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ABSTRACT 

Human dexterity is a complex phenomenon associated to physiological and cognitive 

factors that affect the execution of precise movements. Dexterity is strongly linked to 
upper limb (UL) functionality and performance, and its study is important for clinical 

analysis, ergonomics, sports biomechanics, design, rehabilitation, and human-machine 

interactions. However, its understanding is quite limited. Dexterity is commonly assessed 
through time-dependent dexterity tests that can determine the successful completion of 

tasks on test boards paced in front of the participant. However, such tests cannot inform 
about participant performance in other regions of the corresponding UL workspace 

volume (WV), and they can only collect data related to specific tasks, and therefore, 

cannot predict UL performance for the execution of other tasks. 

This thesis establishes a time-independent novel method for the characterisation of UL 

workspace with respect to dexterity; the “Dexterity Analysis Method” (DAM), which is 
based on the manipulability analysis method (used in robotics to quantify robot 

manipulability). The DAM is flexible, versatile, and scalable. It can be used to analyse real 

and virtual individuals or populations using direct measures or statistical data. Moreover, 
the DAM allows adding human factors, and to assigning their weights for adjustment and 

calibration. Hence, the DAM is a powerful tool that can help to evaluate performance, 
assess healthiness, optimise implants and prosthetics, design ergonomic workplaces and 

homes, develop assistive devices, and conduct pre- and post-surgery evaluations. 
Moreover, this work, as implemented in the DAM, promotes the use of WV as an 

objective reference to map performance, healthiness, and dexterity. Finally, the DAM 

contributes to closing the knowledge gaps on the understanding and quantification of UL 
motion, workspace, and dexterity. However, the DAM still needs to be fully validated as 

the experimental results obtained in this research with such purpose were not conclusive.  

A real-life application of the DAM is illustrated in Chapter 7 of this work, which analyses 

the effects of reverse shoulder arthroplasty (RSA) on WV and dexterity. The results 

indicate that WV for healthy people can be around 32% larger than those for people with 
RSA. However, it was found that greater WV do not necessarily translate into larger high 

dexterity regions, and the effects of reductions in ROM on WV depend on the extreme at 
which such reductions occur. For instance, a decrease of 15° in elbow extension reduces 

2% of 2-D reachability, whereas a decrease of 15° in elbow flexion only reduces it by 

10.8%. Therefore, surgeons should carefully consider such factors when making decisions 
during joint surgery, reconstruction, and implant position optimisation.  

Key words: upper limb, dexterity, performance, limb functionality, workspace, 
manipulability, human movement science, biomechanics.
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NOMENCLATURE 
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𝑎 Distance on the 𝑥 axis 

𝑎 Acceleration, when referring to motion 
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𝐶𝑜𝑚𝑓𝑜𝑟𝑡௪ೖ
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𝑑 Distance 
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𝑓 Force 

𝐹 Number of degrees of freedom, when referring to degrees of 
freedom 
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𝐻 Homogeneous matrix 

ℎ௜,௝ Element 𝑖, 𝑗 of the homogeneous matrix 𝐻 

𝐻𝑙 Hand length 

𝐼 Moment of inertia 
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𝑗 Number of joints 

𝐽 Jacobian  

𝐽జ Linear velocity part of the Jacobian 

𝐽ఠ Angular velocity part of the Jacobian 

𝐾 Kinetic energy 

𝐿 Used to refer to The Lagrangian equation 
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𝑟௖௜ Coordinates of the centre of mass of link 𝑖 

𝑟௜,௝ Element 𝑖, 𝑗 of the rotation matrix 𝑅 

𝑅 Rotation matrix 

𝑅௝
௜ Orientation of the frame 𝑗 relative to the frame 𝑖 

𝑅𝑜𝑡௫,ఈ Rotational matrix representing an angular displacement 𝛼 with 
respect to the 𝑥 axis  

𝑅𝑜𝑡௬,ఉ Rotational matrix representing an angular displacement  𝛽 𝑤𝑖𝑡ℎ 

respect to the 𝑦 axis 

𝑅𝑜𝑡௭,ఊ Rotational matrix representing an angular displacement  𝛾 𝑤𝑖𝑡ℎ 
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respect to the 𝑧 axis 

𝑠 sine 

𝑇௝
௜ Homogeneous matrix for the representation of position and 

orientation of the frame 𝑗 with respect to the frame 𝑖 

𝑇𝑟𝑎𝑛𝑠௫,௔ Matrix representing a displacement 𝑎 on the 𝑥 axis 

𝑇𝑟𝑎𝑛𝑠௬,௕ Matrix representing a displacement 𝑏 on the 𝑦 axis 

𝑇𝑟𝑎𝑛𝑠௭,௖ Matrix representing a displacement 𝑐 on the 𝑧 axis 

𝑥௜  𝑥 axis of frame 𝑖 

𝑦௜ 𝑦 axis of frame 𝑖 

𝑧௜ 𝑧 axis of frame 𝑖 

𝛼 Angle of rotation with respect to the 𝑥 axis 

𝛽 Angle of rotation with respect to the 𝑦 axis 

𝛾 Angle of rotation with respect to the 𝑧 axis 

𝜃௜  Rotational angle of joint 𝑖 

𝜃௜ ௠௜௡ Minimum allowed angle of the 𝑖 joint  

𝜃௜ ௠௔௫ Maximum allowed angle of the 𝑖 joint 

𝜃̇ Derivative of 𝜃; angular velocity 

𝜉 Total body velocity 

𝜏 Torque 

𝜐 Linear velocity 

𝜔 Weight, when describing moments and forces 

𝜔 Angular velocity, when describing motion 

𝑤 Manipulability measure 

𝑤௞ Work, the k subscript here is to avoid confusion as  
𝑤 without subscript refers to manipulability  
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Abbreviations 

2D Two dimensional 

3D Three dimensional 

ADL Activities of daily living 

ASB American Society of Biomechanics 

BBT Box and block test 

CT Computed tomography 

DH Denavit-Hartenberg, normally followed by convention or method 

DOF Degree of freedom 

EMG Electromyography 

ESB European Society of Biomechanics 

GRS Global reference system 

ISB International Society of Biomechanics 

LRS Local reference system 

MRI Magnetic resonance imaging 

PPT Perdue pegboard test 

REA Reach envelope area 

ROM Range of motion 

SD Standard deviation 
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optimal implant position in reverse shoulder arthroplasty (top row) and a healthy individual 

(bottom row). Three views: Coronal, Sagittal and Transverse planes. 
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1 INTRODUCTION 

Humans execute movement even unconsciously. However, motion is a complex 

phenomenon. It requires the cooperation of different systems of the body. Conscious 
motion involves recollecting information about the current environment (through the 

senses), sending such information to the brain to process it, sending commands to the 

muscles to execute movement, sensing for feedback, and making corrections.  

This research is interested in one of the motion qualities that relates to precision called 

“dexterity”.  Nikolai Aleksandrovich Bernstein, a Soviet neurophysiologist considered as 
one of the greatest scientists of the 20th century, described dexterity as a motor ability to 

execute accurate movements with a determined purpose under any environmental 

condition [1]. Thus, dexterity is a relevant characteristic human motion as having at least 
some level of dexterity is required to successfully perform activities of daily living, as well 

as, to conduct precise tasks for work or recreation purposes. People with low dexterity 
can become highly dependent on others as in some cases they cannot perform basic tasks 

or even feed themselves. Likewise, people with low dexterity could be rejected from 

some job positions that require fine manipulations. Moreover, in some sports and 
recreation activities such as ping pong, hockey, archery, fencing, crafting, drawing, 

writing, and painting, dexterity is also an important factor to be successful. Hence, the 
importance of understanding and characterising dexterity. However, up until now, the 

understanding of human dexterity is quite limited, and its characterisation challenging.  

Up until this research, the most common approach to evaluate upper limb dexterity is 

through time-dependent dexterity tests such as the Box and Block Test (BBT), Perdue 

Pegboard Test (PPT), Motor-free Visual Perceptual Test, Functional Dexterity Test, and 
Strength Dexterity Test [2-10]. Such tests are relatively accessible and easy to administer; 

however, such tests only evaluate the execution of specific tasks such as matching objects 
to their corresponding shapes/positions, as well as moving objects from point a to point 

b. Although, such tests allow to quantify certain aspects of dexterity including grasp 

patterns and the ability to perform tasks over specific periods of time, they cannot 
distinguish movement consistency and movement variations among participants, and 

they cannot inform about the joint angles needed to complete a task, regions of high 
dexterity, or participant performance in other regions of the corresponding upper limb 

reachable space. Therefore, a participant can potentially have good performance in a 

traditional dexterity test even if the person cannot rise the hand to heights other than the 
test hight due to injuries or diseases. More importantly, such kind of dexterity tests 

cannot determine if participants are able to perform other activities not evaluated during 
the test, which is relevant information for prescribing an adequate rehabilitation therapy, 
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as well as for adjusting the environment of impaired people to improve their lives. 
Likewise, dexterity tests are time-dependent, and therefore, performing poorly in such 

tests do not necessarily mean that the individual has low dexterity, as such low 

performance could be linked to inherent participant behaviour to be slow, or the 
participant may not be used to perform tasks at high-speed tasks.  

In robotics, an equivalent to dexterity is called “manipulability”, which is defined as the 
ease of changing the position and orientation of the end-effector of a manipulator 

(robotic arm) [11]. Yoshikawa [11, 12] proposed a manipulability analysis method to 

quantify the manipulation capabilities of robotic arms. Such method encodes the 
mechanical properties of the robotic arm and mathematically describe how capable the 

robotic arm is for specific configurations and at different positions in space. Although a 
robotic arm and an upper limb may seem to be completely different systems, for the 

study of motion, both can be modelled as kinematic chains (systems composed of rigid 
elements interconnected through joints). Therefore, this research explores the 

applicability of the manipulability analysis to the characterisation of upper limb dexterity, 

as such method provides relevant information on the ability to perform fine movements 
given the mechanical properties of the extremity. A few researchers have previously used 

the manipulability analysis to evaluate specific tasks in the design of user-friendly 
rehabilitation systems [13], the evaluation of wheelchair propulsion [14], and the 

assessment of upper limb performance during grasping [15].  

One of the most important mechanical elements of the upper limb in terms of motion is 
the joints, without them, the extremity would be a rigid body uncapable to perform 

movements. The range within joints can move is called “joint range of motion”, whereas 
the independent directions in which motion can be performed are called “degrees of 

freedom”. The combination of joint range of motion and the degrees of freedom at each 

joint allow the upper limb to perform movements within a specific 3-dimiensional space 
or “workspace volume”. Workspace volumes have been mostly employed for the study of 

human-machine interactions [16], the design of exoskeletons [17, 18], ergonomics design 
[19], and the development of rehabilitation systems [20]. However, workspace volumes 

are not commonly used as a standard reference to characterise upper limb performance, 
healthiness, and dexterity. Nonetheless, in recent years, due to the technological 

advancements, some researchers have attempted to introduce and recommend the use 

of workspace as a reference for upper limb functionality within the clinical context [21-
23]. Thus, this work will explore the use of such workspace volumes to map upper limb 

dexterity within its corresponding 3-dimensional reachability.  
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Finally, this research aims to establish a time-independent novel method capable of 
characterising upper limb workspace with respect to dexterity. As a method of such 

characteristics would help to close the knowledge gaps on human motion and dexterity 

and would facilitate the assessment of upper limb performance across the 3-dimensional 
space. Thus, the novel method is expected to help to evaluate performance, assess 

healthiness, optimise implants and prosthetic devices, design ergonomic workplaces and 
homes, develop assistive devices, and conduct pre- and post-surgery evaluations. 

1.1 Aims and objectives 

The aim of this study is to establish a novel method for the characterisation of upper limb 

workspace with respect to dexterity. Such method should be able to quantify upper limb 
workspace and dexterity for healthy and non-healthy individuals or populations, and 

similar quantitative information that can contribute to the understanding of dexterity and 
for human motion investigations. Furthermore, the novel method is foreseen as a flexible 

method that allows parametric adjustment and the inclusion and exclusion of variables 
related to dexterity. 

The specific objectives to achieve the aim of this study are: 

i. Development of a general kinematic model for the study of upper limb motion. 

ii. Development of a method for the quantification of upper limb workspace  

iii. Exploratory study of the manipulability analysis method as a technique for the 
characterisation of human dexterity. 

iv. Study, identification, and integration of human factors associated with upper limb 

dexterity.  

v. Development of a novel method for the characterisation of upper limb workspace 

with respect to dexterity  

vi. Validation of the proposed novel method through experimental analysis.  

vii. Demonstration of the applicability of the novel method to real life situations. 

1.2 Scope of the study 

The scope of this study is limited to the characterisation of upper limb workspace with 
respect to dexterity including kinematic and dynamic variables associated with joint range 

of motion, upper limb reachability, joint torques, and work. Therefore, this study does not 
investigate other factors that may affect dexterity such as energy, muscle strength, 

muscle activation, joint stability, sensorial aspects, cognitive factors, or healthiness. 
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However, having established the model, such factors could then be added subsequently 
to investigate their influences on dexterity.  

Likewise, as most of the work conducted in this research is computational, most of the 

input values used throughout this study were obtained from published human normative 
data. Such normative data is in many cases confusing, difficult to compare, incomplete or 

inexistent. Therefore, future work should consider extending the scope of this research 
study and, when possible, acquiring more accurate normative data for the input 

parameters.   

1.3 Research drivers 

The characterisation of upper limb workspace with respect to dexterity would be of 
significant value to surgeons, rehabilitation therapists, and workplace and home 

designers. 

Surgeons evaluate patient upper limbs, pre- and post-surgery, through medical and 

functional tests. In cases where joints or bones are highly injured, surgeons replace such 
elements with medical implants. Conducting such kind of surgeries is not an easy task, it 

requires pre-operative assessment to determine joint and bone health, bone geometry, 

and joint range of motion. The information obtained from the pre-operative assessment 
is used to choose the most appropriate implant and to optimise implant position. The 

optimisation of joint implant position is commonly based on the maximisation of joint 
range of motion. However, joint range of motion values by themselves cannot determine 

the overall 3-dimensional reachability of the extremity. Surgeons habitually have to 

decide which joint range of motion to sacrifice given the limitations of implants. If the 
impact of reducing range of motion on upper limb 3-dimensional reachability is unknown, 

how can surgeons optimise implant position? Is it enough to optimise implants based only 
on joint range of motion without consideration of 3-dimentional reachability? Therefore, 

novel human computational models are required to predict the impact of reductions joint 

range of motion on upper limb reachability, and more importantly, to investigate the 
impacts of such reductions on human dexterity. Such models would be beneficial for 

surgeons as they would make informed decisions that could provide the best outcome for 
patients.  

Rehabilitation therapists play an important role in patient recovery. As surgeons, 
rehabilitation therapists evaluate patients through medical and functional tests that 

provide a measure of upper limb functionality. Such measure is used as a reference to 

indicate recovery speed and the status of total recovery. Upper limb performance is 
commonly evaluated through dexterity tests such as the Box and Block Test (BBT), Perdue 
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Pegboard Test (PPT), Motor-free Visual Perceptual Test, Functional Dexterity Test, and 
Strength Dexterity Test. However, such traditional dexterity tests can only evaluate the 

functionality of the limb for the execution of specific tasks at a fixed position of upper 

limb workspace (3-D reachability). Those tests cannot determine upper limb performance 
for the execution of non-evaluated tasks or for other non-evaluated positions of the 

workspace. Therefore, a patient can obtain a good score in a dexterity test and a poor 
performance for the execution of other tasks. Similarly, a patient can achieve a score 

comparable to the population mean or a score similar to a score previously achieved by 

the same patient, which can be a false diagnostic because there is a chance that the 
patient could previously perform well during the execution of tasks at any position of the 

workspace, and that now he can only perform well at the fixed position where the 
dexterity test takes place. Therefore, human models for the characterisation of upper 

limb workspace with respect to dexterity would augment the understanding of upper 
limb motion and functionality and can potentially provide new measures that account for 

limb performance at all positions within upper limb workspace.  

Workplace and home designers interested in including ergonomic factors for the design 
of optimal workplaces and homes depend on the available scientific data and knowledge. 

Since decades ago, designers have studied human anthropometry and human motion to 
develop ergonomic products that can prevent occupational diseases and that can 

augment productivity and comfort. Although ergonomics researchers have studied and 

approximated upper limb workspace volumes, they commonly provide information about 
healthy people and for specific populations. Therefore, the design of workplace and 

ergonomic products for minority populations or for non-healthy people is limited by the 
lack of information for such populations. Such data can be obtained through experimental 

or computational analysis. However, sometimes the corresponding experimental analysis 

is expensive and the access to such populations limited. Conversely, computational 
models can potentially approximate workspace volumes and estimate regions where the 

upper limb can have high performance for the execution of any given task for those 
minorities and specific populations. As the aim of this research is focused on the 

development of computational models that can characterise upper limb workspace with 
respect to dexterity, it is believed that the outcome of this research will significantly 

benefit workplace and home designers.  

1.4 Research hypothesis 

Dexterity is a complex phenomenon of which little is known.  Due to the lack of 
knowledge on the subject, it was difficult to propose specific research questions to 
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answer. This research work rather focused on contributing to the understanding and 
characterisation of human upper limb dexterity.  

However, at the beginning of this investigation it was hypothesised that upper limb 

workspace volume is directly affected by segment lengths and joint range of motion, and 
therefore, that workspace volume grows as limb lengths and joint range of motion grow. 

Nevertheless, it was unknown if all these factors equally affect workspace volume. 
Likewise, it was believed that regions of high dexterity are proportional to workspace 

volumes. In addition, it was theorized that workspace volumes and high dexterity regions 

for healthy populations are larger than those for non-healthy populations as joint range 
of motion is affected by aging, diseases, injuries, and surgeries. Finally, it was suspected 

that people performance is affected by the position of the task relative to upper limb 
workspace.  

1.5 Thesis structure 

The thesis work presented in this document is composed of 9 chapters logically organised 
as follows. 

Chapter 1 (current chapter) provides an introduction to the research work presented in 

this thesis including background, aim and objectives, scope, and thesis structure.  

Chapter 2 centres on a comprehensive literature review to identifying the current state-

of-the-art and research gaps in the study of human motion and dexterity.  The literature 
review includes upper limb anatomy and physiology, hand-object interaction, human 

motion modelling, upper limb workspace analysis, dexterity analysis, manipulability 

analysis, uncertainty analysis, and sensitivity analysis.  

Chapter 3 introduces the upper limb kinematic model used throughout this research to 

analyse upper limb motion. The model represents the upper limb as a kinematic chain 
(system composed of rigid elements interconnected through joints). Once the number of 

segments and joints to represent the system are defined, global and local frames of 

reference are assigned to each degree of freedom. Finally, a system of equations is 
created to describe motion in both cartesian and joint spaces.  

Chapter 4 focuses on the development of a model for the analysis and quantification of 
upper limb reach envelope area (2-dimensional reachability) and workspace volume (3-

dimensional reachability), for which the input values are upper limb segment lengths and 
joint range of motion for each degree of freedom. Additionally, the chapter studies and 

quantifies the effects of reductions in joint range of motion and identifies the most 

influential factors.  
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Chapter 5 introduces and establishes the proposed novel method for the characterisation 
of upper limb workspace with respect to dexterity. The chapter starts with the definition 

of the manipulability analysis method (widely used in robotics [11, 12, 24-27]) and the 

demonstration of the applicability of such method for the quantification of human 
manipulability. Finally, this chapter establishes the novel method proposed in this thesis 

(Dexterity Analysis Method), which firstly defines upper limb workspace volume and 
secondly determines high dexterity regions within such workspace volume through a 

modified version of the manipulability analysis method that incorporates factors 

associated with human comfort.  

Chapter 6 focuses on upper limb experimental analysis to determine the accuracy of the 

proposed dexterity method. The experiments consisted of performing linear and circular 
trajectories on a new custom test board. Participant movements were recorded with a 

motion capture system (10 optimal cameras), according to a new custom motion capture 
protocol. Three measurements were computed for this experimental analysis: prediction 

(dexterity analysis), performance (deviation from the task), and perception (relative 

participant perception of comfort). Finally, a correlation analysis was conducted to 
quantify the level of agreement between the computational and experiments analysis.  

Chapter 7 demonstrates the applicability of the proposed novel method (Dexterity 
Analysis Method) to real life situations. Therefore, this chapter centres on the study of 

human upper limb workspace with respect to dexterity in reverse shoulder arthroplasty 

(based on the scientific paper published by Keener et al. [28]). Likewise, this chapter 
provides a qualitative comparison of upper limb workspace and dexterity for a healthy 

and a non-healthy individual (individual with implant).  

Chapter 8 discusses the results, findings, applicability and limitations of the method, and 

some relevant research gaps in human motion science.  

Chapter 9, the final chapter of this thesis, provides the final conclusions, summarises the 
contributions of this research work to the understanding of dexterity and indicates 

venues for future work.   
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2 LITERATURE REVIEW 

The aim of this chapter is to provide a comprehensive literature review to identify the 

current state-of-the-art and research gaps for the study of human dexterity and the 
investigation of general human motion. The literature review was divided into 3 main 

groups: anatomy and physiology of the human upper limb, human hand grasp and object 

interaction, and human motion modelling. The importance of this chapter relies on 
defining the upper limb structure and functionality to understand the capabilities of the 

extremity in terms of motion, as well as, on identifying the current state-of-the-art for the 
assessment and characterisation of upper limb workspace and dexterity.    

2.1 Anatomy and physiology of the human upper limb 

It is impossible to describe a system or phenomenon if the elements that compose them, 

their functionality, and their capabilities are unknown. Firstly, upper limb motion is 
commonly described through kinematic models that represent the extremity as a system 

composed of rigid elements interconnected through joints (kinematic chains) [29-35], 
where the rigid and articulated elements of the limb are the bones and joints, 

respectively.  It is well known that Anatomy and Physiology are the fields of science that 

study the structure and functionality of each element of the body, therefore, this section 
centres on the review of the anatomy and physiology of the human upper limb. 

Additionally, this section provides a literature review on range of motion normative data 
to understand the joint limits to perform movement.  

2.1.1 Anatomy and physiology  

As the research focus of this thesis is the study of upper limb workspace and dexterity, 

this section only centres on the description of the anatomy and physiology of the upper 
limb as a system composed of rigid and articulated elements, bones and joints, 

respectively.  Therefore, other anatomical and physiological elements of the extremity, as 
well as, the forces and factors that drive motion, are not addressed in this section as the 

study of those factors is not part of the scope of this research.    

Bones are the structural elements of the body that provide frame. They are composed of 
spongy and hard tissue depending on their size, shape and functionality [36]. Joints are 

elements that connect two bones, bone and cartilage, or bone and teeth, which can be 
structurally classified into fibrous (dense connective tissue rich in collagen fibres), 

cartilaginous (bones held together by cartilage), and synovial (bones connected by an 
articular capsule, synovial cavity and often accessory ligaments) [36]. Likewise, joints can 

be classified according to functionality as synarthrosis (immovable), amphiarthrosis 
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(slightly movable), and diarthrosis (freely movable synovial joints) [36]. As this thesis work 
is focused on human movement, synovial joints are the joints of interest as they allow 

movements such as shoulder abduction-adduction or elbow flexion-extension. Synovial 

joints are enclosed in a synovial capsule and are covered by articular cartilage which is a 
surface of hyaline to reduce friction and absorb shock [36]. The synovial capsule is 

composed of fibrous membranes that provide flexibility, whereas fibre bundles called 
ligaments provide stability and prevent dislocation [36]. Therefore, for gross movements 

such as elbow flexion-extension or shoulder abduction-adduction, human motion models 

commonly assume joints to be frictionless due to the properties of the cartilage and the 
synovial fluid as a highly efficient elements to reduce friction at the joint.  

Joints allow motion within a limited range called “joint range of motion” (ROM). Such 
range of motion is limited by the shape of the bones, the tissue surrounding the joint such 

as the synovial capsule, the ligaments (which provide stability to the joint), the tendons, 
and even the body fat surrounding the joint. An example of range of motion limitations 

can be observed in elbow extension where motion is limited by the collision of the ulnar 

head with the olecranon fossa. Likewise, forearm pronation is limited by the collision of 
the radius with the ulna, whereas supination is constrained by the ligaments and the 

interosseous membrane between the radius and ulna [37]. Therefore, diseases, injuries, 
and deformations affecting such elements of the body have a direct impact on joint range 

of motion.  

Synovial joint movements are generally classified as [36]: 

i. Gliding: nearly flat bone surfaces move back-and-forth and side-to-side with 

respect to each other within a relatively limited range. 

ii. Angular: displacement increasing or decreasing the angle between two bones. 

iii. Rotational: rotational movement of the bone around its own longitudinal axis. 

iv. Special: movements of particular joints including elevation, depression, 
protraction, retraction, supination, pronation, and opposition [36].   

Therefore, the combination of gliding, angular, rotational, and special movements of the 
synovial joints allow humans to perform motion.  

The upper limb is composed of the scapula, clavicle, humerus, ulna, radius, carpals, 
metacarpals and phalanges (a total of 32 bones) interconnected through the shoulder, 

elbow, wrist, carpometacarpal, metacarpophalangeal, and interphalangeal joints (see 

Figure 2.1) [36].  
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Figure 2.1. Bones of the upper limb. Copyright © 2009, John Wiley & Sons1. 

2.1.1.1 The Shoulder  

The shoulder is the joint of the human body with the greatest range of motion and is 

considered as the main contributor to upper limb reachability, without it, upper limb 

motion would be tremendously limited. Although the shoulder is commonly thought of 
and modelled as a ball-and-socket joint, the shoulder is actually a complex system 

composed of the clavicle, scapula, the head of the humerus, and the joints that 
interconnect each of these elements. In some cases, the sternum is also considered as 

part of the shoulder complex. 

The shoulder complex consists of five internal joints: the sternoclavicular, 

acromioclavicular, coracoclavicular, glenohumeral and scapulothoracic joints (see Figure 

2.2) [38]. However, the acromioclavicular and coracoclavicular joints are generally 
assumed to be fixed (as they are just fibrous tissues with extremely limited motion). The 

sternoclavicular joint connects the clavicle with the sternum and is usually modelled as 
ball-and-socket joint (with 2-DOFs or 3-DOFs). The glenohumeral joint connects the head 

of the humerus with the glenoid fossa of the scapula, whereas the scapula connects to 

the thorax. The combined movements of the glenohumeral and scapulothoracic joints 
produce the greatest motion in the body. However, the movements of those joints are 

 

 
1 Republished with permission of John Wiley & Sons, from “A Photographic Atlas of the Human 
Body”, Tortora, G.; Derrickson, B., 2nd Edition, 2009; permission conveyed through Copyright 
Clearance Center, Inc. 
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commonly modelled as a simple ball-and-socket joint with 3-DOFs. Finally, all this 
shoulder joints combined allow flexion, extension, hypertension, abduction, adduction, 

horizontal abduction, horizontal adduction, medial and lateral rotation (see Figure 2.3) 

[38].  

 

Figure 2.2. Coracoclavicular, acromioclavicular and glenohumeral joints. Adapted from 
[37] Copyright © 2011, McGraw Hill LLC2 

 

Figure 2.3. Shoulder flexion-extension (left), abduction-adduction (middle), medial-lateral 
rotation (right). Adapted from [36] Copyright © 2014, John Wiley & Sons3. 

 

 
2 Republished with permission of McGraw Hill LLC, from “Basic Biomechanics”, Hall, Sussan J., 6th 
Edition (International), 2011; permission conveyed through Copyright Clearance Center, Inc. 
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2.1.1.2 The Elbow 

The elbow is considered as a hinge joint that connects the humerus, the radius and the 

ulna bones. This joint is composed of the humeroulnar, humeroradial, and proximal 
radioulnar joints (see Figure 2.4). For the study of motion, the humeroulnar and 

humeroradial joints are usually modelled together as a 1- DOF hinge joint. The range of 
motion of this hinge joint is constrained by the ligaments, muscles, and the collision of 

the ulnar bones with the olecranon fossa.  

 

Figure 2.4. Joints of the elbow: (a) Radioulnar (pivot) joint, (b) Humeroulnar (hinge) and 
Humeroradial (gliding) joints. Adapted from [36] Copyright © 2014, John Wiley & Sons 3. 

The proximal radioulnar joint is a 1- DOF pivot joint that allows pronation (palm posterior) 

and supination (palm anterior) (see Figure 2.5). The range of motion of this joint is 

constrained by the collision of the radius with the ulna for pronation, and by the 
ligaments and membranes for supination [37]. Pronation-supination is an interesting 

upper limb motion that allow the hand to face anteriorly and posteriorly and is believed 
to highly contribute to limb performance as it increases hand reachability and 

manipulation. 

 

Figure 2.5. Movements of the elbow. Adapted from [36] Copyright © 2014, John Wiley & 
Sons3 

 

 
3 Reproduced with permission of John Wiley & Sons Limited, from Principles of Anatomy & 
Physiology, Tortora, G., 14th Edition, 2014; permission conveyed through PLSclear. 
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2.1.1.3 The Wrist 

The wrist is a complex set of small irregular bones called carpals, which are arranged in 

two rows and which articulate at the radiocarpal and intercarpal articulations (see Figure 
2.1) [36]. The wrist is modelled as a 2-DOFs joint that allow flexion, extension, 

hypertension, ulnar and radial deviation (see Figure 2.6). The range of motion of the wrist 
is constrained by the ligaments encapsulating the joint. The combination of pronation-

supination with wrist flexion, extension, deviation provide a wide number of 
configurations for hand-object manipulation. 

2.1.1.4 The Hand 

The Hand is divided into the palm (metacarpal bones) and the fingers (phalanges). The 

fingers or digits can perform flexion-extension and deviation at the metacarpophalangeal 
joints(2-DOFs), and flexion-extension at the interphalangeal joints (1-DOF). The thumb 

can execute flexion-extension, abduction-adduction, and opposition and is the digit with 

the greatest range of motion (see Figure 2.6) [36]. The opposition movement is an 
especial movement that permits precise manipulation of objects and increases in hand 

dexterity.  

 

Figure 2.6. Movements of the wrist and hand: (a) abduction-adduction  and flexion-
extension of the wrist, (b) abduction-adduction and opposition of the fingers. Adapted 

from [36] Copyright © 2014, John Wiley & Sons3.  

2.1.2 Joint range of motion 

Joints are the articulated elements that interconnect bones to allow motion within a 
limited range called joint “range of motion” (ROM). Joint range of motion is one of the 

main variables for human motion modelling. However, published normative data for 

range of motion is confusing, unclear, and difficult to compare [39-42]. Researchers 
assess range of motion using different methods, instruments, body landmarks and limb 

configurations. Furthermore, some authors assess range of motion actively (participants 
move limbs by themselves) [39], some passively (researchers move participant limbs) 

[41], and some actively and passively [40]. Some researchers believe that passive 
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assessment provides a better estimate of joint range of motion as active assessment can 
be affected by pain and weakness in the limb [41].  

Table 2.1. Comparison of Range of Motion Data (Means). The values provided are joint 
range of motion in degrees. 

Range of Motion Side 
Glanville (a) 

(1937) 
AAOS (b) 

(1965) 
Boone (c) 

(1979) 
Chang (d) 

(1988) 
Stubbs (e) 

(1993) 
Gunal (f) 

(1996) 
Gunal (f) 

(1996)  
Soucie (g) 

(2011)  
  

- - - - - Active Passive Passive 
  

N=10 - N= 109 N=10 N=15 N=1000 N=1000 N=114 

    Age 20-40 - 
Age avg. 

22.4 
Age avg. 28 Age 25-34 Age 18-22 Age 18-22 Age 22-44 

GH abduction 
(Right) 129.3 

180.0 184.0 
- 176.3 - 165.7 

- 
(Left) 130.3 - 178.2 - 168.2 

GH forward flexion 
(Right) 179.0 

180.0 166.7 
- 179.6 - - 

168.8 
(Left) 179.9 - 178.5 - - 

GH backward 
extension 

(Right) 55.2 
60.0 62.3 

- 66.3 - - 
- 

(Left) 60.0 - 65.4 - - 

GH horizontal flexion 
(Right) - 

135.0 140.7 
- 133.8 116.7 121.3 

- 
(Left) - - 135.6 122.9 125.1 

GH horizontal 
extension 

(Right) - 
60.0 45.4 

- 53.9 27.7 - 
- 

(Left) - - 54.4 30.7 - 

GH external rotation 
/ side 

(Right) - 
60.0 - 

- 60.6 - - 
- 

(Left) - - 63.7 - - 

GH external rotation 
/ abduction 

(Right) 82.7 
90.0 103.7 

- 103.4 - - 
- 

(Left) 83.5 - 97.3 - - 

GH internal rot 
abduction 

(Right) 94.1 
70.0 68.8 

- 70.8 - - 
- 

(Left) 100.0 - 82.4 - - 

Elbow flexion  
(Right) 138.3 

150.0 142.9 
148.9 147.3 140.0 142.8 

144.6 
(Left) 144.2 146.8 148.5 142.4 145.6 

Elbow extension 
(Right) - 

- - 
- - 182.8 183.8 

179.2 
(Left) - - - 184.5 186.0 

Forearm supination 
(Right) 99.4 

80.0 82.1 
87.8 101.1 86.5 90.4 

85.0 
(Left) 100.6 88.8 101.4 88.2 93.0 

Forearm pronation 
(Right) 91.1 

80.0 75.8 
84.6 86.2 - - 

76.9 
(Left) 93.0 84.3 86.6 - - 

Wrist flexion 
(Right) 95.0 

80.0 76.4 
64.8 70.2 - - 

- 
(Left) 90.0 66.6 70.9 - - 

Wrist extension 
(Right) 54.1 

70.0 74.9 
54.1 76.5 59.4 68.5 

- 
(Left) 95.7 50.0 80.0 69.0 78.4 

Radial deviation 
(Right) 27.1 

20.0 21.5 
- 24.5 17.6 18.6 

- 
(Left) 31.1 - 23.1 21.3 24.3 

Ulnar deviation 
(Right) 66.1 

30.0 36.0 
- 51.1 - - 

- 
(Left) 66.1 - 51.1 - - 

                    

(a-e) Stubbs [42]. 
(f)  Gunal [40]. Some information was not presented. 
(g) Soucie [41]. The elbow extension was adapted for compatibility (the original angle presented by the author was 0.8). 
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However, active range of motion seems to be a more reasonable measure as this is the 
real range in which participants can perform motion by themselves. Table 2.1 provide 

male joint range of motion from selected published data to illustrate the inconsistencies 

among researchers. Another factor that complicates the use of ROM normative data is 
that some authors only evaluate females or males, young or old, healthy or non-healthy, 

a particular ethnicity, and only some joints or degrees of freedom [39-43]. Similarly, not 
all authors report statistical information such as sample size, sampling methods, and 

standard deviation [39-43]. Consequently, future work should focus on the development 

of standard methods for the assessment of joint range of motion and to provide reliable 
normative data that can be used for human modelling.  

