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Abstract

Learning new tasks has always been a challenging problem in robotics. Even
though several approaches have been proposed, from manual programming to
learning from demonstrations, the field has directions which require further re-
search and development. This thesis focuses on one of these relatively unexplored
areas: observational learning.

We present O,A, a novel method for learning to perform robotic manipula-
tion tasks from a single (one-shot) third-person demonstration video. The key
novelty lies in pre-training a feature extractor for creating an abstract feature rep-
resentation for actions that we call “action vectors’. The action vectors are extracted
using a 3D-CNN network pre-trained for action recognition on a generic action
dataset. The distance between the action vectors from the observed third-person
demonstration and trial robot executions is used as a reward/cost for learning of
the demonstrated task.

We report on experiments in simulation and on a real robot, with changes in
viewpoint of observation, properties of the objects involved, scene background
and morphology of the manipulator between the demonstration and the learning
domains. O,A outperforms baseline approaches under different domain shifts
and has comparable performance with an oracle (that uses an ideal reward func-
tion). We also plot visualisation of trajectories and show that our method has high
reward for desired trajectories. Videos of the results, including demonstrations,
can be found in our: project-website.

Finally, we present a framework for extending observational learning with
multi modal observations. We report our initial experiments and results in the

future works.
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Introduction

"Research means that you don't know, but are willing to find out."

— Charles F. Kettering

The twenty-first century has seen a considerable growth in robotic techno-
logies. From room-cleaning to advanced medical applications, robots are making
their way into human lives [20, 21, 22]. But one of the major challenges faced
by even the most advanced robotic technologies lies in the inability to learn tasks
from demonstrations like human beings. The traditional method of teaching tasks
to robots is by manual step by step programming [23, 24]. But this approach can-
not be applied in real world scenarios especially for consumer robotics, where the
robotic operators need not be programmers. A practical solution for this problem
is to adapt the human approach of learning from demonstrations. For example, a
3 year old child is taught new tasks not by algorithmic programming but rather by
showing simple demonstrations. Hence Learning from Demonstration (LfD) has
been a top priority in robotics research for the past few decades. Comprehensive
surveys of the methods and techniques developed for LfD over the years can be
found in [25, 26, 27, 28, 29, 30, 31].

Even though LfD has been studied in robotics for a very long time, the major
share of the research works fall into the category of imitation learning. In imit-
ation learning, the robotic system is made to learn from first person demonstra-
tions. The demonstrations can be provided by teleoperation [1] or kinesthetic

teaching [2] as shown in Figure 1.1. In teleoperation, the demonstrator guides

1



the robotic system indirectly using teleoperation devices to perform a task. Dur-
ing teleoperation, the robotic system records it’s joint trajectories and/or visually
observes it’s own actions, to be used as the demonstrations for learning the task.
Whereas in kinesthetic teaching, the demonstrator directly guides the robotic sys-
tem to perform the task. The robotic joint trajectories obtained during this process
are recorded and used as the demonstrations.

Figure 1.1: Imitation learning by (a) teleoperation [1] and (b) kinesthetic teaching

2]

Several approaches have been developed for implementing imitation learning
in robotics with high degrees of success [1, 2]. However, imitation learning meth-
ods suffer from a key limitation in terms of the demonstrations that can be used for
learning a task. The demonstrations have to be provided as first person observa-
tions, with access to robot joint trajectories during demonstration. This limits the
ability of robotic systems to learn from demonstrations which occur naturally. For
example, a search for task demonstrations on the web invariably retrieves videos
mostly recorded as third person observations with no access to the corresponding
robotic joint trajectories during demonstrations.

Observational learning [31, 32, 33] methods aim at overcoming this challenge.
The origin of observational learning can be traced back to works published in
the early 1990s [34, 35, 36]. It differs from imitation learning in that the demon-
strations are observed as a third person without access to robotic joint trajector-
ies. Observing demonstrations from a third person also give rise to domain shifts
between the demonstration and learning environments. The domain shifts can be

2



1.1. Defining observational learning

changes in viewpoint of observation, object properties, scene background and/or
morphology of the manipulators. This makes observational learning even harder
to solve. The differences between imitation learning and observational learning
are summarised in Table 1.1. A plain imitation of the demonstration will not be
sufficient to achieve the desired behaviour. The robotic system will have to first
learn a domain-agnostic abstract feature representation of the task demonstrated

and then perform an execution which will have a similar representation.

Table 1.1: Differences between imitation learning and observational learning

Imitation learning

Observational learning

Domain shift

No domain shift. The demonstra-
tions are performed in the same
environment in which robots are
learning.

