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Abstract 
 

Kyphoscoliosis Peptidase (KY) is a skeletal muscle Z-disk protein that has been 

implicated in several inherited myopathies. The mechanism underpinning KY’s 

function has remained elusive, but previous research suggests that KY could have 

protease activity over generic substrates. However, protease activity over endogenous 

substrates have not been proven. The highly conserved transglutaminase/protease 

(TGN/PROT) domain is the only distinguishable feature within KY. This domain 

includes conservation of the three catalytic residues which have been shown to be 

required for enzymatic activity in cysteine proteases. Here, biochemical assays have 

shown that this domain is not enzymatically active. In addition, electroporations of the 

ky/ky mouse muscle with a KY version lacking the TGN/PROT domain indicates that 

this domain is not required for Z-disk localisation but is required for the rescue of 

atrophic muscle fibres.  

Here, in-silico analysis has shown that human KY (hKY) protein has gained a nuclear 

localisation signal (NLS) located upstream of the putative start site of the mouse and 

other vertebrate homologues. This NLS appears to be functional, as in contrast to the 

mouse KY protein, hKY shows nuclear localisation in C2C12 myoblasts and COS-7 

fibroblasts. Within electroporated adult mouse muscle hKY localises both to the Z-

disk and the nucleus. The Z-disc/nuclear localization of hKY is highly reminiscent of 

IGFN1, a known protein partner of mouse KY. Co-transfections of hKY and IGFN1 

in C2C12 myoblasts leads to strong accumulation of both protein in nuclear 

aggregates, while IGFN1 is not able to change localization of mouse KY to the 

nucleus. Thus, the mouse and human KY orthologues show different expression 

patterns. Further analysis shows that this NLS is conserved within primates and 

therefore may have evolved to facilitate the distinct biomechanics of primate muscles 

compared to other placental mammals. 
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1.1 Skeletal muscle structure 

1.1.1 Skeletal muscle structure 

Skeletal muscle is built up from bundles of muscle fibers, more commonly known as 

fascicles. Each fascicle is encased by the perimysium; connective tissue which 

provides support and integrity to the fascicle. Further stability and structural integrity 

are provided by another layer of connective tissue, known as the epimysium which 

encases the perimysium. Each muscle fiber is composed of bundles of myofibrils, 

muscle fibers are encased by the sarcolemma; a cell membrane which provides a 

scaffold to which myofibrils adhere (Figure 1.A). The basic units of myofibrils are 

sarcomeres whereby the normal organisation of sarcomeric proteins gives muscles 

their distinctive pattern. The sarcomeres are defined by their Z disks (Clark, et.al., 

2002), which form the boundaries of the sarcomere. The width of the Z-disk varies 

depending on fiber type, fast fibers having narrow Z-disks (~30-50nm), whilst slow 

fibers have wider Z-disks (~100nm). Z-disks are essential for contraction, the transfer 

of tension, and signalling (Luther, et.al., 2003). Thin actin filaments are tethered to the 

Z-disk via the positive end of their filament (barbed end). Thick myosin filaments are 

contained between these actin filaments which are extruding from the Z disk (Figure 

1.B) (Clark, et.al., 2002). Skeletal muscle is adhered to the bone via tendons, typically 

occurring at each end of the muscle. Tendons allow for the conversion of contractile 

forces into movement.  

The Z-disk is arguably the most important structure within the context of skeletal 

muscle, providing an anchor for proteins and a structural linkage along the muscle 

fiber (Luther, 2009). Thus, allowing for the transmission of tension and contractile 

forces along the fiber. The Z-disks are extremely strong structures, able to withstand 

large forces applied through them, throughout muscle contraction. Furthermore, an 

extremely large repertoire of proteins and their interacting partners localize to the Z-

disk, allowing many functions to occur including mechanosensing and signalling 

(Luther, 2009). Mutations within many of these proteins have a profound effect, 

causing a range of cardiac and skeletal muscle diseases (Frank and Frey, 2011). The 

identity of the mechanism regulating stretch sensors is still elusive, but it is widely 
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believed these sensory proteins are located at the Z-disk (Knöll, et.al., 2011). In order 

for a transcriptional response to occur these sensors would have to communicate with 

the nucleus, either through the action of signalling proteins, or through protein 

translocation to the nucleus. 

 

 

Figure 1. Schematic diagram of skeletal muscle structure. A) Muscle structure from 

bone attachment to myofibrils. Tendons are used to adhere muscles to bone. The muscle 

is encased by the epimysium. The muscle itself splits into different fascicles, which are 

encased by the perimysium. Each fascicle is built up of multiple muscle fibers which are 

encased by the sarcolemma. This image is available at 

https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle/. Muscle fibers 

are formed through a multitude of myofibrils B) Sarcomere structure. Myofibrils are 

developed from horizontal and linear repeating sarcomeres. The Sarcomere is the basic 

contractile unit, shown is the key structural components. 

A 

B 

https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle/
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1.1.2 Muscle Fibers. 

Muscle Fibers are divided into multiple fiber types, the proportion of these fibers varies 

significantly between individuals and species (Simonea and Bouchard, 1989; Klont, 

et.al., 1998). The muscle fiber type is determined by the differing isoforms of myosin 

heavy chain (MHC) that are expressed, alongside myosin light chain (MLC), and the 

myosin binding protein C (MBC), together these proteins form the thick myosin 

filament within the fiber. Originally muscle fibers were divided into two classes, type 

I (slow) and type II (fast). Type I fibers are oxidative, producing slow sustained 

contractions and are able to resist fatigue, these fibers are known for maintaining 

correct posture (Pocock, et.al., 2013, p.125-126). Conversely, type II fibers are divided 

into two distinct groups, type IIa fibers which are an intermediate being oxidative and 

glycolytic. Type IIb are glycolytic, producing powerful short contractions required for 

dynamic movement (Pocock, et.al., 2013, p.125-126). More recently, other 

intermediate fibers have been identified and can be characterised through myosin 

ATPase histochemical staining (Scott, et.al., 2001). Most skeletal muscles contain a 

mixture of both type I and type II fibers, although some muscles predominantly express 

one type. The soleus muscle is primarily composed of type I fibers, while the extensor 

digitorum longus muscle is primarily type II fibers.  

Muscle fibers are formed through the fusion of multiple myoblasts. Cell fusion occurs 

when two Z bodies (small complexes of alpha actinin and associated proteins) grow, 

fuse, and align to form the Z disk, allowing development of the muscle fiber (Sanger, 

et.al., 2006). This process requires dramatic remodelling of the cytoskeleton allowing 

formation of a large, interconnected network between sarcomeres (Wang, et.al., 2005). 

Muscle fibers are multinucleated and post-mitotic. It has been theorised that a single 

nucleus has a limited synthetic capacity and can only regulate the gene expression 

within a select region (Myonuclear domain (MND)) within the myofiber (Hall and 

Ralston, 1989; Pavlath, et.al., 1989). Although a single myonuclei is thought to control 

the gene expression within the MND, a uniformity of gene expression is seen across 

the muscle fiber, suggesting some cross talk between these regions. Conversely, it has 

been reported that different MND’s show differing levels of gene expression across 
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the muscle fiber (Wilkins, et.al., 2001). Myonuclei located at neuromuscular junctions 

and myotendinous junctions, express a specialized subset of genes relevant to these 

specialised regions of the muscle. This suggests that each MND is under the control 

of a single myonuclei, and expresses a subset of specialized genes needed for that 

region. A more recent study has suggested that not all myonuclei are positioned 

equally, and that there are multiple subsets of myonuclei, each having specialized rules 

that control myonuclei spacing (Perillo and Folker, 2018). This may explain the 

differences in gene expression which are observed along the myofiber.  

1.2 Skeletal muscle hypertrophy 

Muscular cells are postmitotic, they are long lived and require constant maintenance 

and upkeep. The active nature of muscle cells (myocytes) allows the generation of 

mechanical forces, which in turn produces a large variety of stressors, such as 

increased temperature, membrane lesions, and cellular tension (Morton, et.al., 2009). 

Skeletal muscle is extremely plastic and can go through vast changes, these changes 

are dependent on the external and internal stimuli muscles receive. Muscles adapt to 

the functional requirements put upon them, adapting through changes in muscle mass, 

fiber size, and the type of fibers expressed. 

Muscular hypertrophy is one form of adaptation, with prolonged resistance training 

muscle hypertrophy is prominent, leading to an increase in muscle size and thus 

strength. In untrained individuals muscle hypertrophy is nearly non-existent. Muscle 

hypertrophy increases muscle fiber size through the addition of contractile elements, 

such as actin and myosin, which leads to a larger cross-sectional area of the muscle 

fiber. Contractile hypertrophy occurs through the addition of new sarcomeres in series 

or in parallel with the fiber (Vierck, et.al., 2000). Further to this increase in fiber cross-

sectional area, expansion of the extracellular matrix (ECM) is observed which provides 

further support to these larger fibers (White, et.al., 2009). Conversely to this, muscle 

growth can occur through the addition of new muscles fibers (hyperplasia). 
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The protein derived growth factor ‘insulin-like growth factor 1’ (IGF-1) has been 

shown to induce hypertrophy in muscle fibers (Musarò, et.al., 1999), this occurs 

through the stimulation of the phosphatidylinositol-3 kinase (PI3K) / Akt pathway. 

Alongside inducing hypertrophy, IGF-1 can also block transcriptional upregulation of 

key mediators of muscle atrophy (protein degradative pathway). IGF-1 binds to the 

tyrosine receptor IGFR1 causing the phosphorylation of Insulin Receptor Substrate 1 

(IRS-1), which in turn activates PI3K (Rommel, et al., 2001). Subsequently PI3K 

activates Akt through phosphorylation. Akt has a large plethora of functions, this 

includes phosphorylation of tuberous sclerosis complex-1 and -2 (TSC1/2) proteins, 

leading to their inhibition. Inhibition of TSC1/2 releases the inhibition upon mTOR, 

 

Figure 2. The hypertrophic PI3K/Akt signalling pathway. A simplified schematic of the 

phosphatidylinositol-3 kinase (PI3K) / Akt pathway. Up-regulators of muscle hypertrophy 

are shown in green whilst down regulators are shown in red. Intermediates are shown in 

blue. The arrows signify protein activation, while the red lines with a horizontal line signify 

protein inhibition. The curved line represents the myonuclei membrane. This image has 

been modified from (Glass, 2005), https://www.sciencedirect.com/science/article/ 

pii/S1357272505001317?via%3Dihub. 

https://www.sciencedirect.com/science/article/%20pii/S1357272505001317?via%3Dihub
https://www.sciencedirect.com/science/article/%20pii/S1357272505001317?via%3Dihub
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which has been shown to have an imperative role in integrating a variety of growth 

signals, such as nutritional stimulation and growth factors (Panzhinskiy, et.al., 2013).  

Activation of mTOR leads to protein synthesis, allowing growth of the fiber. Akt 

further aids the production of proteins utilising a distinct pathway, which is separate 

to the mTOR pathway. Akt inhibits GSK3, releasing the inhibition on the protein 

initiation factor eIF2B, allowing for an increase in protein synthesis, and aiding muscle 

hypertrophy. Furthermore, Akt activation leads to the inhibition of the Forkhead box 

transcription factors (FOXO) family. The FOXO family has a significant role in 

inducing atrophy (Sandri, et.al., 2004). This inhibition suggests, alongside inducing 

hypertrophy, that the PI3K/Akt pathway can significantly inhibit atrophy initiation.   

The initiation of exercise induced hypertrophy remains elusive, it is hypothesised that 

there are three main factors responsible for this initiation: mechanical tension, 

metabolic stress, and muscle damage (Schoenfeld, 2010). Mechanical tension is 

produced through force production and stretch. Both of these stimuli have a large effect 

on increasing muscle growth. To date, no definitive mechanosensory proteins have 

been identified, although a few candidates have been suggested such as Titin and 

FLNC (Wackerhage, et.al., 2018), both of which are Z-disk localizing proteins. 

Nucleocytoplasmic shuttling proteins such as Muscle LIM protein (MLP) which is 

encoded by Cystine and Glycine-rich protein 3 (Csrp3), have also been implicated as 

potential stretch sensors (Boateng, et.al., 2009; Vafidaki, et.al., 2015). A multitude of 

studies support metabolic stress as having a more important role in determining the 

hypertrophic response (Schoenfeld, 2013). The accumulation of metabolites such as 

lactate, initiates a stress induced mechanism which has been theorised to induce a 

hypertrophic response. Finally, muscular damage which can result from resistance 

training is thought to cause hypertrophy. This damage occurs in multiple forms; tears 

in the sarcolemma, basal lamina and supportive tissue are all seen. Alongside injury to 

contractile elements, and the cytoskeleton (Schoenfeld, 2010). This damage is believed 

to induce an inflammatory response, in which growth factors are released and in turn 

induce hypertrophy. 
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1.3 Skeletal muscle atrophy 

Muscular atrophy is a loss of muscle mass through active protein degradation. Muscle 

atrophy is prevalent in a multitude of diseases, such as Chronic kidney failure and heart 

disease. The most prevalent form of muscle atrophy is seen within sarcopenia where 

muscle loss is observed through the process of ageing. Atrophy is also seen in response 

to certain stimuli, such as starvation or immobilisation of a limb, both of these can 

cause a varying range of muscular atrophy.  

Myostatin is a member of the transforming growth factor beta (TGFβ) superfamily. 

Overexpression of myostatin has been shown to induce muscle atrophy, myostatin null 

mice show vastly increased muscle mass (McPherron, et.al., 1997). Myostatin is 

therefore a key factor which promotes muscular atrophy. Myostatin has been shown 

to bind to the membrane bound activin type II receptor (ActRII), which in turn leads 

to the phosphorylation of Smad2/3 (Rebbapragada et.al., 2003). Also, phosphorylated 

Smad2/3 can form a heteromeric complex with Smad 4 which is able to translocate to 

the nucleus and inhibit gene transcription (Goodman and Hornberger, 2014).  

Furthermore, phosphorylated Smad2/3 can inhibit Akt activity, thereby preventing Akt 

induced hypertrophy and protein synthesis. The inhibition upon Akt releases inhibition 

upon the FOXO family. The FOXO transcription factors induce expression of MuRF1 

and MAFbx (Bodine et.al., 2001), genes involved within the upregulation of the 

ubiquitin-proteasome system. The ubiquitin-proteasome pathway is the primary 

pathway utilised within muscle atrophy, alongside other degradative pathways. 

Myostatin has also been shown to activate the Autophagy-lysosome system (Wang, 

et.al., 2015), another distinct protein degradation pathway utilised within muscle 

atrophy. Myostatin has also been linked to the inhibition of PI3, the upstream activator 

of Akt, placing more inhibition upon the IGF-1 hypertrophy pathway (Morissette 

et.al.,2009). 
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Muscular myopathies and a multitude of diseases are known to lead to a loss of skeletal 

muscle, within these cases pro-inflammatory cytokines are known to rise. TNF-α is a 

polypeptide cytokine which is linked to antitumor immune responses. TNF- α has been 

shown to trigger multiple cell responses and has been associated with muscular 

pathology (De Larichaudy, et.al., 2012). Importantly, TNF-α plays a significant role 

in promoting muscle atrophy. TNF-α binds to its receptor inducing the activation of 

IκB Kinase complex (IKK) through phosphorylation, this in turn leads to 

ubiquitination and degradation of IκB through the proteasome. IκB degradation leads 

to activation of NF-κB (Yaron et.al., 1998). Mice with constitutively active IκB have 

shown an upregulation of MuRF1, and when these mice are crossed into a MuRF1-/- 

background, there was a significant reduction in muscle atrophy. Thus, showing that 

 

Figure 3. The Myostatin atrophy signalling pathway. A simplified schematic of the 

atrophy promoting pathways. Upregulators of atrophy are shown in red, whilst 

downregulators of atrophy are shown in green. Intermediates are shown in blue. The 

arrows signify protein activation, while the red lines with a horizontal line signify protein 

inhibition. The curved line represents the myonuclei membrane. This image has been 

modified from an original image (Glass, 2005) and is available at 

https://www.sciencedirect.com/science/article/pii/S1357272505001317?via%3Dihub  

https://www.sciencedirect.com/science/article/pii/S1357272505001317?via%3Dihub
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the removal of MuRF1 inhibits the atrophic ability of IκB signalling (Cai et.al., 2004).  

NF-κB also upregulates MAFbx through the p38 MAPK pathway (Ho, et.al., 2005; 

Zhang and Li, 2012).  

The Ubiquitin-proteasome system (UPS) plays an important role in muscle atrophy 

which has been thoroughly established (Bilodeau, et.al., 2016). Protein ubiquitination 

occurs throughout the body and is used as a signal for protein degradation. The 26S 

proteasome complex recognises ubiquitinated proteins and in an ATP dependent 

manner, leads to the proteolytic degradation of a variety of proteins. Ubiquitin chains 

are added to proteins via three enzymes: ubiquitin activating E1, ubiquitin conjugating 

E2, and ubiquitin ligase E3. Ubiquitin activating E1 binds with a ubiquitin molecule, 

passing the ubiquitin to ubiquitin conjugating E2. Ubiquitin conjugating E3 allows the 

linking of the Ubiquitin to a lysine residue of the target protein. The FOXO 

transcription factors promote expression of ubiquitin ligases. FOXO’s have also been 

shown to induce the autophagy/lysosome system (Bilodeau, et.al., 2016). 

Autophagic/lysosomal proteolysis has been shown to play a significant role in protein 

degradation within muscles. Inhibition of autophagic proteins leads to a dystrophic 

muscle through the build of protein aggregates and damaged organelles (Masiero and 

Sandri, 2010). Autophagy is a mechanism that takes cytoplasmic material and 

organelles and delivers them to a lysosome for degradation, damaged mitochondria 

and protein aggregates are cleared through autophagy. Multiple UPS genes are also 

able to upregulate genes involved within autophagy. Chaperone assisted selective 

autophagy (CASA) is a selective type of autophagy which is a tension induced 

degradative pathway essential for muscle maintenance, and protein turnover (Arndt, 

et.al., 2010). Instead of protecting and refolding damaged Z-disk proteins such as 

FLNC, these proteins are targeted for degradation while inducing the expression of 

new FLNC. CASA also facilitates the degradation of these damaged proteins. The 

chaperone associated ubiquitin ligase CHIP and p62 initiate CASA by ubiquitinating 

the target protein. BAG3 has been identified as being a key regulator of the CASA 

system, specifically coordinating the activity of the small heat shock proteins HspB8 

and HspB8 during the degradation of proteins post ubiquitination (Guilbert, et.al., 
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2018). Further to this, mutations within BAG3 cause a severe form of myofibrillar 

myopathy, characterised by protein aggregation, and muscle weakness. BAG3 has 

been shown to localise to the Z-disk, where it is imperative for FLNC turnover. BAG3 

also interacts with factors of the hippo system in order to induce FLNC transcription, 

thus aiding the replenishment of FLNC, further aiding Z-disk stabilisation (Jokl, et.al., 

2018). This mechanism suggests BAG3 is therefore a critical factor underpinning 

normal FLNC turnover in tension bearing cells and thus sarcomeric maintenance.  

1.4 Kyphoscoliosis peptidase 

1.4.1 The ky/ky Mouse 

Kyphoscoliosis peptidase (Ky) is imperative for normal muscular function. The first 

reported Ky deficiency (ky/ky) developed through a sporadic mutation within the BDL 

strain of mice. This ky/ky mouse showed the development of kyphoscoliosis which 

could be detected quickly post weaning (Dickinson and Meikle, 1973). The Ky 

mutation was identified through positional cloning, revealing a premature STOP codon 

caused by a CG deletion (Blanco, et.al., 2001). All ky/ky muscles are smaller and 

weaker than controls. This inherent muscular weakness likely contributes to the spinal 

abnormalities observed. Weakening of the paraspinal muscles contribute to this 

development, alongside preventing mice from reaching towards a ledge during the 

placing response test (Blanco, et.al., 2001) (Appendix). To date no phenotype has been 

observed throughout the embryonic development stage, highlighting the need for 

physical stressors and mechanical load to reveal muscular abnormalities, which are 

quickly observed post weaning.  

