
 'min_samples_split': 6, 
 'min_samples_leaf': 8, 
 'max_features': 'log2', 
 'max_depth': 20, 
 'learning_rate': 0.01 
} 

Neural network  

{ 'n_neurons': 15, 'n_hidden': 3, 'learning_rate': 0.0001} 
SVM 

{ 'C': 7.924145688620425,  
'gamma': 0.14645041271999773 
} 

LOSO 

 

KNN 

{'weights': 'distance',  

'n_neighbors': 73,  

'metric': 'manhattan'} 

Random Forest 

{'n_estimators': 1000, 

 'min_samples_split': 10, 

 'min_samples_leaf': 4, 

 'max_features': 'auto', 

 'max_depth': 20, 

 'bootstrap': True} 

Gradient boost 

{ 'n_estimators': 1000, 
 'min_samples_split': 6, 

 'min_samples_leaf': 2, 
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 'max_features': 'log2', 

 'max_depth': 3, 

 'learning_rate': 0.01 

} 
Neural network 

{ 'n_neurons': 65,  
'n_hidden': 2, 
'learning_rate': 0.0001} 
SVM 

{ 'C': 7.924145688620425,  
'gamma': 0.14645041271999773} 
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Appendix 3.2 LOSO results  

Model Activity  Predicted 

(METs) 

True 

(METs) 

MAPE RMSE CCC (95% 

CI)  

AG Gradient 

Boost 

ADL 2.82 ± 0.91 2.56 ± 

0.89 

22.931

56 

0.7233

84 

0.69 (0.66, 

0.72) 

AG Gradient 

Boost 

Cycling 4.7 ± 1.29 4.82 ± 

1.59 

16.535

47 

1.0655

76 

0.73 (0.7, 

0.76) 

AG Gradient 

Boost 

Elliptical 6.75 ± 1.52 7.04 ± 

2.13 

15.060

07 

1.5171

27 

0.67 (0.61, 

0.72) 

AG Gradient 

Boost 

Rowing 6.35 ± 1.55 6.51 ± 

2.04 

14.336

69 

1.2431

45 

0.76 (0.72, 

0.8) 

AG Gradient 

Boost 

Running 8.25 ± 1.3 8.52 ± 

1.66 

13.554

42 

1.4144

3 

0.56 (0.5, 

0.61) 

AG Gradient 

Boost 

Sedenta

ry 

1.37 ± 0.34 1.3 ± 

0.34 

19.844

89 

0.3748

68 

0.4 (0.35, 

0.45) 

AG Gradient 

Boost 

Transitio

nal 

3.06 ± 1.83 2.99 ± 

1.99 

19.963

56 

0.7722

33 

0.92 (0.91, 

0.93) 

AG Gradient 

Boost 

Walking 4.2 ± 0.75 4.22 ± 

0.99 

14.457

45 

0.7750

34 

0.61 (0.57, 

0.65) 

AG Neural 

Network 

ADL 2.69 ± 1.07 2.56 ± 

0.89 

26.099

1 

0.8764

18 

0.61 (0.57, 

0.64) 

AG Neural 

Network 

Cycling 4.75 ± 1.64 4.82 ± 

1.59 

20.721

47 

1.2902

9 

0.68 (0.64, 

0.71) 

AG Neural 

Network 

Elliptical 6.9 ± 1.81 7.04 ± 

2.13 

18.075

32 

1.6182

95 

0.66 (0.6, 

0.72) 

AG Neural 

Network 

Rowing 6.26 ± 1.9 6.51 ± 

2.04 

16.743

95 

1.3918

49 

0.75 (0.7, 

0.8) 

AG Neural 

Network 

Running 8.41 ± 1.82 8.52 ± 

1.66 

16.721

77 

1.8220

38 

0.45 (0.38, 

0.52) 

AG Neural 

Network 

Sedenta

ry 

1.34 ± 0.41 1.3 ± 

0.34 

24.361 0.4610

23 

0.25 (0.19, 

0.3) 

AG Neural 

Network 

Transitio

nal 

3.1 ± 2.09 2.99 ± 

1.99 

25.222

19 

1.0642

49 

0.86 (0.84, 

0.88) 
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AG Neural 

Network 

Walking 4.26 ± 1.12 4.22 ± 

0.99 

17.713

48 

0.9744

02 

0.57 (0.53, 

0.62) 

