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Abstract  
Our rising global population requires innovation to increase crop yields and provide 

food security. One promising solution is to improve the performance of Rubisco, an 

important enzyme which fixes CO2 into organic matter. In our current atmosphere, O2 

competes with CO2 at the active site of Rubisco, leading to the energetically wasteful 

process of photorespiration. To overcome this problem, single-celled photosynthetic 

eukaryotes have evolved a biophysical CO2-concentrating mechanism (CCM) to concentrate 

CO2 around Rubisco. Critical to CCM function is the assembly of Rubisco into a liquid-liquid 

phase separated (LLPS) organelle called the pyrenoid. Rubisco is packaged with its linker 

protein Essential Pyrenoid Component 1 (EPYC1) to form the pyrenoid matrix, which is 

surrounded by a starch sheath. This study aims to investigate the mobility of pyrenoid 

components including Rubisco under different growth conditions, using Fluorescence 

Recovery After Photobleaching (FRAP). A dual-tagged Rubisco-starch line was created to 

simultaneously observe Rubisco and starch movement during cell division, using time-lapse 

confocal microscopy. The modification of the starch sheath during pyrenoid division was 

further investigated using a bioinformatics approach, revealing potential candidates involved 

in pyrenoid starch degradation and synthesis. It is hypothesised that HCO3
- delivery to the 

pyrenoid matrix requires conversion from CO2 by low-CO2-inducible proteins LCIB/C, and 

transport across thylakoids by Bestrophin-like proteins (BST1-3). The role of these 

complexes in recycling escaping CO2 is explored. Preliminary results allow further 

investigation into the dynamic nature of the pyrenoid, which will help guide current efforts to 

engineer a pyrenoid into higher plants.  
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Chapter 1: Introduction 

Efficient photosynthesis can be achieved by utilising CO2-

concentrating mechanisms 

Carbon fixation by photosynthesis contributes to almost all organic matter production 

in the biosphere (Field et al., 1998). Oxygenic photosynthesis, the process of converting 

CO2, H2O and sunlight to organic matter and O2 evolved over 2.8 billion years ago (De 

Marais, 2000). An important and abundant enzyme responsible for the fixation of CO2 is 

Ribulose-1,5-bisphosphate carboxylase/oxygenase, known as Rubisco (Ellis, 1979). Three 

forms of Rubisco have been identified (I, II and III), which along with Rubisco-like proteins 

(form IV) have been proposed to evolve from a common ancestor, a methanogenic archaeon 

(Tabita et al., 2008). Form I is the most abundant form of Rubisco, and is found in vascular 

plants, cyanobacteria and algae (Whitney et al., 2011). Rubiscos in form I are found in a 

hexadecameric complex (L8S8), where two groups of four small subunits cap a core of eight 

large subunits (Taylor et al., 2001; Whitney et al., 2011). Rubisco carboxylates its substrate, 

Ribulose-1,5-bisphosphate to return two molecules of 3-phosphoglycerate (3PGA) in the 

Calvin-Benson-Bassham cycle (Bassham and Calvin, 1962; Taylor et al., 2001). The 

reduction of 3PGA returns glyceraldehyde-3-phosphate (G3P), leading to the production of 

important sugars such as sucrose for growth (Stein and Granot, 2019) and glucose which is 

stored as starch (Smith and Zeeman, 2020) (Fig. 1). 

However, photosynthesis is limited by Rubisco: its slow catalytic rate and low affinity 

for CO2 mean Rubisco can only work at 25% of its catalytic capacity in C3 plants 

(Caemmerer et al., 1981; Sage et al., 1987). Photosynthesis is also limited by 

photorespiration, a process whereby O2 competes with CO2 at the active site of Rubisco 

(Bauwe et al., 2010). The evolution of oxygen-producing photosynthesis causing 

atmospheric levels of O2 to rise is therefore an unfavourable paradox (Dismukes et al., 

2001). Photorespiration uses energy (adenosine triphosphate (ATP)) and reducing power 

(NADPH), whilst causing CO2 losses of roughly 20% of net C3 plant photosynthesis (Keys et 

al., 1986; Cegelski and Schaefer, 2006; Peterhansel et al., 2010) (Fig. 1). Therefore, 

photosynthetic organisms have subsequently evolved mechanisms to limit this wasteful 

process. C4 plants have evolved to concentrate CO2 around Rubisco by spatial separation of 

key processes; CO2 is fixed to produce dicarboxylic acids in the cytosol of mesophyll cells, 

which are transported and decarboxylated in the location of Rubisco (Moroney and Ynalvez, 

2007). This saturates the active site of Rubisco with CO2, decreasing the likelihood of 

reaction with O2 and photorespiration (Gowik et al., 2011).  
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Figure 1. Schematic depiction of competing reactions of CO2 and O2 with Rubisco. The 

photosynthetic Calvin-Benson-Bassham cycle (green) involves the reaction of Rubisco with its 

substrates CO2 and Ribulose-1,5-bisphosphate (RuBP). 2 molecules of 3-phosphoglycerate (3PGA) 

are produced and reduced to glyceraldehyde-3-phosphate (G3P) which is needed for the production 

for sucrose, glucose and starch or recycled back to RuBP. The wasteful process of photorespiration 

(orange) regenerates 3PGA via 2-phosphoglycerate (2PG), which utilises ATP and NADPH and 

causes CO2 loss. Adapted from Whitney et al., (2011).  

 

Single-celled marine phototrophs, such as eukaryotic algae, have also evolved CO2-

concentrating mechanisms (CCMs) to increase the concentration of CO2 around Rubisco 

(Meyer et al., 2017). In addition to the limitations of Rubisco, CCMs are required in aquatic 

environments because inorganic carbon (Ci=CO2 + HCO3
-) levels fluctuate. Also, CO2 

diffuses 10,000 times slower in water than in air (Moroney and Ynalvez, 2007) and CO2 

concentrations vary with changing pH (Colman, 1989). Cyanobacteria, which also have 

CCMs, can accumulate internal Ci 500-1000-fold the concentration of external Ci (Colman, 

1989) whilst the unicellular green alga Chlamydomonas reinhardtii (hereafter 

Chlamydomonas) has been shown to accumulate internal CO2 by up to 40-fold compared to 

external concentrations (Badger et al., 1980). This highly efficient photosynthetic strategy 

results in a significant contribution to global CO2 fixation by eukaryotic algae, in the range of 

30%-40% (Mackinder et al., 2016). 
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The CCM in Chlamydomonas involves an organelle called the 

pyrenoid 

The CCM in eukaryotic algae comprises a series of Ci transporters, conversion of Ci 

species by carbonic anhydrases and a mechanism to aggregate Rubisco. Central to the 

CCM in Chlamydomonas is a membrane-less organelle called the pyrenoid. The pyrenoid 

contains a proteinaceous matrix surrounded by a starch sheath, with traversing thylakoids 

which are continuous with thylakoids in the chloroplast stroma (Fig. 2A). Additional punctate 

and mesh-like layers are present at the periphery of the pyrenoid (Mackinder et al., 2017) 

(Fig. 2B). Chlamydomonas induces its CCM and acclimatizes to two CO2 conditions, low-

CO2 (LC=0.03-0.5% volume) and very low-CO2 (VLC<0.02% volume (Wang and Spalding, 

2014)). CCM candidate genes have been identified through forward and reverse genetics 

screens carried out in limiting CO2 conditions, which include microarrays and transcriptomic 

analysis (Miura et al., 2004; Yamano et al., 2008; Brueggeman et al., 2012; Fang et al., 

2012) or isolating mutants with reduced growth, Ci affinity or accumulation (Spalding et al., 

1983b; Colombo et al., 2002; Thyssen et al., 2003; Mitchell et al., 2014).  

 

Figure 2.  Schematic depiction of A) key structures in Chlamydomonas and B) key pyrenoid 

proteinaceous structures including LCIB-puncta and LCI9-mesh and C) the pyrenoid matrix consisting 

of Rubisco and its linker protein EPYC1. 
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Ci transporters and carbonic anhydrases are needed for a 

functional CCM 

Under VLC conditions active transport of inorganic Carbon (Ci) from the extracellular 

environment to the site of Rubisco occurs through a series of transporters, which reside in 

the plasma, chloroplast and thylakoid membranes (Fig. 3A). In the plasma membrane, the 

proteins proposed to be involved in Ci transport are HLA3 and LCI1 (Im and Grossman, 

2002; Kono et al., 2020). HLA3 is an ATP-binding cassette (ABC) transporter responsible for 

HCO3
- transport (Im and Grossman, 2002) whilst LCI1 is proposed to be a unidirectional 

(periplasm to cytoplasm) CO2 pump (Kono et al., 2020). Once in the cytosol, HCO3
- is 

transported into the stroma across the chloroplast membrane by LCIA, which belongs to a 

formate-nitrite transporter family (Wang and Spalding, 2014; Yamano et al., 2015). It is 

proposed that LCIA cooperates with HLA3 to allow coordinated HCO3
- transport from the 

extracellular space into the chloroplast (Yamano et al., 2015). Finally, three Bestrophin-like 

proteins (BST1-3) have been proposed to transport HCO3
- across the thylakoid membrane 

(Mukherjee et al., 2019) (Fig. 3A). 

Figure 3. Schematic depiction of Ci transport to Rubisco under A) very low-CO2 conditions and B) 

low-CO2 conditions. A) HCO3
- is transported into the stroma by the co-operative action of HLA3 and 

LCIA. B) LCIB/C puncta are required for CO2 conversion to HCO3
- in low-CO2 conditions. In both 

conditions, BST1-3 are required for HCO3
- transport into the thylakoid lumen, where HCO3

- is 

converted to CO2 by CAH3 in close proximity to Rubisco.  

 

 

 

https://paperpile.com/c/yFHiS1/5khAZ
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To convert HCO3
- into CO2 for fixation by Rubisco, carbonic anhydrases are required. 

Carbonic anhydrases are zinc metalloenzymes, in three families (α, β and γ), which 

reversibly convert CO2 and HCO3
- (Momayyezi et al., 2020) (Eq. 1). 

 

HCO3
- + H+ ←→ H2CO3←→ CO2+ H2O             [Equation 1]                                          

 

This interconversion of Ci species is also driven by the pH of the environment. Acidification 

of the thylakoid lumen (pH ~5.7) by the light-dependent reactions creates a pH gradient 

across the thylakoid membrane to the stroma (pH ~8.0 (Takizawa et al., 2007)). The 

conversion of Ci from HCO3
- to CO2 occurs in more acidic environments (pKa= 6.3), in this 

case, the thylakoid lumen (Moroney and Ynalvez, 2007). This requires an α-type carbonic 

anhydrase 3 (CAH3) which speeds up the conversion of HCO3
- to CO2 in the thylakoid lumen 

(Spalding et al., 1983a; Karlsson et al., 1998). The lumenal localisation and activity of CAH3 

is proposed to be controlled by phosphorylation under LC conditions (Blanco-Rivero et al., 

2012). CO2 then diffuses across the thylakoid membrane to the pool of Rubisco in the 

pyrenoid matrix (Sinetova et al., 2012). The morphology of the pyrenoid thylakoids traversing 

the matrix further increases the efficiency of the CCM. As thylakoids enter the matrix, they 

fuse to form tubules containing ~5 mini-tubules, which have lumens continuous with the 

stroma (Engel et al., 2015; Meyer et al., 2016). This allows direct stroma-pyrenoid matrix 

exchange of the substrates and products of Rubisco. 

Under LC conditions, a different Ci transport system is proposed. The predominant 

form of Ci influx is in the form CO2, not HCO3
-, and an additional carbonic anhydrase called 

limiting-CO2-inducible B (LCIB) is required (Fig. 3B). LCIB is critical for the CCM in LC 

conditions because LCIB mutants have an ‘air-dier’ phenotype (Spalding et al., 1983b; Wang 

and Spalding, 2006). Interestingly, LCIB changes in localisation under different CO2 

conditions, from a diffuse localisation in the chloroplast stroma under high CO2 (HC) 

conditions, to puncta localising to the pyrenoid periphery under VLC conditions (Yamano et 

al., 2010). LCIB forms a complex with limiting-CO2 inducible C (LCIC), which is also 

upregulated under LC conditions (Miura et al., 2004; Yamano et al., 2010) (Fig. 2B). We do 

not yet know how the LCIB/C puncta localise to this region and whether the puncta mix 

internally. Whilst the function of LCIB as a carbonic anhydrase has not been confirmed, LCIB 

is proposed to be in a family of β-carbonic anhydrases to act as a CO2 trap, converting CO2 

which escapes the pyrenoid matrix into HCO3
- (Jin et al., 2016) (Fig. 3B). This recycled 

HCO3
- contributes to the HCO3

- stromal pool, is transported by BST1-3 proteins into the 

thylakoid lumen and converted back to CO2 by CAH3 in proximity to Rubisco (Mukherjee et 

al., 2019). Analysis of CCM component interactions by immunoprecipitation coupled to mass 

https://paperpile.com/c/yFHiS1/eEZ6L
https://paperpile.com/c/yFHiS1/eEZ6L
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spectrometry has indicated that LCIB/C may interact with BST1-3 in order to recycle Ci 

(Mackinder et al., 2017; Mukherjee et al., 2019) however further analysis is required to 

corroborate these findings.  

 

The pyrenoid is further categorised into substructures which have 

individual roles in the CCM 

Under LC conditions, 90% of Rubisco is found within the pyrenoid matrix 

(Borkhsenious et al., 1998). Rubisco is aggregated by Essential Pyrenoid Component 1 

(EPYC1), an intrinsically disordered linker protein (Mackinder et al., 2016). EPYC1 is 

essential for CCM function (as shown by O2 evolution and Ci affinity) and for maintaining 

correct pyrenoid number, size and matrix density (Mackinder et al., 2016). EPYC1 has four 

disordered repeats of ~60 amino acids, with a Rubisco-binding motif (RBM) on each repeat, 

meaning each EPYC1 may bind four Rubisco holoenzymes (Mackinder et al., 2016; Meyer 

et al., 2020) (Fig. 2C). An additional EPYC1 Rubisco binding site on the C-terminus has 

been revealed (Atkinson et al., 2019), and the hypothesis that EPYC1 may interact with α-

helices on the small subunit of Rubisco (Mackinder et al., 2016) has been recently supported 

experimentally (Atkinson et al., 2019). EPYC1 contains Rubisco-binding motifs (RBMs) 

which mediate targeting to the pyrenoid matrix (Meyer et al., 2020). 

The pyrenoid matrix was originally thought to be crystalline (Holdsworth, 1968) and 

whilst cryoelectron tomography suggested the matrix is arranged into a hexagonal close-

packed lattice (Engel et al., 2015), evidence for the matrix having liquid properties has been 

put forward (Freeman Rosenzweig et al., 2017). It is now understood that the interaction of 

Rubisco with EPYC1 causes the matrix to undergo a biophysical phenomenon called liquid-

liquid phase separation (LLPS) (Freeman Rosenzweig et al., 2017). LLPS is a process 

where two liquids de-mix, much like oil in water, when components reach a critical 

concentration-dependent threshold (Mitrea and Kriwacki, 2016). LLPS is advantageous 

because it allows compartmentalisation of biochemical processes in a membrane-less 

compartment (Cuevas-Velazquez and Dinneny, 2018). The liquid nature of the pyrenoid 

matrix has been demonstrated by time-lapse imaging of dividing cells, where puncta fuse 

and larger puncta grow at the expense of smaller puncta (known as Ostwald ripening) 

(Freeman Rosenzweig et al., 2017). Furthermore, evidence for the matrix mixing internally 

has been shown in vivo (Freeman Rosenzweig et al., 2017) and in vitro (Wunder et al., 

2018). In vitro analysis has shown that the interaction of Rubisco and EPYC1 alone is 

sufficient to cause the formation of liquid droplets, and that phase-separated Rubisco is 

catalytically active (Wunder et al., 2018). However, further investigation is needed to 

understand how LLPS of the pyrenoid matrix changes under different growth conditions. 

https://paperpile.com/c/yFHiS1/qnS2
https://paperpile.com/c/yFHiS1/qnS2
https://paperpile.com/c/yFHiS1/qnS2
https://paperpile.com/c/yFHiS1/cMqRx
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LLPS of the pyrenoid matrix enables CO2 fixation in the absence of a surrounding 

membrane. However, the pyrenoid matrix is traversed by thylakoid membranes and is 

encapsulated by a starch sheath (Fig. 2B). The organisation of the traversing thylakoids and 

the starch sheath around the matrix is proposed to be mediated by RBM-containing thylakoid 

and starch-associated proteins (Meyer et al., 2020). The starch sheath forms under LC 

conditions and has therefore been proposed to correlate with CCM induction (Ramazanov et 

al., 1994). However, starchless mutants are still able to induce a functional CCM (Villarejo et 

al., 1996). It has been suggested that the starch may act as a barrier to escaping CO2 

(Ramazanov et al., 1994) (Fig. 3) but evidence for the functional role of starch for the CCM 

has been lacking until recently. Starch-sheathless mutants Isoamylase1 and sta11-1 were 

unable to correctly localise LCIB, suggesting the starch sheath may play a role in localising 

puncta containing key CCM components to the pyrenoid periphery (Toyokawa et al., 2020). 

By gaining understanding of the effect of mutations in starch-associated proteins, the role of 

starch is becoming clearer. A Granule Bound Starch Synthase, called GBSSI or STA2, and 

RBM-containing StArch Granules Abnormal 1 (SAGA1) are needed for correct starch sheath 

morphology (Izumo et al., 2011; Itakura et al., 2019; Meyer et al., 2020). A saga1 mutant 

was shown to have multiple pyrenoids (Itakura et al., 2019), suggesting SAGA1 may be 

involved in the natural tendency to form one large pyrenoid, which must be overcome when 

pyrenoids divide. Whilst matrix dynamics have been reported during cell division (Freeman 

Rosenzweig et al., 2017), the movement or role of the starch sheath during pyrenoid division 

has yet to be observed. Gaps between the starch plates making up the starch sheath are 

proposed to be filled with a mesh-layer of a protein called LCI9, a glucan 1,4-α-glucosidase 

potentially involved in starch breakdown (Mackinder et al., 2017) (Fig. 2B). However, the 

mesh or gel-like nature of LCI9 has not been confirmed. This could be further explored by 

studying the recovery of fluorescently-labelled LCI9 after photobleaching (see introduction to 

Chapter 2 for description of fluorescence recovery after photobleaching (FRAP) microscopy 

technique). Slow recovery may help to confirm the hypothesis that LCI9 plays a structural 

role in gluing starch plates together.  

Starch sheath formation and the induction of the CCM must be regulated to respond 

to varying CO2 levels. The acclimation of Chlamydomonas to LC for LCIB-dependent CO2 

recapture and to VLC for HLA3 and LCIA cooperative uptake of HCO3
- (Wang and Spalding, 

2014) requires a Ci sensing mechanism. The current mechanism by which Chlamydomonas 

senses changes in Ci is unknown, however the induction and transcription of CCM genes is 

proposed to be controlled by CCM1, a transcription factor, in LC conditions (Fukuzawa et al., 

2001). Additionally, CCM induction appears to require retrograde calcium signalling from the 

pyrenoid to nucleus involving CAS, a Ca2+-binding protein (Wang et al., 2016). Light is also 
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an important part of CCM regulation as cells synchronised to a light/dark cycle undergo CCM 

induction during the dark-to-light transition (Mitchell et al., 2014).  

The Chlamydomonas CCM may be engineered into higher plants to 

increase crop yields 

The human population is predicted to increase by 2.3 billion people between 2009 

and 2050 (FAO 2009). To sustain our growing population, we will need to double food 

production by 2050 (Tilman et al., 2011). This is a target which is not currently being met 

(Ray et al., 2013), therefore innovative solutions to improve crop production and food 

security are required. Introducing a functional CCM into crop plants has been predicted to 

increase photosynthesis by up to 60% (Long et al., 2015). Cumulative work to understand 

the function of proteins within the algal CCM has enabled targeting of key components, 

including HLA3 and LCIA, to appropriate intracellular locations in Nicotiana benthamiana and 

Arabidopsis thaliana (hereafter Arabidopsis) (Atkinson et al., 2016). Although it was shown 

that HLA3 and LCIA could transport Ci across Xenopus oocyte plasma membranes, no 

growth advantage was shown for expressing HLA3 and LCIA in Arabidopsis (Atkinson et al., 

2016), therefore further work to understand the functional components of the CCM is 

required. More specifically, by gaining further understanding of the dynamic nature of the 

pyrenoid, and interactions of key CCM components, we may better understand the 

requirements for engineering pyrenoids into higher plants (Mackinder, 2017). 

