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Abstract 

 

Achieving the diagnosis of pulmonary hypertension (PH) is difficult as, given the non-specific 

nature of symptoms, this condition can masquerade as multiple other conditions, most of 

which are more common.  PH is known to be a complication of certain other disease processes 

such as systemic sclerosis, and for this reason screening for PH in this disease population is 

now standard practice.  The optimal screening process remains unclear, with multi-modality 

testing as part of the ERS and DETECT protocols being current practice, but for which 

improvements are needed. 

 

Survival for patients with systemic sclerosis (SSc) related pulmonary arterial hypertension 

(PAH) is significantly poorer than in patients with idiopathic pulmonary arterial hypertension.  

The reasons for this are incompletely understood and may include differences in the nature 

of underlying pulmonary vasculopathy as well as differences in the ability of the myocardium 

to compensate for increased right ventricular afterload.  A greater understanding of 

underlying pathophysiological mechanisms, and biomarkers with the ability to aid early 

diagnosis and guide therapy is therefore needed. 

 

Using pre-treatment serum samples from a tightly phenotyped cohort of systemic sclerosis 

patients both with and without pulmonary arterial hypertension, through collaboration with 

industry partners, we have data from a large unbiased proteomic screen of 296 serum protein 

concentrations.  We hypothesise that these data either for individual proteins, or a combined 

panel of proteins could be used to accurately classify for pulmonary arterial hypertension in 

these patients. 

 

Several bio-informatic techniques were tested, with a final two-step process separating 

variable selection from classification modelling.  Final modelling was done using logistic 

regression with backward step-AIC optimisation.  A final panel of consisting of 3 serum 

proteins was derived including Tetranectin, Protein DJ-1 and Growth differentiation factor-

15. 
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When combined in a predictive model, these three proteins classify PAH in SSc with an 

accuracy of 85%, which compares favourably when measured against the current ERS/ESC 

guideline screening at 86%, and the DETECT protocol at 74%.  When tested in an external 

validation cohort this model performed well with an AU-ROC 0.79. 

 

Neither Tetranectin nor Protein DJ-1 have previously been described in PAH.  We have 

demonstrated the presence of these proteins in lung tissues of patients with PAH, and have 

presented cell culture results which go some way to support theoretical mechanisms of action 

for these proteins in the pathophysiology of this condition. 
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1 Introduction 

 Defining the problem 

 Pulmonary Circulation 

The primary role of the pulmonary circulation is to achieve efficient gas exchange.  The 

pulmonary circulation also has multiple secondary functions such as participation in 

endocrine control and blood volume reserve.  In normal physiology the pulmonary circulation 

is a high flow with low pressure circuit allowing the right ventricle to operate without 

significant energy expenditure.  Pulmonary blood flow is matched to ventilation for maximum 

efficiency in gas exchange, through poorly understood oxygen sensing mechanisms coupled 

to vascular muscle tone.  It is poorly adapted for increases in loading pressure such as an 

acute increase caused by pulmonary thromboembolism, or a chronic increase due to 

pulmonary hypertension. 

 

 Pulmonary Hypertension 

Pulmonary hypertension (PH) is a highly heterogeneous group of conditions characterized by 

a mean pulmonary arterial pressure (mPAP) of at least 25 mmHg.  It ranges from very rare 

conditions such as pulmonary arterial hypertension and chronic thromboembolic pulmonary 

hypertension (CTEPH) for which there are specific treatment pathways, to a much more 

common secondary complication of cardiac disease or advanced stages of respiratory disease.  

Many clinical features and physiological changes are common despite differing aetiology. 

 

 Pulmonary Arterial Hypertension 

Pulmonary arterial hypertension (PAH) is a rare disease, and is in itself a highly heterogeneous 

group of conditions, grouped due to similarities in underlying pathophysiology and responses 

to treatment.  It is characterized by the same basic criterion of pulmonary hypertension, with 

a mPAP ³25 mmHg, but with the added criteria of a pulmonary artery occlusion pressure 

(PAOP) <15 mmHg, an elevated pulmonary vascular resistance (PVR) >3 Wu (Woods units) in 

the absence of significant left heart-, lung-, or thromboembolic disease (A revised mPAP 
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criterion of >20mmHg was recently proposed during the 6th World Symposium on Pulmonary 

Hypertension, Nice, 2018 (Galie et al., 2019)). 

 

It is a life limiting condition, with an untreated life expectancy of 2.8 years.(Dalonzo et al., 

1991)  Patients experience progressive breathlessness, right heart failure and premature 

death. 

 

A record of “pulmonary vascular sclerosis” by Ernst Von Romberg in 1891 is believed to be 

the first description of PAH.(Fishman, 2004)  Although understanding of the underlying 

pathophysiology has progressed substantially since then, the condition remains incompletely 

understood.  It is a disease of the pre-capillary pulmonary vasculature characterized by 

pathological remodelling of the vascular bed and a subsequent rise in pulmonary pressures. 

 

To date, treatments have been aimed at ameliorating pulmonary vasoconstriction via the 

prostacyclin, endothelin and cyclic GMP pathways, therefore acting in an approach designed 

to retard disease progression.(Humbert et al., 2016)   No current treatments exist which arrest 

or reverse the underlying pathological changes.  

 

 Clinical Presentation 

Diagnosis of pulmonary hypertension requires a high index of suspicion and for the physician 

to have an awareness of this rare condition.  It is based on both the systematic assessment 

and investigation of the breathless patient and screening of high-risk groups. 

 

By the time of diagnosis, patients have often had multiple contacts with both primary and 

secondary care, with investigations of multiple other differential diagnoses before this 

diagnosis is even considered.  The features of early PH are non-specific, leading to an average 

delay in time from symptom onset to diagnosis measured at 2.8 yrs.(Badesch et al., 2010) The 

diagnosis is often therefore made when once the disease is at an advanced stage.(Edelman, 

2007) 
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The most common presenting symptom of PAH is progressive exertional breathlessness, and 

as the disease progresses, patients may experience other features of right heart failure such 

as oedema and ascites due to venous back pressure; exertional pre-syncope or syncope due 

to reduced cardiac output; or chest pains due to poor coronary perfusion in the setting of 

cardiac hypertrophy.(Kiely et al., 2013) 

 

 Classification 

Pulmonary hypertension is a description of the common haemodynamic result of multiple 

different pathological processes.  It is a highly heterogeneous condition with underlying 

disease processes which can be grouped according to similarities in underlying co-morbidity, 

similarities in pathophysiology, prognosis and response to treatment. 

 

The first classification of PH was given by the World Health Organization in 1973 (Hatano et 

al., 1975), but significant advancement in understanding and treatment has led to reform of 

the classification system, most recently updated during the 6th World Symposium in Nice, 

France (2018)(Table 1.1).(Simonneau et al., 2019)  

 

Accurate clinical phenotyping depends on rigorous clinical evaluation and appropriate 

subsequent investigations.  Accurate phenotyping is key to defining appropriate treatment 

pathways, and allows estimation of likely prognosis from analyses done by clinical subgroup 

shown in the ASPIRE registry (Figure 1.1).(Hurdman et al., 2012) 
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Figure 1.1: Survival by clinical classification.  Kaplan Meier curve showing survival for all major groups of 

pulmonary arterial hypertension from ASPIRE registry follow up data.1  Abbreviations: PH-LHD: Pulmonary 
hypertension due to left heart disease; CTEPH: Chronic thromboembolic pulmonary hypertension; PAH: 
Pulmonary arterial hypertension; PH-misc: Multifactorial pulmonary hypertension; PH-lung: Pulmonary 

hypertension due to lung disease. 

 

  

 
1 Reproduced with permission of the European Respiratory Society ©.  European Respiratory Journal Apr 2012, 
39 (4) 945-955; DOI: 10.1183/09031936.00078411 
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Table	1.1:	Updated	classification	of	pulmonary	hypertension	

1. Pulmonary	arterial	hypertension	
1.1. 	Idiopathic	
1.2. 	Heritable	

1.2.1. BMPR-2	mutation	
1.2.2. Other	mutation	

1.3. 	Drugs	and	toxin	induced	
1.4. 	Associate	with:	

1.4.1. Connective	tissue	disease	
1.4.2. Human	immunodeficiency	virus	(HIV)	infection	
1.4.3. Portal	hypertension	
1.4.4. Congenital	heart	disease	
1.4.5. Schistosomiasis	

1.5. PAH	long-term	responders	to	calcium	channel	blockers	
1.6. PAH	with	overt	features	of	venous/capillary	(PVOD/PCH)	involvement	
1.7. Persistent	PH	of	the	newborn	syndrome	

2. Pulmonary	hypertension	due	to	left	heart	disease	
2.1. 	PH	due	to	heart	failure	with	preserved	LVEF	
2.2. PH	due	to	heart	failure	with	reduced	LVEF	
2.3. 	Valvular	disease	
2.4. 	Congenital/acquired	cardiovascular	conditions	leading	to	post-capillary	PH	

3. Pulmonary	hypertension	due	to	lung	disease	and/or	hypoxia	
3.1. 	Obstructive	lung	disease	
3.2. 	Restrictive	lung	disease	
3.3. 	Other	pulmonary	diseases	with	mixed	obstructive/restrictive	pattern	
3.4. 	Hypoxia	without	lung	disease	
3.5. 	Developmental	lung	diseases	

4. PH	due	to	pulmonary	artery	obstructions	
4.1. 	Chronic	thromboembolic	pulmonary	hypertension	
4.2. Other	pulmonary	artery	obstructions	

4.2.1. Angiosarcoma	
4.2.2. Other	intravascular	tumours	
4.2.3. Arteritis	
4.2.4. Congenital	pulmonary	arteries	stenosis	
4.2.5. Parasites	(hydatidosis)	

5. Pulmonary	hypertension	with	unclear	and/or	multifactorial	mechanisms	
5.1. 	Haematological	disorders:	chronic	haemolytic	anaemia,	myeloproliferative	

disorders,	splenectomy	
5.2. Systemic	and	metabolic	disorders:	sarcoidosis,	pulmonary	histiocytosis,	

lymphangioleiomyomatosis,	glycogen	storage	disease,	Gaucher	disease,	
thyroid	disorders	

5.3. Others:	pulmonary	tumoural	thrombotic	microangiopathy,	fibrosing	
mediastinitis,	chronic	renal	failure	(with	or	without	dialysis),	segmental	
pulmonary	hypertension	

5.4. Complex	congenital	heart	disease	
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 Epidemiology 

Pulmonary arterial hypertension is a rare condition, with an incidence of 1-3.3 per million 

population for IPAH, and 1.75-3.7 per million for CTEPH.(Kiely et al., 2013)  Overall, PAH has 

a prevalence of 15-52 per million population.(Kiely et al., 2013, Ling et al., 2012)  Although 

rare in the general population, awareness and understanding of PAH is important for 

physicians managing several associated conditions within which the prevalence is much 

higher, systemic sclerosis (9%), portal hypertension (2-6%), congenital heart disease (5-10%) 

and HIV (0.5%).(Avouac et al., 2010, Colle et al., 2003, Gatzoulis et al., 2009, Hadengue et al., 

1991, Sitbon et al., 2008) 

 

Within the PAH group, prevalence of sub-classes are shown in Figure 1.2, demonstrating that 

although the majority of research into PAH has been conducted in idiopathic disease, there is 

a very significant burden of connective tissue disease associated PH. (PH, 2014) 

 

 
Figure 1.2: Prevalence of subclasses of PAH within PH specialist centres. Data from the National audit of 

pulmonary hypertension.  2014.  Connective tissue disease accounts for 24% of patients in specialist centres.  
Abbreviations: IPAH: idiopathic pulmonary arterial hypertension; HPAH: heritable pulmonary arterial 

hypertension; PAH-CTD: Pulmonary arterial hypertension associated with connective tissue disease; PAH-
Portal: Pulmonary arterial hypertension associated with portal hypertension; PAH-CHD: Pulmonary arterial 

hypertension associated with congenital heart disease (+Eisenmengers). 
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 Pathophysiology of PAH 

Pathological changes consistent with pulmonary arterial hypertension were first described in 

post-mortem specimens by Ernst von Romberg, although reports suggest that ‘Primary 

pulmonary hypertension’ was not fully described until a syndrome of breathlessness, cyanosis 

and polycythaemia was recognised to be in association with these changes by Dr. Abel Ayerza 

in 1901.(Fishman, 2004) 

 

In 1958, Heath and Edwards (Heath et al., 1958) described grading of histological changes 

observed in patient with PAH (mainly CHD): 

1. Medial hypertrophy 

2. Medial hypertrophy + intimal proliferation 

3. Medial hypertrophy, intimal proliferation and intimal fibrosis 

4. Progressive vascular dilatation and fibrotic luminal occlusion 

5. Plexiform lesions, cavernous lesions and dilation lesions 

6. Necrotizing arteritis. 

These changes were confirmed and developed by Wagenvoort and Wagenvoort, who 

demonstrated the onion skin type changes from ongoing intimal proliferation and fibrosis 

which is seen in adult PAH, but not paediatric PAH or CTEPH.(Wagenvoo.Ca et al., 1970)  They 

also noted that plexiform lesions are characteristic of PAH, and not seen in CTEPH. 

 

Although initially thought to be a vasoconstrictive disorder, it is now well accepted that PAH 

is a disorder characterised by dysregulated inflammation and cellular proliferation, within all 

three tissue layers (intima, media and adventitia) of the pulmonary artery.  The cause of 

dysregulation is unknown, however it is thought that a combination of genetic predisposition, 

abnormality of endothelial function, inflammation, autoimmune factors, and possibly even 

viral insults may play a role.(Budhiraja et al., 2004, Cool et al., 2011, Deng et al., 2000, Nicolls 

et al., 2005, Price et al., 2012) 
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Figure 1.3: Histological changes with smooth muscle hypertrophy in PAH.2 Sections from normal pulmonary 
artery (left) and hypertrophied smooth muscle from a subject with pulmonary arterial hypertension (right) 

stained with smooth muscle actin. 

 

 Defining Systemic Sclerosis 

Systemic sclerosis is a disease characterised by dysregulated collagen deposition in the tissues 

leading to the disease phenotype.  The underlying mechanisms remain incompletely 

understood, however autoimmunity and pathological inflammation are key components.   

Typical autoantibody profiles can be detected in 95% of patients with SSc at first 

presentation.(Steen, 2005) 

 

Cellular mechanisms include abnormalities in the function of endothelial, fibroblast and 

immunological cell lines. 

 

Endothelial cell dysfunction has been considered as one of the early changes in SSc, and 

potentially involved in the initiation of disease.(Gabrielli et al., 2009)  Endothelial dysfunction 

promotes vasoconstriction and fibrogenesis through manipulation of counterbalanced 

cytokines. Endothelin-1 (ET-1) is known to be upregulated, leading to vasoconstriction, and is 

also known to stimulate fibroblasts to increase collagen deposition.(Abraham et al., 2007, 

Horstmeyer et al., 2005)  

 

 
2 Reprinted from The American Journal of Pathology, Vol. 172 (1), Lawrie A et al, Evidence of a Role for 
Osteoprotegerin in the Pathogenesis of Pulmonary Arterial Hypertension,  Pg: 256-64,  2008, with permission 
from Elsevier.  
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Fibroblasts play a key role in the maintenance of the extracellular matrix, balancing the 

deposition of fibrillar procollagens and fibronectin with control of matrix degradation by 

proteases.(Abraham et al., 2009)  In SSc, fibroblasts are inappropriately activated by pro-

fibrotic and pro-inflammatory cytokines and are responsible for the aberrant deposition of 

connective tissues. 

 

 SSc-PAH and distinction from idiopathic disease 

Pulmonary arterial hypertension represents a significant complication of systemic sclerosis, 

affecting between 7-12% of patients with this condition. (Hachulla et al., 2005, Mukerjee et 

al., 2003)   It is one of the leading causes of death in this patient cohort, accounting for 26% 

of deaths attributable to the effects of the SSc disease process.(Tyndall et al., 2010)  It 

accounts for between 15-20% of all PAH in Europe(Humbert et al., 2006), and given 

geographical differences, is likely to be a little higher in the US. 

 

Although grouped with, and long considered to have similar pathological characteristics as 

IPAH, it has become clear that systemic sclerosis related pulmonary arterial hypertension 

(SSc-PAH) is a very distinct disease from IPAH.  SSc-PAH has a higher mortality (Median 

survival IPAH 7.8 yrs vs SSc-PAH 3 yrs (Ramjug et al., 2017)), and remains less responsive to 

treatment.(Rhee et al., 2015)  Histologically,  Overbeek et al found significant differences 

between the vasculopathy of SSc-PAH and that of IPAH.  A plexogenic vasculopathy is 

characteristic of IPAH, however plexiform lesions were much less apparent in the 

vasculopathy of SSc-PAH.(Cool et al., 1997, Overbeek et al., 2009)  Intimal fibrosis of the 

vascular tree was found to affect all levels of the arterial tree in SSc-PAH, and importantly was 

also noted to affect the pulmonary venule in keeping with more pulmonary veno-occlusive 

type disease (PVOD) in this patient cohort and was not seen in IPAH.(Overbeek et al., 2009) 
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 Biomarkers, biomarkers panels and screening for pulmonary 

hypertension 

 Biomarkers 

The biomarker definitions working group has defined a biomarker as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to therapeutic interventions”.(Biomarkers 

Definitions Working, 2001) 

 

Further to this, a good biomarker in the assessment of pulmonary hypertension should be 

easily measurable, and stable such that it is not influenced by other factors such as dietary 

changes, or renal clearance.  For diagnostic utility a biomarker should be measurable for the 

early detection of PAH, rather than just as a marker of disease progression. 

 

 Proteomics in PAH 

Previous work by Rhodes et al has investigated the utility of proteomic biomarkers in patients 

in the wider group of PAH.(Rhodes et al., 2017)  It was noted in this international study, similar 

to our proposed work, that this would include a heterogenous disease group, however to 

control for this it focussed primarily on patients with IPAH and HPAH which have a similar 

prevalence to those with CTD-PAH.  Protein measurements were determined using the 

SOMAscan aptamer based platform.(Gold et al., 2010)  This study was designed to investigate 

the prognostic potential of proteins in a prevalent group of patients with PAH. 
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Figure 1.4: Hazard ratios and 95% CI from Cox regression analysis comparing 20 prognostic proteins with 

established prognostic marker, NT-proBNP. 

 

Figure 1.4 is included as an excerpt from the study results to show the top 20 prognostic 

proteins identified as an outcome from this work.  Among these proteins are those from the 

complement family suggesting a possible link to immune regulation; growth factors which as 

a family have previously been identified as playing a key role in the development of PAH; 

members of the metalloproteinase family involved in regulation of the extracellular matrix; 

and plasminogen.  These protein groups are of particular interest as either these, or protein 

groups with which they commonly interact, feature strongly in the outcomes of my work in 

protein selection to be presented in section 4.5.3.5 – Final protein selection. 

 

 Proteomics in SSc-PAH 

Abnormal concentrations of many potential protein biomarkers have been reported in both 

the tissue and the circulating compartments in patients with PAH.  Fewer reports have been 

made for protein concentrations specifically in SSc-PAH.  The following summary was 
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prepared as a literature review for this thesis, and published by our group as a mini review of 

potential protein biomarkers in SSc-PAH.(Hickey et al., 2018) 

 

 Literature review method 

To identify suitable primary research articles on this topic, a literature search was conducted 

using Ovid Medline and PubMed.  Keywords used were “Systemic sclerosis”, “Scleroderma”, 

“Pulmonary hypertension”, “Pulmonary arterial hypertension”, “Protein”, and “Biomarker”.  

Date of publication was limited from 1990 to present day.  148 publications were returned 

from this search. 

 

We included studies identifying a cohort of patients diagnosed with systemic sclerosis with 

pulmonary arterial hypertension with comparator groups including healthy volunteers (HV), 

systemic sclerosis without pulmonary hypertension (SSc-no PAH) and/or idiopathic 

pulmonary arterial hypertension. 

 

Studies were included if they reported data on differential protein expression between 

subgroups which were related to objective measurements of pulmonary hypertension. 
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Table 1.2: Summary of potential protein biomarkers in SSc-PAH 

Protein Comparison 
Groups 

Number 
of 
Patients 

Outcome Correlations in 
SSc-PAH 

Reference 

NT-proBNP SSc-PAH vs 
SSc  
 
 
 
SSc-PAH vs 
SSc 
 
SSc-PAH vs 
IPAH 

109 
 
 
 
 
329 
 
 
98 

Significantly higher in SSc-PAH vs SSc.  Sens 
55.9%, Spec 95.1%.  Correlated with invasive 
haemodynamics 
 
 
NT-proBNP superior to BNP for detection of PAH 
in SSc 
 
Significantly higher in SSc-PAH, correlated with 
haemodynamics and predicted survival in SSc-
PAH group. 

mPAP (r=0.62; 
p<0.0001) 
PVR (r=0.81; 
p<0.0001) 
 
 
 
 
CI (r=-0.58; 
p<0.01) 
PVR (r=0.54; 
p<0.01) 

(Williams et al. 
2006) 
 
 
 
(Chung et al. 
2017) 
 
(Mathai et al. 
2010) 

Endoglin SSc-PAH vs 
SSc vs HV 

60 Serum levels significantly higher in SSc-PAH than 
control 

 (Coral-Alvarado 
et al. 2010)  

sFLT-1 SSc-PAH vs 
SSc 

77  Plasma levels significantly higher in SSc-PAH and 
correlate with RVSP and inversely with 
DLCO.  Possible predictor of PH progression.  

RVSP (r=0.32; 
p=0.01) 
DLCO (-0.29; 
p=0.01) 

(McMahan et 
al. 2015) 

PlGF SSc-PAH vs 
SSc 

77  Plasma levels significantly higher in SSc-
PAH.  Correlates with severity of Raynaud’s 
phenomenon and inversely with DLCO.  

DLCO (r=-.031; 
p=0.01) 

(McMahan et 
al. 2015) 

VEGF-A SSC-PAH vs 
SSc vs HV  

53  Serum levels significantly higher in SSc-PAH than 
either SSc or HV.  Levels correlate with 
echocardiographic sPAP, dyspnoea score and 
DLCO. 

sPAP (r=0.58; 
p<0.01) 
DLCO (r=-0.47; 
p<0.01) 

(Papaioannou 
et al. 2009)  

GDF-15 SSc-PAH vs 
SSc  

54 
  

Plasma levels significantly higher in SSc-PAH, 
correlate with echocardiographic RVSP and 
circulating NT-proBNP. Discriminates between 
PH and non-PH.  

RVSP (r=0.56; 
p<0.001) 

(Meadows et 
al. 2011)  

RELM-ß SSc-PAH vs 
IPAH vs HV  

26  Tissue concentrations significantly higher in SSc-
PAH than in IPAH or HV.  

 (Angelini et al. 
2009)  

sThrombomodulin SSc-PAH vs 
SSc vs HV  

92  Significantly higher plasma levels in SSc-PAH 
compared to either SSc or HV.  

 (Stratton et al. 
2000)  

Abbreviations: NT-proBNP - N-terminal pro-brain type natriuretic protein; sFLT-1 - soluble vascular endothelial 
growth factor receptor 1; PlGF - placenta growth factor; VEGF-A - vascular endothelial growth factor A; GDF-15 
- growth differentiation factor-15; RELM-ß - resistin like molecule-ß; sThrombomodulin - soluble 
thrombomodulin; SSc-PAH - systemic sclerosis related pulmonary arterial hypertension; SSc - systemic sclerosis; 
IPAH - idiopathic pulmonary arterial hypertension; HV - healthy volunteer; Sens - sensitivity; PH - pulmonary 
hypertension; Spec - specificity; mPAP – mean pulmonary artery pressure; PVR – pulmonary vascular resistance; 
CI – cardiac index; RVSP - right ventricular systolic pressure; DLCO - diffusing capacity for carbon monoxide; sPAP 
- systolic pulmonary artery pressure; EC - endothelial cells. 
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 N-terminal pro-brain natriuretic peptide (NT-proBNP) 

NT-proBNP is a marker of myocardial stress and therefore a non-specific marker for 

pulmonary hypertension (PH).  Brain type natriuretic peptide (BNP) and NT-proBNP remain 

the only blood-based biomarkers suggested by guidelines for routine clinical use.(Galie et al., 

2016)  NT-proBNP is an inactive cleavage product released during the activation of BNP from 

its prohormone.  BNP is released in response to ventricular stretch and stimulates natriuresis 

and diuresis via the kidney in order to reduce ventricular preload.  NT-proBNP is elevated in 

PH of any cause (Warwick et al., 2008) and correlates with echocardiographic, haemodynamic 

and functional measurements.(Avouac et al., 2015, Fijalkowska et al., 2006, Leuchte et al., 

2004) 

 

NT-proBNP may be elevated in systemic sclerosis in the absence of pulmonary hypertension 

as a result of left ventricular disease and primary myocardial involvement.(Avouac et al., 

2015)  

 

In a prospective observational study of 109 patients with systemic sclerosis, including 68 with 

PH and 41 without PH at right heart catheter, Williams et al set out to evaluate the utility of 

NT-proBNP concentrations as a screening tool for PAH.  NT-proBNP concentration was 

significantly higher in patients with PAH than without (1474 pg/ml vs 139 pg/ml respectively, 

p=0.0002).  The authors also reported a significant correlation between NT-proBNP 

concentration and mean pulmonary arterial pressure (mPAP) (r=0.62, p<0.0001), pulmonary 

vascular resistance (PVR) (r=0.81, p<0.0001) and right atrial pressure (RAP) (r=0.53, p<0.0001) 

at right heart catheterisation (RHC).  For the ability to accurately diagnose PAH a threshold of 

395 pg/ml was selected, returning a sensitivity 55.9%, specificity 95.1%, PPV 95.1% and NPV 

56.5%.  Longitudinal analysis of baseline and change in serial NT-proBNP measurements both 

demonstrated significant prognostic utility.(Williams et al., 2006)  More recent work has 

provided validation, with Chung et al. reporting a sensitivity and specificity of 73% and 78% 

respectively for NT-proBNP at a threshold of 210 pg/ml, slightly superior to that of BNP at 

71% and 59% respectively at a threshold concentration of 64 pg/ml.(Chung et al., 2017)  
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Comparing between PAH phenotypes in a study of 98 prevalent PAH patients (SSc-PAH n=55; 

IPAH n=38; Anorexigen n=5), Mathai et al found that NT-proBNP levels were significantly 

higher in the SSc-PAH group vs IPAH group (1846 pg/ml vs 808.5 pg/ml respectively, p<0.01), 

and this was despite a significantly higher mPAP in the patients with IPAH (41 mmHg vs 48 

mmHg, SSc vs IPAH respectively, p<0.01).  The authors also noted stronger correlations 

between NT-proBNP concentrations and haemodynamic measures of PAH for patients with 

SSc-PAH than for those with IPAH; cardiac index (CI) (r=-0.58, p<0.01 vs r=-0.46, p<0.01 

respectively); PVR (r=0.54, p<0.01 vs r=0.41, p<0.01 respectively).  When serial protein 

measurements were analysed in each subgroup, the prognostic value of NT-proBNP for 

predicting death remained only in the group with SSc-PAH (SSc-PAH: hazard ratio (HR) 3.07, 

p<0.01; IPAH: HR 2.02, p=0.29).(Mathai et al., 2010)  

 

The DETECT study investigated a population of SSc patients who were enriched for the 

presence of PAH by the inclusion of patients with a DLCO <60% predicted.(Coghlan et al., 2014)  

NT-proBNP was included in a final 2-step algorithm which also included electrocardiography 

to select patients to proceed to RHC.  Sensitivity for the detection of PAH was high (96%) but 

specificity was only 48%. 

 

Both BNP and NT-proBNP levels have been demonstrated to be important prognostic 

predictors at baseline in PAH.(Andreassen et al., 2006, Nagaya et al., 2000)  Subsequently, the 

change in NT-proBNP level after therapy was shown to be a powerful independent predictor 

of survival.(Nickel et al., 2012) More recently three large studies have confirmed the 

importance of changes in NT-proBNP in the risk stratification of patients with PAH during 

follow-up.(Boucly et al., 2017, Hoeper et al., 2017, Kylhammar et al., 2018) 

 

 Endoglin 

Transforming growth factor beta (TGF-ß) signalling has been strongly implicated in the 

pathogenesis of PAH, and extensively studied, particularly with regard to bone 

morphogenetic protein receptor type-2 mutations.(Machado et al., 2015)  TGF-ß signalling 

regulates several processes including cellular proliferation and angiogenesis.  Endoglin (Eng) 
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is a transmembrane protein expressed in endothelial cells which acts as a TGF-ß signalling 

complex component.(Conley et al., 2000)  

 

Both TGF-ß serum concentration and Eng level are raised in IPAH patients, with Eng localised 

to endothelial cells in tissue samples.(Gore et al., 2014)  Germline Eng mutation have shown 

a protective effect against the development of pulmonary hypertension in heterozygous 

models exposed to chronic hypoxia.(Gore et al., 2014)  

 

Coral-Alvarado et al investigated circulating Eng concentration in 60 patients (20 SSc-PAH; 20 

SSc-no PAH; 20 HV).  PH was diagnosed by estimation of systolic pulmonary artery pressure 

>35mmHg, or tricuspid regurgitant jet velocity >3m/s.  The authors report higher Eng 

concentrations in the SSc-PAH group, however possibly due to small study numbers, the 

difference is only statistically significant between SSc-PAH vs healthy volunteer (HV) groups 

(SSc-PAH: 6.89 ng/ml, SSc-no PAH: 6.2 ng/ml, HV: 5.42 ng/ml; SSc-PAH vs SSc-no PAH 

p=0.2447, SSc-PAH vs HV p=0.0006, SSc-no PAH vs HV p=0.057).  There was no correlation 

noted between Eng concentration and echocardiographic measurements of PH.(Coral-

Alvarado et al., 2010)  

 

There is some evidence for altered Eng expression in PAH, however in SSc specifically, this 

evidence is weak in part due to small study sizes and study design.  Given the potential role 

of Eng in TGF-ß signalling, a role in the pathogenesis of PAH remains reasonable, however 

further work in this area is needed to establish its role. 