On average ky/ky mice have a body weight that is ~80% of the weight of the wildtype 

mouse.  During postnatal muscular growth, a cycle of fiber death and regeneration is 

extremely prevalent in the postural muscles, such as the soleus and paraspinal muscles. 

This is evident due to the vast number of internalised nuclei present within ky/ky fibers, 

which is a hallmark of fiber regeneration. Intriguingly, these muscles show an adaptive 

shift of the contractile protein isoforms, typical to that of type I slow muscles 

(Marechal, et.al., 1996). This adaption likely reflects an inability to cope with the 
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increased demand put upon muscles, associated with a higher body weight. At an 

ultrastructural level, the soleus presented with Z-disk thickening, A-line streaming, 

and overlapping of thick filaments (Beatham, et.al., 2004). The thickened Z-disk 

potentially reflects an inherent instability within the Z-disk, leading to an adaptive 

over-production of Z-disk proteins to aid stabilisation. Additionally, accumulation of 

sarcomeric proteins such as Filamin C (FLNC) and Xin aggregates are commonly seen 

within ky/ky myofibers, reflecting a reduced ability to degrade proteins. Furthermore, 

ky/ky muscles are unable to induce hypertrophy in response to mechanical overload 

(Blanco, et.al., 2001).  

The Z-disk co-chaperone BAG3 has been shown to be upregulated in Ky deficient mice 

and Zebrafish models (Jokl, et.al., 2018). As previously mentioned BAG3 is part of 

the CASA pathway, aiding the degradation and potential replenishment of FLNC. The 

authors also suggested that the BAG3 dysregulation seen could be the causative reason 

behind FLNC aggregation seen in ky/ky models. RNA profiling of the ky/ky mouse has 

shown an upregulation of stretch response proteins Ankyrin repeat domain 2 (Ankrd2) 

and Cystine rich protein 3 (Csrp3). Further to this, an upregulation of the energy 

transducing proteins Uncoupling protein 1 and 2 (Ucp1/2) is observed (Blanco, et.al., 

2004). The upregulation of BAG3 seems to be a significant hallmark of the ky/ky 

phenotype, likely contributing to the large protein aggregates seen within these 

models. Again, the upregulation of the stretch receptors Ankrd2 and Csrp3 show an 

inability of the muscles to respond to mechanical overload, highlighting Ky’s critical 

function in adapting and responding to mechanical stresses. 

1.4.2 The Ky Gene  

The mouse Ky gene encodes a 72 kDa protein which is expressed within skeletal 

muscle, the heart, and at a much lower level within the CNS (Blanco, et.al., 2001). The 

Kyphoscoliosis peptidase protein (KY) contains a predicted transglutaminase/protease 

(TGN/PROT) domain between residues 171 and 282, identified through a PSI-BLAST 

database search (Blanco, et.al, 2001). Thus, placing KY in the family of 

transglutaminase-like proteins. To this day there is no sufficient evidence to claim that 

this region holds any enzymatic activity. Transglutaminases are conserved across 
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many species, most of the proteins within this superfamily are predicted to be 

enzymatically active, utilising a catalytic triad. This triad consists of a cysteine, a 

histidine, and an aspartate (Makarova, et.al., 1999), highly resembling the catalytic 

site of papain-like proteases (Anantharaman, et.al., 2001). Transglutaminase activity 

enables the catalysation of proteinase resistant isopeptide bonds, leading to the cross 

linking of proteins. These enzymes require the binding of Ca2+ in order to initiate their 

activity (Griffin, et.al., 2002). KY has homology to multiple proteins from the 

transglutaminase family, all of which contain a domain homologue to the human 

transglutaminase (Blanco, et.al., 2001). Many of the eukaryotic transglutaminases are 

thought to have been derived from ancestral proteases (Makarova, et.al., 1999), 

providing evidence that KY may contain protease activity. Conversely, some 

conflicting research has suggested conserved transglutaminase domains are not 

enzymatically active but have been re-assigned for a different role, such as mediating 

protein-protein interactions (Anantharaman, et.al., 2001). In-vivo KY is known to 

localise to the Z-disk (Beatham, et.al., 2004), likely contributing to the Z-disk 

abnormalities observed within the ky/ky mouse. 

1.4.3 KY’s Interacting protein partners 

KY has been shown to interact with several sarcomeric proteins, typically 

immunoglobulin rich proteins, which include FLNC, Immunoglobulin-like and 

fibronectin type III domain containing 1 (IGFN1), and the myosin binding protein C 

(Beatham, et.al., 2004). These proteins all have a significant role within maintaining 

muscle integrity, allowing for normal structural organisation and function. KY has 

previously been implicated as a structural protein, forming a large protein complex 

with IGFN1 and FLNC which was shown to localise to the Z-disk (Baker, et.al., 2010). 

The interaction between KY and FLNC has been extensively explored. Ky deficient 

mice and humans both show abnormal FLNC distribution, alongside large FLNC 

protein aggregates when compared to the wildtype muscles (Hedberg-Oldfors, et.al., 

2016). This highlights KY’s importance in maintaining normal FLNC distribution and 

potentially in regulating FLNC protein degradation through BAG3.  A series of co-



21 

 

transfections performed in C2C12 myoblasts also showed KY may be able to modulate 

the levels of FLNC (Beatham, et.al., 2004).  

1.4.4 Human cases of KY mutations 

In more recent years mutations of KY have been identified within patients presenting 

with novel myopathies. These patients all show a remarkable similarity to the ky/ky 

mouse, suggesting KY’s role is highly conserved between species. Ky deficient 

muscles within humans and mice both show Xin and FLNC protein aggregates. 

Histological studies within patients also revealed a huge diversity in the size of muscle 

fibers, many of which were very small with internalised nuclei (Appendix). These 

features are commonly seen within myofibrillar myopathies which are characterised 

by the formation of aggregates, and the dysregulation of Z-disk proteins (Palmio and 

Udd, 2016).  

The first reported case of a KY deficiency was seen in a seven-year-old girl. A one 

base deletion in KY resulted in a frame shift and led to a premature STOP codon. This 

KY variant was shown to be expressed within skeletal muscle; therefore, this variant 

must have encoded a non-functional truncated protein. The girl presented with walking 

difficulties, generalised muscle weakness and mild contractures within the hips, 

shoulder, and feet. She had undergone Achilles tendon elongation surgery. Tissue 

biopsies revealed muscle atrophy and extreme fiber size variability (Appendix). 

Furthermore, she had internalised myonuclei, and further studies also revealed a 

thickened Z-disk’s alongside sarcomeric disorganisation. Large protein aggregates of 

FLNC and Xin were seen, again suggesting dysregulation of protein degradation 

(Hedberg-Oldfors, et.al., 2016)  

A KY deficiency was next seen to cause a congenital myopathy within two Arab Israeli 

brothers from a first cousin marriage. A homozygous variant was shared between these 

brothers, where a premature STOP codon in exon 6 results. Both patients presented 

with muscle weakness and mild atrophy of the lower limbs. The younger brother was 

affected more severely than the older brother. The younger brother showed muscle 

weakness and atrophy which extended into his upper limbs, further to this Kyphosis 
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was shown to develop. He also showed intellectual impairment, anxiety, and impulsive 

behaviour. Cranial and spinal MRI’s revealed normal cardiological functions. 

Pathological studies of the quadriceps at 17 years of age, showed split fibers, fiber size 

variability and internalised nuclei. Interestingly, type II fiber uniformity was seen, 

conversely to type I fiber uniformity in mice. FLNC aggregation was again seen within 

these biopsies. Electron microscopy further revealed Z-disk thickening as well as an 

enlarged endoplasmic reticulum (Straussberg, et.al., 2016).  

The next reported cases of a KY mutation were identified within twelve Bedouin 

individuals, these individuals where part of the same highly inbred tribe, presenting 

with hereditary spastic paraplegia. A KY homozygous variant was identified within 

this family. This variant was caused by a disruptive single base pair insertion within 

the first exon of KY. These patients showed spasticity of the lower limbs, showing toe 

walking and equinus deformity. Within the older patient’s kyphoscoliosis was shown 

to develop, most patients showed atrophy of the tongue. Alongside a few patients who 

also showed an intellectual disability. Pathological studies revealed fiber size 

variability and centralised nuclei. High expression of this KY variant was seen within 

the muscles and to a lower level in the central nervous system (CNS). Again, a clear 

muscular pathology is observed within these cases, with patients showing muscular 

weakness and spasticity. Furthermore, most patients developed kyphosis and or 

scoliosis, further implicating muscular weakness as the primary cause of this pathology 

(Yogev, et.al., 2017).  

The final case was found within an Iranian patient who presented with myofibrillar 

myopathy. A new nonsense mutation was identified within KY. The patient was a 29-

year-old male, symptoms of muscular weakness presented at the age of 3. His lower 

limbs showed muscle weakness and atrophy, alongside having equinovarus foot 

deformity. Mild scoliosis and joint contracture where also identified. Bloods were 

taken, his serum showed abnormally high creatine phosphokinase (CPK) and lactate 

dehydrogenase (LDH). CPK is an enzyme found in the brain, heart, and skeletal 

muscles. Serum CPK can be elevated as a normal response after exercise, other causes 

include muscular inflammation and muscular dystrophy (Lasich, 2014). LDH is found 
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across your whole body, and normally rises after physical exertion. Serum LDH has 

been shown to rise in response to muscle damage and muscular myopathies (Haller 

and DiMauro, 2012). His sister also presents with generalised muscle weakness, 

alongside an aunt who had passed away.  

The cases described above all show remarkable similarities and some subtle 

differences. In all cases vast fiber size variability is seen alongside internalised nuclei 

which is a marker of regeneration. KY deficient muscles all showed a thickened Z-disk 

(Beatham, et.al., 2004), further implicating a primary involvement of the Z-disk within 

the ky/ky pathology. Further to this, patients deficient in KY show aggregation of 

FLNC and Xin. FLNC is a structural cross-linker critical for normal muscle pathology; 

mutations and dysregulation of FLNC cause severe myopathies (Leber, et.al., 2016; 

Chen, et.al., 2019). It is interesting to note the KY variant seen in the 12 Bedouin 

individuals lead to spasticity, and a lack of control of the lower limbs. The authors also 

argued that the lower expression of KY within the CNS explained the neurological and 

cognitive aspects within this pathology. It is clear from the presented cases KY has a 

distinct role in maintaining a normal muscular pathology. These cases also indicate 

KY has a significant role in maintaining normal protein regulation, shown by the 

dysregulation of protein turnover and build-up of protein aggregates. Importantly, one 

case here reported that KY localised to the sarcolemma of the muscle fiber, not the Z-

disk (Straussberg, et.al., 2016). This seems unlikely considering the high homology of 

Ky observed between species.   

1.4.5 Myofibrillar myopathies 

The phenotype seen in KY deficient patients are indicative of myofibrillar myopathies 

(MFMs), which generally are autosomal dominant myopathies with a late onset of 

progressive muscle weakness (Ruparelia, et.al., 2012). A wide variety of proteins can 

be mutated within MFMs all of which localise to the Z- disk, linking it to have a key 

role within the pathology of MFM. Common hallmarks of MFMs include muscle fiber 

breakdown, protein aggregation, and centralised nuclei. Interestingly, characterization 

of the protein aggregates determined many critical sarcomeric proteins such as FLNC, 

Titin, and BAG3 to be part of these aggregates (Ruparelia, et.al., 2012). The Z-disk 
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has been suggested to be the primary site affected in MFMs (Selcen and Engel, 2011). 

The data reviewed here suggests that the myopathy caused by KY mutation directly 

places it within the MFM category. 

1.5 Immunoglobulin-like and fibronectin type III domain containing-1 (IGFN1) 

1.5.1 Overview of IGFN1 

Immunoglobulin-like and fibronectin type III domain containing 1 (IGFN1) was one 

of the first proteins to be identified to interact with KY alongside FLNC. These 

interactions were identified using a yeast two-hybrid assay (Baker, et.al., 2010). Like 

Ky, Igfn1 is highly conserved among species. Igfn1 is specifically expressed within the 

skeletal muscle and is a complex gene, supporting many isoforms. The largest isoform 

(IGFN1) comprises an N-terminus containing three globular domains, a large 

unstructured region separating the C- and N-terminus, and a C-terminus which 

contains eight globular domains. The domain composition of IGFN1 resembles other 

sarcomeric proteins such as FLNC, which are associated with the actin cytoskeleton, 

and used to maintain protein interactions after contraction. IGFN1 has been shown to 

localise to the Z-disk and the nucleus. IGFN1 also lacks any enzymatic activity likely 

acting through the formation of protein complexes, such as the IGFN1-FLNC-KY 

complex (Baker, et.al., 2010). IGFN1 is highly expressed in atrophic conditions, and 

correlates with myostatin signalling, which induces muscular atrophy (Rahimov, et.al., 

2011). Further to this, IGFN1 was suggested to down regulate protein expression via 

an inhibitory interaction with Eukaryotic translation elongation factor 1A (eEF1A) 

during times of muscle denervation (Mansilla, et.al., 2008). DNA microarrays 

comparing gene expression from the vastus lateralis skeletal muscle in young and old 

healthy men, revealed a decrease in IGFN1 expression within the elderly (Welle, et.al., 

2003).  

Previous work found a positive correlation between IGFN1 expression and myostatin 

which is known to promote muscle atrophy (Rahimov, et.al., 2011). However, no 

direct evidence has shown that IGFN1 is capable of inducing muscle atrophy. IGFN1 

is a known interacting partner of ZAK, a Kinase family with two isoforms ZAKα and 
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ZAKβ. The ZAKβ isoform is dominantly expressed within skeletal muscle, 

overexpression of ZAKβ has been shown to increase muscle fiber size (Unpublished 

work, Li, 2016). Patients presenting with ZAK mutations, remarkably show a similar 

phenotype to that of KY deficient patients. These patients present with scoliosis, 

muscular weakness, fiber size variability, centralised nuclei, and a predominance of 

type I fibers. The typical phenotype displayed suggests that dysregulation of ZAK may 

contribute the phenotype observed within ky/ky patients. Further to this ZAK has been 

shown to be upregulated in the ky/ky mouse, providing further evidence that 

dysregulation of ZAK may contribute to the ky/ky phenotype. Recent data has also 

shown that IGFN1 can interact with the proteasomal subunits Psmd2,11 and 12 

(Cracknell, et.al., 2020). The ability of IGFN1 to localise to the nucleus and the Z-

disk, provides evidence that IGFN1 could be able to respond to stimuli in a 

temporospatial way. 

The large unstructured region IGFN1 holds is predicted to provide flexibility to the 

protein (Davey, 2019), therefore potentially allowing for a conformational change to 

occur. This conformational change could allow control over the localisation between 

the Z-disk and nucleus. IGFN1’s correlation with myostatin’s, and the ability to 

interact and modulate proteins involved within the UPS provides evidence that IGFN1 

may be involved in protein turn over, by either recruiting or promoting expression of 

proteasomal proteins. Overall, the data provided suggests that IGFN1 may have a role 

in aiding muscular atrophy. There is also good reason to believe that IGFN1 is able to 

modulate gene expression through its inhibitory interaction with eEF1A.  
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1.6 Hypotheses 

1.6.1 Does KY contain any enzymatic activity with the TGN/PROT domain? 

Due to the high homology the TGN/PROT domain holds with active cysteine proteases 

and eukaryotic transglutaminases, it is plausible that KY may hold enzymatic ability. 

One inherent feature seen within the ky/ky pathology is Z-disk dysregulation and Z-

disk thickening. If KY holds transglutaminase activity, this may aid Z-disk 

stabilisation, through an ability to cross-link proteins with proteinase resistant 

isopeptide bonds. The strong conservation of the key amino acids required for 

enzymatic activity suggest this domain may hold enzymatic ability.  

1.6.2 Does KY’s TGN/PROT domain control Z-disk localization? 

KY is a known Z-disk associated protein, there is still a lack of evidence for the 

TGN/PROT domain to hold any enzymatic ability. The TGN/PROT domain is the 

most highly conserved region among species. Therefore, if KY does not hold any 

enzymatic ability within this region, it must be conserved to serve another function, 

such as aiding Z-disk localisation. As previously mentioned, some conserved 

transglutaminase domains are not enzymatically active but have in fact been re-

assigned for a different role such as mediating protein-protein interactions 

(Anantharaman, et.al., 2001). Therefore, it may be that KY conserves the TGN/PROT 

domain to aid Z-disk localisation.  

1.6.3 Can the Human KY localize to the Z-disk? 

The mouse KY protein has been shown to localise to the Z-disk. Little work has been 

published surrounding the human KY (hKY). Controversially, a human muscle biopsy 

showed the hKY to localise to the sarcolemma of the muscle fiber (Straussberg, et.al., 

2016). Due to the high level of conservation, and the similar pathologies seen within 

Ky deficient models it is unlikely there is a significant enough sequence difference to 

cause a drastic change to the KY protein. Therefore, it is highly likely the hKY will 

localise to the Z-disk. 
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1.7 Objectives and Aims. 

KY still to this day remains highly uncharacterised and no specific role has yet been 

determined for KY within skeletal muscle. The primary aim of the project is to uncover 

the role of the highly conserved TGN/PROT domain. As the domain is highly 

conserved among species it must have a significant role within the function of KY. 

Uncovering the function of this region would give us a good insight into the function 

of KY, allowing us to further understand the method of action and the pathogenic 

mechanism contributing to the ky/ky phenotype. In order to study the TGN/PROT 

domain we will use a series of recombinant proteins, all of which contain mutations 

affecting the TGN/PROT domain. Two studies will be performed in-vivo, firstly 

assessing the ability of a series of these KY constructs to localise to the Z-disk, each 

construct having varying mutations within the TGN/PROT domain. Secondly 

assessing the ability of these constructs to rescue fibers within a new strain of ky/ky 

mouse.  

In order to determine if the TGN/PROT domain is enzymatically active, York 

Universities Proteomics department will attempt to purify protein of the full-length 

KY, and a selection of a smaller region which will include the TGN/PROT domain. 

Thus, allowing us to test the enzymatic ability of the TGN/PROT domain within KY. 

If successful we will also aim to crystallise this protein in order to determine the 

structure.  

Finally, as mentioned the hKY has been suggested to localise to the sarcolemma of a 

muscle fiber (Straussberg, et.al., 2016). The mouse KY is known to localise to the Z-

disk; thus, it is unlikely such a significant change in the protein localisation would be 

seen within the hKY. Loss of function ky/ky patients all present with Z-disk thickening, 

therefore suggesting a primary involvement of the Z-disk within the pathology. 

Furthermore, the phenotype in KY patients is highly similar to that of the ky/ky mouse. 