 

Project aims 

Many questions remain unanswered regarding the dynamic nature of key pyrenoid 

components. The first aim of this study is to capture Rubisco, LCIB and LCI9 mobility using a 

method called Fluorescence Recovery After Photobleaching (FRAP) (Chapter 2). The role of 

the starch sheath, particularly the movement and inheritance of starch during the key cellular 

process of division, is also not well understood. The second aim of this study is to use time-

lapse imaging to capture this process, which requires development of a dual-tagged line, 

allowing observation of Rubisco and starch movement simultaneously (Chapter 3). In 

addition, elucidation of potential starch synthesis and degradation candidates by 

bioinformatics is required to gain understanding into starch remodelling during division 

(Chapter 3). The interaction of key pyrenoid components involved in Ci conversion and 

transport also requires further investigation. The recycling of escaping CO2 via LCIB/C and 

BST1-3 is a particularly interesting avenue to explore. The third aim of this study is to 

facilitate investigation into the proximity of key CCM component via Fluorescence 

Resonance Energy Transfer (FRET), by developing appropriate FRET-pair tagged proteins 

(Chapter 4).  

https://paperpile.com/c/yFHiS1/LVyG3


 

17 
  

Chapter 2: Preliminary investigation 
into the mobilities of Rubisco, LCIB 
and LCI9 

 

Chapter summary 

Rubisco in the pyrenoid matrix undergoes a biophysical phenomenon called liquid-liquid 

phase separation (LLPS) with its linker protein Essential Pyrenoid Component 1 (EPYC1). 

Surrounding the pyrenoid matrix are several structures, including a starch plate-like layer 

whose gaps are proposed to be filled with a LCI9-mesh and surrounded by a punctate-layer 

of LCIB/C. The ability of Rubisco to undergo LLPS depends on the growth condition of 

Chlamydomonas, where component concentration and post-translational modifications may 

play a role. The mobility of Rubisco, and other important CCM components (LCIB and LCI9) 

can be tested using Fluorescence Recovery After Photobleaching (FRAP). This study 

highlights progress made on optimisation of FRAP and sample preparation, with preliminary 

results revealing Rubisco mobility is not dependent on growth condition, and LCI9 re-

homogenisation is slow. This work enables future investigation into CCM component 

mobilities, especially in high and low-CO2 conditions. Progress in understanding the mobility 

of CCM components will help guide successful engineering of a CCM into higher plants.  

 

Introduction 

Cellular components require compartmentalisation to carry out key processes, either in 

membrane-bound or membraneless organelles (Choi et al., 2020). The pyrenoid, a 

membraneless organelle, compartmentalises the CO2 fixing enzyme Rubisco via interaction 

with a linker protein, Essential Pyrenoid Component 1 (EPYC1) (Mackinder et al., 2016). 

Rubisco and EPYC1 are integral components of the pyrenoid matrix (Borkhsenious et al., 

1998; Mackinder et al., 2016), which was previously thought to be crystalline (Holdsworth, 

1968). However, recent work has shown that the pyrenoid matrix has liquid properties and 

the pyrenoid is now characterised as a liquid-liquid phase separated (LLPS) organelle 

(Freeman Rosenzweig et al., 2017).  

LLPS is a biophysical phenomenon whereby two liquids can de-mix (like oil in water) 

(Hyman et al., 2014). A polymer-enriched and polymer-depleted phase forms due to 

favourable interactions between components, meaning the entropic tendency to stay mixed 

is overcome (Hyman et al., 2014; Wheeler and Hyman, 2018; Wunder et al., 2019). LLPS 

requires ‘scaffold’ proteins which allow multivalent interactions and may contain low 
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complexity domains (LCD’s) (Wheeler and Hyman, 2018). LCD’s are found interspersed in 

‘scaffold’ proteins and are called spacers, between which reside sticker regions of the 

‘scaffold’ that mediate interactions (Choi et al., 2020). For LLPS to occur, interacting 

components must have appropriate interaction strength, range and valency (Hyman et al., 

2014) and several conditions must be satisfied, including component concentration, pH and 

temperature (Wheeler and Hyman, 2018). Despite this, LLPS is found in a wide range of 

organisms and cell types, including nucleoli in Xenopus laevis, mammalian stress granules 

and the P-granules of the model worm Caenorhabditis elegans (Brangwynne et al., 2011; 

Elbaum-Garfinkle et al., 2015; Kroschwald et al., 2015).   

LLPS of the pyrenoid matrix is possible due to the strength, valency and range of 

EPYC1-Rubisco interactions. Over 80% of EPYC1 consists of four ~60 amino acid repeats, 

which each have a large disordered ‘spacer’ region, and an α-helix ‘sticker’ region 

orchestrating binding to the Rubisco small subunit (SSU) (Mackinder et al., 2016; Atkinson et 

al., 2019). Simultaneously, the Chlamydomonas Rubisco SSU contains 2 α-helices which 

are important for pyrenoid formation (Meyer et al., 2012) as they enable interaction with 

EPYC1 (Atkinson et al., 2019). The multivalency of the Rubisco-EPYC1 interaction has been 

further demonstrated, as an additional SSU interaction site on the C-terminus of EPYC1 has 

been identified (Atkinson et al., 2019), meaning each EPYC1 may interact with five Rubisco 

holoenzymes and it is possible that Rubisco may bind 8 EPYC1 proteins (Mackinder et al., 

2016). The length of EPYC1 is suitable for bridging the 1-4 nm gap between Rubisco 

holoenzymes, and different mobilities of EPYC1 and Rubisco suggest their interaction is 

transient (Freeman Rosenzweig et al., 2017). Rubisco and EPYC1 are proposed to interact 

with low affinity (Freeman Rosenzweig et al., 2017) and undergo LLPS through a process of 

complex coacervation, where polymers with positive charge (EPYC1) and negative charge 

(Rubisco) form a dense droplet phase through electrostatic interactions (Brangwynne et al., 

2015; Wunder et al., 2018). Further support for the pyrenoid matrix as a LLPS organelle 

comes from in vitro reconstitution of liquid droplets with Rubisco and EPYC1 (Wunder et al., 

2018).  

Compartmentalisation of key processes requires separation of components from their 

surroundings and the ability of components to freely diffuse to undertake chemical reactions 

(Hyman et al., 2014). A technique called Fluorescence Recovery After Photobleaching 

(FRAP) has been used to show that components mix internally within LLPS organelles, such 

as mammalian stress granules (Kedersha et al., 2000), P granules from C. elegans 

(Brangwynne et al., 2009) and P-bodies from yeast (Kroschwald et al., 2015). To understand 

the dynamic nature of a protein of interest by measuring its mobility using FRAP, a 

fluorescently-tagged version of the protein must be introduced into a cell (Phair et al., 2004), 

for example by fusing the protein to a Yellow Fluorescent Protein, Venus (Rekas et al., 

https://paperpile.com/c/9byOS0/JcMkW
https://paperpile.com/c/9byOS0/MR3LD
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2002). Within the area of fluorescence, a region of interest (ROI) then receives a short pulse 

from a high-powered focused laser to irreversibly photobleach the fluorophores, making 

proteins ‘invisible’ without changing their concentration or chemistry (Reits and Neefjes, 

2001; Phair et al., 2004). Time-lapse imaging with a low laser power is then used to monitor 

fluorescence ‘recovery’ within this ROI, which can be plotted to acquire a recovery curve 

(Reits and Neefjes, 2001). If proteins are mobile, unbleached molecules outside the region 

of interest will move into the bleached region, and fluorescence will be seen to increase; if 

the proteins are not mobile ‘recovery’ will not occur (Phair et al., 2004). Recovery curves 

allow the calculation of mobile and immobile pools of protein by comparing final and initial 

fluorescence intensities, and the speed of recovery is calculated as half the plateau intensity 

(τ1/2) (Ishikawa-Ankerhold et al., 2012).  

In Chlamydomonas, FRAP has been used to investigate the mobility of Rubisco-

Venus, EPYC1-Venus and RCA1-Venus (Rubisco activase) in vivo (Freeman Rosenzweig et 

al., 2017). In photoautotrophic conditions, it was shown that Rubisco-Venus mixes within the 

pyrenoid; a ‘wave’ of Rubisco-Venus signal moved from the unbleached to bleached half of 

the pyrenoid and the Rubisco-Venus signal re-homogenised after 20s (Freeman 

Rosenzweig et al., 2017). However, questions still remain regarding the nature of Rubisco 

mobility in vivo under different growth conditions, including in the light and dark. It has been 

shown that the localisation and abundance of Rubisco changes through the dark-light 

transition where two hours before dawn ~75% of labelled Rubisco was found in the pyrenoid 

whilst ~90% of Rubisco localised to the pyrenoid in the light period (Mitchell et al., 2014). 

Whilst Chlamydomonas is a photosynthetic organism, it is able to grow using acetate as the 

sole carbon source (Sueoka, 1960) via the glyoxylate cycle (Kunze et al., 2006) and 

therefore can also be grown in the dark. By growing cells with acetate, it has been shown 

that the distribution of Rubisco changes; a greater proportion of Rubisco localises to the 

stroma compared to cells grown in photoautotrophic conditions (Borkhsenious et al., 1998). 

It has been hypothesised that changes in Rubisco distribution under different growth 

conditions requires a phase transition (aggregation to dissolution of components or vice 

versa) (Wunder et al., 2019). Phase transitions may be controlled by the concentration of 

components (Wunder et al., 2018), valency (Li et al., 2012), post-translational modifications 

(Owen and Shewmaker, 2019) and/or metabolites (Patel et al., 2017). Investigation into 

changes of Rubisco mobility under different distributions may aid our understanding of 

EPYC1-Rubisco packing through phase transitions. 

Whilst FRAP has been carried out on components within the pyrenoid matrix, the 

pyrenoid contains at least 3 additional layers including a plate-like layer, a mesh-layer and a 

punctate-layer which have yet to be explored with this technique (Mackinder et al., 2017). 

Like Rubisco, the putative β-carbonic anhydrase LCIB (Jin et al., 2016), which forms a 350 
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kDa hexamer complex with LCIC (Yamano et al., 2010) spatially reorganises under different 

growth conditions. Under HC and LC conditions, LCIB localises to the chloroplast stroma 

(Duanmu et al., 2009; Yamano et al., 2010; Wang and Spalding, 2014) whereas under VLC 

conditions, LCIB is localised to the pyrenoid periphery as puncta in a ring-like structure 

(Yamano et al., 2010; Wang and Spalding, 2014). Similarly to the HC and LC conditions, 

dark-grown cells have a diffuse localisation of LCIB in the stroma (Yamano et al., 2010), 

therefore both CO2 availability and light are required for dynamic relocalisation. It has 

recently been shown that LCIB may be dependent on the starch sheath for localisation to the 

pyrenoid periphery (Toyokawa et al., 2020). The starch sheath, which makes up the plate-

like layer, has gaps between the plates which are proposed to be filled with a mesh-like layer 

of a protein with unknown function, LCI9 (Mackinder et al., 2017). FRAP can be used to 

investigate the mobility of LCIB/C when differentially distributed and could test the 

hypothesis that LCI9 is largely immobile and behaves as a structural mesh. 

To investigate the mobility of CCM components, appropriate sample preparation and 

microscope settings for FRAP needed to be optimised, and preliminary results were 

collected. To undertake preliminary investigations in Rubisco mobility, Chlamydomonas with 

Venus-tagged Rubisco was grown in TP media in the light (photoautotrophically), and in TAP 

media (containing acetate) in the dark (heterotrophically). The use of FRAP to investigate 

the mobility of LCIB and LCI9 in addition to Rubisco mobility under different growth 

conditions may reveal insights into the dynamic nature of the pyrenoid. An initial attempt to 

reconstitute the pyrenoid matrix in higher plants was unsuccessful (Atkinson et al., 2019). 

Future attempts may benefit from gaining understanding of the drivers of phase transitions, 

how the dynamics of additional CCM components contribute to pyrenoid formation, and how 

growth conditions may affect pyrenoid maintenance in algae and higher plants.  
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Methods 

Growth conditions: 

All strains used were maintained on TAP-agar containing paromomycin (20 μg mL-1) and 

then streaked out onto fresh plates to acquire a single colony for liquid growth. Cultures of 

Chlamydomonas cells for testing Rubisco-Venus mobility (RBCS1-Venus, with the native 

copy present) were grown in Tris-minimal (TP) media in the light, and Tris-Acetate-

Phosphate (TAP) media in the dark. These cultures were named photoautotrophic and 

heterotrophic respectively. TP and TAP media at pH 7.4 was used (Gorman and Levine, 

1965) which was optimised with a revised nutrient supplement (Kropat et al., 2011). Cells 

containing LCIB-Venus and LCI9-Venus (with the native copy present) were grown in TP-

light conditions. All cultures were grown on shakers in 25 mL volumes in 100 mL conical 

flasks, with paromomycin (5 μg mL-1). Cultures were grown at air levels of CO2 with a light 

intensity of 150 μmol photons m-2s-1.  

 

Microscopy preparation: 

Colonies with Venus-tagged proteins were grown until they reached a concentration of 2-4 x 

106 cells mL-1. 40 μL of each culture was pipetted into individual wells in a poly-L-lysine 

coated Ibidi plate and allowed to dry for 5 minutes. For Rubisco-Venus and LCIB-Venus, 160 

μL of 1.5% (w/v) low melting point Agar was pipetted into each well and allowed to dry for 5 

minutes. For LCI9-Venus, 3% (w/v) low melting point Agar was used.  

 

Image acquisition: 

Confocal images were acquired using a Zeiss LSM780, with a 63x/1.4 numerical aperture. 

The 514 nm laser was used to excite Venus-tagged proteins. For Rubisco-Venus, acquisition 

laser power was set to 0.3% for photoautotrophic and heterotrophic cultures, and 0.05% for 

LCI9-Venus. For Rubisco-Venus and LCI9-Venus, after 10 pre-bleach images were taken, 

100% laser power for 10 iterations was directed to one half of each pyrenoid. Images were 

taken every 0.9700s for 120s for Rubisco-Venus and every 0.9700s for 300s for LCI9-

Venus.  

 

Image analysis: 

All images were analysed using ImageJ after exporting the bleached region of interest from 

Zeiss. Movement was corrected using the StackReg plugin, or FRAP traces were removed 

from the analysis if correction for movement was not possible. For Rubisco-Venus two 

different analysis methods were attempted.  
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1) Intrapyrenoid homogeneity was calculated as the ratio between the fluorescence intensity 

of the bleached and unbleached regions (bleached intensity divided by unbleached intensity) 

at each time point (Freeman Rosenzweig et al., 2017). All values were then normalised to 

between 0 and 1. 

2) A double normalisation was carried out as described in Phair et al., (2004), by using the 

FRAP Norm Plugin on ImageJ.  

FRAP curves were created using Excel, and for each condition, a mean FRAP curve with 

standard error bars was plotted.  

For LCI9-Venus, the mean gray value was plotted over time for the bleached and 

unbleached halves of the pyrenoid, the whole pyrenoid and a control pyrenoid. 

 

Results 

To investigate the mobility of Rubisco under different growth conditions, Chlamydomonas 

was grown photoautotrophically and heterotrophically and FRAP experiments were carried 

out. Images were taken over 120s, and a high-powered laser was directed to ½ of each 

pyrenoid after 10s of acquisition (Fig. 4A). Rubisco-Venus signal was analysed by the 

intrapyrenoid homogeneity method (Fig. 4B) and the double normalisation method (Fig. 4C). 

Pre-bleach images indicate that heterotrophically grown cells contained smaller pyrenoids, 

and the stromal Rubisco-Venus signal was increased comparatively to the photoautotrophic 

condition (Fig. 4A). Whilst the Rubisco-Venus signal appeared to be lower in heterotrophic 

pyrenoids (Fig. 4A) recovery after photobleaching appeared to be similar to the 

photoautotrophic condition, for both analysis methods (Fig. 4B, C). However, for the 

photoautotrophic condition, the FRAP curves appeared to continue to increase up until 120s 

(Fig. 4B, C), whilst for the heterotrophic condition, the FRAP curves plateaued at ~70s (Fig. 

4B, C).  
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Figure 4. Rubisco-Venus mobility was similar between photoautotrophic (n=11) and heterotrophic 

(n=5) growth conditions. The bleach event occurred 10s into image acquisition.  

A. Representative images for a single FRAP experiment in photoautotrophic and heterotrophic 

conditions. Images of pyrenoids before bleaching occurred (pre-bleach), when bleaching 

occurred (bleach event), and 30s and 90s after the bleach event are shown. A bleaching 

diagram indicates the area of the pyrenoid (yellow) that was bleached (red box). Scale bar = 1 

μm.  

B. The intrapyrenoid homogeneity analysis method (Freeman Rosenzweig et al., 2017) was 

used to produce FRAP curves for each condition, with standard error bars shown.  

C. The double normalisation analysis method (Phair et al., 2004) was used to produce FRAP 

curves for each condition, with standard error bars shown.  

 

To investigate the mobility of proteins outside of the pyrenoid matrix, FRAP was carried out 

on LCIB-Venus and LCI9-Venus. Due to cell movement, quantitative results for LCIB-Venus 

could not be obtained. 3% (w/v) low melting point Agar was trialled for sample preparation of 

LCI9-Venus tagged cells which led to a reduction of cell movement. However only one FRAP 

experiment could be performed meaning the result was very preliminary. This FRAP 

experiment showed LCI9-Venus appeared to re-homogenise after 150s (Fig. 5A) indicating 

recovery was slow. Minimal recovery for plotted LCI9-Venus fluorescence intensity was 

observed (Fig. 5B), however an initial increase of LCI9-Venus recovery occurred between 

10-50s (Fig. 5B).  
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Figure 5. Re-homogenisation of LCI9 occurred after FRAP however recovery was subtle. Image 

acquisition was possible using 3% (w/v) low melting point TP Agar which reduced cell movement.  

A. Representative images for a single FRAP experiment. Images of pyrenoids before bleaching 

occurred (pre-bleach), when bleaching occurred (bleach event), and 30s, 90s and 150s after 

the bleach event are shown. A bleaching diagram indicates the area of the pyrenoid (yellow) 

that was bleached (red box). Scale bar = 1μm.  

B. The mean gray value for LCI9-Venus was plotted for the corresponding pyrenoid in A); ROIs 

for the bleached and unbleached halves of the pyrenoid, the whole pyrenoid and a control 

pyrenoid were plotted over time. The bleach event occurred 10s into image acquisition.  
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Discussion 

Pre-bleach Rubisco-Venus images suggest there is less Rubisco in the pyrenoid 

under heterotrophic conditions 

The observation of smaller pyrenoids with a simultaneously increased stromal signal in 

heterotrophic grown cells (Fig. 4A) agrees with past observations that when 

Chlamydomonas was grown on acetate and in the dark, ~80% (Borkhsenious et al., 1998) 

and ~75% (Mitchell et al., 2014) of Rubisco was localised to the pyrenoid respectively. The 

inability to fully partition Rubisco under these growth conditions may be explained by the 

concentration of EPYC1, as partitioning of Rubisco has been shown to be dependent on 

EPYC1 concentration in vitro (Wunder et al., 2018) and up-regulation of EPYC1 transcription 

and translation occurs at LC and in the light (Turkina et al., 2006; Mackinder et al., 2016). 

Reduced brightness of the Rubisco-Venus signal in the pre-bleach heterotrophic condition 

(Fig. 4A) may be attributed to increased observed changes in Rubisco LSU abundance 

during the day/night cycle, where LSU abundance increased in the light and at the end of the 

dark phase (Recuenco-Muñoz et al., 2015). This agrees with in vitro investigations which 

surmised that the size of the pyrenoid matrix is likely to be component limited (Wunder et al., 

2018). Whilst our preliminary data does not show differences in Rubisco mobility under 

different growth conditions (Fig. 4B, C), the slight dissolution of the pyrenoid matrix in dark 

and acetate-grown cells suggests a phase transition occurs in this condition, and therefore 

further understanding of the driving factors of LLPS is needed.  

Preliminary results confirm internal mixing of Rubisco-Venus in the pyrenoid matrix 

under both heterotrophic and photoautotrophic conditions, and offer avenues for 

improvement for future FRAP acquisition 

Preliminary results show recovery of Rubisco-Venus signal using FRAP in both 

photoautotrophic and heterotrophic conditions (Fig. 4), confirming that Rubisco in the 

pyrenoid matrix is mobile under different growth conditions and cellular metabolic states 

(Freeman Rosenzweig et al., 2017). LLPS organelles facilitate the aggregation of 

components, whilst retaining the ability to allow components to freely diffuse for chemical 

reactions (Hyman et al., 2014). Chlamydomonas benefits from this because the less 

abundant chaperone RCA1 is able to access the active sites of Rubisco holoenzymes to 

remove inhibitory sugar phosphates (Portis, 2003; Freeman Rosenzweig et al., 2017). In this 

study, whilst it was possible to reconstitute previously reported Rubisco dynamics (Freeman 

Rosenzweig et al., 2017), no difference in Rubisco mobility was observed between different 

growth conditions (Fig. 4), possibly due to the preliminary nature of the data collected. Due 

https://paperpile.com/c/9byOS0/WdlHY
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to the optimisation of FRAP in this study, it is now possible to collect further FRAP data 

which may show differences in Rubisco mobility under different growth conditions.  

