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Abstract

User profiling is the task of inferring attributes, such as gender or age, of so-

cial media users based on the content they produce or their behaviours on-line.

Approaches for user profiling typically use machine learning techniques to train

user profiling systems capable of inferring the attributes of unseen users, having

been provided with a training set of users labelled with their attributes. Classic

approaches to user attribute labelling for such a training set may be manual or

automated, examples include: direct solicitation through surveys, manual assign-

ment based on outward characteristics, and extraction of attribute key-phrases

from user description fields.

Social media platforms, such as Twitter, often provide users with the ability to

attach their geographic location to their posts, known as geo-location. In addition,

government organisations release demographic data aggregated at a variety of

geographic scales. The combination of these two data sources is currently under-

explored in the user profiling literature. To combine these sources, a method is

proposed for geo-location-driven user attribute labelling in which a coordinate

level prediction is made for a user’s ‘home location’, which in turn is used to ‘look

up’ corresponding demographic variables that are assigned to the user.

Strong baseline components for user profiling systems are investigated and val-

idated in experiments on existing user profiling datasets, and a corpus of geo-

located Tweets is used to derive a complementary resource. An evaluation of

current methods for assigning fine-grained home location to social media users

is performed, and two improved methods are proposed based on clustering and

majority voting across arbitrary geographic regions. The proposed geo-location-

driven user attribute labelling approach is applied across three demographic vari-

ables within the UK: Output Area Classification (OAC), Local Authority Classi-

fication (LAC), and National Statistics Socio-economic Classification (NS-SEC).

User profiling systems are trained and evaluated on each of the derived datasets,

and NS-SEC is additionally validated against a dataset derived through a different

method. Promising results are achieved for LAC and NS-SEC, however character-

istics of the underlying geographic and demographic data can lead to poor quality

datasets, as displayed for OAC.
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Chapter 1

Introduction

1.1 User profiling

User profiling is the task of determining the characteristics of a set of users based

on factors such as the text they produce, how they behave, and with whom they

interact. A user profiling study will typically center on evaluating one or more

attributes of one or more users. An attribute can represent any element of a

person’s self, ranging from obvious outward characteristics such as gender and age,

to more inward qualities such as personality, political leaning or sexual orientation.

A range of potential applications exist for user profiling techniques, most obvious

of course being the potential for personalisation, marketing and customer insight

[1, 2, 3]. A company or organisation could apply a user profiling tool to identify

their core user-base, and based on these insights marketers could further target

advertisement to users who are determined to hold the same characteristics. Law

enforcement could potentially use such a system to link on-line criminal behaviour

with individuals—studies have already investigated the use of user profiling tech-

niques in identifying on-line grooming [4], for example. Another potential appli-

cation might be as a tool in diagnosing mental health issues such as personality

disorders or depression in individuals out of reach of a trained medical professional,

for example in populations with limited access to healthcare [5].

Alongside these potential applications, which range from the benevolent to the

commercial, research into areas such as user profiling play a valuable role in high-

8



lighting the sorts of information we reveal about ourselves, both explicitly and

implicitly, through our day to day discourse and activities online [6, 7]. The stud-

ies conducted in this thesis are all performed on consumer-grade hardware, using

APIs and datasets openly available without any strong barriers to access; the in-

sights we and others reveal shine a light on the areas large organisations are likely

leveraging behind closed doors.

To date a variety of attributes have been examined with varying degrees of suc-

cess. Earlier studies—presented in Section 2.2.1—focussed on the more obvious

variations in humanity, such as age [8], gender [9] and native language [10]. Later,

due to the emergence of blogging and social platforms such as Twitter increasing

access to data, less obvious and much more personal attributes such as person-

ality scores [11, 12], political leaning [13, 14] and sexuality [15] were able to be

investigated.

The early, ‘outward’ characteristic studies generally relied on personal information

obtained directly from individuals. For example, a researcher wishing to develop

a system to determine the age of individuals based on their text would have to

obtain a set of documents authored by a variety of individuals, and ask for their

ages, known as acquiring ground truth data [9, 10, 16]. Some attributes however,

may not be as easily available, for example, a researcher wishing to investigate

variations in language across the Unites States, would struggle to directly contact

a reasonable number of individuals across all states, and in general, studies were

performed by researchers in universities, often taking data from student volun-

teers, who in general are not representative of the wider population. In addition,

attributes that are more difficult to characterise, such as personality type and

socio-economic status, are not readily known by most individuals; acquiring such

ground-truth attributes from individuals through direct contact would therefore

be a laborious process, such as through a proctored personality assessment, which

is infeasible outside of small-scale experiments.

Digitizing the process of acquiring ground truth data has allowed datasets to be

constructed with additional ease, as users can more easily be asked to provide

information directly (e.g. by answering an on-line questionnaire) or by providing

researchers with access to a social media profile [15, 17, 18]. Some attributes may

be more private than others, might be more difficult to define on an individual

level, or might be more more or less prevalent in users liable to self-select for a

social media study, again introducing the risk that the datasets created are not
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reflective of the overall population. Failing to cover a suitably representative por-

tion of the population when examining socio-demographic concepts or developing

user profiling systems is likely to lead to biased or incomplete results, or result in

a system of limited utility when deployed to a more broad set of users.

Several studies, such as [19] and Preoţiuc-Pietro et al. [20], noted that social media

users often either explicitly or implicitly declare certain attributes in the “about

me” or “biography” section of their profile. Consider the fictional example “Sally

Gulmore, 28 year old mother of two from Austin, TX”, which contains several

explicit and implicit nods towards personal attributes. Gender can be inferred

from the use of the phrase “mother of” and the name “Sally”, which we know

from census statistics is most often a female name, age is declared directly, and

a city-level geo-location is possible via “from Austin, TX”. These disclosures of

personal characteristics can be leveraged to create datasets without requesting

information directly from individuals, enabling collection on a larger scale than

was possible with previous approaches. Attribute data acquired in this automated

way can be more prone to errors than approaches that require a human to supply

information manually, as it relies on the user providing correct information in the

first instance and keeping their profile up to date (e.g. updating their age each

year) going forward.

1.2 Introducing geo-demographic data

Many countries regularly conduct surveys of their population that provide large-

scale aggregate representations of demographic information. Countries such as the

United Kingdom [21] and the United States [22] periodically conduct censuses and

release the data aggregated at various geographic levels, with a liberal license for

both research and public use. Governments are increasingly adopting a stance of

openness and are making this data available for research purposes. Census style

data has the advantage of providing population-level information gathered using

methods with a strong statistical backing. A wealth of information is present in

this data, such as education levels, social class, political views and occupation

category for well-defined geographical areas. Much of these demographic variables

have previously been explored only lightly (or not at all), in the user profiling

literature.
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In the same vein of open communication, users are increasingly engaging with

social media platforms such as Twitter in a public manner, in some cases providing

public measurements of their location at the time of posting, referred to as geo-

located posts. Although only a small portion of posts for a given platform are

geo-located [23], they still form a significant amount of data given the vast number

that are generated each day.

Given the accessibility of these two rich sources of data, we propose that they

could be combined to improve upon, supplement, or even replace data generation

for traditional user profiling methods, as well as allow attributes to be addressed

that have not previously been investigated.

1.3 Thesis aims

In order to leverage the large quantities of social media posts and demographic

data that are under exploited for user profiling, we propose a method for combining

geo-located posts with geographically linked demographic data to generate user

profiling datasets, and train user profiling systems that address novel demographic

variables.

Our approach, illustrated in Figure 1.1, allows demographic information to be

associated with a given user by identifying a ‘home location’ based on their geo-

located posts. Once a home location has been predicted for a user, they can

be labeled with their local demographics by looking up their home location in

geographically linked demographic datasets (also known as geodemographic seg-

mentation datasets). Datasets suitable for use with this method must link some

demographic variable, such as household income, occupational class, or educa-

tional attainment, to specific local areas in which users may be geo-located; exam-

ples of suitable datasets include raw data from the UK [21] and US censuses [22],

and derivations thereof such as Output Area Classification (OAC) [24], Local Au-

thority Classification (LAC) [25], and indices of multiple deprivation (IMD) [26],

which are aggregate measures that attempt to distil the broader demographics of

an area into easy to interpret variables.

Utilising geo-located social media posts and demographic data allows user profiling

datasets to be constructed for as yet unaddressed demographic variables. In ad-
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User X Post Coordinates

Predicted
Home Location

Demographics at 
Home Location

OAC: 6b2
LAC: 3a1
IMD Rank:  1

Labeled User X

Labels: OAC-6, LAC-3, IMD-1

Bio: Sociable Londoner who 
loves shopping.

Posts:
• Lovely day out on the Thames
• Great to see the chaps again
• New F&M range is top notch!

Figure 1.1: Illustration of the proposed process for labeling social media users
with their local demographics. First, the user’s geo-located posts are used to
predict a ‘home location’ (left panel). The home location is used to lookup local
demographics in a number of geodemographic datasets (top right panel). The
resulting demographic variables are processed into a usable form and attached to
the the user’s profile (bottom right panel).

dition, we are able to generate datasets for some demographic variables that have

previously been investigated at a much larger scale than presented before. The

applied home location allocation method must be accurate and robust, to avoid

propagating errors onwards into the derived datasets and resulting user profiling

models.

Our approach relies strongly on the concept of homophily, the observation that

individuals who live in an area, tend to be broadly representative of the demo-

graphics of that area, and that broadly similar groups of people tend to live in

similar areas [27]. If this concept holds, individuals Tweeting from an area that

has been identified as their ‘home’, are likely to match the demographics of that

area. Obviously this cannot hold true for all demographic variables; for example,

distributions of demographic variables such as age, gender, and sexuality do vary

between areas, but rarely to such an extent that our approach would reliably assign

an individual to a class of this nature. Instead, this approach is likely to be most
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useful for assessing demographic variables that correspond to the socio-economic

status of the user, such as household income and occupational class.

Despite the proposed method’s ability to provide demographic annotations for

a large number of users, it is not necessarily applicable as a wide-ranging user

profiling tool in its own right, as only a small percentage of social media users

consistently choose to geo-locate their posts [23]. As such, we frame the utility of

our method in terms of ability to generate useful datasets for training predictive

systems that infer the demographics of all social media users, including those who

do not geo-locate their posts.

In this thesis we aim to develop and evaluate our method for generating user

profiling datasets by:

� Establishing good baseline implementations for user profiling predictive sys-

tems based on datasets generated through ‘classic’ approaches. This is ad-

dressed in Chapters 2, 3 and 4;

� Establishing a strong grounding for our proposed method by evaluating

whether simple high level datasets derived from geo-located Tweets can be

used to improve performance on a user profiling task. This is addressed in

Chapter 4;

� Evaluating methods for estimating user home location, determining whether

the state-of-the-art is good enough for use in our proposed method, and

improving on the state-of-the-art if necessary. This is addressed in Chapter 5;

� Generating novel datasets for user profiling using our proposed method, and

evaluating them by developing user profiling predictive systems incorporat-

ing established strong baseline approaches. This is addressed in Chapter 6;

and

� Supplementing and contrasting existing user profiling datasets with ones

derived by our methods. This is addressed in Chapter 7.
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1.4 Thesis outline

Chapter 2 contains a review of user profiling; attributes addressed by various

approaches are explored in Section 2.2, focusing on both on and off-line media.

Established approaches for acquiring “ground-truth” geo-location data for social

media users are covered in Section 2.4, which we build on in Chapter 5. A review

of the techniques and tools used perform a user profiling is presented in Chapter 2,

which we use to establish a good baseline for our predictive experiments, starting

in Chapter 3.

In Chapters 3 and 4 we address and implement classic approaches to user profiling,

identifying baseline approaches for our later experiments, and also investigate

introducing simple demographic data (dialect) linked to geo-tagged posts at a

broad scale (country), with good results.

We finalise our approach for deriving high quality user location estimates in Chap-

ter 5. State-of-the-art approaches for determining user locations from the litera-

ture are empirically evaluated, alongside two novel methods.

In Chapter 6, we apply our approach on a dataset of Twitter posts to address two

variables not previously addressed in the literature, the Output Area and Local

Authority classification schemes.

Chapter 7 focuses on the application of our approach to a variable that has been

addressed before, with a publicly available dataset. We implement an analogous

evaluation framework to the state-of-the-art and compare and contrast the two

datasets.

The thesis is concluded with a discussion in Chapter 8.

1.5 Publications

The work in this thesis yielded four peer reviewed publications, listed below, and

also helped inspire an art installation, “Happy Sheffield”12, at Festival of the Mind

1https://www.sheffield.ac.uk/ideasbazaar/projects/happy-sheffield
2https://www.theguardian.com/lifeandstyle/shortcuts/2016/sep/11/

happy-sheffield-happiness-clock-twitter-city
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2016, which showcased a live stream of emotive Tweets across Sheffield set against

a backdrop of stylised faces, inspired by literature on the psychology of human

emotion [28].

� Adam Poulston, Mark Stevenson and Kalina Bontcheva. 2017. “Hyper-
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Chapter 2

Background

Studies on user profiling tend to focus on the development and evaluation of pre-

dictive systems capable of inferring user attributes (personal characteristics such

as gender or age). Approaches to building these user profiling systems typically

follow a similar process, presented in Figure 2.1.

User profiling systems begin with a collection of user content ((1) in Figure 2.1),

such as emails, essays, blogs or social media profiles. This is then processed into

feature vectors, numeric representations of the content, suitable for training a

machine learning model. We present the types of user content used and feature

vectors derived across the literature in Section 2.1.

Each user in the training set is tagged with ground truth user attributes that

User 
attributes

User 
content

1 2

Training data

User 
attributes

User 
content

1 2

Test data

?User 
content

1

Unlabelled data

Model 
fitting 3

Model Prediction

Model 
evaluation 4

Figure 2.1: Typical process undertaken to build a user profiling system.
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the system is intended to predict ((2) in Figure 2.1). We present the attributes

addressed across the literature in Section 2.2, and discuss approaches for tagging

these attributes Section 2.3. In Chapter 1 we introduced our novel method for user

attribute labelling ((2) in Figure 2.1) in which a user is geo-located and labelled

with attributes based on their local demographic data. We present methods for

acquiring accurate ground truth geo-location estimates for social media users in

Section 2.4.

Once the user content is processed and tagged with user attributes, the training

data is used to train (fit) some machine learning model ((3) in Figure 2.1), which

can then be used to predict the tagged user attributes on future unlabelled data.

We discuss the process of fitting machine learning models in Section 2.5.

Typically, a portion of the labelled training data is set aside to evaluate the predic-

tive power of the trained model when applied to unseen data ((4) in Figure 2.1).

Approaches to model evaluation are presented in Section 2.6.

2.1 User content

User profiling systems attempt to make predictions of a user’s attributes based on

the content they output ((1) in Figure 2.1), such as the text they write, what pages

they interact with, and who they follow. In this section, we present the types of

data available to create user profiling systems (Section 2.1.1), and the steps taken

to convert user content into feature vectors suitable for use with machine learning

models (Sections 2.1.2 and 2.1.3).

2.1.1 Types of data

Earlier user profiling studies employed a mostly text based approach, focusing

on the content and style of writing. Today text data remains one of the main

components of a user profiling system, although it is now often supported by

additional information.

Text data will typically have been authored in either a formal or an informal

environment. Formal texts such as essays, professional emails or social media

posts from a company are more likely to contain neutral language as well as a lack
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of slang words, which are likely to be attributed to specific groups. In the case of

company wide email addresses or social media profiles it is not guaranteed that

one particular person has authored all of the text.

Informal texts, such as personal social media profiles or emails are more likely to

contain new and non-standard language, which may be attributed to particular

groups or may simply be the result of poor spelling and grammar. Systems dealing

with this sort of text should not rely on adherence to an established lexicon, as

valuable information may be ignored. In addition, artefacts of text authorship can

be of value as features in their own right.

On-line media such as emails, blog posts and social media profiles, contain addi-

tional information such as activity times, HTML and user’s social networks. From

these statistics of a user’s behaviour can also be calculated.

2.1.2 Pre-processing

Before feature extraction can be performed user content must be formatted in a

suitable fashion. This step can vary greatly depending on the type of the input

data. In the base case where raw text is passed in, this could be as simple as

tokenising, typically by splitting into words and punctuation, or assigning parts-

of-speech (POS) tags. Internet media, while still text based may have additional

non-text content such as HTML or hyperlinks to consider. Social media also brings

its own challenges, if the user’s social network or behaviours are to be considered,

they must be collected and calculated at this stage.

Care should also be given at this stage for user privacy. It may be prudent to

anonymise references to the user and other users as well as the names of people

and places.

2.1.3 Feature extraction

After the user content has been processed into a suitable format, features can be

extracted to build feature vectors for each user. A feature vector is a vector of

length N , where N is the total number of features across all input documents,

and represents the counts of each feature present in a particular document (or
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user profile in the social media case).

In machine learning a feature is some quantifiable element that can be determined

from input data. In some cases such a n-gram modelling features relate directly

to an obvious element, words or characters for example. In other cases, such as

the “structure” or “readability” of a text, what can be used as a feature is less

obvious and some measure must be used (or developed) to quantify them.

Features that can be extracted depend on the format of the input media, and an

overview of the different types successfully utilised in the user profiling literature

is presented and discussed below.

Stylometric

Features of this type can represent a variety of concepts. At the lowest level it may

be individual words, but can be much more complicated, such as the topics present

in a text, or the average sentiment score across sentences. The most prominent

examples are presented and discussed below.

n-grams An n-gram is a sequence of n units of text or speech, often referred to

as tokens ; these could be any unit such as words, characters or phonemes.

In the user profiling scenario, word, character, and part-of-speech n-grams

are dealt with most commonly. One, two and three-grams are known as

unigrams, bigrams and trigrams respectively. n-grams greater than three

are usually referred to by the value of n, four-gram for example. n-grams

are seen as useful features in classification tasks due to their ability to capture

patterns in text and speech.

Word Word n-grams are one of the most simple features available due to

their ease of acquisition. Despite this they are one of the most robust

features available, forming the basis of many good systems.

Character Character n-grams allow the capture of character level language

features. For example, character n-grams with n ranging from 2 to 4

allow the capture of the majority of prefixes and suffixes in the English

language if taken from the beginning and end of words.

Parts-of-speech Parts-of-speech are the types of words in a language such

as nouns, verbs and adjectives. They allow more general patterns to be
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captured, as each element represents a word class rather than a specific

word.

Word Categories Examples of dictionaries exist which can be used to trans-

form a text into counts of different categories of words, relating to psycho-

linguistic concepts. Linguistic Enquiry and Word Count (LIWC)—a text

analysis tool described in Pennebaker and Francis ME [29]—has been used

in many user profiling studies and has been shown to produce good results.

LIWC determines the degree to which a text uses up to 82 language di-

mensions such as positive and negative emotions, self references and causal

words.

Structural The structure of a text—such as the use of paragraphs and length of

sentences—is indicative of the author’s writing style, and can indicate other

factors too. For example, a person who writes in paragraphs consisting

of sentences of reasonable lengths, where words are correctly capitalized,

is likely to more educated than somebody who does not. Similarly some

people may have a tendency to write in short factual sentences, whereas

others may pad sentences out with emotional and descriptive words. Some

mediums such as blogs or email allow presentation of text to be customised

more finely, often via HTML and CSS. This is likely to indicate a higher

technical ability in those who take advantage.

Errors The presence of different types of errors in text has been shown to be

indicative of certain characteristics, such as native language in Koppel et al.

[30]. Errors to be identified are likely to be either orthographic or syntac-

tic. Errors in the writing of the language, such as spelling, capitalisation,

punctuation or use of out of alphabet characters—perhaps from their first

language—are orthographic errors. Syntactic errors deal with whether a

sentence is well formed or not, highlighting problems such as false pluralisa-

tion and using the wrong tense. Text from on-line sources such as Twitter

is notoriously non-standard, due to the informal setting and in some cases

limits on the number of characters that can be posted. As such steps should

be taken to distinguish between spelling mistakes, abbreviations and out of

dictionary words such as slang.

Named Entities Named entity recognition is process of classifying elements of

a text into pre-defined categories such as names of people or organisation or

measures of quantity or time. For example, consider the sentence “I went
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to school today”. The first word. “I” indicates that a person (the author)

is involved. The word “school” could refer to either a building or an organ-

isation, in this case the most likely category is an organisation. A time can

also be identified by the presence of the word “today”. A relationship be-

tween these categories can also be extracted, as the words “went to” indicate

travel.

Readability Readability is how easily a a text can be understood by a reader,

and there exists multiple mathematical formulas that can assign a score to

how readable a text is. The formulas are based of self evident concepts

of readability. Short sentences, with a low quantity of long words, omitting

unnecessary filler words, should score as more readable than longer rambling

sentences or sentences using a lot of overly complicated wording. Studies

have shown that readability does correlate with certain characteristics, with

Davenport and DeLine [31] and Llorente et al. [32] showing that readability

of Tweets correlates with education and unemployment respectively.

Topic Models Topic models are a group of algorithms that identify hidden themes

(topics) in collections of documents. The most common topic model in use

today is latent Dirichlet allocation (LDA) [33], a generative model in which

documents are modelled as a finite mixture of topics. In LDA each word in

a document must be generated by one of its topics. In the author profiling

case, topics are typically used as a binary feature, and have been shown

to produce reliable results when used alone and in conjunction with other

features.

Word vectors Word2Vec is a two layer neural network for learning vector-space

representations of words. Word vectors are learned by observing the context

of words in documents [34]. Word vectors that are close in vector space tend

to be close in meaning too, thus Word2Vec could be said to model the seman-

tics of words. With large amounts of data available for training, the inferred

meaning of these word vectors can often be highly accurate. Word2Vec’s

main purpose is to transform words into a format suitable for input into

some deep learning system. They are also useful as a dimensionality re-

duction tool. One approach is to average all word vectors in a paragraph

(known as creating paragraph vectors [35]), resulting in a vector of much

lower dimensionality than bag-of-words. Another approach is to the clus-

ter word vectors into groups of semantically similar words, remodelling the
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problem from bag-of-words to bag-of-clusters. The latter approach is used

in Preotiuc-Pietro et al. [36], Preoţiuc-Pietro et al. [20] and good results are

achieved.

Behavioural

A person’s attributes are know to have an influence on their behaviour. According

to the big five model of personality an extroverted person is likely to be more

outgoing, assertive and have a positive demeanour [37]. Another example is that

of gender differences in conversation. Mulac et al. [38] aggregate results from many

studies, highlighting differences between male and female speech. Male speech is

identified as being more assertive, factual and self referential. Female speech on the

other hand tends to be more emotionally driven, inclusive—by asking questions

or opinions—and has tendency to qualify statements to seem less assertive—“kind

of” or “it seems” for example. Extra examples are discussed below.

Activity Times The times a user authors their documents is likely to give infor-

mation regarding their habits, and possibly their characteristics. It shown

in Llorente et al. [32] that in areas with low unemployment, there is a sharp

increase in Tweets around the beginning of the working day, a trend far

less pronounced in areas with high unemployment. A common way to code

activity is to record the fraction of a user’s activity that occurs at each hour

of day.

Conversational Behaviour It is shown in Mairesse and Walker [39, 40], Mairesse

et al. [41] that elements of conversation can be useful features in classifying

personality—and most likely other attributes. One of the corpora used in

their study was a collection of telephone speech recordings and their tran-

scripts; from this utterance and prosodic features were extracted. Utterance

features recorded were the ratios of commands, prompts, questions and as-

sertions. Prosodic features can not be applied in a purely textual domain,

although in cases it may be possible to extract analogues to utterance fea-

tures from textual conversations.

Social Network Specific Behaviours The nature of social networks allows var-

ious behaviours to be captured, including conversation elements, these are

discussed below.
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Post to reply ratio The ratio of posts to replies a user writes can be seen

to be analogous to either a tendency to inform in the case of a high

ratio, and a tendency to converse when the ratio is low. Care must be

taken though, as a low ratio does not indicate a tendency not to inform,

as the user may have initiated conversations with long reply chains.

Post to share ratio A good measure of a user’s egocentricity might be

in their tendency to disseminate other peoples content, such through

sharing a link to an article or sharing another user’s post. For example,

a Twitter user who Tweets ten times a day, but rarely “retweets” or

shares links is likely to be quite egocentric. Again care must be taken in

interpreting the ratio, as a user who mostly posts in reply to other user’s

posts and doesn’t share much would have a high ratio of posts to shared

information, despite potentially talking very little about themselves.

Conversations It may also be possible to gather conversations a user has

taken part in, depending on the platform. If it is it will be possible to

trace the user’s tendency to either begin or join conversations.

Network

The two most popular social networks Twitter and Facebook, can be seen as

directed graphs, with vertices representing individual users and edges representing

relationships between the two. On Twitter all relationships can be reciprocated, if

a large organisation wanted to follow “Sarah from Alabama”, it can. Facebook on

the other hand requires organisations and concepts to be registered as a separate

“page”, which users can “like” (analogous to follow in the Twitter context) but not

themselves be followed back. Therefore user to page likes in the Facebook graph

are always unidirectional. Justification for various network features are discussed

below.

Network Statistics Links between network structure and personal attributes

are discussed in Quercia et al. [42], where four types of Twitter users are

identified based on trends in personality scores. “Listeners” and “populars”,

those who follow and are followed a lot respectively, show significant corre-

lations with extraversion and neuroticism. The authors highlight that this

is similar to the real life trend that the two traits are predictors for number

of friends in real life. “Highly read” users are those who are saved in other
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user’s reading lists. These users correlate significantly with openness; open

people tend to be viewed as more creative than closed people. “Influential”

users are identified based on the tendency for their Tweets to be read. The

authors note correlations with extraversion and conscientiousness for these

users.

Connections as Features The presence of a particular edge in the social graph

as a feature has been shown to be of use in multiple studies, particularly

when identifying classes that tend to have a favourite celebrity or product

[43]. In Youyou et al. [44] a machine learning system, using only Facebook

likes as features, has been shown to predict a user’s big five personality

scores more accurately than humans, including family and friends, and only

narrowly being beaten by spouses.

2.1.4 Feature weighting

Another import element of vector space models is feature weighting. The most

basic feature weighting scheme is binary, in other words, does feature x appear in

document y? If so rank the feature as 1 (Yes) otherwise 0 (No). For some feature

types, such as whether a Tweet is a reply or retweet, binary presence is the only

way they can be represented, although others such as n-grams may appear in a

document more than once, in these cases, other measures such as the the frequency

each feature appears in a document may be used.

Another commonly used scheme in text classification contexts is term frequency-

inverse document frequency (TF-IDF). TF-IDF is a measure used to determine

how important a feature is in a document, based on how common the feature is in

the corpus as a whole. It is a combination of two statistics: term frequency—the

raw frequency of a term (feature) in a given document—and inverse document

frequency—how much information the feature provides, based on how common it

is in the corpus as a whole. TF-IDF is typically used in conjunction with the bag-

of-words model, where uncommon words are ranked highly, and common words

such as “the” are ranked lowly [45]. TF-IDF is a consistently popular feature

weighting schemes; for example, the review in Beel et al. [46] showed that 83% of

text-based recommender systems use TF-IDF.

Other values can be used as weights depending on the context. In a topic model

24



for example a topic has an associated probability of belonging to a document.

This probability could be used as the weight.

2.2 User attributes

Work on user profiling can be sliced multiple ways, but of most relevance to

this thesis is user profiling on social media. In this section we present the user

attributes ((2) in Figure 2.1) addressed in previous works, split between those

studies performed on classic media (Section 2.2.1), and those on social media

(Section 2.2.2).

2.2.1 Profiling tasks on text

This section provides an overview of what attributes were investigated before the

advent of modern social media. Although our work focusses on detecting attributes

of social media users, the works here helped form the basis of approaches more

relevant works, and are as such included for completeness. Many of the studies

here refer to the field as “author profiling”; although some later studies will also

use this term, we refer to the field as “user profiling” for consistency.

Gender

Natural language processing (NLP) and sociolinguistics were first brought together

in Koppel [9], using established procedures from the text categorisation literature.

Instead of classifying documents into categories such as fiction or non-fiction, the

texts would be classified by the gender of the author. The study was performed on

a collection of texts from the British National Corpus, including both fiction and

non-fiction works. The authors report accuracies of around 80% for both genres.