AG Random 

Forest 

ADL 2.86 ± 0.92 2.56 ± 

0.89 

24.160

11 

0.7428

28 

0.68 (0.65, 

0.71) 

AG Random 

Forest 

Cycling 4.71 ± 1.24 4.82 ± 

1.59 

16.715

48 

1.0643

88 

0.72 (0.69, 

0.75) 

AG Random 

Forest 

Elliptical 6.76 ± 1.47 7.04 ± 

2.13 

15.154

74 

1.5161

9 

0.66 (0.6, 

0.71) 

AG Random 

Forest 

Rowing 6.3 ± 1.49 6.51 ± 

2.04 

14.307

61 

1.2529

87 

0.75 (0.71, 

0.79) 

AG Random 

Forest 

Running 8.22 ± 1.24 8.52 ± 

1.66 

13.585

71 

1.4242

02 

0.54 (0.48, 

0.59) 

AG Random 

Forest 

Sedenta

ry 

1.38 ± 0.35 1.3 ± 

0.34 

20.308

17 

0.3915

11 

0.38 (0.33, 

0.43) 

AG Random 

Forest 

Transitio

nal 

3.09 ± 1.79 2.99 ± 

1.99 

21.006

82 

0.7889

97 

0.91 (0.9, 

0.92) 

AG Random 

Forest 

Walking 4.2 ± 0.68 4.22 ± 

0.99 

14.541

04 

0.7691

56 

0.59 (0.55, 

0.63) 

FB Gradient 

Boost 

ADL 3.27 ± 1.1 2.55 ± 

0.89 

41.943

53 

1.2231

18 

0.41 (0.37, 

0.45) 

FB Gradient 

Boost 

Cycling 3.97 ± 1.29 4.76 ± 

1.58 

25.296

85 

1.6741

85 

0.42 (0.37, 

0.46) 

FB Gradient 

Boost 

Elliptical 6.34 ± 1.51 7.01 ± 

2.16 

21.489

92 

1.9512

74 

0.48 (0.4, 

0.56) 

FB Gradient 

Boost 

Rowing 4.95 ± 1.24 6.49 ± 

2.05 

25.568

61 

2.3860

1 

0.3 (0.23, 

0.36) 

FB Gradient 

Boost 

Running 8.3 ± 1.31 8.51 ± 

1.67 

14.463

02 

1.5032

26 

0.5 (0.44, 

0.56) 

FB Gradient 

Boost 

Sedenta

ry 

1.55 ± 0.53 1.29 ± 

0.34 

34.738

25 

0.6533

84 

0.08 (0.03, 

0.13) 

FB Gradient 

Boost 

Transitio

nal 

3.47 ± 1.61 2.98 ± 

1.99 

46.036

61 

1.2861

93 

0.76 (0.72, 

0.79) 

FB Gradient Walking 4.52 ± 0.97 4.21 ± 19.011 0.9987 0.51 (0.46, 
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Boost 0.99 7 51 0.55) 

FB Neural 

Network 

ADL 3.21 ± 1.27 2.55 ± 

0.89 

43.441

56 

1.3361

11 

0.37 (0.33, 

0.41) 

FB Neural 

Network 

Cycling 3.89 ± 1.41 4.76 ± 

1.58 

27.878

47 

1.8050

71 

0.38 (0.33, 

0.43) 

FB Neural 

Network 

Elliptical 6.32 ± 1.81 7.01 ± 

2.16 

24.550

78 

2.0761

1 

0.49 (0.4, 

0.56) 

FB Neural 

Network 

Rowing 5.23 ± 1.43 6.49 ± 

2.05 

24.891

63 

2.2580

44 

0.35 (0.27, 

0.43) 

FB Neural 

Network 

Running 8.31 ± 1.52 8.51 ± 

1.67 

15.942

36 

1.6371

89 

0.48 (0.41, 

0.54) 

FB Neural 

Network 

Sedenta

ry 

1.53 ± 0.52 1.29 ± 

0.34 

37.521

9 

0.6580

61 

0.01 (-0.03, 

0.06) 

FB Neural 

Network 

Transitio

nal 

3.42 ± 1.73 2.98 ± 

1.99 

48.180

93 

1.4073

43 

0.72 (0.68, 

0.76) 

FB Neural 

Network 

Walking 4.55 ± 1.1 4.21 ± 

0.99 

21.173

96 

1.0791

41 

0.49 (0.44, 

0.54) 