Thus, the evidence provided suggests the hKY is acting mechanistically similarly to 

the mouse KY, and if so should localise to the Z-disk like the mouse KY. Therefore, 

in order to better understand the human myopathies caused by loss of function KY 

mutations, we need to determine if the hKY does in fact localise to the Z-disk. 
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2.1 Table of Reagents 

2.1.1 Solutions and Reagents 

Reagents Formular 

PBS PBS tablets (Thermofisher, Cat #BR0014) 

PBST PBS with 0.1% Tween-20 (Sigma, Cat #P1379) 

Full Serum Growth 

medium (GM) 

DMEM (Thermofisher, Cat #31053044) with 10% 

FBS (Thermofisher, Cat #A4766) and 1% Penicillin 

Streptomycin (Gibco, Cat #15140122) 

Freezing medium  10% DMSO, 40% Serum Free Growth Medium, 50% 

FBS 

10X TBE Diluted in 1L of ddH2O: 108g of Tris base, 55g of 

Boric acid, and 7.5g of EDTA 

TAE buffer Diluted in 1L of ddH2O: 242g of Tris base , 100ml of 

0.5 EDTA, and 57.1mls of glacial acetic acid 

LB Broth  Diluted in 1L of ddH2O: 10g Tryptone, 10g NaCl, 5g 

Yeast Extract, pH 7 

LB Agar Diluted in ddH2O: (Thermofisher, Cat #CM0003) 

Polyacrylamide gels 15% polyacrylamide gels were made using 1.5mls of 

10x TBE, 6mls of dH2O, 7.5mls of 30% Acrylamide 

(Severn Biotech, Cat #20-2100-10), 150μl of 10% 

APS solution, and 15μl of TEMED 

Mowiol  6mls of ddH2O, 12mls 0.2M Tris, 2.4g Mowiol 4-88 

(Fluka, Cat  #81381), and 6g of glycerol 

 

 

2.1.2 Antibodies 

Primary Antibodies 

Antibody Concentration Supplier 

Anti-α-Actinin (EA53) 1:300 Abcam, Cat #ab9465 

Anti-WGA (Wheat  1:250 Abcam, Cat #ab17844 

 

Secondary Antibodies 

Antibody Concentration Supplier 

Anti-mouse-IgG (FITC) 1:100 Abcam, Cat #ab6717 

Anti-mouse-IgG (TRITC) 1:100 Abcam, Cat #ab6718 
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2.1.3 Primers 

Primer Sequence Purpose 

Mouse Ky 

Forward 

5’ GGGGCCATTTGCAGCCTA Genotyping 

the Ky colony 

Mouse Ky 

Reverse 

5’ CGGAGAGGTTCGGATTAGCC 

Human KY 

Forward 

5’ CACCATGGAGCTGAAGAAG Conformation 

of correct 

Gene Human KY  

Reverse 

5’ GCCATTCACTTTGTATTTCAGGA 

 

 

2.2 Heteroduplex analysis  

Identification of heterozygous and homozygous Ky mice was done using heteroduplex 

Analysis. Heteroduplex analysis relies on the formation of heteroduplexes during PCR 

amplification, the identification of these indicates a Heterozygous mouse. Notches 

from the mice were taken post weaning by the animal facility. Notches were then 

heated at 95°C in 0.05M NaOH for 25 minutes. Neutralised with 0.08M Tris-HCL and 

0.2mM EDTA, samples were then quickly vortexed. Sonication was used to break 

down the ear notch.  

2.2.1 PCR Amplification  

PCR was used to amplify target sequences, using GoTaq green master mix (Promega, 

Cat #M7122) following the protocol provided. Primers were kindly provided by 

Gonzalo Blanco (Primer Table). We optimised the PCR protocol by changing the 

annealing temperature to 56°C. In order to verify a successful PCR amplification 1% 

agarose gels were run for 45 minutes at 80V. In order to identify the expected ~2.1Kb 

bands, we used a 1Kb DNA ladder (Biolabs, Cat #N3232L). 
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2.2.2 Polyacrylamide Gel Electrophoresis 

After confirming the presence of a PCR product, PCR samples were loaded onto 15% 

polyacrylamide TBE gels, which were used to separate heteroduplexes from 

homoduplexes. 15% polyacrylamide gels were made using 1.5mls of 10x TBE, 6mls 

of dH2O, 7.5mls of 30% Acrylamide (Severn Biotech, Cat #20-2100-10), 150μl of 

10% APS solution, and 15μl of TEMED. Gels were run overnight for 16 hours at 45V. 

Gels were then stained with SYBR safe (Invirtogen, Cat #S33102) for 15 minutes. 

Gels were imaged with a BioRad EZ GelDoc system (BioRad. Cat #1708270EDU). 

The presence of multiple bands shows us the formation of a heteroduplex as they 

migrate slower through the gels, suggesting the presence of multiple alleles. Therefore, 

single bands were read as Homozygous wildtype or homozygous ky/ky. Two bands 

indicated Heterozygous WT/ky (Figure 4). 

 

This technique effectively allowed us to identify Homozygous and heterozygous mice. 

Visual phenotyping of the colony allowed us to successfully differentiate the 

homozygous WT and homozygous ky/ky mice. 

 

Figure 4. Polyacrylamide gels loaded with PCR amplified Ky. In each experiment 1Kb 

DNA ladders were used to ensure the correct product. Furthermore 2 PCR water controls 

were used in each experiment. Heterozygous (Black writing) and homozygous (Red 

writing) mice are marked on the gels. A) Polyacrylamide gel 1. Gel loaded with four test 

samples (3 Females; 1 Male). B) Polyacrylamide gel 2. Gel loaded with seven test samples 

(4 males; 3 Females). 
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2.3 DNA Cloning 

The ky DNA constructs were amplified for cell transfections and In-vivo muscle 

electroporations. For successful electroporation high DNA concentrations 

(~1000ng/ml) were required, whilst cellular transfections required a lower DNA 

concentration (~300ng/ml). Therefore, we used a mixture of Maxi- and Mini-Preps, 

adjusting for the required DNA concentrations. 

2.3.1 Transformation 

Transformations were performed using Agilent competent cells and the provided 

reagents (Agilent, Cat # 200131), the protocol was followed precisely. Changes 

included LB Broth being used instead of SOC medium. Cells were thawed on ice, 50ul 

of cells were transferred to pre-chilled round bottomed falcon tubes and 0.850ul of B-

Mercaptoetanol was added, cells were incubated on ice for 10 minutes. 2ul of DNA 

construct was then added to the tubes and left to incubate on ice for 30 minutes. Cells 

and constructs were heat shocked at 42°C for 45 seconds, then 450ul of preheated 42 

°C LB broth was added. Cells were then incubated at 37 degrees shaking at 225rpm 

for an hour. Cells were then spread on premade agar plates, which contained the 

relevant antibiotics and left overnight. All plates contained ampicillin, as all of our 

constructs had a selective ampicillin resistance. 

2.3.2 DNA-preps 

Single colonies were selected from overnight cultures and inoculated in a starter 

culture of 5 ml LB medium containing 1X the relevant antibiotic, this culture was 

incubated at 37°C on a shaker at 200rpm for 8 hours. Depending on the prep being 

undertaken, the starter culture diluted down in pre-warmed LB medium. The starting 

culture for mini preps was transferred into another 5mls of LB medium and left 

overnight. The starting culture for maxi-preps was diluted 6-fold into 30mls of 

prewarmed LB and left overnight. This culture was then transferred into ~800mls of 

prewarmed LB medium and left overnight. All cultures were left at 37°C on a shaker 

at 200rpm. For larger cultures 2L conical flasks were used.  
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Cultures were pelleted, then resuspended in resuspension solution from the provided 

Maxi- or Mini-prep kit. The Kit protocols were followed precisely. Whilst performing 

the Maxi-prep we also performed the optional DNA precipitation step to further 

concentrate our DNA to acquire high yields of DNA (~1000ng/ml). A nano drop was 

then used to measure DNA concentration.  

2.4 Cell culture 

2.4.1 Proliferation 

C2C12 myoblasts and COS-7 fibroblasts were cultured in Dulbecco’s modified Eagles 

medium (DMEM) (Thermofisher, Cat #41966-029), supplemented with 10 % foetal 

bovine serum (FBS) (Thermofisher, Cat #A4766) and 1% penicillin / streptomycin 

(Gibco, Cat #15140122) (full serum DMEM). Cells were left incubated at 37 °C and 

5% CO2.  

Cells were split weekly before confluency was reached using 1% trypsin solution. 

Prior to splitting, cells were washed with pre-warmed PBS. Trypsin was added and left 

for 10 minutes in the incubator. Post incubation most cells would be detached, trypsin 

would be neutralised through full serum addition. Cells were then split to ~20% of 

their original confluency. 

2.4.2 Freezing 

Cells were routinely frozen for cell preservation. Cells would be trypsinised as 

described above, then removed, placed in a 15ml falcon tube and centrifuged at 

1200rpm for 12 minutes. The supernatant would be removed, and the resulting pellet 

would be resuspended in either 1ml (T25 flask) or 3mls (T75 flask) of freezing media 

(Reagents Table), depending on the flask size. This would be immediately aliquoted 

into 1ml cryotubes and transferred into the -80°C freezer or liquid nitrogen. 

2.4.3 Transfections 

C2C12 myoblasts and COS-7 fibroblasts were cultured on glass slides within 24 well 

plates, myoblasts where seeded at 70-80% confluency before transfections. In order to 

transfect the ky constructs we used Genjet Invitro DNA transfection reagent 
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(SignaGen, Cat #SL100488). Following the protocol provided for 24 well plates and 

the appropriate cell line, cells were transfected. The transfection reagent was removed 

12~18 hours post-transfection, being replaced with fresh full serum DMEM. 

Transfection efficiency was then checked 48 hours post transfection using a 

fluorescent microscope. 

2.4.4 Fixation and Immunofluorescence. 

Immunofluorescence analysis on C2C12 and COS-7 cells was carried out. Cells were 

fixed and mounted from 24 well plates onto glass slides before analysis. 

Cells were washed twice with phosphate buffered saline (PBS) (Thermofisher, Cat 

#BR0014), then fixed using 4% paraformaldehyde (PFA) (Sigma, Cat #P6148) diluted 

in PBS for 15minutes. PFA was then removed and the cells were washed twice with 

PBS and once with dH2O. Cells where mounted on slides, with mowiol (Fluka, Cat  

#81381) and 4’,6-diamidino 2-phenylindole (DAPI) (Sigma, Cat #D9542) at 1:1000 

dilution to stain the nuclei.  

Cellular imaging took place on a Leica epifluorescent inverted laboratory LED 

microscope (Leica, Cat #DM IL LED) 

2.5 In-Vivo Experiments. 

2.5.1 In vivo electroporation 

An hour before the electroporation procedure mice were injected with 50µl of 

hyaluronidase (Sigma, Cat #SLBX4632) (0.4U/µl diluted in 0.9% saline), alongside 

being given pre-operative analgesia in this case Bupavet (50μg/ml), 2 µl of Bupavet 

was administered per gram of mouse weight. 

Mice were placed in an anesthetising box with 4% isoflurane diluted in O2, mice were 

left until deeply anesthetised. Mice were transferred to a continually anesthetised 

rodent face mask and a toe pinch reflex was used to insure deep anaesthetic. 

Throughout the procedure mice were kept on a heating pad maintained at 37°C. In 
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order to expose the tibialis anterior (TA) a subcutaneous incision was made. DNA 

constructs with a concentration above 1000ng/µl were injected directly into the TA 

(Figure 5.A), then three mm electrodes were placed within the muscles (Figure 5.B).  

 

Pulses were delivered using a NEPA21 machine (Nepagene, Japan). Initially three 50-

msec-long pulses at 80V followed by three more pulses of the opposite polarity were 

administered at each injection site at a rate of one pulse per sec. Mice were sacrificed 

eight days post electroporation.  

Mice were sacrificed by a schedule one kill using cervical dislocation or rising CO2. 

The TA/EDL of the mice was dissected. Muscles which had undergone electroporation 

would be fixed in 4% PFA for 15 minutes, then transferred to PBS. The whole muscle 

would be placed under a fluorescent microscope to check for a successful 

electroporation. If successful we would clearly see transfected fibers (Figure 6).  

Figure 5. Mouse electroporation on a wildtype mouse. A) DNA microinjection. 20ul of a 

specified DNA construct would be injected directly into the exposed TA muscle. B) 

Electroporation of the TA. A current would be run through the TA using an electrode, 

allowing for an uptake of the DNA construct. 
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Successfully electroporated muscles would then been snap frozen in liquid nitrogen 

cooled isopentane (Honeywell, Cat #M32631), then stored in the -80°C. Muscles 

which were to undergo histological analysis did not require fixation by PFA, instead 

they were instantly snap frozen in liquid nitrogen cooled isopentane.  

2.5.2 Animal research ethics 

All animal procedures were carried with approval from the University of York Ethics 

committee and followed the UK Animals (Scientific Procedures) Act 1986 

Amendment Regulations 2012. All procedures were performed by Gonzalo Blanco 

(Project licence number: P3FF2D943) within an approved establishment (Licence: 

X323ED8C8). 

2.5.3 Muscle sectioning 

Frozen muscles were removed from the -80 and kept on dry ice before sectioning with 

a cryostat (Leica, Cat # CM1520). Muscles were either sectioned cross sectionally or 

longitudinally depending on what we were looking for. Sections would typically be 

Figure 6. Whole Mount Images of successfully electroporated muscle fibres. Whole 

mount images where taken at a 4x magnification. The bottom left-hand corner of each panel 

shows the construct used. A) Electroporated tdTomato. B-E) Electroporated KY 

constructs. Each individual KY construct was tagged with tdTomato giving the red 

fluorescence. F) Electroporated hKy-eGFP.  



37 

 

around 12-14μm in width, being condensed on the superfrost adhesion slides 

(ThermoFisher, Cat #J1820AMNT). Sections were then placed in the -80 for storage, 

before mounting and staining.  

 

2.5.4 Immunofluorescence of mouse muscle sections 

In order to identify the Z-disk within the longitudinal sections, we needed to stain the 

α-actinin. Sections were thawed from the -80 freezer, then rehydrated with PBS. 

Sections were then permeabilised with 0.1% triton diluted in PBS for 5 minutes, 

sections were then washed twice with PBS. Post washing sections were blocked in 4% 

BSA (Diluted in PBS). Again, two washes were performed with PBS. Next the primary 

antibody EA53 (Abcam, Cat # ab9465) was added at a 1:300 dilution in PBS and left 

to incubate at 4°C overnight. Three 5-minute washes in PBS were undertaken before 

secondary antibody incubation. We used two secondary antibodies; FITC and TRITC 

(Reagents Table), both were left to incubate for two 25minutes at room temperature, 

as per the manufacturer’s instructions. Finally, two five-minute PBS Washes and a 

ddH20 washes were undertaken before mounting with DAPI diluted in mowiol. 

In order to be able to identify individual fibers within the muscle cross-sections, we 

stained with Wheat Germ Agglutinin (WGA), which binds sialic acid and N-

acetylglucosaminyl residues, commonly used for imaging of plasma membranes. The 

same method of thawing and rehydration was used before incubating sections for 20 

minutes in WGA (1.400 diluted in PBS). Post WGA staining slides where washed 3 

times with PBS and once with ddH2O. Again, slides were mounted with DAPI diluted 

in mowiol. 

All slides were imaged wither using a Leica epifluorescent inverted laboratory LED 

microscope (Leica, Cat #DM IL LED) or a Nickon Microphot-FXA. 
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2.6 Histology 

Cross sectional sections of the TA were thawed from the -80 freezer, 15 minutes before 

Hematoxylin and Eosin H&E treatment. Slides were fixed in acetone for 10s before 

being transferred into Hematoxylin (Sigma, Cat# 290629) for 2 minutes. After 

Hematoxylin treatment the slides were washed for 1 minute with running water. The 

slides were then transferred to Scotts water for 1 minute, and immediately after they 

were washed with running water for 1 minute. After washing the slides were 

transferred into Eosin (Sigma, Cat# 861006) for 45 seconds. Immediately they were 

placed in 70% ethanol for one minute, then 100% ethanol for another minute. Finally, 

the slides were placed in Histoclear for a further minute, before mounting. Slides were 

then mounted with  

Histological images where taken with a Lecia optical microscope (Lecia, Cat 

#DM2500), using the Insight 2Mp Monochrome FireWire Digital camera to capture 

images. This camera uses the SPOT basic software.  

2.7 Enzymatic Tests 

2.7.1 Transglutaminase Enzymatic test 

The SIGMA-ALDRICH transglutaminase assay kit (Sigma, Cat #CS1070) was used 

to test for transglutaminase activity. The protocol was followed precisely when 

performing this test. We used a 1.2ug sample of the full-length protein due to 

limitations on the amount of protein. With the small domain we used a sample of 10ug, 

the maximum recommended amount of protein. Appropriate blanks were used, and the 

positive control derived from a guinea pig liver (provided by kit), was diluted in the 

appropriate buffer as per the manufacturer’s instructions. A Dynex technologies MRX 

II Plate reader was used to measure the absorbance at 450nm. 

2.7.2 Protease Enzymatic test 

The ThermoFisher Scientific Pierce Protease Assay Kit (ThermoFisher, Cat#23263) 

was used to test for protease activity. Again, the protocol was followed precisely. The 
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full-length KY was tested at 50ug/ml, with an appropriate blank and positive control 

at the same concentration. The small domain KY and MBP control were tested at 

500ug/ml, again with an appropriate blank and positive control at the same 

concentration. The positive control TPCK trypsin was provided by the kit. A Dynex 

technologies MRX II Plate reader was used to measure the absorbance at 450nm. 

2.8 KY Protein Purification 

All protein production was performed by the University of York Protein Production 

laboratory, with special thanks to Jared Cartwright and Rebecca Preece for their 

ongoing support and hard work.  

2.8.1 Sample Prep 

An o/n culture from transformed colonies was grown in 500ml of auto induction 

medium + Kanamycin (30ug/ml) at 37°C for 2hrs the 20°C in a shaker. The resulting 

solution was then pelleted down at 5,000rpm for 10mins. Protein pellets were 

resuspended in 100mls of extraction buffer which included a protease inhibitor 

cocktail. The suspension was sonicated five times for 30 seconds, being put on ice 

between pulses. Samples of 20ul were taken for use as a total gel sample. Cell debris 

was removed by centrifugation at 17,000g for 10mins at 4°C before 20ul being taken 

for a soluble gel sample. 

2.8.2 Column Prep 

Purification columns were prepped by adding 1.2mls (for full length KY) or 5ml (for 

MBP-KY(aa160-285)) of nickel beads to a tube. Beads were washed with 7 CV dH2O 

whilst not disturbing the beads. 5CV His Buffer A was added to equilibrate the beads 

and allowed to settle, carefully the liquid was removed. Again, this procedure was 

repeated 7 times. The beads were then transferred to two 50ml falcon tubes, His buffer 

A was utilised to aid the transfer to the falcon tubes, any excess His buffer A was 

removed after the transfer. 100mls of lysate was then added to the two falcon tubes of 

beads, 50mls in each. The falcon tubes were then incubated for two hours at 4°C with 

mixing. Falcon tubes were then Centrifuged at 1000g for 1 minute at 4°C. Excess 
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liquid was then removed, leaving the beads and approximately 2mls excess liquid in 

each tube. At this point 20ul was taken to be used as the flowthrough gel sample. 

A 1.2ml (for full length KY) or 5ml (for MBP-KY(aa160-285) column was then 

packed with the remaining 2ml of flow through and the beads. By gravity flow with 

the flow dripped through, the remaining beads were washed with His Buffer A. 

Gradient elution was performed on a BioRad NGC purification system (BioRad). The 

gradient elution of 0-100% with His buffer B occurred over 10 column volumes where 

1ml fractions were collected. UV read outs for each fraction were obtained and to 

confirm the presence of the protein, SDS-PAGE gels were run. Anti His blots were 

also performed for the full-length KY protein.  

2.8.3 Analytical Size Exclusion 

Analytical size exclusion was performed on the full-length KY protein. 100ul from the 

peak fraction of the His purification was loaded onto the AKTA 10 purification system 

using a 500ul superloop. A superdex 200 increases 10/300 GL column was used. An 

SDS-PAGE gel was run to confirm which fractions the KY protein was present in.  