It is important to understand that joint range of motion can be affected by aging, 
deformations, diseases, injuries, and surgeries. Therefore, some researchers have studied 

the effects of such factors on joint range of motion: Welsh [44] investigates the impacts 
of joint dislocation and instability on ROM, Willing [45] studies how bone-on-bone 

impingement affect ROM, Gutierrez [46] analyses how bone geometry  and joint centre of 

rotation for reverse shoulder implants affect abduction (see Figure 2.7), and Keener et al. 
[28] optimises implant position with respect to ROM for reverse shoulder arthroplasty.   

 

Figure 2.7. Effects of variations in the geometry and joint centre of rotation for reverse 
shoulder implants. On the left side, 3 different humeral neck -shaft angles. On the right, 

experimental setup for adduction-abduction range of motion measurements. Copyright © 
2008, Elsevier 4. 

 

 
4 Reprinted from Journal of Shoulder and Elbow Surgery, vol.17, no.4, Gutierrez, S. et al., “Evaluation 
of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder 
model”, pp. 608-615, copyright (2008), with permission from Elsevier. 



30 

 

Joint range of motion has been used as a measure of upper limb functionality to 
determine if people are able to perform activities of daily living [47-49]. Gates, Walters, 

Cowley, Wilken, and Resnik [47] quantified the required joint range of motion of 8 

activities of daily living: box of shelf, can of shelf, deodorant, drinking from a cup, hand to 
back pocket, perineal care, donning and zipping pants, and box of ground. Similarly, 

Oosterwijk, Nieuwenhuis, van der Schans, and Mouton [48] published a comprehensive 
and up to date systematic review of shoulder and elbow range of motion required to 

perform activities of daily living. Taylor, Kedgley, Humphries, and Shaheen [49] evaluated 

the use of simulated tasks in upper limb assessments in comparison to functional 
movements and concluded that simulated tasks do not replicate the movements required 

to perform ADLs.   

Several studies investigated of the upper limb kinematics and joint range of motion for 

movement performance required to execute activities of daily living [47-49], and to 
perform movements in sports [50-54]. Such studies analyse the effects of pathologies, 

wear, and injuries on range of motion, as well as define minimum, maximum, or average 

limb kinematics, required for the successful performance of relevant tasks. However, 
studies that investigate the separate effects of reductions in range of motion of each 

independent joint or degree of freedom and their contributions to upper limb 
performance in a hierarchical and structured manner is lacking in literature. For instance, 

it is unknown whether a decrease in shoulder adduction would has a greater negative 

effect on upper limb dexterity and functionality across multiple tasks compared to a 
similar reduction in shoulder abduction. In other words, how can a surgeon decide if a 

reduction in elbow extension is less negative than a reduction in elbow flexion during the 
optimisation of implant placement? Published work rather focuses on the effects of such 

reductions on upper limb performance for specific tasks relevant to their subjects. 

Furthermore, this author has not found any published work that provides a quantitative 
measure describing the negative effects of reductions in range of motion on the overall 

upper limb dexterity and functionality. Such measure would be tremendously beneficial 
for a more objective clinical assessment of upper limb healthiness and functionality. 

Therefore, future work should focus on the study and classification of the separate effects 
of reductions in joint range of motion of individual joints or degrees of freedom on the 

overall upper limb performance.  

Finally, the understanding and quantification of joint range of motion, as well as minimum 
range of motion required to execute activities of daily living are vital for the creation of 

human models that can mimic real human motion. Although the studies mentioned aim 
to contribute to the study of joint range of motion, standard methods, accurate 



31 

 

normative data, and defining standard activities for the evaluation of upper limb 
functionality are still needed.   

2.2 Human hand grasp and object interaction 

Humans have gone through many years of adaptation to the environment that surround 

them (the evolution). During such time, humans have been interacting with objects, 
starting with holding sticks and throwing rocks. Years passed by and humans learnt to use 

those objects as tools to facilitate their lives and to accomplish more advanced tasks, 
including the development of more sophisticated tools. Thus, scientists argue whether 

human hands evolved first in adaptation to the use of raw materials to make tools, or if 

the hands adapted to such tools [55]. Evolutionary changes, particularly in the hand, have 
made humans distinctive from other species. A clear distinction of humans compared to 

any other primates is that humans possess the longest thumb relative to the second 
finger, which was important for the prehistoric tool making [55]. Those anatomical 

characteristics combined with finger opposition allowed humans to manipulate simple 
tools that facilitated the development of more complex instruments. The hand-object 

interaction has been formally investigated, or at least studied with more attention, since 

late fifties and early sixties [56-58]. Investigations from late fifties to early nineties, 
commonly focused on the identification and classification of hand grasp patterns, 

particularly prehensile movements [55, 57-60]. Research on hand object interaction from 
late nineties to date has diversified, where some of the sub subjects of interest are motor 

control of the hand, kinematics, dynamics, tribology, postural hand synergies, gasp 

frequency in ADLs, ergonomic design, hand prosthetics, on so on. Therefore, the study of 
grasp patterns and hand-object interaction is of relevance to understand full 

manipulability of the upper limb; likewise, to the characterisation of dexterity. Hence, a 
literature review on human hand interaction including hand grasp patterns and hand 

object interaction is presented in this section.   

2.2.1 Hand grasp patterns and classification 

The human hand can perform movements of two types, prehensile and non-prehensile.  
In prehensile movements the object is held partially or completely in the hand, whereas, 

non-prehensile movements present no grasping but rather pushing or lifting whether 
with the hand or the fingers [57].  

However, non-prehensile movements have been of less attention. In this research 

project, prehensile movements are the only ones of interest. A particular characteristic of 
prehensile movements is that the object needs to be grasped in a secure and stable 

fashion before further manipulation [57]. Thus, a hand grasp can be generally defined as a 
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hand posture in which an object can remain secure independently of the position and 
orientation of the hand. Grasp stability can be accomplished by using power or precision 

grips.  

According to Napier [57], a power grip is such in which the object is held by partially 
flexed fingers and the palm with counterpressure by the thumb, whereas, in a precision 

grip the object is supported between the flexor parts of the fingers and the thumb (see 
Figure 2.8). Another important observation by Napier [57] is that the posture of the hand 

with respect to the forearm during precision grip is between ulnar and radial deviation 

and partially extended, whereas, in power grip the hand presents ulnar deviation and the 
wrist is in neutral position between flexion-extension and the long thumb axis seems to 

coincide with the forearm. Likewise, the author mentions that the thumb is commonly in 
adduction fashion during power grip, whereas, in precision grip the thumb is abducted 

[57]. In the later observation, Napier [57] states that in intermediate positions between 
adduction and abduction, the thumb is unstable due to the anatomical characteristics of 

the carpometacarpal joint.  

 

 

Figure 2.8 – Hand grip for different object sizes. Top: power grip, bottom: precision grip. 
Copyright © 1948, British Editorial Society of Bone & Joint Surgery5 

A later work by Kamakura [59] explores static prehension patterns in normal hands of 7 

participants holding 98 objects, identifying 14 patterns into 4 categories:  

 

 
5 Republished with permission of British Editorial Society of Bone & Joint Surgery, from “The 
prehensile movements of the human hand”, Napier, J., vol. 38-B, no. 4, 1956; permission conveyed 
through Copyright Clearance Center, Inc. 
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a) Power grip: a wide area of the palm and the volar sides of the fingers make 
contact with the object. 

b) Intermediate grip: the fingers are in moderate flexion, the contact areas with the 

object are the pulp of the thumb and the radial aspects of mainly the index and 
middle fingers. No palm contact is presented. 

c) Precision grip: the object is held between the volar aspects of the fingers and the 
pulp of the thumb.  

d) Grip involving no thumb: the object is held between adjacent fingers with no 

thumb participation in the grip. [59] 

On the other hand, Cutkosky [60] studied grasps used by machinists with the aim of 

predicting human grasps, and as a result he created a hierarchical grasp taxonomy (see 
Figure 2.9) [60, 61].  

 

Figure 2.9 – Partial taxonomy of manufacturing grasps (hand grasp hierarchical 
classification). [60] Copyright © 1989, IEEE. 
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This hierarchical classification of hand grips seems to be particularly relevant for making 
decisions about hand grasp patterns to choose depending on the geometry of the object 

and the grasping required force. Nevertheless, the author states that the choice of grasp 

is more influenced by the task to be accomplished rather than by the size and shape of 
the object [60].  

Likewise, Cutkosky [60] observed that power grips are characterised by the use of large 
contact areas between the object and the fingers, with limited or no motion of the 

fingers, and where the manipulation seems to depend mostly on the wrist. This factor 

could somehow compromise the dexterity of the hand during the manipulation of the 
object and suggests that the wrist is, in many cases, responsible for the manipulability of 

the object.  

Moreover, variations on grasp patterns are believed to be affected by personal 

preferences, object size and shape, and individual hand strength. Cutkosky [60] points out 
that is the relative size of the object with respect to the hand, geometric constraints and 

relative individual force play an important role in the decision-making process to 

determine the type of hand grasp preferred by the participant. This last characteristic 
related to relative hand-object dimensions seems to be less explored by researchers. It 

might be of relevance to investigate on the matter for the understanding of hand-object 
manipulation.  

A more recent work on human hand grasp is presented by Feix [62], in which the author 

analysed and compared existing information and research on human grasp taxonomies 
and synthesized them into a new classification called “the GRASP taxonomy” after a 

project (GRASP) founded by the European Commission (see Figure 2.10).  

Feix [62] states that hand motion and functionality depend not only on the intrinsic 

movements of the hand but also on the complementary movements of the arm and the 

body. Additionally, the author mentions that in power grip the object and the hand are 
rigidly coupled, and the position-orientation of the object strongly depend on the arm, 

whereas, in precision grip, the object can be moved by intrinsic movements of the hand 
[62].  

Thus, for modelling purposes, and particularly for power grip, it seems reasonable to 
represent hand grasp as a static position once the formation of the grip was finalised. 

However, for precision grip modelling, and depending on the scope of the investigation, it 

would be necessary to define if the grip would be considered as static during the 
manipulation of the object. 
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Figure 2.10 – The GRASP taxonomy of human grasp types. [62] Copyright © 2016, IEEE. 

The fingers and some aspects of the hand exert forces in different directions depending 

on the contact areas with the object, such postures are called opposition types (see 
Figure 2.11) and are divided into [62]: 

a) Pad opposition: grasp between the pad surfaces of the thumb and the fingers 

b) Palm opposition: grasp between hand surfaces and the fingers 

c) Side opposition: grasp between the thumb and the side of the index finger 

(commonly), although in some cases it could be supported by the side of other 
fingers. [62] 

 
Figure 2.11 – Opposition types of hand grasp. [62] Copyright © 2016, IEEE. 
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In some hand grip postures, the fingers work together as a single unit exerting forces in 
similar directions, this synergic collaboration of a set of fingers is called virtual finger (VF) 

and can serve in some cases as a simplified representation of the fingers for hand grasp 

[62]. Moreover, Feix [62] points out that most of the grasping types are used for light 
weight objects (less than 500g), and that such grasping positions require hand openings of 

5cm or less. 

2.2.2 Hand-Object Interaction 

In recent years, research on hand-object interaction and the application of such 

knowledge to Activities of Daily Living (ADLs) has been gaining interest. It might be due to 

technological advancements and the demand of generating knowledge for rehabilitation, 
prosthetics, ergonomics, product design, and robotics. Although, hand grip by itself can 

be considered mostly static, it is also composed of other dynamical factors which affect 
hand-object interaction and its applications to real life. According to Smeets [63], the 

selection of a hand grip to hold and object is influenced by visual information about its 

position-orientation, as well as, by the shape and size of the object. Furthermore, as 
objects are not always symmetrical, changes in the orientation of the object can force the 

participant to adjust grip aperture, size, and orientation (see Figure 2.12) [63].  It suggests 
that during the manipulation of an object, participants could slightly change hand posture 

to adapt to each particular circumstance.  

 

Figure 2.12 – Hand grasp of an object located in the same position but with a different 
orientation. Copyright © 1999, Human Kinetics, Inc. 6 

Moreover, Smeets [63] state that a stable grasp requires to hold the object in a manner 
that the line connecting both fingers (or virtual fingers) form a perpendicular line to the 

 

 
6 Republished with permission of Human Kinetics, Inc., from “A new view on grasping”, Smeets, J.B.; 
Brenner, E., vol. 3, no. 3, 1999; permission conveyed through Copyright Clearance Center, Inc. 
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surface of the object, and that such line should go through the centre of gravity of the 
object. On the other hand, the pre-shape finger movements are performed by the 

extrinsic muscles that attach on the forearm, whereas the intrinsic hand muscles are 

responsible for the finalisation of the grip just after touching the object [63, 64]. It implies 
that the hand is translated and pre-positioned by the arm, whereas the responsibility of 

the hand is mostly grasping the object and in-hand manipulation. Likewise, the selection 
of the grasp type, the speed of grip formation, and grasp stability are directly affected by 

the effective contact area with the object, as well as, by its intrinsic properties such as 

roughness and weight [63]. Additionally, the author suggests that visual information 
affect grip aperture and speed patterns during reach out.   

Santello [65] published an investigation related to postural hand synergies for tool usage 
in which the author asked participants to shape the right hand as if to grasp and use 

objects. The author measured the angular positions of 15 joint angles and processed the 
information by using discriminant analysis, regression analysis, and principal component 

analysis. Similarly, Gonzales [66] conducted principal component and trajectory analysis 

of finger movement, the author suggests that synergies can be used to identify finger 
movement patterns during manipulative tasks. Thus, principal component analysis, 

correlation analysis, and hand and finger synergy analysis, have been some of the most 
common techniques for object-hand interaction analysis. Such kind of analysis can help to 

identify patterns that could be used for example in robotics to mimic human hand 

behaviour, and even in the prediction of hand intentions.  

The understanding of hand-object interaction for ADLs is of great relevance as the 

performance of the limb for the execution of such tasks can determine the level of 
independency of the participant. In other words, when a person fails to perform basic 

ADLs, the person needs assistance and therefore becomes dependent. Such interactions 

were explored by Yoxall [67], in which the author analysed participants interacting with 
packings such as jars, water bottles,  yoghurt pots and a flexible crisp packets. As a result, 

the author found that spherical and box hand grips are more commonly used to open 
large and medium jars, whereas, lateral and spherical are more popular for small jars [67].  

Additionally, Yoxall [67] noticed that lateral grip was commonly used for water bottles 
and lateral pinch for yoghurt pots. Another interesting observation is that most grips 

were performed with the elbow flexed and the shoulder slightly abducted [67]. A later 

article by the same author investigated shear stresses in the digit joints when opening a 
jar container, showing as a result that participants tend to use lateral grips when possible 

due to lower joint stresses, and that small participants have lower physical strength and 
are more likely to suffer from pain discomfort [68]. This suggests that the dimensions of 
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the hand play an important role in the interaction with the object as it affects the 
necessary individual finger forces for a particular task, which might be related to the 

object contact area and the dynamics of the hand.  

A similar study by Rowson [69] investigates consumer grip choices during food container 
opening. The author suggests that the factors affecting the ability to open a container are 

such as age, gender, grip strength, coefficient of friction, wrist strength and the 
dimensions of the container [69]. Likewise, the author distinguished a clear difference in 

torque forces between females and males, where females generally produce lower 

torques [69]. Furthermore, Rowson [69] identified that during jar container opening, 
females tend to prefer spherical grip, whereas, males use a larger range of hand grips for 

the same purpose. That research work provides of substantial information about 
differences between males and females in both strength forces and grip preferences, 

which seem to be related. Other authors have focused on identifying grasp patterns and 
grasp frequency for ADLs and work activities. Zheng [70] and Bullock [71] investigated 

prehensile human hand use during daily work activities of housekeepers and machinists. 

Bullock [71] identified that the most frequent hand grips were medium wrap, spherical or 
precision disk, and lateral pinch. The author noticed that medium wrap was commonly 

used for large cylindrical objects and during longer duration activities, whereas, spherical 
(or precision disk) was used mostly for jars, disks, and miscellaneous [71]. Likewise, lateral 

pinch was used for smaller knobs, flat objects and to pick objects [71]. However, the 

results presented by Zheng [70] and Bullock [71] are limited to housekeeping and 
machinist tasks, therefore, it cannot be assumed that the same grasp patterns are used in 

other professions. 

Another area of science interested in hand-object interaction is robotics. For instance,  

Deimel [72] focuses on compliant and under actuated robotic hands for dexterous 

grasping. In such study, the author presents soft robotic hand designs that are clearly 
based on human hand grasp taxonomies (see Figure 2.13). Moreover, the author states 

that soft hands are inexpensive to manufacture, morphologically easy to adapt, and still 
able to accomplish a wide diversity of grasps, which are based on human hand grasp 

patterns [72]. Thus, interdisciplinary research combining robotics and biomechanics can 
help to develop more efficient and practical human-like robotic hands. 

This section addressed hand grasp classifications and grasp pattern use frequency. As a 

result of this review, it has been identified that the factors that affect hand grasp choice 
can be divided into four groups: object related, person related, object purpose, and 

feedback. Each of those groups are described as follows: 
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a) Object related: factors related to the intrinsic properties of the object such as size, 
shape, function, weight, texture, wetness, symmetry, and centre of gravity. 

b) Person related: factors related to the person such as age, gender, height, hand 

size, strength, habits, experience, tiredness, and health. 

c) Object purpose: as an object can be used for many purposes, participants might 

base their hand grasp choice on the manipulation intention. 

d) Feedback: factors related to the perception of the individual based on sensorial 

information (feedback), which include object position-orientation, visual and 

tactile information. 

 
Figure 2.13. Soft robotic hand mimicking the dexterous grasping taxonomy. Copyright © 

2016, SAGE Publications. 
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Furthermore, it is common to investigate the upper limb as an extremity composed of 
segments of the arm, forearm, and the hand without considering finger interaction and 

in-hand motion; or as the hand and fingers modelled only from the wrist without 

consideration of the arm motion contributions. Selecting the elements to be considered 
in the analysis of upper limb motion depends on the scope of the study. However, in 

order to understand full limb motion performance, future investigations should include all 
the elements of the extremity.  

The most updated nomenclature and  classification for hand grasp taxonomy found in this 

literature review is the one proposed by Feix [62]. However, the virtual finger (VF) 
approach seems to be a good technique for a simplified representation of the fingers for 

hand-object interactions.   

2.3 Human motion modelling 

The development of human models that can mimic real human behaviour is challenging. 

Therefore, this section provides a thorough literature review to identify possible 
challenges, current state-of-the-art, appropriate methods, and techniques for the 

development of human models to study upper limb workspace and dexterity. Such review 

includes human motion and dexterity, human biomechanics, upper limb kinematic 
modelling, workspace, motion redundancy, computational methods, data acquisition, and 

uncertainty and sensitivity analysis.  

2.3.1 Human motion, dexterity, and manipulability 

Humans perform movements even unconsciously. Such movements can be studied at 
different structural levels of the human body to understand each element and its 

function.  This research is interested in general conscious movements such as touching, 
reaching, grasping, and manipulating objects. However, the study of human motion is 

complex as this phenomenon depends on the collective and organised participation of 
different physiological mechanisms called “cooperative synergies” to produce motion, 

also known as “motor control” [1]. Cooperative synergies are the interaction of the 

bones, joints, muscles, senses, nervous system and the brain. Moreover, the body is 
equipped with special organs called “sensory organs”[1]. Such organs help to provide 

information and feedback to choose the trajectories for motion and to make any 
corrections whilst executing movement.  

According to Bernstein [1] the accuracy of performing a task can be improved by 

repeating  a movement to gain experience in solving a problem, which is called 
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“exercisability”. Exercisability is commonly confused with dexterity. Nevertheless, 
exercisability and dexterity are different concepts. 

 

Figure 2.14. Schematized mechanical structure of the humanoid arm. Frame 0 is the GFR, 
frames 1,2,3, are the LFR. 𝐥𝟏𝐥𝟐𝐥𝟑  are the limb lengths, 𝐆𝟏𝐆𝟐𝐆𝟑 are the centres of mass, and 

P is the end effector of the kinematic chain. Copyright © 1980, Springer Nature 7 

In the early eighties, fundamental principles of manipulation, dexterity and 
neurophysiological factors affecting motion were studied by Benati [73], who modelled 

the arm as a kinematic chain (see Error! Reference source not found.). In the publication 
the author states that dexterity can be considered as a measurement of manipulation, 

where manipulation depends on the visual and motor processes.  

 

Figure 2.15. Set up for the analysis of planar hand space trajectories. Copyright © 1982, 
Oxford University Press8 

 

 
7 Reprinted from Biological Cybernetics, vol. 38, no. 3, Benati, M. et al., “Anthropomorphic robotics”, 
pp. 125-140, copyright (1980), with permission from Springer Nature. 
8 Reprinted from Brain, vol. 105, no. 2, Abend, W. et al., “Human arm trajectory formation”, pp. 331-
348, copyright (1982), with permission from Oxford University Press. 
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Later in 1981, Morasso published a research work addressing spatial control of arm 
movements in which he states that the arm can be described in terms of spatial 

trajectories of the hand or angular curves of the joints [35]. A year later, the author 

published a complementary experimental work, concluding that the hands tend to follow 
straight paths even when participants are asked to produce curved paths (see Error! 

Reference source not found.) [74]. 

Morasso [35] and Abend [74] concluded that hand speed profiles for the execution of 

straight lines are normally bell-shaped. In a later study, Morasso [75] investigated three 

dimensional arm trajectories by using a mechanical arm and cinematography methods to 
record motion to see if the previous observations in two dimension analysis held in three 

dimensions (see Figure 2.16Error! Reference source not found.). The results confirmed 
that point-to-point movements at natural speed produce approximately straight 

trajectories with bell-shape velocity profiles as in studies of planar movements [35, 74, 
75].  

 

Figure 2.16. Hand trajectory recording methods. Goniometric method (left) and 
cinematographic method (right). Copyright © 1983, Springer Nature 9 

In the nineties, motor control gained more interest and researchers started focusing on 
more specific characteristics of motor control. For instance, Redding [76] published a 

study focused on the effects of visual disturbances on the trajectories of the hand, and 
Kawato [77] investigated how previous experiences are stored in internal model modules 

and can be accessed later for the execution of similar motor tasks.  

In the last two decades, the investigation of motor control has increased. The 

technological advancements and the interest in specific aspects of motor control have 

 

 
9 Reprinted from Biological Cybernetics, vol. 48, no. 3, Morasso, P., “Three dimensional arm 
trajectories”, pp. 187-194, copyright (1983), with permission from Springer Nature. 



43 

 

pushed researchers to investigate even more specific areas of motor control. Some recent 
studies have focused on the study of cortical activity for motor control [78], brain-

machine interfaces [79], posture-based models for motor problems [80], control 

performance and kinematic synergies [81], sensory feedback in upper limb prosthetics 
[82], selective voluntary motor control [83], and neural controlled robotic arms [84]. 

These investigations are essential for the understanding of motor control and its 
relationship to human motion. The acquisition of knowledge related to neurological and 

motor control strategies will improve the development of models that can characterise 

human movement more accurately.   

Dexterity can be defined as the ability to find quick solutions to unexpected new 

situations by using motor combinations, in other words,  a motor ability to perform 
precise movement with a determined purpose independently of the environmental 

changing conditions [1]. Therefore, performing dexterous movements depends on the 
combination of various physiological and cognitive factors and the surrounding 

conditions. Moreover, dexterity is affected by aging, diseases, injuries, and surgeries. 

Hence, the development of human models that can capture all those factors is 
significantly challenging.   

Dexterity is commonly evaluated through time dependent tests such as the Box and Block 
Test (BBT), Perdue Pegboard Test (PPT), Motor-free Visual Perceptual Test, Functional 

Dexterity Test, and Strength Dexterity Test [2-10]. Such kind of tests can determine if 

participants can successfully complete tasks, within a given time frame, on test boards 
placed in a fixed position in front of the participants and at a reachable distance. 

However, traditional dexterity tests are limited as they cannot provide data related to 
movement consistency, joint angles required to execute the task, regions of high 

dexterity, participant performance in other regions of the corresponding upper limb 

reachable space, and more importantly, dexterity tests cannot determine if participants 
are able to perform other activities non-evaluated during the test.  

In recent years, researchers have used motion capture systems (see Section 2.3.7) to 
study and quantify upper limb dexterity by analysing kinematic and motor control 

variables such as joint angles, velocity, acceleration,  movement coordination, and motion 
trajectories [4, 5, 85-89]. As the understanding of such aspects of upper limb motion is 

essential for prescribing an adequate rehabilitation therapy, as well as for adjusting work 

and home spaces to facilitate the performance of activities of daily living.   

However, traditional dexterity tests and most of the studies mentioned above only 

analyse and quantify dexterity. Although such data can be used to evaluate and compare 
upper limb performance for healthy and non-healthy populations, such data without 
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computational models cannot be used to predict upper limb dexterity. Therefore, 
computational models to characterise and predict upper limb dexterity are required.  

In robotics, an equivalent to human dexterity is called “manipulability”, an ability 

associated with object manipulation. Manipulability can be described as the ease of 
changing the position and orientation of the end-effector of a kinematic chain [12]. 

Yoshikawa [12] proposes the use of manipulability ellipsoids to assess the capability of a 
manipulator to execute a certain task. This approach uses the system of equations 

employed to model upper limb kinematics to compute a metric that describes the level of 

manipulability of the system for a determined task [90]. Although the manipulability 
analysis method is mostly used in robotics, a few researchers have already used it for the 

study of the human limb motion [13, 15, 27, 91]. Therefore, this research will explore the 
use of the manipulability analysis method for the characterisation of upper limb 

workspace with respect to dexterity.  

2.3.2 Upper limb dexterity and functionality 

The past subsection introduced and defined dexterity, as well as described the complexity 
of its study as it involves the coordinated cooperation of all the body systems. On the 

other hand, Section 2.1.2 addressed joint range of motion and its role on the successful 
performance of activities of daily living (ADLs). Although many factors affect upper limb 

functionality, it can be easy observed that both dexterity and joint range of motion are 

two important components of upper limb functionality. First, the segments of the upper 
extremity connected by joints can be seen as the physical structure that allow the 

execution of tasks in 3-dimensional space (upper limb workspace, see Section 2.3.5), 
where the upper limb reachability is dependent on segment lengths and joint range of 

motion. Whereas dexterity relates to fine movements involving perception, planning, 
control, and execution. Research studies on investigating joint range of motion and its 

relationship to the execution of activities of daily living have demonstrated that the 

functionality of the extremity can be directly affected by changes in joint range of motion 
due to aging, injury, degenerative diseases, surgery  [28, 44-49] (see Section 2.1.2). For 

instance, an injury that reduces shoulder flexion and abduction to a maximum range of 80 
degrees could constrain the person to reach from a shelf, comb their hair, change their 

cloths, or touch the back of their heads. Likewise, dexterity and functionality in the clinical 

context are commonly seen as one, and dexterity tests are frequently used for the 
assessment of upper limb healthiness and functionality [2-10]. A person that performs 

poorly in a dexterity test is believed to be limited in the execution of daily tasks as they 
may not be able to even control a spoon, which is basic for eating. Therefore, it can be 

easily seen that reductions in joint range of motion or dexterity decrease upper limb 
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functionality. Although joint range of motion and dexterity are two important 
components of functionality and have been separately assessed with the aim of defining 

upper limb healthiness and functionality, this author has not found any scientific 

publication that combines the assessment of both joint range of motion and dexterity to 
provide a more complete evaluation of the upper extremity functionality. Therefore, the 

novel method proposed in this research work can help to close this gap by providing a 
method that can also be used to assess upper limb functionality in terms of dexterity, and 

joint range of motion, described here as workspace volume (see Section 2.3.5 for 

workspace)  

2.3.3 Human biomechanics  

Biomechanics is the science that studies the Mechanics applied to biological systems, 

where biological systems refer to living beings, and Mechanics is the science that study 
motion, forces, and the causes of them [92]. Biomechanics can be generally divided into 

Kinematics, Kinetics and Statics. Kinematics study motion without reference to mass and 

force, whereas Kinetics study motion including mass and the forces that produce motion. 
Finally, Statics investigates the forces that can potentially cause motion.  

A complete biomechanical analysis involves the study of Kinematics, Kinetics and Statics. 
However, this research is mostly interested in the kinematic analysis of the human upper 

limb, which is represented as a system composed of rigid elements interconnected 

through joints (a kinematic chain).  

The upper limb is a biomechanical system, and as all natural systems, implies dealing with  

nonlinearities due to the nature of the anatomy and physiology of the limb: muscle 
contraction and relaxation to perform motion [93], tendon and ligament structural 

properties, motor control [1, 35, 77, 94-97], and so on. Describing nonlinear systems is 
challenging as no universal methodology is applicable, which requires the use of 

combined approaches, techniques, and mathematical tools [98]. In some cases, such 

systems can be represented by linear models using ordinary linear differential equations 
(linearization). However, some linearization techniques deviate from real system 

behaviour and affect the accuracy of the models. Some common methods for nonlinear 
modelling are the use of state-space representation (i.e. representation of the system as 

a set of first order differential equations), functional series expansion, and block oriented 

techniques [99, 100]. 

Upper limb motion can be analysed in cartesian and joint spaces. Although the upper 

relationship between movements in cartesian and joint spaces is not linear, 
homogeneous matrices can be used to linearize such relationship.  
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2.3.4 Upper limb kinematic modelling 

The upper limb is commonly represented as a kinematic chain (a system composed of 

rigid elements interconnected through joints) for the study of human motion [32, 34, 73, 
101-103]. The general assumptions for the study of kinematic chains are that links are 

infinitely rigid, and joints are frictionless elements that allow motion in some directions 
and constraint it in other. This representation allows deriving a system of equations that 

can map movements in both cartesian and joint spaces. Such kinematic models can also 
be used to determine the position and orientation of any given element (commonly the 

end-effector) with respect to another (normally a global frame of reference). Moreover, 

the velocities and accelerations of each element of the system can be obtained by 
deriving position with respect to time.  

A general approach for the analysis of upper limb kinematics is presented in Figure 2.17, 
in which Raikova [34] represents the upper limb as a simplified 3-link kinematic chain 

(arm, forearm and hand) with 7 degrees of freedom (DOFs).  

 

Figure 2.17. Upper limb represented as a 3-link kinematic chain with 7-DOFs. 𝑶𝟎, 𝑶𝟑, 𝑶𝟓 
represent the centres of rotation of the shoulder, elbow and wrist respectively. Based on 

[34] Copyright © 1992, Elsevier 10  

Representing the upper limb as a kinematic chain is quite beneficial as this modelling 
approach provide essential information about the relationship of motion in both cartesian 

and joint domains. Hence, kinematic models can help to characterise limb motion [30, 
104-106]. Furthermore, this modelling approach is compatible with the study of motion 

of other systems. Consequently, the information obtained from these models can be used 

 

 
10 Reprinted from Journal of Biomechanics, vol. 25, no. 8, Raikova, R., “A general approach for 
modelling and mathematical investigation of the human upper limb”, pp. 857-867, copyright (1992), 
with permission from Elsevier. 
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to create robotic arms that can mimic human motion, to develop rehabilitation systems, 
to create assistive devices, prosthetic limbs, and exoskeletons [107-110].  

One of the most important things during the development of a kinematic model is to 

select a number of segments and degrees of freedom that can accurately represent the 
upper limb according to the scope of the study and the level of precision needed for the 

analysis. For instance, the shoulder complex is composed of the clavicle, scapula, and the 
head of humerus. Creating a kinematic model composed of all those 3 elements and their 

corresponding degrees of freedom increase the complexity of upper limb models, 

therefore, the shoulder complex is commonly simplified as a ball-and-socket joint with 3-
DOFs. Another aspect to be considered is the location of the centre of rotation for each 

joint as in some cases such centres of rotation are asymmetric. It is important to 
contemplate that the more segments and the more DOFs, the more complex the model.   

2.3.5 Upper limb workspace 

Human upper limbs can perform a wide variety of tasks from moving objects from point A 

to point B, to executing fine dexterous movements such as writing, painting, drawing, and 
sewing. However, upper limb movements are limited by joint range of motion (see 

Section 2.1.2). Such range of motion is commonly measured with the limb segments in a 
single configuration (normally in neutral configuration). Nevertheless, joint range of 

motion cannot fully capture upper limb capability to reach objects within a well-defined 

3-dimentional space. Such 3-dimentional reachable space is also known as the 
“workspace volume”. In robotics, the computation and understanding workspace volume 

is essential for the study of robot motion, as successful task execution depends on the 
ability of the robot to reach a determined region.  

 

Figure 2.18. Workspace volumes for a human upper limb and an upper-arm exoskeleton. 
[17] Copyright © 2006, IEEE. 

In biomechanics, upper limb workspace volumes are mostly employed in the study of 

human-machine interactions [16], the design of exoskeletons [17, 18], ergonomics design 
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[19], and the development of rehabilitation systems [20]. Venema and Hannaford [16], 
uses a stochastic approach for the computation of human workspace for the design of 

human interface mechanisms. Schiele and van der Helm [17] computes workspace 

volumes of a mechanical device and an upper limb for the development and evaluation of 
an upper-arm exoskeleton (see Figure 2.18). Chaffin [19], provides a comprehensive 

review (from the year 1970 to 2008) of the use of Digital Human Models (DHM) for 
workspace design and ergonomics, which demonstrates that workspace volumes for 

human modelling have been mostly used for workspace and ergonomic design. Piña-

Martínez, Roberts, Leal-Merlo, and Rodriguez-Leal [18] compares the anatomic limb 
workspace for the user  with the exoskeleton workspace for the development of and 

enhanced workspace upper limb exoskeleton. Laribi, Carbone, and Zeghloul [20] focuses 
on design optimisation (based on workspace volume) of a cable driven parallel robot 

intended for upper limb rehabilitation. 

However, workspace volumes are not commonly used as a standard reference for the 

evaluation of upper limb dexterity, rehabilitation therapy, sports biomechanics, 

comparative biomechanics, and clinical analysis. In recent years, due to the technological 
advancements, some researchers have attempted to introduce and recommend the use 

of workspace as a reference for upper limb functionality. Kurillo et al. [21] evaluates 
upper extremity workspace in patients with neuromuscular diseases through the use of a 

low-cost stereo camera to assess upper limb functional impairment. Similarly, Matthew, 

Kurillo, Han, and Bajcsy [22] uses a low-cost depth camera to estimate workspace volume 
as the author aims to introduce the use of workspace volumes in quantitative medicine 

for the evaluation of patients with muscular disorders. Likewise, Bai and Song [23] 
compute reachable workspace for post-stroke patients for clinical evaluation and for 

comparison with the upper limb Fugl-Meyer score provided by a therapist. The research 

papers previously mentioned indicate that workspace volumes can provide considerable 
numerical and visual information about upper limb reachability, which can be used as a 

reference for comparison and optimisation purposes. Therefore, this research work 
explores the use of workspace volumes as a reference for human motion and for the 

assessment of dexterity within such volumes (see Chapter 4).   