 

 VEGF-A 

Vascular Endothelial Growth Factor-A (VEGF-A) is a member of the PDGF superfamily of 

growth factors.  It is one of the most potent regulators of angiogenesis, and acts on vascular 

endothelial cells through stimulation of KDR (VEGF receptor 2) and FLT-1 (VEGF receptor 1) 

to promote angiogenesis, increase vascular permeability and stimulate endothelial cell 

migration.(Shibuya, 2011, Voelkel et al., 2014) 
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Serum VEGF-A concentrations are known to be elevated in patients with PAH and have been 

demonstrated within plexiform lesions of remodelled vasculature.(Eddahibi et al., 2000, 

Papaioannou et al., 2009) 

 

In a study including 53 participants (SSc-PAH n=20, SSc-no PAH n=20, HV n=13) Papaioannou 

et al examined the relationship of serum VEGF-A concentration to echocardiographic markers 

of pulmonary hypertension.  In this study, participants were treatment naive, and any 

patients with pulmonary fibrosis were excluded.  Estimated sPAP >35mmHg was used to 

define patients with SSc-PAH.  The authors found significantly higher VEGF-A concentrations 

in all patients with SSc as compared to HV (267 pg/ml vs 192 pg/ml respectively, p<0.01), and 

further found that those with SSc-PAH had higher levels than those with SSc-no PAH (352 

pg/ml vs 240 pg/ml respectively, p<0.01).  In patients with SSc, significant correlations were 

found between serum VEGF-A concentration and systolic pulmonary arterial pressure (sPAP) 

(r=0.58, p<0.01); MRC dyspnoea score (r=0.34, p=0.031); and DLco (r=-0.47, p<0.01).  In 

multivariable modelling of sPAP as the dependent variable, VEGF-A concentration remained 

a significant predictor when adjusted for age and gender.(Papaioannou et al., 2009)  

 

VEGF-A expression is known to be upregulated in both patients PAH, and with systemic 

sclerosis, both conditions characterised by pathologically excessive endothelial activation.  In 

patients with SSc-PAH the VEGF pathway is upregulated, however baseline levels have not 

been assessed for utility as diagnostic biomarkers. 

 

 Placenta Growth Factor (PlGF) and Soluble vascular endothelial growth 

factor (VEGF) receptor 1 (sFLT-1) 

Placenta growth factor is a member of the vascular endothelial growth factor family of 

proteins which binds with high affinity for VEGF receptor 1 (FLT-1/ VEGF-R1), but not for VEGF 

receptor 2 (KDR/ VEGFR2) - regarded as the main effector protein of VEGF signalling.(Park et 

al., 1994)  PlGF alone does not stimulate tyrosine kinase phosphorylation or proliferation in 

human endothelial cell lines, however the addition of PlGF potentiates the effect of VEGF-A 

in stimulating proliferation of cultured endothelial cells.(Park et al., 1994)  
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sFLT-1 is a variant of VEGF receptor 1 (FLT-1) which can bind VEGF-A, VEGF-B, and Placenta 

growth factor (PlGF).  It functions as a decoy receptor, downregulating free ligand and 

therefore thought to control excessive endothelial activity.(Olsson et al., 2006)  

 

Recognising the need for further study into diagnostic biomarkers for patients with SSc-PAH, 

McMahan et al designed a case-control study of 77 patients with SSc (37 with PH, 40 without 

PH).  The groups were unbalanced for age (64.9 vs 55.9 respectively, p<0.01) and lung 

volumes (FVC% 67.5 vs 88.1 respectively, p<0.01).  Diagnosis of PH was based on mPAP >= 25 

mmHg at right heart catheterisation.  The authors report that both PlGF (24.8 pg/ml vs 19.1 

pg/ml, p=0.02) and sFLT-1 (101.8 pg/ml vs 89.7 pg/ml, p=0.02) are significantly upregulated 

in patients with PH than in those without.  Both proteins were significantly inversely 

correlated to DLco (PlGF: r=-0.31, p=0.01 and sFLT-1: r=-0.29, p=0.01).  sFLT-1 was also 

correlated to RVSP (r=0.32, p=0.01).(McMahan et al., 2015)  

 

This study was designed to evaluate potential biomarkers of pulmonary hypertension in 

systemic sclerosis.  No comment is made about extent of pulmonary fibrosis, so it remains 

conceivable that these are imbalanced given the difference in baseline pulmonary function 

tests, and it is not clear why no comparisons were given for protein concentration and 

invasive right heart catheter measurements.  Although protein concentration changes are 

noted, no statistics have been given for the performance of these proteins as diagnostic 

markers. 

 

 GDF-15 

Growth Differentiation Factor-15 (GDF-15) is a member of the TGF-ß superfamily of cytokines 

playing an important role in cell growth and differentiation.  It is a stress responsive cytokine 

associated with tissue damage and inflammation.  Increased levels have been reported in 

heart failure, atherosclerosis, endothelial dysfunction and diabetes and have been linked to 

disease progression and prognosis.(Adela et al., 2015)  

 

In treatment naïve IPAH, serum GDF-15 is increased and is a significant predictor of 

survival.(Nickel et al., 2008)  In a mixed cohort of PAH patients, tissue levels of GDF-15 are 
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increased - localising to the pulmonary endothelium, and in remodelled vessels strong signals 

are identified in plexiform lesions.(Nickel et al., 2011)  In-vitro studies using pulmonary 

endothelial cells and varying concentrations of GDF-15 resulted in reduction in hypoxia 

induced apoptosis suggesting a potential pathological mechanism in PAH.(Nickel et al., 2011)  

 

Meadows et al studied a cohort of 111 patients (SSc-PAH n=30, SSc-no PAH n=24, IPAH n=44, 

HV n=13) for circulating GDF-15 concentrations.  PH was defined at right heart 

catheterisation.  Patients with PAH were already established on PH specific therapy at the 

time of entry to study.  Both plasma and tissue levels of GDF-15 were elevated in SSc-PAH 

(442 pg/ml), and differentiated it from SSc without PAH (108 pg/ml, p=0.0004), IPAH (173 

pg/ml, p=0.0003) and HV (66 pg/ml, p=0.0013).  Within the SSc subgroup, GDF-15 levels 

correlated with echocardiographic RVSP (r=0.556, p<0.001), and with NT-proBNP 

concentration (r=0.484, p<0.001), but not with other invasive haemodynamics.  On diagnostic 

ROC analysis, GDF-15 has been shown to have good discriminative power with area under 

curve (AUC) 0.91 for differentiation of SSc-PAH from SSc without PH with an optimal threshold 

for GDF-15 of 125 pg/ml demonstrating 93% sensitivity and 88% specificity for the presence 

of SSc-PAH.  Furthermore, patients below this threshold were found to have significantly 

improved survival.(Meadows et al., 2011)  

 

 Resistin-like molecule-ß (RELM-ß) 

RELM-ß is a member of a relatively newly described resistin family.  Largely studied through 

their effects on animal models, these proteins have been shown to induce angiogenesis and 

vascular remodelling.(Angelini et al., 2009)  

 

Following the identification that hypoxia induced mitogenic factor (HIMF) is upregulated in 

animal models of PH, Angelini et al sought to evaluate this in human tissues.  In a small study 

involving 26 prevalent patients (SSc-PAH n=9, IPAH n= 11, HV n=6), the authors found that in 

human lung tissue samples, RELM-ß (a close human homolog to HIMF) is upregulated in 

patients with SSc-PAH as compared to healthy control (p<0.01, measured by relative intensity 

on western blot) and localises to remodelled vasculature.  In comparison, although some 

expression of RELM-ß was noted in remodelled vessels of patients with IPAH, this was 
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inconsistent, and relative quantification showed no difference between IPAH and HV 

concentrations.  Additional in-vitro study showed mitogenic activity of RELM-ß on both 

human lung microvascular endothelial cells and human pulmonary artery smooth muscle 

cells.(Angelini et al., 2009)  

 

This is a relatively novel candidate protein, which appears to show higher expression in SSc-

PAH, however more work is needed to assess its concentration in the circulating 

compartment if it is to be considered further as a biomarker as lung tissue samples are not 

practical for this purpose. 

 

 Soluble thrombomodulin (sThrombomodulin) 

Thrombomodulin is a glycoprotein expressed on endothelial cells.  Its physiological function 

is to bind thrombin and alter its activity, to subsequently activate protein C.(Stratton et al., 

2000)  The pathogenesis of both systemic sclerosis and pulmonary arterial hypertension 

involves and injury to and activation of the vascular endothelium.  Soluble thrombomodulin 

is increased in conditions associated with endothelial damage.(Mercie et al., 1997)  

 

Stratton et al studied 92 patients (SSc-PAH n=34, SSc-no PAH n=38, HV n=20) and found that 

sThrombomodulin was increased plasma of patients with SSc-PAH (65.4 ng/ml) compared to 

SSc without PH (43.3 ng/ml, p<0.05), and healthy controls (38.1 ng/ml, p<0.05).  There was 

no difference in circulating concentration between SSc without PH and healthy 

control.(Stratton et al., 2000)  This is in contrast to previous studies which have shown a 

significant decrease in circulating sThrombomodulin concentration in patients with PAH (IPAH 

and PAH due to Eisenmenger's’ syndrome) compared to healthy controls (26 ng/ml vs 44 

ng/ml respectively, p=0.0001).(Cacoub et al., 1996)  

 

 Summary of published data 

A biomarker has been defined by the NIH as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention.” (Strimbu et al., 2010) NT-proBNP is 

the most widely studied circulating biomarker in clinical use in patients with suspected or 
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known PAH.  Elevations in NT-proBNP result from right ventricular (RV) strain as a result of 

increased RV afterload.  As it does not reflect the underlying pathophysiology of the 

pulmonary arterial vasculopathy resulting in increased RV afterload in PAH, NT-proBNP levels 

can be elevated due to other pathophysiological processes including increased RV afterload 

due to PH arising from left heart disease and from disease processes directly affecting the 

myocardium.  As such, the specificity of NT-proBNP in the diagnosis of SSc-PAH tends to be 

rather low resulting in a significant number of RHCs being performed in patients who do not 

in the end have PAH.(Coghlan et al., 2014)  Furthermore, given the dismal prognosis in SSc-

PAH, identifying patients early in their disease process before the development of RV strain 

is desirable.(Coghlan et al., 2018, Condliffe et al., 2018)  The identification of a biomarker or 

panel of biomarkers which more reflect the underlying pulmonary vasculopathy in SSc-PAH 

prior to the development of RV strain is therefore of interest. 

 

The data described summarise the current evidence for various candidate circulating 

diagnostic biomarkers for SSc-PAH, several of which do relate to pathways known to be 

important in PAH pathogenesis, especially the TGF-ß and VEGF pathways. Further study 

within well phenotyped cohorts of patients to compare the performance of these candidate 

circulating biomarkers against NT-proBNP and the DETECT protocol are clearly warranted. 
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Figure 1.5: Cellular origin and pathways for each protein described in the context of SSc-PAH 

Description of the likely origin of each protein, along with the pathophysiological process it has a role in.  If a 
component of one of the pathways known to be relevant to pathogenesis of PAH then this is also given. 

Abbreviations: SMC - vascular smooth muscle cell; EC - vascular endothelial cell; RV - right ventricle; TGF-ß – 
transforming growth factor beta; VEGF – vascular endothelial growth factor; NT-proBNP – N-terminal pro-brain 
natriuretic peptide; GDF-15 – growth differentiation factor-15; RELM-ß – resistin-like molecule beta; VEGF-A – 

vascular endothelial growth factor A; sFLT-1 – soluble vascular endothelial growth factor receptor 1; PlGF – 
placenta growth factor; Eng – endoglin; sThrombomodulin – soluble thrombomodulin. 

 

 Screening strategies 

Although a rare condition overall, the prevalence of PAH in patients with SSc is around 

10%.(Avouac et al., 2010)  Accordingly it has been standard practice to screen patients with 

SSc for the presence of PAH. 

 

In 2011, Humbert et al published evidence from a small trial which suggested improved 

outcomes for patients with SSc-PAH who were diagnosed earlier as a result of screening, 

rather than waiting for development of clinical symptoms and routine clinical 

investigation.(Humbert et al., 2011)  To adjust for potential lead time bias, the authors 

subdivided the patients by functional status at diagnosis and the survival difference was 

maintained.(Humbert et al., 2011) 

 

 ERS guidelines (2015) 

Acknowledging the incidence of PH in certain high risk groups including SSc, the ERS guidelines 

suggest screening for PH in asymptomatic individuals from these groups.(Galie et al., 2016)  

For patients with SSc it is suggested that alongside annual ECG and pulmonary function 
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testing, that these patients should undergo annual transthoracic echocardiographic 

examination as part of screening.  It is noted that echocardiography alone is not sufficient to 

guide treatment decisions, and is therefore used to stratify patients into risk groups, with high 

risk patients recommended to undergo invasive diagnostic testing with right heart 

catheterisation (Figure 1.6). 

 

 
Figure 1.6: Echocardiographic probability of pulmonary hypertension in asymptomatic patients with a suspicion 

of pulmonary hypertension (Galie et al., 2016)3 

 

 DETECT study 

In an effort to standardise the approach to screening for PAH more specifically to patients 

with SSc, the DETECT protocol was developed and includes several candidate parameters 

including demographic data, physical examination characteristics, clinical history, pulmonary 

function tests, blood testing, ECG and echocardiographic measurements.(Coghlan et al., 

2014)  Through multiple levels of variable selection and expert panel consensus, the initial 

112 variables were reduced to 8 variables, and stratified into final a two level test; baseline 

characteristics with blood tests; and echocardiographic parameters (Figure 1.7).(Coghlan et 

al., 2014)   To minimize false negatives, the algorithm was designed to maximize the negative 

predictive value. 

 

 
3 Reproduced from European Heart Journal 37(1): 67-119, with permission from the Oxford 
University Press. 
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Figure 1.7: DETECT algorithm nomogram for determination of the likelihood of pulmonary hypertension and 

cut-off for the recommendation of referral for invasive right heart catheterization (Coghlan et al., 2014).4  

 

Developed for screening use in rheumatology, the algorithm is suggested for application to 

patients with at least a 3-year history of diagnosed SSc, with DLCO <60% predicted, and 

without a previously known diagnosis of PH.(Galie et al., 2016)  The final DETECT score has a 

negative predictive value of 0.98, with 4% false negatives, but a positive predictive value of 

just 0.35, and a false positive rate of 65%.(Coghlan et al., 2014) 

 

 
4 Reproduced from Annals of the Rheumatic Diseases 73(7): 1340-9 with permission from the 
BMJ Publishing Group Ltd. 
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Although the DETECT protocol has been proposed as the optimal screening tool for PAH in 

SSc patients, the test statistics suggest it is not an ideal tool since given a high false positive 

rate, a large number of patients are referred for potentially inappropriate invasive testing 

with right heart catheterisation.  Further limitations lie both in the ability of the clinician to 

recognise necessary clinical signs leading to a potential source of error in the calculation; and 

the availability of echocardiography. 

 

 Comparison of screening strategies 

In 2015, Hao and Thakkar et al published a comparison between results of both the ERS and 

DETECT screening algorithms on patients with SSc recruited from the Australian Scleroderma 

Cohort Study.  For comparison, only patients with group 1 PH and controls were retained in 

the final analysis.  The DETECT screening algorithm identified PH in this group with sensitivity 

100%; specificity 35.3%; PPV 55.1% and NPV 100%, compared to ERS screening with 

sensitivity 96.3%; specificity 32.3%; PPV 55.3% and NPV 90.9%.(Hao et al., 2015)  A strong 

sensitivity and NPV were the metrics considered most important, and on this basis the DETECT 

algorithm outperformed the ERS guidelines. 

 

A similar analysis in a separate cohort of Belgian patients, designed to look more at the 

economics of each protocol highlighted the very poor PPV for the DETECT algorithm at 6%, 

compared to 11% for the ERS echocardiography guidelines.  For the 3 patients found to have 

PAH, both algorithms correctly included them.  Further analysis identified a greatly increased 

cost associated with DETECT screening compared to ERS methods.(Vandecasteele et al., 

2017) 

 

These, amongst other comparison studies, identify the strong sensitivity and negative 

predictive value for the DETECT protocol in a highly selected group of patients with SSc.  It is 

also clear that the DETECT protocol has a poor positive predictive value and therefore 

excessive patients are screen positive and suggested for right heart catheterisation via this 

method.  The DETECT protocol is complex, relying on multi-modality testing, and therefore 

can be expensive and result in a delay in referral for definitive testing.  
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 Summary - what is needed, and why? 

It is unethical to subject patients unnecessarily to tests which carry significant risks.  Although 

at present right heart catheterisation is carried out in most patients referred with a significant 

DETECT score, this is done on the basis of the risk of complication in those with false positives 

being outweighed by the improved outcome for those diagnosed with and treated for 

pulmonary arterial hypertension at an earlier stage. 

 

An ideal test would maintain the negative predictive value of the DETECT study, whilst 

improving on specificity, and reducing potential sources of error.  A diagnostic panel formed 

of circulating protein markers, easily accessible through a single blood test, without the need 

for clinician detected signs, or the availability of operator dependent imaging techniques 

could theoretically provide a test with improved diagnostic potential. 

 

There is a need for improved markers with potential for diagnosis, severity stratification, 

prognostication and response to treatment so that we can better counsel patients regarding 

the likely disease process tailored to them as an individual, and so that we can better 

streamline patients to the most effective treatment strategy. 

 
 Hypothesis  

 

There are there circulating proteins, or a panel of combined circulating proteins for which 

the expression significantly differs between patients with SSc with or without PAH, and 

these can be used to reliably detect PAH in a cohort of SSc patients. 

 

 Related research questions 

 

1. Can such a model, which detects a signal related to PAH pathobiology, be extended 

reliably to function for other PAH subtypes? 
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2. Can such a model be extended from classification of disease to demonstrate 

prognostic utility? 

 

3. Are there novel proteins identified which play a role in the pathogenesis of 

pulmonary hypertension? If so: 

a. Are they expressed in lung tissue? 

b. What effect do they exert on cell types relevant to pulmonary arterial 

hypertension? 

 

 Specific thesis objectives 

 

In the work described in this thesis we aimed to examine the above aims as follows: 

 

1. To address question 1, I used my final predictive model (paragraph 4.5.4), derived to 
predict disease classification between patients with SSc-PAH and SSc-no PAH, with a 
separate cohort of patients from the initial Myriad DiscoveryMAP cohort (Table 3.1)  
to determine whether the panel can accurately classify patients with IPAH from 
healthy volunteers.  This can be found in paragraph 5.3. 
 

2. To address question 2, I tested my model score against known patient outcome to 
determine whether the panel can go beyond disease classification, and predict 
outcome based on the magnitude of the model score.  This work can be found in 
paragraph 4.5.5.2. 
 

3. To address question 3a, I used immunohistochemistry to identify the presence of 
proteins in my final model, not previously described in relation to pulmonary 
hypertension, in lung tissue sections from both human transplant explants, and animal 
models of pulmonary hypertension.  This work is presented in paragraph 6.3.1. 
 

4. To address question 3b, I used human pulmonary arterial endothelial- and smooth 
muscle- cells in cell culture models to investigate any direct effect of these proteins 
on these cell lines.  This work can be found in paragraph 6.3.2. 
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2 Methods 

 Ethics Statement 

Clinical data and blood samples were obtained through license of materials from the Sheffield 

Teaching Hospitals Observational Study of Patients with Pulmonary Hypertension, 

Cardiovascular and Lung Disease (STH-ObS) Biobank collection, project registration 

STH15222, under full NHS Research Ethics Committee approval (Ethics approval No. 

08/H1308/193+5). 

 

 Patient Data 

Patients samples and data were obtained retrospectively from patients enrolled in STH-Obs.  

After agreement with Myriad RBM and Actelion regarding study groups of interest.  Patients 

were recruited into 7 study groups: 

1. Systemic sclerosis with pulmonary hypertension (SSc-PAH) (Group 1) 
2. Systemic sclerosis with pulmonary hypertension and interstitial lung disease (SSc-PAH-

ILD) (Group 1) 
3. Pulmonary arterial hypertension with another connective tissue disease (PAH-Other 

CTD) (Group 1) 
4. Pulmonary hypertension related to interstitial lung disease (PH-ILD) (Group 3) 
5. Systemic sclerosis without pulmonary hypertension (SSc-no PH) 
6. Idiopathic pulmonary arterial hypertension (IPAH) (Group 1) 
7. Healthy volunteers (HV) 

 

Patients recruited to the STH-ObS are carefully phenotyped at initial clinical contact by 

consultants in pulmonary vascular diseases, with multidisciplinary review of clinical 

presentation, radiology and diagnostic investigation prior to final disease classification.  All 

patient notes, radiology and diagnostic investigations were further reviewed to ensure 

accurate disease classification, and extensive searches undertaken to retrieve missing data 

from local systems, research databases and patient notes to generate a comprehensive 

phenotype database.  Baseline phenotype data collected included: 

1. Demographics – gender, ethnicity, dates of birth and death 
2. Visit/Sampling date 
3. WHO functional class 
4. Medical co-morbidities 
5. Specific PH diagnostic classification 
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6. Right heart catheter data – Date, Cardiac output, RA mean, Cardiac index, mPAP, 
PCWP, PVR 

7. Pulmonary function tests – FEV1 (%), FVC (%), TLCO (%) 
8. Incremental shuttle walking test – Distance 
9. Current PH specific medication 
10. Haematological indices – FBC, UE, LFT, CRP  

 

Additional clinical information was sought to complete the DETECT criteria for comparison 

between screening methods.  This required further review of patient notes for all patients 

with SSc.  The following information was gathered for all patients where possible at the 

timepoint corresponding to the baseline sample.  DETECT criteria data collected included: 

1. Presence or absence of telangiectasia 
2. Anti-centromere antibody status 
3. Serum NTproBNP concentration 
4. Serum urate concentration 
5. Presence or absence of right axis deviation on ECG 
6. Echo: Right ventricular systolic pressure and right atrial pressure. 

 

A measure of right atrial area from echocardiography is a requirement for completion of the 

DETECT score.  This metric was not routinely recorded in our hospitals during the period our 

patients were recruited to the biorepository.  Maximal right atrial area was retrospectively 

measured in most cases from ECG gated cardiac MRI scans, and in a minority from non-ECG 

gated CTPA using PACs software, from scans available from the timepoint matched to each 

sample. 

 

Follow up samples were identified for a subset of patients with SSc for use in longitudinal 

analyses.  These were identified as paired samples to our baseline cohort where available and 

the matching clinical information gathered through the same search process for the time 

point corresponding to that sample. 

 

 Commercial Derivation Laboratory Studies 

 Consent, Venesection and Sample storage in the Sheffield Pulmonary 

Vascular Biorepository 

Patients were identified and approached for inclusion in the Sheffield biorepository at first 

visit, while treatment naïve, by consultants in the Sheffield Pulmonary Vascular Disease unit.  
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Patients were then consented for inclusion in the biorepository (STH15222) by trained 

research nurses. 

 

Serum samples were obtained by our research nurses following standard operating protocol 

(STH16436 SOP05).  Blood samples were taken by peripheral venepuncture or at diagnostic 

RHC into gold top serum vacutainer tubes.  Tubes were then mixed thoroughly before being 

stood upright for 30 minutes at room temperature.  Samples were then centrifuged at 1500G 

for 15 minutes at room temperature.  Serum samples were decanted by disposable pipette 

into cryovials and carefully labelled for storage.  Samples were then frozen and stored in the 

liquid nitrogen biorepository until required. 

 

 Myriad RBM Luminex Assays 

Myriad RBM have extensive experience and a good track record in clinical assay development.  

The DiscoveryMAP platform from Myriad RBM reported protein concentration data for 296 

proteins from our serum samples.  These analytes are not biased to any particular disease 

process and allow for study of protein concentrations across a wide range of physiological 

and pathological processes.  In contrast to other more extensive platforms such as SOMAscan, 

Myriad RBM develops its own in-house assays and does not rely on commercial kits, they 

therefore have better control over variability.  Myriad RBM uses sandwich capture 

immunoassays that use two specific antibodies to bind the target, the SOMAscan utilises an 

ionic binding aptamer molecule which is less stable than an antibody method.(Christiansson 

et al., 2014)  Myriad RBM uses a calibration/control method, and is validated for analyte 

specificity and cross-reactivity whereas SOMAscan is not.  The Myriad RBM platform has been 

validated to Clinical Laboratory Standards Institute guidelines.  The platform provided by 

Myriad RBM has a track record over the past 18 years and data generated has been used in 

over 1000 peer-reviewed publications.  It is for these reasons that we felt that the Myriad 

RBM platform would provide the most robust and reproducible data for our analysis. 

 

The Myriad platform is a broad and non-biased protein discovery assay platform, with protein 

targets covering a wide spectrum of human physiology and pathophysiological pathways.  

Current understanding of the pathophysiology of early SSc includes endothelial dysfunction 
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as a key early pathway to the development of the disease phenotype(Altorok et al., 2014) , a 

feature shared with the understanding of the early pathophysiology of PAH.(Budhiraja et al., 

2004)  Although limited in fine detail due to the low number of proteins measured relative to 

other assay platforms, the Myriad Discovery assay platform has good coverage of proteins 

relevant to endothelial dysfunction documented in both systemic sclerosis and pulmonary 

arterial hypertension.(Odler et al., 2018)  Markers of endothelial dysfunction measured on 

the Myriad DiscoveryMAP platform include von Willebrand Factor, Endostatin, Endoglin and 

Platelet endothelial cellular adhesion molecule-1.  Notable absentees with well documented 

association with endothelial dysfunction in SSc-PAH include Assymetric dimethylarginine 

(ADMA) and Endothelin-1. 

 

1 ml serum samples were analysed externally by Myriad RBM under contractual agreement 

between UoS, Myriad RBM and Actelion pharmaceutical, and results shared between all 

teams.  Assays were performed on a validated fully-automated luminex based platform.  

 

Appropriate multiplexes are determined based on serum concentration of each analyte, and 

therefore the requirement for similar dilution prior to assay can be controlled. 

 

Myriad RBM has optimized a method for controlling lot-to-lot variation using reference 

samples.  These calibrators are analysed with each new lot of reagents and results adjusted 

accordingly to control for batch variation. 

 

Serum samples were shipped to Myriad RBM by DHL courier on dry ice and confirmed by 

Myriad RBM to have been received appropriately packaged, undamaged and in frozen 

condition upon receipt.  Upon receipt, each sample is allocated a unique identifier that tracks 

it throughout the automated analysis process.  Samples were randomized prior to loading on 

the analysis plate.  For plating, samples are removed from the freezer, thawed, vortexed and 

centrifuged before being pipetted into a 96 well microtiter plate.  Two technicians work 

together to plate the samples manually according to the plate map, with the second present 

to verify the correct sample placement. 
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Automated liquid handling instruments are used for all dilutions, reagent additions, and 

manipulation.  A small volume from each of the sample wells is added to a reaction well 

containing capture beads.  These microspheres are conjugated to antibodies and encoded 

with a unique fluorescent signature specific to the analyte of interest.  The beads are allowed 

time to incubate with the sample before other reagents are added.  Biotinylated detection 

reagents are then added, followed by a fluorescent reporter molecule.  The multiplex is then 

washed to remove any unbound detection reagents prior to reading on the luminex machine. 

 

The luminex technology uses the principle of hydrodynamic focussing to pass the 

microspheres, one at a time, along a path that is interrogated by two lasers.  The excitation 

beams measure the unique fluorescent signature of each bead, with the amount of 

fluorescence generated proportional to the analyte concentration in the sample. 

 

All proteins in the dataset are referred to by their corresponding gene names to allow for 

communication between complementary studies in our research group. (Appendix 1 – 

Protein decode) 

 

 Statistics and Data Analysis 

 Computing specification and Software 

Data were analysed using MacBook Pro, 2.9 GHz Intel Core i5 processor.  For particularly high 

demand processing tasks a Mac Pro, 3.5 GHz Intel Xeon E5 processor with 12 cores was used. 

 

Data analysis were conducted using R for Mac version 3.5.1, with appropriate statistical 

packages as separately documented. 

 

 Data Preparation 

 Limits of Detection and Missing Data 

Several methods of dealing with variable measurements falling outside the limits of detection 

were considered.  Models were developed both replacing the values outside a limit of 

detection with the absolute value of the corresponding limit of detection, or removal of the 
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value from the dataset.  Both methods resulted in identical variable selection, as those with 

a high proportion of datapoints beyond the limits of detection were not selected by the 

statistical models, likely due to a lower information content across affected proteins.  It was 

considered that a datapoint falling outside a limit of detection still yields important 

information regarding that variable.  As such for the purposes of retaining the maximum 

information in the dataset, and dataset accuracy, each datapoint falling outside the limit of 

detection was replaced with the absolute value of the corresponding limit of detection. 

 

Replacing data values outside the limit of detection with the absolute value of the limit of 

detection can lead to an absence of informative data given by that variable if all, or a majority 

of the datapoints fall at that level.  To overcome this, I individually examined all protein 

variables which had >90% of all datapoints recorded at a single value to assess for any 

informative data.  These variables were individually assessed for any relationship to the 

classification outcome variable.  No variable which met this criterion was found to hold any 

informative data and they were therefore considered to have been analysed and filtered from 

entry into further statistical analysis on this basis. 

 

In the protein concentration dataset, 45 of 49235 datapoints were missing due to insufficient 

sample at analysis.(Figure 2.1)  These datapoints were therefore deemed to be missing at 

random from a statistical perspective and were imputed using ‘MissForest’ imputation 

package for R.  MissForest is method for imputation of missing data based on a random forest 

algorithm.  It is therefore appropriate for use with non-parametric data.  It functions by 

creating a random forest model for each variable, and uses the model to predict the missing 

values with the help of the observed values. 
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Figure 2.1: Missingness map 

Heat map showing the distribution of missing data among the protein variable dataset. 

 

 Dataset reduction by univariate AU-ROC 

To reduce the likelihood of overfitting within classification, univariate proteins were excluded 

from further analysis in the subset of interest if their area under the ROC curve applicable to 

the analysis of the particular subset was below a defined cut-off, as this would suggest poor 

univariate classification potential. 

 

 Multicollinearity 

Multicollinearity was assessed visually using correlation matrix and statistically using 

Spearman’s rho coefficient across all proteins.   The effect of collinear interactions was 

further investigated using variance inflation factors with variables above threshold 

identified and correlating proteins given individual consideration for removal from further 

analysis based on known biological relevance. 
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 Scaling 

Where necessary data were centred and scaled by subtracting the mean to centre at 0, and 

scaled by division of standard deviation. 

 

 Normalisation of data 

Not all data could be completely normalised, however applying a log2 transformation yielded 

the most normalised protein dataset, and this was applied prior to statistical testing where 

necessary.  Resulting variables were subsequently analysed for normality using Shapiro-Wilks 

test and the appropriate statistical approaches adopted. 

