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Abstract 

Cities in India consistently feature amongst the most polluted in the world, with air quality 

problems driven by rapid and poorly regulated economic growth and development. Many 

sources emit non-methane volatile organic compounds (NMVOCs), which degrade local 

and regional air quality through the photochemical formation of tropospheric ozone and 

secondary organic aerosol (SOA). Large uncertainties in the understanding of NMVOC 

sources specific to India result in poorly constrained regional policy and global chemical 

transport models. Consequently, the drivers of the consistently observed poor air quality 

remain poorly understood.  

This thesis presents measurements of NMVOCs made in Delhi during pre- and post-

monsoon seasons in 2018. The sources of NMVOCs were examined, which showed that 

NMVOC emissions were principally from petrol and diesel related sources. Very high 

NMVOC concentrations were measured at night during the post-monsoon campaign. These 

were shown to be emissions from the local area and were enhanced due to stagnant 

conditions caused by very low planetary boundary layer heights and windspeeds.  

Solid fuels represent a large energy source to India, with potentially significant impacts to 

air quality. Consequently, a detailed source study of organic emissions from solid-fuel 

combustion sources was conducted. Firstly, a new method for collecting intermediate-

volatility and semi-volatile organic gases and particles onto solid-phase extraction disks and 

Teflon filters, followed by solvent extraction with analysis by two-dimensional gas 

chromatography coupled to time-of-flight mass spectrometry was evaluated. Secondly, an 

extremely detailed set of emission factors of NMVOCs were measured with a range of 

online gas-phase techniques. These results were then mapped onto a volatility-basis 

dataset and the SOA production potential and OH reactivity of different sources compared. 

Finally, a high-resolution bottom-up emission inventory was developed for India from 

1993-2016. This found that burning of cow dung cake had a disproportionately large impact 

to NMVOCs from residential combustion.   
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Chapter 1 

1. Introduction 
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1.1. Introduction to project 

The Atmospheric Pollution and Human Health in an Indian Megacity programme (APHH-

India) was a research project focused on the sources of air pollution in the Delhi area of 

India, the atmospheric processing of these emissions and the impacts of air pollution on 

human health. The project was formed of 5 different research themes. 

ASAP-Delhi: A project focussed on the sources, formation processes, burden, and 

characteristics of particulate matter (PM) in Delhi and the National Capital Region. 

DelhiFlux: A project focussed on the sources of pollutants in the Delhi area which intended 

to measure new emission factors, compile new emission inventories, and compare current 

and new inventories to in situ flux measurements.  

Promote: A project to analyse the contribution of primary and secondary aerosols to air 

pollution in Delhi, examine the impacts of boundary layer meteorology and long-range 

transport, and to examine which emission control measures would be effective in reducing 

air pollution in Delhi.  

DAPHNE: A project to look at the impact of air pollution on key health metrics such as birth 

weight and acute respiratory infections in children less than 2 years old and on asthma in 

adolescents aged between 12-18 years old.  

CADTIME: A project to identify the key sources and emission trends of air pollutants and 

the key legislation determining these. It was also intended to examine the impacts of air 

pollution mitigation strategies on future air quality in 2030 and 2050 scenarios in Delhi.  

This thesis formed part of the DelhiFlux research project focused on understanding the 

sources of non-methane volatile organic compounds (NMVOCs) in Delhi, measurement of 

emission factors of NMVOCs from solid fuel combustion sources widely used across Delhi 

and development of new emission inventories of NMVOCs from solid fuel combustion 

sources in India. This introductory chapter looks at the chemistry of organic gases in the 

troposphere, the measurement techniques used to analyse NMVOCs and state-of-the-art 

studies focussed on NMVOC air pollution in Delhi. 
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1.2. Non-methane volatile organic compounds 

A variety of pollutants are present in the atmosphere from a range of biogenic and 

anthropogenic sources. Examples of gas-phase pollution include nitrogen monoxide (NO), 

nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), sulphur dioxide (SO2) and 

NMVOCs. Aerosol phase pollution contains a complex mixture of chemical species including 

organic aerosol (OA), cations from dust such as Mn2+ and Fe2+/3+, metals from combustion 

such as Pb-, Cu2+, K+, NH4
+ and Zn2+ and anions such as Cl-, NO3

- and SO4
2 as well as black 

carbon and water. 

The chemistry of NMVOCs in the atmosphere is complex due to the tens of thousands of 

species present (Goldstein and Galbally, 2007). Table 1.1 shows some of the different 

functionalities present. NMVOCs are released into the atmosphere from a variety of 

biogenic sources such as vegetation and anthropogenic sources like drying paint, petrol 

vapours and combustion (Went, 1960). Biogenic emissions dominate global NMVOC 

emissions (see Table 1.2) and are greatest in the tropics. Isoprene is the largest contributor 

to biogenic NMVOC emissions (Wells et al., 2020), with other NMVOCs such as 

monoterpenes, sesquiterpenes, methanol, ethene and formaldehyde contributing smaller 

amounts (Sindelarova et al., 2014).  

Table 1.1. NMVOCs present in the atmosphere. Reproduced from: Seinfeld and Pandis, (2012). 

Functionality Formula Example 

Alkane R-H CH3CH3 (ethane) 

Alkene R1=CR2 CH2=CH2 (ethene) 

Alkyne RC≡CR HC≡CH (acetylene) 

Aromatics C6R6 C6H6 (benzene) 

Alcohols R-OH CH3OH (methanol) 

Aldehydes RCH(O) HCH(O) (formaldehyde) 

Ketone RC(O)R CH3C(O)CH3 (acetone) 

Peroxides R-OOH CH3OOH (methylhydroperoxide) 

Phenolics C6R5OH C6H5OH (phenol) 

Furans C4H3OCHO C5H4O2 (furfural) 

Carboxylic acids R-COOH HC(O)OH (methanoic acid) 

Organic nitrates R-ONO2 CH3ONO2 (methyl nitrate) 

Alkylperoxy nitrates RO2NO2 CH3O2NO2 (methyl peroxynitrate) 

Peroxyacyl nitrates R-C(O)OONO2 CH3C(O)O2NO2 (peroxyacetyl nitrate) 

Polycyclic aromatic 
hydrocarbons 

C10H8 C10H8 (naphthalene) 

Biogenics C5H8 / C10H16 Isoprene, monoterpenes 

Multifunctional  Glyoxal 
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Table 1.2. Global biogenic NMVOC emission estimates where A = anthropogenic and B = biogenic.

Inventory Annual flux / 
TgC yr-1 

Year A/B  Type Ref 

MEGAN 760 2010 B Gridded (Sindelarova et al., 2014) 

Ehhalt (1999) 654.8 1999 B Total budget (Ehhalt, 1999) 

TAR 377 2001 B Total budget (Dentener et al., 2001) 

ACCMIP 130 2000 A Gridded (Lamarque et al., 2010) 

EDGAR 169 2012 A Gridded (Huang et al., 2017) 

TAR 161 2001 A Total budget (Dentener et al., 2001) 
 

The effect of NMVOCs on the atmosphere is 3-fold: they can be directly harmful to human 

health, lead to O3 production and their oxidation products can produce secondary organic 

aerosol (SOA). In urban areas, species such as benzene can cause severe problems as they 

are carcinogenic and mutagenic (Huff, 2007). Tropospheric O3 can originate from 

stratospheric air or as a secondary pollutant produced by the oxidation of reactive NMVOCs 

in the atmosphere. Ozone leads to respiratory inflammation and can increase the 

prevalence of asthma in children (Sheffield et al., 2015). SOA is formed of low volatility 

organic products, often produced by the oxidation of more volatile species.  

Understanding of the chemistry of NMVOCs in the atmosphere is complicated by the 

exponential increase in the number of isomers present with carbon number. 104-105 

NMVOCs have been measured, with this suggested to only represent a fraction of the total 

amount of NMVOCs present in the troposphere (Goldstein and Galbally, 2007). Different 

NMVOCs have different influences on the formation of O3 and SOA.  

1.2.1. Formation of secondary pollutants 

Gas-phase organic compounds are of interest because they contribute to the formation of 

secondary pollutants, such as tropospheric O3 and SOA. Tropospheric O3 is formed from 

the oxidation of organic gases in the presence of radical species in the atmosphere. The 

simplest hydrocarbon in the atmosphere is methane (CH4), which is present at a 

concentration of around 1.75 ppmv (Ehhalt, 1999). The oxidation scheme of methane is 

given through a series of steps, shown in R1.1-R1.14,  

 CH4 + .OH → CH3
. + H2O (R1.1)  
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where kR1.1
o = 6.3 x 10-15 molecule-1 s-1 (Atkinson et al., 1997). CH4 takes a long time to 

degrade in the atmosphere (lifetime ~ 12 years) because R1.1 is slow (IPCC, 2007). R1.1 is 

around 24 times faster in the tropics and accounts for around ~ 80% of the global CH4 sink 

(Bloss et al., 2005). R1.2 shows how the methyl peroxy radical (CH3O2
.) is formed, through 

reaction of CH3
. with oxygen. 

 CH3
. + O2 + M → CH3O2

.
 + M (R1.2)  

CH3O2
. then oxidises NO to NO2 in polluted environments through R1.3. 

 CH3O2
. + NO → CH3O. + NO2 (R1.3)  

CH3O. goes onto produce formaldehyde with O2: 

 CH3O. + O2 → HCH(O) + HO2
. (R1.4)  

and .OH is produced by the oxidation of NO by HO2 radicals. 

 NO + HO2
. → .OH + NO2 (R1.5)  

Aldehydes can either be photolyzed or react with OH/NO3 radicals, however, the reaction 

with NO3 is minor (Seinfeld and Spyros, 2006). CO can be generated directly by the 

photolysis of HCH(O) through R1.6 (Monks, 2005):  

 HCH(O) + hv → H2 + CO (λ ≤ 330 nm) (R1.6)  

or the steps given in R1.7-R1.8 (Sander et al., 2011). 

 HCH(O) + hv → HC.(O) + H. (λ ≤ 361 nm) (R1.7)  

 

 HC.(O) + O2 → HO2
. + CO (R1.8)  

Formaldehyde and .OH also generate HCO which is then oxidised to CO via. R1.9-R1.10: 

 HCH(O) + .OH → HC.(O) + H2O (R1.9)  

 



19 
 

 HC.(O) + O2 → HO2
. + CO (R1.10)  

R1.11 usually initiates the formation of photochemical smog:  

 .OH + CO → H. + CO2 (R1.11)  

with HO2 produced through: 

 H. + O2 + M → HO2
. + M (R1.12)  

and OH reformed by R1.5. NO2 then undergoes photolysis (Holloway and Wayne, 2010):  

 NO2 + hv → NO(X2π) + O(3P) (R1.13)  

to produce O(3P) which leads to the formation of O3. 

 O(3P) + O2 + M → O3 + M (R1.14)  

Figure 1.1 shows the overall reaction from R1.11-R1.14, which is given in R1.15.  

 CO + 2O2 + hv → CO2 + O3  (R1.15)  

 

 

Figure 1.1. O3 production in the oxidation of CO to CO2 due to catalytic cycles linked by HOx and 

NOx.  
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Studies focus on NMVOCs, as despite the chemistry being analogous, the reactions with 

the OH radical are much faster than for methane (e.g. kCH4, 298K = 0.00618 x10-12 cm3 

molecule-1 s-1 whereas kdodecane, 298K = 18 x10-12 cm3 molecule-1 s-1 (Atkinson, 1997)).  

The oxidation of larger hydrocarbons is far more complicated, with a multitude of possible 

reaction products. An example is of aromatic oxidation, which occurs through two main 

pathways with OH: H abstraction reactions from the aromatic ring and alkyl groups 

attached to it or OH addition to the aromatic ring.  

The vapour pressure of a NMVOC is determined by molecular weight and polarity. 

Functional groups such as carboxylic acids, which can allow hydrogen bonding, are 

significantly more polar than those such as ketones and result in NMVOCs with lower 

vapour pressures. As NMVOCs become increasingly oxidised in the atmosphere, their 

vapour pressures are reduced and they are more likely to partition to the aerosol phase. 

Organic aerosol (OA) is responsible for ~ 50% of sub-micron aerosol mass globally (Putaud 

et al., 2004; Murphy et al., 2006; Zhang et al., 2007) and the contribution of SOA to organic 

aerosol is significant and varies from 20 – 80% (Dechapanya et al., 2004; de Gouw et al., 

2005; Yu et al., 2007; Lanz et al., 2007; Lanz et al., 2008). Globally the SOA budget is very 

uncertain, ranging from 12 – 1820 Tg yr-1, with the relative contributions of biogenic, 

anthropogenic and biomass burning sources still under debate (Spracklen et al., 2011). 

Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are an important 

class of air pollutant due to their contribution to aerosol formation (Bruns et al., 2016; Lu 

et al., 2018).  

The volatility regions organic components are classified by are defined by their effective 

saturation concentration, C*. Figure 1.2 shows the two-dimensional volatility basis dataset 

(VBS) of organic emissions, with volatility indicated along the x axis. Intermediate-volatility 

organic compounds (IVOCs) have log10(C*) = 2.5-6.5 and are predominantly in the vapour 

phase. Once oxidised, their lower volatility products can partition into the aerosol phase 

(Donahue et al., 2006). Semi-volatile organic compounds (SVOCs) have log10(C*) = -0.5-2.5 

(Donahue et al., 2012) and can partition between the gas and particle phases. Low-volatility 

organic compounds (LVOCs) have log10(C*) = -3.5 to -0.5 and extremely low-volatility 

organic compounds (ELVOCs) have log10(C*) < -3.5. Lower volatility, higher molecular 
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weight, NMVOCs are important to the formation of SOA, due to their ability to partition 

from the gas to particle phase. Figure 1.2 demonstrates that organic emissions from 

particular sources, for example biomass burning, are released as both vapours and organic 

aerosol (BBOA). Figure 1.2 also shows the volatility distribution of anthropogenic and 

biogenic emissions, with anthropogenic sources releasing a larger mass fraction of I/SVOC 

species.  

The y axis shows the oxidation state (OS̅̅̅̅ C) or approximate O:C ratios. The OS̅̅̅̅ C is defined as 

the oxidation state of a carbon atom if it were to lose all electrons in more electronegative 

bonds, but gain those from bonds with less electronegative atoms (Kroll et al., 2011). It can 

be seen that species with increased oxidation state are generally less volatile (e.g. LV-OOA).  

Better measurement techniques are required to understand the range, complexity and 

impacts of NMVOCs present in the atmosphere. Better characterisation is required of the 

sources of NMVOCs to understand the key species at emission. This can allow further 

laboratory studies to understand the chemistry of these key species and evaluate their 

atmospheric impact. This is required to properly understand the drivers of poor air quality.  

 

Figure 1.2. Top: Volatility basis dataset of atmospheric organic species with volatility along the x 
axis and oxidation state (OS̅̅̅̅ C) and approximate O:C ratios along the y axis. Bottom: Volatility 
distribution of anthropogenic and biogenic emissions, copied from Donahue et al. (2012).  



22 
 

1.3. Measurement techniques of NMVOCs 

Measurement of NMVOCs in the atmosphere presents a difficult analytical challenge as 

species are present over a wide range of volatilities, functionalities and isomers (Goldstein 

and Galbally, 2007). A range of techniques have been developed to measure NMVOCs such 

as gas chromatography (GC), proton transfer reaction-time of flight-mass spectrometry 

(PTR-ToF-MS) and iodine clustering chemical ionisation mass spectrometry (I—CIMS). 

1.3.1. Gas chromatography 

Gas chromatography is a widely used analytical technique for the detection of chemical 

species at low quantities in a range of applications, such as environmental measurements, 

petrochemical analysis and pharmaceutical quality control.  

The mixture to be analysed needs to contain organic components which can be vaporised 

without degradation. The mixture is injected into a column through which a mobile phase, 

usually H2 or He, is flowing. Separation relies upon the equilibrium of analytes between a 

stationary and mobile phase, which is influenced by the different chemical and physical 

properties of analytes (Dettmer-Wilde and Engewald, 2014). The temperature of the oven 

is slowly ramped in GC to allow the species of interest to be gradually volatilised from the 

column, pass through, and be separated. The separation can be influenced by the choice 

and length of column, the mobile phase pressure or flow rates and the oven temperature 

ramp (Pravallika, 2016). The choice of column is one of the most important considerations 

as the molecular properties of the stationary phase dictate the level of interaction, and 

thus retention time, of analyte and column. 

The analytes are then measured using a detector. A variety of detectors are used such as 

the flame ionisation detector (FID), mass spectrometer (MS) and electron capture detector 

(ECD). FIDs have a wide dynamic range and are excellent for quantifying most organic 

species, mass spectrometers are useful for providing qualitative information on analytes 

and ECDs are used for quantifying organic species containing halogens. Species are 

quantified against the response of a standard, which is of known concentration, injected 

into the column. Species are qualified using either comparison of retention times of known 

compounds or through comparison of characteristic fragmentation patterns to databases.  
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GC is a robust technique which has been widely used for long-term monitoring of ambient 

air samples. GC can provide information on the isomeric speciation of emissions, with 

setups designed to allow ambient measurements of a range of alkanes, alkenes and 

oxygenated volatile organic compounds (OVOCs) (Hopkins et al., 2003). The main 

drawbacks of GC are that this technique is of limited use in untargeted measurements of 

complex emissions unless an MS is used, preconcentration of gas samples is usually 

required and many different column configurations and detectors are required to provide 

information on different chemical classes to avoid missing important emissions. The nature 

of a chromatographic separation means that separations usually take minutes to hours. 

This can be partly alleviated by collecting multiple whole air samples (WAS) at a higher time 

resolution than the separation and pumping into sample canisters or bags with subsequent 

analysis (Sirithian et al., 2018; Wang et al., 2014; Barabad et al., 2018), but this can 

introduce artefacts (Lerner et al., 2017). A pre-treatment water removal stage is also 

required prior to sample analysis which can cause carryover between samples and limit the 

volatility range of analysis. 

1.3.2. Comprehensive two-dimensional gas chromatography 

Liu and Phillips, (1991) developed two-dimensional chromatography (GC×GC) and it has 

since been used for a vast range of analyses (Liu and Phillips, 1991; Phillips and Xu, 1995). 

Some of the most exciting have been the revelation of the complexity of organic 

compounds urban air (Lewis et al., 2000) and the demonstration of over 10,000 organic 

components in PM2.5 (Hamilton et al., 2004). GC×GC has also been used for a wide variety 

of petrochemical analyses (Adahchour et al., 2006a), fragrance analyses (Adahchour et al., 

2006a) and studies of third hand cigarette smoke (Ramírez et al., 2015). 

GC×GC couples together two columns with different separation mechanisms via. a 

modulator (see Figure 1.3) (Liu and Phillips, 1991; Phillips and Xu, 1995). Typically, a 

nonpolar primary column (B in Figure 1.3) is used for a volatility-based separation and is 

connected to a short polar secondary column to create a fast polarity-based separation (D 

in Figure 1.3). The chromatogram is displayed as a 2D contour plot, with families of 

chemical species sorted into bands based on functionality. This overcomes a major 

limitation of one-dimensional gas chromatography in that different NMVOCs with similar 
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vapour pressures, but different polarities, can coelute. Using GC×GC, quantitative analysis 

of extremely complex mixtures is possible (Vendeuvre et al., 2007). Figure 1.4 shows an 

example GC×GC chromatogram from measurements made in London in 2012 (Dunmore et 

al., 2015). The C3 substituted monoaromatics would coelute in the same region as C10-C11 

alkanes/alkenes in a conventional one-dimensional boiling point separation. Using GCxGC, 

these NMVOCs have different polarities and thus are well separated into different bands. 

This increases the peak capacity of the system (where nx = peak capacity of column x) from 

the sum of the two columns for a heart-cut system, to a maximum of the product of the 

two columns as shown in R1.16 (Hamilton and Lewis, 2007). The higher peak capacity in 

R1.16 also means that sample preparation is often not required before analysis (Eiserbeck 

et al., 2014). 

 

 n1x n2 ≈ ntotal 

 

(R1.16) 

 

Figure 1.3. GC×GC detection scheme where A = injection to GC×GC, B = primary column, C = 

modulator, D = secondary column (different separation mechanism to B) and E = detection/data 

processing.  

 

A

B

C

E

D
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Figure 1.4. Two-dimensional gas chromatogram for C6-C13 where 1 = C6 alkanes, 2 = C7 alkanes, 3 = 
C8 alkanes, 4 = C9 alkanes, 5 = C10 alkanes, 6 = C11 alkanes, 7 = C12 alkanes, 8 = C13 alkanes, 9 = 
benzene, 10 = toluene, 11 = C2 substituted aromatics, 12 = C3 substituted aromatics, 13 = C4 
substituted monoaromatics, 14 = naphthalene and 15 = C10 monoterpenes. Taken from: Dunmore 
et al. (2015). 

 

The two columns are connected by a modulator (C in Figure 1.3) which captures the eluent 

from the end of the primary column and transfers it to the secondary column in discrete 

bands. The peak width of the primary column should be several times the modulation 

frequency. It is important to ensure that there are enough sub peaks in the second 

dimension to accurately characterise the peak. If there are only one or two sub peaks from 

a peak in the second dimension, little extra information is gained from performing the two-

dimensional separation. The modulation period is selected as a balance between two 

competing factors. If a very long modulation period is used, more NMVOCs which have 

been separated on the primary column will be mixed again before injection into the 

secondary column and this can result in loss of the initial separation. If the modulation 

period is too fast, NMVOCs may not be through the secondary column before the next 

modulation and may wrap around into other bands of NMVOCs on the chromatogram 

(Eiserbeck et al., 2014).  

Numerous modulators have been tested, such as thermal desorption, cryogenic and valves 

(Cortes et al., 2009). Thermal modulation uses either heating or cryogenic cooling to 

provide modulation. With heating, a thick film of stationary phase is used between the 

columns to trap eluent from the primary column and then this is periodically heated to 
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around 100 oC more than the oven temperature to allow desorption to occur (Liu and 

Phillips, 1991; Phillips et al., 1999; Vendeuvre et al., 2007). Thermal desorption was used in 

many early GC×GC systems; however, electrically heated modulators were unreliable, 

sweeper motors created a volatility range restriction so could not analyse > C25 (Serrano et 

al., 2012) and other modulators designs have since proven to be more effective (Adahchour 

et al., 2006b).  

Cryogenic modulators use endothermic expansion of cryogenic liquids such as CO2 or N2 to 

create low temperatures to trap eluent after a primary separation. Marriott et al. (1997) 

pioneered the longitudinally modulated cryogenic system, which used expanding liquid CO2 

to cool the start of the second column to trap small bands of eluent from the primary 

column (Marriott and Kinghorn, 1997; Kinghorn and Marriott, 1998). Longitudinal 

movement of this system allowed the release of the eluent for a secondary separation. This 

method showed poor trapping of highly volatile NMVOCs. This was also developed into a 

dual-jets CO2 system (Beens et al., 2001). Jet based systems have been improved with 

nitrogen gas passed through liquid nitrogen and allowed analysis of C1-C36 (Adahchour et 

al., 2006b). This technique is best suited to lab studies, due to cryogenic liquids, and 

samples are routinely collected in the field, transported and then analysed offline in the 

lab.  

Differential flow modulation was introduced by Bueno et al. (2004) and has been used 

(Bueno and Seeley, 2004; LaClair et al., 2004; Micyus et al., 2005) and developed in 

subsequent publications (Seeley et al., 2006; Kochman et al., 2006; Seeley et al., 2007a; 

Seeley et al., 2007b; Seeley et al., 2008b; Seeley et al., 2008a; Poliak et al., 2008; Gu et al., 

2010; Manzano et al., 2011). This technique has been demonstrated to offer comparable 

performance to thermal modulation (Semard et al., 2011) and is able to trap particularly 

volatile NMVOCs as it does not rely on a temperature differential.  

Narrow peak widths are observed from the second column in GC×GC and it is therefore 

important to have a detector with a high acquisition speed. A range of detectors have been 

used such as FID, ToF-MS, micro electron capture detectors and element specific detection 

such as nitrogen or sulphur chemiluminescence. Nitrogen specific detection has been used 

in studies of nitrosamines (Kocak et al., 2012), nitro compounds (Ramírez et al., 2015) and 
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nitriles (Özel et al., 2011). Sulphur specific detection has been used to examine mercaptans, 

sulphides, thiophenes, benzothiophenes, dibenzothiophenes (Wang and Walters, 2007) 

and sulphur-bound hopanes and steranes (Li et al., 2008). The most powerful detection 

method for qualification of extremely complex mixtures is high frequency ToF-MS. ToF-MS 

can be run at 5 kHz which allows a good signal to noise ratio with narrow peak widths from 

GC×GC of around 50 ms (Eiserbeck et al., 2014). FID does not provide structural information 

but can also be run at high frequency (~ 200 Hz) and structural elucidation can occur thanks 

to comparison with retention times of standard molecules. The eluent can also be split 

between both ToF-MS and FID to provide qualitative and quantitative information.  

Valve based modulators have proven to be particularly advantageous because they can 

trap the most volatile components, there is no need for cryogenics and fast second column 

separations are possible (Adahchour et al., 2006b). Initial modulators lacked sensitivity 

because only part of the eluent was transferred from the first to second column (Hamilton 

and Lewis, 2007). Bruckner et al. (1998) connected the primary and secondary columns 

using a commercial diaphragm valve (Bruckner et al., 1998). Several improvements have 

been made, such as Seeley et al. (2000) who used differential flow modulation with a 

sample loop on a 6-port diaphragm valve to allow 80% of the sample to pass through the 

secondary column (Seeley et al., 2000). Bueno et al. (2004) refined this by creating a flow 

switching device which allowed total transfer between the two columns (Bueno and Seeley, 

2004). This improved trace gas analysis by transferring all the eluent from the primary to 

secondary column. This study created a relatively simple setup where eluent from the 

primary column could be alternately injected into two different sample loops and whilst 

one loop was filling, the other would be venting to the secondary column (Bueno and 

Seeley, 2004). Other total transfer devices have been investigated. Lidster et al. (2011) 

investigated the use of rotary and diaphragm valves (Lidster et al., 2011), with the latter 

successfully deployed on field campaigns outside of usual laboratory operating conditions 

(Dunmore et al., 2015). The main limitation of valves previously used is the upper operating 

temperature of usually around 175 oC (Adahchour et al., 2006b) which restricted the 

temperature range of separation.  
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1.3.3. Chemical ionisation mass spectrometry 

The high energy of Electron Ionization (EI) in mass spectrometry can result in complete 

fragmentation of compounds and means that the parent ion is not measured and therefore 

important information about the molecular weight of the analyte is lost. Recent 

developments in mass spectrometry have developed techniques which are ideally suited 

to online measurements of NMVOCs using softer ionisation techniques.  

PTR-ToF-MS uses chemical ionisation with the hydronium ion (H3O+) to measure most polar 

and unsaturated NMVOCs in gas samples. Lower ionisation energies are used, which means 

that less fragmentation occurs compared to EI. H3O+ ions are generated using a hollow-

cathode discharge through water vapor (Blake et al., 2009). The H3O+ ions produced by this 

ion source then react with a NMVOC of interest through R1.17. 

 H3O++ M → MH+ + H2O (R1.17) 

The protonated analyte then passes into a drift tube of around 10 cm long held at a 

pressure of approximately 2.0-4.0 mbar with a voltage of 600-700 V to create the desired 

electric field strength. The drift tube temperature is around 40 – 60 oC (Yuan et al., 2017). 

The ions have band broadening reduced using a reflectron and are measured using a 

microchannel plate detector. 

The PTR-ToF-MS is very sensitive with very low detection limits of tens to hundreds of pptv, 

measurements possible over a wide mass range of 10 – 500 Th and fast acquisition rates of 

up to 10 Hz (Yuan et al., 2016). Measurements have been made of a wide array of 

aromatics, oxygenated aromatics, alkenes, furans and nitrogen containing volatile organic 

compounds (Warneke et al., 2011; Yokelson et al., 2013; Stockwell et al., 2015; Koss et al., 

2018). The main limitations of measurements using PTR-ToF-MS are fragmentation of the 

parent ion leading to uncertainty in quantification, an inability to measure alkanes as it is 

only possible to detect species with a proton affinity greater than water and the inability 

to speciate isomers as PTR-ToF-MS can only provide information about a specific mass and 

not the isomeric contributions to this mass (Stockwell et al., 2015). 

The use of reagent ions other than H3O+ allows the measurement of species which do not 

react with water (Yuan et al., 2017). Measurements have been made for example using an 
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iodide-clustering time-of-flight chemical ionization mass spectrometer (I−-CIMS), which is 

well suited to measuring acids and multifunctional oxygenates (Lee et al., 2014) as well as 

isocyanates, amides and nitrates (Priestley et al., 2018). 

1.4. Air quality in the developing world 

Poor urban air quality is a major global public health concern, particularly in the developing 

world, as rapid urban growth has increased emissions to harmful levels. This issue remains 

at the forefront of many governmental policies, as by 2050 approximately 66% of the global 

population are expected to live in urban environments (United Nations, 2014).  Globally, an 

estimated 4.2 million premature deaths were a result of poor ambient air quality in 2016, 

mainly caused by exposure to PM and O3 (World Health Organization, 2018a) with a further 

3.8 million estimated premature deaths as a result of household air pollution caused by 

inefficient solid fuel use for cooking (World Health Organization, 2018b). NMVOCs are key 

precursors to PM and O3. Figure 1.5 shows a breakdown of deaths attributable to air 

pollution by region and the cause of death. The Western Pacific and South East Asian 

regions have the highest premature death rate per capita attributable to poor ambient air 

quality. In India, air quality related deaths were estimated to be 1.2 million in 2017 (Health 

Effects Institute, 2019). 

 

 

(World Health Organization, 2016). 

 

Figure 1.5. Global premature deaths caused by ambient air pollution (left) where Afr: Africa; Amr: 

Americas; Emr: Eastern Mediterranean; Eur: Europe; Sear; South-East Asian region; Wpr: Western 

Pacific region; LMIC: Low- and Middle-Income Countries; HIC: High-Income Countries; COPD: 

Chronic Obstructive Pulmonary Disease; IHD: Ischeaemic Heart Disease. Global deaths per 100,000 

population due to poor ambient air quality (right). Copied from: World Health Organisation, (2016). 

 



30 
 

Air pollution leads to a range of health problems such as chronic bronchitis, chronic 

obstructive pulmonary disease, lung cancer, childhood pneumonia, acute lower respiratory 

infections, low birth weight of children, sore eyes and problems with the nervous system 

(World Health Organisation, 2018a,b). The impact of poor air quality remains significant in 

the developing world, with high but poorly understood emissions. The sources of NMVOC 

pollution in the developing world can be different to those measured from developing 

countries and can include sources which are currently poorly characterised, such as the 

burning of municipal solid waste in landfill sites, residential burning of waste, solid fuel 

combustion for heating and cooking, varied and unregulated industrial sources, different 

vehicle fleets, lower grade fuels and poorly serviced diesel generators (Kumar et al., 2015). 

Few local source profiles have been developed and used in local spatially disaggregated 

inventories, which means that the relative importance of key source sectors remains 

unknown. For successful mitigation to occur, policy must be informed by reasoned and 

well-evaluated scientific studies. New studies in poorly understood and highly polluted 

atmospheres are therefore essential in limiting the impact of pollution on human health. 

 

1.4.1. Delhi metrics 

Delhi is in the north of India with a latitude 28o40’0”N and longitude 77o10’0”E and had a 

population of around 17 million in 2011 (Department of Economics and Statistics, 2011) 

which is forecast to grow to 39 million by 2030 (United Nations, 2019). Figure 1.6 shows 

the location of Delhi within India and a gives a breakdown of the regions of Delhi state. 

Delhi is an area of high population density, with population densities of the respective 

regions in the 2011 census of North West (8254 persons km-2), North (8254 persons km-2), 

North East (36,155 persons km-2), East (27,132 persons km-2), New Delhi (4057 persons km-

2), Central (27,730 persons km-2), West (19,563 persons km-2), South West (5446 persons 

km-2) and South (11,060 persons km-2) (Directorate of Census Operations, 2011). There are 

5 main seasons: winter (December-January), spring (February-March), summer (April-

June), monsoon (July-mid-September) and autumn (mid-September-November) (Delhi 

Tourism, 2016). Figure 1.7 shows mean temperatures and precipitation for Delhi in 2017.  
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Figure 1.6. Maps showing location of Delhi state within India and regions of the state. 

 

Urban air pollution remains at the forefront of global media and many measures to improve 

the situation in both Delhi and India have been undertaken. These started with the 1981 

Air Act and new measures have been implemented such as using compressed natural gas 

for light good vehicles, the implementation of vehicle emissions regulations and the 

construction of a modern metro system (see Figure 1.8). Some mitigation measures to 

improve air quality in India have been reported to be successful, for example reducing 

benzene content in fuels from 5% to 3% in Kolkata was reported to reduce roadside 

benzene levels from 214.8 μg m-3 to 30.8 μg m-3 (Talapatra and Srivastava, 2011). 

Monitoring of NMVOCs in Delhi has been conducted through three different approaches: 

studies reported in published literature, wider government studies and continuous 

measurement programs. 
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Figure 1.7. Metrological data for Delhi. Mean monthly temperature (left) and mean total monthly 

precipitation (right). Data taken from: Indian Meteorological Office, (2018). (Indian Meteorol ogical Office, 2 018)
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Figure 1.8. Timeline of changes to transport to improve air quality in Delhi from 1981- 2022. BS = Bharat stage, which correspond to equivalent Euro standards 

and only affects future fleet. BS dates correspond to implementation in Delhi. CNG = compressed natural gas. Constructed using information from: Parliament 

of India, (1982), Government of NCT Delhi, (1989), Khillare, (2008), NEERI, (2008) and Goel and Guttikunda, (2015).(Goel and Guttikunda, 2015 ; Governme nt of NCT Delhi, 1989; Parliame nt of India, 198 1; Khillare et al., 20 08; NEE RI, 20 08)
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1.4.2. Delhi specific NMVOC inventories 

Since the 1990s, a limited range of inventories and measurements have attempted to 

estimate NMVOC emissions from Delhi. NMVOC emission estimates have been the subject 

of several studies and were estimated to be approximately 100 kt y-1 in 1990 (Bose and 

Anandalingam, 1996), 148 kt y-1 in 1995 (Gurjar et al., 2004) and ~ 150 kt y-1 in 2010 

(Sharma et al., 2015), with most NMVOC emissions related to transport and solvent use. 

Despite this, the investigation of Sharma et al. (2015) was limited as the grids were 36 km 

x 36 km and thus too large to be truly Delhi specific. Additionally, China specific speciation 

factors were used, which may not be accurate for India. A different study provided a 1 km 

× 1 km gridded emission inventory for Delhi covering an 80 km × 80 km area and provided 

total unspeciated NMVOC emissions by sector (Guttikunda and Calori, 2013). Other studies 

have focussed on specific sources. Goel and Guttikunda (2015) estimated vehicular NMVOC 

emissions using fleet average emission factors of 180 kt y-1 in mid 1990s to ~ 80 kt y-1 in 

2014. Srivastava et al. (2009) produced an emission inventory of evaporative emissions in 

Delhi and reported the evaporative emissions in Delhi to be higher than in Mumbai, 

Chennai and Kolkata (Srivastava and Majumdar, 2009).  

Table 1.3 shows their finding that vehicles dominate NMVOC evaporative emissions. These 

were from running vehicles and smaller contributions from transit/breathing losses, hot 

soak emissions after a trip from heated fuel and lines, diurnal heating of the vehicle and 

resting emissions.  

 

Table 1.3. Contribution to NMVOCs in Delhi from evaporative emissions, according to Srivastava et 

al. (2009).

NMVOC source Contribution kg yr-1 NMVOC source Contribution kg yr-1 

Running vehicles 1.71 x109 Printing 3.06 x105 

Vehicle transit 1.84 x107 Graphical art 
applications 

3.58 x106 

Vehicle hot soak 6.06 x107 Consumer products 9.24 x106 

Vehicle diurnal 2.15 x107 Surface coating 1.84 x 106 

Vehicle resting 4.87 x106 Auto refining 6.50 x104 

Petrol loading / unloading 1.31 x106 Dry cleaning 1.32 x106 

Petrol refiling 4.02 x 106   
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1.4.3. Previous literature relating to Delhi NMVOCs 

Previous studies making measurements of NMVOCs at sites in Delhi have been limited 

either covering total NMVOCs or benzene, toluene, ethylbenzene and xylenes (BTEX). Very 

few studies have offered an insight into speciated NMVOC emissions in Delhi (see Table 

1.4). A range of sampling techniques have been used for NMVOC analysis such as whole air 

samples (Padhy and Varshney, 2000), pre-concentration onto TENAX sorbent tubes 

(Kumar, 2006), activated charcoal diffusion tubes (Hoque et al., 2008) and real-time 

monitors such as the handheld PGM-7600 which used a photoionization detector to detect 

NMVOCs (Singh et al., 2010). A recent study by Wang et al. (2020) was the most detailed 

to date and used PTR-ToF-MS at urban and suburban sites to conduct source 

apportionment using positive matrix factorisation (PMF). The conclusion of this study was 

that anthropogenic traffic related emissions were the dominant source of NMVOCs at the 

urban site representing 56.6% of the total mixing ratio and remained important at the 

suburban site (36.0% of total mixing ratio). The contribution of solid fuel combustion was 

of similar importance at urban (33.6%) and suburban (30.4%) sites. Secondary formation 

was responsible for 15.9% of total mixing ratio at the urban site and 33.6% at the suburban 

site.  

1.4.4. Government studies of NMVOCs 

In 2008 a wider programme was undertaken focussed on pollution sources in Delhi, 

Mumbai, Bangalore, Chennai, Kanpur and Pune (CPCB, 2010). The aim of this study was to 

undertake pollutant monitoring, produce new emission inventories and carry out receptor 

and dispersion modelling. The National Environmental Engineering Research Institute 

(NEERI) created a 2 km x 2 km gridded emission inventory for a 32 km x 30 km area of 

hydrocarbon emission estimates for area sources, industrial sources and vehicular sources 

across Delhi (see Figure 1.9). The conclusion of this study was similar to Srivastava et al. 

(2009), indicating that vehicular sources dominate city-wide NMVOC emissions. Despite 

this, obvious limitations are apparent, such as only sampling for 1 or 7 days during the 

experiment. 
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Table 1.4. Measurements of NMVOCs made in Delhi during field campaigns.

Measurement details Example mixing ratio/ ppbv Dates Reference 

Sampling at 13 sites every 15 days by grab sample in syringes and storing 

the sample in a glass vial before measuring by GC-FID. 

Total NMVOCs 1300 – 32500 Nov 1994-Jun 

1995 

(Padhy and 

Varshney, 

2000) 

NMVOC measurements at 10 sites across Delhi using GC-FID for 

polyaromatic hydrocarbons, n-alkanes, hopane, sterane, methyl-alkane, 

branched alkane, cycloalkane, alkenes and levoglucosan. 

- Summer, 

monsoon, post 

monsoon 2008 

(NEERI, 2008) 

BTEX species were sampled at 3 sites in Delhi using carbon sorbent 

tubes and subsequently analysed by GC-FID. Results presented as 

monthly means alongside monthly minimum and maximum values. 

Mean values of benzene (18.9), 

toluene (43.2), ethylbenzene (11.4) 

and xylene (5.8) 

Jan-Jun 2015 (Guar et al., 

2016) 

Measurements of BTEX at a residential site with vegetation, commercial 

site, industrial site with high traffic density and near a traffic 

intersection. NMVOCs adsorbed onto charcoal diffusion tubes with one 

tube a week and then analysed by GC-FID. 

Mean yearly benzene at residential 

(15.0), commercial with heavy traffic 

(30.4) and industrial (27.9) sites as 

well as at a traffic intersection (34.4) 

Oct 2001-Sept 

2002 

(Hoque et al., 

2008) 

Measurements of benzene and toluene at a petrol pump, roadside and 

residential area onto TENAX sorbent tubes and then GC-FID. 

Benzene (10.5-54.65) and toluene 

(11.94-60.72) 

7 days from Apr – 

Jun 2002 

(Kumar, 2006) 

Measurements of benzene at a commercial site, residential site and 

busy traffic intersection in 2007 and comparison to Hoque et al. (2008). 

Analysis with diffusion tubes followed by GC-FID to allow comparison 

pre- and post-compressed natural gas implementation. 

Mean benzene concentrations for 

residential (18.5), commercial with 

heavy traffic (67.9) and near the 

traffic intersection (89.8) 

Oct 2001-Sept 

2002 and Jan – 

Feb 2007 

(Khillare et al., 

2008) 

Mean values and ranges of 21 species measured at 15 sites for 

monsoon, winter and summer using sorbent tubes with GC-MS.  

-  Aug 2001 – Jul 

2002 

(Srivastava et 

al., 2005a) 
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Table 1.4 continued. 

Measurement details Example mixing ratio/ ppbv Dates Ref 

Source apportionment using same data set as (Srivastava et al., 2005a) 

suggesting that diesel combustion emissions dominate in Delhi (26 – 

54% total NMVOCs). 

- Aug 2001 – Jul 

2002 

(Srivastava et 

al., 2005c) 

Measurements once a month of 17 NMVOCs at 3 petrol stations in Delhi 

using thermal desorption from sorbent tubes with GC-MS.  

- Mar-Feb 2001-

2002 

(Srivastava et 

al., 2005b) 

Measurement of BTEX at the Sirifort monitoring station published as a 

mean yearly concentration for each pollutant. Measured online using 

thermal desorption GC-FID. 

Benzene (2.5), toluene (3.9), o-

xylene (1.1), m-/p-xylene (1.6) and 

ethylbenzene (1.1) 

2006 (CPCB, 2006) 

Measurements of benzene at a busy roadside, petrol pump and 

residential area.  

Range of benzene near a petrol 

pump (100-2500) 

Oct 2007 - Feb 

2008 

(Singh et al., 

2010) 

Measurements of BTX at 6 sites across Delhi by adsorption onto 

activated carbon sample tubes and then measurement with GC-FID. 

Mean benzene (2.7-7.8), toluene 

(5.8-22.3) and xylenes (2.3-5.1) 

May-Apr 2010 (Singh et al., 

2012) 

Benzene, toluene and xylene measured at 40 petrol stations around 

Delhi. Measurements carried out by adsorption onto sample tubes and 

then measurement with GC-FID. Each site measured twice for 8 hours in 

rainy and dry seasons. 

Mean winter benzene (470), toluene 

(400) and xylenes (580). 

Mean summer benzene (190), 

toluene (160) and xylenes (460) 

2009-2010 (Sehgal et al., 

2011) 

Measurements of BTEX at 8 sites in Delhi including intersections, 

residential areas and at petrol pumps. Measurements carried out by 

adsorption onto sample tubes and then measurement with GC-FID. 

Maximum values of benzene (0.18), 

toluene (0.12), xylenes (0.47) and 

ethylbenzene (0.02) 200-300m from 

intersection 

Oct/Nov 2013 

and 

Jan/Feb/Mar/Ma

y 2014 

(Singh et al., 

2016) 

PTR-ToF-MS measurements at urban and suburban sites in Delhi. Total NMVOC mixing ratios from 10-

200 ppbv at urban site 

Jan-Mar 2018 (Wang et al., 

2020) 
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Study map Vehicular 

  
Area Industrial 

 
 

 
Figure 1.9. Gridded hydrocarbon emission estimate for Delhi (kg day-1) for vehicular, area and 

industrial sources. Taken from: NEERI, (2008). 

 

1.4.5. Continuous monitoring of NMVOCs in Delhi 

The Central Pollution Control Board (CPCB) is a governmental organisation which oversees 

the National Air Quality Monitoring Program of 683 stations across India. The CPCB regulate 

air quality, and Table 1.5 shows the regulations for criteria pollutants. For NMVOCs, the 

annual mean benzene concentration should be < 5μg m-3 (Talapatra and Srivastava, 2011).  

20 CPCB monitoring stations are across the metropolis of Delhi (see Figure 1.10 for map, 

see Table 1.6 for species measured) and the values are published online (CPCB, 2018). 

Despite this, large periods of data are often absent, for example the CPCB claim to have 

measured BTEX at Lodhi Road from September 2017 – February 2018, but essentially no 

data is present. The measurement site at Shadipur (yellow circle on Figure 1.10, located at 
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a metro station in North-West Delhi) has one of the most detailed measurements sets for 

BTEX (see Table 1.7 for mean annual values).  

Table 1.5. Ambient air quality standards in India. Reproduced from: CPCB, (2011).  

 Industrial, 
Residential and 

rural annual 

Industrial, 
Residential and 
rural 24 hours 

Ecologically 
sensitive area 

24 annual 

Ecologically 
sensitive area 

24 hours 

SO2 / µg m-3 50 80 20 80 

NO2 / µg m-3 40 80 30 80 

PM10 / µg m-3 60 100 60 100 

PM2.5 / µg m-3 40 60 40 60 

O3 / µg m-3 100 180 100 180 

Pb / µg m-3 0.5 1.0 0.5 1.0 

CO / mg m-3 2 4 2 4 

NH3 / µg m-3 100 400 100 400 

Benzene / µg m-3 5  5  

Benzo(a)Pyrene / ng m-3 1 (CPCB, 2011). 1  

As / ng m-3 6  60  

Ni / ng m-3 20  20  

 

 

 

Figure 1.10. Map of CPCB measurement sites in New Delhi with Shadipur measurement site marked 

by a yellow circle. Sites indicated by green and orange markers, where green represents live data 

and orange a delay in data at the time the map was copied. Map data © 2019 Google. 



39 
 

Table 1.6. Central Pollution Control Board measurements sites in Delhi and the NMVOCs they monitor. Present is reference to March 2018. 

Site Benzene Toluene Ethylbenzene o-Xylene m-+p-Xylene p-Xylene Methane NMHC Data availability 

CRRI Mathura road ✓ ✓ ✓      Jan-Apr 2015, Sep 2017-present 

Mandir Marg ✓        May-Oct 2011, Jan 2012-Jan 
2013, Apr 2015-present 

Income Tax Office          

Siri Fort          

Aya Nagar ✓ ✓ ✓      Sep 2017 – Feb 2018 

R. K. Puram ✓ ✓    ✓   May-Oct 2011, Jan-May + Nov-
Dec 2012, Apr 2015-present 

IGI Airport 
Terminal-3 

         

NSIT Dwarka ✓ ✓ ✓ ✓ ✓    Jan 2009-Dec 2012, Jan 2014-May 
2015, Oct 2017-present 

Pusa ✓  ✓      Sept 2017-present 

Shadipur ✓ ✓ ✓ ✓ ✓    Jan 2009-present 

Punjabi Bagh ✓ ✓    ✓   May-Oct 2011, Jan-Feb + Nov-Dec 
2012, Apr 2015-present 

Lodhi Road ✓ ✓ ✓      Jan-Apr 2014, Sept 2017-present 

Anand Vihar ✓ ✓    ✓   Aug 2012-Feb 2013, Apr 2015-
present 

East Arjun Nagar 
Delhi-CPCB 

✓        Jun 2016-present 

IHBAS       ✓ ✓ Jan 2009-present 

Technological 
University 

         

Civil lines          

North Campus ✓ ✓ ✓      September 2017-present 

Burari Crossing          
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Table 1.7. Mean yearly mixing ratios of BTEX at Shadipur in ppbv from 2010 – 2017. 

Year Ethylbenzene m-, p-Xylene Benzene Toluene 

2010 2.02 2.61 4.58 15.21 

2011 3.24 3.81 4.44 17.85 

2012 1.25 2.35 2.63 17.21 

2013 2.12 3.51 2.88 7.98 

2014 0.93 1.34 1.66 3.79 

2015 0.55 0.92 1.15 3.39 

2016 2.61 1.83 2.20 5.66 

2017 1.45 2.25 1.72 5.60 

 

Figure 1.11-Figure 1.12 show the mean weekly diurnal and daily diurnal profiles of mixing 

ratio for benzene and toluene, as well as monthly and daily mean values at Shadipur, 

plotted using the Openair R package (Carslaw and Ropkins, 2012). The 95% confidence 

intervals in mean values are indicated by the shaded areas on the plots. Benzene and 

toluene reach a maximum at midnight, which may be attributed to a decrease in the height 

of the boundary layer due to decreased solar irradiation. Throughout the year a small 

increase is observed around June-August and the largest peak is seen in winter from 

November-December. The winter peak is potentially because of stagnant conditions and 

lower boundary layer heights (Gani et al., 2019). During the week values were at a 

minimum on Sunday, with a maximum around Wednesday-Thursday and reducing towards 

the weekend. This could be caused by less heavy vehicles being on the road at weekends. 

Erroneous values appear to be contained within this dataset, for example the reduction in 

ethylbenzene mixing ratios in 2014/2015 appears inconsistent (see Table 1.7). Equally on 

the 24 January 2016, values were recorded which were around an order of magnitude 

larger than other values in 2016 and these points have been removed from Table 1.7 and 

Figure 1.11-Figure 1.12.  
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Figure 1.11. Time variation for benzene at Shadipur in 2016 with shaded regions representing 95% confidence interval in mean values. Top: mean benzene 

diurnal across 2016. Bottom left: mean daily benzene diurnal across 2016. Bottom middle: mean monthly benzene mixing ratio across 2016. Bottom right: 

mean daily benzene mixing ratio by day across 2016.  
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Figure 1.12. Time variation for toluene at Shadipur in 2016 with shaded regions representing 95% confidence interval in mean values. Top: mean toluene 

diurnal across 2016. Bottom left: mean daily toluene diurnal across 2016. Bottom middle: mean monthly toluene mixing ratio across 2016. Bottom right: 

mean daily toluene mixing ratio by day across 2016.  
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A comparison of benzene and toluene at Shadipur during May and September/October 

2016 provides context for the pre- and post-monsoon measurement campaigns in Chapter 

2. Table 1.8 shows that mean September/October mixing ratios were ~ 2-6 times greater 

than May values. This was likely caused by colder, stagnant conditions resulting in lower 

boundary layer heights (Gani et al., 2019) as well as increased generator usage and solid 

fuel combustion for heating (Nagpure et al., 2015). 

Figure 1.13 shows diurnal cycles for benzene and toluene from May (Figure 1.13A-B) and 

September-October 2016 (Figure 1.13C-D). Benzene and toluene peaked at night which 

was likely caused by lower boundary layer heights (Gani et al., 2019) and particularly 

polluting vehicles, such as heavy goods vehicles, only being allowed access to New Delhi at 

night (Dahiya, 2016). In September/October, night-time emissions may also be driven by 

the need to heat both affluent and deprived houses (Nagpure et al., 2015), whilst in 

summer the use of private air conditioning at night by those who can afford it may increase 

levels of pollution from increased generator usage. The lowest mixing ratios were always 

present from 12:00-18:00, which was likely caused by heating and expansion of the 

boundary layer and increased reactive chemistry as the sun is most intense at midday. 

Figure 1.13A-B shows peaks from about 06:00 – 10:00 in May which may coincide with a 

morning rush hour. This trend was not really present in the September data in Figure 1.13C-

D. Lower summer mixing ratios in the pre monsoon may make this appear more 

pronounced, and increased temperatures may increase the influence of evaporative 

emissions. Pre- and post-monsoon night-time trends were similar, with a clear peak around 

midnight and a second smaller peak from 02:00-04:00 in the post monsoon.  

Whilst some data exists from previous studies of NMVOCs in Delhi, it is of limited use in 

accurately characterising the sources of NMVOCs. Without a proper understanding of 

NMVOC sources and their strengths, accurate and meaningful mitigation based on a firm 

understanding of the key sources controlling poor air quality is not possible.  

Table 1.8. Mean mixing ratios of BTEX (ppbv) at Shadipur from 12:00 2nd May 2016 - 23:00 31st May 

and 00:00 1st September 2016- 23:00 31st October 2016.  

 Benzene Toluene Ethylbenzene m-, p-Xylene 

May 2016 0.76 1.56 0.25 0.50 

Sept-Oct 2016 1.85 5.72 1.29 2.98 
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Pre monsoon 

  
  

Post monsoon 
 

 

 

 

 
  

Figure 1.13. Diurnal cycles at Shadipur for A = benzene and B = toluene from 12:00 2nd May 2016 - 

23:00 31st May 2016 and C = benzene and D = toluene from 00:00 1st September 2016- 23:00 31st 

October 2016 with shaded areas representing 95% confidence intervals in the mean. 