2.3.6 Upper limb motion redundancy  

Humans perform hundreds of movements every day. It is known that limb segment 
angles and trajectories can vary even for the execution of cyclic tasks. However, such 

angle and trajectory variability does not necessarily translate in poor task performance. 
This demonstrates that, in some cases, the task can be performed using different motion 

strategies, and that in such cases, there are many solutions for the execution of the task. 
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This concept of having more than one possible solution for the execution of a task is 
known as redundancy. The upper limb joints allow the extremity to move freely within a 

reachable volume, and many points of such volume can be reached by the limb using 

different configurations. One example is holding a mug in front of the shoulder, the mug 
can be hold in a fixed position whilst the segments of the upper extremity can still move 

without affecting the position of the mug. Likewise, upper limb redundancy can be 
observed when a person has a disease that affects joints or tissue constraining joint range 

of motion, as the disease progresses and reduces mobility, the person makes corrections 

to their movements in order to perform their activities of daily living. Such corrections to 
the upper limb movements are possible due to upper limb redundancy; the joint 

configurations can be adjusted to comply with the requirements of the task regardless of 
the loss of mobility.   

Upper limb movement redundancy plays an important role in trajectory planning, upper 
limb motion prediction, human-machine and human-object interaction. Researchers have 

investigated upper limb redundancy for upper arm orientation during kinematically 

redundant movements [111], the development rehabilitation devices [112], and for the 
development of exoskeletons [108, 113-116]. However, the investigation of upper limb 

redundancy for upper limb performance and dexterity is lacking in literature. Therefore, 
research work on the role of redundancy on upper limb motion is needed.  

2.3.7 Computational tools for human motion data acquisition and modelling 

Computational models are an immensely powerful tool that can be used to analyse real 

or unreal scenarios. Computational models are particularly helpful in situations in which 
experimental analysis is expensive or there is no access to large groups of participants, 

participants from particular populations, with specific anthropometric characteristics, or 
even with extreme or unseen features. Fortunately, recent years have provided several 

technological tools and software packages that can be used for the development of 

computational models. Some of the most common software packages for human motion 
analysis are Adams, AnyBody Modeling System™, MADYMO®, Articulated Total Body 

(ATB), 3D Static Strength Program (3DSSP), Abaqus, OpenSim, Python and MATLAB. Due 
to the flexibility of the software package, MATLAB has been selected as the programming 

language for the development of the computational models needed to study upper limb 

motion and for the characterisation of upper limb workspace with respect to dexterity. 

Experimental analysis requires collecting data. The existent technological tools that can 

be used for human motion data acquisition are grouped into optical and non-optical 
systems. Non-optical systems are sensor-based including inertial, magnetic and 
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mechanical devices to capture motion [117]. Some devices of this type are goniometers, 
potentiometers, and accelerometers. Goniometers are simple manual devices that are 

used to measure joint range of motion. Potentiometers and electrogoniometers are more 

advanced instruments based on measuring a change in voltage that can be translated into 
angular displacement. Potentiometers tend to slightly encumber movement, whilst 

electrogoniometers tend to be sensitive as they are composed of finer pieces [118]. Some 
advantages of this electronic devices are that they are normally low cost and can provide 

real-time data. However, this technique may be subject to errors due to displacement of 

the tissue on the place of attachment or due to the incorrect alignment of the device with 
the plane of interest [118]. Likewise, accelerometers are transducer-based devices that 

can be used to measure acceleration in real time [118]. The benefits of these devices are 
that they are relatively inexpensive and provide real-time acceleration data, however, 

they do not provide joint angles or position and tend to brake easily [118]. 

Conversely, optical systems use cameras to detect the position of the body. This capture 

motion using video cameras (image sensors) to triangulate either the 2D or 3D position of 

the elements being recorded [117]. Most optical systems require the use of active 
(normally LEDs) or passive (reflective materials) markers. However, more recent systems 

are able to detect surface features or light contrast to accurately capture data without 
using markers (markerless systems) [117]. Some important aspects that need to be 

considered when using optical systems are camera positioning, camera speed, sampling 

frequency, shutter speed, synchronization of cameras, calibration of image space, 
digitalization, transformation of data, data filtering, anatomical models and marker sets 

[118]. Some examples of motion capture systems and software packages are BTS SMART, 
Dartfish, Digital Motion Analysis (DMAS), Hu-M-An, Kinematic Analysis Software (KA Pro), 

Kinovea, MaxPRO, MSMS, Templo, Vicon™ and Visual3D [117]. The reader can find 

further explanation of these and more software packages in the work published by Nunes 
[117].  

Another aspect commonly assessed for human motion analysis is muscle activation, 
which can be measured using Electromyography (EMG), a technique used for the analysis 

of muscle activity. This technique measure muscle activation by placing electrodes on the 
skin close to the muscle (surface EMG) or by using needle electrodes (intramuscular 

EMG).  

Complementary techniques used for the analysis of human motion are x-ray stereo 
photogrammetry, magnetic resonance imaging (MRI), Computed Tomography (CT), and 

ultrasound methods. Such techniques can provide anthropometric information such as 
size and geometry.  
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2.4 Uncertainty and sensitivity analysis 

The description of a determined phenomenon requires understanding each element of 
the system, as well as their interactions. A system can be simplified as black box models 

with inputs and outputs. It is not difficult to believe that variations in the inputs of the 

system might affect the outputs. Sensitivity and uncertainty analysis focus on the 
quantification of the effect of such input variations. Sensitivity Analysis evaluates 

variation in the model outputs due to qualitative or quantitative variation in the input 
variables [119]. It helps to identify the factors that mostly contribute to output variability, 

the factors that are insignificant and the factors that are important for optimization [120]. 

Sensitivity analysis can be classified into factor screening, local, and global sensitivity 
analysis [120]. Screening factors help to identify influential factors that account for most 

of the output variability, local sensitivity analysis focuses on local impact factors by using 
partial derivatives of the output functions with respect to the input variables, and global 

sensitivity analysis apportions output uncertainty to the uncertainties in the input 
variables. 

Some common approached to conduct sensitivity analysis are [121]:  

 Screening techniques: this approach refers to the isolation of the elements of the 
system to study the system. Some techniques of this type are one-at-time (OAT) 
experiments, factorial, fractional factorial experiments, systemic fractional replicate 

design, and iterated fractional factorial. 

 Differential analysis: basically, refers to the use of Tailor expansion series. 

 Monte Carlo analysis: randomly inputs are studied to determine the partial and 
overall uncertainty of the system. 

 Variance based methods: the study of the system through the decomposition of the 
overall variance into partial variances using techniques such as correlation ratios, 
Sobol’ indices, and Fourier Amplitude of Sensitivity Test (FAST) [121]. 

Uncertainty is defined as a lack of certainty [122]. This uncertainty can be due to a lack of 
knowledge or variations in the inputs. Uncertainty Analysis focuses on the effect of 

uncertainty in the inputs. Uncertainty is said to be a complement of probability, or an 

improbability. Thus, the probability of an event 𝐸 plus the uncertainty of the same event 
𝐸௖  must add to 1 providing the two events are exclusive (one or the other event happens 

at once) [122]. Probability can be defined as a branch of sciences that helps to predict the 
probability of an event to occur.  
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A powerful tool for probability analysis is the Bayes’ theorem, it is centred on the fact that 
the probability of any event to occur can be calculated by using a the probability rules and 

assuming that the events are interchangeable 𝑝(𝐹|𝐸𝐾) = 𝑝(𝐸|𝐹𝐾)𝑝(𝐹|𝐾)/𝑝(𝐸|𝐾) 

[122]. On the other hand, Bernoulli series is a powerful technique used for the study of 
series of events with only two possible outcomes provided that the outcome is 

independent from any previous results and that the probabilities for all of the outcomes 
in the series are equal [122].Thu, the probability of one of the two possible outcomes can 

be represented by 𝜃, the probability of the complement by (1 − 𝜃) and the probability of 

the series by  𝑝(𝑥|𝜃) = 𝜃௥(1 − 𝜃)௡ି௥, where 𝑟 is the number of times that the first 
possible outcome has occurred in the series, and 𝑛 the number of total outcomes [122]. 

Uncertainty and sensitivity analysis are important to understand and quantify the 
variations in the inputs and their effects on the outputs. As models represent real 

systems, quantifying the uncertainty of the model and identifying sensitive inputs is 
essential. Firstly, to determine the accuracy of the model and secondly, to understand 

how the real system is affected by variations in the inputs. Not many studies focused on 

the upper limb include sensitivity analysis, some that include it are the sensitivity analysis 
of dynamics of the upper limb [123], joint kinematics [124] uncertainty of wheelchair 

propulsion dynamics [125], and sensitivity analysis of 3D motion systems for the analysis 
of human motion [126].   

Therefore, uncertainty and sensitivity analysis are conducted at different stages of this 

research work to identify influential factors and their effects on the model outputs.  

2.5 Summary  

This chapter provided a comprehensive literature review to identify the current state-of-

the-art and research gaps for the study of human dexterity and the investigation of 
general human motion. Such review was divided into anatomy and physiology of the 

human upper limb, human hand grasp and object interaction, and human motion 

modelling.  

The first section focused on the description of the upper limb anatomy and physiology, as 

well as on the review of range of motion normative data. First, for the study of upper limb 
motion represented as a kinematic chain, bones are considered as infinitely rigid 

elements, whereas joints are considered as frictionless elements that allow motion in only 
certain directions. For simplicity, the shoulder is commonly modelled as a ball-and-socket 

joint with 3-DOFs. Likewise, the elbow is commonly modelled as a hinge joint with 1-DOF, 

the forearm pronation-supination as a pivot joint with 1-DOF, and the wrist as a biaxial 
joint with 2-DOFs.  
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Published normative data for range of motion is confusing, unclear, and difficult to 
compare [39-42]. Although some researchers believe that passive assessment provides a 

better estimate of joint range of motion, as active assessment can be affected by pain and 

weakness in the limb [41], active range of motion seems to be a more reasonable 
measure as this is the real range in which people can perform motion by themselves. Joint 

range of motion normative data is inconsistent and incomplete. Consequently, future 
work should focus on the development of standard methods for the assessment of joint 

range of motion and on providing reliable normative data that can be used for human 

modelling. Finally, joint range of motion can be affected by aging, deformations, diseases, 
injuries, surgeries, etc [28, 44-46].  

It is common to model the human upper limb as a kinematic chain for the study of motion 
[29-35]. Then, by using forward and inverse kinematics a system of equations can be 

obtained to describe displacement and velocity in both Cartesian and joint spaces [32, 34, 
101-103].  

Although, in biomechanics, upper limb workspace volumes have been mostly employed 

for the study of ergonomics, human-machine interactions, design of exoskeletons, and 
the development of rehabilitation systems [16-20]. In recent years, some authors [21-23] 

have started using workspace volume as a reference for comparison and optimisation 
purposes as such volumes provide considerable numerical and visual information about 

upper limb reachability. 

Dexterity is usually assessed through time dependent dexterity tests [2-8]. However, such 
traditional dexterity tests are limited as they cannot provide data related to movement 

consistency, joint angles required to execute the task, regions of high dexterity, 
participant performance in other regions of the corresponding upper limb reachable 

space, and more importantly, dexterity tests cannot determine if participants are able to 

perform activities of daily living. Such information is essential for prescribing an adequate 
rehabilitation therapy, as well as for adjusting work and home spaces to facilitate the 

performance of activities of daily living.  Likewise, such data is beneficial for the 
development of assistive devices. 

Additionally, dexterity tests by themselves cannot be used to predict upper limb 
dexterity. Consequently, computational models to characterise and predict upper limb 

dexterity are required. Therefore, it would be worth it to explore the use of the 

manipulability analysis method for the characterisation of upper limb dexterity [12].  

Although a wide variety of sophisticated software packages exist. Due to the flexibility of 

the software, MATLAB has been selected as the programming language for the 
development of the computational models needed to study upper limb motion and for 
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the characterisation of upper limb workspace with respect to dexterity. Likewise, the 
Vicon Motion Capture system has been selected for the recording of human motion for 

the experimental analysis (as this is the motion capture system available in the laboratory 

for human movement analysis). 
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3 UPPER LIMB KINEMATIC MODEL  

The previous chapter of this thesis provided a comprehensive literature review. This 

chapter introduces and establishes a general method for the study of upper limb motion. 
Such method is based on the representation of the upper limb as a kinematic chain. In 

this chapter, the upper limb is initially represented as a simplified 2-link kinematic chain 

with 2-DOFs, which is upgraded in following stages of this research work. Although such 
simplifications may seem like a conservative approach, a simplified model is needed to 

ensure that the methods and the analysis are correct. 

3.1 Mathematical Background - Kinematics 

The science that studies position, velocity and acceleration without consideration of 

forces is called Kinematics [127]. For the study of motion, it is common to describe 

systems as kinematic chains, systems composed of rigid bodies (links) interconnected 
through articulated elements (joints). The distal element of a kinematic chain, which 

commonly perform the tasks, is called the end-effector. Thus, the movements of a 
kinematic chain can be described in cartesian and joint spaces. The kinematic analysis 

conducted to determine position and orientation of the end-effector in cartesian space 

given the joint values is called forward kinematics, whereas the reverse analysis is called 
inverse kinematics [101]. 

The first step for the development of a kinematic model is to define the number of 
segments, joints, and degrees of freedom of the kinematic chain. Once these parameters 

are defined, the next step is to define a global frame of reference and local frames of 
reference to each degree of freedom (rotational or translational motion allowed by the 

joint) of the system. Both local and global frames of reference are composed of three 

orthogonal axis x, y and z.  

The matrix that maps motion and translates it from cartesian to joint space and vice versa 

is called a homogeneous transformation matrix [101], which combine rotation and 
translation operations into a single matrix multiplication [101]: 

𝐻 =  ቂ
𝑅 𝑑
0 1

ቃ 

   Equation 3.1 

Where 𝐻 is the homogeneous matrix, 𝑅 is the 3 X 3 rotational matrix that describes 

orientation, 𝑑 is 3 X 1 column vector that describes translation. The rotation and 
translation matrices used to obtain the homogeneous matrix are [101]: 
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Equation 3.4 

Where 𝑇𝑟𝑎𝑛𝑠 and 𝑅𝑜𝑡 represent translation and rotation respectively, 𝑎, 𝑏, 𝑐 are 

displacements on the 𝑥, 𝑦, 𝑧 axes, 𝛼, 𝛽, 𝛾 represent the rotation angles with respect to the 

𝑥, 𝑦, 𝑧 axes, and 𝑠 and 𝑐 represent the sines and cosines respectively.  

The position and orientation of the end-effector of a kinematic chain expressed in frame 

𝑗, can be described with respect to the frame 𝑖 by the homogeneous transformation 
matrix:  

𝐻 = 𝑇௝
௜ = 𝐴௜ାଵ ⋯ 𝐴௝ = ൤

𝑅௝
௜ 𝑜௝

௜

0 1
൨ 

Equation 3.5 

Where 𝑇௝
௜ represents the homogeneous matrix for the representation of position and 

orientation of the frame 𝑗 with respect to the frame 𝑖, 𝐴௜  are the homogeneous 

transformations from 𝑖 to 𝑖 − 1, 𝑅௝
௜ represents the orientation of the frame 𝑗 relative to 

the frame 𝑖, and 𝑜௝
௜  represents the coordinates of the origin 𝑗 relative to the frame 𝑖. 

Thus, the position and orientation of the end-effector of a kinematic chain can be 
obtained by multiplying each homogeneous transformation matrix. 

3.2 Conventions and standards for the report of kinematics 

Since long ago scientists from the fields of biomechanics, medicine and bioengineering 

have been trying to formalise the study and report results in biomechanics. Some of the 
most important organizations for biomechanics are the International Society of 

Biomechanics (ISB), the European Society of Biomechanics (ESB) and the American Society 
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of Biomechanics (ASB). In 1995, as a first attempt to provide standardisation, the ISB 
published a work that provides recommendations for standardization for the report of 

kinematic data [128]. The ISB proposed some general recommendations such as the use 

of local and global frames for orientation and displacement and the use of matrices for 
dynamic analysis of human motion (see Figure 3.1). In 2002, the ISB published 

complementary recommendations for the ankle, hip and spine [129]. Likewise, in 2005 
the ISB published complementary recommendations for the shoulder, elbow, wrist and 

hand [130]. These works propose the terminology for the description of anatomical 

landmarks and present a method for the assignation of body and joint coordinate systems 
(see Figure 3.2).  

Although the ISB has attempted to standardize the investigation and report of kinematic 
studies [128-130], not all researchers use the recommendations and standard proposed 

by the ISB. Even the ISB technical sub committees seem to differ from each other; the 
hand and wrist committee states that they differ from the elbow section for the 

assignation of frames of reference  [130]. 

 

Figure 3.1. ISB Conventions for global reference frame and segmental local centre of mass 
reference frame. Copyright © 1995, Elsevier 11  

 

 
11 Reprinted from Journal of Biomechanics, vol. 28, no. 10, Wu, G.; Cavanagh, P. R., “ISB 
Recommendations for Standardization in the Reporting of Kinematic Data”, pp. 1257-1260, copyright 
(1995), with permission from Elsevier. 
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This confusion and reluctancy to the use of the standards and recommendations 
proposed by the ISB may come from the exclusion of other fields of science for the 

creation of the standards as it seems as if only clinicians and biomedical professionals 

were consulted for the definition of such standards without consideration of researchers 
from other fields of science. Some examples of the use of different conventions can be 

seen in the analysis of the kinematics of the hand [33], the study of wheelchair propulsion 
biomechanics [131], the design of exoskeletons for neural rehabilitation [132], and the 

study of redundancy of the arm [108].  

 

Figure 3.2. Bony landmarks and local coordinate systems of the thorax, clavicle, scapula 
and humerus. Copyright © 2005, Elsevier  12. 

It is important to recognize the efforts made by the ISB to create standards and 

conventions for the report of kinematic studies and biomechanical investigations. 
However, failing in the adoption of such standards and conventions recommended by the 

ISB may be linked to the exclusion of other fields of science during the creation of such 
standards. The biomechanical study of the human body requires collaborative research 

across science; therefore, any standards and conventions should consider how they can 

affect modelling, computations, and use of data obtained from scientific investigations for 
all possible stakeholders. An example is the development of assistive devices or the study 

of human-machine interaction, for researchers in the field of robotics the vertical axis of 
the global frame of reference is commonly the z axis [101, 127, 133], whereas in the ISB 

recommendations it corresponds to the y axis. Although it may seem like no big deal, 

 

 
12 Reprinted from Journal of Biomechanics, vol. 38, no. 5, Wu, G. et al., “ISB recommendation on 
definitions of joint coordinate systems of various joints for the reporting of human joint motion— 
Part II: shoulder, elbow, wrist and hand”, pp. 981-992, copyright (2005), with permission from 
Elsevier. 
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having different standards and conventions can lead to errors and add complexity to 
multidisciplinary collaboration, which could be otherwise avoided by creating standards 

and conventions that consider other scientific fields. Therefore, one may believe that 

international organisations from different field of science need to work on the 
development of standards and conventions that can benefit the scientific community as 

the lack of formalization and standards slows down the scientific development.  

3.3 General method 

The scientific study of any phenomenon requires the establishment of the methods, 

standards, modelling techniques, and conventions utilized in such investigation. 

Therefore, this section focuses on the definition of upper limb movements, conventions, 
protocols, and kinematic representation used throughout this research work for upper 

limb modelling, simulations, and experiments.  

3.3.1 Upper limb movement references and convention 

Section 3.2 describe the standards and conventions recommended by the ISB for the 

explanation of human motion. However, such conventions have not been fully adopted as 

they differ from standards used in other areas of science that collaborate with 
biomechanics. Therefore, as the methods used in this investigation include techniques 

used in robotics, and in order to facilitate the cross collaboration among fields for future 
investigation, this research opted to assign the global frame of reference as commonly 

assigned in robotics and mechanics, as illustrated in Figure 3.3, where the x axis points 

forwards, the y axis towards the left side of the body, and the z axis points upwards.  

 

Figure 3.3. Planes of motion for the general description of human movements 

Sagittal Plane

Frontal/Coronal
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However, for the upper limb models used in this research work the origin of the global 
frame of reference will be assigned to the shoulder as described in the next subsection 

(Section 3.3.2). Human motion is generally described with reference to 3 planes: the 

sagittal, transverse (horizontal), and frontal (coronal) planes (see Figure 3.3), which 
(accordingly to the global frame of reference used in this research) correspond to the x-z, 

x-y, and y-z planes, correspondingly. 

The sagittal, transverse, and frontal planes can be used to describe general movements of 

the body. However, more specific movements such as shoulder abduction, elbow flexion, 

and wrist deviation, require defining local points of reference and neutral positions, which 
are defined in Figure 3.4. The figure depicts the local reference and neutral position for 

the movements of the right upper limb (the corresponding movements for the left limb 
follow the same rules). As can be observed in the figure, shoulder abduction-adduction 

neutral position corresponds to the limb fully extended, with the palm facing the body, 
and the limb parallel to the trunk pointing downwards. Shoulder abduction corresponds 

to the lateral movement of the extremity on the frontal plane (positive direction), 

whereas adduction refers to the opposite movements of the limb (negative direction).  
Shoulder flexion-extension neutral position occurs when the upper limb is fully extended, 

parallel to the trunk, and with the palm of the hand facing backwards. Shoulder flexion 
corresponds to the forward rotational movement of the limb on the sagittal plane from 

neutral position (positive direction), whereas shoulder extension refers to movements of 

the limb in the opposite direction (negative direction). Shoulder internal-external rotation 
neutral position refers to the limb in 90 degrees of shoulder abduction, 90 degrees of 

elbow flexion, and the palm facing downwards. Shoulder internal-external rotation 
corresponds to the rotational movements of the forearm on the imaginary axis formed 

along the upper arm segment, where external rotation refers to the upward rotational 

movement of the limb (positive direction), and internal rotation to the opposite rotational 
movement of the forearm (negative direction). Elbow flexion-extension neutral position 

corresponds to the upper limb fully extended, parallel to the trunk, and with the palm 
facing forwards. Elbow flexion refers to the rotational movement of the forearm at the 

elbow joint towards the shoulder (positive direction), whereas extension refers to the 
opposite movement of the forearm (negative direction). Forearm pronation-supination 

neutral position occurs when the limb is in 90 degrees elbow flexion and the thumb is 

pointing upwards. Forearm pronation refers to the internal rotation of the thumb/hand 
with the palm incrementally facing down (positive direction), whereas supination refers 

to the opposite movement of the forearm with the palm incrementally facing upwards 
(negative direction). Wrist radial-ulnar deviation neutral position corresponds to the limb 

in 90 degrees elbow flexion, the thumb pointing upwards (can also be with the hand 



61 

 

facing downwards), and the third carpal (middle finger) parallel to the forearm segment. 
Wrist radial deviation refers to the rotational movement of the hand towards the thumb 

side (positive direction), whereas wrist ulnar deviation refers to the oppositive rotation of 

the wrist (negative direction). Finally, wrist flexion-extension neutral position occurs 
when the limb is in 90 degrees elbow flexion, the thumb is pointing upwards, and the 

third carpal (middle finger) is parallel to the forearm segment. Wrist flexion refers to the 
rotational movement of the hand towards the palmar side (positive direction), whereas 

wrist extension refers to the opposite rotational movement of the hand towards the 

dorsal side of the hand (negative direction). 

 

Figure 3.4. Upper limb reference for shoulder, elbow, forearm, and wrist movements. The 
limb in grey represents neutral positions. 

3.3.2 Upper limb representation as a kinematic chain 

The upper limb can be represented as a kinematic chain composed of infinitely rigid links 
(bones) interconnected by frictionless articulation joints which allow motion in some 
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directions and constrain it in others [33, 34, 97, 108, 134, 135]. Some of the general 
assumptions are that joint centres of rotation coincide with the axes of the segments, 

pronation-supination motion originates at the elbow, and wrist motion is the motion of 

the third metacarpal with respect to the radius [130].  

The upper arm is commonly represented as a 3-link kinematic chain (arm, forearm, and 

hand) with 2-DOFs at the wrist, 2-DOFs at the elbow (including pronation-supination), and 
3-DOFs at the shoulder. However, the number of segments and joints representing the 

extremity must be selected according to the scope of the study.  

However, in this research, the upper limb is initially represented as a 2-link kinematic 
chain (upper arm and forearm) with 2-DOFs (shoulder flexion-extension and elbow 

flexion-extension), which is upgraded in following stages by adding 2-DOFs at the 
shoulder.  

 

Figure 3.5. Representation of the human upper limb as a 3-link kinematic chain with 7-
DOFs with a global frame of reference at the manubrium of the sternum. 
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The origin of the global frame of reference (𝑥଴, 𝑦଴, 𝑧଴) is fixed at the centre of the 
glenohumeral joint, the 𝑧 axis is parallel to the gravity and pointing upwards, the 𝑥 axis 

points forwards as if the hand extends to reach an object to the front, finally the 𝑦 axis is 

assigned by using the right-hand rule. The rest of the frames (𝑥௜, 𝑦௜, 𝑧௜) are assigned as 
needed following the right-hand rule. Then, the homogeneous transformation matrices 

𝐻௜ are formed by using Equation 3.2, Equation 3.3 and Equation 3.4. Finally, the position 

and orientation 𝑥 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]்of the end-effector (wrist) can be obtained using 

Equation 3.5. If position and orientation 𝑥 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]்of the end-effector are 

known, the angles 𝑞 = [𝑞ଵ, 𝑞ଶ, 𝑞ଷ, … , 𝑞௡]் can be obtained by using inverse kinematics 

(see Figure 3.5 and Figure 3.6).   

 

Figure 3.6. Schematic representation of the model (inputs-outputs) 

3.3.3 Motion capture protocol  

This research is mainly focused on the characterisation of upper limb dexterity by 

modelling the limb as a kinematic chain and by simulating the movements of the 
extremity to understand workspace and dexterity. However, Chapter 0 presents an 

experimental approach which requires recording participant movements. The laboratory 

used for the experiments conducted in this research is fitted with a motion capture 
system composed of 10 optical cameras (T-160, 100 Hz, Vicon Nexus 1.8.5, Vicon Motion 

System Ltd – Oxford, UK). The optical cameras can record the position of body landmarks 
by attaching reflective markers to the locations of interest. The selection of body 

landmarks of interest depends on the aim and scope of the experiment. Therefore, the 

number of markers and their attachment location vary from study to study. Some 
research investigations on upper limb movement analysis use as few as 6 markers, 
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𝑞 = [𝑞ଵ, 𝑞ଶ, 𝑞ଷ, … , 𝑞௡]் 𝑥 = [𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾]்
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whereas others can use above 18 markers for the study of a single limb [47, 85, 136-138]. 
For instance,  [85] uses 6 markers for the investigation of upper limb functionality, [136] 

uses around 6 markers per limb to assess upper extremity kinematics during functional 

activities, [137]  uses 9 markers for the analysis of human arm motion planning,  [47] uses 
around 18 markers per limb for the investigation of upper limb range of motion required 

for activities of daily living, and [138] provides a protocol for motion capture that uses 
around 9 markers per limb. The selection of the number of markers and their attachment 

locations may pose limitations for the extraction of kinematic information and can affect 

the accuracy of the results. After evaluating such factors, this research adopted a 
modified version of the Nexus Plug-in-Gait model marker protocol [138] for the recording 

of participant movements. The modify version used here consists of the Nexus Plug-in 
Gait [138] (only the upper limb and thorax markers) and extra markers to reconstruct any 

missing points. Thus, the modified protocol consisting of 19 non-invasive reflective 
markers placed on the upper limb and thorax is illustrated and described on Figure 6.1 

and Table 6.1 of Chapter 0.  

However, as the computation of an accurate location of the shoulder centre of rotation is 
challenging, the modelling approach used in Chapter 0 assumes that the shoulder centre 

of rotation coincides with the position of the marker placed at the acromion. Such 
assumption is a limitation of the modelling approach used in the experimental analysis 

conducted in this research work and may affect the accuracy of the results. The rationale 

behind such simplification was that the complexity of computing a highly accurate 
shoulder centre of rotation would not significantly improve the accuracy of the computed 

shoulder angle for gross movements, and an approximation of shoulder and elbow angles 
would be sufficient to compare the results obtained from the simulation and 

experiments. However, future experimental analysis should explore the use of techniques 

and methods to increase the accuracy of the computation and analysis of the upper limb 
kinematics.  

3.4 Summary 

This chapter established a general method for the study of upper limb motion, which is 
used throughout this research for the investigation of upper limb motion and for the 

development of a novel method for the characterisation of upper limb workspace with 
respect to dexterity. Although the upper limb is initially represented as a simplified 2-link 

kinematic chain with 2-DOFs, the model is upgraded in following stages of this research 

work by adding 2-DOFs at the shoulder. Such simplifications may seem like a conservative 
approach, however, as this study aims to establish a novel method, such simplification is 

needed to validate that the model works correctly.    
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4 UPPER LIMB WORKSPACE  

The previous chapter focuses on kinematic modelling methods for human motion 

analysis. The main inputs of such kinematic models are segment lengths, degrees of 
freedom, and joint range of motion. Thus, once the modelling methods are defined, the 

next step is to understand the nature of the input parameters and how variations in the 

input affect the output. Therefore, this chapter focuses on the review of anthropometry 
(body measurements) and range of motion (ROM) of the human upper limb. Likewise, 

this section explores and defines upper limb workspace. The understanding of upper limb 
anthropometrics and workspace limitations are a first step to comprehend the 

manipulability and dexterity of the extremity. The work presented in this section includes 

the analysis of Reach Envelope Area (REA), workspace volume and the effects of input 
uncertainty on the overall reachability and workspace.   

4.1 Upper limb anthropometry 

The human body can be divided into body segments to facilitate its study. The main parts 
of the body are the head, the trunk and the limbs. Likewise, each of these parts can be 

divided into body segments. The study of the size and shape of the body including 

parameters such as stature, weight, segment lengths, volume, centre of mass, and so on 
is called anthropometry.   

During the industrial revolution and after World War II, anthropometry gained more 
importance as the provision of anthropometric data was important for engineering, 

design, ergonomics, performance optimization, rehabilitation, and for the development 
of military equipment and cloths. Studies published between 1950 and 1970 focused 

mainly on the study of anthropometrics, although, some works include range of motion 

and dynamic aspects of the body [139-142]. In 1978, the National Aeronautics and Space 
Administration (NASA) published an anthropometric source book with data obtained from 

surveys of 61 military and civilian populations [143, 144]. Similarly, in 1991, the 
Department of Defence of the United States published anthropometric data acquired 

from 75,000 U.S military personnel (collected in a time frame of 35 years) [145]. Likewise, 

in 1998 the Department of Trade and Industry of the U.K. published a handbook of adult 
anthropometrics and strength measurements.  

The studies mentioned above are a great effort to compile anthropometric data. 
However, in many cases, body measurements were only obtained from military 

populations, commonly men, and not all body measurements for the populations were 

collected. Thus, the comparison, compilation and use of the data is complicated.  
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Body segment dimensions vary from person to person. Such variability can be attributed 
to various factors, such as sex, ethnicity, environment, age, secular trend, social class, 

occupation, among others [139, 144, 146, 147]. Such human variability can be classified 

into three categories [144]:  

 Intra-individual: this variability includes right side-left side asymmetry and changes 
that occur during the adult life of an individual as a result of aging, eating habits and 

nutrition, environment (climate, altitude, topography, soil type), etcetera.  

 Inter-individual: it refers to variability due to factors such as gender, ethnicity, and 
racial origin. 

 Secular: changes that occur from generation to generation [144]. 

Therefore, in order to create accurate human models, right anthropometric data should 
be used according to the population being studied; one cannot assume that the body 

measurements are the same across populations. Moreover, the anthropometrics of an 
individual can vary from one side to the other (intra-individual variability) and can vary 

from generation to generation (secular variability). Thus, selecting the proper input data 

has a great effect on the validity and accuracy of a given model. When possible, the 
applicable statistical data should be acquired directly from the population of interest. 

Table 4.1 presents males stature and upper limb lengths (acromion to fingertips) for 
people of 4 different nationalities. Although there are differences between the values 

reported by Peebles [146] and Pheasant [147], it could be said that the values agree with 

each other. Moreover, researchers tend to estimate values where data is not available, it 
may be the case for some reported values which appear to be the same for both authors 

(see standard deviations in Table 4.1).  According to the data, and by comparing the mean 
values, people form the United States tend to be almost as tall as males form the United 

Kingdom (0.5-1.5cm difference), and both people from USA and UK seem to be from 6-
10cm taller than Japanese and Hong Kong males. Similarly, male upper limb lengths for 

people from the United States and United Kingdom appear to be at least 5cm larger than 

those for Hong Kong and Japanese people.  

At times, anthropometric data of a particular population is not existent or accessible. In 

such cases, segment length, weight, volume and mass can be estimated in function of 
hight or total weight; given that individual body measurements are proportional to total 

hight and weight. Figure 4.1 provides male body segment lengths in function of height for 

U.S., Mediterranean and Nordic populations.  
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Table 4.1. Male stature and upper limb length (acromion to fingertips) for different 
nationalities, source [144, 146, 147]. 

Population Stature  Upper limb length  Limb length (ratio) 

 
Peebles 
(1998) 

Pheasant 
(2006) 

Peebles 
(1998) 

Pheasant 
(2006) 

Limb length / 
Stature 

 (mm) (mm) (mm) (mm)      ( - ) ( - ) 

United Kingdom 1755 (70) 1740 (70) 794 (36) 780 (36) 0.452 0.448 

United States 1760 (71) 1755 (71) 796 (36) 790 (36) 0.452 0.450 

Hong Kong  1690 (62) 1680 (58) 735 (32) 730 (30) 0.435 0.435 

Japan 1687 (57) 1655 (58) 729 (30) 715 (29) 0.432 0.432 

 

 

Figure 4.1. Body segment parameters in function of height for three different populations. 
Based on [141] Copyright © 1972 by the National Academy of Sciences. 

The last 2 columns of Table 4.1 contain the upper limb segment lengths in function of 

stature (segment length divided by stature) according to the values of columns 2-5. Thus, 

the segment length of the upper limb (acromion to fingertips) in function of stature for 
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the United States (0.462*H) obtained from Figure 4.1 is quite close to the corresponding 
values in Table 4.1. Consequently, it can be said that in special circumstances where all 

anthropometric values of a population are not accessible, such values can be estimated in 

function of height (if such proportions are known). However, it is important to note that 
the use of such estimates will have an impact on the validity and accuracy of the study.  

Therefore, when studying populations, it is recommended to use the correct statistical 
data according to the population of interest. If such data is not accessible, the next step is 

to estimate body segment parameters in function of stature. When the analysis is person-

specific, if possible, the measurements of interest must be acquired directly from the 
individual. Thus, in this research, for population analysis, statistical data is used. However, 

anthropometry and range of motion values are directly obtained from the participants for 
the experimental studies.   