 

 Exploratory data analysis: Principle component analysis 

Principle component analysis (PCA) is a complex process in statistical mathematics used to 

display similarities and differences between samples through the analysis and reconfiguration 

of the dependent variables available to describe them.  PCA reduces the dimensionality of a 

dataset by excluding redundant data present through covariance to create a new set of 

dimensions each of which represents a combination of the original variables which can then 

be displayed to demonstrate the similarity and differences between each sample.(Abdi et al., 

2010) 

 

 Variable selection and classification modelling 

Three methods were evaluated for variable reduction and classification modelling; 

combination panelling based on univariate diagnostic statistics, random forest modelling, and 

LASSO modelling. 

 

 Combination panel modelling 

Diagnostic panels were created using recursive stepwise combination modelling. For each 

protein analysed, the corresponding Youden index from ROC modelling was used as a binary 

cutpoint.  To develop the panel, protein values falling above the Youden index were assigned 

a value 1, and those below a value 0 for that particular protein concentration for each 

individual patient sample.  Every possible combination of between 2 and 5 proteins were 
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modelled, with the additive total for each protein in that combination recorded for each 

patient.  The optimal cutpoint for classification was then derived based on the known patient 

class, and patients were then assigned a predicted class as either PH or not PH based on panel 

score.  Diagnostic statistics for each combination were calculated from the known and 

predicted classes and each combination ranked according to diagnostic accuracy. 

 

2.4.4.1.1 Combination Panels: Advantages 

This is the most open book approach, built manually and with clear understanding of the 

relatively simple statistics used to generate each panel, and the outputs generated.  Any 

particular combination of proteins of interest can be reviewed. 

 

2.4.4.1.2 Combination Panels: Disadvantages 

This has proven a very time consuming approach, with any iteration, or change in the class of 

interest requiring a full analysis to be executed at a run time of up to several days to 

completion in some instances.  Panels generated are based on the predictive ability of the 

individual variables included, combining but not taking into account the influence of the other 

proteins in the panel, therefore are less likely to generate the optimal results possible from a 

multivariable statistical model. 

 

The process of combination modelling is based on the univariate statistics and distribution of 

each included protein in the panel.  Given that our derivation cohort is small, the likelihood 

of error in the distribution is relatively high for each protein, and when proteins are combined, 

this error is likely to be substantially increased.  The chance of overfitting through this process 

is therefore particularly high. 

 

 Random Forest 

Tree based algorithms are increasingly popular for analysis of large datasets, particularly for 

categorical dependent variables such as for classification.  They can work on both categorical 

and continuous independent variables, are not particularly influenced by outliers and work 

well with non-parametric data. 
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Random forest modelling is an ensemble method designed to increase accuracy in prediction 

through averaging of large numbers of decision trees (bagging).(Figure 2.2)  To derive each 

decision tree, a random sample of patients are chosen from whom the protein variable data 

are used to train the tree.  At each node a random selection of the protein variables are 

examined with the predictor yielding the largest information gain used to split that particular 

node to develop the tree.  This continues until the chosen number of splits has been reached.  

Each leaf is designated the independent variable value corresponding to the mode average of 

those falling within it.  The tree is then tested for error in prediction using the values of the 

remaining data (the non-training data).  Decision trees are generally felt to be easily 

understood without significant background statistical knowledge, however run a high risk of 

overfitting a model to a derivation dataset without appropriate constraints. 

 

 
Figure 2.2: Decision Tree 

Example of decision tree built in process of random forest generation.  At each leaf a stacked bar chart is 
shown demonstrating the proportion of the total number of patients with or without PH at that leaf. 

 

A random forest is a model generated by growing a large number of decision trees based on 

the same derivation dataset.  The principles for each tree remain as described above, and 

each tree is grown independently of each other, with its own random selection of patients 
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and proteins variables.  When random forest is used for classification, the classification 

outcome of each individual tree for each new sample is considered a vote, with the forest 

outcome considered the majority vote.  Through this averaged outcome from the decision 

trees generated, a random forest is built to reduce the error, and the resulting output is a 

classifying model with an additional optional ranking of important variables. 

 

The model can return an index of variable importance for each protein, derived from a 

combination of how frequently that protein is selected and the sum of the reduction of 

heterogeneity in the outcome data of the split using that protein variable (i.e. how pure the 

groups are downstream of the split). 

 

2.4.4.2.1 Assumptions of Random Forest 

Random forest modelling holds few assumptions of the predictors.  In particular, it works well 

with data that is not normally distributed, and is not affected by outliers.  It does suggest 

predictors be independent of each other to prevent influencing the averaging of trees.  If 

predictors are similar ie collinear, they will vote the same way and therefore influence the 

process of averaging outcome across all trees.  Furthermore, if a collinear variable is selected 

at a particular split, this will adversely influence the calculated variable importance for its 

covariate at a distal split. 

 

2.4.4.2.2 Application of Random Forest 

Random forest models were applied to the dataset using randomForestSRC package for R.  

Random forest modelling was performed using random forest optimized for classification.  

Forest size was determined by examination of forest error rate during forest growth, and a 

forest size of 5000 trees was selected as this was well above size at which model error 

stabilized.  Protein variables were then ranked according to variable importance. 

 

Within this work, random forest modelling was used to support variable selection through 

variable importance ranking, rather than for classification modelling.  As such, acknowledging 

the issue with overfitting the model developed, decision splits were not constrained and the 

trees were allowed to develop completely to individual sample terminal leaves. 
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2.4.4.2.3 Random Forest: Advantages 

At its most basic form – the decision tree – this methodology is understandable and can simply 

be applied to the clinical setting.  Random forests do not assume normality in the data and 

can be reliably handle data with outliers.  Due to randomness in the selection of proteins to 

model, collinearity is well handled in the classifying model with minimal effect on the 

outcome. 

 

2.4.4.2.4 Random Forest: Disadvantages 

Due to the depth of ensemble trees required to develop a random forest model, the final 

output is one that cannot be visualised, and therefore the predictive model exists as a “black 

box” for examining test data after training.  Although the variable importance can be 

examined, this can only be interpreted as an indication of the way proteins are required 

within the model.  Random forests are very good classifiers, but very susceptible to overfitting 

without reasonable pre-modelling constraint on the number of predictor variables entered, 

and due consideration on the level of constraint over the extent of growth of the decision 

tree.  Without this, the tree will inevitably over grow, to produce a long final model which can 

perfectly identify disease in our derivation cohort and describes the derivation cohort 

perfectly, but cannot generalise to accurately predict disease in a new validation sample. 

 

 

 Least Absolute Selection and Shrinkage Operator (LASSO) 

LASSO is an advanced method for linear regression, developed for higher dimensional 

modelling with large numbers of independent variables which often exceed the number of 

patient samples. 

 

 

y  =  b  +  b1x1  +  b2x2  +  …  +  bzxz 

y = 
Dependent 
variable 

b =  
Model co-efficient 

X = 
Independent 
variable 
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Figure 2.3: Regression model with descriptors 

 

The model applies a shrinkage penalty which reduces the co-efficient of any independent 

variable to zero if the variable does not add to the predictive value of the model, either 

through lack of predictive utility, or through collinearity, thereby performing selection of the 

important variables.  In the case of collinearity, one variable is chosen at random to remain 

in the model with the others removed, therefore prior examination of collinear variables is 

essential. 

 

LASSO model building uses internal cross validation to find the penalty term which returns 

the lowest error in the final model. 

 

In diagnostic classification, the dependent variable is the diagnostic grouping, and the 

independent variables are the clinical parameters and protein concentrations. 

 

2.4.4.3.1 Assumptions of LASSO  

Variables should be linear, scaled and independent.  Normality need not be assumed and the 

model can handle multicollinearity. 

 

2.4.4.3.2 Application of LASSO 

LASSO models were built using the GLMnet package for R.  All data were centred and scaled 

prior to modelling, and log2 transformed as previously described.  Collinearity was assessed 

and eliminated by review of collinear proteins and selection of the appropriate protein to 

retain from each group based on biological relevance after review of published literature and 

evidence related to protein function. 

 

As described above with regards to the penalty applied to the model, the length of the LASSO 

model generated for this work was constrained using the lambda min parameter to control 

final model length. 
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Protein coefficient data were extracted from the final model and ranked according to 

absolute value. 

 

2.4.4.3.3 LASSO: Advantages 

LASSO returns a single model which can be written out by hand if necessary in the form of a 

standard linear regression formula and then applied to test data.  It is derived through 

complex machine learning and statistics, but can be applied relatively simply to new data.  It 

is therefore a clear model compared to the random forest and avoids the concern regarding 

“black box” models.  LASSO is reported to be able to handle non-parametric data. 

 

2.4.4.3.4 LASSO: Disadvantages 

Although it is stated that the model can handle collinearity, where variables are correlated, 

LASSO will indiscriminately select one of the correlated variables to take forward and drop 

the others from the result.  As the statistics to generate the final model are complex, it is 

important to be aware of this and assess for collinearity prior to modelling as there is no 

report on this in the output. 

 

The final model is reported as independent variable identifiers and their co-efficients, but the 

LASSO process does not return any measure of statistical significance such as p-values which 

are returned and expected as standard in other linear regression models.  It is therefore more 

difficult to understand the significance of each individual variable in the model to the 

dependent variable, which is important when trying to assess whether a model is likely to be 

overfit. 

 

 Logistic Regression with backward step Akaike information criterion (AIC) 

Logistic regression is a method for modelling classification problems, with a binary outcome.  

It is used to determine the relationship between features and the probability of a particular 

outcome. 
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2.4.4.4.1 Assumptions of Logistic Regression 

For this type of classification using binary logistic regression, the dependent variable must be 

binary categorical.  The predictor variable measurements should be independent of each 

other (ie no repeated measurements).  There should not be collinearity between the predictor 

variables.  The dependent variables need not be normally distributed. 

 

2.4.4.4.2 Akaike information criterion (AIC) 

AIC is a metric used to assess model fit, and can be used to compare different statistical 

models.  Overfitting is a risk when deriving a statistical model, increased by an increase in the 

number of predictors in a model compared to the number of samples.  AIC uses the log-

likelihood metric (a measure of how well the model fits the data) from a logistic regression 

model and penalizes it for the greater number of variables in the model, returning a metric 

which can be used to compare between similar models and allow the one which has the 

optimal balance between fitting the derivation dataset and avoidance of overfitting. 

 

I have used a backward step-AIC model from the MASS package in R to calculate an AIC metric 

for my logistic regression model.  This algorithm starts by calculating the AIC metric for the 

full model, and then removes variables and recalculates.  If the AIC score is lower with 

variables removed, then this becomes the new accepted model and the algorithm repeats 

until the lowest AIC metric is found, this then represents the model that best fits the data, 

with a low enough number of predictors to reduce the likelihood of model overfitting. 

 

 Validation Assays 

External serum samples were received from the Vera Moulton Wall Centre for Pulmonary 

Vascular Diseases, Stanford University School of Medicine and from the Division of Allergy, 

Pulmonary and Critical Care Medicine, Vanderbilt University, US.  These were couriered on 

dry ice and received intact.  They were temporarily stored at -80°C until assayed. 

 

Samples were received without associated clinical data, and therefore assays were performed 

blind to patient classification. 
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All samples were randomized as to plate and location, with duplicates plated together and 

standards plated together as shown.  Five samples from the derivation cohort were 

randomized and plated alongside the validation samples to act as ‘plate anchors’.  As constant 

biological samples between plates, and between our assays and the external Myriad RBM 

assays, these samples can be used in addition to the plate standards and controls to assess 

for intra- and inter-assay variability, and additionally be used to assess for any consistent 

statistical correction necessary between assay batches. 

 

 CLEC3B ELISA assay 

CLEC3B serum concentrations were determined from the external samples using an ELISA 

assay kit (Abcam ab213832, Detection range 312 pg/ml to 20000 pg/ml).  Expected serum 

concentrations were taken from the derivation dataset results which fell in the range 6.4 

µg/ml to 23 µg/ml, therefore each sample was diluted by of 1:1000 prior to assay.  Assay 

standards were made up by diluting a known concentration of lyophilized recombinant 

human Tetranectin protein with sample diluent buffer and a 1:2 serial dilution, resulting in 

standard concentrations for standard 7 to standard 1 of  20,000 pg/ml, 10000 pg/ml, 5000 

pg/ml, 2500 pg/ml, 1250 pg/ml, 625 pg/ml, and 312.5 pg/ml respectively.  Background 

standard was sample diluent buffer alone.  100 µl of each test sample and standard were 

plated as per Figure 2.4 in the provided pre-coated anti-human Tetranectin 96-well plate, 

with each sample position verified by 2 independent operators. 

 

 
Figure 2.4: Plate map for CLEC3B ELISA assay in 96 well plate 
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Showing plate map for Stanford samples as example.  Note differences between platemaps for positions of 
standards and background. 

 

Following protocol, each plate was sealed and incubated at 37°C for 90 minutes before 

discarding the remaining contents of the plate and adding 100 µl of biotinylated anti-human 

Tetranectin working solution to each well.  The plate was again sealed and incubated at 37°C 

for 60 minutes.  Each well was washed 3 times with PBS, followed by the addition of 100 µl of 

prepared ABC working solution to each well.  The plate was sealed and incubated at 37°C for 

30 minutes.  Each well was carefully washed 5 times with PBS, followed by the addition of 90 

µl of prepared colour developing agent added to each well.  A final incubation period of 15 

minutes followed at 37°C in the dark.  Finally, 100 µl of prepared TMB stop solution was added 

to each well.  Assay results were determined by reading each well on a plate reader on 

photometric setting for absorbance of 450 nm.  Standard curves were generated using Prism 

7 for Mac, and sample protein concentrations interpolated from standard curve.  Measured 

protein concentrations were multiplied x1000 to account for the initial sample dilution step. 

 

 NTproBNP Luminex assay 

The initial NTproBNP assays were conducted using a Luminex kit assay (Milliplex MAP kit, 

Human CVD, magnetic bead panel 1, HCVD1MAG-67K, Detection range 34.3 pg/ml to 25000 

pg/ml).  Following the assay protocol, no serum sample dilution was required for this assay. 

To prime the plates, 100 µl of assay buffer was added to each well of 96 well plate.  The plate 

was then sealed and mixed on a plate shaker for 10 minutes at room temperature.  The well 

contents were then discarded.  NTproBNP protein standards made up from a known protein 

concentration by reconstituting panel 1 standard with 250 µl deionized water, mixed and 

vortexed to produce NTproBNP standard 1 at 25000 pg/ml.  Further standards were made by 

1:3 serial dilution with assay buffer to make standard 2 to 7 at concentrations 8333.3 pg/ml, 

2777.8 pg/ml, 925.9 pg/ml, 308.6 pg/ml, 102.9 pg/ml and 34.3 pg/ml respectively.  

Background standard was assay buffer alone.  The NTproBNP luminex assay kit also provided 

2 quality control samples which were also reconstituted with 250 µl deionized water, mixed 

and vortexed.  25 µl of serum matrix was added to standard, control and background wells 

and 25 µl of assay buffer was added to each test sample well.  25 µl of standards, samples 
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and controls were added to the appropriate wells according to our platemap (Figure 2.5).  All 

sample placements were verified by 2 independent operators. 

 

 
Figure 2.5: Plate map for NTproBNP Luminex assay in 96 well plate 

Showing plate map for Stanford samples as example.  Note differences between platemaps for positions of 
standards and background. 

 

The Luminex bead vials were sonicated for 30 seconds, then vortexed for 1 minute.  150 µl of 

this was then added to the mixing bottle and made up to 3000 µl with bead diluent and again 

vortexed.  25 µl of the bead mixture was added to every well.  The plate was sealed and 

incubated at 4°C for 18 hours in the dark.  To wash the luminex plates, each plate was coupled 

with a magnet, and after 60 seconds the plate contents discarded.  Wells were washed 3 times 

by removal of the magnet, addition of wash buffer, before reapplication of the magnet and 

discard of the well contents after 60 seconds.  After the first wash, 50 µl of detection 

antibodies were added to each well.  The plate was sealed with foil and shaken for 1 hour at 

room temperature.  50 µl Streptavidin-phycoerythrin was added to each well.  The plates 

were again sealed with foil and shaken for 30 minutes at room temperature.  Each plate was 

then washed 3 times as previously described.  100 µl sheath fluid was added to all wells and 

the plate shaken for 5 minutes.  Plates were read on Luminex xMAP machine in house.  

Standard curves were created in Prism 7 for MAC, and test sample protein concentrations 

interpolated from the standard curve. 
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 COL18A1, GDF15, IL6ST, IGFBP7, PARK7 Luminex assay 

Measurement of COL18A1, GDF15, IL6ST, IGFBP7 and PARK7 serum concentrations was done 

using a Luminex kit assay (R&D systems, Catalogue: LXSAHM-05, Lot: 424495.  Detection 

ranges: COL18A1 43.1 pg/ml to 31450 pg/ml; GDF15 6.8pg/ml to 4950 pg/ml; IL6ST 131.1 

pg/ml to 95540 pg/ml; IGFBP7 101.7 pg/ml to 74150 pg/ml; PARK7 86.6 pg/ml to 63120 

pg/ml).  Following the assay protocol, test serum samples were diluted 1:2 at the outset.  

Standards were made up with calibrator diluent RD6-52 as instructed to known protein 

concentrations, and serial diluted 1:3 to produce standards 1 – 7 at concentrations shown in 

Figure 2.6.  Background standard was calibrator diluent RD6-52 alone. 

 

 
Figure 2.6: Serial standard protein concentrations (pg/ml) 

 

50 µl of each standard, background or test sample was added to the appropriate wells 

according to our platemap (Figure 2.7).  The plating position was verified by two operators. 

 

 
Figure 2.7: Plate map for COL18A1, GDF15, IL6ST, PARK7, IGFBP7 Luminex assay in 96 well plate 

Showing plate map for Stanford samples as example.  Note differences between platemaps for positions of 
standards and background. 
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50 µl of the microparticle cocktail was added to each well, and the plate then covered with 

foil and shaken for 2 hours at room temperature.  Following the same magnet procedure as 

described for the NTproBNP luminex assay in section 2.5.2, each plate was washed 3 times.  

50 µl of Biotin antibody cocktail was added to each well, the plate then covered with foil and 

shaken for 1 hour at room temperature.  Each plate was washed 3 times before 50 µl 

Streptavidin-PE was added to each well.  The plate was covered with foil and shaken for 30 

minutes at room temperature.  Plates were washed for a final time followed by the addition 

of 100 µl wash buffer to each well.  Plates then shaken for 2 minutes at room temperature.  

All plates were read on our in house Luminex xMAP machine.  Standard curves were created 

in Prism 7 for MAC, and sample protein concentrations interpolated from the standard curves. 

Protein concentrations were multiplied x2 to account for initial sample dilution step. 

 
 

 NTproBNP ELISA assay 

A second NTproBNP assay was done using an ELISA DuoSet assay (R&D Systems DY3604-05, 

Lot P148146, Detection range 312 pg/ml to 150000 pg/ml).  No serum sample dilution was 

required for this assay.  The capture antibody was diluted to the working concentration of 4 

µg/ml with PBS and 100 µl immediately added to each active well of the three 96-well plates 

(Figure 2.8).  The plates were sealed and incubated overnight at room temperature.  The 

contents of each well was aspirated and washed with wash buffer three times, tipping out 

the contents and blotting the plate at each cycle.  Plates were blocked by adding 300 µl of 

reagent diluent to each well, and incubated for 1 hour at room temperature before washing 

each plate again.  Standards were made up by diluting supplied standard with 0.5 ml of 

reagent diluent to give Standard 7 at 150000 pg/ml.  The next standard was made up by 

making up 200 µl of Standard 7 to 3000 µl with reagent diluent, giving Standard 6 at 10000 

pg/ml.  Standards 5 to 1 were made by serial 1:2 dilution of Standard 6 with reagent diluent 

resulting in concentrations 5000 pg/ml, 2500 pg/ml, 1250 pg/ml, 625 pg/ml, and 313 pg/ml 

respectively.  Background standard was reagent diluent alone.  100 µl of test samples and 

standards were plated as per Figure 2.8, with sample positions verified by two operators.  The 

plate was sealed and incubated for 2 hours at room temperature. 
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Figure 2.8: Plate layout for NTproBNP ELISA assay 

3 plates in total performed to include both Stanford and Vanderbilt samples. 

 
Each plate was washed, then 100 µl of the detection antibody was added to each well, and 

the plate covered and incubated for 2 hours at room temperature.  Each plate was washed, 

then 100 µl of Streptavidin-HRP added to each well.  Plates were covered and incubated for 

20 mins at room temperature in the dark.  Plates were washed a final time, then 100 µl of 

substrate solution was added to each well.  Plates were covered and incubated for 20 mins at 

room temperature in the dark.  50 µl of stop solution was added to each well, ensuring 

thorough mixing.  Plates were read on plate reader, with photometric setting and a 

wavelength of 450 nm.  Plates were also read at wavelength 540 nm.  Readings at 540 nm 

subtracted from those at 450 nm to correct for optical imperfections in the plate.  Standard 

curves were created in Prism 7 for Mac, and test sample protein concentrations were 

interpolated from the standard curve.   

 
 

 In vitro mechanisms 

Statistical modelling identified a mixture of proteins which are either previously well 

described with regards to their pathophysiology in PAH, or those which are novel candidate 

proteins for further investigation.  We took some of the most frequently reported and highest 

ranked novel proteins forward for in vitro investigation to identify their role in this disease.   

 

Validation plate layout for repeat NTproBNP by ELISA. No sample dilution

Stanford Plate 1 1 2 3 4 5 6 7 8 9 10 11 12
A Standard7 (High) Standard 7 (High) STP507 STP507 STP601 STP601 STP581 STP581
B Standard 6 Standard 6 STP361 STP361 STP84 No sample STP497 STP497 STP276 STP276
C Standard 5 Standard 5 STP206 STP206 STP347 STP347 STP433 STP433 STP56 STP56
D Standard 4 Standard 4 STP87 STP87 STP652 STP652 STP722 STP722
E Standard 3 Standard 3 STP57 STP57 STP27 STP27 STP338 STP338
F Standard 2 Standard 2 STP653 STP653 STP205 STP205 STP639 STP639 STP165 STP165
G Standard 1 Standard 1 STP379 STP379 STP327 STP327 STP359 STP359
HStandard 0 (Background)Standard 0 (Background) STP452 STP452 STP270 STP270

Stanford Plate 2 1 2 3 4 5 6 7 8 9 10 11 12
A Standard7 (High) Standard 7 (High) STP424 STP424 STP67 STP67 STP752 STP752
B Standard 6 Standard 6 STP329 STP329 STP628 STP628 STP30 STP30 STP646 STP646
C Standard 5 Standard 5 STP140 STP140 STP303 STP303
D Standard 4 Standard 4 STP442 STP442 STP516 STP516 STP578 STP578 STP146 STP146
E Standard 3 Standard 3 STP441 STP441 STP384 STP384 STP704 STP704 STP611 STP611
F Standard 2 Standard 2 STP453 STP453 STP117 STP117
G Standard 1 Standard 1 STP709 STP709 STP514 STP514 STP115 STP115 STP420 STP420
HStandard 0 (Background)Standard 0 (Background) STP551 STP551 STP557 STP557 STP116 STP116 STP93 STP93

Vanderbilt Plate 3 1 2 3 4 5 6 7 8 9 10 11 12
A Standard 7 (High) Standard 7 (High) SPH321LB1356 SPH321LB1356 SPH731NG5005 SPH731NG5005 SPH730RJ5004 SPH730RJ5004 SPH881LV5251 SPH881LV5251
B Standard 6 Standard 6 SPH791MM5110 SPH791MM5110 SPH765MV5072 SPH765MV5072 SPH793CH5114 SPH793CH5114
C Standard 5 Standard 5 SPH679TK3051 SPH679TK3051 SPH809MJ5144 SPH809MJ5144 SPH467DW2591 SPH467DW2591 SPH909KG5290 SPH909KG5290
D Standard 4 Standard 4 SPH697ST3077 SPH697ST3077 SPH694DP3074 SPH694DP3074 SPH699PE3079 SPH699PE3079
E Standard 3 Standard 3 SPH717NB3104 SPH717NB3104 SPH777AB5088 SPH777AB5088 SPH460MO2563 SPH460MO2563
F Standard 2 Standard 2 SPH810LP5146 SPH810LP5146 SPH1134KS5566 SPH1134KS5566
G Standard 1 Standard 1 SPH879RM5249 SPH879RM5249 SPH942DS5336 SPH942DS5336 SPH885CN5256 SPH885CN5256 SPH721TH3111 SPH721TH3111
HStandard 0 (Background)Standard 0 (Background)SPH896JB5268 SPH896JB5268 SPH459DH2561 SPH459DH2561 SPH816CW5152 No sample
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 Immunohistochemistry 

Immunohistochemistry was performed on healthy and diseased lung tissue sections from 

human and rat species.  Diseased rat lung tissues were from Sugen hypoxic rat models of PAH.  

Human disease tissues were from human explants at the time of transplantation, with healthy 

lung tissues from healthy areas of lung from patients undergoing surgery for lung nodules or 

early stage lung cancers. 

 

Tissues were investigated for the presence or absence of-, and the location of the expression 

of PARK7, CLEC3B and the receptor of GDF-15 – GDNF family receptor alpha like (GFRAL).  

Primary antibodies for IHC were obtained from Abcam (polyclonal rabbit anti-PARK7 

ab18257, polyclonal rabbit anti-CLEC3B ab202134, polyclonal rabbit anti-GFRAL ab235111). 

 

 Chromogenic IHC 

Slides were de-waxed and rehydrated through graded ethanol to water. (Xylene 10mins, 

Xylene 10 mins, 100% ethanol 2 mins, 100% ethanol 2 mins, 90% (v/v) ethanol 2 mins, 70% 

(v/v) ethanol 2 mins, 50% (v/v) ethanol 2 mins, tap water 10 mins).  Endogenous peroxidases 

were blocked by incubation in 3% (v/v) hydrogen peroxide (stock 30% w/v hydrogen peroxide, 

LP chemicals ltd.  Diluted with methanol) for 10 mins followed by a rinse in tap water.  Antigen 

retrieval was performed for PARK7 and GFRAL experiments only by incubating in 10mM 

citrate buffer at pH 6.0 with 0.05% (v/v) Tween-20 at 95°C for 20 minutes.  Non-specific 

binding of secondary antibody was blocked with 1% (w/v) milk buffer for 30 mins at room 

temperature.  The milk buffer was tipped away (not washed), and excess blotted from each 

slide.  Each slide was incubated with primary antibody (PARK7 1:200 dilution; CLEC3B 1:200 

dilution; GFRAL 1:50 dilution) overnight at 4°C.  Each slide was washed in 3 changes of PBS 

with 0.05% (v/v) Tween-20 (vWR chemicals, Cat: 663684B) for 5 minutes.  Biotinylated 

secondary antibodies (PARK7, CLEC3B, GFRAL: 1:200 dilution, Vector laboratories biotinylated 

goat anti-rabbit antibody BA-1000) were incubated on slides for 30 mins at room 

temperature.  Unbound secondary antibodies were washed with PBS with 0.05% (v/v) Tween-

20.  Slides were incubated with ABC complex (Vectastain standard, Vector labs.  Cat: PK6100) 

for 30 minutes at room temperature before washing again.  DAB substrate (DAB substrate kit, 

Cell signalling technologies.  Cat: 8059s) was added and reaction speed observed by light 
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microscopy.  The reaction was stopped after appropriate chromogen development by rinsing 

in tap water.  Slides were counterstained with Carazzi’s haematoxylin for 1 minute, then again 

washed with tap water.  Each slide was dehydrated through graded alcohols, to xylene and 

mounted using DPX mountant. 

 
 

 Immunofluorescent IHC 

Slides were de-waxed and rehydrated through graded ethanol to water (Xylene 10mins, 

Xylene 10 mins, 100% ethanol 2 mins, 100% ethanol 2 mins, 90% (v/v) ethanol 2 mins, 70% 

(v/v) ethanol 2 mins, 50% (v/v) ethanol 2 mins, tap water 10 mins).  Endogenous peroxidases 

were blocked by incubation in 3% (v/v) hydrogen peroxide for 10 mins followed by a rinse in 

tap water.  Antigen retrieval was performed for PARK7 and GFRAL experiments only by 

incubating in 10 mM citrate buffer at pH 6.0 with 0.05% (v/v) Tween-20 at 95°C for 20 

minutes.  Non-specific binding of secondary antibody was blocked with 10% (v/v) goat serum 

(Vector laboratories.  Cat: S-1000) for 30 mins at room temperature.  Goat serum was tipped 

away (not washed), and excess blotted.  Each slide was incubated with primary antibody 

(PARK7 1:200; CLEC3B 1:200; GFRAL 1:50) overnight at 4°C then washed in 3 changes of PBS 

with 0.05% (v/v) Tween-20 for 5 minutes.  Each slide was incubated with immunofluorescent 

secondary antibody (PARK7, CLEC3B, GFRAL: 1:200 dilution Invitrogen Alexa fluor 488 goat 

anti-rabbit antibody A11008) for 30 mins at room temperature in the dark, then again washed 

in 3 changes of PBS with 0.05% (v/v) Tween-20 for 5 minutes, this time in the dark.  Slides 

were mounted using Vectashield vibrance with DAPI (Vector labs, Cat: H-1800) mount in the 

dark.  Each slide was individually scanned using a Zeiss Imager Z2 microscope at x20 

magnification set for fluorescence at the appropriate excitation wavelength. 

 
 

 Cell culture 

To investigate the effect of novel candidate proteins in cell culture, an appropriate cell line 

was required to approximate to those found in the pulmonary vasculature, as such human 

pulmonary arterial endothelial cells (Lonza, Cat: CC-2530) and human pulmonary arterial 

smooth muscle cells (Lonza, Cat: CC-2581) were used. 
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Cells were bought at passage 3, and stored in liquid nitrogen until used.  On waking, cells were 

passaged when confluent and growth media changed every 24-36 hours.  Experiments were 

conducted between passages 3 and 8. 

 

 Phenotyping of H-PAEC 

Endothelial cells were grown on coverslips coated in 0.1% (v/v) gelatin in a 6-well plate until 

confluent.  Each well was washed in 3 changes of PBS.  Cells were fixed by adding 2 ml of ice 

cold paraformaldehyde to each well for 10 mins at room temperature.  Each well was washed 

in 3 changes of PBS.  Cells were incubated in 2 ml Triton x100 for 15 mins at room 

temperature.  Each well was again washed in 3 changes of PBS.  Non-specific antibody binding 

was blocked by incubating cells in 10% (v/v) goat serum for 90 mins at room temperature.  