 

1.4.6. India specific NMVOC inventories 

Emission estimates of NMVOCs from India have been the focus of many studies. Streets et 

al. (2000), Ohara et al. (2007), Zhang et al. (2009), Li et al. (2014) and Kurokawa et al. (2013) 

produced Asian specific emission inventories which estimated NMVOC emissions from 

India to be 8630 kt y-1, 9680 kt y-1, 10,767 kt y-1, 10,800 kt y-1 and 15,950 kt y-1 for the years 

2000, 2003, 2006, 2006 and 2008, respectively. Varshney et al. (1998) estimated NMVOC 

emissions specifically from India for 1998 at 8100 kt y-1. These studies, except for Varshney 

et al. (1998), covered other key pollutants, but the production of state, or city, specific 

estimates of speciated NMVOC emissions were not included. Sharma et al. (2015) produced 

one of the most insightful India specific inventories using a 36 km × 36 km grid for 2010. 
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They estimated total NMVOC emissions from India at 9810 kt y-1 and included a vast range 

of speciated sources (Sharma et al., 2015). Major alkane sources were attributed to oil/gas 

extraction, refining and distribution alongside residential fuel combustion. Alkenes and 

alkynes were released with residential fuel combustion and aromatics via. solvent use, 

traffic, and residential fuel combustion. Despite this, large uncertainties still exist over the 

contributions of unconventional and unmanaged sources to air quality in India and their 

relative contributions to urban and rural environments (Garaga et al., 2018). This poor 

understanding of the drivers of poor air quality results in high levels of pollution and 

significant impacts to human health.  

1.5. Thesis outline 

This thesis presents work carried out during the DelhiFlux project which intended to 

provide better characterisation of NMVOC sources in India.  

Chapter 2 presents NMVOC measurements using two-dimensional gas chromatography 

during pre- and post-monsoon seasons in 2018 at an urban site in Delhi. It characterises 

the sources of NMVOCs from C2-C14 using measurements from two GC instruments, as well 

as quantifying and qualifying a wide array of monoterpenes present. This study then 

evaluates the meteorological drivers of high night-time concentrations of NMVOCs in the 

post monsoon and uses multiple source apportionment techniques to understand different 

NMVOC emission sources to allow their impact on O3 production to be assessed in future 

studies. The results of this study compare well to recent literature and show that traffic 

related emissions were the largest NMVOC source in urban Delhi. This can provide 

information to allow policy makers to make informed judgments on the key NMVOC 

pollution sources to be controlled in the urban environment in Delhi to mitigate air 

pollution. 

Chapter 3 presents a new method developed for collection and extraction of I/SVOCs from 

residential combustion onto solid-phase extraction disks and PTFE filters. The method 

resolves many thousands of peaks for complex samples, is evaluated for suitability for 

quantitative I/SVOC measurements and aerosol-phase molecular markers are evaluated 

from burning sources in India. I/SVOC emissions are shown in the gas phase to have a large 

contribution from phenolic and furanic species and levoglucosan is an important 
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contributor to the aerosol phase. The results of this study are used to produce emission 

factors of 21 polycyclic aromatic hydrocarbons emitted from the burning of wood, cow 

dung cakes, municipal solid waste, charcoal and LPG. 

Chapter 4 presents results of NMVOC measurements made using two-dimensional gas 

chromatography of a range of solid fuel combustion experiments from samples collected 

across Delhi. This chapter compiles measurements made with another GC instrument and 

a PTR-ToF-MS instrument to produce emissions factors for 192 NMVOCs released from 

burning, with on average 94% speciation of the total mass of measured NMVOC released. 

Variability in emission factors by different samples are examined and diagnostic ratios are 

compared from burning and liquid fuel sources to potentially allow better identification of 

NMVOC sources in ambient samples.  

Chapter 5 combines the results of chapters 3 and 4 and maps emissions onto a volatility 

basis dataset to better understand SOA formation from biomass burning emissions by 

providing comprehensive, model-ready profiles for solid fuels collected from India. This 

shows little semi-volatile organic compound emissions from wood and charcoal samples. 

This study then shows that emissions from fuel wood, cow dung cakes and municipal solid 

waste burning contribute significantly more to the SOA production potential and the OH 

reactivity of emissions than LPG. The chemical drivers are then explored, with phenolic and 

furanic species shown to be likely important contributors to SOA formation and furanic 

species to OH reactivity. This is intended to provide guidance to policy makers on the need 

to mitigate burning sources to limit the impact on human health. 

Chapter 6 combines the results of chapters 3 and 4 and is used to produce a 1 km2 bottom-

up emission inventory estimate of NMVOCs released in India from 1993-2016 due to the 

burning of fuel wood, cow dung cakes, municipal solid waste, charcoal and LPG. Fuel 

consumption data is collected from a range of different sources to provide a well evaluated 

estimate of emissions. Emissions from crop residue burning on fields are estimated for 

2011, using recently measured emission factors collected from literature to allow 

evaluation of the relative contributions of different burning sources to emissions. Emissions 

of 13 (5-38) Mt are estimated for 2011 principally from residential combustion (53%), the 

open burning of municipal solid waste (23%) and crop residue burning (23%) with a small 

(< 1%) contribution from LPG.  
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PAH emissions are estimated for combustion of fuel wood, cow dung cakes, municipal solid 

waste, charcoal and LPG in 2011 of 121 (52-326) kt with contributions from fuel wood 

(48%), cow dung cakes (22%) and municipal solid waste (30%). NMVOC emissions from the 

burning of cow dung cakes are shown to be much higher per user than fuel wood and LPG, 

representing only 6 – 14% of total users but 27 – 53% of total residential combustion 

emissions. The effect of 400 million new LPG users from 1993-2016 is evaluated to give a 

net emissions benefit of 2924 (708-14,688) kt in 2016 but this failed to lead to meaningful 

emissions reduction as it failed to outpace population growth.  

This study evaluates the relative importance of emissions from different burning sources 

to provide information to policy makers on the quantity of NMVOCs released from the 

combustion sources studied as part of this project. This can allow well targeted mitigation 

of specific source sectors to significantly reduce emissions.  

Chapter 7 summaries the main findings and limitations of this study and provides 

discussion of future work.   
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Chapter 2  

2. Sources of non-methane hydrocarbons in surface air in 
Delhi 
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2.1. Introduction 

Poor urban air quality is a major global public health concern, particularly in the developing 

world, as rapid urban growth has increased concentrations to harmful levels. This issue 

remains at the forefront of many governmental policies, as by 2050 approximately 66% of 

the global population are expected to live in urban environments (United Nations, 2014). 

Globally, an estimated 4.2 million premature deaths were a result of poor ambient air 

quality in 2016 (World Health Organization, 2018a), mainly caused by exposure to 

particulate matter (PM) and ozone (O3). Non-methane hydrocarbons (NMHCs) are key 

precursors to PM and O3 and some, such as aromatic species, are carcinogenic themselves 

(Huff, 2007). Globally biogenic volatile organic compound emissions are the dominant 

source with an estimated flux of 377-760 TgC yr-1 (Ehhalt, 1999; Dentener et al., 2001; 

Sindelarova et al., 2014). However, anthropogenic emissions, which have been estimated 

to be 130-169 TgC yr-1 (Dentener et al., 2001; Lamarque et al., 2010; Huang et al., 2017), 

can be important drivers of poor air quality in densely populated urban environments.  

NMHC emissions from India are high and poorly understood, with emissions estimated to 

be the second largest in Asia, after China (Kurokawa et al., 2013; Kurokawa and Ohara, 

2020). Several emission inventories have been produced for India, which included a range 

of NMHC sources (Varshney and Padhy, 1998; Streets et al., 2003; Ohara et al., 2007; Zhang 

et al., 2009; Kurokawa et al., 2013; Sharma et al., 2015). However, inventories remain hard 

to evaluate without knowledge of unaccounted for and unregulated sources and their 

strength.  

Delhi (28o40’0”N, 77o10’0”E) had a population of around 29 million in 2018 (United Nations, 

2019) and has been ranked as the worst of 1600 cities in the world for air pollution, based 

on available data (WHO, 2014). As a result, 1/3 of adults and 2/3 of children in Delhi have 

experienced respiratory symptoms owing to poor air quality (Kumar et al., 2013). NMHC 

pollution has been previously highlighted as coming from uncontrolled and unregulated 

sources in and surrounding Delhi and amplified by an unfavourable geographic location 

(Kumar et al., 2015). NMHCs are a key driver of air pollution in Delhi: the composition of 

fine particulates (PM1) in Delhi has been found to be dominated by oxygenated organic 

aerosol which derives from NMHC precursors (Gani et al., 2019; Reyes-Villegas et al., 2020; 
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Cash et al., 2020), whilst ozone production has been found to be in a regime where NOx 

emissions reduction, without simultaneous reduction in NMHCs, would lead to an increase 

(Chen et al., 2020). 

A range of inventories have been produced for NMHC emissions from 1990-2010 in Delhi 

which have estimated emissions between 100-261 kt yr-1 (Bose and Anandalingam, 1996; 

Gurjar et al., 2004; Guttikunda and Calori, 2013; Sharma et al., 2015). Other inventories 

have focussed on specific sources, such as traffic emissions and estimated NMHC emissions 

using fleet average emission factors to be around 180 kt y-1 in 1995, to approximately 80 kt 

y-1 in 2014 (Goel and Guttikunda, 2015). Current inventories for Delhi are limited by the 

lack of activity data and emission factors specific to Indian NMHC sources which include 

brick kilns, residential solid fuel combustion, agricultural waste burning, poor quality coal, 

cooking, burning of organic and plastic waste for heating and combustion of municipal solid 

waste (Kumar et al., 2015). Poorly serviced and regulated diesel generators using inferior 

quality fuel are also an important pollution source throughout the year in areas with a poor 

electricity infrastructure (Kumar et al., 2015). The highest resolution inventory (1 km2) used 

China specific factors and calculated the importance of different sources to NMHCs as 

transport (51%), diesel generators (14%), power plants (13%), brick kilns (9%), domestic 

(7%), industrial (5%) and waste burning (1%) (Guttikunda and Calori, 2013). 

Recent studies have focussed on improving understanding of NMHC emissions from Indian 

sources. These included a detailed study of north-Indian solid fuel sources which showed 

many hundreds to thousands of organic components can be released into the aerosol 

phase, measured emissions factors of non-methane volatile organic compounds released 

from burning, developed comprehensive source profiles of different fuel sources and 

showed cow dung cakes to be a highly polluting fuel source (see chapters 3-6).  

Previous studies focussed on making NMHC measurements in Delhi have limitations, 

concentrating on total NMHCs (Padhy and Varshney, 2000) or small subsets of NMHCs such 

as benzene, toluene, ethylbenzene and xylenes (BTEX) (Kumar, 2006; Hoque et al., 2008; 

Singh et al., 2010; Khillare et al., 2008; Sehgal et al., 2011; Singh et al., 2012). Only a few 

studies have included a greater variety of NMHCs (Srivastava et al., 2005a; Srivastava et al., 

2005c). These have been complimented by a 2008 study with 7 day “snap shot” intensive 

observations of a range of species of atmospheric interest during the summer, post-
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monsoon and winter periods (NEERI, 2008). These measurements were used to create a 

gridded emission inventory (2 km2 over an area of 32 km x 30 km) of hydrocarbon emissions 

for area sources (including emissions from cooking, crematoria, open burning, waste 

incinerators and diesel generator sets), industrial sources and vehicular sources. This 

formed part of a source apportionment study focussed on pollutant monitoring, creation 

of new emission inventories, and receptor and dispersion modelling in Delhi, Mumbai, 

Bangalore, Chennai, Kanpur and Pune (CPCB, 2010). The Central Pollution Control Board 

(CPCB) also measure BTEX at 12 of their 20 sites in Delhi, although there is generally very 

limited-data coverage. A detailed recent study made measurements at an urban and 

background site in Delhi using proton-transfer-reaction time-of-flight mass spectrometry 

(PTR-ToF-MS) and determined the relative NMHC contributions at the urban site of traffic 

(56.6%), solid fuel (27.5%) and secondary formation (15.9%). This result echoed the findings 

of several studies and available emission inventories which have concluded that transport 

emissions are the dominant NMHC source in Delhi (NEERI, 2008; Srivastava and Majumdar, 

2009; Guttikunda and Calori, 2013; Sharma et al., 2015; Wang et al., 2020). 

Attempts to improve air quality in Delhi, which started with the 1981 Air Act (Parliament of 

India, 1981), have heavily focussed on limiting transport related emissions. Examples 

include reducing the concentration of benzene in petrol to < 1%, phasing out vehicles > 15 

years old, the introduction of improved vehicle regulations, time restrictions placed on 

when heavy goods vehicles can enter the city, the introduction of compressed natural gas 

(CNG, mainly methane) for light goods vehicles, mandatory for public transport vehicles, 

and the construction of a modern metro system (Khillare et al., 2008; Goel and Guttikunda, 

2015); however, air pollution has remained stubbornly high. This is because improvements 

have not taken into account the significant unregulated population growth, which is 

expected to continue as Delhi is estimated to become the most populous city in the world 

in 2030 with an estimated population of 39 million (United Nations, 2019). Consequently, 

the risks due to elevated levels of air pollution remain of great concern. Accurate 

measurements of a wide range of ambient NMHC species are vital to understand the 

sources of NMHCs in Delhi, as rapid development and limited measurements have resulted 

in a lack of reliable data to determine the key drivers of the consistent poor air quality 
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observed. This is crucial to allow the development of well targeted legislation to improve 

air quality and limit the impact on human health at a reasonable economic cost. 

During this study, measurements of a range of NMHCs were made at an urban site located 

in old Delhi during the pre- and post-monsoon seasons in 2018. Exceptionally high levels of 

NMHC pollution were measured at night during the post-monsoon period. The 

meteorological drivers of this elevated pollution are explored in detail and the 

contributions from different sources are evaluated using a range of complementary source 

apportionment techniques. The findings of this study are placed in context using recent 

receptor model and inventory studies. 

2.2. Methods 

Delhi has five main seasons: winter (December to January), spring (February to March), pre-

monsoon (April to June), monsoon (July to mid-September) and post-monsoon (mid-

September to November). Measurements were made during two field campaigns in the 

pre- and post-monsoon seasons using dual-channel gas chromatography with flame-

ionisation detection (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID) at 

the Indira Gandhi Delhi Technical University for Women (IGTDUW), near Kashmiri gate, 

within the historical area of Old Delhi. The site is located in the central district of Delhi 

(Figure 2.1A), an area of high population density (27,730 people km-2, as per the 2011 

census). Old Delhi railway station is approximately 0.5 km to the southwest (Figure 2.1B), 

National Highway 44 about 0.3 km to the east (Figure 2.1C) and Chandi Chowk market 

about 1.5 km south.  

 

Figure 2.1. Location of field site in Delhi where A = IGTDUW, B = Old Delhi railway junction and C = 
National Highway 44. © OpenStreetMap contributors. 
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2.2.1. Gas chromatography 

The dual-channel gas chromatography instrument with flame ionisation detection (DC-GC-

FID) was operated by Beth Nelson at the University of York from 28-May to 05-Jun 2018 

and 5- to 27-Oct 2018, with 31 C2-C7 NMHCs and C2-C5 oxygenated volatile organic 

compounds measured (Hopkins et al., 2003). A 500 ml sample (1.5 L pre-purge of 100 ml 

min-1 for 15 mins, sample at 25 ml min-1 for 20 mins) was collected (Markes International 

CIA Advantage), passed through a glass finger at -30 oC to remove water and adsorbed onto 

a dual-bed sorbent trap (Markes International ozone precursors trap) at - 20 oC (Markes 

International Unity 2). The sample was thermally desorbed (250 oC for 3 mins) in a flow of 

helium carrier gas then split 50:50 and injected into two separate columns for analysis of 

NMHCs (50 m × 0.53 mm Al2O3 PLOT) and oxygenated volatile organic compounds (10 m × 

0.53 mm LOWOX with 50 μm restrictor to balance flow). The oven was held at 40 oC for 3 

mins, then heated at 12 oC min-1 to 110 oC and finally heated at 7 oC min-1 to 200 oC with a 

hold of 20 mins.  

The two-dimensional gas chromatography instrument with flame ionisation detection 

(GC×GC-FID) made measurements from 29-May to 05-Jun 2018 and 11-Oct to 04-Nov 2018. 

It was used to measure 64 C7-C12 hydrocarbons (alkanes, monoterpenes and 

monoaromatics). The mean, minimum and maximum mixing ratios measured using both 

GCs from both campaigns are summarised in the Supplementary Information 8.1. The 

GC×GC-FID collected 2.1 L samples (70 ml min-1 for 30 mins) using an adsorption-thermal 

desorption system (Markes International Unity 2). NMHCs were trapped onto a sorbent 

(Markes International U-T15ATA-2S) at - 20 oC with water removed in a glass cold finger (-

30 oC). The sample was thermally desorbed (250 oC for 5 mins) and injected splitless down 

a transfer line. It was refocussed for 60 s using liquid CO2 at the head of a non-polar BPX5 

held at 50 psi (SGE Analytical 15m × 0.15 μm × 0.25 mm) which was connected to a polar 

BPX50 at 23 psi (SGE Analytical 2 m × 0.25 μm × 0.25 mm) via. a modulator held at 180 oC 

(5 s modulation, Analytical Flow Products MDVG-HT). The oven was held for 2 mins at 35 

oC, then ramped at 2.5 oC min-1 to 130 oC and held for 1 min with a final ramp of 10 oC min-

1 to 180 oC and hold of 8 mins. GC systems were tested for breakthrough to ensure trapping 

of the most volatile components (see Figure 2.2 for example from GC×GC-FID). Calibration 

was carried out using a 4 ppbv gas standard containing a range of NMHCs purchased from 
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the British National Physical Laboratory (NPL, UK). The linearity of the detector response at 

higher mixing ratios was confirmed post-campaign by carrying out a calibration using 

multiple injections at a range of mixing ratios of benzene up to 3 times greater than the 

maximum observed ambient mixing ratio (see Figure 2.3). The inlet used by both 

instruments was located approximately 5 m above the ground with sample lines run down 

½” PFA tubing to the laboratory. 

NMHCs not in the gas standard were quantified using the relative response of liquid 

standard injections to toluene. This included quantification and qualification of a range of 

monoterpenes (see Figure 2.4 for examples) and quantification of C12-C14 alkanes.  
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Figure 2.2. Breakthrough testing for GC×GC-FID for A = benzene and B = n-octane.  
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Figure 2.3. High concentration calibrations of DC-GC-FID and GC×GC-FID instruments to benzene.  
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Figure 2.4. Common biogenic NMVOCs (Seinfeld and Pandis, 2012). 

 

Monoterpenes present in the ambient air of Delhi were qualified through stepwise addition 

(see Figure 2.5). Kováts retention indices (I) were calculated for offline liquid injections, an 

ambient sample from 27/10/2018 at 08:13 and compared to literature to assist with peak 

qualification (see Table 2.1). The Kováts retention index allows unidentified eluents to be 

identified by comparing their position in the chromatogram relative to n-alkanes, 

 
I I  = 100 x [nl + (Nh - nl)

tr(unknown)  - tr(nl)

tr(Nh) - tr(𝑛𝑙)
] 

(E2.1) 

 

where I = Kováts retention index, Nh = carbon number of n-alkane of higher boiling point 

than unidentified eluent, nl = carbon number of n-alkane of lower boiling point than 

unidentified eluent, tr(unknown) = retention time of unidentified eluent, tr(nl) = retention time 

of n-alkane of lower boiling point than unidentified eluent and tr(Nh) = retention time of n-

alkane of higher boiling point than unidentified eluent. 
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Stepwise addition 

 

Ambient 

 

Figure 2.5. Stepwise qualification of monoterpenes. 

Table 2.1. Qualification of monoterpenes through Kováts retention indices. 

NMVOC Kovátliquid Kovátambient Kovátliterature Ref 

α -Pinene 940.7 940.5 941 (Charles et al., 2001) 

Camphene 959.3 959.5 958 (Charles et al., 2001) 

Sabinene 981.5 982.3 983 (Charles et al., 2001) 

β-Pinene 985.3 988.6 990 (Charles et al., 2001) 

Myrcene 996.3 996.2 995 (Charles et al., 2001) 

α -Phellandrene 1017.9 1018.0 1017 (Charles et al., 2001) 

3-Carene 1017.9 1018.0 1022 (Guy et al., 2004) 

α -Terpinene 1027.0 1028.2 - - 

Limonene 1039.8 1041.1 1040 (Charles et al., 2001) 

β-Ocimene 1047.5 1048.8 1051 (D. Flatt et al., 2015) 

α-Ocimene 1055.2 - - - 

γ-Terpinene 1069.2 1070.5 1069 (Guy et al., 2004) 

Terpinolonene 1097.4 1097.3 1096 (Vilaseca et al., 2004) 
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Quantification has been carried out by measuring the response of a known quantity of 

these components to a known quantity of toluene in solution which was then used to 

develop a detector response factor. Standards were prepared by dissolving 0.1 g into 10 ml 

of ethyl acetate (EtOAC) to give a stock solution concentration of 10000 μg ml-1. This was 

diluted to give a concentration of 500 μg ml-1 by dissolving 0.5 ml of stock solution into 9.5 

ml EtOAc. This solution was diluted to 100 μg ml-1 prior to analysis by dissolving 0.2 ml into 

0.8 ml of EtOAc.  

A 1 μL sample was injected split (100:1) into a liner held a 170 oC connected to a non-polar 

BP5 held at 50 psi (15 m x 0.25 μm x 0.25 mm) which was connected to a polar BPX50 (30 

psi; 2 m x 0.25 μm x 0.25 mm) via. a modulator held at 180 oC (5 s modulation, Analytical 

Flow Products ELDV2-MT). The oven was held at 35 oC for 2 mins then ramped at 2.5 oC 

min-1 to 130 oC and held 1 min then ramped 10 oC min-1 to 180 oC with a final hold of 8 mins. 

The syringe was cleaned prior to injection with EtOAC by 3 × pre-/post- injection washes in 

two different solvent wash bottles. 

 

2.2.2. Supporting measurements 

Nitrogen oxides (NOx = NO + NO2) were measured using a dual-channel chemiluminescence 

instrument (Air Quality Designs Inc., Colorado). Carbon monoxide (CO) was measured using 

a resonance fluorescent instrument (Model AL5002, Aerolaser GmbH, Germany). Ozone 

measurements were made using a 49i (Thermo Scientific) with a limit of detection of 1 

ppbv. The CO and NOx instruments were calibrated regularly (every 2 – 3 days) throughout 

both campaigns using standards from the NPL, UK. The setup and calibration procedures 

were identical to those described by Squires et al. (2020). These measurements were made 

by Will Drysdale from the University of York. (Squires et al., 2020)  

PTR-QiToF-MS (Ionicon Analytik, Innsbruck) measurements were made by Joe Acton from 

the University of Lancaster from 26/05/2018 to 09/06/2018 in the pre-monsoon campaign 

and from 04/10/2018 to 23/11/2018 in the post-monsoon campaign. For the pre-monsoon 

and post-monsoon campaign up until 05/11/2018, the sample inlet was positioned 5 m 

above the ground adjacent to the inlet used for GC measurements. The PTR-QiToF-MS 

subsampled from a ½” PFA common inlet line running from this inlet to an air-conditioned 
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laboratory where the instrument was installed with a flow of around 20 L min-1. From 

05/11/2018 to 23/11/2018, the inlet was moved to a flux tower approximately 30 m above 

ground level. The PTR-QiToF-MS was operated with a drift pressure of 3.5 mbar and a drift 

temperature of 60 °C giving an E/N (the ratio between electric field strength and buffer gas 

density in the drift tube) of 120 Td. 

The PTR-QiToF-MS was calibrated daily using a 19 component 1 ppmv gas standard (Apel 

Riemer, Miami) dynamically diluted into zero air to provide a 3-point calibration. Volatile 

organic compounds were then quantified using a transmission curve (Taipale et al., 2008). 

Mass spectral analysis was performed using PTRwid (Holzinger, 2015).  

Windspeed and direction were taken from measurements at Indira Gandhi International 

Airport in 2018, approximately 16 km southwest of the site. Modelled Planetary Boundary 

Layer Height (PBLH) data was downloaded (Lat. 28.625, Lon. 77.25) from the fifth-

generation reanalysis (ERA5) from the European Centre for Medium-Range Weather 

Forecasts at 0.25 degree resolution with a 1-hour temporal resolution (European Centre 

for Medium-Range Weather Forecasts, 2019). 

2.2.3. Receptor models 

The mixing ratio of NMHC i in the kth sample, Cik, can be described by equation (E2.2 (Miller 

et al., 2002): 

 

Cik  = ∑ FijSjk

p

j = 1

 +  εik         i = 1, … , m ,  k = 1, … , n 

(E2.2) 

where Fij = chemical composition of source, Sjk = source contribution, p = total number of 

sources, m = total number of NMHCs, n = number of measurements and εik = residual error, 

which is minimised.  

Principal component analysis (PCA) is a type of factor analysis which has been used to 

decompose many different NMHCs measured into a set of factors which are used to 

represent their sources (Bruno et al., 2001; Miller et al., 2002; Guo et al., 2004; Seinfeld 

and Spyros, 2006; Wang et al., 2010). It is appropriate to use with datasets with only a few 

underlying factors. Principal component analysis has been performed in R on the data 
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collected in this study, retaining the 4 factors with eigen values >1 (Seinfeld and Spyros, 

2006). This process is well described elsewhere (Miller et al., 2002). 

The contribution of each source was determined by absolute principal component scores 

(APCS) (Thurston and Spengler, 1985; Guo et al., 2004; Wang et al., 2010). The first step 

involves normalisation of NMHC, Zik: 

 

Zik = 
(Cik - Ci)

σi
 

(E2.3) 

where σi = standard deviation of NMHC i of all samples included in the analysis and Ci = 

mean mixing ratio of species i. The factor scores from the PCA are normalised with mean = 

0 and σ = 1. An artificial value with mixing ratio of species i = 0 is created in equation E2.4 

to compensate for this. 

 

(Z0)i = 
(0 - Ci)

σi
= 

- C0

σi
 

(E2.4) 

The source contributions are determined by equation E2.5: 

 
Ci = (b0)i + ∑ APCSk

*bki

p

k = 1

           p = 1, 2, …, n  
(E2.5) 

where (b0)i = constant for pollutant i, APCSk* is determined by subtracting the factor scores 

from the true sample in E2.3 from those obtained in E2.4 (Guo et al., 2004), bki  = coefficient 

of regression for source k for NMHC i (Bruno et al., 2001) and p = number of sources. The 

product APCSk*bki shows the contribution to the airborne mixing ratio of NMHC i from 

source p. E2.5 is solved through multiple linear regression analysis. Due to the potentially 

colinear nature of many diurnal profiles in Delhi, factors with small non-meaningful 

contributions to chemical species (< 20%) have been deemed to be insignificant and filtered 

out from the analysis. Furfural, measured by PTR-QiToF-MS, has been included as a tracer 

for burning emissions to help with the identification of factors (Stockwell et al., 2015; 

Coggon et al., 2016). The result from PCA/APCS has been compared to those calculated 

using the EPA Unmix 6.0 source apportionment toolkit (Henry, 2007), which has been 

previously applied to many air quality datasets (Hopke, 2016). The use of multiple source 

apportionment methods should result in a more robust conclusion. 
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2.3. Results and discussion 

2.3.1. Meteorological overview 

Figure 2.6 shows seasonal wind rose plots for windspeed and direction measured at Indira 

Gandhi International Airport in 2018, downloaded from the Integrated Surface Database 

provided by the National Oceanic and Atmospheric Administration (NOAA) (Carslaw and 

Ropkins, 2012; NOAA, 2019). Air masses predominantly approached Delhi from the 

west/north west in winter and spring. During the pre-/post-monsoon and monsoon 

seasons, air masses generally approached from either the west/north west or east/south 

east. Conditions were most stagnant in the winter and post-monsoon seasons with the 

lowest windspeeds (averages of 1.8 and 1.9 m s-1, respectively) and the largest percent of 

calm periods, where the wind speed was below < 0.5 m s-1 (25.7-28.0%). Windspeeds were 

higher in spring, pre-monsoon and monsoon seasons (with averages in the range 2.6 to 3.3 

m s-1, respectively), with the lowest number of calm periods in the pre-monsoon and 

monsoon seasons (6.4 and 7.5%, respectively).  

Figure 2.7 shows 10 m 96 h NOAA HYSPLIT (Hybrid Single Particle Lagrangian Integrated 

Trajectory) back trajectories clustered (Angle) from pre- and post-monsoon campaigns with 

mean toluene mixing ratio coloured by cluster (Carslaw and Ropkins, 2012). Back 

trajectories in the pre-monsoon campaign were generally long (C2-C4 at around 1000 km 

over 96 h), suggesting higher windspeeds with monsoon-type wind patterns, and resulted 

in low toluene mixing ratios. C1 was important from 27-29/05/18 and followed a much 

shorter trajectory and resulted in higher toluene mixing ratios, highlighting the impact of 

shorter, slower moving trajectories in allowing the build-up of local pollution. Trajectories 

in the post-monsoon campaign were generally shorter, and toluene mixing ratios higher. 

 

Figure 2.6. Seasonal wind rose plots at Indira Gandhi International Airport in 2018. 
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Figure 2.7. Clustered NOAA Hysplit back trajectories from pre- and post-monsoon campaigns (left) 

and mean toluene mixing ratios by cluster (right). 

  

  

Figure 2.8. Concentration-time series of A = pre-monsoon NMHCs (stacked), B = pre-monsoon O3, 

NO, NO2 and CO, C =post-monsoon NMHCs (stacked) and D = post-monsoon O3, NO, NO2 and CO. 

Zoomed in versions for the pre-monsoon campaign are available in the Supplementary Information 

8.2. 
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2.3.2. NMHC mixing ratios and diurnal cycles 

Hourly measurements of 90 individual NMHCs were obtained from both GC instruments 

over the two campaigns. Relatively high mixing ratios of NHMCs were observed during both 

campaigns, but with significant enhancements observed from 17/10/2018 until the end of 

the post-monsoon measurement period on the 27/10/2018. Figure 2.8A and Figure 2.8C 

show stacked area plots of NMHC mixing ratios during pre- and post-monsoon campaigns. 

NMHC concentrations in the pre-monsoon were generally much lower, except for two large 

alkane spikes caused by very large concentrations of propane and butane (Figure 2.8A). In 

the post-monsoon, NMHC concentrations at night were significantly larger than in the pre-

monsoon. Figure 2.8B and Figure 2.8D show concentration-time series of O3, CO and NOx 

from pre- and post-monsoon campaigns. Significant night-time enhancement of CO and 

NOx was observed in the post-monsoon. O3 peaked in the pre-monsoon at around 80-90 

ppbv and around 60-90 ppbv in the post-monsoon. 

Figure 2.9 shows the mean diurnal profiles using data combined from both campaigns for 

propane (A), n-hexane (B), isoprene (C), toluene (D), n-tridecane (E) and ethanol (F). These 

have been chosen as they are typical NMHC tracers from different sources. Diurnal profiles 

of individual data from the pre- and post-monsoon campaigns are given in the 

Supplementary Information 8.3. The diurnal profiles observed for propane, n-hexane, 

toluene and n-tridecane were similar, peaking at night between 8 pm and 6 am with a 

minimum in the afternoon. For propane, large spikes were present around midday, with 

the spikes present but less pronounced in the post-monsoon campaign. These large 

increases in mixing ratios have been attributed to emissions from LPG, a mixture of propane 

and butane, from lunchtime cooking activities. The average diurnal profile for n-hexane 

during the pre-monsoon (see the Supplementary Information 8.3) showed a small peak 

around lunchtime likely from midday traffic. A small peak was present for toluene from 8-

10 am, potentially from the morning rush hour before the boundary layer begins to expand. 

Isoprene showed a typically distinct biogenic diurnal profile and peaked around midday. 

However, mixing ratios remained high at night (around 0.5 ppbv), possibly indicating an 

additional anthropogenic source (Borbon et al., 2001; Wagner and Kuttler, 2014; Sahu and 

Saxena, 2015; Sahu et al., 2016). A pronounced diurnal profile was present for n-tridecane 

which was highest at night, potentially amplified by night-time residential generator usage 
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and restrictions which allow the entry of heavy good vehicles to the city only at night. A 

peak was present for ethanol around midday, which was most pronounced in the pre-

monsoon campaign and may be from increased volatilisation due to increased temperature 

and radiation. 

 

 

  

  

  

Figure 2.9. Diurnal profiles of selected NMHCs from pre- and post-monsoon campaigns for A = 

propane, B = n-hexane, C = isoprene, D = toluene, E = n-tridecane and F = ethanol. The shaded 

region indicates the 95% confidence interval in the means.  
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In order to compare the composition of NMHCs during the two campaigns, average diurnal 

profiles were calculated for all NHMC during the two campaigns and split according to 

functionality (alkanes, aromatic, monoterpenes). Figure 2.10A-B shows the average diurnal 

profiles for all alkanes. During the pre-monsoon campaign, the largest alkane mixing ratios 

were from 10:00-14:00 and caused by very large mixing ratios of propane and butane, with 

the mean for both campaigns peaking at around 150 ppbv. Outside of these peaks, the 

highest mixing ratios were observed at 20:00 at approximately 50 ppbv. The lowest mixing 

ratios of 20 ppbv were observed at 04:00. In the post-monsoon campaign, mixing ratios 

were high from 20:00-08:00 and peaked at around 360 ppbv at 21:00. 

Figure 2.10C-D show the average diurnal profiles for aromatic species from the pre- and 

post-monsoon campaigns. Both campaigns showed peaks likely from traffic between 

08:00-12:00. During the pre-monsoon, mixing ratios peaked at 19 ppbv at 19:00 and 

reduced to around 5 ppbv at midnight and remained low until the rush hour. In the post-

monsoon, the mean diurnal variation of aromatic mixing ratios peaked at 96 ppbv at 21:00. 

The mixing ratio at 12:00 in the post-monsoon campaign was around 3 times larger (14 

ppbv) than at the same time in the pre-monsoon average diurnal profile (5 ppbv). The 

lowest mixing ratios observed in the pre-monsoon campaign were at 15:00 (4.2 ppbv) and 

at 14:00 in the post-monsoon campaign (8.8 ppbv).  

Figure 2.10E shows that in the average diurnal profile during the pre-monsoon the 

monoterpenes peaked at 07:00 (0.19 ppbv) and 22:00 (0.18 ppbv), likely due to biogenic 

emissions before the effect of photochemical degradation was too pronounced. Post-

monsoon monoterpenes (Figure 2.10F) peaked from 22:00-07:00. The largest contributors 

to post-monsoon mixing ratios were limonene (31%) and β-ocimene (25%). The 

contribution of β-ocimene was similar in the pre-monsoon, with a lower contribution of 

limonene (8%) and larger contributions of α-pinene (28%), α-phellandrene (14%) and 3-

carene (12%). The lowest monoterpene mixing ratios observed were in the afternoon at 

similar mixing ratios in the pre- (0.07 ppbv) and post-monsoon periods (0.09 ppbv), with a 

minimum at 15:00. The diurnal profile of the monoterpenes in the post-monsoon period 

was very similar to the anthropogenic NHMCs, with high concentrations of very reactive 

monoterpenes observed. In the time series in Figure 2.8C, up to 6 ppbv of monoterpenes 

were measured.  
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Pre monsoon Post monsoon 

  

  

  

Figure 2.10. Stacked average diurnal profiles of alkanes (A-B), aromatics (C-D) and monoterpenes 

(E-F) measured during the pre- and post-monsoon campaigns in Delhi in 2018. Zoomed in stacked 

diurnals from the pre-monsoon campaign are given in the Supplementary Information 8.4. 
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Figure 2.11A-B show the diurnal variation of the toluene mixing ratio, PBLH and windspeed 

during the pre- and post-monsoon campaigns. The shape of the toluene diurnal was similar 

in both campaigns, but the mixing ratio of toluene much larger in the post-monsoon 

campaign. The windspeed in the pre-monsoon campaign (3-4 m s-1) was consistent 

throughout the day and the night-time PBLH was around 300 m. In the post monsoon both 

night-time windspeed (~ 0.9 m s-1) and PBLH (~ 60 m) were lower, resulting in higher 

toluene mixing ratios.  

Figure 2.11C-D show the average diurnal profiles of the O3, NO, NO2 and CO measured 

during the pre- and post-monsoon campaigns. In the pre-monsoon campaign, mean O3 

peaked at 14:00 (90 ppbv) and remained high from 20:00-08:00 at ~ 30 ppbv. Average 

mixing ratios of NO (24-55 ppbv) and CO (0.67-1.3 ppmv) were elevated at night, with NO 

reducing to ~ 1.3 ppbv from 14:00-15:00 and CO to 0.4-0.5 ppmv from 12:00-16:00. In the 

post-monsoon campaign, mean O3 was low (< 5ppbv) from 18:00-08:00 and peaked at 81 

ppbv at 13:00. Night-time mixing ratios of NO (around 200 ppbv) and CO (approximately 2-

3 ppmv) remained high from around 20:00-08:00. NO2 showed less variability, with a mean 

mixing ratio of around 40 ppbv from 00:00-08:00 with two peaks at 09:00 (55 ppbv) and 

17:00 (65 ppbv). There was a clear enhancement of primary pollutants NO, CO and NMHCs 

in Delhi during the post-monsoon at night, which appears to be driven, at least in part, by 

a very shallow and stagnant boundary layer.  

A bivariate polar plot of the toluene concentration measured using PTR-QiToF-MS during 

pre- (26/05/18-09/06/18) and post-monsoon (07/10/18-23/11/18) seasons is shown in 

Figure 2.11E and for CO in pre- (28/05/18-05/06/18) and post-monsoon (07/10/18-

23/11/18) campaigns in Figure 2.11F. Most of the NHMCs presented in this paper show a 

similar trend, with the highest mixing ratios observed under low windspeeds and PBLH 

indicating they are likely the result of emissions from the local area, perhaps with a larger 

source directly to the East. 

The IGTDUW site was located close (around 0.3 km) to the national highway 44, the longest 

running north-south highway in India at over 3800 km in length, as well as old Delhi railway 

station (around 0.5 km). There were also many congested roads close to the site passing by 

shops selling automotive parts. These were both likely large sources of petrol and diesel 
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related emissions and likely to have a large impact on the composition of the 

measurements made at the IGTDUW site. 

Pre monsoon  Post monsoon  

  

 

  

  

Figure 2.11. Variation of toluene mixing ratio, PBLH and windspeed in A = pre-monsoon campaign 

from 26/05/18-09/06/18 and B = post-monsoon campaign from 06/10/18-23/11/18. Mean diurnal 

profiles of O3, NO, NO2 and CO in C = pre- and D = post-monsoon campaigns. Shaded areas represent 

the 95% confidence intervals in the mean. Polar plots of E = toluene from 26/05/18-09/06/18 and 

06/10/18-23/11/18 and F = CO from 28/05/18-05/06/18 and 07/10/18-23/11/18, with the radial 

component reflecting wind speed in m s-1 (Carslaw and Ropkins, 2012).  
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2.3.3. Regression analysis 

In order to determine the relative source strength of different NMHCs, a number of 

different regression techniques were used. The observed mixing ratios of NMHCs were 

plotted against the mean CO and acetylene (tracers for petrol vehicles) measured during 

the concurrent GC sample time, with the regression coefficient of determination, R2, 

examined. Figure 2.12 shows the observed R2 values for different carbon numbers with the 

points coloured by functionality. Shaded regions have been added to group NMHCs that 

were indicative of major emission sources. C3-C4 alkanes, normally attributed to LPG 

emissions (Gamas et al., 2000; Bon et al., 2011), were grouped together with low R2 values 

in the pre-monsoon campaign (< 0.4) and shaded in red. The low R2 value to CO indicated 

that these likely were fugitive emissions from LPG rather than combustion. Removal of the 

few measurement points which caused the large peaks in propane and butane, shown as 

large spikes in alkanes between 11:00-13:00 in Figure 2.10A, confirmed this and remaining 

measurements had much higher R2 to CO and acetylene (shown as red shaded area with 

red dashed line). C5-C10 alkanes, as well as some C4 alkenes (green shading), were grouped 

with R2 values ~ 0.7-0.9 and may be from a petrol source as CO is a conventional tracer for 

petrol vehicular exhaust emissions. The R2 value then decreased for C10-C15 alkanes, which 

could be indicative of a different source (blue shading), with a poorer relationship to CO 

such as diesel or burning. Aromatic species are located in the regions characteristic of 

petrol and diesel emissions, and isomers with C10 showed the greatest variability spanning 

a range of R2 values with CO from 0.1-0.9. Monoterpenes were also placed onto Figure 2.12 

and a range of R2 values were observed, possibly indicating a range of sources for these 

species. The overall shape between the two campaigns appeared similar, however, the R2 

values for the post-monsoon campaign were greater, and may be driven by strong 

meteorological influences, higher levels of pollution and reduced photochemistry. The 

monoterpenes in particular showed a much stronger correlation with CO during the post-

monsoon period suggesting an anthropogenic source (Stockwell et al., 2015; Zhang et al., 

2020). This conclusion is similar to that reported by Wang et al. (2020), who suggested that 

biogenic molecules may be explained by vehicular or burning sources in Delhi.  
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Figure 2.12. R2 as a function of carbon number from regression analysis of NMHCs against CO and 

acetylene during pre- and post-monsoon campaigns. See text for discussion of the shaded ellipses.  

 

Figure 2.13. Correlation and hierarchical cluster analysis of NMHC mixing ratios using a combined 

dataset from both pre- and post-monsoon campaigns. Light blue shaded region corresponds to 

hydrocarbons typically associated with diesel fuel, green region to petrol, white region to LPG and 

orange region to diesel/burning.  
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Figure 2.13 shows the R2 of linear regression plots of different NMHCs measured during 

pre- and post-monsoon campaigns ordered according to hierarchical cluster analysis, 

created with data extracted from the corPlot function of openair (Carslaw and Ropkins, 

2012). A region is marked with a red dashed line which contained two closely correlated 

regions with NMHCs characteristic of diesel (blue) and petrol (green) fuels. There was likely 

some crossover of C8-C10 species in this region, owing to similar diurnal profiles of NMHCs 

characteristic of petrol/diesel emissions. Benzene and toluene also sat with the diesel 

region but were likely to come from both vehicular sources, and toluene showed a stronger 

correlation with C4-C6 tracers than benzene. A further region with propane and butane 

(white square) was identified and characteristic of emissions from LPG fuels. Acetone and 

methanol were poorly correlated to other NMHCs, indicating a different source, which was 

assumed to be secondary chemistry or volatilisation for methanol. Isoprene was poorly 

correlated to other NMHCs, with an assumed daytime biogenic source due to the diurnal 

profile in Figure 2.9C. A further small region was identified (orange square) containing C11-

C14 aliphatic species, which were tentatively identified as coming from a mixture of 

diesel/burning sources. These species showed strong correlations to each other but poorer 

correlation with other NMHCs.  

2.3.4. Emission ratio evaluation 

The ratio of specific NMHC tracer pairs in ambient samples can be indicative of their 

emission source(s). The atmospheric lifetimes of i-pentane and n-pentane are similar 

(Jobson et al., 1998); a concentration ratio of 0.8-0.9 is typically observed for natural gas 

drilling, 2.2-3.8 for vehicular emissions, 1.8-4.6 for evaporative fuel emissions and 0.5-1.5 

for biomass burning (Li et al., 2019). Figure 2.14 shows the i-/n-pentane ratio measured in 

this study, which was 2.6. This was compared to vehicular exhaust emissions reported from 

the Pearl River Tunnel in Guangzhou, China, where the ratio was found to be 2.9 (Liu et al., 

2008). The ratio in Delhi was similar to another site considered to be highly influenced by 

traffic emissions (Jingkai community, Zhengzhou, China in 2017) which had a ratio of 2.6 (Li 

et al., 2019). The high R2 of 0.98 in the Delhi measurements indicated a constant pollution 

source (mix), with a ratio close to that characteristic of vehicular emissions. 



71 
 

 

Figure 2.14. Comparison of i/n-pentane ratios between Delhi (black), Indian solid fuel combustion 

from data presented in chapter 4 (red) and the Pearl River Tunnel China (blue) (Liu et al., 2008). 

 

The ratio of benzene to toluene in ambient samples has also been compared to those from 

different sources. During the post-monsoon campaign, the mean benzene/toluene ratio 

was 0.36. This has been compared to the ratios measured from the headspace of petrol 

(0.4) and diesel (0.2) liquid fuel samples collected from Delhi and presented in chapter 4 

and that of 0.3 reported for traffic exhaust emissions (Hedberg et al., 2002). Whilst there 

is uncertainty in the exact ratio of benzene/toluene at emission due to the increased 

reactivity of toluene relative to benzene, the presence of a significantly greater molar ratio 

of toluene to benzene in ambient samples underlines the importance of petrol and diesel 

emissions to NMHCs in Delhi, as this could not be explained by the solid fuel combustion 

sources measured in chapter 4 for which benzene/toluene ratios were 2.3 for wood and 

0.9 for cow dung cake. 
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2.3.5. Source apportionment modelling 

Figure 2.15 shows the mean contribution of the 4 factors selected to pollutant mixing ratios 

from the PCA/APCS model. The PCA/APCS model was initially run with 3-7 factors, however, 

inclusion of > 4 factors did not lead to a significantly improved output and running EPA 

Unmix 6.0 with > 4 factors often led to solutions which would not converge. Sources in this 

study have been attributed to factors according to the species which they predict and those 

suggested in previous studies which showed emissions of C2-C5 for natural gas, C2-C10 for 

petrol and diesel emissions > C8 (Passant, 2002). The LPG factor in this study contributed to 

C3-C4 hydrocarbons. The petrol factor contributed to C2-C12 hydrocarbons and contributed 

significantly to alkanes from C5-C9. The petrol factor had a smaller contribution to C11-C12 

hydrocarbons and was probably due to slight collinearity of petrol and diesel factors due 

to similar diurnal profiles and strong meteorological influences. The diesel factor increased 

in importance from C8-C14 NMHCs, as expected of a diesel source. The inclusion of a small 

number of factors was beneficial to factor identification in this study, as the diurnal profiles 

of all NMHCs in the post monsoon were very similar. It was not possible to resolve a second 

diesel factor, which could be explained by diesel emissions from vehicles and generators. 

The assignment of petrol and diesel factors compared well with previous studies which 

showed that aromatics and alkanes were the dominant emission from 4-stroke 

motorcycles, light petrol vehicles and diesel trucks (Yao et al., 2015; Cao et al., 2016; Dhital 

et al., 2019). 

The burning factor was rationalised using furfural as a tracer and contributed to C2-C7 

hydrocarbons and > C12 hydrocarbons. North Indian burning sources are examined in detail 

in chapters 3-4 and shown to release substantial amounts of furfural and had significant 

emission factors of smaller alkanes such as ethane. The open burning of municipal solid 

waste is shown to contribute to emissions of heavier alkanes. Previous studies have also 

reported emissions of n-alkanes from the burning of municipal solid waste (Karasek and 

Tong, 1985). It is noteworthy that very low mean mixing ratios of furfural (0.8 ppbv) were 

measured by PTR-QiToF-MS in the post-monsoon campaign compared to other NMHCs 

such as monoterpenes (1.3 ppbv) and toluene (18 ppbv), which is suggestive of a small 

burning source.  
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Figure 2.15. Mean contribution of sources to NMHCs measured in Delhi by PCA/APCS. Unmix 6.0 

outputs are given in the Supplementary Information 8.5. 

Table 2.2. Estimated source contributions to mean total NMHC mass and mixing ratios (M.R) 

observed in ambient samples. 

Method By LPG Burning Petrol Diesel 

PCA/APCS M.R 30 15 44 11 

EPA Unmix 6.0 M.R 34 18 32 16 

PCA/APCS Mass 23 10 47 20 

EPA Unmix 6.0 Mass 25 18 30 27 

 

Table 2.2 shows the estimated source contributions to mean mixing ratio (M.R) and mass 

observed in ambient samples predicted by PCA/APCS and the EPA Unmix 6.0 toolkit. This 

study showed that traffic related emissions, which also included some emissions from static 

diesel generators, were the dominant source of NMHCs at the site, with relative mean 

mixing ratio contributions predicted by the PCA/APCS and Unmix models from petrol 

automobiles and motorbikes (38%), diesel trucks, trains and generators (14%), LPG from 

cooking (32%) and open burning of biomass and municipal solid waste (16%). The mean 

mass contributions were petrol (39%), diesel (23%), LPG (24%) and burning (14%). High 
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mixing ratios of aromatics were dominated by traffic related sources and meant that the 

contribution of biomass burning to these was insignificant.  

This study compared well to the limited previous literature focussed on NMHC source 

apportionment in Delhi from ambient measurements (Wang et al., 2020) and inventories 

which have shown the importance of vehicular emissions (Gurjar et al., 2004; Guttikunda 

and Calori, 2013; Sharma et al., 2015). Gujar et al. (2004) showed that from 1990-2000 

transport represented > 80% of NMHC emissions with 47% of emissions from motorcycles 

(Gurjar et al., 2004) and the study led by NEERI in 2008 showed vehicular related emissions 

to be the largest citywide source. Petrol emissions were the largest source shown by 

Srivastava et al. (2009) and the inventory for India produced by Sharma et al. (2015) 

commented that large built-up areas like Delhi were dominated by petrol traffic related 

emissions. The most recent study led by Wang et al. (2020) determined that traffic was 

responsible for 57% of the mixing ratio of NMVOCs at an urban site in Delhi, with 16% from 

secondary sources and 27% from biomass burning (Wang et al., 2020). The larger 

contribution of traffic related emissions and lower contribution of burning emissions in this 

present study were explained by the proximity of major roads to the IGTDUW site. It was 

also explained by the fact that the GC instrumentation used in this study was specifically 

targeted to NMHCs, in comparison to PTR-ToF-MS which is more suited to measuring 

oxygenated species commonly from secondary sources and burning. The contribution by 

mass of petrol and diesel sources in this study (62%) is in good agreement with that 

suggested by a 1 km2 gridded inventory of Delhi (65%) (Guttikunda and Calori, 2013). 

The results of the PCA/APCS and Unmix 6.0 models were compared to 3-6 factor 

unconstrained solutions from EPA PMF 5.0 run on individual pre-/post-monsoon datasets 

as well as the combined dataset. Although PMF is widely accepted as a more powerful 

receptor model due to being able to find more factors, PMF explored variance within the 

petrol and diesel factors before finding the factor attributed to LPG (see the Supplementary 

Information 8.6 for comparison of the 4-factor solution using the combined dataset). The 

instrumental uncertainty in the large fugitive spikes in propane and butane was not large, 

and so these points had not been down weighted within the model for this reason. 

Inclusion of benzene/toluene ratios and propane/butane ratios of factors in the PMF model 

did not lead to a significantly improved result and PMF was only able to identify the LPG 
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factor in the 6-factor pre-monsoon dataset. Factor identification for model runs with 

inclusion of additional factors was increasingly difficult to interpret. This may be partly 

driven by the limited data collected during the short measurement periods of this study. 

For these reasons, the results from the PMF model were not included in this study. Whilst 

studies criticise source apportionment in India using PCA/APCS and Unmix (Pant and 

Harrison, 2012), the results of the PCA/APCS and Unmix models were considered beneficial 

to include as they agreed well with other source apportionment analyses in this study and 

compared well to literature.  

This work shows that NMHC emissions near an urban site in Delhi were predominantly the 

result of traffic related emissions. This study only focussed on the major sources of NMHCs 

in Delhi. The large contributions of petrol and diesel related emissions likely masked smaller 

contributions from other sources further from the site to the ratios of benzene/toluene 

and i-/n-pentane examined and are therefore not accounted for in the conclusions of this 

study. It is expected that any CNG transport related emissions which may be > C1, 

potentially from poor maintenance and lubricant emissions, are grouped with petrol 

emissions. The influence of burning closer to slum sites and landfill is likely to be larger, and 

unaccounted for in the conclusions of this study. The contribution of LPG emissions from 

cooking and transport was also larger than estimated in current inventories.  