Gender classification has been extensively investigated in the medium of text [10,

8, 47, 48, 49, 50, 51]. All approaches followed the established machine learning

approach from text classification with varying techniques for feature selection and

algorithm choice.
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Native language and geographic origin

In de Vel et al. [10] it is also highlighted that the techniques used are an extension of

established text categorisation techniques. They use a corpus of emails to classify

gender and whether the text was written by a native speaker. They hypothesise

that when a non-native speaker uses another language, elements of their mother

tongue will remain present. Koppel et al. [30] expand upon this by classifying the

first language of an author. They achieve this by identifying erroneous occurrences

in text, such as spelling mistakes and syntax errors. Using the International

Corpus of Learner English as training data, native language could be classified

with an accuracy of around 80%. A similar approach is also presented in Argamon

et al. [49].

A system able to classify the first language and dialect of email authors—as well

as other attributes—is presented in Estival et al. [48]. The system uses established

machine learning techniques to identify with around 81% accuracy which language

a user has as their first, from a set of three possibilities. For users with English as

a first language, the system is also able to determine whether the user had a US,

UK or New Zealand dialect.

Personality

Aspects of personality were first classified in Argamon et al. [16], focusing on

two aspects of personality; neuroticism—tendency to worry—and extraversion—

preference for the company of others. The authors note that the work integrates

knowledge from Language Psychology via Systematic Functional Grammars and

highlight that—in their opinion—prior research did not contain a solid enough

grounding in psychology or linguistics research, and as such the results hold less

meaning. Their system classified authors of casually written texts as high or low

on the two personality elements selected with an accuracy of around 58%.

The work in Argamon et al. [16] was expanded upon in Oberlander and Nowson

[52] by classifying two additional personality aspects; conscientiousness—tendency

towards thoroughness—and agreeableness—tendency to show concern for others.

Systematic Functional Grammars were not used in this study; instead a simple

word n-gram approach was used, with stringent feature selection rules. Much

better results were achieved in comparison to Argamon et al. [16], although the
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authors note this could be related to over-fitting from the feature selection method

and the small size of the training corpus.

Openness to experience, the fifth personality element to be classified, was investi-

gated in Mairesse and Walker [39, 40], Mairesse et al. [41]. The authors approached

the problem from both a text based and a speech transcription angle, identifying

that conversational cues hold information regarding personality scores.

Previous studies identified that personality classifiers trained on small datasets

did not scale well the greater population, the effects of a larger dataset being used

were studied in Iacobelli et al. [53]. The system, based on word bigrams, was

shown to have improved results over previous studies.

Earlier author personality profiling works tended to focus on English text, al-

though a system able to predict personality values in English and Arabic Emails

is presented in Estival et al. [47, 48].

Age

The automatic prediction of author age was first investigated in Schler et al. [8]. A

collection of 37,478 blogs whose author’s personal information—age and gender—

was public, was used to train a classifier to predict age and gender. The classifier

was shown to perform well, achieving accuracies of around 80% for gender, similar

to previous studies. For age the system did not predict an age value, instead it

predicted from a set of predefined ranges, with this is mind accuracies of 75% were

achieved. It is also highlighted that extra, subtle, clues to personal attributes may

be present in blogs, such as formatting choices, but they are not covered.

Similar to gender, age has been widely investigated, with classifiers predicting

exact ages (such as 27 years old) or ages in a range (20 to 30 years old for example)

in conjunction with a variety of feature selection techniques [47, 48, 54, 49, 50].

Political ideology

Some studies have aimed to predict the political opinions of users, typically on

some variant of the left-right spectrum or party specific support. The majority of

these studies have focussed on identifying political opinions in social media, pos-
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sibly due to the interest associated with election results and the wild speculation

that occurs in the run up to elections.

Political ideology in more traditional text is investigated in Jelveh et al. [55], where

topic models are used to show that the political leaning of economists—individuals

who in general should write without bias—can be predicted with accuracies of a

little less than 70% and good correlations with true values. A companion paper,

Jelveh et al. [56], argues the potential applications of such predictive capabilities

in decoupling ideology when considering recommendations on government and

organisational policy.

Education and intelligence

The author profiling tool described in Estival et al. [47, 48] also attempts to classify

level of education, distinguishing between those with tertiary education and those

without. Almost no improvement over the baselines in Estival et al. [47] is achieved

due to extremely skewed data. Better results are achieved in Estival et al. [48] as

a more balanced dataset is used.

2.2.2 Profiling on social media

User profiling studies on social media in a modern setting usually relate to the two

main providers: Facebook and Twitter, due to the openness of these platforms for

data collection. Facebook has now restricted access, due to negative public and

regulatory backlash surrounding inappropriate data collection by certain bodies.

Facebook allows users to create a profile, containing information such as job history

and interests, and connect with other users via “friendships”. Users are able to

join discussion groups, post status updates and much more by way of conversation.

Interest in particular products, organisations or concepts can be registered with

Facebook’s “like” system. When a user “likes” a page, it is shown on their profile.

Twitter is a “micro-blogging” service which allows users to post short messages,

or “Tweets”, to their public profile. According to ex-Twitter CEO Dick Costolo

upwards of 500 million Tweets are posted every day (as of October 2012). Twitter

profiles vary from many traditional blogs in that all user information is stored in
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an unstructured fashion; a user does not have to provide any information regarding

themselves at all, and only a short, free text, description field is provided should

the user wish to give extra information. As well as this, posts are limited to

280 characters (previously 140), causing Twitter users to adapt by using slang,

shortened words and“hashtags”, short yet informative strings meant to summarise

the topics present in the Tweet.

Both Facebook and Twitter can be viewed as “social networks”. That is both are

based on connections between individuals or organisations. On Facebook these

connections can be mutual from person to person, and directional from person to

organisation via likes. On Twitter users can “follow” other users with no guaran-

tee of reciprocity, and organisations also have the ability to forge connections to

individuals. Properties of these social networks have been shown to be of use in

user profiling [42, 44].

Gender

The predictive performance of gender classification when applied to social media

data is assessed in Rao et al. [13], Rao and Yarowsky [14], where a dataset of

Twitter users is used to classify gender, age, political orientation and regional ori-

gin. Gender results of 72% accuracy were achieved, slightly worse than some prior

studies. The approach used is mostly text based but does touch upon social me-

dia specific features such as the tendency to retweet, and preference for particular

organisations.

A Bayesian model is presented in Rao et al. [57] that utilises a dictionary of known

Nigerian names that map to specific genders and Nigerian ethnicities, along with

topic models. The results of the proposed model are compared to the results of

other machine learning models, when used with the same features. For gender

prediction their proposed model is shown to operate with around 80% accuracy,

whereas support vector machine (SVM) and naive Bayes (NB) are reported to

have accuracies of less than 55%. The reported accuracies for SVM and NB seem

particularly low in this study, as both later and earlier papers show that accuracies

of above 80% can be achieved with them.

An approach from the perspective of child predator detection described in Peers-

man et al. [4] merges gender and age prediction into a single problem. In one
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experiment users are given a gender and age category of whether they are an

adolescent or not coupled with their gender—female adult or male adolescent

for example. For the combined prediction task the system achieves accuracies of

around 66%, by contrast, age group prediction on the same dataset without gender

segregation achieves around 88% accuracy.

A comparison of the quality of human annotations, provided by Amazon Mechani-

cal Turk workers, of gender compared to a Twitter gender prediction system based

on the textual elements of a Twitter profile is presented in Burger et al. [19]. The

majority of annotators presented in the study are shown to achieve a much lower

accuracy rating compared to the system.

Homophily, the tendency for people to group together with and and behave the

same as people with similar views is investigated in Zamal et al. [27]. The approach

argues that due to homophily the posts of a user’s “friends” can be included as

input data to a user profiling system to improve classification accuracy. Three

attributes are investigated: age, gender and political orientation. For gender

inclusion of neighbour profiles was shown to give little to no improvement to

accuracy.

A technique called “Differential Language Analysis (DLA)” is presented in Schwartz

et al. [58]. A DLA appears to be a combination of standard text and topic models,

where features are ranked based on how much they discriminate towards a partic-

ular class. When applied to a dataset of Facebook statuses accuracies of around

92% are achieved for gender.

An author profiling system described in Kosinski et al. [15] uses only Facebook

likes as input to classify a wide range of attributes. For gender very high clas-

sification accuracies are reported. A simple language independent approach to

gender classification is presented in Alowibdi et al. [59], where the colour scheme

chosen for a person’s Twitter profile is used to determine their gender. A variety

of text based features for user profiling are examined in Weren et al. [60]. Gender

is one of the attributes they use to demonstrate how accuracy varies across chosen

features. The results of a crowd-sourcing experiment to build a gender and age

classifier are presented in Meder [61], Nguyen et al. [18]. An analysis of lexical and

some network properties in regards to gender identity on social media is presented

in Bamman et al. [62].
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Many user profiling works focus on prediction of user gender due to the relative ease

with which it can be acquired as an annotation by visual inspection or comparison

of names against a lexicon. Gender annotation approaches do not tend to consider

the potential of diverse gender identities.

Geographic origin

Various facets of geographic origin on social media have been investigated in the

literature, with different approaches attempting to predict location with varying

levels of granularity. The approach in Rao et al. [13], Rao and Yarowsky [14] tack-

les the regional origin problem in the context of distinguishing between northern

and southern Indians. The system, which uses a mostly text based approach, with

some social media specific features, achieved an accuracy of around 77%.

Geographically linked topic models are investigated in O’Connor et al. [63]. Geo-

graphic topic models are presented as an extension to traditional LDA, whereby

topics are somewhat hierarchical and may have geographical variants. These topic

models were then used as features to perform location prediction in three tasks,

a regression task centering on coordinate predication and two classification tasks

attempting to predict state (49 classes) and region (4 classes). The approach beats

the baselines in all tasks other than state prediction.

Other studies have attempted to profile user location based on their social network

as well as their textual output [64, 65]. Pavalanathan and Eisenstein [23] surveys

the field of text-based user geo-location based on geo-located Twitter posts as

training data. They present an improvement based on a latent-variable model

that includes prediction of gender and age in the geo-location process.

Training data for models that predict the geographic origin of a user is difficult to

acquire; we present an overview of methods used to gather such data in Section 2.4,

and empirically evaluate them in Chapter 5.

Personality

Personality classification with a social network focus is investigated in Golbeck

et al. [11, 12]. The effect of the inclusion of network statistics on classifier accuracy

was investigated, and produced promising results with mean absolute error (MAE)
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scores of 10-15% being reported.

Several interesting concepts (see Section 2.1.3) regarding network statistics and

personality prediction are introduced in Quercia et al. [42].

Another attribute classified using the DLA presented in Schwartz et al. [58] was

personality.

In Youyou et al. [44] personality predictions from a machine learning system are

compared to human judgements on the same dataset. It is shown that a machine

learning system based only on Facebook “likes” performs better on average than

humans, except when the human annotator is a spouse or close family member of

the person being judged.

Niche personality aspects have also been covered. Dark personality traits are sev-

eral socially aversive traits [66], that can be viewed as further aspects of personal-

ity. The dark traits that have garnered the most research are: Machiavellianism—

the tendency to manipulate others; Psychopathy—a tendency towards a lack of

empathy and reckless behaviour; Narcissism—self absorption; and more recently,

Sadism—pleasure in the pain of others [66, 67]. These are known as the “Dark

Tetrad”.

Studies have shown strong correlations between dark tetrad scores and certain

types of online behaviour. Most notably, self-defined “internet trolls” (users who

behave in a deliberately destructive manner) tend to score highly on the dark

tetrad elements sadism, psychopathy and Machiavellianism [68]. A machine learn-

ing analysis of dark personality traits was performed in Sumner et al. [17]. The

approach uses LIWC classes as features, and compares the results of a variety

of classifiers. As previous personality studies have shown LIWC features to be

less reliable than others, a further investigation into text, behaviour and network

features might be of interest.

Age

The system in Rao et al. [13], Rao and Yarowsky [14] also classifies age. Users are

broken down into two categories: above 30 and below 30, and can be distinguished

between with an accuracy of 75%. Peersman et al. [4] approach user profiling from

a child predator detection angle. The proposed techniques are shown to predict
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age categories with accuracies of around 88%. The homophily based approach

described in [27] produces better results for age than gender, with an improvement

noted over the baseline (single user). This improvement can possibly be attributed

to tendency for people of similar age groups to stick together, especially at younger

ages. Out of all continuous values estimated in Kosinski et al. [15] age achieves

the best results, with r = 0.75 for the Pearson correlation coefficient. Age is

the third attribute given as an example in Schwartz et al. [58]. Markers of age

in social media are investigated in Nguyen et al. [69]. The authors also identify

that the accuracy of predicting age becomes much worse for older users in the

system, perhaps due to a shift in later life to more standard language. One of the

attributes examined in Weren et al. [60] is age. In the crowd-sourcing experiment

presented in Meder [61], Nguyen et al. [18] age is one of the attributes collected.

The authors discuss future considerations for such an experiment and also identify

issues with the data.

Political ideology

Detection of political leaning is also covered in Rao et al. [13], Rao and Yarowsky

[14]. The problem is diluted to that of Republicans Vs. Democrats. It is identified

that actual talk directly relating to politics is quite sporadic, and therefore other

markers must be identified. They highlight that in their dataset possessives such

as “my handgun” are quite useful. They also note that certain news networks

correlated more with either party. The usefulness of hashtags in predicting the

political alignment of Twitter users in investigated in Conover et al. [70]. It is

shown that hashtags alone are more useful than the full the full text of a user—at

least in their dataset—with accuracies of up to 91% being achieved. Social media

specific and text features for political ideology—again Republic Vs. Democrat—

are examined in Pennacchiotti and Popescu [43]. The most marked improvement

in Zamal et al. [27] from including neighbours can be found in relation to political

ideology. Political ideology is also classified in Kosinski et al. [15] and Sylwester

and Purver [71]as Republican Vs. Democrat.

Education and intelligence

A weakly supervised approach to attribute detection is presented in Li et al. [72].

The authors use public profiles and information from public databases as distant
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sources of supervision to infer entity relations for three attributes: education,

employment and relationship status. Additional investigation is also performed

into the effect of including social media statistics and relationships in the system,

showing improvements in some cases.

The like-based prediction system presented in Kosinski et al. [15] also predicts

intelligence. The system predicts accuracy roughly half accurately as the test-

retest reliability for the intelligence test taken by users in the study.

Ethnicity and race

The Bayesian model presented in Rao et al. [57] is also used to classify Nigerian eth-

nicities. As with gender, the model they describe is contrasted to the performance

of other machine learning models, and shown to provide a marked improvement

on their dataset, achieving around 82% accuracy for Nigerian ethnicity prediction.

Despite posing the problem as one of ethnicity, the ethnicities classified are not

drawn from highly mixed communities and as a result the problem is closer to one

of geographic origin determination.

A mixture of text and social media specific features are used in Pennacchiotti and

Popescu [43] to identify between African Americans and other Americans. The

approach presented in Kosinski et al. [15] also solves the problem, distinguishing

between Caucasian and African Americans.

An approached based on using known county demographics to improve race pre-

diction is presented in Mohammady and Culotta [73]. The approach presented

performs similarly to a fully supervised approach, achieving 80% accuracy in pre-

dicting user race.

Miscellaneous attributes

As well as race and political leaning Pennacchiotti and Popescu [43] also classify

whether users are a fan of Starbucks or not, achieving accuracies of up to 81%.

This is the first study identified in this report that attempts to profile personal

preference. As well as common attributes, the system presented in Kosinski et al.

[15] also attempts to profile some more uncommon ones. The system is able to

classify sexuality to a fairly high degree of accuracy, along with the use of the use
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of drink and drugs. More surprisingly perhaps, is that whether a user’s parents

were separated by the time the user reached 21 years old, can be classified with

reasonable accuracy of around 60%. A diagnostic application of user profiling is

investigated in Resnik et al. [5], where entity relations are used in the prediction

of depression in college students. Occupational class and income are predicted in

Preotiuc-Pietro et al. [36], Preoţiuc-Pietro et al. [20].

Spammer, bot and fake profile detection

Unlike the authors in hand curated datasets, social media users are not guaranteed

to be controlled by human agents or represent the human they claim to represent,

as such identifying fake, spam and robot profiles is an important task within user

profiling, with applications such as dataset noise reduction, spam filtering and

online trust—a user with mostly fake followers is obviously less trustworthy than

a one with real fans for example.

Such ‘spammer detection’ tasks tend to model users as discrete classes such as

‘human’, ‘robot spammer’ or ‘human spammer’. A wide variety of strategies and

tools are available online that are said to be useful in identifying fake or spam

profiles; the approach in Cresci et al. [74] uses sets of fake profiles bought by the

researchers to distinguish between real and fake profiles. The authors survey the

related academic literature, but also concentrate on approaches, algorithms and

heuristics proposed by several influential bloggers, arguing they warrant assess-

ment with some level of academic rigour. The bloggers’ approaches are compared

to those presented in academic literature, and also converted into feature sets

for machine learning approaches. Good results are achieved with around 99%

accuracy for fake profile detection with the best feature arrangement.

The identification of Twitter profiles controlled by robots is investigated in Chu

et al. [75]. Three classes of manually annotated profiles are considered: human

controlled, bot controlled and cyborg (human and bot) controlled. With their

best feature selection 96% accuracy was noted, unsurprisingly cyborgs were most

frequently misclassified. Entropy, the complexity of a process, was shown to be a

very useful feature in bot detection, achieving 82.8% accuracy on its own.
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2.3 Classical user attribute labelling

There is a vast amount of public user data available on the web, with social media

websites such as Twitter providing a large proportion—every day around over 500

million Tweets are Tweeted across the world according to ex-Twitter CEO Dick

Costolo. The majority of this data though gives no obvious formal definition of

its creators attributes, as such, training data for user profiling systems must be

“enriched” by assigning user attribute labels ((2) in Figure 2.1).

There have been a variety of different methods employed to enrich data, with

varying levels of success. Many employ a technique called “crowd-sourcing” where

data is obtained from a large number of individuals, rather than one supplier. One

such example is the myPersonality [15] dataset, which was constructed by allowing

Facebook users to complete a personality quiz and then asking them if they wanted

to share their data for research purposes at the end. Another example in the same

vein is TweetGenie [18], a system which predicts a Twitter user’s age and gender

and then asks if it was right at the end.

Other studies have attempted to enrich Twitter profiles, based on the information

in user’s other on-line profiles, identified by links in the Twitter profile [19].

It is possible to pay human annotators to identify attributes of users, although

care must be given, as some annotators might be better at identifying information

than others. One method to overcome this is to employ multiple annotators to

annotate the same piece of information, and only accept annotations where the

annotators are in agreement [76].

Heuristic methods, such as through the use of pattern matchers (specifically regular

expressions) have been attempted also. The approaches in Preotiuc-Pietro et al.

[36] and Preoţiuc-Pietro et al. [20] for example build their dataset by crawling

description fields for job titles known to correspond to particular occupational

classes.
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2.4 Geo-location driven user attribute labelling

Geo-location driven attribute labelling is our alternative, novel approach to user

attribute labelling ((2) in Figure 2.1), which was formally introduced in Chapter 1

and is described in Figure 1.1. In our method, a user is geo-located and then

labelled with attributes based on their local demographic data. This approach

relies heavily on the ability to accurately geo-locate social media users.

User geo-location studies are a related field that also rely on estimates of users

location, typically referred to as home location. In this section, we review the

methods used in the user geo-location literature to assign home location to pro-

files. Note that none of the approaches covered here have been used previously

to perform the full process of geo-location driven attribute labelling (Figure 1.1),

instead focussing on the left panel of Figure 1.1, home location prediction.

Geo-location approaches typically rely on training data, consisting of profiles la-

belled with home location information. The definition of home often varies from

task-to-task, but generally refers to some representation a user’s local area. Some

approaches use coordinate level locations, but coarse-grained regions are more

widely used. Profiles are usually associated with some kind of public boundary

data to generate labels and the granularity of these vary between studies. For

example, Mahmud et al. [77, 78] associate users with their country of residence,

Rout et al. [64], Chandra et al. [79], Chang et al. [80], Cheng et al. [81], Eisenstein

et al. [82] with their local city, and Kinsella et al. [83] link users to their ZIP code.

Home location is attached to profiles in various ways. Commonly a profile’s lo-

cation field is resolved to a real-world location through the use of a gazetteer

[64, 83], however this approach can be inaccurate. Other approaches to assign-

ing home location make use of geo-located Tweets. Many use a profile’s first

geo-located Tweet, whilst others use Tweets that provide information about the

location associated with the profile [77, 78, 82, 84]. However, these methods are

not always reliable. Some approaches take all of a profile’s geo-located Tweets

into account by applying some form spatial average [85, 86, 87], which is likely

to produce better judgements than a single Tweet, but may run into problems

when a user is active at multiple locations (such as work and home), depending

on the “average” used. The state-of-the-art methods and their limitations are now

discussed in more detail.
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Hecht et al. [88] report that 66% of Twitter users provide valid geographic infor-

mation in the ‘location’ field of their profile; mostly at city level. Of the profiles

that do report a location, many are accompanied with non-standard text and ab-

breviations, such as “kcmo-call da po po”, referring to Kansas City, Missouri, and

a mixture of fictional and real information, such as “Bieberville, California”. In

addition, less than 1% of Tweets had associated geo-location information. To over-

come this lack of reliable location information, approaches have been developed

to geo-locate social media users based on the content of their Tweets.

To carry out user geo-location, a training set of profiles with known home location

is required. A method for creating this training set must have certain charac-

teristics to be reliable. Geographic statistical units, such as output areas (a UK

statistical unit), exist at various scales, with some being less than a square mile

in area. As such, a method for creating a training set must be able to provide

highly accurate/fine-grained location judgements. Having assigned a user a home

location, some measure of ‘certainty’ is required (i.e. accurate to within an N mile

radius), allowing profiles with low certainty to be excluded (or downgraded) from

analysis.

Various approaches for generating location-labelled profiles which have been used

in previous works are described below.

2.4.1 Location field information

Twitter provides users with the option to declare their location through a non-

required free-text field. A number of methods have created training datasets based

on the information included in this field. Kinsella et al. [83] predicted location

at a number of levels, generating their location labels via the Yahoo GeoPlanet1

tool, and applying this in a method based on ranking probable location labels by

Kullback-Leibler divergence. Rout et al. [64] explore the use of social network

features to geo-locate a set of UK Twitter users to the town/city level. Their

training data was acquired by selecting profiles with an unambiguous reference to

a UK town/city in the profile field. Rahimi et al. [89, 90] combine social network

features with text based features to improve geo-location accuracy. Alex et al. [91]

present an improved tool for parsing geo-located information in the location field

1Yahoo! GeoPlanet https://developer.yahoo.com/geo/geoplanet/
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and other text, and apply it to geo-locate users discussing a number of topics as

well as demonstrating country-wide sentiment analysis.

Due to the fluid nature of this field it can be unreliable, with users providing

incorrect, out of date or non-location information, as highlighted in Hecht et al.

[88]. Han et al. [92] present a pilot study identifying that despite its noisiness,

self-declared user meta-data can help boost performance. In addition to accuracy

issues, the task of resolving text to a point location is itself a difficult problem;

there are cities called London in the UK, US, Canada and South Africa, all of

which speak English as a primary or dominant language.

A limited number of profiles provide coordinate data in their location field rather

than a named location. These were used to build the training dataset in Cheng

et al. [81], which was used to build a model at the US region/state level based

on location-specific terms within Tweets. This approach would appear favourable

over named locations as it avoids the place name ambiguity problem, however, it

is no longer feasible, as this information was placed by an early mobile Twitter

client and thus rarely appears in recent profiles.

2.4.2 First Tweet

The simplest possible method for identifying a user’s location is to take the coor-

dinate of their earliest available geo-located Tweet, or the Tweet used to identify

them in the first place. Eisenstein et al. [82] use the first geo-located Tweet by

each user to label profiles in their training set at the region and city level in the

US, applying this to build geographic topic models. Roller et al. [84] also make

use of this dataset, as well as their own created in the same fashion, applied to

a method based on adaptive grids. Mahmud et al. [77, 78] use the first Tweet

coordinate to label the profiles in their dataset at time zone, state and city level

in order to train a hierarchical ensemble of classifiers.

The first Tweet method is error prone, as a single Tweet provides little guarantee

that a user frequents an area and is therefore unsuitable for hyperlocal home

location detection. Despite this Mahmud et al. [77, 78] identify that the majority

of users will rarely travel outside of their home city or state, and so if only this

low granularity identification is required, first Tweet has a good chance of leading

to a correct assignment. Further, steps were taken by Mahmud et al. [77, 78] to
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identify and omit those users who frequently travel, avoiding incorrect labelling.

2.4.3 Geometric median

An obvious improvement to the first Tweet method described in Section 2.4.2 is to

draw on all of a user’s geo-located posts. Home location of each user is assigned by

Jurgens [85], Compton et al. [86], Jurgens et al. [87] as a single coordinate, taken

as the geometric median of their geo-located posts L (a variant of the multivariate

L1 median) given by

GM = arg min
x∈L

∑
y∈L

D(x, y), (2.1)

where the distance D is calculated using Vincenty’s formula [93]. Median location

was used to ensure robustness to outliers, such as those introduced by Tweets

produced while the user is on holiday abroad. In Jurgens et al. [87] an additional

constraint is also applied to eliminate users with overly spread coordinates. Given

the geometric median, the median of distances to all posts of a user is calculated,

and those of more than 30 km are discarded. This essentially removes from analysis

users where over half their posts are far away from their most central location—

flagging that this central location is likely uninformative.

As opposed to using first Tweet or location field information, Jurgens [85], Comp-

ton et al. [86], Jurgens et al. [87] produces judgements with the highest rigour as

it takes all of a user’s Tweets into account in an outlier resistant fashion, and is

used in conjunction with a measure of ‘certainty’.

2.4.4 Grid based

Han et al. [94, 92] use a worldwide dataset that assigns a user’s home location

as a coarse representation of population centres they call ‘cities’. To construct

these ‘cities’ they take all actual cities in each ‘region’ (such as state or province)

available in the Geonames2 dataset, and collapse the actual cities within 50km

of one another into a single point, producing 3,709 very coarse location labels.

To label users the world was split into a grid containing 0.5′ by 0.5′ cells, with a

Tweet defined as being from a city if the cell containing it, or a surrounding cell,

2Geonames: http://geonames.org/

40

http://geonames.org/


also contained a city. The most common city identified across a user’s geo-located

Tweets was taken as their home location.

This method is well suited for providing coarse location labels in large countries

such as the US, with sporadic yet dense areas of population, but is not well suited

to smaller regions with more consistent population densities such as the UK and

Europe.

2.5 Model fitting

After assigning attribute labels and processing user content into a set of feature

vectors, the next step is to train, or “fit”, some machine learning model, capable of

predicting the assigned attribute labels on unseen users ((3) in Figure 2.1). We do

not attempt to undertake a thorough review of machine learning here, and instead

provide a brief overview of the classes of machine learning problems relevant to

user profiling.

Broadly, predictive machine learning models can be split into two classes: super-

vised and unsupervised. Supervised machine learning algorithms generally take

features vectors and labels as input, and attempt to learn patterns in the data that

maximise the chance of making a correct prediction. Unsupervised approaches

such as clustering, also take feature vectors as input, but have no preconceptions

of a target label to predict, and instead attempt to identify arbitrary patterns or

groupings in the input data

User profiling system typically take a supervised approach, using user attributes

as labels to predict. There are two main families of supervised machine learning

model: classification and regression. A classification model is used in the case

where discrete classes, such as male or female, are up to be predicted. When

a label with a continuous value, such as age, is present a regression algorithm is

often used, although in some cases attempts are made to convert to a classification

problem, for example by splitting the possible values into ranges such as 20 to

30. Trained classification models are often referred to as classifiers, and trained

regression models as regressors.

If more than one label is to be predicted it is referred to as a multi-label clas-

sification problem. The most common solution is to train a single classifier or
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regressor for each label, although methods do exist to solve the problem with a

single classifier, or regressor, that produces multiple outputs [95].

A wide range of machine learning models are used across the user profiling lit-

erature with varying degrees of success. We do not attempt to review machine

learning models exhaustively, and instead focus on a few examples that appear

often and are associated with consistently good performance, and are utilised in

our own work.

Support vector machines (SVMs) are a class of supervised machine learning model

can be used to perform classification or regression, which is consistently shown to

perform well in various user profiling contexts. SVMs attempt to construct a

decision boundary in feature space between two classes which is maximally far

from any point in the training data [96]. The prevalence of SVMs in user profiling

and other text classification problems can be attributed to their robustness and

ease of use [97]. Many off-the-shelf SVM implementations exist with bindings to a

wide range of programming languages. They often produce comparable or better

results [98, 99] than more advanced algorithms, and are often the main algorithm

used in a study or used as a baseline to compare an alternate method.