4.2 Reach Envelope Area – 2-Dimensional analysis  

This section focuses on the investigation of upper limb motion and workspace reachability 
on the horizontal plane. This limb reachability on the plane is known as reach envelope 

area (REA), which is constrained by the upper limb joint range of motion. Thus, the work 

presented in this section centres on determining and quantifying upper limb reach 
envelope area. Moreover, the analysis includes the quantification of input uncertainties 

and their effect on the overall limb reachability (2-D). The investigation presented here is 
a first step on the exploration of upper limb reachability, which is extended to 3 

dimensions in section 4.3.  

4.2.1 Methodology 

The kinematic model representation of the upper limb introduced in the previous chapter 
was used in this parametric study to explore reach envelope area on the horizontal plane.  

In this first approach, the upper limb was represented as a simplified kinematic chain 
composed of 2 links (upper arm and forearm) with 2-DOFs (shoulder horizontal flexion-

extension and elbow flexion-extension). Thus, the reach envelope area obtained in the 

analysis refers to the reachability of the upper limb up to the wrist. The forearm was 
assumed to be fixed in supine position and the shoulder and elbow joint rotational axes 

perpendicular to the plane being analysed. The model inputs were the shoulder and 

elbow joint angles  𝑞 = [𝑞ଵ, 𝑞ଶ]் and the upper arm and forearm segment lengths 𝑙 =

[𝑙ଵ, 𝑙ଶ]. The model outputs were the position 𝑥 = [𝑥, 𝑦, 𝑧]் of the end-effector on the 
cartesian space, which were used to compute the upper limb reach envelope area. The 

segment length values of the upper extremity were obtained from published 
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anthropometric data of the UK population (see Table 4.2) [146]. Likewise, Table 4.3 show 
the joint ROM values used in the analysis. 

Table 4.2. Upper limb segment values for the British population, source [146].   

Parameter Variable Males 

(m) 

Females 

(m) 

Upper Arm (𝒎) 𝑙௠ଵ, 𝑙௙ଵ 𝜇௠௟ଵ = 0.357, 𝜎௠௟ଵ = 0.025 𝜇௙௟ଵ = 0.321, 𝜎௙௟ଵ = 0.018 

Forearm (𝒎) 𝑙௠ଶ, 𝑙௙ଶ 𝜇௠௟ଶ = 0.288, 𝜎௠௟ଶ = 0.014 𝜇௙௟ଵ = 0.256, 𝜎௙௟ଵ = 0.014 

 

The analysis centred on reach envelope area on the horizontal plane. The only 

movements considered for the analysis were shoulder horizontal flexion-extension, and 

elbow flexion-extension. The experiment consisted of simulating upper limb motion along 
the plane by varying joint angles within ROM from their minimum to maximum values. 

The analysis was conducted in MATLAB using an algorithm that varied joint angle values 
from minimum to maximum obtaining as a result the reach envelope area and its 

boundaries (see Figure 4.2).  

Table 4.3. Normal range of motion of joints in male subjects, source [39]. 

Element of 
the limb 

Movement Male ROM [39] Variable 

(Angles) 

Shoulder 

Horizontal 
flexion 

140.7 ± 5.9 𝑞଼ ௠௔௫ 

Horizontal 
extension 

45.4 ± 6.2 𝑞଼ ௠௜௡ 

Abduction 184.0 ± 7.0 𝑞ଵ ௠௔௫ 

Adduction - - 𝑞ଵ ௠௜௡ 

Flexion 166.7 ± 4.7 𝑞ଶ ௠௔௫ 

Extension 62.3 ± 9.5 𝑞ଶ ௠௜௡ 

Inward rotation 68.8 ± 4.6 𝑞ଷ ௠௔௫ 

Outward rotation 103.7 ± 8.5 𝑞ଷ ௠௜௡ 

Elbow 
Flexion 142.9 ± 5.6 𝑞ସ ௠௔௫ 

Extension 0.6 ± 3.1 𝑞ସ ௠௜௡ 

4.2.2 Results 

Figure 4.2 shows reach envelope area for UK males with 3 different segment lengths: 

mean values, mean minus 3 standard deviations, and mean plus 3 standard deviations. As 
can be observed in Figure 4.2, reach envelope area boundaries consist of semi-circular 
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segments, which was somehow expected as both joints allow only rotational motion. The 
total estimated reach envelope area for an upper limb with mean values (medium size) 

was 0.59𝑚ଶ, whereas REA for a small (-3 SD) limb was 32.9% smaller and for a large (+3 
SD) limb was 39.1% larger than the medium size extremity (see Figure 4.2).  

Moreover, it can be observed that reach envelope area shifts away for long limbs, 

increasing long-distance reachability but decreasing short-range reachability. 
Correspondingly, short limbs exhibit a decrease in long-distance reachability and an 

increase in short-distance reachability. 

 

Figure 4.2. Reach envelope area of the upper limb (horizontal plane) for UK males using 
mean values(red), -3 SD (blue) and +3 SD (yellow).  

Variations in upper limb lengths are not the only factors that affect or modify reach 

envelope area. Range of motion values for the analysis depicted in Figure 4.2 were fixed 
and only the effect of variations in segment lengths were investigated.  

However, uncertainty on range of motion also affect the reachability of the upper limb 

and REA. Therefore, for the second part of the analysis, segment lengths were fixed to 
investigate how REA is affected by reductions in joint ROM. The results are shown in 

Figure 4.3. As can be noticed, a reduction of 15 degrees in shoulder horizontal flexion-
extension decreases REA by 8.1%, regardless of which end is reduced (see Figure 4.3 a-d). 
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Figure 4.3. Reach Envelope Area reduction (magenta) as both extremes of the shoulder 
and elbow ROM are reduced by 15 degrees. (a-b) Shoulder horizontal extension; (c-d) 

Shoulder horizontal flexion; (e-f) Elbow extension; (g-h) Elbow flexion. 
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Nonetheless, a reduction of 15 degrees in elbow extension decreases REA by only 2%, 
whereas such the same reduction in elbow flexion decreases REA by 10.8% (see Figure 4.3 

e-h). According to the results, it seems that on the plane, a reduction of 15 degrees for 

elbow flexion would cause a greatest reduction of REA. Furthermore, as can be seen, the 
reduction of elbow flexion has a direct effect in the short-distance reachability which 

would have a considerable effect on the performance of the limb, particularly for 
activities of daily living involving eating and touching the face. However, the study was 

conducted only on the plane and for a simplified representation of the limb (2-links with 

2-DOFs) and it is possible that in real life such reductions get compensated by other 
joints.  

Figure 4.2 and Figure 4.3, are the results obtained from studying the effects of changes in 
segment lengths and in joint range of motion. However, such results exhibit the separate 

effects of both uncertainties. Therefore, the analysis was extended to quantify the effects 
of propagating all input uncertainties by using the Monte Carlo method with normally 

distributed values for ROM and multivariate normally distributed values for the two 

segment lengths of the limb (see Figure 4.4).  

 

Figure 4.4. Estimated reach envelope area for males (blue) and females (magenta) using 
Monte Carlo analysis to propagate the input uncertainty. 

Moreover, the estimated female reach envelope area was computed and compared to 

the corresponding male reach envelope area. The analysis was conducted by using Monte 
Carlo sampling from segment length distributions for both genders (see Table 4.2). 

However, only male ROM values were considered  for both males and females as the 

found reported statistical values for female populations were only acquired from younger 
[148] or older [149] populations and not across all age groups. Therefore, the results will 

only show the effects of upper limb length variability given the gender of the population. 
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As can be appreciated, the estimated male REA is about 7% greater than the 
corresponding area for females. This was expected as reach envelope area depends on 

the size of the upper limb, which likewise relates to the stature of the individual, and 

according to statistical data, men tend to be taller than women (inter-individual 
variability, see Section 4.1). Hence, the researcher must take into consideration intra-

individual variability when analysing populations as the accuracy of the results will be 
affected by such factors.  

The results presented in Figure 4.2 and Figure 4.3, demonstrate the separate effects of 

variations in limb segment lengths and in ROM. The analysis was extended to estimate 
the combined effects on reach envelope area for the British male population. The 

investigation was carried out using Monte Carlo (n=10,000) and normal distributions for 
the input parameters (see Table 4.2 and Table 4.3). The reach envelope area boundaries 

were computed and are shown in Figure 4.5.  

 

Figure 4.5. Estimated reach envelope area for British males using Monte Carlo analysis 
(n=10,000) and normal distributions for upper limb segment lengths and ROM.  

As can be appreciated in Figure 4.5, the boundaries at the long range seem to fall 

relatively close to each other compared to the corresponding boundaries closer to the 
shoulder. The estimated mean distance for the long range boundary from the shoulder in 

the y direction was 𝜇 = 0.643𝑚 (𝜎 = 0.011𝑚) whereas, the corresponding distance for 
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the short range boundary was 𝜇 = 0.201𝑚 (𝜎 = 0.073𝑚). The deep blue surface within 
the boundaries is the estimated reachable surface across the sampled population. 

4.2.3 Summary 

The work presented in this section centred on determining and quantifying upper limb 

reach envelope area including uncertainties analysis. 

As a result of the analysis, it has been found the combination of both effects produce high 

variations of REA in both shape and location. This uncertainty caused by both factors was 
propagated, obtaining as a result the mean and standard deviation of the predicted REA 

for the population, and the different REA shapes which showed that there is higher 

variability in the short-range than in the long-range limb reachability. These findings 
provide insight for the understanding of upper limb reachability and the effects of 

uncertainties on the reachable points on the horizontal plane. Likewise, the results 
presented in this section already provide information relevant for workspace design, 

ergonomics, and clinical analysis.  However, the work presented in this section only 

included 2-dimensional analysis, and as the upper limb can move in 3-dimensions, a full 3-
dimensional analysis of upper limb workspace is presented in the following section.  

4.3 Workspace exploration – 3-Dimensional analysis  

The previous section centred on the upper limb reachability on the horizontal plane 
(reach envelope area). However, as in reality the upper limb performs movements in 3 

dimensions, this section extends the analysis presented in the previous section by adding 

a dimension to investigate full 3-dimentional upper limb motion. Furthermore, the study 
presented in this section also includes the quantification of input uncertainty and its 

effect on workspace (3-dimentional reachability). Understanding upper limb workspace is 
vital as it provides information about the potential reachable points in space, how 

reachability is affected by reductions in range of motion, and eventually, how all those 
factors can affect upper limb dexterity. 

4.3.1 Workspace investigation  

For the exploration of 3-dimensional reachability, the upper limb was represented as a 

simplified kinematic chain composed of 2 links (upper arm and forearm) with 4-DOFs 
(shoulder abduction-adduction, shoulder flexion-extension, shoulder internal-external 

rotation and elbow flexion-extension). The model inputs were the shoulder and elbow 

joint range of motion and the upper arm and forearm segment lengths (see Table 4.2 and 
Table 4.3).  
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The model outputs were the position 𝑥 = [𝑥, 𝑦, 𝑧]் of the end-effector on the cartesian 
space, which was used to compute upper limb workspace volume. The upper limb 

segment lengths and joint ROM values used in the analysis were obtained from published 

anthropometric data for the British population (see Table 4.2 and Table 4.3). However, 
joint range of motion published data is limited. Researchers provide ranges of motion that 

are commonly measured only on one plane of motion and with the rest of the segments 
in a single configuration as illustrated in Figure 3.4 of Section 3.3 [39-43, 148]. 

Nevertheless, upper limb joint range of motion is not consistent on other planes of 
motion and for other limb configurations. For instance, joint range of motion for shoulder 

abduction-adduction with the limb fully extended at 0 degrees of shoulder flexion, ranges 

from around 0-184 degrees (see Table 4.3), whereas shoulder abduction-adduction with 
the limb fully extended at 90-degrees of shoulder flexion corresponds to a joint range of 

motion from around -45 degrees of adduction to -90 degrees of abduction. The lack of 
information on human joint coupling for all possible limb configurations complicate the 

development of accurate human motion models.  

 

Figure 4.6. Shoulder abduction-adduction (𝜽𝟐) joint range of motion boundaries in 
function of shoulder flexion-extension (𝜽𝟏).   

Therefore, as joint coupling data is lacking in literature and as these values were needed 
for upper limb workspace analysis, such range of motion values for each degree of 

freedom of the shoulder (3-DOFs) at various configurations were approximated by self-
observation. Although such data cannot be considered as fully accurate because it was 

not systematically and experimentally measured, the values derived from self-
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observation were a closer approach to establish a joint coupling relationship for the 
purpose of this study.  

Likewise, these approximated values can already demonstrate the importance and 

applicability of such data for the improvement of upper limb models that can describe 
upper limb workspace, as well as more realistic limb movements.  However, future work 

should focus on the study, definition, and accurate measure of joint range of motion in all 
configurations, and on establishing joint coupling relationships among each individual 

degree of freedom.  

The joint coupling approximated values described above were used to obtain the 
corresponding polynomial equations that describe range of motion for each degree of 

freedom given the internal joint coupling (see Figure 4.6. and Figure 4.7.). This approach 
in combination with the statistical data presented in Table 4.3 was used to approximate 

the joint range of motion for each virtual individual. 

 

Figure 4.7. Shoulder internal-external rotation (𝜽𝟑) joint range of motion boundaries in 
function of shoulder flexion-extension (𝜽𝟏) and shoulder abduction-adduction (𝜽𝟐).   

Table 4.4. Ranges on the X, Y, Z axes for the analysis and computation of workspace 
volume. 

Parameter Variable Value 

X range (𝒎) 𝑋 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝑿 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Y range (𝒎) 𝑌 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝒀 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Z range (𝒎) 𝑍 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝒁 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 
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The analysis was conducted by sampling over 5,000 points in a cubic volume 5% greater 

(in each direction) than the upper limb length (see Table 4.4). A Matlab algorithm was 

created and used to determine feasible upper limb configurations to reach each sampled 
point and only satisfactory reachable solutions were considered to compute workspace 

and manipulability.  

Figure 4.8 and Figure 4.9 show the computed workspace volume for an individual with 

length values of 𝑙ଵ = 0.357𝑚 and 𝑙ଵ = 0.288𝑚, and with joint range of motion values of 

−60° ≤ 𝜃ଵ ≤ 160° for shoulder abduction-adduction, −10° ≤ 𝜃ଶ ≤ 150° for shoulder 
flexion-extension, -80° ≤ 𝜃ଷ ≤95° for shoulder internal-external rotation , 0.6° ≤ 𝜃ସ ≤

143° for elbow flexion-extension. The calculated workspace volume for this individual 

was 𝑣 = 0.566𝑚ଶ.  

 

Figure 4.8. Workspace volume for an individual with input parameters: 𝒍𝟏 = 𝟎. 𝟑𝟓𝟕𝒎,  
𝒍𝟏 = 𝟎. 𝟐𝟖𝟖𝒎, 𝜽𝟏𝐋 = −𝟔𝟎°, 𝜽𝟏𝐔 = 𝟏𝟔𝟎°  𝜽𝟐𝐋 = −𝟏𝟎°,  𝜽𝟐𝐔 = 𝟏𝟓𝟎°, 𝜽𝟑𝐋 =-80°,

𝜽𝟑𝐔 =95°, 𝜽𝟒𝐋 = 𝟎. 𝟔°, 𝜽𝟒𝐔 = 𝟏𝟒𝟑°. [Shading only used to convey 3-D workspace volume]. 

As can be seen in Figure 4.8 and Figure 4.9, the workspace volume seems to be formed of 
shapes similar to the corresponding reach envelope area shapes obtained in the 2-

dimensional analysis on the horizontal plane (see Section 4.2).  

According to the results, for right upper limbs, the reachability appears to be greater for 
movements to the front and right side, whereas the reachability seems to decrease when 

trying to reach far to the left or backwards (see Figure 4.9).  
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Moreover, the upper limb end-effector (the wrist in this case) cannot reach the centre of 
the shoulder, this phenomenon is consistent with the results obtained in the 2-

dimensional analysis in the previous section.  

Likewise, backwards upper limb reachability appears to be quite constrained, it was 
somehow expected as the limb is near to various joint range of motion boundaries.  

 

Figure 4.9. Workspace volume for an individual with input parameters: 𝒍𝟏 = 𝟎. 𝟑𝟓𝟕𝒎,  
𝒍𝟏 = 𝟎. 𝟐𝟖𝟖𝒎, 𝜽𝟏𝐋 = −𝟔𝟎°, 𝜽𝟏𝐔 = 𝟏𝟔𝟎°  𝜽𝟐𝐋 = −𝟏𝟎°,  𝜽𝟐𝐔 = 𝟏𝟓𝟎°, 𝜽𝟑𝐋 =-80°,

𝜽𝟑𝐔 =95°, 𝜽𝟒𝐋 = 𝟎. 𝟔°, 𝜽𝟒𝐔 = 𝟏𝟒𝟑° 

The results presented in Figure 4.8 and Figure 4.9 are person-specific, however, the 

method presented in this section can be used for population analysis by using 
distributions based on statistical data for the input values. The following section presents 

a population-based example to conduct a workspace sensitivity analysis.  

4.3.2 Workspace sensitivity analysis 

The previous section introduced the methodology to determine upper limb workspace 

volume and provided a person-specific example. This section focuses on upper limb 

workspace sensitivity analysis. According to the properties of the model and the 
algorithms used for the computation of workspace volume, and based on Figure 4.10 and 

Figure 4.11, two methods were selected for the sensitivity analysis: the Elementary 
Effects (EE) screening method and a gaussian regression method using the Gaussian 

Emulator Machine (GEM).  



79 

 

 

Figure 4.10. Decision tree to choose an appropriate sensitivity analysis method (meta-
models can also be used with any method in the case of high computational cost). 

Copyright © 2008, John Wiley & Sons 13. 

 

Figure 4.11. Graphical synthesis of sensitivity analysis methods. Copyright © 2015, 
Springer14.  

 

 
13 Republished with permission of John Wiley & Sons, from “Uncertainty in industrial practice; a 
guide to quantitative uncertainty management”, Rocquigny, E. et al., 2008; permission conveyed 
through Copyright Clearance Center, Inc. 
14 Republished with permission of Springer, from “Uncertainty in industrial practice; a guide to 
quantitative uncertainty management”, Iooss, B.; Lemaître, P., 2015; permission conveyed through 
Copyright Clearance Center, Inc. 
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Figure 4.12. shows the methodology used to conduct the sensitivity analysis for 
workspace volume. The first step was to obtain mean and standard deviation values 

(from Table 4.2 and Table 4.3) for each of the inputs, which were used to create normal 

distributions. Next, Latin Hypercube (LH) and Fractional Factorial (FF) techniques were 
employed to sample the inputs accordingly to compute the corresponding sensitivity 

index. Finally, the computed index reflects how sensitive the model is to variations in the 
inputs.  

 

Figure 4.12. Graphical description of the methodology used to conduct sensitivity analysis 
for the workspace investigation.   

Table 4.5. Sensitivity analysis measures for both Elementary Effects and Gaussian 
Emulator methods. 

Input Factor Variable Elementary Effect Effect – Gaussian 
Emulator 

Upper arm 𝒍𝟏 0.1431 59.20 

Forearm 𝒍𝟐 0.0895 29.90 

Shoulder adduction 𝜽𝟐𝑳 0.0802 12.04 

Shoulder abduction 𝜽𝟐𝑼 0.0389   0.31 

Shoulder external rotation 𝜽𝟑𝑼 0.0337   1.37 

Elbow flexion 𝜽𝟒𝑼 0.0331   1.75 

Elbow extension 𝜽𝟒𝑳 0.0330   1.32 

Shoulder extension 𝜽𝟏𝑳 0.0278   1.37 

Shoulder internal rotation 𝜽𝟑𝑳 0.0253   0.01 

Shoulder flexion 𝜽𝟏𝑼 0.0142   0.67 
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The results obtained from the sensitivity analysis are presented in Table 4.5 and Figure 
4.13. As can be seen in Figure 4.13, the results obtained from the Elementary Effects 

Method (EEM) and the Gaussian Emulator Machine (GEM) agree with each other for the 

identification of the 3 most influential factors: both 𝒍𝟏 and 𝒍𝟏 limb lengths and 𝜽𝟐𝑳 

shoulder adduction. However, there is some discrepancy about the influence of the rest 

of the factors. For instance, the EEM indicates that the next influential factor is shoulder 
abduction, whereas the GEM reveals that the same factor is one of the least influential. 

Nevertheless, it is important to mention that the results could be affected by the 

simplifications and assumptions of the model and methods used to compute workspace 
volumes, as explained in the previous sections.  

 

Figure 4.13. Sensitivity analysis measures for both Elementary Effects and Gaussian 
Emulator methods.  

The effect of limb segment length variability is important for the prediction of population 

workspace volume. However, for person-specific clinical analysis, segment lengths will 
not change in most cases, therefore, joint range of motion factors become the relevant 

source of uncertainty for workspace analysis. Thus, shoulder adduction seems to be the 

most influential factor, which according to the results, is at least twice as influential as 
other joints.  

4.3.3 Summary  

The work presented in this section focused on the 3-dimensional exploration of upper 
limb workspace including a sensitivity analysis for upper limb workspace volume. Thus, 
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this chapter introduced and demonstrated the use of a method for the computation of 
reach envelop areas and workspace volumes.  

As has been already mentioned in Section 2.3.5, studying and quantifying upper limb 

workspace is relevant in for the investigation of human-machine interactions, the 
development of rehabilitation devices, the design of assistive devices such as 

exoskeletons, and in ergonomics [16-20]. However, the use of workspace volumes for the 
evaluation of upper limb dexterity and functionality is not common in clinical analysis; 

although a few researchers have already attempted to introduce the use of workspace as 

a technique to assess the extremity [21-23, 150, 151]. Therefore, this chapter introduces 
and proposes a method to compute workspace volumes that provide numerical and visual 

information about upper limb reachability, which can be used as a reference for the 
evaluation of upper limb dexterity and functionality, for comparison and optimisation 

purposes, and for the development ergonomic and functional devices. Workspace 
volumes can be used as the base for the characterisation of upper limb dexterity as 

workspace volumes can be thought as the mapping of the extremity 3-dimensional 

reachable space. Therefore, dexterity measures and regions of high-low dexterity can be 
computed and described in terms of workspace volumes (introduced and defined in 

Section 5.7 and demonstrated in Chapter 7). The visual information provided by the 
workspace volume can be used to determine if an individual is able to reach a certain 

region of the space. This information is relevant as some techniques that evaluate upper 

limb functionality only focus on a particular region in front of the participant; however, a 
participant that performs well in such tests could potentially be limited in other non-

evaluated regions of space. Therefore, computing the workspace volume and using it as a 
map can help to assign scores for the functionality of the limb across the 3-dimnsional 

reachable space.  Moreover, the model proposed in this section can be used to 

characterise and predict workspace volumes for real and virtual people; however, further 
computational, and experimental analysis is needed in order to validate the model and 

the methods presented here. 

One of the challenges for the creation of the computational model to compute workspace 

volumes was that some of the information needed for the model, such as joint coupling 
and joint range of motion at different configurations of the limb, is lacking in literature. 

Therefore, such joint coupling data to impose the upper and lower joint range of motion 

boundaries for all the analysed virtual participants was approximated. Therefore, future 
work should focus on providing joint coupling normative data.  

Moreover, the sequence of joint displacements was arbitrarily imposed to simplify the 
model as the system is redundant and there are many rotation sequences that can get to 
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the same end-effector (wrist) position in cartesian space. Such simplifications and 
assumptions could have affected the accuracy of the results. Hence, future model 

versions should be more flexible and allow some level of redundancy for the model and 

the algorithms to find other possible solutions. It is also important to mention that the 
computed workspace volume corresponds to a right limb, although it can be slightly 

modified to evaluate a left limb. However, the shapes of the workspace volumes of the 
right and left extremities are expected to be mirrored and slightly different due to intra-

individual variability derived from body asymmetry. The study and comparison of 

workspace volume for right and left limbs seems to be lacking in literature. Therefore, 
future work is needed in this area.  

According to the results obtained from the sensitivity analysis, upper limb segment 
lengths and shoulder adduction are highly influential on workspace volume. Although 

segment length variations are relevant for the prediction workspace volumes, people 
joint range of motion is more likely to present variations over time due to aging, diseases, 

injuries, and surgeries. Therefore, more attention should be paid to shoulder adduction as 

according to the sensitivity analysis it is the most influential factor, which is at least twice 
as influential as other joints. This was also noticed in the computational analysis; 

reductions in shoulder adduction resulted in a significant decrease of reachability to the 
front-left side of the limb. This is an interesting finding that should be explored in more 

detail. Likewise, future work should focus on providing joint range of motion normative 

data including shoulder adduction range of motion for all limb configurations. 
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5 A NOVEL METHOD FOR THE CHARACTERISATION OF 

WORKSPACE WITH RESPECT TO DEXTERITY 

The previous chapters gave a description of the general method for human motion 
modelling and studied anthropometrics, reach envelope area and workspace. Thus, 

providing the knowledge to create an upper limb model to describe motion in both joint 
and cartesian spaces and to define upper limb reachability. However, the aim of this 

research project is to characterise upper limb workspace with respect to dexterity. As 

previously defined, dexterity can be described as a motor ability to execute precise 
movement with a determined purpose [1]. A similar ability for robotic arms and 

manipulators is called “manipulability”, which can be described as ease of changing the 
position and orientation of the end-effector of a manipulator [11, 12]. Thus, dexterity and 

manipulability can be said to be equal abilities. Yoshikawa [11, 12] proposed a method for 

the characterisation of manipulability. Although this method has been widely used in 
robotics [11, 12, 24-27], it has not been used much for the study of human upper limb 

motion. The few authors that have previously used the manipulability analysis method for 
human upper limb motion have used it for the study of a user-friendly rehabilitation 

system  [13], the analysis of wheelchair propulsion [14], and for the investigation of the 

upper-limb during grasping [15]. Therefore, as dexterity and manipulability can be said to 
be equal abilities, this author proposes the use of the manipulability analysis method as a 

base to characterise human upper limb dexterity. The novel method proposed in this 
chapter, the “Dexterity Analysis Method” (DAM), is a modified version of the 

manipulability analysis by the incorporation of human factors in a new variable called 
“comfort”. This comfort variable is used to penalise manipulability, and such penalised 

manipulability is called here “dexterity measure”. Finally, it is important to clarify that 

upper limb reachable regions are not necessarily regions where the upper limb has high 
dexterity; having high dexterity can be understood as being able perform precise 

movements that require to translate and orientate the end-effector (in this case the 
wrist) of the limb.  

5.1 Manipulability analysis method 

This section of the chapter introduces the manipulability analysis method proposed by 

Yoshikawa [11, 12] including the computation of the manipulability measure and the 
corresponding ellipsoids.  

First of all, the position and orientation of each element of a manipulator with “n” 

degrees of freedom can be described in joint space by a vector 𝑞 = [𝑞ଵ, 𝑞ଶ, ⋯ , 𝑞௡]் 

where  𝑞௡ represents the joint angle of the “n-th” degree of freedom. Likewise, the 



85 

 

position and orientation of the end-effector of a manipulator can be described in 

cartesian space by an 𝑚-dimensional vector 𝑟 = [𝑟ଵ, 𝑟ଶ, ⋯ , 𝑟௠]். Similarly, the velocities 

of the manipulator, in both joint and cartesian space, can be acquired by deriving their 

corresponding position with respect to time.  

The relationship of the velocities in joint and cartesian space is not linear, however, a 

transformation matrix can be used to map joint angular velocities into cartesian space 
(linearization). The 𝐽(𝑞) transformation matrix used for such linearization is called the 

Jacobian matrix: 

𝑟̇ = 𝐽(𝑞)𝑞̇  

Equation 5.1 

where 𝑟̇ is a vector containing velocity in cartesian space, and 𝑞̇ is a vector describing 

velocity in joint space. The Jacobian matrix is written as 𝐽 hereafter for simplicity.  

Consequently, the manipulability measure 𝑤 for a given manipulator configuration has 

the following properties [12]: 

i. The manipulability measure 𝑤 is given by 

𝑤 = ඥdet 𝐽 𝐽் 

Equation 5.2 

ii. When 𝑚 = 𝑛, 𝑤 reduces to 

𝑤 = |𝑑𝑒𝑡𝐽|  

Equation 5.3 

iii. Generally, 𝑤 ≥ 0 holds, and 𝑤 = 0 if and only if 𝑟𝑎𝑛𝑘𝐽(𝑞) < 𝑚 (if the 

manipulator is in a singular configuration) 

iv. When 𝑚 = 𝑛, the set of all 𝑣 realisable by a joint velocity 𝑞̇ where 

|𝑞|̇ ≤ 1,     𝑖 = 1,2, … , 𝑚 

Equation 5.4 

is a parallelepiped in 𝑚-dimensional space with a volume of 2௠𝑤  [12]. 

Moreover, manipulability ellipsoids can be derived from the Jacobian matrix by using 

singular value decomposition (SVD), which is denoted by:  

𝐽 = 𝑈Σ𝑉் 

Equation 5.5 
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where 𝑈 and 𝑉 are 𝑚 × 𝑚 and 𝑛 × 𝑛 orthogonal matrices, and Σ is a diagonal matrix 
containing the singular values 𝜎ଵ, 𝜎ଶ, ⋯ , 𝜎௠ of the Jacobian matrix 𝐽. 

Σ = ൦

𝜎ଵ 0 0 0
0 𝜎ଶ 0 0
0
0

0
0

⋱ 0
0 𝜎௠

൪, 𝜎ଵ ≥ 𝜎ଶ ≥ ⋯ ≥ 𝜎௠ ≥ 0 

Equation 5.6 

Furthermore, the 𝑢௜  columns of the 𝑈 vector multiplied by the corresponding singular 

value 𝑢ଵ𝜎ଵ, 𝑢ଶ𝜎ଶ, ⋯ , 𝑢௠𝜎௠ provide the values of the principal axes of the manipulability 

ellipsoids [12] (see Figure 5.1), where the major axis of the ellipsoid represent the 
direction in which the end-effector of the manipulator can move easier and at higher 

speeds [12].   

 

Figure 5.1. Manipulability ellipsoid. Copyright © 2003, MIT Press15 

The manipulability measure and the corresponding manipulability ellipsoids take into 
consideration the individual contributions of each joint to the overall manipulator motion 

at the end-effector. The measure by itself can be used to determine the ease of motion of 

the end-effector at a given configuration, whereas the main axis of the manipulability 
ellipsoid describes the specific direction for such ease of motion. Although the use of this 

method was originally proposed for the characterisation of robotic arm manipulability, 
the physical characteristics of a robotic arm and a human limb, for the study of 

movement as kinematic chain systems, are equivalent. Thus, the manipulability measure 

and the manipulability ellipsoids consider the individual contributions of upper limb joints 
to execute movement. Therefore, it is assumed that the measure and the ellipsoids are 

 

 
15 Republished with permission of MIT Press, from “Foundations of robotics: analysis and control 
[electronic resource]”, Yoshikawa, T., 2003. 
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intrinsically accounting for the contributions of each joint to upper limb dexterity.  It is 
important to mention that joint contributions are initially considered to be equal, 

however, the model can be modified to adjust the weights of joint contributions, which 

might be worth considering in future work. 

5.2 Manipulability analysis of a 2-link manipulator with 2-DOFs 

This section focuses on the analysis of a 2-link manipulator with 2-DOFs to demonstrate 

how to apply the manipulability analysis method and to validate that the method has 
been correctly used by comparing the results to previously published studies.  

The kinematic representation of the 2-link manipulator with segment length values of 

𝑙ଵ = 𝑙ଶ = 1 is presented in Figure 5.2. The analysis was conducted on the x, y plane and 
the joints were assumed to have no range of motion constraints (can rotate 360 degrees).  

 

Figure 5.2. Two-link mechanism with 2-DOFs and equal segment lengths  𝒍𝟏 =  𝒍𝟐 = 𝟏. 

The homogeneous matrix that describes the 𝑟 position and orientation of the end-

effector in cartesian space in function of the 𝑞 angular joint positions is denoted by:  
 

𝐴 = ൮

𝑐ଵଶ  −𝑠ଵଶ

𝑠ଵଶ  𝑐ଵଶ
  
  0 𝑙ଶ𝑐ଵଶ + 𝑙ଵ𝑐ଵ

  0 𝑙ଶ𝑠ଵଶ + 𝑙ଵ𝑠ଵ

  
0       0
0       0

1                0
0               1

൲  

Equation 5.7 

where   𝑠ଵ = sin(𝑞ଵ),  𝑠ଵଶ = sin(𝑞ଵ + 𝑞ଶ) ,   𝑐ଵ = cos(𝑞ଵ),    𝑐ଵଶ = cos(𝑞ଵ + 𝑞ଶ) 

The linear and angular velocities of the end-effector (using velocity propagation from link 

to link) are described by:  
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𝜔ଷ = ൭
0
0

𝑞̇ଵ + 𝑞̇ଶ

൱ 

Equation 5.8 

𝑣ଷ = ൭
𝑙ଵ𝑞̇ଵsin (𝑞ଶ)

𝑙ଶ(𝑞̇ଵ + 𝑞̇ଶ) + 𝑙ଵ𝑞̇ଵcos (𝑞ଶ)
0

൱ 

Equation 5.9 

where 𝑣ଷ and 𝜔ଷ represent the linear and angular velocities of the end-effector,  𝑞̇ଵ and 

𝑞̇ଶ represent the angular velocities of links 1 and 2 respectively, and 𝑙ଵ and 𝑙ଶ are the 
lengths of links 1 and 2.  

Thus, the Jacobian matrix 𝐽 was formed by obtaining the partial derivatives of Equation 

5.9: 

𝐽 = ൬
𝑙ଵsin (𝑞ଶ) 0

𝑙ଶ + 𝑙ଵcos (𝑞ଶ) 𝑙ଶ
൰ 

Equation 5.10 

Once the Jacobian matrix was obtained, the manipulator was assessed by sampling 8 

equally spaced points along the 𝑥 axis within the range 0 ≤ 𝑥 ≤ (𝑙ଶ + 𝑙ଶ)  (see Figure 

5.3).  

 

Figure 5.3. Manipulability ellipsoids of a 2-link mechanism for the execution of a linear 
trajectory from 𝒙 = 𝟎 to 𝒙 = 𝒍𝟏 + 𝒍𝟐 = 𝟐 (left), and Manipulability measure in function of 

displacement on the x axis 𝒍𝒂 (right). 

A MATLAB algorithm was created and used to determine the 𝑞 angles that satisfy the task 
and to compute the manipulability measure (using Equation 5.3) for each sampled point 

(see Figure 5.3). Moreover, Equation 5.5 and Equation 5.6 were used to obtain the 

corresponding manipulability ellipsoids at the 8 different configurations along the task 
(see Figure 5.3, left). 
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The results show that the maximum manipulability was achieved when the end-effector 
was at around 1.4 on the 𝑥 axis (see Figure 5.3).  Conversely, the manipulability measure 

at 𝑥 = 0 and 𝑥 = 2 decreases to 0, which represents that the manipulator is in a singular 

configuration or that the manipulator has lost a DOF.  