The contents of each well was aspirated, but wells were not washed at this step.  Primary 

antibody was diluted to appropriate concentrations in 10% (v/v) goat serum and added to the 

appropriate wells.  Plates were incubated for 90 mins at room temperature (SMA – 1:150 

dilution, mouse monoclonal antibody against SMA, Abcam.  Cat: ab7817; vWF – 1:200 

dilution, rabbit polyclonal antibody against vWF, Dako.  Cat: A0082; Vimentin – 1:500 dilution, 

rabbit monoclonal antibody against vimentin, Abcam.  Cat: ab92547).  Each well was washed 

in 3 changes of PBS.  1:200 dilution in PBS of the appropriate fluorescent secondary antibody 

was added to each well and incubated at room temperature in the dark for 60 mins. 

(Secondary antibodies: Alexa fluor 488 goat anti-rabbit antibody, Invitrogen.  Cat: A11008; 

Alexa fluor 555 goat anti-mouse antibody, Invitrogen.  Cat: A21422).  Each well was washed 

in dark conditions with 3 changes of PBS.  Coverslips were mounted onto slides using 

Vectashield Vibrance with DAPI (Vector labs, Cat: H-1800) mount and left to set overnight in 

the dark.  Slides were imaged using a Zeiss Imager Z2 microscope at x20 magnification set for 

fluorescence at the appropriate excitation wavelength. 

 
 
 Proliferation assays 

HPAEC proliferation assays 

The assay was performed in a clear bottom, white wall 96-well plate coated with 30 µl 0.1% 

(v/v) gelatin and incubated for 30mins at 37°C before tipping the plate and blotting away the 

excess.  Human endothelial cells were plated at 5000 cells/well in full growth media (EGM-2, 
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Lonza, Cat: CC-3162) and incubated overnight at 37°C in a CO2 incubator.  The growth media 

was removed, the plate washed with sterile PBS, and replaced with 200 µl of quiescent media 

(EBM-2 supplemented with 0.5% (v/v) foetal calf serum, Lonza, Cat: CC-3156) followed by a 

period of incubation at 37°C in a CO2 incubator for 24 hours.  Media excess was tipped away 

and blotted.  The plate was washed with sterile PBS, and  200 µl quiescent media with 

appropriate stimulator was added to each well (Recombinant human PARK7 protein, Abcam, 

Cat: ab124312; Recombinant human CLEC3B protein, R&D systems, Cat: 5170-CL-050; 

Recombinant human VEGFA protein, R&D systems, Cat: 293-VE-010; Recombinant human 

FGF protein, R&D systems, Cat: 233-FB-025).  The plate was then incubated at 37°C in a CO2 

incubator for 48 hours.  A standard curve of cells was added to spare wells on the plate in 

quiescent media at total volume or 200 µl per well.  100 µl CellTiter-Glo (Promega, Cat: G7571) 

was added to each well and the plate was then read on plate reader on a luminescence 

detection setting. 

 
HPASMC Proliferation assays 

For this assay a clear bottom, white wall 96-well plate was coated with 30 µl 13.5 ng/ml 

fibronectin and incubated for 30mins at 37°C before tipping and blotting away the excess.  

Human pulmonary artery smooth muscle cells were plated at 5000 cells/well in full growth 

media (SMGM-2, Lonza, Cat: CC-3182) and incubated overnight at 37°C in a CO2 incubator.  

Media was removed, the plate was washed with sterile PBS, and replaced with 200 µl of 

quiescent media (1:20 dilution of SMGM-2 in SMBM (Lonza, Cat: CC-3181)).  The plate was 

then Incubated at 37°C in a CO2 incubator for 48 hours.  Excess media was tipped away and 

blotted.  The plate was washed with sterile PBS, followed by the addition of 200 µl of 

quiescent media with the appropriate stimulator to each well (Recombinant human PARK7 

protein, Abcam, Cat: ab124312; Recombinant human CLEC3B protein, R&D systems, Cat: 

5170-CL-050; Recombinant human PDGF protein, R&D systems, Cat: 220-BB-050).  The plate 

was incubated at 37°C in a CO2 incubator for 72 hours.  A standard curve of cells was added 

to spare wells on the plate in quiescent media at total volume or 200 µl per well.  100 µl 

CellTiter-Glo (Promega, Cat: G7571) was added to each well.  The plate was read on plate 

reader, with a luminescence detection setting. 
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 Migration assays 

This experiment was started when passaging cells were near confluence in a T75 flask.  The 

cells were washed 3 times in sterile PBS, and excess removed with a pipette.  30 ml of 

quiescent media (as 2.6.2.2 Proliferation assays) was added to the T75 flask.  The flask was 

incubated at 37°C in a CO2 incubator for 24 hours for HPAEC and 48 hours for HPASMC.  

Inserts from 24-well Multiwell plates (BD Falcon 351185, 8 µm pore size) were coated in 0.1% 

(v/v) gelatin.  Cells were washed with sterile PBS and suspended in quiescent media at 12x104 

cells/ml.  Excess gelatin was removed from the inserts and wells.  750 µl of quiescent media 

with the required stimulator was added to each well (Recombinant human PARK7 protein, 

Abcam, Cat: ab124312; Recombinant human CLEC3B protein, R&D systems, Cat: 5170-CL-050; 

Recombinant human VEGFA protein, R&D systems, Cat: 293-VE-010; Recombinant human 

FGF protein, R&D systems, Cat: 233-FB-025).  250 µl of the cell suspension was added to each 

insert.  Plates were incubated at 37°C in a CO2 incubator for 5 hours.  The bottom of the insert 

was carefully washed in PBS.  Non migrated cells were removed from inner membrane of the 

insert with a cotton bud.  Cells remaining on the outer surface of the membrane were fixed 

and stained using a Kwik-Diff kit (Thermofisher, Cat: 9990700).  The inserts were left to dry 

for 24 hours, and images were taken from random locations in the well using an inverted light 

microscope (Figure 2.9).  Migrated cells were counted using the cell counter application in 

ImageJ (Schindelin et al., 2012).  
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Figure 2.9: Migration assay: an example. 

Image from light microscopy used to quantify migration assay.  Red arrows indicate a sample of the cell bodies 
counted as an example of the cells counted on this slide. 

 

 Angiogenesis assays 

This experiment was started once cells were near confluence in a T75 flask.  Cells were washed 

with sterile PBS, and excess removed with a pipette.  30 ml of quiescent media (as 2.6.2.2 

Proliferation assays) was added to the T75 flask.  The flask was incubated at 37°C in a CO2 

incubator for 24 hours.  Growth factor reduced Matrigel (Corning, Cat: 11523550) was thawed 

gently overnight in ice.  A flat bottom 96-well plate, and appropriate pipette tips were also 

cooled overnight in a -20°C freezer.  The pre-cooled plate and pipettes were used and 40 µl 

GFR-Matrigel was added to each well to cover the entire growth surface while the plate was 

kept chilled.  The plate was centrifuged at 4°C at 300G for 10 mins.  The plate was then 

incubated at 37°C in a CO2 incubator for 30 mins to allow the Matrigel to set.  Cells were 

suspended in quiescent media at 1x105 cells/ml.  100 µl of the cell suspension was added 

gently to each well.  100 µl of quiescent media with double concentration of the desired 

stimulator was added to each well (Recombinant human PARK7 protein, Abcam, Cat: 
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ab124312; Recombinant human CLEC3B protein, R&D systems, Cat: 5170-CL-050; 

Recombinant human VEGFA protein, R&D systems, Cat: 293-VE-010; Recombinant human 

FGF protein, R&D systems, Cat: 233-FB-025).  The plate was incubated at 37°C in a CO2 

incubator for 6 hours.  Images were obtained from random locations in the well by inverted 

light microscope and analysed using the Angiogenesis analyser application in ImageJ 

(Carpentier, Schindelin et al., 2012)(Figure 2.10). 
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Figure 2.10: Angiogenesis analysis: an example. 

An example of the angiogenesis network analysis from ImageJ.  A: the original angiogenesis image from light 
microscopy; B: the original image overlaid with the skeleton network; C: the computer derived skeleton 

network for tube network measurement. 
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 Transfection 

This experiment started with cells at confluence in a T75 flask.  Cells were washed and 15 ml 

of full growth media (EGM-2, Lonza, Cat: CC-3162) added.  Lipofectamine RNAiMAX reagent 

(Invitrogen, Cat: 13778-150) was diluted in Opti-MEM medium (Gibco, Cat: 31985-070).  59 

µl of RNAiMAX reagent was diluted in 750 µl Opti-MEM.  20 µl of the appropriate 10 µM 

siRNA solution (200 pmol siRNA) was added to 750 µl Opti-MEM medium (CLEC3B siRNA: 

Thermofisher Silencer Select, Cat: s14246; PARK7 siRNA: Thermofisher Silencer Select, Cat: 

s22306; Non-targeting control siRNA, Dharmacon, Cat:D-001810-01-05)  The diluted 

Lipofectamine RNAiMAX reagent and diluted siRNA solution were combined together in 1:1 

ratio to a total volume of 1500 µl.  This was then incubated at room temperature for 5 mins.  

The siRNA-Lipofectamine RNAiMAX solution was added to the cells in the T75 flask.  Cells 

were incubated for 6 hours at 37°C in a CO2 incubator, then washed with sterile PBS and 

transfection media replaced with full growth media overnight (EGM-2, Lonza, Cat: CC-3162).  

At 24hrs from transfection, cells were washed again, and media replaced with quiescent 

media (EBM-2 supplemented with 0.5% (v/v) foetal calf serum, Lonza, Cat: CC-3156).  Cells 

were incubated overnight at 37°C in a CO2 incubator.  Transfected cells were then ready to 

be used in a migration assay as per section 2.6.2.3 Migration assays. 

 
 
 Protein quantification and Western blot 

This experiment begins with the cells remaining from the post-transfection migration assay.  

These cells were centrifuged in falcon tubes at 2500 xG for 10 mins.  Make up M-PER 

mammalian protein extraction reagent (Thermo, Cat: 78501) with 30 µl of Halt protease 

inhibitor cocktail (x100 concentration) (Thermo, Cat: 1861278) and 30 µl of Halt 

phosphatase inhibitor cocktail (100x concentration) (Thermo, Cat: 1861277).  Remove the 

supernant from all the tubes and resuspend the pellet in 500 µl of M-PER solution.  Shake 

gently for 10 minutes, then centrifuge at 14000 xG for 15 minutes to remove any cell debris.  

Keep the supernant for analysis. 
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Protein quantification 

Using a 96 well plate, plate out pre-diluted protein assay standards: (Bovine serum albumin 

set, Thermo, Cat: 23208). 

a. Standard 7: 2000 µg/ml 
b. Standard 6: 1500 µg/ml 
c. Standard 5: 1000 µg/ml 
d. Standard 4: 750 µg/ml 
e. Standard 3: 500 µg/ml 
f. Standard 2: 250 µg/ml 
g. Standard 1: 125 µg/ml 

 
Plate out 10 µl of standards in the appropriate wells of the 96 well plate (Figure 2.11).  Plate 

out 10 µl of neat protein samples in the top row of the plate and produce 2x serial dilution 

curve (with PBS) in case neat samples are above the top of the standard curve.  Add 150 µl 

of Pierce 660 nm protein assay reagent (Thermo, Cat: 22660) to each well.  Shake for 1 

minute and stand for 5 minutes before reading on a plate reader, colorimetric setting at 660 

nm.  Convert results to protein concentrations using the known standard curve. 

 

 
Figure 2.11: Plate layout for protein quantification assay 

 
 

Western blot 

First denature proteins.  To do so, make up a solution of 25 µl (4x concentration) of loading 

buffer (Li-Cor, Cat: 928-40004) with 10 µl of (10x concentration) reducing agent (Novex, Cat: 

B0004) and 65 µl of the protein sample and heat to 95°C for 2 mins.  Take a gel (Invitrogen, 

Cat: NW04120B0X) and place in 1L Bolt running buffer (20x concentration made up with 

water) (Novex, Cat: B0002) together with 500 µl of Bolt antioxidant (Invitrogen, Cat: 

BT0005) in an electrophoresis tank.  Remove the comb and add 5 µl Ladder (Li-Cor 

Chameleon duo, Cat: 928-60000), 35 µl Non-transfected sample, 35 µl Scramble transfected 

sample, 35 µl PARK7 transfected sample and 35 µl CLEC3B transfected sample to the 

appropriate gel wells.  Run a sample for each primary antibody being tested.  Run the 
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electrophoresis for 30 mins at 200 volts.  Remove the gel from the electrophoresis tank and 

remove the wells and foot from the gel.  Using an iBlot2 dry blotting system, and Blot2 NC 

regular stacks (Invitrogen, Cat: IB23001), transfer to a nitrocellulose membrane using 23 

Volts for 7 mins.  Wash the nitrocellulose membrane in PBS, then block with Odyssey 

blocking buffer (Li-Cor, Cat: 927-50000) for 60 mins on a rocker at room temperature.  Make 

up primary antibodies in Odyssey blocking buffer to 10ml total volume.  Rabbit anti-PARK 7 

primary antibody at 1 µg/ml (Abcam, ab18257), Rabbit anti-CLEC3B primary antibody at 

1:1000 dilution from neat (Abcam, ab202134).  Remove the blocking buffer from the 

nitrocellulose membranes and add blocking buffer with primary antibodies diluted, one 

container for each primary antibody and incubate overnight at 4°C.  Wash the nitrocellulose 

membrane in PBS with 0.05% (v/v) Tween-20, repeating 3 times, each time rocking for 5 

mins at room temperature.  Remove wash fluid and incubate the nitrocellulose membrane 

in 15 ml of 1:15000 dilution of secondary antibody for 60 minutes on a rocker – IRDye 

680RD Goat anti-rabbit secondary antibody (Li-Cor, Cat: 925-68071) made up in Odyssey 

blocking buffer.  Wash the nitrocellulose membrane in PBS with 0.05% (v/v) Tween-20, 

repeating 3 times, each time rocking for 5 mins at room temperature.  Scan the 

nitrocellulose membrane using Li-Cor Odyssey machine. 

 
 

GAPDH 

Strip the antibodies from the previously analysed nitrocellulose membranes (with anti-

PARK7 and anti-CLEC3B primary antibodies) to allow for analysis of GAPDH as a normalizing 

protein (this has a similar molecular weight to PARK7 and CLEC3B so must be assessed 

separately).  Place the previously analysed nitrocellulose membranes in Reblot Plus 

antibody stripping solution made up with deionised water (Millipore, Cat: 2502).  Incubate 

for 10 mins at room temperature on a rocker.  Wash once in PBS (without Tween-20).  Scan 

each nitrocellulose membrane on a Li-Cor Odyssey machine to ensure there is no remaining 

antibody detection evident.  Place the nitrocellulose membranes in Odyssey blocking buffer 

for 1 hour at room temperature on a rocker.  Replace the buffer with 10 ml 1:1000 dilution 

of anti-GAPDH primary antibody made up in Odyssey blocking buffer (Cell signalling, Cat: 

2118L). Incubate at room temperature for 2 hours on a rocker.  Wash the nitrocellulose 

membrane in PBS with 0.05% (v/v) Tween-20, repeating 3 times, each time rocking for 5 
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mins at room temperature.  Remove the wash fluid and incubate the nitrocellulose 

membrane in 15 ml of 1:15000 dilution of secondary antibody for 60 minutes on a rocker – 

IRDye 680RD Goat anti-rabbit secondary antibody (Li-Cor, Cat: 925-68071) made up in 

Odyssey blocking buffer.  Wash the nitrocellulose membrane in PBS with 0.05% (v/v) Tween-

20, repeating 3 times, each time rocking for 5 mins at room temperature.  Scan the 

nitrocellulose membrane using a Li-Cor Odyssey machine. 

 
 

Analysis 

All the nitrocellulose membrane images were acquired using Li-Cor Image Studio, and signal 

intensity from both the primary antibody acquisitions and GAPDH acquisitions were 

recorded.  Protein measurements were normalized to the corresponding GAPDH 

measurement from the same nitrocellulose membrane.  Protein knockdown was calculated 

from the appropriate protein measurement against non-transfected cells. 
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3 Classification modelling and understanding sources of error 

 Introduction 

Following the publication of the DETECT screening protocol, the bioinformatic department of 

Actelion pharmaceutical began work in an attempt to improve on the diagnostic accuracy by 

exploring the utility of adding serum protein biomarkers.  They gained access to samples from 

the original DETECT derivation cohort and were able to analyse these in collaboration with 

MyriadRBM on the DiscoveryMAP platform to generate a derivation dataset with both the 

clinical parameters known from the DETECT derivation cohort, and the new serum protein 

measurements.  This work generated a hybrid screening tool using both clinical and protein 

variables to develop a new screening tool.  Actelion pharmaceutical initially approached the 

Sheffield pulmonary vascular disease biorepository to request serum samples across the 

spectrum of PH diagnostic groups to use as an external validation cohort to their work.   

 

Through this collaboration we received the protein assay concentration dataset for all the 

Sheffield patients included (Table 3.1).  As part of our sample sharing agreement, we were 

able to use these data for our own research purposes.  Given the limitations of the DETECT 

protocol described previously (Sections: 1.2.4.2 & 1.2.4.3) we elected to used these protein 

concentration data to determine whether a protein only screening tool could out-perform 

one with clinical parameters included. 

 

 

 

 

 

 

 

 

 

 

 

 



PhD Thesis  Dr. Peter M Hickey 

 Page 62  

 

Table 3.1: Initial Sheffield cohort 

 
Abbreviations: n – number; IQ – interquartile; M/F – Male/Female; WHO FC – World health organisation 
functional class; COPD – chronic obstructive pulmonary disease; AF – Atrial fibrillation; A Flutter – Atrial flutter; 
ILD – interstitial lung disease; OSA – Obstructive sleep apnoea; VTE – Venous thromboembolism; PFT – 
Pulmonary function tests; ISWT – incremental shuttle walking test; RHC – right heart catheter 

 

In determining their PH disease groups of interest, our research collaborators at Actelion 

pharmaceutical were interested in studying patients with SSc both with and without PAH, 

with particular interest in a “clean” SSc-PAH cohort, with a specific criterion that these 

patients should have no element of interstitial lung disease.  Patients with SSc-PAH were 

therefore split out into SSc-PAH (without ILD) and SSc-PAH-ILD (patients with some ILD, but 

still treated and managed as group 1 PAH rather than group 3 PH).  Further groups were 

requested for comparison including patients with IPAH and PH related to interstitial lung 

disease (PH-ILD; group 3 PH), PAH but with other underlying CTDs (PAH-Other CTD) and 

healthy volunteers (HV). 

 

My overarching research question pertains only to the classification of PAH in patients with 

SSc, and therefore for the purposes of classifying within these disease groups our analyses 

focussed predominantly on the data from patients with SSc. 

 

SSC-PAH SSC-no PH SSC-PAH-ILD IPAH PAH-Other CTD PH-ILD HV

n 22 22 16 30 9 14 29
Age (IQ range) 69 (63.3-72) 61.5 (56.3-67.8) 66.5 (62.8 - 71.3) 65 (56 - 71.8) 63 (51 - 69) 67 (53.8 - 70.8) 38 (23 - 52)
Gender (M/F) 7/15 2/20 5/11 11/19 2/7 11/3 16/13
Deaths 15 4 11 14 5 9 0
WHO FC 1 0 1 0 1 0 0 NA

2 3 8 2 3 0 3 NA
3 19 13 12 22 7 5 NA
4 0 0 2 4 1 6 NA

Co-Morbidity COPD (%) 4 (18.2) 1 (4.6) 1 (6.3) 5 (16.7) 1 (11.1) 0 (0) 0 (0)
Haemolysis (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Myeloproliferative (%) 1 (4.6) 0 (0) 0 (0) 1 (3.3) 0 (0) 0 (0) 0 (0)
AF (%) 2 (9.1) 1 (4.6) 0 (0) 3 (10) 1 (11.1) 1 (7.1) 0 (0)
A Flutter (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
ILD (%) 0 (0) 9 (40.9) 16 (100) 1 (3.3) 1 (11.1) 14 (100) 0 (0)
Asthma (%) 1 (4.6) 1 (4.6) 0 (0) 3 (10) 2 (22.2) 0 (0) 2 (6.9)
Sarcoidosis (%) 0 (0) 1 (4.6) 0 (0) 0 (0) 0 (0) 1 (7.1) 0 (0)
OSA (%) 2 (9.1) 0 (0) 0 (0) 1 (3.3) 0 (0) 0 (0) 0 (0)
VTE (%) 2 (9.1) 2 (9.1) 0 (0) 2 (6.7) 2 (22.2) 0 (0) 1 (3.5)

PFTs (median + IQ)) FEV1 Percent 85.9 (82.3-97.6) 77.3 (68.6-101.6) 73.3 (68.6-83.6) 90.6 (67.8-104.2) 74.9 (61.2-83.9) 66 (61.6-81.5) NA
FVC Percent 100.8 (90.9-111.5) 94.7 (73.4-107.9) 66.6 (60-89.8) 106.8 (87.4-117.3) 89.2 (60.8-89.5) 71.1 (62-83.6) NA
TLCO Percent 43.6 (39.6-47) 55.1 (46.7-67.3) 32.2 (26.2-37.5) 41 (28.6-65.8) 36.3 (33.4-44.1) 27.1 (17.6-33.4) NA

ISWT (median + IQ) Distance 115 (72.5-247.5) 210 (75-338) 120 (92.5-220) 250 (120-410) 95 (45-183) 180 (55-245) NA
RHC (median + IQ) mPAP 38 (30-52) 21 (19-22) 33.5 (28.5-41.3) 48 (44.3-64.8) 35 (29-45) 42 (33.3-56.8) NA

RA pressure 9 (6-11) 5 (3.3-4.1) 6.5 (3.8-10.5) 10 (7.3-12) 6 (5-11) 9 (4-17) NA
CI 2.8 (2.3-3.4) 3.4 (3.1-4.1) 2.7 (2.7-3.5) 2.5 (2.0-3.1) 2.9 (2.6-3.3) 2.2 (2-3.2) NA
PVR 396 (271-850) 140 (117-171) 335 (275-494) 718 (594-959) 382 (268-640) 515 (292-702) NA
PCWP 12 (8-14) 8.5 (7-11.8) 9.5 (7-13) 11 (8-13) 8 (7-12) 9.5 (9-15.3) NA
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 Aim 

Through univariate, and multivariable modelling to determine which proteins or 

combinations of proteins can classify PAH in SSc. 

 

 Methods 

The full patient cohort (Table 3.1) was first assessed using principle component analysis (PCA) 

to determine whether clear differences between all phenotype groups could be 

demonstrated using the full protein dataset. 

 

PCA was then repeated on only the specific test cohort (SSc-PAH vs SSc-no PH) to reduce noise 

and to look for identifiable differences between only these groups using the full protein 

dataset. 

 

Variable selection was performed using the methods previously described and reports 

univariate statistics, manual panel building, random forest and lasso models.  Performance of 

the final derivation model is then assessed using the model prediction against the known 

patient classes in a confusion matrix to report diagnostic statistics. 

 

 Results: Analysis Part 1 

The test cohort selected (Table 3.2) included a disease group, consisting of SSc patients with 

“clean” PAH (Group 1 PH), against a control group of patients with SSc without PH at RHC.  In 

this analysis, in parallel to the cohorts studied by our collaborators, the disease group was 

carefully phenotyped to minimize the risk of contamination within the group from PH of other 

aetiologies such as lung disease as the driving pathological mechanism behind the PH (Group 

3 PH, see Table 1.1). 
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 Demographics 

Table 3.2: Patient Demographics for Analysis Part 1. 

 

Abbreviations: n – number; IQ – interquartile; M/F – Male/Female; WHO FC – World health organisation 
functional class; COPD – chronic obstructive pulmonary disease; AF – Atrial fibrillation; A Flutter – Atrial flutter; 
ILD – interstitial lung disease; OSA – Obstructive sleep apnoea; VTE – Venous thromboembolism; PFT – 
Pulmonary function tests; ISWT – incremental shuttle walking test; RHC – right heart catheter 

 

 Exploratory data analysis 

 Principle Component Analysis 

PCA was initially performed on the full patient cohort using all protein variables in the dataset 

(Figure 3.1). 

SSC-PAH SSC-no PH p-value
n 22 22
Age (IQ range) 69 (63.3 - 72) 61.5 (56.3 - 67.8) 0.034
Gender (M/F) 7/15 2/20 0.134
Deaths 15 4 0.002
WHO FC 1 0 1

2 3 8
3 19 13
4 0 0

Co-Morbidity COPD (%) 4 (18) 1 (5) 0.34
Haemolysis (%) 0 (0) 0 (0) NA
Myeloproliferative (%) 1 (5) 0 (0) 1
AF (%) 2 (9) 1 (5) 1
A Flutter (%) 0 (0) 0 (0) NA
ILD (%) 0 (0) 9 (41) 0.003
Asthma (%) 1 (5) 1 (5) NA
Sarcoidosis (%) 0 (0) 1 (5) 1
OSA (%) 2 (9) 0 (0) 0.47
VTE (%) 2 (9) 2 (9) NA

PFTs (median + IQ)) FEV1 Percent 85.9 (82.3-97.6) 77.3 (68.6 - 101.6) 0.34
FVC Percent 100.8 (90.9 - 111.5) 94.7 (73.4 - 107.9) 0.13
TLCO Percent 43.6 (39.6 - 47) 55.1 (46.7 - 67.3) 0.002

ISWT (median + IQ) Distance 115 (73 - 248) 210 (75 - 338) 0.24
RHC (median + IQ) mPAP 38 (30 - 52) 21 (19 - 22) <0.001

RA pressure 9 (6 - 11) 5 (3.3 - 6.8) 0.005
CI 2.8 (2.3 - 3.4) 3.4 (3.1 - 3.6) 0.004
PVR 396 (271 - 850) 139 (117 - 171) <0.001
PCWP 12 (8 - 14) 8.5 (7 - 11.8) 0.07

0.04
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Figure 3.1: Principle component analysis of all patient classes in the initial cohort (Table 3.1). 

Abbreviations: PC1 – principle component 1, PC2 – principle component 2, var. – variance. 

 

This shows distinct clustering of healthy volunteers from all other disease groups, but no 

other significant clustering between the disease cohorts demonstrable in the first two 

principle components.  Only 22.4% of the variance is explained by the first two principle 

components, suggesting a high level of complexity in the dataset, and low level of data 

redundancy. 

 

PCA was also performed on the test cohort (SSc-PAH vs SSc-no PH) again using all proteins 

available in the dataset (Figure 3.2). 
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Figure 3.2: PCA of SSc-PAH and SSc-no PH. 

Abbreviations: PC1 – principle component 1, PC2 – principle component 2, var. – variance. 

 

This PCA demonstrates some separation of the two patient classes based on the full protein 

dataset, but a significant overlap remains.  Outliers in the dataset are noted, in keeping with 

variability in the general population, and more apparent due to the small number of patients 

in this analysis.  For the purposes of our study, outliers were treated as variants within a 

population arm and retained in the study.  Without the inclusion of these outliers, we could 

not claim that any model generated was applicable to the general patient cohort arm.   

 

Again, only a relatively small proportion of the total variance is explained by the first two 

principle components suggesting a complicated relationship between protein profile the 

patients in each arm.  By this I mean that the variance in protein expression between patients 

in the two groups cannot readily be defined by reducing the dataset into just two principle 

components, requiring multiple components to explain the variance in the dataset.  This 

serves as an indicator that we are unlikely to find a simple statistical model which can 

perfectly classify between these two patient groups.    At this level however, the partial 

clustering of data shown suggests that it may be possible to develop a model to differentiate 
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the groups based on protein information alone, however this is unlikely to produce a simple 

or perfect classifying model, and any model is likely to require the inclusion of multiple 

variables. 

 

 Protein fold change 

Fold change was explored for all proteins between the disease and control groups (Table 3.3) 

using a Mann-Whitney test to determine significance between the groups, p-values are 

adjusted using the false discovery rate formula due to the high number of statistical tests 

involved. 

 
Table 3.3: Statistically significant fold changes.   

Abbreviations: log2FC – Log2 fold change, p.value – unadjusted p-value, adj p.value – adjusted p-value, 
logp.value.adj – log2 adjusted p-value. 
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Figure 3.3 show these amongst all other proteins in a volcano plot demonstrating the extent 

to which the proteins in the dataset are altered between the disease and control group. 

 
Figure 3.3: Volcano plot for protein fold change: all proteins shown. 

All proteins in the dataset included in this analysis.  Each point is plotted partially transparent to prevent 
obscuration of overlapping proteins. Horizontal dotted line corresponds to adjusted p-value of 0.05, those 

proteins above this demonstrating statistical significance on this inverted axis.  Horizontal dotted lines 
correspond to 1.5 fold change in protein concentration. 

 

 Variable pre-processing 

296 protein analytes were measured using the Myriad RBM discovery platform.  1 protein 

variable (HGF) was immediately removed as reported ‘insufficient sample’ and returned no 

data.  For the purposes of classification between SSc with PAH and SSc without PH, the dataset 

was reduced to these patient groups only (n=22 and 22 respectively) (Table 3.2).  Datapoints 

falling outside the limits of detection were transformed as previously described. After 

removing variables which had little or no variance (i.e. all datapoints at same value and 

therefore lacking any useful information) 279 proteins remain.  After reducing the dataset 

further according to those proteins with a univariate classifying AU-ROC >0.7, data for 57 

proteins remained.  Examining for significant collinearity with a correlation matrix (Figure 3.5) 
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and variance inflation factors identified 11 proteins with high levels of collinearity, these were 

considered and removed from further analysis, leaving 46 proteins of interest. 

 

 
Figure 3.4: Data pre-processing flow diagram 

296 Protein variables at 
outset, from treatment naïve 

serum samples. RBM Platform.

Remove variables with >95% 
of datapoints at single value 

[Remaining =279]

Retain only those with AU-ROC >0.7 
for classification of PAH in SSc 

[remaining =57]

Multicollinearity assessed by 
variance inflation factors, 11 

proteins assessed and 
removed [remaining =46]

Univariate statsManual Panels LASSORandom 
Forest

+/-
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Figure 3.5: Correlation matrix for 57 remaining proteins.  Correlation matrix showing Spearman correlations 

 

 Univariate classifying statistics 

The remaining 46 proteins were assessed individually for their univariate classifying utility 

(Table 3.4) and ranked according to the AU-ROC for classifying between the disease and 

control cohort. 