Logistic regression (LR) (also referred to as logit regression, maximum-entropy

classification (MaxEnt) and the log-linear classifier) is another popular statistical

model. LR is used to model the probability of binary classes occurring given some

input data using a logistic function [96]. As with SVMs, LR with thoughtfully

tuned parameters can often out-perform more advanced machine learning models,

and is usually used when a probabilistic output is desired.

Gaussian processes (GPs) are a more recent approach used to handle both regres-

sion and classification problems with probabilistic output [100]. GPs work well in

lower-dimensional spaces, but are of less use in high-dimensional scenarios such as

bag-of-words.

In recent years, deep learning approaches have emerged as strong performers for

text classification tasks. Deep learning methods for text classification [101] in-

clude: basic feed-forward networks that treat text as a bag-of-words, similar to our

classification approaches throughout this thesis; recurrent neural network (RNN)

models work with text as a sequence of tokens, and attempt to capture depen-

dencies between tokens based on the structure of the text; convolutional neural
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network (CNN) models extract patterns such as key phrases in text; transformers

[102] are a more recent advancement that, similar to RNN, process sequences of

tokens to learn relationships, and are very suited to transfer learning.

2.5.1 Alternative approaches

Despite the majority of user profiling approaches being machine learning based,

other approaches have been considered and attempted that utilise domain-specific

heuristics.

A pilot study is performed in Pennacchiotti and Popescu [43] employing a bespoke

set of regular expressions (search patterns) that attempted to identify markers of

age, gender and ethnicity. The approach looked for sentences such as “I am a 20

year old black man”, and achieved inaccurate results, with only 0.1% of profiles

containing markers for ethnicity. 80% of profiles did contain gender markers,

although they were typically incorrect or conflicting.

Other approaches have used presence of particular entity relations as heuristics

for particular attributes, rather than features in a machine learning system. De-

tection of triples of the entities Person, Opinion and Political Party is employed

in Maynard and Funk [103], to determine voting intention of Twitter users in the

UK general election.

2.6 Model evaluation

It is typical to evaluate user profiling systems, by applying them to a held out set of

labelled data, and calculating performance metrics ((4) in Figure 2.1). For brevity,

we do not list all performance metrics here, but define them as they are used in

later chapters. System performance is also often compared to human performance

on the same problem, contrasting the output of an automatic system, to result of

human cognitive processes.
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2.6.1 Train - validation - test

A common approach is to split the labelled training data into three sets: train,

validation, and test. The train data is used to train the model as the name

implies. The validation set, is used while the model/feature sets are being actively

developed, and is used to fine-tune the model parameters and perform feature

selection. The test set is finally used to calculate performance metrics for the

model after feature selection and parameter tuning.

2.6.2 K-fold cross validation

Another approach to evaluating a model on held out data is K-fold cross valida-

tion. K-fold cross validation typically consists of splitting the training data into

K pieces or “folds”, and training the machine learning algorithm K times, leaving

a different fold out each time. The resulting model after each iteration is used to

predict the labels of the left out observations, and scored based on its ability to

predict known labels accurately [104]. In cases where a continuous value is pre-

dicted, the system is scored based on a measure of how close the predicted values

are on average to the observed ones.

2.7 Ethical considerations

Fields such as medicine are bound by ethical codes that stipulate any experiment

must minimize the risk of harm to participants [105]. These codes recognise in-

herent value in experimentation on human subjects, while preventing any lines

of research that could be exploitative or harmful to subjects (or the wider pop-

ulation). Decisions and oversight on matters of ethics are typically handled by

Institutional Review Boards (IRBs). Practitioners of the data sciences (such as

machine learning (ML), NLP, and computational social science (CSS)), are not

(in general) bound by such strict codes (depending on their institution), and as

such are likely to only seek IRB approval when working with human participants

directly. In recent years however the data science community has started to ac-

knowledge the potential societal impacts of their work [106, 107], in part due to

high profile data misuse scandals such as Cambridge Analytica [108]. Several re-
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spected academics have even introduced ethics education into their ML and NLP

curricula [109, 110, 111]. Ethical approval was sought and granted for the works

presented in thesis, and steps were taken to ensure privacy of users represented in

created datasets.

2.8 Conclusion

In this chapter we have reviewed the literature surrounding the field of user profil-

ing, covering both the attributes addressed in previous works, and the approaches

used for annotation and in derived user profiling systems. In general a classic ma-

chine learning approach is used to develop user profiling systems; user content is

annotated with user attributes, then transformed into feature vectors and used to

train a machine learning model capable of inferring the user attributes of unseen

users. Most successful approaches in the literature extract bag-of-words features

from user content, and use these to train linear models such as SVM or LR; this

general approach builds the foundation of the user profiling systems in our own

experiments in later chapters.

The main contributions presented in thesis with regards to previous work focus

on the acquisition and generation of novel user profiling datasets that stand as

user profiling datasets in their own right, and also as complementary resources.

Geo-location driven user attribute labelling was introduced in Chapter 1 as a new

method for generating user profiling datasets. Application of geo-location driven

user attribute labelling is unsuitable for demographic variables that vary fairly

uniformly across regions, such as gender and age, and instead can applied to vari-

ables that exhibit more variation, such as socio-economic status, and aggregate

measures that attempt to distil the broader demographics of an area into easy

to interpret variables. Through this method, three novel datasets were generated

covering two sets of user attributes previously unadressed in the literature, Output

Area Classification (OAC) and Local Authority Classification (LAC) (Chapter 6),

and one that has been investigated through a dataset generated via a different ap-

proach, National Statistics Socio-economic Classification (NS-SEC) (Chapter 7).

Geo-location driven user attribute labelling relies on the ability to accurately as-

sign estimates of ‘home location’ to user profiles. Although previous works have

not performed geo-location driven user attribute labelling, several works have at-
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tempted to assign home location to profiles for the purpose of creating user geo-

location training data. We build on four of the approaches for assigning home

location to user profiles surveyed in Section 2.4, which are evaluated alongside

two novel methods in Chapter 5.
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Chapter 3

Topic models and n-gram

language models for user profiling

In this chapter we explore and apply several techniques from Chapter 2 to an

existing user profiling dataset from the PAN 2015 Author Profiling Shared Task to

predict personal attributes. The aim of this chapter is to identify a valid baseline

approach for our later experiments. Four distinct corpora, each in a different

language, were used in the experiments presented here. Each corpus consisted

of collections of Tweets for a number of Twitter users whose gender, age and

personality scores are known. Given these corpora, the task is to construct some

system capable of inferring the same attributes on as yet unseen users.

We propose and evaluate a system which utilizes two sets of text based features,

word n-grams and topic models, in conjunction with support vector machines

(SVMs), to predict gender, age and personality scores. We applied our system to

each dataset and achieved results indicating that n-grams and topic models are

effective features across a number of languages.

This chapter is an expanded version of work presented at PAN 2015 [112].

3.1 PAN 2015 Author Profiling dataset

For the Author Profiling task at PAN 2015, a set of Twitter users whose gender, age

and personality are known was provided. In this task Twitter users are represented
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as a collection of the text content of their Tweets. The users are further divided

into four languages: Italian, English, Dutch and Spanish, yielding four distinct

corpora. The task is to develop a system for each language that when given a

set of unseen users, can make some judgement of age, gender and personality

[113]. The system does not have to infer the native language of the user, as this

is provided at both train and evaluation time.

Detailed characteristics of the dataset are presented in Table 3.1. The corpora are

balanced by user gender, such that there is an equal number of male and female

users present in each corpus. There is no guarantee that each user has the same

number of Tweets, and as such over-fitting to particular users is a risk. Gender in

this task is a classification problem; binary selection of male or female, additional

gender identities are not considered in this dataset.

The task of predicting user age can be addressed either as one of predicting a

continuous variable such as: a continuous variable (age in years) or a categorical

variable (pre-defined binned ranges). In this case age prediction has been con-

verted to a classification problem, where a range of ages is to be predicted rather

than a continuous value. The defined ranges are: 18-24, 25-34, 35-49, and 50+;

younger users are not contained in this dataset. The Italian and Dutch corpora

do not include age annotations at all and as such we do not attempt to predict

age for these languages. There is definite imbalance within the age groups for the

English and Spanish corpora; within the English users, the two categories 18-24

and 25-34 account for most of the data; within Spanish, the 25-34 group contains

more examples than the other three age groups combined.

Personality is often measured using the so-called “Big 5” or Five Factor Theory

personality traits [114]. The five traits are: extroversion (E), emotional stabil-

ity/neuroticism (S), agreeableness (A), conscientiousness (C), and openness to

experience (O). Users in the dataset are annotated with their self-reported “Big

5” personality scores from the short-form BFI-10 online test [115]. Scores are nor-

malised to the range of −0.5 to 0.5. All of the “Big 5” traits are included in the

dataset. The bottom section of Table 3.1 shows the mean score of each person-

ality attribute in the dataset by language; many of the mean attribute scores are

towards 0.5, indicating a skew towards more positive values.
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Training Test
EN ES IT DU EN ES IT DU

Users 152 110 38 34 142 88 36 32

18-24 58 22 56 18
25-34 60 56 58 44
35-49 22 22 20 18
50+ 12 10 8 8

Male 76 55 19 17 71 44 18 16
Female 76 55 19 17 71 44 18 16

E (mean) 0.16 0.18 0.17 0.24 0.17 0.16 0.15 0.24
S (mean) 0.14 0.07 0.2 0.21 0.13 0.09 0.2 0.22
A (mean) 0.12 0.14 0.22 0.13 0.14 0.14 0.19 0.15
C (mean) 0.17 0.24 0.18 0.14 0.17 0.21 0.21 0.17
O (mean) 0.24 0.18 0.23 0.29 0.26 0.19 0.25 0.28

Table 3.1: Detailed characteristics for each corpus in the PAN 2015 Author
Profiling dataset, showing the number of users represented in each class for age
and gender, and the mean score for each personality trait, separated by language.
The Italian and Dutch corpora do not include age annotations. Adapted from
Rangel et al. [113].

3.2 Approach

In Chapter 2, we noted that user profiling studies utilising word n-grams in a bag-

of-words fashion to train linear models, such as logistic regression or support vector

machines, frequently perform well on a variety of other NLP tasks, as such we chose

to evaluate this further, and base our approach on this solid foundation. We also

noted that topic models, a group of algorithms that identify hidden themes (topics)

in collections of documents, have been shown to produce reliable results when used

alone and in conjunction with other features [43, 58], and as such included them

in our approach so that we could evaluate their utility when applied to the field of

user profiling. Parts-of-speech (POS), are a common feature in natural language

processing (NLP) pipelines [45]; we found that at the time these experiments

were performed, POS tagger performance on social media texts was poor (or non-

existent) for most languages except English. Nevertheless, we evaluated the use of

a Twitter-focused tagger [116, 117, 118] for the English component of the dataset.

The architecture of our developed approach is presented in Figure 3.1. The system

comprises two main components: a model generation module, and one which uses
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a pre-trained model to infer the attributes it contains on unseen documents.

For model generation the training data is fed first through several pre-processing

steps and then through several feature extraction modules. Firstly, a latent Dirich-

let allocation (LDA) model is trained which is then used in the “Topic Extrac-

tion” module. The same data is also passed through an “n-gram Extraction”

module. The resulting feature vectors are normalised, concatenated, and used

to train a machine learning model. Thorough implementation details follow in

Sections 3.2.1 and 3.2.2.

The machine learning algorithm used to generate the results presented in this

chapter is SVMs as they have been consistently shown to produce good results

in user profiling classification tasks, often achieving better or comparable results

over more modern methods such as deep learning in some contexts (discussed

in Section 2.5). We performed ad hoc experiments with ensemble methods and

other machine learning models, but none beat the results achieved by the SVM

implementation, and so are not presented here.

For age and gender a support vector classifier with a linear kernel was used. For the

personality recognition element support vector regressors were used, again with a

linear kernel. The linear kernel was chosen in both cases as it is well suited to

high dimensionality problems such as text classification, which tend to be linearly

separable [98, 97]. All implementations were provided in Scikit-learn [119].

We perform a feature ablation study through 10-fold cross-validation on the train-

ing data in Section 3.2.3 to assess the usefulness of each feature set, and report

the overall effectiveness of our approach on the test set in Section 3.3.

3.2.1 Pre-processing

The text of the Tweets provided proved to be quite clean and little pre-processing

was required other than tokenisation (splitting the text into semantic units such as

words) using a Twitter-aware tokeniser [116], and simple text normalisation steps.

A stop-list was not used to filter low information content, common tokens from the

Tweets due to the multi-lingual nature of the dataset, and the tendency for more

informal language to be used on social media. Instead all tokens that were used

by more than 70% of the users in a given language were treated as stop-words, as
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Figure 3.1: Architecture of the user profiling system presented at PAN 2015.

this is a roughly analogous, language independent technique to stop-word removal.

70% was chosen as the cut-off point for frequent term removal due to the small

size of the dataset, in larger datasets more representative term frequency statistics

can be calculated, and a cut-off around 90% is suitable.

In early experiments on the data, all hyperlinks present in the text were followed

and converted to the domain name of the website found, as previous user profiling

studies have identified website use as a potential analogue for some attributes

[120, 70]. This was discarded in the final approach as no improvement could be

noted with its inclusion, instead a similar experiment was performed to replace all

links with a single “link present” token, but again no improvement was noted.

The Twitter-specific step of eliminating “retweets” was also performed, although

as the provided data contains very few retweets, likely due to curation by the

dataset authors, this step was mostly unnecessary. Another consideration is that

some Tweets are in the form “shared via some app” and do not register as retweets

in the data returned from the Twitter API; we do not attempt to filter for Tweets

of this nature in the scope of this shared task. In most other Twitter processing

tasks, especially those ‘in the wild’, these steps would be included to ensure any
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text processed is the users own.

3.2.2 Feature extraction

n-gram extraction and weighting

Following the application of the pre-processing steps described in Section 3.2.1,

each Tweet is represented as a sequence of tokens, roughly representing individual

words in the Tweet. n-gram representations are generated programatically from

these sequences by simply iterating across the sequence of tokens, recording the

current token, and following tokens up to the value of n away.

We noted through exploratory experiments that unigrams and bigrams together

produced the most reliable results and as such would form the basis of any system

developed. Higher order n-grams may well prove more useful in the context of

a larger dataset, but due to the limited size of the one used here, trigrams and

above were commonly found to have very few occurrences, and were therefore of

little practical use for classification in this case.

Tweets are aggregated to the user level in a bag-of-words fashion after n-grams are

extracted, i.e., a mapping of n-gram to count is calculated for each user (illustrated

in Table 3.2).

User 25

n-gram Count

fishing 21

cinema 17

big catch 12

jog 9
...

...

watching tv 3

soup 1

User 68

n-gram Count

the tube 34

matinee 27

cinema 20

watching tv 17
...

...

jog 3

quiet night 1

Table 3.2: Aggregated Tweets for two fictional users represented in a bag-of-
words fashion.

When bag-of-words features are used to train a model, frequent terms can often

attract higher weights than infrequent but more information-rich terms, to the
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User 68

n-gram Count Weighted

the tube 34 1.24

matinee 27 1.16

cinema 20 0.34

watching tv 17 1.16
...

...
...

jog 3 0.565

quiet night 1 0.913

Table 3.3: TF-IDF weighted n-grams for fictional user 68.

overall detriment of the model. We address this by re-weighting the n-grams

at the user level with the term frequency-inverse document frequency (TF-IDF)

term weighting scheme. In TF-IDF, a term’s rating is based not only on its

frequency in a document, but also against how common the term is in the whole

set of documents, reducing the weighting of very common terms and increasing

the weighting for more uncommon terms [45, 46]. Table 3.3 illustrates an example

re-weighting of the terms used by example user 68 in Table 3.2; note how certain

terms have changed weight such that their rank would also change.

Topic model

Topic models are a class of techniques used to identify latent themes, referred

to as topics, in collections of text. Here, we apply a topic modelling technique

called latent Dirichlet allocation (LDA) [33]. LDA is a generative model in which

documents are modelled as a finite mixture of topics, such that each word in a

document must be generated by one of its topics. An example application of

topic modelling to English social media texts, showing the most important words

identified for each automatically derived topic, can be seen in Figure 3.2.

In our approach, during the training process, an LDA topic model is trained (using

the library gensim [121]) on the Tweet texts from the training set for each language

separately, with a target of 10 topics. We performed ad hoc experiments to select

the number of topics for the LDA models; due to the small size of the corpora

we found that increasing the number of topics above 10 resulted in thematically
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Topic 0: nbsp, amp, time, il, friends, dog, just, work, like, baby, help, ll, girl,
okay, want

Topic 1: people, urllink, new, bush, president, use, read, information, war,
kerry, america, make, government, time, american

Topic 2: life, love, god, time, world, heart, way, know, feel, like, things, peo-
ple, make, let, away

Topic 3: im, lol, dont, like, haha, oh, got, gonna, yeah, went, today, thats,
cuz, didnt, ok

Topic 4: just, like, know, don, really, think, people, want, ve, time, going,
say, things, ll, good

Topic 5: years, women, men, said, people, man, year, world, city, children,
old, woman, white, story, young

Topic 6: urllink, com, pm, site, www, http, den, blog, link, 10, 12, 11, 2004,
check, new

Topic 7: day, time, going, today, work, good, school, week, ll, got, really, just,
year, ve, days

Topic 8: movie, good, love, like, music, new, great, oh, song, night, band,
best, favorite, book, watch

Topic 9: went, got, like, just, home, said, night, didn, time, did, came, car,
house, little, room

Figure 3.2: Example topics from a 10-component LDA model trained on social
media texts.
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similar terms being separated into their own topics in a non-desirable fashion.

The trained LDA models are applied to the aggregated Tweet text for each user,

to infer X, the probability distribution of each topic across their Tweets. The

vector X = (X1, . . . , X10)
T is transformed to the binary 10 element feature vector

Y = (Y1, . . . , Y10)
T with Yi = I(Xi > 0.1), where I is the indicator function,

representing ‘presence’ of each topic. This ‘threshold’ of 0.1 was set through

experimentation. For example, the vector

(0.012, 0.026, 0.011, 0.015,0.424, 0.013, 0.020,0.414, 0.043, 0.023),

becomes

(0, 0, 0, 0,1, 0, 0,1, 0, 0).

It is entirely possible to use X, the raw probability distribution, as a feature vector

in its own right, but in this case we found that conversion to a binary vector yielded

a small performance boost.

It should be noted that ideally the LDA models would be trained on large external

corpora, within the same domain, to produce more robust topic models; in the

scope of these experiments we aimed to assess various techniques without the

introduction of external resources. In Chapter 4, we evaluate the use of external

corpora in a similar context.

Parts–of–speech

In early experiments all Tweets were POS tagged as part of the pre–processing

step using a Twitter specific part–of–speech tagger [116], which uses a reduced set

of POS tags more suited to noisy social media texts. POS feature vectors were

generated in the same fashion as n-gram features, tags were treated as unigrams

and aggregated to the user level in a bag-of-words fashion.

We noted through our feature ablation study (Section 3.2.3) that POS tags were

a useful feature for user profiling in social media texts, in line with other studies

[13, 58]. Nevertheless, we chose not to include this feature set in our final approach,

as the POS tagger used was English specific, and as such would not be compatible

with the other three languages. Further work could be implemented to to examine
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their affect on non-English results.

3.2.3 Assessing feature importance

Prior to finalising our approach we sought to assess the efficacy of several feature

sets, both alone and in unison, through a feature ablation study. As no devel-

opment set was provided, and due to the relatively small size of the training set,

10-fold cross validation was employed to assess the affect of different features on

classifier accuracy, without removing too much of the dataset at once. Results

from the feature ablation experiment are presented in Table 3.4, and represent the

mean result over 10 folds. The feature(s) with the best score for each attribute

for each language is highlighted in bold.

Results are presented in each language for n-gram features, LDA features, and

the two in conjunction. In the English case, results for POS tagged n-grams are

also included. These results show POS tagged n-grams as being the best feature

for English gender and age prediction; despite this they were not used in the final

approach, as a comparable POS tagger could not be found for Spanish, Dutch and

Italian Tweets.

In most cases n-gram features provided the best results, but not by a significant

margin, with n-grams in conjunction with LDA topics performing similarly. LDA

topics on their own proved to be a very poor quality for the English and Spanish

datasets, and gave the worst results in all cases.

Our finalised approach includes n-grams in conjunction with LDA topics, as these

judgements proved to be more stable across folds than n-grams on their own.

3.3 Results and discussion

Our proposed approach was submitted to, and evaluated at, the PAN 2015 Author

Profiling Shared Task [113]. A remote virtual environment was provided by the

organisers to facilitate reproducible evaluation, whereby a deployed system could

be applied to the training and test sets in a controlled environment. The results of

the final system run submitted to PAN 2015 are presented in Table 3.5. The system

performed best on the Italian dataset, achieving a global score above 0.8, where
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scores for other submitted systems ranged from 0.8658 to 0.6024. The English and

Spanish corpora scores for other approaches were in the ranges 0.7906 to 0.5217

and 0.8215 to 0.5049 respectively, with the results obtained by our system falling

roughly in the middle of these ranges. The worst performance was obtained for

the Dutch dataset, scoring on the bottom end of the range 0.9406 to 0.6703.

In most cases the final results are worse than those observed by applying cross-

validation to the training data. However similar or better results were observed for

some personality elements across languages. English age prediction and Spanish

gender prediction also achieved reasonable scores compared to the cross-validation.

The results show that n-grams and topic models are a useful element in developing

user profiling systems across a number of languages and provide reasonable results

without any additional features, or external corpora. In order to improve the

system without adding any other features the LDA topic model could be trained

on a large external corpus of text, in theory leading to a more robust model.

3.3.1 Other approaches

In the rankings for the PAN 2015 Author Profiling shared task [113], our approach

achieved 9th place out of 22 entries for joint prediction of gender and language

variant. Of the top performing approaches submitted to the task all utilised n-

grams in some form, alongside complementary or derived features.

The best performing approach, submitted by Alvarez-Carmona et al. [122], utilises

an approach similar to our own. Second Order Representation (SOA) features,

defined as selected discriminative content features such as content words, punc-

tuation, and function words, are combined with TF-IDF n-gram vectors reduced

in dimensionality through latent semantic analysis (LSA) to train a SVM model.

LSA features, in this context, are analogous the the topics derived in our own

approach through LDA, although much more better performing in this task. It is

likely that the better performance of Alvarez-Carmona et al. [122] against our own

similar approach is down to task-specific feature selection, and more discrimina-

tive features learned by LSA on the small training dataset than the LDA model

applied in our own approach. Similarly González-Gallardo et al. [123] used combi-

nations of character and POS n-grams, and Grivas et al. [124] combined TF-IDF

n-grams with a set of style-based features such as readability and text structure.
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3.3.2 Future work

Given the similarity of our approach to the best performing approaches in the task,

it is clear that the TF-IDF n-grams are a reliable starting point in user profiling

tasks, and task specific feature selection and auxiliary feature sets are the sensible

next step to improve performance. A number of potential options for additional

feature sets are discussed below.

The way an user behaves in the context of interacting with their medium (be it

social media, conversation or essay writing) has, in other studies, been telling of

their characteristics. For example, according to the “big five” model of personality

an extroverted person is likely to be more outgoing, assertive and have a positive

demeanour [37]. Conversational elements have also been shown to be useful [39,

40, 41].

It is also possible to code for behaviour in online media. Studies have identified

varying patterns of social media activity times in areas of high and low unemploy-

ment, with those low employment areas seeing a sharp rise in posts around the

start of the working day [32]. Other studies have attempted to detect conversa-

tional behaviours on social media, as earlier research showed them to be of use for

user profiling.

An analysis of an user’s social network can also give rise to interesting judgements

about them. It has been shown for example, that the presence of certain “Likes”

made by an author on the platform Facebook, can be indicative of wide number

of characteristics. Other social network properties may also be useful, in Quercia

et al. [42] four distinct groups of users, where each group has similar personality

scores, were identified, based on a user’s tendency to follow, be followed and

favourite Tweets on Twitter.

For the purpose of this task hovever, these techniques were not further investi-

gated, due to the format of the provided data, although in future it would be very

interesting to assess their effect on system performance.
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3.4 Conclusion

In this chapter we have presented our findings regarding the effect of the inclusion

of LDA topics in conjunction with traditional text features. We used support

vector machine classifiers and regressors in conjunction with n-gram and topic

features, in order to provide judgements on age, gender and personality. We

conclude the addition of LDA topics does improve system performance in most

cases, and thus would form a good candidate component of a user profiling system.

We propose that further performance improvements could be achieved through the

inclusion of external corpora, and go on to evaluate this in Chapter 4.

Our findings indicate that an approach incorporating n-grams and topic models,

in conjunction with a linear model, do indeed form a good basis of a user pro-

filing system, and as such use similar set-ups to assess our novel data generation

techniques (Chapters 6 and 7).
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Chapter 4

Enhancing user profiling

performance with geographically

derived resources

In this chapter, we expand upon the exploration of user profiling system compo-

nents presented in Chapter 3, and make our first foray into deriving user profiling

resources from geo-located Tweets and demographic data. We present an ap-

proach to generating representative language resources using geo-located Tweets

and demonstrate their utility in a predictive setting through our approach to the

2017 edition of the PAN Author Profiling shared task [125, 126, 127]. The PAN

2017 Author Profiling shared task provided a dataset of Twitter users across four

languages annotated with their language variants (at the country level) and gender

(further details are described in Section 4.1.1).

We constructed a corpus of worldwide Tweets and filtered for those geo-located

within the countries covered in the task’s languages (except for the Arabic language

variants due to low frequency). This corpus was divided into individual languages

(Portuguese, English and Spanish) and used to derive Word2Vec word embeddings

[34, 128] tailored for each language.

We assessed the utility of the derived word embedding models by evaluating their

effect when included as part of a classification pipeline in an experiment on the

PAN 2017 Author Profiling dataset. To predict gender and language variant, we

applied an ensemble of probabilistic machine learning classifiers (described in de-
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tail in Section 4.3). Each set of language specific word embeddings were clustered

using K-means to derive a set of word to cluster mappings, which can be thought

of as roughly analogous to topics in a topic model. The normalised frequency of

each word cluster across a user’s Tweets was used to train a Gaussian process

classifier. In parallel, a logistic regression classifier was also trained using term

frequency-inverse document frequency (TF-IDF) transformed unigram and bigram

frequencies. The two classifiers were employed in an ensemble approach by aver-

aging the predicted probabilities of both classifiers for each sample to determine

the target user attribute.

Our ensemble of classifiers bolstered by a geographically derived resource per-

formed well across the board, achieving good accuracy scores in both gender and

native language recognition far above a random baseline. When compared to a

strong baseline established from our work in Chapter 3, support vector machines

(SVMs) trained on TF-IDF n-grams, our approach yielded performance increases

for a number of attributes, and performed on-par for others.

Our experiments led to two main conclusions:

� Geo-located social media posts can be used to create high quality embedding

models, specific to both the medium and locations the researcher wishes; and

� Resources derived through geo-located posts can be used to improve perfor-

mance in a downstream task.

These observations show that there is indeed a benefit to introducing geographi-

cally derived resources in user profiling. In future chapters, we will evaluate this

further, by deriving user profiling corpora entirely from geo-located social media.

This chapter is an expanded version of work presented at PAN 2017 [129].

4.1 Data

In order to evaluate the utility of language resources derived from geo-located

social media posts when applied to user profiling, we gathered two datasets; a

user profiling dataset—the PAN 2017 Author Profiling Shared Task dataset (Sec-
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tion 4.1.1), and a collection of geo-located Tweets covering English, Spanish, and

Portuguese, these are described in the following.

4.1.1 PAN 2017 Author Profiling dataset

The PAN 2017 Author Profiling Shared Task focussed on the prediction of country

level language variant and gender of social media users, specifically, Twitter users.

Four languages are covered in the task; English, Spanish, Portuguese, and Arabic.

For each language, a number of country/large region level variants are represented

(e.g. Brazilian vs Portuguese Portuguese).

A dataset was provided consisting of Twitter users represented as a collection of

their 100 most recent Tweets and their profile meta-data at the time the Tweets

were collected. Within each top-level language, users are balanced by gender and

language variety. The distribution of labels in the dataset, including a full list of

language variants included can be seen in Table 4.1.