Domain shifts can occur as
changes in viewpoint of obser-
vation, object properties, scene
background and/or morphology
of the manipulator.

Access to
trajectories

joint

Robotic system has access to it’s
own joint trajectories during the

Does not have access to robotic
joint trajectories.

demonstration.

Observational learning is also refereed to as Learning by Watching[35], Teach-
ing by Showing[37], Plan from Observation [36], Visual Imitation Learning [38],
Third person Imitation Learning [39], Imitation from Observation [40], Imitation
Learning with Domain shift [41] and Third person Visual Imitation Learning [10].
Even though the definitions vary slightly between articles, the core concept of ob-
servational learning remains the same. In the next section we explain the concept

of observational learning and its stages in detail.

1.1 Defining observational learning

It is worth noting that the concept of observational learning has long been invest-
igated in the fields of cognitive and behavioral psychology. American psycho-
logists Bandura and Walters [42, 43, 44], postulated that people learn from one
another via observation, mimicking and modeling the demonstrator’s behaviors

and coined the term ‘observational learning’ or ‘social learning’ to describe this be-



1.1. Defining observational learning

haviour. They suggested that observational learning has four parts: attention, re-
tention, reproduction and motivation. Attention is observing what is happening,
retention refers to memorising and creating a mental model of the task, reproduc-
tion is the execution of the task inspired by an incentive referred to as motivation.
A detailed interdisciplinary overview of this line of work on observational and
imitation learning can be found in the book ‘Imitation in Animals and Artifacts’
[45].

Inspired by the concepts in psychology and existing robotics literature, obser-
vational learning in robotics can be decomposed into three stages: observation,
abstract feature representation and execution as illustrated in the Fig 1.2. We de-

scribe each of these in the following subsections.

Abstract
feature —

Observation | representation ) Execution

Figure 1.2: Observational learning consists of observing the demonstrations, ex-
tracting an abstract feature representations and executing the demonstrated task.

Observation

In the ‘Observation’ stage, the robotic system views the demonstrator performing
the task. Demonstrations can be observed directly, i.e as raw images/videos or

with assistance using trackers or visual detectors.

Abstract feature representation

In this stage, abstract feature representations of the demonstrations invariant to
domain shifts are extracted. For example (referring to Figure 1.2), the represent-
ations for the task of opening a door should be identical, irrespective of the angle
from which it was observed. The features are extracted frame by frame or from

the video as a whole.



1.2. Motivation

Execution

Execution is the last stage of observational learning where the robotic system per-
forms the demonstrated task. It involves finding robotic controls to execute the
task from the abstract representations of the demonstrations. The robotic system
can obtain the controls for execution either by trial and error or using direct map-

ping techniques.

Given the breadth of the observational learning problem, in this thesis we limit
the scope to simplify the problem with the following assumptions.

e Only manipulation tasks are considered.

e The tasks are non-collaborative, i.e the tasks are demonstrated by a single

demonstrator.
e Demonstrations are viewed with a single RGB video camera.

e The demonstrations are provided by a human using one hand to perform a

task on one or more objects, directly or with the use of a hand-held tool (e.g.
a gripper).

e Once the demonstrations are given, the demonstrator does not provide any

further assistance.

1.2 Motivation

A key challenge in observational learning approaches until recently was the diffi-
culty to directly observe the demonstrations. The robotic systems had to be pre-
programmed ‘what to observe’ in the demonstrations. This was implemented us-
ing trackers, visual detectors or motion capture mechanisms (covered in chapter
2). However, this limited the scope of observational learning to demonstrations
that used pre-defined objects and also the demonstrators had the inconvenience of
attaching on-body sensors or trackers. It was with the emergence of deep learning
[46,47] and its applications [48, 49], sidelining classical computer vision methods
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[50, 51, 52], that direct observation of demonstrations became possible. In deep
learning feature representations can be extracted directly from raw demonstration
videos.

Deep neural network (DNN) feature extractors have been widely used in ob-
servational learning methods in the last few years as detailed in Chapter 2. How-
ever, the current methods lack generalisation to unseen manipulation tasks. The
feature extractors are trained in a way that is dependent on the tasks. For each
new task to be learned, the feature extractors have to be re-trained. This requires
a large number of demonstrations for each new task to be learned. It is very time
consuming to collect hundreds of demonstrations for each task especially in real
world robotic application scenarios. This thesis addresses the problem of learning
a task from a single demonstration. We propose a task-independent abstract fea-
ture representation extraction method that can generalise to unseen manipulation
tasks without re-training.

Another challenging aspect of observational learning