2.8.4 Size Exclusion 

Size exclusion was used on the small MBP domain. The peak fractions were 

concentrated from the His Purification to approximately 4mls, using a 50ml falcon 

spin concentrator. This was then loaded onto the BioRad NGC purification system 

(BioRad, Cat #6286) using a 10ml superloop. A superdex 200 pg 16/60 size exclusion 

column was used. SDS-PAGE gels were run allowing identification of the fraction in 

which the protein is contained within. 
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Table 1 . Buffers used throughout protein purification and analysis. Left column 

shows the buffers, whilst the right shows their composition. 

Buffer  Composition 

Extraction Buffer 100mM Tris-HCl pH 8.0, 0.1% Tween20 

His Buffer A (Full 

length protein) 

50mM Tris-HCl pH 8.0, 300mM NaCl, 30mM Imidazole 

His Buffer B (Full 

le0ngth protein) 

50mM Tris-HCl pH 8.0, 300mM NaCl, 500mM Imidazole 

His Buffer A (Small 

domain) 

20mM Sodium Phosphate pH 7.4, 300mM NaCl, 30mM 

Imidazole 

His Buffer B (Small 

domain) 

20mM Sodium Phosphate pH 7.4, 300mM NaCl, 500mM 

Imidazole. 

Size Exclusion 

Buffer (Full length 

protein) 

50mM Tris-HCl pH 8.0, 300mM NaCl. 

Size Exclusion 

Buffer (Domain) 

20mM Sodium Phosphate, 300mM NaCl 

 

 

2.9 Statistical analysis and Figure preparation. 

2.9.1 Quantification of C2C12 speckled phenotype 

A total of four slides were transfected providing us with 4 biological replicates for 

each construct. Each slide produced a large number of images, in order to count the 

cells quickly and accurately a specific method was used. Images were converted to 8 

bits, then pushed to the threshold using the (Figure 7. A & B). The particle analyser 

was then used to count the number of cells. In order to count the speckled phenotype, 
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the contrast and brightness of the image was lowered drastically to a set point. At this 

point it clearly allowed us to identify the cells showing large aggregates (Figure 7.C). 

 

Data was then compiled in an excel file, for each image the number of cells showing 

a phenotype was recorded, alongside the total number of cells for that image. Using 

this data, a percentage of cells showing the phenotype was calculated using the 

equation below. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 =
𝑁𝑏 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑏 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
 𝑋 100 

The data gathered from each biological replicate was then compiled for each construct. 

A shapiro test was used to test normality, then a one-way ANOVA was used to 

compare the means. 

2.9.3 Statistical tests performed on Enzymatic Assays 

Both the Transglutaminase and Protease assays measured the end result as an 

absorbance at 450nm, the readout was proportional to the amount of enzymatic 

activity. Thus, in both cases three repeats for each test sample would be obtained. 

Overall, these assays were both run a minimum of three times, each revealing similar 

end results. Normal distribution was assumed due to the low replicate number. A one-

way ANOVA allowed us to make valid comparisons between the means of each data 

 

Figure 7. Counting of cells and cells showing a speckled phenotype. A) Conversion of 

images to 8 Bit. Images were converted to 8 bits. B) Images pushed to a threshold. Images 

then underwent the particle analyzer which had set parameters. C) Adjusted contrast and 

Brightness highlighting aggregates. After adjusting the contrast and brightness the 

aggregates were clearly visible, due to a brighter presence on the image. 
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set. A post hoc Tukey’s Test was also run for both enzymatic assays, backing up the 

findings of the ANOVA.  

2.9.4 Quantification of colocalization  

Again, four slides were co-transfected with the relevant constructs. This provided us 

with 4 biological replicates for each construct. Each slide produced ~5 images with 

co-transfected cells, due to the lower level of co-transfection seen. 

Fiji was used to measure the level of co-localisation between the two proteins. Firstly, 

merged images were split into their individual channels, blue (DAPI), green, and red. 

After the channels were split into 8-bit images (Figure 8.A), the green channel was 

pushed to the threshold (Figure 8.B), and the cells expressing both constructs were 

selected, and stored in the ROI. After selecting the relevant cells, they were checked 

against the original image, ensuring all the co-transfected cells were selected. We 

performed the co-localisation test using the Coloc-2 plugin for Fiji, specifically using 

Costes threshold regression method (Costes, et.al., 2004) was used. The region of 

interest for the test was specified through stored regions on the ROI manager, and the 

data was then collected as a spearman’s rank correlation, the plugin also produced an 

image highlighting area of colocalization (Figure 8.C). 

 

The collected data was then compiled into excel. In all cases the data was merged. A 

one-way ANOVA was run comparing the means of each construct. This data was then 

Figure 8. Co-localisation measurements between two proteins. A) Conversion of red 

channel images to 8 Bit. These images where subsequently pushed to the threshold to 

specify areas for the coloc2 test to run, these were stored within the ROI manger. B) 

Conversion of green channel images to 8 Bit. C)Resulting output after coloc-2 test. The 

areas highlighted in white show areas of high Co-localisation.  
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represented as a box plot, allowing visualisation of outliers and how the data is 

dispersed. 

2.9.5 Complementation quantification. 

Successfully electroporated muscle fibers were quantified using Fiji (Schindelin, et.al., 

2012). Cross sectional muscle fiber sections were either stained with WGA or were 

overexposed in a FITC filter, allowing visualisation of muscle fibers membranes. 

Images were then taken, and fiber size was measured using image J. Firstly the scale 

bar was set from the corresponding image. All transfected fibers were drawn around 

and stored in the region of interest (ROI) manager (Figure 9.A). Then using the ROI 

manager, each fiber’s cross-sectional area was measured, and used to create an average 

fiber size for transfected fibers. Secondly the same procedure was used to measure the 

Untransfected fibers giving us an average size of Untransfected fibers (Figure 9.B).  

 

The data gathered was then used to create a ratio, which was used to compare 

transfected fiber size to untransfected fiber size. A ratio was used as it gave us a simple 

 

Figure 9. Quantification of cross-sectional area for transfected and untransfected fibers. 

A) Measurements taken from transfected fibers. Clearly transfected fibers were drawn 

around and stored in the ROI manger, each having its unique identification number. B) 

Measurements taken from untransfected fibers. Measurements would be taken from a 

large surrounding area of the muscle, in an area which looked to be of the same part of the 

muscle. 

A B 
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way of seeing if a construct was increasing or decreasing the fiber size in the ky/ky 

mouse. If the Ratio > 1 the fiber size has increased. If the Ratio < 1 it has decreased.  

 

𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑐𝑡𝑒𝑑 𝐹𝑖𝑏𝑟𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 

𝑈𝑛𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑐𝑡𝑒𝑑 𝐹𝑖𝑏𝑟𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 
 

 

The Ratio also allows for a valid comparison between mice as it normalises the 

untransfected fiber size for each mouse leg to 1.  Therefore, we are able to perform 

statistics on multiple repeats. For each construct we had at least 3 replicates. In this 

case a one-way ANOVA, normal distribution was assumed due to the small replicate 

size.  

2.10 In-Silico Analysis  

2.10.1 Sequencing and Alignment 

BLAST (Altschul, et.al., 1990) was used to locate the hKY variants. The BLASTx tool 

takes a nucleotide sequence and compiles an output of highly similar sequences. Using 

the mouse Ky nucleotide sequence taken from ENSEMBL Ky-201 

(ENSMUST00000039390.5)), a BLASTx was run, specified to look at sequences 

within Homo sapiens (Taxid: 9609). This allowed us to identify Homo sapiens ky 

variants.  

BLAST was also used to compile a collection of Ky homologues from a vast repertoire 

of species. The Ky DNA sequences were acquired using BLASTx. Retrieved 

sequences were subsequently imported into the Molecular Evolutionary Genetic 

Analysis (MEGA-X) software (Kumar, et.al., 2018). MEGA-X was used to convert 

these DNA sequences into protein sequences using the Standard genetic code. These 

protein sequences were aligned in MEGA-X using ClustalIW (Higgins, et.al., 1994).  
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2.10.2 Phylogenetic Analysis 

Phylogenetic analysis was performed using MEGA-X. Within all analysis the Jones, 

Taylor, and Thorton (JTT) model of evolution was selected (Jones, et.al., 1992). Using 

the aligned Ky homologues, a neighbour joining tree was produced. This was produced 

using the PHYLOGENY tab, where the construct/test Neighbour joining tree option 

was selected, the parameters used are shown below (Figure 10.A). The produced tree 

was then edited and modified within MEGA-X.  

MEGA-X was also used to estimate the rate of evolution at each protein site. Using 

the RATES tab within MEGA-X, the Estimate Position-by-Position Rates (Maximum 

likelihood) option was run using aligned KY protein homologues (Figure 10.B). The 

data output for the rate of evolution at each site was produced, this data was then 

collated in excel. The relative rate at each nucleotide site was then used to produce 

graphs and figures. 

 

  

Figure 10. The parameters used within MEGA-X statistical tests. Both tests used the same 

substitution model. A) Parameters of Phylogeny Reconstruction. Selected from the 

PHYLOGENY tab B) Parameters of Estimate Rate at Each Site (Maximum Likelihood). 

Selected from the RATES tab. 
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3.1 Overexpression of Ky variants within C2C12 mouse myoblasts 

The current evidence suggests that the conserved TGN/PROT domain plays a 

significant role within KY’s mechanistic action. To further investigate this, multiple 

mutagenised Ky constructs were utilised, previously produced by George Atkinson 

during his master’s project. These constructs were originally produced from 

pDEST47-Ky-tdTomato (Ky-td), the full-length mouse KY tagged with tdTomato. 

These constructs each contain various mutations within TGN/PROT domain. These 

constructs are as followed: pDEST47-Ky-SM-tdtomato (Ky-SM) which holds a single 

Cystine to alanine (C[225]A) substitution within the first conserved residue of the 

catalytic triad. pDEST47-Ky-TM-tdtomato (Ky-TM) where all three conserved 

residues are substituted with alanine (C[225]A, H[267]A, and D[282]A). Finally, 

pDEST47-Ky-DEL-tdtomato (Ky-DEL) which had the whole TGN/PROT domain 

removed (DEL[217-285]) (Figure 11).  

 

The mutations and deletions were mapped using ENSEMBL Ky-201 

(ENSMUST00000039390.5). An empty vector encoding tdTomato was used as 

control. The three catalytic residues held within the TGN/PROT domain, are known 

to be critical for enzymatic ability. The Ky-SM and Ky-TM which have these residues 

substituted with alanine will likely show no enzymatic ability. Previous work has 

Figure 11. Mutagenised KY Constructs. pDEST47-Ky-tdTomato encodes the wild type 

full length mouse KY protein, the conserved residues of the catalytic triad within the 

TGN/PROT domain is shown (orange box), while tdTomato (red box) is attached via the 

C-terminus.  pDEST47-Ky-SM-tdTomato holds a single (C[225]A) substitution in the 

catalytic triad of the conserved TGN/PROT domain. pDEST47-Ky-TM-tdTomato holds a 

triple substitution in all three conserved residues of the catalytic triad (C[225]A, H[267]A, 

and D[282]A). pDEST47-Ky-DEL-tdTomato has the whole conserved TGN/PROT domain 

removed. 
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shown replacement of these residues with alanine greatly reduces enzymatic activity, 

shown by mutated catalytic residues within other TGN/PROT domain from similar 

proteins (Carter and Wells, 1988). Therefore, these constructs are predicted to have no 

enzymatic activity, if indeed KY is enzymatically active. 

It has been predicted that a large number of eukaryotic proteins with transglutaminase 

domains have lost their enzymatic ability. These regions have likely evolved to 

mediate protein-protein interactions (Anantharaman, et.al., 2001), which may explain 

how KY interacts with IGFN1 and Filamin C in the IGFN1-FLNC-Ky protein complex 

(Baker, et.al., 2010). To investigate the functions of the TGN/PROT domain, C2C12 

proliferating myoblasts were transfected with the aforementioned KY TGN/PROT 

domain mutants and assessed for protein localisation and cellular morphology when 

overexpressed. GenJet invitro transfection reagent was used to transfect the C2C12 

myoblasts followed by incubation for 48 hours to allow each construct to express, 

before finally fixation and mounting with mowiol mounting agent and DAPI.  

All KY constructs showed cytoplasmic expression, further observation revealed a high 

proportion of transfected myoblasts contained large cytoplasmic aggregates (Figure 

12.B-E) when compared to the control, pDEST47-tdtomato (Figure 12.A). ImageJ was 

utilised to quantify these aggregates whereby a precise method was used to count the 

number of cells displaying these protein aggregates (Methods).  

A one-way ANOVA showed each KY construct had a significantly increased amount 

of cytoplasmic aggregates compared to the tdTomato control. Further to this Ky-DEL 

showed a small significant increase in the percentage of aggregates seen when 

compared to the other KY constructs (Figure 12.F). No other morphological changes 

where observed within the transfected cells when compared to the control.  
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3.2 Purification of Ky Protein constructs.  

To understand the role of the conserved TGN/PROT domain, we needed to determine 

whether this domain is still enzymatically active. The conserved TGN/PROT domain 

still contains the catalytic residues Cystine, Histidine, and Aspartate which form the 

catalytic triad needed for enzymatic activity. This high level of conservation, seen 

specifically at the catalytic residue sites, suggest that KY may still hold enzymatic 

ability. 

To test whether KY holds enzymatic abilities within the TGN/PROT domain, it was 

decided to purify different KY protein constructs. These constructs consisted of the 

full-length protein and a selection of smaller intermediates all of which contained the 

conserved TGN/PROT domain. Two constructs showed a good promise of being 

solubilised; a small MBP tagged version which ranged from amino acid (aa) 160-285 

 

Figure 12. Overexpression of KY constructs within C2C12 myoblasts. A-E) Different 

Ky constructs expressed within C2C12 myoblasts. The Texas red channel reveals the Ky 

construct used. The Overlay with DAPI is shown on the right. A scale bar is shown in the 

bottom right-hand corner. F) Quantification of phenotype. A Bar graph is shown with 

different constructs. Error bars are shown, P= ‘***’<0.001. ANOVA result: F= 104.2, 

df = 4, p-value = 2x1016. 
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containing the TGN/PROT domain (MBP-KY(aa160-285)), and secondly a His tagged 

full-length Ky protein (KY) also showed a good level of solubilisation (Figure 13). In 

order to control for the MBP tag on the MBP-KY(aa160-285), purified MBP was also 

produced, for use as a control 

 

3.3 Transglutaminase Assay’s on Purified KY protein. 

Purified protein was tested with a transglutaminase assay kit. This kit tests the ability 

of proteins to catalyse the formation of a covalent bond between a free amine group of 

poly-L-lysine and the γ-carboxamide group of biotin-TVQQEL-OH. If the test protein 

holds any transglutaminase activity biotin is immobilized to the plate, then detected 

using Streptavidin-Peroxidase and 3,3′,5,5′-Tetramethylbenzidine Liquid substrate. 

The amount of biotin adhered is detected using 450nm wavelength. The amount of 

biotin detected is then proportional to the enzymatic ability of the test protein.  

The test specified 1-10 µg of test protein was needed, each condition had 3 repeats. 

The yield of the purification of the MBP-KY(aa160-285) protein was very high, 

therefore 10μg of protein was used per repeat. The purification of the KY protein was 

not as efficient, therefore only 1μg of test protein could be used in each repeat. The 

MBP control was used at 10μg for each test. An active transglutaminase originating 

from a guinea pig liver was provided by the kit and used as a positive control. Each 

test was incubated at room temperature for 30 minutes as per manufacturer’s 

instructions. 

Figure 13. Schematic diagrams of purified KY constructs. Two constructs are shown the 

His tagged full-length KY and the MBP tagged small TGN/PROT domain. Both constructs 

were tagged via their N-terminus. Each protein tag has been highlighted, the TGN/PROT 

domain in both constructs is highlighted in orange. The numbers indicate the reflected 

protein residues, with the TGN/PROT domain held between residues 225-282 as indicated. 
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Results from the transglutaminase activity test indicated that KY does not have any 

transglutaminase activity (Figure 14). The transglutaminase enzymatic activity of both 

KY and MBP-KY(aa160-285) was significantly lower than the positive control. 

Statistical analysis from a one-way ANOVA showed a significant difference between 

the positive control and each of the KY purified proteins. KY, MBP-KY, and the MBP 

control all showed significantly lower optical density of Biotin than their buffer 

controls.  

3.4 Protease Assay’s on Purified KY protein. 

Again, purified protein was tested for protease enzymatic activity using the Pierce 

Protease Assay Kit. The test uses succinylated casein and trinitrobenzenesulfonic acid 

(TNBSA). Succinylated casein is native casein that has been treated with succinic 

anhydride to block primary amines on the surface of the protein. Proteases cleave the 

succinylated casein at peptide bonds, exposing the primary amines. TNBSA is then 

used to detect exposed primary amines, producing an orange colour.  

 

Figure 14. KY’s TGN/PROT domain holds no transglutaminase enzymatic activity. In 

both cases enzymatic activity was measured throughout the detection of a substrate at 

450nm. Error bars are shown alongside the significance difference, P= ‘***’<0.001. A) 

Transglutaminase assay on MBP-KYaa(160-285). The different constructs tested are as 

shown. A MBP control was used due to the MBP tag include on the MBP-KYaa(160-285). 

ANOVA result: F= 28.43, df = 3, p-value = 5.1x10 -3. B) Transglutaminase assay on KY 

protein. The different constructs tested are as shown. ANOVA result: F= 31.02, df = 2, p-

value = 6.86x10-4. 
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For statistical significance, three repeats were used for each construct. Again, the 

maximum amount of protein was used if available. MBP-KY(aa160-285) was tested 

at 500 µg/ml, with the control and MBP buffer at the same concentration. Whilst KY 

was tested at 50 µg/ml with the positive control, a Trypsin standard provided by the 

kit, at the same concentration. In both cases the appropriate buffers were also tested. 

Each test was incubated at room temperature for 20 minutes as per manufacturer’s 

instructions. Then Optical density, and therefore the level of orange colour produced 

in the reaction, was measured using the 450nm wavelength. 

 

 

The results from the protease assay show that the Ky protein does not have any 

protease activity (Figure 15). The measured activity of MBP-KY(aa160-285) and the 

full KY protein were both significantly lower than the positive control. The little 

variance observed between both proteins provides further confidence in these results. 

Furthermore, this experiment was repeated twice with similar results. 

 

Figure 15. KY’s TGN/PROT domain does not contain any protease activity. A) Protease 

assay for MBP-KY. The different tested constructs are shown.  B) Protease assay for 

purified KY protein.  In both cases enzymatic activity was measured throughout the 

detection of a substrate at 450nm. Error bars are shown alongside the significance 

difference, P= ‘***’<0.001. A) Protease assay for MBP-KY(aa160-285). The different 

constructs tested are as shown. A MBP control was used due to the MBP tag include on 

the MBP-KY(aa160-285). ANOVA result: F= 788.4, df = 4, p-value = 1.77x10 13. B) 

Protease assay for purified KY protein. The different constructs tested are as shown. 

ANOVA result: F= 1087, df = 2, p-value = 2.08x10-8. 



54 

 

 

 

 

 

 

 

 

Chapter 4: In-vivo 

rescue tests with KY 

TGN/PROT domain 

variants 
 

 

 

 

 

 

 

 



55 

 

4.1 Histological analysis of the Ky deficiency seen within the C3 strain of mice. 

The original homozygous ky/ky mouse arose due to a sporadic mutation within the 

BDL strain of mice first reported by Dickinson and Meikle (1973). This mutation led 

to the development of spinal curvature (kyphoscoliosis) leading to postural changes 

caused by postural muscle weakness. The ky/ky mice typically show pathology within 

slow contracting postural muscles such as the soleus. It has been shown that these 

muscles undergo a single postnatal phase of fiber degeneration and regeneration 

(Bridges, et.al., 1992). Furthermore, Ky deficient mice show dramatic shifts in the type 

of MHC and MLC isoforms expressed within slow muscles, which leads to a complete 

shift to type I fibers within the soleus (Blanco, et.al., 2001). Here it was suggested this 

shift in fibers type is an adaptive shift due to the low muscle to body weight ratio.  