To construct the dataset, unique users were selected from a collection of Tweets

posted in locations identified as representative for a given variety, typically a

capital city (e.g. Dublin for Ireland and Cairo for Egypt). Each unique user’s

historical Tweets were then collected, and users were labelled with a top level

language and a language variant based on the country/region the majority of

Tweets were posted from. Users whose Tweets were not in the representative

place, those with too few Tweets, and those with too many Tweets in a different

language were discarded.

Only Tweets authored by the user were included in the dataset (retweets were

excluded), and Tweets were checked to ensure they matched the specified language

for each user profile. Gender was annotated manually for each user by the dataset

authors, assisted by use of a dictionary of proper nouns to produce an initial

“best-guess”.

The dataset was further split into train and test sets in a stratified manner, with

60% dedicated to training and 40% dedicated to testing. A second testing set

was made available via the shared task’s evaluation platform, but was not made

available for download.
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Language Variety Males Females Total

Arabic Egypt 500 500 1000

Gulf 500 500 1000

Levantine 500 500 1000

Maghrebi 500 500 1000

All 2000 2000 4000

English Australia 500 500 1000

Canada 500 500 1000

Great Britain 500 500 1000

Ireland 500 500 1000

New Zealand 500 500 1000

United States 500 500 1000

All 3000 3000 6000

Spanish Argentina 500 500 1000

Chile 500 500 1000

Colombia 500 500 1000

Mexico 500 500 1000

Peru 500 500 1000

Spain 500 500 1000

Venezuela 500 500 1000

All 3500 3500 7000

Portuguese Brazil 500 500 1000

Portugal 500 500 1000

All 1000 1000 2000

Table 4.1: PAN17 dataset characteristics.
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Dataset limitations

Representative places were chosen by the dataset authors as the method of filtering

user location to attempt to reduce the affect of out-of-region users (e.g. tourists

Tweeting from Portugal), nevertheless limitation of language variety to specific

locations within a larger whole does run the risk of excluding large swathes of

users who speak a language variety, but in a different part of the country/region

with a different dialect. Scotland, for example, despite being notable on Twitter

internationally for their use of distinctively Scottish language [130], is part of

“Great Britain”, but has capital city Edinburgh chosen as its representative place,

over the larger city Glasgow.

Prior to commencing experiments with this dataset native speakers of each lan-

guage assessed a small number of Tweets on an ad-hoc basis and found that,

in general, English, Spanish, and Portuguese Tweets were representative of that

language. The Arabic profiles though were found to contain numerous posts in

Quranic Arabic, introduced through sharing of quotes and preacher profiles, which

is not truly representative of the Arabic used casually in any of the regions ad-

dressed.

Motivation for selection

Despite its limitations, this dataset is a good fit for our initial experiments on

improving user profiling with geographically derived resources. It builds on the

characteristics of the dataset used in Chapter 3, so we can assume our conclusions

on strong baseline user profiling components carry over. This dataset on the other

hand includes a user attribute intrinsically linked to geography: regional language

variant; which allows us to explore building additional corpora that might help

address the same attribute. Furthermore, the dataset is much larger and each user

in the dataset has the same number (100) of Tweets, which means derived models

will likely have much more generalisability and avoid over-representation of more

prolific users.
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English (Fen) Spanish (Fsp) Portuguese (Fpt)

Australia Argentina Brazil

Canada Chile Portugal

Great Britain Colombia

Ireland Mexico

New Zealand Peru

United States Spain

Venezuela

Table 4.2: Countries scraped for each language.

4.1.2 Geographically filtered Tweets

To enable our experiments related to generating resources from collections of geo-

located social media posts, three corpora of geo-located Tweets were built: English

(Fen), Spanish (Fsp), and Portuguese (Fpt). A comparable corpus was built for

Arabic, but was not used in further experiments due to issues with data quantity

and the quality issues discussed in Section 4.1.1.

The corpora were derived from a set of all Tweets posted worldwide throughout

2015, collected through the Twitter Firehose1. This collection was filtered based

on country boundaries (for coordinate based geo-tags) and textual names (for text

based geo-tags) to only include posts geo-located in the specific language regions

covered in the PAN 2017 Author Profiling Dataset (see Table 4.2). The language

property present in the metadata of the Tweets was used to exclude Tweets outside

of each targeted regions’ main language, but Tweets were not manually checked for

correctness due to the scale of the data, therefore a proportion of Tweets is likely

to contain mixed language use (code switching) or simply be misclassified. We

chose not to filter the corpora further to only include Tweets from representative

places as we wished to get a broader picture of language used in the regions as a

whole. We expect most out-of-region user influence to be of negligible bias due to

the quantity of Tweets involved.

Some language variants were less frequent in the resulting datasets than others due

to differences in population, for instance we collected very few Tweets from Ireland

compared to the U.S.A. Down-sampling was used to avoid over representation of

1Twitter Firehose has since been discontinued and can no longer be accessed.
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the more prevalent language variants. Data for the language variants with the

largest volume of Tweets was reduced so that it contained no more than 10 times

the number of Tweets of the smallest language variant. 10 to 1 was chosen as the

upper limit for ratios between languages in our datasets over a smaller ratio, such

as 1 to 1, so as not to reduce the quantity of Tweets in the datasets so much that

the quality of derived word embeddings would be affected, while still ensuring less

frequent language variants have a significant presence in the datasets.

4.2 Tailored word embeddings

Word embedding refers to the process of mapping tokens (such as words, sub-word

units, or sequences of words) into a fixed length real valued vector. Typically,

word embeddings map tokens from some high dimensional vector space into a

much lower dimension. Examples include:

� Bayesian methods such as latent Dirichlet allocation (LDA), which learns to

map bag-of-words representations into latent clusters which resemble topics

or themes;

� Word2Vec, a shallow 2-layer neural network which via learning to recon-

struct contexts of words manages to capture their semantic and syntactic

properties;

� GloVe [131], a matrix factorisation approach trained on word-word co-occurrence

statistics which also captures semantic information; and

� Brown clustering [132], which utilises a statistical model to cluster terms in

a corpus, again, based on their co-occurrence with other words in the corpus.

Embedded representations of tokens are a valuable tool in the natural language

processing (NLP) practitioner’s arsenal; they can be used as features in their

own right, as we showed via our application of LDA features in Chapter 3, or

as the input to some advanced feature extractor such as a convolutional neural

network (CNN). An embedding model trained thoughtfully is easily reusable and

distributable, and can greatly increase performance of downstream tasks; usage

of pre-trained Word2Vec embeddings for example introduced a step-change in

achievable accuracies for a wide variety of NLP tasks, with a low barrier to entry.
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Word embedding models widely available at the time of writing tended to be

trained on traditional media such as books and news in US English. These models

are well suited to many tasks, but can fall down when applied to other variants of

the same language, and in the context of noisy user generated text as is present

on social media platforms. In such novel contexts, it is important to either tune

an existing embedding model or train a new one to be representative of the type

of language being modelled.

We found that for short-form social media platforms such as Twitter, no off-the-

shelf embedding model adequately captured the sorts of language used on those

platforms, and as such chose to create these resources ourselves by leveraging

geo-located Twitter posts.

4.2.1 Developed resources

Word embeddings for each language dataset (Fen, Fes, and Fpt) were trained using

the Word2Vec [34, 128] implementation in gensim [121] with continuous bag-of-

words (CBOW), negative sampling, 200 dimensions, and a window size of 10.

Geo-located Tweets can be used to train a variety of language resources; we imple-

mented procedures to train three different popular word embedding approaches:

brown clusters, and GloVe and Word2Vec embeddings. In our experiments we only

apply Word2Vec embeddings downstream, although the three resources would be

quite interchangeable due to their similar properties, and we expect the conclu-

sions drawn in this chapter would carry over.

4.3 Application of localised word embeddings in

an ensemble approach

We assess the utility of our derived localised embeddings with regards to user

profiling, by examining their affect when included in a user profiling system; our

approach combines two probabilistic classifiers trained on distinct feature sets in

an ensemble to predict gender and language variant.

We build on our previous results from Chapter 3, and apply a logistic regression
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(LR) classifier trained on TF-IDF transformed n-grams (Section 4.3.1) as a strong

baseline/starting point for our approach. LR was chosen for this component for

its probabilistic output, similarity to SVM in terms of predictive performance, and

ability to handle highly dimensional bag-of-words features.

To apply our localised word embeddings, we first cluster them into word embed-

ding clusters using K-means. Frequencies of each cluster across a user’s Tweets

are aggregated into a single feature vector and used to train a Gaussian process

(GP) classifier (Section 4.3.2). A GP classifier was used in conjunction with these

features, as we found it was able to achieve better predictive performance than LR

on the lower dimension word embedding cluster frequency feature vectors, while

still being a probabilistic classifier for use in our ensemble approach.

For each unseen document, probabilities from both classifiers are taken and aver-

aged, and the highest average probability class is taken as the prediction. Models

were trained using the implementations found in scikit-learn [119] unless stated

otherwise. We made no meaningful attempt to tune the classification decision

boundary value in these experiments.

4.3.1 Logistic regression classifier with TF-IDF n-grams

Word unigram and bigram features were extracted for each training document,

following the processes described in Section 3.2.2. The text was tokenised using

a Twitter-aware tokeniser [116]; no additional steps were taken to deal with the

extra complexities of Arabic text. A list of stop words was not used while deriving

n-gram features, instead tokens that appeared in more than 90% of the documents

were removed, as this allows for the removal of very common (low information-

content) n-grams across a language’s variants while also removing stop words.

TF-IDF weighting was applied to down-weight n-grams found to be common across

the documents and assign a higher weight to n-grams which are rarer and more

informative.

A logistic regression classifier was trained for each language using the n-gram

features. Logistic regression was chosen for use with the n-gram features because

it has been shown to perform well on similar high-dimensional classification tasks,

and produces probabilistic outputs [133] for use in our ensemble approach.
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4.3.2 Gaussian process classifier with localised word em-

bedding clusters

To use word embeddings in a document classification approach, steps must be

taken to convert them into features, before training a machine learning algorithm.

‘Classic style’ machine learning algorithms (e.g. naive Bayes (NB), SVM, LR)

typically expect to see a one dimension vector per training example (aggregated

collection of Tweets in this case), whereas our embeddings are represented as an

one dimensional vector per token (or a two dimension sequence of embeddings).

In NLP tasks such as sentence similarity or short-sequence classification a sim-

ple average of the embeddings in a document is a suitable reduction, although

this is infeasible in this task, as the high token volume yields vectors that are

indistinguishable from noise.

Lampos et al. [134] present a bag-of-word embedding cluster approach to utilising

word embeddings to classify aspects socio-economic status in Twitter users. They

first cluster embeddings to derive a term-cluster mapping, and use these mappings

to generate feature vectors for the users in their dataset in a fashion similar to bag-

of-words. The feature vectors are used to train GP classifiers with good results.

Furthermore, it is noted that the derived word embedding clusters are similar

in nature to topic models, in that they identify semantically similar groups of

words in documents, which we showed in Chapter 3 to be a useful user profiling

system component. Owing to these desirable properties, and the similar domain

of application, we chose to adapt the bag-of-word embedding cluster approach for

our own localised word embeddings.

Generating clusters of localised word embeddings

Within our localised word embeddings, terms that are semantically similar are

expected to be closer together in embedding space than those that aren’t. Using

some distance metric, such as Euclidean or cosine distance, it is possible to measure

the similarity between our embeddings. For example, ‘dog’ and ‘cat’ would likely

be close together as they are both pets; ‘puppy’ would also be close, but we

would expect it to be closer to ‘dog’, as a puppy is an infant dog; an obviously

different term such as ‘television’ would likely be measured as much further away.

The ability to measure meaningful relationships between word embeddings makes

71



Token Cluster

dog 1

cat 1

anteater 1

snail 1
...

table 16

chair 16

desk 16

sink 16
...

played 32

went 32

ran 32

watched 32
...

laptop 100

television 100

xbox 100

oven 100

Table 4.3: Example token-cluster mappings derived through clustering English
localised word embeddings with K-means, highlighting conceptually similar terms
within each cluster.

them highly suitable for clustering.

We applied K-means clustering [135] to the word embeddings to derive a set of 100

clusters for each language, in which each word is assigned a cluster based on its

nearest cluster centroid in the embedding space. Table 4.3 illustrates the resulting

mapping between tokens and embedding clusters.

Under our current clustering scheme, each term was assumed to be equally as

representative of its cluster as each other term; in practise though, certain terms

were closer to the centroid in embedding space than others. A potential expansion

to this work would be to investigate the effect of weighting terms based on their

proximity to their closest centroid.
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Computing cluster frequency feature vectors

To compute feature vectors for each user, we took all of their tokenized Tweets

(with frequent terms removed), looked up the relevant cluster for each token, and

counted the frequency of each cluster, yielding a one dimension vector of integers

of length 100. This vector was then normalised to the range [0, 1), by dividing

each frequency by the total number of tokens counted.

This process yields feature vectors comparable to the raw probability output of

topics models such as LDA. Unlike our LDA based feature extraction approach

in Section 3.2.2, we do not transform the cluster frequency feature vectors into

binary feature vectors.

Gaussian process classifier

The normalised cluster frequency feature vectors for each user were used to train

Gaussian process classifiers with an radial basis function (RBF) kernel [100] for

each language. Gaussian process classifiers were chosen as a good fit for our

ensemble approach, due to their probabilistic output and reputation for good per-

formance on similar classification tasks [134]. The RBF kernel was chosen due to

its position as a good default in the literature [100]. We confirmed through ad hoc

experimentation that the GP classifiers slightly outperformed logistic regression

classifiers trained on the same data.

4.4 Results and discussion

We frame our evaluation as a classification problem. All models were trained on

the train subset of the dataset presented in Section 4.1.1. Baseline results (Sec-

tion 4.4.1) are evaluated on the test subset, and ensemble results (Section 4.4.2)

are evaluated on the PAN 2017 evaluation platform against the second held-out

test set. For comparability to other approaches presented at PAN 2017, we mea-

sure model performance in this study in terms of accuracy, defined as the number

of correct predictions, divided by the total number of predictions made.

We do not present results for the Arabic language due to the small number of
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Tweets acquired and the data quality issues regarding non-standard use the lan-

guage in both the PAN 2017 Author Profiling (Section 4.1.1) and geographically

filtered Tweet (Section 4.1.2) datasets.

4.4.1 Baselines

In Chapter 3 we identified that support SVM classifiers trained on TF-IDF n-

grams is an acceptable, widely used, approach for user profiling tasks. As a baseline

for this evaluation, we trained an SVM classifier with a linear kernel on the TF-

IDF n-gram feature vectors derived in Section 4.3.1, for each addressed attribute

(gender and language variant). Table 4.4 shows the accuracy scores achieved by

this baseline, as well as those achieved by a majority class baseline for comparison.

The SVM baseline performed as well as expected, and is clearly able to distinguish

between classes for both gender and language variant, beating the majority class

baseline in all cases, especially for language variant and joint prediction. These

results show that our SVM approach is good baseline to compare against our

geographically derived resources.

Baseline Target Spanish English Portuguese

Majority class Gender 0.5 0.5 0.5

Language variant 0.1429 0.1667 0.5

Joint 0.0714 0.0833 0.25

SVM Gender 0.7361 0.7896 0.8263

Language variant 0.9532 0.8617 0.9800

Joint 0.7007 0.6838 0.8113

Table 4.4: Baseline accuracy scores for gender and language variant prediction
for each language derived from a SVM classifier trained on TF-IDF n-grams.

4.4.2 Ensemble

Table 4.5 shows the results of our ensemble approach applied to the held-out test

set. For Spanish, English and Portuguese the results were attained by applying

the ensemble of logistic regression and Gaussian process classifiers described in

Section 4.3. We were unable to derive baseline SVM results on this dataset due
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Target Spanish English Portuguese

Gender 0.7939 0.7829 0.8388

Language variant 0.9368 0.8038 0.9763

Joint 0.7471 0.6254 0.8188

Table 4.5: Accuracy scores for gender and language variant prediction for each
language as submitted for the PAN: Author Profiling task 2017.

to limitations imposed by the shared task organisers, although both datasets were

collected using the same methodology, and as such, results should be comparable

between the two.

As with our SVM baseline, we see that the our ensemble approach beats the

majority class baseline in all cases. Our ensemble performs well gender prediction,

beating our SVM baseline for both the Spanish and Portuguese datasets, and

achieving similar accuracy score for English. For language variant prediction,

our ensemble is beaten by the SVM baseline for all three languages, more-so for

English than Spanish and Portuguese. For joint prediction our ensemble beats the

SVM baseline for both Spanish and Portuguese. Poor performance for English

is due to errors in language variant prediction propagating through to incorrect

joint predictions. Of the three languages the ensemble was applied to, the best

performance was observed for Portuguese and the worst for English.

Noting improved performance on the introduction of localised word embedding

cluster features for the gender prediction task, we conclude that broad topics of

interest appear to be effective for the prediction of user gender. This is in line

with our observations in Chapter 3, where LDA topic models were able to improve

predictive performance over word TF-IDF n-grams. In the case of language variant

prediction, broad topics appear to hurt predictive performance, and individual

terms that are more common in (or unique to) specific language variants are more

discriminating.

The differences in performance between our SVM baseline and ensemble ap-

proach are potentially attributable to random differences between the two different

datasets from which results were derived; as such we also compare our approach,

and it’s results, against those of other authors on the same dataset. In the rank-

ings for the PAN Author Profiling shared task [127], our approach achieved 7th

place out of 22 entries for joint prediction and 6th for gender, exceeding reported
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baselines. We achieved poorer results for language variant prediction at 9th place,

and did not exceed the strong baseline approach proposed by the shared task

organisers.

Several participants in the 2107 PAN Author Profiling also utilised n-grams in

their approaches. Of the demonstrated systems utilising n-grams [136, 137, 138,

139, 140, 141, 142, 143], our ensemble approach outperformed all of these systems

in the gender prediction task, except for the approach in Martinc et al. [140], which

incorporated a wide range of additional manually selected feature sets including

parts-of-speech (POS) tags, emoji, sentiment information, stylistic features and

language variety word lists. This again shows that our localised word embedding

clusters are a useful addition for improving performance at gender prediction. For

language variant, our ensemble approach also out-performed most other n-gram

based approaches, despite appearing to perform poorly against our own baseline.

Our ensemble approach was again beaten by the approach in Martinc et al. [140],

as well as by Markov et al. [139], who employed a very thorough feature selection

scheme, and by Schaetti [143], who utilised deep learning methods.

A small number of approaches also experimented with word embedding mod-

els [144, 145, 146]; each approach trained a language specific word embedding

model on the Tweets provided in the shared task datasets. No other approach

tailored their embeddings to ensure representation for specific language variants

using large-scale external corpora. For gender prediction, our ensemble approach

outperformed each of the other embedding based approaches, including Kodiyan

et al. [145], Sierra et al. [146], who both utilised deep learning methods, and

Akhtyamova et al. [144], who used averaged word embeddings for each user to

train logistic regression classifiers. For language variant prediction our ensem-

ble out-performed Akhtyamova et al. [144], Kodiyan et al. [145], achieved similar

results to Sierra et al. [146].

Deep learning models are often assumed to be the best performing, and therefore

default choice, machine learning algorithm in modern contexts. A number of

the submitted approaches, such as Kodiyan et al. [145] and Sierra et al. [146],

utilised deep learning methods in their approaches. In fact, our ensemble approach,

which utilises a purposefully designed set of features used to train a “classic”

machine learning algorithm, can often match or exceed the predictive performance

of the more advanced deep learning based approaches, which yield hard to explain

models, and require much greater computational resource for both training and
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inference.

4.5 Conclusion

In this chapter we presented a novel method for acquiring large language cor-

pora tailored to specific regions by leveraging geo-located social media posts; we

used these corpora in a down-stream task by training word embeddings on them,

and demonstrated their utility in a user profiling setting. This provides us with

certainty that there is at least some benefit to including geographically derived

resources in user profiling. In future chapters, we will demonstrate that geograph-

ically derived resources have further uses, and use them to replace traditionally

derived user profiling resources altogether.

We also expanded on our evaluation of state of the art tools for user profiling on

established datasets; in later chapters, we will build on this strong foundation in

our experiments on datasets derived through our own methods.
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Chapter 5

Estimating user home location

In Section 1.3 we laid out our proposed approach for generating user profiling

datasets by combining social media profiles tagged with a ‘home location’ and

publicly available demographic datasets. This approach requires a good method

for assigning home location to profiles at the fine-grained hyperlocal coordinate

or small region level. In addition, we require the ability to assign some measure

of ‘uncertainty’ to our estimates, such that users with sparse or highly spread

activity can be excluded from analysis.

For a home location identification method to be suitable for hyperlocal user geo-

location, it needs to perform accurate coordinate-level predictions or pick poten-

tially small regions from a list of candidates. In Section 2.4 we reviewed the

state-of-the-art approaches used to assign ‘home location’ to social media profiles

in the literature, and identified four state-of-the-art methods to evaluate:

� First Tweet involves simply taking the the coordinates of a user’s first Tweet

as their home location;

� Location field utilises a gazetteer or geo-coding service to convert the user-

declared location field into a home location;

� Grid based partitions the world into an arbitrary grid and counts the number

of Tweets geo-located within each cell, taking the most populous as the home

location; and

� Geometric median simply takes the geometric median of a user’s collection

of geo-located Tweet coordinates, which is taken to be their home location.
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While the first Tweet method supports hyperlocal, coordinate level geo-location,

it is highly error prone. Information in the location field can only reasonably be

used to geo-locate at town/city level granularity or higher, which makes these

methods less suited to hyperlocal geo-location. The grid based approach in Han

et al. [92, 94] reliably locates profiles, but at a granularity far above what could

be called hyperlocal, using grids larger than many towns (outside of the US), and

as such will not be assessed in this chapter. The geometric median approach of

Jurgens [85], Compton et al. [86], Jurgens et al. [87] is likely to be the most reliable

state-of-the-art method for hyperlocal geo-location, producing single coordinate

level predictions with outlier resistance and a measure of judgement certainty, but

deriving home location from the median of all of a user’s Tweets is likely to lead

to incorrect judgements when a user is often active in more than one area.

None of the identified state-of-the-art approaches appear to quite satisfy our re-

quirement of a robust and accurate method for identifying hyperlocal home lo-

cation, so in this chapter we propose two novel methods that overcome some of

the limitations of state-of-the-art methods for deriving ground truth user location

(Section 2.4). Our methods acknowledge that social media users are often active

at multiple locations, and propose that their most active location is likely to be

their primary location (see Section 5.1):

1. Majority voting measures a user’s activity in real world regions as defined

by public boundary datasets. Four such resources are used in this chapter

(see Section 5.2.1); and

2. Clustering works at the hyperlocal level by applying a clustering algorithm

to each user’s geo-located Tweets, revealing centres of activity. The most

populous cluster is taken as the users home, and its geometric median is

taken as the user’s home coordinate.

Previous methods for home location identification have not been evaluated at the

hyperlocal level, limiting understanding of their accuracy for this fine-grained task.

A new gold-standard dataset containing hyperlocal geographic information was

created (Section 5.2). This dataset was created by identifying a set of key phrases

indicating which Tweets were sent from the user’s home. These phrases were used

to identify the home location of 1,042 Twitter users. Each Tweet containing a

home-indicative phrase was checked to ensure it referred to ‘home’ in the correct

context, being removed from the dataset if not. The ‘true’ home location was
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calculated for each profile by taking the spatial average of its home-indicative

Tweets.

To evaluate the accuracy of state-of-the-art and newly proposed methods for de-

riving user location, we implemented and applied them to all profiles in the gold-

standard dataset (from Section 5.2), comparing the predicted and ‘true’ locations

(Section 5.4). Two metrics are presented; error distance (in miles) and exact match

accuracy (at four granularities of UK administrative region). The results demon-

strate that our clustering based approach outperforms state-of-the-art methods on

the hyperlocal geo-location task, at both coordinate and region-level granularity,

and satisfies our requirement of a good method for assigning home location to

Twitter profiles.

This chapter is adapted from work presented at Hypertext 2017 [129]. Section 5.1

introduces the two novel methods that we will be evaluating. The process for

acquiring ground-truth (i.e. with a true home location) user profiles is described

in Section 5.2, and how this will be used to assess the current and novel methods

is described in Section 5.3. Results and conclusions of this investigation are given

in Sections 5.4 and 5.5.

5.1 Acquiring fine grained home location esti-

mates

The two improved methods proposed in this chapter take into account all of a

user’s geo-located Tweets (e.g. Figure 5.1), in order to identify the user’s home

location at coordinate level. Both approaches assume that each social media user

commonly posts from a limited number of locations, with the highest frequency

Tweeting location assumed to be the user’s home (in line with human home-

return patterns [147] and other user geo-location approaches [92, 94, 148]). The

first method is based on majority voting across possible regions and is presented

in Section 5.1.1, whereas the second is based on clustering of geo-located Tweets

(see Section 5.1.2).
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Figure 5.1: Example collection of unprocessed Tweet coordinates.

5.1.1 Majority voting

In a manner similar to how datasets are generated in a number of user geo-location

studies, our method for generating user profiling datasets hinges on associating

social media users with their ‘home location’ in the form of public boundary data,

such as states or other administrative subdivisions. We propose a method that,

similarly to grid-based approach presented in Han et al. [92, 94], operates in dis-

crete space and counts points. Unlike Han et al. [92, 94] which operates on an

fixed sized grid, our method can be applied to any boundary data, at any scale.

By projecting all the coordinates of a user’s Tweets onto the same surface as the

boundary data (county borders, for example, in the US), the boundary containing

the majority of a user’s Tweets can be identified. Immediately putting locations

into the ‘boundary space’ is in contrast to most of the methods described in this

Section 2.4 that first determine home location in coordinate form.

A naive implementation of this somewhat brute force method is likely to be quite

slow, due to reliance on many point-in-polygon tests which can be quite compu-

tationally intensive depending on the dataset; this can be though by sensible use

of methods such as spatial indexing.
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Figure 5.2: Example application of the majority voting method to the data in
Figure 5.1.

To pick the home location, the boundary containing the most Tweets is chosen.

The number of Tweets in other boundaries to this home estimate are known, and

so some measure of uncertainty can be calculated, such as the proportion of Tweets

that reside within the home region. This allows for the elimination/downgrading

of profiles with low region certainty. As such, majority voting does solve the

requirements of needing to pick a region/coordinate as the home location and

quantify the uncertainty around such an estimate.

Figure 5.2 shows an example of the majority voting method applied to the un-

processed Tweet coordinates displayed in Figure 5.1. The region with the most

Tweets contains 227 examples, and is selected as the user’s home.

5.1.2 Clustering approach

Since social media users are often active from more than one location, an approach

that first clusters Tweets into regions of activity prior to picking one as the home

location is more promising over simply picking the geometric median of all user

posts, as in Jurgens [85], Compton et al. [86], Jurgens et al. [87]. In particular, for
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users with more than one commonly posted-from location (such as a home and

work location), the geometric median can sometimes pick a point in between these

two locations, while a clustering approach can overcome this limitation.

Our method first clusters the coordinates of each user’s geo-located posts using

an algorithm such as K-means, DBSCAN, or Gaussian mixture models (GMMs)

(see details below). This reveals a collection of candidate clusters for the home

location. The cluster with the highest number of posts is identified and taken as

the ‘home cluster’ and the home location coordinate is taken to be the geometric

median (Equation 2.1) from all locations within the home cluster.

Figure 5.3 shows an example of the clustering approach on the data in Figure 5.1;

two clusters are identified with cluster membership of each point presented as a

square or circle (home coordinate in red). In this case the most populous cluster

is the one represented by squares and the red square is taken as the user’s home

coordinate.

The ability of a clustering method to estimate location can be quantified by as-

sessing the geographic size of the estimated ‘home cluster’; a geographically small

cluster that is dense in points will likely lead to a better estimate than a geo-

graphically large cluster with a sparse coverage of points. A measure of the size

of a cluster could therefore be to take the average distance from the estimated

home location to each point in the home cluster. Explicitly these distances are

determined by the Haversine [149] distance, and the mean of these is taken.

An extension of this method not evaluated here would be to use it in conjunction

with the majority voting method. In an application where the goal is to assign

a given user to a region, the number of point-in-polygon tests could be greatly

reduced compared to majority voting by only checking the points in the user’s

home cluster.