 An insufficient bleach depth was an issue for the double normalisation analysis 

method where the Rubisco-Venus signal appeared to only decrease by 30% of its original 

value after bleaching (Fig. 4C). Future FRAP experiments should aim to increase the bleach 

depth in the bleached ROI; it is advised to reduce the fluorescent signal by more than 70% 

(Phair et al., 2004). A moderate bleach depth of 40-50% may be observed if a fraction of the 

tagged-protein population undergoes rapid diffusion before collection of the first post-bleach 

image (Phair et al., 2004). However, re-homogenisation was previously reported to take 

~20s (Freeman Rosenzweig et al., 2017) and bleaching was not visually obvious for the 

heterotrophic condition (Fig. 4A). Therefore, bleach depth should be increased by increasing 

laser iterations, however to avoid ‘spill over’ bleaching in adjacent areas, a smaller bleaching 

ROI may be needed.  

In addition to unintentional bleaching of adjacent areas, unwanted bleaching through 

acquisition should also be minimised. Ideally a control pyrenoid should be included within the 

image frame, and less than ~10% of signal dimming from 50-100 images should take place 

(Phair et al., 2004). Another complication can arise from data noise due to cell movement 

(Phair et al., 2004). This can be improved through taking results from small areas inside 

large bleach areas, or by allowing cells to equilibrate to the temperature of the microscope 

for some time (>30 min) before imaging (Phair et al., 2004). Both of these techniques were 

implemented for the gathering of results in this study, however if cells are left to acclimatise 

for considerable time, it would be advisable to use anti-evaporation oil (Ibidi) on top of the 

loaded sample. In this study, no additional light (mounted onto the microscope stage) was 

used, however this would be recommended to ensure the CCM remains induced during 

imaging. After further optimisation of sample loading and acquisition, an appropriate analysis 

method should be chosen with care. Whilst intrapyrenoid homogeneity was used previously 

to measure re-homogenisation of Rubisco-Venus in the pyrenoid after FRAP (Freeman 

Rosenzweig et al., 2017), this analysis method is not suitable for investigation of Rubisco (or 

LCIB) mobility when dispersed in the stroma. Whilst it was not possible to observe 

differences in Rubisco-Venus mobility under this experimental set-up, there is much 

evidence to suggest growth conditions may play a role in LLPS.  

Under different growth conditions, metabolic pathways and ATP availability varies. A 

study on the green alga Chlorella pyrenoidosa revealed that in heterotrophic conditions, the 

theoretical ATP yield is higher (19.3 g/mol) than in autotrophic conditions (3.11 g/mol), as 

ATP is utilised in the Calvin cycle (Yang et al., 2000). ATP acts as a hydrotrope, meaning it 

can solubilize hydrophobic molecules, preventing LLPS (Patel et al., 2017). Energy 

availability depending on growth condition may therefore contribute to or prevent formation 

https://paperpile.com/c/9byOS0/Cmec6
https://paperpile.com/c/9byOS0/Cmec6
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of LLPS droplets but may also affect the mobility of components. The viscosity of LLPS 

nucleoli in Xenopus laevis oocytes was proposed to be dependent on metabolic activity, 

where ATP depletion led to ~10-fold increase in viscosity (Brangwynne et al., 2011). In 

yeast, it has been shown that nutrient depletion can cause assembly and disassembly of 

foci; adenine subtraction caused the purine biosynthetic enzyme Ade4-GFP to form puncta, 

and glutamine synthase (Gln1-GFP) puncta formed reversibly in response to glucose 

fluctuations (Narayanaswamy et al., 2009). Further examination of ATP and other 

metabolites as contributors to LLPS in Chlamydomonas is required, as understanding how 

different metabolic pathways under varying growth conditions contribute to LLPS could be 

vital when engineering a pyrenoid into higher plants.  

 

Concentration-dependence and post-translational modifications may contribute to 

LLPS 

 LLPS is dependent on several factors, including the concentrations of components, 

temperature and pH (Wheeler and Hyman, 2018). To undergo phase separation, a threshold 

concentration of associating components must be reached (Choi et al., 2020). In vitro phase 

separation of CCM components was possible with 1 μM EPYC1 and 0.5 μM Rubisco 

(Wunder et al., 2018). The concentration of Rubisco in plant chloroplasts (~500 μM (Harris 

and Königer, 1997)) is similar to in Chlamydomonas (~628 μM (Freeman Rosenzweig et al., 

2017)) meaning the concentration of EPYC1 needed for higher plant Rubisco de-mixing 

could be similar to Chlamydomonas concentrations. However, whilst the estimated 

stoichiometry of EPYC1 to Rubisco LSU in Chlamydomonas under LC is ~1:6 (Mackinder et 

al., 2016), and in vitro one to four EPYC1 proteins interacted with eight Rubisco LSUs 

(Wunder et al., 2018), reconstitution of droplets in planta was not possible due to the low 

concentration of EPYC1 to Rubisco LSU (~1:84 (Atkinson et al., 2019)). This low EPYC1 

concentration was attributed to proteolytic degradation in the chloroplast of Arabidopsis 

(Nishimura et al., 2017; Atkinson et al., 2019) suggesting further knowledge of EPYC1 

regulation is needed. It could be speculated that increased concentrations of EPYC1 under a 

particular growth condition may lead to increased Rubisco-EPYC1 binding and increased 

packing of Rubisco, leading to decreased Rubisco mobility. To study the effect of EPYC1 

concentration on the mobility of Rubisco, FRAP could be carried out using an in vitro system 

(Wunder et al., 2018) with addition of different concentrations of EPYC1. 

 Regulation of EPYC1-Rubisco binding affinity may occur post-translationally through 

phosphorylation of EPYC1, or Rubisco methylation (Turkina et al., 2006; Wang et al., 2014a; 

Mackinder et al., 2016). In C. elegans it has been proposed that phosphorylation of highly 

disordered proteins involved in droplet formation (MEG proteins) causes disassembly of P 

granules (Wang et al., 2014b). Alternatively, phosphorylation can cause assembly of 

https://paperpile.com/c/9byOS0/OHwTL
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mammalian stress granules (Kedersha et al., 2016), and may allow incorporation of 

additional components into the droplet (Kwon et al., 2013). Regulation of phase transitions 

through phosphorylation (Li et al., 2012) may suggest the importance of kinase activity for 

LLPS. EPYC1 phosphorylation may initiate interaction with phosphoprotein-binding 14-3-3 

proteins FTT1 and FTT2, possibly leading to changes in EPYC1 activity or EPYC1-Rubisco 

binding (Chevalier et al., 2009; Mackinder et al., 2017). Alternatively, methylation, particularly 

of arginine residues, may play a role in mediating protein-protein interactions (Hughes and 

Waters, 2006). Methylation of Chlamydomonas Rubisco has been reported (Taylor et al., 

2001) and may be carried out by the putative methyltransferase CIA6 (Ma et al., 2011). 

EPYC1 was shown to be phosphorylated in LC conditions (Turkina et al., 2006), therefore 

different growth conditions may influence post-translational modifications of Rubisco and 

EPYC1. Perturbations of phosphorylation sites in EPYC1 (Turkina et al., 2006; Wang et al., 

2014a) followed by attempted in vitro reconstitution of droplets (Wunder et al., 2018) and 

FRAP may elucidate the role of EPYC1 phosphorylation on Rubisco mobility.  

 

Optimisation of FRAP for LCIB and LCI9-Venus allows further investigation of the 

mobility of peripheral pyrenoid components 

Successful optimisation of sample loading for FRAP in this study enables future 

investigation into the mobility of proteins which form structures smaller than the pyrenoid 

matrix (~1-2 μm). 3% (w/v) low melting point TP Agar reduced movement of cells tagged 

with LCI9-Venus (Fig. 5). After FRAP, LCI9-Venus recovery occurred, however re-

homogenisation was slow (Fig. 5A) and was not obvious from quantitative measurement 

(Fig. 5B). However, recovery may appear to be reduced due to acquisition photobleaching, 

as a 21% decrease in the control pyrenoid signal was observed (Fig. 5B). These preliminary 

results may provide evidence for the hypothesis that LCI9 acts as a mesh, filling the gaps 

between starch plates (Mackinder et al., 2017). However, the LCI9-Venus signal appeared to 

recover between 10-50s (Fig. 5B), which may suggest there is more than one fraction of 

LCI9: an immobile fraction which acts as a structural mesh, and a mobile fraction which 

recovers quickly after photobleaching. Slow visual re-homogenisation suggests that if there 

is a mobile fraction, it is probably smaller than the immobile fraction (Fig. 5A). LCI9 may be 

involved in re-modelling the starch sheath at plate junctions, as LCI9 contains two 

carbohydrate-binding module (CBM) 20 domains, and may act as a glucan 1,4-α-

glucosidase (Mackinder et al., 2017).  

Whilst the results for LCI9-Venus mobility are preliminary, optimisation of FRAP for 

future experiments was achieved. Using 3% (w/v) low melting point TP agar on LCIB-Venus 

tagged cells may overcome previous problems of cell movement. There is much evidence 

supporting the mobility of LCIB under different CO2 and light conditions (Duanmu et al., 

https://paperpile.com/c/9byOS0/AQzqK
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2009; Yamano et al., 2010; Wang and Spalding, 2014), therefore LCIB would be an 

interesting target for FRAP. Recently, the localisation of LCIB has been shown to be 

dependent on the starch sheath (Toyokawa et al., 2020), therefore it would also be 

interesting to investigate the mobility of LCIB when it is both localised to the pyrenoid 

periphery and starch sheath and while it is diffuse in the stroma (Yamano et al., 2010). The 

mechanism which underlies the movement of LCIB under different conditions is unknown, 

however it could be hypothesised that its complex-forming partner LCIC carries out this 

function. It would be interesting to use FRAP to investigate the mobility of LCIC alongside 

LCIB, which presumably have similar mobilities. LCIB is able to form puncta both at the 

pyrenoid periphery and in the stroma (Yamano et al., 2010), which are reminiscent of LLPS 

droplets. Whilst puncta are too small to test internal mixing with the FRAP set-up in this 

study, time-lapse imaging using LCIB-Venus tagged cells may indicate if puncta can 

undergo fusion and dissolution like the pyrenoid matrix and other LLPS organelles 

(Brangwynne et al., 2011; Freeman Rosenzweig et al., 2017). Carbonic anhydrase activity of 

LCIB has yet to be experimentally determined, however LCIB shares a similar structure to a 

family of β-carbonic anhydrases (Jin et al., 2016). In Arabidopsis the cytoplasmic β-carbonic 

anhydrases CAH2 and CAH4 have been shown to be important for plant growth at low CO2 

(DiMario et al., 2016). Therefore, whilst further investigation into the importance of LCIB/C 

mobility and function is required in Chlamydomonas, future FRAP results may aid CCM 

engineering into higher plants. Overall, future experimentation has been enabled with the 

optimisation of FRAP in this study. 

 

 

 

 

 

 

 

https://paperpile.com/c/9byOS0/6xkMH
https://paperpile.com/c/9byOS0/0opqG
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Chapter 3: Pyrenoid starch sheath 
dynamics during division 
 

Chapter summary 

During cell division, organelles and organellar components must be partitioned for 

inheritance by daughter cells. It is not yet known how the starch sheath surrounding the 

pyrenoid matrix of Chlamydomonas is inherited during division. To gain insight into this 

process, previously published matrix division dynamics were re-produced using time-lapse 

imaging of lines expressing fluorescently-tagged Rubisco. Characteristics commonly seen in 

LLPS organelles were observed, including a phase transition, followed by formation of 

puncta de novo which coalesced. The creation of dual-tagged Rubisco-starch lines allowed 

hypotheses to be put forward for the involvement of the starch sheath during pyrenoid 

division: a passive role for starch association with the matrix, an active role for starch 

“pinching off” matrix, sequential starch degradation and synthesis, and dissociation of the 

starch to allow matrix “escape”. Further exploration of the starch degradation and synthesis 

hypothesis was carried out using known Arabidopsis starch modifying enzymes to BLAST for 

Chlamydomonas homologs. Previously published mRNA expression data was then used to 

find candidates with peak mRNA abundance during the division window. This further refined 

candidates that may be involved in starch granule initiation (Cre10.g457500), starch 

synthesis (the coiled-coil containing soluble starch synthases 2 and 6), and degradation 

(including PHO2 and STA4) during division. Proteins with AMPK1 carbohydrate-binding 

modules (CBMs) within the CBM48 family, and phosphofructokinases 1 and 2 may also be 

involved in modifying starch during division. By furthering our understanding of the 

involvement of the starch sheath during a vital cellular process, we hope to gain insight into 

the requirements needed to engineer a pyrenoid into higher plants.  

Introduction 

Plant cell division requires controlled partitioning of cellular components, including 

organelles, into each daughter cell (Sheahan et al., 2004). Whilst most eukaryotes carry out 

binary division, Chlamydomonas undergoes multiple fission events (Heldt et al., 2020). This 

is enabled by a prolonged G1 phase causing cell size to increase by more than 2-fold 

followed by alternating phases of DNA synthesis and mitosis (Cross and Umen, 2015). The 

volume of the mother cell determines the number of divisions per cell cycle, producing 2, 4, 

8, 16 or 32 cells, with daughter cells having uniform size (Lien and Knutsen, 1979; Craigie 

and Cavalier-Smith, 1982). Chlamydomonas grows during the day and carries out DNA 
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synthesis and division at night (Cross and Umen, 2015). Division is controlled by light 

intensity, growth rate and starch reserves which supply energy (Vítová et al., 2011). Similar 

to Arabidopsis, Chlamydomonas accumulates starch during the day, which is then degraded 

at night, when grown autotrophically (Levi and Gibbs, 1984; Klein, 1987; Thyssen et al., 

2001; Graf et al., 2010; Zones et al., 2015).  

In Chlamydomonas, there are two fractions of starch, the pyrenoid starch sheath 

which forms under LC conditions and the stromal starch which accumulates under HC 

conditions (Kuchitsu et al., 1988). The stromal and pyrenoid starch pools are structurally 

distinct, as seen by their absorbance spectra, with pyrenoid starch suggested to have more 

amylopectin (Kuchitsu et al., 1988). Pyrenoid starch sheath granules are ‘contorted’ in order 

to form a close fit around the pyrenoid matrix and therefore pose a challenge to starch 

granule morphogenesis (Izumo et al., 2011). It has been postulated that starch (along with 

cell size) plays a critical role in division, as it may be needed to pass a commitment point 

(Vítová et al., 2011). However, how the stromal and pyrenoid pools of starch contribute to 

division is not yet known. Pyrenoid fission (which takes ~7 min) occurs at the end of 

chloroplast division (which takes ~30-80 min) and is driven by the chloroplast cleavage 

furrow (Johnson and Porter, 1968; Goodenough, 1970; Freeman Rosenzweig et al., 2017). 

FTSZ proteins mediate chloroplast cleavage by forming a contractile ring at the chloroplast 

midpoint (Vitha et al., 2001), and have circadian expression along with MIND and MINE1 

proteins which are proposed to be involved in FTSZ ring positioning (Colletti et al., 2000; Hu 

et al., 2008).  

The movement of Rubisco within the pyrenoid matrix during division has been 

characterised and shows that the pyrenoid matrix is inherited by elongation and fission 

(Goodenough, 1970) or by de novo synthesis (Freeman Rosenzweig et al., 2017). For the 

former, it was shown that when a mother pyrenoid divides, matrix material elongates forming 

a dumbbell shape, with two puncta joined by a bridge of matrix material. The puncta then 

separate to form two daughter pyrenoids (Freeman Rosenzweig et al., 2017). It is not clear 

how the starch sheath is involved when the matrix elongates and forms a bridge between 

daughter pyrenoids before fission (Freeman Rosenzweig et al., 2017). For either inheritance 

pattern, Rubisco was shown to disperse and undergo a partial phase transition from 

aggregated to partially soluble (Freeman Rosenzweig et al., 2017). However, the crystalline 

starch sheath surrounding the matrix presumably restricts the movement of Rubisco from the 

matrix into the stroma during this phase transition.  The aim of this study was to generate a 

dual-tagged Rubisco-starch line to observe Rubisco and starch dynamics simultaneously in 

dividing cells. By growing Chlamydomonas in a 12 h light/12 h dark cycle, cell division can 

be synchronised to ~1 hour after transition to the dark phase for time-lapse imaging (Fig. 6A) 

(Cross and Umen, 2015; Onishi et al., 2019).  

https://paperpile.com/c/DmOaX1/dyk8E
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Figure 6. Overview of the life cycle of Chlamydomonas and key steps in starch synthesis and 

degradation. 

A. Timeline of mRNA sampling frequency over a 24 h cycle, with a 12 h light/12 h dark regime. 

The timing of cell division is indicated with black arrows. Respective diagrams of Chlamydomonas 

cells at key stages are shown, with cell division and dispersal of Rubisco into the stroma occurring at  

-11h and 13h. Cell growth and pyrenoid starch sheath formation occurs during the light phase. The 

pyrenoid matrix is indicated with cyan and the starch sheath is indicated with dark blue. Adapted from 

Strenkert et al., (2019). 

B. Overview of key enzymes involved in starch synthesis and degradation, adapted from Streb 

and Zeeman (2012). The conversion of Fructose-6-phosphate (Fru6P), Glucose-6-phosphate 

(Glu6P), Glucose-1-Phosphate and Adenosine di-phosphate-glucose (ADPGlc) to starch requires 

phosphoglucose isomerase (PGI), phosphoglucomutase 1 (PGM1), ADPGlc-pyrophosphorylase 

(AGPase), starch synthases (SSs), starch branching enzymes (SBEs) and debranching enzymes 

(DBEs). Starch degradation involves a network of kinases (α-glucan, dikinase (GWD1) and 

phosphoglucan, water dikinase (PWD)), dephosphorylases (Starch Excess 4 (SEX4) and Like Sex 

Four 2 (LSF2)), β-amylases (BAMs), α-amylases (AMYs), debranching enzymes (isoamylase 3 (ISA3) 

and limit dextrinase (LDA)), starch phosphorylases (PHSs) and disproportionating enzymes (DPEs). 
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Starch is an important storage polysaccharide for photosynthetic green algae and 

plants (Ball and Morell, 2003) and is synthesised from ADP-glucose monomers into amylose 

and amylopectin polymers. Amylose is mostly unbranched and made from long chains of α-

1,4-linked glucose. Amylopectin, which is the more abundant polysaccharide, also contains 

α-1,6-linked glucose which leads to the formation of branches. Branching allows adjacent 

chains of α-1,4-linked glucose to form a double helical structure. This leads to the formation 

of ordered, semi-crystalline starch granules (Ball and Morell, 2003; Smith and Zeeman, 

2020).  

In photosynthetic organisms, the substrates required for starch synthesis are 

produced through the Calvin-Benson-Bassham cycle (Smith and Zeeman, 2020). In 

microalgae, enzymes involved in starch synthesis are exclusively localised inside the 

chloroplast (Kombrink and Wöber, 1980; Levi and Gibbs, 1984). Phosphoglucose isomerase 

(PGI) is responsible for reversible isomerisation of Fructose-6-phosphate (Fru6P) and 

Glucose-6-phosphate (Glu6P) (Smith and Doolittle, 1992), which is then reversibly converted 

to Glucose-1-phosphate (Glc1P) by phosphoglucomutase (Caspar et al., 1985; Streb et al., 

2009). The synthesis of adenosine di-phosphate (ADP)-glucose monomers requires ADP-

glucose pyrophosphorylase (AGPase) (Espada, 1962; Smith et al., 1997).  

ADP-glucose is then synthesised into polysaccharides through the action of starch 

synthases, starch branching and debranching enzymes (Fig. 6B) (Smith and Zeeman, 2020). 

Starch synthases (SSs) use AGPGlc to elongate glucan chains by catalysing the formation 

of α-1,4 glycosidic bonds, and can be soluble or granule bound (GBSSI). Starch branching 

enzymes (SBEs/glucanotransferases) make α-1,6-linkages (branch points) by cutting α-1,4-

linked glucose chains (Dumez et al., 2006; Streb and Zeeman, 2012). Debranching enzymes 

(DBEs/mostly isoamylases) hydrolyse α-1,6-linkages which are needed to maintain correct 

amylopectin branching patterns (Delatte et al., 2005; Streb et al., 2008; Streb and Zeeman, 

2012). In Arabidopsis starch granule initiation involves starch synthases (SS4 and SS5), the 

coiled-coil containing proteins MYOSIN-RESEMBLING CHLOROPLAST PROTEIN (MRC) 

and MAR BINDING FILAMENT-LIKE PROTEIN1 (MFP1), and PROTEIN TARGETING TO 

STARCH proteins (PTST2 and 3) (Roldán et al., 2007; Ragel et al., 2013; Seung et al., 

2017, Seung et al., 2018; Abt et al., 2020). Arabidopsis PTST1 is required to localise GBSSI 

to starch granules (Seung et al., 2015).  

Granule-bound starch synthase (GBSSI), named STA2 in Chlamydomonas, has 

been reported to be important for amylose synthesis, either by addition of amylose to pre-

existing amylopectin, or by de novo synthesis (Delrue et al., 1992; Wattebled et al., 2002). 