The manipulability measure and the corresponding manipulability ellipsoids obtained in 

the analysis appear to agree with the results published by Yoshikawa [12] (see Figure 5.3 
and Figure 5.4), which confirms that the method has been correctly applied for the 

analysis presented in this section. 

 

Figure 5.4. Manipulability ellipsoids and manipulability measure of a two-link mechanism. 
Copyright © 2003, MIT Press 16. 

5.3 Manipulability on the plane (2-D analysis) 

Having established the manipulability method for a 2-link kinematic chain this section 

focuses on developing the model in order to identify optimal areas for the execution of a 
given tasks on the 𝑥, 𝑦 plane (see Figure 5.5).  

 

Figure 5.5. 2-link kinematic representation of the human upper limb.  

 

 
16 Republished with permission of MIT Press, from “Foundations of robotics: analysis and control 
[electronic resource]”, Yoshikawa, T., 2003. 



90 

 

Initially the joints are assumed to have no ROM constraints (joints can rotate 360 
degrees). In order to analyse how the size of the upper limb affects manipulability, 3 

upper limb sizes (based on British male statistic data) were assessed: small, medium and 

large (see Table 5.1). 

Table 5.1. British male upper limb lengths used for the study of manipulability during the 
execution of linear and circular trajectories [146] 

Parameter Variable Limb 1 
(small) 

Limb 2 
(medium) 

Limb 3 
(large) 

Upper Arm (𝒎) 𝑙ଵ 𝜇ଵ − 3𝜎ଵ = 0.282 𝜇ଵ = 0.357 𝜇ଵ + 3𝜎ଵ = 0.432 

Forearm (𝒎) 𝑙ଶ 𝜇ଶ − 3𝜎ଶ = 0.246 𝜇ଶ = 0.288 𝜇ଶ + 3𝜎ଶ = 0.330 

 

The tasks selected for the analysis presented in this section were to execute linear and 
circular trajectories at different distances from the shoulder. Circular and linear 

trajectories were selected as everyday tasks and trajectories are often composed of this 
basic shapes. Moreover, it is known that the human upper limb tends to split other tasks 

into straight linear trajectories during the execution of tasks [35, 74, 75]. Therefore, the 

tasks evaluated in the analysis presented in this section were the following tasks: 

i. Linear trajectories: a total of 11 equally spaced linear trajectories (lines of 1.4m 

of length) parallel to the 𝑦 axis on the range −0.70𝑚 ≤ 𝑋 ≤ 0.70.  

ii. Circular trajectories: 0.20m and 0.30m diameter circular trajectories with 

origins in 3 different positions on the x axis.  

iii. Full reach envelope area: upper limb manipulability analysis for full reach 
envelope area by sampling 10,000 points (evenly spaced) on the range 

−0.70𝑚 ≤ 𝑋 ≤ 0.70𝑚 and −0.70𝑚 ≤ 𝑌 ≤ 0.70𝑚.   

The manipulability analysis presented in this section was conducted using the methods 

presented in Sections 3 and 5.1.   

5.3.1 Manipulability analysis for the execution of linear trajectories 

This section presents the results of the manipulability analysis of the upper limb during 
the execution of linear trajectories as explained at the beginning of this section (Section 

5.3). Figure 5.6 shows the computed manipulability measure (only 6 trajectories as the 
rest are symmetrical). As can be seen in Figure 5.6, the maximum manipulability value 

(0.87) for a linear trajectory on 𝑥 = 0.56𝑚 is found at about 𝑦 = 0.0𝑚, whereas, the 

maximum manipulability value (around 1.00) for a linear trajectory at 𝑥 = 0.42𝑚 occurs 
on the range −0.25𝑚 ≤ 𝑌 ≤ 0.25𝑚. Although, the mean manipulability values appear to 
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be similar for some of the trajectories, the locations where the maximum values occur are 
different. Likewise, the manipulability values for some trajectories seem to have high 

variability.   

 

Figure 5.6. Manipulability ellipsoids for a linear trajectory at 𝒙 = 𝟎. 𝟏𝟒 (right) and 
manipulability measure for the first 6 linear trajectories parallel to the y axis (left). 

Figure 5.6 (left) shows the manipulability ellipsoids for one of the linear trajectories (𝑥 =

0.14𝑚).  As can be seen, the shape of the manipulability ellipsoids gets completely flat 

when the limb is in a singular configuration, which occurs at the extremes of the 
trajectory.   

Conversely, the shape of the manipulability ellipsoids gain area in positions where the 

limb has higher manipulability. According to the results, for a linear trajectory at 𝑥 =

0.14𝑚, the ellipsoids have a greater area at 𝑦 = −0.42𝑚 and 𝑦 = 0.42𝑚, which agree 

with the computed manipulability measure (see Figure 5.6, right).  

Another aspect that can affect manipulability is the size of the limb. Therefore, 3 upper 

limb sizes were evaluated (see Table 5.1) during the execution of a linear trajectory (1.4m 
linear trajectory) fixed at 𝑥 = 0.14𝑚. The computed manipulability measure and the 

manipulability ellipsoids for the corresponding limbs are presented in Figure 5.7. As can 

be seen both the ellipsoid shapes and the manipulability values were directly affected by 
the size of the limbs. The manipulability measure for Limb 1 and Limb 2 decreased to 0 at 

the extremes of the linear trajectory as such limbs were not able to complete the task due 
to limb length constraints.  
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Conversely, the Limb 3 was able to complete the task and the manipulability measure 
never decreased below 0.15.   

Therefore, a person with a limb with length values similar to Limb 3 is expected to 

complete the task and have higher performance than people with limb sizes similar to 
Limb 1 and 2. An interesting observation is that the main axes of the manipulability 

ellipsoids pointed in very similar directions for the 3 limb sizes evaluated in the analysis 
(see Figure 5.7).  

 

Figure 5.7. Manipulability measure and ellipsoids during the execution of a linear 
trajectory on x=0.14. Left: manipulability ellipsoids for Limb 2. Middle: manipulability 

ellipsoids for Limbs 1, 2, and 3 (left to right). Right: manipulability measure. 

Thus, the results suggest that at least for linear trajectories, both position of the task and 

limb size affect the performance of the upper extremity.  

5.3.2 Manipulability analysis for the execution of circular trajectories 

This section presents the results of the manipulability analysis of the upper limb during 

the execution of circular trajectories as explained at the beginning of this section (Section 

5.3). 

Figure 5.9 and Figure 5.8 present the manipulability values and the manipulability 

ellipsoids along the task for the circular trajetories in the 3 different positions. As can be 
observed, the circular trajectory with origin 𝑜ଷ(0.4,0.0) has the highest mean 

manipulability value and exhibit less variability (0.81 ≤ 𝑤 ≤ 1.00), whereas, the 

manipulability values for a circle with origin 𝑜ଵ(0.2,0.0) has the highest variablity 
(0.23 ≤ 𝑤 ≤ 0.81) and reached a maximum manipulability value of around 0.83. 
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Similarly, the manipulability ellipsoids for a circular trajectory with origin 𝑜ଷ(0.4,0.0)  
were larger than those for circles with origins 𝑜ଵ(0.2,0.0) and 𝑜ଶ(0.3,0.0) (see Figure 5.9).  

 

Figure 5.8. Upper limb manipulability measure during the execution of circular trajectories 
(0.2m-diameter) with origins on 𝒐𝟏(𝟎. 𝟐, 𝟎. 𝟎), 𝒐𝟐(𝟎. 𝟑, 𝟎. 𝟎) 𝒂𝒏𝒅 𝒐𝟏(𝟎. 𝟒, 𝟎. 𝟎). 

 
Figure 5.9. Upper limb manipulability ellipsoids during the execution of circular (0.2m-

diameter) with origins 𝒐𝟏(𝟎. 𝟐, 𝟎. 𝟎), 𝒐𝟐(𝟎. 𝟑, 𝟎. 𝟎) 𝒂𝒏𝒅 𝒐𝟏(𝟎. 𝟒, 𝟎. 𝟎). 

As in the previous section, manipulability was assessed for 3 upper limb sizes (see Table 
5.1) during the execution of a fixed circular trajectory (0.30m-diameter circular trajectory) 

with the origin fixed at 𝑥 = 0.30𝑚 and 𝑦 = 0.00𝑚. The computed manipulability 
measure and the manipulability ellipsoids for the corresponding limbs are presented in 

Figure 5.10 and Figure 5.11.  

As can be noticed both the ellipsoid shapes and the manipulability values were directly 

affected by the size of the limbs. In this case, the larger limb (Limb 3) showed the highest 

variability for manipulability (0.29 ≤ 𝑤 ≤ 0.95) and had a maximum value of 0.95, 
whereas the mean manipulability values for Limb 1 were higher and had les variability 
(0.53 ≤ 𝑤 ≤ 1.00).  
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Figure 5.10. Upper limb manipulability measure for 3 limb sizes during the execution of 
circular trajectories (0.3m-diametre) with origin 𝒐(𝟎. 𝟑, 𝟎. 𝟎). 

 

Figure 5.11. Upper limb manipulability ellipsoids for 3 limb sizes during the execution of 
circular trajectories (0.3m-diametre) with origin 𝒐(𝟎. 𝟑, 𝟎. 𝟎). Limbs 1, 2 and 3 

correspondingly (left to right). 

Conversely, the shapes of the ellipsoids for Limb 3 were larger and more rounded than 

those for limbs 1 and 2 (see Figure 5.11).  

However, it is important to mention that the ellipsoids by themselves do not provide the 

full picture of the potential performance. Although, the ellipsoids for Limb 3 are larger in 

comparison to the corresponding ellipsoids for the other 2 limbs, the corresponding 
measure for Limb 3 indicates that the full achievable manipulability was never achieved 

during the execution of the task. Therefore, comparing only the size of the ellipsoids to 
other limbs without considering the corresponding manipulability measure is not 

objective and should be avoided.  
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Finally, the upper limb manipulability analysis for the execution of circular trajectories in 3 
different locations suggests that the position of the task affect manipulability. Likewise, 

the manipulability analysis for 3 limb sizes demonstrated that the limb size also affects 

manipulability. However, a large extremity does not necessarily have higher 
manipulability as its performance depends on the position of the task.    

5.3.3 Full horizontal plane manipulability analysis  

This section focuses on the investigation of manipulability on the 𝒙, 𝒚 plane in order to 
determine the areas of higher manipulability, therefore, higher dexterity. The analysis 

was conducted by sampling 40,000 points (evenly spaced) on the range −𝟎. 𝟕𝟎𝒎 ≤ 𝑿 ≤

𝟎. 𝟕𝟎𝒎 and −𝟎. 𝟕𝟎𝒎 ≤ 𝒀 ≤ 𝟎. 𝟕𝟎𝒎. The previous sections evaluated 3 limb sizes: small, 
medium, and large (see Table 5.1).  

However, the upper arm and the forearm proportionality was not varied. Therefore, as 
the proportionality of upper limb segments may vary from person to person, this section 

explores both types of limbs, limbs with and without proportional upper limb segment 

lengths. Consequently, in this section 4 different limbs were assessed, the first 2 limbs 
represent medium and small size limbs with proportional segments, and the second 2 

limbs represent limbs with variations in the proportions of the segments (see Table 5.2).  

Table 5.2. British male upper limb lengths used for manipulability analysis on the x-y plane 
[146] 

Parameter Variable Limb 1 Limb 2 Limb 3 Limb 4 

Upper Arm (𝒎) 𝑙ଵ 𝜇ଵ = 0.357 𝜇ଵ − 3𝜎ଵ = 0.281 𝜇ଵ − 𝜎ଵ = 0.331 𝜇ଵ + 𝜎ଵ = 0.382 

Forearm (𝒎) 𝑙ଶ 𝜇ଶ = 0.288 𝜇ଶ − 3𝜎ଶ = 0.245 𝜇ଶ + 𝜎ଶ = 0.303 𝜇ଶ − 𝜎ଶ = 0.274 

 

The results of the analysis are presented in Figure 5.12. The areas in dark blue represent 
low manipulability, whereas areas in light yellow represent high manipulability values.  As 

can be seen in Figure 5.12, limb segment lengths affect manipulability. For instance, Limb 
1 has greater reachability, as well as a greater high manipulability region compared to 

Limb 2. However, it seems that at shorter distances Limb 2 has greater manipulability 
than Limb 1.  

Similarly, Figure 5.12 (bottom) shows the manipulability measure for Limb 3 and Limb 4, 

which represent limbs with changes in the proportions of the segments. As can be seen, 
the manipulability of a limb with longer arm and shorter forearm (Limb 4) seems to be 

more affected than the manipulability of a limb with shorter arm and longer forearm 
(Limb 3). This observation suggests that changes in the proportions of the limb affect the 
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manipulability of the upper limb. Thus, people with same limb lengths but with different 
segment proportions are expected to obtain different manipulability values.  

 

Figure 5.12. Low-high manipulability regions along the plane with ranges −𝟎. 𝟕𝟎𝒎 ≤ 𝑿 ≤
𝟎. 𝟕𝟎𝒎 and −𝟎. 𝟕𝟎𝒎 ≤ 𝒀 ≤ 𝟎. 𝟕𝟎𝒎. Top left: Limb 1; Top right: Limb 2; Bottom left: Limb 

3; Bottom right: Limb 4. Blue and yellow represent low and high manipulability values 
correspondingly.    

5.4 Manipulability analysis with respect to upper limb reach envelope 
area 

The previous sections of this chapter explore manipulability without considering joint 
range of motion constraints. Therefore, in this section, the model is upgraded by 

incorporating joint range of motion constraints to determine upper limb manipulability 

within the corresponding reach envelope area. This is an important step in the analysis as 
the addition of ROM constraints to the model make it more realistic.  
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Table 5.3 show the shoulder and elbow range of motion values used in the analysis 
presented in this section. As in section 5.3.3, four different limb sizes (Table 5.2) were 

assessed by sampling 40,000 points (evenly spaced) on the range −0.70𝑚 ≤ 𝑋 ≤ 0.70𝑚 

and −0.70𝑚 ≤ 𝑌 ≤ 0.70𝑚. 

Table 5.3. Shoulder and elbow joint range of motion [39] 

Parameter Variable Value 

Shoulder flexion 𝜃ଵ௎ 166.7 

Shoulder extension 𝜃ଵ௅ 62.3 

Elbow flexion 𝜃ଶ௎ 142.9 

Elbow extension 𝜃ଶ௅ 0.6 

 

Figure 5.13 illustrates the manipulability measure within the corresponding reach 

envelope area for the 4 limb sizes evaluated in the analysis. The low and high 
manipulability regions presented in Figure 5.13 are now smaller in comparison to the 

corresponding regions presented in Figure 5.12, this occurs due to the incorporation of 

joint ROM constraints to the model. Therefore, the low and high manipulability regions 
shown in the figures are now limited to the upper limb reach envelope area. The shapes 

of both reach envelope area and low and high manipulability regions have similar shapes, 
however, the shapes and regions shift from the shoulder according to the upper limb size 

and the segment length proportionality.  

As can be seen Figure 5.13 (top), the upper limb reach envelope area and low and high 

manipulability regions proportionally increase or decrease depending on the limb size 

assuming the segment lengths also stay proportional. However, if the limb segments lose 
proportionality, as shown in Figure 5.13 (bottom), the upper limb reach envelope area, as 

well as the low and high manipulability regions get slightly deformed becoming thicker or 
thinner. As can be observed in Figure 5.13, the regions of high manipulability are in the 

middle sections of reach envelope area. However, high manipulability is obtained at some 

of the edges of reach envelope area. Consequently, the model may need to incorporate 
some sort of penalty to indicate that the limb is close to a limit and therefore the 

manipulability decreases.   

The analysis presented in this section studied the effects of upper limb size and segment 

length proportionality on manipulability given a fixed range of motion (mean upper limb 

shoulder and elbow range of motion values British males). Such analysis does not include 
the study of variations in joint range of motion. However, Sections 4.2 investigates the 
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effects of variations in joint range of motion on reach envelope area, and Section 5.5 
focuses on upper limb manipulability analysis and uncertainty propagation.  

 

Figure 5.13. Upper limb low-high manipulability within the corresponding reach envelope 
area for the evaluation of 4 limbs (see Table 5.2). Blue and yellow represent low and high 

manipulability values correspondingly.   

5.5 Upper limb manipulability analysis and uncertainty propagation 

So far, the method for upper limb manipulability analysis has been established and upper 
limbs with discrete segment lengths have been evaluated. Nevertheless, such segment 

lengths and proportions can vary from person to person. Therefore, to quantify the 

propagation of these uncertainties, the segment length values used in the analysis 
presented in this section were distributions rather than fixed values. Thus, this section 

focused on the upper limb manipulability analysis during the execution of circular 
trajectories including uncertainty propagation.  
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In this investigation the upper limb was represented as a 2-link kinematic chain with 2-
DOFs (Degrees of Freedom). Two 0.2m-diameter circular trajectories with origins 

𝑜ଵ(0.30,0.00) and 𝑜ଶ(0.50,0.15) were selected as the tasks to be evaluated (see Figure 

5.14). The input and output values used for the analysis are presented in Table 5.4 and 
Table 5.5. A MATLAB algorithm was created and used to obtain the 𝑄 joint angles that 

satisfy the task and to compute the corresponding manipulability measure, as explained 
in Sections 3 and 5.1. 

Table 5.4. Input parameters used for the 2D case study 

Parameter Variable Description Value 

Upper arm length (𝒎) 𝑙ଵ ~𝑁(𝜇௟ଵ, 𝜎௟ଵ
ଶ) ~𝑁(0.3565, 0.0251ଶ) 

Forearm length (𝒎) 𝑙ଶ ~𝑁(𝜇௟ଶ, 𝜎௟ଶ
ଶ) ~𝑁(0.2883, 0.0143ଶ) 

Circle radius (𝒎) 𝑟 Fixed 0.1 

Circle origin on 𝒙 (𝒎) 𝑎 Fixed [0.30, 0.50] 

Circle origin on 𝒚 (𝒎) 𝑏 Fixed [0.00, 0.15] 

Table 5.5. Output parameters used for the 2D case study 

Parameter Variable Description 

Shoulder joint angle (𝒅𝒆𝒈𝒓𝒆𝒆𝒔) 𝑄ଵ =  [𝑞ଵଵ, 𝑞ଵଶ] 𝑄ଵ ∈  ℝ௡௫௠ 

Elbow joint angle (𝒅𝒆𝒈𝒓𝒆𝒆𝒔) 𝑄ଶ =  [𝑞ଶଵ, 𝑞ଶଶ] 𝑄ଶ ∈  ℝ௡௫௠ 

Manipulability  (𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒆𝒅) 𝑊 𝑊 ∈  ℝ௡௫௠ 

 

The system of equations describing the relationship of motion in cartesian space and joint 

space were obtained by using forward kinematics. Thus, the following function 
𝐹(𝑄, 𝐿, 𝑋, 𝑌) can be constructed by using such system of equations: 

𝐹 ≔ ൤
𝑙ଶ cos(𝑞ଵ + 𝑞ଶ) − 𝑥 + 𝑙ଵ𝑐𝑜𝑠(𝑞ଵ)

𝑙ଶ sin(𝑞ଵ + 𝑞ଶ) − 𝑦 + 𝑙ଵ𝑠𝑖𝑛(𝑞ଶ)
൨ 

Equation 5.11 

or 

𝐹 ≔ ൤
𝛼଴ + 𝛽଴ − 𝑥
𝛼ଵ + 𝛽ଵ − 𝑦

൨ 

Equation 5.12 

where ∝଴= 𝑙ଶ cos(𝑞ଵ + 𝑞ଶ),  ∝ଵ=  𝑙ଶ sin(𝑞ଵ + 𝑞ଶ), 𝛽଴ = 𝑙ଵ𝑐𝑜𝑠(𝑞ଵ), 𝛽ଵ =  𝑙ଵ𝑠𝑖𝑛(𝑞ଶ). 
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On one hand, the task (circular trajectories) expressed in cartesian coordinates was 
defined as: 

ቂ
𝑥
𝑦ቃ = ቂ

𝑎 − 𝑟 cos 𝜃
𝑏 − 𝑟 sin 𝜃

ቃ 

Equation 5.13 

where, 𝑎, 𝑏 are the circle origin coordinates, 𝑟 is the radius of the circle, and 𝜃 is the 
angular displacement (see Figure 5.14).  

 

Figure 5.14. Circular trajectory followed by the end-effector of a 2-link kinematic chain 
representation of the upper limb.  

Consequently, the 𝑄 joint angles that satisfy the task were obtained by using inverse 

kinematics to solve: 

𝐼 ≔ ൤
𝑥෤
𝑦෤

൨ = ቂ
𝛼଴ + 𝛾଴

𝛼ଵ + 𝛾ଵ
ቃ 

Equation 5.14 

where the function 𝑰 represents the function to solve the inverse kinematics, and 𝑥෥ and 𝑦෥ 

are the trajectory approximations obtained from the inverse kinematics computations.  

The 𝑄 angle values used as inputs for the manipulability analysis were obtained by solving 

the function 𝐹 (Equation 5.11) to minimize the ξ error: 

min
ொ∈ℝ

൬൤
𝜉଴

𝜉ଵ
൨ = ൤

𝑥෤
𝑦෤

൨ − ቂ
𝑥
𝑦ቃ൰ 

Equation 5.15 

The 𝐹 function (Equation 5.11) was solved by using the Levenberg-Marquardt solver 
algorithm in MATLAB; the Levenberg-Marquardt method is an algorithm for least-squares 

estimation of non-linear parameters that uses Gauss-Newton direction and steepest 
descent direction approaches.  
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Once the 𝑄 joint angles values that satisfy the task were obtained, the 𝑊 manipulability 
measure was computed using the Equation 5.3: 

𝑊 = ൥

𝑤ଵଵ ⋯ 𝑤ଵ௝

⋮ ⋱ ⋮
𝑤௜ଵ ⋯ 𝑤௜௝

൩ ; 𝑊 ∈  ℝ௡௫௠  

Equation 5.16 

where, the column vectors of the manipulability matrix 𝑊 are the manipulability measure 

at each 𝑗 point along the trajectory given  𝑙ଵ௜, 𝑙ଶ௜; 𝑖 = [1, … , 𝑛]. 

The results of the analysis are presented in Figure 5.15, which shows the manipulability 

measure for both circular trajectories including the effects of the input uncertainties on 

manipulability.  

 

Figure 5.15. Top: 𝒒𝟏 joint angle values(shoulder) for the execution of the task; middle: 𝒒𝟐 
joint angle values (elbow) for the execution of the task; bottom: manipulability  

As can be seen in Figure 5.15, the maximum manipulability for Circle A is at 270° and from 

0-170° for Circle B. On the other hand, the minimum manipulability for Circle A is at 90° 

and at 260° for Circle B. Although the mean manipulability values seem to be similar for 
both trajectories, the expected manipulability for trajectories on Circle B have higher 

variability.  

Therefore, the trajectories on Circle B appear to be more affected by the uncertainties in 

the inputs. Thus, the results agree with the observations described in previous sections of 

this thesis work; the manipulability of the upper limb is affected by the position of the 
task on the plane, as well as, by limb segment lengths.  Additionally, according to the 

results presented in this section, the location of the task also affects the accuracy of the 
prediction of regions of low and high manipulability for a given population. Therefore, this 

previous observation should be considered if high accuracy is needed during the study of 

manipulability for populations.  
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5.6 Manipulability in the workspace (3-D analysis) 

Manipulability analysis on the horizontal plane (reach envelope area) has been addressed 
in the previous sections of this chapter. Such 2-dimensional analysis provides an idea of 

the areas where the upper limb has higher manipulability on the horizontal plane. 

However, upper limb tasks require 3-dimensional movements. Thus, this section extends 
the analysis presented previously in this chapter and centres on the investigation of 

manipulability within upper limb workspace (3-D analysis). 

 Although, in this section, the upper limb is still represented as a 2-link kinematic chain, 

the model is upgraded by adding 2-DOFs to the shoulder (now represented as full ball-

and-socket joint). The analysis presented in this section starts with the definition of 
workspace (upper limb 3-D reachability) and continues with the computation of upper 

limb manipulability within the defined workspace.  

Furthermore, this section demonstrates the versatility of the method to incorporate new 

variables to adjust the model and increase its accuracy to predict regions of higher 
manipulability, and therefore, regions of higher dexterity. Thus, this section introduces 

and proposes the use of a comfort variable to penalise the manipulability measure.  

The investigation presented in this section is essential for the understanding and 
characterisation of upper limb dexterity as it incorporates new degrees of freedom at the 

shoulder, extends the analysis to 3 dimensions, demonstrates the versatility of the model, 
and proposes new variables that can improve the accuracy of the model and its 

predictions.  

5.6.1 Manipulability analysis within the workspace 

For the computation of workspace and manipulability in 3 dimensions, as in Section 4.3, 
the upper limb was represented as a simplified kinematic chain composed of 2 links 

(upper arm and forearm) with 4-DOFs (shoulder abduction-adduction, shoulder flexion-
extension, shoulder internal-external rotation and elbow flexion-extension). The model 

inputs were the shoulder and elbow joint range of motion and the upper arm and 

forearm segment lengths (see Table 5.6).  

The model outputs were the position 𝑥 = [𝑥, 𝑦, 𝑧]் of the end-effector on the cartesian 

space and the shoulder and elbow joint angles  𝑞 = [𝑞ଵ, 𝑞ଶ, 𝑞ଷ, 𝑞ସ]், which were used to 
compute upper limb workspace and manipulability. A system of equations was 

constructed to define joint coupling for shoulder range of motion for each internal degree 
of freedom at any given configuration (see Section 4.3). The analysis was conducted by 

sampling over 5,000 points in a cubic volume 5% greater (in each direction) than the 
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upper limb length (see Table 5.6). A Matlab algorithm was created and used to determine 
feasible upper limb configurations to reach each sampled point and only satisfactory 

reachable solutions were used to compute workspace and manipulability.  

Table 5.6. Manipulability analysis input parameters. Statistical data source [39, 146]  

Parameter Variable Value 

Upper arm length (𝒎) 𝑙ଵ ~𝑁(0.3565, 0.0251ଶ) 

Forearm length (𝒎) 𝑙ଶ ~𝑁(0.2883, 0.0143ଶ) 

X range (𝒎) 𝑋 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝑿 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Y range (𝒎) 𝑌 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝒀 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Z range (𝒎) 𝑍 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝒁 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Shoulder abduction 𝜃ଶ௎ ~𝑁(184.0, 7.0ଶ) 

Shoulder adduction 𝜃ଶ௅ ~𝑁( 45.0, 7.0ଶ)* 

Shoulder flexion 𝜃ଵ௎ ~𝑁(166.7, 4.7ଶ) 

Shoulder extension 𝜃ଵ௅ ~𝑁( 62.3, 9.5ଶ) 

Shoulder external rotation 𝜃ଷ௎ ~𝑁(103.7, 8.5ଶ) 

Shoulder internal rotation 𝜃ଷ௅ ~𝑁( 68.8, 4.6ଶ) 

Elbow flexion 𝜃ସ௎ ~𝑁( 142.9, 5.6ଶ) 

Elbow extension 𝜃ସ௅ ~𝑁( 0.6, 3.1ଶ) 

*Estimated value as statistical data for shoulder adduction is lacking in literature and is 
commonly omitted or reported as 0 degrees.   

Figure 5.16 (left) shows the estimated manipulability volume for an individual with mean 

input values (see Table 5.6). The workspace volume depicts the 3-dimensional upper limb 
reachability as a bubble-like envelope. Similarly, the estimated manipulability measure for 

each sampled point within the workspace is presented in Figure 5.16 (right). As can be 
seen in the figure, regions of high manipulability can be found in middle regions of the 

workspace and the manipulability decreases to 0 when the end-effector of the limb is 
further away from the shoulder.  

However, manipulability values appear to be high even on the periphery of the workspace 

envelope where the shoulder joint has already reached the limits of range of motion. 
Although, these regions may still be of high manipulability for a robotic manipulator, it is 

hypothesised that the manipulability for human upper limbs would decrease as executing 
tasks in such regions may be uncomfortable due to range of motion limitations and self-

weight acting on the limb.  
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Figure 5.16. Computed workspace and low-high manipulability regions  

5.7 The Dexterity Analysis Method 

This section introduces the Dexterity Analysis Method (DAM), which is a modified version 

of the manipulability analysis method that incorporates human factors associated with 

comfort. The method defines upper limb workspace volume and computes manipulability 
and comfort to finally obtain the dexterity measure and the high dexterity regions within 

the corresponding workspace volume. Therefore, this section introduces the human 
factors that compose the proposed comfort variable and summarises the steps of the 

Dexterity Analysis Method.  

5.7.1 Introduction of the comfort variable and computation of the dexterity measure 

The manipulability analysis method is based on the contributions of each joint of a robotic 
manipulator to perform motion at the end-effector [11, 12]. The metric provided by this 

method is beneficial for the understanding of manipulability and helps to determine 
regions of potential high manipulability.  

Although, the manipulability measure by itself is used to determine optimal positions and 

regions of high manipulability for a robotic arm, the use of this metric and the model 
proposed in this research work to determine human upper limb optimal configurations 

and regions of high dexterity need to incorporate other human factors. Some human 
factors that could improve the model to make it more humanly realistic were grouped 

into 8 categories: dynamics, sensorial factors, work and energy, muscle strength and 

activation, motor control, cognitive factors, health, ROM and anthropometry (see Figure 
5.17).   

Another factor to consider is the environmental conditions, which can also affect 
dexterity as it has been proved that upper limb performance decreases in cold 

temperatures [152, 153], and that protective equipment such as gloves affect upper limb 
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dexterity [154, 155]. Likewise, upper limb dexterity for tasks that require interaction with 
objects can be affected by the intrinsic properties of the object being manipulated such as 

material, shape, and weight [63]. For instance, holding a wet glass is harder than holding 

a dry glass.  

 

Figure 5.17. Human factors that can affect dexterity. 

Although all the factors mentioned above and in Figure 5.17 are important for the study 

and characterisation of human dexterity, it was decided that only variables related to 

kinematics, dynamics and work would be added to the model as those factors are most 
aligned to the modelling approach and to the scope of this research project. Thus, this 

work proposes a new variable for the inclusion of human comfort that could be used as a 
penalty for the computed manipulability. Such comfort variable incorporates 3 aspects 

that relate to kinematics, dynamics, and work: joint configurations with respect to their 

corresponding ROM limits, torque force perceived at the shoulder due to upper limb self-
weight, and the work needed to rise the upper limb from its neutral position (limb resting 

downwards) to a given configuration.  

Consequently, as the 3 aspects that compose comfort need to be mathematically defined 

and the relationship between such aspects needs to be established, the following 
assumptions are proposed:  

i. Joint configurations with respect to their corresponding ROM limits 

Upper limb joint configurations play an important role in the level of perceived 
comfort during the execution of a given task. It is believed that comfort decreases 

when the task requires joint configurations that are close to the limits of joint 
range of motion. Therefore, in this work, higher comfort is presumed to occur 
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when the upper limb joint angles are between the extremes of the corresponding 
joint range of motion (see Figure 5.18). Information regarding a mathematical 

definition of human comfort given the upper limb joint configurations with 

respect to the corresponding range of motion is lacking in literature. Therefore, 
this aspect of comfort is mathematically defined as follows: 

Firstly, the middle point of range of motion for any given joint can be obtained by 
computing: 

𝜽𝒎𝒊𝒅 =  𝜽𝒎𝒂𝒙 − ൬
𝜽𝒎𝒂𝒙 − 𝜽𝒎𝒊𝒏

𝟐
൰ 

Equation 5.17 

where 𝜃௠௜ௗ represents the middle point between the ends of the corresponding 

joint range of motion, and 𝜃௠௜௡, 𝜃௠௔௫ are the minimum and maximum range of 
motion values correspondingly.  

On the other hand, joint angle deviation from the middle point can be defined as: 

𝜃ௗ௘௩ =  𝜃 − 𝜃௠௜ௗ  

Equation 5.18 

where  𝜃 is the joint angle at a given upper limb configuration. 

Moreover, the joint angle normalised deviation can be obtained by dividing 
Equation 5.18 by the maximum possible deviation as follows: 

𝜃௡௢௥௠ ௗ௘௩ =
𝜃ௗ௘௩

𝜃௠௔௫ ௗ௘௩
  

Equation 5.19 

where 

𝜃௠௔௫ ௗ௘௩ = ൬
𝜃௠௔௫ − 𝜃௠௜௡

2
൰ 

Equation 5.20 

Consequently, comfort for a given upper limb configuration regarding joint angle 

position with respect to its ROM, can be obtained by computing: 

𝐶𝑜𝑚𝑓𝑜𝑟𝑡ఏ = 1 − (𝜃௡௢௥௠ ௗ௘௩)ଶ 

Equation 5.21 

Note: the normalised deviation 𝜃௡௢௥௠ ௗ௘௩ is squared to represent comfort with a 

quadratic behaviour as the assumption is that comfort is high at the middle point 
of ROM and it keeps high until the joint angle starts getting close to the ends of 
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ROM, where the comfort perception falls to 0. The normalised squared deviation 
(as it is a penalty) is subtracted from the unit as the maximum comfort value at 

the middle point of ROM must be 1 (see Figure 5.18). 

Finally, the total comfort for an upper limb with n degrees of freedom can be 
obtained by computing: 

𝐶𝑜𝑚𝑓𝑜𝑟𝑡ఏଵ..௡ = 𝐶𝑜𝑚𝑓𝑜𝑟𝑡ఏଵ𝐶𝑜𝑚𝑓𝑜𝑟𝑡ఏଶ, … , 𝐶𝑜𝑚𝑓𝑜𝑟𝑡ఏ௡ 

Equation 5.22 

 

Figure 5.18. Comfort in terms of joint range of motion 

ii. Torque forces perceived at the shoulder due to upper limb self-weight 

Any movement executed by the upper extremity is subject to internal and external 

forces. Some of those forces are the moments exerted by the upper limb self-

weight, which reflect as torque forces at the shoulder (pivot point of the upper 
limb). In this work, such torques exerted by the upper limb self-weight at the 

shoulder joint are presumed to have a direct impact on the perceived upper limb 
comfort. Thus, higher comfort, giving the upper limb self-weight, is assumed to 

occur when the upper extremity is in a configuration in which weight forces acting 

on the segment centres of mass cause the smallest moments at the shoulder joint 
(see Figure 5.19). Likewise, the lowest comfort is presumed to happen for 

configurations in which the extremity is entirely stretched at the shoulder level on 
the horizontal plane.   