For this project, a new strain of ky/ky mice were derived from the C3H background of 

mice. These ky/ky mice may therefore be different to the original ky/ky mice. Early 

observations showed similarly overt features when compared to the original ky/ky BDL 

strain, these mice could be easily recognised post weaning. In most cases, mice were 

quickly identified due to their smaller size, and inability to perform a normal placing 

response test in which ky/ky mice were unable to reach towards a ledge, due to 

weakened paraspinal and postural muscles (Appendix). Interestingly within the C3H 

background the male ky/ky mice seemed to exhibit a more severe pathology. In the 

most severe cases mice would exhibit whole body tremors, a drastically smaller size, 

and exhibit an increased respiratory rate.  

Histological analyses were performed to identify phenotypic differences between the 

BDL and C3H genetic backgrounds, and furthermore to investigate if in C3H 

background the males had a worst phenotype. The soleus was obtained from both male 

and female wildtype and ky/ky mice. The soleus was chosen as it is a postural slow 

contracting hind-limb muscle and is known to be severely pathological in the ky/ky 

mutant. Mice were taken at 8 weeks old; the TA and soleus were dissected which 

allowed easy access to obtain sections to observe the soleus. These sections were then 

stained with haematoxylin and eosin (H&E) (Methods).  
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Figure 16. Histological analysis of the soleus of Wildtype and ky/ky mice. A) 

Haematoxylin and eosin-stained sections from wildtype and ky/ky mice soleus. The row 

shows the soleus taken from wildtype and Ky mice. The bottom row shows the soleus taken 

from female wildtype and Ky mice. B) Quantification of the percentage of internalized 

nuclei from ky/ky mice and wildtype soleus. No statistical analysis was performed as these 

results were taken from 1 replicate in each sample.  

 

A 

B 
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Due to limited time only one replicate was taken for comparisons of WT and ky/ky 

male and female mice. Mice were taken at 8 weeks. As expected, H&E staining 

revealed a highly pathological soleus for both the female and male ky/ky mice (Figure 

16.A). The first thing noticed was the extreme fiber size variability when compared to 

the ordered nature of the WT soleus. A WT soleus will typically have homogeneous 

fibers with consistent cross-sectional area. This was observed in both male and female 

WT soleus muscle sections. Conversely, the ky/ky mice show a vast heterogeneity of 

extremely small fibers alongside much large sized fibers. Unfortunately, due to limited 

repeats it was not possible to gather the data. But this phenotype is clearly seen within 

these fibers (Figure 16.A).  

Next, we observed that a good proportion of the ky/ky fibers showed centralised nuclei, 

which is a typical hallmark of fiber regeneration. The presence of a high proportion of 

extremely small fibers further indicated that the muscle had been undergoing 

regeneration. To quantify these fibers undergoing regeneration, the number of fibers 

showing centralised nuclei were counted as a percentage of the total number of fibers 

in the muscle (Figure 16.B). Results showed both WT female and male mice had very 

few fibers showing centralised nuclei. When compared to WT mice, ky/ky mice had 

an increase in the number of centralised nuclei, which was observed to be higher in 

the female than the male.  

Overall, there is a clear pathology within the soleus of this new strain of ky/ky mice 

when compared to wildtype mice. The pathology is highly reminiscent of the original 

pathology seen within the BDL strain of ky/ky mice. 

4.2 In-vivo localisation of recombinant KY proteins. 

KY is a known Z-disk associated protein, absence of this protein from the Z-disk is 

known to cause a multitude of abnormalities such as Z-disk thickening (Beatham, 

et.al., 2004). The region within the KY protein which aids targeting to the Z-disk is 

yet to be elucidated. It has previously been theorised the TGN/PROT domain may aid 

targeting of KY to the Z-disk. Previously electroporated Ky-DEL in the tibialis 

anterior (TA) of a mouse showed a more diffuse pattern of expression when localising 
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to the Z-disk, when compared to the clear striations of Ky-td which localise clearly to 

the Z-disk (Unpublished work, Jokl, 2018). This data suggested that the conserved 

TGN/PROT domain may have a role in targeting KY to the Z-disk. Further being 

backed up by the evidence that many eukaryotic transglutaminases have likely evolved 

to serve another function (Anantharaman, et.al., 2001).  

In order to assess the ability of the TGN/PROT domain to target KY to the Z-disk, 

different KY constructs would be electroporated into mouse TA muscles, thus 

allowing visualisation of localisation. Using the mutagenised KY constructs (Figure 

11) we tested each construct’s ability to localise to the Z-disk. We theorised that were 

the TGN/PROT domain critical for Z-disk targeting, mutations within the region 

would result in less/absent localisation to the Z-disk, and the full deletion would likely 

potentially show no attachment to the Z-disk at all. The TA of wildtype mice was 

electroporated with these constructs, due to the fact it is easy to access for 

electroporation and dissection. 

Mice had hyaluronidase injected into each leg which was to undergo electroporation, 

this aids the breakdown of the ECM, thus allowing for a higher electroporation 

efficiency (Cemazar, et.al., 2012). Mice underwent the electroporation procedure 

through a surgical protocol allowing for an accurate and repeatable method of 

electroporation (Methods). Mice were then left for 8 days to express recombinant 

proteins. Mice were then sacrificed, and the TA was dissected. 

Frozen muscles were sectioned longitudinally. Post sectioning, one slide was mounted 

with DAPI in order to identify regions of interest. It was clear that striations could be 

visualised for each construct except for tdTomato. Therefore, to confirm that these 

striations were visualised at the Z-disk, sections were stained with EA53 which is an 

anti-α-Actinin antibody. Sarcomeric α-actin is a vital component of the Z-disk and is 

therefore a good biomarker to identify the Z-disk. This would allow us to confirm that 

fiber striations seen with the KY constructs were indeed localised to the Z-disk, post 

staining the slides were mounted with DAPI and imaged. 
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Figure 17. Z-disk localization of mutagenised KY constructs. Longitudinal sections of 

electroporated muscles stained. Columns from left to right: The first column is an α-Actinin 

stain highlighting the Z-disk. The Texas-red filter detects different KY construct used within 

each row. The Magnification column shows the area within the white box for each 

corresponding construct. The final column shows an Overlay of the α-actinin, Texas red, 

and DAPI. A scale bar is also shown in the overlay column. Row A) Electroporated 

tdTomato. tdTomato showed a diffuse expression profile along the fiber. Row B) 

Electroporated Ky-td. Ky-td shows extremely clear striations, which overlay with the α-

actinin. Row C) Electroporated Ky-SM. Again, clear striations are seen with the fiber also 

lining up with the α-actinin. Row D) Electroporated Ky-TM. The striations within this 

construct are slightly harder to see but are still present. Row E) Electroporated Ky-DEL. 

Clear striations are seen throughout the fiber, lining up with the α-Actinin. 
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Results showed that each KY construct did in fact localise to the Z-disk (Figure 17). 

Compared to tdTomato each construct shows very clear striations, which co-localise 

with the α-actinin, showing Z-disk localisation. Interestingly the diffuse pattern 

observed previously with Ky-DEL was not observed here, whereby this construct 

produced a very clear striation pattern. This result suggests that the loss of the 

TGN/PROT domain does not seem to affect the localisation of KY to the Z-disk. All 

other KY constructs showed clear Z-disk localisation. Thus, it is unlikely the 

TGN/PROT domain is aiding Z-disk targeting.  

4.3 In vivo complementation of a ky/ky deficiency 

Unpublished work has suggested that the KY protein can induce a hypertrophic 

response to rescue atrophic muscle fibers within ky/ky muscles (Unpublished work, 

Jokl, 2018). Interestingly when Ky-td is overexpressed in wildtype muscles, no 

hypertrophic response is observed, suggesting KY protein amount does not correlate 

with the level of hypertrophy (Unpublished work, Jokl, 2018). Also showing that KY 

is not a regulator of hypertrophy but is necessary to maintain the muscle and initiate a 

hypertrophic response. Surgical overload within wildtype muscles causes an adaptive 

response whereby a change in the type of MHC expressed is observed, alongside 

muscle fiber hypertrophy. No hypertrophic response is observed in ky/ky mice when 

surgically overloaded (Blanco, et.al., 2001). Hence, KY must have a significant role 

in inducing a hypertrophic response, indicating that it may be important for 

mechanosensing and the Z-disk.  

The relevance of the conserved TGN/PROT domain still remains elusive, therefore we 

wanted to determine whether the TGN/PROT domain is important for fiber size rescue 

in ky/ky mice. To investigate this, the mutagenised TGN/PROT domain KY constructs 

previously used would be electroporated into the TA muscles of ky/ky mice, and 

evaluated for their ability to rescue normal fibre size.  

Furthermore, this experiment can also be used to test by an independent method the 

importance of the conserved catalytic residues within the TGN/PROT domain. We 

have previously reported that mutations within the TGN/PROT domain are not 
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sufficient to alter Z-disk localization (Figure 17). Therefore, if we assume the 

mutations within these KY constructs are sufficient to remove or limit any enzymatic 

activity, we can utilise these to test if enzymatic ability is needed to induce a 

hypertrophic response. If a hypertrophic response is seen with enzymatically dead 

versions of Ky (Ky-SM & Ky-TM), we can conclude that the enzymatic ability and 

the catalytic triad is not needed to induce a hypertrophic response. 

Again, we chose to electroporate the TA of ky/ky mice. The constructs, tdTomato, Ky-

td, Ky-SM, Ky-TM, and Ky-DEL were electroporated in ky/ky mice using the same 

surgical procedure and pre-treatment with hyaluronidase. Mice were then left for 8 

days allowing for construct expression and any subsequent phenotypic changes within 

the muscle to become apparent, before being euthanised. The TA muscles were 

dissected, frozen in liquid nitrogen-cooled isopentane. Cross sections of the TA muscle 

were obtained using a cryostat to allow for analysis of the fiber cross-sectional area. 

Finally, sections where imaged, and quantified (Methods). 

The cross-sectional area of transfected and untransfected fibers was measured using 

ImageJ. The ky/ky phenotype shows vast fiber size variability, so comparisons between 

mice were impossible without normalisation. In order to make valid comparisons 

between different mice we opted to represent the difference in cross-sectional area 

between the transfected and untransfected fibers as a ratio (Methods). If the normalised 

value for the transfected fibers is above 1, then the average fiber size is greater than 

the untransfected. Conversely, if it is less than 1 the fiber size has reduced in 

comparison to the untransfected fibers.  

In each case a minimum of three biological replicates were used. The tdTomato control 

showed a much higher electroporation efficiency than other constructs (Figure 18.A). 

All KY constructs showed a much lower electroporation efficiency when compared to 

eGFP, likely due to the mKY constructs' larger sizes (Figure 18.B-E). A one-way 

ANOVA was used on the ratio averages and showed a significantly higher cross-

sectional areas for Ky-td, Ky-SM, and Ky-TM when compared to the control 

untransfected fibers, tdTomato and Ky-DEL. Neither Ky-DEL or tdTomato showed 
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any statistical difference when compared to the untransfected fibers indicating there 

was no change from the original size pre-electroporation. No Statistical difference was 

observed between Ky-td, Ky-SM, and Ky-TM. (Figure 18.F)  

 



63 

 

 

These results indicate that the mutations of the conserved catalytic residues (Cystine, 

Histidine, and Aspartate) do not affect the ability of KY to induce hypertrophy in ky/ky 

muscle fibers. Interestingly, the removal of the whole conserved TGN/PROT domain 

does have a significant effect on the ability to induce hypertrophy, as the Ky-DEL 

construct is unable to induce the same hypertrophic response as the WT, Ky-SM, and 

Ky-TM counterparts. Therefore, we conclude that the whole domain has a role in 

inducing hypertrophy in ky-deficient muscle, but the individual catalytic residues do 

not.  

 

F 

Figure 18. Enzymatically dead versions of Ky can induce a hypertrophic response within 

the muscles of Ky deficient mice. Each row shows a different Ky construct which has been 

electroporated into Ky/Ky mice. Columns from left to right: The FITC fluorescent filter 

was used to highlight cellular membranes. The Texas-red filter was then used to detect the 

different Ky constructs overexpressed in Ky/Ky mice. Finally, the last column is an overlay 

of the two filters including DAPI. A scale bar is shown at the end of each row and 

corresponds to each construct used A) tdTomato electroporated into Ky/Ky mice. 

Overexposure of the FITC filter allowed visualization of individual fibers. B) Ky-td 

electroporated into Ky/Ky mice. Again, the FITC filter was overexposed to outline of the 

fibers.  C) Ky-SM electroporated into Ky/Ky mice. WGA was detected in the FITC filter 

to outline the cell membranes of individual fibers D) Ky-TM electroporated into Ky/Ky 

mice. WGA was detected in the FITC filter E) Ky-DEL electroporated into Ky/Ky mice. 

WGA was detected in the FITC filter. F) Quantification of electroporated fiber size 

compared to untransfected Ky/Ky fibers. A ratio was developed to represent a change in 

fiber size. If the ratio is higher than 1 the fiber has grown. A Box plot represents each Ky 

construct, compared to untransfected fibers. Data underwent a one-way ANOVA allowing 

valid comparisons of the ratios. Neither Ky-DEL or tdTomato are significantly different 

from the untransfected fibers. ANOVA result: F= 6.977, df = 5, p-value = 1.03x10-3. 
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5.1 In-silico human KY analysis 

One report describing a patient with a KY myopathy suggested that the human KY 

(hKY) localizes to the sarcolemma (Straussberg, et.al., 2016), contradicting previous 

research which shows KY is a Z-disk associated protein (Beatham, et.al., 2004). 

Therefore, we wanted to unequivocally identify the subcellular localization of hKY in 

vivo. The hKY and mouse ky (mKy) share a sequence identity of ~ 91 % and are 94% 

similar; thus, it is unlikely the small sequence differences observed within their 

alignment would produce a significant change in the protein’s function or localization.  

To find a suitable hKY candidate a pBLASTp of the mKy was run against homo 

sapiens. Results showed all isoforms had greater than 80% homology with the mKy. 

The multiple hKY isoforms identified all showed the exact same amino acid starting 

sequence as the mKy (MELKKD). Intriguingly, one hKY Isoform (hky X5) which also 

displayed a high homology with mKy had the starting sequence of the mKy aligned 

upstream of the start site for hKY X5. Further analysis showed that the hKY X5 

contained an extra 59 amino acids preceding the MELKKD start sequence of the hKY 

(Figure 19.A) and mKy. This newly identified region started with a Methionine which 

was in frame with the rest of the protein.   

Interestingly, using nuclear localization signal predicting software (Nguyen, et.al., 

2009) we found that this region contained a nuclear localization signal (NLS). The 

extra region including the MELKKD motif, was run through multiple NLS predictors 

(Nguyen Ba, et.al., 2009; Jhih-Rong Lin, et.al., 2012). Both predictors gave us 

readouts for an NLS within this extra region, with cut-off scores above 0.9. The NLS 

motif giving the highest cut-off score was RRPGRK (Figure 19.B) (Appendix). This 

newly identified extra sequence was predicted to enable the hKY X5 isoform to localize 

to the nucleus.  
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Nuclear localization signal 
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Figure 19 Protein sequences of Homo sapiens hKY-X5 against the hKY. A protein alignment 

shows the extra region identified within the N terminus of hky-X5. B) KY isoform X5 nuclear 

localization signal. The extra sequence identified was found to contain a nuclear localization 

signal (Orange text). The starting Methionine is highlighted in red along with the second 

Methionine. The (Blue text) has the highest NLS cut of score above 0.9. 
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Next, we wanted to look at what other species may contain this extra sequence. A 

tBLASTn search was run using the extra region found in hKY-X5. Results of the 

BLAST search showed that only primates conserved this sequence out of all other 

mammals (Figure 20.A). All identified Primates showed conservation of the first 

Methionine of the extra region, including the NLS in frame with the original start 

codon and motif MELKKD.  

 

 

A 
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To assess conservation of this region, a collection of similar genes were identified 

through a pBLASTp using the full length hKY X5 isoform as the sequence of interest. 

The homologous sequences were a series of Ky variants from different species. Using 

MEGA-X these sequences where aligned and used to build a phylogenetic tree using 

the Newic format (Hehenberger, 2018). The polygenetic analysis revealed primates 

diverge from a common ancestor and constitute their own group (Figure 20.B).  

 To further understand the origins of this primate conserved region, extensive searches 

were run on ensemble and BLAST looking for conservation of this region within any 

other species. A tBLASTn search was run using the extra region containing the NLS 

and no hits were found within fish. Interestingly, some species showed partial 

conservation of this region (Figure 20. A). The only examples where the entire region 

with the NLS was conserved were, American Beavers, Dogs, and Guinea pigs although 

in each of these cases, the conserved region was out of frame with the rest of the KY 
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Figure 20. Conserved nuclear localization signal within primates shows high genetic 

divergence within other species. A) A group of Aligned ky Sequences. The beginning 

sequences from a collection of ky sequences taken from multiple species. B) Circular 

Newic phylogenetic tree from a collection of ky homologues from different species. The 

tree was generated using MEGA-X. Primates are highlighted in red showing their distinct 

group. C) Evolution rate at each protein site of aligned KY homologues. Using the Jones, 

Taylor, and Thornton model (JTT) model of evolution the rate of evolution at each protein 

site was predicted. Five gamma categories gave the relative rate. The TGN/PROT domain 

is highlighted by the red bar.  
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protein. Thus, concluding that this region containing the NLS sequence is solely 

conserved within primates. 

Finally, we wanted to look at the rate of evolution at each amino acid site in an 

alignment of multiple KY homologues. The rate of evolution at a given site is 

calculated, which maximizes the probability of the given alignment under the selected 

model of evolution. In this case the Jones, Taylor, and Thornton (JTT) evolution model 

(Jones, et.al., 1992) was used.  

Results indicated a higher level of protein evolution at the beginning of the protein, 

shown by a logarithmic trendline (Figure 20.C). As you move along the protein, levels 

of evolution decrease. It is likely this reflects the fact that many species other than 

primates have either lost or only show partial conservation of the extra region which 

holds the NLS, while conserving the majority of the KY protein which starts at the 

second Methionine with the motif MELKKD. A gap at 200-220 amino acids represents 

a gap within the aligned data, where a single KY protein, derived from the papio 

Anubis (Olive Baboon), included an extra amino acid sequence, which no other species 

contain. This species being within the primates also included the extra region with the 

NLS.  

5.2 In vitro overexpression of human KY 

To assess the subcellular localisation of hKY and test whether the newly identified 

NLS could cause nuclear localisation, a new construct of the hKY X5 isoform was 

ordered from GenScript. The hKY X5 was cloned into the mammalian expression 

vector pcDNA3.1(+)-C-eGFP through a HindIII/BamHI cloning strategy. This 

subsequently produced the new hKY vector pcDNA3.1-hKy-eGFP (hKy-eGFP) 

(Figure 21). Two restriction digests were used to confirm the correct cloning. Finally, 

sequencing was used to confirm the flanking sequences of the cloning site, both of 

which were correct. 
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To test the subcellular localisation of hKy-eGFP within myoblasts, lipofectamine 

transfections within C2C12 myoblasts were undertaken. We wanted to test whether 

the hKY-X5 would localise to the cytoplasm, similarly to the mKY within a 

proliferating C2C12 myoblast, or whether the predicted NLS sequence was sufficient 

to cause nuclear localisation, C2C12 myoblasts were grown to ~80% confluency, 

transfected with hKy-eGFP using GenJet In-vitro Transfection reagent according to 

the manufacturer’s instructions. Cells were left to incubate for 48 hours before fixation 

and mounting. Cells were then imaged using fluorescent microscopes.  