Clustering algorithms

Since our clustering geo-location method relies on identifying location clusters, we

experimented with partitional clustering algorithms [150]. In particular, three well

established clustering algorithims were experimented with (K-means, DBSCAN

and GMMs), described in the following.
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Figure 5.3: Example clustering of the Tweet coordinates in Figure 5.1.

K-means K-means [135] attempts to partition a set of observations

X = {x1, x2, . . . , xN}

of length N into k ≤ N clusters C = {c1, c2, . . . , ck} by minimising a criterion

called the ‘within-cluster sum of squares’ (WCSS, also known as inertia).

More formally, K-means aims to find

arg min
C

k∑
i=1

∑
x∈Ci

||x−mean(Ci)||2. (5.1)

The K-means algorithm has three steps, first the k clusters have their

centroids initialised (for example by taking k points at random from the

dataset). Then the algorithm loops between assigning each point to its

nearest centroid, and calculating new centroids based on the changes in

the previous step. This continues until the difference between the new and

previous centroids falls bellow a threshold (the centroids are stationary). K-

means is sensitive to its initialised centroids, thus the algorithm is usually

run multiple times with different initialisations to help ensure good clusters.

DBSCAN Density-based spatial clustering of applications with noise (DBSCAN)
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[151] is a density-based clustering algorithm that forms clusters based on the

presence of high density regions (large numbers of neighbouring points). If a

point lies in a low density region (i.e. no or few nearby neighbours), the point

is marked as an outlier and not included in any cluster. Unlike K-means

in which clusters are always convex, DBSCAN is able to produce clusters of

any shape, including rings around other clusters.

GMM A Gaussian mixture model (GMM) is a probabilistic model in which all

points in the data are generated from a finite mixture of Gaussian distri-

butions with unknown parameters [152]. Inference on the parameters of

a GMM is typically approached using the expectation maximisation (EM)

algorithm [153]. Having pre-specified the number of Gaussian components

and initialising parameter values, the EM algorithm consists of two steps;

the ‘expectation’ step, in which the likelihood is evaluated at the current

parameter estimates, and the ‘maximization’ step, in which the expected

likelihood from the previous step is maximised.

5.2 Data

We were unable to compare different approaches to assigning home location on

an existing dataset for multiple reasons. The permanence of Twitter data is a

difficult issue for studies centred on the platform; Twitter does not allow Tweets

to be shared in full, instead only Tweet IDs can be provided. This leads to

a problem in sharing datasets as large numbers of Tweets are time-consuming to

acquire, and many Tweets and profiles are deleted over time. None of the datasets

available provided high certainty gold-standard hyperlocal home location labels.

Eisenstein et al. [82], Mahmud et al. [77, 78], Roller et al. [84] all used the earliest

Tweet in their sample for each user to label their home location and made little

effort to validate these labels. Alex et al. [91], Rout et al. [64] used the profile’s

location field to assign gold-standard home location at the city level, which is

unsuitable for assessing hyperlocal methods. Han et al. [94] assigned user’s home

location taking all of a user’s geo-located Tweets into account, but uses very coarse

labels, not comparable to hyperlocal methods. As a result, we constructed our

own gold-standard dataset of profiles labelled with home location.
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The Twitter public streaming API1 was used to identify geo-located Tweets within

the UK, from November 2014 to July 2015. Both the Tweets and the users that

created them were recorded. The Twitter REST API was then used to collect

retrospectively a sample of 135,000 user’s Tweets (up to 3,200 per user) and any

public information available on their profile. A ‘gold-standard’ set of profiles was

created from this information by assigning ‘true home location’ based on implicit

mentions of ‘home’ in geo-located Tweets (discussed in Section 5.2.1).

UK users were chosen because the population- and city-density is much higher

than in the USA, which makes the geo-location task much more challenging. Two

major and distinct cities, Liverpool and Manchester, are close enough together

that they would be considered one place in the scheme proposed in Han et al.

[92, 94], for example. The UK features distinct dialects and customs between it’s

constituent countries, regions, and cities (and indeed towns and villages) [154], so

from the context of our method for assigning local demographics to users based

on user location for user profiling, the ability to accurately distinguish locations

in the UK (and similar contexts worldwide) is essential.

5.2.1 Gold-standard home location dataset

To build the gold-standard dataset, we proposed that if a user emits a phrase

referring to being ‘at home’ from the same location multiple times, it is their

home location. A small number of phrases were collated by performing an analysis

of Tweets containing the word ‘home’. For each Tweet 3, 4 and 5-grams were

calculated, and those not containing the word ‘home’ were discarded. The most

frequent n-grams were manually inspected, and ones that seemed indicative of

being ‘at home’ chosen. Four phrases were selected: “just got home”, “glad to be

home”, “finally home after” and “home after a long”.

On manual inspection it was noted that some indicative Tweets did not use ‘home’

to refer to the users’ primary residence. Examples include; university students

using ‘home’ to refer to their family home, and holiday-makers calling their hotel

room ‘home’. As such, the Tweets were manually checked to ensure that the text

referenced residential home.

Profiles containing geo-located Tweets with one or more indicative phrase were

1https://dev.twitter.com/streaming/overview

86

https://dev.twitter.com/streaming/overview


selected from the whole collection of around 135,000 profiles, leaving 7,348 (5.44%)

with at least one example and 1,498 (1.12%) with two or more. To improve

certainty only those profiles with two or more ‘at home’ Tweets were considered.

If the coordinates of their ‘at home’ Tweets were within a short distance of each

other (taken to be 0.5 miles) we took the spatial mean of these as the ‘true home

location’, resulting in 1,048 users. After selection each profile was represented as

an anonymous table row with three fields: gold standard home location, geo-coded

location field text (see Section 5.3.1), and geo-located Tweet coordinates.

It is worth noting that this approach in itself could be seen as a distinct method

for assigning home location to social media users, but due to the small number of

Tweets which contain phrases of this nature, would be infeasible for any large-scale

application, such as our method for generating user profiling datasets by linking

users to their local demographics.

Addition of boundary data

Government bodies maintain a number of geographic datasets that split countries,

or even groups of countries, into subdivisions for statistical or administrative pur-

poses. These boundaries are used in addition to, or in conjunction with, more tra-

ditional boundaries such as states, cities, electoral regions or postal codes. Many

examples exist such as the European Union’s ‘Nomenclature of Territorial Units

for Statistics’ (NUTS) 2. This is a three layer hierarchy of subdivisions that covers

all European member states, which is used to tabulate EU population statistics

and inform decisions on the distribution of EU funds to avoid regional disparities

in wealth, income and opportunities. The US Census Bureau 3 maintains stan-

dard geographic boundaries for the entire US such as states and counties, as well

as various statistical groupings/subdivisions such as ‘metropolitan/micropolitan

statistical areas’ and ‘combined statistical areas’.

Geographic data in the UK is maintained by the Office for National Statistics

(ONS) 4, who provide boundary data for a wide range of geographic areas such as

counties, electoral wards and civil parishes. They also provide purely statistical

subdivisions, derived from distributions of population in the latest census, called

2NUTS: http://ec.europa.eu/eurostat/web/nuts/overview/
3US Census Bureau: http://www.census.gov/
4ONS: http://www.ons.gov.uk/
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Geography Total number Min pop. Max pop. Average pop.

OA 181408 100 625 309

LSOA 34753 1000 3000 1500

MSOA 7201 5000 15000 7200

Table 5.1: Characteristics of the NSG shown in terms of maximum, minimum
and average population.

Output Areas (OAs). OAs form the smallest building block in a hierarchy of

subdivisions known as the Neighbourhood Statistics Geography (NSG), which

consists of OAs, Lower Layer Super Output Areas (LSOAs), and Middle Layer

Super Output Areas (MSOAs). These units are used to present census data in a

consistent fashion, as well as other statistics such as the ‘Indices of Deprivation’,

a measure of poverty in small areas across the UK.

As described earlier in this section, we have compiled a gold-standard collection

of UK Twitter profiles labelled with home location in the coordinate form. Many

analyses, however, do not deal with home location in the coordinate form directly,

instead converting it to some region of lower granularity such as state, postal code

or city. As such we additionally label our gold-standard with ‘true home boundary’

data, in particular we label each profile covered by the NSG at the OA, LSOA

and MSOA level as well labelling each profile with their Local Authority District

(LAD), a larger region type governed by a council.

In Table 5.1 we present the characteristics of the NSG which consists the OA,

LSOA and MSOA region types and covers England and Wales. LSOAs and MSOAs

are constructed from groupings of the previous level and both are always larger

than the maximum size of the previous level; to illustrate this, Figure 5.4 shows

a 0.55 square mile MSOA, one if its component LSOAs (0.13 square miles) and

an OA (0.04 square miles). The groupings are consistent in terms of population

but do vary in geographic size, meaning there are more divisions in areas of high

population density such as cities. LADs are excluded from the table as they are

not consistent in population or geographic size. 415 LADs were used to label the

gold-standard, covering all of the UK, including Northern Ireland and Scotland.
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Figure 5.4: Example MSOA (whole shape) with nested LSOA (shaded with
horizontal line) and OA (shaded with vertical line).

5.3 Experiments

The three state-of-the-art methods for determining a user’s home location: first

Tweet, location field, and geometric median (described in Section 2.4), and the

two new methods proposed here: majority vote and clustering (described in Sec-

tion 5.1), were implemented and applied to the gold-standard dataset (Section 5.2).

5.3.1 Implementation

In order to apply the first Tweet method, the first recorded geo-located Tweet

in our sample for each user is used as the home location coordinate, as with

[77, 78, 82, 84].

The location field method was implemented using a gazetteer of unique place

names extracted from OpenStreetMap5 to identify profiles with a single reference

to a city or town within the UK in their location field. Employing a gazetteer

for this task aided in discarding those profiles whose location field were either

5OpenStreetMap: https://www.openstreetmap.org/
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clearly fictitious (e.g. ‘221B Baker Street’, ‘90210’ and ‘42 Wallaby Way, Sydney’),

biographical information that did not actually reference locations (e.g. ‘she/they’,

strings of emoji), or were unclear (e.g. ‘notts ladd’). Varying levels of granularity

were present in the declared location fields; ranging from street level to country.

A small number of actual coordinates were also included in addition to the named

location profiles. As with Hecht et al. [88], city level profiles were most prevalent

followed closely by town, and as such we chose to restrict our analysis to profiles

who declared a location only at these two levels, similar to Rout et al. [64], rather

than higher and lower granularities. A limited number (∼30%) of profiles in the

gold-standard had a location field resolvable to a uniquely named town or city.

The geometric median method of Jurgens [85], Compton et al. [86], Jurgens et al.

[87] was applied, although the simpler Haversine distance was used instead of the

more computationally intensive Vincenty for computational efficiency and consis-

tency across approaches (although we believe this will cause no discernible change

in computed distance). Median absolute deviation of the posts was not limited in

order to assess this method’s performance on all users; in addition we aim to limit

or remove the necessity of this step entirely with our novel methods that take into

account multiple locations of activity.

Majority voting was applied at the four levels of granularity introduced in Sec-

tion 5.2.1. Three different clustering algorithms (K-means, DBSCAN and GMM)

were experimented with, using the implementations available in scikit learn [119],

using default parameters, which were found to produce sensible outputs through

ad hoc experimentation. For K-means and GMM a k and n components of 10

were used respectively.

5.3.2 Evaluation metrics

We employ two metrics that have previously been used in the user geo-location

literature to evaluate the approaches.

Error distance is applied when continuous (coordinate level) predictions are made,

and is the distance between the ‘true home location’ and the estimated home

location. The mean error distance (i.e. the sum of the error distance for each

profile divided by the number of profiles) is computed for each approach, and

reported alongside the quantiles of the full set of error distances.
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Exact match accuracy refers to the proportion of examples that are correctly geo-

located within the correct region (e.g. the correct city, state or ZIP code), referred

to in Section 5.2.1 as the ‘true home boundary’.

5.4 Results

The results of two experiments on the state-of-the-art and novel methods are

presented in the following. The first experiment was carried out in continuous-

space, aiming to assign each user a coordinate home location, and compare this

to the true home coordinate given by the gold-standard dataset. The ability

of each method to estimate this location was evaluated via the error distance

(defined in Section 5.3.2), and is presented in Section 5.4.1. The second experiment

was carried out in discrete-space, aiming to assign each user a home boundary

(for four boundary datasets), making a comparison with the true home boundary

defined within the gold-standard. Accuracy of each method’s evaluation of this was

evaluated using exact match accuracy (defined in Section 5.3.2), and is presented

in Section 5.4.2.

5.4.1 Error distance

The distance in miles between the ‘true home location’ and the estimated home

location for each user was calculated (referred to in the following as the ‘error dis-

tance’). The set of error distances for the whole gold-standard dataset (and around

30% in the location field case) were used to quantify each method’s accuracy, with

summary statistics listed in Table 5.2, and shown graphically in Figure 5.5. Note

that the majority vote method is not included here because it does not involve

estimating a home coordinate.

First Tweet produces an estimated home location to within 0.1849 miles of the

‘true’ home location in over half the users in our dataset (i.e. the 50th percentile

(median) is 0.1849); this is in line with our hypothesis that Tweets have a high

probability of being produced at a user’s home. However, a quarter of the cases

in our dataset had home location errors of over 9.8909 miles, which is high in

comparison to other approaches. Figure 5.5 illustrates that up to the 25th per-

centile of errors, the method is almost as accurate as the more advanced methods
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assessed, highlighting the nature of the errors made by the first Tweet method: it

is able to make accurate predictions when the user’s first Tweet happens to be at

their home, but this is not the case for a significant proportion of the users in our

dataset and leads to an estimate that is essentially noise (hence the large error at

the 75th and 95th percentiles).

As location field is applied at the city/town level, error distances up to∼5 miles are

to be expected, however, a quarter of the errors calculated exceed this. On manual

inspection of the profiles, it became apparent that many were poorly labelled due

to unreliable information; many seemed to be residents of satellite towns or villages

and declared their location as the larger nearby town or city. Examples of this

include: Mansfield to Nottingham (15 miles), Cheadle to Manchester (7 miles) and

many London commuter towns. The accuracy of location field based geo-location

is therefore dependent on the proximity of the user to the centre of a town/city,

which makes such methods ill-suited to hyperlocal geo-location. Figure 5.5 clearly

shows the unsuitability of location field in comparison the other methods, as only

the 5th percentile of errors could be comfortably shown on the same graph, and

this value is itself higher than the 95% error percentile of K-means.

As expected, the geometric median approach of Jurgens [85], Compton et al.

[86], Jurgens et al. [87] produced the best results of all state-of-the-art methods,

due to the method’s outlier resistant nature and usage of all geo-located Tweets.

Observing Figure 5.5, we can see similar performance between the geometric me-

dian approach and our clustering approaches up to the 50th percentile, but with

greater errors at the tails (the 75th and 95th percentiles). This is to be expected,

because we are calculating a geometric median in our clustering approaches, but

to the home cluster only. Therefore, when a user either Tweets from mainly one

location, or symmetrically around it, the geometric median is essentially equiva-

lent to our clustering approaches. The gain here is therefore in reduction of the

error tail, which is due to the geometric median’s inability to handle scenarios

where a user’s Tweets are spread across multiple locations.

Our three novel clustering methods achieved similar results to each other, being

almost indistinguishable up to the 75th percentile of errors (visible in Figure 5.5).

K-means has the largest mean error (Table 5.2)) of these clustering methods when

applied to the full gold-standard, but is otherwise the best performing up to the

95th percentile of errors. The difference in mean and 95th percentile errors between

the three algorithms is due to each approach making a small number of incorrect
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Method
Percentile of the error distance

Mean
5 25 50 75 95

First Tweet 0.0024 0.0079 0.1849 9.8909 568.8185 165.3717

Location field 0.3871 1.0463 2.5591 5.7749 30.2101 8.7826

Geometric median 0.0025 0.0057 0.009 0.0252 1.7246 1.2769

Clustering: K-means 0.0027 0.0051 0.0081 0.0158 0.3079 10.8883

Clustering: DBSCAN 0.0025 0.0054 0.0082 0.0166 0.5211 1.4055

Clustering: GMM 0.0024 0.0052 0.0083 0.0176 0.6168 0.963

Table 5.2: Quantiles of the set of error distances (in miles) for the ‘gold-standard’
dataset, calculated using home locations estimated via a number of methods (best
results in bold). For example under the first Tweet method, 5% of the profiles
analyzed had estimated home locations to within 0.0024 miles of the true location.
Half of the profiles analyzed were correctly estimated to within 0.18 miles. Finally,
5% of the profiles analyzed had estimated home locations that were incorrect by
over 568 miles.

predictions each, with especially large errors for these outlier users in the case of

K-means. Each of the clustering algorithms presented have tuning parameters

that we did not attempt to optimise here, therefore we can not reasonably say

that any one is ‘best’ given the small discrepancies between their results.

Due to the limited number of profiles with location field, we also include results

for only those profiles with a valid location field so as to not penalise the method

unfairly (presented in Table 5.3). Results presented in the two tables are very

similar across the board, and any differences are likely attributable to the smaller

number of profiles with location field information. Our clustering approaches are

again shown to perform best again on this limited subset, with K-means again

performing best of the three algorithms. Both location field and first Tweet exhibit

the same large errors noted earlier. The lack of consistently available location field

information is another reason for its unsuitability for hyperlocal geo-location.

Sources of error

Each of the clustering methods presented performed well, however a small number

of the error distances were above one mile; we deem an error distance of one mile

as ‘high’ in the context of hyperlocal home location identification. In Section 5.1.2

we highlighted that a large ‘home cluster size’, calculated as the mean Haversine
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Figure 5.5: Quantiles of the error distances (in miles) for the ‘gold-standard’
dataset, calculated using home locations estimated via a number of methods.
Lines show the central 90% range of errors, bars show the central 50% range and
the vertical line shows the median (50% quantile). Note that this figure has been
truncated at an error of 0.4 miles.

Method
Percentile of the error distance

Mean
5 25 50 75 95

First Tweet 0.0023 0.0071 0.1179 7.8129 167.2743 100.780

Location field 0.3871 1.0463 2.5591 5.7749 30.2101 8.7826

Geometric median 0.0025 0.0055 0.0089 0.0224 1.0111 1.4401

Clustering: K-means 0.0029 0.0047 0.0076 0.0139 0.1585 0.4851

Clustering: DBSCAN 0.0027 0.0055 0.0078 0.0149 0.2438 1.4873

Clustering: GMM 0.0025 0.0050 0.0080 0.0142 0.2894 1.2708

Table 5.3: Quantiles of the set of error distances (in miles) for the profiles
with a valid location field from the ‘gold-standard’ dataset, calculated using home
locations estimated via a number of methods (best results in bold).
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distance to the home coordinate from each point in the home cluster, is a potential

indicator of poor home location estimates.

We investigated the effect of limiting cluster size by discarding those users where

their ‘home cluster size’ was above one mile. As noted earlier, all clustering algo-

rithms performed similarly, to investigate limiting home cluster size we arbitrarily

chose the GMM implementation. Of all (1048) error distances for GMMs, 46

(4.38%) were above 1 mile and 13 (1.24%) were above 10 miles. Upon discarding

profiles with home cluster size above 1 mile, 913 error distances remained, of these

16 (1.71%) had error distances above 1 mile, and 8 (0.876%) above 10 miles. Ap-

plying this limit improved the performance of the method, thus we can conclude

that cluster size is a useful indicator of the quality of home location estimates.

Limiting cluster size did not reduce all errors to zero, and therefore additional

sources of error are present in the method. This is likely due to the somewhat

naive assumption that the area a user posts most commonly from is their home

in all cases. It is likely that some users are more active at a place other than their

home, such as those who use Twitter for professional purposes or are also active

while at a place of leisure or study. In future work this weakness could potentially

be overcome by adding a labelling step for the identified location clusters, which

would distinguish those users who post most frequently from places other than

home.

5.4.2 Exact match accuracy

As stated in Section 5.2.1, the ‘true’ home location was used to determine four

granularities (OA, LSOA, MSOA, and LAD) of ‘true’ home boundary, for each

user in the gold-standard. The home location estimated by each of the coordinate

methods is similarly converted to a boundary (the majority vote method already

outputs boundaries), and the proportion of users from the dataset whose estimated

home boundary was the same as the ‘true’ boundary was calculated. Note that the

number of user profiles that could be included here is lower than the total number

of users in the dataset because the boundary data does not cover the whole of

the UK (1012 for LAD and 953 for the other granularities). These proportions of

correct boundary classification are listed in Table 5.4, and presented graphically

in Figure 5.6.
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Method
Proportion correct by boundary type

OA LSOA MSOA LAD

First Tweet 0.4260 0.4732 0.5273 0.6749

Location field 0.0094 0.0219 0.1003 0.6742

Geometric median 0.7534 0.8311 0.8939 0.9625

Clustering: K-means 0.7985 0.8783 0.9328 0.9783

Clustering: DBSCAN 0.7912 0.8688 0.9296 0.9733

Clustering: GMM 0.7954 0.8741 0.9275 0.9733

Majority vote 0.8279 0.8919 0.9443 0.9763

Table 5.4: Proportion of users whose estimated home boundary was equal to
the true home boundary, displayed by method and boundary granularity (most
accurate results in bold).

It again becomes clear that the first Tweet and location field methods are partic-

ularly inaccurate; first Tweet is only able to correctly classify a little over half the

profiles at the lower two granularities (MSOA and LAD) and location field only at

the lowest (LAD). The geometric median [85, 87], majority voting and clustering

methods all perform well, classifying over three quarters of the profiles correctly

at the highest granularity, and over 95% at the lowest granularity. As with error

distance, geometric median is outperformed by clustering methods at region dis-

crimination. Take GMM as an example, it correctly classifies an additional 4.2%

of profiles at the highest granularity and 1.2% at the lowest.

Majority voting beats the clustering methods at the OA, LSOA and MSOA gran-

ularities by a small margin (< 3% at the highest granularity), but is narrowly

beaten by K-means at the lowest granularity (LAD).

5.5 Discussion

The aim of this chapter was to explore and evaluate potential methods for assigning

‘home location’ to social media profiles, for future use in our user profiling dataset

generation approach (described in Section 1.3). An ideal solution would be able

to make coordinate level (hyperlocal) or small-region predictions, and allow for

some method of quantifying ‘uncertainty’.
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Figure 5.6: Proportion of users whose estimated home boundary was equal to
the true home boundary, displayed method and boundary granularity.

Amongst the state-of-the-art methods evaluated on the new UK dataset, we found

that the first Tweet method is the most prone to large errors, even though around

75% of user profiles were still correctly located to within 10 miles.

Similar to previous findings [88], we demonstrated that the textual location field

is unreliable for hyperlocal user geo-location, since many users tend to specify the

nearest larger city as their location, instead of the more accurate smaller village or

commuter town. Consequently, user geo-location based on the location field text

is ill suited to hyperlocal or fine-grain region prediction, but performed well in

67% of cases on the larger LAD regions—the largest boundaries we experimented

with here.

The geometric median performed the best of all state-of-the-art methods, pre-

dicting accurately at both hyperlocal and regional level at different granularity.

Nevertheless, it suffers from the limitation that it does not take into account cases

where users post often from multiple, distinct locations.

Our newly proposed clustering methods outperformed all state-of-the-art meth-

ods, with a particularly strong lead over the first Tweet and location field-based
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approaches. Amongst the three clustering algorithms evaluated, all achieved the

comparable results at both hyperlocal and region based user geo-location, although

K-means narrowly beat the other two at both. Majority voting marginally out-

performs the clustering approaches at region prediction, but suffers from the draw-

back that it must be used in conjunction with boundary data. While such data is

readily available in the UK, this may not always be the case for other countries.

Our novel approaches rely on geo-located Tweets (similar to the first Tweet and

the geometric median methods), which make up only 1.24% of all Tweets [23].

This limits their applicability to only a small fraction of all Twitter users, but

nevertheless, our methods are useful for unsupervised generation of high accuracy

home location information, which can then be used as training data for user pro-

filing models. In addition, the geometric median approach discards profiles with

overly spread coordinates, which our method accounts for and handles, increasing

the amount of users that can be geo-located accurately.

We deem that both of our novel methods satisfy our requirement of a good method

for home location allocation method, as both were shown to be accurate in Sec-

tion 5.4. Both methods also allow for a measure of uncertainty, an additional

requirement, that allows less certain home location judgements to be excluded if

required. Despite both methods being a good fit, the clustering approach will be

applied over the significantly slower majority voting approach going forward; in

Chapters 6 and 7, we will apply the clustering approach to generate user profiling

datasets.

Alongside this chapter’s contribution to selecting the home location allocation

method for our user profiling dataset generation approach, several contributions

were relevant to the wider user location prediction field:

� A comparative evaluation of state-of-the-art user geo-location methods, with

respect to identifying the user’s home location at a hyperlocal (coordinate)

level, as well as at regional level (based on four UK regional classifications

at multiple granularities); and

� Two new methods for user geo-location, which were shown to outperform

the state-of-the-art methods;

� A new gold-standard dataset for evaluation of Twitter user geo-location at

hyperlocal granularity. UK users were chosen specifically since population-
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and city-density is much higher than in the USA (where geo-location studies

typically focus), which makes the geo-location task much more challenging.

For instance, Stockport is a large town in the UK, only 7 miles from Manch-

ester, which is less than the error distance of some of the methods reported

in Table 5.2.

Our current approaches for home location allocation rest on the assumption that a

user’s most posted-from location is their home, and while this assumption appears

to work for most users in practice, it is highly likely that some users post more

commonly from an alternate location such as their place of work, study or the

homes of friends/family (leading to incorrect location labels under the current

scheme). To help overcome this drawback, our method could be expanded in future

work to evaluate user’s active locations beyond ‘home’. Identification of additional

‘location types’ could be carried out by incorporating the textual cues and meta-

data in Tweets in addition to coordinate data. For the problem of differentiating

‘home’ and ‘work’ locations the proportion of Tweets at each location in and out

of canonical work hours could be investigated (building on the work in Cho et al.

[155]). Additionally the nature of the geography at the predicted locations could

be assessed, for example a prediction in a known residential area may more likely

be correct than a predominately industrial area.
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Chapter 6

Predicting user Local Authority

and Output Area classification

In this chapter, we combine all of the techniques surveyed and evaluated through-

out Chapters 2-5, to generate two novel user profiling systems that predict the

Output Area (OA) and Local Authority (LA) classification schemes, two demo-

graphic variables that have not previously been addressed in the user profiling

literature. We generate training datasets for these user profiling systems using our

novel method, which links social media users to their local demographics based on

a judgement of their ‘home location’ (first described in Section 1.3).

A set of geo-located Tweets from the United Kingdom is collected using the Twit-

ter Streaming API, which is filtered to select users who chose to enable coordinate

level geo-location of their Tweets. Historic Tweets were collected for each of these

users to create a dataset containing users represented by their Tweets, and any

additional associated profile information.

In Chapter 5 we proposed and evaluated several methods for assigning high quality

home location estimates to Twitter users, identifying our novel clustering method

as the best choice going forward. We implement and apply this clustering approach

to the collection of each user’s geo-located Tweets derive a ‘home location’ for each

user.

Having derived a home location for each user, we look up the OA and LA re-

gions the profiles lie within. These regions are then mapped onto associated UK

measures of socio-economic status: the Output Area Classification (OAC) and the

100



Local Authority Classification (LAC), to create a labelled dataset of Twitter users

(Section 6.2.2). Prior to this work, OAC and LAC were unexplored in the user

profiling literature.

We leverage the labelled OAC and LAC Twitter user datasets to create two user

profiling systems (Section 6.3). The developed user profiling systems incorporate

the strong baseline components which were evaluated in Chapters 3 and 4; specif-

ically, we derive a term frequency-inverse document frequency (TF-IDF) weighted

feature vector of n-grams from the Tweets of each user, and use this to train a

support vector machine (SVM) classifier. Both systems exceed a simple random

baseline approach, and the LAC system in particular achieves promising results;

detailed results and discussion are presented in Section 6.4.

This work was presented at NLP+CSS 2016 [156], and code/resources were made

available at https://github.com/adampoulston/geo-user-profiling.

6.1 Data

The work in this chapter makes use of data from two sources: census-derived

demographic data (the OAC and LAC), and public Twitter posts.

6.1.1 Demographic data

Demographic data provides information about characteristics (e.g. age, religion,

ethnicity) of a population within a specified area. The UK government provides

open datasets containing information about a range of demographic variables in-

cluding highest qualification, job category and unemployment rates.

