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Abstract

Controlling the behaviour of a crowd simulation typically involves tuning of a system’s parameters
through trial and error, a time-consuming process relying on knowledge of a potentially complex
parameter set. Numerous graphical control approaches have been proposed to allow the user
to interact with a simulation intuitively. This research investigates the use of a real-time
sketch-based approach for crowd simulation control. This is done by modifying the environment
of the simulation. Users can create entrances/exits, barriers and flow lines in real-time on top
of an environment. This process requires a data structure to represent the environment and
navigate the crowd through it. Two alternatives are presented: grid and navigation mesh. A
detailed comparison shows that the navigation mesh is a more scalable approach since it uses less
memory, has a similar pathfinding time, and is a better structure to represent the environment
than the grid.

The thesis also presents extensions to the sketch-based approach in the form of novel control
tools, including storyboards to define the journey of the crowd, a timeline interface to simulate
events through the day, and a sketch-based group storyboard to link behaviours and paths to be
followed by a group. These tools are used to create two complex scenarios to exemplify possible
applications of the sketch-based approach. The work on timelines also raises a new problem
for an approach that dynamically modifies an environment in real-time which is 'when does
the crowd know about the change?’ Some initial solutions to how this should be handled are
presented.

The sketch-based system is evaluated by comparing it to a validated commercial system
called MassMotion. The comparison takes into account the plausibility of the simulation and
usability of the user interface. A user study is carried out to evaluate the graphical user interface
of both systems. Formal evaluation methods are used to make the comparison: the benchmark
suite ‘steersuite’, an adapted version of the Keystroke-Level Model (KLM) and the System
Usability Scale (SUS). The results show that the sketch-based approach is faster and easier
to use than MassMotion, but with fewer control options. An implementation of the sketching
interface in a Virtual Reality environment is also considered. However, when compared to the
desktop interface using a proposed adaptation to KLM for VR, the results show that sketching
in a VR environment is slower and less accurate than the desktop version.
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Chapter 1

Introduction

1.1 Background

Pedestrian simulations have numerous applications, including films, video games, training, urban
planning, and emergency evacuation simulations. With increases in computing power, bigger
crowd sizes and more complex pedestrian behaviour are possible. However, such simulations
include many parameters to control aspects such as individual and collective pedestrian behaviour
and constraints in the environment, such as barriers to control pedestrian flow. To tune all these
parameters, complex interfaces are used which require technical knowledge to understand.

An alternative approach is to use graphical interaction to facilitate crowd control and to
enable non-expert users to modify pedestrian behaviour. For instance, a user could select a
group of pedestrians using a mouse or sketch a curve in the environment to indicate the direction
of movement for pedestrians. Crowd movement can then be controlled directly by interacting
with the pedestrians or indirectly by modifying the environment rather than by altering lots of
parameters. Examples of non-expert users include police planning events involving large crowds;
and building designers defining the best layout of a venue to improve the crowd flow.

Sketching to control crowd simulations has not been extensively explored in the research
literature. Previous work includes sketching the spawning location of pedestrians and sketching
a path to be followed by them [129], sketching flow lines to guide the movement of the crowd
[73, 132], sketching behaviour areas in the environment [66], and using sketching to create and
move group formations [46, 54, 4].

However, previous work has not used sketching to modify the environment. Jin et al. [73],
Patil et al. [132] updated the underlying vector field to guide the crowd, but it is not possible
to change the environment. Hughes et al. [66] used sketching to create the navigation mesh
representing the environment, but it cannot be updated to add more elements after its creation.
Group formation and movement work does not use a data structure since the environment is
not represented. This limits the crowd to follow the sketched path without interacting with the
environment. With regards supporting data structures, Patil et al’s work [132] relies on a grid
to guide the crowd, whereas Hughes et al’s work [66] depends on a navigation mesh. There is no
research comparing these two data structures. Also, sketching has not been extended to create
more complex features. The idea of creating a sketch-based storyboard to define the journey



CHAPTER 1. INTRODUCTION 2

of the crowd was mentioned as future work in [66], however, no further work was found. This
thesis will address each of these issues.