Results showed nuclear and cytoplasmic expression (Figure 22). All cases of 

cytoplasmic expression were observed as a normal diffuse pattern. Conversely the 

nuclear expression showed two variations; one variation showed a “speckled” pattern 

of expression (Figure 22.A&B), while the other showed a diffuse expression across 

the whole nucleus, similar to that observed in the cytoplasm (Figure 22.C&D).  

Overexpression of hKy-eGFP within C2C12 myoblasts comes in two patterns. Nuclear 

and cytoplasmic expression is clear in both cases, but the differences lie within the 

nucleus. One pattern shows diffuse expression across the whole nucleus. Conversely 

the other shows a “Speckled” pattern of expression. 

 

 

Figure 21. Cloned human KY isoform X5 (hKy-eGFP). The human ky isoform X5 was 

cloned in the vector pcDNA3.1-(+)-eGFP  the cloned region shown above. The Highlighted 

blue region on the left indicates the extra region which contains the NLS, the two-start 

methionine’s are shown above. The light blue box indicates the conserved TGN/PROT 

domain shown are the conserved Cysteine, Histidine and Aspartate. eGFP is attached to 

the C-terminus of the protein shown on the right.  
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5.3 Co-localisation of IGFN1_V1 and the human KY 

The Immunoglobulin-like and fibronectin type III domain containing 1 (IGFN1) 

protein was one of the first proteins to be identified in a yeast-two-hybrid assay to 

interact with KY alongside other sarcomeric proteins such as FLNC (Beatham, et al., 

2004). IGFN1 is specifically expressed within skeletal muscle and is a complex gene, 

supporting many isoform variants. IGFN1 lacks any enzymatic activity, therefore it is 

likely that it initiates protein complex formations. One such formation is the IGFN1, 

FLNC and KY complex, which has been suggested to provide structural support at the 

Z-disk (Baker, et.al., 2010). IGFN1 is known to localise to the nucleus and is able to 

translocate to the cytoplasm (Baker, et.al., 2010).  

As previously seen, expression of the hKY in C2C12 myoblasts led to a nuclear 

localisation, showing in some cases a “speckled” pattern of expression (Figure 22). 

 

Figure 22. Cytoplasmic and nuclear localization of pcDNA3.1-hKy-eGFP. A-B) 

pcDNA3.1-hKy-eGFP transfected into C2C12 myoblasts. pcDNA-hKy-eGFP is detected 

using a FITC filter. Whilst DAPI is detected using a DAPI filter. A-B) Nuclear protein 

aggregates are seen showing a “speckled” pattern of expression. C-D) Cytoplasmic 

Expression is seen, whilst still showing nuclear expression.  
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The pattern seen was similar to that of IGFN1_V1_tdTomato when overexpressed 

within COS7 myoblasts (Figure 23). To test if both proteins showed nuclear or 

cytoplasmic colocalisation or affected each other's localisation, a co-transfection with 

both the hKy-eGFP and IGFN1_V1-tdTomato was performed. 

 

In this transfection, C2C12 myoblasts were transfected with pDEST47-IGFN1_V1-

tdtomato (IGFN1_V1-tdTomato), a smaller isoform of IGFN1 without the disordered 

middle region, which has a higher transfection efficiency. GenJet transfection reagent 

was used to co-transfect IGFN1_V1-tdTomato alongside hKy-eGFP into C2C12 

myoblasts. Appropriate controls were set up: IGFN1_V1-tdTomato was transfected 

alongside pDEST-eGFP, whilst hKy-eGFP was co-transfected with pDEST47-

tdTomato. Post-transfection, myoblasts were left to express the constructs for 48 hours, 

then fixed and mounted with DAPI.  

Observations of co-transfected myoblasts indicated that hKy-eGFP and IGFN1_V1-

tdTomato were colocalising (Figure 24. A-I). Large colocalised complexes formed 

within the nucleus, whilst cytoplasmic expression seemed more diffuse.  ImageJ was 

then used to quantify protein colocalization. Images were subjected to a specific 

method to test colocalization. The Coloc2 plugin was utilised within ImageJ, Coloc2 

uses Pearson’s correlation coefficient, with costes method (Costes, et.al., 2004).  

Results showed a high level of co-localisation of hKy-eGFP and IGFN1_V1-

tdTomato, indicated by a high Pearson’s correlation coefficient score, alongside 

 

Figure 23. Nuclear localization pattern of IGFN1_V1. IGFN1_V1 transfected into COS-

7 fibroblasts. A) Phalloidin stain highlighting the actin. B) pDEST47-IGFN1_V1-eGFP 

expression profile. C) Overlay of the phalloidin stain, IGFN1_V1, and DAPI. A scale 

bar is shown in the overlay.   
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Figure 24. Colocalization of pcDNA3.1-hKy-eGFP and pDEST47-IGFN1_V1-

tdTomato. A-I) Fluorescent images of co-transfected IGFN1_V1 and hKy-eGFP. Rows 

consist of different co-transfected constructs; each construct is shown in bottom left of 

each panel. The right column consists of an overlay of both constructs and DAPI. A scale 

bar is shown in each overlay and corresponds to that row J) Box plot of Co-localization 

between co-expressed proteins. Pearson correlation coefficient (no threshold) was used 

to quantify co-localisation. The median is shown as the middle line inside the box, the 

lower and upper quartile are shown by the upper and lower boundaries of the box. The 

lines indicate the range of the data, outliers are shown, P= ‘***’<0.001. ANOVA result: 

F value = 55.66, df =54, p-value=0.0063. K) Pie chart of the distribution of co-localised 

clusters. A count represented as a percentage; no statistical analysis could be performed.  
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having a small variance (Figure 24. J). Both controls also showed significantly lower 

Pearson’s correlation coefficients and indicated near to no co-localisation. Further to 

this both showed a much higher variance compared to hKy-eGFP and IGFN1_V1-

tdTomato. 

A count was performed to give an indication as to where the aggregates of hKy-eGFP 

and IGFN1_V1-tdTomato were forming. Three possibilities were available: nuclear 

localisation, cytoplasmic localisation or both nuclear and cytoplasmic. Results showed 

a large amount of these aggregates localised to the nucleus (Figure 24. K). Second to 

that, aggregates were observed in both the nucleus and cytoplasm. Lastly a very small 

number of aggregates were observed only within the cytoplasm. 

The results here show clear colocalised aggregates between hKy-eGFP and 

IGFN1_V1-tdTomato, most of these colocalised aggregates form within the nucleus. 

Statistical analysis further supports a high level of colocalization between these two 

constructs. In both co-transfection controls, the expression profile of the hKy-eGFP 

and IGFN1_V1-tdTomato are highly comparable. 

5.4 Co-Transfection of IGFN1_V1 and the mouse KY 

The mKY does not contain an NLS and has never been observed within the nucleus. 

Therefore, we wanted to test whether IGFN1_V1-tdTomato alone could cause nuclear 

translocation of the mKY. 

The same method for transfection was used, as previously stated, but pDEST47-

IGFN1_V1-tdtomato was swapped for pDEST47-IGFN1_V1-eGFP, as the Ky-td 

(pDEST47-Ky-tdTomato) contained tdTomato. pDEST47-IGFN1_V1-eGFP and Ky-

td were co-transfected into C2C12 myoblasts. Additionally, pDEST47-IGFN1_V1-

eGFP was co-transfected alongside tdTomato and Ky-td was co-transfected with 

pDEST47-eGFP as controls. Post transfection, myoblasts were left to express the 

constructs for 48 hours, fixed, then mounted with DAPI. 

No clear colocalization could be seen between Ky-td and pDEST47-IGFN1_V1-eGFP 

(Figure 25.A-C). The typical cytoplasmic expression profile of Ky-td was seen, and 

importantly, in no cases was Ky-td seen within the nucleus. IGFN1_V1-eGFP 
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Figure 25. Co-expression of pDEST47-mKy-tdTomato and pDEST47-IGFN1_V1-

eGFP. A-I) Fluorescent images of co-transfected mKy-tdTomato and IGFN1-eGFP. 

Rows consist of different co-transfected constructs; each construct is shown in bottom left 

of each panel. The right column consists of an overlay of both constructs and DAPI. Scale 

bars are shown in the bottom right-hand corner of each row. J) Box plot of Co-localization 

between co-expressed proteins. Pearson correlation coefficient (no threshold) was used to 

quantify co-localisation. The median is shown as the middle value inside the box, the lower 

and upper quartile are shown by the box. The lines show the maximum and minimum 

values, outliers are shown. ANOVA result:  F value= 1.778 =, df =61, p=0.178.  

J 
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showed its typical “Speckled” pattern of expression (Figure 23). Again, the Coloc2 

plugin for image J was used to analyse colocalization utilising the Costes method 

(Costes, et.al., 2004) (Methods). Results show a low level of colocalization between 

all colocalised constructs, with no significant difference between each group (Figure 

25.J).  

Results here suggest that Ky-td and pDEST47-IGFN1_V1-eGFP do not colocalise, as 

no visible colocalised aggregates were observed with the data analysis revealing a low 

Pearson’s correlation coefficient. Furthermore pDEST47-IGFN1_V1-eGFP is unable 

to induce nuclear translocation of Ky-td. These results confirm previous observations 

indicating that the mKY is a cytoplasmic protein (Baker, et.al., 2010). 

5.5 In Vivo localisation of human KY 

In-silico analysis and In-vitro experiments have revealed the hKY X5 isoform contains 

an extra region, in which a functional nuclear localisation signal is present (Figure 19 

& 22). It is yet to be confirmed whether this protein can localise to the Z-disk. Due to 

the high homology with the mouse Ky, it is highly likely Z-disk localisation will be 

observed along with nuclear localisation, when overexpressed in-vivo in fully 

differentiated skeletal muscle.  

To test this theory, we electroporated hKy-eGFP into mouse TA muscles, using the 

same surgical method as before, eGFP was used as a control for hKy-eGFP. Post-

electroporation, mice were left for 8 days to recover and express the recombinant 

proteins. After 8 days, mice were sacrificed, and the TA was dissected and frozen in 

liquid nitrogen-cooled isopentane. Longitudinal muscle sections of 12 μm were taken, 

immunostained, and mounted with DAPI. The Z-disks were again marked with an 

EA53 antibody against α-Actinin. High magnification images were then taken using a 

fluorescent microscope (Figure 26.A-L).  

Images of hKy-eGFP electroporated fibers showed clear Z-disk striations, which 

overlayed perfectly with the α-actinin. These results suggest that like the mKY, hKY 

X5 too is able to localise to the Z-disk. When compared with eGFP, which also shows 

some faint striations (Figure 226D-F), it is clear there is a significant difference 
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between the patterns of hKy-eGFP and eGFP. The striations seen within electroporated 

eGFP fibers are likely an artefact, due to the Z-disk being such a prominent structure 

within differentiated fibers. Furthermore, nuclear localisation was also observed with 

hKy-eGFP. Higher magnification images also revealed a “speckled” pattern of 

expression seen in most nuclei (Figure 26.M-O) similar to that which was observed in 

vitro (Figure 22).  
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It is interesting to note that the expression profile observed with the hKy-eGFP highly 

resembles the in vivo expression profile of electroporated IGFN1_V1-tdTomato, 

which also shows nuclear and Z-disk localisation (Figure 24).  

Here we have seen that hKy-eGFP is able to localise both to the Z-disk and myonuclei 

in fully differentiated skeletal muscle. The eGFP tag does not affect localisation of the 

protein exhibited by the different expression profile of the eGFP control. Furthermore, 

the profile observed with hKy-eGFP resembles the expression pattern of 

electroporated IGFN1_V1-tdTomato (Figure 27). This data, alongside what we 

previously knew regarding the interaction of KY and IGFN1 in vivo, suggests that 

there is most definitely a role for the interaction of these two proteins, which is not 

exclusive to the myoplasm, it is just waiting to be discovered. 

 

Figure 26. pcDNA3.1-hKy-eGFP localizes to the Z-disk and the nucleus in vivo. 

Longitudinal sections of electroporated wildtype muscle fibers. The relevant a scale bar is 

shown, corresponding to the panels within that row A-C) Electroporated eGFP. The left 

panel shows α-actinin highlighting the Z-disk, the middle panel shows electroporated 

eGFP. The final panel shows an overlay image of the two images including DAPI. D-F) 

Magnified images of A-C. Magnified images are highlighted in the original part of the 

image taken the white box. G-I) Electroporated hKy-eGFP. The left panel shows α-actinin 

highlighting the Z-disk, the middle panel shows electroporated hKy-eGFP. The final panel 

shows an overlay with DAPI. J-L) Magnified images of G-I. White box represents 

magnified area. M-O) Low exposure images of electroporated hKy-eGFP. Low exposure 

allowed visualization of the nuclear localization. The left panel shows DAPI, the middle 

panel shows electroporated eGFP. The final panel shows an overlay with a scale bar. 
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Figure 27. IGFN1_V1 localises to the Z-disk. Longitudinal sections of IGFN1_V1 

electroporated wildtype muscle fibers. Each column shows the indicated construct, the α-

Actinin was stained with an EA53 antibody. The bottom row shows an enlarged section of 

the fiber indicated within the white box. A relevant a scale bar is shown for each 

corresponding row. This image was taken from Li, et.al., 2017 and is available at 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180217 . 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180217
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The primary aim of this thesis was to gain a better understanding of the mechanism by 

which KY acts, through defining a definitive role for the highly conserved TGN/PROT 

domain. The secondary aim of this thesis was to explicitly define the subcellular 

localisation of the hKY, as a previous report has suggested the hKY was localising to 

the sarcolemma of a muscle fiber (Straussberg, et.al., 2016).  

6.1.1 KY does not contain any enzymatic activity within the conserved 

TGN/PROT domain 

The specific residues (Cysteine [225], Histidine [267], and Aspartate [282]) forming 

the catalytic triad within KY’s TGN/PROT are conserved among species. These 

residues are required for enzymatic ability (Carter and Wells, 1988), and as previously 

discussed, suggest that KY may hold transglutaminase or protease enzymatic activity. 

Here full length purified KY protein and MBP-KY(aa160-285) have both been tested 

for enzymatic activity. Protease and transglutaminase assays performed on both KY 

and MBP-KY(aa160-285) suggest that KY has lost any potential enzymatic abilities 

(Figures 14 & 15). Furthermore, the complementation studies performed on KY’s 

TGN/PROT domain mutants (Figure 18) would also suggest that enzymatic ability is 

not needed for its mechanistic action. Thus, Ky-TM which had all three catalytic 

residues substituted to alanine, would have likely lost any potential enzymatic ability 

(Carter and Wells, 1988), and yet was able to rescue fiber size in ky/ky mice. Thus, 

suggesting that these individual residues and in turn enzymatic activity isn’t required 

for KY protein function. Collectively this data provides strong evidence that KY is not 

enzymatically active, and that replacement of the conserved catalytic residues has no 

effect on the overall function of the resulting protein.  

The formation of catalytic triads is known to be dependent on the distance between the 

catalytic residues. Other enzymatically active eukaryotic transglutaminases which 

contain the transglutaminase catalytic triad consisting of Cystine, Histidine, and 

Aspartate all conserve 23 amino acids between there Histidine (H) and Aspartate (D) 

catalytic residues. The homo-sapien and mus musculus (Mouse), TGM family of 

proteins (UniProt, #P22735) and the coagulation factor XIII protein (UniProt, 
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#P00488), all have 23 amino acids between Histidine and Aspartate, whilst conversely 

KY only contains 15 amino acids between Histidine and Aspartate (UniProt, 

#Q8NBH2). This could cause a significant disruption within the shape of the active 

site and thus prevent enzymatic activity from occurring. One interesting observation 

is the fact the catalytic residues have been conserved throughout evolution. It has been 

shown that these specific residues are not required for the rescue of ky/ky muscle fibres, 

and do not serve any enzymatic function. Therefore, the question remains as to why 

these specific residues have been conserved, as they seem to serve no apparent function 

within the KY protein.   

6.1.2 KY’s TGN/PROT domain is not required for Z-disk localisation 

KY has been shown to be a Z-disk protein (Beatham, et.al., 2004), highly conserved 

among species. The Ky homologues all hold a TGN/PROT domain, which we now 

know to not be enzymatically active. As KY’s only distinguishable feature, it was 

hypothesised that the TGN/PROT domain was causing Z-disk localisation. Here we 

have shown this not to be the case, and therefore indicating that the region causing Z-

disk localisation is conserved elsewhere within the protein. Looking at the amount of 

evolution along the KY protein (Figure 20.C), the C-terminus appears to have evolved 

the least. Therefore, the domain controlling Z-disk localisation is likely to be contained 

within the C-terminus, due to the higher level of conservation compared to the rest of 

the protein. 

6.1.3 The human KY can localise to the Z-disk 

Previous reports have suggested that the hKY localises to the sarcolemma of the 

muscle fiber (Straussberg, et.al., 2016). Being a highly conserved protein, we 

predicted that the hKY, would localise to the Z-disk. This thesis has shown that 

primates contain an atypical version of the Ky gene, holding an enclosed nuclear 

localisation signal within an extra 49 amino acids upstream of the original start site. 

Here it has been unveiled that the hKY localises to the Z-disk like its counterparts, but 

also localises to myonuclei within a fully differentiated muscle fiber and myoblasts. 
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The data here has clearly shown that the human KY is capable of localising to the Z-

disk. 

6.2 Overview 

This thesis has once again highlighted the complex nature of KY’s role within muscles. 

This elusive protein has evolved down two separate pathways; primates conserving a 

NLS signal, while other mammals seem to have removed this NLS. Ky is known to be 

imperative for normal muscular function shown by the severe pathology seen within 

the ky/ky mouse and the human Ky myopathies, the similarities between these 

phenotypes also highlight the conserved function of KY in primates and other 

mammals. Here we have shown the TGN/PROT domain is integral to the function of 

KY. Complementation experiments show that when the whole TGN/PROT domain is 

removed, KY is unable to rescue fiber size through hypertrophy. Conversely, when 

wildtype KY is electroporated into ky/ky muscle, rescue occurs through hypertrophy. 

Thus, the TGN/PROT domain must have an integral role within KY’s mechanism of 

action to maintain normal muscle pathology. 

Muscular hypertrophy is essential to muscular health and is a normal response to 

functional overload of a muscle. To date most of the signalling cascade which allows 

for muscular hypertrophy has been identified, although the initiating signals remain 

elusive and highly debated (Wackerhage, et.al., 2019). The ky/ky mouse has been 

shown to lack a hypertrophic response (Blanco, et.al., 2001), thus KY was identified 

as a regulator of the hypertrophic response. However, a direct link between KY and 

hypertrophy had not been established. The mKY has never been seen within the 

nucleus and is not known to interact with any proteins involved within induction of 

hypertrophic pathways. The finding of a functional NLS within primates’ KY locus 

now provides evidence that KY itself may be able to modulate hypertrophic pathways, 

due to a functional nuclear link. KY is known to interact with a multitude of sarcomeric 

proteins (Beatham, et.al., 2004), such as IGFN1 and FLNC. Like many other 

sarcomeric proteins, KY localises to the Z-disk, where it has been implicated to 

provide structural support to the Z-disk, through forming large protein complexes 
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(Baker, et.al., 2010). The clear myofiber pathologies seen within ky/ky mice and the 

human myopathies highlight the critical role of KY within maintaining sarcomeric 

stability. These pathologies also implicate the Z-disk as the primary site affected. The 

Z-disk is a known site of intracellular signalling and has been suggested to sense and 

respond to stretch and mechanical overload (Luther, 2009; Knöll, et.al., 2011). Within 

the ky/ky pathology, thickened and abnormal Z-disks are commonly seen (Beatham, 

et.al., 2004). This thickening of the Z-disks might be an adaptive response to try and 

further aid sarcomeric stability or conversely may reflect the adaptive switch to type I 

muscle fibers, a common hallmark of the ky/ky pathology. Type I muscle fibers are 

known to have wider Z-disks (Luther, et.al., 2003). 