Consequently, this aspect of comfort is mathematically defined as follows: 

First, the total moment of force exerted at the shoulder due to self-weight forces 

acting on both the upper arm and the forearm (see Figure 5.19) can be described 

by: 

𝑀𝑜 = 𝑚ଵ𝑔 𝑟ଵ + 𝑚ଶ𝑔 𝑟ଶ 

Equation 5.23 
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where 𝑀𝑜 is the total moment exerted at the shoulder, 𝑚ଵ and 𝑚ଶ are the mass 
of the upper arm and the forearm segments, 𝑟ଵ and 𝑟ଶ are the horizontal distance 

from the shoulder to the upper arm and forearm centres of mass (see Figure 

5.19), and 𝑔 corresponds to gravity. 

 

Figure 5.19. Weight forces acting on the upper limb 

On the other hand, the maximum value for the total moment due to the weight 
forces acting on the upper extremity occurs when the limb is fully stretched at the 

hight of the shoulder. It can be obtained by computing: 

 

𝑀𝑜௠௔௫ = 𝑚ଵ𝑔 𝑟ଵ௠௔௫ + 𝑚ଶ𝑔 𝑟ଶ௠௔௫ 

Equation 5.24 

where 𝑟ଵ௠௔௫ and 𝑟ଶ௠௔௫ are the maximum horizontal distance from the shoulder to 
the upper arm and forearm centres of mass, which occurs when the arm is fully 

stretched at the hight of the shoulder. 

Therefore, the normalised moment acting at the shoulder can be obtained by 
dividing the total moment (Equation 5.23) by the maximum moment  described by 

Equation 5.24 as follows: 

𝑀𝑜௡௢௥௠ =
𝑀𝑜

𝑀𝑜௠௔௫
 

Equation 5.25 

Thus, the comfort measure based on the weight forces acting on the upper limb 
can be obtained by computing: 

𝐶𝑜𝑚𝑓𝑜𝑟𝑡ெ௢ = 1 − 𝑀𝑜௡௢௥௠ 

Equation 5.26 

Note: the normalised moment 𝑀𝑜௡௢௥௠ (as it is a penalty) is subtracted from the 
unit as the maximum comfort value must be 1. 
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iii. Work needed to rise the upper limb from its neutral position to a given 
configuration 

Rising the upper limb from its neutral configuration (limb resting downwards) 

requires an effort which is also known as work. Such work is presumed to have a 
direct impact on upper limb comfort as making a higher effort translates into 

having less comfort during the execution of a given task.  

Therefore, in this research, upper limb comfort (given the work required) is 

assumed to be higher when the extremity is in neutral position (resting 

downwards) as no work is needed to maintain the limb in such configuration (see 
Figure 5.20). Conversely, lower comfort is assumed to occur for configurations in 

which the upper limb is completely stretched all the way up as a certain amount of 
energy is needed to keep the limb up.  

This aspect of comfort given the work required to rise the upper limb from neutral 
position (resting downwards) to any other upper limb configuration is 

mathematically defined as follows:  

First, the total work required to rise the upper limb from neutral position (resting 
downwards) to a given height (see Figure 5.20) can be described as follows: 

𝑊௞ = 𝑚ଵ𝑔 ℎଵ + 𝑚ଶ𝑔 ℎଶ 

Equation 5.27 

 

Figure 5.20. Work required to rise the upper limb.  
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where 𝑊௞ (the subscript 𝑘 is assigned to distinguish work from manipulability and 
weight) is the total work required to rise the arm from neutral position to a given 

configuration, 𝑚ଵ and 𝑚ଶ are the masses of the upper arm and the forearm 

segments, ℎଵ and ℎଶ are the vertical distances of the upper arm and forearm from 
their centre of mass in neutral position to their corresponding centre of mass at a 

given limb configuration (see Figure 5.20), and 𝑔 corresponds to gravity. 

On the other hand, the maximum required work (potentially) is when the limb is 

fully stretched all the way up. Thus, the maximum work can be obtained by 

computing: 

𝑊௞ ௠௔௫ = 𝑚ଵ𝑔 ℎଵ௠௔௫ + 𝑚ଶ𝑔 ℎଶ௠௔௫ 

Equation 5.28 

where ℎଵ௠௔௫ and ℎଶ௠௔௫ are the vertical distances from the upper arm and 
forearm centres of mass in neutral position (resting downwards) to their 

corresponding centres of mass when the upper limb is (potentially) fully stretched 

and lifted. Consequently, the normalised work required to rise the limb to any 
given height can be obtained by dividing the total work (Equation 5.27) by 

Equation 5.28 as follows: 

𝑊௞ ௡௢௥௠ =
𝑊௞

𝑊௞ ௠௔௫
 

Equation 5.29 

Thus, the comfort measure based on the work required to rise the upper limb to 
any given height can be obtained by computing: 

𝐶𝑜𝑚𝑓𝑜𝑟𝑡ௐೖ
= 1 − 𝑊௞ ௡௢௥௠ 

Equation 5.30 

Note: the normalised work 𝑊௞ ௡௢௥௠ (as it is a penalty) is subtracted from the unit 

as the maximum comfort value must be 1. 

iv. The proposed comfort variable 

Although only 3 aspects are initially used for the comfort variable presented in this 

section, the proposed comfort variable is not limited to a certain number of 
aspects and factors can be added or eliminated as needed. Thus, the proposed 

comfort variable is mathematically defined as follows:  

𝐶 = ෍ 𝛼௜𝐶𝑜𝑚𝑓𝑜𝑟𝑡௜

௡

௜ୀଵ
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Equation 5.31 

where 𝐶𝑜𝑚𝑓𝑜𝑟𝑡௜ represents the 𝑖௧௛ aspect of comfort, 𝛼௜ is the weight of the 

corresponding aspect of comfort, and 𝛼௜ + 𝛼௜ାଵ + ⋯ + 𝛼௡ = 1  

Initially, the 3 aspects of comfort (Equation 5.22, Equation 5.26 and Equation 5.30) 

are considered to contribute equally (𝛼ଵ = 𝛼ଶ = 𝛼ଷ = 1 3⁄ ). However, the 

weights of the corresponding aspects of comfort can be adjusted as required in 
order to represent the contributions as realistic as possible. As normative data to 

describe such aspects of comfort is lacking in literature, experimental analysis may 
be needed to further understand the influences of these factors.  

The variable comfort described above (Equation 5.31) can be used to penalise 

manipulability to obtain a new measure called “dexterity measure”, which can be used to 
determine high dexterity regions. Such dexterity measure can be computed as follows:  

𝐷௫ = 𝑤𝐶 

Equation 5.32 

where 𝐷௫  is the dexterity measure, 𝑤 is the manipulability measure, and 𝐶 is the 

computed comfort. 

This subsection introduced the comfort variable for the characterisation of dexterity. Such 
variable only contemplates factors related to kinematics, dynamics and work as those 

factors are most aligned to the modelling approach and to the scope of this research 
project. Thus, the modelling approach proposed in this research work only considers the 

musculo-skeletal physical structure of the limb represented as a kinematic chain (rigid 

segments and joints) and the comfort aspects described above. Therefore, this work does 
not cover motor control, cognition, health, and neurophysiological factors. Although this 

is a limitation of the current model, the modelling approach proposed in this thesis work 
allows incorporating such types of aspects as future improvements to create more 

accurate upper limb models for the characterisation of human dexterity.    

5.7.2 The Dexterity Analysis Method 

Previous sections of this thesis provided the background and explained in detail the 
concepts and theory in which the Dexterity Analysis Method is based: upper limb 

workspace volumes, the manipulability analysis method, the comfort variable, and the 
dexterity measure. Therefore, this section only summarises the steps of the Dexterity 

Analysis Method, which are described as follows: 

I. Develop an upper limb kinematic model (Chapter 3) 
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II. Define joint range of motion and joint coupling. 

III. Compute upper limb workspace volume (Section 4.3) 

IV. Conduct manipulability analysis (Section 5.1) 

V. Compute human comfort and the dexterity measure (Section 5.7) 

VI. Determine high dexterity regions within the workspace volume (Section 5.7). 

As explained above, these are the general steps of the Dexterity Analysis Method, and 
therefore, the reader is invited to review the corresponding sections to understand the 

techniques and methods in order to learn how to apply them accordingly.  

The Dexterity Analysis Method provides numerical and visual description of workspace 
volumes and dexterity regions that help to the understanding and characterisation of 

upper limb functionality and dexterity. Such method helps to visualise how workspace 
volumes and dexterity regions deform and get affected by reductions in joint range of 

motion (and potentially by other human factors), which facilitates the identification of the 
most affected regions of workspace and dexterity within their corresponding volumes. 

Likewise, such visual information, combined with the workspace and dexterity measures, 

can significantly improve prosthetics, implant, ergonomics, and workstation optimisation 
based on the maximisation of workspace volumes and dexterity regions.  

An example to illustrate the application of the Dexterity Analysis Method and to compare 
between manipulability and dexterity measures is presented in Figure 5.21. The input 

values used for this analysis are presented in Table 5.6 and Table 5.7. The figure on the 

left shows the manipulability measure, and as can be seen, manipulability seems to be 
high towards the middle regions within the volume and only decreases at the edges. 

Whereas, as illustrated on the right figure, dexterity decreases at the edges, in regions 
above shoulder hight, and regions opposite to the limb side.  

Thus, the dexterity measure, by observation and intuition, seems to agree with regions 

that we perceive as comfortable to perform tasks: in front and below shoulder hight. Such 
characteristics may have been captured by the comfort factors incorporated to the 

method and which consider limits of range of motion, the weight forces acting on the 
limb, and the work required to move the extremity to a given configuration.  However, it 

is only speculation as the method has not been fully validated, and therefore, further 
analysis is needed. Nonetheless, the results are quite promising, and the method seems 

to predict high dexterity in regions commonly perceived as comfortable to execute 

dexterous tasks.  
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Figure 5.21. Computed low-high manipulability (left) and dexterity (right) regions of the 
human upper limb. 

Table 5.7. Input variables used to compute comfort. 

Parameter Variable Value 

Upper Arm mass (% body weight) 𝑚ଵ 0.58 

Forearm mass (% body weight) 𝑚ଶ 0.46 

Upper arm centre of mass (% segment length) 𝑟ଵ 0.0271 

Forearm centre of mass (% segment length) 𝑟ଶ 0.0162 

Gravity (N/kg) 𝑔 9.81 

Body weight (mean value for British males) (Kg) 𝜔் 83.00 

5.8 Summary 

The aim of this chapter was successfully accomplished as the chapter introduced and 

proposed a novel method for the characterisation of dexterity, the Dexterity Analysis 
Method, which is a modified version of the manipulability analysis method by 

incorporating human factors associated with comfort.  

The first sections of the chapter (Sections 5.1 and 5.2) introduced and demonstrated the 

use of the manipulability analysis method. The manipulability analysis method considers 

the individual contributions of upper limb joints to execute movement. Therefore, it is 
assumed that the measure and the ellipsoids are inherently accounting for the 

contributions of each joint to upper limb dexterity.  It is important to mention that so far, 
the individual joint contributions have been considered to be equal. Nevertheless, in 

future research work, the model should be modified to account for the individual joint 

contributions to upper limb overall motion and to dexterity.  
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In Section 5.3 the upper limb was represented as a 2-link kinematic chain with 2-DOFs in 
order to conduct manipulability analysis on the x-y plane (2-dimensional analysis). The 

upper limb was evaluated during the execution of linear and circular trajectories and 

during the exploration of the full plane by sampling evenly spaced points. The results 
suggested that the size of the limb, as well as the position of the task affect 

manipulability. A relevant observation was that the use of manipulability ellipsoids 
without considering their corresponding manipulability measure should not be used for 

the comparison of different limb manipulability predictions. As described in Section 5.3, a 

limb seemed to have large ellipsoids compared to other limbs, however, its manipulability 
measure had the highest variability, and it never achieved its higher manipulability value. 

Likewise, large limbs have larger low and high manipulability regions which are also 
proportional to their reach envelope areas. However, such regions shift from the shoulder 

according to the upper limb sizes. Another relevant finding was that variations on the 
proportionality of limb segment lengths affect the shape and size of upper limb reach 

envelope area and low and high manipulability regions. Therefore, people with same limb 

size but with different segment length proportions are expected to have different 
manipulability values and consequently different performance for the execution of the 

same task.  

The analysis presented in Section 5.3 did not include range of motion constraints. 

Therefore, in Section 5.4,  the model is upgraded by incorporating joint range of motion 

constraints to determine low and high manipulability regions within the corresponding 
upper limb reach envelope area. Thus, the manipulability analysis presented in this 

section describes more realistic manipulability regions as the investigation incorporated 
joint range of motion limits. The shapes of both reach envelope area and low and high 

manipulability regions have similar shapes and increase, decrease, get ticker or thinner 

depending on the limb size and the proportionality of the corresponding segment lengths.  

Until Section 5.4, only discrete segment lengths had been evaluated. However, upper 

limb segment lengths and proportions can vary from person to person. Therefore, Section 
5.5 focused on upper limb manipulability analysis during the execution of circular 

trajectories including uncertainty propagation, considering the input values as 
distributions rather than as fixed values. The results agreed with previous observations 

suggesting that manipulability is affected by the position of the task on the plane, as well 

as, by limb segment lengths.  Moreover, it was found that the location of the task affects 
the accuracy for predictions of regions of low and high manipulability for a given 

population.  
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In Section 5.6, the analysis moves from 2 to 3-dimensions, and the model was upgraded 
by adding 2-DOFs to the shoulder and ROM constraints. As a result, regions of low and 

high manipulability within the workspace volume were obtained. Regions of high 

manipulability were found in middle regions of the workspace, whereas regions with low 
or no manipulability were observed on the edges of the corresponding workspace 

volume. However, manipulability values appeared to be high even on the periphery of the 
workspace envelope where the shoulder and elbow joints have already reached the joint 

range of motion limits.  

Therefore, Section 5.7 introduced the Dexterity Analysis Method as a variation of the 
manipulability analysis method by incorporating human factors to make it more humanly 

realistic. This section presented some human factors that can affect dexterity, such 
factors were grouped into 8 categories: dynamics, sensorial factors, work and energy, 

muscle strength and activation, motor control, cognitive factors, health, ROM and 
anthropometry (see Figure 5.17). Only some variables related to kinematics, dynamics, 

and work and that are aligned to the modelling approach and to the scope of this 

research project were selected and incorporated in a new proposed variable called 
comfort. Such comfort variable is affected by joint configurations, upper limb self-weight, 

and the work needed to rise the limb. This research proposes the use of the comfort 
variable as a penalty to manipulability to obtain the “dexterity measure”. However, the 

variable comfort proposed in this section is based on assumptions that only consider 

some kinematic and dynamic aspects of motion. Although in this investigation only 3 
aspects were initially used for the comfort variable, the equation to compute comfort can 

be adjusted to incorporate or exclude factors as needed. Likewise, the weights of the 
corresponding comfort aspects can be modified as required. It is relevant to mention that 

the individual contributions of each aspect of the variable comfort are unknown and 

experimental analysis is needed to better understand the influences of such factors. The 
modelling approach proposed here only considers the musculo-skeletal physical structure 

of the limb represented as a kinematic chain (rigid segments and joints) and comfort 
aspects, and excludes factors related to motor control, cognition, health, and 

neurophysiological. However, the modelling approach proposed in this thesis work allows 
incorporating such types of aspects as future improvements to create more accurate 

upper limb models for the characterisation of human dexterity.    

The Dexterity Analysis Method offers numerical and visual description of workspace 
volumes and dexterity regions that can be used for the characterisation of upper limb 

functionality and dexterity. Likewise, this visual information provided by the Dexterity 
Analysis Method help to comprehend how workspace volumes and dexterity regions 

deform and get affected by reductions in joint range of motion (and potentially by other 
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human factors), and to identify the most affected regions of workspace and dexterity 
within their corresponding volumes. Additionally, such numerical and visual information 

considerably improve prosthetics, implant, ergonomics, and workstation optimisation 

based on the maximisation of workspace volumes and dexterity regions. Thus, the 
Dexterity Analysis Method is quite promising as it significantly contributes to the 

characterisation of human motion, the development of ergonomic devices, the 
advancement in prosthetics design, the optimisation of sports performance, and so on. 

However, further experimental analysis is needed to validate this novel method.  

Finally, the analysis presented in this chapter was conducted using a simplified 
representation of the human upper limb, the joint angle values that satisfy the task in 

cartesian space were approximations (obtained from an optimization algorithm), and 
some aspects of the physical characteristics of the limb were omitted or excluded for 

simplification. Thus, the factors previously mentioned can affect the accuracy of the 
results.   
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6 EXPERIMENTAL ASSESSMENT OF UPPER LIMB DEXTERITY, 

COMFORT AND PERFORMANCE 

The previous chapters of this thesis studied upper limb workspace and dexterity and 
established the proposed Dexterity Analysis Method for the characterisation of upper 

limb workspace with respect to dexterity. However, such chapters only focused on 
computational analysis. Conversely, this chapter centres on the experimental analysis of 

the upper limb to determine the accuracy of the predictions obtained from the Dexterity 

Analysis Method.  

Thus, experimental, and computational analyses were performed in parallel. A custom 

test board with circular trajectories in 9 locations was designed and used to assess upper 
limb performance and to obtain perceived participant comfort. Likewise, participant limb 

lengths and joint angle values were used as inputs for the Dexterity Analysis Method to 

predict upper limb dexterity. As a result, three measures were obtained from the 
experimental analysis: prediction (from Dexterity Analysis Method), perception 

(perceived participant comfort), and performance (deviation from the task). Where 
prediction refers to the estimated dexterity for each circular trajectory obtained from the 

Dexterity Analysis Method, comfort refers to perceived participant comfort by ranking 

each of the 9 circular locations, and performance refers to task execution accuracy 
obtained by comparing the executed trajectory to the target test board trajectory at 

every given location.  

Participant movements were recorded using a new custom motion capture protocol and a 

system of 10 optical cameras. Finally, a correlation analysis was conducted to quantify the 
level of agreement between the computational and experimental analysis.  

6.1 Experimental Method 

6.1.1 Participants 

As the experimental analysis conducted in this research was only a pilot study, no exact 

sample size was required. A total of 23 healthy participants, reporting no injuries or 
impairment, were recruited for the experimental analysis (age = 31 ± 8.1 years; height = 

170.1 ± 8 cm; 11 males, 14 females, all right-handed). Ethical approval was granted by the 

Department of Mechanical Engineering Ethics Committee at the University of Sheffield 
(see Appendix A). Likewise, participants provided written consent for their participation in 

the experiment. 
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6.1.2 Data acquisition and processing 

Participant movements were recorded by a motion capture system composed of 10 

optical cameras (T-160, 100 Hz, Vicon Nexus 1.8.5, Vicon Motion System Ltd – Oxford, 
UK). As explained in Section 3.3.3, the number of markers and their attachment location 

for data acquisition vary from study to study. In some investigations the upper limb 
movements are recorded using as few as 6 markers, whereas others use above 18 

markers for the study of a single limb [47, 85, 136-138]. It is known that the selection of 
the number of markers and their attachment locations may pose limitations for the 

extraction of kinematic information and can affect the accuracy of the results. Therefore, 

after evaluating such factors, a suitable protocol was designed. Such protocol is based on 
the Nexus Plug-in-Gait model marker protocol [138] (only the upper limb and thorax 

markers) and extra markers to reconstruct any missing points: a total of 19 non-invasive 
reflective markers placed on the upper limb and thorax is illustrated and described on 

Figure 6.1 and Table 6.1. It was decided to use the Nexus Plug-in-Gait model as a 

reference guide for the development of the protocol used here as it considers the body 
landmarks that mostly describe the upper limb and are sufficient to compute kinematic 

data.  

Data pre-processing was conducted within Nexus (Vicon Motion System software) and 

post-processing was performed on MATLAB (R2020a, The MathWorks, Inc. – Natick, MA, 

USA). The segments of the upper limb consisted of the upper arm (acromion to lateral 
epicondyle) and the forearm (lateral epicondyle to middle wrist). For simplicity, given that 

in this experiment the participants performed movements with the upper limb parallel to 
the horizontal plane, the centre of rotation of the elbow joint was assumed to coincide 

with the lateral epicondyle, whereas the glenohumeral joint was assumed to concur to 
the acromion. However, in reality the glenohumeral centre of rotation does not coincide 

with the acromion. Previously, studies focused on the computation of the glenohumeral 

joint centre of rotation have proven that determining the accurate centre of rotation is 
complex and the results can have high variability depending on the algorithms used for 

the computations [156-164]. The results obtained by [162] in a study that compared five 
functional methods for the computation of glenohumeral joint centre show that the 

mean distance from the angulus acromialis (AA) to the glenohumeral joint centre can 

range from 40-55mm on the forward(+)/backward(-) direction, -20 to 10mm on the 
lateral(+)/medial(-) direction, and -15 to -30mm on the upward(+)/downward(-) direction. 

Therefore, although the computation of the accurate glenohumeral centre could be 
critical for some studies focused on micro movements at the joint (e.g. for optimisation of 

implant location), however, [163] demonstrates that the mislocation of glenohumeral 
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centre has little consequence on glenohumeral kinematics. In such study [163] found a 
maximum root mean square error (RMSE) of 4.78°, 4.1°, and 2° in elevation, elevation 

plane, and axial rotation correspondingly. Therefore, assuming the glenohumeral joint at 

the acromion seems reasonable as errors of 5° in the upper arm angles would not have a 
great impact on the results. For instance, computing the dexterity measure (as explained 

in previous sections of this thesis) for an average British male with an elbow angle of 90° 
with an error of ±5° would have an effect 0.7-1.2% on the computed dexterity measure, 

which would not influence the results of the analysis conducted here. Thus, computing a 

highly accurate shoulder centre of rotation would not significantly improve the accuracy 
of the computed shoulder angle in the context of gross movements, and therefore, an 

approximation of shoulder and elbow angles would be sufficient for comparison purposed 
between the simulations and experiments. 

Table 6.1. Description of the names and locations of the reflective markers used in this 
new motion capture protocol. 

Marker Body landmark 

RAC Right Acromion 
LAC Left Acromion 

JN Jugular Notch 

C7 C7 

XI Xiphoid 

RLE Right Lateral Epicondyle 

RME Right Medial Epicondyle 

RUA1 Right Upper Arm Extra 1 

RUA2 Right Upper Arm Extra 2 

RUA3 Right Upper Arm Extra 3 

ROL Right Olecranon 

RUP Right Ulnar Process 

RRP Right Radial Process 

RFA1 Right Forearm Extra 1 

RFA2 Right Forearm Extra 2 

RFA3 Right Forearm Extra 3 

RMW Right Middle Wrist 

RM3 Right Third Metacarpal 
RM5 Right Fifth Metacarpal 

 

Other sources of error are the inherent motion capture errors during the computations 

that determine marker positions, marker placement, and skin tissue artifact [165-170]. 
The errors from the intrinsic computations of the Vicon Motion Capture System are 
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relatively small if the calibration is correct, [165] evaluated the Vicon system performance 
and found that the system positioning error is estimated to be lower than 2mm. Whereas, 

according to the literature, the most significant source of error comes from skin tissue 

artifact [170], for instance, [169] found skin motion artifact errors of up to 16mm. 
Although such errors are believed to have a low impact in the outcome of the 

experiments, further investigation, and study of the effects of such errors on the results 
are required to validate the accuracy of the modelling methods presented in this research 

work.   

 

Figure 6.1. Motion capture protocol specially designed for the experimental analysis 
conducted in this research study. 

6.1.3 Experimental protocol 

Participants were asked to execute circular trajectories on a new test board that consists 

of circles located at 9 different positions along the board. Participants were given written 
and verbal instructions before and during the experiments. Moreover, participants were 

allowed to execute a few trajectories to familiarise with the experiment prior to the real 

test.  

The Test Board was placed on a height-adjustable table set at participant axilla height. 

Prior to the execution of each task, participants were asked to stand at a distance of 
approximately 10cm from the test board to the participant chest and with the centre of 

the shoulder aligned to the centre of the test board.  Next, participants were asked to 
grasp a handle-like stick, which had to remain vertical (aligned to the z axis and 

perpendicular to the test board) throughout the execution of the tasks. Participants were 

asked to perform 3 circular trajectories (clockwise) at each location of the board following 
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the alphabetic order (see Figure 6.2 and Figure 6.3). Every circular trajectory started and 
ended at the red-dot mark. Participants were invited to execute the tasks at comfortable 

steady fashion speed (as speed was not part of the performance score) without resting 

the limb on the board and with the rest of the body as still as possible. Next, participants 
were asked to rank the circular trajectory locations according to perceived comfort by 

assigning a number from 1 to 9 to each position (where 9 is the highest comfort score). 
For this evaluation of comfort, participants were allowed to repeat the task as many 

times as needed.   

Finally, three measures were computed in this experimental analysis: prediction (from 
Dexterity Analysis Method), performance (deviation from the task), and perception 

(perceived participant comfort). 

 
Figure 6.2. Experiment test board for circular trajectories in 9 different locations along the 

board. 

 
Figure 6.3. Participant motion captured by the cameras (right) and participant executing 

circular trajectory tasks (left).  
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6.2 Analysis and results 

The data recorded by the motion capture system was used to reconstruct participant 
motion through a 4-link model composed of the clavicle, upper arm, forearm, and hand 

(see Figure 6.4). The global frame of reference was initially set at a fixed point on the floor 

of the laboratory, however, in the data processing, such global frame was transferred to 
the right acromion to be used as a global reference for all limb movements. The shoulder 

angle for horizontal flexion-extension was computed as the angle between the chest 
(right to left acromion) and upper arm (right acromion to olecranon) position vectors (see 

Figure 6.4). Likewise, the elbow angle for flexion-extension was computed as the angle 

between the upper arm (right acromion to olecranon) and the forearm (olecranon to 
ulnar process) position vectors.   

 

Figure 6.4. Four link model for the reconstruction of participant movements. 

 

 

Figure 6.5. Upper limb shoulder angles for the execution of circular trajectories (mean and 
plus/minus a standad deviation). 
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The shoulder and elbow angles needed to complete the task at each circular trajectory 
location for all the participants are presented in Figure 6.5 and Figure 6.6. According to 

the results the mean values for horizontal shoulder flexion-extension and elbow flexion-

extension required to complete the tasks range from approximately 30-80°, and 50-120°, 
respectively (see Figure 6.5 and Figure 6.6).  

Some clear patters were that shoulder flexion is greater for circular trajectories on the left 
column, followed by the middle column, and finally by the right column. Another 

observation was that elbow flexion is smaller for circular trajectories further away and the 

required elbow flexion increases by approximately 20 degrees as the circular trajectories 
get closer to the body. 

 

Figure 6.6. Upper limb elbow angles for the execution of circular trajectories (mean and 
plus/minus a standad deviation). 

The shoulder and elbow angles, and participant upper limb segment lengths were used as 
inputs for the prediction of upper limb dexterity computed through the proposed 

Dexterity Analysis Method (see Chapter 5).  

Figure 6.7 presents the estimated dexterity measure for all the circular trajectories. As 

can be noted, circular trajectories at positions D and E have high and stable dexterity 

values, whereas trajectories on C and H have low and unsteady dexterity values. 
Therefore, higher performance is expected for the execution of the task at A, D and E 

locations.  
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Figure 6.7. Upper limb dexterity measure for the execution of circular trajectories (mean 
and plus/minus a standad deviation). 

Moreover, the position of the fifth metacarpal maker was used to approximate 

participant trajectories. Figure 6.8 illustrates the trajectories executed by a participant 

(blue) and the circular trajectories that should be followed (red).  

 

Figure 6.8. Executed trajectories by one of the participants (blue) and real circular 
trajectories (red). 

As can be noticed, the executed participant trajectories were not exactly at the planed 

locations (with respect to the chest) as some participants tended to slightly rotate the 
trunk or move closer to the test board. However, this did not significantly affect the 

computation of prediction, perception and performance measures as those aspects were 
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assessed at the positions where the trajectories were executed, which were close to the 
planned locations.  

Participant performance was assessed by quantifying the deviation of the trajectories 

executed by the participant from the target task trajectories. Such deviation from the task 
was obtained by computing the mean-squared-error (MSE) as follows: 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑀𝑆𝐸 =  
1

𝑛
෍(𝑥௜ − 𝑥ො௜)

ଶ

௡

௜ୀଵ

 

Equation 6.1 

Where 𝑥ො௜  is the task trajectory, 𝑥  is the trajectory executed by the participant, 𝑛 is the 

number trajectories at each location, and 𝑖 is the evaluated trajectory.  

Figure 6.9 shows the mean-squared-error (MSE) for the 9 circular trajectories. As can be 

noticed, the curves present 2 peaks that occur mostly at the middle upper and bottom 

sides of the circular trajectories. During the experiments, it was also noticed that 
participants tend to execute ellipses instead of circles, which somehow agrees with the 

behaviour observed in these figures (peaks at middle sections of the trajectories). 
 

 

Figure 6.9. Upper limb performance measure (MSE) for the execution of circular 
trajectories (mean and plus/minus a standad deviation) 

As participant trajectories tend to be elliptical instead of circular, an ellipse fit function 
was used to further analyse this aspect. As a result, it was observed that the elliptical 

trajectories executed by all the participants presented a similar behaviour, the ellipse 
main axis show a consistent angle of inclination. Therefore, it was decided to compute the 

manipulability ellipsoids to determine if there was a correlation between the ellipse fit 
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axis and the manipulability ellipsoids (see Section 5.1) that determine the directions of 
higher manipulability (see Figure 6.10). The results from the correlation analysis 

confirmed that the ellipse fit axis and the manipulability ellipsoid axis have a strong 

correlation coefficient of 0.87 with p value = 0.002. Therefore, it is believed that the 
upper limb tends to overshoot in directions of higher manipulability, which could be 

linked to the ease of performing movements in such directions. This implies the upper 
limb has less control in the directions in which it can move with more ease. However, this 

finding could be also linked to other factors such as muscle activation, muscle strength, 

and vision. 

 

Figure 6.10. Trajectories executed by one of the participants (blue), participant trajectory 
ellipse fit (magenta), manipulability ellipsoids (grey). 

Furthermore, participants were asked to rank circular trajectory positions from 1 to 9 

based on comfort (where 9 is the highest). For this evaluation of comfort, participants 
were allowed to repeat the task as many times as needed.   

Once prediction (dexterity), perception (comfort), and performance (accuracy) measures 
were obtained, a correlation analysis was conducted. However, as perception data was 

ordinal, prediction and performance data were also converted into ordinal data in order 

to conduct Spearman’s rank correlation analysis for these 3 measures. Figure 6.11 show 
prediction, perception, and performance (ordinal data) for all circular trajectories and for 

all the participants. Likewise, Table 6.2 presents the correlation coefficients for the 3 
measures.  

As can be observed in Figure 6.11 and Table 6.2, the results cannot statistically prove nor 

disprove the hypothesis of the relationship between prediction (dexterity), perception 
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(comfort), and performance (accuracy). Although the results cannot demonstrate such 
relationships and the full potential of the analysis, these are only early indications but not 

a strong case to discard the potential of the methods proposed in this work. Likewise, the 

sample size is not sufficiently large to rely on the conducted statistical analysis. 
Nevertheless, by observation Figure 6.11, some interesting patterns and correlations can 

be clearly seen across participants like the perception of comfort for which most 
participants indicated that they perceived higher comfort for the positions “E” and “F” 

which are immediately in front and closer to the shoulder, whereas low comfort was 

perceived for positions further away and on the opposite side of the limb (positions “A”, 
”B”, ”C”, ”D”, and “G”) . Similarly, the 3 measures for participants 3, 4 and 5, visually seem 

to be more related than what the numbers suggest. However, performance seems to 
have higher variability across participants, but at least visually, some correlations 

between prediction, perceptions and performance can be observed. For instance, both 
prediction and performance across participants seems to be higher for positions “D” and 

“E”, which indicate some sort of correlation. 

 

Figure 6.11. Prediction (dexterity), perception (comfort) and performance (MSE) ordinal 
data. High numbers in light yellow colour represent high values. 

As can be seen in Table 6.2, the correlation values for prediction, perception and 

performance are inconsistent. Most participants have a positive correlation for 
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prediction-performance and perception-performance; however, some participants show 
a negative correlation (6 participants for each). Likewise, the correlation coefficient for 

prediction-perception is even more unbalanced with around 50% negative correlation 

coefficients.  

Table 6.2. Spearman’s rank correlation coefficients for prediction-performance, prediction-
perception, and perception-performance. Sample size n=23, healthy participants.  

N 𝒓𝒑𝒓𝒆𝒅/𝒑𝒆𝒓𝒇  p value 𝒓𝒑𝒓𝒆𝒅/𝒑𝒆𝒓𝒄  p value 𝒓𝒑𝒆𝒓𝒄/𝒑𝒆𝒓𝒇 p value 

1 0.43 0.25 -0.07 0.88 0.42 0.27 

2 0.05 0.91 0.20 0.61 -0.40 0.29 

3 0.60 0.10 0.17 0.68 0.13 0.74 

4 0.42 0.27 -0.03 0.95 0.07 0.88 

5 0.13 0.74 0.52 0.16 0.07 0.88 

6 -0.20 0.61 -0.17 0.68 0.33 0.39 

7 -0.40 0.29 0.55 0.13 -0.25 0.52 

8 -0.03 0.95 -0.07 0.88 0.58 0.11 

9 0.33 0.39 -0.30 0.44 0.38 0.31 

10 0.67 0.06 -0.10 0.81 0.25 0.52 

11 0.12 0.78 0.75 0.03 0.22 0.58 

12 -0.73 0.03 -0.55 0.13 0.20 0.61 

13 0.07 0.88 0.48 0.19 0.25 0.52 

14 0.33 0.39 -0.32 0.41 0.08 0.84 

15 0.57 0.12 0.32 0.41 0.22 0.58 

16 -0.27 0.49 0.25 0.52 0.30 0.44 

17 0.18 0.64 0.07 0.88 -0.30 0.44 

18 0.28 0.46 -0.13 0.74 -0.45 0.23 

19 -0.30 0.44 -0.12 0.78 0.22 0.58 

20 0.45 0.23 0.47 0.21 0.48 0.19 

21 0.55 0.13 0.18 0.64 -0.38 0.31 

22 0.08 0.84 -0.73 0.03 -0.45 0.23 

23 0.02 0.98 0.30 0.44 0.20 0.61 

 

Finally, the results presented in this section are only an early indication and not a strong 
positive or negative case in terms of validity for the methods. It is possible that the 

discrepancies occurred as a result of some model assumptions and the model parameters 

that still need calibration because some of the parameter values are approximation as 
such data is lacking in literature.  Moreover, participants commonly struggled to 

appropriately rank the trajectory locations according to perceived comfort, maybe 
because we are not naturally trained to rank how we perceive things. Additionally, 

performance is strongly dependent on participants effort to execute the movements as 

precise as possible, participants could be fatigued, bored, or not willing to execute the 
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task as requested. Lastly, the accuracy of the result can be also affected by the 
experimental design, for instance, it was particularly difficult to fix participants torso or to 

keep the upper arm always a 100% parallel to the test board.  