 

 

 

 

 

Table 3.4: Individual protein thresholds from ROC analysis and univariate diagnostic statistics 
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Statistics for individual proteins.  Threshold: diagnostic cut-off level at Youden index with value for individual 

protein.  Direction: Demonstrating whether the disease group has increased or suppressed protein expression.  
AUC: Area under the curve on receiver operating curve.  Protein abbreviations: see appendix. 

 

 



PhD Thesis  Dr. Peter M Hickey 

 Page 72  

 Panels based on univariate statistics 

57 proteins were selected for the assessment of their classifying utility in combination panels.  

As all panels are assessed, and each protein contributes to the score on a univariate basis, 

collinearity was considered not to compromise this analysis.  All possible combinations of 

between 2 and 5 protein length were generated, totalling 4,612,972 combinations in total, 

with total uninterrupted processing time at 3.2 days to completion.   

 

Table 3.5: Diagnostic panels (top 20) 

 

Top 20 panels (based on diagnostic accuracy) from total 4,612,972 panels generated, with diagnostic statistics.  
TP: True positive; TN: True negative; FP: False positive; FN: False negative; Sens: Sensitivity; Spec: Specificity; 

PPV: Positive predictive value; NPV: Negative predictive value. 
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Table 3.6: Diagnostic panels (bottom 20) 

 
Lowest 20 panels (based on diagnostic accuracy) from total 4,612,972 panels generated.  TP: True positive; TN: 
True negative; FP: False positive; FN: False negative; Sens: Sensitivity; Spec: Specificity; PPV: Positive predictive 

value; NPV: Negative predictive value. 

 

The top panels all show a diagnostic accuracy of 95%, with the lowest at 57%, however these 

panels are generated based on the thresholds in the derivation dataset and are therefore 

likely to be poorly applicable to the wider population.  Processing time on this large number 

of combinations not sustainable for further consideration in the analysis, apart from to 

acknowledge the proteins included in the strongest panels during later variable selection. 

 

 Random forest modelling 

The full dataset was reduced for entry into random forest modelling by selecting only patients 

with SSc-PAH and SSc-no PH, and reducing the input dataset to remove proteins which lacked 

variance.  The input dataset was therefore composed of 279 proteins and 44 patients. 

Variable importance data was extracted from the model (Figure 3.6) to determine diagnostic 

potential and utility of individual proteins within the model. 
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Figure 3.6: Variable importance for classification from Random Forest (SSc-PAH vs SSc-no PH). Graph 

demonstrates calculated ‘importance’ of independent variables for univariate classification of patients between 
the two groups.  All variables receive a variable importance, top 20 shown.  Abbreviations: see appendix. 

 

AGER returned the most significant variable importance for classification, followed by IL6ST 

and NT-proBNP. 

 

 Least Absolute Shrinkage and Selection Operator (LASSO) modelling 

The remaining 46 candidate proteins (Table 3.4) were entered into LASSO modelling.  

Diagnostic classification was the dependent variable, and protein measurements the 

independent variables in the training dataset.  Cross validation was used to determine the 

appropriate value for the penalty which yielded the lowest model error, and this penalty was 
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then applied to the dataset using a LASSO model optimised for binomial classification.  The 

selected variables and respective coefficients are shown diagrammatically in Figure 3.7. 

 

 
Figure 3.7: Output from LASSO analysis for classification (SSc-PAH vs SSc-no PH) 

Bars represent the value of coefficients in the regression model.  

 

LASSO modelling retained 10 proteins in the final model which can be interpreted in the same 

was as a linear regression formula, with each of the coefficients a multiplier of the 

corresponding protein concentration. 
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 Model performance 

The LASSO model is considered a relatively open model, easily applicable to new data without 

the need for further complex computing.  Applying the penalty term during the development 

of the model is designed to return a model which can generalise to the true population rather 

than a model overfit to the derivation dataset only.  I therefore considered the LASSO model 

as the optimal model to adopt as my final classifying model to take forward and to derive 

performance data against the derivation dataset. 

 

 
Figure 3.8: LASSO model score for each patient 

Jitter plot showing the LASSO models score for each patient, shown by known patient classification. 
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Figure 3.8 shows the score for each patient in the derivation cohort when the LASSO formula 

is applied to the known protein concentrations.  With the cut-off for classification between 

the two groups set at 0, we found 1 false positive and no false negatives, giving a model 

sensitivity 0.95, specificity 1, positive predictive value 1, negative predictive value 0.96, and 

diagnostic accuracy 98%.  The composite ROC curves for both the final model and its 

individual protein variables (Figure 3.9) demonstrates how the multivariable model 

outperforms its univariate contributors.  

 

 
Figure 3.9: Composite ROC curves for individual variables and combined panel. The combined protein panel 

(solid line) demonstrates superior diagnostic potential to any of its individual proteins (dotted lines) 
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 Comparison with analysis by Actelion pharmaceutical 

A similar but independent analysis was conducted on the same dataset by the bioinformatic 

department of our collaborator Actelion pharmaceutical as part of their separate work.  Their 

statistical preparation and exact methodology were not available to review.  Actelion 

pharmaceutical opted to use random forest as their primary modelling tool, and shared the 

following result, showing variable importance data, based on what we understand to be the 

same patient cohort (Figure 3.10). 

 

 
Figure 3.10: Random forest variable importance from Actelion 

Data from analysis done by Actelion pharmaceutical.  Proteins in bold hold no relevance to our work. 

 

This work helps to validate some of the methodology done in my analysis as the protein 

identified here also feature in similar order and magnitude of variable importance in my 

random forest analysis.  For the purposes of comparison with my random forest result data 

in Figure 3.6, the protein descriptors used by Actelion pharmaceutical differ from my own: 

RAGE = AGER; IL6R = IL6ST; Neuropilin-1 = NRP1; Collagen IV = COL4A3; VEGFD = FIGF; Protein 

DJ-10 (typing error, should be: Protein DJ-1) = PARK7; CFH-R1 = CFH; Endostatin = COL18A1. 
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 Exploring Influence of Comorbidities 

Noting the imbalance the in the comorbidity of interstitial lung disease between the disease 

and control arms, a key concern was whether this panel, and the chosen protein biomarkers 

therein, were correctly targeting and classifying the PAH in patients with SSc, or whether the 

signal was confounded by the imbalance in ILD and classifying patients based on the detection 

of proteins relevant to this.  The imbalance in proportion of ILD in each arm was caused by 

the careful exclusion of patients with ILD into the SSc-PAH arm of the initial study cohorts 

(Table 3.1).  Similar exclusion was not made for inclusion of patients into the SSc-no PH arm. 

 

 
Figure 3.11: Distribution serum AGER concentration labelled for the presence or absence of ILD 

Jitter plot showing serum AGER concentrations, grouped by known diagnostic subgroup, and coloured by the 
presence or absence of ILD 

 

As AGER is by far the strongest predictor from all classifying models explored, and has 

significantly higher influence in the final model than any other individual protein, I chose to 
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investigate whether this protein is altered in patients with interstitial lung disease. Figure 3.11 

shows a simple jitter plot for the concentration of AGER between patients with SSc both with 

and without PAH, colour identifying patients with evidence of ILD.  Our analysis to date 

suggests that the expression of AGER is significantly increased in patients with SSc-PAH 

compared to SSc-no PH controls, which this data would support.  It is also clear however that 

the patients with ILD cluster tightly towards the lower end of the protein range, clearly 

demonstrating that expression of AGER is influenced by the presence of ILD, and may in fact 

be suppressed in the patients with ILD creating an apparent, but inaccurate, increase in signal 

in the presence of PAH.  

 

On the basis of this sub-analysis showing that the classifying signal provided by AGER is 

confounded by the presence of ILD, and the significant influence that AGER has in the 

classifying models derived to this point, I decided to reassess the test cohorts and reanalyse 

the dataset. 

 

 Results: Analysis Part 2 

Understanding the significant influence of a dataset unbalanced for comorbidities on the 

outcome of a classifying model I sought to replicate the previous analysis using an updated 

and more balanced dataset for classification modelling.  The error in our initial analysis arose 

from the decision to model a ‘clean’ disease cohort, but to allow a cohort mixed for the 

presence of lung disease for a control cohort which directly influenced the variables selected.  

Data from a large multinational European database of patients diagnosed with SSc shows that 

between 34.7% and 53.4% of patients with SSc will have a degree of interstitial lung disease 

(Walker et al., 2007).  The proportion of patients with ILD in our control cohort (SSc-no PH) 

falls within this range (40.9%).  Combining the clean SSc-PAH disease cohort previously 

analysed with that of the SSc-PAH-ILD cohort shown in Table 3.1 (patients considered to have, 

and treated as, group 1 PAH with some ILD rather than group 3 PH) yields a disease cohort 

which is now more balanced for degree of ILD and other recorded comorbidities (Table 3.7).  

As a screening tool, my classifying model should ideally be applicable to an unselected group 

of patients with SSc to screen for the presence PAH and as such should be robust to the 

inclusion of a realistic proportion of patients with ILD.  
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 Demographics 

Table 3.7: Demographics for Myriad1b analysis 

 
Abbreviations: n – number; IQ – interquartile; M/F – Male/Female; WHO FC – World health organisation 
functional class; COPD – chronic obstructive pulmonary disease; AF – Atrial fibrillation; A Flutter – Atrial flutter; 
ILD – interstitial lung disease; OSA – Obstructive sleep apnoea; VTE – Venous thromboembolism; PFT – 
Pulmonary function tests; ISWT – incremental shuttle walking test; RHC – right heart catheter 

The disease and control cohorts are balanced for interstitial lung disease and the included 

prevalence is consistent with published data on the prevalence of ILD in SSc.  Other 

comorbidities are reasonably balanced.  The disease cohort is slightly older than the control, 

and other expected clinical characteristics are unbalanced, but in keeping with the 

phenotypical effects of PAH.  

 

 

SSC-PAH SSC-no PH p-value
n 38 22
Age (IQ range) 69 (63-72) 61.5 (56.3-67.8) 0.03
Gender (M/F) 12/26 2/20 0.1
Deaths 26 4 <0.001
WHO FC 1 0 1

2 5 8
3 31 13
4 2 0

Co-Morbidity COPD (%) 5 (13.2) 1 (4.6) 0.53
Haemolysis (%) 0 (0) 0 (0) NA
Myeloproliferative (%) 1 (2.6) 0 (0) 1
AF (%) 2 (5.3) 1 (4.6) 1
A Flutter (%) 0 (0) 0 (0) NA
ILD (%) 16 (42.1) 9 (40.9) 1
Asthma (%) 1 (2.6) 1 (4.6) 1
Sarcoidosis (%) 0 (0) 1 (4.6) 0.78
OSA (%) 2 (5.3) 0 (0) 0.73
VTE (%) 2 (5.3) 2 (9.1) 0.97

PFTs (median + IQ)) FEV1 Percent 84.2 (68.3-91.3) 77.3 (68.6-101.6) 0.98
FVC Percent 93.1 (76.8-107.6) 94.7 (73.4-107.9) 0.99
TLCO Percent 41.4 (30.1-45.3) 55.1 (46.7-67.3) <0.001

ISWT (median + IQ) Distance 120 (72.5-220) 210 (75-338) 0.16
RHC (median + IQ) mPAP 35 (29.3-44.8) 21 (19-22) <0.001

RA pressure 8 (4-11) 5 (3.3-4.1) 0.012
CI 2.95 (2.43-3.4) 3.4 (3.1-4.1) 0.003
PVR 380 (271-600) 140 (117-171) <0.001
PCWP 11 (8-14) 8.5 (7-11.8) 0.15

0.006
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 Principle Component Analysis 

 
Figure 3.12: PCA of SSc-PAH and SSc-no PH 

Abbreviations: PC1 – principle component 1, PC2 – principle component 2, var. – variance. 

 

PCA of this cohort, using all available protein information in the dataset, reveals similar results 

to that in analysis 1.  Only 21.8% of the variance is explained by the first two principle 

components demonstrating the complexity of the relationship between the two groups.  

 

 Variable pre-processing 

HGF was removed immediately, and the dataset reduced to only the SSc-PAH (n=38) and SSc-

no PH (n=22) cohorts.  Datapoints falling outside the limits of detection were transformed, 

and variables lacking variance removed leaving 281 proteins.  After retaining only proteins 

with AU-ROC >0.7 for univariate classifying potential, 31 protein variables remain.  Finally, 
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analysing for collinearity using variance inflation factors found 1 further variable for removal 

from the dataset leaving 30 proteins.  Statistics were performed on the dataset using the 

relevant subsets of variables as shown in Figure 3.13. 

 

 
Figure 3.13: Data pre-processing flow diagram 

296 Protein variables at outset, 
from treatment naïve serum 

samples. RBM Platform.

Remove variables with >95% of 
datapoints at single value 

[Remaining =281]

Retain only those with AU-ROC >0.7 for 
classification of PAH in SSc 

[remaining =31]

Multicollinearity assessed by 
variance inflation factors, 1 

protein removed 
[remaining =30]
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Figure 3.14: Correlation matrix for remaining 31 proteins. 

Showing Spearman coefficients. 

  

MMP2 was the most highly correlated variable and was removed from the dataset due to a 

strong correlation with TIMP2. 

 

 Univariate classifying statistics 

The remaining 31 proteins were analysed and ranked according to their univariate classifying 

ability, using AU-ROC as the metric of choice. 
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Table 3.8:Individual protein thresholds from ROC analysis and univariate diagnostic statistics 

 
Statistics for individual proteins.  Threshold: diagnostic cut-off level at Youden index with value for individual 

protein.  Direction: Demonstrating whether the disease group has increased or suppressed protein expression.  
AUC: Area under the curve on receiver operating curve.  Protein abbreviations: see appendix. 

 

Protein Cutpoint Direction Sensitivity Specificity AU-ROC
GDF15 1 > 0.73 0.76 0.822
NTproBNP 659 > 0.73 0.71 0.804
FCN3 20 < 0.77 0.71 0.798
MMP2 1740 > 0.68 0.87 0.779
FN1 3.5 > 0.73 0.73 0.775
ANGPT2 5 > 0.73 0.68 0.772
COL4A3 104 > 0.64 0.74 0.772
IGFBP7 47 > 0.68 0.66 0.769
NRP1 227 > 0.73 0.71 0.765
TIMP1 160 > 0.73 0.68 0.765
CSTA 3 > 0.73 0.66 0.763
IGFBP2 126 > 0.77 0.76 0.76
TIMP2 85 > 0.73 0.68 0.76
IL6ST 232 > 0.73 0.71 0.753
TNFRSF10C 11 > 0.68 0.68 0.749
SOST 696 > 0.68 0.74 0.748
CFH 497 < 0.73 0.71 0.747
LCN2 376 > 0.68 0.71 0.735
ICAM1 153 > 0.64 0.74 0.73
ANGPTL4 147 > 0.73 0.68 0.728
CCL15 6.8 > 0.64 0.71 0.728
ADM 3.6 > 0.68 0.66 0.724
TFF3 0.16 > 0.64 0.66 0.721
COL18A1 82 > 0.73 0.68 0.72
WFDC2 1260 > 0.64 0.65 0.719
FIGF 475 > 0.64 0.65 0.717
S100B 0.27 > 0.68 0.61 0.713
NRCAM 0.23 > 0.73 0.63 0.711
VCAM1 886 > 0.64 0.66 0.71
A2M 2 > 0.68 0.66 0.709
PARK7 37 > 0.64 0.66 0.703
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 Panels based on univariate statistics 

The univariate statistics calculated in Table 3.8 were used to compute all possible 

combinations of multivariable panels using the method described in methods section 2.4.4.1.  

Due to the high processor requirement this was done on the higher power Mac Pro.  All 

combination of between 2 and 5 protein length were assessed, totalling 206,337 

combinations, with total processing time at 5.3mins. 

 

Table 3.9: Diagnostic panels (top 20) 

 
Top 20 panels (based on diagnostic accuracy) from total 206,337 panels generated, with diagnostic statistics.  
TP: True positive; TN: True negative; FP: False positive; FN: False negative; Sens: Sensitivity; Spec: Specificity; 

PPV: Positive predictive value; NPV: Negative predictive value. 

 

 

 

 

 

 

 

 

 

Protein Panel TP TN FN FP Accuracy Sens Spec PPV NPV
CFH|COL18A1|CSTA|GDF15|MMP2 17 38 5 0 0.92 1.00 0.77 0.88 1.00
GDF15|NRP1|PARK7|SOST|TIMP2 17 38 5 0 0.92 1.00 0.77 0.88 1.00
ANGPTL4|GDF15|NRP1|PARK7|TIMP2 17 38 5 0 0.92 1.00 0.77 0.88 1.00
GDF15|IGFBP2|LCN2|NRP1|TIMP2 17 38 5 0 0.92 1.00 0.77 0.88 1.00
FCN3|GDF15|IL6ST|NRP1|TIMP2 17 38 5 0 0.92 1.00 0.77 0.88 1.00
GDF15|IGFBP2|NRP1|PARK7|TIMP2 17 38 5 0 0.92 1.00 0.77 0.88 1.00
CFH|COL18A1|FCN3|MMP2|PARK7 20 35 2 3 0.92 0.92 0.91 0.95 0.87
IGFBP2|IL6ST|NRP1|NTproBNP|TIMP2 17 37 5 1 0.90 0.97 0.77 0.88 0.94
CFH|NRP1|NTproBNP|SOST|TIMP2 16 38 6 0 0.90 1.00 0.73 0.86 1.00
CFH|GDF15|MMP2|NTproBNP|TIMP1 16 38 6 0 0.90 1.00 0.73 0.86 1.00
CFH|IL6ST|NRP1|NTproBNP 18 36 4 2 0.90 0.95 0.82 0.90 0.90
CFH|FN1|ICAM1|MMP2|VCAM1 19 35 3 3 0.90 0.92 0.86 0.92 0.86
FCN3|GDF15|NRP1|SOST|TIMP2 17 37 5 1 0.90 0.97 0.77 0.88 0.94
GDF15|NRP1|PARK7|TIMP2 17 37 5 1 0.90 0.97 0.77 0.88 0.94
CFH|FN1|IL6ST|NRP1|PARK7 20 34 2 4 0.90 0.89 0.91 0.94 0.83
A2M|CFH|FN1|ICAM1|VCAM1 20 34 2 4 0.90 0.89 0.91 0.94 0.83
CFH|GDF15|MMP2|SOST 16 38 6 0 0.90 1.00 0.73 0.86 1.00
GDF15|LCN2|NRP1|NTproBNP|TIMP1 16 38 6 0 0.90 1.00 0.73 0.86 1.00
IGFBP2|MMP2|PARK7|SOST|TIMP2 17 37 5 1 0.90 0.97 0.77 0.88 0.94
GDF15|LCN2|NRP1|TIMP2 17 37 5 1 0.90 0.97 0.77 0.88 0.94
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Table 3.10: Diagnostic panels (bottom 20) 

 
Bottom 20 panels (based on diagnostic accuracy) from total 206,337 panels generated, with diagnostic 

statistics.  TP: True positive; TN: True negative; FP: False positive; FN: False negative; Sens: Sensitivity; Spec: 
Specificity; PPV: Positive predictive value; NPV: Negative predictive value. 

These protein panels, generated only from proteins with some univariate classifying 

potential, show a range of accuracy between 92% for the top panels and 58% for the lowest. 

 

 Random forest modelling 

Random forest modelling was performed on the dataset with 281 proteins remaining, as this 

gives a good overview of the variable importance of each protein among the larger dataset.  

Having previously determined that the “black box” result gained from this method is less 

suitable for a clinically applicable model, we use the results for informative purposes on 

protein importance while allowing for the likelihood of a more overfit model given the high 

number of variables computed. 

 

Protein Panel TP TN FN FP Accuracy Sens Spec PPV NPV
FIGF|VCAM1 19 18 3 20 0.62 0.47 0.86 0.86 0.49
LCN2|WFDC2 20 17 2 21 0.62 0.45 0.91 0.89 0.49
FN1|PARK7 22 15 0 23 0.62 0.39 1 1 0.49
CSTA|FIGF|NRCAM|PARK7|WFDC2 15 22 7 16 0.62 0.58 0.68 0.76 0.48
NRCAM|TFF3 21 16 1 22 0.62 0.42 0.95 0.94 0.49
FIGF|ICAM1 19 18 3 20 0.62 0.47 0.86 0.86 0.49
CCL15|TFF3 17 20 5 18 0.62 0.53 0.77 0.8 0.49
COL4A3|TNFRSF10C 19 18 3 20 0.62 0.47 0.86 0.86 0.49
CSTA|FIGF|WFDC2 15 22 7 16 0.62 0.58 0.68 0.76 0.48
CCL15|COL4A3 17 20 5 18 0.62 0.53 0.77 0.8 0.49
FIGF|TFF3|VCAM1|WFDC2 16 21 6 17 0.62 0.55 0.73 0.78 0.48
CCL15|TFF3|VCAM1|WFDC2 16 21 6 17 0.62 0.55 0.73 0.78 0.48
A2M|ICAM1 19 18 3 20 0.62 0.47 0.86 0.86 0.49
IGFBP7|PARK7 21 15 1 23 0.6 0.39 0.95 0.94 0.48
CFH|TFF3 20 16 2 22 0.6 0.42 0.91 0.89 0.48
CCL15|FIGF 18 18 4 20 0.6 0.47 0.82 0.82 0.47
COL4A3|PARK7 19 17 3 21 0.6 0.45 0.86 0.85 0.48
ICAM1|WFDC2 18 18 4 20 0.6 0.47 0.82 0.82 0.47
VCAM1|WFDC2 19 16 3 22 0.58 0.42 0.86 0.84 0.46
PARK7|WFDC2 19 16 3 22 0.58 0.42 0.86 0.84 0.46
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Figure 3.15: Variable importance for classification from random forest. 

Graph demonstrates calculated ‘importance’ of independent variables for univariate classification of patients 
between the two groups.  All variables receive a variable importance, top 20 shown.  Abbreviations: see 

appendix. 

 

This analysis ranks GDF15 as the most frequently selected variable with the purest 

downstream class split.  AGER, ranked the highest important in Chapter 1, now falls down the 

list, but remains among the top 20 proteins. 

 

 LASSO modelling 

As previously described, LASSO modelling will perform both variable selection and regression 

modelling.  The LASSO process will only add variables to the model if doing so yields 
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information gain.  Due to this, collinear variables are dropped within the process, however 

there is little user choice as to the protein dropped once at this stage.  Due to this, the input 

variables have been reduced as strictly as possible before entry into this analysis (Figure 3.13). 

 

The 30 protein variables entered into this analysis are those shown in Figure 3.14, with MMP2 

removed due to collinearity. 

 

 
 

Figure 3.16: Output from LASSO analysis for classification (SSc-PAH vs SSc-no PH) 

Bars represent the value of coefficients in the regression model. 
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Figure 3.16 shows the result of LASSO modelling, returning a regression formula with 13 

protein variables, CFH as the strongest predictor in the model, with serum expression down-

regulated in patients with PAH compared to controls. 

 

 Model performance 

As for part 1 of this analysis, it was considered that the LASSO model represents the most 

open and useable model, which could be translated into clinical practice.  It is on this basis 

that this model was taken as the most appropriate final classifying model for further study. 

 

Applying the model to the derivation dataset gives the results shown in Figure 3.17. 

 

 
Figure 3.17: LASSO model applied to derivation dataset 

Showing scores derived from LASSO model and derivation dataset (left), with cut-off classifying threshold 
(dotted line), and AU-ROC for classification of SSc-PAH from SSc-no PH on the right. 

 

At a classifying threshold of 0, the following model statistics are as follows: Sensitivity 0.97, 

Specificity 0.86, Positive Predictive Value 0.93, Negative Predictive Value 0.95, False positive 

rate 13.6%, False negative rate 2.6% and Diagnostic accuracy 93.3%. 
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 Validation of classifying model 

With the intention of increasing the samples size in the derivation cohort we sent samples 

from a further 28 baseline, treatment naïve patients from the Sheffield biorepository (SSc-

PAH n=20; SSc-no PH n=8) to Myriad RBM for identical analysis as were the original samples.  

Quality and batch control were assessed internally by Myriad RBM and are discussed further 

in section 4.5.1. 

 

As an interim test of our methodology so far, we initially used these samples as we would for 

a validation cohort to test the model.  The protein concentration data from these new 

patients were entered into the classifying model with the resulting scores shown in Figure 

3.18. 

 

 
Figure 3.18: Scores for new samples entered into the classifying model 

Split according to known diagnostic classification. 
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These results from a new cohort of patients demonstrate that the current model lacks any 

true classifying potential, and given the results from the derivation cohort (Figure 3.17), 

despite the level of variable pre-processing done, the model is significantly overfit to the 

derivation cohort only, and has no true general classifying potential. 

 

In retrospect, a model with 13 protein variables to distinguish between only 60 patients is 

likely to represent an overfit model. 

 

 Discussion 

In this section I set out with the aim to develop a statistical model which can use the available 

protein concentration dataset, or a subset of it, to accurately classify patients with SSc into 

those with or without PAH. 

 

The dataset that we initially received from our collaborating partners included 296 protein 

concentrations for patients in the phenotype groups in Table 3.1.  For our analyses, using only 

the data associated to patients with SSc, this presented the issue of modelling a very small 

number of samples with a very large number of predictors.  In order to overcome this we used 

a multimodal approach to statistical modelling, exploring the application of both univariate 

statistics and a variety of multivariable modelling systems including machine learning tools. 

 

Univariate statistics identified the proteins which could best classify disease on a single 

protein level, however the high number of repeated statistical tests, and the small sample 

size makes the risk of error high when planning to apply a model to a general population.  A 

combination of protein biomarkers would provide a more secure model, less exposed than a 

single protein to confounding change in patient status.   

 

Multivariable modelling in this dataset is not straightforward.  As I require a binary outcome 

– classification – the most appropriate statistical approach would be with logistic regression 

using the protein concentration data as the predictors.  This approach is not possible on this 

dataset as the model becomes saturated with too few patient samples and too many 
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predictors in the derivation dataset and returns no statistical data. Agresti (2007) suggests 

that in building a logistic regression model a minimum of 10 samples for each predictor is 

required to produce a reliable model, which to model our large number of predictors would 

require a much larger patient sample.(Agresti, 2007)  Machine learning models such as 

random forest and LASSO have been developed specifically to handle this type of dataset with 

a much greater number of predictors to samples available. 

 

High level analysis of the dataset through PCA, both as a whole (Figure 3.1), and more 

specifically looking at the targeted groups (Figure 3.2 & Figure 3.12) demonstrate the 

complexity in classifying between these patient cohorts.  There is significant overlap between 

the phenotype groups when shown on the first two principle components which suggests a 

complex relationship between the groups. 

 

My first statistical analysis produced a classifying model which identified AGER as the most 

significant predictor of disease class.  Post-hoc sub-analysis of an imbalance in ILD in the test 

arms demonstrated the significant risk of modelling in an unbalanced cohort, as expression 

of AGER protein is demonstrated to be significantly influenced by the presence or absence of 

this comorbidity.  While Meloche et al. have demonstrated a clear increase in AGER 

expression in PASMCs from patients with PAH in vitro, it is also established that AGER 

expression is significantly reduced in patients with interstitial lung disease.(Manichaikul et al., 

2017, Meloche et al., 2013)  Our data would support both findings, however in a cohort of 

patients at high risk of both PAH and ILD, AGER is therefore an unreliable predictor of PAH in 

this disease group.  These findings were shared with our collaborating partners at Actelion 

pharmaceutical and Myriad RBM who shared their particular interest in AGER following their 

analysis on their separate derivation cohort (to which we did not have any access, our dataset 

was their validation dataset).  My findings were of interest as it is my understanding that 

beyond the matched phenotype group categories (same as Table 3.1), they do not have access 

to the level of detailed phenotype information regarding the presence or absence of ILD in 

their derivation dataset which we have provided for the Sheffield cohort. 

 

Analysis of the dataset to account for ILD as a confounding co-morbidity required balancing 

the disease and control arms for this condition.  I considered balancing the cohorts by 
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removing patients with ILD from the control arm to maintain a very “clean” PAH cohort, but 

this approach resulted in a much smaller overall cohort with only 13 patients in the control 

arm.  The dataset was already small at the outset compared to the number of predictors, and 

reducing the dataset further significantly increases risking the accuracy of a final model, and 

in particular reduces control over the risk of model overfitting.  As previously discussed, there 

is a significant proportion of interstitial lung disease in the general population of patients with 

SSc in whom this type of screening tool would be placed.  As such I felt it more appropriate 

to balance the cohort of patients by combining the SSc-PAH and SSc-PAH-ILD cohorts to 

produce a larger dataset which is now statistically balanced for presence of ILD, and other 

comorbidities.  The proportion of ILD in each arm is also consistent with data on the 

prevalence of ILD in the SSc population, meaning that any classifying model is likely to be 

more applicable to this target population. 

 

Repeat analysis of this cohort with balance proportions of ILD altered the final model.  Again 

the LASSO model (Figure 3.16) was selected as the final classifying model as this represents a 

truly multivariable model which is open and transparent and can be manually calculated, in 

contrast to a random forest model which, although also a very good classifier, depends on 

highly complicated calculations of new data in a “black box” system in order to generate a 

predicted class.  The proteins selected and coefficients thereof are significantly altered from 

the previous analysis, raising CFH as the most significant predictor, while AGER drops out 

entirely.  Despite LASSO modelling within which one of the key advantages is the penalty term 

applied to shrink the number of protein variables with the key objective of addressing risk of 

model overfitting, the validation data (Figure 3.18) demonstrates that this model remains 

significantly overfit to the derivation dataset and is of little value when applied to an external 

cohort. 

 

Model fit has proven the most significant challenge, particularly when dealing with a dataset 

with such significantly rotated dimensions.  Model fit refers to how well a model describes a 

set of observations, with good fit a compromise between underutilisation of the derivation 

dataset to derive the classifying threshold – underfitting – to highly complicated modelling 

which describes the derivation dataset perfectly, but cannot generalise to accurately classify 

a new datapoint – overfitting (Figure 3.19). 
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Figure 3.19: Model fit 

Representation of the extremes of model fit.  Red squares and green triangles represent a derivation dataset 
consisting of two populations to classify using variables x and y.  An underfit model is overly simplistic and 

poorly represents the derivation dataset, and cannot accurately classify and new datapoint; An overfit model is 
highly complex and perfectly describes the derivation dataset, but cannot accurately classify a new datapoint.  

A model with good fit is a compromise between the two, accepting appropriate misclassification in the 
derivation dataset in order to produce a reasonable classification threshold which can accurately predict the 

class of a new datapoint. 