It is highly likely that there were more smaller sources contributing to the NMHCs in Delhi 

than the 4 identified with the PCA/APCS and Unmix models, such as the contributions from 

industry, powerplants and brick kilns. The source of the 12 highly reactive monoterpenes 

measured at the IGTDUW site was not clear, and may be related to automotive emissions, 

cooking, personal care products, biogenic, burning of solid fuels, spices related to cooking 

or from incense burnt for religion reasons. These species are highly reactive and likely to 

be contributors to OH reactivity and SOA formation. Future studies should measure direct 

fluxes of NMHC to remove the strong meteorological influences impacting concentration 

measurements in Delhi. This could lead to a better understanding of the impact of NMHC 

sources on daytime NMHC emissions.  
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2.4. Conclusions 

This study presents a comprehensive suite of NMHC measurements performed at an urban 

site in Delhi during the pre- and post-monsoon seasons in 2018. Extremely high night-time 

mixing ratios were measured during the post-monsoon campaign, caused by stagnant 

conditions and a shallow boundary layer. A range of source apportionment techniques have 

been used, which appear self-consistent and arrive at similar conclusions for correlation 

analysis to CO, acetylene and other NHHCs as well as hierarchical cluster analysis. The 

absolute contributions of different sources have been determined through receptor 

models, with factors rationalised using recent studies focussing on emissions from petrol, 

diesel and solid fuel combustion sources and confirmed through comparison of 

characteristic i-/n-pentane and benzene/toluene ratios which are close to those of liquid 

automotive fuels. These results are in line with bottom-up emission inventory and top-

down receptor modelling approaches from recent literature. Unusually high levels of very 

reactive monoterpenes were observed at night during the post-monsoon campaign, with 

similar diurnal profiles to NHMCs typical of petrol and diesel sources. This suggested that 

these species were emitted from anthropogenic sources in Delhi rather than the 

conventional biogenic source seen in other locations. The impact of prolonged exposure to 

elevated NMHC concentrations at night during the post-monsoon campaign is likely to lead 

to significant health impacts and result in the production of high levels of other harmful 

secondary pollutants, when photochemical oxidation can occur the following day. In order 

to reduce the high levels of NMHCs during the post-monsoon period, policies that target 

vehicle emission reductions are critical.  
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Chapter 3  

3. Emissions of intermediate-volatility and semi-volatile 
organic compounds from domestic fuels used in Delhi, 
India 
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3.1. Introduction 

Biomass burning is one of the most important global sources of trace gases and particles to 

the atmosphere (Simoneit, 2002; Chen et al., 2017; Andreae, 2019), with residential solid 

fuel combustion and wildfires emitting significant quantities of organic matter (Streets et 

al., 2003; Barboni et al., 2010; Chen et al., 2017; Liu et al., 2017; Kiely et al., 2019). Emissions 

of volatile organic compounds (VOCs) and particulate matter (PM) from biomass burning 

are of interest due to their detrimental impact on air quality. VOCs react to form ozone and 

secondary organic aerosol (SOA). Intermediate-volatility and semi-volatile organic 

compounds (I/SVOCs) are also a significant emission from biomass burning (Stockwell et 

al., 2015; Koss et al., 2018). I/SVOCs are an important class of air pollutant due to their 

contribution to aerosol formation (Bruns et al., 2016; Lu et al., 2018). I/SVOC emissions are 

poorly, if at all, represented in regional inventories and chemical transport models. 

Consequently, their impacts to air quality in developing regions, where solid fuel 

combustion is a dominant fuel source, are not well understood. Recent studies have shown 

that the inclusion of I/SVOCs leads to better agreement between modelled and measured 

values (Ots et al., 2016; Woody et al., 2016; Murphy et al., 2017; Jathar et al., 2017). Global 

I/SVOC emissions to the atmosphere from biomass burning were estimated to be ~ 54 Tg 

yr−1 from 2005-2008 (Hodzic et al., 2016), with I/SVOCs contributing in the range 8-15.5 Tg 

yr-1 to SOA (Cubison et al., 2011; Hodzic et al., 2016). 

SOA formation from biomass burning emissions is poorly understood globally. Important 

factors include the formation of less volatile products from the oxidation of NMVOCs which 

partition into the aerosol phase, heterogeneous oxidation of aerosol phase organics, as 

well as plume dilution followed by evaporation and further gas-phase oxidation (Lim et al., 

2019). Ahern et al. (2019) showed that for burning of biomass needles, biogenic VOCs were 

the dominant class of SOA precursor. This study also found that for wiregrass, furans were 

the most important SOA precursor. Bruns et al. (2016) showed that SOA formation from 

combustion of beech fuel wood was dominated by 22 compounds, with phenol, 

naphthalene and benzene contributing up to 80 % of the observed SOA. SOA formation 

from biomass burning has been shown to be significant in laboratory studies, with SOA 

yields from the burning of western U.S. fuels reported to be 24±4 % after 6 h and 56±9 % 
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after 4 d (Lim et al., 2019). However, the effect of atmospheric of aging on I/SVOCs still 

remains poorly understood (Liu et al., 2017; Decker et al., 2019; Sengupta et al., 2020).  

Better understanding of the quantity and composition of I/SVOCs from biomass burning is 

needed to evaluate their impact on the atmosphere. This is a difficult analytical task, not 

well suited to conventional analysis with gas chromatography coupled to mass 

spectrometry (GC-MS). The reason for this is because of the exponential growth of 

potential isomers with carbon number, which results in a large number of coeluting peaks 

(Goldstein and Galbally, 2007). The high resolution of two-dimensional gas 

chromatography (GC×GC) has been demonstrated as an ideal technique to overcome this 

issue when analysing complex organic samples in both gas (Lewis et al., 2000; Stewart et 

al., 2021) and particle phases (Hamilton et al., 2004; Lyu et al., 2019). The application of 

GC×GC to biomass burning emissions has shown hundreds of gaseous I/SVOCs using 

adsorption-thermal desorption cartridges (Hatch et al., 2015) or solid phase extraction 

(SPE) disks (Hatch et al., 2018). GC×GC has also been used to analyse the particle phase 

with samples collected onto PTFE or quartz filters (Hatch et al., 2018; Jen et al., 2019), with 

the latter study quantifying 149 organic compounds which accounted for 4-37 % of the 

total mass of organic carbon. The process used by Hatch et al. (2018) demonstrated high 

recoveries of non-polar species from PTFE filters, with lower recoveries from SPE disks. This 

study highlighted the need for further evaluation of samples collected onto PTFE filters and 

SPE disks, ideally improving the method to remove undesirable steps such as 

trimethylsilylation derivatisation, the use of pyridine and centrifuging which led to high 

evaporative losses. The need to develop improved sampling and measurement techniques 

for I/SVOCs has also been highlighted. This is because these species often do not transmit 

quantitatively through the inlet and tubing when measured using online gas-phase 

techniques (Pagonis et al., 2017). 

Residential combustion, agricultural crop residue burning and open municipal solid waste 

burning in the developing world are large, poorly characterised pollution sources with the 

potential to have a significant impact on local and regional air quality, impacting human 

health (Venkataraman et al., 2005; Jain et al., 2014; Wiedinmyer et al., 2014). Hazardous 

indoor air pollution from combustion of solid fuels has been shown to be the most 

important factor from a range of 67 environmental and lifestyle risk factors causing disease 
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in South Asia (Lim et al., 2012). Despite this, nearly 76 % of rural Indian households depend 

on solid biomass for their cooking needs (Gordon et al., 2018), using biofuels such as fuel 

wood, cow dung cake and crop residue. Combustion often takes place indoors, without 

efficient emission controls, which significantly increases the mean household 

concentration of pollutants, particularly particulate matter with a diameter less than 2.5 

μm (PM2.5). The health effects from this are significant, with an estimated 3.8 million 

premature deaths globally due to inefficient indoor combustion from cooking (World 

Health Organization, 2018b).  

Few detailed studies have been conducted examining the composition of I/SVOC emissions 

from solid-fuel combustion sources from South Asia. Sheesley et al. (2003) used solvent 

extraction followed by GC-MS to produce emission factors and examine molecular markers 

from combustion of coconut leaves, rice straw, cow dung cake, biomass briquettes and 

jackfruit branches collected from Bangladesh. A more recent study extracted PM2.5 samples 

followed by analysis with GC-MS from motorcycles, diesel- and gasoline-generators, 

agricultural pumps, municipal solid waste burning, cooking fires using fuel wood and cow 

dung cake, crop residue burning and brick kilns in Nepal (Jayarathne et al., 2018). Lack of 

knowledge regarding major pollution sources hinders our ability to predict air quality, but 

also the development of effective mitigation strategies for air pollution which leads to 

health impacts ranging from respiratory illness to premature death (Brunekreef and 

Holgate, 2002). This results in many people living with high levels of air pollution (Lelieveld 

et al., 2015; Cohen et al., 2005) and 13 Indian cities ranking amongst the top 20 cities in the 

world with the highest levels of ambient PM2.5 pollution, based on available data (Gordon 

et al., 2018). 

In this study we develop a more efficient extraction step for the SPE/PTFE technique 

developed by Hatch et al. (2018), using accelerated solvent extraction into ethyl acetate, 

which showed high recoveries of non-polar I/SVOCs. Domestic fuels characteristic to 

Northern India were gathered and organic I/SVOC samples collected onto SPE disks and 

PTFE filters from controlled laboratory combustion experiments of a variety of fuel woods, 

cow dung cakes, municipal solid waste samples, crop residues, charcoal and liquefied 

petroleum gas (LPG). The samples were extracted using this new technique and analysed 

with GC×GC coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). Molecular 
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markers were examined from different fuels and the limitations for quantification of the 

extremely complex samples using a mass spectrometer were examined.  

3.2. Methods 

3.2.1. Fuel collection and burning facility 

The state of New Delhi was gridded (0.05×0.05) and a diverse range of fuel types collected 

from across the state (see Figure 3.1). Fuels were stored in a manner akin to local practices 

prior to combustion, to ensure that the moisture content of fuels were similar to those 

burnt across the state. A range of solid biomass fuels were collected which included 17 fuel 

wood species, cow dung cake, charcoal and sawdust (see Table 3.1). Three crop residue 

fuel types were collected and consisted of dried stems from vegetable plants such as 

cabbage (Brassica spp) and aubergines (Solanum melongena) as well as coconut husk 

(Cocos nucifera). Municipal solid waste was collected from Bhalaswa, Ghazipur and Okhla 

landfill sites. A low-cost liquefied petroleum gas (LPG) stove was also purchased to allow 

direct comparison to other combustion sources. 

Fuels were burnt at the CSIR-National Physical Laboratory (NPL) New Delhi under controlled 

conditions using a combustion dilution chamber that has been well described previously 

(Venkataraman et al., 2002; Saud et al., 2011; Saud et al., 2012; Singh et al., 2013). In 

summary, 200 g of dry fuel was rapidly heated to spontaneous ignition with emissions 

driven into a hood and up a flue by convection to allow enough dilution, cooling and 

residence time to achieve the quenching of typical indoor environments. This process was 

designed to replicate the immediate condensational processes that occur in smoke 

particles approximately 5-20 mins after emission, yet prior to photochemistry which may 

change composition (Akagi et al., 2011). A low volume sampler (Vayubodhan Pvt.Ltd) was 

used to collect particulates and low volatility gases passing from the top of the flue through 

a chamber with a flow rate of 46.7 L min-1. As detailed in Table 3.1, samples were collected 

from 30 fuels alongside 8 blank measurements. Prior to sample collection, SPE disks 

(Resprep, C18, 47 mm) were prewashed with 2 × 5 mL acetone (Fisher Scientific analytical 

reagent grade), and 1 × 5 mL methanol (Sigma-Aldrich HPLC grade), then packed in foil and 

sealed in airtight bags. Samples were collected onto a PTFE filter (Cole-Parmer, 47 mm, 1.2 

μm pore size) placed on top of an SPE disk in a filter holder (Cole-Parmer, 47 mm, PFA) for 
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30 mins at a flow rate of 6 L min-1, maintained by a mass flow controller (Alicat 0-20 SLM) 

connected to a pump. Samples were removed from the filter holder immediately after the 

experiment and wrapped in foil, placed inside an airtight bag and stored at – 20 oC. Samples 

were then transported to the UK for analysis using an insulated container containing dry 

ice via. air freight and stored at – 20 oC for around 2 months prior to analysis. 

 

Figure 3.1. Locations across Delhi used for fuel collection. Map tiles by Stamen Design. Data by © 

OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License. 

Table 3.1. Types of fuel sampled where n = number of burns of a specific fuel type, SPE and PTFE = 

number of blank corrected peaks detected on SPE disks and PTFE filters, respectively. 

Fuel woods n SPE PTFE Other n SPE PTFE 

Plywood 1 201 516 Cow dung cake 3 1235 1562 

Azadirachta indica 1 557 862 Cocos nucifera 1 620 1197 

Morus spp 1 805 1132 Charcoal 1 439 280 

Shorea spp 1 296 360 Sawdust 1 1112 1486 

Ficus religiosa 1 500 712 Waste 3 948 1182 

Syzygium spp 1 661 571 LPG 1 - - 

Ficus spp 1 306 292 Blank 8 - - 

Vachellia spp 1 697 800 Cow dung cake mix 1 931 1241 

Dalbergia sissoo 1 501 611 Brassica spp 1 652 536 

Ricinus spp 1 424 271 Solanum melongena 1 314 559 

Holoptelea spp 1 274 324     

Saraca indica  1 525 484     

Pithecellobium spp 1 525 235     

Eucalyptus spp 1 238 144     

Melia azedarach 1 444 213     

Prosopis spp 1 248 144     

Mangifera indica 1 387 628     
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3.2.2. Extraction 

SPE disks and PTFE filters were spiked with an internal standard (50 μL at 20 μg mL-1) 

containing 6 deuterated PAHs (1,4-Dichlorobenzene-d4, naphthalene-d8, acenaphthene-

d10, phenanthrene-d10, chrysene-d12, perylene-d12; EPA 8720 Semivolatile Internal Standard 

Mix, 2000 μg mL-1 in DCM) to result in a final internal standard concentration of 1 μg mL-1 

in solution. The solvent from the internal standard was allowed to evaporate and then SPE 

disks and PTFE filters were cut and extracted into ethyl acetate (EtOAc) using accelerated 

solvent extraction (ASE 350, Dionex, ThermoFisher Scientific). Extractions were performed 

at 80 oC and 1500 psi for three 5 min cycles. After each cycle, the cell was purged for 60 

secs into a sample collection vial. Samples were then reduced from 15 mL to 0.90 mL over 

a low flow of N2 in an ice bath over a period of 6-8 hours (Farren et al., 2015). Samples were 

then pipetted (glass Pasteur) to sample vials (Sigma-Aldrich, amber glass, 1.5 mL), with ASE 

vials rinsed with 2 × 50 μL washes of EtOAC, then added to the sample vial and sealed 

(Agilent 12 mm cap, PTFE/silicone/PTFE). The mass of the sample vial and cap for each 

sample was measured before and after to determine the exact volume of solvent in each 

sample. Extracts were frozen prior to analysis to reduce evaporative losses. 

3.2.3. Organic composition analysis 

GC×GC-ToF-MS: PTFE samples were analysed using GC×GC-ToF-MS (Leco Pegasus BT 4D) 

using a splitless injection (1 μL injection, 4mm taper focus liner, SHG 560302). The primary 

dimension column was a RXI-5SilMS (Restek, 30 m × 0.25 μm × 0.25 mm) connected to a 

second column of RXI-17SilMS (Restek, 0.25 μm × 0.25 mm, 0.17 m primary GC oven, 0.1 

m modulator, 1.42 m secondary oven, 0.31 m transfer line) with a He flow of 1.4 mL min-1. 

The primary oven was held at 40 oC for 1 min then ramped at 3 oC min-1 to 322 oC where it 

was held for 3 min. The secondary oven was held at 62 oC for 1 min then ramped at 3.2 oC 

to 190 oC after which it was ramped at 3.6 oC min-1 to 325 oC and held for 19.5 mins. The 

inlet was held at 280 oC and the transfer line at 340 oC. A 5 s cryogenic modulation was 

used with a 1.5 s hot pulse and 1 s cool time between stages. Using two separate wash 

vials, the syringe (10 μL Gerstel) was cleaned prior to injection with two cycles of 3 × 5 μL 

washes in EtOAc and rinsed post injection with two cycles of 2 × 5 μL washes in EtOAc. 

Samples with high concentrations of levoglucosan were reanalysed using a faster method, 
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injected split (75:1 and 125:1) with the primary oven held at 40 oC for 1 min, then ramped 

at 10 oC min-1 to 220 oC. The secondary oven was held at 62 oC for 1 min and then ramped 

at 10 oC min-1 to 245 oC. 

SPE samples were injected split (10:1) and analysed with a shorter analysis time with the 

primary oven held at 40 oC for 1 min then ramped at 3 oC min-1 to 202 oC where it was held 

for 4 secs. The secondary oven was held at 62 oC for 1 min then ramped at 3.2 oC min-1 to 

235 oC. A 75:1 split injection was used for quantitation of concentrations outside of the 

detector response range for furanics, phenolics, benzaldehydes, naphthalenes and 

benzonitrile. Peaks were assigned through comparison of retention times with known 

standards and comparison with the National Institute of Standards and Technology (NIST) 

mass spectral library. Peaks with no genuine standard available were tentatively identified 

if the NIST library hit was > 700. Peaks with a hit > 900 reflect an excellent match, 800-900 

a good match and 700-800 a fair match (Stein, 2011). The uncertainty in this approach has 

been shown to be low for peaks with hits > 800, with the probability of incorrect 

identification being around 30% for hits between 800-900 and 14% for matches above 900 

(Worton et al., 2017). Integration was carried out within the ChromaTOF 5.0 software 

package (Leko, 2019). Calibration was performed using a 6-point calibration using either a 

linear or second-order polynomial fit covering the ranges 0.1-2.5 μg ml-1 (splitless), 0.5-15 

μg ml-1 (10:1 split), 15-400 μg ml-1 (75:1 split) and 400-800 μg ml-1 (125:1 split). Eight blank 

measurements were made at the beginning and end of the day by passing air from the 

chamber (6 L min-1 for 30 mins) through the filter holder containing PTFE filters and SPE 

disks. Blank corrections were applied by calculating the average blank value for each 

compound using blank samples collected using the same sample collection parameters as 

real samples before and after the relevant burning experiments.  

PTR-ToF-MS: Online measurements of naphthalene, methylnaphthalenes and 

dimethylnaphthalenes were made by Joe Acton from the University of Lancaster using a 

proton transfer reaction-time of flight-mass spectrometer PTR-ToF-MS (PTR 8000; Ionicon 

Analytik, Innsbruck) and assigned as masses 129.058, 143.08 and 157.097, respectively. 

Additional details of the PTR-ToF-MS from Physical Research Laboratory (PRL), Ahmedabad 

used in this study are given in previous papers (Sahu and Saxena, 2015; Sahu et al., 2016). 

A ¼ inch OD PFA sample line ran from the top of the flue to the instrument which was 
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housed in an air-conditioned laboratory with a sample flow rate of 4.3 L min-1. The sample 

air was diluted either 5 or 6.25 times into zero air, generated by passing ambient air (1 L 

min-1) through a heated platinum filament at 550 oC, before entering the instrument with 

an inlet flow of 250 ml min-1. The instrument was operated with a reduced electric field 

strength (E/N, where N is the buffer gas density and E is the electric field strength) of 120 

Td. The drift tube temperature was 60 °C with a pressure of 2.3 mbar and 560 V applied 

across it. 

Calibrations of the PTR-ToF-MS were performed twice a week using a gas calibration unit 

(Ionicon Analytik, Innsbruck). The calibration gas (Apel-Riemer Environmental Inc., Miami) 

contained 18 compounds: methanol, acetonitrile, acetaldehyde, acetone, dimethyl 

sulphide, isoprene, methacrolein, methyl vinyl ketone, 2-butanol, benzene, toluene, 2-

hexanone, m-xylene, heptanal, α-pinene, 3-octanone and 3-octanol at 1000 ppb (±5%) and 

β-caryophyllene at 500 ppb (±5%). This standard was dynamically diluted into zero air to 

provide a 6-point calibration. The normalised sensitivity (ncps/ppbv) was then determined 

for all masses using a transmission curve derived from these standard compounds (Taipale 

et al., 2008). 

Mass calibration and peak fitting of the PTR-ToF-MS data were performed using PTRwid 

software (Holzinger, 2015). Count rates (cps) of each mass spectral peak were normalised 

to the primary ion (H3O+) and water cluster (H3O.H2O)+ peaks and mixing ratios were then 

determined for each mass using the normalised sensitivity (ncps). Where compounds 

known to fragment in the PTR-ToF-MS were identified, the mixing ratio of these species 

was calculated by summing parent ion and fragment ion mixing ratios. Before each burning 

study, ambient air was sampled to provide a background for the measurement. 

3.2.4. Quantification of recovery and breakthrough 

Standards were used for 136 species (see Figure 3.2) including two commercially available 

standard mixes containing 33 alkanes (C7-C40 saturated alkane standard, certified 1000 μg 

m-1 in hexane, Sigma Aldrich 49452-U) and 64 semi volatiles (EPA CLP Semivolatile 

Calibration Mix, 1000 μg mL-1 in DCM:benzene 3:1, Sigma Aldrich 506508). Further 

standards were produced in-house, by dissolving high quality standards (> 99% purity), for 

a range of additional species also found in samples including nitrogen containing NMVOCs, 



86 
 

furans, alkyl-substituted monoaromatics, oxygenated aromatics, ketones, aldehydes, 

methoxy phenols, aromatic acids, PAHs and levoglucosan. Stock solutions of around 1000 

μg mL-1 were prepared by dissolving 0.01 g into 10 mL EtOAc. Polar components, such as 

levoglucosan, were dissolved into methanol (MeOH) for stock solutions and those not 

soluble at room temperature were heated and pipetted using hot pipette tips to make 

quantitative dilutions. 

Six separate PTFE filters and SPE disks were spiked with the standard solution containing 

136 compounds (50 μL at 20 μg mL-1), extracted and analysed. Recovery levels were 

calculated by comparing the signal to direct injection of the diluted standards to the 

GC×GC-ToF-MS. The recoveries are shown in Table 3.2. SPE disks showed poor recoveries 

(Srec) of n-nonane to n-tridecane and C2 substituted monoaromatics, likely due to 

volatilisation of these more-volatile components. Poorer recoveries were also observed of 

nitroanilines and levoglucosan. Non-polar species showed good recoveries, with high 

recoveries of C14-C20 alkanes, furans, phenols, chlorobenzenes and PAHs. PTFE filters 

demonstrated high recoveries (Prec) of PAHs with more than three rings in their structure 

(81.6-100%). Recoveries were low, or zero, for volatile components with boiling points < 

200 oC, indicating no retention, which is consistent with the method being well-suited to 

target the aerosol phase. The recoveries of non-polar species into EtOAc from SPE disks 

were higher than those reported into MeOH (Hatch et al., 2018). 

 

Figure 3.2. GC×GC-ToF-MS chromatogram of a mixed standard, numbered according to species 

listed in Table 3.2. 
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Table 3.2. Results of recovery tests where No. refers to the peak number in Figure 3.2, Qms = split 

method used for SPE quantitation, Qmp = split method used for PTFE quantitation, S = splitless 

method, Srec = % recovery SPE, Prec = % recovery PTFE, a = Sigma-Aldrich n-alkanes standard, b = 

Sigma-Aldrich semivolatiles standard, c = Sigma-Aldrich deuterated internal standard, d = in-house 

solution and - = not measured either due to being outside of SPE method range or due to 

volatilisation from PTFE filters. Slight over-recoveries of > 100% are reported as 100% and 

accounted for in blank subtractions. 

No. Species Qms Qmp Srec Prec No. Species Qms Qmp Srec Prec 

Alkane Nitrogen containing NMVOC 

0 n-Nonane a 10:1 S 60.0 - 32 Pyridine d 10:1 S 75.1 - 

1 n-Decane a 10:1 S 77.6 19.5 33 n-Nitrosodimethylamine b 10:1 S - - 

2 n-Undecane a 10:1 S 100 57.2 44 2,3-lutidine d 10:1 S 99.4 - 

3 n-Dodecane a 10:1 S 85.7 22.0 46 Benzonitrile d 75:1 S 86.9 - 

4 n-Tridecane a 10:1 S 91.4 75.0 57 n-Nitrosodipropylamine b 10:1 S 100 - 

5 n-Tetradecane a 10:1 S 97.8 97.8 62 Nitrobenzene b 10:1 S 88.5 - 

6 n-Pentadecane a 10:1 S 99.7 92.3 67 2-Nitrophenol b 10:1 S 100 - 

7 n-Hexadecane a 10:1 S 100 100 68 Pyrrole 2-carbonitrile d 10:1 S - - 

8 n-Heptadecane a 10:1 S 100 98.0 77 4-chloroanaline b 10:1 S 7.78 - 

9 n-Octadecane a 10:1 S 100 99.9 98 2-Nitroanaline b 10:1 S 100 - 

10 n-Nonadecane a 10:1 S 100 98.9 102 2,6-dinitrotoluene b 10:1 S 99.9 - 

11 n-Eicosane a 10:1 S 100 96.8 105 3-Nitroanaline b 10:1 S 34.2 - 

12 n-Heneicosane a 10:1 S - 100 107 2,4-Dinitrotoluene b 10:1 S 100 - 

13-23 n-Docosane a – 

n-Dotriacontane a 

10:1 S - 100 108 4-Nitrophenol b 10:1 S - - 

24 n-Tritriacontane - - - 96.5 112 Azobenzene b 10:1  100 100 

25 n-Tetratriacontane - - - 78.9 113 p- Nitroaniline b 10:1 S 64.5 - 

26 n-Pentatriacontane - - - 58.3 121 Caffeine d 10:1 S - - 

27 n-Hexatriacontane - - - 49.9 Aromatics 

28 n-Heptatriacontane - - - 35.4 37 Ethylbenzene d 10:1 S 44.6 - 

29 n-Octatriacontane - - - 32.1 38 m-Xylene d 10:1 S 34.5 - 

30 n-Nonatriacontane - - - 29.1 39 o-Xylene d 10:1 S 32.4 - 

31 n-Tetracontane - - - 27.9 40 Styrene d 10:1 S 58.4 - 

PAH 69 Pentylbenzene d 10:1 S 99.0 24.4 

76 Naphthalene b/c 75:1 S 93.9 37.1 82 Pentamethylbenzene d 10:1 S 68.6 39.5 

81 Quinoline d 10:1 S 28.6 - Halogenated 

87 2-Methylnapthalene b 75:1 S 90.8 72.4 48 2-Chlorophenol b 10:1 S 100 - 

89 Indole d 10:1 S 81.6 - 50 1,3-Dichlorobenzene b 10:1 S 85.5 - 

90 Azulene d 10:1 S 38.5 - 51 1,4-Dichlorobenzene b,c 10:1 S 87.2 - 

91 1(3H)-

Isobenzofuranone d 

10:1 S 100 - 52 1,2-Dichlorobenzene b 10:1 S 70.3 - 

96 Biphenyl d 10:1 S 99.5 75.0 56 Hexachloroethane b 10:1 S 83.7 - 

97 1,4-Naphthoquinone d 10:1 S 100 - 74 2,4-Dichlorophenol b 10:1 S 100 83.9 

99 2,3-

Dimethylnaphthalene d 

10:1 S 100 - 75 1,2,4-trichlorobenzene b 10:1 S 85.6 - 

100 Acenaphthylene b 10:1 S 98.5 84.1 78 Hexachlorobutadiene b 10:1 S 61.6 - 

103 Acenapthene b/c 10:1 S 100 88.2 83 Hexachlorocyclopentadiene b 10:1 S 100 - 

106 Dibenzofuran b 10:1 S 100 86.4 88 4-Chloro-3-methylphenol b  S 90.8 - 

109 Fluorene b 10:1 S 100 86.0 93 2,4,6-Trichlorophenol b 10:1 S 95.8 - 

117 9H-Fluoren-9-one d 10:1 S 100 100 94 2,4,5-Trichlorophenol b 10:1 S 100 - 

118 Phenanthrene b 10:1 S 100 96.7 95 2-Chloronapthalene b 10:1 S 99.6 - 

119 Anthracene b 10:1 S 98.6 95.9 110 4-Chlorophenylphenylether b 10:1 S 100 - 

120 Carbazole b 10:1 S 100 85.2 114 4-Bromophenylphenylether b 10:1 S 100 - 

123 Fluoranthene b 10:1 S 100 97.2 115 Hexachlorobenzene b 10:1 S 100 - 

124 Pyrene b 10:1 S - 100 116 Pentachlorophenol b 10:1 S 100 - 

126 Benzo(a)anthracene b - S - 100 Furans 

127 Chrysene b/ c - S - 100 34 Furfural d 75:1 S 84.3 - 

130 Benzo(b)fluoranthene b - S - 100 35 Maleic anhydride d 10:1 S 54.9 - 

131 Benzo(k)fluoranthene b - S - 100 36 α-Angelica lactone d 10:1 S 52.1 - 

132 Benzo(a)pyrene b - S - 89.5 43 2-5(H)-furanone d 75:1 S 100 - 

133 Perylene-D12 c - S - 92.4 Phthalates 

134 Indeno(1,2,3-CD)pyrene 
b 

- S - 94.0 101 Dimethyl phthalate b 10:1 S 100 - 

135 Dibenz(A,H)anthracene 
b 

- S - 92.9 111 Diethyl phthalate b 10:1 S 100 - 

136 Benzo(G,H,I)perylene b - S - 96.6 122 Di-n-butyl-phthalate b 10:1 S - - 

Oxygenated aromatics 125 Benzyl butyl phthalate b - S - 92.0 

41 Anisole d 10:1 S 20.4 - 128 Bis(2-ethylhexyl)phthalate b - S - 97.4 

42 p-Benzoquinone d 10:1 S 94.8 - 129 Di-n-octyl phthalate b - S - 90.6 

45 Benzaldehyde d 10:1 S 82.8 - Others 

47 Phenol b 75:1 S 100 - 49 Bis(2-chloroethyl)ether b 10:1 S 84.5 - 
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Table 3.2. continued.  

No. Species Qms Qmp Srec Prec No. Species Qms Qmp Srec Prec 

55 o-Cresol b 10:1 S 100 - 53 2-Octanone d 10:1 S 97.0 - 

58 p-Cresol b 75:1 S 100 - 54 Bis(2-chloro-1-

methylethyl)ether b 

10:1 S 100 - 

59 3-Methylbenzaldehyde 
d 

10:1 S 99.9 - 63 Nonanal d 10:1 S 100 52.3 

60 2-Methylbenzaldehyde 
d 

75:1 S 100 - 65 Isophorone b 10:1 S 96.4 - 

61 2-Methoxyphenol d 75:1 S 100 - 70 1-nonanol d 10:1 S 98.6 - 

64 2,6-Dimethylphenol d 75:1 S 100 100 72 Bis(2-chloroethoxy)methane 
b 

10:1 S 100 - 

66 2,3-dimethyl-2,5-

cyclohexadiene-1,4-

dione d 

10:1 S 100 - 84 Pinane diol d 10:1 S - - 

71 2,4-dimethylphenol b 10:1 S 89.5 - 104 Levoglucosan d 10:1 S 0 70.0 

73 Benzoic acid d 10:1 S - -       

79 Mequinol d 10:1 S 60.4 -       

80 m-Guaiacol d 10:1 S 44.0 -       

85 Hydroquinone d 10:1 S 34.8 -       

86 Resorcinol d 10:1 S 76.0 -       

92 2,6-Dimethoxyphenol d 10:1 S 93.6 -       

To quantify the additional effect of breakthrough during sampling, tests were conducted 

for SPE disks to examine the retention of components adsorbed to their surface when 

subject to an air flow equivalent to the sample volume. SPE disks were spiked with the 

calibration mixture containing 96 compounds of interest (50 μL at 20 μg mL-1, n = 4) and 

subject to a purified air flow of 6 L min-1 for 30 mins. The samples were extracted and 

analysed, and the signal compared with 4 × 50 μL spikes directly into 0.95 mL EtOAc. Figure 

3.3 shows the relative enhancement of unpurged over purged samples. For more volatile 

components a value greater than zero was observed (Figure 3.3), which indicated 

breakthrough of the most volatile components and indicated good retention of 

components with a boiling point of around 225 oC (see the Supplementary Information 8.7 

for results of individual species, see the Supplementary Information 8.8 for results of 

breakthrough testing). Concentrations measured for n-alkanes on SPE disks were also 

compared with concurrent measurements made during burning experiments using online 

thermal-desorption two-dimensional gas chromatography coupled to a flame ionisation 

detector. The measured concentrations for n-alkanes from n-nonane to n-dodecane were 

compared using both techniques, with measured concentrations similar for n-undecane/n-

dodecane (bp = 216 oC, see the Supplementary Information 8.9) but not the smaller 

alkanes. This was interpreted to indicate little breakthrough for components less volatile 

than n-dodecane. These findings are in line with the US EPA certified methods for Resprep 

SPE disks (525.1, 506, 550.1, and 549.1), when used to quantitatively analyse drinking 

water, which show their suitability for quantitative measurement of species with a 

molecular weight of around naphthalene/acenaphthylene (bp = 218-280 oC). These results 
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indicate that for more volatile species with boiling points below 250 oC, SPE disks can only 

be used to make qualitative measurements at these sample times and flow rates.  
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Figure 3.3. Relative reduction of purged over unpurged samples, presented as a percentage 

decrease of purged to unpurged signal. The standard deviation of replicate measurements is 

indicated by the error bars.  

3.3. Results 

3.3.1. Chromatography 

Figure 3.4 shows chromatograms from I/SVOCs in the gas and particle phase from burning 

a cow dung cake sample collected from SPE disks and PTFE filters during a whole 30-minute 

burn, after passing through a dilution and cooling chamber. The saturation concentration 

Ci
* at 298 K is provided as an alternative x-axis and was calculated for each n-alkane, i, using: 

 
Ci

*= 
Mi106ζiPL,i

o

760RT
 

E3.1 

where Mi = molecular weight of NMVOC i (g mol-1), ζi = activity coefficient of NMVOC i in 

the condensed phase (assumed to be 1), PL,i
o  = liquid vapour pressure of NMVOC i in Torr, R 

= gas constant (8.206×10−5 m3 atm mol−1 K-1) and T = temperature in Kelvin (Lu et al., 2018). 

The constant 760 Torr has been used to convert between units of atm and Torr where 1 

atm = 760 Torr. PL,i
o  values have been calculated from EPA Estimation Programme Interface 

Suite data at 298 K (EPA, 2012).   
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Figure 3.4. Chromatograms of extracted samples from entire burn of cow dung cake from SPE disk 

(top) and PTFE filter (bottom). n-Alkane and PAH series are marked on the chromatograms. The 

saturation concentration scale matches the n-alkane series. See the Supplementary Information 

8.10 for a detailed compositional breakdown by functionality and phase.  
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The SPE disks showed 1297 peaks with unique mass spectra and captured gaseous NMVOCs 

and I/VOCs with C* ~ 1×108 - 5×102 µg m-3 at 298 K. The largest peaks were from alkanes, 

1-alkenes, limonene, phenolics, substituted naphthalenes, furans and substituted 

pyridines. The PTFE filters captured 1617 I/SVOCs and low- and extremely low-volatility 

NMVOCs (L/ELVOCs) with unique mass spectra present in the aerosol phase from C* ~ 

5×106-1×10-5 µg m-3 at 298 K. A transition can be seen in the two chromatograms from the 

gas to the aerosol phase. Species with a saturation vapour concentration less than 5×104 

µg m-3 at 298 K were predominantly in the aerosol phase after passing though the dilution 

chamber. A large region of more polar components was present in the I/SVOC region from 

C* 5×104-5×100 µg m-3 at 298 K and contained sugar pyrolysis products and highly 

substituted aromatics such as those with ketone, ether and di and trisubstituted phenol 

substituents. Many alkanes, from n-octadecane to n-triatriacontane were present, mainly 

in the SVOC region. The LVOC region was dominated by a series of sterols and stanols. 

GC×GC provided extremely high resolution to allow deconvolution of complex samples. The 

insert in Figure 3.4 shows how the complexity of the SPE chromatogram can be further 

resolved by looking at a single ion chromatogram, for example m/z = 57, which highlighted 

aliphatic non-polar peaks, with large peaks for alkanes from n-nonane to n-nonadecane. 

Figure 3.5 shows that the complexity of emissions was vast, with almost 400 PAHs forming 

a group towards the top centre to right of the chromatogram. The most abundant 

calibrated PAH in the gas phase was naphthalene, followed by methyl and dimethyl 

naphthalene isomers. A range of methyl, dimethyl, tri and tetramethyl naphthalenes as 

well as ethyl, propyl, butyl and methyl propyl isomers were detected. Naphthalene isomers 

substituted with aldehydes, carboxylic acids and nitriles were also released. Biphenyl and 

a range of methyl, dimethyl and ethyl biphenyls were also released. A range of other PAHs 

such as acenaphthylene, fluorene, azulene, quinoline, chamazulene, benzophenone, 

stilbene and benzofurans along with their alkyl substituted isomers were also in the gas 

phase. A large amount of highly substituted, larger PAHs with more than 3 aromatics rings 

in their structure were present in the aerosol phase. 
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Figure 3.5. Gas and particle phase PAH emissions from burning cow dung cake. 

Other peaks present on SPE disks and PTFE filters (SPE/PTFE) included alkenes (84/43), 

mostly towards the bottom of the chromatogram, along with a row of non-cyclic aliphatic 

(23/35) and cyclic aliphatic species (25/6). Above was a row of substituted aromatics 

(103/35), carboxylic acids (68/118) and sterols/stanols (1/63) as well as oxygenated 

hydrocarbons containing a range of ether, alcohol and aldehyde functionalities (229/234). 

Peaks were also present from oxygenated aromatics (106/145), phenols (54/122), 

substituted benzoic acids (15/27), furanic species (72/42), monoterpenes (2/1) and sulphur 

containing species (13/4). 

A wide array of nitrogen containing NMVOCs were present in the cow dung cake samples, 

with peaks on SPE disks and PTFE filters (SPE/PTFE) from pyridines and pyrazines (43/35), 

amines (47/28), amides (38/37), nitriles (42/31), 6-membered heterocycles (13/14), 5-

membered heterocycles including aromatics such as pyrroles as well as pyrazolines and 

pyrrolidines (50/45), 4-membered heterocycles (3/3), 3-membered heterocycles (4/1), 

nitrogen containing PAHs (14/24), imidazoles (9/12), imines (3/1) and azoles (23/10). 

Previous studies have measured the nitrogen content of cow dung cake to be as high as 

1.9% (Stockwell et al., 2014) in comparison to other fuel types such as fuel woods (0.14-
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0.35%), rice straws (0.4%) and coal (0.6%). The large amount of nitrogen containing 

NMVOCs are likely formed from the volatilisation and decomposition of nitrogen-

containing compounds within the cow dung cake, such as free amino acids, pyrroline, 

pyridine and chlorophyll (Leppalahti and Koljonen, 1995; Burling et al., 2010; Ren and Zhao, 

2015). Nitrogen containing NMVOCs are of concern because they can be extremely toxic 

(Ramírez et al., 2014; Farren et al., 2015) and amines in particular can change the 

hydrological cycle by leading to the creation of new particles (Smith et al., 2008; Kirkby et 

al., 2011; Yu and Luo, 2014) which act as cloud condensation nuclei (Kerminen et al., 2005; 

Laaksonen et al., 2005; Sotiropoulou et al., 2006). 

Figure 3.6 shows a comparison of organic aerosol composition observed from different fuel 

types (LPG, fuel wood, sawdust and municipal solid waste). The measured emissions had 

very different compositions, reflecting the variability of organic components produced 

from different fuel types. Sawdust, municipal solid waste and cow dung cake (shown in 

Figure 3.4) emitted a wide range and complexity of species. Particle phase emissions from 

LPG burning were minimal, with most peaks from the internal standard or contaminants in 

the solvent. Fuel wood combustion released more organic components into the aerosol 

phase, with the majority of IVOCs with C* ~ 1.2×105-7×101 µg m-3 at 298 K. The largest peak 

belonged to levoglucosan, with other peaks from monoaromatics with several polar 

substituents such as ethers and phenols, for example dimethoxyhydrotoluene and syringyl 

acetone. These were likely from the depolymerisation of lignin (Simoneit et al., 1993; 

Sekimoto et al., 2018), an amorphous polymer constituting about 25% of fuel woods 

(Sjöström, 1993) and formed of randomly linked, high-molecular weight phenolic 

compounds (Shafizadeh, 1982).  

Sawdust, not a widely used fuel source, released many I/S/L/ELVOC components in the 

aerosol phase over a much wider range (C* ~ 5.8×105 – 1×10-3 µg m-3 at 298 K). The largest 

peak was from levoglucosan, with another large peak from squalene. Many peaks were 

from polar substituted aromatics as well as many PAHs and their substituents, such as 2-

methyl-9,10-anthracenedione. The largest peak from municipal solid waste burning was 

also levoglucosan, but this fuel type released fewer of the polar substituted monoaromatics 

than other fuels. Municipal solid waste released alkanes and SVOC species such as 

terphenyls, alkanes and many PAHs.  
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LPG Mangifera indica 

  
Sawdust Municipal solid waste 

  

Figure 3.6. Measurements of organic aerosol from a range of different fuel types, with the contrast at the same scale. 
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3.3.2. Molecular markers for domestic fuels 

Cow dung cake combustion emitted a range of sterols/stanols, which have been reported 

previously. Sheesley et al. (2003) suggested that 5β-stigmastanol, coprostanol and 

cholestanol could be used as tracers for emissions from cow dung cake burning. This is 

because in higher animals, anaerobic microbial reduction of sitosterol and cholesterol 

forms the distinctive β configuration of the C-5 proton of 5β-stigmastanol and coprostanol. 

This contrasts with the α C-5 proton caused by aerobic digestion in aquatic environments. 

Jayarathne et al. (2018) reported 5β-stigmastanol emissions from hardwood, and Fine et 

al. (2001) reported 5α- stigmastanol emissions from hardwood. Four fuel wood combustion 

experiments in our study showed emissions of an isomer of stigmastanol, a result similar 

to Jayarathne et al. (2018) that 5β-stigmastanol was not unique to cow dung cake burning 

or the MS measurement method used was unable to distinguish between 5α- and 5β-

stigmastanol. Cholestanol and coprostanol were found uniquely during cow dung cake 

combustion in our study and suggested that these are unique tracers of this source. 

Fuel wood combustion generally released fewer organic components into the aerosol 

phase than fuels such as cow dung cake, MSW and sawdust. Levoglucosan has been 

traditionally suggested as a tracer for biomass burning emissions, however, emissions of 

levoglucosan from a range of sources mean that this is of limited use as a unique tracer of 

woodsmoke emissions in regions with multiple burning sources. This could be resolved in 

future studies by examining the ratio of levoglucosan to other sugar pyrolysis products as 

the chemical composition of different sources should determine the emission ratio of 

levoglucosan to these pyrolysis products (Sheesley et al., 2003).  

The presence of a wide range of terphenyls from municipal solid waste combustion in this 

study was not unique. Jayarathne et al. (2018) suggested triphenyl benzene to be a unique 

tracer of waste burning emissions. Whilst this study found triphenyl benzene present in 

one cow dung cake sample and in municipal solid waste samples, the waste combustion 

emitted on average 19 terphenyls, many more than from cow dung cake combustion (2). 

Terphenyls have been previously reported from incineration of waste (Tong et al., 1984) 

and our study suggests that these compounds are good indicators of municipal solid waste 

burning.  
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3.3.3. Total identification 

Figures 3.7A and 3.7B show a comparison of the relative abundance of peaks identified, 

defined here as the sum of peak areas identified and calibrated using genuine standards 

for compounds present in the SPE and PTFE samples compared to the total observed peak 

area (using the blank subtracted total ion current, TIC).  

Figure 3.7A shows that between 15 and 100% of the peak area of the TIC in the SPE 

chromatogram could be identified. The highest proportion of species that could be 

identified was from fuel wood (67%), followed by crop residue (57%), charcoal (48%), 

municipal solid waste (46%), cow dung cake (39%) and sawdust (16%). Lower total 

identification in samples such as cow dung cake was due to increased complexity of 

emissions, which were not covered by the standards used.  

Figure 3.7B shows that between 7 – 100% of the organic composition of aerosol released 

from burning was identified. Generally, a much lower proportion of organic matter within 

aerosol samples was identified due to a lack of genuine standards available, particularly in 

complex samples. The lowest mean relative contribution identified from samples was 

sawdust (9%), followed by cow dung cake (11%) and municipal solid waste (16%). A larger 

relative contribution was identified from fuel woods (34%) and charcoal (39%) due to less 

complex emissions. A large relative contribution of some fuel woods was identified from 

Saraca indica (91%) and Pithecellobium spp (82%), due to a low amount of organic matter 

released from these samples. This also influenced the percentage identification from crop 

residue which achieved 46% identification, due to only 3 samples with 98% identification 

from Solanum melongena but only 26% from Cocos nucifera and 13% from Brassica spp. 

100% of the aerosol released from LPG was quantified due to little being released into the 

aerosol phase and this was principally composed of PAHs. These low levels of identification 

of organic aerosol are in line with those reported by Jen et al. (2019) where unknown 

chemical species represented 35-90% of the observed organic aerosol mass from biomass 

burning samples.  
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3.3.4. Composition 

Figure 3.7C provides an indication of I/SVOC composition on SPE disks by mass of quantified 

species, assuming no compound breakthrough. Phenolic and furanic compounds were the 

most abundant I/SVOC species released from all fuel types, except for LPG. As a proportion 

of the total mass of species quantified with genuine standards on SPE disks, phenols 

released from fuel woods (22-80%) represented the largest range, with large amounts 

released from municipal solid waste (24-37%), cow dung cake (32-36%), crop residue (32-

57%) and sawdust (46%). High emissions of phenolic compounds were of significance 

because phenolics contribute significantly to SOA production from biomass-burning 

emissions (Yee et al., 2013; Lauraguais et al., 2014; Gilman et al., 2015; Finewax et al., 

2018). 

Large emissions of furanic species were measured from fuel wood (6-59%), municipal solid 

waste (35-45%), cow dung cake (39-42%), crop residue (25-44%) and sawdust (43%). These 

were important as furanics can be toxic and mutagenic (Ravindranath et al., 1984; 

Peterson, 2006; Monien et al., 2011; WHO, 2016) and have been shown to be some of the 

species with the highest OH reactivity from biomass burning emissions (Hartikainen et al., 

2018; Coggon et al., 2019). Furanics have also been shown to result in SOA production 

(Gómez Alvarez et al., 2009; Strollo and Ziemann, 2013) with 8-15% of SOA produced from 

combustion of black spruce, cut grass, Indonesian peat and ponderosa pine estimated to 

originate from furanics and 28-50% of SOA from rice straw and wiregrass (Hatch et al., 

2015). Furanics from biomass burning emissions are thought to come from low 

temperature depolymerisation of hemi-cellulose (Sekimoto et al., 2018) and from large 

alcohols and enols in high-temperature regions of hydrocarbon flames (Johansson et al., 

2016). 

Emissions of alkanes were most important from combustion of cow dung cake and 

municipal solid waste (4-9%), with only small quantities released from combustion of 

various fuel woods (< 2%) and crop residues (< 1%). This reinforced previous studies which 

found emissions of C12-C39 n-alkanes from municipal waste incinerators (Karasek and Tong, 

1985). PAH emissions represented (3 – 15%) of the total quantified emission by mass for 

fuel types other than LPG and have carcinogenic and mutagenic properties (IARC, 1983, 
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1984; Nisbet and LaGoy, 1992; Lewtas, 2007; Zhang and Tao, 2009; Jia et al., 2011). They 

can damage cells through the formation of adducts with DNA in many organs such as the 

kidneys, liver and lungs (Vineis and Husgafvel-Pursiainen, 2005; Xue and Warshawsky, 

2005).  

Figure 3.7D shows the quantified aerosol mass was largely dominated by levoglucosan, 

with a particularly significant contribution in the fuel wood samples (13-98%). This was 

similar to a previous study of fuel wood samples from Bangladesh, where levoglucosan was 

the largest contributor to aerosol mass (Sheesley et al., 2003). Levoglucosan emissions 

were also large from cow dung cake (30-58%), which contrasted with the findings of 

Sheesley et al. (2003). This could be due to differences in the feeding of cows leading to 

differences in residual undigested organic matter in cow dung cake fuel as well as 

differences in preparation between samples collected in Bangladesh and those in this 

study, which had additional dried biogenic material, such as straw, mixed into samples. 

Levoglucosan emissions were also high from sawdust (91%), crop residue (19-85%) and 

municipal solid waste (58-75%), with municipal solid waste emissions likely from cellulosic 

material collected with the fuel.  

Levoglucosan emissions from charcoal (76%) were significant as a proportion of emissions. 

Emissions from charcoal were low, which meant that a small emission of levoglucosan 

represented a large proportion of total emissions. It was likely that the fuel collected here 

may have contained small amounts of cellulosic organic matter that led to the emission of 

levoglucosan.  

Emissions of alkanes in the gas and particle phases were similar by source type, with 

particulate alkanes emitted principally during the combustion of cow dung cake and 

municipal solid waste fuels. Emissions of particulate phenolics were large as a proportion 

of total quantified mass with genuine standards when the total emission of other 

components was low. For example, phenolics represented a large proportion of emissions 

from the fuel wood species Morus spp and Pithecellobium spp with the mass principally 

from dimethoxyphenols. Emissions from LPG were mainly PAHs and very low. 
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A) Proportion of SPE quantified C) SPE composition  
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 
B) Proportion of PTFE quantified D) PTFE composition 

 

 

 

 
Figure 3.7. Area of organic matter quantified with genuine standards, as a fraction of total ion current (TIC) (3.7A and 3.7B, left panel). Semi-

quantitative/quantitative analysis of SPE/PTFE fraction (3.7C and 3.7D, right panel). 
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Whilst SPE samples for these compounds remained semi-quantitative due to slight 

breakthrough, the detection of high emissions of phenolics and furanics in the gas phase 

from burning was in line with recently published studies (Hatch et al., 2015; Stockwell et 

al., 2015; Koss et al., 2018). Relatively low levels of total quantified material within the 

aerosol phase was in line with the current literature (Jen et al., 2019), but meant that this 

analysis was not entirely reflective of the organic fraction for complex samples. It is likely 

that this study overemphasises the contribution of levoglucosan in complex aerosol 

samples, relative to other components present at lower levels (Sheesley et al., 2003; Jen et 

al., 2019). Future instrument development could allow better quantification of complex 

burning and ambient samples by splitting the eluent between a -MS and -FID. This study 

suggests that future research uses lower sample volumes, thicker SPE disks and studies the 

adsorption characteristics of NMVOCs to the surfaces of these disks. 

3.3.5. Development of emission factors 

Emission factors have been developed for PAHs (see Figure 3.8) by calculating the total 

volume of air convectively drawn up the flue, using measurements of gas velocity up the 

sample hood from partners at CSIR-NPL, and relating this to the mass of fuel burnt (see the 

Supplementary Information 8.11 for details of calculation). Emission factors for sawdust 

(1240 mg kg-1), municipal solid waste (1020 mg kg-1), crop residue (747 mg kg-1) and cow 

dung cake (615 mg kg-1) were generally larger than for fuel wood (247 mg kg-1), charcoal 

(151 mg kg-1) and LPG (56 mg kg-1). The measurement of higher emission factors for cow 

dung cake than fuel wood was similar to that reported previously (Bhargava et al., 2004; 

Gadi et al., 2012). A wide range of emission factors were measured from combustion of 

fuel woods from 50 mg kg-1 for Prosopis to 907 mg kg-1 for Ficus religosa. For most fuel 

types, PAH emissions in the gas phase were dominated by naphthalene, 

methylnaphthalenes and dimethylnaphthalenes with gas-phase PAHs observed up to 

pyrene. For fuel wood, crop residue, municipal solid waste and cow dung cake the 

percentage of PAHs in the gas phase decreased from 97%, 96%, 91% to 89%. PAHs from 

LPG showed the largest fraction in the gas phase (99.9%) compared to the aerosol phase 

(0.1%). Figure 3.9 shows gas and particle phase PAH emissions by individual fuel type, 

excluding naphthalene as well as C1- and C2-substituted naphthalenes. PAHs were present 

in the aerosol phase from dibenzofuran (C12H8O) to benzo(ghi)perylene (C22H12).  
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Figure 3.8. Mean PAH emission factors by fuel type. 