GBSSI requires pre-existing amylopectin to extend amylose chains (Dauvillee et al., 1999) 

but it has also been suggested that GBSSI synthesises amylopectin itself (Delrue et al., 

1992; Maddelein et al., 1994). GBSSI has been identified in a range of plant species, 

https://paperpile.com/c/DmOaX1/sqnMx+UlOT6
https://paperpile.com/c/DmOaX1/sqnMx+UlOT6
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however the Chlamydomonas homolog STA2 has been shown to have 10-50 fold higher 

activity than vascular plant GBSSI activity (van de Wal, 2000; Wattebled et al., 2002). STA2 

has been proposed to contribute to the fusion of starch granules (Wattebled et al., 2002) 

which may help to keep the starch plates contorted into a tight fit around the pyrenoid (Izumo 

et al., 2011). STA2 has also been implicated in the CCM, as STA2 mRNA abundance 

increases (Miura et al., 2004) in conjunction with starch sheath formation under LC (Kuchitsu 

et al., 1988).  

Unlike starch synthesis, which requires a linear pathway, starch degradation in the 

chloroplasts of plants involves a network of enzymes (Fig. 6B) (Streb and Zeeman, 2012), 

which lead to the production of Glc1P, glucose and maltose (Lloyd et al., 2005). 

Phosphorylation of starch is required for degradation, which is carried out by α-glucan, 

dikinase (GWD1) and phosphoglucan, water dikinase (PWD) (Ritte et al., 2006). 

Phosphorylation disrupts the packing of amylopectin, leading to destabilisation of double 

helices (Hansen et al., 2009), meaning the starch granule surface becomes more soluble 

and available for attack by other enzymes (Hejazi et al., 2008). Conversely the 

dephosphorylases Starch Excess 4 (SEX4) and Like Sex Four 2 (LSF2) are required to 

release phosphate from amylopectin (Hejazi et al., 2010; Santelia et al., 2011). 

Dephosphorylation is required for the function of β-amylases (BAMs), which hydrolyse linear 

chains at non-reducing ends (Tabata et al., 1978; Lao et al., 1999; Fulton et al., 2008). The 

hydrolysis of internal α-1,4-bonds is carried out by α-amylases (AMYs) (Stanley et al., 2002) 

whilst the starch debranching enzymes isoamylase 3 (ISA3) and limit dextrinase (LDA) act 

on α-1,6-linkages (Wattebled et al., 2005; Delatte et al., 2006). Arabidopsis α-glucan starch 

phosphorylases (PHSs (or PHOs in Chlamydomonas)) catalyse the breakdown of starch by 

releasing Glc1P from the non-reducing ends of α-1,4-linked polysaccharides (Dauvillée et 

al., 2006). Disproportionating enzymes (DPEs) degrade starch by transferring glucose to an 

acceptor, releasing a glucan moiety at the non-reducing end (Critchley et al., 2001; Streb 

and Zeeman, 2012; O’Neill et al., 2015).  

The identification of starchless mutants in Chlamydomonas with functional CCMs 

(Villarejo et al., 1996) may suggest that the starch sheath is merely a consequence of high 

pyrenoid metabolic activity causing an accumulation of adjacent metabolites, such as ADP-

glucose and 3PGA (Ball et al., 1991; Izumo et al., 2011). However the starch sheath is 

hypothesised to act as a barrier to CO2 escaping the pyrenoid matrix (Ramazanov et al., 

1994). Carboxysomes, which play a role in the CCMs of cyanobacteria, are surrounded by a 

proteinaceous shell which has also been implicated in trapping CO2 (Dou et al., 2008). 

Additionally, the carboxysome shell is suggested to sequester Rubisco for protection from 

O2, and therefore the wasteful process of photorespiration (Colman, 1989), suggesting 

pyrenoid starch may also have this role. Recently, it has been shown that starch sheath-less 
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mutants with defective CCMs (Isoamylase1 and sta11-1) have aberrant LCIB localisation 

(Toyokawa et al., 2020), which is also suggested to trap CO2 (Yamano et al., 2010), 

suggesting the starch sheath may be involved in anchoring additional CO2 recapture 

components to the pyrenoid periphery.  

The green alga Ostreococcus tauri has a single centrally-located starch granule 

which elongates, divides and partitions into daughter cells during plastid division (Ral et al., 

2004), however little is known about starch-partitioning in Chlamydomonas. A previous 

observation suggested the starch sheath remains associated with the pyrenoid matrix during 

pyrenoid fission (Goodenough, 1970). StArch Granules Abnormal 1 (SAGA1), a protein 

found at the interface of the pyrenoid matrix and the starch sheath (Itakura et al., 2019), may 

serve as a linker between the starch sheath and the matrix during division. Alternatively, 

starch sheath degradation may occur as is suggested for starch granule partitioning at the 

plastid constriction site in O. tauri (Ral et al., 2004), which may be followed by sequential 

pyrenoid starch synthesis in daughter cells. Depending on the extent of degradation, new 

starch granules may need to be initiated, however little is known about the proteins involved 

in starch granule initiation in algae (Seung et al., 2017, Seung et al., 2018; Seung and 

Smith, 2019). Alternatively, movement of the thylakoids may be involved in pyrenoid starch 

sheath dynamics during division. For initial investigation of these hypotheses, time-lapse 

microscopy was carried out to image starch sheath movement (via mCherry-tagged STA2) 

whilst simultaneously capturing Rubisco movement (via Venus-tagged Rubisco), and 

compared to already published Rubisco dynamics (Freeman Rosenzweig et al., 2017).  

To investigate the role of starch synthesis and degradation during pyrenoid division, 

a bioinformatics approach was used. Genes which carry out similar functions in 

Chlamydomonas cluster their expression together (Strenkert et al., 2019), including many 

CCM genes which are co-expressed in the middle of the day (Strenkert et al., 2019) and 

chloroplast division genes which have peak expression during the light-dark transition (Hu et 

al., 2008; Zones et al., 2015). The diurnal rhythm of transitory starch synthesis and 

degradation, with the former occurring during the day, and the latter at night (Lu et al., 2005) 

may also be controlled by diurnal oscillations in expression of key starch modifying genes 

(Strenkert et al., 2019). The aim of this bioinformatics approach was to firstly identify genes 

in Chlamydomonas involved in starch modification. This was followed by analysis of mRNA 

expression data for these genes during the division window, with a goal to elucidate players 

in synthesis and/or degradation during pyrenoid division. Recent work suggests proteins 

which contain disorder, coiled-coil and carbohydrate-binding module (CBM) 20 domains are 

important for the starch sheath surrounding the pyrenoid (Itakura et al., 2019). Therefore, 

starch modifying candidates with mRNA abundance coinciding with the division window were 

analysed for these properties. By gaining insight into the role of starch during the division of 

https://paperpile.com/c/DmOaX1/JrRG
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the pyrenoid, we may better understand the starch-related requirements for engineering a 

pyrenoid into higher plants.  

 

Methods 

The methods used to gather preliminary data and proposed methods for gathering additional 

data are outlined below.  

 

Chlamydomonas transformation: 

The STA2-mCherry containing plasmid (with hygromycin resistance, available from the 

Chlamydomonas Resource Center) was extracted (Plasmid Mini Kit, QIAGEN) and 

linearised by restriction enzyme digest with EcoRV. 10 μL of the linearised plasmid, at a 

concentration of 14.5 ng kb-1 was prepared. Chlamydomonas wild type and single-tagged 

Rubisco-Venus (RBCS1-Venus) cells were grown up to concentrations of 5 x106 mL-1 in a 

100 mL volume of TAP and for the tagged cells, with paromomycin (5 µg mL-1). Cells were 

grown with 50 μmol photons m-2 s-1 light and stirred at 125 rpm. Cultures were transferred to 

50 mL screw-cap plastic tubes and centrifuged at 1000 g for 4 min at room temperature. The 

supernatant was removed, and pellets were resuspended in TAP-sucrose (40 mM) to make 

a concentration of 5 x 107 mL-1. 250 μL of each cell suspension was transferred to a 0.4 cm 

gap electroporation cuvette. Cells were incubated at 16°C for 5 min and 10 μL of the 

linearised plasmid was pipetted into each cuvette. Cells were electroporated at 800 V and 20 

μF with a Gene Pulser II (Bio-Rad). Cells were immediately recovered by transfer to 8 mL of 

TAP-sucrose in screw-cap plastic tubes. These screw-cap plastic tubes were shaken 

horizontally at 125 rpm for 16 hours, in the dark. Cells were then centrifuged for 4 min at 

1000 g,  the supernatant was removed retaining ~500 µL. Cells were resuspended and 

plated onto TAP-agar plates containing hygromycin (25 µg mL-1) and paromomycin (20 µg 

mL-1). Plates were kept in low light (2-10 μmol photons m-2 s-1) for ~2 weeks when colonies 

appeared. The native copies of Rubisco and STA2 in the dual-tagged line were present.  

 

Screening transformants for STA2-mCherry fluorescence: 

A 96-well culture plate was prepared containing 200 μL of liquid TAP in each well with 

appropriate antibiotics (hygromycin (6.25 µg mL-1) for the single-tagged lines and 

paromomycin (5 µg mL-1) and hygromycin for dual tagged lines). Individual colonies were 

numbered and transferred to each well and were left to grow for 5 days in 50 μmol photons 

m-2 s-1 shaking at 125 rpm. 50 μL of each culture was transferred to 100 μL of liquid Tris-

Phosphate (TP) (with appropriate antibiotics) in a new 96-well plate for 24 hours. A 
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ClarioStar plate reader (Tecan M1000Pro) was used to check for mCherry fluorescence 

using excitation 585/12 nm and emission 615/12 nm.  

 

Confocal microscopy preparation: 

Candidate colonies were grown in liquid TAP (and antibiotics) in a volume of 2 mL in 15 mL 

screw-cap plastic tubes for 5 days at 125 rpm and 50 μmol photons m-2 s-1. Cells were 

upscaled and grown in 25 mL of liquid TAP (and antibiotics) for 2 days in 100 mL conical 

flasks with shaking. 24 hours before image acquisition, cells were centrifuged at 1000 g for 4 

min, the supernatant removed, and re-suspended in 25 mL of TP in 100 mL conical flasks. 

Cells were grown as before. 40 μL of each culture was pipetted into individual wells in a 

poly-L-lysine coated Ibidi plate and allowed to dry for 5 minutes. 160 μL of 1.5% (w/v) TP 

low-melting-point agarose at ~34°C was pipetted into each well and allowed to dry for a 

further 5 minutes. 200 μL of anti-evaporation oil (Ibidi) was pipetted on top.  

Confocal microscopy image acquisition and analysis 

Images were taken using a LSM880 (zeiss) confocal microscope with an Airyscan module 

and a x63 objective. Excitation lasers and emission filters are as follows: Venus excitation 

488 nm, emission 420-480 nm; mCherry excitation 561 nm, emission 570-620 nm; 

chlorophyll excitation 633 nm, emission 495-550 nm. For the time-lapse, a Z-stack of 20 

slices (6.9 μm range, 0.36μm intervals) was taken every 15 min for 80 cycles. A large field of 

view (zoom=1) allowed for imaging of many cells simultaneously. For the Rubisco-Venus 

time-lapse analysis, CZI images were exported to FIJI (Schindelin et al., 2012) as virtual 

stacks and for each time point, the pixels from the Z-stack were summed. To measure 

Rubisco-Venus fluorescence over time, Regions of Interest were drawn on the summed Z-

stack and RawIntDen values were exported to Excel. The dual-tagged Z-stack CZI images 

were exported to FIJI as virtual stacks.  

Proposed growth conditions and image acquisition for time-lapse microscopy of 

synchronised cells: 

Cells from two colonies (2 biological repeats) should be grown for 5 days in 2 mL of liquid 

TAP in a 15 mL screw-cap plastic tube (with hygromycin and paromomycin). 1 mL of each 

liquid culture should be upscaled into 40 mL of liquid TAP (with antibiotics) in a 100 mL 

duran bottle with magnetic stirrer. The two up-scaled cultures should be stirred at 180 rpm in 

50 μmol photons m-2s-1 light under a 12-hour light/ 12-hour dark cycle to synchronise 

cultures. Chlamydomonas should be imaged 1 hour after the light to dark transition when 

division occurs (Onishi et al., 2019). Cultures should be subcultured so that cells remain in 

the exponential phase (~1-4 x 106 mL-1) and should be synchronised after 2 weeks. 
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Alternatively, larger volumes of cultures could be grown in 150 μmol photons m-2s-1 and 

bubbled in 0.04% volume CO2, stirred and synchronised as above. Microscopy preparation 

should be carried out as above and the microscope settings reused. 

 

Starch modifier bioinformatics 

Candidates were identified using known starch modifying Arabidopsis genes identified in 

Streb and Zeeman (2012) which were used to BLAST (Goodstein et al., 2012) for 

homologues in Chlamydomonas using Phytozome V13; https://phytozome-next.jgi.doe.gov/. 

Further candidates were identified by downloading protein sequences from the 

Chlamydomonas genome annotated by PFAM to have carbohydrate-binding modules 

(CBMs), and from literature searches (Ball, 2002; Zhan et al., 2018). Candidates were then 

screened for mRNA expression that was elevated or peaked during division (~1 hour after 

lights off) (Strenkert et al., 2019). Only candidates with a mean per kilobase of transcript per 

million mapped reads (FPKM) value over the time course which equalled >1 were included. 

Candidates with p-values less than 1 x 10-10 were included ((Zones et al., 2015; Hughes, 

Hogenesch and Kornacker, 2010) using the algorithm JTK (Jonckheere-Terpstra-Kendall) 

cycle). Expression data was normalised to between 0 and 1. Disorder and PFAM annotation 

plots were obtained from IUPred2A (Mészáros et al., 2018; El-Gebali et al., 2019; Erdős and 

Dosztányi, 2020), coiled-coil probabilities were obtained from The MPI Bioinformatics Toolkit 

(https://toolkit.tuebingen.mpg.de) (Lupas et al., 1991; Zimmermann et al., 2018), and protein 

structural modelling from Phyre2 (Kelley et al., 2015). 
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Results 

Microscopy to reveal insights into Rubisco dynamics and simultaneous starch 

movement during pyrenoid division 

To simultaneously visualise movement of the pyrenoid matrix and starch sheath during 

pyrenoid division a Rubisco-Venus, STA2-mCherry dual-tagged line was developed. This 

dual tagged line was imaged every 15 minutes over 20 hours in air levels of CO2. The 

heterogeneity of the tagged population meant some cells appeared to have only single 

tagged Rubisco-Venus. Fig. 7 shows an example time-lapse of a cell within this Rubisco-

Venus subpopulation. The cell divided once, producing 2 cells after 75 min (Fig. 7A), and 

then divided again to produce a total of 4 cells after 135 min (Fig. 7B). During division, 

Rubisco-Venus total fluorescence intensity was monitored in the pyrenoid (or coalescing 

puncta), stroma and chloroplast to gain insights into matrix dynamics. The Rubisco-Venus 

signal dispersed from the pyrenoid into the stroma (Fig. 7A) as the cell prepared to undergo 

the first division. Rubisco-Venus fluorescence in the pyrenoid decreased by 83% during this 

dispersal, whilst the stromal signal increased (Fig. 7D). Recovery of pyrenoid fluorescence 

occurred towards the end of the first division (Fig. 7D), where puncta formed de novo and 

coalesced into an apparent pyrenoid (Fig. 7A, B). In the second round of division larger 

puncta grew whilst smaller puncta shrank (Fig. 7B) and puncta in daughter cells coalesced 

over time to form an apparent pyrenoid (Fig. 7C). Again, dispersal of Rubisco-Venus from 

the pyrenoids into the stroma occurred (Fig. 7B, D), and the Rubisco-Venus signal in the 

pyrenoids recovered due to coalescing puncta (Fig. 7C, D). 
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Figure 7. Rubisco-Venus disperses and de novo-formed puncta fuse during division. Stills from the 

time-lapse shown have a time interval of 15 min, and the Rubisco-Venus signal was summed for each 

Z-stack. The fluorescence intensity is indicated from low to high. The chlorophyll signal is indicated 

with a white outline. A control (non-dividing) cell pyrenoid is visible at the top right-hand corner of 

each still image.  

A) The first round of division produced two daughter cells. Pyrenoid matrix Rubisco-Venus dispersal 

at 60 min is indicated with an asterisk.  

B) Two daughter cells divided further to produce 4 cells in total. Smaller Rubisco-Venus puncta 

shrank and growth of larger puncta occurred (white arrows).  

C) Puncta fused to form an apparent pyrenoid (white arrows).  

D) Raw signal of Rubisco-Venus from A, B and C, in pyrenoids (or puncta which coalesced), stroma 

and chloroplasts was measured to gain insight into pyrenoid matrix dynamics during division. Vertical 

grey bars indicate when there were gaps between chlorophyll signals, indicating cells had divided.  
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To investigate starch sheath dynamics during pyrenoid division, Z-stacks were taken of cells 

during different stages of the cell cycle (Fig. 8). Cells during interphase had correct 

localisation of STA2-mCherry signal to the starch sheath, which surrounds the pyrenoid 

matrix Rubisco-Venus signal (Fig. 8A). There were discernible gaps in the sheath suggesting 

the STA2-mCherry signal localised to the starch plates as expected (Fig. 8A). A cell with an 

apparent chloroplast cleavage furrow had a ‘stretched’ Rubisco signal indicating dispersal 

(Fig. 8B, Fig. S1). The starch plates appeared to be separate from each other and 

dissociated from the Rubisco-Venus signal (Fig. 8B, Fig. S1). A cell which had undergone 

pyrenoid division, but had not yet completed chloroplast division, contained two pyrenoids 

both with Rubisco aggregates surrounded by starch plates with gaps (Fig. 8C). Traversing 

thylakoids were also present within these pyrenoids (Fig. 8C). A cell undergoing division 

which had already produced two separate pyrenoids, appeared to show division in a third 

pyrenoid (Fig. 8D, Fig. S2). Two lobes of Rubisco-Venus signal joined by a bridge of 

Rubisco-Venus were observed, whilst the STA2-mCherry signal remained in close 

association to the periphery of the Rubisco-Venus signal (Fig. 8D, Fig. S2). Future work 

should aim to capture pyrenoid starch sheath movement during division as in Fig. 8 by using 

the time-lapse conditions used for data acquisition in Fig. 7.  

 

 

Figure 8. Representative stages of cell division with dual tagged Rubisco-Venus (yellow, pyrenoid 

matrix) and STA2-mCherry (pink, starch sheath). Each image shows a single section from a Z-stack 

of each cell. Chlorophyll signal, which aligns with the chloroplast thylakoids and traversing pyrenoid 

thylakoids, is green. All scale bars are 2 μm.  

A. Pre-division cell with STA2-mCherry signal (starch sheath) surrounding the Rubisco-Venus 

(pyrenoid matrix) signal. Gaps between the starch plates were visible.  

B. Cell with apparent dispersal of Rubisco-Venus signal and separation between the plates and 

Rubisco-Venus signal, and between starch plates.  

C. Cell with two pyrenoids, both with associated starch sheath and traversing thylakoids.  

D. Cell with two pyrenoids (white arrows) and a pyrenoid with apparent lobes and adjoining 

bridge, and associated STA2-mCherry signal.  
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Bioinformatics to investigate possible pyrenoid starch degradation and synthesis 

during pyrenoid division 

 

Starch synthesis 

To investigate the hypothesis that starch degradation and synthesis may be involved in 

starch inheritance during pyrenoid division, a bioinformatics approach was used. To firstly 

identify potential candidates involved in starch modification in Chlamydomonas, proteins 

involved in Arabidopsis starch synthesis and degradation identified in Streb and Zeeman 

(2012) (Fig. 6B) were used to BLAST for Chlamydomonas homologs (Phytozome V13) 

(Table 1, 2). All proteins reported to be involved in starch synthesis in Arabidopsis (Streb 

and Zeeman, 2012) showed homology to Chlamydomonas proteins, and respective 

homologs had equivalent descriptions of function (Phytozome V13). Interestingly, the four 

Arabidopsis AGPase LSU’s (APL1-4) appeared to have greater homology to the 

Chlamydomonas AGPase LSU STA1, than Chlamydomonas LSU’s AGP2 and AGP3 (Table 

1). 
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Table 1. Proteins involved in starch synthesis in Arabidopsis thaliana (Streb and Zeeman, 2012; Abt 

et al., 2020) showed homology to starch synthesis proteins in Chlamydomonas reinhardtii. Only the 

top hits are presented.  