This chapter makes use of geo-demographic segmentation datasets in which an

area’s demographics are generalised into a single socio-economic category. These

types of data sets are often used for marketing purposes [157]. The United King-

dom’s Office for National Statistics (ONS) 1 provides a range of data sets including

the OAC and LAC datasets. Unlike commercial datasets, such as MOSAIC2 and

1http://www.ons.gov.uk
2http://www.experian.co.uk/mosaic/
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Figure 6.1: Selection of Output Areas labelled with their OAC supergroups.

Acorn3, the methodology used to develop the OAC and LAC datasets is fully

documented.

The OAC data set is organised around OAs, regions of around 200 households

in England and Wales. The OAC dataset places residents of every OA into a

hierarchy of socio-economic groups based on responses to the 2011 UK Census.

The dataset consists of a hierarchical classification scheme with three layers: su-

pergroups (shown in Figure 6.2), groups and subgroups. For example, a densely

populated region in central Middlesbrough, North East England, is named as OA

E00060869 and is associated with the ‘7-constrained city dwellers’ supergroup ,

the ‘7b-constrained flat dwellers’ group, and the ‘7b2-deprived neighbourhoods’

subgroup. Figure 6.1 illustrates an example region in the north of England, and

shows each OA with its OAC supergroup; note the level of variation in OAC be-

tween OAs, and how single examples of an OAC supergroup are often within areas

that are otherwise an entirely different classification.

The LAC dataset is organised in a similar way to the OAC dataset, with eight

3http://acorn.caci.co.uk/
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supergroups (shown in Figure 6.3) followed by groups and subgroups. Unlike

the OAC, which contains classifications of specific small regions of around 200

households, the LAC is generalized to cover LAs, which describe areas governed by

a single council across the whole of the UK, and are significantly larger than OAs;

there are several hundred LAs in the UK, each of which contains hundreds of OAs.

Despite some similarities in supergroup names, such as OAC 6 - ‘suburbanites’ and

LAC 4 - ‘suburban traits’, the two datasets use different classification strategies

leading to categories not being directly comparable.

6.1.2 Geo-located social media posts

Geo-located social media posts from the United Kingdom were identified using

the Twitter public streaming API 4. The Twitter REST API was then used to

retrospectively collect each user’s Tweets (up to 3,200 per user) and any public

information on their profile. Users with fewer than 50 geo-located Tweets were

excluded to ensure that each user profile in the dataset has enough data to derive

a robust home location estimate. Excluding these users ensures that users in

our the datasets have sufficient ‘evidence’ behind their home location estimates

(and associated measures of uncertainty), and helps avoid propagating errors in

home location prediction into subsequent steps. We selected the threshold of

50 Tweets through ad-hoc experimentation, having observed better estimates of

home location for users with higher numbers of geo-located Tweets. Just over

135,000 profiles were initially collected, 86,262 exceeded the threshold of 50 geo-

located Tweets.

A small portion of profiles (3,743) not representative of the general population

(e.g. profiles of celebrities, shops, spammers) were present in the dataset. Profiles

of this nature are typically not managed by or representative of an individual, and

therefore are unsuitable for linking to a specific demographic. Non-representative

profiles were excluded using standard approaches [74, 75], leaving 82,519 profiles

used for experiments described later.

4https://dev.twitter.com/streaming/overview
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Supergroups:

1 Rural Residents
2 Cosmopolitans
3 Ethnicity Central
4 Multicultural Metropolitans
5 Urbanites
6 Suburbanites
7 Constrained City Dwellers
8 Hard-Pressed Living

Full hierarchy extract:

5 Urbanites

5a Urban Professionals and Families

5a1 White Professionals
5a2 Multi-Ethnic Professionals with Families
5a3 Families in Terraces and Flats

5b Ageing Urban Living

5b1 Delayed Retirement
5b2 Communal Retirement
5b3 Self-Sufficient Retirement

6 Suburbanites

6a Suburban Achievers

6a1 Indian Tech Achievers
6a2 Comfortable Suburbia
6a3 Detached Retirement Living
6a4 Ageing in Suburbia

6b Semi-Detached Suburbia

6b1 Multi-Ethnic Suburbia
6b2 White Suburban Communities
6b3 Semi-Detached Ageing
6b4 Older Workers and Retirement

Figure 6.2: OAC supergroups and an extract showing the supergroup-group-
subgroup hierarchy for two supergroups.
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Supergroups:

1 English and Welsh Countryside
2 Scottish and Northern Irish Countryside
3 London Cosmopolitan
4 Suburban Traits
5 Business and Education Centres
6 Coast and Heritage
7 Prosperous England
8 Mining Heritage and Manufacturing

Full hierarchy extract:

3 London Cosmopolitan

3a -London Cosmopolitan Suburbia

3a1 Cosmopolitan North London
3a2 Cosmopolitan South London

3b -London Cosmopolitan Central

3b1 Cosmopolitan Inner London
3b2 Cosmopolitan Heart of London

4 Suburban Traits

4a Growth Areas and Cities

4a1 City Periphery
4a2 Expanding Areas and Established Cities

4b Multicultural Suburbs

4b1 Multicultural Suburbs

Figure 6.3: LAC supergroups and an extract showing the supergroup-group-
subgroup hierarchy for two supergroups.
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6.2 Demographic dataset creation

In this section we describe the steps taken to implement and apply our novel

method for user profiling dataset generation, which we described in Section 1.3.

We recap our chosen clustering based method for home location allocation from

Chapter 5 in Section 6.2.1, alongside a short experiment validating the method

with regard to the Twitter dataset from Section 6.1.2. The end-to-end application

of our user profiling dataset generation method is described in Section 6.2.2, where

it is applied to derive two user profiling datasets covering the OAC and LAC

variables described in Section 6.2.2.

6.2.1 Home location allocation

Geo-demographic data provides information about individuals based on their res-

idential address, therefore it is imperative that a user is associated with that

location rather than where they happened to be when sending a particular Tweet.

Consequently all users in the dataset described in Section 6.1.2 were assigned a

‘home location’ in the form of a latitude-longitude coordinate.

We implemented the clustering approach described in Chapter 5 to assign ‘home

location’ to each profile. It is assumed that each user posts from a limited set of

locations, that the location posted from the most often is the user’s home location.

We do not account for the possibility that some users may Tweet more often from

another location (such as place of work). Other approaches for assigning home

location were considered, such as as those that consider textual [92] and social

network [87] cues, but these typically only produce accurate judgements at the

city level, whereas demographic datasets often operate at a finer scale. These

approaches were reviewed in Chapter 5, and shown to be unsuitable for the task

at hand. Specifically, the coordinates of each user’s geo-located posts are clustered

using k-means, with k set using the ‘jump’ method [158]. In Chapter 5, a range of

alternative clustering algorithms were also explored and all were found to perform

similarly. The most populous cluster was then identified and the point closest to

the cluster centroid taken as the ‘home location’. For full implementation details

and a demonstration of performance, see Chapter 5.

Cluster density was calculated; defined as the average Vincenty distance [93] (a
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measure of geographic distance) in miles between each data point and the cluster

centroid. This density can be seen as a measure of uncertainty around the home

location estimate, and provides the option to exclude users with an uncertain

home location (i.e low density home cluster). Formally, to calculate the density

of cluster i, let pi,j, for j = 1, . . . , Ni, be the collection of data points in cluster i,

consisting of Ni points. The cluster centroid (from k-means) is given by µi. The

density of cluster i is defined as

di =
1

Ni

Ni∑
j=1

|pi,j − µi|, (6.1)

where | · | is standard Vincenty distance [93].

Validation of assigned home locations

In addition to the experiments validating our clustering approach for home location

allocation in Chapter 5, we performed an additional experiment to verify the home

location predictions made here, and ensuring that the same conclusions carry over

to a new dataset.

Self-reported locations from the ‘location’ field were compared with those assigned

by clustering. Only 728 of the 82,519 profiles include a self-reported location. Of

these, 176 were discarded as being clearly fictitious; leaving 552 profiles for evalu-

ation. These were further cleaned by manually removing extraneous information

such as emoticons.

As with the evaluation in Chapter 5, varying levels of granularity were present in

the declared location fields, ranging from street level to country, with the majority

at town or city level, e.g. ‘Edinburgh’. A number of the location fields also included

a single coordinate location. The Nominatim geo-coding tool5 was used to convert

the self-reported locations to geographical coordinates. Vincenty distance[93],

expressed in miles, between these coordinates and the assigned home location was

calculated.

Figure 6.4 shows a histogram and kernel density estimate (KDE) (estimate of the

probability density function) [159, 160] for the distances. The majority of dis-

5http://openstreetmap.org/
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Figure 6.4: Histogram and kernel density estimate of distances. Note that this
figure has been truncated at the 90% quantile of distances due to a number or
large errors above the 90% quantile.

tances (69.7%) were accurate to within 10 miles, more than half (56.9%) accurate

to within 5 miles and 30.8% within 1 mile. The home location gained from the

location text field is only expected to be accurate to within 5 or 10 miles because

the majority of self-reported locations are towns or cities, and as discussed in

Chapter 5, the location field is itself unreliable, so we expect a number or errors

where the user has not accurately declared their location. These results suggest

that the clustering approach presented here is successfully identifying home loca-

tion in the same broad locality as declared in the users location fields most of the

time. Coupled with the more detailed evaluation in Chapter 5, we conclude that

the clustering method is performing with an acceptable level of accuracy.
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6.2.2 Demographic linking

In Section 1.3, we described our proposed method for generating social media user

profiling datasets, where users are assigned a ‘home location’ which is used to link

the user to their local demographics. In this section we describe the application

of this process to a set of Twitter users, utilising two demographic datasets, the

OAC and the LAC.

Using the ‘clustering’ home location method described in Section 6.2.1, we inferred

a coordinate ‘home location’ and ‘uncertainty’ value for each of the 82,519 profiles

identified of Section 6.1. Point-in-polygon tests were then used to link each user

with its containing OA and LA boundary. We did not utilise the variant combined

clustering/majority-vote approach proposed in Chapter 5 here, where the users

coordinates are clustered, and the OA/LA of each point in the user’s home cluster

is looked up. This expanded approach could potentially lead to more accurate

judgements of home location, and would be a good avenue to investigate in future

work.

Of the initial 82,519 profiles, 69,723 had a home location within the areas covered

by the OAC, and 74,749 had a home location within the areas covered by the LAC.

Each profile geo-located within an OA or LA, was then annotated by looking up

the associated OAC or LAC supergroup. We do not attempt to classify at the

group or subgroup level in this work, and as such did not annotate the profiles to

this level, although this would be trivial to implement in future work.

By way of an example, the process for an individual user might go:

1. Identify user’s home coordinate.

2. Home coordinate falls in OA E00171217 (OAC supergroup 2).

3. Label the user with OAC supergroup 2.

Two user profiling datasets were created by linking users with their local de-

mographics; users in England and Wales were labelled with one of eight OAC

supergroups associated with that user’s local OA, and users across the whole of

the UK were labelled with one of eight LAC supergroups associated with their LA.

These datasets are referred to as Output Area Classification profiles (OAC-P) and
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Dataset # Profiles
Proportion per Supergoup

1 2 3 4 5 6 7 8

OAC–P 69723 0.133 0.128 0.083 0.117 0.194 0.160 0.056 0.129

LAC–P 74749 0.160 0.059 0.108 0.116 0.191 0.058 0.127 0.181

Table 6.1: Dataset statistics for OAC–P and LAC–P.

Local Authority Classification profiles (LAC-P), respectively. Table 6.1 shows the

proportions of each label and the number of profiles per dataset.

6.3 User demographic prediction

In Section 6.2 we constructed a corpus of Twitter users whose home location is

known, and leveraged this to create two datasets of Twitter users whose OAC

(OAC-P) and LAC (LAC-P) supergroup is known. This method for generating

user profiling datasets is in and of itself a user profiling method, but is not suitable

for widespread application as most users do not create the volume of geo-located

posts required to accurately assign a home location estimate. Therefore, we wish

to use these datasets to create user profiling systems capable of predicting the

OAC and LAC for users whose home location is not known.

In this section, we combine the OAC-P and LAC-P datasets developed in Sec-

tion 6.2.2, with the strong baseline users profiling system components identified is

Chapters 3 and 4 to create two user profiling systems that predict OAC and LAC

respectively.

We approach both user profiling systems as multi-class classification problems,

and aim to use the content of a user’s Tweets to predict their OAC and LAC

supergroup from the eight possible classifications in each data set.

6.3.1 Classification approach

We developed a machine learning based user profiling classification approach that

incorporates the components we identified as well suited to user profiling systems

in Chapters 3 and 4. Specifically, a classification pipeline was created, that takes
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n-gram features extracted from each user’s corpus of Tweets as input to train an

SVM classifier. n-grams and SVMs were chosen as they were shown in our own

work in Chapters 3 and 4 to perform well on similar user profiling tasks, and have

also been shown to consistently perform well at other user profiling tasks, both

for social media [13, 58, 64] and other types of text [161, 162].

Prior to feature extraction, the text of each user’s Tweets was preprocessed in line

with our successful user profiling approaches in Chapters 3 and 4. Tokenisation

was performed using a Twitter-aware tokeniser [116]. Only English Tweets were

included (determined using the language property in the data returned from the

Twitter API), so no steps were taken to address the complexities of other lan-

guages. Emoji were not removed, and were treated as normal characters. Tokens

that appeared in more than 90% of users Tweets were removed, which results

in the removal of overly common terms and stop-words without the usage of a

specific dictionary, which often do not handle the non-standard nature of social

media text.

Word level unigrams (1-grams) and bigrams (2-grams) were extracted for each

Tweet, following the processes described in Section 3.2.2, and aggregated up to

the user level. We showed in Chapters 3 and 4 that unigrams and bigrams perform

well in user profiling systems, and found that inclusion higher order n-grams do not

yield a significant performance increase. TF-IDF weighting was applied to down-

weight n-grams found to be common across all users and assign higher weights to

n-grams which are less common, and therefore more likely to be useful.

The extracted n-grams were used to SVMs with linear kernels using the imple-

mentation available in scikit-learn [119]. To handle the multi-class nature of the

dataset addressed here, a one-vs-the-rest approach was utilised. Specifically, a

classifier was trained for each label to discriminate between that label and all

other labels. At inference time, a label is selected based on the classifier which

positively predicts a label with the highest “certainty”. The established utility

of such an approach makes it a useful tool to establish baseline performance of

models on novel datasets generated through our methods. We do not consider

any models here that might achieve higher performance metrics such as neural

networks, as we are more interested in establishing that the datasets can be used

to train a model rather then eking out extra accuracy points.
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Approach OAC–P LAC–P

Random Baseline 0.1259 0.1259

SVM classifier 0.2757 0.5047

Table 6.2: Average accuracy for OAC–P and LAC–P prediction across all folds.

6.4 Results and discussion

The accuracy of our n-gram and SVM based user profiling pipeline (described

in Section 6.3.1) applied to the OAC-P and LAC-P datasets are presented in

Table 6.2, alongside a random baseline approach. Due to constraints on compu-

tational resource, we were unable to train our user profiling systems on the whole

of OAC-P and LAC-P. Subsets stratified by supergroup were extracted from the

OAC-P and LAC-P datasets with 2,000 members per supergroup label, and used

to train the models in both cases. Separate subsets were selected at random from

both OAC-P and LAC-P. No effort was made to further stratify based on the

underlying home location data used to perform the initial labelling, or to stratify

based on groups and subgroups, or to limit our subsets to include profiles with

lower (higher certainty) home cluster densities. Despite the underlying datasets

being imbalanced, we chose to down-sample to balanced subsets as machine learn-

ing algorithms such as SVM are prone to over-fitting towards more common labels

in datasets with imbalanced label distributions [163]. Cross-validation (4-fold) was

used to compute average performance metrics.

The user profiling system for both OAC and LAC are able to predict one of the

eight demographic variables with better than random performance. An average

accuracy score across folds of 0.2757 was achieved for the OAC, which comfort-

ably exceeds the random baseline, but is still low enough to indicate that some

element of the process was not especially successful. Candidate explanations for

this disappointing performance include: the automatically labelled training data

contains many incorrectly labelled users; the variables being predicted do not con-

tain especially obvious variations in language; and, our proposed pipeline is less

suitable than we thought.

Results for LAC are more encouraging, achieving an average accuracy across folds

of 0.5047. This indicates that it is possible to achieve promising results using

our ‘tried-and-tested’ classification approach in conjunction with our novel data
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generation approach. We can conclude therefore, that the noticeably lower per-

formance on the OAC is likely down to some property in the underlying dataset

derived through our user profiling dataset generation method.

6.4.1 Geographic properties

The large difference in performance obtained by the models trained on OAC-P

and LAC-P is likely down to the geographic nature of the underlying regions

used to geo-locate the users (OAs and LAs). Table 6.3 shows an analysis of the

average ‘size’ of the two region types; size for a given OA or LA was measured as

the average length of the diagonal of the minimum bounding rectangle for each

region. Also shown is the proportion of users in each dataset whose ‘home cluster’

density (our measure for home location judgement ‘certainty‘) was less than the

average length of the region type.

Regions defined in the OAC-P dataset are much more granular than those in

the LAC-P dataset; the average length region is 0.93 miles for OAs, whereas it

is 34.5 miles for LAs. Only 35.2204% of the home cluster densities in OAC-P

were less than 0.93 miles, in contrast to the LAC-P, where 83.5010% were within

34.5 miles.

The density of a home location cluster can be seen a proxy for how ‘certain’ the

judgement is; a higher value indicates underlying points with a wider geographic

spread, meaning the single predicted point is less likely to be correct. Given that

nearly 65% of profiles in the OAC-P dataset have a certainty that overlaps the

average region length, and therefore may lie in an adjoining OA, it is more likely

for profiles to be mis-classified when assigned to the more fine-grained regions

in the OAC-P data set, resulting in a noisier data set, and poorer predictive

performance in downstream models. This is less of an issue with the LAC-P

dataset since accuracy of geo-location for the majority of profiles was within the

average LA region length; nevertheless almost 17% of the profiles still have a fair

chance of mis-classification.

In this experiment we did not take cluster density into account in the dataset

generation step and naively accepted profiles with a home–cluster of any density,

it is highly likely that conditioning our novel data generation approach to include

only those profiles with a good ‘certainty’ value would improve the performance
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Region type Average length Proportion of profiles

OA 0.9308 35.22%

LA 34.5252 83.50%

Table 6.3: Average geographic unit length in miles for Output Areas and Local
Authorities with proportion of Twitter profiles in OAC-P and LAC-P whose home
cluster density is less than the average OA and LA unit length.

of resulting models.

6.4.2 Dataset characteristics

There is a difference in the core aims behind the demographic datasets that un-

derpin the OAC-P and LAC-P user profiling datasets. The OAC scheme aims to

model ‘geographically independent socio-economic status’ in contrast to the LAC

categories which are more region dependent, including categories such as ‘London

Cosmopolitan’. This difference in ideology is also likely to change the character-

istics of the generated user profiling datasets, which will be represented in the

sorts of features deemed ‘important’ in derived models, and the mis-classifications

a model makes.

Confusion matrices

To investigate the ways in which the models for OAC and LAC were making

incorrect classifications we computed confusion matrices for a representative run

of both models.

Figure 6.5 shows the normalised confusion matrix for the OAC model. The model

appears to lean towards predicting supergroups 1 (Rural Residents), 3 (Ethnicity

Central), 8 (Hard-Pressed Living), with 611, 803 and 672 total predictions, re-

spectively, when only 500 of each label are present. We note that supergroups 2

(Cosmopolitans) and 4 (Multicultural Metropolitans) are frequently misclassified

as 3. 2 is classified as 3 182 times, and only correctly classified as 2 133 times.

Similarly for 4 it is classified as 3 129 times and only correct 105 times. These

three groups all represent groups of people active in people active in large cities

where more mixing of demographics happens, possibly leading to three groups
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Figure 6.5: Heatmap showing the frequency at which each OAC Supergroup
was classified as every other supergroup by our user profiling pipeline. Taken at
random from a representative run.

with broadly similar individuals, resulting in the poor predictive performance of

the OAC model. A similar pattern can be seen between supergroups 7 (Con-

strained City Dwellers) and 8 (Hard-Pressed Living), which both represent more

deprived people living in smaller cities. Group 6 (Suburbanites) is often predicted

as group 1, but not vice versa; suburban areas typically exist between urban and

rural communities, which may explain this pattern.

Figure 6.6 shows the normalised confusion matrix for the LAC model. The model

performs best for users in supergroups 2 (Scottish and Northern Irish Country-

side), 3 (London Cosmopolitan) 6 (Coast and Heritage), and 8 (Mining Heritage

and Manufacturing), and reasonably well on the other supergroups. The user pro-

filing system got 494/500 correct for supergroup 2, and 412/500 for supergroup

3, which is likely due to strong dialect/regional features associated with Scot-

land and London. While less pronounced, a similar pattern of misclassification of

similar groups can be seen here as well between classes 3, 4 (Suburban Traits),

and 7 (Prosperous England). While the separation between these supergroups is

much more pronounced than those in the OAC, all three cover a demographic that
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Figure 6.6: Heatmap showing the frequency at which each LAC Supergroup
was classified as every other supergroup by our user profiling pipeline. Taken at
random from a representative run.

could broadly be referred to as the ‘middle class’. The same phenomenon can also

be seen between supergroup 1 (English and Welsh Countryside) and 8, which is

intuitive, as many former mining communities are in relatively rural areas.

Important features

To examine the features deemed as important by the SVM models for each OAC

and LAC supergroup, the model trained for a fold was selected at random and the

feature coefficients were inspected. The top 30 important features are presented

in Table 6.4 for the OAC and Table 6.5 for the LAC.

Examination of the highest ranked features by SVM coefficient for each LAC

supergroup revealed a connection between groups and geography. The most im-

portant features for many classes are words or phrases referencing specific areas in

the UK as well as several stereotypical dialect features. The links to geography are

most pronounced in the two best performing supergroups, 2 and 3. Supergroup
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2’s (Scottish and Northern Irish Countryside) highest ranked features cover both

geographic locations, such as ‘clyde’, ‘dunfermline’ and ‘glasgow’, dialect features

such as ‘wee’, ‘whit’, and ‘tae‘, as well as cultural references such as ‘irn bru’, and

‘rangers’. Supergroup 3’s (London Cosmopolitan) highest ranked features relate

exclusively to London, its surrounding boroughs and public transport system.

In contrast, the feature coefficients for the OAC model are not as location depen-

dent; for example, ‘1-Rural Residents’ contains features such as ‘Severn’ (a river),

‘stables’, ‘mountain bike’ and ‘emmerdale’ (a UK soap opera set in the country-

side). Similarly, ‘4-Multicultural Metropolitans’ is the only group identified that

has non-English phrases and the Islamic holidays Eid and Ramadan as important

features. Only ‘3-Ethnicity Central‘ is dominated by features specific to a partic-

ular locale, London, despite being present in cities across the UK; this behaviour

is indicative that in future work, additional effort should be made to ensure even

representation across the top level administrative region (UK in this case) in user

profiling datasets derived through our approach.

We observe that the features deemed as important, in many cases, match nicely

with the motivations behind the underlying supergroups; while not perfect (likely

due to the issues with uncertain home location estimates discussed in Section 6.4.1),

this indicates that the resulting models are–at least to some extent–picking up the

same sorts of information modelled in the underlying demographic data, indicating

value in the datasets derived through our method.

Subclasses

As noted in Section 6.2.2, the analysis in this chapter is focussed on the prediction

of the top level supergroups in the OAC and LAC, and did not did not label

the users in OAC-P and LAC-P with the additional subclasses present in the

groups and subgroups of both hierarchies. As such we were unable to analyse

the distribution of these subclasses in the datasets used to train our user profiling

systems, or assess the affect the presence (or lack of) of particular subclasses might

have on predictive performance. For example, we noted earlier in this section that

OAC group 6 is often predicted as group 1, but not vice versa; it is possible

that this pattern emerges due to properties of the underlying classification, and

in fact a particular subclass of group 6 are indeed more similar to users in group

1. In future work, profiles could be labelled with these subclasses and further
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characterisation of these sorts of ‘errors’ could be performed.

6.5 Conclusion

This chapter explored the use of our method for combining population-level demo-

graphic information with geo-located social media profiles for user profiling. Our

novel approach to the generation of automatically labelled data by making use of

geo-located social media posts was implemented and applied to two demographic

variables previously unadressed in the literature.

The demographic datasets used to label Twitter users in this work have the advan-

tages that they are large-scale and collected using sound methodologies. However,

the information they contain is aggregated and is updated infrequently.

The ‘home location’ for a user is identified using clustering and then combined

with publicly available information from two previously unexplored demographic

datasets. A well established user profiling classification pipeline based solely on

Tweet content was able to predict socio-economic status with promising results

for one data set.

Analysis indicated that the properties of the demographic data are important

when considering which demographic datasets to utilise. Key factors include the

granularity of the associated boundary and degree to which the groupings are

based on socio-economic, rather than geographic, characteristics.

In the next chapter we will apply our method to a demographic variable and asso-

ciated user profiling dataset that has previously been addressed in the literature,

to further explore the extent to which some of these disadvantages can be over-

come, and better quantify how our approach compares to datasets derived through

other methods.
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1 in newquay, tomoz, porth, #education, to seeing, hollyoaks, . @, stables,
min/mile, . xx, severn, mountain bike, cambs, wish you, waste of, on sat, har-
bour, @mention listen, —, cambridge, mi and, morrisons, fab !, ya tweet end,
nest, emmerdale, visitors, board, it’s friday, tweet end everyone

2 linda, #ucl, terrace, #cocktails, EMOJI STRING, here to, notts, regram, @ the,
( via, just over, then off, oxford street, display, the lecture, EMOJI STRING,
quoted, #halloween, mayfair, la, @hyperlink #hiring, EMOJI STRING, the life,
housemates, opening :, central london, via, tweet end #brighton, tweet end .,
tennis

3 EMOJI STRING, yes yes, wharf, london and, woolwich, southbank, car-
riage, hammersmith, ——, cab, @mention check, finsbury park, old woman,
old street, catford, finsbury, battersea, central line, charing cross, uber,
#startup, highbury, . EMOJI STRING, vauxhall, london is, the thames,
bethnal, @mention feat, for coming, streatham

4 was really, to watford, EMOJI STRING, jimmy, EMOJI STRING, tweet end
them, #wba, lool ., tweet end pls, have me, . ok, dot, route to, one who, no more,
you absolute, alot of, worship, on united, that for, :(((, line tweet end, o2, i’m
listening, virgin, loool tweet end, the bees, ARABIC STRING, EMOJI STRING,
one can

5 start playing, business in, clothes, so just, worthing, blog post, #tunbridgewells,
costa, lakeside, the cinema, recruitment, bring on, awesome !!!, luke, !!!
EMOJI STRING, aboard, firing, thankyou, hypocrite, !! :d, photo :, sir tweet end,
EMOJI STRING tweet end, poults, EMOJI STRING tweet end, even just, only
two, ah tweet end, @mention reply, in trouble

6 tomorrow @mention, : love, dragging, year 8, 4 a, EMOJI STRING, now ?, jess,
my car, chap, do do, @mention obviously, @mention wake, go so, europa, amaze,
@mention EMOJI STRING, and half, only tuesday, asked if, coat, in biology, you
monday, banter tweet end, 10/10, town ., @mention omg, burton, aa, you ok

7 in tomorrow, your a, ;3, days off, tweet end feeling, the weather, scouse, tweet end
had, see someone, try again, ’ em, think its, tweet end trust, a burger, , we’ll,
carvery, the minute, to edinburgh, us and, newcastle, thru, exeter, archie,
EMOJI STRING tweet end, just wondering, ynwa, mersey, tweet end feels, en-
joying the

8 i seen, alive tweet end, tom, my head, rather be, ha xx, only now, try my, house-
work, bed time, hubby, nana, soz tweet end, creased at, up ya, my son, being
funny, they got, dick, :) x, for is, divvy, video @hyperlink, and better, @mention
bet, a twat, tweet end creased, please please, me it’s, mun tweet end

Table 6.4: Top 30 features for each OAC supergroup. Location linked features
are highlighted in bold. EMOJI STRING represents a specific sequence of one or
more emoji not separated by a space.
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1 hell of, the norwich, north wales, my ass, county, holt, in exeter, thankyou,
year 9, with mum, birmingham, cuz i, drayton, malvern, well that’s, ply-
mouth, dorset, selby, bewdley, in preston, wisbech, in chorley, quay, in
rhyl, beccles, in crewe, abit, anglia, gloucester, knutsford

2 clyde, tweet end sitting, nice wee, glasgow !, poor wee, sitting, wee day, hate
when, gran, couch, for scotland, glasgow tweet end, whit, this wee, dun-
fermline, wee man, good wee, aw, rangers, bru, cheeky wee, ma, c’mon, scot-
land’s, aff, tae, irn, to aberdeen, long lie, braw

3 in clapham, exhibition, to london, charing, bethnal, street, west london,
ealing, vauxhall, in islington, hampstead heath, kensington, east, canary,
peckham, southwark, walthamstow, #brixton, trafalgar, #london @,
barbican, in greenwich, in brixton, underground, waterloo, tube ., cab,
uber, london bridge, newington

4 fans, bexleyheath, just clocked, omg the, in barnet, coz, atleast, in mk, g x,
borough, chatham, : still, so pissed, towie, albans, a cab, geezer, in romford,
lakeside, @mention lol, eastenders, birthday my, o2, cafe, piff, peterborough,
looool tweet end, in uxbridge, north london, in ipswich

5 #wawaw tweet end, in salford, rd, cardiff bay, hallam, of cardiff, freshers,
derby, gatecrasher, leadmill, flatmate, gyle, casino, town with, virgin, a fuckin,
tweet end hull, flatmates, in cardiff, #wawaw, brum, dundee, some reyt, in
#brighton, fallowfield, #bristol, a bus, yeye, , manchester

6 isi, plymouth, bexhill, #colchester, in hastings, in cheltenham, , york,
plymouth ., somerset, #bath, of bath, haha tweet end, #swansea,
brighton, in worthing, #plymouth tweet end, broadstairs, bristol, down
here, at york, york ,, mush tweet end, the york, herne bay, in eastbourne,
morecambe, york !, the swans, york .