 

Figure 3.9. Emission factors of PAHs measured from SPE/PTFE where G and A represent gas- and 

aerosol-phase samples, respectively, excluding naphthalene as well as naphthalenes with C1 and C2 

substituents. 
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Table 3.3 shows a comparison of the mean emission factors measured in our study with 

previous studies. The mean fuel wood total PAH emission factor measured in our study 

(247 mg kg-1) was a factor 4.7-5.6 larger than those measured by Gadi et al. (2012) and 

Singh et al. (2013) of 44 and 53 mg kg-1, respectively, for similar fuel woods collected across 

New Delhi and the Indo-Gangetic Plain. The PAH emission factor measured for cow dung 

cake (615 mg kg-1) was around a factor of 10 larger than those previously measured (60 mg 

kg-1). The larger total emission factors for fuel wood and cow dung cake were a result of 

high emissions of gas-phase PAHs measured using PTR-ToF-MS (51-896 mg kg-1 for fuel 

wood and 446-660 mg kg-1 for cow dung cake) compared with previous measurements 

made using PUF plugs (7 mg kg-1). This indicated that either the PTR-ToF-MS was able to 

better detect and characterise gas-phase emissions than previous methods and suggested 

either breakthrough or off gassing of smaller gas-phase PAHs from PUF plugs or 

measurement of significant quantities of other C10H8 isomers on the PTR-ToF-MS. This may 

highlight an underestimation of 2-ring gas-phase PAH emissions in previous burning 

studies. Gadi et al. (2012) measured PAH emissions in the particle phase, with the mean 

emission for fuel wood (44 mg kg-1) greater than our study (9 mg kg-1). Particulate phase 

emissions of PAHs measured by Singh et al. (2013) from fuel wood (45 mg kg-1) were also 

larger than our study. By contrast, particle phase PAH emissions from cow dung cake in our 

study (66 mg kg-1) were comparable to those measured previously of 57-60 mg kg-1 (Gadi 

et al., 2012; Singh et al., 2013). Variability in emission of particulate-phase PAHs in our 

study compared to literature was likely to be influenced by the efficiency of combustion of 

different fuel types. Although not measured in our study, differences in moisture content 

between fuel types in our study and literature were likely have a large influence on the 

total amount of PAHs emitted and may explain the differences in particle-phase emissions.  

The particulate phase PAH emission factors from municipal solid waste combustion in our 

study (14-181 mg kg-1) were much smaller than those of previous studies (1910-8486 mg 

kg-1), but the number of samples was limited. Emissions from coconut shell have not been 

well studied, making comparisons difficult (Gulyurtlu et al., 2003). The emission of 

particulate phase PAHs from sawdust in our study (62 mg kg-1) was less than that previously 

reported 259 mg kg-1, but our study found large gas phase PAH emissions (1175 mg kg-1). 

Particulate PAH emissions from the crop residue burnt in our study (13-53 mg kg-1) fell 
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within the range reported by Kim Oanh et al. (2015) of 0.34-34 mg kg-1 for rice straw. Those 

reported by Wiriya et al. (2016) were smaller (0.47 mg kg-1), but were from fuel dried in an 

oven at 80 oC for 24 hours and ignited by an LPG burner and were likely to represent more 

complete combustion conditions. Emissions of PAHs from charcoal in our study (151 mg kg-

1) were larger than those measured for South Asian fuels (25 mg kg-1), caused principally by 

larger measurement of gas-phase species by PTR-ToF-MS. Both our study, and that of Kim 

Onah et al. (1999) showed charcoal released the least amount of PAH per kg burnt for 

biofuels. LPG combustion released less particulate PAHs (0.1 mg kg-1) than previous studies 

(0.8 mg kg-1), but also included a small gas-phase emission (56 mg kg-1). Differences in the 

distribution of PAHs found in the gas and aerosol phases between our study and literature 

were also likely to be influenced by the different sample dilutions and gas-to-aerosol 

partitioning prior to measurement. 

Table 3.3. PAH emission factors measured in our study compared to literature. 

Fuel PAH (mg kg-1)  

 Gas Particle Total Ref 

Wood 51-896 0.4-34 51-907 Our study 
  1-12  (Hosseini et al., 2013) 
 22-111 0.4-6 24-114 (Kim Oanh et al., 2005) 
 - 44 44 (Gadi et al., 2012) 
 7 45 52 (Singh et al., 2013) 
  805-7294  (Kakareka et al., 2005) 
   43 (Lee et al., 2005) 
 66 0.8 67 (Kim Oanh et al., 2002) 
 105 4 105 (Kim Oanh et al., 1999) 

Dung 446-660 48-98 493-710 Our study 
 - 59 - (Gadi et al., 2012) 
 3 57 60 (Singh et al., 2013) 

Waste 696-1233 14-181 776-1414 Our study 
 - 8486 8486 (Kakareka et al., 2005) 
 - 1910 1910 (Young Koo et al., 2013) 

Crop 205-1231 13-53 219-1255 Our study 
 - - 5-683 (Jenkins et al., 1996) 
 - - 3-50 (Lu et al., 2009) 
 - - 129-569 (Wei et al., 2014) 
 5-230 0.3-34 5-264 (Kim Oanh et al., 2015) 
 - 0.47 - (Wiriya et al., 2016) 

Sawdust 1175 62 1236 Our study 
  259 261 (Kim Oanh et al., 2002) 

Charcoal 147 4 151 Our study 
 25 0.1 25 (Kim Oanh et al., 1999) 

LPG 56 0.1 56 Our study 

Coal - 0.8 - (Geng et al., 2014) 
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3.4. Conclusions 

This study demonstrated an extraction technique for analysis of I/SVOCs collected onto SPE 

disks and PTFE filters from combustion of biofuels, which was well suited to the analysis of 

non-polar species. A range of fuels relevant to burning in India were combusted with 

organic components collected and analysed, which showed large differences in the 

composition of organic matter released. The separation power of GC×GC has been used to 

identify an extensive range of I/SVOCs in both gas and particle phases with 15-100% of gas-

phase emissions and 7-100% of particle-phase emissions characterised. 

The ability to quantify species on SPE disks was assessed and scope for future studies which 

should assess the adsorption characteristics of IVOCs onto SPE disks has been provided. It 

is recommended that breakthrough of IVOCs collected onto SPE disks at lower sample 

volumes is evaluated, and better methods for quantification of complex samples are 

developed. Further fuel types from a wider range of sources would enable a better 

understanding of the drivers of poor air quality in the developing world, such as crop 

residue burning. This study found that cholestanol and coprostanol were unique to cow 

dung cake burning samples and these species were therefore suggested as tracers for 

emissions from cow dung cake burning. Similarly, municipal solid waste burning released 

many terphenyls, which could act as good indicators of this source. This study found that 

phenolic and furanic species were the most important gas-phase emissions by mass of 

I/SVOCs from biomass burning. New emission factors were developed for US EPA criteria 

PAHs present in gas and aerosol phases from a large range of fuel types. This suggested 

that many sources important to air quality in the developing world are larger sources of 

PAHs than conventional fuel wood burning.   
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Chapter 4 

4. Emissions of non-methane volatile organic compounds 
from combustion of domestic fuels in Delhi, India 
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4.1. Introduction 

Biomass burning is the second largest source of trace gases to the troposphere, releasing 

around a half of global CO, ~ 20% of NO and ~ 8% of CO2 emissions (Olivier et al., 2005; 

Wiedinmyer et al., 2011; Andreae, 2019). Biomass burning releases an estimated 62 Tg yr-

1 of non-methane volatile organic compounds (NMVOCs) (Andreae, 2019) and is the 

dominant source of both black carbon (BC) and primary organic aerosol (POA), representing 

59% and 85% of global emissions respectively (Bond et al., 2013). Biomass burning includes 

open vegetation fires in forests, savannahs, agricultural burning and peatlands (Chen et al., 

2017) as well as the biofuels used by approximately 3 billion people to meet their daily 

cooking and heating energy requirements worldwide (World Bank, 2020). A wide range of 

trace gases are released from biomass burning, in different amounts depending on the fuel 

type and the combustion conditions, meaning that detailed studies at the point of emission 

are required to accurately characterise emissions. The gases released lead to soil-nutrient 

redistribution (Ponette-Gonzalez et al., 2016; N'Dri et al., 2019), can themselves be toxic 

(Naeher et al., 2007) and can significantly degrade local, regional and global air quality 

through the photochemical formation of secondary pollutants such as ozone (O3) (Pfister 

et al., 2008; Jaffe and Wigder, 2012) and secondary organic aerosol (SOA) (Alvarado et al., 

2015; Kroll and Seinfeld, 2008). They can also lead to indoor air quality issues (Fullerton et 

al., 2008).  

Emissions from biomass burning and their spatial distribution remain uncertain and 

estimates by satellite retrieval vary by over a factor of three (Andreae, 2019). Bottom-up 

approaches use information about emission factors and fuel usage. However, information 

for many developing countries, where solid fuels are a primary energy source, is particularly 

sparse. Toxic pollution from burning has been linked to chronic bronchitis (Akhtar et al., 

2007; Moran-Mendoza et al., 2008), chronic obstructive pulmonary disease (Dennis et al., 

1996; Orozco-Levi et al., 2006; Rinne et al., 2006; Ramirez-Venegas et al., 2006; Liu et al., 

2007; PerezPadilla et al., 1996), lung cancer (Liu et al., 1993; Ko et al., 1997), childhood 

pneumonia (Smith et al., 2011), acute lower respiratory infections (Bautista et al., 2009; 

Mishra, 2003) and low birth weight of children (Boy et al., 2002; Yucra et al., 2011). Smoke 

from inefficient combustion of domestic solid fuels is the leading cause of conjunctivitis in 

developing countries (West et al., 2013). The harmful emissions from burning also resulted 



107 
 

in an estimated 2.8-3.9 million premature deaths due to household air pollution (Kodros et 

al., 2018; World Health Organization, 2018b; Smith et al., 2014), of which 27% originated 

from pneumonia, 18% from strokes, 27% from ischaemic heart disease, 20% from chronic 

obstructive pulmonary disease and 8% from lung cancer, with hazardous indoor air 

pollution responsible for 45% of pneumonia deaths in children less than 5 years old (World 

Health Organization, 2018b). For this reason, hazardous indoor air pollution from the 

combustion of solid fuels has been calculated to be the most important risk factor for the 

burden of disease in South Asia from a range of 67 environmental and lifestyle risks (Lim et 

al., 2012; Smith et al., 2014). 

The emissions from biomass burning fires are complex and can contain many hundreds to 

thousands of chemical species (Crutzen et al., 1979; McDonald et al., 2000; Hays et al., 

2002; Hatch et al., 2018). Measurements of emissions by gas chromatography (GC) have 

been made (EPA, 2000; Wang et al., 2014; Gilman et al., 2015; Stockwell et al., 2016; 

Fleming et al., 2018), as it has the potential to provide isomeric speciation of emissions. 

However, it is of limited use in untargeted measurements from burning due to the 

complexity of emissions, leading to large amounts of NMVOCs released not being observed. 

Some of the main issues are that GC does not provide high time resolution measurements 

and several instruments with different column configurations and detectors are required 

to provide information on different chemical classes. Samples can also be collected into 

canisters or sample bags and then analysed off-line (Wang et al., 2014; Sirithian et al., 2018; 

Barabad et al., 2018), which can increase time resolution, but can also lead to artefacts 

(Lerner et al., 2017). 

Recent developments have allowed the application of proton-transfer-reaction mass 

spectrometry (PTR-MS) to study the emissions from biomass burning (Warneke et al., 2011; 

Yokelson et al., 2013; Brilli et al., 2014; Stockwell et al., 2015; Bruns et al., 2016; Koss et al., 

2018). PTR-MS uses proton transfer from the hydronium ion (H3O+) to ionise and 

simultaneously detect most polar and unsaturated NMVOCs including aromatics, 

oxygenated aromatics, alkenes, furanics and nitrogen containing volatile organic 

compounds in gas samples. PTR-MS can measure at fast acquisition rates of up to 10 Hz 

over a mass range of 10 – 500 Th with very low detection limits of tens to hundreds of pptv 

(Yuan et al., 2016). The more recently-developed technique of proton-transfer-reaction 
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time-of-flight mass spectrometry (PTR-ToF-MS) has allowed around 90% of total measured 

NMVOC emissions in terms of mixing ratio from burning experiments to be speciated (Koss 

et al., 2018) and has also been used to study the formation of SOA (Bruns et al., 2016). The 

main disadvantages of the PTR-ToF-MS technique are its inability to speciate isomers, 

significant fragmentation of parent ions, only being able to detect species with a proton 

affinity greater than water and the formation of water clusters needing to be considered 

(Stockwell et al., 2015; Yuan et al., 2017). More recently, measurements have also been 

made using iodide chemical ionization time-of-flight mass spectrometry (I−-CIMS), which is 

well suited to measuring acids and multifunctional oxygenates (Lee et al., 2014) as well as 

isocyanates, amides and organo-nitrate species released from biomass burning (Priestley 

et al., 2018). Multiple measurement techniques used in concert are therefore 

complementary, with the use of PTR-ToF-MS and simultaneous gas chromatography often 

alleviating some of the difficulties highlighted above. 

Since the start of the century, rapid growth has resulted in India becoming the second 

largest contributor to NMVOC emissions in Asia (Kurokawa et al., 2013; Kurokawa and 

Ohara, 2020). However, effective understanding of the relative strength of different 

sources and subsequent mitigation has been limited by a deficiency of suitably detailed, 

spatially disaggregated emission inventories (Garaga et al., 2018). One study estimated that 

approximately 60% of total NMVOC emissions from India in 2010 were due to solid fuel 

combustion (Sharma et al., 2015). However, a need has been identified to measure local 

source profiles to allow evaluation with activity data to better understand the impact of 

unaccounted and unregulated local sources (Pant and Harrison, 2012). 

Approximately 25% of worldwide residential solid fuel use takes place in India (World Bank, 

2020), with approximately 25% of ambient particulate matter in South Asia attributed to 

cooking emissions (Chafe et al., 2014). Despite large government schemes, traditional solid 

fuel cookstoves remain popular in India because they are cheaper than ones that use 

liquefied petroleum gas (LPG) and the meals cooked on them are perceived to be tastier 

(Mukhopadhyay et al., 2012). The total number of biofuel users has been sustained by an 

increasing population, despite the percentage use of biofuels decreasing as a proportion of 

overall fuel use due to increased LPG uptake (Pandey et al., 2014). Cow dung cakes remain 

prevalent as a fuel because they are cheap, readily available, sustainable and ease pressure 
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on local fuel wood resources. Few studies have reported emissions data from cow dung 

cake (Venkataraman et al., 2010; Stockwell et al., 2016; Koss et al., 2018; Fleming et al., 

2018), leaving considerable uncertainty over the impact that cow dung cake combustion 

has on air quality. LPG usage has increased to around 500 million users, but only reflects 

around 10% of current rural fuel consumption (Gould and Urpelainen, 2018). 

India-specific inventories which include residential burning indicate a considerable 

emission source of total NMVOCs of around 6000-7000 kt yr-1 (Pandey et al., 2014; Sharma 

et al., 2015). Burning is likely to have a large impact on air quality in India, but considerable 

uncertainties exist over the total amount of NMVOCs released owing to a lack of India 

specific emission factors and information related to the spatial distribution of emissions. 

Few studies exist measuring highly speciated NMVOC emission factors from fuels specific 

to India. Recent studies using PTR-ToF-MS to develop emission factors, which are more 

reflective of the range of species emitted from burning, have focussed largely on grasses, 

crop residues and peat (Stockwell et al., 2015) as well as fuels characteristic of the western 

U.S. (Koss et al., 2018). A previous study measured emission factors of NMVOCs from cow 

dung cake using gas chromatography with flame ionisation detection (GC-FID) of 8-32 g kg-

1 (EPA, 2000). Fleming et al. (2018) quantified 76 NMVOCs from fuel wood and cow dung 

cake combustion using chulha and angithi stoves by collecting samples into Kynar bags, 

transferring their contents into canisters and off-line analysis using GC-FID, GC-ECD 

(electron capture detector) and GC-MS. The emission factors measured from these 76 

NMVOCs were 14 g kg-1 for cow dung cake burnt in chulha stoves, 27 g kg-1 for cow dung 

cake burnt in angithi stoves and 6 g kg-1 for fuel wood burnt in angithi stoves. An emission 

factor from one single dung burn measured using PTR-ToF-MS was considerably larger at 

around 66 g kg-1 (Koss et al., 2018). Emissions from dung in Nepal have also been measured 

(Stockwell et al., 2016) by sampling into whole air sample canisters followed by off-line 

analysis with GC-FID/ECD/MS and Fourier-transform infrared spectroscopy (FTIR). 

However, very few speciated NMVOC measurements were made and the emission factors 

were similar to those measured using just GC (Fleming et al., 2018). Studies have also 

focussed on making detailed measurements, using a range of techniques, from the burning 

of municipal solid waste (Christian et al., 2010; Yokelson et al., 2011; Yokelson et al., 2013; 
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Stockwell et al., 2015; Stockwell et al., 2016; Sharma et al., 2019) and crop residues 

(Stockwell et al., 2015; Koss et al., 2018; Kumar et al., 2018). 

Detailed chemical characterisation of NMVOC emissions from fuel types widely used in the 

developing world is much needed to resolve uncertainties in emission inventories used in 

regional policy models and global chemical transport models. A greater understanding of 

the key sources is required to characterise and hence understand air quality issues to allow 

the development of effective mitigation strategies. In this study we measure emission 

factors of NMVOCs from a range solid fuels characteristic to northern India.  

4.2. Methods 

4.2.1. Fuel collection and burning facility 

A total of 76 fuels, reflecting the range of fuel types used in northern India, were collected 

from across Delhi (see Figure 4.1 and Table 4.1). Cow dung cake usage was prominent in 

the north and west regions, whereas fuel wood use was more evenly spread across the 

state. Municipal solid waste was collected from Bhalaswa, Ghazipur and Okhla landfill sites. 

Collection also included less used local fuel types which were found being burnt including 

crop residues, sawdust and charcoal. A low-cost LPG stove, widely promoted across India 

as a cleaner fuel through government initiatives such as the Pradhan Mantri Ujjwala Yojana 

scheme, was used for direct emission comparison with other local fuel types.  

Fuels were burnt at the CSIR-National Physical Laboratory (NPL), New Delhi, under 

controlled conditions utilizing a combustion chamber based on the design of Venkataraman 

and Rao, (2001), with a schematic given in the Supplementary Information 8.12 alongside 

additional information about sample collection. Several previous studies have been based 

on this chamber design (Venkataraman and Rao, 2001; Venkataraman et al., 2002; Saud et 

al., 2011; Saud et al., 2012; Singh et al., 2013), which was designed to simulate the 

convection-driven conditions of real-world combustion. The burn-cycle used in this study 

was adapted from the VITA water-boiling test, which was designed to simulate emissions 

from cooking and included emissions from both low- and high-temperature burning 

conditions. Fuels were collected and stored in the same manner as local customs using 

expert local judgement. This was designed to ensure that the moisture content of fuel 

wood samples was like those being burnt locally and that the combustion replicated real-
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world burning conditions encountered in local cooking practices to give a more realistic 

NMVOC emission factor.  

 

Figure 4.1. Locations across Delhi used for the local surveys into fuel use and collection of 

representative biomass fuels. Map tiles by Stamen Design. Data by © OpenStreetMap contributors 

2020. Distributed under a Creative Commons BY-SA License. 

Table 4.1. Types and numbers of fuels burnt, the mean emission factor of total NMVOCs (TVOC) in 

g kg-1 measured and standard deviation (SD) from all available burns. Discussion of TVOC calculation 

is given in the text. 

Fuel woods n TVOC SD Other n TVOC SD 

Azadirachta indica 3 18.6 7.9 Cow dung cake 8 61.9 18.4 

Morus spp 4 27.4 21.1 Cocos nucifera 2 57.4 23.3 

Melia azedarach 2 23.7 13.1 Charcoal 2 5.1 3.9 

Shorea spp 2 9.8 2.2 Sawdust 2 71.3 60.8 

Ficus religiosa 2 51.9 63.4 Waste 3 87.3 31.4 

Syzygium spp 2 8.9 4.9 LPG 3 5.8 5.6 

Ficus spp 2 7.1 1.2 Cow dung cake mix 1 34.7 - 

Vachellia spp 2 13.5 9.7 Solanum melongena 2 13.6 6.5 

Dalbergia sissoo 2 17.9 8.8 Brassica spp 2 41.0 45.5 

Ricinus spp 2 8.5 2.5     

Holoptelea spp 2 6.0 0.8     

Mixed woods 1 6.1 -     

Saraca indica 2 12.9 5.2     

Populus spp 1 8.5 -     

Pithecellobium spp 2 19.5 5.4     

Eucalyptus spp 2 6.9 1.9     

Prosopis spp 6 14.5 10.4     

Mangifera indica 2 12.4 3.4     

Plywood 8 26.6 24.3     

Processed wood 2 33.7 17.2     
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Fuel (200 g) was placed 45 cm from the top of the hood and rapidly heated to spontaneous 

ignition, with emissions convectively driven into a hood and up a flue to allow enough 

dilution, cooling, and residence time to achieve the quenching typically observed in indoor 

environments. These conditions have been previously optimised to ensure that emissions 

entrainment into the hood did not exert a draft which altered combustion conditions. The 

mid-point velocity of gases driven up the flue by convection was measured by a platinum 

hot-wire sensor, calibrated for total flow rate using a standard orifice calibrator. Samples 

were drawn down a sample line at 4.4 L min-1 (Swagelok, ¼” PFA, < 2.2 s residence time) 

from the top of the flue, passed through a pre-conditioned quartz filter (ø = 47 mm, 

conditioned at 550 oC for 6 hours and changed between samples) held in a filter holder 

(Cole-Parmer, PFA) which was subsampled for analysis by PTR-ToF-MS, GC×GC-FID and DC-

GC-FID instruments at a distance no greater than 5 m from the top of the flue. 

Measurements of n-alkanes from n-tridecane (C13) to eicosane (C20) were made from a 

subset of 29 burns using solid phase extraction disks, as detailed in chapter 3. 

4.2.2. PTR-ToF-MS 

The PTR-ToF-MS (PTR 8000; Ionicon Analytik, Innsbruck) instrument from Physical Research 

Laboratory (PRL), Ahmedabad, was operated by Joe Acton at the University of Lancaster 

and used to quantify 107 masses and subsampled the common inlet line using ¼ inch PFA. 

Additional details of the PTR-ToF-MS system used in this study are given in previous papers 

(Sahu and Saxena, 2015; Sahu et al., 2016). The sample air was diluted into zero air, 

generated by passing ambient air (1 L min-1) through a heated platinum filament at 550 oC, 

before entering the instrument with an inlet flow of 250 ml min-1. Samples were diluted by 

either 5 or 6.25 times (50 ml min-1 in 200 ml min-1 zero air or 40 ml min-1 in 210 ml min-1 

zero air). The instrument was operated with an electric field strength (E/N, where N is the 

buffer gas density and E is the electric field strength) of 120 Td. The drift tube temperature 

was 60 °C with a pressure of 2.3 mbar and 560 V applied across it. 

Calibrations were performed twice a week using a gas calibration unit (Ionicon Analytik, 

Innsbruck). The calibration gas (Apel-Riemer Environmental Inc., Miami) contained 18 

compounds: methanol, acetonitrile, acetaldehyde, acetone, dimethyl sulphide, isoprene, 

methacrolein, methyl vinyl ketone, 2-butanol, benzene, toluene, 2-hexanone, m-xylene, 
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heptanal, α-pinene, 3-octanone and 3-octanol at 1000 ppbv (± 5%) and β-caryophyllene at 

500 ppbv (± 5%). This standard was dynamically diluted into zero air to provide a 6-point 

calibration. The normalised sensitivity (ncps/ppbv) was then determined for each mass 

using a transmission curve (Taipale et al., 2008). The maximum error in this calibration 

approach has been shown to be 21%. Peak assignment was assisted with results reported 

by previous burning studies and references therein (Brilli et al., 2014; Stockwell et al., 2015; 

Koss et al., 2018), but the results may also contain other indistinguishable structural 

isomers not mentioned here. 

Mass calibration and peak fitting of PTR-ToF-MS data were performed using PTRwid 

software (Holzinger, 2015). Count rates (cps) of each mass spectral peak were normalised 

to the primary ion (H3O+) and water cluster (H3O.H2O)+ peaks, and mixing ratios were then 

determined for each mass using the normalised sensitivity. Where compounds known to 

fragment in the PTR-ToF-MS were identified, the mixing ratio of these species was 

calculated by summing parent ion and fragment ion mixing ratios. Before each burn, 

ambient air was sampled to provide a background for the measurement. 

Petrol and diesel fuel samples were collected from an Indian Oil fuel station in Pusa, New 

Delhi and the headspace analysed to allow comparison with benzene/toluene ratios. This 

was designed to analyse the ratios in evaporative emissions, as these have been shown to 

be an important source of atmospheric NMVOCs (Srivastava et al., 2005b; Rubin et al., 

2006; Yamada et al., 2015), which for example represented ~ 15% of anthropogenic UK 

NMVOC emissions in 2018 (Lewis et al., 2020). Fuel samples were placed in a small metal 

container (¼” Swagelok cap) which was connected to a two-way tap (¼” Swagelok) which 

could be opened and closed. The tap was connected to a t-piece (¼” Swagelok) which had 

a flow of zero air (250 ml min-1) passed through it and could be sampled by the PTR-ToF-

MS. The tap was opened and closed which allowed the headspace of fuels to be analysed. 

4.2.3. DC-GC-FID 

Gas chromatography was used to analyse entire burns to provide an integrated picture of 

emissions from fuel types. The DC-GC-FID was operated by Beth Nelson at the University 

of York and sampled 51 burns to measure 19 C2-C7 non-methane hydrocarbons (NMHCs) 

and C2-C5 oxygenated NMVOCs (OVOCs) (Hopkins et al., 2003). A 500 ml sample (1.5 L pre-
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purge of 100 ml min-1 for 15 mins, sample at 17 mL min-1 for 30 mins) was collected (Markes 

International CIA Advantage), passed through a glass finger at -30 oC to remove water and 

adsorbed onto a dual-bed sorbent trap (Markes International ozone precursors trap) at -20 

oC (Markes International Unity 2). The sample was thermally desorbed (250 oC for 3 mins) 

then split 50:50 and injected into two separate columns for analysis of NMHCs (50 m × 0.53 

mm Al2O3 PLOT) and OVOCs (10 m × 0.53 mm LOWOX with 50 μm restrictor to balance 

flow). The oven was held at 40 oC for 5 mins, then heated at 13 oC min-1 to 110 oC, then 

finally at 8 oC min-1 to 200 oC with a 30-min hold. 

4.2.4. GC×GC-FID 

The GC×GC-FID was used to measure 58 C7-C12 hydrocarbons (C7-C12 alkanes, 

monoterpenes and monoaromatics) and collected 3 L samples (100 ml min-1 for 30 mins) 

using an adsorption-thermal desorption system (Markes International Unity 2). NMVOCs 

were trapped onto a sorbent (Markes International U-T15ATA-2S) at -20 oC with water 

removed in a glass cold finger at -30 oC, removed and heated to ~ 100 oC after each sample 

to prevent carryover of unanalysed, polar interfering compounds. The sample was 

thermally desorbed (250 oC for 5 mins) and injected splitless down a transfer line. Analytes 

were refocussed for 60 s using liquid CO2 at the head of a non-polar BPX5 held at 50 psi 

(SGE Analytical 15m × 0.15 μm × 0.25 mm) which was connected to a polar BPX50 at 30 psi 

(SGE Analytical 2 m × 0.25 μm × 0.25 mm) via. a modulator held at 180 oC (5 s modulation, 

Analytical Flow Products ELDV2-MT). The oven was held for 2 mins at 35 oC, then ramped 

at 2.5 oC min-1 to 130 oC and held for 1 min with a final ramp of 10 oC min-1 to 180 oC and 

hold of 8 mins. Calibration was carried out using a 4 ppbv gas standard containing alkanes 

and aromatics (NPL UK) and through the relative response of liquid standard injections to 

toluene for components not in this gas standard, as detailed in Dunmore et al. (2015) and 

chapter 2. Integration of peak areas was performed in Zoex GC image software (Zoex, USA). 

Peaks were individually checked and where peaks were split in the software, they were 

manually joined. The areas corresponding to alkane isomers were manually joined within 

the GC image software and calibration performed by comparing the areas to the 

corresponding n-alkane. For both GC instruments, blanks of ambient air were made at the 

beginning, middle and end of the day and the mean subtracted from samples.  
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4.2.5. GC×GC-ToF-MS 

Measurements were made of a subset of 29 burns of C13-C20 alkanes, as well as other gas-

phase species to assist with qualification of mases measured by PTR-ToF-MS, by adsorbing 

samples to the surface of SPE disks with analysis by GC×GC-ToF-MS, as detailed in chapter 

3. An 8-point calibration was performed for n-alkanes using a commercial standard (C7-C40 

saturated alkane standard, certified 1000 μg mL-1 in hexane, Sigma Aldrich 49452-U) diluted 

in the range 0.25 – 10 µg ml-1. 

4.3. Results 

4.3.1. Chromatography 

Figure 4.2 shows GC×GC-FID chromatograms obtained from collecting the emissions during 

the combustion of LPG (Figure 4.2A), Saraca indica fuel wood (Figure 4.2B), cow dung cake 

(Figure 4.2C) and municipal solid waste (Figure 4.2D). Figure 4.2D is labelled to show the 

position of NMVOCs measured and displays a homologous series of n-alkanes from n-

heptane (C7) to n-tetradecane (C14) along the bottom, with the 1-alkenes positioned to the 

left. Above are more polar species such as monoterpenes, aromatics from benzene to 

substituted monoaromatics with up to 5 carbon substituents, and at a higher second 

dimension retention time even more polar species, such as styrene.  

Many peaks were present in the chromatograms for cow dung cake and municipal solid 

waste, and these fuels released significantly more NMVOCs per unit mass than fuel wood 

and LPG (see Table 4.1). Cow dung cake and municipal solid waste released a range of 

NMVOCs including n-alkanes, alkenes, and aromatics. The municipal solid waste (Figure 

4.2D) showed a particularly large and tailing peak 22 owing to large emissions of styrene. 

Several unidentified peaks were observed in these complex samples which were broad in 

the second dimension. These were assumed to be from polar, oxygenated species formed 

during burning such as phenol. These species could not be identified and were not analysed 

using the GC×GC-FID, and peaks have been omitted if they were found to interfere with 

these significantly. Analysis has only been carried out using the DC-GC-FID from ethane (C2) 

to n-hexane (C6) owing to the significant presence of coeluting peaks. The large peak in the 

LPG chromatogram (Figure 4.2, 1o ~ 6 min, 2o ~ 0.5 s) was from unresolved propane and 

butane because of the high concentrations from this fuel source.  
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Figure 4.2. GC×GC-FID chromatograms from burning A = LPG, B = Saraca indica (fuel wood), C = cow 

dung cake and D = municipal solid waste samples where 1-7 = n-octane – n-tetradecane, 8-13 1-

octadecene – 1-tridecene, 14 = benzene, 15 = toluene, 16 = ethylbenzene, 17 = m/p-xylene, 18 = o-

xylene, 19 = C3 substituted monoaromatics, 20 = C4 substituted monoaromatics, 21 = C5 substituted 

monoaromatics and 22 = styrene.  
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4.3.2. PTR-ToF-MS 

Figure 4.3 shows an example concentration-time series measured by the PTR-ToF-MS for a 

cow dung cake burn. A sharp rise in NMVOC emissions was seen from the start of the burn 

which decreased as the fuel was combusted. Emissions of small oxygenated species as well 

as phenolics and furanics were dominant throughout most of the burn. At the beginning, a 

greater proportion of lower mass species were released, as shown in the binned mass 

spectrum of region A in Figure 4.3. At the end in the smouldering phase, emissions were 

dominated by heavier and lower volatility species (Figure 4.3., Region B). A previous study 

indicated larger molecular weight phenolics were from low temperature pyrolysis 

(Sekimoto et al., 2018). 
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Figure 4.3. PTR-ToF-MS concentration-time series during the first 30 minutes of a cow dung cake 
burn coloured by functionality with regions A and B displaying mass spectra placed into m/z bins of 
10 Th. Fuel collected from Pitam Pura, Delhi. 

 

Figure 4.4 shows the cumulative mass of species measured from burns of fuel wood, cow 

dung cake, municipal solid waste and charcoal as a proportion of the total mass of NMVOCs 

quantified using PTR-ToF-MS. The results were similar to those reported by Brilli et al. 

(2014) and Koss et al. (2018): 65-90% of the mass of NMVOCs at emission originated from 

around 40 NMVOCs, with around 70-90% identification by mass when quantifying around 

100 NMVOCs. The largest contributors to the NMVOC mass from burning of fuel wood and 
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cow dung cake were methanol (m/z 33.034), acetic acid (m/z 61.028) and a peak that 

reflected the sum of hydroxyacetone, methyl acetate and ethyl formate (m/z 75.043). For 

municipal solid waste samples around 28% of total mass was from methyl methacrylate 

(m/z 101.059) and styrene (m/z 105.068), and two of the three municipal solid waste 

samples released significant quantities of styrene, most likely the result of degradation of 

polystyrene in the samples. 

Figure 4.5 shows a time series for phenolics and furanics from the burning of an example 

fuel wood. Most species of similar functionality tracked each other. Stockwell et al. (2015) 

demonstrated that benzene, phenol and furan could act as tracers for aromatic, phenolic 

and furanic species released from biomass burning. Figure 4.5A shows that heavier, more 

substituted phenolics appeared to be released at cooler temperatures. Guaiacol (dark blue) 

was released at the start of the flaming phase before the temperature increased and more 

phenol (red) was released at higher burn temperatures. Later in the burn, a larger 

proportion of vinyl guaiacol (pink) and syringol (yellow) were emitted. This agreed well with 

previous results which showed that species emitted from lower temperature 

depolymerisation had a larger proportion of low-volatility compounds compared to higher 

temperature processes during flaming (Sekimoto et al., 2018; Koss et al., 2018). Figure 4.5B 

shows timeseries of furanic species, with most species showing similar characteristics 

throughout the burn. The only species to peak later in the burn was 2-hydroxymethyl-2-

furan. 
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Figure 4.4. Cumulative NMVOC mass identified from PTR-ToF-MS compared with total NMVOC 

signal from PTR-ToF-MS with A ordered by decreasing NMVOC mass contribution and B ordered by 

ion mass. High quantification from charcoal was due to a low emission factor (2.4 g kg-1). 
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Figure 4.5. Timeseries analysis of phenolic and furanic compounds released from burning of 

Azadirachta indica which released 27.0 g kg-1 of NMVOCs. Temperature corresponds to the increase 

in temperature above ambient measured in the flame directly above the combustion experiment.  

 

4.3.3. Comparison of data obtained with different instruments 

Previous instrument inter-comparisons from biomass burning samples were between PTR-

MS, GC-MS and open path FTIR (Gilman et al., 2015) and between PTR-ToF-MS, FTIR, 

aircraft cavity-enhanced spectroscopy (ACES) and I--CIMS (Koss et al., 2018). Gilman et al. 

(2015) showed generally good agreement of slopes of measured emission factors between 

benzene, ethyne, furan, ethene, propene, methanol, toluene, isoprene and acetonitrile 

using different instruments/techniques with slopes of ~ 1 ± 30% and correlation 

coefficients > 0.9. Koss et al. (2018) showed mean measured values of most NMVOCs from 

all burns with other instruments compared to the PTR-ToF-MS which agreed within a factor 

of two and had correlation coefficients > 0.8 for most species except butadienes, furan, 

hydroxyacetone, furfural, phenol and glyoxal. These previous comparisons underline the 

challenges faced with quantitative NMVOC measurements from burning experiments.  

Figure 4.6 shows a comparison of measurements made using the DC-GC-FID, GC×GC-FID 

and PTR-ToF-MS techniques. Bar plots show that the mean and lower/upper quartiles of all 

measurements agreed within a factor of two. The correlation coefficient between different 

instruments is given by blue circles, with all > 0.8. Generally, the mean values measured for 

the PTR-ToF-MS were slightly larger than using the GC instruments, which was attributed 

to the presence of other undistinguishable structural isomers measured by the PTR-ToF-

MS. Comparison between DC-GC-FID and GC×GC-FID measurements were also complicated 

by high levels of coelution of additional NMVOC species released from combustion with 
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similar retention times (Rt) to benzene/toluene (Rt = 21/25 mins) on the DC-GC-FID 

instrument. Generally, the smallest values were measured with the GC×GC-FID instrument, 

consistent with the greatest ability to speciate isomers and limit the impacts of coelution. 

Significant efforts were made to synchronise the sample periods for the three instruments 

as best as possible; however, slight uncertainty existed over the exact time each instrument 

started measuring when calculating mean sample windows (± 30 s). These factors 

combined, may help to explain the slight differences observed between different 

instruments during this study. When multiple instruments have measured the same 

NMVOC in this study, preference was given to the data from the GC×GC-FID due to the 

ability of this instrument to resolve coeluting peaks, followed by the DC-GC-FID and then 

the PTR-ToF-MS. 

 

 

Figure 4.6. Comparison of PTR-ToF-MS to DC-GC-FID and GC×GC-FID with the black dashed line 

representing slopes equal to one, grey shaded region = slopes agreeing within a factor of two, 

shaded blue region indicating correlation coefficients > 0.8 and P = PTR-ToF-MS, 1D = DC-GC-FID 

and 2D = GC×GC-FID. 
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4.3.4. NMVOC emission factors from different fuels 

Figure 4.7 shows a detailed breakdown of the mean NMVOC emission factors by fuel type 

measured for all 76 burns. The data is split by functionality to show trends for different 

chemical types. This shows that burning released a large amount of different NMVOCs, 

across a wide range of functionalities, molecular weights, and volatilities. The large variety 

of NMVOCs are likely to have different influences on ozone formation, SOA production and 

the toxicity of emissions. 

Figure 4.7A shows very large emissions of smaller oxygenated species which were driven 

by methanol, acetic acid and the unresolved combined peak for hydroxy acetone, methyl 

acetate and ethyl formate. For the fuel wood samples, acetic acid/glycolaldehyde (2.6 g kg-

1), methanol (1.8 g kg-1) and acetaldehyde (0.6 g kg-1) compared well with mean values 

reported by Koss et al. (2018) for pines, firs and spruces (2.7/1.3/1.2 g kg-1) and the mean 

values measured by Stockwell et al. (2015) mainly from crop residues, grasses and spruces 

(1.6/1.3/0.94 g kg-1). The emission factor from this study for the unresolved peak of hydroxy 

acetone, methyl acetate and ethyl formate (1.4 g kg-1) was larger than those previously 

reported by Koss et al. (2018) and Stockwell et al. (2015) of 0.55 and 0.25 g kg-1, 

respectively. 

Figure 4.7B shows that there were large emissions of furans and furanones from 

combustion, mainly from methyl furans, furfurals, 2-(3H)-furanone, methyl furfurals and 2-

methanol furanone. The World Health Organisation consider furan a carcinogenic species 

of high-priority (WHO, 2016) with furan and substituted furans, suspected to be toxic and 

mutagenic (Ravindranath et al., 1984; Peterson, 2006; Monien et al., 2011). Furan 

emissions originate from the low temperature depolymerisation of hemi-cellulose 

(Sekimoto et al., 2018) and from large alcohols and enols in high-temperature regions of 

hydrocarbon flames (Johansson et al., 2016). The OH chemistry of furans has been the 

subject of several studies (Bierbach et al., 1994; Bierbach et al., 1995; Tapia et al., 2011; 

Liljegren and Stevens, 2013; Strollo and Ziemann, 2013; Zhao and Wang, 2017; Coggon et 

al., 2019) and often produces more reactive products such as butenedial, 4-oxo-2-pentenal 

and 2-methylbutenedial (Bierbach et al., 1994; Gómez Alvarez et al., 2009; Aschmann et 

al., 2011, 2014). Oxidation can also occur by nitrate (Berndt et al., 1997; Colmenar et al., 

2012) or chlorine radicals (Cabañas et al., 2005; Villanueva et al., 2007). As a result, furans 
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have recently been shown to be some of the species with highest OH reactivity from 

biomass burning, causing an estimated 10% of the O3 produced by the combustion 

emissions in the first 4 hours after emission (Hartikainen et al., 2018; Coggon et al., 2019). 

Oxidation of furans can lead to SOA production (Gómez Alvarez et al., 2009; Strollo and 

Ziemann, 2013) with an estimated 8-15% of SOA caused by furans emitted by burning of 

black spruce, cut grass, Indonesian peat and ponderosa pine and 28-50% of SOA from rice 

straw and wiregrass (Hatch et al., 2015), although SOA yields are still uncertain for many 

species (Hatch et al., 2017).  

Phenols are formed from the low-temperature depolymerisation of lignin (Simoneit et al., 

1993; Sekimoto et al., 2018) which is a polymer of randomly linked, amorphous high-

molecular weight phenolic compounds (Shafizadeh, 1982). Owing to their high emission 

factors and SOA formation potentials, phenolic compounds contribute significantly to SOA 

production from biomass-burning emissions (Yee et al., 2013; Lauraguais et al., 2014; 

Gilman et al., 2015; Finewax et al., 2018).  

Figure 4.7C shows that the largest phenolic emissions from fuel wood in this study were 

methoxyphenols, with significant contributions from phenol, guaiacol, cresols and anisole. 

Phenolic emissions from sawdust were dominated by guaiacol and creosol. Phenolic 

emissions from coconut shell were greatest, most likely as a result of the lignin rich nature 

of coconut shell (Pandharipande et al., 2018). The larger mean emission of furans (3.2 g kg-

1) compared to phenols (1.1 g kg-1) from fuel wood was consistent with wood being 

composed of around 75% cellulose/hemicellulose and 25% lignin (Sjöström, 1993).  

Figure 4.7D shows that the largest alkene emission was styrene from burning municipal 

solid waste, likely caused by the presence of polystyrene in the fuel. Emissions of alkenes 

from fuel woods were dominated by ethene and propene, species with high photochemical 

ozone creation potentials (Cheng et al., 2010). Monoterpenes, which are extremely 

reactive with the OH radical (Atkinson and Arey, 2003), were emitted from sawdust, cow 

dung cake and municipal solid waste. 



123 
 

  

  
Figure 4.7. Measured emission factors grouped by functionality. 
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Figure 4.7. continued. 
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Ethane and propane dominated the alkane emissions for fuel wood samples (see Figure 

4.7E). A wider range of alkanes from C2-C20 were observed from combustion of coconut 

shell, cow dung cake and municipal solid waste. The largest alkane emission by mass was 

from LPG due to unburnt propane and butane. 

Nitrogen containing NMVOCs are formed from the volatilisation and decomposition of 

nitrogen-containing compounds within the fuel, mainly from free amino acids but can also 

be from pyrroline, pyridine and chlorophyll (Leppalahti and Koljonen, 1995; Burling et al., 

2010; Ren and Zhao, 2015). Nitrogen containing NMVOCs are of interest because nitrogen 

may be important in the development of new particles (Smith et al., 2008; Kirkby et al., 

2011; Yu and Luo, 2014) which act as cloud condensation nuclei (Kerminen et al., 2005; 

Laaksonen et al., 2005; Sotiropoulou et al., 2006) and alter the hydrological cycle by 

forming new clouds and precipitation (Novakov and Penner, 1993). They can also 

contribute to light-absorbing brown carbon (BrC) aerosol formation, effecting climate 

(Laskin et al., 2015). Additionally, nitrogen containing NMVOCs can be extremely toxic 

(Ramírez et al., 2012, 2014; Farren et al., 2015). Figure 4.7F shows that cow dung cake was 

the largest emitter of nitrogen containing NMVOCs (4.9 g kg-1), releasing large amounts of 

nitriles, which are likely to have a large impact on the toxicity and chemistry of emissions. 

Figure 4.7G shows emissions of aromatics from fuel wood, cow dung cake and municipal 

solid waste were principally benzene, toluene and naphthalenes. Large emissions of 

benzene were unsurprising as biomass burning is the largest global benzene source 

(Andreae and Merlet, 2001). Emissions of benzene, toluene, ethylbenzene and xylenes 

(BTEX) from cow dung cake (0.5-1.7 g kg-1) were in line with previous measurements of 1.3 

g kg-1 (Koss et al., 2018) and 1.8 g kg-1 (Fleming et al., 2018) but lower than the 4.5 g kg-1 

reported from cow dung cake combusted from Nepal (Stockwell et al., 2016). Emissions of 

BTEX from municipal solid waste burning (0.9– 2.6 g kg-1) were comparable to that 

measured previously (3.5 g kg-1) (Stockwell et al., 2016). 

Figure 4.7H shows a qualitative comparison of species such as ammonia, HCN and dimethyl 

sulphide which were measured during experiments, but could not be accurately quantified 
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as their sensitivity was too different from the NMVOCs used to build the transmission 

curve. Cow dung cake emitted significantly more of these species than other fuel types. 

Table 4.2 shows the total emission factors of NMVOCs for different fuel types. Emission 

factors have been calculated over a 30-minute period, in line with the GC sample time, with 

any small emissions after this sample window not included. The total emission factor has 

been calculated as the sum of the PTR-ToF-MS signal, excluding reagent ion peaks (< m/z 

31 Th), water cluster peaks (m/z 37 Th) and isotope peaks identified for all masses (SIS, 

2016). The emission factors for all alkanes measured were also included as alkanes up to n-

hexane had proton affinities less than water and larger alkanes had proton affinities similar 

to water (Ellis and Mayhew, 2014; Wróblewski et al., 2006). This low sensitivity meant that 

no peaks were present in the PTR-ToF-MS spectra for these larger species.  

Table 4.2. Mean total NMVOC emission factors (g kg-1, including IVOC fraction) where high/low EF 

represent the largest/smallest emission factor measured for a given sample type (g kg-1) and IVOC 

is the sum of emission factors of species with a mass greater than benzaldehyde (g kg-1) where n = 

number of measurements made.  
 

Wood Dung Waste LPG Charcoal Sawdust Crop 

NMVOC 18.7 62.0 87.3 5.7 5.4 72.4 37.9 

High EF 96.7 83.0 119.1 9.8 7.9 114.0 73.8 

Low EF 4.3 35.3 56.3 1.9 2.4 28.3 8.9 

IVOC 3.5 12.6 13.2 0.2 1.4 16.9 8.0 

n 51 8 3 3 2 2 6 

 

Coconut shell, sawdust, cow dung cake and municipal solid waste released the greatest 

mass of NMVOC per kg of fuel burnt. The mean emission factor for all fuel woods (18.7 g 

kg-1) was comparable to that for chaparral (16.6 g kg-1) measured using PTR-ToF-MS by 

Stockwell et al. (2015). This may be due to similarities between north Indian fuel wood 

types with chaparral, which is characterised by hot dry summers, and mild wet winters. The 

mean fuel wood emission factor was smaller than Stockwell et al. (2015) reported for 

coniferous canopy (31.0 g kg-1). The NMVOC emission measured for cow dung cake (62.0 g 

kg-1) was comparable to that previously reported (66.3 g kg-1) in literature using PTR-ToF-

MS (Koss et al., 2018), but 2-3 times larger than that measured by GC-FID/ECD/MS likely 

due to those techniques missing significant amounts of emissions (Fleming et al., 2018). 

Whilst the total emissions reported by Fleming et al. (2018) might therefore be an 
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underestimate, it is noteworthy that the emission factors measured by Fleming et al. (2018) 

in angithi stoves for cow dung cake were ~ factor of 4 greater than fuel wood under the 

same conditions. This result was comparable to this study, which showed that cow dung 

cake emissions were ~ factor of 3 larger than fuel wood, however the techniques used here 

targeted a greater proportion of total emissions. Moreover, Fleming et al. (2018) reported 

emission factors from combustion of biomass fuels from a neighbouring state, Haryana, 

and there may be slight heterogeneity between the different fuels collected in both studies.  

NMVOC emissions from municipal solid waste (87.3 g kg-1) were significantly larger than 

the 7.1 g kg-1 (Stockwell et al., 2015) and 33.8 g kg-1 (Stockwell et al., 2016) previously 

reported. This was likely due to differences in composition and moisture content of the 

fuels collected from Indian landfill sites for the present study, compared with the daily 

mixed waste collected at the US fire services laboratory and plastic bags (Stockwell et al., 

2015) and a variety of mixed waste and plastics collected from around Nepal (Stockwell et 

al., 2016). It seems noteworthy that combustion experiments of fuels collected from 

developing countries in Stockwell et al. (2016) had larger emission factors than those 

collected from, and burnt at a laboratory (Stockwell et al., 2015). The mean crop residue 

combustion emission factor (37.9 g kg-1) was similar to that of Stockwell et al. (2015) (38.8 

g kg-1), despite the small number of samples in this study and compositional differences. 

NMVOC emissions from charcoal combustion were low (5.4 g kg-1). During charcoal 

production the fuel is heated in minimal oxygen which removes moisture and volatile 

components. This is likely to result in samples with low moisture content which combust 

efficiently and therefore do not result in large total emissions of NMVOCs. In addition, 

many volatile components are removed during the production process and this is likely to 

result in lower emissions during combustion. The lower NMVOC emission factor does not 

account for any additional volatile emissions during the production process.  

Intermediate-volatility organic compounds (IVOCs) are defined as having effective 

saturation concentration, C*, =300-3×106 μg m-3 (Donahue et al., 2012). The C* of several 

species were estimated using a previously established approach (Lu et al., 2018), with the 

IVOC boundary defined in this study at benzaldehyde (m = 106.12) for which C* was ~ 7×106 

μg m-3. Table 4.2 also shows an approximation for the mean amount of IVOCs released by 

fuel type. This approach was approximate as vapour pressures depend on both mass and 
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functionality. The fuels tested in this study showed that mean emissions of IVOC species 

represented approximately 18 – 27% of total measured emissions from all fuel types other 

than LPG. This demonstrated that domestic solid fuel combustion is potentially a large 

global source of IVOCs. In addition, this may represent an underestimate because the 

quartz filter placed on the sample line may remove IVOC species which have partitioned to 

the aerosol phase due to the high aerosol concentrations present during source testing. 

Further studies are required to better understand the contribution of IVOC emissions from 

biomass burning to SOA formation.  

Figure 4.8A shows the distribution of total measured NMVOC emission factors for fuel 

wood, cow dung cake, crop residues and MSW. Boxplots show the mean, median, 

interquartile range and range within 1.5IQR. The solid circles display the spread of 

measured emission factors by fuel type. The zoomed green region given in Figure 4.8B 

specifically focuses on the variability in emission factors of individual species of fuel wood, 

which has been explored in detail due to the large number of samples. Repeat samples 

collected from the same location are shaded in grey. For fuel wood, measured NMVOC 

emission factors varied by over a factor of 20 between 4.3-96.7 g kg-1. The NMVOC emission 

factors showed a right skewed distribution with a median of 11.7 g kg-1, mean of 18.7 g kg-

1 and an interquartile range of 15.3 g kg-1. For repeat measurements of identical species of 

fuel wood collected at the same location, except for Ficus religiosa, measured emission 

factors from repeat experiments varied over a much smaller range, by up to a factor of 2.3. 

Variation between emissions from these samples were likely due to different moisture 

contents of actual samples measured and the specific combustion conditions of individual 

burns. The large variation observed for Ficus religiosa was likely due to the samples being 

significantly different in terms of composition. Despite the samples for Holopetlea spp and 

Eucalyptus spp coming from different locations, emission factors for these samples were 

quite reproducible and only varied by a factor of 1.2-1.5. For remaining identical species of 

fuel wood collected from different locations, emission factors varied over a much larger 

range by factors of ~ 2-9.  

For the crop residue species studied here, NMVOC emissions were right skewed with a with 

a median of 29.5 g kg-1, which was less than the mean of 37.9 g kg-1 and varied from 8.9-

73.8 g kg-1 with an interquartile range of 53.9 g kg-1. Cocos nucifera and Solanum melongena 
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were repeat measurements of fuel collected from the same location and varied by factors 

of 1.8-2. NMVOC emissions from Brassica spp fuel, which was collected from different 

locations, varied by a factor of ~ 8. Cow dung cake and MSW samples were all collected 

from different locations and varied by up to factors of up to 2.4 and 2.1, respectively.  