1.2 Aims

The research aims to investigate the use of sketching to graphically control crowd simulations.
This method involves directly drawing in the environment to alter pedestrian behaviour and to
modify the environment itself. It is essential to distinguish between computer-based sketching,
where users can freely draw any shape or curve, and rubber-banding, where users stretch lines
between points fixed by mouse clicks. This research focuses on sketching.

A data structure is required to represent the environment and support the crowd simulation.
The sketch-based approach needs to update this data structure to modify the simulation
environment. The two most commonly-used data structures are considered in this thesis: grid
and navigation mesh. These structures are compared to find the best approach to support the
simulation and the sketching approach.

Current work on sketch-based crowd control can be extended to simulate more aspects of
a simulation. An example of these aspects may be the itinerary followed by the pedestrians
and changes in the environment over time. Chapter 2 discusses in detail the limitations of
the graphical crowd control approaches. This thesis proposes several ideas to overcome these
limitations. The ideas include sketch areas and behaviours to give the user more control; create
a sketch-based storyboard to define the journey followed by the pedestrians; select groups by
sketching a shape around them; and add simulation time to transition between sketch constraints
based on time. These proposed novel ideas and current work extensions are fully described in
Chapter 3 and 4.

Previous sketch-based crowd control interfaces have been compared to conventional interfaces
[129, 4]. However, the evaluation was not made following formal system evaluation approaches.
The sketch-based proposed in this research is compared against the validated commercial system
called MassMotion. The comparison is made in terms of plausibility of the simulation and
usability of the user interface. Formal human-computer interaction (HCI) evaluation techniques
are used to assess these aspects.

The thesis addresses the following research questions:

1. Is sketching an intuitive control approach? Can sketching be used to reduce the time for
tuning a crowd simulation? What are the benefits of a dynamic update process rather than
an approach that involves stopping the simulation, altering the parameters and starting
the simulation again?

2. What components of a simulation control system need to be altered to better support a
sketch-based approach? For example, which underlying scene representation best supports
a sketch-based approach?

3. Is sketching better suited to creation rather than real-time control? For example, how does
dynamically changing a system affect the behaviour of agents, and when do they become
aware of any changes to their environment?
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4. Is it feasible to implement sketching in a VR environment? How does it compare to the
desktop interface?

1.3 Contributions
The novel contributions of the research are as follows:

e A navigation approach to support sketching for controlling crowd simulations. Two
underlying data structure are explored: grid and navigation mesh (Chapter 3). This
work answers the second research question and produced two publications [43] and [44].

e Storyboarding, events and group control (Chapter 4). These features offer more control
flexibility by mixing sketching, clicking and more complex interfaces. This work answers
the second question and was published as part of work in [44].

e Dynamic environment knowledge (Chapter 4). A problem that arises from dynamically
changing the environment is identified, and some initial solutions are proposed. This work
answers the third research question and produced a paper that has been accepted for the
journal JVRB (Journal of Virtual Reality and Broadcasting)®.

e Comparison of the sketching approach with a commercial system (Chapter 5). This
work evaluates sketching control by comparing it with the validated crowd simulation
software MassMotion through a user study. Traditional human-computer interaction (HCI)
techniques, such as the Keystroke Level Model (KLM) [20] and System Usability Scale
(SUS) [18] are used to analyse the results of the study. This work answers the first
research question.

e VR implementation (Chapter 6). The sketching approach is implemented in VR to explore
its advantages and disadvantages compared to the desktop interface. An adapted KLM
version is proposed to evaluate the VR interface. This work answers research question
four.

1.4 Thesis Structure

Chapter 2: Literature Review

This chapter provides an overview of related work on crowd simulations, agent-based modelling
and data structures used to represent virtual environments. Graphical crowd simulation control
approaches are discussed and classified depending on how users interact with the simulation.
Moreover, commercial systems are analysed emphasising the complex interfaces needed to set up
the simulation. Lastly, multiple methods to evaluate the realism of simulations and the usability
of graphical user interfaces are covered.

!Gonzalez, L. R. M. and Maddock, S, A Sketch-based Interface for Real-time Control of Crowd Simulations
that Use Navigation Meshes, Journal of Virtual Reality and Broadcasting JVRB (accepted)
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Chapter 3: Sketch-based control and navigation methods

This chapter describes the sketching work implementation, the overview of the system and the
use of a grid and navmesh as navigation methods. A comparison of these two approaches,
considering environment representation, memory usage and path-finding time, is provided at
the end of the chapter.