 

Our classifying model consists of 13 proteins required to classify disease in a sample of 88 

patients.  This is a highly complex model which has proven itself overfit when tested against 

a validation dataset.  More stringent constraint of model size is required to produce an 

accurate predictor. 

 

These analyses have demonstrated the errors that are inherent to this type of classification 

modelling.  Despite significant overfitting in this classifying model, the proteins selected by 

each of the modelling methods remain significantly altered between the disease and control 

cohorts at an individual protein level, and therefore the proteins selected remain informative 

as to the types of proteins likely related to the underlying pathophysiology of PAH and will  

be allowed some consideration in further modelling. 

  

25/01/2019 © The University of Sheffield
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4 Final classification modelling 

 Introduction 

The analyses in Chapter 3 identified issues with the effect of imbalanced comorbidities, and 

the high risk of model overfitting error given the large number of variables and small number 

of samples in our dataset.  For these reasons we decided to increase the samples size for 

analysis by identifying further treatment naïve patient samples from the Sheffield 

biorepository and sending these to Myriad RBM for identical analysis.   28 new patients (SSc-

PAH n=20; SSc-no PH n=8) were identified to increase the samples size of the derivation 

cohort. 

 

We then sought to develop a more robust classifying model based on these new combined 

patient data, with alternative methods to eliminate the errors seen in our earlier work. 

 

 Aim 

To develop a classifying model which can accurately classify between SSc-PAH and SSc-no PH, 

and which can generalise and retain accuracy when validated against an external validation 

cohort and is not significantly affected by any imbalance in comorbidities. 

 

 Methods 

 Patient cohort identification and assay 

To identify any further suitable patients available to include in a larger analysis we 

interrogated the Sheffield Pulmonary Vascular Research group biorepository database.  This 

was done using search criteria appropriate to identify any patients not yet included in our 

analysis, which fit the three major criteria of: 

1. Patient with systemic sclerosis. 
2. Patients with RHC proven PH considered to be of PAH subtype and subsequently 

treated as such, or patients fully investigated for PH but found not to have PH at RHC. 
3. Patients from which there are treatment naïve baseline serum samples available for 

analysis. 
 

Further to this, the same detailed demographic information was recovered as for the original 

patient cohort (Chapter 2.2: Patient Data) from either the biorepository database, or from 
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exhaustive search of patient records and clinical systems.  Demographic information, RHC 

data and imaging investigations were reviewed before accepting patients into the study. 

 

Serum samples from identified patients were shipped on dry ice to Myriad RBM and 

confirmed to have been received frozen and in good condition.  Protein assays were 

performed by Myriad RBM by the method recorded in 2.3.1.2, and results reported to us for 

statistical analysis. 

 

 Analysis 

This analysis includes data from two major assay batches, so initially some work was put into 

quality control and batch analysis and is reported in section 4.5.1.   

 

Model overfitting to the derivation dataset was the major cause of failure of our earlier 

analyses, due to small patient sample and relatively large size of the classifying models 

generated.  The increased sample size was obtained to improve on this, however in contrast 

to previous analyses we will also uncouple variable selection from statistical modelling, 

allowing for variable selection from a range of machine learning techniques, followed by a 

modelling procedure designed to be much more stringent in constraining model length.  By 

doing so we will reduce the likelihood that the final model will be overfit to the derivation 

dataset. 

 

Using an updated derivation dataset, variable selection will be conducted using the same 

analysis methods described and used in Chapter 3, taking into account the results from 

random forest and LASSO modelling, along with univariate statistics and manual panel 

building, and at this stage also considering the limited results available from the parallel 

analysis done by our collaborating partners at Actelion pharmaceutical.  Protein variables 

identified most frequently across these methods will be taken forward to statistical 

modelling. 

 

Statistical modelling will be initially done using logistic regression on protein concentration 

data, with the model subsequently optimized using a recursive backward-step AIC.  The use 
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of the logistic regression model allows for a greater transparency for the role of each 

individual protein included in the model through the reporting of individual component p-

values.  The model will then manually be further iteratively constrained by removing at each 

step any protein variable in the model which does not reach statistical significance (p<0.05). 

 

The final statistical model will be used to generate diagnostic statistics based on the score 

generated for each patient in the derivation cohort.  

 

 Demographics 

The new patient cohort includes 28 newly identified patients, 20 SSc-PAH and 8 SSc-no PH, 

increasing the patient numbers in each of the disease and control groups for analysis (Table 

4.1). 

 

Table 4.1: Demographics for Myriad2 analysis 

 
Abbreviations: n – number; IQ – interquartile; M/F – Male/Female; WHO FC – World health organisation 
functional class; COPD – chronic obstructive pulmonary disease; AF – Atrial fibrillation; A Flutter – Atrial flutter; 
ILD – Interstitial lung disease; OSA – Obstructive sleep apnoea; VTE – Venous thromboembolism; PFT – 
Pulmonary function tests; ISWT – incremental shuttle walking test; RHC – right heart catheter 
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The cohort remains balanced for medical comorbidities and is now better balanced for age.  

There remains a slight imbalance in gender, however this does not reach statistical 

significance. 

 

 Results 

 Quality control between batches 

The dataset returned to us from Myriad RBM contained only the protein concentration 

measurements requested, and did not return any information regarding the assay quality 

control or standard curves.  Batch analysis was therefore limited to analysing for large scale 

changes in our protein concentration data which could accurately identify which batch they 

belonged to, done by a combination of PCA analysis, and individual protein distribution 

analysis.  Following this, further assurances regarding data quality and batch control were 

received from Myriad RBM.  

 

 Batch effect 

Batch effect refers to technical variations in assays specific to each run if the assay was run in 

batches rather than all on one plate at a single timepoint.  For this analysis we have combined 

the data from two batches of results from Myriad RBM, so an assessment for any evidence of 

batch effect is important.  To do so I used a principle component analysis to identify any 

clustering of the two batches which might suggest a batch effect (Figure 4.1). 
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Figure 4.1: PCA of full patient cohort using all protein data. 

Batches identified by colours 

 

The initial analysis demonstrated an apparent clear batch effect between the two groups 

which required further investigation.  Review of the full dataset suggested that this effect 

originated from the limits of detection which were set differently for each protein between 

the two batches.  Protein variables with a sample count outside the limit of detection were 

therefore creating a clear signal which differentiated the two batches.  To minimize this effect, 

the dataset was reduced to remove any protein for which <10% of values are exactly 

duplicated (i.e. beyond the limits of detection).  Subsequent PCA analysis does not identify 

patient clustering based on batch alone (Figure 4.2). 
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Figure 4.2: PCA analysis after limits of detection addressed 

Batches identified by colours 

 

 Protein distributions 

As a second quality control test, we compared the distribution of individual protein 

concentrations between batches as these should remain similar, allowing for differences 

attributable to differences in disease proportions between the two batches.  Biological 

distributions are generally non-parametric, and therefore after reviewing graphical 

distributions for all individual proteins they were also assessed statistically with Kolmogorov-

Smirnov test p-value.  All distributions were examined individually and allowing for 

reasonable variation, these did not reveal evidence of significant batch effect.  A 

representative sample of the top 4 proteins from Myriad1b LASSO model is given in Figure 

4.3. 
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Figure 4.3: Protein concentration distribution plots for batch comparison 

Top 4 proteins from Myriad1b analysis shown as representative of whole protein dataset.  Batches identified by 
plot colours.  Kolmogorov-Smirnoff p-value for significantly different distribution shown on each graph.  Top 

left: CFH (µg/ml), Top right: IL6ST (ng/ml); Bottom left: PARK7 (ng/ml); Bottom right: GDF15 (ng/ml). 

 

 Myriad RBM Internal QC 

Myriad RBM participates in regular high level quality control audit and testing.  The Myriad 

RBM laboratory holds Clinical Laboratory Improvement Amendment accreditation which is 

the US federal regulatory standard that approves a lab for direct human clinical testing.  A key 

criterion of this accreditation is calibration and quality control over testing.  Each stage of the 

assay process from kit manufacture to the testing process is highly controlled to reduce 

variation.  Each assay is individually scrutinized for quality, using the standard curves and 

three level control samples which are plotted across assay runs to enable charting of assay 

consistency.(Welsh et al.) 

 

In our data, some minor variation was noted during examination of the protein concentration 

distribution plots, however it was not possible to ascertain from the protein concentration 
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data alone whether this was due to technical batch variation, or whether this is due to a 

biological signal given the differing disease proportions in each batch.  Further to this, given 

relatively small numbers in each batch, minor biological variations in protein concentration 

can exert a much larger effect on an average distribution. 

 

Quality control was discussed with Myriad RBM who assured us that their rigorous quality 

control procedures are in place and followed at all times and on all assays performed in their 

facility.  Batch effect was also analysed between their stored results from each of our two 

batches and no evidence of any batch effect was found between the two. 

 

 Protein variable pre-processing and Exploratory data analysis 

Variable pre-processing varied slightly from previous iterations due to the different absolute 

limits of detection given for each analysis batch, requiring each batch to be analysed 

independently for the proportion of datapoints falling outside the limit prior to combining the 

batches for further pre-processing and subsequent variable selection (Figure 4.4).  Any 

protein variable if in either analysis batch >90% of protein datapoints fall outside the limit of 

detection then the variable is excluded.  67 protein variables were excluded by this criterion, 

each of which was individually examined for any predictive relationship to disease class, 

however no additional information gain was found.  Within the remaining 229 protein 

variables for 88 patient samples, there were 22 missing datapoints from a total of 20152 

(0.11%) due to insufficient sample at assay.  These were deemed to be missing at random and 

imputed using MissForest.  Datapoints remaining outside the limits of detection were 

revalued at the corresponding absolute limit of detection.  
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Figure 4.4: Data pre-processing flow diagram 

 

 

High level exploratory data analysis of this cohort with all 229 proteins with PCA shows some 

weak evidence of clustering of patients but with very high level of overlap between the two 

groups (Figure 4.5). 
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Figure 4.5: PCA of all 88 patients in Myriad2 analysis 

PCA of all patients using all 229 proteins at this point.  Points coloured according to known patient 
classification. 

 

Basic fold change analysis of 229 proteins is shown in Figure 4.6.  This demonstrates the 

number of proteins which are significantly altered between the disease and control group, 

and the magnitude of change. 
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Figure 4.6: Fold change analysis of all 229 proteins 

Fold change between SSc-PAH and SSc-no PH for all 229 proteins.  Each point is translucent to prevent 
obscuration of overlapping proteins.  Horizontal line corresponds to p=0.05 threshold, and vertical lines 

represent 1.5 fold change each way. 

 

 Variable selection 

Due to the previously described issues with overfitting seen with the combined variable 

selection and modelling techniques, we decided to uncouple variable selection from final 

classification modelling.  Variable selection was conducted using the results of all four 

previously described methods; univariate classifying statistics; combination panels based on 

these statistics; random forest models and the results of LASSO.  At this point we also included 

in our considerations the limited data and variable selection shared with us from parallel 

analysis done by the collaborating team at Actelion pharmaceutical (3.4.9). 

 

 Univariate classifying statistics 

The remaining 25 proteins were analysed and ranked according to their univariate classifying 

potential, using AU-ROC as the metric of choice (Table 4.2). 
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Table 4.2: Individual protein thresholds from ROC analysis and univariate diagnostic statistics 

 

 
Statistics for individual proteins.  Threshold: diagnostic cut-off level at Youden index with value for individual 

protein.  Direction: Demonstrating whether the disease group has increased or suppressed protein expression.  
AUC: Area under the curve on receiver operating curve.  Protein abbreviations: see appendix. 

 

 Panels based on univariate statistics 

 

Combination panels were generated based on the univariate statistics given in Table 4.2. 
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Table 4.3: Diagnostic panels (top 20) 

 
Top 20 panels (based on diagnostic accuracy) from total 68,380 panels generated, with diagnostic statistics.  
TP: True positive; TN: True negative; FP: False positive; FN: False negative; Sens: Sensitivity; Spec: Specificity; 

PPV: Positive predictive value; NPV: Negative predictive value. 

 

Table 4.4: Diagnostic panels (bottom 20) 

 
Lowest 20 panels (based on diagnostic accuracy) from total 68,380 panels generated, with diagnostic statistics.  

TP: True positive; TN: True negative; FP: False positive; FN: False negative; Sens: Sensitivity; Spec: Specificity; 
PPV: Positive predictive value; NPV: Negative predictive value. 
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68,380 panels in total were tested, with the highest returning a diagnostic accuracy of 89% 

and the lowest returning 59%.  The frequency of occurrence of proteins in the top panels was 

used to inform the variable selection process to follow. 

 

 Random forest modelling 

For this Myriad2 analysis, 229 proteins were entered into the random forest algorithm for 

classification, and all proteins were then ranked according to their variable importance 

(Figure 4.7). 

 

 
Figure 4.7: Variable importance for classification from random forest 

Graph demonstrates calculated ‘importance’ of independent variables for univariate classification of patients 
between the two groups.  All variables receive a variable importance, top 20 shown.  Abbreviations: see 

appendix. 
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 LASSO modelling 

Protein concentration data for 25 proteins were entered into LASSO modelling.  For this 

analysis, data were log transformed, centred and scaled prior to analysis.  Analysis for 

multicollinearity with variance inflation factors identified one protein (MMP2) as highly 

correlated with other included proteins and this was excluded.  The model returned by LASSO 

is given in (Figure 4.8). 

 

 
Figure 4.8: LASSO model for Myriad2 analysis 

LASSO model returned from 24 proteins entered into analysis for 88 patient samples. 
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The analysis returned a model 12 proteins in length, which for a larger sample set is likely to 

represent a model with reduced chance of overfitting. 

 

 Final protein selection 

The results of the above analyses were considered to decide which proteins to take forward 

to classification modelling.  The results were considered as they are displayed above, with the 

frequency of occurrence of proteins in the top panel building result taken from that method.  

We also considered the previous results from our Myriad1b analysis, and the results shared 

with us which had been produced by collaborators at Actelion pharmaceutical (Figure 4.9). 

 

 
Figure 4.9: Protein selection 

Representation of variable selection.  Middle panel shows heat map, green indicating the presence of protein in 
that variable selection method.  Four white panels show results of the analyses on Myriad2 dataset.  

Abbreviations: Protein names: see appendix; Freq: frequency of occurrence of protein in panel results; VIMP: 
variable importance from random forest. 

 

Major consideration was given to proteins identified by variable selection methods based on 

the Myriad2 dataset.  Minor consideration was allowed for proteins identified in previous 

analyses and to results shared from Actelion pharmaceutical.  Proteins taken forward to final 

classification modelling were CLEC3B; PARK7; NTproBNP; GDF15; IL6ST; FCN3; FIGF; IGFBP7; 

COL4A3; ICAM1; NRP1; SERPINA1; SORT1; MMP2; COL18A1; IGFBP2; TIMP2; ANGPT2; CCL25.  
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FN1 was identified but excluded due to a high level of data outside the limits of detection 

(25%). 

 

 Modelling 

Prior to statistical modelling all protein variables were log transformed and scaled.  The 19 

selected variables were then entered into logistic regression, with immediate entry of the 

model into backward step-AIC optimisation.  The AIC metric gives a composite of an 

estimation of model “goodness of fit” to the derivation data, but penalises increasing model 

length, designed to favour a model more likely to generalise.  A model of increased size with 

very good fit to the derivation data is more likely to be over fit and to closely describe the 

derivation data only and less likely to generalise and function as a true predictor.  The lower 

the AIC metric, the better the predicted model performance.  The step-AIC process reduced 

the model to from 19 to 7 protein length (Table 4.5). 

 

Table 4.5: Logistic regression model after step-AIC optimization 

 
 

This 7 protein model suggested by AIC optimisation is the best possible using the AIC metric, 

as when shortened further, the detrimental effect on “goodness of fit” exceeds the gains from 

reducing model length and the AIC metric increases. 

 

The model given retains several variables which do not reach statistical significance when 

modelled with the other proteins included.  It is likely therefore that these proteins yield 

minimal extra information gain in the model and as such a further round of constraint was 

conducted, removing non-significant protein variables and remodelling to re-evaluate the 
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contribution of those remaining.  After this process a final model consisting of only 3 proteins 

remained (Table 4.6). 

 

Table 4.6: Final predictive model for classifying for PAH in SSc 

 
 

Tetranectin (CLEC3B), Protein DJ-1 (PARK7) and Growth differentiation factor 15 (GDF15) are 

the component proteins in the final model.  This result from logistic regression represents an 

open, easily understood model that can be applied easily to new patient samples without the 

need for complex computing methodologies such as would be needed to make predictions 

from random forest algorithms to predict classification. 

 

 Derivation cohort results and classifying statistics 

Performance of this model for the prediction of PAH in SSc is demonstrated graphically in 

(Figure 4.10a).  
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Figure 4.10: Model scores and ROC curve for the classification of PAH in SSc from derivation cohort 

A: Model scores plotted for each patient in known diagnostic classes.  Horizontal line represents model cut-off 
for classification into groups to separate true and false predictions.  B: ROC curve for classification based on 

scores in A. 

 

Based on figures from the corresponding confusion matrix (Table 4.7) this model predicts PAH 

in SSc with sensitivity 0.90, specificity 0.77, positive predictive value 0.88, negative predictive 

value 0.79 and an AU-ROC for classification of 0.87 (Figure 4.10b). 

 

Table 4.7: Confusion matrix: outcome of derivation modelling 

 

 

Compared by AU-ROC for classification, the panel score is superior to any of its constituent 

protein variables (Figure 4.11). 
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Figure 4.11: Comparison of panel ROC for classification against each component univariate curve 

 

 Correlation with clinical parameters 

The panel score holds a moderate positive correlation with mPAP (r=0.56, p<0.001) and PVR 

(r=0.48, p<0.001) from RHC, and a moderate negative correlation with percent predicted TLCO 

(r=-0.44, p<0.001) from PFTs (Figure 4.12). 
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Figure 4.12: Correlation plots with clinical parameters 

Line represents the line of best fit for the correlation. 

 

 Survival analysis 

Survival analysis was performed after patient survival information was obtained with a censor 

point set at the time of the final data update on 29/11/2018.  Kaplan Meier analysis of the 

disease arm only (SSc-PAH)(Figure 4.13), grouped above and below the median panel score 

shows a trend towards a significant prognostic utility for this panel, however due to low 

numbers of events this does not achieve statistical significance with a Log-Rank p=0.067. 
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Figure 4.13: Kaplan Meier survival curve for panel score 

Survival curve for patients with SSc-PAH split at the median panel score into high and low groups. 

 

Cox regression analysis was used to further assess whether this model score can predict 

survival, when adjusted for age, gender and ethnicity.  This produced a model which 

significantly predicted survival (p=0.02), with our panel score and gender retained as the 

significant predictors (Table 4.8). 

 

Table 4.8: Cox regression analysis to include panel score as predictor 

Variable Co-efficient p value 

Panel score 1.28 0.03 

Age 1.03 0.17 

Gender (male) 2.61 0.01 

Ethnicity 3.4 0.26 

Results of Cox regression analysis showing co-efficients and significance levels of variables entered into the 
model. 
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 Comparison of derivation stats with alternative screening tools 

The majority of patients included in this study were recruited to the Sheffield PH biorepository 

prior to the publication and routine use of the DETECT score, and furthermore as a tertiary 

referral centre receiving referrals from rheumatology centres rather than making them, not 

all datapoints needed to complete the DETECT criteria were collected for each patient.  To 

handle missing data the two step DETECT nomogram (Coghlan et al., 2014) was used to assign 

the most extreme value for each datapoint to favour the known disease classification.  By 

doing so this will potentially lead to a DETECT score for patients which favours the known 

clinical classification and would lead to improved screening statistics. 

 

When our panel statistics are compared to the statistics calculated from the application of 

the DETECT protocol and ERS echocardiography screening guidelines to the phenotype data 

from our derivation cohort, our panel competes favourably in screening for PAH in SSc with a 

diagnostic accuracy of 0.86, 0.74 and 0.85 for the ERS, DETECT and protein panel respectively 

(Table 4.9). 

 

Table 4.9: Comparison of protein panel with currently used screening tools 

 
Statistics to compare the results of applying screening models to the derivation dataset.  Insufficient data for 7 
patients for ERS echocardiography screening and 3 patients for DETECT screening.  Abbreviations: PPV: Positive 

predictive value; NPV: negative predictive value. 

 

ERS 2015 DETECT Sheffield Panel
True Positive 52 56 52
True Negative 18 7 23
False Positive 7 22 7
False Negative 4 0 6

Sensitivity 0.93 1.00 0.90
Specificity 0.72 0.24 0.77
PPV 0.88 0.72 0.88
NPV 0.82 1.00 0.79

Accuracy 0.86 0.74 0.85
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 Derivation score alone vs Derivation score with DETECT variables included 

To investigate whether the variables from the DETECT screening tool could improve on the 

predictive accuracy of our protein only model, each DETECT variable was added to our protein 

variables and modelled with logistic regression.  For the purposes of statistical modelling it 

was not practical to assign values to missing datapoints, as this would significantly alter the 

model coefficient and any statistical significance which is what we are specifically looking for 

this this process (in contrast to the comparison of statistics in section 4.5.6 where we 

presented the best possible DETECT model statistics).  Due to a high level of missing data, 

presence or absence of telangiectasia, and serum uric acid levels were not modelled.  Due to 

a low frequency of missing data, but for each arising for different patients, the remaining 

DETECT clinical variables were modelled individually with the protein data to minimise the 

loss of samples from the analysis due to those missing data. 

 

Right atrial area, anticentromere antibody (ACA) and right axis deviation were each 

individually modelled alongside CLEC3B, PARK7 and GDF15 to analyse whether they improve 

on the predictive accuracy of the model.  Right atrial area entered the model with a 

statistically significant coefficient (0.001, p=0.009) however did not alter the significance level 

for our protein variables.  Neither ACA nor right axis deviation entered the model.  The 

predictive accuracy of the model was not improved beyond that of the protein only model by 

any of these variables (0.84, 0.87 and 0.87 respectively). 

 

FVC%/TLCO% significantly entered the model (Coefficient 1.82, p=0.004), however again did 

not replace any protein variables.  There was a marginal improvement in the AU-ROC for 

classification with this model as compared to our protein only model (0.92 vs 0.87 

respectively), and a small improvement in predictive accuracy (0.9). 

 

The only variable to significantly alter the predictive accuracy of our protein only model was 

the TR jet velocity, which when modelled with the protein data proved strongly significant 

(Coefficient 6.06, p=0.005) and replaced GDF15 and PARK7 as significant variables in the 

model.  CLEC3B concentration remained a significant predictor.  The inclusion of TR jet 

velocity improved the model with AU-ROC (0.97) and predictive accuracy of the model (0.92).  
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It should be noted that although echocardiographic parameters are used as part of the 

published DETECT protocol, these more diagnostic metrics should be expected to strongly 

associate with prediction of the presence of pulmonary hypertension.  TR jet velocity in 

particular is a direct marker of pulmonary hypertension and in areas where gold standard 

invasive right heart catheterisation is not available, has been suggested as a non-invasive 

diagnostic alternative.(Parasuraman et al., 2016, Sohail et al., 2019)  In progressing the 

development of our predictive tool, we sought to avoid the inclusion of these more diagnostic 

variables. 

 

 Discussion 

Earlier analyses found issues with an imbalance in comorbidities confounding the predictive 

model, and then with model overfitting due to a combination of a small sample size and overly 

complex models.  This analysis was designed to overcome these problems by increasing the 

sample size, keeping the sample balanced for comorbidities, and applying much harsher 

constraint on model size to produce a model of good fit which can classify an external 

validation cohort.  An additional 28 patient samples were added to the analysis having been 

identified by an up to date query from the Sheffield PH biorepository.  The cohort analysed 

remains realistic to that which would be encountered in a rheumatology clinic with a balanced 

36% of patients with ILD in each arm of the analysis.  

 

Serum samples from the newly identified patients were analysed by Myriad RBM as a second 

assay batch, but both internal controls at Myriad RBM and batch control analysis on the 

protein data received found no evidence of a batch error in the dataset beyond differing limits 

of detection between assays. 

 

Given the results in Chapter 3, it is clear that model overfitting represents the greatest threat 

to the accuracy of our predictive model with a persisting imbalance between the number of 

predictors and the sample size.  As such we altered our approach to variable selection and 

classification modelling, uncoupling these and using more rigorous techniques to constrain 

the final model size.  Variable selection was performed using a composite analysis of the 

output from machine learning and univariate statistics, with classification modelling 
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performed by logistic regression with several optimisation steps.  This approach allows for 

greater transparency and understanding of the proteins retained in the model, and of those 

that are subsequently dropped, through the standard availability of a coefficient and 

statistical significance level for each protein at each stage, data which was not readily 

available when models generated by machine learning alone were used for prediction. 

 

Our final model consists of only 3 proteins; Growth differentiation factor 15 (GDF15), 

Tetranectin (CLEC3B) and Protein DJ-1 (PARK7).  Published data regarding these proteins will 

be discussed in the introduction to Chapter 4, however a model made up of these proteins 

seems acceptable, with each of the three proteins linked to different underlying processes in 

the pathogenesis of pulmonary vascular disease (Figure 4.14).   

 

 
Figure 4.14: Suggested role for model proteins in pathophysiological processes of pulmonary vascular disease 

Abbreviations: PAH: Pulmonary arterial hypertension; ECM: Extracellular matrix; Protein names: see appendix. 

 

Scores produced by the model for patients in the disease and control cohorts show a 

statistically significant difference and a good AU-ROC for classification (0.87) which is superior 

either to the univariate curve for any of the component proteins within the model, or indeed 

for any univariate protein from the entire dataset.  Furthermore, this protein only model was 
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not significantly improved when remodelled to including the available variable data from the 

DETECT model, with the exception of TR jet velocity – a direct estimate of PA pressure.  My 

model predicted PAH in SSc from our derivation cohort with a diagnostic accuracy comparable 

to the alternative methods currently used in clinical practice.  It represents an opportunity for 

screening to be conducted in the SSc patient population based on a single blood draw, which 

may prove more acceptable to patients, and may produce a screening result within a much 

shorter timescale when compared to current multimodality testing.  It also has the potential 

to widen access for screening to areas where there may not be ready access to-, or where 

there may be a significant delay to- other investigation modalities such as pulmonary function 

tests, or echocardiography. 

 

 
Figure 4.15: Volcano plot demonstrating selected proteins 

Figure 4.6 replotted to identify proteins from classification model. 

 

Research question 3 asks whether any predictive model generated could translate from a 

simple prediction of disease only, to a tool which could function to both classify and 

demonstrate some prognostic utility.   There is a clear difference in survival evident between 

the disease and control cohorts of my study as would be expected given the significant life 
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limiting nature of a diagnosis of PAH.(Hurdman et al., 2012)  In order to assess whether a 

difference in model score could predict survival, only the scores for patients with SSc-PAH 

were analysed against time to all-cause mortality.  My model score shows a trend possibly 

suggestive of a relationship to survival, however this did not reach statistical significance and 

warrants further investigation in a larger patient cohort. 

 

The main limitation of this analysis is that the population being studied are those who have 

already been referred for investigation for pulmonary hypertension, rather than an 

unselected general rheumatology SSc population.  These patients are therefore preselected, 

and have a higher pre-test probability of pulmonary hypertension than a general SSc cohort. 

This is likely to have a disproportionate effect on the control cohort.  The control arm in our 

study consists of a group of patients who have been referred for investigation for some 

reason, whether this be symptom burden, or abnormal investigations, but this raises the 

possibility that this group does not accurately represent the wider SSc-no PAH population.  

The effect of this can be seen in the available demographics, with modest pulmonary 

pressures existing in this group, and pulmonary function tests showing an unexplained 

abnormality of TLCO.  This could be a cause of a lower true negative fraction in our derivation 

statistics which could be improved by applying the model to an unselected control cohort. 

 

The aim of the model is to predict PAH in SSc at an early stage to allow for early intervention, 

however by studying patients who have awaited referral for investigation, we have potentially 

a cohort of patients with early stage, but already established disease. 

 

 Summary 

This concludes the large data analysis, machine learning and variable selection section of my 

project, having determined that a model with three proteins only from my derivation cohort 

is the optimal one both for accuracy of detection of PAH in the derivation cohort, and to 

minimise the risk of overfitting with a small derivation cohort.  In the chapters which follow, 

I will take this model forward to validation both using internal validation methods, and 

validation in an external cohort of patients.  I will then examine some of the cell biology 

relevant to these protein targets.  
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5 Validation 

 Introduction 

We have generated a predictive model consisting of 3 proteins – GDF15; CLEC3B and PARK7.  

Statistics presented so far have been those based on applying the model to the derivation 

dataset to predict whether each patient has PAH, and based on this to generate statistics 

against the known patient disease subgroup.  The given patient cohort has therefore both 

been used to generate and to test the model this is likely to favour our model, and may 

represent a model overfit to the derivation dataset. 

 

In this chapter we will test whether our model will generalise through three different 

validation methods: k-fold cross validation using the derivation dataset; validation in an 

alternative Sheffield PAH subgroup; and validation in an external cohort of patients. 

 

 K-fold cross validation 

k-fold cross validation is a technique used to test the performance of a model when only the 

single dataset used to derive the model is available.  It was developed to help distinguish 

between overfit models which lack stability and models which are likely to likely to represent 

a true prediction.  K-fold cross validation involves splitting the dataset into a number of 

subsets (k folds), and deriving the model on k-1 folds, and testing the model on the reserved 

data.  At each iteration the same protein variables are used, but the logistic regression 

coefficients for each protein re-calculated and tested.  The model is then repeated until all 

folds have been used as the reserve and average the result.  The cross validation procedure 

can be repeated a large number of times using a randomised approach to splitting the data 

each time to enhance model testing. 

 

To test our classification model I entered the derivation dataset (88 samples) and the protein 

variables (3 proteins) into k-fold cross validation (package: caret), opting for 10 fold, and 

repeating the cross validation procedure 200 times.  The cross validation returned an average 

diagnostic accuracy of 0.83.  This suggests a stable model which therefore has a lower 
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likelihood of model overfitting when compared against the 0.85 diagnostic accuracy given 

when the model is applied simply back across the whole derivation dataset (Table 4.9). 

 

 Validation in other PAH subtypes 

Within the initial cohort of samples sent to Myriad RBM for assay (Table 3.1) were a cohort 

of patients with idiopathic PAH (IPAH) (n=30) and healthy volunteers (HV) (n=29).  Serum 

samples from these patients were analysed on the same platform, randomised on the same 

plates, as our final classification model and can therefore act as a control for any variation in 

assay procedure. 