 

Figure 4.8. Variability in NMVOC emission factor by fuel type. A = Range of emission factors 
measured for fuel wood, cow dung cake, crop residue and municipal solid waste samples with box 
plots showing the mean, median, interquartile range, range within 1.5IQR and solid circles showing 
the spread of measured emission factors by fuel type. B = Zoomed green region displaying range of 
NMVOC emission factors measured for individual species of fuel wood, with grey shaded region 
indicating repeat samples from the same sample collection location and diamonds indicating the 
measured NMVOC emission factors.  

 

Figure 4.9A shows the mean total emissions measured in this study for different fuel types 

split by functionality. Large variability in total emissions were observed for fuel woods, with 

emission factors from individual burns varying by ~ factor 20. Figure 4.9B shows the mean 

emissions by functionality as a proportion of total emissions averaged by overall fuel type. 

Oxygenates were the largest emission (33-55%), followed by furanic compounds (16-21%), 

phenolics (6-12%) and aromatics (2-9%) for all fuel types except LPG. LPG emissions were 

mainly alkanes, with a small emission of furanic species. These have previously been 

reported to be produced in hydrocarbon flames (Johansson et al., 2016). 

Figure 4.9A-B also show the amount of NMVOC which remained unidentified (black). On 

average 94% of all measured NMVOCs across all burns were speciated. Quantification was 

greater than 90% for all sample types, except Vachellia spp due to several large unidentified 

peaks. Mean quantification by fuel type was between 93-96% for all other fuels, except LPG 

where quantification was > 99%. 



130 
 

A) 

 
B) 

 

 
 

Figure 4.9. NMVOC emissions from burning sources in Delhi, India, grouped by functionality with 

unidentified emissions given by the total NMVOC signal measured by the PTR-ToF-MS minus the 

fraction quantified using DC-GC-FID, GC×GC-FID and PTR-ToF-MS instruments with A = all fuel types 

and B = mean values by type of fuel.  
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4.3.5. Emission ratios 

The ratio of the mixing ratios of NMVOCs in the emitted gas can be a useful indicator of 

their source(s) in ambient air. Ratios can be specific to sources and can allow one source to 

be distinguished from another. The ratio of i-/n-pentane can be a useful indicator of 

whether emissions are anthropogenic or from biomass burning, with a ratio 2.2-3.8 

indicative of vehicular emissions, 0.8-0.9 for natural gas drilling, 1.8-4.6 for evaporative fuel 

emissions and < 1 from burning (Li et al., 2019). Benzene/toluene ratios can also be useful 

and have been reported from traffic exhaust to be around 0.3 (Hedberg et al., 2002).  

i-/n-Pentane indicator ratios have been evaluated for fuel wood sources, propane/butane 

ratios for LPG and benzene/toluene ratios for fuel wood and cow dung cake (see Figure 

4.10). The range of values for multiple different burns have been evaluated rather than just 

reporting mean and median ratios. The median of i-/n-pentane ratios from biomass 

samples measured during this study was ~ 0.7 (see Figure 4.10). The mean ratio was ~ 1.0, 

with an interquartile range (IQR) ~ 0.5-1.5, which suggests caution is required when 

assigning burning sources based on emission ratios due to considerable variability. Despite 

this, the ratio from solid fuel combustion sources was often less than expected from petrol 

emissions. The mean ratio of propane/butane from LPG burning was measured to be 3.1. 

The ratios of benzene/toluene varied considerably between different sources and was 

measured for fuel wood combustion (2.3), cow dung cake combustion (0.94), petrol liquid 

fuel (0.40) and diesel liquid fuel (0.20). The range of benzene/toluene ratios for fuel wood 

was large, with an IQR of ~ 1.5 - 2.8 and the range within 1.5 IQR shown by the whiskers in 

Figure 4.10 from ~ 0.9 - 4.2. Despite the variability of ratios from specific source types, the 

considerable range of benzene/toluene ratios could potentially be a useful indicator of the 

origin of unaged (fresh) ambient emissions in Delhi. However, further study would be 

required to assess if these ratios were also true in the exhaust of petrol and diesel vehicles 

in India or just limited to fugitive emissions. These findings agree well with literature which 

report mean benzene/toluene ratios of 1.4-5.0 from fuel wood and 0.3 from automotive 

emissions (Hedberg et al., 2002), indicating that on average biomass burning releases a 

greater molar ratio of benzene than toluene when compared to automotive emissions. 
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Figure 4.10. Summary of ratios of NMVOCs measured during this study from the burning of fuel 

wood, LPG and cow dung cake and from the headspace of liquid petrol and diesel fuels collected in 

India. The different mean and median values have been considered to evaluate the ratios at 

emission of specific sources. 

4.4. Conclusions 

This study was based on comprehensive measurements of NMVOC emissions using a range 

of detailed and complementary techniques across a large range of functionalities and 

volatilities. 29 different fuel types used in residential dwellings in northern India were 

collected from across Delhi and emission factors of a wide range of NMVOCs (192 

compounds in total) were measured during controlled burning experiments. 94% 

speciation of total measured NMVOC emissions was achieved on average across all fuel 

types. The largest contributors to emissions from most fuel types were small non-aromatic 

oxygenated species, phenolics and furanics. The emission factors (in g kg-1) for total gas-

phase NMVOCs were fuel wood (18.7, 4.3-96.7), cow dung cake (62.0, 35.3-83.0), crop 

residue (37.9, 8.9-73.8), charcoal (5.4, 2.4-7.9), sawdust (72.4, 28.6-115.5), municipal solid 

waste (87.3, 56.6-119.1) and liquefied petroleum gas (5.7, 1.9-9.8). The emission factors 

measured in this study allow for better characterisation, evaluation and understanding of 

the air quality impacts of residential solid fuel combustion in India.  
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Chapter 5  

5. Comprehensive organic emission profiles, secondary 
organic aerosol potential and OH reactivity of domestic 
fuel combustion in Delhi, India 
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5.1. Introduction 

Around 3 billion people globally use solid fuels to meet their daily cooking energy 

requirements (World Health Organization, 2018b). Emissions from residential solid fuel 

combustion are significant and have been shown to cause indoor air pollution which 

resulted in 2.8-3.9 million premature deaths globally, (Kodros et al., 2018; World Health 

Organization, 2018b; Smith et al., 2014) with around 25% of ambient particulate matter 

(PM) in South Asia related to cooking emissions (Chafe et al., 2014). Approximately a 

quarter of worldwide residential solid fuel use is in India, (World Bank, 2020) where cooking 

domestically over biomass remains popular because biomass fuel is cheaper than liquefied 

petroleum gas (LPG) and meals cooked with traditional methods perceived to be tastier 

(Mukhopadhyay et al., 2012). Recent studies have shown that 16% (Stewart et al., 2021) of 

non-methane hydrocarbons and 27% (Wang et al., 2020) of non-methane volatile organic 

compounds (NMVOCs) by mixing ratio at different urban sites in Delhi were from solid fuel 

combustion sources. Furthermore, Aerosol Mass Spectrometer measurements found that 

crop residue burning and solid fuel combustion jointly accounted for 24% (35.8 µg m-3) of 

the PM1 concentration during the post-monsoon in Delhi, with likely additional 

contributions to the SOA (Cash et al., 2020). 

Studies focussed on organic emissions from both open biomass burning and domestic solid 

fuel combustion have shown that organic components are released over a range of 

volatilities (Stockwell et al., 2015; Hatch et al., 2018; Koss et al., 2018). These include non-

methane volatile organic compounds (NMVOCs, effective saturation concentration, C*, 

3×106-1011 μg m-3), intermediate-volatility organic compounds (IVOCs, C* =300-3×106 μg 

m-3), semi-volatile organic compounds (SVOCs, C* = 0.3-300 μg m-3) as well as low- and 

extremely low-volatility organic compounds (L/ELVOCs, where LVOC C* ≤ 0.3 µg m−3) 

(Donahue et al., 2012). As a result, I/SVOCs from domestic solid fuel combustion potentially 

represent a large global source of SOA, however, the effect of I/SVOCs on OH reactivity, 

aging and SOA formation remains poorly understood (Liu et al., 2017; Decker et al., 2019; 

Sengupta et al., 2020). 

The factors controlling SOA formation are complex. These include the oxidation of NMVOCs 

to less volatile products which partition into the particle phase, the heterogeneous 

oxidation of particle-phase SVOCs, and plume dilution with subsequent SVOC evaporation 
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followed by further gas-phase oxidation (Lim et al., 2019). Of 17 studies examining the 

enhancement factor of organic aerosol (OA) to CO from the aging of open biomass burning 

emissions, 10 found no increase in SOA, 4 found an increase and 3 reported a decrease 

(Shrivastava et al., 2017). Despite varied results, a recent lab study has shown SOA 

formation from combustion of fuels relevant to open biomass burning to be significant. Lim 

et al. (2019) showed a carbon yield of SOA from NMVOCs emitted from western U.S. fuels 

of 24 ± 4% when exposed to atmospheric aging equivalent to 6 hours, which increased to 

56 ± 9% after aging equivalent to 6 days (Lim et al., 2019). 

Formation of SOA from open biomass burning has been examined as part of several recent 

studies. Hatch et al. (2015) estimated that 8-15% of SOA from the combustion of black 

spruce, cut grass, Indonesian peat and ponderosa pine was because of furanic compounds. 

The contribution of furanic compounds to SOA was estimated to be greater still (28-50%) 

from rice straw and wiregrass (Hatch et al., 2015). Gilman et al. (2015) examined the 

relative contributors to SOA from U.S. fuels and found the main contributors to be 

polyunsaturated oxygenated NMVOCs (Gilman et al., 2015). High SOA formation potential 

was driven by benzene diols, benzaldehyde, and phenols. Ahern et al. (2019) showed that 

for coniferous fuels, which were dominated by the burning of biomass needles, biogenic 

NMVOCs were the most important class of SOA precursor (Ahern et al., 2019). Akherati et 

al. (2020) reported that oxygenated aromatic compounds resulted in just under 60% of the 

SOA from western U.S. fuels (Akherati et al., 2020). These studies have also shown that 

reactive chemical species such as furanics, oxygenated aromatics and aliphatics are 

important drivers of the OH reactivity of open biomass burning emissions (Gilman et al., 

2015; Stockwell et al., 2015; Hartikainen et al., 2018). Recent model simulations by Coggon 

et al. (2019) focussed on modelling the OH radical chemistry in emissions from the 

combustion of fuels from the western U.S. showed that up to 10% of O3 in the first 4 h after 

emission was a result of the oxidation of furanic compounds (Coggon et al., 2019). 

Few studies have examined SOA formation from fuels used for domestic solid fuel 

combustion, with little known about the impact of the species released on the reactivity of 

emissions. Bruns et al. (2016) examined SOA formation from beech fuel wood and 

demonstrated that the main contributors were 22 compounds, and in some cases up to 

80% of the SOA produced was estimated to be formed from phenol, naphthalene and 
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benzene (Bruns et al., 2016). A further study suggested that furanic and phenolic 

compounds were important precursors to SOA as a result of spruce combustion 

(Hartikainen et al., 2018). 

The concentration of primary organic aerosol (POA) is determined by dynamic gas-to-

particle partitioning of an extremely complex mixture of organics over a wide range of 

volatilities. Understanding the gas-to-particle partitioning represents one of the main 

difficulties in accurately characterising SOA formation, as measurements of organic 

emissions using multiple measurement techniques are required. As a result, gas-phase 

emissions are traditionally considered up to C12 (saturation vapour concentration, C*, ~ 106 

μg m-3) and POA as non-volatile (Robinson et al., 2007; Fujitani et al., 2012; May et al., 2013; 

Lu et al., 2018). Consequently, many models neglect the importance of I/SVOCs as SOA 

precursors. The effect is a significant underestimation of SOA production and an 

overestimation of POA in chemical transport models (Hodzic et al., 2010; Woody et al., 

2016; Shrivastava et al., 2017). The concentration of organic aerosol (OA) is determined by 

the volatility of species and ambient conditions, with many source tests occurring at 

unrealistically high OA concentrations. Laboratory-based source studies typically enhance 

the POA emission factor relative to more dilute ambient conditions (Lipsky and Robinson, 

2006; Fujitani et al., 2012). The inclusion of I/SVOCs leads to better agreement between 

modelled and measured values (Ots et al., 2016; Woody et al., 2016; Murphy et al., 2017; 

Jathar et al., 2017). A range of studies have been conducted to comprehensively 

characterise organic emissions from mobile sources (May et al., 2014; Zhao et al., 2015; 

Zhao et al., 2016; Lu et al., 2018) and aircraft engines (Presto et al., 2011; Cross et al., 2013), 

however, a need has been highlighted to develop source profiles for both open and 

domestic biomass burning (Lu et al., 2018). These have the potential to result in a better 

understanding of the SOA formed from the I/SVOCs released. Comprehensive source 

profiles are far better suited to predicting SOA formation than traditional separated gas- 

and particle-phase emission factors developed at the point of emission. Comprehensive 

profiles can be adjusted to real-world dilutions, aerosol concentrations and temperatures. 

These parameters are all likely to have a large influence on the mass of SOA present. 

This study develops comprehensive, model-ready organic emission profiles for solid fuels 

routinely burnt across the Delhi area of India. These profiles account for the full range of 
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volatilities of organic emissions to better constrain the impact of domestic biomass burning 

on SOA formation. This study also compares the relative impacts of different solid fuel 

combustion sources to SOA production potential and OH reactivity and examines the most 

important chemical contributors.  

5.2. Methods  

5.2.1. Datasets 

The data used in this study come from a detailed field campaign designed to measure 

emissions of solid fuels widely used in India. 76 samples were collected from across Delhi 

in a manner designed to reflect the range and variability of solid fuels used across this 

region. Detailed descriptions of the analytical procedures, which are summarised below, 

are provided in chapters 3 and 4.  

NMVOCs were sampled from the top of the flue down a ¼” PFA sample line which was 

subsampled by three separate online gas-phase instruments designed to target a wide 

range of NMVOCs of different functionality and volatility. A dual-channel gas 

chromatograph with flame ionisation detection (DC-GC-FID) was used to sample alkanes 

from ethane to n-hexane and a range of small alkenes of mass from ethene – isoprene. A 

two-dimensional gas chromatograph with flame ionisation detection (GC×GC-FID) was 

used to sample alkanes from n-heptane to n-dodecane, aromatic species from benzene to 

monoaromatics with up to 5 carbon substituents and up to 12 monoterpenes. A proton-

transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS, PTR 8000; Ionicon 

Analytik, Innsbruck) was used to sample a range of small oxygenates, oxygenated 

aromatics, alkenes, furanic species and nitrogen-containing volatile organic compounds. 

Gas chromatographs (GCs) made a single integrated measurement of each burn lasting 30 

minutes to provide a single speciated measurement from each experiment. The PTR-ToF-

MS made time-resolved measurements at 1 s to evaluate the profiles of each burn and was 

averaged to the same 30-minute sample window of the GC instruments.  

Aerosol phase organics were collected onto PTFE filters after passing through a dilution 

chamber at 46.7 L min-1. This process was designed to replicate the immediate 

condensational processes that occur in smoke particles approximately 5-20 mins after 

emission, yet prior to photochemistry which may change composition (Akagi et al., 2011). 
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Residual low-volatility NMVOC gases were adsorbed to the surface of solid phase extraction 

disks (SPE) coated with C18 alkanes placed behind the PTFE filter. Filters were extracted 

using accelerated solvent extraction and analysed using two-dimensional gas 

chromatography with time-of-flight mass spectrometry (GC×GC-ToF-MS). The 

chromatographic analysis method for PTFE filters allowed well-resolved separation of 

hydrocarbons across a two-dimensional space from n-nonane to n-tetracontane. This 

overcame issues often arising from the conventional use of one-dimensional 

chromatography, as these components traditionally elute as an unresolved complex 

mixture.  

Data which was collected using these 5 separate measurement techniques of organic 

emissions was combined from a range of fuel woods (Melia azedarach, Prosopis spp, 

Eucalyptus spp, Azadirachta indica, Mangifera indica, Morus spp, Pithecellobium spp, 

Shorea spp, Ficus religosa, Syzgium spp, Ficus spp, Vachellia spp, Dalbergai sissoo, Ricinus 

spp, Holopetlea spp, Saraca indica and plywood), cow dung cake, municipal solid waste 

(collected from 3 landfill sites: Ghazipur, Bhalswa and Okhla), crop residue (Brassica spp, 

Solanum melongena and Cocos nucifera), charcoal, sawdust and LPG. Emission factors of 

192 speciated NMVOCs, which achieved on average 94% quantification, were combined 

from n fires sampled by the DC-GC-FID (n = 51), GC×GC-FID (n = 74), PTR-ToF-MS, (n = 75) 

and SPE-GC×GC-ToF-MS (n = 28) with information on organic aerosol composition given by 

PTFE-GC×GC-ToF-MS (n = 28). All measurements used the same procedures to characterise 

emissions to create a self-consistent dataset of speciated organic emissions spanning a 

large range of volatilities. Speciation profiles are based on a subset of tests which included 

SPE/PTFE samples from fuel wood (n = 16), cow dung cake (n = 3), municipal solid waste (n 

= 3), crop residue (n = 3), LPG (n = 1), charcoal (n = 1), sawdust (n = 1) and blank 

measurements (n = 8).  

5.2.2. Mapping organics to volatility basis data set 

The volatility-basis dataset (VBS) is designed to simulate the emission and evolution of 

I/SVOCs into the atmosphere (Donahue et al., 2006) and places NMVOCs into 

logarithmically spaced bins of saturation concentration, C*, at 298 K. Emissions from fuel 

wood, cow dung cake, municipal solid waste and LPG have been mapped onto a VBS to 

visualise and compare emissions across the entire range of volatilities measured using data 



139 
 

collected by the DC-GC-FID, GC×GC-FID, PTR-ToF-MS, SPE-GC×GC-ToF-MS ( > C12) and PTFE-

GC×GC-ToF-MS. C* values have been calculated for individual NMVOCs measured online 

using DC-GC-FID, GC×GC-FID and PTR-ToF-MS. For SPE-GC×GC-ToF-MS and PTFE-ToF-MS 

analyses, organics have been lumped into groups of unspeciated compounds. These have 

been spaced between n-alkanes, with the volatility assigned as the mean volatility of the 

alkanes either side of the bin. For NMVOCs where insufficient data is available for a 

calculation of C*, the volatility has been assigned as C* of the n-alkane with the nearest 

boiling point. Ci
* for each NMVOCi has been calculated using E5.1: 

 
Ci

* = 
Mi106ζiPL,i

o

760RT
 

(E5.1) 

where Mi = molecular weight of NMVOCi (g mol-1), ζi = activity coefficient of NMVOCi in the 

condensed phase (assumed to be 1), PL,i
o  = liquid vapour pressure of NMVOC in Torr, R = gas 

constant (8.206 × 10−5 m3 atm mol−1 K-1) and T = temperature (K). The constant 760 has 

been used to convert between units of atm and Torr where 1 atm = 760 Torr.  PL,i
o  values 

have been taken from the EPA Estimation Programme Interface Suite data (EPA, 2012). 

Grouped regions of organics from SPE disks and PTFE filters have been calibrated to allow 

semi-quantification based on the mean total ion current (TIC) chromatogram of the two n-

alkanes either side of the bin close to a concentration of ~ 1 µg ml-1. The approach was 

uncertain and suggestions for better quantification of this complex organic material are 

provided in chapter 3. 

Experimental and/or predicted vapour pressures of species, especially the n-alkanes used 

for assigning volatility bins, remain uncertain. We have adopted a similar approach to Lu et 

al. (2018), with the factor of 10 spacing of volatility bins to minimise the chance of volatility 

misassignment. IVOCs are in the n-alkane range ~ C12 to C22, SVOCs from C23 to C32, and 

L/ELVOCs from C33 to C40. Care has been taken to avoid double counting of species 

measured using multiple techniques. Gas-phase species, which were possible to measure 

using either of the GC instruments or the PTR-ToF-MS, have been counted once only. In 

summary C2-C6 non-methane volatile organic compounds (alkanes/alkenes) were 

measured using the DC-GC-FID. C7-C12 non-methane volatile organic compounds (alkanes 

and benzene-C3 substituted monoaromatics) were measured using the GC×GC-FID. 

Remaining NMVOCs and gas-phase I/SVOCs were measured using the PTR-ToF-MS (C4-C5 
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substituted monoaromatics, phenolics, furanics, oxygenated aromatics, oxygenated 

aliphatics and nitrogen containing volatile organic compounds). The unidentified gaseous 

I/SVOC fraction was estimated using SPE-GC×GC-ToF-MS. The organic aerosol fraction was 

measured using the PTFE-GC×GC-ToF-MS. To allow incorporation of I/SVOCs species from 

SPE disks, species and their isomers measured using the PTR-ToF-MS have been removed 

from the SPE and PTFE analyses. 

5.2.3. Comparison of EPA and fuel wood source profiles 

Fuel wood source profiles were compared to those from the EPA SPECIATE 5.0 (2019) 

database. Notably profiles from the EPA for burning sources were split into either gas- or 

particle-phase measurements. All available profiles for residential combustion were 

considered from sets of experiments including fireplace wood combustion (4640-4642), 

residential combustion using wood and pellet stoves (95129-95138), residential wood 

stove combustion (95156-95159) and residential wood combustion (G95467-G95470). EPA 

profiles 95156-95159 for residential wood stove combustion were not directly compared 

due to the low number of organic species measured (n=37). Comparison was made to Pinus 

ponderosa (G95467), Eucalyptus spp (4640) and a wood stove (95133). This placed into 

context the VBS developed in this work, because the multiple techniques used here allowed 

simultaneous measurement of organics in both gas and aerosol phases.  

EPA G95467 was a source profile derived from measurement of 179 organic species from 

combustion of Pinus ponderosa (McDonald et al., 2000). C2-C12 compounds were collected 

into canisters and analysed by GC-FID/-MS, C8-C20 compounds were collected onto Tenax 

tubes and analysed by GC-FID/-MS, carbonyls were collected onto 2,4-

dinitrophenylhydrazine cartridges and analysed by HPLC and fine particles and SVOCs were 

collected onto filter/PUF/XAD/PUF cartridges and analysed by GC-MS. EPA 4640 was a 

source profile derived from measurement of 85 organic species from Eucalyptus spp. This 

profile was chosen as Eucalyptus spp was also measured as part of this study. Gas phase 

semi-volatile species were collected onto PUF cartridges, particles collected onto filters and 

carbonyls onto C18 cartridges impregnated with dinitrophenylhydrazine. Samples were 

then extracted and analysed by GC-MS (Schauer et al., 2001). EPA 95133 was developed by 

sampling VOCs into Tedlar gas sampling bags followed by GC-FID analysis and semi-volatile 
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PAHs were collected onto PUF plugs, extracted and analysed by GC-MS (Pettersson et al., 

2011). 

5.2.4. Estimation of the SOA formation potential 

The overall yield of SOA, γSOA, from gas-phase emissions from biomass burning samples 

(mass of SOA produced/mass of NMOG emissions) was estimated using E5.2 (Lu et al., 

2018): 

 γSOA = ∑ fgas, i

i

γi 
(E5.2) 

where fgas,i = the mass fraction of SOA precursor as a proportion of total mass of gas-phase 

emissions and γi = yield of SOA precursor i at a concentration of OA = 10 µg m−3. SOA yields 

have been calculated from literature (see the Supplementary Information 8.13 using OA 

mass loadings as close to 10 µg m-3 under both high and low NOx conditions, where 

supporting information from relevant literature was available), with gas-phase SVOCs 

assumed to have SOA mass yields of 1. The rate of reaction of chemical species with OH is 

not included in E5.2. IVOCs usually react faster than NMVOCs with OH, and so IVOCs and 

NMVOCs contribute differently to SOA with respect to time (Zhao et al., 2016). As a result, 

this approach estimates a lower-bound contribution of the ultimate yield of IVOCs to SOA 

(Lu et al., 2018). It also does not include species which may form SOA heterogeneously, 

which have not been assigned traditional SOA yield values.  

5.2.5. Estimation of OH reactivity 

The OH reactivity of emissions from different fuel types were examined to understand the 

largest contributors. The mean concentrations of NMVOCs from the DC-GC-FID, GC×GC-FID 

and PTR-ToF-MS were used to calculate OH reactivity, s-1, using E5.3: 

 s-1=([NMVOC](ppbv) × 10-9 × [M]) × kOH(298 K) (E5.3) 

where [M] is given by E5.4 and the rate constants for reaction with OH, kOH, used in this 

study are given in the Supplementary Information 8.14. 

 
[M] = (

Pressure (mbar) × 10-4

(8.314 × (273.15+ temperature))
)  × 6.023×1023 

(E5.4) 
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5.2.6. Estimation of PAH toxicity 

Toxicity equivalence factors (TEFs) have been used to assess the relative toxicity of 

emissions per kg of fuel burnt. TEFs indicate the relative toxicity of a PAH to benzo[a]pyrene 

(BaP), one of the most carcinogenic PAHs (OEHHA, 1994). The toxicity of a PAH is commonly 

expressed in BaP equivalents ([BaP]eq), which is calculated in E5.5 by multiplying the 

concentration of PAHi, in nanograms per cubic metre (ng m−3), by the corresponding TEF 

for i, TEFi, with values for TEFi given in the Supplementary Information 8.15 (Ramírez et al., 

2011; Tomaz et al., 2016; Elzein et al., 2019). 

 
∑ [BaP]eq = ∑ (Ci ×TEFi)

n=1

i

 
(E5.5) 

5.3. Results and discussions 

5.3.1. Volatility distribution 

Figure 5.1 shows the mean volatility distribution of characterised organic emissions for (A) 

all fuel wood types studied (n=16) and (B) cow dung cake (n =3) classified by measurement 

technique: PTR-ToF-MS (orange), DC-GC-FID (green), GC×GC-FID (purple), SPE-GC×GC-ToF-

MS (blue) and PTFE-GC×GC-ToF-MS (red). Figure 5.1 emphasises the importance of using 

multiple measurement techniques to measure organic emissions, and this study covers a 

volatility range of over 13 orders of magnitude. This allowed a comprehensive 

characterisation of emissions during domestic fuel burning. Cow dung cake samples 

released significantly more SVOC and L/ELVOC than fuel wood samples.  

Figure 5.1 illustrates the particle fraction, Xp, which was calculated according to the method 

in Lu et al. (2018), assuming all the organic emissions formed a quasi-ideal solution when 

diluted to ambient conditions (Lu et al., 2018). The particle fraction demonstrated the gas-

to-particle partitioning of organics at typical atmospheric conditions (T = 298 K and OA 

concentration = 10 µg m−3). IVOCs were predominantly found in the gas phase and SVOCs 

were present in both phases. The predicted particle fraction suggested that there should 

have been more gas-phase contributions in the I/SVOC range. The amount of organic 

material in the gas and particle phase is dependent on multiple factors such as temperature 

and concentration of OA. It is likely that at the high concentrations (OA > 10 µg m-3) during 

source testing, a larger fraction of I/SVOCs partitioned into the particle phase.  
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Figure 5.1. Mean volatility distribution of organics from fuel wood (top) and cow dung cake 

(bottom) collected from India. Emissions are classified by sampling technique with PTR-ToF-MS 

(orange), DC-GC-FID (green), GC×GC-FID (purple), SPE-GC×GC-ToF-MS (blue) and PTFE-GC×GC-ToF-

MS (red). The grey dashed line indicates the particle fraction, assuming the emissions form a quasi-

ideal solution at organic aerosol concentration = 10 µg m−3 and temperature = 298 K.  
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5.3.2. Chemical composition distribution 

Figure 5.2 shows the mean volatility distributions of organic emissions from seven different 

source categories (A) fuel wood, (B) cow dung cake, (C) municipal solid waste, (D) crop 

residue, (E) charcoal, (F) sawdust and (G) LPG. The largest mass fraction at emission for all 

sources, expect LPG, was in the range C* ~ 107-109 µg m-3 and a result of small oxygenated 

species. LPG emission was dominated by fugitive emissions of propane and butane from C* 

109-1010 µg m-3. Figure 5.2 highlights how changes in the type of the source influenced 

emissions of I/S/L/ELVOCs. All sources, except LPG, have significant emissions of IVOCs.  

Figure 5.2A also shows comparison to EPA source profiles G95467 for softwood (red circles) 

and 4640 (blue squares) for Eucalyptus spp. These profiles highlight the difficulties in using 

current source profiles to predict SOA from biomass burning plumes, due to significantly 

different predictions in the range C* ~ 102-106 µg m−3.  

EPA 95133 reported essentially no IVOCs, EPA G95467 showed some IVOCs in the range C* 

~ 105-106 µg m−3 and EPA 4640 showed considerably higher IVOC emissions. EPA 95133 did 

not measure important I/SVOC species released from domestic biomass burning such as 

phenolics and furanics and therefore no organic matter was represented for C* < 5×106 µg 

m−3. EPA G95467 was one of the best current source profiles, however, no organic matter 

was present in this profile for C* < 105 µg m−3. This may be due to lack of simultaneous gas- 

and particle-phase measurements of all organic species present. As a result, gas-phase 

organic species may have partitioned into the particle phase because of high organic 

aerosol concentrations during source testing and were therefore not represented. EPA 

4640 measured more phenolic and furanic compounds. Despite this, the measurement of 

only 85 organic species in EPA 4640 overemphasised the importance of I/SVOCs as a mass 

fraction. This therefore still posed significant problems when using EPA 4640 to model SOA 

formation. These issues demonstrated the benefit of the VBS developed here, as 

simultaneous measurement of organics in both gas and aerosol phases should alleviate 

these problems. For some sources, such as the combustion of MSW, cow dung cake, crop 

residues and sawdust a greater mass fraction was released of I/SVOCs. The use of a VBS for 

these sources is likely even more important due the presence of large amounts of I/SVOC 

material.  
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Figure 5.2. Mean volatility distribution of organic emissions for A = fuel wood, B = cow dung cake, 
C = municipal solid waste, D = crop residue, E = charcoal, F = sawdust and G = LPG with composition 
indicated by colour. Fuel wood profiles are compared to EPA inventories G95467 for softwood (red) 
and EPA 4640 for Eucalyptus spp (blue).  
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The comparison results suggested that the profile presented for Indian domestic fuel wood 

from this study was significantly lower than the data in EPA G95467 and 95133 in the two 

most volatile bins (C* ~ 1010 – 1011 µg m-3). However, this was an artefact due to the lack of 

measurements with the DC-GC-FID, which targeted the most volatile species. However, the 

underestimation of emissions from C* ~ 1010-1011 µg m−3 is unlikely to be significant when 

calculating SOA formation using the measured species and VBS presented. 

Table 5.1 shows the mass fraction of organic material presented in Figure 5.2 from the 7 

different sources studied here, presented in volatility bins spanning over 13 orders of 

magnitude. For certain sources, such as LPG and charcoal, only one sample was taken. The 

lack of repeat measurements significantly increased the uncertainty associated with the 

VBS presented. Despite this, multiple gas-phase NMVOC measurements were made. These 

showed similar results and therefore these VBS were included. The results in Table 5.1 

should be used to better characterise SOA formation in chemical-transport models from 

domestic biomass combustion sources as the volatility distribution of organic emissions 

presented can be accurately adjusted to atmospheric dilutions, aerosol concentrations and 

temperatures.  

 

Table 5.1. Mass fraction of organic material released from burning in logarithmic saturation vapour 

pressure C* (μg m-3) bins.  

C* Range Wood Dung Waste Sawdust LPG Charcoal Crop 

NV ELVOC 0.001 0.006 0.006 0.002 0.000 0.007 0.001 

10-1 SVOC 0.000 0.002 0.002 0.001 0.000 0.000 0.000 

100 L/SVOC 0.001 0.008 0.012 0.014 0.000 0.000 0.000 

101 SVOC 0.004 0.023 0.025 0.027 0.001 0.001 0.004 

102 S/IVOC 0.008 0.015 0.006 0.017 0.001 0.009 0.008 

103 IVOC 0.012 0.021 0.014 0.033 0.000 0.011 0.010 

104 IVOC 0.040 0.043 0.027 0.047 0.000 0.036 0.038 

105 IVOC 0.066 0.065 0.035 0.071 0.001 0.087 0.062 

106 I/VOC 0.090 0.142 0.117 0.091 0.001 0.129 0.135 

107 VOC 0.224 0.149 0.278 0.206 0.000 0.122 0.202 

108 VOC 0.449 0.379 0.348 0.387 0.001 0.471 0.434 

109 VOC 0.090 0.101 0.073 0.093 0.350 0.101 0.092 

1010 VOC 0.013 0.046 0.058 0.011 0.646 0.027 0.014 
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Figure 5.3 shows that the mean mass fractions of IVOCs emitted increased from municipal 

solid waste (0.12 ± 0.02) to fuel wood (0.15 ± 0.04) to crop residue (0.16 ± 0.04) to cow 

dung cake (0.18 ± 0.02). SVOC emissions for fuel wood and crop residue were the lowest 

mass fraction (0.01 ± 0.01) and larger for cow dung cake (0.04 ± 0.02) and municipal solid 

waste (0.05 ± 0.04). L/ELVOC emissions for crop residue (0.001 ± 0.001) and fuel wood 

(0.002 ± 0.002) were the lowest and larger for cow dung cake (0.006 ± 0.004) and municipal 

solid waste (0.009 ± 0.008). SVOC and L/ELVOC emissions from crop residue and charcoal 

were similarly low as fuel wood. This may be a result of the different fire conditions caused 

by the difference in composition of samples. Fires which are intense and flaming have been 

shown to have high black carbon emissions and those which are more towards the 

smouldering phase have high OA emissions (Radke et al., 1991; Yokelson et al., 2003; 

McMeeking et al., 2009; Kortelainen et al., 2018). It is likely that the higher emissions of OA 

from cow dung cake, municipal solid waste and sawdust are a result of the lower 

combustion efficiency of these samples.  

 

 
Figure 5.3. IVOC, SVOC and L/ELVOC mass fractions emitted from combustion of municipal solid 

waste, fuel wood and cow dung cake. SVOC and L/ELVOC material represented on average a smaller 

mass fraction from fuel wood and crop residue than from municipal solid waste and cow dung cake. 

 

5.3.3. SOA formation potential 

Figure 5.4 shows the sum of the mass fraction of NMVOCs released from domestic fuel 

burning in this study. Only the species identified as SOA precursors and assigned with SOA 

yields in the Supplementary Information 8.13 were included. The mass fraction of SOA 

precursors from fuel wood, crop residue and cow dung cake samples were from 0.3-0.5. 
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Compared to sources calculated using the same method (Lu et al., 2018), the mass fraction 

which resulted in SOA was less, with the exception of MSW burning, compared to gasoline 

(~ 0.65) and diesel (~ 0.7) engines. This was principally due to the large emission of smaller 

oxygenated species from burning samples. MSW burning samples released the largest mass 

fraction of SOA precursors (0.4-0.65). 

 

Figure 5.4. Mass fraction of NMVOCs from burning which were SOA precursors. 

 

Figure 5.5A and Figure 5.5B show the estimated SOA yields from burning samples under 

high and low NOx conditions. These are intended to represent idealised systems for photo-

oxidation of SOA precursors. This is because generally the SOA yield decreases as NOx levels 

increase (Ng et al., 2007a). This is due to competing reaction pathways of peroxy radicals 

between NO and HO2. Under high NOx conditions, RO2 radicals react with NOx and under 

low NOx conditions, RO2 radicals react with HO2 (Yee et al., 2013). As a result, the low NOx 

pathway generally leads to lower volatility reaction products than the high NOx pathway. 

Whilst conditions vary between different experiments, SOA yield data (where possible) has 

been chosen from literature to best represent these two scenarios, with low NOx conditions 

generally < 10 ppbv and high NOx conditions ~ 100-1000s ppbv (Yee et al., 2013). 

Consideration has been given to both cases since biomass burning in India impacts both 

urban high NOx regions and rural lower NOx regions. These scenarios are simplified and 

designed to understand the evolution of emissions once diluted into ambient air. More 
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complicated chemistry directly in the burning plume after emission is likely, due to the 

simultaneous emission of NOx from nitrogen bonded into organic molecules in the fuel 

which is released as NO during combustion. This is called fuel NOx and the nitrogen is mainly 

from pyridine and pyrrole groups in the organic matter which forms the fuel (Wendt et al., 

1979). The amount of fuel NOx formed is generally independent of the temperature. HCN 

is formed during combustion from the nitrogen in fuel samples, such as the nitrile group 

through R5.1 or R5.2 (Haynes et al., 1975). 

 CN + H2 ⇌ HCN + H (R5.1)  

 

 CN + H2O ⇌ HCN + OH (R5.2)  

 

The HCN formed then reacts further through R5.3 - R5.5 (Miller and Fisk, 1987). 

 HCN + O ⇌ NCO + H (R5.3)  

 

 NCO + H ⇌ NH + CO (R5.4)  

 

 NH + H ⇌ N + H2 (R5.5)  

 

NO is then formed via R5.6 or R5.7. Under high oxygen conditions, the more direct route is 

also possible through R5.8: 

 N + O2 ⇌ NO + O (R5.6)  

 

 N + OH ⇌ NO + H (R5.7)  

 

 NH + O ⇌ NO + H (R5.8)  

 

where kR5.6 = 1.16 x 10-10 cm3 molecule-1 s-1 (Cohen and Westberg, 1991). This will increase 

the amount of NOx present during oxidation in the burning plume. In India, many cities are 

under high NOx conditions and it is therefore likely that a lot of the initial chemistry occurs 
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under high NOx conditions. Under high NOx conditions, SOA yields are lower and IVOCs 

represent a larger proportion of the total SOA produced. Under low NOx conditions, SOA 

yields are greater, and NMVOCs result in a greater proportion of the total SOA due to higher 

estimated SOA yields from aromatic and furanic species. Other studies examining emissions 

from burning have traditionally considered yields from only one of these regimes, but 

greater SOA production under low NOx conditions has been well described previously (Ng 

et al., 2007b; Chan et al., 2009). 

Figure 5.5C shows that high NOx SOA yields from sawdust, charcoal, cow dung cake, fuel 

wood and crop residue were likely dominated by phenolics (light blue, 21-70%) with a 

significant contribution from furanics (orange, 9-33%) due to high emission factors of these 

species and high SOA yields. Other important SOA contributions were from aromatics (2-

8%), oxygenated aromatics (2-8%), oxygenated aliphatic species (2-9%), monoterpenes (0-

7%) and PAHs (2-16%). A larger proportion of SOA (40%) from municipal solid waste 

samples under high NOx conditions was from aromatics due to a high emission factor of 

styrene from these samples. 

Figure 5.5D shows that for sawdust, charcoal, cow dung cake and fuel wood samples, 

furanic species (17-58%) and aromatics (4-16%) were likely to provide a greater proportion 

of total SOA under low NOx conditions. The contribution of phenolic compounds was less 

(10-43%) due to larger aromatic and estimated furanic SOA yields under these conditions. 

Contributions remained small from oxygenated aromatics (3-11%), aliphatic species (0-2%), 

oxygenated aliphatics (0-2%), nitrogen containing NMVOCs (0.5-3%), monoterpenes (0-2%) 

and PAHs (5-15%). The contribution of aromatics to SOA from municipal solid waste 

remained high (43%). 

Bruns et al. (2016) showed that around 26% of SOA formed from the combustion of beech 

fuel wood was from phenols. This was notably higher than the 5-9% contribution of phenol 

from Picea abies (spruce) reported by Hartikainen et al. (2018), who reported that 12-14% 

of the total SOA was from phenolic compounds. The results of this study appear more like 

that of Bruns et al. (2016) with between 10-70% of the total SOA from biomass combustion 

a result of phenolic compounds.  
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Low NOx 
 

 

 

 
Figure 5.5. Results of SOA model with A = SOA yields as mass fraction of NMVOC released from biomass burning under high NOx conditions, B = SOA yields as 
mass fraction of NMVOC released from biomass burning under low NOx conditions, C = relative contributors to SOA formation under high NOx conditions and 
D = relative contributions to SOA formation under low NOx conditions. Unidentified corresponds to bulk material from SPE/PTFE filters. 
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The yields under high NOx conditions for aromatics in this study (2-8%) were similarly low 

to those reported by Hartikainen et al. (2018) of 1.9-2.6% of the SOA from benzene and 

1.9-3.3% from naphthalene, with low NOx conditions in this study suggesting aromatics 

could result in greater SOA yields. This study found relatively low SOA yields from 

monoterpenes from biomass sources (0-7%), which is like Hartikainen et al. (2018) who 

found that monoterpenes contributed ~ 1-3% to SOA. This contrasts with Hatch et al. 

(2015) who showed that monoterpenes could result in 42-58% of the SOA from black 

spruce and ponderosa pine, however the fuel woods in that study were likely larger 

emitters of monoterpenes.  

It remained difficult to accurately characterise SOA yields from furanic species, as there is 

a lack of chamber simulation studies. This study suggests that furanic compounds could act 

as a major SOA precursor source, similar to several other studies (Hatch et al., 2015; 

Hartikainen et al., 2018). In this study, the SOA yields of 2-methanol furanone, 2-(3H)-

furanone, 5-hydroxymethyl-2[3H]-furanone, furfurals and methyl furfurals have been 

estimated using the toluene yield, as a previous study by Gilman et al. (2015) indicated they 

have similar secondary organic aerosol formation potentials (SOAP). This resulted in two 

different cases. Under high NOx conditions, the SOA yield in this study of furanics was 0.08, 

which was similar to that of by Hatch et al. (2015) who used 0.10 based on the chemistry 

of 3-methyl furan measured from a previous study (Strollo and Ziemann, 2013). The low 

NOx yield used in this study is 0.33, which is similar to Bruns et al. (2016), who used a 

furfural yield of 0.32 based on the average SOAP of all assigned ≥ C6 compounds. The true 

SOA yields from furanic species from biomass burning samples remains uncertain and 

requires further chamber studies. This issue has been previously highlighted (Hatch et al., 

2017). While following a different approach, this study arrives at similar estimated yields 

of furanic compounds as those used previously. It highlights that SOA formation from 

biomass burning smoke from solid fuels collected in India was predominantly driven by 

phenolic and furanic compounds as well as aromatics.  

Table 5.2 shows the mass fraction of NMVOCs released which had been identified as SOA 

precursors from yield data, and the mass fraction of NMVOCs which resulted in SOA under 

high and low NOx conditions. These are presented as mass fraction per mass of NMVOC 

released. Some sources, such as cow dung cake and municipal solid waste, released 
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significantly more NMVOCs per kg of fuel burnt than fuel wood (municipal solid waste ~ 88 

g kg-1, cow dung cake ~ 62 g kg-1 and fuel wood ~ 19 g kg-1). Multiplying the emission factor 

by the mass fraction of NMVOC which will result in SOA highlighted interesting differences 

in SOA production between different source types. Table 5.2 shows this result, with the 

mass of SOA which would result per kg of fuel burnt under high NOx (SOAh g kg-1) and low 

(SOAl g kg-1) conditions. The amount of SOA produced by each source has been considered 

relative to fuel wood, due to difficulties establishing SOA precursor from the chamber 

background for LPG. Emissions from cow dung cake and municipal solid waste resulted in 

~ 3-4- and 6-7-times greater SOA per kg of fuel burnt than fuel wood, respectively. It is 

noteworthy that SOA estimated from chamber yield data and that observed experimentally 

have been shown to agree within a factor of 2 (Ahern et al., 2019).  

The estimates of SOA formation should be considered relative to the heat output of specific 

fuels. Energy densities have been reported (EPA, 2000) for LPG (45,837 kJ kg-1), charcoal 

(25,715 kJ kg-1), acacia fuel wood (15,099 kJ kg-1), eucalyptus fuel wood (15,333 kJ kg-1), rice 

straw (13,027 kJ kg-1), Brassica spp (11,763 kJ kg-1) and dung cakes (11,763 kJ kg-1). This 

highlights that whilst all sources are likely to result in SOA production, the burning of fuels 

such as cow dung cake is inadvisable due to the low calorific value and high emission factor. 

This means that more fuel is required to be burnt to achieve the same heat output, which 

will lead to greater levels of NMVOC emission. These will subsequently degrade local and 

regional air quality through the formation of a greater amount of secondary pollutants.  

 

Table 5.2. Estimated contributions of gas-phase organic emissions to SOA where SOAh = SOA formed 

under high NOx conditions and SOAl  = SOA formed under low NOx conditions. 

Sample Mass fraction Mass formed (g kg-1 fuel)  
SOA precursors SOAh SOAl SOAh  SOAl  

Wood 0.38 0.061 0.103 1.1 (0.3-5.9) 1.9 (0.4-10.0) 

Dung 0.40 0.068 0.109 4.2 (2.4-5.6) 6.7 (3.8-9.0) 

Waste 0.57 0.085 0.142 7.4 (4.8-10.1) 12.4 (8.0-16.9) 

Charcoal 0.48 0.101 0.145 0.5 (0.2-0.8) 0.8 (0.3-1.1) 

Sawdust 0.45 0.068 0.112 4.9 (1.9-7.7) 8.1 (3.2-12.8) 

Crop 0.41 0.076 0.121 2.9 (0.7-5.6) 4.5 (1.1-8.9) 
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5.3.4. OH reactivity 

Figure 5.6A shows that LPG OH reactivity was principally driven by alkanes (~ 75%). The 

contributions of other species were small and may have arisen from difficulties in 

background correction for this low emission fuel. For charcoal, the reactivity with OH was 

principally caused by furanic species (33%), phenolic species (19%) and oxygenates (15%). 

The reactivity of fuel wood emissions with OH was principally driven by furanic species 

(34%), oxygenated species (27%), phenolic species (13%) and alkenes (12%). Emissions 

from cow dung cake with OH were due to furanic species (32%), oxygenates (21%), alkenes 

(16%), phenolic species (12%) and nitrogen containing NMVOCs (11%). The OH reactivity 

from crop residue was from furanic species (38%), oxygenates (23%), phenolics (14%) and 

alkenes (11%). For sawdust, reactivity with OH was a result of furanic species (34%), 

oxygenates (24%), phenolic species (15%) and monoterpenes (9%). However, for charcoal 

and sawdust only 2 samples were measured. The OH reactivity from municipal solid waste 

samples was different and a result of aromatics (30%), followed by oxygenates (22%), 

furanic species (19%) and phenols (5%).  

This study identified the species with the largest reactivity with the OH radical from Indian 

solid fuels. Ozone production from emissions when these fuels are combusted will be more 

complex and ultimately depend on NMVOC/NOx ratios, meteorology and solar radiation 

(Coggon et al., 2019). Whilst the phenolic compounds here show relatively large 

contributions to OH reactivity (5-19%), these compounds will probably result in negative 

O3 formation due to the formation of nitrophenols, which reduces the amount of NO2 

available for NMVOC oxidation (Lauraguais et al., 2014).  

Gilman et al. (2015) calculated the relative contribution of different functionalities to the 

OH reactivity of fuel types from the U.S. The fuel types studied by Gilman et al. (2015) 

showed that alkenes contributed 25-29% of the OH reactivity, which was larger than found 

in this study (7-16%) for Indian fuels. The contribution to OH reactivity of OVOC for U.S. 

fuels (41-54%) was less than found in this study (45-76%). The contributions of 

monoterpenes for fuels from the U.S. were slightly larger (4-14%) than for those from India 

(0-7%). This was likely due to a greater contribution of monoterpene emitting fuel woods, 

such as pine, to fuels from the U.S. studied by Gilman et al. (2015). Both studies found a 
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small contribution from aromatics (<5%) and nitrogen containing NMVOCs (< 11%) to OH 

reactivity. 

Figure 5.6B shows the OH reactivity of each source at the top of the combustion chamber 

relative to LPG. This has been calculated by multiplying the mean OH reactivity of flue gases 

by the volume of air sampled and normalising to the total reactivity of LPG. The OH 

reactivity of LPG was the lowest. Emissions from charcoal, fuel wood, crop residue, cow 

dung cake and sawdust were respectively ~ 8, 30, 90, 120 and 150 times more reactive with 

OH than those from LPG. The OH reactivity of emissions from municipal solid waste were 

the greatest and approximately 230 times greater than from LPG. Fuel wood, cow dung 

cake and municipal solid waste burning are large NMVOC sources in India (Wiedinmyer et 

al., 2014; Sharma et al., 2015). The significantly greater OH reactivity of emissions from 

these sources is likely to substantially deteriorate local and regional air quality compared 

to users cooking over LPG.  

 

 
 

Figure 5.6. OH reactivity of emissions from different fuel types with A = relative contribution to OH 

reactivity and B = total OH reactivity of fuel types at top of flue relative to LPG which is set to 1. 

 

5.3.5. PAH toxicity 

A need has been identified to better understand the impact of PAHs from combustion 

sources in cities such as Delhi, where concentrations have been shown to be high and 

suggested to be enhanced by emissions from burning sources (Elzein et al., 2020). Figure 

5.6 shows that when comparing the toxicity of 21 PAHs released, fuel wood, crop residue, 

cow dung cake and MSW were respectively 20, 60, 130 and 220 times more toxic than LPG 
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per kg of fuel burnt. Toxic emissions from these 21 PAHs released from LPG were small, 

and were principally driven by naphthalene (43%), fluoranthene (24%) and 

methylnaphthalenes (11%). The largest drivers for fuel wood/crop residue toxicity were 

benzo[a]pyrene (38%/48%), naphthalene (14%/11%) and benzo[b]fluoranthene (8%/8%), 

respectively. The contribution of naphthalene to the toxicity of cow dung cake and MSW 

was lower, with their toxicities driven by benzo[a]pyrene (49%/42%), 

dibenz(a,h)anthracene (13%/16%) and benzo[b]fluoranthene (8%/13%). The real-world 

effect of this toxicity would be significantly enhanced for fuel wood and cow dung cake, by 

around a further factor of 10. This is because significantly more fuel wood and cow dung 

cake fuel is used per user than LPG, due to the higher energy density of LPG and more 

efficient burning of this fuel (NSSO, 2014, 2015b). These results reinforced findings of other 

studies assessing the health benefits of LPG vs. solid fuels which suggested that to 

significantly reduce the impacts of combustion, a shift to cleaner cooking technologies was 

required (Simon et al., 2014; Pope et al., 2017; Sambandam et al., 2015). 

 

 

 

Figure 5.7. Comparison of equivalent toxicity of PAHs from different fuel types. 
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5.4. Conclusions 

This study compiled comprehensive measurements of organic emissions from the 

combustion of a range of domestic fuels common to India. A range of detailed and 

complementary techniques allowed a VBS to be generated across a wide range of C* values. 

This highlighted that IVOC emissions from burning should be better represented in models 

for an improved understanding of SOA production from burning emissions. 

The results estimated that phenolics and furanics are important to both SOA production 

and OH reactivity, respectively accounting for 10-70% and 9-58% of the SOA and 5-22% and 

9-48% of OH reactivity from biomass burning emissions. The contribution of smaller 

oxygenated species to OH reactivity was also significant at 15-42 %. Different combustion 

sources were compared which showed that emissions from fuel wood, crop residue, cow 

dung cake and municipal solid waste burning were 30, 90, 120 and 230 times more reactive 

with the OH radical and that PAH emissions were 20, 60, 130 and 220 times more toxic than 

LPG, respectively. This also showed that NMVOCs released from the combustion of cow 

dung cake and municipal solid waste samples in this study respectively resulted in ~ 3-4 

and 6-7 times more SOA production per kg burnt than fuel wood. This demonstrated that 

reduction of emissions from these sources is important to improve local and regional air 

quality across India. 