7 oxford ., hampshire ), m40, in solihull, leamington, thame, @mention
alright, oxford tweet end, saints, oxford ,, , berkshire, cba to, the m25,
blimey, camberley, #harrogate, ollie, warwick, reading, ergh, into london,
huntingdon, mk, #cambridge, harrogate, melksham, #essex, brentwood,
eastleigh, marlow, cambridgeshire

8 colne, aye, darlo, burnley, reyt, carnt, in warrington, a mint, brighouse,
stockton, #safc tweet end, cardiff, mint tweet end, orate, lmfao, your mam,
west yorkshire, boro, anorl, wey, oldham, toneet, tweet end sick, peng, the
minute, barnsley, manchester ., in newport, southport, in newcastle

Table 6.5: Top 30 features for each LAC supergroup. Location linked features
are highlighted in bold. EMOJI STRING represents a specific sequence of one or
more emoji not separated by a space.
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Chapter 7

Predicting user National

Statistics Socio-economic

Classification

The experiments with the Output Area Classification (OAC) and Local Authority

Classification (LAC) schemes in Chapter 6 implemented our method for assign-

ing demographic variables to social media profiles via geographic information, and

demonstrated that models with viable performance can indeed be implemented. It

is apparent, however, that the groups represented in the OAC, and especially the

LAC, captured more elements of geography than they did socio-economic indica-

tors, leading to doubt that the data/models were capturing individual differences

and were instead capturing geographic variation in language.

Our work on user profiling for the OAC and LAC was novel, but therefore not

directly comparable to existing work on predicting socio-economic status. As such

verification against datasets derived through traditional existing approaches is not

possible, which leaves our central research question of whether or not our approach

is a suitable alternative/complement to existing user profiling dataset generation

approaches somewhat under-explored.

In this chapter we expand on our promising results so far and attempt to form

a better impression of how datasets derived through our geo-located driven user

attribute labelling approach compare against others, by applying it to a different

measure of socio-economic status, the National Statistics Socio-economic Classi-
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fication (NS-SEC). This measure has already been investigated by Lampos et al.

[134] using a different user attribute labelling approach, and as such is good fit for

assessing our approach versus state-of-the-art. Lampos et al. [134] constructed a

user profiling dataset annotated with NS-SEC by selecting profiles based on the

presence of known job titles in their description field that have established map-

pings under the NS-SEC classification scheme. The materials and Twitter users

used to generate their dataset were acquired, and are used to replicate their user

attribute labelling approach and dataset as closely as possible, although direct

access to the exact same data was not possible due to Twitter API limitations;

full implementation details are provided in Section 7.2.1.

Alongside our reconstruction of the dataset from Lampos et al. [134], we con-

structed a dataset of Twitter users labelled with NS-SEC using our own geo-

location driven user attribute labelling approach. A collection of profiles located

in the UK was gathered using the Twitter API, and the clustering method cho-

sen in Chapter 5 was applied to attain an estimate of their local area, and in

turn identify the distribution of a measure socio-economic status (NS-SEC) for

the identified areas from census data. Users identified to be from an area with

a high proportion of a single NS-SEC category were labelled with that category,

other users were excluded from the analysis (further details in Section 7.2.2).

Both datasets were used to train predictive models and achieve similar perfor-

mance (Section 7.3) but both exhibit several shortfalls that limit compatibility.

To attempt to overcome the weaknesses unique to each dataset, an experiment

was performed to combine them (Section 7.4), which found that a linear ensem-

ble of classifiers trained separately on each dataset was able to outperform the

individual models.

In Section 7.5 and additional step is investigated to further improve reliability

of the geographically derived dataset. Home location ‘certainty’ is used to filter

down to profiles more likely to hold a correct label, and by adding this additional

constraint at dataset generation time accuracy of derived models improves.
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7.1 The National Statistics Socio-economic Clas-

sification

The work in this chapter makes use of similar sources to Chapter 6; we again

utilise census-derived demographic data (the NS-SEC) in conjunction with public

boundary data and Twitter posts, but also introduce an existing user profiling

dataset to use as a comparison against datasets derived through our own geo-

location driven user attribute labelling approach.

The NS-SEC is a measure of socio-economic status used in UK population statis-

tics. Under the NS-SEC individuals are allocated a socio-economic status based

on their occupation. Four groupings are available: 17 class (referred to as opera-

tional), 8 class, 5 class and 3 class, shown in Table 7.1. Only the 3 class version

represents a ‘hierarchy’ of social class. In the 3 and 5 class versions, it is left up

to the user to decide whether or not to include the long term unemployed as their

own class.

NS-SEC is a variable covered in the UK census, available at the Output Area

(OA) level, and is also linked to the Standard Occupational Classification (SOC)

[164, 165] a taxonomy of occupation titles associated with a variety of socio-

economic outcomes.

7.2 Twitter profile datasets

The Twitter public streaming API1 was used to collect a sample of Tweets, S from

the UK between October 6th and December 6th, 2016. Each unique user with a

single UK-geo-located Tweet in S was identified, and the Twitter REST API was

used to collect retrospectively their Tweets (up to 3200 per user) and any public

information on their profile, giving another dataset, UGEO.

Standard steps were taken to eliminate non-representative users such as brands,

celebrities or those profiles under automation (malicious or otherwise) from UGEO.

Overly prolific users, taken to be the 1% most active users, were excluded to

avoid imbalanced impact by individual users on resulting models. In practice this

1https://dev.twitter.com/streaming/overview
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NS-SEC categories

3 class 5 class 8 class Operational Description

1 1 1.1 L1 Employers in large organisa-
tions

L2 Higher managerial occupations

1.2 L3 Higher professional occupa-
tions

2 L4 Lower professional and higher
technical occupations

L5 Lower managerial occupations

L6 Higher supervisory occupations

2 2 3 L7 Intermediate occupations

3 4 L8 Employers in small organisa-
tions

L9 Own account workers

3 4 5 L10 Lower supervisory occupations

L11 Lower technical occupations

5 6 L12 Semi-routine occupations

7 L13 Routine occupations

* * 8 L14 Never worked and long-term
unemployed

N/C N/C N/C L15 Full-time students

L16 Occupation not stated or inad-
equately described

L17 Not classifiable for other rea-
sons

Table 7.1: Official groupings for the NS-SEC.
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excluded 7129 profiles across the two month period, leaving a total of 110,367

profiles.

7.2.1 Existing NS-SEC user profiling dataset

To investigate comparability with models trained on a dataset annotated with the

same labels but acquired through more ‘classic’ user attribute labelling approach

we additionally acquired the profiles and associated NS-SEC labels used in [134],

referred to from here-on as USOC . Several of the profiles in USOC were no longer

accessible and our snapshot of the existing profiles covers a differing time to those

used in [134], limiting exact comparison to reported results.

USOC was labelled based on the presence of job titles from the 2010 edition of

the SOC in description field of Twitter profiles, which were in turn mapped to

the NS-SEC. Each profile in the data-set had its job title (and by extension NS-

SEC label) verified by the authors, and by extension were implicitly filtered to be

profiles controlled by an individual. Despite the strengths and relative certainty

of the labelling scheme, several types of user are excluded implicitly; the reliance

on job titles immediately excludes users from groups with no defined occupation

such as students, non-working parents or the retired. Selecting profiles which only

reference a job title is also likely to introduce bias in the resulting dataset towards

users who engage with Twitter mainly for professional or networking purposes,

as is evident by the lower number of ‘low socio-economic status (SES)’ profiles in

[134].

7.2.2 Labelling profiles with NS-SEC through geography

To label the users in UGEO with NS-SEC, we followed our data generation estab-

lished in Section 1.3, and validated throughout Chapter 6. To summarise, we first

identify the so-called ‘home location’ of each user by applying K-means clustering

to the coordinates of their geo-located posts. In turn we identify which OA (sta-

tistical geographic region of roughly 100 households) each user’s home location is

likely to fall in and derive an associated (3 class) NS-SEC label from it.

Unlike in our experiments with the OAC and LAC in Chapter 6, NS-SEC is

not represented as a discrete variable in census data, instead an area has an
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OA

NS-SEC

High Middle Low Students

1 2 3 4 5 6 7 8 L15

E00039619 19.4 24.6 15.7 8.9 7.3 9.3 4.0 3.2 7.7

E00039654 9.2 26.1 14.7 10.6 5.0 16.5 8.7 3.7 5.5

E00039680 10.6 27.0 20.8 7.5 8.8 11.5 7.1 1.8 4.9

E00039761 1.8 19.6 17.3 4.8 10.1 19.0 18.5 2.4 6.5

E00040052 3.7 7.9 13.2 5.3 5.3 8.5 11.1 29.1 15.9

Table 7.2: Percentage of each NS-SEC class (8-class and full time students) for
five OAs.

associated distribution of the maximum NS-SEC class for each household in the

area (illustrated in Table 7.2). As such, an additional step was necessary to convert

this distribution into a discrete variable for classification.

We derived discrete NS-SEC labels for any given OA by taking its NS-SEC dis-

tribution from the UK 2011 census and binning it according the official 3 class

grouping shown in Tables 7.1 and 7.2, with the majority class taken to be the

OA’s label. Specifically we derive three classes: ‘high’, ‘middle’, and ‘low’. We

additionally record the value of the majority class (e.g. High - 78.2%), so that

users in areas that exhibit low levels of homophily (tendency to group with similar

people [166]) can be excluded when training predictive models. A limited number

of OAs hold NS-SEC category L17, full-time students, as their majority class and

as such we additionally record this label in UGEO.

Deriving NS-SEC labels from geography helps overcome several of the limitations

from Lampos et al. [134] by allowing SES labels to be estimated for users that

would otherwise remain unlabelled based on job title alone, which becomes evident

when comparing the distribution of labels between USOC and UGEO (Table 7.3).

In USOC there is a definite imbalance towards the ‘high’ class with roughly half

as many examples for the two ‘lower’ classes, implying that users with more ‘pro-

fessional’ jobs declare their specific job title more often. This imbalance is not

present in UGEO which contains closer proportions for each class and even a slight

imbalance towards the ‘middle’ class.

Despite the derived labels in UGEO covering more of the population than USOC ,

they aren’t necessarily as reliable as those in USOC for several reasons; the labels are
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Dataset High Middle Low

USOC 0.5438 0.2309 0.2253

UGEO 0.3427 0.3691 0.2882

Table 7.3: Proportions of each label in USOC and UGEO.

distantly supervised from areas that aren’t entirely one class, errors in deriving the

users ‘home’ propagate through to mislabeling, and the lack of human intervention

during the labelling process means profiles not representative of an individual are

likely to slip through. In Section 7.5 we attempt to address these issues and assess

their impact by applying additional filtering steps to the data generation approach.

7.3 Predictive modelling performance

As mentioned in earlier chapters, the methods for generating UGEO and USOC are

user profiling approaches in their own right, meaning that they take an unlabelled

user profiled and make a judgement of a personal characteristic. Both approaches

are limited in the quantity of profiles they can be applied to, as both rely on

interpreting self-reported data; as such, their true utility lies in being used as input

to train predictive systems capable of predicting NS-SEC on profiles without the

same labelling cues.

As in previous chapters, we aim to evaluate classifiers trained on UGEO and USOC

on their ability to predict NS-SEC on unseen profiles. Following Lampos et al.

[134], we assess the task in 3-class (High, Middle and Low) and binary (High

and Middle combined with Low) configurations. We estimate model performance

when trained on UGEO and USOC separately using 10-fold cross validation, and also

assess the ability of the model trained on UGEO to predict the manually labelled

data in USOC . Due to the imbalanced nature of USOC we oversample the minority

classes to the same size as the majority class, as per the approach in Lampos et al.

[134].

In Chapters 3, 4, and 6, we laid out and evaluated strong baseline components for

user profiling systems, which we utilise again here. In the experiments that follow,

our chosen model derives term frequency-inverse document frequency (TF-IDF)

weighted 1,2-grams from the text of user’s Tweets and uses them as features to
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train logistic regression (LR) classifiers. This and similar set-ups have shown great

performance on similar tasks in both our own work (Chapters 3, 4, and 6) and

the literature (Chapter 2). In this case LR was chosen as the classifier due to its

ability to produce probabilistic outputs, which we apply in an ensemble fashion in

Section 7.4. We chose to apply a different model to the one chosen in Lampos et al.

[134], for two reasons: consistency with our own previous work, and an inability

to reproduce reported performance on USOC using their declared pipeline on our

(admittedly different) snapshot of the data.

7.3.1 Classifier trained on USOC

Table 7.4 shows the results where the classifier was trained on USOC ; the results

exceed the majority baseline (0.54 in both cases due to the unbalanced nature of

the dataset), but exhibit clear signs of over-fitting to the majority class in the 3-

class variant, even despite the steps taken to alleviate imbalance by oversampling.

Prediction Accuracy Precision Recall F1-score

High - 0.827 0.691 0.753

Middle - 0.293 0.506 0.371

Low - 0.507 0.530 0.518

Average 0.632 0.542 0.576 0.547

High - 0.772 0.723 0.747

Low - 0.693 0.746 0.719

Average 0.734 0.733 0.735 0.733

Table 7.4: Classifier performance metrics for USOC estimated using 10-fold cross
validation

7.3.2 Classifier trained on UGEO

Due the sheer quantity of data derived through our method in UGEO, it is infeasible

to train models on the whole dataset using the chosen predictive approach. Deep

learning methods and classic machine learning approaches suited to out-of-core

learning [167] could handle the full dataset, but we do not consider those here.

We applied 10-fold cross validation in conjunction with the classification pipeline
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described in Section 7.3, to identify a suitable number of examples to include at

train time.

Models were trained with random samples of training data of increasing size,

identifying that performance returns for both the 3-class and binary problems

diminish around 4500 training examples per label. Reported results are as such

attained using a balanced subset from UGEO with 4500 examples per label, totalling

13500 and 9000 examples for the 3-class and binary tasks respectively.

Results as derived through 10-fold cross-validation for the classifier trained on

UGEO to predict NS-SEC in both two- and three-class configurations are shown

Table 7.5. For both variants the majority class baselines (0.33 for 3 way, and 0.5 for

binary) for accuracy are exceeded, achieving performance metrics broadly similar

to those of the classifier trained on USOC . Despite working with a balanced dataset

from the start, we still see a slight lean towards prediction of the ‘high’ class in

the 3-class variant here, although not to the same extent as in Section 7.3.1.

Prediction Accuracy Precision Recall F1-score

High - 0.63 0.64 0.64

Middle - 0.51 0.50 0.51

Low - 0.53 0.53 0.53

Average 0.56 0.56 0.56 0.56

High - 0.75 0.70 0.72

Middle & Low - 0.72 0.76 0.74

Average 0.73 0.73 0.73 0.73

Table 7.5: Classifier performance metrics for UGEO estimated using 10-fold cross
validation

7.3.3 Predictive capability between datasets

To assess comparability between the two data-sets (and resulting models) we ad-

ditionally used the model trained on UGEO to predict the labels in USOC , and the

model trained on USOC to predict the labels in UGEO. Table 7.6 shows the two-

and three-class results where a model trained on UGEO was used to predict the

manually verified labels in USOC . Table 7.7 shows the two- and three-class results

where a model trained on USOC was used to predict the manually verified labels

129



Prediction Accuracy Precision Recall F1-score

High - 0.69 0.6 0.64

Middle - 0.28 0.24 0.26

Low - 0.37 0.54 0.44

Average 0.50 0.52 0.5 0.51

High - 0.67 0.63 0.65

Middle & Low - 0.59 0.64 0.61

Average 0.63 0.64 0.63 0.63

Table 7.6: Classifier performance metrics where UGEO was used as train and
USOC was used as test.

Prediction Accuracy Precision Recall F1-score

High - 0.42 0.59 0.49

Middle - 0.36 0.20 0.25

Low - 0.40 0.41 0.41

Average 0.40 0.39 0.40 0.38

High - 0.61 0.52 0.56

Low - 0.58 0.66 0.62

Average 0.59 0.59 0.59 0.59

Table 7.7: Accuracy, precision, recall and F1 where USOC was used to train the
model and UGEO was used to test.

in UGEO.

Despite promising performance of the models trained on UGEO and USOC in iso-

lation, it appears the two datasets are not entirely compatible, as indicated by

the the worsening results when UGEO was used to predict USOC and vice-versa.

The inability for either model to accurately predict labels derived through a dif-

ferent method indicates that, despite ostensibly predicting the same demographic

variable, the two user attribute labelling approaches are generating labels that rep-

resent different sorts of user, or that one (or both) of the approaches is resulting

in incorrect labels; in Section 7.3.4 we investigate potential causes and solutions.
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7.3.4 Dataset difference analysis

Although models trained on UGEO were able to predict the labels from USOC with

reasonable accuracy, they could not predict with equivalent accuracy to those

trained on USOC . A likely cause is bias towards certain types of profile introduced

in either user attribute labelling approach. To investigate differences between the

two datasets we first gathered a subset of UGEO at random containing the same

number of profiles as USOC . The two datasets were then shuffled and split into

two, yielding four subsets UGEO1, UGEO2, USOC1 and USOC2.

Table 7.8 shows the description field vocabulary overlap for each pair of subsets

with stop-words and non-alphanumeric characters removed (except for emoji). To

be counted as a vocabulary item in a set a term must have appeared more than

twice. The inter-set vocabulary overlap (bottom left and top right corners) and

the intra-set vocabulary overlap for UGEO (bottom right corner) remain consis-

tent around 250, where as the intra-set vocabulary overlap for USOC (top right

quadrant) is greater (but not so much greater to indicate a significant difference

between USOC and UGEO).

USOC1 USOC2 UGEO1 UGEO2

USOC1 526 300 242 245

USOC2 300 527 254 245

UGEO1 242 254 458 254

UGEO2 245 245 254 452

Table 7.8: Vocabulary overlap (intersection of set of terms) for each pair of
datasets.

Table 7.9 shows the cosine distance between each combination of the subsets of

USOC and UGEO. The interset cosine values (bottom left and top right quadrants)

average 0.054 and the intraset values average 0.081 ; from this we can again

conclude that the description field vocabularies for USOC and UGEO are more

similar to themselves than each other (USOC more so than UGEO).

Despite the apparent overall similarity between USOC and UGEO observed from Ta-

bles 7.8 and 7.9, inspecting the high frequency terms (Table 7.10) in both datasets

points towards a potential difference in the ‘types’ of user most represented. For

USOC many of the most frequent description field terms (even ignoring the spe-

cific job titles selected in dataset creation) clearly relate to the user’s nature as a
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USOC1 USOC2 UGEO1 UGEO2

USOC1 - 0.04809 0.07779 0.08491

USOC2 0.04809 - 0.07761 0.08642

UGEO1 0.07779 0.07761 - 0.06021

UGEO2 0.08491 0.08642 0.06021 -

Table 7.9: Pair wise cosine distance of vocabulary item probability for the each
pair of subsets. Intra-set values are highlighted in green and inter-set values in
blue.

professional; terms ranked 5, 9, 12 and 13 for example all attempt to distance the

views of the user from their respective employer. Additionally, emoji use within

the description field for UGEO is more frequent at 257 occurrences than in USOC

at 98, indicating a more formal use of the platform for USOC users.

132



Rank USOC UGEO

0 @ment @ment 48.0 @ment @ment 61.0

1 graphic designer 29.0 newline newline 30.0

2 personal trainer 22.0 @ment @ment @ment 25.0

3 @ment @ment @ment 17.0 personal trainer 13.0

4 newline newline 14.0 @ment heavyblackheart 11.0

5 views expressed 13.0 instagram @ment 9.0

6 manager @ment 12.0 @ment @ment @ment @ment 9.0

7 director @ment 11.0 living life 7.0

8 newline hyperlink 11.0 year old 7.0

9 @ment views 10.0 graphic designer 7.0

10 @ment newline 8.0 newline newline newline 6.0

11 web developer 8.0 craft beer 6.0

12 fan views 7.0 owner @ment 6.0

13 personal capacity 7.0 newline instagram 5.0

14 software engineer 7.0 peanut butter 5.0

15 head chef 7.0 newline @ment 5.0

16 husband father 7.0 manager @ment 5.0

17 @ment @ment @ment @ment 7.0 animal lover 5.0

18 hyperlink newline 7.0 social media 5.0

19 makeup artist 6.0 hyperlink hyperlink 5.0

20 level 3 6.0 heavyblackheart @ment 5.0

21 mental health 6.0 heavyblackheart @ment heavyblackheart 5.0

22 social media 6.0 hyperlink newline 5.0

23 newline hyperlink newline 6.0 season ticket holder 4.0

24 beauty therapist 6.0 lake district 4.0

25 freelance graphic 6.0 proud father 4.0

Table 7.10: Popular terms (2-4 grams) in the description fields of USOC and
UGEO profiles.
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7.3.5 Highly ranked features

Tables 7.11 and 7.12 show the highest ranked terms learned by the classifier trained

on each dataset for the binary task. As in the analysis of description field terms

(discussed in Section 7.3.4), USOC again seems to contain a number of professional

related terms such as ‘construction’ and ‘architecture’ for the upper class and ‘de-

sign’, ‘chef’ and ‘photographer’ for lower. The classifier trained on UGEO on the

other hand has obviously identified more geographic features as being most dis-

criminating, with the upper class having many terms obviously related to London,

and the lower class to less affluent cities. Tables 7.13 and 7.14 show the highest

ranked terms learned for the three-way task. Again, ‘professional’ terms dominate

USOC , and more ‘geographic’ terms are learned for UGEO.

7.3.6 Weaknesses of UGEO and USOC

Although similar results for both datasets were achieved in isolation, compatibility

between them was lacking, and we find that both datasets have their own sets

of weaknesses. The labels in USOC , while being of high certainty, are scarce and

artificially select for certain types of Twitter profile. Geographically derived labels

on the other hand are easy to acquire in bulk, but have a greater chance of being

inaccurate due to geographic uncertainty, and the fact that the label is derived

from a percentage. Despite some simple quality control checks, the results of

models trained on UGEO presented so far were derived from a random sample

across the whole set. It is likely that by identifying subsets of the data where

we are more certain profiles are labeled correctly, we can further improve the

accuracy of models trained on UGEO. In Section 7.5 we investigate this further, by

filtering the dataset to only include those profiles with more granular home location

estimates. Ultimately, neither approach is likely to be perfect, and therefore some

combination of the two may be the best way to utilise the strengths of both; we

attempt this in Section 7.4.
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Upper Lower

hai av
#love jersey
#avfc design
#safc chef
construction #greece
rt quotetoken spa
pile of poo devils

burton care
article legal aid
tennis racquet and ball chefs

arsenal carlisle
#f1 designers
data heavy black heart
police cars revolving light — mentiontoken

milan musical
108 grinning face with sweat x 2
brexit photographer
architecture mentiontoken via
science #eurovision
albion gaga
tesco ey
text greek
fostering bu
so so vat
report #fitfam
ipswich holly
reading uber
god grass
writing trailer
smiling face with heart-shaped eyes sheffield

review shooting
vegan creative
rt : futures
#nffc rt if
Tweetboundary mentiontoken guitar
#iran #bcfc
diy https . . .
att the inspirational
michael #indyref
belfast #rt

Table 7.11: Highly ranked terms for the binary model trained on USOC .
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Upper Lower

london liverpool
#london devon
in london #cornwall
fulham cornwall
emoji modifier fitzpatrick type-5 newcastle

cambridge #liverpool
#fashion photography
reading ios
you are #essex
scarf blackpool
mentiontoken for north
party ): hyperlinktoken
wine hull
london’s gay
jewellery paul
mentiontoken - Tweetboundary how
sports medal of our

chelsea festival
oxford bay
di #gym
sparkles draw

quotetoken Tweetboundary xxx
tube Tweetboundary exactly
listen medieval
tickets to days
rt - store
de done
... newlinetoken salford
soho cornish
dope tour
article dancing
pile of poo #fitfam Figure

greenwich cumbria
brunch welsh
battersea wedding
cheshire Tweetboundary hyperlinktoken
she manchester
sugar wales
ii well done
boris #kent

Table 7.12: Highly ranked terms for the binary model trained on UGEO.
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Upper Middle Lower

#iran #nufc spa
rt quotetoken gracias devils
Tweetboundary mentiontoken av care
#safc design grinning face with sweat
science hartlepool barnsley
data #greece #amwriting
ipswich raising hands jersey
#lcfc holly guitar
pile of poo fish #bcfc

#avfc #ttot snowman without snow
construction bear face barber
burton mentiontoken via unfollowers
person with folded hands designer chefs

brexit legal aid cunt
maths #foodporn la
text #indyref #fitfam
so so #cpfc #yoga
att photographer rt if
allah pizza yoga
vegan #thewalkingdead grinning face with sweat
fostering toronto girls
review photography shadowed white star
tennis racquet and ball — mentiontoken bought :

photography by photos golf
#love restaurant craft

Table 7.13: Highly ranked terms for the three class model trained on USOC .
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Upper Middle Lower

london #cornwall liverpool
#london essex #liverpool
in london #essex blackpool
emoji modifier fitzpatrick type-5 devon northampton

jewellery farm derby
cambridge brighton swindon
di cornwall ir
hockey bath beer mug
fashion surf heart
london’s #cpfc wwe
de weekend hackney
#fashion farmers lincoln
greenwich west ham newlinetoken free
oxford libraries newcastle
london hyperlinktoken marketing oldham
donald golf midlands
richmond http :/ american football
circle symbol west #cbb
#fitness website boro
party charlton in liverpool
reading sussex academy
#gameofthrones josh #ynwa
mentiontoken via british #mcfc
mentiontoken for river store
photos ar #newcastle

Table 7.14: Highly ranked terms for the three class model trained on UGEO.
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7.4 Combining labels from disparate annotation

schemes

It is possible that the distantly supervised dataset UGEO can be used in conjunction

with the directly supervised dataset USOC to improve performance over models

trained on either. In this section we combine classifiers trained on UGEO and

USOC in an attempt to improve predictive performance.

7.4.1 Ensemble of classifiers

Our chosen ensemble consists of two probabilistic classifiers, the LR models trained

in Section 7.3, which predict the probability distribution for each label for a given

input; one classifier is trained on USOC , the other on a subset of UGEO with 4500

examples per label. Figure 7.1 illustrates the process of our ensemble; a user is

passed through a feature extraction module and passed into the two classifiers, the

output distribution from each classifier is multiplied by a set weight (W (UGEO)

and W (USOC), derived through grid search) and the two are added together with

the maximum taken as the label.

To derive weights for each classifier a grid search was performed between the

values of 0.5 and 1.5 for each classifier. We found the optimum weights to be

W (UGEO) = 0.5 and W (USOC) = 1.35 in both the binary and 3-way problem

configurations.