FB Random 

Forest 

ADL 3.31 ± 1.1 2.55 ± 

0.89 

42.512

39 

1.2275

45 

0.41 (0.37, 

0.45) 

FB Random 

Forest 

Cycling 3.95 ± 1.25 4.76 ± 

1.58 

24.504

08 

1.6615

26 

0.42 (0.37, 

0.46) 

FB Random 

Forest 

Elliptical 6.29 ± 1.38 7.01 ± 

2.16 

20.527

28 

1.9188

14 

0.48 (0.4, 

0.55) 

FB Random 

Forest 

Rowing 4.91 ± 1.13 6.49 ± 

2.05 

25.313

52 

2.3971

05 

0.28 (0.21, 

0.34) 

FB Random 

Forest 

Running 8.21 ± 1.24 8.51 ± 

1.67 

14.328

19 

1.4890

55 

0.5 (0.43, 

0.55) 

FB Random 

Forest 

Sedenta

ry 

1.54 ± 0.49 1.29 ± 

0.34 

33.731

8 

0.6229

48 

0.08 (0.03, 

0.13) 

FB Random 

Forest 

Transitio

nal 

3.49 ± 1.56 2.98 ± 

1.99 

47.271

92 

1.2937

61 

0.75 (0.71, 

0.78) 

FB Random 

Forest 

Walking 4.54 ± 0.95 4.21 ± 

0.99 

19.177

41 

0.9928

9 

0.51 (0.46, 

0.55) 
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SWA Gradient 

Boost 

ADL 2.85 ± 1.04 2.56 ± 

0.89 

23.266

55 

0.8164

61 

0.66 (0.62, 

0.69) 

SWA Gradient 

Boost 

Cycling 4.66 ± 1.34 4.84 ± 

1.58 

16.600

19 

1.0655

48 

0.74 (0.71, 

0.77) 

SWA Gradient 

Boost 

Elliptical 6.97 ± 1.7 7.13 ± 

2.12 

14.162

44 

1.3854

26 

0.74 (0.69, 

0.78) 

SWA Gradient 

Boost 

Rowing 6.08 ± 1.67 6.58 ± 

2.04 

14.423

18 

1.2911

94 

0.77 (0.72, 

0.81) 

SWA Gradient 

Boost 

Running 8.31 ± 1.35 8.54 ± 

1.66 

12.000

7 

1.2507

24 

0.66 (0.61, 

0.7) 

SWA Gradient 

Boost 

Sedenta

ry 

1.36 ± 0.35 1.3 ± 

0.34 

20.339

26 

0.4150

76 

0.29 (0.23, 

0.34) 

SWA Gradient 

Boost 

Transitio

nal 

3.14 ± 1.88 3 ± 1.99 21.871

51 

0.8229

31 

0.91 (0.89, 

0.92) 

SWA Gradient 

Boost 

Walking 4.26 ± 0.88 4.24 ± 

0.99 

12.891

42 

0.6935

5 

0.73 (0.69, 

0.76) 

SWA 

Manufacturer 

ADL 3.73 ± 2.05 2.57 ± 

0.89 

66.517

31 

2.2817

7 

0.18 (0.14, 

0.21) 

SWA 

Manufacturer 

Cycling 3.31 ± 1.88 4.83 ± 

1.58 

38.762

46 

2.1830

26 

0.43 (0.39, 

0.47) 

SWA 

Manufacturer 

Elliptical 6 ± 1.57 7.13 ± 

2.12 

24.407

59 

2.6749

19 

0.13 (0.04, 

0.22) 

SWA 

Manufacturer 

Rowing 6.14 ± 2.1 6.58 ± 

2.04 

33.958

17 

2.6839

81 

0.18 (0.06, 

0.28) 

SWA 

Manufacturer 

Running 8.11 ± 1.69 8.54 ± 

1.66 

21.949

49 

2.2775

58 

0.1 (0.02, 

0.18) 

SWA 

Manufacturer 

Sedenta

ry 

1.22 ± 0.27 1.3 ± 

0.34 

21.438

14 

0.4043

44 

0.15 (0.09, 

0.21) 

SWA 

Manufacturer 

Transitio

nal 

2.77 ± 1.79 3 ± 1.99 31.170

51 

1.4589

13 

0.7 (0.66, 

0.74) 

SWA 

Manufacturer 

Walking 3.92 ± 0.85 4.24 ± 

0.99 

21.636

17 

1.1928

05 

0.21 (0.15, 

0.27) 