 

Although derived only in a cohort of patients with SSc, we sought to investigate whether the 

model would predict PAH in a cohort of patients with IPAH from HV.  These alternative 

patients were not used in the derivation of our classifying model at any stage. 

 

Applying the classifying model to the IPAH/HV cohort classifies PAH in this cohort with an AU-

ROC for classification 0.87 (Figure 5.1). 
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Figure 5.1: Application of classifying model to IPAH/HV cohort. 

Result of applying the classifying model, derived in the SSc cohort to a cohort of patients with IPAH and HV.   

A: Jitter plot with model scores, B: ROC for classification. 

 

As a validation test of our classifying model, this result supports the model as a classifier of 

PAH, and furthermore suggests that this model may predict PAH in general, rather than 

specific only to the SSc specific cohort.  This warrants further future investigation to confirm. 

 

 External validation 

 Validation cohort 

An external validation cohort of patients including those with SSc both with and without PAH 

were identified and received from the Vera Moulton Wall Center for Pulmonary Vascular 

Disease, Stanford University School of Medicine and the Pulmonary Vascular Center, 

Vanderbilt University Medical Center.  Samples from Stanford were obtained at RHC, and 

those from Vanderbilt from peripheral blood draw at the time of clinical encounter.  All blood 

samples were clotted, centrifuged and aliquoted and stored at -80°C until required.  Serum 

samples were shipped to us on dry ice and confirmed frozen, in good condition, and uniquely 
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identifiable upon receipt.  Samples were stored in our laboratory at -80°C while awaiting 

validation assay. 

 

Table 5.1: Validation cohort demographics 

 
Demographics for combined Stanford and Vanderbilt validation cohort. 

Abbreviations: n – number; IQ – interquartile; M/F – Male/Female; WHO FC – World health organisation 
functional class; PFT – Pulmonary function tests; 6MWT – 6-minute walking test; RHC – right heart catheter 

 

 Validation assays 

To retain the option from a larger group of proteins, we performed validation assays on the 

external samples targeting the seven proteins identified in the first step of classification 

modelling (Table 4.5): Tetranectin (CLEC3B); N terminal pro b-type natriuretic peptide 

(NTproBNP); Growth differentiation factor 15 (GDF15); Interleukin-6 receptor subunit beta 

(IL6ST); Insulin like growth factor binding protein 7 (IGFBP7); Protein DJ-1 (PARK7); Endostatin 

(COL18A1). 

 

Validation assays were performed according to the methods described in section 2.5 

(Validation assays).  As the Myriad RBM assays are based on Luminex technology we initially 

sought to perform the validation assays using similar technology in house.  CLEC3B was not 

available in a Luminex assay and we therefore performed this analysis using an ELISA assay.  

NTproBNP did not plex with the other proteins and was performed using a single analyte 

SSC-PAH SSC-no PH p-value
n 53 25
Age (IQ range) 61 (54 - 69) 58 (51 - 65) 0.39
Gender (M/F) 5/48 2/23 1
WHO FC 1 3

2 11
3 28
4 8

PFTs (median + IQ)) FVC Percent 79 (64.5 - 86.5)
TLCO Percent 64 (39.8 - 88.3)

6MWT (median + IQ)Distance 458 (313 - 1201) 1425 (1135 - 1800) <0.001
RHC (median + IQ) mPAP 46 (34 - 54) 16 (15 - 20) <0.001

RA pressure 7 (4.5 - 13) 3 (3 - 7) <0.001
CI 2.2 (1.8 - 2.6) 2.4 (1.9 - 3.0) 0.33
PVR 700 (442 - 986) 131 (107 - 214) <0.001
PCWP 10 (8 - 13) 7 (5 - 10) 0.017

NAUnknown

Unknown NA
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Luminex assay.  The remaining proteins (GDF15, IL6ST, IGFBP7, PARK7 and COL18A1) were 

combined in a single Luminex assay. 

 

The Stanford University samples were received first and analysed separately to the Vanderbilt 

University samples.  The Stanford samples required two plates for each assay, and the 

Vanderbilt samples were all plated on a single plate.  For the Stanford assays split across two 

plates, each plate assay was performed concurrently. 

 

The Luminex NTproBNP assay failed on all plates, so a further ELISA assay was performed for 

NTproBNP.  This further ELISA assay also failed quality control and so as NTproBNP could not 

be reliably validated, it was not considered for inclusion in the final model. 

 

 Quality control and intra-assay batch control for validation assays 

All samples were plated in duplicate to assess for any intra-assay variability.  Duplicates for all 

plates and all assays were examined and showed little evidence of significant intra-assay 

variability when assessed visually (a representative example is shown in Figure 5.2, with all 

plots in Appendix 3 – External validation QC,  Sample replicate plots).  Statistical analysis of 

intra and inter assay variability confirm the quality control of the assay used (Table 5.2). 
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Figure 5.2: Dot plot showing MFI values for each replicate 

Dot plot showing raw MFI values for replicates 1 and 2 from Luminex assay for PARK7 in Stanford University 
samples.  Dotted lines join replicates from the same patient. 

 

As the Stanford University samples needed to be analysed on two separate plates, run at the 

same time under the same environmental condition, this gave the opportunity to examine 

the standard curves across these plates as a further measure of intra-experiment consistency.  

The paired standard curves replicated each other precisely suggesting little if any intra-

experiment variability.  A representative example is given in Figure 5.3 and all standard curve 

analyses of the Stanford plates shown in Appendix 3 – External validation QC, Stanford assay 

plate standard curves.  Intra- and inter-assay variability co-efficients (CV) are given in Table 

5.2. 

 

 

 

 

 



PhD Thesis  Dr. Peter M Hickey 

 Page 130  

 

 

Table 5.2: Co-efficients of variation (intra and inter-assay) for in-house validation assays 

Protein assay Intra-assay CV % Inter-assay CV % 

CLEC3B 4.11 1.49 

COL18A1 6.94 4.56 

GDF15 7.1 8.93 

IGFBP7 12.00 6.67 

IL6ST 4.83 1.89 

PARK7 6.99 3.99 

NTproBNP (luminex) 21.84 17.7 

Intra-assay CV %: variability between standards and anchor samples across different plates run at the same 
time.  Inter-assay CV %:  variability between duplicate values across whole assay. 

 

 

 

 

 
Figure 5.3: Standard curves plotted from the two Stanford Luminex PARK7 assay plates 

 

The standard curves for the Luminex assays suggested the assays to be sub-optimal at 

detecting throughout the documented range.  By this I mean that for each assay, the lower 

standards tended to be clustered tightly with very little difference in measured MFI signal 

between each of the analyte concentrations in the lower range of the assay, until the third 

standard.  This decreases the accuracy of calculated analyte concentrations for any 

1 2 3 4 5
-2000

0

2000

4000

6000

8000

NTproBNP Standard Curves

Log NTproBNP Concentration

N
et

 M
FI

Plate 1 Net MFI

Plate 2 Net MFI

1 2 3 4

-2000

0

2000

4000

6000

GDF15 Standard Curves

Log GDF15 Concentration

N
et

 M
FI

Plate 1 Net MFI

Plate 2 Net MFI

0 2 4 6
0

2000

4000

6000

8000

10000

PARK7 Standard Curves

Log PARK7 Concentration

N
et

 M
FI

Plate 1 Net MFI

Plate 2 Net MFI

2 4 6
-1000

0

1000

2000

3000

4000

5000

IGFBP7 Standard Curves

Log IGFBP7 Concentration

N
et

 M
FI

Plate 1 Net MFI

Plate 2 Net MFI

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

CLEC3B Elisa Standard Curves

Log CLEC3B Concentration

Ph
ot

om
et

ric

Plate 1 Photometric

Plate 2 Photometric

0 2 4 6
0

5000

10000

15000

IL6ST Standard Curves

Log IL6ST Concentration

N
et

 M
FI

Plate 1 Net MFI

Plate 2 Net MFI

1 2 3 4 5

-2000

0

2000

4000

6000

COL18A1 Standard Curves

Log COL18A1 Concentration

N
et

 M
FI

Plate 1 Net MFI

Plate 2 Net MFI



PhD Thesis  Dr. Peter M Hickey 

 Page 131  

measurements falling in this range.  In order to examine the likely effect of this on the 

accuracy of calculated analyte concentrations, I assessed the actual distribution of sample 

MFI readings against their corresponding standard curve.  

 

To determine the point at which our samples were detect on the standard curves we plotted 

the distribution of raw readings from ELISA and Luminex assays and demonstrated these 

against the corresponding standard curve for each plate.  A representative example is given 

in Figure 5.4, with data for all proteins and plates analysed in Appendix 3 – External validation 

QC, Raw data against standard curves.  

 

 

 
Figure 5.4: Standard curve and raw data histogram from Stanford samples, PARK 7, plate 1. 

Standard curve (left) and histogram of raw data values from Luminex detection (right) to demonstrate the 
spread of data against the corresponding standard curve. 

 

These data show that assays for CLEC3B, GDF15, IGFBP7, IL6ST, and PARK7 fall within the 

assay detection range.  The assay for COL18A1 concentration detected a high proportion of 

data above the upper limit of the assay.  The protein conversion for these data were 

accordingly revalued at the upper limit of detection.  Our Luminex assay for NTproBNP failed 

on all plates, with assay results returning a net MFI lower than background through the 

majority of patient samples (Figure 5.5). 
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Figure 5.5: Raw MFI data and standard curve for NTproBNP Luminex assay. 

Data shown is for Stanford samples, plate 1. 

 

Protein concentrations were then generated from the raw detection values using the plate 

standard curve data, computed using GraphPad Prism 7.0a using a four parameter curve fit.  

Protein concentration data for points falling outside the assay detection range were assigned 

the value of the corresponding limit of detection. 

 

Batch control was assessed using ‘anchor samples’ – Sheffield samples which were analysed 

on the Myriad RBM platform, also plated on every validation plate to assess for, and to allow 

for correction of inter-assay variability (Figure 5.6).  When assessing protein concentration in 

the validation assays only (not considering Myriad concentration data) there was consistency 

demonstrated in the measurement across COL18A1, IGFBP7, IL6ST, NTproBNP and PARK7.  

There was evidence of a batch error in the measurement of CLEC3B and GDF15.  Anchor 

proteins from Plate 1 Stanford samples for CLEC3B read significantly higher than the other 

validation plates for this protein.  Furthermore, examination of the general protein 

concentration distribution confirmed the generally higher concentration results for Stanford 

Plate 1 (Figure 5.7a).   
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Figure 5.6: Anchor proteins on each plate by serum concentration 

Anchor protein concentrations on each plate, and from Myriad dataset.  Each coloured line represents an 
individual patient. 
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A correction factor was generated for each patient between Stanford plate 1 and the 

averaged values of Stanford plate 2 and Vanderbilt plate results.  From these data a general 

correction factor was calculated by averaging the individual patient correction factors.  After 

correction there was no significant difference between protein concentration distributions 

across the three validation plates (Figure 5.7b). 

 

 
Figure 5.7: Density plot showing distribution of CLEC3B concentration measurements between plates. A: Before 

plate correction, B: After plate correction 

Kruskal-Wallis p-value shown 

 

Similarly, in analysis of GDF15, both Stanford plates read significantly higher than the 

Vanderbilt results when the Myriad RBM dataset values were taken into account (Figure 

5.8a). 
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Figure 5.8: Density plot showing GDF15 concentration distributions on each plate. A: Before plate correction, B: 

After plate correction. 

Kruskal Wallis p-value shown. 

 

For this correction, the averaged results for each patient on the Stanford plates were 

corrected against each corresponding Vanderbilt value.  The results were then averaged to 

generate a single correction factor which was applied to both Stanford plates. 

 

This correction represents an improvement in plate variability, but does not completely 

eliminate the difference which may relate to biological differences between patient classes 

on each plate.  Protein concentration plate comparison plots for all proteins after the above 

two corrections are applied are given in Appendix 3 – External validation QC, Protein 

concentration plate distribution plots. 

 

 NT-proBNP failed assays 

Validation assays for NTproBNP were performed initially using Luminex technology, and 

subsequently by ELISA assay.  Both assays failed quality control with very poor assay 

sensitivity for low NTproBNP concentrations, and the majority of sample results reading lower 
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than background signal in our Luminex assays (Figure 5.9), and a high proportion samples 

outside the standard curve range in our ELISA assays (Figure 5.10). 

 

 

 
Figure 5.9: NTproBNP Luminex assay results for Stanford samples, plate 1. 

Figure shows the standard curve on the left, and Net MFI readings for all samples on the right. 
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Figure 5.10: NTproBNP ELISA assays for all Stanford samples. 

Standard curves for both plates on the left, with photometric detection units for all samples on the right. 

When the NTproBNP ELISA results were compared to the clinical NTproBNP results available 

from Stanford university, taken and analysed at the time of patient visit, there was no 

correlation between measured concentrations. 
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Figure 5.11: Comparison between available clinical NTproBNP assay results (from Stanford University research 

laboratory) and ELISA validation results. 

 

On this basis, NTproBNP was removed from further consideration in the classifying model. 

 

 Assessing agreement between derivation and validation assays 

Assessing the agreement between measurement methods is a large analysis in its own right 

and our study was never designed for this purpose.  Nevertheless we have data from two 

different assays designed to measure the same protein concentrations and therefore some 

analysis of the agreement by the two methods is important. 

 

Our dataset allows for only limited investigation of the two methods, directly by assessing the 

differences between measurements of 5 paired samples analysed in by both methods, and 

indirectly by observing and comparing the distribution of protein concentration 

measurements between the derivation and validation cohorts. 
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Agreement is an important concept to differentiate from correlation when analysing two 

measurement methods.  Correlation is concerned with finding a trend in similarity between 

two variables, whereas to quantify agreement between two measurement methods it is more 

appropriate to consider the differences in paired measurements between the two methods. 

The most commonly used technique for doing so is the Bland-Altman plot, in which the 

difference between paired measurements is plotted against the mean measurement, with 

indicators for mean difference and 2 standard deviations from that mean shown.  2 

measurement methods are considered to be in agreement if >95% of values fall within 2 

standard deviations.(Giavarina, 2015) 

 

A Bland-Altman analysis of our data, directly comparing the two measurement methods can 

be done using only the 5 patient samples which were included in both the derivation and 

validation assays.  For this analysis, the paired measurements from the derivation dataset 

were analysed against the mean average paired measurement across all plates and replicates 

in the validation dataset.  Given the small numbers, no robust statistical conclusions can be 

drawn, however the plots allow for inspection of the relationship between measurements 

(Figure 5.12).  Each protein is represented by a scatterplot showing the direct relationship 

between derivation and validation measurements, and a Bland-Altman plot showing the 

analysis of differences.  It is clear that there is some variability in between the measurement 

methods, with some outlying measurements significantly affecting correlation statistics given 

the small sample numbers.



PhD Thesis  Dr. Peter M Hickey 

 Page 140  

 
Figure 5.12: Bland-Altman analysis for agreement between derivation and validation assays 

For each protein a scatterplot of the logConcentration for each method is shown, along with a Bland-Altman plot for analysis of differences.  Within the Bland-Altman plot 
the middle dotted horizontal line represents the mean difference and the upper and lower dotted horizontal lines represent 2 standard deviations from that mean. 



PhD Thesis  Dr. Peter M Hickey 

 Page 141  

Given the small number of paired samples available for analysis, we also examined whether 

the protein general unpaired concentration distribution in our validation analyses matched 

the protein concentration distribution within the Myriad RBM derivation dataset (Figure 

5.13).  The disease group composition is similar in both the derivation and validation cohort 

and therefore if the selected proteins are related to the disease group we would expect some 

similarity in the general protein concentration measurements between the two cohorts. 

 

From the paired sample analysis we can see that there is some suggestion of bias between 

the two methods for certain proteins, this is also evident from this unpaired analysis of a 

larger number of samples, particularly for CLEC3B, IGFBP7, IL6ST and PARK7.  As in the paired 

sample analysis, the general measurements between cohorts for GDF15 are very similar. 

 

COL18A1 showed little evidence of correlation between the derivation and validation cohort 

(Figure 5.12) and was significantly affected by a large proportion of datapoints falling outside 

the limit of detection in our validation assays (Paragraph 9.3.3).  It is therefore likely an 

unreliable measurement in the validation cohort and does not appear in our final classifying 

model. 
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Figure 5.13: Comparison of protein concentration distributions between Validation dataset and Myriad dataset 

Comparison of each of the remaining 6 proteins after NTproBNP dropped.  Comparison statistic given is 
Kolmogorov-Smirnov p-value. 
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Formal statistical analysis of these protein distributions with Kolmogorov-Smirnoff test 

demonstrates statistically significant differences between cohorts in the measurement 

distributions for CLEC3B, IGFBP7, IL6ST and PARK7.  GDF-15 concentrations are well matched 

between the analyses. 

 

Simple median correction was applied to the validation dataset resulting in an improved data 

distribution match between the analyses (Figure 5.14).  These adjusted protein data were 

taken as the final validation dataset for statistical analysis. 
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Figure 5.14: Comparison of protein concentration distribution between validation and Myriad datasets after 

median corrections. 



PhD Thesis  Dr. Peter M Hickey 

 Page 145  

 

 

 Statistical analysis of model using external validation cohort 

Comparison of protein distributions by disease classification in each of the validation and 

derivation cohorts demonstrates the issue of overfitting in the proteins dropped from the 7 

protein panel to derive the final 3 protein panel (Figure 5.15). 

 

 
Figure 5.15: Boxplots of protein concentration in derivation and validation cohorts 

 

These data show that although there are significantly altered protein concentrations in the 

derivation cohort for IGFBP7, IL6ST and PARK7, these significant differences are not 

demonstrated in the validation cohort.  It is therefore likely that retaining all of these variables 

in the classification model would represent a model overfit to the derivation cohort only.  

Significant changes are shown in both cohorts for CLEC3B, COL18A1 and GDF15. 

 

For entry of the validation dataset into the final classifying model data were prepared in the 

same way as for derivation modelling with log transformation and scaling of the dataset.  The 

external validation cohort was modelled blind to the true clinical classification as the samples 
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were received and analysed before the matching clinical phenotype information were 

available.  Data were entered into the final logistic regression model for classification (Table 

4.6).  The resulting scores are shown in Figure 5.16a. 

 

 
Figure 5.16: A: Boxplot showing model scores for external validation cohort, B: ROC showing classification 

utility in validation cohort. 

 

Our model classifies PAH in SSc within the external validation cohort with an AU-ROC for of 

0.79 (Figure 5.16b) which is reasonable given that the derivation cohort are all sampled at 

disease baseline when treatment naïve, and the validation cohort are a prevalent group of 

patients, 32 (60%) of whom are established on PAH targeted treatment (Figure 5.17). 

 

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

****

−2.5

0.0

2.5

5.0

7.5

SSC−no PH SSC−PAH

M
od

el
 s

co
re

●

●

●

●

●

●

●

●

●
●

Inf

3.2

2.6

1.9

1.6

1.2

0.7

0

−0.8 −3

AUC = 0.79

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

A B



PhD Thesis  Dr. Peter M Hickey 

 Page 147  

 
Figure 5.17: Subanalysis of Figure 5.16  showing number of SSc-PAH patients from the validation cohort who 

are already on PAH targeted treatments 

 

 Discussion 

 

In this chapter I set out to test the fit of the classifying model to assess whether this model 

would generalise and prove an accurate classifier when applied to validation samples. 

 

The robustness of the classifying model was tested through three different methods, each 

time proving its utility for the classification of PAH in SSc, and also generating some evidence 
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for this panel in the detection of PAH in patients with idiopathic disease.  The first two 

analyses were based on the dataset received from the assays performed by Myriad RBM, 

allowing for tight control over any intra-assay variation. 

 

K-fold cross validation is a technique often used when there is no external validation cohort 

for more rigorous testing.  Our K-fold cross validation with a large number of repeats allowed 

for adequate randomisation in the way the sample set were split into folds for testing, to 

maximise the accuracy of the final average result.  Based on the derivation cohort which 

demonstrated a diagnostic accuracy of 85% when the classifying model is applied across the 

entire derivation cohort, k-fold cross validation confirmed this result with an average accuracy 

of 83% when the model is repeatedly optimised and tested in these derivation and validation 

subsets. 

 

Although not intended for use in the IPAH subclass of patients, the initial Myriad cohort of 

patient samples included a cohort with both IPAH and healthy volunteers which were 

analysed under the same high-quality controlled conditions and therefore returned directly 

comparable concentrations for the same protein analytes as those for the SSc derivation 

work.  Applying the unaltered classification model to the IPAH/HV cohort provided an 

alternative test for the validity of these proteins in the pathophysiology of PAH, and 

demonstrates that these are likely related to the PAH process rather than any other 

comorbidity associated with the SSc disease process.  Validation in this cohort proved 

beneficial with an AU-ROC for classification identical to that found for the classification of PAH 

in SSc – 0.87. 

 

The most rigorous test of model validity is testing against an external validation cohort.  For 

this purpose we tested our model against patient samples from Stanford and Vanderbilt 

University pulmonary vascular disease services.  It was not possible to obtain a suitable cohort 

of patients to match exactly to our baseline treatment naive derivation cohort.  The external 

samples were obtained from patients with prevalent PAH, and therefore represent patients 

at an established stage of disease, which differ from the potentially more subtle 

pathophysiological changes of early PAH, most notable amongst this is the rise in NTproBNP 

caused by increasing right ventricular wall stress in progressing pulmonary vascular disease, 
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which would be absent in the most early stages of a developing pulmonary vasculopathy.  

Applying our model to this cohort returned an AU-ROC for classification of 0.79 which is 

promising despite the clinical differences in this validation cohort. 

 

The external validation was affected by several limiting factors which are likely to have had 

some bearing on the outcome, both technical variability within the assays performed, and 

variability between the patient cohorts used for derivation and validation.  The validation 

assay technique run in-house differed from the very tightly controlled, automated 

commercial process used by Myriad RBM for the derivation assays.  The antibody pairs are 

likely to be different, with the validation assays performed using commercially available assay 

kits, and the derivation assays using antibody pairs developed in house by Myriad RBM.  It is 

therefore likely that the antibody pairs used targeted different epitopes on the target proteins 

which may have affected the results seen.  Further to this, the validation assays were 

performed manually with some evidence of technical variability affecting the final 

concentration results. 

 

 

Patient selection may have differed during the selection and recruitment of patients between 

the derivation and validation cohorts.  In Sheffield we recruit patients at baseline referral 

immediately after diagnostic investigation to confirm and accurately phenotype the disease 

class, but before commencement of treatment.  This can still be a significant time after onset 

of symptoms as we know there is often a delay to recognition of possible underlying 

pulmonary vascular disease and referral for definitive investigation.  Patients provided by the 

external validation centres (Stanford and Vanderbilt) appear to differ in the stage of disease 

at recruitment as most patients were established on pulmonary vasodilator therapy by the 

time of sampling.  Several patients in the external cohort had elevated NTproBNP 

concentrations at the time of sample, and combined with the evidence of frequent 

established treatments for these patients, suggests that these patients are recruited at a later 

stage of the disease process with well established PH.  These patients are different to our 

ideal target patient cohort who are a group of patients with early stage pre-symptomatic 

disease who would benefit from early identification and treatment.  The serum sampling 

technique, processing and storage also differed between all three PH centres involved. 
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When I examined the results of the external validation in detail (Figure 5.16), it became 

apparent that some of the patients clinically classified in the SSc-no PH cohort could have 

been falsely classified into this group.  Although they do not meet the strict criteria for 

diagnosis of PH, there were some abnormalities that may alter the outcome of our validation.  

5 patients in this group had a PVR ³ 3 Wu, and 3 had a laboratory measured NTproBNP > 450 

pg/ml.   No detail is available as to whether these patients progressed on to develop PAH, 

however these results suggest a component of cardiovascular disease affecting this control 

group. 

 

The final important consideration regarding potential sources of error inherent in the 

classification model goes to the fundamental purpose of this research and its target 

population.  Both the derivation and validation cohorts of patients in this study were recruited 

from PH referral centres, therefore a preselected group of patients who had been referred 

for investigation of possible PH likely based on suggestive symptoms or basic investigations.  

This group of patients is therefore enriched for the presence of PH which will affect the quality 

of the SSc control cohort, with a higher likelihood of physiological (non-PH) abnormality in 

this group.  It is possible that the classifying potential of our model is underestimated when 

tested in this cohort, and would be improved by testing against a true validation cohort such 

as an unselected group of SSc patients in the rheumatology clinic. 
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6 In vitro mechanisms 

 Introduction 

The discovery analysis was performed using the Myriad RBM DiscoveryMAP platform of 

analytes which are broad in nature and not specifically targeted at cardiovascular disease.  A 

secondary aim of our project was to identify proteins which have not previously been 

described in relation to PAH to allow us to identify potential novel proteins and pathways 

involved in this complex pathophysiology and as potential new targets for treatment. 

 

Our derivation dataset contains 27 proteins for which there is a statistically significant protein 

concentration difference between SSc-PAH and SSc-no PH (based on false detection rate 

adjusted p-values).  Of these, our final classification model retains of only three proteins: GDF-

15; PARK7 and CLEC3B. 

 

GDF-15 is reported by a reasonable body of published evidence which describe a clearly 

established role for altered expression of this protein in PAH of various subtypes.  It is a 

member of the TGFß superfamily of cytokines, involved in regulating cell growth and 

differentiation.  GDF-15 expression is known to be upregulated in lung tissue of patients with 

PAH, localising to endothelial cells and areas of active vascular remodelling such as plexiform 

lesions.(Nickel et al., 2011)  Furthermore, circulating concentrations of GDF15 have been 

shown to be more significantly elevated in SSc-PAH than in IPAH despite less severe 

haemodynamic changes, with concentrations correlated to multiple indices of PH.  

Importantly, GDF-15 was found to predict mortality in SSc-PAH with greater accuracy than 

NTproBNP.(Meadows et al., 2011)  Despite an established relationship between GDF-15 and 

PAH, evidence regarding the presence of GDNF family receptor alpha-like (GFRAL), the 

receptor for GDF-15, in lung tissues is not currently available. 

 

PARK7 is a protein which is ubiquitously expressed in human tissues.  Genetic study of PARK7 

has found that loss of function mutations are associated with familial Parkinson’s disease, and 

gain in function mutations with unregulated cell survival in cancer biology.(Vasseur et al., 

2009) Multiple intracellular functions have been associated with PARK7 including resistance 

to oxidative stress in vascular cells (Lee et al., 2006, Taira et al., 2004, Vasseur et al., 2009) 
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and more recently an association has been made between PARK7 expression and modulation 

of endothelial nitric oxide synthase activity.(Won et al., 2014)  PARK7 also exists as a secreted 

protein, associated with  promoting angiogenesis by stimulating angiogenesis through the 

FGF-1 receptor.(Kim et al., 2012)  To our knowledge, PARK7 has not previously been studied 

in relation to human PAH, however these mechanisms present in other pathologies would 

support the need for investigation of a similar role in pulmonary vascular disease. 

 

Tetranectin (CLEC3B) represents the least well described protein from our classifying model.  

It is a known component of proteolytic and fibrinolytic processes, known to bind plasminogen 

resulting in enhanced activation of plasminogen to plasmin.(Chen et al., 2015)  Tetranectin 

has been described in relation to the enhanced matrix turnover and infiltration in multiple 

malignant processes.(deVries et al., 1996, Obrist et al., 2004)  In cardiovascular disease, 

Tetranectin has been found decreased in the serum of patients with atherosclerotic disease, 

with the decrease proportional to the extent of atherosclerosis.  Examination of 

atherosclerotic tissue samples found significantly increased Tetranectin concentrations 

leading Chen et al. to hypothesise that decreased circulating concentrations are related to an 

enhanced uptake of the protein into atherogenic lesions.(Chen et al., 2015)  Alteration 

Tetranectin biology has not previously been reported in pulmonary arterial hypertension. 

 

GDF-15, PARK7 and CLEC3B are the constituent proteins of our classifying model and as such 

these are the proteins that we chose to take forward to study in cell biology. 

 

 Aim 

As GDF-15 is already well established in SSc-PAH we sought to identify the presence or 

absence of its receptor (GFRAL) in human and animal tissues. 

 

PARK7 and CLEC3B are previously less well described and as such we initially sought to identify 

whether these proteins can be identified in human and animal lung tissues, and subsequently 

to take these forward into cell culture experiments to look for any typical biological changes 

which might relate to a pathophysiological mechanism of action known key to vascular 

remodelling.  In order to assess whether animal models of PAH could be used for further 
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studies of these proteins we also sought to identify the presence or absence of these proteins 

in rat lung tissues. 

 

 Results 

For each immunohistochemistry experiment, 3 slides were stained with the example showing 

the best available section to include both lung parenchyma and pulmonary vasculature. 

 

 Immunohistochemistry 

 Negative control 

 
Figure 6.1: Immunohistochemistry: Negative control 

Lung tissue sections, processed as per IHC protocol, but without primary antibody. Human PAH lung section at 
65x magnification 

 

This negative control section demonstrates remodelled small vessels from a human patient 

with IPAH.  There is neither specific nor background DAB staining evident on this section, 

produced using the same protocol as for all following IHC sections, but in the absence of a 

primary antibody. 
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 PARK7 

 
Figure 6.2: Immunohistochemistry: PARK7 

Human lung tissue sections stained for presence of PARK7, imaged at x65 magnification.  A: Healthy lung 
tissue; B: PAH lung tissue 

 

Staining for PARK7 is evident in the alveolar cells, and inflammatory cells present in the 

healthy human lung, with an absence of staining in the vascular media or intimal layers (Figure 

6.2a).  In contrast, there appears significantly greater staining for PARK7 in remodelled vessels 

of human IPAH with evident staining in the remodelled vessel wall and endothelium (Figure 

6.2b). 
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 CLEC3B 

 
Figure 6.3: Immunohistochemistry: CLEC3B 

Human lung tissue sections stained for presence of CLEC3B, imaged at x65 magnification.  A: Healthy lung 
tissue; B: PAH lung tissue 

 

In healthy tissues (Figure 6.3a) only very limited staining is seen in the vascular adventitial 

layers, however this contrasts markedly with PAH lung tissues (Figure 6.3b) which show 

staining for CLEC3B in the remodelled vascular media and endothelial layer, as well as some 

staining in the alveolar tissues. 
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 GFRAL 

 
Figure 6.4: Immunohistochemistry: GFRAL 

Human lung tissue sections stained for presence of GFRAL, imaged at x65 magnification.  A: Healthy lung 
tissue; B: PAH lung tissue 

 

Again, there is a clear difference for GFRAL staining between human healthy (Figure 6.4a) and 

PAH diseased (Figure 6.4b) lung tissues.  There is no evidence of staining in healthy tissues, 

but again evidence of staining in the remodelled vessel wall. 
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 Animal Models 

In order to determine whether the target proteins are expressed in animal models, I also 

stained 3 sections of lung tissue from Sugen hypoxic rat models of PAH (Figure 6.5).  This was 

to determine whether rat models would be suitable for further mechanistic/ knockdown 

experiments to further examine the role of our target proteins in the pathogenesis of PAH. 