6.3 Summary 

This chapter focused on the experimental analysis of the upper limb to determine the 
accuracy of the predictions obtained from the Dexterity Analysis Method. Therefore, 23 

healthy participants were evaluated through experimental analysis that consisted of 
executing circular trajectories at 9 different locations on a new designed test board. As a 

result, 3 measures were obtained: prediction (dexterity), perception (comfort), and 

performance (accuracy). Finally, a correlation analysis was conducted to quantify the level 
of agreement for those measures.  

First, although written and verbal instructions were given to the participants throughout 
the experiments, it was noticed that participants tend to slightly rotate the trunk and to 

move from the test board, which partly displaced the positions of the trajectories. 
However, this did not considerably affect the calculation of prediction, perception, and 

performance measures (as those were computed at the real location of the executed 

trajectory).  

The required shoulder flexion for the execution of the circular trajectories was greater 

positions on the left column of the test board (around 60°), which proportionally 
decreased for the middle and right columns, respectively. Similarly, the required elbow 

flexion was smaller for circular trajectories on the row that is further away (around 70°) 

and increased by approximately 20 degrees as the circular trajectories got closer to the 
body. This joint angle characteristics for the execution of circular trajectories could be 

used for comparison of healthy and non-healthy populations.   

Another finding is that the deviation of the participant trajectories from the 

corresponding task trajectories showed 2 peaks that occur mostly at the middle top and 

bottom sides of the circular trajectories, which somehow agrees with the observation of 
elliptical rather than circular trajectories.  

The results of the correlation analysis are not conclusive. Although most participants 
showed a positive correlation for prediction-performance and perception-performance, 

other participants exhibited negative correlations. Similarly, the coefficient correlation for 
prediction-perception was around 50% negative and 50% positive.  Discrepancies may 

have occurred as a result of model assumptions and the model parameters that still need 

calibration as some of the parameter values are approximation.  Likewise, participants 
commonly struggled to appropriately rank the trajectory locations according to perceived 
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comfort, whereas performance was strongly dependent on participants effort to execute 
the movements (participants could be fatigued, bored, or not willing to execute the task 

as requested). Furthermore, experimental design related factors could also affect the 

results as it was hard to prevent participants from moving their torso whilst executing the 
movements. It is important to mention that the results presented in this section are only 

an early indication and not a strong positive or negative case in terms of validity for the 
methods. However, future work should consider the aspects previously mentioned and 

the possibility of appropriately modifying the experimental set up to increase the 

accuracy of the analysis.  

Finally, an interesting finding was that the axis of the ellipse fit for participant trajectories 

and the axis of the manipulability ellipsoids have a strong correlation coefficient of 0.87 
with p value = 0.002. This finding suggests that upper limbs tend to overshoot in 

directions of higher manipulability (ease of performing movements), which indicates that 
upper limbs have less control in such directions. Therefore, this finding is an interesting 

venue for further exploration of the use of the manipulability ellipsoids for the 

characterisation of human motion.  
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7 UPPER LIMB WORKSPACE WITH RESPECT TO DEXTERITY IN 

REVERSE SHOULDER ARTHROPLASTY (CASE STUDY) 

The proposed novel method for the characterisation of human upper limb dexterity and 
its applicability to determine regions of low-high dexterity in both 2 and 3-dimentional 

spaces has been established and demonstrated in the previous chapters of this thesis 
work. The input values used in such previous analysis correspond to upper limb segment 

lengths and joint range of motion of healthy populations. However, the novel method 

proposed in this research can be used to analyse healthy and non-healthy individuals or 
populations. Therefore, a real case study is analysed in this section to demonstrate 

applicability of the method to real life situations such as clinical interventions for reverse 
shoulder arthroplasty. Arthroplasty refers to surgical interventions to repair joint 

functionality, whereas the term reverse shoulder refers to reversing the natural ball and 

socket mechanism of the shoulder by inverting the position of these elements (an 
artificial ball is attached to the anatomical socket and vice versa). Hence, the aim of the 

study presented here was to determine human upper limb workspace with respect to 
dexterity in reverse shoulder arthroplasty based on the scientific paper published by 

Keener et al. [28]. In such published work various implant configurations for glenoid and 

humeral reverse shoulder arthroplasty were evaluated in order to find the corresponding 
implant optimal positions. The paper provides all the values for joint range of motion 

given the evaluated implant configurations [28]. Such joint range of motion values were 
used here as inputs to determine upper limb workspace with respect to dexterity. Thus, 

the study presented in this section can be considered an extension to the investigation 
conducted by Keener et al. [28] and a demonstration of the applicability of the novel 

method proposed in this thesis work.  

People with reverse shoulder arthroplasty suffer from reductions in joint range of motion. 
Therefore, in this research study, workspace volumes and high dexterity regions for non-

healthy populations (with reverse shoulder arthroplasty) are believed to be directly 
impacted by reductions in joint range of motion and to be smaller than those for healthy 

populations. Likewise, high dexterity regions are anticipated to be proportional to 

workspace volume. The reductions in range of motion are quite dramatic for some 
implant configurations and that is expected to be clearly illustrated by the computed 

workspace volumes and high dexterity regions. Furthermore, it is assumed that the 
computed workspace volumes and high dexterity regions will be able to indicate which 

are the most affected workspace regions due to joint range reductions. Finally, the 

optimal implant position defined by Keener et al. [28] is believed to be close to the 
corresponding optimal implant position determined in this study. 
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7.1 Methodology and experimental protocol 

The joint range of motion values used here as inputs to determine upper limb workspace 
with respect to dexterity were acquired from the work published by Keener et al. [28]. 

The author stated that the results presented in such investigation were obtained by 

studying shoulder computed tomography scans from 10 male participants (mean age = 
61.5 years) with osteoarthritis and advanced posterior erosive glenoid deformities, such 

scans were analysed with Glenosys (Imascap, Brest, France) and Ascend Flex (Tornier; 
Bloomington, MN, USA) software to conduct range of motion analysis for various implant 

configurations in reverse shoulder arthroplasty. The implant variables investigated by 

Keener et al. [28] were glenoid component retroversion, glenoid base lateralization, 
humeral angle of inclination and humeral offset [28] (see Figure 7.1 and Table 7.1 and 

Table 7.2).  

 
Figure 7.1. Glenoid and humeral implants for reverse shoulder arthroplasty with a base 

plate at 0mm lateralisation and 5° retroversion (left) and with a base plate at 10mm 
lateralisation (right). Mechanical contact is remarked with a red sphere. Copyright © 2018, 

Elsevier17 

First, glenoid retroversion refers to the angle formed by the glenoid implant base and an 

imaginary line across the scapula on the horizontal plane. Second, glenoid base 
lateralization refers to the implant offset from the glenoid towards the lateral side of the 

body. Third, humeral angle of inclination (AOI) refers to the angle formed between the 

humeral implant and the imaginary humerus axis. Finally, the humerus offset refers to the 
distance of the plate from the prepared surface on the humerus head. The glenoid 

implant variables were independently studied to determine the optimal implant configu- 

 

 
17 Reprinted from Journal of Shoulder and Elbow Surgery, vol. 27, no. 2, Keener, J. D. et al., 
“Optimizing reverse shoulder arthroplasty component position in the setting of advanced arthritis 
with posterior glenoid erosion: a computer-enhanced range of motion analysis”, pp. 339-349, 
copyright (2018), with permission from Elsevier. 



133 

 

Table 7.1. Joint range of motion (in degrees) for various glenoid implant configurations, 
source [28]. Data expressed as mean (standard deviation). 

Lat 

(mm) 

Ret 

 (deg) 

Add 

(deg) 

Abd 

(deg) 

I.R. 

(deg) 

E.R. 

(deg) 

Ext 

(deg) 

Fle 

(deg) 

0 0 1.2 (2) 79 (8.4) 33 (36) 4.3 (7.4) 6.1 (19) 74 (5.3) 

0 5 1.1 (2) 82 (8.3) 39 (39) 3.5 (6.2) 5.6 (18) 80 (13) 

0 10 0.9 (2.1) 84 (7.7) 47 (41) 2.2 (5.1) 1.1 (2.5) 86 (15) 

0 15 0.8 (2) 84 (7.8 52 (45) 1.7 (4.2) 0.8 (2) 96 (18) 

0 20 0.6 (1.4) 84 (9) 60 (47) 1 (2.3) 0.5 (1.2) 102 (20) 

5 0 11 (7.7) 88 (10) 60 (29) 26 (17) 17 (14) 109 (34) 

5 5 11 (8.2) 90 (10) 68 (27) 23 (16) 15 (13) 119 (32) 

5 10 11 (8.6) 92 (11) 75 (27) 19 (16) 13 (11) 135 (26) 

5 15 10 (9.7) 92 (12) 81 (28) 15 (15) 10 (10) 137 (23) 

5 20 8.5 (10) 91 (13) 86 (28) 12 (13) 8.3 (9.3) 138 (19) 

10 0 24 (10) 95 (11) 70 (19) 45 (13) 42 (25) 156 (29) 

10 5 25 (11) 97 (12) 75 (18) 42 (12) 34 (15) 157 (22) 

10 10 26 (12) 98 (13) 81 (17) 38 (12) 30 (13) 156 (19) 

10 15 26 (15) 98 (13) 85 (16) 34 (12) 26 (12) 153 (17) 

10 20 27 (17) 97 (14) 88 (15) 30 (11) 23 (11) 150 (17) 

Lat, Lateralisation; ret, retroversion; add, adduction; abd, abduction; i.r., internal rotation; 
e.r., external rotation; ext, extension; fle, flexion. 

Table 7.2. Joint range of motion for various humeral implant configurations, source [28]. 
Data expressed as mean (standard deviation). 

AOI 

(deg) 

Offset 

 (mm) 

Add 

(deg) 

Abd 

(deg) 

I.R. 

(deg) 

E.R. 

(deg) 

Ext 

(deg) 

Fle 

(deg) 

135 -3.5 37 (11) 90 (11) 75 (11) 52 (9.1) 80 (36) 163 (19) 

135 0.0 37 (11) 90 (11) 75 (11) 52 (9.1) 80 (36) 164 (18) 

135 3.5 37 (11) 90 (13) 75 (11) 52 (9.1) 80 (36) 166 (13) 

145 -3.5 22 (10) 98 (11) 69 (15) 40 (12) 33 (14) 155 (26) 

145 0.0 22 (10) 97 (11) 69 (15) 40 (12) 33 (14) 155 (25) 

145 3.5 22 (10) 97 (13) 69 (15) 40 (12) 33 (14) 157 (25) 

155 -3.5 8.6 (9) 102 (11) 54 (30) 22 (17) 12 (12) 143 (27) 

155 0.0 8.6 (9) 101 (11) 54 (30) 22 (17) 12 (12) 144 (27) 

155 3.5 8.6 (9) 101 (13) 54 (30) 22 (17) 12 (12) 146 (28) 

AOI, angle of inclination; offset, medialised (-3.5), neutral (0) and lateralised (3.5) 
humerus; add, adduction; abd, abduction; i.r., internal rotation; e.r., external rotation; ext, 
extension; fle, flexion. 
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-rations (using a 145° humeral angle of inclination with no implant offset) [28]. Similarly, 
once the glenoid implant optimal position was determined, humeral implant 

configurations were investigated with fixed glenoid implant values at the corresponding 

optimal configuration (10mm of lateralization and 5° of retroversion) [28]. The estimated 
joint range of motion for shoulder abduction, adduction, flexion, extension, internal and 

external rotation given the various glenoid and humeral implant configurations are 
presented in Table 7.1 and Table 7.2 correspondingly. The data presented in Table 7.1 and 

Table 7.2 are the joint range of motion evaluated here to determine workspace and high 

dexterity regions. No information regarding implant joint coupling to determine range of 
motion for all configuration combinations has been provided by Keener et al. [28]. 

Therefore, such joint coupling was modelled under the assumptions and the method 
described in Section 4.3. Furthermore, Table 7.3 contains the complementary input values 

for upper limb segment lengths, limb segment weights (as a percentage of body weight), 
limb centres of mass (as a percentage of segment length), participant body weight, 

evaluated volume and gravity force. The upper limb segment lengths and the participant 

body weight presented in Table 7.3 correspond to mean values for British males.  

Table 7.3. Upper limb anthropometric values, x, y, z ranges of the evaluated volume, and 
gravity force value. Statistical data source [39, 146] 

Parameter Var. Value 

Upper arm length (𝑚) 𝒍𝟏 0.356 

Forearm length (𝑚) 𝒍𝟐 0.288 

X range (𝑚) 𝑿 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝑿 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Y range (𝑚) 𝒀 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝒀 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Z range (𝑚) 𝒁 −1.05(𝑙ଵ + 𝑙ଶ) ≤ 𝒁 ≤ 1.05(𝑙ଵ + 𝑙ଶ) 

Upper Arm mass (% body weight) 𝒎𝟏 0.58 

Forearm mass (% body weight) 𝒎𝟐 0.46 

Upper arm centre of mass (% segment length) 𝒓𝟏 0.0271 

Forearm centre of mass (% segment length) 𝒓𝟐 0.0162 

Gravity (N/kg) 𝒈 9.81 

Body weight (mean for British males) (Kg) 𝝎𝑻 83.00 

 

Finally, high dexterity regions within the corresponding workspace volume for all the 

evaluated implant configurations were computed following the methods presented in 
Chapter 5. In the analysis presented in this chapter, high dexterity regions refer to the 

regions where the dexterity measure 𝐷௫ is greater than 0.7 (in the scale 0-1, where 1 is 
the highest).  
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7.2 Analysis of human upper limb workspace with respect to dexterity 
in reverse shoulder arthroplasty 

This section presents the results of the analysis conducted to determine upper limb 
workspace volumes and high dexterity regions for various implant configurations in 

reverse shoulder arthroplasty (following the methods described above). The results of the 

study are shown in Table 7.4 and Figure 7.3, Figure 7.4 and Figure 7.2.  

Table 7.4. Workspace and high dexterity volumes for various glenoid implant 
configurations in reverse shoulder arthroplasty. 

ID 
Implant 

side 
Lat (mm) 

Retro 

(deg) 
AOI (deg) 

Offset 

(mm) 

𝑽𝒘       

(m3) 

𝑽𝑫𝒙     

(m3) 

1 Glenoid 0 0 145 0 0.110 0.022 

2 Glenoid 0 5 145 0 0.125 0.030 

3 Glenoid 0 10 145 0 0.148 0.030 

4 Glenoid 0 15 145 0 0.164 0.034 

5 Glenoid 0 20 145 0 0.180 0.033 

6 Glenoid 5 0 145 0 0.244 0.051 

7 Glenoid 5 5 145 0 0.256 0.056 

8 Glenoid 5 10 145 0 0.280 0.069 

9 Glenoid 5 15 145 0 0.276 0.054 

10 Glenoid 5 20 145 0 0.271 0.054 

11 Glenoid 10 0 145 0 0.394 0.066 

12 Glenoid 10 5 145 0 0.403 0.081 

13 Glenoid 10 10 145 0 0.406 0.078 

14 Glenoid 10 15 145 0 0.390 0.078 

15 Glenoid 10 20 145 0 0.380 0.075 

16 Humeral 10 5 135 -3.5 0.462 0.065 

17 Humeral 10 5 135 0 0.462 0.065 

18 Humeral 10 5 135 3.5 0.463 0.065 

19 Humeral 10 5 145 -3.5 0.387 0.067 

20 Humeral 10 5 145 0 0.386 0.079 

21 Humeral 10 5 145 3.5 0.387 0.080 

22 Humeral 10 5 155 -3.5 0.292 0.064 

23 Humeral 10 5 155 0 0.292 0.067 

24 Humeral 10 5 155 3.5 0.294 0.064 

 

The first 15 rows of Table 7.4 correspond to the evaluated glenoid configurations, 
whereas rows 16 to 24 refer to the assessed humeral variables. The last two columns 

correspond to workspace volumes and high dexterity regions, respectively. A consistent 
increase in both workspace volume and high dexterity region was noticed while 
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lateralisation increased. Likewise, both workspace volumes and high dexterity regions 
steadily decreased as the humeral angle of inclination increased. In order to quantify such 

relationship, a correlation analysis was conducted, as a result, it was found that 

workspace volumes and high dexterity regions strongly correlate to glenoid lateralisation 
with coefficients of 0.99 and 0.96, respectively (Table 7.5). Similarly, a strong negative 

correlation of -1.00 between workspace volumes and humeral angle of inclination was 
found.  

Table 7.5. Correlation analysis of glenoid lateralisation, glenoid retroversion, humeral 
angle of inclination and humeral offset on workspace volume and high dexterity regions.  

 Lateralisation Retroversion AOI offset 

Workspace volume 0.99 0.10 -1.00 0.01 

High dexterity regions 0.96 0.11 0.01 0.28 

 

Figure 7.3, Figure 7.4 and Figure 7.2 illustrate workspace volumes (grey) and high 

dexterity (yellow) regions for various glenoid and humeral implant configurations in 
reverse shoulder arthroplasty. Each individual figure was identified with a number which 

corresponds to the evaluated implant configurations presented in Table 7.4. As can be 
observed in Figure 7.3 and Figure 7.2, the first 5 volumes show a very reduced workspace 

volume which demonstrate how limited the extremity would be with an implant with 

such parameter values. The workspace volumes and high dexterity regions for 
configurations 6-10 are larger than the previous volumes (1-5), with some volumes twice 

as large. As can be observed, the highest estimated workspace volume and high dexterity 
region for the evaluated glenoid configurations were achieved with 10mm glenoid 

lateralisation and 5-15° glenoid retroversion.  

 

Figure 7.2. Workspace volumes (grey) and high dexterity regions (yellow) for various 
glenoid (1-15) and humeral (16-24) implant configurations.  
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Figure 7.3. Workspace (grey) and high dexterity regions (yellow) for various glenoid 
implant configurations in reverse shoulder arthroplasty using a 145° humeral angle of 

inclination and no humeral implant offset.  
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Figure 7.4. Workspace volumes (grey) and high dexterity regions (yellow) for various 
humeral implant configurations in reverse shoulder arthroplasty given an optimised 

glenoid position with 10mm of lateralization and 5° of retroversion. 

However, as illustrated in Figure 7.4 and Figure 7.2, the largest workspace volume (given 
the optimal glenoid implant configuration) for the assessed humeral configurations was 

attained with a 135° humeral angle of inclination for any humeral lateral offset, whereas, 
the largest high dexterity region was achieved with a 145° humeral angle of inclination 

and 0-3.5mm humeral offset.  

Therefore, the results suggest that optimal implant configuration with respect to 
workspace is attained with a 10mm glenoid lateralisation, 5-10° glenoid retroversion, 

135° humeral angle of inclination, and any (-3.5 to 3.5mm) humeral lateralisation (see 
Table 7.4 and Figure 7.3, Figure 7.4 and Figure 7.2). However, according to the results, the 

optimal implant configuration with respect to high dexterity regions is achieved with 

10mm glenoid lateralisation, 5-15° glenoid retroversion, 145° humeral angle of 
inclination, and 0-3.5mm humeral offset. Hence, the selection of the best implant 



139 

 

parameter values should consider both workspace volumes and high dexterity regions as, 
according to the results, only one of those aspects can be fully maximised. As the 

proposed dexterity measure may need adjusting and has not been fully validated, the 

recommendation is to give priority to workspace volume over high dexterity regions. 
Nevertheless, when possible and if increasing high dexterity regions do not sacrifice a 

great amount of workspace volume, both aspects should be balanced.  

The first part of the study presented in this chapter focused on the evaluation of people 

with reverse shoulder arthroplasty. However, workspace and dexterity for healthy and 

non-healthy populations should be evaluated to understand and quantify the impacts of 
reverse shoulder arthroplasty on such aspects. Therefore, the second part of the study 

presented here analyses a healthy individual and an individual with reverse shoulder 
arthroplasty (optimal implant configuration with respect to workspace, configuration 17 

in Table 7.4). The estimated workspace and high dexterity regions for both individuals are 
illustrated in Figure 7.5 and Figure 7.6.  

 

Figure 7.5. Estimated workspace volumes (grey) and high dexterity regions (yellow) for: an 
individual with optimal implant position in reverse shoulder arthroplasty (left) and a 

healthy individual(right). One view. 

The estimated workspace volumes for the healthy individual and the individual with 

reverse shoulder arthroplasty were 0.611m3 and 0.463m3, and the high dexterity regions 
were 0.083m3 and 0.065m3, respectively. Thus, the workspace volume for a healthy 

individual is around 32% larger than the corresponding volume for an individual with 
reverse shoulder arthroplasty (optimal implant configuration). This is a significant 

difference for upper limb workspace reachability between the 2 individuals. As can be 

seen in Figure 7.6, it is noticeable that the workspace volume for the individual with 
reverse shoulder arthroplasty reduces primarily on the top right side of the workspace 
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volume. Similarly, the expected high dexterity region for a healthy individual is around 
27% larger that the corresponding region for an individual with the selected implant 

configuration. Nevertheless, an individual with implant configuration 12 (see Table 7.4) 

and a healthy individual have similar high dexterity regions. However, the individual with 
the implant with such configuration would have a smaller workspace volume compared 

to an individual with implant configuration 17.  

 

Figure 7.6. Estimated workspace volumes (grey) and high dexterity regions (yellow) for: an 
individual with optimal implant position in reverse shoulder arthroplasty (top row) and a 

healthy individual (bottom row). Three views: Coronal, Sagittal and Transverse planes. 

7.3 Summary 

This research work established a novel method for the characterisation of workspace with 

respect to dexterity, which can be used to analyse healthy and non-healthy individuals or 
populations. Therefore, in order to demonstrate the applicability of the method, this 

chapter centred on the study of human upper limb workspace with respect to dexterity in 
reverse shoulder arthroplasty based on the scientific paper published by Keener et al. 

[28].  

First of all, no information related to the shoulder implant joint coupling with respect to 
range of motion for all configuration combinations was provided by Keener et al. [28]. 

Therefore, such joint coupling was modelled under the assumptions and the method 
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described in Section 4.3; the implant was assumed to have a similar behaviour than the 
human shoulder joint as it remains mechanically similar.  However, further research 

should be conducted to determine if implant and human joints have similar mechanical 

behaviour, and to define the corresponding joint coupling. Understanding these aspects 
of both implant and human joints is essential for the creation of more realistic upper limb 

models.  

A total of 24 implant configurations (see Table 7.4) including glenoid lateralisation, 

glenoid retroversion, humeral angle of inclination, and humeral offset were evaluated to 

determine upper limb workspace volumes and high dexterity regions. According to the 
results, workspace volumes and high dexterity regions strongly correlate to glenoid 

lateralisation with coefficients of 0.99 and 0.96, respectively. This finding suggests that 
greater glenoid lateralisation produce joint ranges of motion that result in larger 

workspace volumes and high dexterity regions. Similarly, a strong negative correlation of -
1.00 between workspace volumes and humeral angle of inclination was found, which 

indicates that smaller humeral angles of inclination result in larger workspace volumes. 

However, the optimal value for humeral angle of inclination with respect to high dexterity 
regions seems to be 145°. Therefore, it is unknown if such behaviour and correlations 

remain for other non-evaluated values.  

Furthermore, the results suggest that optimal implant configuration with respect to 

workspace is attained with a 10mm glenoid lateralisation, 5-10° glenoid retroversion, 

135° humeral angle of inclination, and any (-3.5 to 3.5mm) humeral lateralisation. 
Whereas the optimal implant configuration with respect to high dexterity regions is 

achieved with 10mm glenoid lateralisation, 5-15° glenoid retroversion, 145° humeral 
angle of inclination, and 0-3.5mm humeral offset. This finding suggests that workspace 

volumes and high dexterity regions are not necessarily proportional, which opposes to 

the assumption of workspace volume and high dexterity region proportionality 
mentioned in the introduction of this chapter. Therefore, the best implant parameter 

values should be cautiously selected as, according to the results, only workspace volume 
or high dexterity region can be fully maximised. It is recommended to prioritise 

workspace volume as the proposed dexterity measure may need adjusting and has not 
been fully validated, and when possible, to keep workspace and high dexterity regions 

balanced (if increasing high dexterity regions do not sacrifice a great amount of 

workspace volume).  

It is important to mention that the estimated optimal implant position described in the 

previous paragraph only predicts the best location in terms of upper limb reachability 
within the corresponding workspace. However, an optimal implant position should also 
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consider other factors such as joint stability, internal bone, and muscle interactions, 
torques and forces. Nevertheless, the inclusion of such factors in the analysis presented 

here was not part of the scope of this study.  

Moreover, the analysis presented in this chapter was limited to the values provided by 
Keener et al. [28]. In the work published by Keener et al. [28], only the glenoid or the 

humeral variables were varied at a time whilst keeping the others fixed. In such study, the 
author used fixed 145° humeral angle of inclination and 0mm humeral offset to evaluate 

glenoid lateralisation and glenoid retroversion. However, it was observed that a 135° 

humeral angle of inclination can produce larger workspace volumes. Consequently, future 
work should explore implant configurations that include all possible combinations of 

glenoid and humeral parameters (and any other relevant variables).  

The second part of the study comprehended the analysis of a healthy and a non-healthy 

individual (with reverse shoulder arthroplasty, implant configuration 17 in Table 7.4) to 
quantify the impact of reverse shoulder arthroplasty on workspace and dexterity. The 

results show that the estimated workspace volume for a healthy individual is around 32% 

larger than the corresponding volume for an individual with reverse shoulder arthroplasty 
(optimal implant configuration), which is a significant difference. This finding agrees with 

the assumption described in the introduction of this chapter in which healthy populations 
were expected to obtain larger workspaces volumes. According to the results, the most 

affected workspace region for an individual with implant would be the top-front-right 

side. Range of motion reductions on such region would complicate the execution of upper 
limb movements for activities that require reaching that side of workspace such as storing 

objects at high levels, operating machinery, changing a bulb, climbing, swimming, playing 
tennis, baseball, basketball, and volleyball. 

Similarly, it was observed that the estimated high dexterity region for a healthy individual 

is around 27% larger than the corresponding region for an individual with reverse 
shoulder arthroplasty (optimal implant configuration). However, an individual with an 

implant configuration with 135° humeral angle of inclination (configuration 12 in Table 
7.4) seem to have smaller workspace volume compared to an individual with optimal 

implant configuration (configuration 17 in Table 7.4) but larger high dexterity regions, 
similar to those for healthy populations. As already mentioned above, it is possible that 

other glenoid and humeral implant variable combinations can provide a more optimal 

implant configuration that can offer both workspace volumes and high dexterity regions 
closer to those for healthy populations.  

The estimated optimal implant configuration with respect to workspace (in this study) 
agrees with the corresponding optimal implant location proposed by Keener et al. [28], as 
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initially assumed. However, the analysis presented in this section offers deeper insight 
regarding upper limb reachability and indicates which workspace regions are the most 

affected. Additionally, the analysis conducted here estimated high dexterity regions for all 

implant configurations to investigate the effect of implant location on upper limb 
performance. As can be noticed in the results, larger workspace volumes do not 

necessarily translate into greater high dexterity regions.  

Finally, this chapter demonstrated the applicability of the novel method proposed in this 

thesis work to real life situations. The results indicate that the proposed method and its 

measure are quite promising as they can be used to define upper limb workspace volume 
and high dexterity regions for both healthy and non-healthy populations. The proposed 

method can be used to quantify 3-dimensional upper limb reachability and to identify the 
most affected workspace regions due to reductions in joint range of motion. Such method 

can also estimate regions of high dexterity within the corresponding workspace, which 
offer information regarding the regions where the upper limb is expected to have higher 

performance. Therefore, this method can be used in real life to optimise implant location, 

to predict upper limb performance, to compare and assess limb workspace and dexterity 
regions before and after surgery, as a reference for upper limb rehabilitation, for the 

design of limb prosthetics, for ergonomics, and for the design of workspace stations. 
Although the proposed novel method and its measure are quite promising, further 

research needs to be conducted in order to validate it.  
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8 DISCUSSION 

The aim of the work presented in this thesis was to propose a novel method for the 

characterisation of human upper limb workspace with respect to dexterity, which was 
successfully established. This novel method, the Dexterity Analysis Method, is based on 

the representation of the upper limb as a kinematic chain, and on the principles of the 

manipulability analysis method [11, 12], widely used in robotics for robotic arm 
performance assessment. Moreover, the Dexterity Analysis Method incorporates a new 

comfort variable that is composed of various motion aspects associated with range of 
motion, limb self-weight and work. Such comfort variable had to be designed for this 

model as no published work defining comfort within the workspace was found. 

Therefore, human comfort is a concept that still needs to be explored and characterised 
in future research. In the experimental part of this research, participants were found to 

struggle to rank comfort across the experimental test board. Ranking comfort was 
expected to be an easy task; however, it was observed that comfort perception can be 

confusing, a probable reason is that self-evaluation of such subtle aspects is rarely 

requested. Finally, the designed comfort variable was added to the model as a penalty 
term alongside manipulability to obtain the proposed “dexterity measure”. The dexterity 

measure encapsulates information regarding upper limb anthropometrics (segment 
lengths and joint range of motion), manipulability, and comfort, with reference to upper 

limb workspace volume. Until now there was no method that has proposed integrating 
manipulability, comfort, dexterity, and workspace. Thus, this work has coupled dexterity 

and workspace and thus established a novel method for the characterisation of upper 

limb workspace with respect to dexterity. This method enables surgeons to assess 
patients before and after clinical interventions, implant designers and surgeons to 

optimise implants based on its impact on workspace and dexterity, and designers to 
develop more ergonomic and efficient, devices, workplace stations and homes.  

This research was both computational and experimental. Firstly, this research used a 

computational model that encodes the physical properties of the upper limb in terms of 
segment length and joint range of motion to simulate upper limb movements to compute 

workspace volume and high dexterity regions according to the dexterity analysis method. 
This computational modelling allows to study individuals by providing specific values of 

the person being studied, as well as specific populations based on published statistical 

data. Secondly, a novel experiment was designed for experimental testing to study upper 
limb performance, comfort, and dexterity, in order to establish a relationship among such 

factors and as an initial validation method.  
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Although some discussion was provided throughout this thesis work, this chapter focuses 
on the discussion of the most relevant findings of this research. The discussion is 

organised into 5 subsections to address upper limb motion modelling, joint range of 

motion, workspace, the dexterity analysis method, and future research. The upper limb 
motion modelling section focuses on the representation of the extremity as a kinematic 

chain, the assumptions, validity, and the importance of selecting an appropriate number 
of rigid and articulated elements to represent the system. The joint range of motion 

section addresses the importance of reliable range of motion statistical data and the 

characterisation of joint coupling for the development of accurate models. The workspace 
section focuses on previous work on the field and highlights the importance of 

incorporating workspace for the objective evaluation of upper limb performance and 
dexterity across 3-dimensional space. The dexterity analysis method section addresses 

the proposed novel method established in this research including a description of 
previous approaches, its application, strengths and weaknesses, and future 

improvements.  Finally, the last subsection focuses on future work given the identified 

research gaps found in the literature review conducted for this study, and in the findings 
of this research.  

8.1 Upper limb motion modelling – Kinematic chain representation 

The study of upper limb motion is complex and challenging as the execution of 
movements requires of the cooperation of many systems of the body. Creating models 

that consider all the interactions among such systems would be ideal. However, in many 

cases, simplified models can be sufficient as long as they resemble the upper limb 
movement properties according to the aim of the study. The aim of this research project 

was to study and characterise workspace with respect to dexterity, in which the extremity 
is modelled as a system at the organism structural level; a system composed of the upper 

arm, forearm, and their corresponding interconnecting joints. Therefore, the extremity 

was modelled as a kinematic chain composed of 2 rigid elements (upper arm and 
forearm) and 2 joints (shoulder and elbow) with a total of 4 degrees of freedom. For 

simplicity, the current model represented the shoulder as a ball-and-socket joint, which a 
is common assumption for the analysis of the overall motion of the upper limb [29-35]. 

However, such assumption may not be valid for studies focused on the investigation of 
shoulder complex internal interactions, which require the addition of other rigid elements 

such as the clavicle and scapula. An example is the work published in [171] which models 

the extremity as 6 rigid elements (thorax, clavicle, scapula, humerus, ulna, and radius) 
constrained by 6 anatomical joints (3 degrees of freedom for each joint) for the study of 

joint muscle and joint reaction forces. Likewise, [172] models the shoulder as 3 segments 
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(clavicle, scapula, humerus) articulating at the sternum to study the motion coupling 
relationship between glenohumeral joint centre displacement relative to the thorax. The 

factors previously mentioned, as well as, other shoulder factors would be worth exploring 

in future versions of the model, particularly the translation of the glenohumeral joint 
centre of rotation as it could have a direct impact on upper limb workspace. However, it is 

unknown if such slight changes in the 3-dimensional limb reachability would have a 
relevant impact in the execution of activities of daily living.   

Moreover, the current model excludes the hand for simplicity, as adding all the elements 

of the hand would represent including at least 19 more segments and at least another 15 
joints. The reason behind such assumption is that the hand stays mostly fixed in a grasp 

position shape when performing activities that require object translation and 
manipulation. For instance, when drinking water from a glass the hand stays mostly in the 

same position after grasping the glass, or when hammering the hand also stays in a grasp 
shape. Therefore, adding the hand and all its elements in this first version of the model 

would add much complexity that could overshadow the results and validity of the model. 

However, future versions of the model should include the hand as some specific tasks 
such as drawing, writing, and manipulating watchmaker tools do require in-hand 

manipulation. An interesting observation is that relevant in-hand and full limb object 
manipulation and dexterity seem to happen rather separately. For example, watchmakers 

may slightly move their wrists whilst manipulating their tools, however, wrist location 

keeps mostly fixed, and the fine control of the tool mostly occurs in-hand. It does not 
mean that they never occur together, nevertheless, it seems reasonable to separate the 

study of in-hand and full limb object manipulation and dexterity, at least for first model 
iterations.  However, it is relevant to evaluate the effects of the inclusion/exclusion of 

elements on upper limb workspace and dexterity. Therefore, future models should 

explore the interactions and effects of such elements.  