Arabidopsis thaliana Chlamydomonas reinhardtii 

Gene ID Alias Description Gene ID Alias Description E-value 
Identity 

(%) 

AT4G24620.1 PGI 
Phosphogluco
se isomerase Cre03.g175400.t2.1 PGI1 

Phosphoglucose 
isomerase 5.82E-38 28 

AT5G51820.1 PGM 
Phosphogluco
mutase Cre06.g278210.t1.1 GPM1 Phosphoglucomutase 

<4.70E-
176 68 

AT5G48300.1 APS1 
AGPase small 
subunit 1  Cre03.g188250.t1.2 STA6 

ADP-glucose 
pyrophosphorylase small 
subunit 

<4.70E-
176 65 

AT1G05610.1 APS2 
AGPase small 
subunit-like 2 Cre13.g567950.t1.2 STA1 

ADP-glucose 
pyrophosphorylase large 
subunit 1.25E-110 42 

AT5G19220.1 APL1 
AGPase large 
subunit 1  Cre13.g567950.t1.2 STA1 

ADP-glucose 
pyrophosphorylase large 
subunit 

<4.70E-
176 64 

AT1G27680.1 APL2 
AGPase large 
subunit 2 Cre13.g567950.t1.2 STA1 

ADP-glucose 
pyrophosphorylase large 
subunit 

<4.70E-
176 55 

AT4G39210.1 APL3 
AGPase large 
subunit 3 Cre13.g567950.t1.2 STA1 

ADP-glucose 
pyrophosphorylase large 
subunit 

<4.70E-
176 52 

AT2G21590.1 APL4 
AGPase large 
subunit 4 Cre13.g567950.t1.2 STA1 

ADP-glucose 
pyrophosphorylase large 
subunit 4.70E-176 56 

AT1G32900.1 GBSS 

Granule-bound 
starch 
synthase 1 Cre17.g721500.t1.2 STA2 

Granule-bound starch 
synthase I 2.40E-171 53 

AT5G24300.1 SS1 
Soluble starch 
synthase 1 Cre12.g521700.t1.2 SSS6 Soluble starch synthase 6.09E-164 53 

AT3G01180.1 SS2 
Soluble starch 
synthase 2 Cre03.g185250.t1.2 SSS2 

Soluble starch synthase 
II 

<4.70E-
176 64 

AT1G11720.2 SS3 
Soluble starch 
synthase 3 Cre06.g282000.t1.1 STA3 

Soluble starch synthase 
III 

<4.70E-
176 42 

AT4G18240.1 SS4 
Soluble starch 
synthase 4 Cre16.g663850.t1.1 

 
SSS5 

Putative soluble starch 
synthase 1.89E-135 41 

 
 
AT5G65685.1 SS5 

Soluble starch 
synthase 5 Cre16.g663850.t1.1 SSS5 

Putative soluble starch 
synthase 3.20E-40 30 

AT3G20440.2 SBE1 

Starch 
branching 
enzyme 1  Cre06.g270100.t1.1 SBE2 

Starch Branching 
Enzyme 1.27E-149 42 

AT5G03650.1 SBE2 

Starch 
branching 
enzyme 2 Cre10.g444700.t1.1 SBE3 

Starch Branching 
Enzyme 

<4.70E-
176 61 

AT2G36390.1 SBE3 

Starch 
branching 
enzyme 3 Cre10.g444700.t1.1 SBE3 

Starch Branching 
Enzyme 

<4.70E-
176 60 

AT2G39930.1 ISA1 

Isoamylase 1, 
starch 
debranching 
enzyme Cre03.g155001.t1.1 ISA1 

Isoamylase, starch 
debranching enzyme 

<4.70E-
176 52 

AT1G03310.2 ISA2 

Isoamylase 2, 
starch 
debranching 
enzyme Cre03.g155001.t1.1 ISA1 

Isoamylase, starch 
debranching enzyme 3.18E-99 31 
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In addition to homologs identified in Table 1, carbohydrate-binding module (CBM) containing 

proteins identified by PFAM (Phytozome V13), and other putative proteins involved in starch 

modification in Chlamydomonas (Ball, 2002; Zhan et al., 2018) were taken on for further 

analysis. The expression of normalised mRNA abundance for candidate genes was 

surveyed and reported if peak or increased expression occurred during the division window 

(~1 hour after lights-off), or in the case of starch synthases, in contrast to expected diurnal 

patterns of expression (Strenkert et al., 2019). Known chloroplast division proteins FTSZ1 

and 2, MIND1 and MINE1 (Hu et al., 2008) had mRNA abundance profiles which peaked 2-4 

hours before division (Fig. 9). Therefore, starch modifying candidates were also included if 

their mRNA abundance peaked in preparation for division.  

 

Figure 9. mRNA abundance profiles for proteins known to be involved in chloroplast division (FTSZ1, 

FTSZ2, MIND1, MINE1). mRNA abundance (Strenkert et al., 2019) was normalised to between 0 and 

1. The black and white bars (top) indicate the dark phase and light phase respectively. Black arrows 

show time of division.  

 

Identification of Chlamydomonas proteins which may be involved in starch synthesis 

(Table 1) allowed investigation of starch synthesis proteins which may be exclusively 

involved during the time of division, through surveying mRNA abundance. Starch synthases 

SSS2 and SSS6 identified in Table 1 show increased mRNA abundance during the dark, 

and reduced abundance during the light phase (Fig. 10). SSS2 had high mRNA abundance 

from -7h, whilst SSS6 had high mRNA abundance later in the night. Both SSS2 and SSS6 

had an additional mRNA abundance peak at dawn.  

In addition to starch synthases, Arabidopsis starch granule initiation proteins SS4, 

SS5, and PTST1 and 2 proteins are required for starch synthesis (Roldán et al., 2007; Ragel 

et al., 2013; Seung et al., 2017, Seung et al., 2018; Abt et al., 2020). Arabidopsis SS4 has 
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41% identity to Chlamydomonas SSS5 whilst Arabidopsis SS5 has 30% identity with 

Chlamydomonas SSS5 (Phytozome V13, Table 1). Although Arabidopsis SS5 is a 

noncanonical isoform (Abt et al., 2020), homology-based modelling shows Chlamydomonas 

soluble starch synthases closely resemble the family of Arabidopsis starch synthases (Table 

S1).  

Whilst the Arabidopsis starch granule initiation proteins MRC and MFP1 show no 

homology to Chlamydomonas proteins (Phytozome V13), MRC and MFP1 interact with 

PTST2 and 3 (Seung et al., 2018) which have 44% and 41% identity to Chlamydomonas 

Cre10.g457500 respectively. Cre10.g457500 is predicted to encode a regulatory β-subunit 

of a 5’-AMP-activated protein kinase (AMPK1) and contains an AMPK1 CBM (Phytozome 

V13). Cre10.g457500 interestingly shows peak mRNA abundance at the time of division 

(Fig. 10). Homology based modelling shows Cre10.g457500 may have some structural 

resemblance to PTST2 and 3 (Table S2). 

 

 

Figure 10. Chlamydomonas proteins proposed to be involved in starch synthesis with peak 

normalised mRNA abundance during the dark phase. mRNA abundance (Strenkert et al., 2019) was 

normalised to between 0 and 1. The black and white bars (top) indicate the dark phase and light 

phase respectively. Black arrows show time of division.  

 

Several pyrenoid associated starch binding proteins have been identified, including SAGA1 

(Itakura et al., 2019) and LCI9 (Mackinder et al., 2017). Structural analysis of these proteins 

show that they contain carbohydrate-binding modules, starch-related catalytic domains 

(Phytozome V13), regions of disorder needed for interactions with proteins in the pyrenoid 

matrix (Mackinder et al., 2016; Meyer et al., 2020) and coiled-coil domains with unknown 

function (Itakura et al., 2019). Candidates identified to be homologous to Arabidopsis starch 
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synthesis proteins (Table 1) and to have division-related mRNA abundance profiles (Fig. 10) 

were then surveyed for characteristics known to be important for proteins which associate 

with the pyrenoid and pyrenoid starch specifically. Both SSS2 and SSS6 contain glycosyl 

transferase family domains GT1 and GT5, frequently found in glycosyl transferases 

(Campbell et al., 1997; Ross et al., 2001), supporting their predicted function (Table 2). 

SSS2 and SSS6 appear to have a high probability of forming coiled-coils at the N and C-

termini, with the C-terminal coiled-coil in SSS2 coinciding with its GT1 domain. This 

potentially highlights a role for SSS2 interacting with other starch modifying proteins, as a 

coiled-coil region within the GT1 domain of PTST1 enables interaction with GBSSI, targeting 

GBSSI to the starch sheath (Seung et al., 2015). SSS2 and SSS6 appear to contain a large 

region of disorder at the N-terminus, which may suggest they are involved in pyrenoid matrix 

interactions (Itakura et al., 2019), however they do not contain Rubisco-binding motifs 

(Meyer et al., 2020). Cre10.g457500 contains two AMPK1 CBM domains and whilst may 

have regions with disorder, has a low probability of containing coiled-coiled regions (Table 

2). 

Table 2. Disorder profiles (IUPred2A), PFAM annotations and coiled-coil probabilities (MPI 

Bioinformatics Toolkit) for Chlamydomonas candidates potentially involved in starch synthesis during 

or after division.  
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CBM-containing proteins 

The presence of CBM-containing proteins which have peak mRNA abundance during the 

division window may indicate that starch modifying proteins are directly binding to starch 

during this time. More specifically, CBM20-containing proteins including SAGA1, have been 

proposed to be important for pyrenoid starch morphology (Itakura et al., 2019). To explore 

the possibility that CBM-containing proteins (like Cre10.g457500) may be involved in 

pyrenoid starch sheath remodelling during division, all proteins with annotated CBMs (from 

PFAM) were surveyed for peak expression during the division window. Two further AMPK1 

CBM-containing genes were identified, Cre06.g283400 (CGL101), a predicted sucrose-

phosphate phosphatase, and a dual specificity protein phosphatase, DSP8 (Phytozome 

V13), suggesting they may play a similar role in degrading starch, like other phosphatases 

(Kötting et al., 2009; Santelia et al., 2011; Streb and Zeeman, 2012). The CBM48-containing 

protein isoamylase 3 (ISA3) also showed peak mRNA abundance during division and had 

increased abundance at night (Fig. 11). Similar to Arabidopsis ISA3, peak expression 

coincides with enzymes which are involved in degrading starch at night (Wattebled et al., 

2005). One CBM20-containing protein, Cre06.g269650, also showed peak mRNA 

abundance during division, with an additional increase in abundance in the middle of the day 

(Fig. 11). Cre06.g269650 is predicted to be a cyclomaltodextrin glucanotransferase 

(CGTase) (Phytozome V13). CGTases catalyse the formation of cyclodextrins and have 

hydrolase activity (Penninga et al., 1995). Therefore, these CBM-containing candidates may 

be involved in pyrenoid starch binding during division and are predicted to be involved in 

starch degradation. 
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Figure 11. CBM-containing proteins with peak normalised mRNA abundance during the division 

window (Strenkert et al., 2019). The black and white bars (top) indicate the dark phase and light 

phase respectively. Black arrows show time of division.  

 

Starch degradation 

During division, the pyrenoid matrix has been shown to undergo a phase transition, and form 

a ‘dumbbell’ shape when two lobes of matrix prepare to separate (Fig. 7, 8D) (Freeman 

Rosenzweig et al., 2017). This suggests the surrounding starch sheath must undergo a 

degree of loosening to allow Rubisco escape, which may involve modification by 

degradation. To investigate this hypothesis, a list of potential Chlamydomonas proteins 

involved in starch degradation were identified using known Arabidopsis degradation proteins 

to BLAST for homologs (Streb and Zeeman, 2012) (Table 3). All nine Arabidopsis β-

amylases (BAMs) showed the greatest homology to a single β-amylase Chlamydomonas 

AMB1, whilst the three α-amylases (AMYs) in Arabidopsis showed the greatest homology to 

Chlamydomonas α-amylase AMA2 (Table 3). Arabidopsis α-glucan phosphorylases PHS1 

and PHS2 showed homology to Chlamydomonas STA4 (Table 3).  
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Table 3. Proteins involved in starch degradation in Arabidopsis thaliana (Streb and Zeeman, 2012) 

showed homology to starch degradation proteins in Chlamydomonas reinhardtii. Only the top hits are 

presented. 

Arabidopsis thaliana Chlamydomonas reinhardtii 

Gene ID Alias Description Gene ID Alias Description E-value Identity (%) 

AT1G10760.1 GWD1
, 
SEX1 

Glucan, water 
dikinase 1 

Cre07.g3193
00.t1.1 

GWD1 R1 Protein, α-glucan 
water dikinase 

<9.32E-
177 

38 

AT4G24450.1 GWD2 Glucan, water 
dikinase 2 

Cre07.g3193
00.t1.1 

GWD1 R1 Protein, α-glucan 
water dikinase 

<9.32E-
177 

38 

AT5G26570.1 PWD, 
GWD3 

Phosphoglucan, 
water dikinase 

Cre17.g7199
00.t1.2 

PWD1 Phosphoglucan 
water dikinase 

2.49E-
146 

43 

AT3G52180.1 SEX4 Starch excess 4, 
phosphoglucan 
phosphatase 

Cre03.g1510
00.t1.2 

DSP8 Dual-specificity 
protein phosphatase 

3.79E-86 49 

AT3G10940.1 LSF2 Like Sex Four 2, 
phosphoglucan 
phosphatase 

Cre09.g4030
50.t1.1 

DSP6 Dual-specificity 
protein phosphatase 

1.43E-65 40 

AT3G01510.1 LSF1 Like Sex Four 1, 
phosphoglucan 
phosphatase 

Cre03.g1510
00.t1.2 

DSP8 Dual-specificity 
protein phosphatase 

2.60E-26 32 

AT3G23920.1 BAM1 Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 1.63E-
155 

48 

AT4G00490.1 BAM2  Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 1.93E-
126 

45 

AT4G17090.1 BAM3  Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 4.54E-
161 

49 

AT5G55700.1 BAM4 Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 8.94E-
127 

41 

AT4G15210.1 BAM5 Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 3.46E-
122 

44 

AT2G32290.1 BAM6 Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 6.39E-
139 

47 

AT2G45880.1 BAM7 Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 1.36E-
108 

40 

AT5G45300.1 BAM8 Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 1.51E-92 38 

AT5G18670.1 BAM9 Exo-amylase β-
amylase 

Cre06.g3071
50.t1.1 

AMB1 β-amylase 8.10E-78 36 

AT4G25000.1 AMY1 Endo-amylase α-
amylase 

Cre08.g3624
50.t1.2 

AMA2 α-amylase 1.66E-
116 

48 

AT1G76130.1 AMY2 Endo-amylase α-
amylase 

Cre08.g3624
50.t1.2 

AMA2 α-amylase 9.65E-
156 

52 

AT1G69830.1 AMY3 Endo-amylase α-
amylase 

Cre08.g3624
50.t1.2 

AMA2 α-amylase 1.26E-
149 

52 

AT4G09020.1  ISA3 Isoamylase 3, 
starch debranching 
enzyme 

Cre03.g2077
13.t1.1 

ISA3 Isoamylase, starch 
debranching enzyme 

<9.32E-
177 

57 

https://paperpile.com/c/DmOaX1/pb9X
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AT5G04360.1 LDA, 
PU1 

Limit dextrinase, 
starch debranching 
enzyme 

Cre11.g4766
50.t1.1 

PUL1 Pullulanase-type 
starch debranching 
enzyme 

<9.32E-
177 

42 

AT3G29320.1 PHS1 Α-glucan 
phosphorylase 

Cre12.g5522
00.t1.2 

STA4 Starch 
phosphorylase 

<9.32E-
177 

50 

AT3G46970.1 PHS2 Α-glucan 
phosphorylase 

Cre12.g5522
00.t1.2 

STA4 Starch 
phosphorylase 

<9.32E-
177 

54 

AT5G64860.1 DPE1 4-α-
glucanotransferase 
disproportionating 
enzyme 

Cre03.g1815
00.t1.2 

DPE1; 
STA11 

4-α-
glucanotransferase 

9.32E-
177 

49 

AT2G40840.1 DPE2 4-α-
glucanotransferase 
disproportionating 
enzyme 

Cre02.g0951
26.t1.1 

DPE2 α-1,4-
glucanotransferase 

<9.32E-
177 

45 

 

Identified starch degradation candidates were then surveyed for peak mRNA abundance 

during division. Whilst DSP8 and ISA3 were identified in Fig. 11, a further five candidates 

showed peak mRNA abundance during the division window, including GWD1 (α-glucan 

water dikinase), AMA2 (α-amylase), and 4-α-glucanotransferase (DPE1/STA11) (Fig. 12). 

The role of α-amylases in starch degradation is unclear and may rely on the cooperative 

action of β-amylases (Yu et al., 2005; Seung et al., 2013). However, similar to Arabidopsis 

BAMs, no diurnal pattern of expression of Chlamydomonas β-amylases was observed 

(Smith et al., 2004). Intriguingly, Chlamydomonas AMA2 shows a high probability of having a 

coiled-coil between position 200-300, which coincides with an area of disorder, and has 

annotated catalytic domains which confirm its proposed function (Table S3). Arabidopsis 

DPE1 is an important starch degradation enzyme (Critchley et al., 2001; Yu et al., 2001), 

and whilst it has been suggested that GWD1 is a regulator of starch degradation (Yu et al., 

2001), its role in degradation has more recently been questioned (Skeffington et al., 2014). 

GWD1 was shown to have a diurnal pattern of mRNA abundance previously (Smith et al., 

2004), and also appears to have an additional increase in mRNA abundance during the light 

period in Chlamydomonas (Fig 12). The plastidial starch phosphorylases PHO2 (PHOA) and 

STA4 (PHOB) (Phytozome V13) also show peak mRNA abundance during division (Fig. 12). 

A-glucan phosphorylases were originally thought to be involved in starch degradation 

(Kruger and ap Rees, 1983), however, this is unclear (Zeeman et al., 2004). Instead, 

mutants of the STA4 locus in Chlamydomonas suggested phosphorylases contribute to 

starch synthesis (Dauvillée et al., 2006). Whilst it is not clear that Arabidopsis enzymes 

previously thought to be involved in starch degradation fulfil this role, mRNA abundance of 

modifying enzymes in Chlamydomonas peak during the division window, and highlight 

candidates potentially involved in pyrenoid starch degradation and loosening during division. 
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Figure 12. Chlamydomonas proteins potentially involved in starch degradation with peak normalised 

mRNA abundance during the division window (~1 hour after the light-dark transition) (Strenkert et al., 

2019). The black and white bars (top) indicate the dark phase and light phase respectively. Black 

arrows show time of division.  

 

CCM genes 

Previously identified Chlamydomonas proteins proposed to be involved in the formation of 

pyrenoid starch were surveyed for peak mRNA abundance during division. These 

candidates were compared to the mRNA abundance of several CCM genes, including the 

master regulator CCM1 (Fukuzawa et al., 2001), matrix-localised proteins (RBCS1, rbcL, 

EPYC1, RCA1), puncta-forming proteins involved in CO2 recapture (LCIB/LCIC) (Spalding et 

al., 1983a; Mackinder et al., 2017), and inorganic carbon transporters (LCI1, LCIA and 

HLA3) (Spalding, 2008). CCM genes have peak mRNA abundance either at the dark-light 

transition or during the light phase (Fig. 13), as seen previously (Zones et al., 2015). LCI9, 

which is proposed to form a mesh structure between the plates of the starch sheath 

(Mackinder et al., 2017) shows a similar mRNA abundance profile to other CCM proteins 

(Fig. 13). However, two phosphofructokinases PFK1 and 2 showed peak mRNA abundance 

during the division window (Fig. 13). PFK1 and 2 are proposed to form a carbohydrate 

metabolism module with LCI9 and the Chlamydomonas starch branching enzyme SBE3 

(Mackinder et al., 2017), and may regulate glycolysis (Johnson and Alric, 2013). PFK1 and 2 

are interesting candidates, in addition to those identified above, as they may be directly 

involved in modifying pyrenoid starch during the division window. 
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Figure 13. mRNA abundance profiles of CCM genes and previously characterised pyrenoid starch-

associated proteins (Strenkert et al., 2019). The black and white bars (top) indicate the dark phase 

and light phase respectively. Black arrows show time of division. 

 

Discussion 

Rubisco dynamics show the pyrenoid is a LLPS organelle 

Time-lapse imaging was carried out to observe Rubisco-Venus movement during cell 

division (Fig. 7).  The chlorophyll signal showed that chloroplast division was complete at 75 

min (Fig. 7A), which correlated with expected chloroplast division speed (~30-80 min) 

(Freeman Rosenzweig et al., 2017). In both rounds of division, the reduction of Rubisco-

Venus signal in pyrenoids with concurrent increase in stromal signal (dissolution) and then 

formation of de novo puncta (condensation) is indicative of a phase transition (Brangwynne 

et al., 2009; Freeman Rosenzweig et al., 2017) (Fig 7). The transition from an aggregated to 

soluble phase is a property of other LLPS compartments (Brangwynne et al., 2009). This 

phase transition may correspond to a decrease in matrix surface tension, which may be 

required to allow the passage of the cleavage furrow through the pyrenoid (Freeman 

Rosenzweig et al., 2017). Dispersal of matrix material may also allow equal partitioning to 

daughter cells (Freeman Rosenzweig et al., 2017). In the second round of division, 

coalescence of puncta which appeared de novo seemed to form a new daughter pyrenoid 

(Fig. 7B, C). It is suggested this is the pyrenoid inheritance pattern seen in only 6-7% of all 

daughter cells (Freeman Rosenzweig et al., 2017). The fusion of droplets (Fig. 7C) suggests 

material may exchange between puncta. Furthermore, larger puncta grew at the expense of 

smaller ones (Fig. 7B), a phenomenon known as Ostwald ripening. Therefore, our results 
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confirm the observation that pyrenoids belong to the class of liquid-liquid phase separated 

organelles (Hyman et al., 2014; Freeman Rosenzweig et al., 2017). Future work to 

simultaneously capture starch sheath and Rubisco movement during pyrenoid division is 

now possible due to the development of a dual-tagged Rubisco-Venus, STA2-mCherry 

tagged-line. 