In the broader context, KY’s association with the Z-disk has led to the hypothesis that 

KY is being used for stretch sensing (Blanco, et.al., 2001), which allows for a response 

to mechanical overload. If KY is not present within muscles, the myofibers are unable 

to undergo a hypertrophic response. In wildtype muscles, mechanical overload and 

stretch induces vast changes to cellular morphology, typically occurring through 

hypertrophy. In order for these changes to occur, the damage that stretch induces, or 

the stretch present at the Z-disk during the time of mechanical overload must be 

detected and responded too. This response is absent in ky/ky mice. Therefore, the 

evidence reviewed suggests that KY is being utilised to detect stretch, or the damage 

produced from mechanical overload, and thus allows for muscular adaptation via 

hypertrophy.  

6.3 KY’s TGN/PROT domain 

A specific function for KY’s TGN/PROT domain still remains unclear, yet it is vital 

for the function of KY. Therefore, this region must serve a critical function 

underpinning KY’s mechanism. As we know, KY’s TGN/PROT domain is not 

enzymatically active, thus we can assume that similarly to other eukaryotic 

transglutaminases, KY has repurposed the function of this domain (Anantharaman, 

et.al., 2001). In this case potentially mediating KY’s interactions with other sarcomeric 

proteins, and allowing for the formation of complexes, such as the IGFN1-FLNC-KY 
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complex (Baker, et.al., 2010). Therefore, if the TGN/PROT domain is mediating the 

formation of these complexes, this would explain the inability of Ky-Del to rescue 

fiber size within the complementation studies. Further to this it would also explain why 

Ky-TM and Ky-SM were able to rescue fiber size within the complementation studies; 

with these mutations being unlikely to change protein folding drastically, and are 

unlikely to affect potential protein-protein interactions. If this is to be believed, it 

would suggest that the TGN/PROT domain and the catalytic residues have been 

conserved to maintain the precise 3D structure. This would in turn imply that small 

sequence variances seen within other species, should not impact function, as protein 

interactions will depend on the secondary and tertiary structure of the TGN/PROT 

domain. Therefore, large complexes can still form, like the IGFN1-FLNC-KY 

complex, facilitating Z-disk stabilisation, despite the mutations and small sequence 

differences seen between species. 

One hallmark commonly seen within Ky deficiencies in both mice and humans is a 

large FLNC aggregates. It was suggested by Jokl, et.al., (2018) that these FLNC 

aggregates occurred due to dysregulation of the CASA pathway, which has been 

suggested to clear damaged FLNC.  It could also be plausible that KY could aid the 

localisation of FLNC to the Z-disk, occurring through complex formation with IGFN1 

and FLNC (Baker, et.al., 2010). Therefore, if KY is unable to bind FLNC this could 

lead to the FLNC aggregation observed within ky/ky mice and humans. Furthermore, 

within FLNC myopathies, which result in myofibrillar disintegration (a hallmark 

observed within ky/ky mice and KY myopathies; it was suggested that the sequestering 

of FLNC into large aggregates, and therefore away from Z-disks, preferentially caused 

the phenotype (Ruparelia et.al., 2016). The authors showed that overexpression of the 

mutant FLNC (FLNCW2710X) which typically forms these large aggregates could 

correctly localise to the Z-disk, and rescue the fiber disintegration phenotype within a 

zebrafish model of a FLNC knockdown. Interestingly these researchers also showed 

that BAG3 was contained within FLNCW2710X aggregates, which is the same finding 

identified within the ky/ky soleus fibres (Jokl, et.al., 2018). Hence, if FLNC is not able 
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to properly localise within Ky myopathies, this may contribute to the severe phenotype 

seen within these cases.  

6.4 KY’s Z-disk Localisation 

KY’s only distinguishable feature is the highly conserved TGN/PROT domain. Hence 

it was hypothesised that this domain was causing Z-disk localisation. Here we have 

shown this not to be the case, which has indicated that the region causing Z-disk 

localisation is held elsewhere within the protein. Looking at the amount of evolution 

along the KY protein (Figure 20.C), the C-terminus appears to have evolved the least. 

Thus, the domain controlling Z-disk localisation may be contained within the C-

terminus, due to the fact there is a higher level of conservation compared to the rest of 

the protein. 

6.5 The human KY gene 

It was always likely the hKY would localise to the Z-disk, as the main body of the 

protein (not including the extra region in which the NLS is held), is highly similar to 

the mouse KY. It is probable that this region is mechanistically acting in a similar 

fashion to the mKY, with the TGN/PROT domain performing a similar, if not the same 

role. Again, correlating with the fact that similar pathways would be disrupted within 

the human KY myopathies and the ky/ky mouse, and thus producing the similar 

phenotype seen. The striking similarities seen between the muscular pathology of ky/ky 

mice and humans, reiterates a relationship between gene similarity and function. 

Specifically, the development of extremely small myofibers with internalised nuclei, 

alongside large FLNC and Xin aggregates. Although there are some subtle differences 

between these phenotypes. The mouse phenotype in most cases is more severe, ky/ky 

mice seem to develop scoliosis extremely quickly post weaning, and within the worst 

cases showing whole body tremors. Unlike the human KY myopathies, where mild 

muscular weakness and muscular atrophy is present, seeming to primarily affect lower 

limbs, and cause a milder scoliosis which in general developed much later within the 

disease (Yogev, et.al., 2017; Hedberg-Oldfors, et.al., 2016). 
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These subtle differences in the myopathies may be attributed to the NLS found within 

the primate KY. In each of the human KY myopathies, the nonsense mutation occurred 

within the main body of the KY protein, not affecting the NLS which is located at the 

N-terminus. These nonsense mutations are unlikely to affect the expression of KY. 

Both the 7-year-old girl with a nonsense mutation within KY (Hedberg-Oldfors, et.al., 

2016) and the 12 Bedouin individuals who had nonsense mutations within exon 1 

(Yogev, et.al., 2017), showed high levels of KY mRNA transcripts within muscular 

organs. Straussberg, et.al., (2016) reported that non-sense mediated decay may be 

occurring but could not confirm this due to unsuccessful antibodies used within 

western blots. Finally, no western blots or rt-PCR were performed on the last reported 

KY myopathy within the Iranian patient who held a nonsense mutation within exon 4 

(Ebrahimzadeh, et.al., 2018). This data suggests these KY variants are not being 

degraded through nonsense mediated decay. If these transcripts are not being degraded 

it would inevitably result in the production of truncated proteins and would therefore 

leave the region encoding the NLS. Therefore, this may allow the truncated proteins 

to localise to the nucleus and perform part of KY’s role within primates, and this may 

explain the minor pathological differences observed between ky/ky mice and humans 

KY myopathies. 

6.6 The Nuclear localisation signal conserved within primates 

In order for muscular hypertrophy to occur there must be an upregulation of synthetic 

pathways allowing for protein synthesis (Chen, et.al. 2016). Therefore, the hKY could 

be acting in a similar fashion to other well-defined nucleocytoplasmic proteins. The 

previously mentioned proteins Ankrd2, and Csrp3 are examples of nucleocytoplasmic 

shuttles, both of which have been implicated as stretch receptors (Cenni, et.al., 2019; 

Boateng, et.al., 2009). Both of these proteins localise to the nucleus through the use of 

a NLS in response to different stressors. Ankrd2 responds to mechanical stimulation 

and reactive oxygen species (ROS) (Cenni, et.al., 2019). Furthermore Ankrd2, Csrp3, 

and FLNC were all shown to be upregulated in hypertrophy and regrowth conditions 

(Chaillou, et.al., 2015). 
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Another well-defined muscular nucleocytoplasmic protein is the muscle glycogen 

synthase (MGS), which is known to accumulate and aggregate within the nucleus in 

times of glucose deprivation. MSG like the hKY also contains NLS which causes a 

“speckled” nuclear localisation pattern, highly reminiscent of hKY and IGFN1_V1. 

MSG accumulates and aggregates within nuclear compartments giving the “speckled” 

appearance. Furthermore, they showed its nuclear localisation was not determined by 

the enzymatic sites, but through an independent region on the protein. In conclusion 

the authors suggested that MSG may act as a sensor of cellular energy reserves (Cid, 

et.al., 2005). These cases highlight that a NLS can be utilised in order to respond to 

stressors independently of its primary function, providing good evidence that the hKY 

could be acting as a stress response protein, in this case the stress being stretch. It's 

plausible to believe that h could be detecting mechanical stress at the Z-disk, a known 

anchor for nucleocytoplasmic proteins and a site for intracellular signalling (Luther, 

2009). Then, in response to mechanical stress, translocate to the nucleus and initiate a 

transcriptional response.  

It is highly intriguing that only primates have evolved to maintain a NLS within their 

KY protein. There are many significant differences between primates and other 

placental mammals. The number and complexity of muscles that primates hold differ 

to other species. Also, primates are one of few species that are able to move regularly 

within three dimensions. All non-human primates rely on the ability to climb, living, 

sleeping, and evading predators within the trees. It has been theorised that early in the 

primate evolution their morphological features and locomotor patterns evolved due to 

climbing (Hanna and Schmitt, 2011), making primate locomotion very unique. The 

most distinct locomotion difference being that primates hold a different walking gait 

pattern (Larson, 1998), where a diagonal-sequence diagonal couplet gait is used. These 

specific gait characteristics are thought to have evolved due to specific mechanical 

challenges linked to climbing and the movement on vertical supports (Hanna, et.al., 

2017). Furthermore, a study comparing the total energy expenditure from a range of 

primates and other placental mammals, has shown that on average, primates expend 

half the predicted amount (Pontezer et.al., 2014). The authors suggested this 
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represented a “systemic metabolic adaptation for low energy expenditures'' which was 

not explained by differences in physical activity.  

Overall, the evidence presented shows primates have evolved to be able to perform a 

wide range of physical activities, highly different to other mammals. These significant 

differences may represent the reason as to why primates have evolved to conserve a 

NLS within KY, potentially answering the reason behind the significant energy 

expenditure differences between primates and other placental mammals.  

6.7 IGFN1 and KY’s Interaction 

KY’s interaction with IGFN1 still remains elusive. The fact that Ky deficient muscles 

show muscle atrophy and an inability to grow through muscle hypertrophy, could 

suggest that KY is able to modulate IGFN1’s ability to promote muscular atrophy. 

More recent data has shown IGFN1 interacts with the proteasomal subunits (Psmd2, 

11 and 12) (Cracknell, et.al., 2020), it has been suggested that IGFN1 may be acting 

as a scaffold for proteasomal subunits at the Z-disk. Non primate KY does not localise 

to the nucleus, suggesting non primate KY’s interaction with IGFN1 would solely 

occur within the myoplasm. Potentially IGFN1 could be directed to misfolded proteins 

at the Z-disk via KY, then utilise interactions with proteasomal subunits to aid their 

clearance. Thus, if this is true it may explain the wider Z-disk observed within the 

ky/ky pathology, as misfolded proteins may be contained within the Z-disk. Therefore, 

this could suggest that the IGFN1-FLNC-KY complex may not only be required as a 

protein scaffold but may also allow for the detection and clearance of misfolded 

proteins within the Z-disk. Conversely, KY could be protecting proteins from 

premature degradation, through the formation of complexes. 

IGFN1 expression positively correlates with atrophic signalling (Rahimov, et.al., 

2011), and has been suggested to down regulate protein synthesis via an inhibitory 

interaction with eEF1A occurring within the myoplasm (Mansilla, et.al., 2008).  

Cumulatively, this data provides evidence that IGFN1 may be involved within the 

inhibition of protein synthesis in atrophic conditions. Therefore, if IGFN1 is inhibiting 

the induction of proteins synthesis via eEF1A and this pathway is overstimulated this 



90 

 

could prevent muscle fibers from being able to grow via hypertrophy, as new proteins 

would need to be produced for this to occur. Therefore, if KY is able to bind IGFN1 

and prevent the interaction with eEF1A, this could explain the atrophy seen within 

ky/ky muscles. As IGFN1 is not inhibited by KY, this would therefore lead to a constant 

inhibition placed upon eEF1A. 

Intriguingly the mKY has never been seen within the nucleus, always localising to the 

cytoplasm.  Here it was shown that the hKY can localise to the nucleus where it is able 

to form clusters with IGFN1_V1 and hKY (Figure 24). Therefore, it was asked if 

overexpression of IGFN1_V1 could cause the mKY to localise to the nucleus. Results 

indicated no co-localisation of these two proteins (Figure 25) and reiterating the mKY 

to be a cytoplasmic protein. This data shows that IGFN1 does not induce the nuclear 

localisation of KY. This distinct lack of colocalization between IGFN1_V1 and mKY 

was extremely interesting, as they are known interacting partners. Curiously, previous 

attempts to Immunoprecipitated individual complexes of IGFN1_V1 and KY from 

mouse skeletal muscle extracts were not successful. Although affinity purified KY was 

able to form complexes with IGFN1_V1 and FLNC from C2C12 myoblast extracts 

(Baker, et.al., 2010). Furthermore, in this case the authors then suggested that IGFN1, 

FLNC, and KY form a complex which provides support to the Z-disk. This may 

explain why an interaction between the mKY and IGFN1_V1 was not seen when co-

transfected into C2C12 myoblasts, as their interaction may be exclusive to the Z-disk 

within a fully differentiated myotube. 

6.8 Ky as a regulator of protein turnover 

The ky/ky mouse and human KY myopathies are known to have a prominent pathology. 

The build-up of large sarcomeric protein aggregates (such as FLNC) is one of these 

hallmarks, commonly seen within myofibrillar myopathies. Previous work has shown 

an upregulation of the co-chaperone BAG3 in Ky deficient models (Jokl, et.al., 2018). 

The cochaperone BAG3 is part of the CASA system and allows for the formation of 

the CASA complex. BAG3 has been reported to be essential for muscle maintenance 

(Arndt, et.al., 2010) and allows for mechanotransduction (Ulbricht, et.al., 2013). 
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Furthermore, BAG3 has been suggested to increase the transcription of FLNC through 

interactions with components of the Hippo system (Ulbricht, et.al., 2013). It has been 

reported in ky/ky mice that a transcriptional upregulation of BAG3 was observed, and 

within the pathological soleus, there was evidence of impaired BAG3 turnover (Jokl, 

et.al., 2018).  

6.9 Future Work 

6.9.1 In-Silico Analysis 

Evolutionary analysis on the NLS conserved within primates 

Extensive phylogenetic analysis should be undertaken to further understand the 

evolutionary history of Ky. The current research indicates that many species have 

removed the NLS conserved within primates. Identification of the time point at which 

this occurred could better aid our understanding as to why this happened, and why 

primates have specifically conserved this region.  Furthermore, identification of the 

key motifs conserved among species may help to understand the function of each 

conserved region, identifying a potential region which allows for Z-disk localisation. 

Using the MEME program (Bailey and Elkan, 1994), predictions of potential patterns 

within the full amino acid sequence can be acquired. Thus, these can be used to identify 

key regions which may have a critical role within KY’s function. Overall extensive in-

silico analysis could better aid our understanding of this complex protein, furthering 

our knowledge of conserved regions. To date only one highly conserved region has 

been identified this being the TGN/PROT domain. 

6.9.2 In-vitro Experiments  

Conformation that KY’s TGN/PROT domain can aid protein interactions 

Here it has been assumed that the TGN/PROT domain mediates protein-protein 

interactions. In order to confirm this, we could map the interacting domains in the KY 

protein for IGFN1 using a yeast two hybrid.  

Validation that the hKY is acting as a stress response protein 
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Therefore, in order to validate that the hKY is responding to mechanical tension, 

C2C12 myoblasts which have been transfected with hKy-eGFP, should be exposed to 

osmotic shock through the use of Sorbitol, which has been previously used to induce 

osmotic shock (Wang, et.al., 1999). Thus, if the hKY is translocating to the nucleus to 

under mechanical tension, we should observe a higher proportion of hKY localised 

within the nucleus within conditions of osmotic shock. This would allow us to validate 

that this NLS is being used to respond to mechanical stress.  

6.9.3 In-vivo Experiments 

Identification of the region within KY allowing for Z-disk localisation 

As suggested above the minimal domain required for Z-disk localisation could be 

present within the C-terminus. Therefore, in order to identify this minimal domain, we 

can electroporate a series of KY constructs containing a series of deletions across the 

C-terminus. Then assess the ability fo these constructs to correctly localise to the Z-

disk. 

Conformation of nuclear interaction between IGFN1_V1 and hKY in-vivo 

Here it has been shown that the hKY is able to form nuclear clusters with IGFN1_V1 

when co-transfected within C2C12 myoblasts, likely representing a nuclear protein 

interaction between these two proteins. In order to confirm this is not exclusive to 

myoblasts and can occur in fully differentiated myotubes, both constructs need to be 

electroporated into the TA of mice. Although, it is likely only a few fibers will contain 

both constructs, these should have a significant enough expression for valid 

conclusions to be made.  

 

 

 

 



93 

 

7. Reference list 
 

Altschul, S. F. et al. (1990). Basic local alignment search tool. Journal of molecular 

biology, 215 (3), pp.403–410. 

 

Anantharaman, V., Koonin, E. V. and Aravind, L. (2001). Peptide-N-glycanases and 

DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes 

sharing a common transglutaminase fold. Human molecular genetics, 10 (16), 

pp.1627–1630. 

 

Arndt, V. et al. (2010). Chaperone-assisted selective autophagy is essential for 

muscle maintenance. Current biology: CB, 20 (2), pp.143–148. 

 

Bailey, T. L. and Elkan, C. (1994). Fitting a mixture model by expectation 

maximization to discover motifs in biopolymers. Proceedings /... International 

Conference on Intelligent Systems for Molecular Biology ; ISMB. International 

Conference on Intelligent Systems for Molecular Biology, 2, pp.28–36. 

 

Baker, J. et al. (2010). Identification of a Z-band associated protein complex 

involving KY, FLNC and IGFN1. Experimental cell research, 316 (11), pp.1856–

1870. 

 

Beatham, J. et al. (2004). Filamin C interacts with the muscular dystrophy KY 

protein and is abnormally distributed in mouse KY deficient muscle fibres. Human 

molecular genetics, 13 (22), pp.2863–2874. 

 

Biga, L. M. et al. (2020). Anatomy & physiology. [Online]. Available at: 

https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle/. 

 

Bilodeau, P. A., Coyne, E. S. and Wing, S. S. (2016). The ubiquitin proteasome 

system in atrophying skeletal muscle: roles and regulation. American journal of 

physiology. Cell physiology, 311 (3), pp.C392–C403. 

 

Blanco, G. et al. (2001). The kyphoscoliosis (ky) mouse is deficient in hypertrophic 

responses and is caused by a mutation in a novel muscle-specific protein. Human 

molecular genetics, 10 (1), pp.9–16. 

 

Blanco, G. et al. (2004). Molecular phenotyping of the mouse ky mutant reveals 

UCP1 upregulation at the neuromuscular junctions of dystrophic soleus muscle. 



94 

 

Neuromuscular disorders: NMD, 14 (3), pp.217–228. 

 

Boateng, S. Y. et al. (2009). Myocyte remodeling in response to hypertrophic stimuli 

requires nucleocytoplasmic shuttling of muscle LIM protein. Journal of molecular 

and cellular cardiology, 47 (4), pp.426–435. 

 

Bodine, S. C. et al. (2001). Akt/mTOR pathway is a crucial regulator of skeletal 

muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology, 3 

(11), pp.1014–1019. 

 

Bonaldo, P. and Sandri, M. (2013). Cellular and molecular mechanisms of muscle 

atrophy. Disease models & mechanisms, 6 (1), pp.25–39. 