Few measurements were made from municipal solid waste, cow dung cake, crop residue 

and LPG samples and these emission profiles could be improved with future studies to 

better understand the effect of composition on emissions. The C* of many species 

measured, including alkanes, remain uncertain and future studies are required to better 

understand the C* of these species. In addition, there have only been a limited number of 

chamber studies to determine SOA formed during the oxidation of furanic species under 

high and low NOx conditions. More studies of the oxidation and subsequent SOA formation 

from these important biomass burning emissions are required to better understand the 

impact of biomass burning and domestic solid fuel use on the atmosphere.  
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Chapter 6  

6. Emission estimates and inventories of non-methane 
volatile organic compounds from anthropogenic 
burning sources in India 
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6.1. Introduction  

Biomass burning is the second largest global source of trace gases to the troposphere after 

biogenic emissions (Yokelson et al., 2008; Andreae, 2019). Major sources include wildfires, 

agricultural crop residue burning on fields and residential solid fuel combustion. Trace 

gases are released in varying amounts dependent on the combustion conditions and the 

material burned (Yokelson et al., 1996). Emission factors have been shown to vary 

significantly for different energy sources such as fuel wood, straw, grass, peat, and cow 

dung cake (Akagi et al., 2011; Andreae, 2019). Domestic biofuel burning has been estimated 

to release ~ 17 Tg yr-1 of non-methane volatile organic compounds (NMVOCs) globally 

(Andreae, 2019). NMVOCs have the potential to significantly reduce local, regional and 

global air quality though the formation of tropospheric ozone (Pfister et al., 2008; Jaffe and 

Wigder, 2012) and secondary organic aerosol (SOA) (Alvarado et al., 2015; Kroll and 

Seinfeld, 2008). 

Emissions from biomass burning have been shown to be extremely complex, releasing a 

huge variety of chemical species (Crutzen et al., 1979; McDonald et al., 2000; Akagi et al., 

2011; Koss et al., 2018). Recent developments in analytical techniques have allowed 

significantly improved understanding of the composition of emissions in both gas and 

particle phases. Application of the proton-transfer-reaction time-of-flight mass 

spectrometer (PTR-ToF-MS) to biomass burning emission experiments has allowed 

speciation of over 90% of measured NMVOC emissions (Stockwell et al., 2015; Koss et al., 

2018). The use of PTR-ToF-MS in burning experiments has shown large emissions of small 

oxygenated species from burning and revealed the importance of intermediate-volatility 

and semi-volatile VOCs (I/SVOCs). IVOCs have been shown to represent a large fraction of 

total NMVOC emissions (Stockwell et al., 2015). 

Emissions from domestic biofuel combustion pose significant health risks as approximately 

3 billion people cook with solid fuels globally (World Health Organization, 2018b; World 

Bank, 2020). Emissions from burning have been linked to eye disease (Pokhrel et al., 2005; 

Karakoçak et al., 2019), chronic bronchitis (Akhtar et al., 2007; Moran-Mendoza et al., 

2008), chronic obstructive pulmonary disease (Dennis et al., 1996; Orozco-Levi et al., 2006; 

Rinne et al., 2006; Ramirez-Venegas et al., 2006; Liu et al., 2007; PerezPadilla et al., 1996), 

lung cancer (Liu et al., 1993; Ko et al., 1997), childhood pneumonia (Smith et al., 2011), 
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acute lower respiratory infections (Bautista et al., 2009; Mishra, 2003) and low birth weight 

of children (Boy et al., 2002; Yucra et al., 2011). The detrimental impact of domestic biofuel 

combustion on indoor air pollution has been estimated to cause 2.8-3.9 million premature 

deaths annually (Smith et al., 2014; Kodros et al., 2018; World Health Organization, 2018b). 

In some regions of the world, such as South Asia, the impact is pronounced as widespread 

solid fuel use is coupled to extremely high population densities. Consequently, hazardous 

indoor air pollution because of the combustion of solid fuels has been determined to be 

the most important risk factor for the burden of disease in South Asia, from a range of 67 

environmental and lifestyle risks (Lim et al., 2012; Smith et al., 2014).  

Several studies have examined India-specific NMVOC sources (Kumari et al., 2019; Nagpure 

et al., 2015; Lal et al., 2016; Jain et al., 2014; Fleming et al., 2018), however, very few have 

used a range of sufficiently detailed, state-of-the-art analytical techniques to obtain full 

mass closure of gas-phase organic species emitted. This means that strategic improvement 

in Indian air quality with effective mitigation policies has been hindered by the lack of 

adequate, spatially disaggregated emission inventories created using local source profiles 

(Garaga et al., 2018). Recent top-down studies focussed on megacity Delhi have shown that 

16% (Stewart et al., 2021) of non-methane hydrocarbons and 27% (Wang et al., 2020) of 

non-methane volatile organic compounds (NMVOCs) by mixing ratio at different urban 

sites were from solid fuel combustion sources. Bottom-up approaches have estimated the 

contribution of residential biofuel combustion to be greater at a national scale, 

representing approximately 60% of total anthropogenic NMVOC emissions (Sharma et al., 

2015).  

Several recent studies have focussed on understanding NMVOC emissions from solid fuel 

combustion sources specific to India. These measured emission factors for solid fuels using 

a range of state-of-the art techniques such as PTR-ToF-MS, gas chromatography (GC) and 

two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (see 

chapters 3 and 4). These highlighted large differences in NMVOC emissions between 

different sources, with emission factors for cow dung cake and municipal solid waste 

(MSW) ~ 300% and 400% larger, respectively, than for conventional fuel wood combustion. 

The combustion of fuel wood, domestic crop residues, cow dung cake and MSW samples 

were also shown to contribute significantly to SOA formation. This meant that the burning 
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of cow dung cake fuel and MSW could have disproportionately large impacts on NMVOC 

emissions, and in turn air quality, in India. 

Rapid growth has resulted in India being the second largest contributor to NMVOC 

emissions in Asia (Kurokawa et al., 2013; Kurokawa and Ohara, 2020). NMVOC emissions 

from India have been estimated in studies both focussed on Asia (Streets et al., 2003; Ohara 

et al., 2007; Zhang et al., 2009; Kurokawa et al., 2013; Crippa et al., 2019; Kurokawa and 

Ohara, 2020) or specifically on India (Varshney and Padhy, 1998; Pandey et al., 2014; 

Sharma et al., 2015). Lack of data and uncertainties in existing data complicate emission 

estimates and mean that considerable uncertainty exists over the size of NMVOC emissions 

from India, as shown in Table 6.1. Predicting emissions is complicated by a diverse range of 

sources such as older vehicle fleets, a high reliance on compressed natural gas (CNG), open 

crop burning on fields, MSW burning and solid biofuel combustion.  

Table 6.1. Estimates of NMVOC emissions from India, with ( ) indicating estimated 
contribution from biomass burning. 

Year NMVOC / Tg yr-1 Reference 

1996  8.0 (6.6) (Pandey et al., 2014; Sadavarte and Venkataraman, 2014) 

1998 8.1 (4.7) (Varshney and Padhy, 1998) 

2000  8.0 (6.1) (Pandey et al., 2014; Sadavarte and Venkataraman, 2014) 

2000 10.8 (Streets et al., 2003) 

2003 9.7 (Ohara et al., 2007) 

2005  9.0 (6.5) (Pandey et al., 2014; Sadavarte and Venkataraman, 2014) 

2006 10.8 (Zhang et al., 2009) 

2008 16.0 (Kurokawa et al., 2013) 

2010  9.8 (6.9) (Pandey et al., 2014; Sadavarte and Venkataraman, 2014) 

2010 9.8 (6.5) (Sharma et al., 2015) 

2010 11.5 (Ohara et al., 2007) 

2011 12.1 (6.0) REAS 3.2 (Kurokawa and Ohara, 2020) 

2015  12.0 (7.0) (Pandey et al., 2014; Sadavarte and Venkataraman, 2014) 

2015 13.5 (5.1) EDGAR 5.0 (Crippa et al., 2019) 

 

 

Traditional cook stoves represent a large pollution source in India due to their extensive 

use. Figure 6.1 shows an estimation of residential fuel use in India from fuel wood, cow 

dung cake, LPG, coal, charcoal, biogas, crop residues, kerosene and electricity (see the 

Supplementary Information 8.16 for details of calculation). Fuel wood and cow dung cake 

usage have been relatively constant over the last 25 years, with approximately three 
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quarters of a billion users (Pandey et al., 2014; World Health Organization, 2018b; World 

Bank, 2020). It has been forecast that solid fuel combustion sources will remain an 

important energy source to India in coming decades. Projections by the International 

Energy Agency show that with current policies, the proportion of the Indian population 

using biomass for cooking will reduce to a third of the population in 2030 and represent a 

quarter of the population by 2040 (IEA, 2020). 
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Figure 6.1. Approximate fuel use in India by number of users. See the Supplementary Information 
S8.16 for details of calculation. The peak in dung and other fuels in 2006 underlines one of the 
difficulties in accurately establishing fuel usage from surveys scaled up to India. 

 

Biofuels such as fuel wood and cow dung cake are cheaper than modern cooking fuels, such 

as LPG and electricity. Traditional methods are also important to many local recipes, with 

the meals cooked using them considered to be tastier (Mukhopadhyay et al., 2012). Cow 

dung cakes are commonly used in the north of India because they are sustainable, reduce 

the demand on local fuel wood resources and are widely available. Despite this, the impact 

cow dung cake combustion has on air quality is poorly understood. This is because 

consumption estimates of dried cow dung cakes in India have been shown to vary by 
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around a factor of 3, in the range 35-128 Tg yr-1 for the years 2000-2001 (Habib et al., 2004). 

Emission estimates from cow dung cake combustion are also complicated by the varying 

moisture content of samples, which has a large influence on burn efficiency and in turn 

increases uncertainties in inventories. 

The open burning of MSW is another poorly constrained, but likely important source of 

NMVOC pollution in India. This is a result of poor MSW management, as often not all of 

MSW in cities is collected and little MSW is collected rurally (Annepu et al., 2012). MSW is 

also used as a source of heating in cold seasons in low income areas (Nagpure et al., 2015). 

Fugitive methane emissions from decomposing organic matter in poorly managed landfill 

sites can result in fires, whilst burning often represents the only disposal method of MSW 

in rural regions. Nagpur et al. (2015) estimated that 90-1170 kg km-2 day-1 of MSW was 

burnt in winter and 13-1110 kg km-2 day-1 of MSW was burnt in summer in Delhi and that 

summer MSW burning in Agra was greater at 670-3485 kg km-2 day-1. Previous studies have 

identified the open burning of MSW as a significant source of black carbon, hydrogen 

chloride, particulate matter, particulate chloride, NMVOCs and toxic emissions such as 

dioxins (McCulloch et al., 1999; Lemieux et al., 2000; Lemieux et al., 2003; Costner, 2005; 

Christian et al., 2010; Wiedinmyer et al., 2014; Stockwell et al., 2015; Stockwell et al., 2016; 

Kumari et al., 2019; Cash et al., 2020). Emission estimates from this source are complicated 

by lack of reliable data, as well as the variable composition of samples which are a mix of 

individual waste products and change with every sample. Official estimates of the amount 

of MSW produced in India were 49 Tg yr-1 in 2016 (CPCB, 2017), with other studies 

suggesting it to be larger (69-216 Tg yr-1) (Annepu et al., 2012; Wiedinmyer et al., 2014; 

Sharma et al., 2019). This inevitably leads to differences in emissions and large uncertainty 

in the estimation of source strength. The result is hugely uncertain total NMVOC emission 

estimates from the burning of MSW in India, varying from 4-2060 Gg yr-1 (Sharma et al., 

2019). 

The burning of solid fuels is also a large source of polycyclic aromatic hydrocarbons (PAHs), 

with 57-61% of global PAH emissions (2950-3050 Gg yr-1) estimated to be from the 

combustion of biofuels (Zhang and Tao, 2009; Shen et al., 2013). PAH concentrations in 

Indian cities have been reported to be 10-50 times higher than those measured 

internationally (Kulkarni and Venkataraman, 2000) and total emissions from India 
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calculated to be in the range 17-90 Gg yr-1 (Zhang and Tao, 2009; Shen et al., 2013; Gadi et 

al., 2012). PAHs are of interest because they are carcinogenic and mutagenic (IARC, 1983, 

1984; Nisbet and LaGoy, 1992; Lewtas, 2007; Zhang and Tao, 2009; Jia et al., 2011) and 

damage cells through the formation of adducts with DNA in many organs such as the 

kidneys, the liver and lungs (Vineis and Husgafvel-Pursiainen, 2005; Xue and Warshawsky, 

2005).  

Uncertainty over data sources for Indian fuel consumption, the base year, emission factors 

and the spatial distribution of sources leads to large uncertainties in estimates of total 

emissions. In this study, we have developed comprehensive, spatially disaggregated 

emission inventories for NMVOCs released from burning sources in India. Inventories are 

produced for 10 different years from 1993-2016 and use recently published emission 

factors which far better reflect the full range of species released. This study then evaluates 

the relative contributions of individual sources to emissions to allow an assessment of the 

overall impact of emissions from burning sources to air quality in India. This is because 

recent studies have shown that NMVOC emission reduction is needed to accompany NOx 

emission reduction to avoid increases in O3 concentrations in cities like Delhi (Chen et al., 

2020).  

6.2. Methods 

6.2.1. Emission factors 

The emission factors used in this study come from a variety of recently published sources. 

All emission factors applied in this study included measurement by PTR-ToF-MS, a 

technique well suited to species released in significant quantities from solid fuel 

combustion such as small oxygenated species, phenolics and furanics. These species are 

often missed by GC measurement alone. Preference has been given to emission factors 

from studies which: (1) have many measurements (n), (2) use samples collected from India 

or (3) use samples collected from similar countries. For residential fuel combustion, the 

emission factors measured in chapter 4 were used for fuel wood, cow dung cake, LPG and 

MSW samples collected from around Delhi. This study was extremely detailed and 

measured online, gas-phase, speciated NMVOC emission factors for up to 192 chemical 

species using dual-channel gas chromatography with flame ionisation detection (DC-GC-
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FID, n = 51), two-dimensional gas chromatography (GC×GC-FID, n = 74), proton-transfer-

reaction time-of-flight mass spectrometry (PTR-ToF-MS, n = 75) and solid-phase extraction 

two-dimensional gas chromatography with time-of-flight mass spectrometry (SPE-GC×GC-

ToF-MS, n = 28). Table 6.2 shows the emission factors applied in this study.  

Emission factors for combustion of crop residues on fields were taken from measurements 

by Stockwell et al. (2015) made using PTR-ToF-MS of 115 NMVOCs (Stockwell et al., 2015) 

for wheat straw (n = 6), sugarcane (n=2), rice straw (n=7) and millet (n=2). This study also 

included the mean crop residue emission factor for 19 food crops, for use when no current 

emission factor had been comprehensively measured using PTR-ToF-MS. The emission 

factor applied (38.8 g kg-1, see the Supplementary Information S8.17 for details of 

calculation) was evaluated against that for crop residues used for domestic combustion in 

Delhi (37.9 g kg-1). Whilst the values measured by Stockwell et al. (2015) and in chapter 4 

were comparable, the value from Stockwell et al. (2015) was used as the crop types were 

more reflective of the crop residues burnt on fields after harvest, compared to those burnt 

to meet residential energy requirements. The mean emission factor for crop residue 

combustion on fields was used for specific crop types with smaller levels of cultivation. 

Emissions from coal burning were estimated using an emission factor from the combustion 

of bituminous coal from China (n = 14), a neighbouring Asian country, made using PTR-ToF-

MS. Whilst the chemical composition of the coal may be more important than the 

development status of the country, there was overall a low level of reported residential 

coal use and this estimate was included for completeness. A total of 89 NMVOCs were 

identified, which represented 90-96% of the total mass spectra (Cai et al., 2019).  

Indian specific PAH emission factors were recently measured in gas- and particle-phases 

using PTR-ToF-MS and GC×GC-ToF-MS (see chapter 3). This dataset provided PAH emission 

factors collected from combustion of fuel wood (n = 16), cow dung cake (n = 3), crop residue 

from domestic combustion (n = 3), MSW (n = 3), LPG (n = 1) and charcoal (n = 1) samples.  

 

 

 



166 
 

Table 6.2. NMVOC and PAH emission factors (g kg-1) from combustion of different fuels  

NMVOC emission factors / g kg-1 
 

Wood Dung MSW LPG Charcoal Rice Wheat Sugarcane Millet Crop Coal 

VOC 18.7 62.0 87.3 5.7 5.4 23.8 15.9 53.6 5.4 38.8 3.7 

n 51 8 3 3 2 7 6 2 2 19 14 

Ref a a a a a b b b b b d 

PAH emission factor / g kg-1  
 

Wood Dung MSW Crop LPG Charcoal  

PAH 0.25 0.61 1.02 0.75 0.06 0.15  

n 16 3 3 3 1 1  

Ref c c c c * c c  

References:  a chapter 4, b Stockwell et al. (2015), c chapter 3, d Cai et al. (2019) and * crop types used 

for residential solid fuel combustion.  

 

6.2.2. Spatial activity data 

High resolution, gridded population data for India (WorldPop, 2017) was used at a 

resolution of 1 km2. Officially, urban populations in India are defined as having 

(Chandramouli, 2011): 

• population density > 400 people km-2 

• 75% of men employed in non-agricultural industries 

• population of town > 5000 people. 

Rural populations in India cannot be identified simply by having a population density of < 

400 people km-2, as some states such as Uttar Pradesh have an average population density 

of around 800 people km-2. Rural grid squares were therefore identified by calculating the 

population density threshold in each state in which the sum of the 1km2 grid squares below 

this threshold correctly reproduced the rural populations in these states from the 2001 and 

2011 censuses (Government of India, 2014). Supplementary Information S8.18 shows that 

this resulted in good reproduction of rural and urban populations. Uncertainty existed over 

the exact population of India. The 2011 census calculated it to be 1.21 billion and the World 

Bank calculated 1.25 billion. Exit polls suggested the census would slightly underestimate 

the population. We used population statics indicated by the 2011 census. 

NMVOC and PAH emissions from domestic solid fuel combustion were plotted against this 

high-resolution population data in the R statistical programming language at 1 km2 for 2001 
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and 2011, with the population datasets scaled to the percentage changes in Indian 

population indicated by the World Bank for additional years of interest.  

6.2.3. Fuel wood, LPG, charcoal and coal consumption 

Preference has been given to large fuel usage surveys which included tens to hundreds of 

thousands of respondents. The Household Consumption of Goods and Services in India 

survey by the National Sample Survey Office (NSSO, 2007b, 2012b, 2014) gave state-wise 

kg capita-1 fuel wood, LPG, charcoal and coal burning statistics for rural and urban 

environments and was used for the years 2004-2005, 2009-2010 and 2011-2012. NMVOC 

emissions for these years were calculated though equation E6.1: 

 
NMVOC1km2,fuel   =  EFfuel  ×  fuel usecapita  ×  pop1km2  ×  (

365

30
) 

(E6.1) 

 

where NMVOC1km2,fuel = total NMVOC emission from respective fuel combustion per 1 km2 

grid (kg yr-1), EFfuel = mean emission factor for fuel used, fuel usecapita = per capita fuel 

consumption (kg 30 days-1) converted from per 30 days to per year by multiplying by 

(365/30) and population1km2 = population in 1km2 grid. This calculation was performed 

separately for rural and urban grid cells to allow accurate incorporation of rural and urban 

per capita fuel consumption data.  

Data were collected from additional large, previously conducted surveys. These surveys 

collected data in terms of the number of households using specific fuels per 1000 

households in different Indian states in rural and urban environments. The Fifth 

Quinquennial Survey on Consumer Expenditure provided data for 1993-1994 (NSSO, 1997), 

the Energy Sources of Indian Households for Cooking and Lighting provided data for years 

2004-2005, 2009-2010 and 2010-2011 (NSSO, 2007a, 2012a, 2015b) and the Household 

Consumer Expenditure and Employment-Unemployment Situation in India for 2002 and 

2006-2007 (NSSO, 2003, 2008). The National Family Health Survey presented India-wide 

fuel use as a percentage of the population. To reflect spatial variation in fuel use, the raw 

data from these surveys were accessed (from the DHS Programme, U.S. Agency for 

International Development), extracted through the SPSS statistics software package and 

processed in the R programming language. This increased fuel usage data availability as the 
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number of households per 1000 households using specific fuels in Indian states and 

covered the years 1992-1993, 1998-1999, 2005-2006 and 2015-2016 (International 

Institute for Population Sciences, 1995, 2000, 2007, 2017). These were extensive datasets 

with 1992-1993, 1998-1999 and 2005-2006 surveying just under 100,000 households and 

2015-2016 around 600,000 households.  

To convert fuel use per 1000 households to a per capita consumption rate for these years 

a scaling factor was developed. It was possible to link the Household Consumption of Goods 

and Services in India and the Energy Sources of Indian Households for Cooking and Lighting 

surveys for the years 2005, 2010 and 2011. This was done using years where the number 

of users per 1000 and kg capita-1 fuel usage statistics were available, as it was possible to 

calculate the amount of fuel a primary user would use. This was achieved by multiplying 

the per capita usage for a particular fuel type by the inverse of the ratio of fuel usage in 

that state in rural or urban environments and is given in E6.2: 

 
Fuel use primary user =  Fuel usecapita  ×  

1000

NHH
 

(E6.2) 

 

where Fuel use primary user = amount of a specific fuel type that that a person who just 

burns that fuel type uses (kg 30 days-1), Fuel usecapita = per capita fuel use per 30 days (kg 

capita-1 30 days-1) and NHH = number of households per 1000 households using a particular 

fuel type. This was calculated for urban and rural scenarios in Indian states in years where 

it was possible (2005, 2010, 2011).  

The amount of fuel a primary user would use was then used to estimate the amount of fuel 

consumed per capita in years where only usage per 1000 household statistics were 

available (1993, 1994, 1999, 2002, 2006, 2007 and 2016) by rearranging E6.2. The amount 

of fuel per primary user was taken from the closest survey where data was available. In 

some earlier surveys, data were not collected for smaller states and these were either 

estimated by averages of neighbouring states, or from the nearest available usage values 

for other years for these states. NMVOC emissions for the years 1993, 1994, 1999, 2002, 

2006, 2007 and 2016 were then determined using E6.1 with the newly calculated per capita 

consumption values.  
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6.2.4. Cow dung cake consumption 

Cow dung cake consumption was only reported as number of households per 1000 in these 

surveys and the amount of cow dung cake burnt per primary user was determined based 

on the energy density compared to fuel wood. This was done using calorimetry data which 

showed that cow dung cake was 1.3-1.9 times less efficient than fuel wood (EPA, 2000; 

Gadi et al., 2012). For this reason, the amount of fuel per primary user for fuel wood in a 

state has been multiplied by 1.6 to give the equivalent amount of cow dung cake a user 

would need to burn for their cooking needs. Upper and lower estimates for cow dung cake 

consumption have been based on the range 1.3-1.9. This has been evaluated to validate 

this approach, which estimated Indian cow dung cake consumption to be in the range 25.7-

79.7 Tg yr-1 from 1993-2016. This was generally towards the lower end of consumption 

values previously reported of 35-128 Tg yr-1 for the years 2000-2001 (Habib et al., 2004). 

This was then converted to fuel use per capita in kg per user per 30 days by rearranging 

E6.2.  

6.2.5. Input to municipal solid waste 

The input to MSW was one of the hardest inputs to calculate due to lack of reliable data 

and was consequently one of the most uncertain. An estimation of NMVOCs released from 

MSW burning was attempted as there was little information available for India, where 

MSW burning is potentially a very large pollution source. The amount of MSW burnt was 

estimated using an established approach (IPCC, 2006; Wiedinmyer et al., 2014) with revised 

inputs for India based on per capita MSW generation from over 300 Indian cities (Annepu 

et al., 2012), state wise MSW collection figures (CPCB, 2013) as well as estimates of the 

amount of urban (NEERI, 2010) and rural MSW burnt (World Bank, 2012).  

Wiedinmyer et al. (2014) assessed worldwide emissions from MSW burning based on IPCC 

guidelines (IPCC, 2006). The approach used here was similar, with modifications to the 

input data which made them more specific to India. The approach split the amount of MSW 

burnt into the MSW burnt by rural and urban populations in the country. For rural 

populations this was given by: 

 WBres =  MSWpr × Prural × Bfrac,res (E6.3) 
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where Wres = MSW burnt residentially, MSWpr = per capita rural MSW generation, Prural = 

population of rural grid cell and Bfrac,res = the fraction of MSW burnt residentially. 

Per capita rural MSW generation was set at the lower limit indicated by the World Bank for 

South Asia of 0.12 kg capita-1 day-1 and evaluated in the range 0.08 kg capita-1 day-1 (Parmar 

and Pamnani, 2018) to 0.12 kg capita-1 day-1 (World Bank, 2012). The fraction of MSW burnt 

rurally was set to 0.6 which was the IPCC estimate (IPCC, 2006) and was further supported 

by a recent study which showed that only around 40% of rural MSW was collected in South 

Asia (Kaza et al., 2018). 

The fraction of MSW burnt for an urban population was estimated by the sum of two 

calculations. The first is for street MSW burning:  

 WBres =  MSWpu × Purban ×  funcollected  × Bfrac (E6.4) 

where MSWpu = per capita urban MSW generation, Purban = population of urban grid cell 

and funcollected = fraction of MSW which was not collected. The weighted per capita urban 

MSW generation was calculated by averaging per capita MSW generation statistics from 

366 Indian cities by state (Annepu et al., 2012), with calculated values given in the 

Supplementary Information S8.19. The fraction of MSW which was uncollected was 

calculated from the Central Pollution Control Board (CPCB), as the difference in amount of 

MSW generated and collected (CPCB, 2013). Urban per capita MSW generation was scaled 

to its estimated change for different years of interest (see the Supplementary Information 

S8.19).  

The second calculation was for the MSW burnt in landfill sites: 

 WBdump = MSWpu × Purban ×  fcollected × Bfrac,dump (E6.5) 

where WBdump = landfill MSW burnt and fcollected = fraction of MSW collected. The fraction 

of MSW collected came from CPCB statistics, but was reduced by 17-50% due to the 

informal recycling sector, based on very limited data from studies focussed on MSW 

recovery by the informal sector which showed 17% recovery in Delhi (Talyan et al., 2008), 

20% recovery at a landfill site in Pune (Annepu et al., 2012), 4% in Pondicherry 

(Rajamanikam et al., 2014) and up to 40-50% in Mohali (Nandy et al., 2015). This was due 

to the large contribution of the informal recycling sector to recycling in India, where waste 
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was collected by waste merchants, garbage collectors and waste pickers from highways, 

waste depots and landfill sites. This is an important consideration in India as studies have 

shown recovery of between 8.5-80 kg of material per picker per day and large cities such 

as Delhi having 80,000-100,000 pickers (Nandy et al., 2015). Bfrac,dump was given by NEERI 

who estimated that 10% of landfill MSW in Mumbai was burnt (NEERI, 2010). Bfrac,dump was 

notably lower here (0.1) than in Wiedinmyer et al. (2014) (0.6) and thus represents a 

conservative estimate of NMVOC emissions from landfill fires. Due to lack of reliable data 

in establishing Bfrac,dump, and the associated uncertainty, the sensitivity of urban landfill 

burning emissions over the range 0.1-0.6 was evaluated as part of the range given in this 

study.  

6.2.6. Input to crop residue burning 

NMVOC emissions from crop residue burning in India were estimated to evaluate the 

relative importance of different burning sources using the most up-to-date input data 

currently available (see Table 6.2). A calculation was carried out for 2011, as NMVOC 

emissions from crop-residue burning showed little year-on-year variation from 1995-2009 

(Jain et al., 2014). The residue generated from the cultivation of four main categories of 

crops was estimated. The amount of crop types produced in each state (Ministry of 

Agriculture, 2012) was collated for cereals (rice, wheat, coarse cereals, maize, jowar, bajra), 

oilseeds (ground nut, rapeseed, mustard, sun flower and 9 oilseeds), fibres (cotton, jute 

and mesta) and sugarcane. The amount burnt was calculated using India specific estimates 

of the residue to crop ratio, dry matter fraction and fraction burnt (Jain et al., 2014). 

Emissions were estimated using factors from recent studies of crop residue burning using 

PTR-ToF-MS (Stockwell et al., 2015). When the exact residue was measured (e.g. rice straw, 

wheat straw, sugarcane and millet) the correct emission factor was used. For cases where 

the exact residue was not measured, the average reported crop residue emission factor 

was used (see the Supplementary Information 8.20 for further details on inputs into crop 

residue estimate). The spatial distribution of croplands was then either indicated using 

agricultural land identified by the high-resolution 500 m NASA MODIS land use product 

reduced to 1 km2 resolution or through croplands identified at 10 km2 through evaluation 

of the distribution of agricultural lands (Ramankutty et al., 2008). 

The total amount of crop residue burnt in a state was calculated by: 
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Cropemission= 

∑ CWG × RTCR × DMF × FB × EFcrop,i
n
0

area cultivated
 

 

(E6.6) 

where Cropemission = NMVOC emitted in a state from crop residue burning (kg km2) (Ministry 

of Agriculture, 2012), CWG = mass of crop produced in state, RTCR = residue to crop ratio 

(Jain et al., 2014), DMF = dry matter fraction (Jain et al., 2014), FB = fraction of crop residue 

burnt (Jain et al., 2014), EFcrop,i = emission factor for crop species i (g kg-1), area cultivated 

= total agricultural area identified in a state from either MODIS (1 km2) or Ramankutty et 

al. (2008) (10 km2) and n = number of different crops produced in the state. 

An overview of all emission model inputs is given in the Supplementary Information 8.21.  

6.3. Results 

6.3.1. Emission model 

Figure 6.2 shows the calculated NMVOC emissions from the burning of fuel wood, cow dung 

cake, MSW, LPG, charcoal and crop residue for the year 2011. This year was chosen as the 

focus for this study, as this was a census year and had some of the best available fuel 

consumption data. In general, NMVOC emissions were lowest in the very north and north-

east region of India around the Himalayas and in the north-west due to the Thar desert, 

both areas of low population density. Detailed NMVOC emission estimates by source and 

state are given in the Supplementary Information 8.22. 

6.3.2. Fuel wood 

NMVOC emissions from fuel wood burning were estimated as 4.3 (1.0-22.3) Tg and were 

the largest due to the high number of users (600 million) across India (see Figure 6.2A). 

Emissions were significant in many cities which appeared as red dots in Figure 6.2A, as well 

as across the Indo-Gangetic Plain. The greatest emissions were in West Bengal and Kerala 

due to high population densities (1028 and 860 people km-2 respectively) and high per 

capita fuel usage (West Bengal rural 18.0 kg capita-1 per 30 days-1 and urban 3.4 kg capita-

1 per 30 days-1, Kerala rural 32.4 kg capita-1 per 30 days-1 urban 20.58 kg capita-1 per 30 

days-1).  
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Figure 6.2. Spatial distribution and emission of NMVOCs in 2011 from various burning sources in 

India. The declination of international borders on this map are proximate and must not be 

considered authoritative. 
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6.3.3. Cow dung cake 

Cow dung cake burning represented a significant NMVOC source, with emissions of 2.8 

(1.3-4.4) Tg localised to the Indo-Gangetic Plain (see Figure 6.2B). Cow dung cakes are often 

considered as a co-product of cattle production (Gupta et al., 2016) and are used as a 

sustainable fuel in several regions, partly to alleviate demand on local fuel wood supplies. 

Cow dung cakes remained an important fuel source in northern states, with high per capita 

usage along the Indo-Gangetic plain in 2011 with 33.4% of rural households using cow dung 

cakes as a primary fuel source in Uttar Pradesh, 30.3% in Punjab, 24.4% in Haryana, 20.8% 

in Bihar and 10.6% in Madhya Pradesh (NSSO, 2015b).  

6.3.4. Municipal solid waste 

Figure 6.2C shows NMVOC emissions from the burning of MSW which were high from both 

rural and urban areas. In total, MSW burning in India was estimated to release 3.0 (1.6-6.9) 

Tg of NMVOCs in 2011. Emissions from combustion of MSW were significant, particularly 

to urban areas due to these being regions of high population density.  

6.3.5. Charcoal/coal 

NMVOC emissions from charcoal (0.9, 0.4-1.3 Gg) and coal (4.8, 1.7-5.9 Gg) remained low 

due to low per capita usage and a low emission factor. Figure 6.2D shows emissions from 

charcoal. Coal burning was only noticeable to West Bengal (see the Supplementary 

Information 8.23). 

6.3.6. LPG 

NMVOC emissions from LPG were low at 71 (24-123) Gg due to a low emission factor, high 

energy density and low per capita fuel usage (see Figure 6.2E). Emissions were principally 

in urban areas, such as New Delhi, which had higher per capita LPG usage. This source 

mainly released propane and butanes, which have been shown to be significantly less toxic 

and reactive with the OH radical than other solid fuel sources studied here (see chapter 5). 

6.3.7. Crop residue 

Crop residue burning was estimated to emit 3.0 (1.4-4.5) Tg of NMVOCs in 2011. Figure 

6.2F shows emissions from crop residue burning visualised using the distribution of 

geographic lands (Ramankutty et al., 2008). Emissions from agricultural crop burning were 
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significant in the north of India and were driven by cereal production in Punjab and Haryana 

and sugarcane/cereal production in Uttar Pradesh and Bihar. The most significant 

emissions from Madhya Pradesh and Rajasthan were from the burning of oilseeds crops. 

Emissions from Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu were principally 

from burning of sugarcane residue.  

6.3.8. PAHs 

To better understand the scale and sources of PAH emissions in India, the emissions model 

was used to evaluate PAH emissions from burning sources. The spatial distribution of 

emissions by source type was similar to that displayed in Figure 6.2 for NMVOCs. Detailed 

PAH emission estimates by source and state are given in the Supplementary Information 

8.25. 

Figure 6.3 shows PAH emissions from the combustion of fuel wood, cow dung cake, MSW, 

charcoal and LPG in India in 2011. Total gas and particle phase PAH emissions were 

estimated to be 121 (52-326) Gg, from the burning of fuel wood (57 Gg, 12-209 Gg), cow 

dung cake (27 Gg, 18-38 Gg), LPG (0.7 Gg), charcoal (0.03 Gg) and MSW (36 Gg, 21-79 Gg). 

A previous estimate of PAH emissions from India in 2004 was 90 Gg yr-1 (Zhang and Tao, 

2009), with ~ 80 Gg yr-1 from biofuel burning. This estimate was calculated based on fuel 

use indicated by the International Energy Agency (IEA), which listed the amount of biofuel 

used as a single category. The proportions of straw, cow dung cake and fuel wood were 

indicated by the Food and Agriculture organisation (FAO) of the UN and PAH emission 

factors were based on those for inventories in China, except for cow dung cake which was 

taken from relevant literature. A different study for 2007 estimated emissions of 67 Gg yr-

1, with 59 Gg yr-1 from residential combustion  (Shen et al., 2013). This study followed a 

similar approach for biofuel consumption with fuel consumption from the IEA and the 

ratios of biofuel use from the FAO, with an updated PAH emission database using 

country/region specific PAH emission factors. The total PAH emission of fuel wood and cow 

dung cake in 2011 (85 Gg) was slightly larger than these two previous studies, partly 

explained by the inclusion of additional PAHs such as methyl and dimethylnaphthalene 

isomers and differences in fuel use between these years.  
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Figure 6.3. PAH emissions in India from combustion of fuel wood, cow dung cake, MSW, charcoal 

and LPG burning in 2011. 

Total PAH emissions in this study, as well as from Zhang and Tao (2009) and Shen et al. 

(2013), were considerably larger than those estimated by Gadi et al. (2012) of 17.3 Gg yr-1 

(12.3 Gg yr-1 from fuel wood and 3.7 Gg yr-1 from cow dung cake) and that estimated by 

Singh et al. (2013) of 23.8 Gg yr-1 (13.4 Gg yr-1 from fuel wood and 6.3 Gg yr-1 from cow dung 

cake). The inefficient combustion of MSW represented a considerable additional PAH 

source in India, which was likely to have significant impacts on human health. 

Crop residue burning was also likely a large source of PAHs in India, which is not accounted 

for in this study. The mean emission factors of NMVOCs measured from the combustion of 

crop residues by Stockwell et al. (2015) and chapter 4 were comparable, despite the crop 

types being different. The emission factors of PAHs from wheat, rice and sugar cane were 

not measured in chapter 3, however, application of the emission factor for crop residues 

from this study would suggest that agricultural crop residue burning released an additional 

67 (20-112) Gg of PAHs in 2011 across India.  
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6.4. Discussion of uncertainties 

The generalisation of the laboratory combustion experiments in this study to the burning 

practices of a country with over 1 billion residents was likely to introduce significant 

uncertainties in the NMVOC emission estimates. Table 6.3 shows the fuel consumption 

values used in this study, the estimated NMVOC emissions and their uncertainties. Table 

6.3 also compares fuel usage values from the limited available literature and previous 

NMVOC emission estimates from burning sources. Some general uncertainties existed due 

to the approach used here, as well as uncertainties which were specific to individual 

combustion sources. This significantly increased the uncertainties in emission estimates of 

specific combustion sources.  

Table 6.3. Comparison of fuel consumption and NMVOC estimates in this study with literature.  

 
 

2011 fuel use 
this study/ Tg 

2011 NMVOC 
estimate this 

study / Tg 

Literature use 
/ Tg 

NMVOC estimate 
literature / Tg 

Year Reference 

Fuel wood 230 4.3 (1.0-22.3) 220 
271 
169 
302 
265 

281 (192-409) 
316 

154 b 

256 

- 
- 
- 
- 
- 
- 
- 

1.1 (0.6-1.7) 
- 

1985 
1990 
1990 
1996 
1996 
2000 
2000 
2005 
2007 

(Yevich and Logan, 2003) 
(Streets and Waldhoff, 1998) 

(Smith et al., 2000) 
(Reddy and Venkataraman, 2002) 

(Bond et al., 2004) 
(Habib et al., 2004) 

(Streets et al., 2003) 
(Venkataraman et al., 2010) 

TEDDY 2007 (Singh et al., 2013) 

Cow dung cake 45 (36.3-53.4) 2.8 (1.3-4.4) 93 
124 
54 

121 
128 

62 (35-128)  
105 

- 
106 

- 
- 
- 
- 
- 
- 
- 

1.8 
- 

1985 
1990 
1990 
1996 
1996 
2000 
2000 
2005 
2007 

Yevich and Logan, 2003) 
(Streets and Waldhoff, 1998) 

(Smith et al., 2000) 
(Reddy and Venkataraman, 2002) 

(Bond et al., 2004) 
(Habib et al., 2004) 

(Streets et al., 2003) 
(Venkataraman et al., 2010) 

TEDDY 2007 (Singh et al., 2013) 

MSW 35 (28-56) 3.0 (1.6-6.9) 81.4 
 
 

68 (45-105) 

1.8 
0.1 

0.01 
1.7 (1.4-2.1) 

2010 
2011 
2011 
2015 

(Wiedinmyer et al., 2014) 
EDGAR 5.0 
REAS 3.2 

(Sharma et al., 2019) 

Agricultural crop 
residue on fields 

83.8 
 
 
 
 
 

 

3.0 (1.4-4.5) 107.3 
 
 
 
 
 

93 

1.5 
1.7 (0.6-4.0) 

0.7 
1.8 (0.6-4.1) 

0.3 
 
 

0.6 

2008 
2010 
2010 
2015 
1997-
2009 

- 
2011 

(Jain et al., 2014) 
(Pandey et al., 2014) 
(Sharma et al., 2015) 
(Pandey et al., 2014) 

(Pandey and Sahu, 2014) 
 

(Ministry of Agriculture, 2014) 
EDGAR 5.0 

LPG 12.5 71 (24-123) ×10-3 - 
- 
- 

0.2 
0.2 (0.1-0.4) a 
0.3 (0.2-0.5) a 

2005 
2010 
2015 

(Venkataraman et al., 2010) 
(Pandey et al., 2014) 
(Pandey et al., 2014) 

Coal 1.3 4.8 (1.7-5.9) ×10-3     

Charcoal 0.2 0.9 (0.4-1.3) ×10-3     

Solid fuel total 276.5 (267.8-
284.6) 

7.1 (2.3-26.7)  
 

450 
 

4.9 (1.6-11.6) 
4.9 (1.6-11.6) 

5.9 
4.2 
5.9 

2010 
2015 
2010 
2011 
2011 

(Pandey et al., 2014) 
(Pandey et al., 2014) 
(Sharma et al., 2015) 

EDGAR 5.0 
REAS 3.2 

 

a Also includes estimate of kerosene use; b also includes charcoal use. 
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Uncertainties were likely to exist in the fuel consumption data utilised in this study, but 

these were not reported alongside official data and it was therefore not possible to account 

for this in the emission model. Furthermore, fuel consumption data was reported at a state-

wide level, a lower resolution than used in this model. As a result, sharp distinctions were 

seen between neighbouring states which had very different reported levels of usage of a 

particular fuel type. This effect was particularly pronounced for emission estimates from 

cow dung cake and on-field crop residue combustion. The real distribution of emissions 

was likely to show a more gradual transition across state boundaries.  

The representativeness of this initial laboratory data to real-world conditions potentially 

lead to large uncertainties in these emission estimates. The modified combustion efficiency 

was not measured in chapters 3 and 4, despite the likely large impact on NMVOC emission. 

A recent study suggested that emission factors from burning could vary by almost a factor 

of 2 if fuel was combusted in chulha or angithi stoves (Fleming et al., 2018). Little 

information was available about the spatial distribution of different types of cook stove 

used across India. Future fuel use statistics should include this, with studies examining the 

impact that this has on NMVOC emissions.  

The emission factors measured in chapter 4 included speciation that on average 

represented 94% of the total measured NMVOC emissions. The total measured emission 

factor reflected the sum of gas-phase organic emissions detected using multiple gas-

chromatography instruments and the PTR-ToF-MS. This also included the unspeciated 

fraction measured on the PTR-ToF-MS. It did not include organic emissions which were not 

measured by these techniques. For PAH emission estimates, only 21 species were 

measured. This highlights a more general uncertainty of bottom-up emission estimates as 

they may underestimate emissions as not all released species may be detected using the 

measurement techniques deployed. This also complicates comparisons between estimates 

from different emission inventories as they may not all include the same level of detail.  

Varying climates in different regions of India, with different biomass varieties and moisture 

contents, also increased uncertainties in emission estimates at a countrywide level. This 

was because small variations, such as seasonal changes to humidity, may have large 

impacts on burning efficiency and in turn NMVOC emission. Despite this, the methods used 

in chapters 3 and 4 were designed to replicate local practices in Delhi for sample collection, 



179 
 

storage and combustion. Furthermore, municipal solid waste samples were collected from 

landfill sites, stored in sealed bags and combusted within 24 h. These approaches were 

designed to simulate real-world combustion conditions to ensure that the emission factors 

were reflective of local residential fuel use. 

6.4.1. Fuel wood 

The NMVOC emission factor used for fuel wood came from a large dataset based on 51 

measurements. The large number of measurements should significantly increase the 

representativeness of the mean emission factor used for fuel wood emission estimates in 

India during this study. Despite this, the emission factors measured from fuel woods were 

highly variable, by over a factor of 20 from around 4-97 g kg-1, even under repeatable 

laboratory conditions. The species of fuel wood and the composition of the sample burnt 

will vary considerably across India and will include species not measured here from 

different climatic conditions. This significantly increased the uncertainty in the NMVOC 

emission estimate, which was calculated for 2011 to be in the range 1.0-22.3 Tg.  

6.4.2. Cow dung cake 

The uncertainty in NMVOC emissions from cow dung cake combustion included uncertainty 

in the calorific conversion used to estimate fuel consumption, uncertainty in the emission 

factor and different reported levels of fuel usage. The uncertainty in the calorific conversion 

increased the uncertainty range by around 20%. This was reflected in the range of 

estimated cow dung cake consumption in India, which was 36.3-53.4 Tg in 2011.  

Eight measurements were made of NMVOC emissions from cow dung cake combustion, 

with emission factors varying over a smaller range than for fuel wood from approximately 

35-83 g kg-1. The combined uncertainties in the calorific conversion and emission factor 

resulted in an uncertainty range of NMVOC emission estimates from 1.3-4.4 Tg in 2011, 

which was notably smaller than for fuel wood combustion.  

One of the largest uncertainties in the NMVOC emission estimate from cow dung cake 

combustion was the different levels of fuel consumption reported by different surveys and 

was not accounted for in this study. Different studies report varying levels of cow dung cake 

usage in India between 5-15% of the population (EPA, 2000; International Institute for 
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Population Sciences, 2007; NSSO, 2012a). This study estimated cow dung cake fuel 

consumption from 1993-2016 to be in the range 25.7-79.7 Tg. This was smaller than many 

previous estimates of Indian dung consumption (see Table 6.3). The cow dung cake fuel 

usage inputs used in this study were generally closer to 5-10% of the population and thus 

represented a more conservative case study for NMVOC emissions from cow dung cake 

combustion across India. This study may therefore underestimate the potential impact of 

cow dung cake combustion in India and emphasised the need for better official reporting 

of cow dung cake fuel usage. The estimated emissions from cow dung cake combustion 

should be refined in future studies through collection of accurate per capita cow dung cake 

consumption data.  

6.4.3. Municipal solid waste 

The NMVOC emission estimate from MSW burning was one of the most uncertain, with 

large and potentially unquantifiable uncertainties in parts of the calculation. These 

included the low number of emission factor measurements, the high emission factor 

applied, uncertainty in the total mass of MSW generated in India, uncertainty in the amount 

of MSW recycled and uncertainty in the amount of MSW burnt in rural and urban 

environments. This emission estimate was presented as a discussion point, which should 

be treated with caution and could clearly be refined and improved as newer and better 

data becomes available.  

The emission factors for MSW combustion used in this study varied from 56-119 g kg-1. 

However, this was only measured from three MSW samples, leading to large uncertainty 

as domestic, commercial, and industrial wastes will vary largely in composition. However, 

this still represented one of the best available datasets for examining NMVOC emissions 

from MSW burning in India, as most current MSW burning datasets are modest and contain 

only a few samples. For comparison, Stockwell et al. (2015) measured an emission factor 

of ~ 9 g kg-1 from two combustion experiments of daily mixed waste and plastic bags 

collected at the US fire services laboratory using PTR-ToF-MS. A further study by Stockwell 

et al. (2016) measured a mean NMVOC emission factor of ~ 35 g kg-1 from 6 mixed waste 

fires and 3 segregated waste fires in Nepal using GC with -FID, -MS and electron capture 

detectors. A more recent study by Sharma et al. (2019) used an emission factor of ~ 25 g 
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kg-1 from measurements of 5 MSW fires measured in India in Mohali and a surrounding 

village which sampled fires from 2 landfill sites, household waste, horticultural and 

biomedical waste, and vegetable market waste. MSW combustion may occur under both 

flaming and smouldering conditions in backyards, landfill sites and incinerators. All of these 

are likely to have quite different combustion chemistry to the laboratory experiments and 

consequently lead to varying levels of emission, which were unaccounted for in this study. 

Jayarathne et al. (2018) suggested that emissions of particulate matter varied by around 

an order of magnitude and were dependent on the moisture content of samples. This may 

also be true for NMVOCs. Whilst the dataset used in this study for MSW only contained 3 

measurements, all current MSW burning datasets contain few samples, which considerably 

increased the uncertainty and was one of the main present issues with NMVOC budget 

estimates from MSW combustion. 

Lack of data and inconsistencies in existing data resulted in difficulties in establishing the 

amount of MSW generated in India and considerably increased the uncertainty in this 

estimate. Officially an average 46.5 Tg of MSW was generated yearly in India from 2009-

2012 (CPCB, 2013). The estimate of MSW generated in 2011 in India for this study was 106 

Tg, which was slightly less than the 144 Tg indicated by Wiedinmyer et al. (2014) for 2010 

but approximately double the official estimate. Despite this, some studies have suggested 

that the amount of MSW produced was larger than this, with some estimates which 

indicated it to be over 200 Tg (Kaza et al., 2018; Sharma et al., 2019). This could potentially 

double the emission estimate given in this study and was not accounted for here.  

The urban scenario in this study resulted in the generation of 69 Tg of MSW, which was 

similar to previous reports which estimated urban India to generate 61-62 Tg of MSW in 

2010-2011 (Hanrahan et al., 2006; Planning Commission, 2014). It was estimated that 9-27 

Tg of the urban MSW generated in 2011 was recycled, and this was comparable to that 

previously reported of 18-25 Tg (Nandy et al., 2015). It was estimated that 10-60% of the 

MSW which was collected and sent to landfill was burnt. This resulted in 13-34 Tg of MSW 

burnt and resulted in NMVOC emissions of 1.2-3.0 Tg in 2011. Further uncertainty existed 

in the spatial distribution of urban emissions, due to larger urban centres producing more 

MSW than smaller ones and MSW collection being more efficient in larger urban centres. 

Direct comparison was made for street waste burning in Delhi with the bottom-up estimate 
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reported by Nagpur et al. (2015) of 196-246 tons day-1 burnt. The approach used in this 

study estimated ~ factor 2 greater mass of street waste burnt at 511 tons day-1 for Delhi.  

The rural scenario resulted in generation of 37 (25-37) Tg of MSW, of which 22 (15-22) Tg 

was burnt and released 2.0 Tg of NMVOCs. The fraction of MSW burnt in landfill remained 

very uncertain due to limited inputs, and the size of the NMVOC source from MSW 

combustion could be better assessed with new surveys conducted on the amount of MSW 

in landfill sites which was burnt and how this varied spatially across India. The approach 

used in this study had a lower amount of MSW burnt compared to Wiedinmyer et al. (2014) 

and Sharma et al. (2019), but the larger emission factor resulted in greater emissions of 

NMVOCs.  

6.4.4. Crop residue 

Uncertainty in the estimate of NMVOC emissions from crop residue burning on fields was 

related to the timing as well as spatial distribution of emissions, uncertainties in emission 

factors and the measurements not being from samples collected from fields in India.  

The spatial distribution of emissions from crop residue burning on fields was like Jain et al. 

(2014) with emissions from cereals impacting the northern states, oilseeds to Rajasthan 

and Madhya Pradesh, fibre to Maharashtra, Gujarat and Andhra Pradesh and sugarcane to 

Uttar Pradesh, Karnataka and Tamil Nadu. Despite this, uncertainty existed in the timing 

and spatial distribution of emissions. Emissions from crop residue burning on fields will 

show large seasonality, which was not accounted for here and could potentially be inferred 

in future studies using satellite data (e.g., NASA VIIRS fire counts) to provide information 

on the timing of data. Emissions will be predominantly during the pre-monsoon season for 

rabi crops (Apr-May) and during the post-monsoon season for kharif crops (Oct-Nov) 

(Gopal, 2014). Agricultural land was identified using both MODIS land use data and through 

previously published data which evaluated the distribution of agricultural lands 

(Ramankutty et al., 2008). A better understanding of the true impact of emissions from 

crop residue burning on fields would require data about the relative distribution of fires on 

agricultural lands. 

Jain et al. (2014) used the emission factors from a review (Andreae and Merlet, 2001). This 

study used recently measured emission factors using PTR-ToF-MS, a technique which has 
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been shown to measure a far greater amount of emissions from biomass burning than 

conventional techniques such as GC, due to measurement of additional species such as 

small oxygenates, phenolics and furanics. The emission factors used came from a dataset 

of 19 experiments and ranged from 4-69 g kg-1. When the exact residue was measured (e.g., 

rice straw, wheat straw, sugarcane and millet) the emission factor was used, but for crops 

which were less widely produced, emission factors were not measured and the average 

crop value calculated by Stockwell et al. (2015) was used. This generalisation of emission 

factors measured by PTR-ToF-MS, and lack of measurements of some residues (e.g., 

sugarcane), led to uncertainty in the overall estimation. Notably these samples were not 

from India, with rice straw samples from China and Taiwan and millet from Ghana. 

Uncertainty was largest for generalised emission factors applied to crops with lower yields 

as well as millet and sugarcane, as these were only measured from two burns. However, 

high emissions from sugarcane were recorded previously using FTIR (Stockwell et al., 2014), 

which helped to validate the higher emission factor used in this study. Measurement of 

emission factors from combustion of crop residues collected from fields in India, as well as 

improved understanding of the quantity of crop residues burnt on fields, is required to 

better evaluate this source. 

6.4.5. PAHs 

The estimate of PAH emissions from cow dung cake and MSW combustion remained the 

most uncertain and requires further study to fully evaluate their impact. MSW and cow 

dung cake samples in chapter 3 had high emission factors, likely due to the low modified 

combustion efficiencies of the burns. The emission factor for MSW and cow dung cake 

combustion was based on only three samples and a better assessment is needed, as the 

effect of composition and moisture content of fuels on NMVOC emission was not 

accounted for in this study. In addition, this study quantified 21 major PAHs; however, the 

total was likely larger than predicted, as around 400 PAHs were shown to be released from 

cow dung cake in chapter 3. 