Chapter 4: Extending the sketch-based approach

This chapter explores additional and more complicated control options that not only involve
sketching. Storyboards define the crowd of the journey by clicking the areas of the environment
to be visited. A timeline interface allows the creation of events during a day, such as creating
barriers and closing an exit. The group control feature directly modifies the agent parameters
instead of the environment. Users select a group of agents and create a sketch-based storyboard
by sketching and linking paths and behaviours. A couple of complex scenarios exemplify possible
applications of the sketching approach. Additionally, a new problem arising from the dynamic
interaction with simulation is identified.

Chapter 5: Comparing the sketching approach with MassMotion

This chapter evaluates the sketching approach by comparing it with the validated commercial
system MassMotion. The comparison is made in terms of plausibility of the simulation and the
usability of the user interface. Multiple tools such as ‘steersuite’ [164], KLM [20] and SUS [18]
are employed to carry out the evaluation.

Chapter 6: Virtual Reality

This chapter explains the VR interface and the special guidelines followed to implement it.
The advantages and disadvantages of sketching in a VR environment are discussed, and both
interfaces are compared using an adapted KLM version and with a simple sketching test. Last,
other input devices are briefly explored to assess their use for sketching, control the camera and
interact with the graphical user interface.

Chapter 7: Conclusions

This chapter presents the main conclusions of the research and identifies possible areas of future
work.



Chapter 2

Literature review

This chapter reviews the related work on crowd simulations and graphical control approaches.
Section 2.1 covers the existing agent-based modelling techniques and levels of control to modify
the agent behaviour. Additionally, the section studies the methods used to represent virtual
environments, focusing on navigation meshes. This section sets the context of the main
components of crowd simulations, agent model and environment, which can be modified to
control the behaviour of the crowd. Understanding how these components work is crucial to
create an intuitive graphical control approach which is the main focus of this work. Section
2.2 analyses commercial systems and their limitations regarding user interface and simulation
interaction. Section 2.3 discusses graphical crowd simulation control solutions and classifies
them according to the way users interact with the simulation. This categorisation provides the
context to define where the approach proposed in this research fits. Finally, Section 2.4 presents
methods to evaluate the realism of simulation models and the effectiveness and usability of
graphical user interfaces. Some of these approaches are used in Chapter 5 to evaluate the agent
model and the sketching interface proposed in this thesis.

2.1 Crowd simulation

A crowd simulation could be defined as the computational model of pedestrian motion and
dynamics within a virtual environment [87]. This crowd movement and pedestrian behaviour
can be very diverse and depends on several factors. However, some patterns can be identified,
such as people avoiding each other and individuals walking towards a destination following the
optimal path. Crowd simulations try to model these characteristics realistically.

Several techniques have been used to create such simulations. Martinez-Gil et al. [112]
categorised them based on the pedestrian dynamics modelling into five groups: Mechanics-based,
Cellular automata, Stochastic, Agency and Data-driven. The mechanics category uses
mathematical equations and physics to describe the movement of the pedestrians; social forces
and continuum mechanics are included in this group. Cellular automata models discretise the
environment to define the crowd motion with finite automata. In the stochastic model, the
calculation of crowd dynamics involves arbitrary decisions and stochastic processes. Agent-based
models represent pedestrians with agents capable of making autonomous decisions. The
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data-driven category uses real crowd data to model the behaviour of pedestrians.

This categorisation by Martinez-Gil et al. [112] does not consider hybrid models - a typical
example is an agent-based model using social forces to calculate agent movement.

Yang et al [190] provides a comprehensive review of existing crowd modelling techniques
classified into macroscopic, microscopic and mesoscopic crowd models. The macroscopic
approach focuses on global behaviours of the crowd as a whole; pedestrians cannot be identified,
and the movement is described by flows and densities [154]. Microscopic models control the
motion and interaction of pedestrians at an individual level. Mesoscopic models are simulations
taking into account interaction between human and computer, pedestrian dynamics and social
factors.