 

Bridges, L. R. et al. (1992). The neuromuscular basis of hereditary kyphoscoliosis in 

the mouse. Muscle & nerve, 15 (2), pp.172–179. 

 

Cai, D. et al. (2004). IKKbeta/NF-kappaB activation causes severe muscle wasting in 

mice. Cell, 119 (2), pp.285–298. 

 

Carter, P. and Wells, J. A. (1988). Dissecting the catalytic triad of a serine protease. 

Nature, 332 (6164), pp.564–568. 

 

Cemazar, M. et al. (2012). Hyaluronidase and collagenase increase the transfection 

efficiency of gene electrotransfer in various murine tumors. Human gene therapy, 23 

(1), pp.128–137. 

 

Cenni, V. et al. (2019). Ankrd2 in Mechanotransduction and Oxidative Stress 

Response in Skeletal Muscle: New Cues for the Pathogenesis of Muscular 

Laminopathies. Oxidative medicine and cellular longevity, 2019, p.7318796. 

 

Chaillou, T. et al. (2015). Identification of a conserved set of upregulated genes in 

mouse skeletal muscle hypertrophy and regrowth. Journal of applied physiology, 118 

(1), pp.86–97. 

 

Chen, J. et al. (2019). A mutation in the filamin c gene causes myofibrillar myopathy 

with lower motor neuron syndrome: a case report. BMC neurology, 19 (1), p.198. 

 

Cid, E. et al. (2005). Determinants of the nucleocytoplasmic shuttling of muscle 

glycogen synthase. The FEBS journal, 272 (12), pp.3197–3213. 

 



95 

 

Clark, K. A. et al. (2002). Striated muscle cytoarchitecture: an intricate web of form 

and function. Annual review of cell and developmental biology, 18, pp.637–706. 

Costes, S. V. et al. (2004). Automatic and quantitative measurement of protein-

protein colocalization in live cells. Biophysical journal, 86 (6), pp.3993–4003. 

 

Cracknell, T. et al. (2020). Proteomic resolution of IGFN1 complexes reveals a 

functional interaction with the actin nucleating protein COBL. Experimental cell 

research, 395 (2), p.112179. 

 

Davey, N. E. (2019). The functional importance of structure in unstructured protein 

regions. Current opinion in structural biology, 56, pp.155–163. 

 

De Larichaudy, J. et al. (2012). TNF-α- and tumor-induced skeletal muscle atrophy 

involves sphingolipid metabolism. Skeletal muscle, 2 (1), p.2. 

 

Dickinson, A. G., and V. M. Meikle. (1973). Genetic kyphoscoliosis in mice. The 

Lancet. 

 

Ebrahimzadeh-Vesal, R. et al. (2018). Identification of a novel nonsense mutation in 

kyphoscoliosis peptidase gene in an Iranian patient with myofibrillar myopathy. 

Genes & diseases, 5 (4), pp.331–334. 

 

Foss, C. A. et al. (2005). Radiolabeled small-molecule ligands for prostate-specific 

membrane antigen: in vivo imaging in experimental models of prostate cancer. 

Clinical cancer research: an official journal of the American Association for Cancer 

Research, 11 (11), pp.4022–4028. 

 

Frank, D. and Frey, N. (2011). Cardiac Z-disc signaling network. The Journal of 

biological chemistry, 286 (12), pp.9897–9904. 

 

Goodman, C. A. and Hornberger, T. A. (2014). New roles for Smad signaling and 

phosphatidic acid in the regulation of skeletal muscle mass. F1000prime reports, 6, 

p.20. 

 

Griffin, M., Casadio, R. and Bergamini, C. M. (2002). Transglutaminases: nature’s 

biological glues. Biochemical Journal, 368 (Pt 2), pp.377–396. 

 

Guilbert, S. M. et al. (2018). HSPB8 and BAG3 cooperate to promote spatial 

sequestration of ubiquitinated proteins and coordinate the cellular adaptive response 

to proteasome insufficiency. FASEB journal: official publication of the Federation of 



96 

 

American Societies for Experimental Biology, 32 (7), pp.3518–3535. 

 

Hall, M. N., Corbett, A. H. and Pavlath, G. K. (2011). Regulation of 

nucleocytoplasmic transport in skeletal muscle. Current topics in developmental 

biology, 96, pp.273–302. 

 

Hall, Z. W. and Ralston, E. (1989). Nuclear domains in muscle cells. Cell, 59 (5), 

pp.771–772. 

 

Haller, R. G. and DiMauro, S. (2012). Chapter 75 - Metabolic and Mitochondrial 

Myopathies. In: Hill, J. A. and Olson, E. N. (Eds). Muscle. Boston/Waltham: 

Academic Press. pp.1031–1041. 

 

Hanna, J. B. et al. (2017). The evolution of vertical climbing in primates: evidence 

from reaction forces. The Journal of experimental biology, 220 (Pt 17), pp.3039–

3052. 

 

Hanna, J. B. and Schmitt, D. (2011). Locomotor energetics in primates: gait 

mechanics and their relationship to the energetics of vertical and horizontal 

locomotion. American journal of physical anthropology, 145 (1), pp.43–54. 

 

Hedberg-Oldfors, C. et al. (2016). A new early-onset neuromuscular disorder 

associated with kyphoscoliosis peptidase (KY) deficiency. European journal of 

human genetics: EJHG, 24 (12), pp.1771–1777. 

 

Hehenberger, E. (2018). Phylogenetic trees in newick format. [Online]. Available at: 

doi:10.5061/dryad.26bv4/11 [Accessed 13 December 2020]. 

 

Ho, R. C. et al. (2005). Regulation of IκB kinase and NF-κB in contracting adult rat 

skeletal muscle. American Journal of Physiology-Cell Physiology, 289 (4), pp.C794–

C801. 

 

Holbrook, J. J. et al. (1975). 4 Lactate Dehydrogenase. In: Boyer, P. D. (Ed). The 

Enzymes. 11. Academic Press. pp.191–292. 

 

Jokl, E. J. et al. (2018). Transcriptional upregulation of Bag3, a chaperone-assisted 

selective autophagy factor, in animal models of KY-deficient hereditary myopathy. 

Disease models & mechanisms, 11 (7). [Online]. Available at: 

doi:10.1242/dmm.033225. 

 



97 

 

Jones, D. T., Taylor, W. R. and Thornton, J. M. (1992). The rapid generation of 

mutation data matrices from protein sequences. Computer applications in the 

biosciences: CABIOS, 8 (3), pp.275–282. 

 

Kadrmas, J. L. and Beckerle, M. C. (2004). The LIM domain: from the cytoskeleton 

to the nucleus. Nature reviews. Molecular cell biology, 5 (11), pp.920–931. 

 

Klont, R. E., Brocks, L. and Eikelenboom, G. (1998). Muscle fibre type and meat 

quality. Meat science, 49S1, pp.S219–S229. 

 

Knöll, R., Buyandelger, B. and Lab, M. (2011). The sarcomeric Z-disc and Z-

discopathies. Journal of biomedicine & biotechnology, 2011, p.569628. 

 

Kumar, S. et al. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across 

Computing Platforms. Molecular biology and evolution, 35 (6), pp.1547–1549. 

 

Larson, S. G. (1998). Unique Aspects of Quadrupedal Locomotion in Nonhuman 

Primates. In: Strasser, E. et al. (Eds). Primate Locomotion: Recent Advances. Boston, 

MA: Springer US. pp.157–173. 

 

Lasich, C. (2014). Elevated CPK and Other Diagnostic Clues to Muscle Pain. 

[Online]. Available at: https://www.healthcentral.com/article/elevated-cpk-and-

other-diagnostic-clues-to-muscle-pain [Accessed 3 December 2020]. 

 

Leber, Y. et al. (2016). Filamin C is a highly dynamic protein associated with fast 

repair of myofibrillar microdamage. Human molecular genetics, 25 (13), pp.2776–

2788. 

 

Luther, P. K. et al. (2003). Heterogeneity of Z-band structure within a single muscle 

sarcomere: implications for sarcomere assembly. Journal of molecular biology, 332 

(1), pp.161–169. 

 

Luther, P. K. (2009). The vertebrate muscle Z-disc: sarcomere anchor for structure 

and signalling. Journal of muscle research and cell motility, 30 (5-6), pp.171–185. 

 

Makarova, K. S., Aravind, L. and Koonin, E. V. (1999). A superfamily of archaeal, 

bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein 

science: a publication of the Protein Society, 8 (8), pp.1714–1719. 

 

Mansilla, F. et al. (2008). Translation elongation factor eEF1A binds to a novel 



98 

 

myosin binding protein-C-like protein. Journal of cellular biochemistry, 105 (3), 

pp.847–858. 

 

Maréchal, G. et al. (1996). Isoforms of myosin in growing muscles of ky 

(kyphoscoliotic) mice. European journal of biochemistry / FEBS, 241 (3), pp.916–

922. 

 

Masiero, E. and Sandri, M. (2010). Autophagy inhibition induces atrophy and 

myopathy in adult skeletal muscles. Autophagy, 6 (2), pp.307–309. 

 

McPherron, A. C., Lawler, A. M. and Lee, S. J. (1997). Regulation of skeletal muscle 

mass in mice by a new TGF-beta superfamily member. Nature, 387 (6628), pp.83–

90. 

 

Morissette, M. R. et al. (2009). Effects of myostatin deletion in aging mice. Aging 

cell, 8 (5), pp.573–583. 

 

Morton, J. P. et al. (2009). The exercise-induced stress response of skeletal muscle, 

with specific emphasis on humans. Sports medicine , 39 (8), pp.643–662. 

 

Musarò, A. et al. (1999). IGF-1 induces skeletal myocyte hypertrophy through 

calcineurin in association with GATA-2 and NF-ATc1. Nature, 400 (6744), pp.581–

585. 

 

Nguyen Ba AN, Pogoutse A, Provart N, Moses AM. (2009). NLStradamus: a simple 

Hidden Markov Model for nuclear localization signal prediction. [Online]. Available 

at: http://www.moseslab.csb.utoronto.ca/NLStradamus/ [Accessed November 2019]. 

 

Nilsson, M. I. et al. (2013). Xin is a marker of skeletal muscle damage severity in 

myopathies. The American journal of pathology, 183 (6), pp.1703–1709. 

 

Palmio, J. and Udd, B. (2016). Myofibrillar and distal myopathies. Revue 

neurologique, 172 (10), pp.587–593. 

 

Panzhinskiy, E. et al. (2013). Chapter 22 - Role of Mammalian Target of Rapamycin 

(mTOR) in Muscle Growth. In: Bagchi, D., Nair, S. and Sen, C. K. (Eds). Nutrition 

and Enhanced Sports Performance. San Diego: Academic Press. pp.217–227. 

 

Pavlath, G. K. et al. (1989). Localization of muscle gene products in nuclear 

domains. Nature, 337 (6207), pp.570–573. 



99 

 

 

Perillo, M. and Folker, E. S. (2018). Specialized Positioning of Myonuclei Near Cell-

Cell Junctions. Frontiers in physiology, 9, p.1531. 

 

Pocock, G. et al. (2013). Human Physiology. OUP Oxford. 

 

Pontzer, H. et al. (2014). Primate energy expenditure and life history. Proceedings of 

the National Academy of Sciences of the United States of America, 111 (4), pp.1433–

1437. 

 

Rahimov, F. et al. (2011). Gene expression profiling of skeletal muscles treated with 

a soluble activin type IIB receptor. Physiological genomics, 43 (8), pp.398–407. 

 

Rashid, M. M. et al. (2015). Muscle Lim Protein (MLP)/CSRP3 at the crossroad 

between mechanotransduction and autophagy. Cell death & disease, 6, p.e1940. 

 

Rebbapragada, A. et al. (2003). Myostatin signals through a transforming growth 

factor beta-like signaling pathway to block adipogenesis. Molecular and cellular 

biology, 23 (20), pp.7230–7242. 

 

Rommel, C. et al. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy 

by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature cell biology, 3 (11), 

pp.1009–1013. 

 

Ruparelia, A. A. et al. (2016). FLNC myofibrillar myopathy results from impaired 

autophagy and protein insufficiency. Human molecular genetics, 25 (11), pp.2131–

2142. 

 

Ruparelia, A., Vaz, R. R. and Bryson-Richardson, R. J. (2012). Myofibrillar 

myopathies and the Z-disk associated proteins. In: Skeletal Muscle-From Myogenesis 

to Clinical Relations. In-Tech. pp.317–358. [Accessed 16 November 2020]. 

 

Sacco, A. et al. (2010). Short telomeres and stem cell exhaustion model Duchenne 

muscular dystrophy in mdx/mTR mice. Cell, 143 (7), pp.1059–1071. 

 

Sandri, M. et al. (2004). Foxo transcription factors induce the atrophy-related 

ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117 (3), pp.399–

412. 

 

Sanger, J. W. et al. (2017). Assembly and Maintenance of Myofibrils in Striated 



100 

 

Muscle. In: Jockusch, B. M. (Ed). The Actin Cytoskeleton. Cham: Springer 

International Publishing. pp.39–75. 

 

Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their 

application to resistance training. Journal of strength and conditioning research / 

National Strength & Conditioning Association, 24 (10), pp.2857–2872. 

 

Schoenfeld, B. J. (2013). Potential mechanisms for a role of metabolic stress in 

hypertrophic adaptations to resistance training. Sports medicine , 43 (3), pp.179–194. 

 

Scott, W., Stevens, J. and Binder-Macleod, S. A. (2001). Human skeletal muscle 

fiber type classifications. Physical therapy, 81 (11), pp.1810–1816. 

 

Selcen, D. and Engel, A. G. (2011). Chapter 11 - Myofibrillar myopathies. In: 

Griggs, R. C. and Amato, A. A. (Eds). Handbook of Clinical Neurology. 101. 

Elsevier. pp.143–154. 

 

Simoneau, J. A. and Bouchard, C. (1989). Human variation in skeletal muscle fiber-

type proportion and enzyme activities. The American journal of physiology, 257 (4 Pt 

1), pp.E567–E572. 

 

Stitt, T. N. et al. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle 

atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. 

Molecular cell, 14 (3), pp.395–403. 

 

Straussberg, R. et al. (2016). Kyphoscoliosis peptidase (KY) mutation causes a novel 

congenital myopathy with core targetoid defects. Acta neuropathologica, 132 (3), 

pp.475–478. 

 

Sun, X. et al. (2002). Expression and binding activity of the glucocorticoid receptor 

are upregulated in septic muscle. American journal of physiology. Regulatory, 

integrative and comparative physiology, 282 (2), pp.R509–R518. 

 

Tasca, G. et al. (2012). Novel FLNC mutation in a patient with myofibrillar 

myopathy in combination with late-onset cerebellar ataxia. Muscle & nerve, 46 (2), 

pp.275–282. 

 

Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving 

the sensitivity of progressive multiple sequence alignment through sequence 

weighting, position-specific gap penalties and weight matrix choice. Nucleic acids 



101 

 

research, 22 (22), pp.4673–4680. 

 

Ulbricht, A., Arndt, V. and Höhfeld, J. (2013). Chaperone-assisted proteostasis is 

essential for mechanotransduction in mammalian cells. Communicative & integrative 

biology, 6 (4), p.e24925. 

 

Ullrick, W. C. (1967). A theory of contraction for striated muscle. Journal of 

theoretical biology, 15 (1), pp.53–69. 

 

Vafiadaki, E., Arvanitis, D. A. and Sanoudou, D. (2015). Muscle LIM Protein: 

Master regulator of cardiac and skeletal muscle functions. Gene, 566 (1), pp.1–7. 

 

Vierck, J. et al. (2000). Satellite cell regulation following myotrauma caused by 

resistance exercise. Cell biology international, 24 (5), pp.263–272. 

 

Wackerhage, H. et al. (2019). Stimuli and sensors that initiate skeletal muscle 

hypertrophy following resistance exercise. Journal of applied physiology, 126 (1), 

pp.30–43. 

 

Wang, D.-T. et al. (2015). Myostatin Activates the Ubiquitin-Proteasome and 

Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney 

Disease. Oxidative medicine and cellular longevity, 2015, p.684965. 

 

Wang, H. L. et al. (1999). Effect of sorbitol induced osmotic stress on the changes of 

carbohydrate and free amino acid pools in sweet potato cell suspension cultures. 

Botanical bulletin of Academia Sinica. New series. Zhong yang yan jiu yuan. Zhi wu 

yan jiu suo. [Online]. Available at: 

https://www.researchgate.net/profile/Heng_Long_Wang/publication/281222708_Eff

ect_of_sorbitol_induced_osmotic_stress_on_the_changes_of_carbohydrate_and_free

_amino_acid_pools_in_sweet_potato_cell_suspension_cultures/links/571aeb9208ae6

eb94d0c803c.pdf. 

 

Wang, J. et al. (2005). Dynamics of Z-band based proteins in developing skeletal 

muscle cells. Cell motility and the cytoskeleton, 61 (1), pp.34–48. 

 

Welle S, Brooks AI, Delehanty JM, Needler N et al. (2003). Muscle function and 

aging - male. Muscle function and aging - male. [Online]. Available at: 

https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS288. 

 

White, J. P. et al. (2009). Overload-induced skeletal muscle extracellular matrix 



102 

 

remodelling and myofibre growth in mice lacking IL-6. Acta physiologica , 197 (4), 

pp.321–332. 

 

Wilkins, J. T. et al. (2001). Contractile properties of adjacent segments of single 

human muscle fibers. Muscle & nerve, 24 (10), pp.1319–1326. 

 

Yaron, A. et al. (1998). Identification of the receptor component of the 

IkappaBalpha-ubiquitin ligase. Nature, 396 (6711), pp.590–594. 

 

Yogev, Y. et al. (2017). Progressive hereditary spastic paraplegia caused by a 

homozygous KY mutation. European journal of human genetics: EJHG, 25 (8), 

pp.966–972. 

 

Zhang, G. and Li, Y.-P. (2012). p38β MAPK upregulates atrogin1/MAFbx by 

specific phosphorylation of C/EBPβ. Skeletal muscle, 2 (1), p.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



103 

 

8. Appendix 

Placing reflex.  

The placing reflex was commonly used to allow for the phenotyping of Ky/Ky mice. 

As Ky/Ky mice are known to have weak postural muscles, there are unable to reach 

out and grab a ledge in front of them. 

 

 

In-silico Analysis of the NLS within hKy-X5. 

Two NLS signal predicting software’s were used to identify the NLS with hKy X5. 

Firstly, NLStradamus was used and gave us the readout below (Figure 2). The software 

showed us the motif most likely to cause nuclear localisation. This software is 

available at http://www.moseslab.csb.utoronto.ca/NLStradamus/  

 

Figure 1. Placing reflex. Image taken from (Blanco, et.al., 2001). The BDL (Wildtype) 

strain of mice show a normal placing reflex, where mice will reach out towards a ledge. 

The Ky/Ky mouse shows an inability to reach towards the ledge due to weak paraspinal 

muscles (postural muscles.  

 

http://www.moseslab.csb.utoronto.ca/NLStradamus/
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Figure 2. NLS software results. A cut of score of 0.9 was applied, as seen on the graphic. 

This gave us the motif that was most likely to cause nuclear localisation.  
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Muscle sections from Ky/Ky patients 

Patients with loss of function Ky mutations have an extremely prevalent phenotype. 

The muscular pathology presenting with heterogenous fiber sizes, including extremely 

small myofibers. Also seen is internalised nuclei.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Heterogenous fibers and internalised myonuclei within Ky loss of function 

patients. Both patients present with extremely small myofibers alongside internalised 

nuclei. A) Image taken from Herdberg-Oldfors, et.al., 2016. Available at: 

https://www.nature.com/articles/ejhg201698. B) Image taken from Yogev, et.al., 2017. 

Available at: https://www.nature.com/articles/ejhg201785  
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