 



184 
 

6.5. Inventory comparison 

Figure 6.4A shows the spatial distribution of the total NMVOC emissions estimated as part 

of this study from burning sources in India during 2011 (13.2 Tg). Residential combustion 

represented ~ 53% of total emissions with fuel wood and cow dung cake respectively 

contributing ~ 32% and ~ 21% of total NMVOC emissions (see Figure 6.5A). MSW and crop 

residue burning on fields each contributed ~ 23% to total NMVOC emissions.  

The inventory developed for this study in Figure 6.4A was compared to inventories which 

were part of the Emission Database for Global Atmospheric Research (EDGAR 5.0, see 

Figure 6.4B) and the Regional Emission inventory in ASia (REAS 3.2, see Figure 6.4C). The 

estimated emissions from these inventories for residential combustion in the year 2011 

(EDGAR 5.0 = 4.2 Tg, REAS 3.2 = 5.9 Tg, see Table 6.3) were of similar magnitude to this 

study of 7.1 (2.3-26.7) Tg. The larger emissions from residential combustion estimated in 

this study were likely driven by the larger NMVOC emission factors used as part of this 

study, which measured a greater number of gas-phase organic species. This study 

highlighted a potentially larger NMVOC source from the combustion of crop residue on 

fields of 3.0 (1.4-4.5) Tg when compared to EDGAR 5.0 of 0.6 Tg. It also highlighted that the 

waste sector (3.0 (1.6-6.9) Tg in 2011) may be responsible for a significantly greater NMVOC 

emission than estimated by EDGAR 5.0 (0.1 Tg) and REAS 3.2 (0.01 Tg).  

One of the most detailed current India specific inventories focussed on the year 2010 and 

used a 36 km × 36 km grid. This estimated NMVOC emissions of 5.9 Tg yr-1 from residential 

combustion (Sharma et al., 2015). The emission factor for fuel wood (15.9 g kg-1) used by 

Sharma et al. (2015) was comparable to our study (18.7 g kg-1), however, that for cow dung 

cake (10.4 g kg-1) was significantly lower compared to the present study (62.0 g kg-1). 

Sharma et al. (2015) examined the percentage fuel use in urban and rural environments in 

India and used emission factors from comparable studies. Whilst the estimate was 

relatively close to that of this study (see Table 6.4, 6.2 Tg yr-1 from fuel wood and cow dung 

cake combustion in 2010), the scale of NMVOC emissions from cow dung cake and the 

countrywide spatial distribution of emissions were lost. Table 6.4 highlights how these 

NMVOC emission estimates may vary from year to year through the detailed use of 

different fuel use inputs. 
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A) This study  B) EDGAR 5.0 C) REAS 3.2 

   
VOC emission / kg 1km-2 

 
Figure 6.4. Comparison of NMVOC emissions from solid fuel combustion sources from 2011 in A = this study, B = EDGAR 5.0 and C = REAS 3.2, with data taken 
from Crippa et al, (2019) and Kurokawa and Ohara, (2020). Plots for EDGAR 3.2 and REAS 3.2 by individual source sector are given in the Supplementary 
Information S8.26. The declination of international borders on this map are proximate and must not be considered authoritative. 

 

Figure 6.5. Breakdown of contributions of different burning sources to emissions in 2011 where A = relative contributions of different burning sources to total 

burning related NMVOC emissions, B = relative proportion of number of residential fuel users for fuel wood, cow dung cake and LPG and C = relative proportion 

of fuel wood, cow dung cake and LPG to residential combustion related NMVOC emissions.
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Table 6.4. NMVOC pollution (Tg yr-1) from various fuel types in India. NMVOC emissions from 
charcoal were omitted and are in the range 2-6×10-3 Tg yr-1. NMVOC emissions from coal were 
omitted and decreased from 11×10-3 Tg in 1993 to 4×10-3 Tg in 2016.  

Year Wood Dung LPG MSW Crop Total 

1993 3.8 (0.9-19.9) 2.5 (0.9-3.2) 0.02 (0.006-0.03) 2.1 (1.0-4.6) - 8.4 (2.8-27.7) 

1994 3.9 (0.9-20.0) 2.5 (0.9-3.2) 0.02 (0.006-0.03) 2.1 (1.1-4.7) - 8.5 (2.9-27.9) 

1999 3.9 (0.9-20.4) 1.9 (0.7-2.4) 0.03 (0.01-0.06) 2.3 (1.2-5.3) - 8.1 (2.8-28.2) 

2002 4.0 (0.9-21.3) 2.6 (1.0-3.4) 0.04 (0.01-0.07) 2.4 (1.3-5.6) - 9.0 (3.2-30.4) 

2005 4.2 (1.0-21.6) 2.6 (1.2-4.1) 0.05 (0.02-0.09) 2.7 (1.4-6.2) - 9.6 (3.6-32.0) 

2006 3.6 (0.8-18.6) 4.1 (1.9-6.5) 0.05 (0.02-0.09) 2.8 (1.4-6.3) - 10.6 (4.1-31.5) 

2007 4.3 (1.0-22.3) 2.4 (1.1-3.8) 0.06 (0.02-0.09) 2.8 (1.4-6.4) - 9.6 (3.5-32.6) 

2010 4.4 (1.0-22.7) 1.9 (0.9-3.1) 0.07 (0.02-0.11) 3.0 (1.5-6.7) - 9.4 (3.4-32.6) 

2011 4.3 (0.9-22.3) 2.8 (1.3-4.4) 0.07 (0.02-0.12) 3.0 (1.6-6.9) 3.0 (1.4-4.5) 13.2 (3.8-33.7) a 

2016 4.0 (0.9-20.5) 3.1 (1.4-4.9) 0.09 (0.03-0.16) 3.3 (1.7-7.5) - 10.5 (4.0-33.1) 

a Includes estimate from crop residue burning on fields in India in 2011. 

This study also suggested a significant MSW burning source, often omitted from 

inventories, but which was calculated to represent ~ 23% of total NMVOC emissions from 

burning. The estimate of NMVOCs from burning in this study was larger than two previous 

estimates. Wiedinmyer et al. (2014) estimated NMVOC emissions of 1.8 Tg yr-1 from open 

MSW burning for 2010 and Sharma et al. (2019) estimated emissions of 1.4-2 Tg yr-1 for 59 

NMVOCs in 2015. The larger NMVOC emission estimate in this study was due to 

measurement of a larger emission factor, partly driven by the inclusion of many additional 

NMVOCs. The NMVOC emission factor in this study was notably large and underlines the 

need for more detailed studies of NMVOC emissions from a greater number of MSW 

burning samples to truly understand the potential impact of this source.  

The estimated total NMVOC emission from crop residue burning on fields for 2011 in this 

study was 3 Tg, around twice that estimated previously for 2008-2009 by Jain et al. (2014) 

of ~ 1.5 Tg. This was principally due to greater sugarcane production in this year and larger 

emission factors from PTR-ToF-MS studies of crop residue burning capturing a greater 

amount of NMVOC emissions. However, a need was identified for better characterisation 

of crop residues specifically burnt in India using these techniques.  

Table 6.5 shows estimated emissions from transport, industry, solvents and power 

generation from various studies for 2008, 2010 and 2015. The emissions from domestic 

solid-fuel combustion estimated in this study were significantly larger than those at the 

countrywide level and thus underlined the significant role that solid-fuel combustion 

sources were likely to have on the high levels of ozone and SOA pollution observed in India.  
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Table 6.5. Estimated NMVOC emissions in India from literature for transport, industry, solvent and 
power generation (Tg yr-1). 

 Year Transport Industry Solvent Power 

REAS 2.1 Kurokawa et al. (2013) 2008 5.6 2.1 1.1 - 

Sharma et al. (2015) 2010 1.2 0.2 1.4 0.08 

Sadavarte and Venkataraman (2014) 2015 2.8 1.8 - 0.10 

EDGAR 5.0 2015 1.6 2.9 2.4 0.08 

 

6.6. Impact of selective source reduction 

Cow dung cake combustion represented only 6-14% of total fuel use in India by number of 

users when considering fuel wood, cow dung cake, LPG, coal and charcoal, but was 

responsible for ~ 27-53% of total NMVOC emissions from these residential combustion 

sources (see Figure 6.5A-C). This significantly increased NMVOC emissions across the Indo-

Gangetic Plain. NMVOC emissions from cow dung cake combustion were highly sensitive 

to small changes in consumption. An interesting case was 2006, which had approximately 

540 million fuel wood and 140 million cow dung cake users. Table 6.4 shows that the 

NMVOC emissions from cow dung cake (4.1 Tg) exceeded those of fuel wood (3.6 Tg) and 

demonstrated that a relatively small number of users burning cow dung cakes could have 

a disproportionately large impact on total NMVOC emission. Despite this, no factor in 

isolation could resolve the complex emissions of NMVOCs from burning sources in India, 

with multiple mitigation strategies required to target each of these different sources.  

The emission model was used to evaluate the impact of potential emission reduction 

strategies. Two case studies were considered which aimed at 50% and 75% reductions in 

the total mass of NMVOCs released in 2011 (see Figure 6.6). Sources were carefully 

evaluated, with consideration given to their benefit to society as well as their emission 

factors. Combustion of cow dung cake was a highly polluting fuel source, with potentially 

large NMVOC emission reductions through widespread decrease in use. Burning of MSW 

and crop residues assisted in disposal, and crop residue combustion could help with soil 

fertility. Fuel wood provided the primary energy source for cooking and heating for around 

600 million people and complete conversion to LPG may not be a viable NMVOC reduction 

strategy. For this reason, the 50% emission reduction strategy was focussed around 

preventing cow dung cake combustion and limiting the impacts of crop residue burning on 
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fields and MSW burning. It should be noted that policy interventions aimed at crop residue 

burning have already begun to be implemented (Bhuvaneshwari et al., 2019; Kaushal, 

2020). 

Figure 6.6A shows the impact of this 50% reduction in total NMVOC emissions, achieved 

through the complete conversion of cow dung cake users to LPG and a 65 % reduction in 

emissions from agricultural crop residue burning on fields and MSW waste combustion. 

This impact was significant, with NMVOC emissions from India in 2011 reduced to 6.5 (2.0-

26.4) Tg, with only a small increase in LPG emissions to 90 (30-154) Gg. 

The second case study required more significant reductions of 80% in agricultural crop 

residue burnt on fields and MSW burning, complete conversion of cow dung cake users to 

LPG and 55% conversion of residential fuel wood use to LPG (see Figure 6.6B). This resulted 

in NMVOC emissions of 3.3 (1.1-12.5) Tg in 2011, with LPG combustion emissions that only 

increased to 135 (45-233) Gg. 

A)            50 % NMVOC reduction B)              75 %s NMVOC reduction 

  
VOC emission / kg 1km-2 

 
Figure 6.6. Effect of selective source control on total NMVOC emissions in 2011 with A = 50% 
reduction in NMVOC emissions achieved by complete replacement of cow dung cake burning with 
LPG and 65% reductions in the quantity of crop residues burnt on fields and MSW burnt and B = 
75% reduction in NMVOC emissions achieved by complete replacement of cow dung cake burning 
with LPG, conversion of 55% of residential fuel wood use to LPG and 80 % reductions in the quantity 
of crop residues and MSW burnt. The declination of international borders on this map are 
proximate and must not be considered authoritative. 
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6.7. Evaluation of LPG uptake 

Current NMVOC emission reduction policy in India is focussed on the replacement of solid 

fuels with LPG (Gould and Urpelainen, 2018). Recent government initiatives have included 

the Pradhan Mantri Ujjwala Yojana and Pratyaksh Hanstantrit Labh schemes (IEA, 2020). 

Figure 6.1 shows that from 1993 to 2016 there were around 400 million new Indian LPG 

users, whilst levels of other fuel usage remained relatively constant. This policy of increased 

LPG uptake was calculated to only increase NMVOC emissions from 19 Gg in 1993 to 94 Gg 

in 2016 (see Table 6.4). 

The effect of this policy was evaluated within the emission model, compared to these 400 

million new LPG users burning solid fuels. This was achieved by comparing total NMVOC 

emissions in 2016 to a scenario where the proportion of LPG usage had not increased from 

the 1993 level. Whilst total emissions from solid fuel combustion in India remained high 

due to the large numbers of users, the policy of increased LPG uptake was estimated to 

have prevented NMVOC emissions of 2.9 (0.7-14.7) Tg by 2016 compared to these new 

users burning solid fuels.  

6.8. Conclusions 

This study compiled recently measured emission factors and fuel consumption data to 

evaluate the magnitude and spatial distribution of NMVOC emissions from different solid 

fuel combustion sources across India. This was achieved by producing high-spatial 

resolution emission inventories, which addressed the yearly magnitude and spatial 

distribution of emissions. This showed the relative contributions of fuel wood (32%), cow 

dung cake (21%), municipal solid waste (23%), agricultural crop residue on fields (23%), 

charcoal (<1%), coal (<1%) and LPG (<1%) to burning related NMVOC emissions of 13 (5-38) 

Tg in 2011 in India. Certain sources, such as the combustion of fuel wood and cow dung 

cake for cooking, will remain relatively constant throughout the year. Combustion of fuel 

wood for heating and lighting will however be higher during winter months. Other burning 

sources, such as agricultural crop residue burning, will show large seasonality and occur 

predominantly during the kharif (Apr-May) and rabi (Oct-Nov) crop burning seasons. This 

was not accounted for in these emission inventories and means that these sources may 

have a disproportionally large impact on emissions during these seasons.  
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Small oxygenated, phenolic and furanic species represented half to three quarters of total 

emissions from the solid fuel combustion sources in this study. Better understanding of the 

chemistry of phenolic and furanic compounds is essential to further understand the impact 

of these reactive chemical species on air quality in developing regions, where burning is a 

large air-pollution source.  

This study showed that cow dung cake was a disproportionally high NMVOC emission fuel 

and was responsible for a high proportion of total residential combustion related NMVOC 

emissions, particularly across the Indo-Gangetic Plain. This study also evaluated current 

emission reduction policies from 1993-2016, which incentivised LPG uptake, and were 

predicted to prevent emissions of almost 3 Tg of NMVOCs a year by 2016. Despite this, total 

NMVOC emissions were here calculated to increase by over 2 Tg over this period, 

highlighting the limits of this policy in the face of rapid population expansion.  

For successful future net NMVOC emission reduction, policy should focus on replacement 

of solid fuels with LPG or other low emission fuels at a rate faster than the increase in 

population. Emission reduction from residential combustion can be accelerated by 

selectively replacing cow dung cake fuel use with LPG. This will lead to a three to four times 

greater reduction in NMVOC emissions per user compared to each fuel wood user replaced. 

In addition, countrywide measures are required to prevent the burning of agricultural crop 

residues on fields and of MSW to reduce the significant NMVOC emissions from these 

source categories.   
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Chapter 7 

7. Conclusions and future work 
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7.1. Conclusions 

This thesis examined the influence of different NMVOC sources in India. A detailed study 

of urban air quality in megacity Delhi was carried out through a suite of ambient NMVOC 

concentration measurements made during pre- and post-monsoon seasons in 2018. This 

was complemented by an extremely detailed dataset of NMVOC emission factors made of 

a range of north Indian solid fuel combustion sources. Results of the burning study were 

used to better understand the volatility distribution of organic emissions from biomass 

burning sources. They were also used to assess the implications of burning emissions across 

India, which potentially have a large impact on both rural and urban environments.  

Measurements of a range of C2-C14 NMVOCs were used to evaluate the relative 

contributions of different NMVOC sources to ambient concentrations in Delhi. Additional 

species were quantified, which were found to be present in ambient samples, such as 12 

highly reactive monoterpenes. The results of this study are interesting, because despite 

biomass burning being a large NMVOC source in India, urban concentrations were still 

found to be predominantly from petrol, diesel, and LPG sources. The results of this study 

are well supported by recent literature and suggest that to achieve meaningful reduction 

of ambient concentrations of NMVOCs in Delhi, emissions reduction strategies must focus 

on limiting the impact of petrol and diesel sources. Whilst emission reduction strategies 

have targeted the impact of vehicular related emissions, they have failed to keep pace with 

the rapid growth in vehicle number in Delhi and emissions consequently remain high. 

Future policies will have to go further and be more wide reaching to achieve meaningful 

NMVOC emission reduction.  

Extremely high NMVOC concentrations were measured at night during the post-monsoon 

campaign. It was questioned if this was due to a particularly large NMVOC source, such as 

widespread burning, or due to meteorological influences. Stagnant conditions, along with 

a very low boundary layer height, were found to be responsible for amplifying post-

monsoon night-time concentrations. The impact of extremely high ground-level 

concentrations of pollutants, such as benzene, over many hours requires detailed 

evaluation though policy. The impact of prolonged exposure to elevated NMVOC 

concentrations at night is likely to have significant health impacts. Current mitigation 

policies limit heavy goods vehicles to the city at night, a policy which requires 
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comprehensive revaluation. Little can be done to alter meteorological influences, but 

limitations to night-time sources may help mitigate the impact of this effect.  

A detailed study of north Indian solid fuel combustion sources allowed development of a 

new method for capturing I/SVOCs onto SPE disks and PTFE filters. This study complements 

current literature, where few studies provide comprehensive characterisation of complex 

mixtures of I/SVOCs from burning. The method mainly provided qualitative information on 

the range of I/SVOC species present in the gas phase from burning samples. Despite the 

quantification of gas-phase emissions in this study being limited, it found that by mass the 

most important I/SVOC emissions were from phenolic and furanic species, a finding 

confirmed by PTR-ToF-MS in chapter 4. This study provided a new chromatographic 

method to allow the compounds present in aerosol, which would typically elute as an 

unresolved complex mixture in conventional 1D chromatography, to be resolved. A case 

study was used of a cow dung cake sample, which showed a large variety of functionalities 

were released from burning samples and included many thousands of different 

compounds. This study measured emission factors of PAHs from Indian fuels and 

highlighted that better techniques are required for comprehensive quantification of 

complex mixtures of I/SVOCs. 

Measurements were made under controlled laboratory conditions using three 

complementary instruments of a large variety of different gas-phase NMVOCs of many 

functionalities released from north Indian solid fuel sources. This included oxygenates, 

furanics, phenolics, alkenes, alkanes, nitrogen containing NMVOCs and aromatics. 

Experiments were made online to avoid potential artefacts caused by sampling into 

canisters or tedlar bags, particularly of I/SVOC species. Experiments involved a large variety 

of different fuel types, and whilst there was large variability between emissions of similar 

fuel types, fuel types such as cow dung cake and municipal solid waste released 

considerably more NMVOCs compared to fuel wood or LPG. A comprehensive dataset of 

emission factors was produced of solid fuels for a region where burning is an important 

fuel source, and likely large contributor to poor air quality.  

The data collected from the SPE/PTFE measurements and using the three online gas-phase 

measurements were compiled and mapped onto a volatility-basis dataset to provide 

comprehensive, model-ready source profiles for the fuel types measured during controlled 
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laboratory experiments. This showed the fuel wood types tested only released a small mass 

fraction of S/L/ELVOC organics compared to fuel types, such as cow dung cake and 

municipal solid waste, which emitted a far greater variety of organic species into the 

aerosol phase. This study then directly compared the NMVOC emissions from sources for 

OH reactivity, SOA production potential and PAH toxicity which demonstrated that 

combustion of fuel wood, cow dung cake and municipal solid waste burning were likely to 

degrade local air quality significantly more than LPG.  

The emission factors measured from the laboratory study, as well as relevant literature, 

were then used to estimate the quantity of NMVOCs and PAHs emitted from solid fuel 

combustion in India. A range of different fuel use surveys were used to estimate 

consumption. The major uncertainties of this study were due to lack of measurement of 

the quantity of cow dung cake and municipal solid waste burnt, a generalisation of fuel 

types from the north of India to the entire country, few measurements of municipal solid 

waste samples and lack of Indian agricultural emission factors measured in this study. This 

study estimated large emissions of NMVOCs from a range of sources and showed that 

emissions from burning cow dung cake per capita were greater than for fuel wood, and 

likely to significantly degrade air quality. It also showed very low NMVOC emissions from 

LPG, despite ~ 500 million users by 2016. This study also showed that total emissions of 

NMVOCs from burning remained relatively constant from 1993-2016, despite attempts to 

reduce total emissions, due to rapid population growth.  

7.2. Future work 

Future work is required to develop the GC×GC-FID instrument. Of the three campaigns it 

was deployed on, the valve-based modulator failed to work during two after shipping and 

storage. More robust solutions are required to allow routine and reliable deployment of 

this instrument to locations around the globe.  

Prior to this project, the instrument was developed to allow measurement of up to C14 

NMVOCs, however, detailed evaluation of how well the instrument measures these species 

is required. The instrument currently has a cold finger in line for water removal, which is 

required to stop water condensing onto the hydrocarbon trap which is held at – 20 oC. This 

causes a problem for analysis of less volatile species, as they will carry over or condense 

entirely in this glassware. During field studies, an inhouse standard containing n-dodecane 
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carried over between samples if the cold finger was at – 30oC. During burning studies, 

carryover was also observed between samples and it was necessary to change and heat the 

cold finger between samples to ensure that carryover was not observed. Lab studies 

showed that less carryover was observed in glassware which has a smaller volume, but this 

meant that with ambient samples the glass cold fingers were more prone to filling with ice 

and required defrosting entirely, resulting in increased instrumental downtime. This setup 

has been copied from instruments like the DC-GC-FID, which are required to trap at colder 

temperatures to capture more volatile species and is not necessarily required for the 

volatility of NMVOCs that the GC×GC-FID analyses. During this field study, the sterling 

cooler for the cold finger was shared with the DC-GC-FID instrument and so the 

temperature could not be reduced as trapping at – 20 oC was required to prevent 

breakthrough of more volatile species. The range of species measured by the GC×GC-FID 

instrument could potentially be improved in future by removing the cold finger entirely and 

using a dry purge technique. This would have the cold trap held at a temperature above 5 

oC, meaning that water from ambient samples will not condense on the trap. It would also 

mean that more volatile species were not captured but should still allow trapping of less 

volatile species potentially beyond C14. This would potentially be a good solution to 

carryover for this instrument but would require breakthrough testing to ensure that 

benzene/n-octane were still fully captured at the sample volumes used for the experiment.  

Another final limitation of routine deployment of this instrument remains the manual 

nature of data workup. The use of Zoex software represents a significant improvement of 

manual integration of the 1D peaks from modulation, however, this approach is still not 

autonomous. The software routinely splits peaks incorrectly and means that all peaks of 

interest need to be manually checked, a process which quickly becomes overwhelming for 

large datasets. Better methods of automating the workup of data processing and 

integration from GC×GC instruments are still required.  

Further work is required for better analyses using the GC×GC-ToF-MS instrument. Far 

better semi-quantification of complex samples could be achieved using a pre-detector split 

to an FID, as discussed in chapter 3. This would allow extremely novel and interesting 

analyses of complex aerosol samples, as a large amount of quantitative organic 

compositional data would be revealed. 
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This work shows that NMHC emissions near an urban site in Delhi were predominantly the 

result of traffic related emissions, however, the proximity of major roads and rail 

intersections close to the site likely had a large impact on the composition of 

measurements made. Future measurements are required in different areas of the city 

closer to other potential NMVOC sources, such as slum and landfill sites, to examine the 

influence these have on the composition of measurements. In addition, the diurnal profiles 

measured at the IGTDUW site were strongly influenced my meteorology and the 

measurement of direct NMVOC fluxes would allow the diurnal profile of emissions to be 

better examined. This would provide valuable information about the temporal profile of 

emissions and provide better information about NMVOC sources.  

The study of emissions from solid fuel sources in northern India yielded many interesting 

results, however, many areas exist for future studies to exploit to further develop 

understanding in this area. Future studies need to include accurate measurements of 

CO/CO2 and collect compositional information such as the moisture content of samples 

prior to analysis. This will allow an understanding of the differences in modified combustion 

efficiency between different types of burn and perhaps yield more useful emission factors 

potentially normalised to this. It is highly likely that the modified combustion efficiencies 

of dung and waste burns were very low, and this resulted in the high emission factors 

observed. This, alongside supporting information such as sample moisture content, should 

be explored in future studies.  

Fuels in this study were collected and stored in a manner designed to be reflective of local 

practices to ensure that laboratory combustion conditions, and in turn emissions, reflected 

local burning practices. The impact of stove conditions on NMVOC emissions remains 

poorly understood. Experiments in this study were carried out using expert local judgment 

to attempt to ensure that laboratory conditions reflected real-world burning conditions. A 

range of stoves are used in India for combustion of local fuels such as chulha and angithi 

stoves, and an evaluation of the impact of these on emissions and their relative use and 

spatial distribution requires further study.  

Nine measurements were made of NMVOCs from cow dung cake samples, and all were 

consistently high. It would be valuable to measure NMVOC emissions from cow dung cakes 

from different states across the Indo-Gangetic Plain to see the influence of different 
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preparation methods and mixtures on emission of NMVOCs. The impact of breaking up cow 

dung cake samples into smaller briquettes could also be explored as this may lead to better 

burning conditions, improve combustion efficiency, and reduce NMVOC emissions. Studies 

should also look at the influence of near-identical burns but using different stove 

conditions. For a country like India, the most effective mitigation strategies are likely those 

which require little change. If many repeat measurements showed that particular stoves, 

or particular methods of preparing cow dung cakes prior to combustion, resulted in more 

efficient combustion conditions and reduced NMVOC emissions, a public education policy 

could be undertaken. This may allow people to continue to burn cow dung cakes but reduce 

the worst of the NMVOC emissions.  

Reviews of burning show different NMVOC emission factors from fuel wood collected from 

different environments such as savannahs, temperate forests and tropical forests. It is likely 

that across India fuel wood is collected and burnt from all these different environments, 

with the samples having different composition and moisture contents. The generalisation 

of fuel woods collected from the north of India to the whole country therefore has some 

uncertainty associated with the emission factor for the type of fuel wood being burnt.  

Few measurements were made from domestic, commercial and industrial waste, and the 

emission factors measured in this study were higher than those observed in previous 

studies. The effect of moisture content on waste burning has been suggested to impact 

emissions of particulate matter by around an order of magnitude (Jayarathne et al., 2018). 

Furthermore, only one LPG stove was used to evaluate emissions from this fuel source, 

with emissions likely to vary by the type of burner used. Future studies should also make 

more measurements from waste burning to better understand the effect of composition 

on emissions. Comprehensive measurements should also be made of emissions from 

combustion of a range of additional crop residues, as these are an important NMVOC 

source in India (Jain et al., 2014). 

Bottom-up emission inventories require both accurate emission factors and detailed spatial 

usage data to be reliable. This study generally meets these criteria for fuel wood samples 

and attention has been drawn to the need for a better understanding of the amount, 

location and composition of municipal solid waste being burnt across India as well as the 
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amount of cow dung cake burnt. This will lead to far more reliable estimations of NMVOC 

emissions from burning in India.  

This thesis has looked in detail at the potential influence of different NMVOC sources in 

India. It is likely that as development and population growth continue across India, levels 

of air pollution remain high. The results of these studies show that to reduce NMHC 

concentrations in Delhi, emission reduction strategies which target vehicles are critical. This 

study also characterises the types of NMVOCs released from Indian burning samples in 

detail and examines the potential implications of different solid fuel combustion sources 

across India.   



199 
 

Chapter 8 

8. Supplementary figures and tables 
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8.1. Mean, minimum and maximum NMHC mixing ratios 

Calculated over sample periods where both DC-GC-FID and GC×GC-FID were measuring 

(29/05/18 20:00 to 05/06/18 11:00 and 11/10/2018 22:00 to 27/10/18 17:00). 

Instrumental limits of detection (LOD) are provided elsewhere (Dunmore et al., 2015). 

Table S8.1. Mean, maximum and minimum mixing ratios (ppbv) of NMHC measured in Delhi during 

pre- and post-monsoon campaigns (based on hourly measurements with DC-GC-FID sample 

collection times of 20 minutes and GC×GC-FID sample collection times of 30 minutes).  

NMHC Pre Pre max Pre min Post Post max Post min 

Alkanes 

Ethane 6.15 18.28 2.64 32.02 159.10 1.21 

Propane 19.91 598.07 1.81 43.15 172.78 0.62 

i-Butane 5.62 115.21 0.78 20.77 79.71 0.19 

n-Butane 7.89 135.32 <LOD 39.74 153.99 <LOD 

Cyclopentane 0.26 3.83 0.04 0.89 4.01 <LOD 

i-Pentane 4.39 16.39 0.52 17.54 77.10 0.24 

n-Pentane 1.55 5.94 0.21 6.76 28.78 0.10 

n-Hexane 0.36 1.42 0.02 1.86 7.97 0.023 

n-Heptane 0.25 0.92 0.05 1.36 6.57 0.02 

n-Octane 0.14 0.53 <LOD 0.74 3.78 0.03 

C8 aliphatics 1.42 4.13 <LOD 5.79 29.36 0.54 

n-Nonane 0.16 0.59 0.04 1.07 5.09 0.07 

C9 aliphatics 0.99 3.16 <LOD 3.74 15.76 0.38 

n-Decane 0.15 0.60 0.04 0.87 4.17 0.10 

C10 aliphatics 0.55 2.06 0.12 3.37 16.31 0.29 

n-Undecane 0.11 0.51 0.01 0.45 2.14 0.05 

C11 aliphatics 0.33 1.59 0.09 2.08 8.58 0.13 

n-Dodecane 0.03 0.36 <LOD 0.93 3.59 0.05 

C12 aliphatics 0.10 0.75 0.01 4.09 17.57 0.25 

n-Tridecane 0.04 0.13 0.01 2.66 8.98 0.29 

C13 aliphatics 0.08 0.67 0.01 3.89 14.86 0.27 

n-Tetradecane <LOD <LOD <LOD 1.28 3.17 0.15 

C14 aliphatics 0.11 0.59 0.01 1.83 4.70 0.05 

Aromatics 

Benzene 1.36 5.13 0.35 6.67 41.24 0.51 

Toluene 2.55 16.39 <LOD 18.38 120.89 1.02 

Ethylbenzene 0.33 1.92 <LOD 2.64 14.52 0.21 

m/p-Xylene 0.70 3.90 <LOD 4.93 29.92 0.31 

o-Xylene 0.33 1.67 <LOD 2.42 13.93 0.08 

Styrene 0.19 0.83 0.06 0.76 5.74 0.02 

iPr-benzene 0.02 0.11 <LOD 0.23 1.27 0.01 
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Table S8.1. continued.  

NMHC Pre Pre max Pre min Post Post max Post min 

Aromatics 

Pr-benzene 0.04 0.18 <LOD 0.32 1.58 0.02 

3/4-Ethyltoluene 0.46 2.33 0.07 1.46 7.48 0.07 

1,3,5-TMB 0.07 0.34 0.01 0.50 2.97 0.02 

2-Ethyltoluene 0.08 0.39 0.01 0.53 2.70 0.03 

1,2,4-TMB 0.27 1.40 0.05 1.53 8.13 0.06 

tBu-Benzene <LOD <LOD <LOD 0.29 1.47 0.01 

1,2,3-TMB 0.05 0.35 <LOD 0.51 2.84 0.02 

Indan 0.01 0.08 <LOD 0.12 0.68 <LOD 

C4 aromatics 0.21 1.26 0.01 3.04 15.22 0.17 

Indene <LOD! <LOD <LOD 0.00 0.05 <LOD 

2-Methylpropylbenzene 0.01 0.03 <LOD 0.12 0.64 <LOD 

1-Methylpropylbenzene 0.01 0.05 <LOD 0.14 0.64 0.01 

m/p-Cymene 0.03 0.22 0.01 0.42 2.10 0.02 

o-Cymene <LOD <LOD <LOD 0.02 0.26 <LOD 

1-Methyl-3-propybenzene 0.01 0.03 <LOD 0.08 0.40 <LOD 

1,3-Diethylbenzene 0.02 0.12 <LOD 0.16 0.85 <LOD 

n-Butylbenzene/1,4-
Diethylbenzene 0.04 0.20 <LOD 0.41 2.09 0.01 

1,2-Diethylbenzene 0.01 0.07 <LOD 0.14 0.72 0.01 

1-Methyl-4-propylbenzene 0.01 0.05 <LOD 0.11 0.61 <LOD 

1-ethyl-2,4-dimethylbenzene 0.02 0.12 <LOD 0.14 0.73 0.01 

4-Ethyl-1,2-dimethylbenzene 0.02 0.17 <LOD 0.27 1.51 0.01 

1-Ethyl-2,3-dimethylbenzene 0.00 0.03 <LOD 0.07 0.42 <LOD 

2-Ethyl-1,3-dimethylbenzene 0.00 0.02 <LOD 0.08 0.40 <LOD 

1,2,4,5-Tetramethylbenzene 0.00 0.06 <LOD 0.13 0.55 <LOD 

1,2,3,5-Tetramethylbenzene 0.01 0.13 <LOD 0.21 1.15 <LOD 

1,1/1,3-Dimethylindan <LOD 0.02 <LOD 0.03 0.17 <LOD 

1,2,3,4-Tetramethylbenzene 0.01 0.09 <LOD 0.15 0.98 <LOD 

1,1/1,3-Dimethylindan <LOD <LOD <LOD 0.05 0.25 <LOD 

1,2,3,4-
Tetrahydronapthalene 0.00 0.01 <LOD 0.03 0.23 <LOD 

C5 aromatics 0.04 0.29 <LOD 0.83 3.95 <LOD 

Monoterpenes 

α-Pinene 0.03 0.08 0.01 0.08 0.48 <LOD 

Camphene 0.01 0.07 0.00 0.07 0.39 <LOD 

Sabinene <LOD <LOD <LOD 0.01 0.25 <LOD 

β-pinene 0.01 0.05 <LOD 0.04 0.20 <LOD 

Myrcene <LOD <LOD <LOD 0.03 0.20 <LOD 

α-Phellandrene 0.02 0.06 <LOD 0.07 0.35 <LOD 

3-Carene 0.01 0.05 <LOD 0.06 0.39 <LOD 

α-Terpinene <LOD <LOD <LOD 0.02 0.12 <LOD 
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Table S8.1. continued. 

NMHC Pre Pre max Pre min Post Post max Post min 

Monoterpenes 

Limonene 0.01 0.19 <LOD 0.32 2.01 0.00 

β-Ocimene 0.03 0.14 <LOD 0.22 1.71 <LOD 

γ-Terpinene <LOD 0.05 <LOD 0.02 0.14 <LOD 

Terpinolene <LOD 0.02 <LOD 0.04 0.29 <LOD 

Sum monoterpenes 0.12 0.65 0.03 0.98 5.99 0.01 

Alkenes 

Ethene 4.25 15.11 0.89 21.62 96.08 0.56 

Propene 1.11 4.97 0.17 6.26 25.49 0.07 

t-2-Butene 0.15 0.90 0.03 1.28 6.19 0.01 

1-Butene 0.31 1.18 0.07 1.74 6.57 <LOD 

i-Butene 0.47 1.72 0.15 2.59 10.05 0.02 

c-2-Butene 0.16 0.77 0.04 1.21 5.42 0.01 

1,3-Butadiene 0.12 0.67 <LOD 0.82 4.64 0.01 

t-2-Pentene 0.14 0.60 0.01 0.60 3.20 0.01 

1-Pentene 0.07 0.25 <LOD 0.39 1.83 0.01 

Isoprene 1.10 4.62 0.01 0.90 3.92 0.05 

1,2-Butadiene 0.13 0.39 0.06 0.31 1.09 0.01 

Alkynes 

Acetylene 2.41 6.85 0.53 10.40 45.57 0.28 

Propyne 0.08 0.31 0.01 0.45 1.91 0.013 

Oxygenates 

Methanol 26.95 62.37 4.91 60.08 1187.81 13.75 

Acetone 6.30 12.04 3.58 14.30 45.23 3.87 

Ethanol 27.38 101.52 8.41 56.47 216.40 0.001 
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8.2. Zoomed pre-monsoon O3, CO, NO, NO2 and stacked NMHC timeseries 

  
Figure S8.1. Zoomed-in pre-monsoon timeseries of NMHCs, O3, NO, NO2 and CO.   



204 
 

8.3. Pre- and post-monsoon diurnals for selected NMHCs 

Pre monsoon  

DC-GC-FID sample window 28/05/18 21:00 – 05/06/18 12:00. 

GC×GC-FID sample window 29/05/18 16:00 – 05/06/18 11:00. 

  

  

  
Figure S8.2. Diurnal NMHC profiles from the pre-monsoon campaign of propane, n-hexane, 

isoprene, toluene, n-tridecane and ethanol. 
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Post monsoon 

DC-GC-FID sample window 05/10/18 00:00 – 27/10/18 17:00. 

GC×GC-FID sample window 11/10/18 22:00 – 04/11/18 05:00. 

 

  

  

  
Figure S8.3. Diurnal profiles of NMHCs from the post-monsoon campaign of propane, n-hexane, 

isoprene, toluene, n-tridecane and ethanol.   
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8.4. Pre-monsoon stacked diurnals 

 

 

 
Figure S8.4. Zoomed stacked area diurnals from the pre-monsoon campaign of A = alkanes 

excluding LPG spikes, B = aromatics and C = monoterpenes.   
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8.5. PCA/APCS and EPA Unmix 6.0 

Figure S8.5 and Figure S8.6 show the outputs of the Unmix 6.0 model and the combined 

mean output of PCA/APCS and Unmix 6.0 models. The results are relatively similar, but 

Unmix 6.0 showed slightly larger contributions of diesel to aromatics and heavier alkanes, 

and the differences between the two approaches may be caused by slight collinearity of 

sources.  
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Figure S8.5. Mean Unmix 6.0 source contribution to NMHCs, where NC means that the model did 

not converge. 
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Figure S8.6. Mean Unmix 6.0 and PCA/APCS source contribution to NMHCs. 
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8.6. 4 factor PCA/APCS comparison 

Comparison of EPA PMF 5.0 (see Figure S8.7) vs. PCA/APCS (see Figure S8.8) models using 

the combined dataset for a 4-factor solution for propane. Inclusion of additional factors 

into the PMF model did not resolve into an LPG factor and multiple factors from one source 

type.  

  

Figure S8.7. EPA PMF 5.0 4 factor solution on combined dataset.  

 

  

 

Figure S8.8. PCA/APCS 4 factor solution both datasets where model_source_output_4 = LPG source 

and the black line indicates the measured value.  
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8.7. SPE/PTFE sample collection  

 

Figure S8.9. Figures showing sample burning in chamber (left), sample collection in 47mm PFA holder (middle) and examples of filters collected from different 
samples (right). 
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Figure S8.10. Flow diagram showing steps involved in quantification after sample collection.  

 

Figure S8.11. Schematic of SPE/PTFE filter collection setup.  
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Figure S8.12. Example chromatogram from standard used with series of I/SVOCs labelled.  
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8.8. Results of breakthrough testing  

Figure S8.13-Figure S8.19 show a comparison of the area from 6 spikes containing 136 

compounds (50 μL at 20 μg mL-1) directly into 0.95 mL of EtOAc to 6 separate PTFE filters 

(black) and SPE disks (red) spiked with the standard solution containing 136 compounds 

(50 μL at 20 μg mL-1) extracted and analysed and SPE disks spiked with 96 compounds of 

interest (4 times, 50 μL at 20 μg mL-1), subject to a purified air flow of 6 L min-1 for 30 mins 

then extracted and analysed (green).  
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Figure S8.13. PAH breakthrough test.  
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Figure S8.14. Alkane breakthrough test. The large over recovery of n-octadecane is assumed to be 

from the C18 coating on SPE disks.  
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Figure S8.15. Chlorine containing species breakthrough test. 
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Figure S8.16. Phenols breakthrough test. 
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Figure S8.17. Oxygenated aromatics breakthrough test. 
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Figure S8.18. Nitrogen containing VOC breakthrough test.  
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Figure S8.19. Aromatics and others breakthrough test. Levoglucosan PTFE recovery carried out from 

spiking stock solution in MeOH directly onto filter to give a final solution concentration of around 

10 μg mL-1 due to low instrument sensitivity.  
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8.9. n-Alkane comparison to GC×GC-FID 

Comparison to PTR-ToF-MS is complicated by more than one isomer being present at a 

mass and aerosol samples passing through a chamber stage with either losses to walls or 

off gassing of the more volatile components from the aerosol sample post acquisition.  
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Figure S8.20. Comparison of GC×GC-FID to SPE-GC×GC-ToF-MS. 
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8.10. Gas and particle phase composition of I/SVOC emissionsfrom combustion of cow 

dung cake  

Figure S8.21 shows the functionality and phase of peaks observed from a sample collected 

from the combustion of cow dung cake.  

 

Figure S8.21. Gas and particle phase I/SVOCs from burning cow dung cake collected onto SPE disks 

and PTFE filters, split by functionality where empty triangles indicate peaks in the gas phase and 

solid circles show peaks in the aerosol phase.   
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8.11. Emission factors 

The total volume of air convectively moving up the stack was determined from: 

 

 
Vd =  √

2gPs

Ds
 

 

 

where Vd = vertical displacement up the flue (ms-1), g = 9.81 m-2, Ps = average stack pressure 

(mmH2O) and Ds is determined by: 

 
Ds = 

TDa

Ts
 

 

 

where T = ambient temperature (k), Da = density of air (1.1455 kg m-3), Ts = average stack 

temperature (oK). The emission factor (EF) was calculated by:  

 
EF = 

tCVdAd

M
 

 

 

where t = time burned (s), C = concentration (g m3), Ad = area of flue, M = mass of fuel 

burnt (kg). 
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8.12. Sample collection details and schematic of combustion chamber 

Sample collection was carried out by partners at CSIR-NPL Delhi and led by Arnab Mondal. 

This work will be published separately, with a summary provided here. The National Capital 

Territory was gridded into 66 grids of 25 km2 area over which a ground survey of domestic 

fuels was conducted. 695 locations were sampled which included 636 slums and 59 villages 

and covered around 6500 households in total.  

The combustion methodology was designed to replicate the convection-driven conditions 

of real-world combustion and was adapted from the VITA water-boiling test. A schematic 

of the combustion chamber is given in Figure S8.22. The fuel was placed 45 cm from the 

top of the hood. These conditions have been previously optimised (Venkataraman et al., 

2002). This distance represented a balance so that the combustion experiment was not too 

close to the hood whereby entrainment into the hood could exert a draft which altered 

combustion conditions and not too far from the hood which would result in not all of the 

NMVOC emissions being captured by the hood. The dilution ratios in this setup have been 

studied in previous works (Saud et al., 2012). In summary, sample air was diluted 40-60 

times in the duct and cooled to 2-3 oC above ambient temperatures at the top of the duct. 

A video supplement of a sample being burnt in the combustion chamber is available at 

https://doi.org/10.5446/50203 . 

 

Figure S8.22. Schematic of combustion-dilution chamber with sampling locations for PTR-ToF-MS, 
DC-GC-FID and GC×GC-FID instruments and SPE/PTFE sample collection points. 
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Temperatures above combustion experiments were measured directly (see Table S8.2), 

with the hottest flame temperatures from LPG (721 ± 18 oC), followed by fuel wood (545 ± 

122 oC), followed by crop residues (432 ± 143 oC), followed by sawdust (314 ± 163 oC), 

followed by cow dung cakes (303 ± 137 oC) and MSW (249 ± 161 oC). 

 

Table S8.2. Mean maximum temperatures above different combustion experiments by fuel type.  

Fuel Mean maximum flame temp ± σ / oC 

Fuel wood 545 ± 122 

Cow dung cake 303 ± 137 

Charcoal 251 ± 57 

Crop residue 432 ± 143 

Sawdust 314 ± 163 

LPG 721 ± 18 

MSW 249 ± 161 
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8.13. SOA yields 

Table S8.3. SOA yields used for determining SOA from biomass burning NMVOC emissions. 

Compound High NOx 
yield 

High NOx ref Notes Low NOx 
yield 

Low NOx ref Notes 

Dodecane 0.08 (Zhao et al., 2016)  0.05  (Loza et al., 2014)  

Tridecane 0.21 (Zhao et al., 2016)  0.21 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Tetradecane 0.28 (Zhao et al., 2016)  0.28 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Pentadecane 0.34 (Zhao et al., 2016)  0.34 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Hexadecane 0.38 (Zhao et al., 2016)  0.38 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Heptadecane 0.42 (Zhao et al., 2016)  0.42 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Octadecane 0.42 (Zhao et al., 2016)  0.42 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Nonadecane 0.42 (Zhao et al., 2016)  0.42 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Eicosane 0.42 (Zhao et al., 2016)  0.42 b (Zhao et al., 2016) Assumed same as low 
NOx (Yuan et al., 2013) 

Naphthalene 0.21 (Zhao et al., 2016)  0.66 (Chan et al., 2009) Assumed same as low 
NOx (Yuan et al., 2013) 

C1-Napthalene 0.27 (Zhao et al., 2016)  0.57 (Chan et al., 2009) Average of 1-MN and 2-
MN 

C2-Napthalene 0.31 (Zhao et al., 2016)  0.57 (Chan et al., 2009) Assumed same as C1 
napthalenes 

Benzene 0.14 (Ng et al., 2007b)  0.34 (Ng et al., 2007b)  
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Table S8.3. continued.  

Compound High NOx 
yield 

High NOx ref Notes Low NOx 
yield 

Low NOx ref Notes 

Toluene 0.083 (Ng et al., 2007b)  0.33 (Ng et al., 2007b)  

C2-Benzenes 0.047 (Ng et al., 2007b)  0.27 (Ng et al., 2007b)  

C3-Benzenes 0.047 (Ng et al., 2007b) Assumed same as C2 
benzenes 

0.27 (Ng et al., 2007b)  

C4-Benzenes 0.04 (Zhao et al., 2016)  0.27 (Ng et al., 2007b) Assumed same as C2 
benzenes 

C5-Benzenes 0.08 (Zhao et al., 2016)  0.27 (Ng et al., 2007b) Assumed same as C2 
benzenes 

Salicylaldehyde 0.18 a Average 0.31 a Average 

Phenol 0.54 (Yee et al., 2013) Assumed same as 
phenol 

0.40 (Yee et al., 2013)  

Cresol/anisole 0.54 (Yee et al., 2013) Assumed same as 
phenol 

0.40 (Yee et al., 2013) Assumed same as phenol 

Ethyl phenol 0.54 (Yee et al., 2013) Assumed same as 
phenol 

0.40 (Yee et al., 2013) Assumed same as phenol 

Guaiacol 0.46 (Yee et al., 2013)  0.45 (Yee et al., 2013)  

Vinyl guaiacol  0.46 (Yee et al., 2013) Assumed same as 
guaiacol 

0.45 (Yee et al., 2013) Assumed same as 
guaiacol 

Methyl guaiacol  0.46 (Yee et al., 2013) Assumed same as 
guaiacol 

0.45 (Yee et al., 2013) Assumed same as 
guaiacol 

Eugenol, 
isoeugenol 

0.3 (Yee et al., 2013) Assumed same as 
syringol 

0.32 (Yee et al., 2013) Assumed same as syringol 

Syringol 0.3 (Yee et al., 2013)  0.32 (Yee et al., 2013)  
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Table S8.3. continued.  

Compound High NOx 
yield 

High NOx ref Notes Low NOx 
yield 

Low NOx ref Notes 

Vanillin 0.3 (Yee et al., 2013) Assumed same as 
syringol 

0.32 (Yee et al., 2013) Assumed same as syringol 

3-
Methylcatechol 

0.3 (Yee et al., 2013) Assumed same as 
syringol 

0.32 (Yee et al., 2013) Assumed same as syringol 

MVK, 
methacrolyn, 
crotonaldehyde 

0.05 (Hatch et al., 2015; Liu 
et al., 2011) 

Assumption of Hatch 
et al. (2015) applied to 
other oxygenated 
aliphatics > C6 

0.05 (Hatch et al., 2015; Liu et al., 
2011) 

Assumption of Hatch et 
al. (2015) applied to other 
oxygenated aliphatics > 
C6. 

Monoterpenes 0.15 (Lee et al., 2006; 
Hatch et al., 2015) 

 0.15 (Lee et al., 2006; Hatch et al., 
2015) 

Same as high NOx 

Furan 0.05 (Bruns et al., 2016)  0.05 (Bruns et al., 2016)  

Methyl furans 0.09 (Strollo and Ziemann, 
2013) 

Based on 3-
methylfuran 

0.12 (Strollo and Ziemann, 2013) Lower NOx final, based on 
3-methylfuran 

Furfural 0.083 (Ng et al., 2007b; 
Gilman et al., 2015) 

Based on same SOAP 
as toluene Gilman et 
al. (2015) 

0.33 (Ng et al., 2007b; Gilman et 
al., 2015) 

Based on same SOAP as 
toluene Gilman et al. 
(2015) 

2-Methanol 
furanone 

0.083 (Ng et al., 2007b; 
Gilman et al., 2015) 

Based on same SOAP 
as toluene Gilman et 
al. (2015) 

0.33 (Ng et al., 2007b; Gilman et 
al., 2015) 

Based on same SOAP as 
toluene Gilman et al. 
(2015) 

2-(3H)-furanone 0.083 (Ng et al., 2007b; 
Gilman et al., 2015) 

Based on same SOAP 
as toluene Gilman et 
al. (2015) 

0.33 (Ng et al., 2007b; Gilman et 
al., 2015) 

Based on same SOAP as 
toluene Gilman et al. 
(2015) 

5-
hydroxymethyl-
2[3H]-furanone 

0.083 (Ng et al., 2007b; 
Gilman et al., 2015) 

Based on same SOAP 
as toluene Gilman et 
al. (2015) 

0.33 Based on same SOAP as 
toluene Gilman et al. (2015) 

Based on same SOAP as 
toluene Gilman et al. 
(2015) 
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Table S8.3. continued.  

Compound High NOx 
yield 

High NOx ref Notes Low NOx 
yield 

Low NOx ref Notes 

C2-furans 0.09 (Strollo and Ziemann, 
2013) 

Based on 3-
methylfuran 

0.12 (Strollo and Ziemann, 2013) Lower NOx final, based on 
3-methylfuran 

C6-diketone 
isomers, C6-
esters 

0.05 (Hatch et al., 2015; Liu 
et al., 2011) 

Assumption of Hatch 
et al. (2015) applied to 
other oxygenated 
aliphatics > C6 

0.05 (Hatch et al., 2015; Liu et al., 
2011) 

Assumption of Hatch et 
al. (2015) applied to other 
oxygenated aliphatics > 
C6 

Methyl furfurals 0.083 (Ng et al., 2007b; 
Gilman et al., 2015) 

Based on same SOAP 
as toluene Gilman et 
al. (2015) 

0.33 (Ng et al., 2007b; Gilman et 
al., 2015) 

Based on same SOAP as 
toluene Gilman et al. 
(2015) 

C2-pyroles 0.083 (Ng et al., 2007b; 
Gilman et al., 2015) 

Based on same SOAP 
as toluene Gilman et 
al. (2015) 

0.33 (Ng et al., 2007b; Gilman et 
al., 2015) 

Based on same SOAP as 
toluene Gilman et al. 
(2015) 

Structurally 
assigned ≥ C6 
compounds a 

0.18 
 

a  0.31 a  

structurally 
unassigned ≥ C6 
compounds a 

0.18 
 

a  0.31 a  

a Average of applied yields from NMVOCs in the table with at least 6 carbon atoms per molecule. 

b Low NOx alkane yields are poorly studied beyond n-dodecane, and alkane emission factors in this study are small. For n-dodecane, the low NOx yield is 

comparable to the high NOx yield of dodecane and high NOx yields have been used for heavier alkanes.   
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8.14. Rate constants for reaction with OH 

C4 substituted monoaromatics have been taken from the PTR-ToF-MS as opposed to the speciated measurement with the GC×GC-FID, as these 

species have low emission factors and little influence on overall OH reactivity. Many OH rate constants have been taken from the Supplement 

of Koss et al. (2018).  