 

A possible role for the pyrenoid matrix-starch interface during division 

In vitro experiments where the pyrenoid matrix was reconstituted by mixing Rubisco and 

EPYC1 shows the propensity for matrix material to form large droplets (Wunder et al., 2018). 

Furthermore, our observations of Ostwald ripening (Fig. 7B), puncta fusion (Fig. 7C) and that 

~90% of available Rubisco aggregates into the pyrenoid matrix under LC conditions, show 

that there is a natural tendency for the matrix to aggregate into a single pyrenoid 

(Borkhsenious et al.,1998). During division, when one pyrenoid becomes two, this tendency 

must be counteracted. Recently, a model was proposed which suggested that the enzyme 

SAGA1 plays a role in constraining the pyrenoid matrix by affecting the surface area of the 

starch sheath (Itakura et al., 2019). SAGA1 interacts with both large and small subunits of 

Rubisco, has a CBM20 starch-binding motif and could span the ~30nm gap between matrix 

and starch (Itakura et al., 2019). The SAGA1 mutant has ~10 pyrenoids per chloroplast, and 

the starch sheath plates are elongated and thinner than WT (Itakura et al., 2019). Therefore, 

the SAGA1 mutant can counteract the tendency of the matrix to undergo Ostwald ripening to 

form a single pyrenoid (Itakura et al., 2019).  

  The proposed mechanism for the role of SAGA1 in controlling pyrenoid number is as 

follows: the pyrenoid matrix “wets” to one side of each starch plate due to the ability of 

SAGA1 to simultaneously bind Rubisco and starch, and elongated starch sheath plates in 

SAGA1 “pinch off” regions of matrix material to form multiple, smaller droplets. It could be 

hypothesised that the surface area of the starch sheath plates may influence pyrenoid matrix 

fission during cell division. Association of the starch sheath with the pyrenoid matrix 

undergoing fission (two lobes of matrix with an adjoining bridge of matrix) has been 

previously observed (Goodenough, 1970) and reported in this study (Fig. 8D, Fig. S2). The 

association of the starch sheath with the matrix during division may be passive, where the 

cleavage furrow divides the matrix to which the starch stays attached. Division of the single 

large starch granule in O.tauri by the cleavage furrow (Ral et al., 2004) also suggests the 

pyrenoid starch sheath could be inherited by this mechanism. However, it could be 

suggested that the morphology and surface area of the starch sheath, under the influence of 

matrix-starch gap spanning proteins like SAGA1, may be actively involved in the partitioning 

of matrix material. Fig. 14 provides a visual diagram showing the passive movement or role 

https://paperpile.com/c/DmOaX1/KkDZV
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of starch association with the matrix during fission (Fig. 14A), along with alternative modes of 

starch inheritance during division, which will be discussed (Fig. 14B, C, D).  

 

The putative starch synthases SSS2 and SSS6 may be involved in starch synthesis in 

the dark 

Although association of the starch sheath to the matrix during pyrenoid fission seems 

to be uniform around the matrix periphery (Fig. 8D, Fig. S2), a previous electron micrograph 

suggests that starch may preferentially bind to one lobe during fission (Goodenough, 1970). 

This raises the question of how pyrenoid starch may be inherited equally between daughter 

cells. The phase transition of Rubisco (to the soluble phase) is suggested to be the 

mechanism for ensuring roughly equal inheritance of matrix material between daughter cells 

(Freeman Rosenzweig et al., 2017). To ensure there is equal partitioning of pyrenoid starch 

between daughter cells, one possible mechanism may be the sequential degradation of the 

starch sheath in the mother cell and synthesis in the daughter cells (Fig. 14B). 

Arabidopsis starch synthases SS1 and SS2, which showed homology to 

Chlamydomonas SSS6 and SSS2 respectively (Table 1), are responsible for amylopectin 

synthesis (Delvallé et al., 2005; Zhang et al., 2008). SSS2 and SSS6 may be implicated in 

starch synthesis and remodelling after division, as they show increased mRNA abundance in 

the dark (Fig. 10). This is unexpected given that Chlamydomonas starch accumulation is 

reported to occur during the light period, and be degraded in the dark (Levi and Gibbs, 1984; 

Klein, 1987; Thyssen et al., 2001; Zones et al., 2015). Conversely, Arabidopsis SS2 (which 

shows homology to SSS2) shows increased transcript expression after transition to the light 

(Smith et al., 2004). However, it has been demonstrated that transcript abundance does not 

coordinate within isoforms or proteins involved in the same pathway, and many important 

starch modifying proteins do not change in transcript abundance diurnally (Smith et al., 

2004). Therefore, there is a caveat with correlating peak mRNA abundance time to function, 

as post transcriptional and post translational regulation are not taken into account (Smith et 

al., 2004). Indeed, it has been shown that the α-glucan water dikinase GWD1 does not 

change in protein abundance diurnally, suggesting changes in transcript abundance do not 

equate to changes in protein abundance, and regulation may be post translational 

(Skeffington et al., 2014).  

 

SSS2 and SSS6 contain coiled-coils and Cre10.g457500 may be involved in starch 

granule initiation during division 

Both Arabidopsis SS4 and SS5 show homology to Chlamydomonas SSS5 (Table 1). 

Arabidopsis SS4 is proposed to form primer glucans which evade degradation by α-amylase 
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AMY3 (Seung et al., 2016) and is proposed to control normal starch granule shape (Seung 

et al., 2017), whilst the recently reported glucan-binding SS5 has also been implicated in 

granule initiation (Abt et al., 2020). Arabidopsis SSs contain glucosyl transferase catalytic 

domains GT1 and GT5 at the C-terminus and SS3, SS4 and SS5 contain N-terminal coiled-

coil domains (Pfister and Zeeman, 2016; Raynaud et al., 2016; Abt et al., 2020). Coiled-coils 

consist of α-helices which wrap around each other to form a supercoil, and facilitate protein-

protein interactions or act as scaffolds (Mason and Arndt, 2004; Rose and Meier, 2004; 

Lohmeier-Vogel et al., 2008; Raynaud et al., 2016). Coiled-coil containing proteins may be 

enriched in the pyrenoid, and have been shown to be important for promoting LLPS (Fang et 

al., 2019). Chlamydomonas SSS6 and SSS2, which peak in mRNA abundance during the 

dark (Fig. 10), also have GT1 and GT5 domains, and have areas of disorder and coiled-coil 

propensity similar to Arabidopsis SSs (Table 2). SSS2 appears to have a coiled-coil at its C-

terminus which coincides with its GT1 domain (Table 2). This is intriguing as PTST1 is 

proposed to interact with GBSSI, targeting it to starch, with a coiled-coil domain on its GT1 

domain (Seung et al., 2015). Multimeric complex formation of starch modifying proteins has 

been reported in Arabidopsis and in Chlamydomonas (Tetlow et al., 2004; Mackinder et al., 

2017). Specifically regarding coiled-coil containing proteins in Chlamydomonas, SAGA1 

shows homology to coiled-coil containing proteins (Itakura et al., 2019), and Bimodal Starch 

Granule (BSG1), which may play a role in switching starch metabolism synthesis from 

pyrenoid to storage starch, also contains a predicted coiled-coil domain (Findinier et al., 

2019). Therefore, SSS6 and SSS2 may interact with other starch modifying enzymes 

through their coiled-coils, and due to their transcriptional expression, may specifically be 

involved in pyrenoid starch synthesis after pyrenoid division. 

 In order to extend α-1,4-linked polysaccharides, it is proposed that SSs require a 

glucan substrate, and therefore rely on the presence of an already present ‘granule initial’ 

(Seung and Smith, 2019). Cre10.g457500, which shows homology to starch granule 

initiation proteins PTST2 and 3 also has peak mRNA abundance at the time of division (Fig. 

10). The already identified Chlamydomonas protein BSG1 has been suggested to play a 

similar role to PTST/MRC/MFP proteins, and therefore may also be involved in initiation 

(Findinier et al., 2019).  

PTST2 and 3 are CBM48 and coiled-coil containing (Seung et al., 2017, Seung et al., 

2018) and Cre10.g457500 contains two AMPK1 CBM domains (CBM 48 family (CAZy; 

http://www.cazy.org)) (Lombard et al., 2014) and is annotated to be a β-subunit of 5’-AMP-

activated protein kinase (AMPK) (Table 2) (Phytozome V13). SnRK1 is the plant ortholog of 

AMPK and is a heterotrimer containing an α-catalytic subunit, and two regulatory γ and β 

(CBM-containing) subunits (Polge and Thomas, 2007; Avila-Castañeda et al., 2014; Broeckx 

et al., 2016; Ruiz-Gayosso et al., 2018). SnRK1 is involved in the target of rapamycin (TOR) 

http://www.cazy.org/
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pathway in plants, having an impact on growth-related processes (John et al., 2011) and 

global regulation of metabolism in response to stress (Polge and Thomas, 2007). Therefore 

whilst Cre10.g457500 could be implicated in starch granule initiation, if it is part of the 

Chlamydomonas SnRK1 complex, it may also be involved in global regulation of many 

downstream targets (Rolland et al., 2006).  

 In Arabidopsis, the number of starch granules is correlated to the volume of stroma, 

and granule initiation is carried out when chloroplasts divide (Crumpton-Taylor et al., 2012). 

Starch granules in immature leaves were more abundant and smaller than in mature leaves, 

meaning when mesophyll cells expand and chloroplasts undergo several rounds of division 

(Marrison et al., 1999) there is a larger surface area for synthesis and degradation of starch 

(Crumpton-Taylor et al., 2012). This, along with the increased mRNA abundance of 

Cre10.g457500 during division (Fig. 10), may suggest new starch granules may be initiated 

after chloroplast division in Chlamydomonas. However, it is not clear whether 

Chlamydomonas requires starch granule initiation proteins as it has been reported that 

degrading Chlamydomonas starch completely was not possible (Ral et al., 2004), which is 

also supported by Fig. 8. Nevertheless, if starch is degraded completely or partially at the 

beginning of division, SSS2 and SSS6, which appear to have increased expression in the 

dark (Fig. 10), may enable sequential pyrenoid starch sheath synthesis. This would ensure 

new daughter pyrenoids are surrounded by a starch sheath, which may be needed to allow 

LLPS of Rubisco (Itakura et al., 2019), localise peripheral components (Toyokawa et al., 

2020) and trap CO2 for the CCM (Ramazanov et al., 1994).  

 

CBM48-containing proteins may play a role in remodelling starch during division 

Further investigation of CBM-containing proteins which have peak mRNA expression 

during the division window revealed more candidates which may be involved in remodelling 

the pyrenoid starch sheath during this time (Fig. 11). A further two proteins identified 

contained AMPK1 CBM domains (CBM48 family (CAZy; http://www.cazy.org)) (Lombard et 

al., 2014) (Fig. 11), and like Cre10.g457500, Cre06.g283400 and DSP8 are annotated to be 

β-subunits of 5’-AMP-activated protein kinase (AMPK) (Phytozome V13.) The CBM48 family 

is closely related to the CBM20 family, however there are differences in binding-site residues 

(Christiansen et al., 2009). CBM20-containing proteins are suggested to be important for 

pyrenoid starch (Itakura et al., 2019), however only one CBM20-containing protein, 

Cre06.g269650, showed peak mRNA abundance during division (Fig. 11). It could be 

hypothesised that CBM20-containing proteins are involved in pyrenoid structural 

organisation, and CBM48-containing proteins are involved in pyrenoid starch remodelling. 

Cre06.g269650 is a predicted cyclomaltodextrin glucanotransferase (CGTase). It is intriguing 

that this putative CGTase peaks in mRNA abundance during division, as CGTases are 

http://www.cazy.org/
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industrially relevant enzymes involved in the modification and hydrolysis of starch 

(Benavent-Gil et al., 2020).  

Starch degradation of the pyrenoid starch may take place during division 

In comparison to the number of starch synthesis candidates with peak mRNA abundance 

during division (Fig. 10), Fig. 12 shows evidence that starch degradation may be more 

prominent during this time. Whilst these candidates lack disorder and have different 

domains, AMYA2, DSP8, STA4 and PHO2 may all contain coiled-coils (Table S3). ISA3 has 

been reported to function in starch degradation during the night (Delatte et al., 2006) which 

illustrates that it is difficult to predict which proteins may be exclusively involved in the 

potential process of starch degradation at the pyrenoid periphery during the division window 

(~1 hour after the light-dark transition) and the diurnal pattern of starch degradation (Levi 

and Gibbs, 1984; Klein, 1987; Thyssen et al., 2001; Zones et al., 2015). However, the 

number of potential candidates involved in degradation with peak expression at 1 hour after 

the light-dark transition suggests it is possible that the pyrenoid starch sheath is degraded 

during division (Fig. 12). This prediction must be made with some caution however, as it is 

not clear whether the Arabidopsis homologs of Chlamydomonas degradation candidates are 

involved in degradation (Zeeman et al., 2004; Skeffington et al., 2014) or whether they are 

functionally redundant (Seung et al., 2013). Whilst the starch sheath may not be completely 

degraded (Fig. 8), a degree of loosening of the starch sheath plates may be needed for 

Rubisco to escape and undergo a phase transition.  

 

CCM genes show expected diurnal rhythms of expression, however PFK1 and 2 may 

be involved during division 

CCM genes show changes in mRNA abundance with peak levels coinciding with the 

transition to light, as expected for genes involved in photosynthesis (Strenkert et al., 2019). 

CCM genes were compared to the mRNA abundance profiles of previously identified 

proteins proposed to be associated with Chlamydomonas starch (Mackinder et al., 2017). 

PFK1 and 2 show similar mRNA abundance profiles to candidates in Fig. 12, with peak 

abundance coinciding with the transition into dark and division (Fig. 13). PFK is regulated by 

ATP and converts Fru6P into fructose 1,6-bisphosphate (Johnson and Alric, 2013). PFK1 

and 2 are proposed to form a carbohydrate-metabolism module in Chlamydomonas with the 

predicted glucan 1,4-α-glucosidase LCI9 (pyrenoid mesh-layer), and starch branching 

enzyme SBE3, which interacts with starch synthase STA3 and disproportionating enzyme 

DPE2 (Mackinder et al., 2017). Therefore whilst PFK1 and 2 may play a role in regulating 

glycolysis (Johnson and Alric, 2013), their interaction with other pyrenoid-starch associated 

proteins and peak mRNA abundance during division suggests they may be specifically 

involved in pyrenoid starch modification during division.  

https://paperpile.com/c/DmOaX1/ucha
https://paperpile.com/c/DmOaX1/3ivbl
https://paperpile.com/c/DmOaX1/pWR6
https://paperpile.com/c/DmOaX1/UO8m
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Pyrenoid starch dissociation and the involvement of thylakoids 

An alternative explanation for starch sheath movement and inheritance during division is that 

starch plates dissociate from the matrix allowing the matrix to ‘escape’ the starch sheath to 

undergo the phase transition (Fig. 8B, Fig. S1, Fig. 14C). Observations also suggest there 

may be involvement of the traversing pyrenoid thylakoids during division, as traversing 

thylakoids are present in both daughter pyrenoids in the mother cell before cytokinesis (Fig. 

8C). The pyrenoid thylakoids are proposed to anchor the pyrenoid to the base of the cell. 

Interestingly, a mutant lacking the pyrenoid matrix is still able to retain the correct thylakoid 

network localisation, suggesting matrix and thylakoid biogenesis are separate processes 

(Caspari et al., 2017). However, in this mutant, starch granules still localise to the region 

where the pyrenoid would normally reside. If Rubisco escapes out of the starch sheath 

during the phase transition (Fig. 8B, Fig. S1, Fig. 14C) it could be suggested that starch 

granules stay localised to this region by the thylakoids (Fig. 14D). However, direct interaction 

was not observed between the knotted thylakoids and starch in the matrix-less mutant 

(Caspari et al., 2017). Therefore, further work is needed to understand whether starch 

dissociation and/or movement of thylakoids may be involved during division.  

 

 

Figure 14. Hypothetical models of pyrenoid starch dynamics during pyrenoid fission.  

A) The starch sheath stays associated or is involved in “pinching” matrix off during fission.  

B) Sequential degradation and synthesis of starch may occur.  

C) The starch sheath may dissociate from the matrix, allowing the matrix to “escape” between starch 

plates. 

D) The role of the traversing pyrenoid thylakoids should be considered during pyrenoid fission.  
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The role of the starch sheath in the CCM as a trap for CO2  

There has been some contention over the importance of the starch sheath for the CCM 

(Villarejo et al., 1996). However, the recent elucidation of the requirement of starch to 

localise LCIB puncta to the pyrenoid periphery (Toyokawa et al., 2020) suggests the starch 

sheath plays a key role in the CCM. The combined effect of starch as a suggested CO2 

barrier (Ramazanov et al., 1994) in physical association to the proposed β-carbonic 

anhydrase activity of LCIB (Jin et al., 2016) may contribute to an efficient CO2-trapping 

function for the CCM. This is particularly intriguing when considering LCIB to be part of a Ci 

recycling mechanism (Chapter 4), which may be aided by enrichment of LCIB in the gaps of 

the starch sheath (Yamano et al., 2010; Mukherjee et al., 2019). However further work is 

needed to find a linker protein enabling this interaction between the starch sheath and LCIB, 

as the LCIB/C complex does not contain starch-binding domains (Toyokawa et al., 2020). 

Starch branching enzyme SBE3, LCI9 and ISA1 contain carbohydrate-binding domains and 

therefore could act as starch-LCIB linkers, much like SAGA1 acts as a Rubisco-starch linker 

(Mackinder et al., 2017; Zhan et al., 2018; Itakura et al., 2019; Toyokawa et al., 2020). 

Alternatively, this interaction may be mediated by LCIB/C binding to BST1-3 (Mackinder et 

al., 2017). 
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Chapter 4: LCIB/C and BST1-3 may 
interact to aid inorganic carbon 

recycling 

Chapter summary 
The CCM of Chlamydomonas relies on Ci transport to the pyrenoid and mechanisms which 

prevent CO2 escape. Transport of HCO3
- into the pyrenoid thylakoid tubules and hydration of 

CO2 to HCO3
- to maintain intracellular Ci are functions proposed to be carried out by BST1-3 

and LCIB/C respectively. It has been suggested that BST1-3 and LCIB/C work together to 

form a Ci recycling mechanism, which would maximise their contribution to the CCM. To 

investigate previously reported protein-protein interactions between these complexes, 

recombineering was carried out to fuse key proteins to the fluorophore mScarlet-i. The 

development of LCIB-mScarlet-i and BST1-mScarlet-i constructs means transformation of 

single Venus-tagged Chlamydomonas lines can now be carried out, for further analysis of 

interactions using Förster Resonance Energy Transfer (FRET). Appropriate controls for 

future FRET experiments have been suggested, along with direction for further investigation 

of potential LCIB binding to the C-termini of BST1-3. Interrogation of the proposed Ci 

recycling mechanism in Chlamydomonas may reveal key components for consideration 

when engineering pyrenoids into higher plants.  

 

Introduction 

The Chlamydomonas CCM requires several HCO3
- and CO2 transporters to increase 

intracellular concentrations of Ci
 (Moroney and Ynalvez, 2007). CCM induction occurs 

simultaneously with the formation of structures, such as the starch sheath and LCIB/C 

puncta, which are suggested to prevent CO2 escape (Ramazanov et al., 1994; Duanmu et 

al., 2009; Yamano et al., 2010; Wang and Spalding 2014). In VLC conditions, HCO3
- must be 

actively transported from the extracellular environment (Reinfelder, 2011) and converted by 

a carbonic anhydrase (CAH3) to CO2 in proximity to Rubisco (Sinetova et al., 2012). The 

channels responsible for HCO3
- transport across the plasma and chloroplast membranes are 

well-known (Im and Grossman, 2002; Wang and Spalding, 2014; Yamano et al., 2015; Kono 

et al., 2020), however the proteins proposed to transport HCO3
- across the thylakoid 

membranes have only recently been elucidated. Three thylakoid membrane localised 

proteins were identified and named Bestrophin-like proteins (BST1-3) (Mukherjee et al., 

2019). Bestrophin proteins have been found in diverse species, including the bestrophin-like 
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protein, AtVCCN1, found in Arabidopsis (Herdean et al., 2016), the Human Bestrophin-1 

(Best1) and its bacterial homolog, KpBest (Yang et al. 2014). Bestrophins are typically anion 

channels which transport Chloride (Cl-) ions, but Best1 is also HCO3
- permeable (Qu and 

Hartzell, 2008). In Chlamydomonas, BST1-3 were found to localise to the chloroplast 

thylakoids and pyrenoid thylakoid tubules (Mukherjee et al., 2019). RNA interference of 

BST1-3 caused reduced growth in LC, poor Ci affinity and the inability to accumulate HCO3
- 

(Mukherjee et al., 2019). Therefore BST1-3 are proposed to be involved in the final step of 

HCO3
- transport across the thylakoid membrane, for conversion to CO2 by CAH3.  