Figure 7.1: Ensemble classification pipeline.
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7.4.2 Results and discussion

Table 7.15 shows classification accuracy at predicting USOC with and without

the ensemble. In both the 2-class and 3-class configurations an accuracy boost

is observed utilising our ensemble approach. Ultimately, by combining the two

classifiers in this ensemble approach we see only a minor increase in predictive

performance, with gains of 0.64% and 1.54% for the two- and three-class problems

respectively.

Configuration No ensemble Ensemble Gain

2-way 0.7434 0.7498 0.64%

3-way 0.6429 0.6582 1.54%

Table 7.15: Mean USOC prediction accuracy with and without the ensemble of
classifiers.

We also attempted augmenting USOC by shuffling in profiles from UGEO but found

that overall performance decreased. This, in conjunction with the low weight

assigned to W (UGEO) indicates that the true problems with UGEO lie in the cor-

rectness of the labels themselves. In Section 7.5, we attempt to alleviate the affect

of these mis-labellings by applying additional filtering steps to UGEO, such that

only those labels we are most certain about are used to train models.

7.5 Filtering for profiles with high home location

certainty

Numerous findings throughout this work have pointed towards poor judgements

of home location being a likely source of error in the initial labelling of the geo-

graphically derived training data in UGEO, which results in poor quality labels in

derived models. In Chapter 5 we highlighted that the clustering approach used

to determine home location was around 80% accurate at the Output Area level.

Alongside predicting home location, we also measure home location judgement

‘certainty’ as the average distance of each point in a users’ home cluster, to their

home cluster centroid. We also found in Chapter 5 that a correct estimate was

much more likely when the the home cluster was denser, or more ‘certain’. Cur-

rently, our experiments using data derived through our geographic user profiling
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dataset generation approach have not taken home location certainty into account,

having simply selected profiles annotated through our method at random.

To asses the impact of filtering for profiles with high home location certainty on

classifier performance, we took the 4500 most certain profiles for each label to

construct a subset of high certainty profiles, as well as a subset of profiles of the

same size selected at random. For both subsets, we trained the predictive approach

based on TF-IDF n-grams and LRclassifiers described in Section 7.3 and derived

average performance metrics using 10-fold cross validation.

7.5.1 Results and Discussion

Table 7.16 presents classifier performance in terms of accuracy when the predictive

models were trained on the subset of UGEO where the user’s home cluster densities

were lowest as well as the random subset, highlighting the gain in classification

accuracy for the filtered subset. Table 7.17 additionally presents precision, recall,

and F1-score at class level for the models trained on the filtered subset of UGEO.

Introduction of the additional filtering step leads to a clear gain in classification

accuracy in the both the 2- and 3-class variants. This implies that many of the

labels used to train previous models were indeed likely to be mislabelled, for both

NS-SEC and OAC/LAC (Chapter 6). This filtering step is essential in any future

application of our geo-location driven user profiling dataset generation approach.

Configuration Random Sample Geographic Filtered Gain

2-way 0.73 0.78 0.05

3-way 0.56 0.60 0.04

Table 7.16: UGEO accuracy improvement by filtering for profiles with denser
home clusters.

7.6 Conclusion

In this chapter we expanded and performed the final evaluation of our method for

deriving user profiling training data by combing geo-located profiles and demo-

graphic data. We applied our method to generate a large, new, dataset (UGEO) for
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Prediction Accuracy Precision Recall F1-score

High - 0.69 0.67 0.68

Middle - 0.55 0.50 0.52

Low - 0.56 0.63 0.60

Average 0.60 0.60 0.60 0.60

High - 0.77 0.79 0.78

Low - 0.79 0.76 0.78

Average 0.78 0.78 0.78 0.78

Table 7.17: Classifier performance metrics for UGEO filtered to contain profiles
with highly granular location estimates, derived using 10-fold cross validation

a SES variable that has previously been addressed in the literature, the NS-SEC.

To meaningfully assess performance of datasets derived through another state-

of-the-art method against our own, we additionally gathered the NS-SEC tagged

user profiling dataset described in Lampos et al. [134] (USOC).

We trained a robust user profiling pipeline on both datasets, which achieved good

and similar performance metrics in both cases. Given promising performance

in isolation, we evaluated the ability of models trained on UGEO to predict the

labels in USOC , and noticed a drop in predictive performance, while still exceeding

a random baseline. Given the poor compatibility between the resulting models

and opposing datasets, we set about investigating potential explanations for the

incompatibility, identified several, and evaluated several approaches for addressing

them.

We performed an analysis to investigate the differences in how users in each dataset

present themselves in their ‘description’ field; for the users in USOC , professional

terms were more frequent, and in UGEO, terms relating to geography rose to the

top; both observations indicate characteristics of the data generation approach

biasing the resulting datasets.

Given the differences in the sorts of user present in both datasets due to differences

in labelling approach, we investigated potential methods for combining the two

schemes to augment each other. We found that simple combination of the datasets

yielded poor performance directly, so instead sought to combine the derived models

instead, in an ensemble. Our ensemble approach yielded a modest increase in

predictive performance, indicating that the two labelling approaches can indeed
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be combined to complement each other.

Having noted that some steps in our method for geo-location driven user profiling

dataset generation have the potential to introduce incorrect labels, we investi-

gated what we deemed to be the largest source of error, an incorrectly assigned

home location. Our method for assigning home location incorporates a measure

of ‘certainty’, which has up until now not been explicitly constrained upon in

our dataset generation method. To investigate the affect of low certainty home

locations, we filtered UGEO to contain only those profiles with high certainty la-

bels, while still maintaining dataset balance and per-label examples. Adding this

filtration step, yielded a marked boost in predictive performance, and therefore

should be included in any further implementations of our for geo-location driven

user attribute labelling.
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Chapter 8

Discussion and conclusion

Several downsides to current approaches for user attribute labelling in user pro-

filing dataset creation were identified in Chapter 1. To overcome some of these

weaknesses, a geo-location driven approach to user attribute labelling was pro-

posed in Section 1.3. Geo-location driven attribute labelling involves identifying

the ‘home location’ of a social media user, and linking them to demographic vari-

ables associated with their local area, such as those present in government census

data or commercial geo-demographic segmentation datasets. The assumed benefit

of this approach is that it can generate large datasets for training downstream

user profiling systems, and assign attributes that were not previously feasible to

acquire.

In this chapter the findings presented throughout this thesis are discussed with ref-

erence to the thesis aims initially presented in Section 1.3. The aims are repeated

here, with reference to the discussion included in this chapter:

� Establishing good baseline implementations for user profiling predictive sys-

tems based on datasets generated through ‘classic’ approaches. Discussed in

Section 8.1;

� Establishing a strong grounding for our proposed method by evaluating

whether simple high level datasets derived from geo-located Tweets can be

used to improve performance on a user profiling task. Discussed in Sec-

tion 8.2;

� Evaluating methods for estimating user home location, determining whether
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the state-of-the-art is good enough for use in our proposed method, and

improving on the state-of-the-art if necessary. Discussed in Section 8.3;

� Generating novel datasets for user profiling using our proposed method, and

evaluating them by developing user profiling predictive systems incorporat-

ing established strong baseline approaches. Discussed in Section 8.4; and

� Supplementing and contrasting existing user profiling datasets with ones

derived by our methods. Discussed in Section 8.4.1.

For each of the aims above, further works are discussed in the appropriate section

listings.

User profiling is by its nature a field that gives rise to ethical concerns. Throughout

this thesis we have not commented on the ethical implications of the tools and

techniques presented, focussing instead on technical details and empirical results.

We discuss the ethical implications of this work in Section 8.6.

8.1 User profiling systems

The geo-location driven user attribute labelling approach proposed in Chapter 1 is

not suitable as a user profiling system in its own right, as only a limited proportion

of users choose to geo-locate their posts. The main utility of the method is in its

ability to generate large datasets annotated with user attributes, which can be used

to train user profiling systems. Before applying the method to generate datasets

and train user profiling systems, it is important to ensure that the components

underpinning the user profiling systems are robust and in line with best practises.

A review of the techniques and tools used in the literature to build user profiling

systems was performed (Chapter 2), and the typical process undertaken to build

a user profiling system was illustrated in Figure 2.1. Broadly, user content and

user attributes are used to fit some machine learning model, which is then used to

infer the attributes of new users. Linear models, such as logistic regression (LR)

or support vector machine (SVM), trained on n-gram feature vectors extracted

from user content are used in many successful approaches in both user profiling

[13, 58, 64], as well as other fields [161, 162]. As such these components form the

basis of the user profiling systems trained throughout this thesis.
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To verify the utility of the chosen user profiling system components outside of the

context of our geo-location driven user attribute labelling approach, experiments

were performed on user profiling datasets derived through ‘classic’ methods in

Chapters 3 and 4. In Chapter 3 SVM classifiers and regressors were trained on

n-gram features to predict age, gender and personality. Topic models were exper-

imented with as an additional feature, which provided a minor boost to predictive

performance. In Chapter 4, an ensemble composed of a Gaussian process (GP)

classifier trained bag-of-word-embedding cluster feature vectors and a logistic re-

gression classifier trained on term frequency-inverse document frequency (TF-IDF)

transformed unigram and bigram feature vectors was trained to predict gender and

native language variant. The ensemble performed well, and when compared to a

strong baseline established from the classification approach in Chapter 3, yielded

performance increases for a number of attributes, and performed on-par for others.

From the results in these two chapters it was concluded that the proposed baseline

user profiling system was indeed suitable for use in experiments on our own novel

datasets.

Given the good performance of the systems used in Chapters 3 and 4, similar

systems were implemented for the experiments on datasets derived through the

proposed geo-location driven user attribute labelling approach. In Chapter 6,

user profiling systems incorporating SVM classifiers trained on TF-IDF weighted

n-grams were trained to predict two measure of socio-economic status, Output

Area Classification (OAC) and Local Authority Classification (LAC). Both sys-

tems exceeded a majority baseline, and good results were achieved for LAC. The

system trained on OAC performed poorly, although this was found to be a failing

of the underlying dataset, not of the user profiling system itself. In Chapter 7, LR

classifiers are trained on TF-IDF weighted n-grams for two datasets labelled with

a measure of socio-economic status, National Statistics Socio-economic Classifica-

tion (NS-SEC), derived through different methods. Good performance is achieved

by the models trained on both dataset in isolation, but the resulting models are

unable to predict as accurately on the dataset derived differently. To overcome this

weakness, the resulting models are employed in an ensemble approach to combine

their outputs, resulting in improved performance.

The linear model and n-gram components used in the user profiling systems trained

in Chapters 6 and 7 performed well, and their simplicity and interpretability allow

us to conclude that datasets derived through the proposed geo-location driven user
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attribute labelling approach can indeed be used to train informative user profiling

models. We chose not to include additional feature sets, such as the topic models

or word embedding model clusters (from Chapters 3 and 4), or more modern

machine learning approaches such as deep learning in our classification pipelines

as our main aim was to show that geo-location derived user profiling datasets could

be used to train user profiling systems; the specific components of the user profiling

systems were of less interest than achieving consistent, interpretable results when

applied to a range of datasets.

Having achieved strong baseline results for user profiling systems trained on datasets

derived through the proposed geo-location driven user attribute labelling ap-

proach, more recent advances in machine learning could be investigated to train

user profiling systems with improved performance. Deep learning methods in par-

ticular have advanced in recent years and are now generally seen as the most

performant (and therefore default) option for a wide range of machine learning

tasks. In future work, deep learning methods for text classification (as discussed

in Section 2.5) would be investigated to further improve the predictive performance

of developed user profiling systems.

8.2 Establishing utility of geographically derived

resources

The proposed geo-location driven user attribute labelling approach relies on the

assumption that social media posts (and the users who post them) are representa-

tive of the local area in which they are posted. Before jumping in to deriving user

profiling datasets directly from geo-located users, in Chapter 4, an experiment was

first performed to assess whether a complementary user profiling resource could be

derived from a collection of geo-located tweets to improve performance of a user

profiling system trained on a dataset derived through a ‘classic’ approach (the

PAN 2017 Author Profiling shared task dataset [125, 126, 127]). A large corpus of

worldwide Tweets was collected and filtered down to those geo-located within the

countries covered in the task’s languages, then divided into individual languages

(Portuguese, English and Spanish), and further filtered to ensure adequate repre-

sentation for each country that speaks a language natively. These corpora were

used to train Word2Vec word embeddings [34, 128] tailored to each language as it
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appears on Twitter.

We assessed the utility of the derived word embedding models by evaluating their

effect when included as part of a ensemble classification pipeline in an experiment

on the PAN 2017 Author Profiling dataset. Our ensemble approach performed

well, and inclusion of the complementary resources improved performance over a

strong baseline (SVM and word n-grams) for some user attributes. These results

showed that geographically derived resources are indeed useful for user profiling,

adding support for the proposed geo-location driven user attribute labelling ap-

proach.

Generating large scale datasets in this fashion is of great value in generating lan-

guage resources representative of how language is used in the real world for use in

applications such as language model pre-training [168] although gathering data in

this fashion does come with weaknesses that must be accounted for. For example,

in Chapter 4, Tweets were collected in the Arabic language, but inspection by

native speakers highlighted quality issues with the data, including large quantities

of spam posts and Quran quotes. Any future experiments deriving resources from

geo-located posts should ensure steps are implemented to ensure such unrepre-

sentative examples of the language are handled. Filtering these posts is likely to

require language-specific steps, which reduces the utility of this method for fully

automatic generation of language specific resources, although recent changes to

the Twitter API promise improved spam Tweet detection, which may reduce the

burden to perform this step for researchers.

8.3 Accurate home location estimation

The proposed an approach for geo-location driven user attribute labelling involves

linking social media users to geo-demographic datasets, such as aggregated census

data. This approach requires a reliable method for determining a user’s ‘home

location’ at a highly granular, hyperlocal level to accurately link users to their local

demographics. In addition, a suitable home location allocation method should

incorporate some measure of ‘uncertainty’, so that users with sparse or highly

spread activity can be excluded from derived user profiling datasets.

A suitable method for hyperlocal user home location allocations must perform
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accurate coordinate-level predictions or arbitrarily small regions from a list of

candidates. State-of-the-art approaches used to assign ‘home location’ to social

media profiles were reviewed in Section 2.4, and four state-of-the-art methods were

identified:

� ‘first Tweet‘ involves simply taking the the coordinates of a user’s first Tweet

as their home location;

� ‘location field’ converts user-declared location fields into a home location;

� ‘grid based’ partitions areas into an arbitrary grid and counts the number

of Tweets geo-located within each cell; and

� ‘geometric median’ simply takes the geometric median the coordinates of a

user’s geo-located tweets.

None of the identified state-of-the-art approaches quite satisfy the desired charac-

teristics of a robust and accurate method for identifying hyperlocal home location

identification, so two novel methods for identifying user home location were also

proposed. The novel methods acknowledge that social media users do not (in

general) post from a single location, and that the most active location is likely

to be their primary location. Majority voting measures a user’s activity in real

world regions as defined by public boundary datasets. Clustering involves applying

some clustering algorithm to each user’s geo-located Tweets, identifying distinct

locations of activity.

To evaluate the existing and proposed methods for home location allocation, a new

gold-standard dataset containing users annotated with home location at the hy-

perlocal (coordinate) level was created. A set of phrases indicating which Tweets

were sent from a user’s home was curated and used to identify the home location

of 1,042 Twitter users. Tweets containing a home-indicative phrase were manually

verified for context, and discarded if incorrect or uncertain. True home location

was calculated for each user profile as the spatial average of its home-indicative

Tweets. Each of the methods mentioned previously were implemented and ap-

plied to the gold-standard home location dataset, and predicted locations were

compared against the ‘true’ values. Error distance (in miles) and exact match ac-

curacy (for four types of region) are reported, and the results show the clustering

and majority vote approaches outperform the state-of-the-art methods. It is con-

cluded that the clustering method satisfies our requirement of a good method for
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assigning home location to Twitter profiles, thanks to good performance at both

coordinate and region-level granularity. The clustering method was therefore used

in our experiments applying the proposed geo-location driven user attribute la-

belling approach from Chapter 1.

Introduction of the notion of ‘active places’ to home location identification yields

marked improvements over other approaches that do not utilise them, although

our current approach makes the potentially naive assumption that a user’s most

posted-from location is their home. Clustering for home location identification

performs well in the context of user attribute labelling, but is not without errors.

It is highly likely that some users post more commonly from an alternate loca-

tion such as their place of work, study or the homes of friends/family, leading

to incorrect location predictions under the current scheme. In future work, the

clustering and majority vote methods could be expanded in future work to char-

acterise user’s active locations beyond ‘home’. Additional types of location could

be classified from the candidate places identified by either method in a number

of ways. Local land-use data could be interrogated to identify the primary use

of a given place, if an area is mostly offices or industrial, it is unlikely to be a

user’s home. Textual cues and meta-data in Tweets in could be used to train ma-

chine learning approaches capable of characterising the identified places given an

annotation scheme. To differentiate ‘home’ and ‘work’ locations specifically, the

proportion of Tweets at each location in and out of canonical work hours could

be investigated (building on the work in Cho et al. [155]).

8.4 Novel geographically derived datasets

The proposed method for geo-location driven user attribute labelling was imple-

mented and applied in Chapters 6 and 7 to generate three user profiling datasets

covering OAC, LAC, and NS-SEC.

The OAC is a hierarchical classification of socio-economic groups aggregated to

the Output Areas (OAs) level in the UK derived from census data. The LAC is

a similar scheme, that is applied at the Local Authority District (LAD) level. In

Chapter 6, geo-location driven user attribute labelling was performed to create

two large user profiling datasets labelled with OAC and LAC; prior to this work,

neither attribute had been explored in the user profiling literature. User profil-
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ing systems were trained on balanced subsets of both datasets, exceeding random

baselines, with poor performance for OAC, but promising results for LAC. Un-

derlying properties of the two datasets were investigated to determine potential

explanations for the difference in results.

A likely explanation for the poorer performance of OAC is the geographic proper-

ties of the underlying region type (OA); OAs are on average less than a mile long,

whereas Local Authoritys (LAs) are much larger at around 35 miles, and as such,

small errors in home location prediction are more likely to lead to an incorrect

judgement for OAs than LADs. This is illustrated further in Table 5.4; for our

chosen home location prediction method (clustering with k-means), 79.85% of pre-

diction were correct at the OA level, versus 97.83% for LADs. A lack of certainty

at the home location prediction level feeds through the entire geo-location driven

user attribute labelling approach; an incorrect home location prediction leads to

a potentially incorrect user attribute label, resulting in noisy data being used to

train user profiling systems. Therefore it is essential to minimise the potential for

incorrect labels to be used at train time. In Section 7.5 we experimented with a

measure of home location judgement certainty, ‘home cluster density’, and found

that by filtering for profiles with highly certain (more densely clustered) home

location judgements, resulting user profiling systems were much more accurate in

their predictions.

Examining the feature coefficients of the models trained OAC and LAC shed light

on the underlying motivations behind each demographic dataset. For LAC, de-

rived models deemed geographic terms most discrimination, with dialect features

and local landmarks surfacing as important. For OAC on the other hand, terms

stereotypically associated with certain groups, with the rural class referencing

country life, and the multicultural group referencing Islamic holidays; only one

group, ‘Ethnicity Central’, was dominated by locale (London) specific features. In

future work, steps should be taken to ensure that derived datasets are geograph-

ically stratified across the regions of interest, to avoid over-representation of any

one specific locale.

Additional analysis indicated that the underlying demographic datasets held char-

acteristics with the potential to make classification difficult. Three of the super-

groups in OAC, 2 (Cosmopolitans), 3 (Ethnicity Central), and 4 (Multicultural

Metropolitans), refer to users residing in larger cities where mixing of demographic

groups is more common; these groups are therefore more similar to each other in
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terms of language than other classes, making classification by a machine learn-

ing approach difficult. Similar patterns can be seen for other groups as well; 7

(Constrained City Dwellers) and 8 (Hard-Pressed Living) both refer to users in

smaller cities and towns, and 1 (Rural Residents) and 6 (Suburbanites) typically

border each other. This problem is less pronounced for LAC, although super-

groups 3 (London Cosmopolitan), 4 (Suburban Traits), and 7 (Prosperous Eng-

land) do broadly cover the ‘middle class’. In future work, care should be taken

to understand such patterns in the underlying data prior to application of the

geo-location driven user attribute labelling approach. If a number of classes are

indeed functionality equivalent in terms of their members, they could be collapsed

into a single class, or a demographic dataset could be discounted if it does not

adequately capture individual differences.

8.4.1 Comparability to other methods

Geo-location driven user attribute labelling when applied to the OAC and LAC

yielded promising results, but with several weaknesses, most notably the relatively

poor performance for OAC and the lean towards geographic cues for models trained

on LAC. As both of these datasets cover variables not previously covered in the

literature, it was not possible to compare against datasets annotated with the

same variables through different means. To enable comparison of geographically

derived user profiling datasets against datasets derived for the same attributes

via a different method, an existing dataset (referred to as USOC) from Lampos

et al. [134] was acquired covering another measure of socio-economic status (SES),

NS-SEC. In parallel, a large novel user profiling dataset (UGEO) annotated with

NS-SEC was constructed using geo-location driven user attribute labelling.

Models trained on the two datasets performed similarly well in isolation, but

when tested on users labelled using the opposing method performance dropped

noticeably. This indicated that the two datasets either contain different ‘types’ of

user, or that the assigned labels are not actually capturing the same information.

Analysis of the description fields of the users from both datasets highlighted clear

differences in the types of user present in each dataset, with USOC users skewed

towards declaration of their profession and statements that they are not posting

behalf of their employer, a clear indication of a person in a ‘professional’ role.

Both user attribute labelling schemes ostensibly allocate the same labels to users,
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but show clear differences in the sorts of user they contain. In Section 7.4 models

derived from both datasets were used in an ensemble approach to assess whether

or not the two datasets could be used to complement each other, thus overcoming

their differences and individual weaknesses. The ensemble approach yielded minor

improvements in performance over either of its component classifiers in isolation,

highlighting that the two sets of labels derived from disparate annotation schemes

can indeed be combined. The ensemble was applied using models trained on UGEO

without filtration for ‘more certain’ users (dense home clusters); in future work, we

would re-evaluate the ensemble approach on a set of users filtered to only contain

those most likely to hold correct home location judgements, as per Section 7.5.

8.5 Applicability to transfer learning

User profiling systems typically rely on large amounts of accurately annotated

user profiles as training data, which is expensive and difficult to acquire using

classic methods of annotation. Geo-location driven user attribute labelling, pro-

posed in Chapter 1 and evaluated throughout this thesis, is capable of generating

large annotated user profiling datasets, but suffers from the potential of incorrect

labels introduced through the distantly supervised annotation process. Transfer

learning (TL) is a machine learning (ML) approach that attempts to ‘transfer’

the knowledge learned by a ML model from one set of data to another [169]. The

word embeddings trained in Chapter 4 are a basic example of the concept of TL;

a single representation is learning for each term in the vocabulary, which are then

used to perform classification in a down-stream task.

In future work, geo-location driven user attribute labelling could be used to gen-

erate large-scale corpora for pre-training user profiling models for TL, which can

then be fine-tuned on smaller-scale hand labelled user profiling training data. TL is

typically performed using neural networks, rather than the ‘classic’ machine learn-

ing approaches applied throughout this thesis. The process for pre-training is as

follows; a neural network model mp, is trained on the distantly supervised dataset

D. For fine-tuning, a second neural network, mf is initialised with the same pa-

rameters learned by mp, and trained on the smaller, hand labelled, dataset H.

The main advantages of models trained in this way over standard ML are the re-

duction in training time (may only need to fine-tune an existing model), improved

model performance and generalisation (due to picking up cues from a wider set of
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data), and a reduction in annotator effort for the same level of performance.

8.6 Ethical considerations

The works performed in thesis were subject to ethical approval from the University

of Sheffield Institutional Review Board (IRB). Data collection efforts respected

privacy settings by only accessing public tweets and profiles. The Text and Data

Mining (TDM) exception to UK copyright law, which allows non-commercial data-

mining of public or legally accessible resources, ensures that this data collection

did not breach UK copyright law (at the time of data collection).

Steps were taken to ensure no more potential for harm than is found in everyday

life. Unlike a lot of research on profiling the characteristics of Twitter users, the

work in this thesis could be seen as low risk, as only aggregated data is used,

inferred from public disclosure. While potentially sensitive topics such as income,

politics and education are considered it must be stressed that they are being

studied on a non-individual level and only relate to data available from public

sources. Personal details of gathered users were anonymised as far as possible by

obfuscating identifying profile information, including names, screen names, and

mentions of other users. Disseminated results and statistics are not linked to

individual users, and the developed datasets were not available to the public in

their raw form.

The geo-location driven user attribute labelling approach implemented and evalu-

ated through this thesis utilises cues present in user profiles and their output that

when combined disclose the presence of a personal attribute. Social media is now

pervasive across everyday life, and works such as this are valuable in highlight-

ing that the sorts of information we as individuals make available publicly on the

internet may reveal more about ourselves than we think.

Knowledge of a user’s location can be used for a range of purposes including those

with social benefit, such as to aid disaster response [170], track disease outbreaks,

reduce bias in demographic analysis by balancing user characteristics [73, 171, 156]

and perform geographically linked opinion analysis [172]. However, there is also

potential for misuse. When processing the data for the work described here we

took care to ensure that geo-location data was processed separately from other
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information about the user and, as an extra precaution, we have not made the data

publicly available. The findings in Chapter 5 highlight that accurate estimates of

some Twitter user’s home location can be made using geo-location history and

publicly available tools. In addition, we found that some Twitter users state they

are ‘at home’ in geo-located Tweets, implicitly revealing their residential location.

This work further highlights the need for users of social media platforms such

as Twitter to be aware of the implications of sharing the information they make

available in their posts. In particular, when choosing privacy settings or attaching

geo-location information to their posts, users should be aware that they may be

revealing their location to a variety of actors and that inferences can be drawn

from this information as it builds up over time.

8.7 Conclusion

Throughout this thesis we developed the foundations of, and explored our ap-

proach for geo-location driven user attribute labelling, showing that user profiling

systems can be trained using only geographically derived training data.

Strong baseline components for user profiling systems were explored and validated

on existing user profiling datasets (Chapters 3 and 4), allowing us to reliably con-

clude that reported performance metrics (good or bad) are the result of our novel

annotation process, not artefacts of the components underpinning the user pro-

filing system. A complementary language resource was derived using geo-located

posts and used to improve performance in a user profiling task (Chapter 4), show-

ing the potential of utilising geo-located posts for user profiling.

Two novel methods for assigning home location to Twitter profiles based on clus-

tering and majority voting across real-world regions were proposed an evaluated

(Chapter 5), beating state-of-the-art methods used to generate datasets for user

location prediction tasks. Our evaluation of these methods had not been per-

formed previously in the literature at such a fine level, and revealed that many

existing approach for ‘ground truth’ user location are inaccurate.

Three novel datasets were developed using the proposed geo-location driven user

attribute labelling approach covering three different measures of SES: OAC, LAC,

and NS-SEC (Chapters 6 and 7). User profiling systems trained on LAC, and NS-
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SEC performed well in isolation, but systems trained on OAC performed poorly

in comparison. Error analysis, comparison against other datasets, and inspection

of the underlying demographic datasets revealed several considerations for the

application of geo-location driven user attribute labelling approach going forward.

The most clear source of poor or deteriorating model performance was down to

errors in the labelling process, specifically incorrect judgements of user home lo-

cation; efforts must be made to maximise the accuracy of this process in any

future application, for example, by filtering only to those profiles with the most

‘certain’ labels (as per Section 7.5). Properties of the underlying demographic

datasets themselves must also be considered: OAC contains several classes that

overlap in the type of individual they contain, making classification more difficult;

LAC is composed of classes more representative of geographic regions than the

users within them, and so models pick geographic features rather than ones in-

dicative of personal characteristics; and NS-SEC is treated as a continuous value,

a proportion per class, leading to inherently noisy labels.

Geo-location driven user attribute labelling does yield usable user profiling systems

in isolation, but is perhaps best suited as complementary to classic user attribute

labelling approaches, for example in ensemble approaches with models trained

on less noisy data (as per Section 7.4). In addition, the ability to generate large

(albeit weakly labelled) datasets makes geo-location driven user attribute labelling

potentially well suited to pre-training deep learning models for transfer learning

in user profiling systems.
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