 

These sections confirm the presence of our target proteins and in a similar distribution seen 

in diseased human tissues. 
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Figure 6.5: Immunohistochemistry in animal 
models. 

Lung tissues from Sugen hypoxic rat models of 
PAH.  A: stained for PARK7; B: stained for CLEC3B; 

C: stained for GFRAL.  
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 Cell culture 

 Phenotyping of HPAEC 

The majority of cell culture work was done using commercial HPAEC bought in and used from 

passage 3.  A few experiments were done using human pulmonary artery endothelial cells 

acquired from colleagues at Imperial University and stored in our tissue bank.  To verify the 

cell type under investigation we used IHC to phenotype the cells as described in section 

2.6.2.1. 

 

 
Figure 6.6: Immunofluorescent IHC for cell phenotype 

Images at x20 magnification.  A: vWF stain negative control; B: vWF stain; C: Vimentin stain negative control; 
D: Vimentin stain; E: SMA stain negative control; F: SMA stain. A-D Alexa fluor 488 (green), E-F Alexa fluor 555 

(red).  All samples counterstained with DAPI. 
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Fluorescent IHC (Figure 6.6) shows no evidence of background staining for negative controls 

(slides A, C and E), positive vWF (slide B) and Vimentin (slide D) staining, but negative SMA 

staining (slide F) which is consistent with an endothelial cell phenotype. 

 

 PARK7 

To study the effect of PARK7 on cell types primarily involved in the pathophysiology of PAH 

we first conducted experiments by attempting to stimulate cells with the protein to 

investigate for any evidence of altered cell proliferation in both HPAEC and HPASMC, and for 

evidence of altered cell migration or angiogenesis in HPAEC only. 

 

Three proliferation assays (n=3) were performed on HPAEC, using two different batches of 

commercially bought cells (Lonza CC-2350).  The first two assays used the same batch of cells 

at passages 3 and 6, and the third assay using a second batch of cells at passage 5.  These 

assays investigate the effect of direct simulation of HPAECs with recombinant human PARK7 

protein (Abcam, Cat: ab124312). 
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Figure 6.7: Proliferation assays for PARK7 effect on HPAEC. 

Top panels showing average results from replicates in individual proliferation assays, with the lower panel 
showing combined results, normalized between VEGFA positive control and Negative control.  ANOVA statistic 

shown. 

 

Response from these HPAEC to VEGFA positive control stimulation was present but limited.  

From these data, there is no evidence of a direct effect of PARK7 stimulation on proliferation 

of HPAEC (Figure 6.7). 

 

PARK7 stimulation, using the same recombinant human PARK7 protein, was also tested to 

evaluate any proliferation effect on commercial HPASMC (Lonza CC-2581).  2 assays (n=2) 

were performed on a single batch of cells at passages 4 and 5. 
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Figure 6.8: Proliferation assay for PARK7 effect on HPASMC. 

Top panels show average results from replicates for individual proliferation assays, the lower panels showing 
the combined results normalized between PDGF positive control and negative control.  ANOVA statistic shown. 

 

This experiment shows an appropriate proliferation response from HPASMCs to the PDGF 

positive control, however shows no evidence of proliferation in response to direct stimulation 

with PARK7 (Figure 6.8). 

 

3 angiogenesis assays (n=3) were performed using Imperial University HPAECs at passages 3, 

4 and 5.  Although tube networks developed appropriately (representative images shown in 

Figure 6.9), the there was no difference demonstrated for total tube length between positive 

and negative control (Figure 6.10), therefore a failed experiment, and from this data we can 

draw no meaningful conclusions regarding any effect of direct PARK7 stimulation on 

angiogenesis in HPAEC. 
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Figure 6.9: Images from angiogenesis assay Ex16, HPAEC stimulated with PARK7. 

A: Positive control VEGFA; B: PARK7 1000ng/ml; C: PARK7 1ng/ml; D: Negative control. 

 

 
Figure 6.10: Angiogenesis assay for HPAEC stimulated with PARK7. 

Showing average results for replicates from individual angiogenesis experiments.  Metric shown is total tube 
length. 

3 migration assays (n=3) were performed to investigate the effect of direct stimulation of 

HPAEC with PARK7 for altering endothelial cell migration.  2 different batches of commercial 

cells were used in this experiment, 1 batch of cells at passage 6, and another batch of cells at 

passage 4 and 5. 
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Figure 6.11: Migration assay for HPAEC stimulated with PARK7. 

Top panels show average results of replicates for individual experiments, with lower panel showing the 
combined results normalized between VEGFA positive control and negative control. 

 

Migration response to positive control stimulation with VEGFA was very limited, but despite 

this there was a small significant difference between all concentrations of PARK7 stimulation 

against the negative control suggesting some effect of direct stimulation by PARK7 for 

increasing HPAEC migration (Figure 6.11). 

 

 CLEC3B 

The effect of CLEC3B on pulmonary vascular cells was investigated in parallel to the 

experiments described for the investigation of the effect of PARK7 in section 6.3.2.2.  The 

number of experiments performed, source of cells used and passage numbers are therefore 

the same as in the corresponding assays previously described.   

 

The effect of directly stimulating pulmonary vascular cells with recombinant human CLEC3B 

(R&D systems, Cat: 5170-CL-050) was investigated in proliferation assays (n=3) (Figure 6.12).  
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Figure 6.12: Proliferation assay for effect of CLEC3B on HPAEC 

Top panels showing average results from replicates in individual proliferation assays, with the lower panel 
showing combined results, normalized between VEGFA positive control and Negative control.  ANOVA statistic 

shown. 

The results are variable between each assay, but neither individual assays, nor grouped 

analysis show any evidence that proliferation of HPAEC is altered by direct simulation with 

recombinant human CLEC3B. 

 

Similarly, proliferation assays in HPASMCs did not show any evidence of altered cell 

proliferation when similarly stimulated with recombinant human CLEC protein (Figure 6.13). 
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Figure 6.13: Proliferation assay for effect of CLEC3B on HPASMC 

Top panels show average results from replicates for individual proliferation assays, the lower panels showing 
the combined results normalized between PDGF positive control and negative control.  ANOVA statistic shown. 

 

Angiogenesis assays were performed to investigate whether recombinant human CLEC3B 

protein could stimulate angiogenesis in HPAEC.  3 experiments were performed in HPAECs on 

a growth factor reduced Matrigel matrix, however there was little difference in total tube 

length measured between the VEGFA positive control, and the negative control and therefore 

the assays were deemed to have failed (Figure 6.14). 
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Figure 6.14: Angiogenesis assay for HPAEC stimulated with CLEC3B. 

Showing average results for replicates from individual angiogenesis experiments.  Metric shown is total tube 
length. 

 

HPAEC migration was assessed in response to stimulation with CLEC3B protein (n=3 assays) 

but no difference was demonstrated between CLEC3B stimulated cells and their 

corresponding negative control (Figure 6.15). 

 

 
Figure 6.15:Migration assay for HPAEC stimulated with CLEC3B. 

Top panels show average results of replicates for individual experiments, with lower panel showing the 
combined results normalized between VEGFA positive control and negative control. 
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 PARK7 and CLEC3B knockdown 

Some small significant effects on migration were noted on direct stimulation of HPAEC with 

PARK7, but other experiments with direct stimulation of pulmonary vascular cells with PARK7 

and CLEC3B showed negative results.  I therefore wanted to investigate the effect of knocking 

down these proteins by transfecting cells with appropriate siRNA before repeating the 

migration assays to look for any change in phenotype. 

 

HPAEC were transfected with siRNA targeting PARK7 and CLEC3B, as well as non-targeting 

siRNA as control according to the method given in section 2.6.2.5:Transfection.  This 

experiment was repeated three times using HPAEC at passage 6 and 7 from one batch of cells, 

and passage 5 from a second batch of cells.  Non-targeting siRNA was only available for 

transfection in the final experiment.  Migration assays were then performed as previously 

described.  Protein knockdown was quantified using Western blot (as per 2.6.2.6:Protein 

quantification and Western blot) on protein isolated from cells used in the final experiment. 

 

 

 

 

 

 

Figure 6.16: Chameleon duo pre-stained ladder 

Two colour near-infrared image shown on the right, with visible image on the 
left.(Li-Cor, 2015) 
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Figure 6.17: Western blot 
for PARK7 and CLEC3B 

knockdown. 

Top panels show Western 
blot results with specific 
protein directed primary 

antibodies as shown above 
each column. 

Middle panels 
demonstrate complete 

stripping of antibody from 
membrane before 
analysing GAPDH. 

Lower panels show results 
of primary antibody 

against GAPDH, used to 
normalize protein signal 

for each cell type analysed. 

Cell types are shown above 
each band indicating 

which cell types protein 
has been isolated from: 

NTF: Not transfected 
(control cells); Scr: 

Scramble transfection 
(Non-targeting siRNA); 

siPARK7: cells transfected 
with siRNA targeting 

PARK7; siCLEC3B: cells 
transfected with siRNA 

targeting CLEC3B. 

 

 

  



PhD Thesis  Dr. Peter M Hickey 

 Page 170  

 
Table 6.1: Results of Western blot analysis 

Showing the cell type protein was isolated from, the measured protein signal, associated GAPDH signal and 
normalized protein signal.  Knockdown was calculated only for the transfection under test from the relevant 
membrane.  Top panel shows results from the membrane analysed with anti-CLEC3B primary antibody and 

lower panel showing results from the membrane analysed with anti-PARK7 antibody. 

 

The Western blot show a good result with protein detection at approximately 35 kDa for 

CLEC3B and 25 kDa for PARK7 (Figure 6.17).  Analysis of the Western blot performed on cells 

taken at 48 hours after transfection showed knockdown of 49% for CLEC3B and 35% for 

PARK7 (Table 6.1). 

 

6.3.2.4.1 Migration assays in PARK7 and CLEC3B knockdown HPAEC 

Migration assays (n=3) were performed on cells at 48 hours after transfection (Figure 6.18).  

The migrated cell counts demonstrate a negative effect on endothelial cell migration due to 

the transfection process alone, with no further additional change noted with specific 

knockdown of CLEC3B.  There is however evidence of a further reduction in endothelial cell 

migration in the cells specifically targeted to knockdown PARK7. 

 

Western Blot analysis

CLEC3B

Non-Transfected 5519.242188 20862.65234 0.264551319
Scramble 3139.65625 17214.0625 0.182389035
siPARK7 3034.773438 16428.05078 0.184731194
siCLEC3B 1910.273438 14294.21484 0.13363962 49.48

PARK7

Non-Transfected 58523.01563 20740.69922 2.821651045
Scramble 49244.28125 16358.125 3.010386658
siPARK7 29160.73438 15908.32422 1.833048785 35.04
siCLEC3B 47276.0625 12840.70703 3.681733598

Knockdown from 
non-transfected 

cells (%)

Knockdown from 
non-transfected 

cells (%)

Protein normalized 
to GAPDH

Protein normalized 
to GAPDH

Protein Signal GAPDH SignalCell Type

Cell Type Protein Signal GAPDH Signal
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Figure 6.18: PARK7 and CLEC3B knockdown migration assay 

Combined results of migration assays using cells transfected with siRNA targeting PARK7 and CLEC3B, non-
targeting siRNA and non-transfected cells.  All experiments normalized to the non-transfected cell count. 

 

 

 Discussion 

In this chapter I set out to identify whether our proteins of interest are expressed in lung 

tissues of patients with pulmonary arterial hypertension and, more specifically, whether 

these localize to remodelled pulmonary vessels which would suggest a closer relationship 

between the protein and the underlying pathophysiology of PAH, rather than expression as a 

response to disease such as is seen with NTproBNP expression responding to elevated right 

ventricular pressures.  Through cell culture experiments, I then looked for a possible role in 

PAH pathogenesis for PARK7 and CLEC3B, as a role for these proteins is less well described 

than that of GDF-15 which has previously been well studied. 

 

Immunohistochemistry was performed on sections of lung tissue taken from explanted lungs 

from a patient with idiopathic pulmonary arterial hypertension as the closest available model 

to that of systemic sclerosis related pulmonary arterial hypertension.  The same remodelled 

vessels were used in each disease example. 
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IHC demonstrates the widespread expression of PARK7 protein in lung parenchyma and 

alveolar cells in both healthy and diseased tissues.  In contrast to healthy tissues, in PAH there 

is significantly greater expression of PARK7 in pulmonary vascular tissues, with particular 

localisation to the vascular endothelium.  This change is consistent with the previously 

described increase in serum concentrations of PARK7 in patients with SSc-PAH compared to 

control, and suggests that PARK7 may have a direct role in the vasculopathy underlying PAH.  

In the study of bone fracture repair and wound healing, Kim & Shin et al. associated PARK7 

expression with induction of angiogenesis in endothelial cells through stimulation of the 

fibroblast growth factor 1 (FGF-1) receptor.(Kim et al., 2012)  My in vitro experiments could 

not replicate angiogenesis finding in human pulmonary artery endothelial cells as these 

experiments failed, however a small but significant increase in endothelial cell migration was 

seen when HPAEC’s were stimulated with PARK7 protein.  When PARK7 is selectively knocked 

down, endothelial cell migration is negatively affected.  These results support the previously 

described role for PARK7 seen in wound healing and tissue regeneration, and these findings 

in pulmonary artery endothelial cells support the hypothesis that this protein plays an 

important role in the underlying pathophysiology of PAH. 

 

Staining for CLEC3B in PAH tissues shows significantly increased expression of this protein in 

the pulmonary vascular tissue, localising particularly to the smooth muscle and endothelial 

layers in contrast to control tissues where there is no staining seen.  This apparent increase 

in CLEC3B at the tissue level is in contrast to the results of our serum studies which reported 

reduced concentrations of CLEC3B in patients with PAH.  Similar contrasting results were 

noted by Chen & Han et al. who found a decreased serum concentration of CLEC3B in patients 

with coronary artery disease, but a higher concentration in histological sections of diseased 

coronary arteries as compared to controls.(Chen et al., 2015) It is therefore possible that 

CLEC3B plays an important role in multiple vascular pathologies, being sequestered from the 

circulation by diseased and remodelling vessels.  No studies have reported an association 

between CLEC3B and PAH.  Stimulation of pulmonary vascular endothelial and smooth muscle 

cells with CLEC3B in vitro cell culture did not demonstrate any altered cell biology.  Similarly, 

knocking down CLEC3B did not affect HPAEC migration. The known function of CLEC3B protein 

is to be involved in plasminogen activation and tissue remodelling, particularly reported to be 
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involved in the invasion of malignant cancer biology, which I would suggest supports a 

reasonable hypothesis for a similar role in the vascular remodelling underlying PAH.(deVries 

et al., 1996, Hogdall et al., 2002)  This proteolytic activity is likely to be a tissue based effector 

response to upstream PAH pathophysiology, and less likely to act as a pathway mediator of 

endothelial or smooth muscle cell activation. 

 

GFRAL, a receptor for the signalling of GDF-15, has not previously been reported outside the 

central nervous system.  Although GDF-15 has been widely reported in PAH, the signalling 

pathway for its action has not been identified.  IHC on diseased vessels in PAH demonstrates 

staining for the presence of GFRAL, which to my knowledge is the first report of this receptor 

in tissues of patients with PAH.  The presence of this receptor in lung tissues would provide a 

link for the action of GDF-15 to the pathological phenotype.  

 

IHC staining in tissues taken from rat models of PAH demonstrates similar staining for PARK7 

and CLEC3B to that of human tissues, suggesting that a rat model of disease could be used to 

test for the effect of these proteins, or the knockout of these proteins in in-vivo 

experimentation.  GFRAL did not show evidence of staining in the rat model. 
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7 General Discussion 

Most previous research, which currently guides treatment decisions in SSc-PAH, has included 

this subgroup of patients in the larger group under the heading “pulmonary arterial 

hypertension” due to the apparent pathophysiological similarities understood at the time.  It 

is rapidly becoming clear that SSc-PAH is a distinct pathophysiological condition, separated 

from idiopathic pulmonary arterial hypertension by differences in disease progression and 

mortality; treatment response; and histological findings. 

 

Within systemic sclerosis, prevalence of pulmonary hypertension is relatively high, with a 

currently established screening programme based on expert consensus through international 

guidelines and the published data from the DETECT study.  Small studies have suggested that 

diagnosing and treating patients with SSc-PAH earlier in their condition confers a survival 

advantage.  The DETECT algorithm has significant limitations, in that it relies on the availability 

of respiratory function tests, the availability of and intra-observer variability of 

echocardiography, and a returns high false positive rate of 65% leading to an excess of 

invasive right heart catheter studies being undertaken. 

 

We have demonstrated a potential predictive model based solely on the results of a 

peripheral blood test, a procedure which is generally considered simple and acceptable to 

patients.  This model positions itself as a tool for use in general rheumatology to identify 

patients with pulmonary arterial hypertension, without the multi-modality testing which is 

currently required.  It is likely that echocardiographic estimation of PASP and right heart 

function will remain as a major investigation for the determination of the need for definitive 

invasive testing. 

 

The combined measurement of Tetranectin, Protein DJ-1 and Growth differentiation factor 

15 produced a predictive tool which could classify patients with SSc into those with and 

without PAH with a diagnostic accuracy of 85%.  The biology of Tetranectin and Protein DJ-1 

have not previously been reported in pulmonary arterial hypertension.  

Immunohistochemistry suggests increases in these protein concentrations in lung tissues 

from patients with pulmonary arterial hypertension.  Furthermore, these proteins appear to 
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be expressed in animal models of PAH which could be used for further investigation of their 

pathobiology.  Cell biology experiments lacked a strong signal to explain a clear mechanism 

of action of these proteins however generally supported theoretical mechanisms 

extrapolated from other pathological conditions. 

 

To further this work, it would be useful to investigate the expression and relevance of these 

proteins in an unselected group of patients with systemic sclerosis, to gain some data on their 

potential as prognostic biomarkers, and as a true measure of their ability to detect disease at 

an early stage.  This would require a protracted period of patient follow up from an unselected 

baseline rheumatology cohort to determine those that would go on to develop pulmonary 

hypertension.  Within this cohort, it would also be useful to understand how change in these 

biomarkers reflects change in pulmonary vascular status over time, and to investigate any 

role for them in predicting response to treatment.  This could be done by analysis of 

longitudinal samples during patient visits at the pulmonary vascular disease unit, and around 

the time of change in medication.  Further work is also required to examine the biological 

mechanisms of these proteins in their relationship to pulmonary vascular disease. 

 

 Limitations of this study 

There were several important limitations to this work that are important to acknowledge as 

they may have an influence on the conclusions drawn. 

 

Study size 

Due to large expected natural intra- and inter-person variability, finding a characteristic 

pattern which accurately distinguishes one condition between two groups is very difficult 

with a small cohort of patients.  Most predictive tools are derived and based on the study of 

large cohorts of patients, and therefore these tools can be developed using relatively simple 

statistical methods.  Due to the rarity of PAH as a condition, large cohorts of patients, 

particularly with specific disease subtypes such as our cohort with systemic sclerosis related 

disease, are difficult to obtain without large scale and possibly international collaboration.  

Collaborative approaches to these questions raise alternative challenges such as differences 

in patient selection, screening programmes, severity of disease, and treatment status 
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amongst other differences affecting patients recruited to these registries.  We acknowledge 

the small number of patient samples in our study, but were careful in the selection of 

appropriate patients with careful review of notes and diagnostic investigations before 

including patients in the analysis.  It was ambitious from the outset to approach the question 

of predictive classification modelling in a cohort with small sample numbers.  The small 

number available required a complicated approach to the statistical analysis, using statistical 

methods and machine learning algorithms specifically designed to handle data with this 

problem, however despite this we must recognise that without a broad patient sample, the 

risk of overfitting a statistical model to our derivation cohort remained very high. 

 

Derivation array 

Although the Myriad RBM platform is calibrated and controlled to clinical laboratory 

standards for absolute quantification of protein concentration, which provides much tighter 

quality control than other available proteomic arrays, the breadth of the proteome tested is 

much smaller.  The DiscoveryMAP array is not specific to cardiovascular diseases, lending 

itself to testing a wide variety of research questions, but as a consequence is more limited in 

terms of returning data focussed on the proteomic spectrum more specifically associated 

with cardiovascular physiology.  In contrast, other platforms which provide relative 

quantification can measure vastly greater number of analytes in order to include this level of 

proteomic detail.  It is reasonable to suggest that, on this basis, there may be other protein 

targets which we have not measured which may provide better classification of disease in our 

cohort of patients. 

 

Multiplex assays in general have some limitation in terms of specificity when it comes to 

measuring multiple targets in the same assay.  Single target assays such as ELIZA remain the 

gold standard as they can be specifically tailored for the detection of a single target.  As the 

number of analytes increases in a multiplex assay, so does the risk of reducing specificity.  

Several patient factors have previously been shown to interfere with the specificity of results 

measured in multiplex systems, so absolute protein results need to be interpreted with 

caution and ideally subsequently confirmed with single target assays.(Christiansson et al., 

2014) 
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Patient Cohort 

The aim of this study was to examine whether a protein or panel of proteins could be derived 

which would accurately predict the presence of PAH in a cohort of patients with SSc.  

Underlying this aim is the knowledge that patients with SSc have a high lifetime prevalence 

of PAH, and that early detection and initiation of targeted treatments can significantly alter 

potential outcomes for patients.  It is important for the applicability of a predictive model to 

be derived from the study of patients from a representative population.  The patients 

included in our study were the best available to us, but by no means perfect.  They were 

treatment naïve patients, recruited at first presentation to the pulmonary hypertension unit 

after referral from the parent rheumatology team.  They were therefore patients for whom 

some suspicion of pulmonary hypertension had already been raised, perhaps due to the 

development of typical symptoms.  The ideal cohort from which to recruit patients would be 

the rheumatology clinic, from unselected patients with systemic sclerosis, and then follow 

these to see which would go on to develop pulmonary hypertension.  The time course 

required with this study design made this approach impractical to take forward in this study.  

The outcome is that true application of this tool is for the prediction of PAH in SSc patients at 

the point of referral for investigation of potential PAH.  The model requires rigorous validation 

in an unselected SSc cohort from the rheumatology clinic before it can be reliably applied in 

this setting. 

 

SSc-no PH Control Group 

I have already discussed the limitation caused by the recruitment of patients after referral for 

PH investigation, however this is likely to more significantly affect the SSc-no PH control 

cohort as these patients were also recruited from the pool of patients referred for 

investigation of possible PH.  These patients were proven not to have pulmonary 

hypertension at cardiac catheterisation, and to our knowledge none went on to develop PH 

during subsequent follow up.  These patients cannot however be considered “normal” 

patients with SSc but without PH as there must have been some element of their 

symptomatology or monitoring which raised enough concern about the possibility of PH to 

prompt their referral. 

 



PhD Thesis  Dr. Peter M Hickey 

 Page 178  

In depth analysis of the phenotype of patients included in the SSc-no PH control arm 

demonstrates significant abnormalities in the baseline cardiorespiratory physiology (Table 

4.1) which may differ from other patients with SSc but without PH.  Although less severe than 

for patients in the SSc-PAH cohort, the TLCO is reduced from normal in the control cohort.  

The pulmonary haemodynamics are also abnormal (mPAP 21 mmHg, normal considered to 

be <14 mmHg), although do not meet the threshold for diagnosis of pulmonary hypertension.  

The ideal study would have recruited control patients from an unselected population of SSc 

patients in a rheumatology clinic, who would then need to have undergone invasive 

measurement of pulmonary haemodynamics.  Subjecting normal patients to invasive medical 

testing in this way is ethically questionable making recruitment in this way impractical. 

 

External validation cohort 

After deriving our classification model, and internal validation in our cohort of patients, we 

went on to validate in an external group of patients recruited from international 

collaborators.  It was difficult to identify a centre which recruited patients in a similar way to 

us, at treatment naïve baseline.  Both centres providing validation samples also provided 

matching phenotype data which demonstrated that the majority of patients provided were 

prevalent PAH patients already well established on treatment and therefore potentially at a 

significantly different disease timepoint than our target diagnostic stage patient.  There were 

also some subtle differences between centres in patient selection, sample storage and the 

processing of biological samples from the study patients.  All of these factors may potentially 

alter the proteomic profile present for analysis and alter the outcome of validation. 

 

 Reflections on this work 

Given the time to conduct this research again and in the ideal situation I would have spent 

less time on the derivation cohort phenotyping exercise early on in the project.  This was not 

lost time however, as a tightly phenotyped cohort was fundamental to understanding the 

sources of error in some of the earlier works.  It was during this early period that I learned my 

skills in research programming which are the foundation of this type of research, having never 

used these platforms previously. 
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The work would be improved by closer links with rheumatology as a speciality, and the ability 

to develop a cohort of unselected patients at least to act as a control cohort, to more clearly 

demonstrate the protein concentration changes against those patients who have developed 

pulmonary arterial hypertension.  It would also benefit greatly from a larger patient cohort as 

has been demonstrated throughout. 

 

This work has produced a predictive protein panel capable of predicting pulmonary arterial 

hypertension in patients with systemic sclerosis, but the pathophysiological mechanisms of 

these proteins remain unclear.  This is something that I would have liked to have developed 

further through cell biology and potentially in vivo models. 

 

 Closing comments 

There have been a number of assay platforms recently developed which can return precise 

measurement data on a very large number of analytes.  The bio-informatic methodology used 

can be easily translated into other classifying problems which are affected by small sample 

numbers and a very large number of independent variables.  
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9 Appendices 

 Appendix 1 – Protein decode 

 

Analytes Symbol 
A disintegrin and 

metalloproteinase with 
thrombospondin motifs 8  

ADAMTS8 

6Ckine CCL21 

Adiponectin ADIPOQ 

Adrenomedullin  ADM 

Aggrecan core protein  ACAN 

Aldose Reductase AKR1B1 

Alpha-1-acid glycoprotein 1  ORM1 

Alpha-1-Antitrypsin  SERPINA1 

Alpha-1-Microglobulin  AMBP 

Alpha-2-Macroglobulin  A2M 

Alpha-Fetoprotein  AFP 

Amphiregulin  AREG 

Angiogenin ANG 

Angiopoietin-1  ANGPT1 

Angiopoietin-2  ANGPT1 

Angiopoietin-related protein 4  ANGPTL4 

Angiotensin-Converting Enzyme  ACE 

Antileukoproteinase  SLPI 

Antithrombin-III  SERPINC1 

Apolipoprotein LPA 

Apolipoprotein A-I  APOA1 

Apolipoprotein A-II  APOA2 

Apolipoprotein B  APOB 

Apolipoprotein C-I  APOC1 

Apolipoprotein C-III  APOC3 

Apolipoprotein D  APOD 

Apolipoprotein E  APOE 

Apolipoprotein H  APOH 

AXL Receptor Tyrosine Kinase  AXL 

B cell-activating factor  TNFSF13B 

B Lymphocyte Chemoattractant  CXCL13 

Beta Amyloid 1-40  APP40 

Beta Amyloid 1-42  APP42 

Beta-2-Microglobulin  B2M 

Beta-microseminoprotein  MSMB 

Betacellulin  BTC 

Brain-Derived Neurotrophic Factor  BDNF 

C-Peptide CPEP 

C-Reactive Protein  CRP 

Cadherin-1  CDH1 

Calbindin CALB1 

Cancer Antigen 125  MUC16 

Cancer Antigen 15-3  MUC1 

Cancer Antigen 19-9  NAA15 

Carbonic anhydrase 9  CA9 

Carcinoembryonic Antigen  CEACAM5 

Carcinoembryonic antigen-related 
cell adhesion molecule 1  

CEACAM1 

Carcinoembryonic antigen-related 
cell adhesion molecule 6  

CEACAM6 

Cathepsin B  CTSB 

Cathepsin D CTSD 

C-C motif chemokine 15  CCL15 

CD5 Antigen-like  CD5L 

CD27 antigen  CD27 

CD40 Ligand  CD40LG 

CD163 CD163 

Cellular Fibronectin  FN1 

Ceruloplasmin CP 

Chemokine CC-4  CCR4 

Chromogranin-A  CHGA 

Ciliary Neurotrophic Factor  CNTF 

Clusterin  CLU 

Collagen IV COL4A3 

Complement C3  C3 

Complement Factor H  CFH 

Complement Factor H _ Related 
Protein 1  

CFHR1 

Cystatin-A CSTA 

Cystatin-B CSTB 
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 Appendix 3 – External validation QC 

 Sample replicate plots 

Stanford University sample replicate plots: 
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Dot plots showing raw MFI and photometric unit readings for replicates on each plate with patient samples 

linked by dotted lines.  CLEC3B data from ELISA assay, other from Luminex assays.  Stanford University patient 
samples. 
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Vanderbilt University sample replicate plots: 
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Dot plots showing raw MFI and photometric unit readings for replicates on each plate with patient samples 

linked by dotted lines.  CLEC3B data from ELISA assay, other from Luminex assays.  Vanderbilt University 
patient samples. 
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Repeat NTproBNP ELISA assay replicate plots: 

 
Dot plots showing raw photometric unit readings for replicates on each plate with patient samples linked by 

dotted lines.  Data from ELISA assay  Plate 1 and 2 carried Stanford University samples, Plate 3 carried 
Vanderbilt University samples. 

 

  



PhD Thesis  Dr. Peter M Hickey 

 Page R  

 Stanford assay plate standard curves 

 
Plots showing standard curves from each plate in the Stanford sample analysis for each assay. 
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 Raw data against standard curves 

Stanford assays 
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Raw data detection values plotted against corresponding standard curve.  Stanford assays, each plate 

displayed separately. 
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Vanderbilt assays 

 
Raw data detection values plotted against corresponding standard curve.  Vanderbilt assays. 
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Repeat NTproBNP ELISA: 

 
Raw data detection values plotted against corresponding standard curve.  Repeat NTproBNP ELISA assays.  
Standard curve graph also demonstrating repeatability of the standard curve measurement with all three 

standard curves overlaid on this single graph. 
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 Protein concentration plate distribution plots 
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