BST1 may play a greater role in HCO3
- transport and Ci recycling than BST2 and 

BST3. Modelling of BST1 shows it contains an entry pore with a neutral/negative 

electrostatic potential and its selection pore is positively charged, increasing its likelihood to 

transport negatively charged ions such as HCO3
- (Mukherjee et al., 2019). This is further 

supported by preliminary Xenopus laevis electrophysiology data which shows BST1 is 

HCO3
- permeable (unpublished data from the Mackinder laboratory). Therefore, BST1 

should be given priority for further analysis.  

Whilst we now have more insight into the delivery of HCO3
- to Rubisco, how CO2 is 

prevented from escaping the pyrenoid is still largely unknown. The starch sheath 

surrounding the pyrenoid matrix has been proposed to be a barrier to escaping CO2 

(Ramazanov et al., 1994), whilst the protein complex LCIB/C is also thought to act as a CO2 

trap (Duanmu et al., 2009). Recently, the interconnectedness of these structures has been 

elucidated, as the starch sheath is required for localising LCIB puncta to the periphery of the 

pyrenoid (Toyokawa et al., 2020). LCIB plays a key role in the CCM to acclimate to LC 

conditions (Spalding et al., 1983a; Wang and Spalding, 2006) and is proposed to act by 

hydrating CO2 to HCO3
- (Wang et al., 2015). Structural analysis of LCIB has confirmed it 

belongs to a family of β-carbonic anhydrases due to similar zinc-binding motifs, active sites 

and overall folding compared to other β-carbonic anhydrases. Whilst carbonic anhydrase 

activity for LCIB has yet to be demonstrated, homologs from other species have carbonic 

anhydrase activity (Jin et al., 2016). It has been suggested that LCIB works downstream of 

CAH3, and therefore LCIB is proposed to trap the CO2 released by CAH3 which does not 

react with Rubisco (Duanmu et al., 2009). In the stroma, LCIB interacts with LCIC to form a 

350kDa complex (Yamano et al., 2010), in a 1:1 stoichiometry (Jin et al., 2016). LCIB/C 

changes localisation under different conditions; in the light and in limiting-CO2 conditions 

LCIB/C localises to the pyrenoid periphery whilst in the dark and in HC conditions LCIB/C 

localises in a diffuse pattern in the stroma (Yamano et al., 2010). The function of LCIC has 

not yet been shown, but it could be hypothesised that it is needed for correct LCIB 

localisation.  
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Therefore, it is proposed that LCIB is both a CO2 trap and concurrently a contributor 

to the stromal HCO3
- pool (Wang et al., 2015). This stromal HCO3

- is proposed to enter the 

thylakoid lumen through BST1-3 for dehydration in proximity to Rubisco by CAH3. Therefore 

a Ci recycling mechanism has been proposed involving LCIB/C, BST1-3 and CAH3 (Fig. 15) 

(Mukherjee et al., 2019). To avoid a futile cycle whereby HCO3
- enters the thylakoid lumen, 

is converted to CO2 and escapes again, CAH3 has been shown to localise to the pyrenoid 

tubules under LC conditions (Blanco-Rivero et al., 2012; Mukherjee et al., 2019).  

 

Figure 15. Ci recycling by LCIB/C, BST1-3 and CAH3 allows CO2 to be released in close proximity to 

Rubisco whilst preventing CO2 escape from the pyrenoid matrix.  

This proposed Ci recycling mechanism has led to the hypothesis that the key CCM 

components involved may interact. In order to identify interactions between CCM 

components, affinity purification mass spectrometry (AP-MS) has previously been used, 

whereby bait proteins were interrogated using prey proteins containing a 3xFLAG tag 

(Mackinder et al., 2017). It was shown that BST1-3 interact with each other, LCIB and LCIC 

interact with BST3, and LCIC also interacts with BST1 (Mackinder et al., 2017). However, 

this technique is limited; AP-MS cannot distinguish between interactions that are direct and 

indirect. Therefore proteins which form large complexes may appear to interact with the bait 

when this interaction may be limited to specific complex members (Mackinder et al., 2017). 

Whilst BST1-3 proteins show low sequence identity to human Best1 and Arabidopsis 

AtVCCN1, BST1-3 proteins are >80% identical to each other (Mukherjee et al., 2019). 

However, BST1-3 proteins have differences in their C-termini and therefore may play 

different roles in the CCM (Mukherjee et al., 2019). Whilst BST1-3 may have redundant 
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functions, the individual BST proteins may contribute to varying degrees to the recycling of 

Ci in association with LCIB/C. Therefore, further interrogation of the interactions between 

BST1-3 and the LCIB/C complex is needed.  

To investigate specific interactions between CCM components an alternative method, 

Förster Resonance Energy Transfer (FRET), can be used. FRET is a process where energy 

is transferred non-radiatively from an excited donor fluorophore to an acceptor molecule 

(Ishikawa-Ankerhold et al., 2012). FRET can only occur within the range of less than 10 nm 

and therefore indicates fluorophores are in close proximity (Ishikawa-Ankerhold et al., 2012). 

By fusing fluorophores to proteins hypothesised to interact, FRET is able to indicate the 

formation of a long-lived, specific complex between the donor- and acceptor-labelled 

proteins (Gu et al., 2004). There are several FRET detection techniques, including acceptor-

sensitized emission FRET (seFRET) which allows measurement of the change of the donor 

emission in the presence of the acceptor. If FRET occurs, the donor emission decreases 

whilst the acceptor emission increases (Gu et al., 2004). An additional intensity-based FRET 

technique called acceptor depletion FRET (adFRET) measures donor fluorescence after 

photobleaching the acceptor. This will result in de-quenching of the donor, causing an 

increase in donor fluorescence (Gu et al., 2004).  

FRET requires the excitation spectrum of the acceptor molecule to overlap with the 

emission spectrum of the donor molecule (Stryer, 1978). Whilst there are many appropriate 

fluorophores which can act as FRET pairs (Ishikawa-Ankerhold et al., 2012), the 

fluorophores most easily available for this study include Venus, a yellow fluorescent protein 

(YFP), and mScarlet-i, a red fluorescent protein (RFP). Venus has an absorption maximum 

of 514nm (Rekas et al., 2002) whilst mScarlet-i has an absorption maximum of 569nm 

(Bindels et al., 2017) therefore Venus can be used as a donor, and mScarlet-i as an 

acceptor. Using mScarlet-i as the FRET acceptor is advantageous because it has been 

shown to outperform other RFPs for FRET (Bindels et al., 2017). Already available 

Chlamydomonas lines with single Venus-tagged proteins can be transformed with mScarlet-

i-tagged proteins to investigate interactions. Until now, the mScarlet-i-tagged CCM proteins 

needed to investigate the Ci recycling hypothesis have not been available. Therefore, FRET 

can now be used to study these key CCM protein interactions, by using appropriate FRET-

pair fluorophores fused to BST1-3 and LCIB/C.  

Tagging Chlamydomonas proteins with fluorophores has previously been carried out 

by constructing plasmids using Gibson Assembly (Mackinder et al., 2017). Genomic DNA 

was PCR-amplified and cloned in frame with a C-terminal Venus tag and a strong PsaD 

promoter. A short linker was constructed between the target protein and fluorescent protein 

(GDLGGSGGR) (Mackinder et al., 2017). However for this cloning method, cloning success 

was reduced for long genes and for genes with a low expression level (Mackinder et al., 



 

65 
  

2017). This becomes challenging for cloning Chlamydomonas genes, which have an 

average length of 4312 bp (Merchant et al., 2007). The gene length of LCIB is 3036 bp, 

whilst BST1 is 2843 bp long (Goodstein et al., 2012). The Chlamydomonas nuclear genome 

also poses problems for PCR-based cloning because it is GC-rich (68%) and genes are 

intron-rich, which are long (98.5% are >100bp) and have repeating sequences (Merchant et 

al., 2007). It has been recently shown that introns from native highly expressed genes in 

Chlamydomonas are able to enhance nuclear gene expression through intron-mediated 

enhancement, especially when introns are in close proximity to the transcription start site 

(Baier et al., 2020).  

An alternative method, recombineering, is independent of gene size and allows 

introns and native regulatory structures, including promoters, to be maintained. Maintenance 

of these parts has been shown to be important for transgene expression in Chlamydomonas 

(Schroda, 2019). Recombineering has recently been used in Arabidopsis where >250 genes 

were tagged (Brumos et al., 2020) and the method for recombineering in Chlamydomonas 

has recently been made available (Emrich-Mills et al., 2020). To undergo recombination, 

Bacterial Artificial Chromosomes (BACs) in Escherichia coli (E. coli) are made competent for 

recombination by introducing the proteins from the bacteriophage lambda virus, Red α, β 

and γ (Fig. 16A) (Yu et al., 2000; Copeland et al., 2001). 50 bp homology arms needed to 

retrieve the gene of interest from the BAC are PCR-amplified at both ends of the fluorophore 

(which is contained within a linearised plasmid) (Fig. 16B). Tagging target genes with 

fluorophores via recombineering allows visualisation of endogenous expression and 

localisation of the gene in interest (Sarov et al., 2006). In this study, recombineering was 

used to fuse a mScarlet-i tag to LCIB and BST1 which can then be transformed into a 

combination of lines containing different Venus-tagged proteins. Transformations for the 

creation of appropriate control lines would allow investigation of specific protein-protein 

interactions using FRET. Interrogation of the interactions between BST1-3 and LCIB/C via 

FRET may elucidate the key proteins within these complexes which are responsible for Ci 

recycling in the CCM.  
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Methods 

Recombineering:  

Bacterial strains: 

DH10B Escherichia coli cells containing LCIB and BST1 within bacterial artificial 

chromosomes (BACs) are available from the Chlamydomonas Resource Centre, University 

of Minnesota, USA. 

pLM162, which contains the mScarlet-i fluorophore and hygromycin resistance gene 

(AphVII) was maintained in DB3.1 E. coli cells. DB3.1 cells were obtained from 

ThermoFisher Scientific, and contain ccdA, the ccdB antidote gene for recombineering 

vector maintenance.  

For recombination competence, DH5a E. coli cells containing a pRed vector were used. The 

pRed vector expresses viral proteins (Redαβγ) and recA controlled by an arabinose 

inducible promoter, which when transformed into the BAC strain, gives the potential for 

recombination (Sarov et al., 2006). 

 Day 0-Preparation for transformation: 

One colony of pRed containing cells was grown at 37°C overnight, shaking at 200 rpm, with 

lysogeny broth (LB) and tetracycline (5 μg mL-1) in a 3 mL volume. One colony of pLM162 

containing cells were grown at 37°C overnight, shaking at 200 rpm, with lysogeny broth (LB) 

and kanamycin (25 μg mL-1) in a 3 mL volume. The following day, pRed and pLM162 

plasmids were extracted (Plasmid Mini Kit, QIAGEN) and concentrations were ascertained 

by a nanodrop spectrophotometer and stored at 4°C (pRed) and -70°C (pLM162). One 

colony of each BAC strain containing LCIB and BST1 genes were grown overnight at 37°C, 

with shaking at 200 rpm, in yeast extract nutrient broth (YENB) containing Chloramphenicol 

(12.5 μg mL-1). All of the growth steps were carried out in a 3 mL volume in a 15 mL screw-

cap plastic tube.  

Day 1-pRed transformation preparation:  

The pRed plasmid was diluted to 0.1 ng μL-1 in H2O, making a volume of 100 μL for each 

reaction. Before transformation, the microcentrifuge was pre-cooled to 4°C, and the 10% 

(v/v) glycerol, 2 mm gap electroporation cuvettes (1 per reaction), 2 mL micro-centrifuge 

tubes (1 per reaction) and diluted pRed plasmid were cooled on ice. At room temperature, 2 

mL micro-centrifuge tubes (1 per reaction) containing 800 μL super optimal broth with 

catabolite repression (SOC) were prepared.  
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Day 1-pRed transformation: 

After ~16h of growth, 40 μL of the BAC strains from the previous day were inoculated into 

900 μL of YENB with Chloramphenicol (12.5 μg mL-1) in a 2 mL micro-centrifuge tube and 

grown for 3 hours at 37°C. The saturated BAC strain growth was transferred to a pre-cooled 

2 mL micro-centrifuge tube for 2 min (on ice), and then centrifuged for 10 min at 4°C and 

5000 g. The supernatant was removed, and the tube was put back on ice. 1 mL 10% (v/v) 

glycerol was used to resuspend the pellet gently, followed by centrifugation and the 

supernatant removal as before, then put back on ice. The pellet was resuspended in 100 μL 

0.1 ng μL-1 pRed plasmid and transferred to a pre-chilled cuvette, which was electroporated 

using a Gene Pulser II (Bio-Rad) at 2500 V, 400 Ω and 25 μF (Fig. 16A). For recovery, 

immediate transfer of the cells to the pre-prepared SOC followed by 90 min of recovery 

growth at 30°C with shaking at 200 rpm was carried out. After recovery 400 μL of the 

outgrowth was inoculated into 1 mL YENB with chloramphenicol (12.5 μg mL-1) and 

tetracycline (5 μg mL-1), and grown overnight at 30°C with shaking at 200 rpm.   

Day 1-Preparation of the PCR product: 

The recombineering cassette from pLM162 was amplified by PCR (Phusion Hotstart II 

polymerase, ThermoFisher Scientific) in a 50 μL reaction using primers which contain 50 bp 

homology arms which flank the target gene (Fig. 16B, supplementary method 1). 1 μL of the 

PCR product was analysed on an agarose gel and the product was kept at 4°C overnight. 

Day 2-PCR product transformation preparation: 

The PCR product was purified using a MinElute Gel Extraction Kit, QIAGEN and the 

concentration was measured using a nanodrop spectrophotometer. The PCR product was 

diluted to 5 ng μL-1 in H2O, for a volume of 100 μL for each reaction. After ~16h of growth, 

120 μL of saturated outgrowth from the previous day were inoculated into 950 μL of YENB 

with Chloramphenicol (12.5 μg mL-1)  and tetracycline (5 μg mL-1) in a 2 mL micro-centrifuge 

tube and grown for 3 hours at 30°C with shaking as before. 20 μL of 10% (w/v) L-arabinose 

was added to each tube and grown at 37°C for 1 hour with shaking as before. The following 

pre-cooling and transformation steps were performed as outlined previously, with the only 

change being the addition of 100 μL of 5 ng μL-1 of the PCR product, instead of the diluted 

pRed plasmid (Fig. 16C). 90 min of recovery growth was carried out at 37°C. 900 μL of 

outgrowth was plated on 2 LB agar plates with kanamycin (25 μg mL-1), therefore 450 μL on 

each plate, allowed to dry and incubated at 37°C overnight. The following day, 8 colonies 

from each reaction were picked with a sterile loop and seeded onto an LB agar plate with 25 

μg mL-1 kanamycin and grown at 37°C overnight whilst the same loop was used to inoculate 

LB liquid media with kanamycin (25 μg mL-1) in a 3 mL volume and grown at 37°C overnight 
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with shaking as before. The following day, plasmids were extracted from the liquid growth 

(Plasmid Mini Kit, QIAGEN) and the concentration was measured using a nanodrop 

spectrophotometer. The plasmids underwent a SacI restriction enzyme digest which was 

analysed on an agarose gel. Geneious software (Geneious 11.1.5) was used to carry out in 

silico plasmid assembly and to visualise sequencing data (GATC Bioscience). Sequencing 

was carried out on the recombineered constructs LCIB-mScarlet-i (forward primer: 5’-

GAGCAAACGTACGGCAAAGC-3’, reverse primer: 5’-CTGCCGTGGGACTAGATGTT-3’) 

and BST1-mScarlet-i (forward primer: 5’-ATGCAAGCAAACCGTTCGTA-3’, reverse primer: 

5’-CTGCCGTGGGACTAGATGTT-3’).  

  

  

  

  

 

 

 

 

 

 

Figure 16. Visual representation of recombineering method for LCIB-mScarlet-i. A) The pRed plasmid 

was transformed into a BAC strain containing the gene of interest (LCIB) to give the potential for 

recombineering. B) The mScarlet-i containing plasmid was PCR amplified using primers containing 50 

bp homology arms. C) To undergo homologous recombination the pRed plasmid was activated at 

37°C with addition of L-arabinose, producing a final product containing the gene of interest and 

fluorophore (LCIB-mScarlet-i). The same method was carried out to produce BST1-mScarlet-i. The 

plasmid maps of the final products of LCIB-mScarlet-i and BST1-mScarlet-i are shown in Fig. S3. 

Results 

To investigate the interactions of key CCM components for confirmation of the Ci recycling 

hypothesis, Chlamydomonas lines containing appropriate FRET-pair fluorophores needed to 

be generated. Recombineering was used to fluorescently tag the genes of interest, LCIB and 

BST1, with the monomeric fluorescent protein mScarlet-i (Fig. 16). A restriction enzyme 

digestion was then carried out to verify that recombination had been successful (Fig. 
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17).  For LCIB-mScarlet-i, colony 2 (C2) represents an example colony showing the 

expected banding pattern, whilst colony 1 (C1) represents an example colony showing the 

expected banding pattern with addition larger bands, suggesting partial digestion of the 

plasmid occurred (Fig. 17A).  

 

 

 

 

 

 

 

 

 

 

 

Figure 17. DNA gel electrophoresis of A) LCIB-mScarlet-i and B) BST1-mScarlet-i after restriction 

enzyme digest using SacI, to ascertain if recombination had been successful. Expected band sizes 

after digestion by SacI are presented at the bottom of the gel in white. L: ladder, U: undigested DNA, 

SacI: DNA digested with SacI restriction enzyme, C1: colony 1, C2: colony 2.  

For LCIB-mScarlet-i, two out of eight colonies (colony 2 and 3) showed correct band patterns 

when compared to a virtual gel created by in-silico recombineering (Fig. S4A, B). The other 

six out of eight colonies showed correct bands with additional larger bands, suggesting 

partial digestion of the plasmid occurred (Fig. S4A, B). For BST1-mScarlet-i, only colony 1 

appeared to have the correct banding pattern (Fig. 17B, Fig. S4C, D). However, four other 

colonies (colony 3, 6, 7, 8) showed similar banding patterns with either less clarity or 

additional partial digestion bands, but may serve as additional candidates (Fig. S4C, D). Due 

to partial digestions it was difficult to determine success rates, but examples that showed 

correct complete digestions gave success rates of 25% for LCIB-mScarlet-i and 12.5% for 

BST1-mScarlet-i. To verify that the recombineered plasmids were correct, candidate 

colonies from Fig. 17 were selected and confirmed by sequencing (Fig. S5). Plasmid maps 

for BST1-mScarlet-i and LCIB-mScarlet-i are presented in Fig. S3.  
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Discussion 

FRET may now be possible due to recombineered mScarlet-i containing plasmids 

The successful recombination of LCIB-mScarlet-i and BST1-mScarlet-i (Fig. 17) 

means it is now possible to create dual-tagged Chlamydomonas lines by transformation for 

FRET. Confirmation that plasmids are correct by sequencing (Fig. S5) means a combination 

of Chlamydomonas transformations can now be carried out, to create appropriate controls 

and results using FRET (Table 4 and Chapter 3, Methods). Screening for fluorescence 

would require a plate reader assay, and correct localisation of fluorescence would require 

confocal imaging (Chapter 3, Methods). However, the caveats of recombineering should be 

considered, including the effect of random insertion and the presence of the native copy of 

the gene. 

For FRET, further controls will be needed to account for spectral bleed-through, 

which occurs due to the spectral overlap between the fluorophores. This may be from the 

donor emission into the acceptor emission (emission cross-talk), and by direct excitation of 

the acceptor through excitation of the donor (excitation cross-talk) (Ishikawa-Ankerhold et 

al., 2012; Broussard et al., 2013). Cells containing single Venus-tagged proteins need to be 

imaged to calculate a correction for emission cross-talk, whilst cells containing single 

mScarlet-i-tagged proteins are needed for the excitation cross-talk correction. Also, 

additional background fluorescence may be present in the acceptor channel. Therefore, 

control unlabelled cells should be imaged to measure autofluorescence (Broussard et al., 

2013). Additionally, spectral unmixing may be necessary to remove unwanted signals (Gu et 

al., 2004). By taking control measurements into account, seFRET image processing and 

analysis can be carried out (Broussard et al., 2013). 

 

Table 4. Proposed combinations of Chlamydomonas transformations using already available 

Chlamydomonas lines and recombineered plasmids from this study. The resulting dual-tagged lines 

will allow for testing of LCIB/C and BST1 proximity using FRET. Single-tagged Venus and mScarlet-i 

lines will be needed as additional controls, to correct for emission and excitation cross-talk.  