Table S8.4. Rate constant used for calculation of OH reactivity.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

1 Ethane C2H6 0.248 (Atkinson and Arey, 2003) 

2 Ethene C2H4 8.52 (Atkinson and Arey, 2003) 

3 Propane C3H8 1.09 (Atkinson and Arey, 2003) 

4 Propene C3H6H 30 NIST database 

5 Isobutane C4H10 2.12 (Atkinson and Arey, 2003) 

6 n-Butane C4H10 2.36 (Atkinson and Arey, 2003) 

7 Acetylene C2H2 0.7 NIST database 

8 Trans-2-butene C4H8 64 (Atkinson and Arey, 2003) 

9 1-Butene C4H8 31.4 (Atkinson and Arey, 2003) 

10 Isobutene C4H8 51.4 (Atkinson and Arey, 2003) 

11 Cis-2-butene C4H8 56.4 (Atkinson and Arey, 2003) 

12 Cyclopentane C5H10 4.97 (Atkinson and Arey, 2003) 

13 i-Pentane C5H12 3.6 (Atkinson and Arey, 2003) 

14 n-Pentane C5H12 3.8 (Atkinson and Arey, 2003) 

15 1,3-Butadiene C4H6 66.6 (Atkinson and Arey, 2003) 

16 Trans-2-pentene C5H10 67 (Atkinson and Arey, 2003) 

17 Cis-2-pentene C5H10 65 (Atkinson and Arey, 2003) 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

18 Pent-1-ene C5H10 31.4 (Atkinson and Arey, 2003) 

19 n-Heptane C7H16 6.76 (Atkinson and Arey, 2003) 

20 n-Octane C8H18 8.11 (Atkinson and Arey, 2003) 

21 n-Nonane C9H20 9.7 (Atkinson and Arey, 2003) 

22 n-Decane C10H22 11 (Atkinson and Arey, 2003) 

23 n-Undecane C11H24 12.3 (Atkinson and Arey, 2003) 

24 n-Dodecane C12H26 13.2 (Atkinson and Arey, 2003) 

25 n-Tridecane C13H28 15.1 (Atkinson and Arey, 2003) 

26 n-Tetradecane C14H30 17.9 (Atkinson and Arey, 2003) 
*312K 

27 C8 grouped aliphatics C8H18 8.11 (Atkinson and Arey, 2003) 

28 C9 grouped aliphatics C9H20 9.7 (Atkinson and Arey, 2003) 

29 C10 grouped aliphatics C10H22 11 (Atkinson and Arey, 2003) 

30 C11 grouped aliphatics C11H24 12.3 (Atkinson and Arey, 2003) 

31 C12 grouped aliphatics C12H26 13.2 (Atkinson and Arey, 2003) 

32 C13 grouped aliphatics C13H28 15.1 (Atkinson and Arey, 2003) 

33 C14 grouped aliphatics C14H30 17.9 (Atkinson and Arey, 2003) 
*312K 

34 Benzene C6H6 1.22 (Atkinson and Arey, 2003) 

35 Toluene C7H8 5.6 (Atkinson and Arey, 2003) 

36 Ethylbenzene C8H10 7 (Atkinson and Arey, 2003) 

37 m-/p-Xylene C8H10 18.7 (Atkinson and Arey, 2003) 
*mean m/p-xylene 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

38 o-Xylene C8H10 13.6 (Atkinson and Arey, 2003) 

39 i-Propylbenzene C9H12 6.3 (Atkinson and Arey, 2003) 

40 n-Propylbenzene C9H12 5.8 (Atkinson and Arey, 2003) 

41 3/4-Ethyltoluene C9H12 15.2 (Atkinson and Arey, 2003) 
*mean 3/4-ethyl toluene 

42 1,3,5-TMB C9H12 56.7 (Atkinson and Arey, 2003) 

43 2-Ethyltoluene C9H12 11.9 (Atkinson and Arey, 2003) 

44 1,2,4-TMB C9H12 32.5 (Atkinson and Arey, 2003) 

45 t-Butylbenzene C10H14 4.5 (Atkinson and Arey, 2003) 

46 1,2,3-TMB C9H12 32.7 (Atkinson and Arey, 2003) 

47 Indan C9H10 23.01429 (Atkinson and Arey, 2003) 
*mean C3 substituted 

monoaromatic 

48 α-Pinene C10H16 52.3 (Atkinson and Arey, 2003) 

49 Camphene C10H16 53 (Atkinson and Arey, 2003) 

50 Sabinene C10H16 117 (Atkinson and Arey, 2003) 

51 β-Pinene C10H16 74.3 (Atkinson and Arey, 2003) 

52 Myrcene C10H16 215 (Atkinson and Arey, 2003) 

53 α-Phellandrene C10H16 313 (Atkinson and Arey, 2003) 

54 3-Carene C10H16 88 (Atkinson and Arey, 2003) 

55 α-Terpinene C10H16 363 (Atkinson and Arey, 2003) 

56 Limonene C10H16 164 (Atkinson and Arey, 2003) 

57 β-Ocimene C10H16 252 (Atkinson and Arey, 2003) 
 



228 
 

Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

58 γ-Terpinene C10H16 177 (Atkinson and Arey, 2003) 

59 Terpinolonene C10H16 225 (Atkinson and Arey, 2003) 

60 Ammonia a NH3 0.2 (Gilman et al., 2015) 

61 Acetylene C2H2 0.7 NIST database 

62 Hydrogen cyanide a HCN 0.0 Cicerone 1983 

63 Methanimine CH3N 0.2 *from ammonia 

64 Formaldehyde CH2O 9.4 (Atkinson and Arey, 2003) 

65 Methanol CH3OH 0.8 (Atkinson and Arey, 2003) 

66 Acetonitrile C2H3N 0.0 (Gilman et al., 2015) 

67 Isocyanic acid HNCO 0.0 (Gilman et al., 2015) 

68 Acetaldehyde C2H4O 15.0 (Atkinson and Arey, 2003) 

69 Formamide CH3NO 1.5 NIST database: CH2=NOH 

70 Formic acid CH2O2 0.4 NIST database 

71 Ethanol C2H5OH 3.2 (Atkinson and Arey, 2003) 

72 Nitrous acid HNO2 6.0 (Gilman et al., 2015) 

73 Methane thiol CH4S 33.0 NIST database 

74 Methanediol CH4O2 7.0 NIST database 

75 Propyne nitrile C3HN 4.0 * From acrylonitrile 

76 1-Buten-3-yne C4H4 20.0 (Gilman et al., 2015) 

77 Acrylonitrile C3H3N 4.0 (Gilman et al., 2015) 

78 2-Propynal C3H2O 20.0 * From acrolein 

79 Butadienes C4H6 58.8 (Atkinson and Arey, 2003) 

80 Propanenitrile C3H5N 0.3 (Gilman et al., 2015) 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

81 Acrolein C3H4O 20 (Gilman et al., 2015) 

82 Butenes, other 
hydrocarbon 

C4H8 31.8 (Atkinson and Arey, 2003) 

83 Methyl isocyanate C2H3NO 0.1 * From isocyanic acid, 
methanol 

(Koss et al., 2018) 

84 Acetone C3H6O 0.2 (Atkinson and Arey, 2003) 

85 Acetamide C2H5NO 8.6 NIST database 

86 C3 Amines C3H9N 60.0 NIST database 

87 Acetic acid C2H4O2 3.7 NIST database 

88 Nitromethane CH3NO2 0.0 (Gilman et al., 2015) 

89 Dimethylsulfide a CH3NO2 0.02 (Gilman et al., 2015) 

90 1,3-Cyclopentadiene C5H6 92.0 (Gilman et al., 2015) 

91 Butenenitrile isomers, 
pyrole 

C4H5N 111.4 (Gilman et al., 2015) 

92 Carbon suboxide C3O2 1.5 (Gilman et al., 2015) 

93 Furan C4H4O 40.0 (Gilman et al., 2015) 

94 Isoprene C5H8 100.0 (Atkinson and Arey, 2003) 

95 Butane nitriles, 
dihydropyrole 

C4H7N 7.7 SONGNEX PTR-ToF paper 

96 Propiolic acid C3H2O2 26.0 * From acrylic acid 

97 MVK, methacrolyn, 
crotonaldehyde 

C4H6O 24.8 (Atkinson and Arey, 2003), 
NIST database 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

98 Methoxyacetonitrile or 
acrylamide 

C3H5NO 

 
0.02 From acetonitrile  

(Gilman et al., 2015) 

99 Butene amines, 
tetrahydropyrole 

C4H9N 
 

25.0 * From butenes, ammonia see 
(Koss et al., 2018) 

100 Methylglyoxal, acrylic 
acid 

C3H4O2 21.0962 Methylglyoxal (Atkinson and 
Arey, 2003), Acrylic acid 

(Gilman et al., 2015) 

101 MEK C4H8OH  5.46 (Atkinson and Arey, 2003) 
weighted average 

102 Formamide N,N-
dimethyl- or 

propanamide 2, ethyl or 
acetamide, N-methyl 

C3H7NO 
 

1.41 NIST Database 

103 Hydroxyacetone, methyl 
acetate, ethyl formate 

C3H6O2 2.19763 NIST Database hydroxyacetone 

104 Benzene C6H6 1.22 (Atkinson and Arey, 2003) 

105 Pyridine, C5 nitriles C5H5N 5.64607 NIST Database pyridine; *from 
pentane nitriles, pentyne 

nitrile 

106 2,4-Cyclopentadiene-1-
one, other hydrocarbon 

C5H4O 19.9929 2-Methylfuran (Gilman et al., 
2015) 

107 Methyl cyclopentadiene C6H8 91.0 Estimated as cyclopentadiene 
(Gilman et al., 2015) 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

108 Methylpyrole, 
pentanenitriles 

C5H7N 62.6792 (Gilman et al., 2015) 

109 Methylfurans, other 
hydrocarbon 

C5H6O 37.0887 Cyclopentenone (Gilman et al., 
2015) 

110 Hexenol fragment or 
cyclohexene or hexenes 

or 1,3-hexadiene 

C6H10  67.4 NIST database for cyclohexene 

111 Pentane nitriles C5H9N 0.5 * From butane nitriles 

112 2-(3H)-Furanone C4H4O2 44.5 (Gilman et al., 2015) 

113 3-Methyl-3-butene-2-
one, cyclopentanone, 

other hydrocarbon 

C5H8O  11.5 (Atkinson and Arey, 2003), 
NIST Database 

114 1-Hexene, C6-alkenes C6H12 37.0 (Atkinson and Arey, 2003) 

115 2,3-Butnaedione, methyl 
butanals, pentanones 

C4H6O2 0.8 
 

(Gilman et al., 2015), NIST 
Database 

 

116 Propanamide 2-methyl- 
or butanamide or 

acetamide N-ethyl- 

C4H9NO 1.78 Estimated as propanamide, 
NIST database. 

117 Pyruvic acid C3H4O3 0.1 (Gilman et al., 2015) 

118 Methyl propanoate C4H8O2 0.9 NIST Database 

119 Methyl pyridines C6H7N 2.6 NIST Database methylpyridines 
average 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

120 Phenol C6H5OH 28.0 (Gilman et al., 2015) 

121 Pyrydinamine, methyl 
diazina 

C5H6N2  10 Average of 3 isomers, (Gilman 
et al., 2015) 

122 C2 substituted pyrroles C5H7N 145 * From pyyrole 
(Koss et al., 2018) 

123 Furfurals, other 
hydrocarbons 

C5H4O2 35.6 (Gilman et al., 2015) 

124 C2 substituted furans C6H8O 132.0 2,5-Dimethylfuran 
(Gilman et al., 2015) 

125 Cyclopentene dimethyl-1, 
methylcyclohexene 

C6H10  67.4 NIST - considered same as 
cyclohexene 

126 4-methylpentanenitrile C6H11N 11.0 * From hexane 
(Koss et al., 2018) 

127 2-Methanol furanone C5H6O2 13.6 * From furan 

128 Methylcyclopentanone, 
cyclohexanone, 

hexanones 

C6H10O 6.4 (Atkinson and Arey, 2003) 
cyclohexanone 

129 Dihydrofuranodione C4H4O3 20.0 * From butadione, furan 

130 Methyl methacrylate, 
other hydrocarbon 

C5H8O2 30.3 (Gilman et al., 2015) 

131 Hexanals, hexanones C6H12O 18.6 (Atkinson and Arey, 2003) 
average C6 carbonyls 

132 Acetic anhydride C4H6O3 43.0 * From methylmethacrylate 

133 Benzonitrile C7H5N 1.0 (Gilman et al., 2015) 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

134 Styrene C8H8 58.0 (Atkinson and Arey, 2003) 

135 Benzaldehyde C7H6O 12.0 (Atkinson and Arey, 2003) 

136 Dimethyl + ethyl pyridine, 
heptyl nitriles 

C7H9N 3.2 NIST Database 

137 Quinone C6H4O2 4.6 NIST Database 

138 Cresol, anisole C7H8O 26.2 NIST Database 

139 Methyl furfural, benzene 
diols, 2-acetyl furan 

C6H6O2 80.1 NIST Database; *from furfural 

140 C3 Substituted furans, 
other compounds 

C7H10O 23.3 * From furan 

141 5-Hydroxy 2-furfural, 2-
furanoic acid 

C5H4O3 49.0 * From 3-furfural 

142 2-Hydroxy-3-methyl-2-
cclopenten-1-one 

C6H8O2 57.0 * From methylfuran 

143 Nitrofuran C4H3NO3 40.0 * From furan 

144 5-Hydroxymethyl-2[3H]-
furanone 

C5H6O3 100.0 * From furan, furanone 

145 C6 diketone isomers, C6 
esters 

C6H10O2  20.0 NIST Database average 

146 Heptanal, 2,4-dimethyl-3-
pentanone, heptanone 

C7H14O 21.4 (Atkinson and Arey, 2003) 

 

 

 



234 
 

Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

147 5-Hydroxymethyl 
tetrahydro 2-furanone, 5-

hydroxy tetrahydro 2-
furfural 

C5H8O3 5.0 * From dimethylfuran, 
cyclopentane, cyclopentadiene 

148 Benzene acetonitrile C8H7N 1.2 * From benzene 

149 Benzofuran C8H6O 37.0 NIST Database 

150 Methyl styrene, propenyl 
benzene + methyl 

ethynyl benzene, indane 

C9H10 50.4 (Atkinson and Arey, 2003) 

151 Tolualdehyde C8H8O 16.0 Atkinson 2003 average 
tolualdehydes 

152 Salicylaldehyde C7H6O2 38.0 * From phenol, benzaldehyde 

153 Ethylphenol + dimethyl 
phenol, methyl anidiol 

C8H10O 46.6 NIST Database C2 phenols, 
*anisol 

154 Hydroxybenzoquinone C6H4O3 4.6 * From benzoquinone 

155 Guaiacol C7H8O2 75.0 NIST Database 

156 5-Hydroxymethyl 2-
furfural 

C6H6O3 100.0 * From furfural, dimethylfuran 

157 Naphthalene C6H8O3 132.0 * From dimethylfuran 

158 Methyl benzene 
acetonitrile 

C9H9N 5.6 * From toluene 

159 Methylbenzofurans C9H8O 37.0 (Gilman et al., 2015) 

160 Methylacetephenone C9H10O 4.5 NIST Database 
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Table S8.4. continued.  

No VOC Formula Rate constant (10-12 cm3 molecule-1 s-1) Reference 

161 C10 aromatics C10H14 9.5 Atkinson 2003 average C10 
aromatics 

162 Methylbenzoic aicd C8H8O2 12.0 * From benzaldehyde 

163 Methylguiacol C8H10O2 100.0 NIST Database 

164 3-Methylcatechol C7H8O3 5 Estimated as same as benzene 
diols (Gilman et al., 2015) 

165 Methylnaphthalene C11H10 50.0 NIST Database 

166 Levoglucosan pyrolysis 
product 

C6H8O4 4.6 * From benzoquinone 

167 Dimethyl benzo furan, 
ethyl benzo furan 

C10H10O 37.0 * From benzofuran 

168 Estragole C10H12O  50.0 NIST Database: 1-methoxy-4-
(2-propenyl) benzene 

169 C11 aromatics C11H16 50.0 * From C10, C12 aromatics 

170 Vinyl guaiacol C9H10O2 100.0 * From methylguaiacol 

171 Vanilin C8H8O3 85.0 * From guaiacol, benzaldehyde 

172 Syringol C8H10O3 100.0 * From methylguaiacol 

173 Dimethylnaphthalene C12H12 60.0 NIST Database 

174 C12 aromatics C12H18 113.0 Hexamethylbenzene  
(Atkinson and Arey, 2003) 

175 Eugenol, isoeugenol C10H12O2 100.0 * From methylguaiacol 
(Gilman et al., 2015; Atkinson and Arey, 2003) 

a Not included in final calculation due to sensitivity being too different from the NMVOCs used to build the transmission curve but included in table to show 

that low rate constant likely has little influence on OH reactivity.
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8.15. Toxicity equivalence factors 

Table S8.5. TEF values used for individual PAHs in calculation of fuel toxicity.  

Compound TEF Ref 

Naphthalene 0.001 (Nisbet and LaGoy, 1992) 

Methylnaphthalene 0.001 (Nisbet and LaGoy, 1992) 

Dimethylnapthalene 0.001 * 

Biphenyl 0.001 * 

9-Fluorenone 0.001 * 

Acenaphthylene 0.001 (Nisbet and LaGoy, 1992) 

Acenapthene 0.001 (Nisbet and LaGoy, 1992) 

Dibenzofuran 0.001  

Fluorene 0.0005 (Larsen and Larsen, 1998) 

Phenanthrene 0.0005 (Larsen and Larsen, 1998) 

Anthracene 0.0005 (Larsen and Larsen, 1998) 

Carbazole 0.001 * 

Fluoranthene 0.05 (Larsen and Larsen, 1998) 

Pyrene 0.001 (Larsen and Larsen, 1998) 

Benzo[a]anthracene 0.082 (Larsen and Larsen, 1998) 

Chrysene 0.017 (Larsen and Larsen, 1998) 

Benzo[b]fluoranthene 0.25 (Larsen and Larsen, 1998) 

Benzo[k]fluoranthene 0.11 (Larsen and Larsen, 1998) 

Benzo[a]pyrene 1 (Larsen and Larsen, 1998) 

Indeno[1,2,3-cd]pyrene 0.1 (Larsen and Larsen, 1998) 

Dibenzo[a,h]anthracene 1.1 (Larsen and Larsen, 1998) 

Benzo[g,h,i]perylene 0.02 (Larsen and Larsen, 1998) 
 

* = lower limit value used equivalent to TEF for naphthalene as TEF values for these PAHs not found 

in literature. 
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8.16. Estimate of fuel use in India 

Fuel use was estimated in India over a 24-year period by compiling the state wise number 

of users per 1000 in rural and urban environments for wood, dung, coke, charcoal, LPG, 

gobar gas, electricity and other fuel types and multiplying these by the rural and urban 

populations for the respective states. The variation in 2006 was likely driven by the 

difficulties in conducting a representative sample of fuel use of over 1 billion people and is 

assumed to not be a significant change in fuel use. The input was compiled from a range of 

sources and processed in R. 

• The National Family Health Survey for 1992-1993, 1998-1999, 2005-2006 and 2015-

2016 (International Institute for Population Sciences, 1995, 2000, 2007, 2017). 

• Energy Sources of Indian Households for Cooking and Lighting 1993-1994, 2004-

2005, 2009-2010 and 2011-2012 (NSSO, 1997, 2007a, 2012a, 2015a). 

• Household Consumption of Goods and Services in India for 2004-2005, 2009-2010 

and 2011-2012 (NSSO, 2007b, 2012b, 2014).  

• Household Consumer Expenditure and Employment - Unemployment Situation in 

India for 2002 and 2006-2007 (NSSO, 2003, 2005, 2008). 
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8.17. Mean crop residue combustion total NMVOC emission factor 

The total crop burning NMVOC emission factor was calculated as the sum of mean species 

measured from crop residues using OP-FTIR, the PTR-ToF-MS (n = 19) and the mean PTR-

ToF-MS extended range analysis (n = 6) including unidentified peaks (Stockwell et al., 2015). 

Ketene fragments were removed and assumed to be an artifact of measurement by PTR-

ToF-MS, and not formed from the fire. This approach was used as it was consistent with 

that in chapter 4. 

Table S8.6. Calculation of total mean crop residue emission factor using masses from the 

Supplementary Table S3 in Stockwell et al. (2015). 

m/z Molecular formula Identity Mean / g kg-1 

 C2H2 Acetylene 0.331 

 C2H4 Ethene 1.34 

31.01784 HCHO Formaldehyde 1.93 

33.03349 CH3OH Methanol 1.87 

43.05423 C3H6 Propene 0.576 

47.01276 HCOOH Formic acid 0.633 

61.02841 CH3COOH Acetic Acid 3.88 

 C2H4O2 Glycolaldehyde 2.29 

69.03349 C4H4O Furan 0.355 

PTR-ToF-MS   
41.03858 C3H4 Propyne 0.34 

42.03383 C2H3N Acetonitirile 0.225 

45.03349 C2H4O Acetaldehyde 2.68 

51.02293 C4H2 1,3-Butadiyne 0.00363 

53.03858 C4H4 Butenyne 0.0559 

55.01784 C3H2O 2-Propynal 0.0422 

55.05423 C4H6 1,3-Butadiene 0.191 

57.03349 C3H4O Acrolein 0.875 

57.06988 C4H8 1-Butene 0.134 

59.04914 C3H6O Acetone 0.884 

67.05423 C5H6 1,3-Cyclopentadiene 0.0829 

68.99711 C3O2 Carbon suboxide 0.00464 

69.06988 C5H8 Isoprene 0.22 

71.04914 C4H6O 

Methyl Vinyl Ketone, 
Crotonaldehyde, Methacrolein 

(~50, 30, 20%) 0.607 

73.02841 C3H4O2 Methylglyoxal 0.554 

73.06479 C4H8O Methyl Ethyl Ketone 0.29 
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Table S8.6. continued.  

m/z Molecular formula Identity Mean / g kg-1 

75.04406 C3H6O2 Hydroxyacetone 1.69 

79.05423 C6H6 Benzene 0.301 

81.03349 C5H4O 2,4-Cyclopentadiene-1-one 0.303 

83.04914 C5H6O 2-Methylfuran 0.532 

83.08553 C6H10 Assorted HCs 0.0357 

85.02841 C4H4O2 2-Furanone 0.82 

85.06479 C5H8O Pentenone 0.186 

87.04406 C4H6O2 2,3-Butanedione 1.15 

89.05971 C4H8O2 Ethyl acetate 0.233 

91.05423 C7H6 Unknown 0.0328 

93.06988 C7H8 Toluene 0.296 

95.04914 C6H6O Phenol 0.494 

97.02841 C5H4O2 2-Furaldehyde (furfural) 1.03 

99.04406 C5H6O2 
2-Furan Methanol (furfuryl 

alcohol) 1.02 

101.0597 C5H8O2 Unknown 0.295 

103.0542 C8H6 
Ethynyl Benzene 

(phenylacetylene) 0.254 

105.0699 C8H8 Styrene 0.0563 

107.0491 C7H6O Benzaldehyde 0.0702 

107.0855 C8H10 Xylenes/ethylbenzene 0.107 

109.0284 C6H4O2 Unknown 0.0698 

111.0441 C6H6O2 
Catechol (Benzenediols); 

Methylfurfural 0.548 

111.0804 C7H10O Unknown 0.177 

113.0233 C5H4O3 Unknown 0.166 

113.0597 C6H8O2 
2-Hydroxy-3-Methyl-2-

Cyclopentenone 0.557 

115.039 C5H6O3 Unknown 0.041739 

117.0699 C9H8 Unknown 0.014039 

119.0491 C8H6O Benzofuran 0.0435 

119.0855 C9H10 Assorted HCs 0.0309 

121.0648 C8H8O Vinylphenol 0.574 

121.1012 C9H12 Trimethylbenzene; Assorted HCs 0.0658 

123.0441 C7H6O2 Salicylaldehyde 0.106 

123.0804 C8H10O Xylenol (2,5-Dimethyl phenol) 0.275 

125.0597 C7H8O2 Guaiacol (2-Methoxyphenol) 0.578 

127.039 C6H6O3 Hydroxymethylfurfural 0.296 

129.0699 C10H8 Naphthalene 0.164 

131.0855 C10H10 
Assorted HCs inc. 

Dihydronaphthalene 0.0401 

137.1325 C10H16 Terpenes (α-Pinene) 0.0635 
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Table S8.6. continued. 

m/z Molecular formula Identity Mean / g kg-1 

143.0855 C11H10 Methyl-Naphthalenes 0.088 

PTR-ToF-MS Extended Analysis  
46.06513 C2H7N Dimethylamine; Ethylamine 0.0844 

60.04439 C2H5NO Acetamide  
60.08078 C3H9N Trimethylamine 0.0785 

65.03858 C5H4 1,3-Pentadiyne 0.0129 

71.08553 C5H10 Assorted HCs 0.0327 

85.10118 C6H12 Assorted HCs 0.013 

87.08044 C5H10O Pentanone  
88.07569 C4H9NO Assorted Amides 0.116 

89.02332 C3H4O3 Unknown 0.0157 

90.09134 C4H11NO Assorted Amines6 0.0394 

93.03349 C6H4O Unknown 0.0085 

95.08553 C7H10 Unknown 0.741 

97.06479 C6H8O 2,5-Dimethylfuran 0.0981 

97.10118 C7H12 Assorted HCs 0.842 

99.08044 C6H10O Unknown  
101.0233 C4H4O3 Unknown 0.168 

103.039 C4H6O3 Methyl pyruvate 0.0708 

103.0754 C5H10O2 Unknown 0.0216 

104.0495 C7H5N Benzonitrile  
109.0648 C7H8O Cresols (Methylphenols) 0.249 

109.1012 C8H12 Unknown  
111.1168 C8H14 Unknown 0.00795 

115.0754 C6H10O2 Unknown 0.005923 

117.0546 C5H8O3 Unknown 0.011305 

117.091 C6H12O2 Unknown  
123.1168 C9H14 Unknown 0.0181 

125.0233 C6H4O3 Unknown 0.186 

127.0754 C7H10O2 Unknown 0.005792 

133.0648 C9H8O Assorted HCs inc. Methylbenzofurans 

135.0441 C8H6O2 Unknown 0.0418 

135.0804 C9H10O Unknown 0.0521 

135.1168 C10H14 p-Cymene 0.0172 

137.0597 C8H8O2 Unknown 0.159 

137.0961 C9H12O Unknown  
139.039 C7H6O3 Unknown 0.113 

139.0754 C8H10O2 Creosol (4-Methylguaiacol) 0.138 

141.0546 C7H8O3 
3-Methoxycatechol (3-Methoxy-

1,2-Benzenediol) 0.573 

141.091 C8H12O2 Unknown 0.38 
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Table S8.6. continued. 

m/z Molecular formula Identity Mean / g kg-1 

145.0648 C10H8O Unknown 0.131 

145.1012 C11H13 Unknown 0.00808 

147.0804 C10H10O Unknown 0.0642 

147.1168 C11H14 Unknown  
149.0597 C9H8O2 Unknown 0.706 

149.0961 C10H12O Unknown  
149.1325 C11H16 Unknown  

151.0754 C9H10O2 
4-Vinylguaiacol (2-Methoxy-6-

Vinylphenol) 0.306 

151.1481 C11H18 Unknown  
155.0703 C8H10O3 Syringol 0.121 

165.091 C10H12O2 Eugenol/ Isoeugenol  

    
Sum   38.84 
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8.18. Identification of rural and urban areas within the model 

Table S8.7. Reproduction of rural and urban populations within model for 2011.  

State % Rural % Urban Rural model/real Urban model/real 

Andaman and Nicobar 62.3 37.7 1.00 1.00 

Andhra Pradesh 66.6 33.4 1.00 1.00 

Arunachal Pradesh 77.1 22.9 1.00 0.99 

Assam 85.9 14.1 1.00 1.00 

Bihar 88.7 11.3 1.00 1.00 

Chandigarh 2.8 97.3 1.04 1.00 

Chhattisgarh 76.8 23.2 1.00 1.00 

Dadra and Nagar Haveli 53.3 46.7 1.00 1.00 

Daman and Diu 24.8 75.2 1.01 1.00 

Delhi 2.5 97.5 1.02 1.00 

Goa 37.8 62.2 1.00 1.00 

Gujarat 57.4 42.6 1.00 1.00 

Haryana 65.1 34.9 1.00 1.00 

Himachal Pradesh 90.0 10.0 1.00 1.00 

Jammu and Kashmir 72.6 27.4 1.00 1.00 

Jharkhand 76.0 24.1 1.00 1.00 

Karnataka 61.3 38.7 1.00 1.00 

Kerala 52.3 47.7 1.00 1.00 

Lakshadweep 21.9 78.1 1.01 1.00 

Madhya Pradesh 72.4 27.6 1.00 1.00 

Maharashtra 54.8 45.2 1.00 1.00 

Manipur 67.6 32.5 1.00 1.00 

Meghalaya 79.9 20.1 1.00 1.00 

Mizoram 47.9 52.1 1.00 1.00 

Nagaland 71.1 28.9 1.00 0.99 

Orissa 83.3 16.7 1.00 0.99 

Puducherry 31.7 68.3 1.00 1.00 

Punjab 62.5 37.5 1.00 1.00 

Rajasthan 75.1 24.9 1.00 1.00 

Sikkim 74.9 25.2 1.00 1.00 

Tamil Nadu 51.6 48.4 1.00 1.00 

Telangana 66.6 33.4 1.00 1.00 

Tripura 73.8 26.2 1.00 1.00 

Uttar Pradesh 77.7 22.3 1.00 1.00 

Uttaranchal 69.8 30.2 1.00 1.00 

West Bengal 68.1 31.9 1.00 1.00 
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8.19. Mean weighted urban per capita MSW generation  

Table S8.8. Population weighted average urban MSW generation from Indian states, created from 
data taken from Annepu et al. (2012). (Annepu et al., 2012) 

State Per capita generation (kg day-1) 

Andhra Pradesh 0.57 

Assam 0.28 

Bihar 0.41 

Chandigarh 0.46 

Chhattisgarh 0.48 

Delhi 0.65 

Gujarat 0.40 

Haryana 0.46 

Himachal Pradesh 0.31 

Jammu and Kashmir 0.59 

Jharkhand 0.37 

Karnataka 0.49 

Kerala 0.51 

Madhya Pradesh 0.40 

Maharashtra 0.46 

Manipur 0.22 

Meghalaya 0.39 

Mizoram 0.29 

Orissa 0.40 

Puducherry 0.67 

Punjab 0.49 

Rajasthan 0.52 

Tamil Nadu 0.60 

Tripura 0.46 

Uttar Pradesh 0.47 

Uttaranchal 0.39 

West Bengal 0.56 

Arunachal Pradesh 0.28 

Sikkim 0.28 

Nagaland 0.28 

Daman and Diu 0.46 

Dadra and Nagar Haveli 0.46 

Telangana 0.57 

Goa 0.46 

Andaman and Nicobar 0.44 

Lakshadweep 0.44 

 

Note: All rural environments treated as WorldBank lower limit of 0.12 kg capita-1 day-1. 
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Figure S8.23. Estimated change in urban per capita waste generation in India, data from Annepu et 
al. (2012). (Annepu et al., 2012). 
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8.20. Inputs to crop residue NMVOC emission estimate 

Table S8.9. Inputs used for estimation of NMVOC emissions from crop residue burning in 2011 in India.  
 

Cereals Oilseeds Fibres Sugarcane 
 

Rice Wheat Cereals Maize Jowar Bajra 9 
oilseeds 

Groundnut Rapeseed 
and mustard 

Sunflower Cotton Jute 
and 

mesta 

Sugarcane 

Residue to 
crop ratio 

1.5 1.7 1.5 1.5 1.5 1.5 2.5 2 3 2.5 3 2.15 0.4 

Dry matter 
fraction  

0.86 0.88 0.88 0.88 0.88 0.88 0.8 0.8 0.8 0.8 0.8 0.8 0.88 

Fraction burnt  0.08 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.25 

Mean EF / g 
kg-1 

23.8 15.9 15.9 15.9 5.4 5.4 38.9 38.9 38.9 38.9 38.9 38.9 53.6 

High EF/g kg-1 57.3 23.5 23.5 23.5 5.9 5.9 69.3 69.3 69.3 69.3 69.3 69.3 69.3 

Low EF/g kg-1 7.6 4.9 4.9 4.9 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 36.5 

State wise crop production / millions of tonnes 
 

Cereals Oilseeds Fibres Sugarcane 

Andaman and 
Nicobar 

             

Andhra 
Pradesh 

14.42 
 

4.44 3.96 0.31 0.1 2 1.46 
 

0.16 5.3 0.22 14.96 

Arunachal 
Pradesh 

             

Assam 4.74 0.05 
    

0.15 
 

0.14 
  

0.65 1.08 

Bihar 3.1 4.1 1.48 1.44 
  

0.14 
 

0.09 0.02 
 

1.31 12.76 

Chandigarh 
             

Chhattisgarh 6.16 
 

0.23 
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Table S8.9. continued.  

State wise crop production / millions of tonnes 

 Cereals Oilseeds Fibres Sugarcane 

Dadra and 
Nagar Haveli 

 
            

Daman + Diu 
             

Delhi 
             

Goa 
             

Gujarat 1.5 4.02 2.1 0.82 0.14 1.09 4.9 3.37 0.35 
 

10.4 
 

13.76 

Haryana 3.47 11.63 1.37 
 

0.04 1.19 0.96 
 

0.94 0.02 1.75 
 

6.04 

Himachal 
Pradesh 

 
0.55 0.7 0.67 

         

Jammu and 
Kashmir 

 
0.45 0.55 0.53 

 
0.01 

       

Jharkhand 1.11 0.16 0.28 0.26 
         

Karnataka 4.19 0.28 7.89 4.44 1.47 0.33 1.27 0.74 
 

0.25 1.2 
 

39.66 

Kerala 0.52 
            

Lakshadweep 
             

Madhya 
Pradesh 

1.77 7.63 2.17 1.05 0.62 0.31 8.04 0.3 0.86 
 

2 
 

2.67 

Maharashtra 2.7 2.3 7.32 2.6 3.45 1.12 5.04 0.46 
 

0.13 8.5 0.03 81.9 

Manipur 
             

Meghalaya 
           

0.05 
 

Mizoram 
             

Nagaland 
             

Orissa 6.83 
 

0.36 
 

0.01 
 

0.18 0.09 
   

0.11 0.9 

Puducherry 
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Table S8.9. continued.  

State wise crop production / millions of tonnes 

 Cereals Oilseeds Fibres Sugarcane 

Punjab 10.84 16.47 0.54 0.49 
  

0.7 
 

0.04 
 

2.1 
 

4.17 

Rajasthan 
 

7.21 8.09 2.05 0.51 4.57 6.6 0.68 4.37 
 

0.9 
  

Sikkim 
             

Tamil Nadu 5.79 
 

1.56 1.03 0.25 0.08 0.93 0.9 
 

0.01 0.45 
 

34.25 

Telangana 
             

Tripura 
             

Uttar Pradesh 11.99 30 3.22 1.11 0.21 1.56 0.92 0.08 0.72 0.01 
  

120.55 

Uttaranchal 
 

0.88 0.34 
         

6.5 

West Bengal 13.05 0.87 0.37 0.35 
  

0.7 
 

0.42 
  

8.21 1.13 

Others 3.8 0.27 0.72 0.93 0.02 0.01 0.58 0.18 0.25 0.05 0.4 0.04 2.05 

Total emission / kt 
Mean  235.8 206.6 91.8 45.6 5.0 7.3 257.2 51.3 76.3 5.0 307.6 70.9 1613.4 
Low 74.9 64.2 28.5 14.2 3.9 5.7 27.8 5.6 8.2 0.5 33.3 7.7 1100.6 

High 567.4 305.0 135.5 67.3 5.4 8.0 458.6 91.5 136.0 9.0 548.5 126.5 2086.8 
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8.21. Emission model inputs 

Table S8.10 summaries fuel use statistics which have been collected and used to estimate emissions based on the emissions factors collated in 

this study.  

Table S8.10. Summary of emission model inputs for 2011. 

Abbreviation Name Value used Ref 

Population1km2 Population per 1km2 - (WorldPop, 2017) 

% Rural % Rural population in state 2.5-90.0% (Government of India, 2014) 

% Urban % Urban population in state 10-97.5% (Government of India, 2014) 

EFwood Mean wood emission factor from this study 18.4 g kg-1 This study 

Wood consumption Wood consumption = per capita wood 
consumption (kg capita-1 30 days-1) 

Rural 0.031-57.01 kg capita-1 30 days-1  
Urban 0.166-20.598 kg capita-1 30 days-1 

(NSSO, 2014) 

Wood users Number of wood users per 1000 people Rural 3-932 
Urban 3-365 

(NSSO, 2015b) 

Number of users Number of users of a fuel type per 1000 - - 

EFLPG Mean LPG emission factor from this study  5.8 g kg-1 This study 

LPG consumption LPG consumption = per capita LPG 
consumption (kg capita-1 30 days-1) 

Rural 0.046-2.492 kg capita-1 30 days-1 

Urban 0.937 – 3.056 kg capita-1 30 days-1 
(NSSO, 2014) 

EFchar Mean charcoal emission factor from this 
study  

5.1 g kg-1 This study 

Char consumption Charcoal consumption = per capita LPG 
consumption (kg capita-1 30 days-1 

Rural 0-0.576 kg capita-1 30 days-1 

Urban 0-0.716 kg capita-1 30 days-1 

(NSSO, 2014) 

EFcoal Mean coal emission factor  3.7 g kg-1 (Cai et al., 2019) 

Coal consumption  
 

Per capita coal consumption (kg capita-1 30 
days-1) 

Rural 0-0.513 kg capita-1 30 days-1 

Urban 0-0.917 kg capita-1 30 days-1 
(NSSO, 2014) 

Dungusers Number of dung users per 1000 people Rural 0-334 per 1000 
Urban 0 – 75 per 1000 

(NSSO, 2015b) 
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Table S8.10. continued.  

Abbreviation Name Value used Ref 

Wres Waste burnt residentially 22421 kt This study 

MSWpr Per capita rural waste generation 0.12 kg capita-1 day-1 (World Bank, 2012) 

Bfrac,res Fraction of waste burnt residentially 0.6 (IPCC, 2006) 

MSWpu Per capita urban waste generation 0.194-0.867 (Annepu et al., 2012) 

funcollected Fraction of waste which was not collected 3-58% (CPCB, 2013) 

WBdump Landfill waste burnt 13252 kt  This study 

fcollected Fraction of urban waste collected 42-97% (CPCB, 2013) 

Bfrac,dump Fraction of urban waste burnt in landfill sites 10% (NEERI, 2010) 

Cropemission VOC emitted in a state from crop residue 
burning 

- This study 

CWG Mass of crop produced in state 8.29-342.38 Mt (Jain et al., 2014) 

RTCR Residue to crop ratio 0.4-3.00 (Jain et al., 2014) 

DMF Dry matter fraction 0.80-0.88 (Jain et al., 2014) 

FB Fraction of crop residue burnt 0.08-0.25 (Jain et al., 2014) 

EFcrop,i Emissions factor for crop species i 5.6-57.5 g kg-1 (Stockwell et al., 2015; Koss et 
al., 2018) 

Area cultivated Total agricultural area identified in a state 
from MODIS (km2) 

- (NASA, 2011) 

Wheat straw EF a  16.8 (5.2-25.0) g kg-1 (Stockwell et al., 2015) 

Sugarcane EF b  57.5 (39.35-74.33) g kg-1 (Stockwell et al., 2015) 

Rice straw EF  25.0 (7.8-60.1) g kg-1 (Stockwell et al., 2015) 

Millet EF  5.6 (4.4-6.2) g kg-1 (Stockwell et al., 2015) 

Crop average EF c  38.8 (4.3-74.3) g kg-1 (Stockwell et al., 2015) 

a Applied to coarse cereals, maize and jowar. 
b Note slight difference in calculation (<1 g kg-1) of mean from high/low measurements and mean reported in Stockwell et al. (2015).  
c Applied to all oilseeds and fibres.



250 
 

8.22. 2011 State wise NMVOC emission estimate by source 

Table S8.11. State wise NMVOC emission estimates (kt) by source in 2011.  

State Wood Dung LPG Coal Charcoal Waste Crop 

Andaman and Nicobar 1.4 0.0 0.0 0.0 0.0 0.9 0 

Andhra Pradesh 153.8 2.2 3.7 0.1 0.0 112.0 200.6 

Arunachal Pradesh 12.6 0.1 0.1 0.0 0.0 3.1 0 

Assam 187.7 0.2 1.5 0.1 0.0 71.0 23.7 

Bihar 219.3 420.1 2.3 0.7 0.0 225.0 94.5 

Chandigarh 0.2 0.0 0.2 0.0 0.0 1.5 0 

Chhattisgarh 117.8 24.1 0.5 0.4 0.0 56.3 15.6 

Dadra & Nagar Haveli 1.3 0.0 0.0 0.0 0.0 0.6 0 

Daman and Diu 0.2 0.0 0.0 0.0 0.0 0.4 0 

Delhi 0.7 0.0 3.0 0.0 0.0 42.4 0 

Goa 1.3 0.0 0.3 0.0 0.0 4.8 0 

Gujarat 183.3 11.8 3.7 0.1 0.0 121.3 244.3 

Haryana 46.8 144.2 2.4 0.0 0.0 55.0 101.1 

Himachal Pradesh 50.8 0.7 0.5 0.0 0.0 15.1 4.2 

Jammu and Kashmir 64.7 10.6 1.0 0.0 0.4 35.0 3.3 

Jharkhand 121.2 25.2 1.1 0.2 0.0 89.1 4.2 

Karnataka 274.0 0.0 3.9 0.0 0.0 248.6 252.6 

Kerala 203.5 0.0 3.2 0.1 0.0 168.0 1.27 

Lakshadweep 0.3 0.0 0.0 0.0 0.0 0.1 0 

Madhya Pradesh 217.3 143.1 2.9 0.2 0.0 195.1 133.5 

Maharashtra 257.9 4.1 10.1 0.0 0.0 201.5 544.6 

Manipur 8.7 0.1 0.2 0.0 0.1 5.0 0 

Meghalaya 17.5 0.1 0.1 0.0 0.0 6.7 0.3 

Mizoram 6.6 0.0 0.2 0.0 0.0 2.6 0 

Nagaland 14.9 0.0 0.1 0.0 0.0 4.2 0 

Orissa 263.4 26.9 1.0 0.1 0.1 96.1 24.5 

Puducherry 1.2 0.0 0.2 0.0 0.0 3.0 0 

Punjab 53.1 267.7 3.2 0.0 0.0 61.7 113.0 

Rajasthan 355.0 13.1 3.1 0.1 0.0 170.0 146.6 

Sikkim 1.4 0.0 0.1 0.0 0.0 1.3 0 

Tamil Nadu 192.5 0.0 7.7 0.0 0.0 164.0 198.4 

Telangana 106.8 10.1 2.6 0.1 0.0 77.7 0 

Tripura 39.5 0.0 0.2 0.0 0.0 9.7 0 

Uttar Pradesh 461.8 1404.1 6.9 0.2 0.0 442.0 693.7 

Uttaranchal 63.6 1.2 0.9 0.0 0.0 21.2 33.4 

West Bengal 601.4 251.0 4.8 2.3 0.0 342.3 105.2 

Other - - - - - - 35.5 

Mean a 4303.7 2760.7 71.4 4.8 0.9 3054.5 2973.9 

Low 989.6 1280.7 23.8 1.7 0.4 1550.1 1375.1 

High 22255.0 4399.3 122.7 5.9 1.3 6885.0 4545.6 
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a Slight difference between sum of values in table and mean due to rounding errors.  

This study estimated NMVOC emissions of 13.2 (5.2-38.2) Tg from burning sources in India 

in 2011.  
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8.23. Coal emission 

 

Figure S8.24. Estimated NMVOC emission from residential cooking coal combustion in India in 2011.  

 

Table S8.12. Estimated NMVOC emission from residential coal combustion (kt yr-1) from 1993-2016. 

Year Coal 

1993 10.5 

1994 10.2 

1999 6.6 

2002 4.8 

2005 6.3 

2006 4.1 

2007 5.6 

2010 5.4 

2011 4.8 

2016 4.1 
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8.24. LPG, coal and charcoal emission maps with different scale 

 

A) LPG B) Charcoal 

  
C) Coal  

 

 
 
 
 
 

 

Figure S8.25. Spatial distribution and emission of NMVOCs in 2011 from A = LPG, B = Charcoal and 
C = Coal using a different scale to the main text. The declination of international borders on this 
map are proximate and must not be considered authoritative. 
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8.25. State wise PAH emission by source 

Table S8.13. State wise emissions of PAHs (kt) from different fuel types in 2011.  

State Wood Dung LPG a Charcoal a Waste 

Andaman and Nicobar 0.0 0.0 0.0 0.0 0.0 

Andhra Pradesh 2.0 0.0 0.0 0.0 1.3 

Arunachal Pradesh 0.2 0.0 0.0 0.0 0.0 

Assam 2.5 0.0 0.0 0.0 0.8 

Bihar 2.9 4.2 0.0 0.0 2.6 

Chandigarh 0.0 0.0 0.0 0.0 0.0 

Chhattisgarh 1.6 0.2 0.0 0.0 0.7 

Dadra and Nagar Haveli 0.0 0.0 0.0 0.0 0.0 

Daman and Diu 0.0 0.0 0.0 0.0 0.0 

Delhi 0.0 0.0 0.0 0.0 0.5 

Goa 0.0 0.0 0.0 0.0 0.1 

Gujarat 2.4 0.1 0.0 0.0 1.4 

Haryana 0.6 1.4 0.0 0.0 0.6 

Himachal Pradesh 0.7 0.0 0.0 0.0 0.2 

Jammu and Kashmir 0.9 0.1 0.0 0.0 0.4 

Jharkhand 1.6 0.3 0.0 0.0 1.0 

Karnataka 3.6 0.0 0.0 0.0 2.9 

Kerala 2.7 0.0 0.0 0.0 2.0 

Lakshadweep 0.0 0.0 0.0 0.0 0.0 

Madhya Pradesh 2.9 1.4 0.0 0.0 2.3 

Maharashtra 3.4 0.0 0.1 0.0 2.3 

Manipur 0.1 0.0 0.0 0.0 0.1 

Meghalaya 0.2 0.0 0.0 0.0 0.1 

Mizoram 0.1 0.0 0.0 0.0 0.0 

Nagaland 0.2 0.0 0.0 0.0 0.0 

Orissa 3.5 0.3 0.0 0.0 1.1 

Puducherry 0.0 0.0 0.0 0.0 0.0 

Punjab 0.7 2.7 0.0 0.0 0.7 

Rajasthan 4.7 0.1 0.0 0.0 2.0 

Sikkim 0.0 0.0 0.0 0.0 0.0 

Tamil Nadu 2.5 0.0 0.1 0.0 1.9 

Telangana 1.4 0.1 0.0 0.0 0.9 

Tripura 0.5 0.0 0.0 0.0 0.1 

Uttar Pradesh 6.1 13.9 0.1 0.0 5.1 

Uttaranchal 0.8 0.0 0.0 0.0 0.2 

West Bengal 7.9 2.5 0.0 0.0 4.0 

Mean 56.8 27.4 0.7 0.0 35.5 

Low  11.7 17.8 0.7 0.0 21.4 

High 208.7 37.5 0.7 0.0 79.2 
a = only one sample of this fuel type.  
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8.26. EDGAR 5.0 and REAS 3.2 inventory comparison 

 

A) EDGAR 5.0 1A4 2011 B) EDGAR 5.0 4F 2011 

  
C) EDGAR 5.0 6A/6D 2011 D) EDGAR 5.0 6C 2011 

  

 
Figure S8.26. EDGAR 5.0 NMVOC emission inventories from 2011 for A = Energy for buildings (1A4), 
B = agricultural waste burning (4F), C = solid waste landfills (6A/6D) and D = solid waste incineration 
(6C) with data taken from Crippa et al. (2019).  
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A) REAS 3.2 Residential Combustion B) REAS 3.2 Waste 

  
Figure S8.27. REAS 3.2 NMVOC emission inventories from 2011 for A = residential combustion and 
B = waste using data taken from Kurokawa and Ohara, (2020).  
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Abbreviations 
 

ACES Aircraft cavity-enhanced spectroscopy  

APCS Absolute principal component scores  

ASE Accelerated solvent extraction  

BaP Benzo[a]pyrene  

BC Black carbon  

Bp Boiling point 

BTEX Sum of benzene, toluene, ethylbenzene and xylenes 

Ci
* Saturation concentration of species i 

CH3O2
. Methyl peroxy radical 

CH4 Methane 

CNG Compressed natural gas  

CO Carbon monoxide 

CPCB Central Pollution Control Board 

Cps PTR-ToF-MS count rates per second 

CSIR Council of Scientific and Industrial Research 

dc Column diameter 

DC-GC-FID Dual-channel gas chromatography with flame ionisation detection 

E/N The ratio between electric field strength and buffer gas density in 

the PTR-ToF-MS drift tube 

Ea Activation energy 

ECD Electron capture detector 

EI Electron ionisation 

EPA Environmental Protection Agency 

ERA5 Fifth-generation reanalysis from the European Centre for 

Medium-Range Weather Forecasts 

EtOAc Ethyl acetate 

FAO Food and Agriculture organisation of the UN 

FID Flame ionisation detector  

FTIR Fourier-transform infrared spectroscopy  
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GC Gas chromatography 

GC×GC-ToF-MS Comprehensive two-dimensional gas chromatography with time-

of-flight mass spectrometry  

GC×GC-FID Two-dimensional gas chromatography with flame ionisation 

detection 

H Height of a theoretical plate  

HCH(O) Formaldehyde 

HYSPLIT Hybrid Single Particle Lagrangian Integrated Trajectory 

(I—CIMS) Iodine clustering chemical ionisation mass spectrometry  

I Kovats retention index 

I/SVOCs Intermediate-volatility and semi-volatile organic compounds 

IC Ion chromatography  

IEA International Energy Agency 

IGTDUW Indira Gandhi Delhi Technical University for Women 

IPCC Intergovernmental Panel on Climate Change 

kx Rate constant for reaction of species with hydroxyl radical, unless 

otherwise specified 

L  Column length 

L/ELVOC Low- and extremely low-volatility organic compounds  

LPG Liquefied petroleum gas 

MeOH Methanol 

MS Mass spectrometer 

MSW Municipal solid waste 

N Number of theoretical plates 

n Overall peak capacity 

Ncps Normalised PTR-ToF-MS sensitivity, normalised counts per second 

NEERI National Environmental Engineering Research Institute 

Nh Carbon number of n-alkane of higher boiling point than 

unidentified eluent 

NIST National Institute of Standards and Technology 
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nl Carbon number of n-alkane of lower boiling point than 

unidentified eluent 

NMHCs Non-methane hydrocarbons 

NMVOCs Non-methane volatile organic compounds 

NO Nitrogen monoxide 

NO2 Nitrogen dioxide 

NOAA National Oceanic and Atmospheric Administration  

NOx Nitrogen oxides (= NO + NO2) 

NPL National Physical Laboratory  

.OH  Hydroxyl radical  

O3 Ozone 

OA Organic aerosol 

OC/EC Organic/elemental carbon 

OVOC Oxygenated non-methane volatile organic compounds 

PAHs Polycyclic aromatic hydrocarbons  

PBL Planetary boundary layer 

PBLH Planetary Boundary Layer Height 

PCA Principal component analysis  

PFA Plastic made from Perfluoroalkoxy alkanes 

PLOT Porous Layer Open Tubular 

PM Particulate matter 

PM1 Particulate matter with a diameter < 1 µm 

PM2.5 Particulate matter with a diameter < 2.5 μm  

PMF Positive matrix factorisation 

POA Primary organic aerosol  

PRL Physical Research Laboratory, Ahmedabad, India 

PTFE Polytetrafluoroethylene / Teflon 

PTR-ToF-MS PTR-ToF-MS 

PUF/XAD/PUF Polyurethane styrene-divinylbenzene 

R Programming language for statistical computing and graphics 

SD Standard deviation 
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SOAP Secondary organic aerosol formation potentials 

SPE Solid phase extraction  

Srec % recovery observed on SPE disks 

TIC Total ion current  

ToF Time-of-flight 

tr Retention time 

TVOC Total emission factor of NMVOCs  

u̅ Carrier gas flow velocity 

VBS Volatility-basis dataset  

VOCs Volatile organic compounds  

WAS Whole air samples 

WCOT Wall Coated Open Tubular 

WHO World Health Organisation 

λ Wavelength 
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