SWA Neural ADL 2.78 ± 1.07 2.56 ± 24.256 0.8185 0.66 (0.63, 
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Network 0.89 3 16 0.69) 

SWA Neural 

Network 

Cycling 4.65 ± 1.44 4.84 ± 

1.58 

17.295

35 

1.1366

08 

0.72 (0.69, 

0.75) 

SWA Neural 

Network 

Elliptical 7.05 ± 1.8 7.13 ± 

2.12 

15.446

56 

1.4636

28 

0.72 (0.66, 

0.77) 

SWA Neural 

Network 

Rowing 6.25 ± 1.83 6.58 ± 

2.04 

15.773

76 

1.3030

15 

0.78 (0.73, 

0.82) 

SWA Neural 

Network 

Running 8.39 ± 1.51 8.54 ± 

1.66 

11.769

15 

1.2617

03 

0.68 (0.64, 

0.73) 

SWA Neural 

Network 

Sedenta

ry 

1.36 ± 0.44 1.3 ± 

0.34 

24.066

72 

0.5091

83 

0.16 (0.1, 

0.22) 

SWA Neural 

Network 

Transitio

nal 

3.13 ± 2.02 3 ± 1.99 25.215

73 

0.9146

06 

0.9 (0.88, 

0.91) 

SWA Neural 

Network 

Walking 4.26 ± 0.99 4.24 ± 

0.99 

14.552

55 

0.7612

54 

0.71 (0.67, 

0.74) 

SWA Random 

Forest 

ADL 2.93 ± 1.06 2.56 ± 

0.89 

24.877

31 

0.8646

05 

0.63 (0.6, 

0.67) 

SWA Random 

Forest 

Cycling 4.66 ± 1.29 4.84 ± 

1.58 

16.062

89 

1.0465

59 

0.74 (0.71, 

0.77) 

SWA Random 

Forest 

Elliptical 6.91 ± 1.61 7.13 ± 

2.12 

14.156

81 

1.3842

97 

0.73 (0.68, 

0.77) 

SWA Random 

Forest 

Rowing 6.02 ± 1.64 6.58 ± 

2.04 

14.404

34 

1.3092

21 

0.76 (0.71, 

0.8) 

SWA Random 

Forest 

Running 8.28 ± 1.26 8.54 ± 

1.66 

12.275

91 

1.2563

8 

0.64 (0.59, 

0.68) 

SWA Random 

Forest 

Sedenta

ry 

1.37 ± 0.36 1.3 ± 

0.34 

20.661

21 

0.4259

22 

0.26 (0.21, 

0.32) 

SWA Random 

Forest 

Transitio

nal 

3.16 ± 1.83 3 ± 1.99 22.978

23 

0.8220

99 

0.91 (0.89, 

0.92) 

SWA Random 

Forest 

Walking 4.26 ± 0.83 4.24 ± 

0.99 

12.874

53 

0.6791

99 

0.72 (0.69, 

0.75) 
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LOSO results for each of the regression models by the activity types. Abbreviations: Fitbit 

(FB), AG = ActiGraph (AG), SenseWear (SWA). Root mean squared error (RMSE), Mean 

absolute percentage error (MAPE), concordance correlation coefficient (CCC). 
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Appendix 4.1 Distributions used in the hierarchical modelling 

approaches 

 

Figure 1. A histogram of 1000 draws from the METs distribution used for minutes where the 

subject was sleeping.   

 

Figure 2. A histogram of 1000 draws from the METs distribution used for minutes in which 

measured heart rate was lower than the sitting heart rate.   
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Figure 3. A histogram of 1000 draws from the METs distribution used for minutes classified 

as sedentary by the classification algorithm.   
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Appendix 4.2 Energy intake estimates  

 

Figure 1. Bland-Altman plots detailing the differences between the respective models and 

the SenseWear armband for energy intake. 

 

 

Figure 2 Histograms detailing the distribution of energy intake for each of the predictive 

models, the SenseWear and Fitbit manufacturer estimates.  
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Appendix 5.1 Visualisations of ∆𝑬𝑰 estimates  

 

Figure 1. Boxplots demonstrating the variability in ∆EI for each of the models for the second 

half of the study 

 

 

Figure 2. Boxplots demonstrating the variability in ∆EI for each of the models for the second 

half of the study 
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Figure 3. Line plots demonstrating ∆EI for each of the models. The solid line represents the 

average ∆EI estimate for the model and the black lines represent individual subjects. 

 

 

 

 

 