Purpose Previous work 

(Chlamydomonas line) 

Work from this study 

(recombineered plasmid) 

Proximity test LCIB-Venus BST1-mScarlet-i 

Proximity test LCIC-Venus BST1-mScarlet-i 

Positive control LCIC-Venus LCIB-mScarlet-i 

Negative control STA2-Venus LCIB-mScarlet-i 

https://paperpile.com/c/Xz7OQv/5IWQc
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FRET offers a suitable method to study protein-protein proximity within the CCM but 

has caveats 

To define the proximity of fluorophores, the Förster distance (the distance where 

FRET is at 50% maximum efficiency) can be calculated. The Förster distance between 

donor Venus and acceptor RFPs such as mCherry is between 5-6 nm, and the Förster 

distance between mVenus and mScarlet is 6.16 nm (Ishikawa-Ankerhold et al., 2012; 

Lambert, 2019). Therefore, if FRET was achieved between tagged combinations of LCIB/C 

and BST1-3, we can assume that the proteins being tested are forming a long-lived, specific 

complex.  

 FRET-pair choices are important because FRET efficiency relies on: the quantum 

yield (brightness) and fluorescence lifetime of the donor, and the spectral overlap, 

orientation, and distance between fluorophores (Gu et al., 2004). FRET using a YFP-

mScarlet-i fusion showed that mScarlet-i has the largest sensitized emission compared to 

other RFP’s (3.3-fold of mCherry and >2.5-fold greater than mRuby2). Therefore mScarlet-i 

is the most suitable RFP for FRET (Bindels et al., 2017). Another important consideration 

when choosing fluorophores for FRET is that if the fluorophores themselves dimerise, then 

false positive interactions may occur or localisation may be perturbed (Kremers et al., 2006). 

Whilst mScarlet-i is monomeric (Bindels et al., 2017), Venus can form dimers (Rekas et al., 

2002) therefore the use of monomeric Venus (mVenus) may be advantageous (Kremers et 

al., 2006). Monomerization of Venus can be carried out by introducing the mutation A206K 

(Kremers et al., 2006). However, by using a previously generated single-tagged Venus-

containing Chlamydomonas line for transformation of mScarlet-i-tagged proteins, cost and 

time for generating strains can be reduced.  

However, there are caveats to FRET which should be taken into account. The small 

distance in which FRET is possible is a disadvantage when studying protein-protein 

interactions between multiprotein complexes (Ishikawa-Ankerhold et al., 2012). This may 

pose a problem when studying the interactions of the 350kDa hexamer complex LCIB/C 

(Yamano et al., 2010) and BST1-3 which are also proposed to interact with each other 

(Mackinder et al., 2017). Therefore, a false negative result may be given if the proteins being 

tested interact, but the fluorophores are not close enough to undergo FRET (Broussard et 

al., 2013). False negatives may also arise because even highly efficient FRET-pairs only 

produce FRET efficiencies of 10-40% (Broussard et al., 2013). However, despite these 

caveats, FRET offers an advantage over AP-MS to test the proximity of proteins on the 

nanometer scale.  
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The C-termini of BST1-3 may be the location of LCIB/C binding 

It is now possible through development of LCIB-mScarlet-i and BST1-mScarlet-i 

constructs to investigate the proximity of key CCM components proposed to carry out Ci 

recycling. Due to limited information on Chlamydomonas BST1-3, it is not yet clear how 

BST1-3 interact with each other, how they interact with LCIB/C and the extent to which each 

Bestrophin-like protein contributes to Ci recycling. Human Best1 proteins are proposed to 

form homodimers (Stanton et al., 2006), tetramers and pentamers (Sun et al., 2002). The 

bacterial homolog of Best1 in Klebsiella pneumoniae, KpBest, is proposed to form a 

pentameric assembly (Yang et al., 2014). Modelling of Chlamydomonas BST1 shows that a 

pentameric assembly is likely for BST1-3 (Mukherjee et al., 2019) but requires further 

verification. However whilst it has been shown that BST1-3 interact with each other 

(Mackinder et al., 2017), analyses of the stoichiometry of hBest1, 2, 3, and 4 shows that they 

form homotetrameric channels despite having considerable conservation (Bharill et al., 

2014). Self-assembly of hBest1 requires a coiled-coiled domain at the C-terminus (Bharill et 

al., 2014). 

BST1-3 have differences in their C-termini and therefore may play different roles in Ci 

recycling (Mukherjee et al., 2019). The identification of a protein kinase C phosphorylation 

site on the C-terminus of hBest1 (Xiao et al., 2009) suggests BST1-3 regulation by 

phosphorylation at the C-terminus should be considered. Whilst having a modulatory role, 

the C-terminus is suggested to be important for protein-protein interactions (Tsunenari et al., 

2003). Therefore, if FRET shows interactions exist between proteins in the LCIB/C and 

BST1-3 complexes, it would be interesting to investigate the C-terminus of BST1-3 as a 

possible location of LCIB/C binding. However it should be noted that whilst there has been 

much research on the Bestrophin family, BST1-3 show less than 30% protein sequence 

similarity to other Bestrophins (Mukherjee et al., 2019) and therefore only tentative 

predictions can be made when comparing function and regulation between homologs.  

In summary, investigation of the proximity between BST1-3 and LCIB/C by FRET is 

now possible due to the development of LCIB-mScarlet-i and BST1-mScarlet-i constructs by 

recombineering .The involvement of BST1-3 and LCIB/C in a Ci recycling mechanism is not 

only important to consider for the algal CCM, but also when engineering a pyrenoid into 

higher plants. 
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Chapter 5: Final conclusions and 
future perspectives 

Insights revealed into the dynamic nature of the pyrenoid and 

progress made in this study 

Many questions remain unanswered regarding the dynamic nature of the pyrenoid. 

The first aim of this study was to use FRAP to study the mobility of Rubisco under different 

growth conditions, and to test if other CCM components are mobile (Chapter 2). Whilst 

differences in Rubisco mobility were not observed under different growth conditions (Fig. 4), 

very preliminary data showed that LCI9, forming the proposed mesh-layer between starch 

plates, may re-homogenise on longer time scales than Rubisco (Fig. 5). The microscope 

settings and optimisation of sample preparation developed in this study will enable further 

data to be collected on Rubisco, LCI9, and LCIB/C mobility. The progress made in this study 

enables FRAP to be used to investigate the mobility of CCM components in the Mackinder 

laboratory.  

 The second aim of this study was to gain insight into the movement of the pyrenoid 

starch sheath during pyrenoid division (Chapter 3). The development of a dual-tagged 

Rubisco-starch line, and optimisation of time-lapse microscopy settings and sample 

preparation, meant preliminary data could be collected. Time-lapse microscopy revealed 

pyrenoid matrix dynamics during division, including formation of puncta de novo (Fig. 7), 

which was previously reported to be a rare event (Freeman Rosenzweig et al., 2017). The 

additional observations of a phase transition and coalescence of puncta (Fig. 7), means this 

study confirms the characterisation of the pyrenoid as a LLPS organelle. The dual-tagged 

line also enabled visualisation of fluorescently-tagged Rubisco and starch during pyrenoid 

division for the first time (Fig. 8). This led to the formulation of several hypotheses in the 

involvement of the starch sheath during division (Fig. 14), including an active “pinching” 

mechanism, whereby starch may facilitate Rubisco partitioning, possibly through the action 

of starch-Rubisco linker proteins. Alternatively, starch may play a passive role whilst staying 

associated with the matrix, move away from the matrix to allow Rubisco “escape”, or the 

thylakoids may play a role. The hypothesis that sequential starch sheath degradation and 

synthesis may take place during division was further investigated using bioinformatics. This 

revealed candidates with peak mRNA abundance during division which had suggested roles 

in starch modification, either by the presence of functional annotated, CBM, or coiled-coil 

domains potentially facilitating protein-protein interactions. This study reveals the first 
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insights into the movement of pyrenoid starch during division and provides materials and 

candidates for further investigation.  

 The third aim of this study was to elucidate the potential interaction between the 

thylakoid HCO3
- transporter complex BST1-3 and the suggested carbonic anhydrase 

complex LCIB/C (Chapter 4). Recombineering was carried out to create BST1 and LCIB 

tagged with mScarlet-i, and transformation controls were suggested so that investigation of 

BST1 and LCIB/C proximity could be tested using FRET (Table 4). Along with starch, 

LCIB/C is proposed to act as a CO2 trap, recycling Ci
 which escaped from the matrix after 

being transported into the thylakoids by BST1-3 and converted to CO2 by CAH3. 

Understanding if these proteins are in close proximity by using these constructs for FRET 

will help to elucidate the role of this inorganic carbon recycling mechanism (Mukherjee et al., 

2019) (Fig. 15) for the CCM.  

The work in this study enables future investigation into the dynamic 

nature of the pyrenoid 

The results presented in Chapter 2 are preliminary where the aim was to set up appropriate 

microscope settings and analysis methods for FRAP. Future work should focus on using 

growth conditions which have greater biological relevance. The provision of acetate as the 

sole carbon source (TAP media) requires the glyoxylate pathway which returns glucose 

(Kunze et al., 2006), and therefore Chlamydomonas growth is independent from 

photosynthesis. This provided the opportunity to collect preliminary results on Rubisco 

dynamics with dark-grown Chlamydomonas. However, this growth method prevents direct 

comparison between the light and dark conditions due to the induction of different metabolic 

pathways, including differences in CCM induction, in TP and TAP media. Therefore, 

Chlamydomonas should be grown at high (3% volume) and low (0.04% volume) CO2, in the 

light and dark, prior to collection of further FRAP data. It has been shown that in HC 

conditions, ~40% of Rubisco was localised to the pyrenoid with an increased stromal 

localisation, compared to LC conditions where ~90% of Rubisco localised to the pyrenoid 

(Borkhsenious et al.,1998). Therefore, HC and LC conditions provide the opportunity to 

study Rubisco mobility under larger differences in Rubisco localisation compared to growth 

in TP and TAP media and FRAP curve recoveries may vary between conditions. In 

conclusion, optimisation of FRAP in this study enables further investigation of Rubisco-

Venus mobility under different growth conditions and other CCM components such as 

LCIB/C. FRAP of LCI9-Venus allowed observation of re-homogenisation on longer time 

scales than Rubisco-Venus (Fig. 4, 5) which means the settings in this study could also be 

applied to other starch-associated proteins which may recover slowly.  

https://paperpile.com/c/8G1ibS/S7QP
https://paperpile.com/c/8G1ibS/S7QP


 

75 
  

The development of a dual-tagged line for Rubisco-Venus and STA2-mCherry in this 

study (Chapter 3) means it is now possible to simultaneously capture the movement of 

Rubisco and starch during pyrenoid division. The starch inheritance hypotheses put forward 

can now be investigated using the time-lapse imaging microscopy settings in this study. If 

the starch sheath is required to “pinch off” the matrix during division, and counteracts the 

natural tendency of matrix material to form one large pyrenoid (Itakura et al., 2019) it would 

be interesting to observe how pyrenoid division occurs in a starchless mutant. To investigate 

the starch degradation and synthesis hypothesis, mutations in the candidates highlighted in 

Chapter 3 could be introduced, and the effect on pyrenoid starch inheritance could be 

investigated using the dual-tagged line developed and time-lapse microscopy settings. The 

Rubisco-starch dual-tagged line could reveal further insights into the role of the thylakoids 

during pyrenoid division by using it to develop a triple-tagged line, with a fluorescently-

tagged thylakoid-associated protein. Further testing of the “pinching”, degradation and 

synthesis, and “escaping” hypotheses is needed to understand how Chlamydomonas 

organises its starch sheath during the process of division. A recent study has highlighted a 

role for the starch sheath in localising LCIB to the pyrenoid periphery (Toyokawa et al., 

2020). This suggests the starch sheath and LCIB may act synergistically for the function of 

the CCM, with starch acting as a physical barrier to escaping CO2 (Ramazanov et al., 1994) 

and LCIB converting escaping CO2 back to HCO3
- (Jin et al., 2016). The interaction of starch 

with LCIB may require a linker protein, or could be enabled by interactions with the thylakoid 

HCO3
-  transporters BST1-3, enabling a Ci recycling mechanism (Mukherjee et al., 2019).  

Due to the development of LCIB-mScarlet-i and BST1-mScarlet-i constructs and 

suggested controls for FRET in this study, it is now possible to investigate BST1-3 and 

LCIB/C proximity. Further examination of the role of these proteins in Ci recycling could 

involve growing cells at varying levels of CO2. In HC conditions, LCIB localisation is diffuse 

in the stroma (Yamano et al., 2010) and therefore the likelihood of interaction with BST1-3 

may be reduced. Conversely, the interaction between LCIB/C and BST1-3 may change 

under VLC conditions, where LCIB plays a lesser role for the CCM than in air levels of CO2 

(Wang and Spalding, 2006). However, in VLC LCIB is localised around the pyrenoid 

periphery (Yamano et al., 2010) suggesting interaction with BST1-3 may be possible. More 

specifically, the C-termini of BST1-3 should be considered as the location of LCIB/C binding 

if FRET reveals protein proximity. This could be tested by carrying out a series of yeast two-

hybrid assays with LCIB/C (bait) and BST1-3 with C-terminal truncations (prey).  

 

https://paperpile.com/c/8G1ibS/S7QP
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The work in this study may aid engineering of the pyrenoid into 

higher plants 

The highly efficient biophysical CCM of eukaryotic algae provides an intriguing 

avenue for engineering and improving photosynthesis in higher plants (Mackinder 2017). 

The similarity of Rubisco concentrations in algal and plant chloroplasts (Harris and Königer 

1997; Freeman Rosenzweig et al. 2017) may indicate that Rubisco could be assembled into 

a pyrenoid in plant chloroplasts. Recent efforts to form Rubisco-EPYC1 condensates in 

higher plants were limited as EPYC1 was a target for proteolytic degradation (Atkinson et al., 

2019), suggesting further work is needed to understand the underlying biophysical and 

biochemical principles governing LLPS in algal pyrenoids. This includes understanding how 

different growth conditions affect Rubisco mixing (Chapter 2), especially as plants growing in 

a terrestrial environment are subject to fluctuating environmental conditions which differ 

greatly to the aquatic environment of algae. To prevent EPYC1 proteolytic degradation, a 

starch sheath surrounding the pyrenoid matrix may need to be engineered into higher plants, 

as a protective role for the starch sheath in preventing incoming O2 reacting with Rubisco 

and causing photorespiration has already been suggested (Colman, 1989). Thought must 

also be given to how pyrenoids might be inherited during mitosis of dividing plant cells, and 

how the starch sheath plays a role in Rubisco inheritance (Chapter 3). The starch 

degradation and synthesis candidates revealed by bioinformatics undertaken in this study 

(Chapter 3) offer an avenue to explore how a pyrenoid starch sheath can be modified and 

engineered into higher plants. The role for starch as a CO2 leakage barrier requires further 

investigation (Ramazanov et al., 1994), either as a physical barrier or in localising 

components such as the putative carbonic anhydrase LCIB to the pyrenoid periphery for 

CO2 recapture (Toyokawa et al., 2020). Whilst the HCO3
- transporters HLA3 and LCIA have 

been targeted to appropriate locations in Arabidopsis and N.benthamiana (Atkinson et al. 

2016), the localisation of the recently identified thylakoid HCO3
- transporters BST1-3 

(Mukherjee et al. 2019) should also be studied in higher plants. As in Chlamydomonas, the 

BST1-3 and LCIB/C complexes may be required for inorganic carbon recycling in higher 

plants (Chapter 4).  
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Final conclusion 

This study shows that the pyrenoid is a dynamic organelle, and enables further investigation 

into CCM components, through development of fluorescently-tagged constructs and 

Chlamydomonas lines, optimisation of microscope settings and sample preparation. Future 

FRAP, time-lapse and FRET experiments will hopefully reveal the mobilities of CCM 

components both internally within structures (Chapter 2), and in relation to associated 

structures (Chapter 3). Further investigation into candidates potentially involved in 

remodelling of the starch sheath has been enabled by a bioinformatics approach (Chapter 

3). Whilst these candidates may be directly involved in starch sheath modification, they may 

also play an indirect role in the inheritance of the pyrenoid matrix during division. The study 

of the mixing and movement of large structures within the pyrenoid must be accompanied by 

experiments which probe individual CCM component interactions (Chapter 4), bearing in 

mind the role of these proteins for the function of the CCM. The progress made in this study, 

and the ensuing work which has now been enabled, means we are closer to understanding 

the components required for engineering a CCM into higher plants.  
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Supplementary materials 

 
Figure S1. Dispersal of Rubisco during the phase-transition may require dissociation from the starch 

sheath plates. Z-stack images (0.39 μm apart) show movement of Rubisco-Venus signal (yellow) with 

traversing thylakoids (green). The STA2-mCherry signal (pink) appears separated from the Rubisco 

signal. Scale bar = 2 μm. 

 

 
Figure S2. Pyrenoid matrix fission may require association with the starch sheath. Z-stack images 

(0.44  μm apart) show two lobes of Rubisco-Venus signal (yellow) with an adjoining bridge of Rubisco 

signal. The STA2-mCherry signal (pink) appears to be associated at the periphery of the Rubisco 

signal. Scale bar = 2 μm. 
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Figure S3. Plasmid maps of A) LCIB-mScarlet-i and B) BST1-mScarlet-i showing the upstream 

regions (light pink), 5’UTRs (medium purple), and LCIB and BST1 genes (dark purple), homology 

arms (orange), mScarlet-i tag (red), origin of replication (medium blue), hygromycin resistance gene 

(yellow), kanamycin resistance gene (dark blue) and 3XFLAG tag (pink.) There is a short, flexible 

linker (green) preceding the fluorescent protein sequence (GGLGGSGGR) and a tri-glycine linker 

(cyan) preceding the 3XFLAG tag. 
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Figure S4. Restriction enzyme digestion by SacI tentatively shows recombination success using DNA 

gel electrophoresis for A) LCIB-mScarlet-i with B) accompanying virtual gel and A) BST1-mScarlet-i 

with B) accompanying virtual gel. Gel electrophoresis was carried out using a 0.7% (w/v) agarose gel 

in 1XTAE buffer (40 mM Tris, 20mM acetic acid, 1 mM EDTA). Eight colonies were screened for each. 

For A) undigested DNA for colony 1 was loaded only, whereas for C) the undigested DNA for each 

colony was loaded. L: ladder, U: undigested DNA, SacI: DNA digested with SacI restriction 

endonuclease, C1: colony 1, C2: colony 2 etc.,VL: virtual ladder, VD: virtual digest.  
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Figure S5. Sequencing confirmed recombineering constructs A) LCIB-mScarlet-i and B) 

BST1-mScarlet-i were correct. Primers were selected to show that both the 5’ ends of the CDS 

regions of the LCIB and BST1 genes, and the junction from the flexible linker into the 5’ end of 

mScarlet-i were correct. Green and pink bands just upstream and downstream of mScarlet-i 

depict flexible linkers.  
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Table S1. Chlamydomonas soluble starch synthases appear to closely resemble the family of 

Arabidopsis starch synthases. Homology-based modelling and images were acquired from 

Phyre2. 
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Table S2. Cre10.g457500 may show some structural resemblance to PTST2 and 3. 

Homology-based modelling and images were acquired from Phyre2. 
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Table S3. AMYA2, DSP8, STA4 and PHO2 potentially contain coiled-coils. Disorder and 

PFAM annotations were obtained from IUPred2A and coiled-coil probabilities were obtained 

from the MPI Bioinformatics Toolkit.  
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Supplementary method 1: PCR protocol for amplifying recombineering casette from pLM162.  

Reagents: 
Nuclease-free water    28.1 μl 
NEB GC buffer (5X)    10 μl 
    (New England Biolabs) 
DMSO (100%)           4.5 μl  
pLM099 (10 ng/μl)      1 μl  
dNTPs (10 mM)         1 μl  
Phusion HS II (2U/μl)  0.4 μl 
    (ThermoFisher Scientific) 
Primers (10 μM)          2.5 μl each  

Thermocycler conditions: 
98°C  1 min 
 
98°C  30 s  
63°C  30 s     x 30 
72°C  100 s 
 
72°C  10 min 
10°C     hold 

Primers with homology arms: 
The primer which binds 2000bp upstream of the start codon at the 5’ end of the gene 
encompasses the native promoter and untranslated region (UTR). The primer at the 3’ end 
of the gene is designed to bind just upstream of the stop codon. The reagents, thermocycler 
conditions (above) and primers (below) with underlined homology arms were used.  
Primers with homology arms: 
 
LCIB forward primer:  
5’-
ATCCTTGTTAATAAGGTCATCATGGTGAGTTTGTCCATCTTTCAAGGTGTGAAGATCCTT
TGATCTTTTCTACGGG-3’ 
 
LCIB reverse primer: 
5’-

GCCTCGGTGGGTCTAGAGGCAAGAACCCCCGGAGCTTCCTCCCCACGTGCCCGAGCC

CGCTGAGGTACC-3’ 

 
BST1 forward primer:  
5’-
AAAGGGAGCAACAAAGCGCAAAGGCTTTGTCACAAAACATGAGGAAGGGAGAAGATCC
TTTGATCTTTTCTACGGG-3’ 
 
BST1 reverse primer: 
5’-

GCCTCGGTGGGTCTAGAGGGAACGCGAGGGGTGGGTACCGGTGGGCGTGAACCTCC

GGCAACAACCCTC-3’ 
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