Another important factor is the representation of the joint centre of rotation and the 

corresponding segment lengths. The values of such parameters were obtained from 
statistical data for the simulations and were estimated from the markers attached at 

specific body landmarks for the experimental analysis. In the model, the segments of the 
upper limb consisted of the upper arm (acromion to lateral epicondyle) and the forearm 

(lateral epicondyle to middle wrist). For simplicity, given that in this experiment the 

participants performed movements with the upper limb parallel to the horizontal plane, 
the centre of rotation of the elbow joint was assumed to coincide with the lateral 

epicondyle (a common assumption), whereas the glenohumeral joint was assumed to 
concur to the acromion. Although it is common to assume the elbow joint axis of rotation 

at the epicondyles, the real glenohumeral centre of rotation does not coincide with the 
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acromion. Published research work has demonstrated that estimation of the accurate 
centre of rotation of the glenohumeral joint is not trivial and such estimations have 

therefore high variability [156-164]. [162] found that the glenohumeral joint centre from 

the angulus acromialis (AA) ranges from 40-55mm on the forward(+)/backward(-) 
direction, -20 to 10mm on the lateral(+)/medial(-) direction, and -15 to -30mm on the 

upward(+)/downward(-) direction. However,  [163] demonstrates that slight errors in the 
estimation of glenohumeral centre of rotation has little consequence on glenohumeral 

kinematics (root mean square error (RMSE) of 4.78°, 4.1°, and 2° in elevation, elevation 

plane, and axial rotation correspondingly). The effect of such an error (±5° on shoulder 
angle) for an average British male with an elbow angle of 90° would have an effect 0.7-

1.2% on the computed dexterity measure in such limb configuration, which would not 
greatly impact the results. Thus, considering the shoulder and elbow at the acromion and 

epicondyles is sufficient for this preliminary studies.   

Representing the extremity as a kinematic chain allows to explore and apply knowledge 

from other fields of science. One of the methods explored and implemented here was the 

manipulability analysis method [11, 12], which is widely used in robotics to evaluate the 
performance of robotic arms. Such method encodes the mechanical properties of the 

robotic arm, or in this case the limb, to mathematically define optimal configurations 
given the inherent kinematic and dynamic properties of the arm (further discussion on 

manipulability and how it was implemented in this study is addressed in Section 8.4). 

Likewise, the kinematic chain modelling approach allows multi-collaborative research 
across many fields of science to develop assistive devices, exoskeletons, machinery, and 

prosthetics. For instance, [173] studies robot programming via human arm motion, [132] 
develops an arm exoskeleton for neural rehabilitation, [174, 175] develop prosthetics that 

mimic the human extremity.  

However, comparative analysis and the use of published data is sometimes confusing and 
complicated as terminology and standards differ across fields of science. In an attempt to 

provide standards for the report of kinematic data in biomechanics, the international 
society of biomechanics (ISB) published some recommendations. In [128] they promoted 

the use of global and local frames of reference to describe displacement and orientation 
of body movements, and in [129, 130] they proposed the use of specific terminology, 

defined anatomical landmarks, and a method for the assignation of body and joint 

coordinate systems for the upper and lower limbs. However, the adoption of such 
recommendations commonly fails, even the ISB technical sub committees seem to differ 

from each other, as clearly stated in [130] where the hand and wrist committee stated 
that they differ from the elbow section for the assignation of frames of reference. One 

reason why many researchers still fail or oppose to adopt the standards and conventions 
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proposed by the ISB could be that the committees responsible for the consensus of such 
recommendations may have a clinical and medical background and favour commonly 

used standards from such fields, and therefore exclude or have little consideration of 

standards used in other fields of science. As can be deducted, there is a need of 
collaborative effort among fields of science to adopt common standards and conventions 

to benefit the scientific community as the lack of formalization and standards slows down 
the scientific development. 

In conclusion, representing a system as a kinematic chain is powerful as it allows to 

analyse the systems kinematics and dynamics. However, it is important to select the 
number segments and joints that represent the system according to the required 

accuracy and the aim of the study.  Likewise, joint centres of rotation and body landmark 
references should be selected appropriately. Finally, the assignment of frames of 

reference and the conventions used in the study should also be carefully selected to 
benefit the fields that collaborate the most with the research being conducted.  

8.2 Joint range of motion 

Joints are probably the most important elements of a system in terms of motion, without 

articulated elements the system would not be able to perform motion. For simplicity, the 
current upper limb kinematic model, used to characterise workspace and dexterity, 

represents the shoulder and the elbow as a ball-and-socket and hinge joint with 3 and 1 
degrees of freedom correspondingly. The limits of shoulder and elbow joint range of 

motion were assigned based on published statistical data. However, such published 

statistical data is inconsistent, difficult to objectively compare, and for some aspects such 
as joint coupling, lacking.  

First, researchers measure joint range of motion using various methods and instruments, 
different body landmarks as reference, only on one plane of motion, with segments in a 

single configuration, for specific populations (only females/males, old/young, 

healthy/non-healthy, specific ethnicity), in active or passive mode, and consider only a 
few joints or degrees of freedom  [39-43]. For instance, some researchers measure joint 

range of motion for internal-external shoulder rotation with the upper arm at 90° 
abduction and 0° adduction, whereas others measure it at 0° abduction and 0° adduction. 

Moreover, in some cases, authors do not even report sample size, sampling methods, and 
standard deviation [39-43]. Therefore, the objective comparison of the reported data is 

complicated. In this research, joint range of motion and anthropometric values were 

defined based on the published data provided by [39, 146]. Such values were used as a 
reference for the analysis of the British population. However, the ranges of motion 
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provided in such studies correspond only to males and the values may be slightly different 
from the current population due to secular variability. When possible, such values should 

be directly obtained from the individual or the population of interest to increase the 

accuracy of the results.  

The combination of degrees of freedom of the shoulder and elbow joints allows the limb 

to reach the same locations with multiple limb configurations, and to perform tasks using 
different strategies without varying its overall performance. This concept of having more 

than one possible solution for the execution of a task is known as redundancy. Upper limb 

redundancy has been actively studied with the purpose of developing rehabilitation 
devices and exoskeletons [108, 112-116]. However, the investigation of redundancy and 

its relationship to upper limb dexterity is lacking in literature. The current model 
inherently accounts for upper limb redundancy when mapping 3-dimensional space to 

determine workspace volume, as the algorithm solves the inverse kinematics of the 
system to find a feasible solution given the mechanical properties of the extremity that 

include joint range of motion. The algorithm saves the mapped location for the 

computation of workspace volume if at least one feasible solution was found. However, a 
specific and explicit analysis and quantification of redundancy was not performed in this 

study. Thus, the study of redundancy and its effect on workspace and dexterity is a 
relevant research venue that should be explored in future investigations. 

Another important factor when modelling upper limb motion is defining joint coupling, 

which refers to establishing internal joint interactions and absolute range of motion for 
each corresponding degree of freedom for every possible limb configuration. For 

instance, shoulder abduction-adduction range of motion is measured on the frontal plane 
with the limb fully extended and the palm facing forwards (0° shoulder flexion-extension). 

However, the limits of abduction-adduction range of motion are different when measured 

with 90° shoulder flexion, which is effectively being measured on the horizontal plane 
now. That may be the reason why some studies measure shoulder horizontal range of 

motion, in an attempt to provide extra information on the reachability of the upper limb 
given the lack of knowledge on shoulder joint coupling. Defining joint coupling is relevant 

for the creation of upper limb models that can accurately describe real limb behaviour. 
However, information about joint coupling and joint range of motion for all possible limb 

configurations is lacking in literature, which complicates the development of accurate 

human motion models. As joint coupling was needed in this research, shoulder range of 
motion for multiple limb configurations was approximated by self-observation. Such 

values were used to mathematically describe joint coupling by using a system of 
polynomial equations (see Section 4.3). Finally, this system of equations was used to 

approximate joint coupling for each virtual individual. The estimation of shoulder joint 
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coupling allowed the model and the algorithms to explore and quantify the upper limb 
workspace considering the mechanical properties of the limb. However, the values used 

to create the system of equations that describe the coupling are only an approximation, 

which could affect the accuracy of the results presented in this research. Therefore, 
reliable normative data is needed to establish valid models to describe the coupling of 

each joint of the body. Similar computational modelling approaches have been proposed 
in previous studies [30, 31, 176-178], which are based on the method established in [177]. 

Such works model shoulder joint coupling as a series of rotations that start with 

abduction-adduction, followed by flexion-extension, and finally rotation, in which joint 
range of motion depends on the prior joint configurations. Similar to the approach used in 

this thesis. However, [177] do not clearly explain how they derived joint limit values and 
how they validated the model. Alternative approaches use a globe coordinate system to 

represent shoulder motion as presented in [47] which describes shoulder abduction-
adduction and flexion-extension as humeral elevation and humeral plane of elevation. 

The author states that such approach facilitates visual interpretation, however, describing 

the shoulder motion using a globe coordinate system would not solve the problem of 
creating a mathematical description of joint coupling.  

In conclusion, joints are the most important elements of the body in terms of motion. 
Information regarding joint coupling is relevant for the development of realistic human 

motion models. However, such information is lacking in literature. This research 

contributes to closing such knowledge gap by proposing to measure joint range of motion 
with the limb in many (or all) configurations and then deriving a system of equations to 

define joint coupling as described in Section 4.3. Nevertheless, the values used to define 
joint coupling were only an approximation from self-observation and therefore future 

research should focus on providing normative data and creating validated joint coupling 

models.   

8.3 Upper limb workspace 

Upper limb workspace is directly related to joint range of motion, therefore, one of the 

main challenges to overcome to characterise workspace was defining a kinematic model 
and joint ranged of motion, as well as joint coupling. These aspects were discussed in 

previous subsections; thus, the following paragraphs only focus on workspace.  

In this thesis work, workspace was estimated by mapping 3-dimensional space through 

simulations using the upper limb kinematic model, anthropometric and range of motion 

statistical data, and the joint coupling approach introduced in Chapter 4. A computational 
algorithm was created to simulate upper limb movements given its mechanical properties 
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defined in the kinematic model. Only feasible solutions were considered as reachable 
locations, then the cloud of reachable points was used to define the corresponding 

workspace volume. The novel approach to compute workspace established in this 

research contributes to closing knowledge gaps on the understanding of 3-dimensional 
reachability considering joint coupling within the analysis. However, the joint coupling 

values were approximations by self-observation as such data is lacking in literature. 
Moreover, the accuracy of the estimated workspace volume obtained in this study was 

not validated. However, both the shape and measure of the estimated workspace volume 

(𝑣 = 0.566𝑚ଷ) are similar to the results obtained in [31] (𝑣 = 0.667𝑚ଷ), although the 
results cannot be directly compared as the parameter values and the methodologies are 

slightly different, and whilst [31] considers some sort of joint coupling within the analysis, 
their approach is different.  

The modelling approach established here to estimate workspace is a very powerful tool as 
it allows to evaluate 3-dimensional reachability of individuals and populations using direct 

measures or statistical data. Likewise, this type of computational models can help to 
study non accessible populations and to explore the effects of changes in the 

proportionality of the limb segments for the development of prosthetic devices. 

Workspace volumes provide visual and quantitative information regarding upper limb 3-
dimensional reachability, which can help to analyse how the workspace volume shapes 

get affected by variations in joint range of motion derived from diseases, injuries, surgery, 
and aging. It was demonstrated in Chapter 7 which investigated how joint range of 

motion is affected by implants in reverse shoulder arthroplasty and illustrates how 

workspace volumes get deformed as a result of reductions in joint range of motion. 
Therefore, this research promotes the use of workspace volume as an objective measure 

and reference to evaluate and characterise upper limb performance and dexterity.  

This research also investigated which parameters are more influential on workspace by 

conducting a sensitivity analysis (see Chapter 4). The results suggest shoulder adduction 

has the greatest impact on the upper limb 3-dimensional reachability, which compared to 
other joint limits is at least twice as influential. Unfortunately, the effect of shoulder 

adduction on upper limb performance was not found in scientific publications, and 
therefore, further analysis should be conducted to validate such finding. 

It is important to mention that the computed workspace volume corresponds to a right 
limb. However, the methods presented in this research can be easily adjusted to estimate 

workspace volume for the left limb. Although, assuming that both limbs are healthy, the 

workspace volumes corresponding to a left extremity and their shapes are expected to be 
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similar but mirrored with slight variations due to intra-individual variability derived from 
body asymmetry.  

In conclusion, workspace volumes can quantify and visually describe upper limb 3-

dimensional reachability, and more importantly, can help to identify the most affected 
regions of workspace as a result of reductions in joint range of motion. However, little is 

unknown about the effects of reductions in specific regions of workspace on the upper 
limb performance and the execution of activities of daily living. This research has 

contributed to closing this gap by providing a method for the computation of workspace 

and by promoting the use of workspace volumes as an objective measure and to map 
other factors such as healthiness and dexterity within such workspace volumes. 

Nevertheless, future work should improve and validate the methods proposed here.  

8.4 The Dexterity Analysis Method  

This research focuses on the characterisation of upper limb workspace with respect to 

dexterity. Therefore, this thesis established a novel method for the characterisation of 
dexterity by developing a kinematic model that allows mimicking upper limb motion. 

Likewise, this work provided a method to define upper limb workspace volume taking 

into consideration shoulder joint coupling. Finally, a novel method was established to 
characterise workspace with respect to dexterity, which provides quantitative and visual 

information that can help to understand how segment lengths and joint range of motion 
affect upper limb 3-dimensonal reachability and dexterity. Thus, the novel method 

presented in this research can be a powerful tool to evaluate performance, assess 

healthiness, optimise implants and prosthetic devices, design ergonomic workplaces and 
homes, develop assistive devices, and conduct pre- and post-surgery evaluations. 

Up until this research, the most common approach to evaluate upper limb dexterity is 
through time-dependent dexterity tests such as the Box and Block Test (BBT), Perdue 

Pegboard Test (PPT), Motor-free Visual Perceptual Test, Functional Dexterity Test, and 

Strength Dexterity Test [2-10]. Such tests focus on assessing the execution of tasks that 
require placing objects into their corresponding shapes/positions or moving objects from 

point a to point b, and although, such tests allow to quantify certain aspects of dexterity 
including grasp patterns and the ability to perform tasks over specific periods of time, 

they cannot distinguish movement consistency and movement variations among 
participants that have obtained similar scores. Likewise, such tests commonly evaluate 

dexterity in a single position in front of the participant at a fixed hight and cannot provide 

information on how participants perform across the full reachable 3-dimensional space. 
Another limitation of such tests is that they are time-dependent, and therefore cannot 



153 

 

determine if a person can actually perform a fine dexterous task regardless of time. For 
instance, high dexterity can be an important ability for a watchmaker, however, a 

watchmaker my not be interested in movement speed but rather on precision. Therefore, 

a time dexterity text may not be able to capture such ability as having a poor 
performance on a time-dependent test may not necessarily translate into lower dexterity, 

because such individual could be inherently slow or not being trained to conduct high 
speed tasks. Therefore, this research focused on establishing a method to contribute to 

close this knowledge gap by developing a time-independent novel method, the Dexterity 

Analysis Method (DAM), capable of characterising dexterity across the full reachable -3-
dimensional space (workspace volume).  

The dexterity analysis method starts by representing the upper limb as a kinematic chain, 
in which the rigid and articulated elements that represent the upper limb should be 

carefully selected according to the aim of the study. In this research the upper limb was 
represented as 2 rigid segments (upper arm and the forearm) interconnected through the 

shoulder (3-DOF) and elbow (1-DOF) joints. The next step is to define joint range of 

motion and joint coupling. Joint coupling is an important factor particularly for ball-and-
socket joints or joint complexes composed of multiple internal joints. However, as up 

until now joint coupling data is lacking in literature, this aspect can be approximated by 
estimating joint range of motion for different limb configurations and by using polynomial 

equations to describe it (see Section 4.3). Then, workspace volume is computed by 

mapping the 3-dimensional space to find feasible solutions given the mechanical 
properties of the extremity (see Section 4.3). Subsequently, the manipulability analysis, a 

method widely used in robotics to evaluate the dexterity of robotic arms [11, 12, 24-27], 
is conducted to quantify upper limb manipulability within its workspace volume (see 

Chapter 5). The manipulability analysis was selected as it provides relevant information 

regarding performance and dexterity by mathematical analysis of the mechanical 
properties of kinematic chains, which was therefore explored and applied to characterise 

human dexterity. This method was previously used in biomechanics for the assessment of 
a user-friendly rehabilitation system  [13], the analysis of wheelchair propulsion [14], and 

for the investigation of the upper-limb during grasping [15]. However, such studies 
directly apply the manipulability analysis method to study specific tasks and do not 

consider human factors. The Dexterity Analysis Method takes advantage of the 

information provided by the manipulability analysis, incorporates human factors included 
in a new variable called “comfort”, and provides a new measure called “dexterity 

measure”. Finally, the last step of the DAM is to map and assign the dexterity measure to 
its corresponding workspace volume location to provide quantitative and visual 

information regarding workspace and dexterity (see Section 5.7).   
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The dexterity analysis method is a powerful tool. The method is flexible, versatile, and 
scalable. It can be used to analyse real or virtual individuals or populations using direct 

measures or statistical data. Likewise, the DAM allows including and excluding segments 

and joints by modifying the kinematic model representation of the extremity, which do 
not require changes in the subsequent steps of the DAM. Moreover, the DAM allows 

adding human factors as penalisations, as well as assigning different weights to each 
factor, which permit adjustment and calibration as more precise information becomes 

available. Therefore, this research promotes the use of the dexterity analysis method for 

the characterisation of upper limb dexterity.  

Chapter 7 demonstrated the applicability of the dexterity analysis method to a real-life 

situation by studying human upper limb workspace with respect to dexterity in reverse 
shoulder arthroplasty (based on the scientific paper published by Keener et al. [26]). In 

such study, 24 implant configurations were investigated including the glenoid 
lateralisation, glenoid retroversion, humeral angle of inclination, and humeral offset 

variables. As a result, the dexterity analysis method produced workspace volumes and 

high dexterity regions that allowed to determine the most optimal implant configuration. 
Moreover, a virtual healthy individual was compared to an individual with an optimal 

implant. The results indicate that workspace volumes and high dexterity regions for 
healthy individuals are expected to be around 32% and 27% larger than those for an 

individual with optimal implant. It was also found that larger workspace volumes do not 

necessarily translate into greater high dexterity regions. This finding is quite interesting as 
at the beginning of this research, workspace volume and high dexterity regions were 

believed to be proportional to each other. Therefore, it would be exciting to investigate 
why high dexterity regions can be in some cases larger for a smaller workspace volume 

compared to those for larger workspace volumes.  

Although the dexterity analysis method is promising, it is not perfect and there are still 
areas for improvement. First of all, an experimental set up was designed to analyse the 

validity of the dexterity analysis method. The experiments consisted of executing circular 
trajectories on a test board specifically designed to study upper limb motion at 9 

positions on the horizontal plane. Movements were recorded using a marker-based 
motion capture system. The participants were also asked to rank the 9 positions 

according to comfort. The movements were analysed following the dexterity analysis 

method to compute the dexterity measure for each location on the board. As a result, 
three measures were obtained: prediction (dexterity measure), performance (deviation 

from the task), and perception (relative comfort ranked by participants). Both 
performance and perception were hypothesised to be correlated to prediction or 

dexterity; however, the preliminary results were not conclusive, and therefore, the 
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dexterity analysis method could not be validated. Nonetheless, some patterns can be 
observed across participants. For instance, participants indicated that they perceived 

higher comfort for the positions “E” and “F” which are immediately in front and closer to 

the shoulder, whereas low comfort was perceived for positions further away and on the 
opposite side of the limb (positions “A”, “B”, “C”, “D”, and “G”). Likewise, both prediction 

and performance across participants seems to be higher for positions “D” and “E”, which 
indicate some sort of correlation. However, these are only early indications but not a 

strong case to discard the potential of the methods proposed in this work. Moreover, 

discrepancies could be derived from assumptions and the model parameters that still 
need calibration. Additionally, ranking locations according to perceived comfort was 

confusing to participants, one reason of this maybe that we are not naturally trained to 
rank how we perceive things. On the other hand, performance is strongly dependent on 

participants effort to execute the movements as precise as possible, participants could be 
fatigued, bored, or not willing to execute the task as requested. Other factors that could 

have affected accuracy are artifacts derived from the experimental design, an example 

was preventing participants to rotate their torso or to keep the upper limb completely 
parallel to the horizontal plane, which was particularly challenging. Finally, the 

experimental sample size is not sufficiently large to rely on the conducted statistical 
analysis.  

Another important aspect is the oversimplification of the upper limb. The current model 

represents the upper limb with 2 segments (upper arm and forearm) interconnected 
through the shoulder and elbow with 3- and 1-DOFs correspondingly. However, the 

extremity is composed of 32 bones that connect to the trunk, and of more than 20 joints. 
For instance, the shoulder is represented here as a ball-and-socket joint, but in reality, it 

is composed of the scapula, clavicle and the head of the humerus, and each of these 

elements interconnect at the sternum, acromion, thorax, and glenoid. Hence, describing 
the internal interactions of the shoulder is challenging. Moreover, the analysis conducted 

in this research only focused on the right upper extremity, and therefore, the results are 
only valid for the right extremity. This concept referring to the use of the left or right 

extremity is called “handedness”, which is estimated to have a 1:10 ratio of left- versus 
right-handers worldwide. Handedness has been studied in previous research studies such 

as the work published by [179] which found that sinistral subjects had significantly smaller 

mean discrepancy scores in performance between their hands and much greater variance 
in performance than dextral subjects, [180] studied innate dexterity for endoscopic 

manipulations in medical students and found that right-handed males exhibited a greater 
level of ambidexterity, more-efficient task performance as measured by execution time, 

but no significant difference in terms of precision control and fine movements between 
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the three groups, and [181] studied handedness influence in bilateral shoulder range of 
motion in nonathlete adult women and found a statistically significance difference in 

external rotation (mean = 4.74°) and internal rotation (mean = 3.52°) between dominant 

and non-dominant shoulders. Therefore, as intra-variability is inherent in humans, left 
and right limbs are expected to have different values for segment lengths and joint range 

of motion, and therefore, workspace volumes and dexterity measures for a left extremity 
are expected to have variations, but to be generally similar in shapes and values but 

mirrored.  Although the current model was developed for a right limb, the model can be 

easily adjusted to account for the variations derived from handedness.  

As mentioned in the previous paragraphs, the current model is a simplified 

representation of the upper extremity and do not account for some of the factors already 
described. However, for the preliminary analysis produced in this research work, such 

simplification was necessary to reduce the variables of the model with the purpose of 
exploring and establishing a novel method for the characterisation of dexterity, which is 

by itself inherently challenging. Thus, the current model allowed to explore new methods 

such as the manipulability analysis method and facilitated experimental comparison 
between the results obtained from simulations and experiments. Nonetheless, future 

iterations of the model should include other elements and factors to improve the 
accuracy of the model and to investigate the influence of the excluded elements and 

factors in the overall workspace and dexterity.   

In conclusion, the dexterity analysis method is a powerful tool to characterise upper limb 
workspace with respect to dexterity, which can help to evaluate performance, assess 

healthiness, optimise implants and prosthetic devices, design ergonomic workplaces and 
homes, develop assistive devices, and conduct pre- and post-surgery evaluations. The 

novel method proposed here promotes the use of workspace as an objective reference to 

map functionality, performance, healthiness, and dexterity. Likewise, this research 
promotes the use of the dexterity analysis method to characterise upper limb workspace 

with respect to dexterity with a time-independent approach. Therefore, this novel 
method directly contributes to closing the knowledge gaps on the understanding and 

quantification of motion, workspace, and dexterity. However, the method still needs to 
be fully validated as the experimental results obtained in this research with such purpose 

were not conclusive.  

8.5 Future research  

Knowledge gaps were identified whilst conducting this research work. Such gaps 
complicate the development of realistic human motion models and affect the accuracy of 
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the analysis in the field as some data is lacking in literature or require validation. The 
most relevant gaps regarding human motion are listed and described here as follows:  

i. Establishment of standard methods for the report of results from human motion 

investigations. The International Society of Biomechanics [128-130] has attempted 
to implement a standard for the report of human kinematics; however, 

researchers in the field still report the results from human motion investigations 
using different standards and conventions. As discussed in Section 8.1, one reason 

for not following the recommendations published by the ISB may be that the 

standards do not agree with other conventions of fields that collaborate with 
biomechanics and human motion researchers.  Independently of the reason 

behind the reluctancy to adopt the recommendations proposed by the ISB, clear 
standards and conventions are needed for the benefit of the scientific community 

as the lack of such standards slow down the progress in the field.   

ii. Acquisition and report of reliable human normative data for human modelling. 

May studies have published anthropometric and joint range of motion data [39-

43]; however, in such studies, the authors use various methods, instruments, 
reference points, study specific populations, and for range of motion, in many 

cases, only a few joints or degrees of freedom are reported. Nonetheless, 
complete, reliable, and accurate data are vital for the development of realistic 

human models for the study of motion. Although research to provide such kind of 

data may be boring or tedious, this information is still needed.  

iii. Investigation and mathematical definition of human joint coupling. This aspect 

was probably one of the most relevant knowledge gaps to this research work 
because such information was vital to develop a realistic model to study and 

characterise upper limb 3-dimensional space and to map its corresponding 

dexterity within the workspace volume. However, information related to joint 
coupling is lacking in literature. Without such data, its difficult to establish the 

mathematical description and rules that joints must obey, and therefore, the 
exclusion of joint coupling results in unrealistic 3-dimensional movements.  

iv. Investigation and report of typical workspace volumes for healthy populations. 
Workspace volumes are not commonly used in biomechanics and biomedical 

science to assess the upper extremity; however, workspace volumes are a 

powerful tool as they allow to characterise 3-dimensional reachability, and 
therefore, can be potentially used to map other measures related to healthiness, 

functionality, and dexterity, within their corresponding volume. However, 
information regarding workspace volume (3-dimensional reachability) for healthy 
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subjects was not found in literature. Nonetheless, the provision of such data 
would be very beneficial as it would serve as a reference for clinicians, ergonomic 

designers, assistive device developers, and for human motion researchers in 

general.    

v. Investigation and quantification of human factors that affect dexterity including 

human comfort. Information regarding human comfort across the upper limb 
workspace is lacking in literature. Therefore, the dexterity analysis method 

established in this research designed a variable called comfort, which considers 

the configuration of the limb with respect to joint range of motion, and the forces 
action on the limb due to the segments self-weight. However, this variable is only 

an estimation of comfort given the lack of data on this factor. Therefore, accurate 
and validated data regarding comfort and other human factors would allow 

creating more realistic human modes based. Likewise, it would be interesting to 
investigate if such factors are individual or universal. 

vi. Investigation and quantification of minimum, maximum, and typical joint angular 

velocities, accelerations, forces and torques for each degree of freedom of the 
upper limb individually. Such factors have been studied in previous investigations 

[14, 50, 51, 54, 131, 182, 183]. However, they only focus on the performance of 
specific tasks, movement synergies, and on the resultant values produced by the 

combination of all degrees of freedom. However, in order to create realistic 

models, such variables must be measured independently for every degree of 
freedom. For instance, the overall resultant shoulder velocity cannot be used as 

the velocity limit for the 3 degrees of freedom of the glenoid joint as the individual 
speeds that can be produced by each degree of freedom are expected to be 

different and dependent on movement direction. Therefore, future investigations 

should focus on the investigation and provision of such normative data.  

vii. Investigation of scapulothoracic rhythm. The understanding and description of this 

aspect of the shoulder complex is challenging as its internal interactions depend 
on the combination of movements of the clavicle, scapula, and humerus. The 

understanding of scapulothoracic rhythm is limited and its mathematical 
description is lacking in literature. However, more complete and detailed models 

aiming to incorporate all segments and aspects of the upper extremity require 

reliable data and a correct mathematical description of scapulothoracic rhythm.  
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9 CONCLUSION 

This chapter outlines the final conclusions, summarises the contributions of this research 

work to close knowledge gaps regarding human dexterity, and indicates venues for future 
work. The aim of this study was to establish a novel method for the characterisation of 

upper limb workspace with respect to dexterity. Therefore, after conducting a 

comprehensive literature review, defining a kinematic model for the analysis of upper 
limb motion, and investigating the factors that affect upper limb performance, a novel 

method called the “Dexterity Analysis Method” was successfully established. The 
Dexterity Analysis Method consists of 5 main steps: creating a kinematic model 

representation of the extremity, defining joint range of motion and joint coupling, 

computing workspace volume, obtaining the manipulability measure, and computing the 
dexterity measure to map it across workspace volume and to define high dexterity 

regions. The dexterity analysis method can help to optimise task location within the 
workspace volume, to optimise implant position based on workspace maximisation and 

high dexterity regions, to visually and quantifiably define how reductions in range of 

motion regions would affect workspace and dexterity volumes, to optimise sports 
performance, to assess and compare healthy and non-healthy individuals in terms of 

workspace and dexterity, to optimise workstation and home design, and to improve 
prosthetics development. 

The main conclusions from this study are summarised as follows: 

i. Human dexterity is a complex phenomenon associated with physiological and 

cognitive factors that affect the execution of precise movements. Capturing all 

aspects of dexterity in human models is quite challenging. Therefore, the inclusion 
and exclusion of dexterity factors in human modelling should be carefully 

considered depending on the scope of the study.  

ii. Published normative data for joint range of motion is confusing, unclear, and 

difficult to compare. Moreover, not all authors report statistical information such 

as sample size, sampling methods and standard deviation. Furthermore, joint 
coupling and the corresponding joint ranges of motion for all possible limb 

configurations is lacking in literature. The lack of such information is quite 
problematic as it is needed for the creation of human models with realistic limb 

capabilities. Therefore, future work should focus on the development of standard 

methods for the assessment and report of human normative, as well as on 
conducting experimental analysis to provide reliable human normative data that 

can be used for human modelling. Consequently, open access research and data 
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are needed for the advancement in science and to close research gaps for the 
investigation of human motion.   

iii. The Dexterity Analysis Method offers numerical and visual description of 

workspace volumes and dexterity regions that can be used for the 
characterisation of upper limb functionality and dexterity. Likewise, this visual 

information provided by the Dexterity Analysis Method help to comprehend how 
workspace volumes and dexterity regions deform and get affected by reductions 

in joint range of motion (and potentially by other human factors), and to identify 

the most affected regions of workspace and dexterity within their corresponding 
volumes. The dexterity analysis method is flexible, versatile, and scalable, that can 

be used to analyse real or virtual individuals or populations using direct measures 
or statistical data. Likewise, the dexterity analysis method can be easily adapted to 

include or exclude segments and joints, as well as to add, remove, and calibrate 
the model human factors as more precise information becomes available. 

Therefore, this research promotes the use of the dexterity analysis method for the 

characterisation of upper limb dexterity. Thus, the dexterity analysis method is a 
powerful tool to characterise upper limb workspace with respect to dexterity, 

which can help to evaluate performance, assess healthiness, optimise implants 
and prosthetic devices, design ergonomic workplaces and homes, develop 

assistive devices, and conduct pre- and post-surgery evaluations. However, the 

current model is based on a simplified upper limb representation and the method 
still needs to be fully validated as the experimental results obtained in this 

research were not conclusive.  

iv. Upper limb reachability is commonly described by measuring joint range of 

motion on a single plane and with the limb segments in a single configuration 

(normally in neutral configuration). However, joint range of motion cannot fully 
portray 3-dimensional upper limb reachability. Therefore, this work proposes the 

use of workspace volumes, as an augmented method for the assessment of upper 
limb 3-dimensional reachability and as an objective reference to map other factors 

such as healthiness, performance, and dexterity, within such volumes.  

v. This work introduced a “comfort” variable, which include human factors linked to 

dexterity. Such variable is composed of 3 comfort aspects associated with joint 

configuration with respect to the corresponding joint ROM, torques perceived at 
the shoulder due to limb self-weight, and work needed to rise the limb. The 

current comfort variable is composed of 3 aspects related to joint range of motion 
and limb self-weight; however, the variable can be easily modified to include or 
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exclude biomechanical and cognitive factors that may affect comfort and 
dexterity, and to adjust factor weights for each aspect of comfort as required. It is 

important to mention that the current comfort variable is only an estimation as 

information regarding comfort across workspace is lacking in literature. Therefore, 
further experimental analysis is needed to understand and quantify this, and other 

human factors associated with dexterity.  

vi. According to the results, workspace volumes for healthy populations are expected 

to be significantly larger than those for non-healthy populations (individuals with 

injuries, surgeries, or diseases). However, it was found that larger workspace 
volumes do not necessarily translate into greater high dexterity regions, which 

indicate that people with similar workspace volumes do not necessarily have 
comparable performance. On the contrary, it is possible that people with smaller 

workspace volumes can have even greater dexterity than those with larger 
workspace volumes.  

vii. The effect of reductions in range of motion on the overall upper limb reachability 

depends on the extreme at which such reductions occur. According to the results, 
a decrease of 15° in elbow extension reduces 2% of upper limb reach envelope 

area (2-dimensional reachability), whereas a decrease of 15° in elbow flexion 
reduces 10.8% of upper limb reach envelope area. Therefore, surgeons should be 

cautious when deciding which extreme of the range of motion should be reduced 

in cases of surgery, reconstruction, and implant position optimisation. As 
demonstrated in Chapter 7, the proposed Dexterity Analysis Method can help to 

assess the impacts of reductions in joint range of motion and therefore, to provide 
advice to surgeons before clinical intervention.  

In conclusion, the development of human models that can accurately describe dexterity is 

extremely challenging. Therefore, this research work has established a novel method 
(Dexterity Analysis Method) for the characterisation of upper limb workspace with 

respect to dexterity. Such method is a direct contribution to closing the knowledge gaps 
on human motion and dexterity. Finally, although the Dexterity Analysis Method is quite 

promising, further experimental analysis is needed to fully validate this novel method as 
the results conducted here with such purpose were not conclusive. 
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Forthcoming Publications 

Serratos, U., Barthorpe, R. and Rowson, J., " Upper limb manipulability analysis, performance and 

perception assessment for model validation" in 26th Congress of the European Society of 

Biomechanics, Milan, Italy (submitted for podium presentation, Congress postponed to 2021 due to 

coronavirus pandemic) 

Serratos, U., Russell, L., Barthorpe, R. and Rowson, J., " Maximum Joint Angular Velocities of the 

Upper Limb - A Contribution to Human Normative Data", potential journal: Journal of Biomechanics, 

status: draft (experiments and analysis completed). 
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APPENDIX C 

Supplementary material available on request 

1. Documents 

1.1. Experiment documentation 

1.1.1. Ethics approval letter 

1.1.2. Ethics application form 

1.1.3. Participant consent form 

1.1.4. Participant information sheet 

1.1.5. Motion Capture Lab risk assessment 

1.1.6. Vicon risk assessment 

1.2. Publications and posters 

1.2.1. Conference paper for the European Society of Biomechanics 2019 Congress 

1.2.2. Poster for the Dynamics Research Group 2018 Showcase 

1.2.3. Poster for the INSIGNEO (Institute for in silico Medicine) 2019 Showcase 

1.2.4. Poster for the INSIGNEO (Institute for in silico Medicine) 2019 Summer Research 
Programme 

2. Experiment row data 

3. MATLAB code 

3.1. Code to compute reach envelope area (2-D reachability) with respect to dexterity 

3.2. Code to compute workspace volume (3-D reachability) with respect to dexterity  

3.3. Experimental analysis – computation of Prediction, Performance, and Perception 

 

Access to supplementary materials can be requested on the following link: 

https://drive.google.com/drive/u/1/folders/0AJiZXncbdmpDUk9PVA 

 

 