In contrast, Pelechano et al. [136] and Duives et al. [32] classified pedestrians models into
either macroscopic and microscopic. Hughes [64, 65] proposed an example of a macroscopic
model, where the flow of pedestrians is modelled with a continuum theory and the crowd is
defined by two attributes: density and velocity. individual pedestrian behaviour is not controlled
in this method. Treuille et al. [172] extended this continuum theory by presenting a model to
integrate local avoidance and global navigation. However, this approach is not suitable for
complex environments in which congestion may occur, causing undesired behaviour. Barnett
et al. [12] suggested a solution for this issue by getting the capacity of each path and adjusting
the pedestrian trajectories to alternative routes. Similarly, Jiang et al. [72] handled complex
environments creating a hierarchical structure formed by blocks to represent different areas
of them. Each block is discretised into a grid and linked to determine the crowd movement.
Lastly, Narain et al. [121] developed a system to handle the behaviour of highly populated
crowds, proposing a novel inter-agent avoidance algorithm that does not depend on the number
of agents. A disadvantage of macroscopic models is that they cannot simulate local interactions.

This thesis focuses on a microscopic approach. The next section overviews the literature on
agent-based modelling, which is a common microscopic approach.

2.1.1 Agent-based modelling

Agent-based modelling is the most used approach to simulate virtual crowds. Each agent
calculates its movement based on a set of rules, behaviours or forces. This individual behaviour
is computationally expensive since the resulting motion of every agent has to be calculated.
Consequently, a trade-off between the complexity of the agent model and crowd size exists [9].
Agent-based modelling offers the advantage of emergent global behaviours such as lane formation
and queuing.

Reynolds’ pioneering work [144] simulated a flock of birds by controlling the agents with a
set of rules. Three rules determine the movement of each agent or boid: Collision avoidance,
which prevents flock members from colliding with each other; Velocity matching, where every
agent tries to align with the speed and orientation of neighbours; Flock centring, where each
boid moves towards the centre of the group. Additional rules or steering behaviours, such as
seek, flee and pursuit, were defined in subsequent work by Reynolds [145, 146]. Rodrigues
et al. [150] used a space colonisation algorithm to generate steering behaviours such as pursue,
escape, surround and group formation. This method leaves markers in walkable areas and adds
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paths connecting them. A tree path is formed from the agent position to its destination. The
individual agent movement produces complex global behaviours that are complicated to predict
and control. Anderson et al. [5] controlled the flock of Reynold’s work by adding spatial and
shape constraints. Similarly, Ho et al. [61] created a flexible flocking model that adjusts the
shape of the formation depending on the environment and the path followed.

Helbing proposed a different approach to model agent dynamics using ‘social forces’ [56, 57,
58] to determine the movement of the agents. Three main effects result from the interaction of
pedestrians with the environment and with each other: goal, collision avoidance and attraction.
This approach was extended and applied to simulate emergencies [59, 16]. Lakoba et al. [97]
improved Helbing’s work avoiding agent overlapping and obtaining better results after modifying
the parameters that caused counter-intuitive results in small crowd simulations.

Sociological aspects have been considered when modelling pedestrian behaviour [120, 130,
194]. Musse and Thalmann [120] divided agents into groups with a set of attributes such as
interests, emotional status and relation with other groups. These parameters, combined with
a set of rules, determine if an agent stays in its group or joins a new one. Pan et al. [130]
simulated human and social behaviours during evacuations. The agent model is divided into
three categories: locomotion, steering and social. Locomotion behaviours are simple actions
such as walk, run, stop and turn. Steering behaviours — seek, follow, collision avoidance
— are used to navigate throughout the environment in conjunction with locomotion. Social
responses, competitive, queuing and herding behaviour, emerge from the interactions of groups.
Yu and Terzopoulos [194] presented an agent model to create advanced behavioural animations
with social interactions between pedestrians. A decision-making network combines probability,
decision and graph theories to select the action to the corresponding situation. The behaviours
implemented by the system include emergency response, acquaintance, partnering and collision
avoidance.

Similarly, several agent-based models have taken into account psychological factors. Ulicny
and Thalmann [174, 175] created a model useful for VR training in emergencies. Agents
select their behaviour based on a set of internal psychological and physiological factors such
as fear, mobility and injuries. Pelechano et al. [135] presented a solution to simulate agents
in high-density crowds based on situations and psychological and physiological traits. These
attributes include impatience, panic and energy level. Rao et al. [143] suggested an approach
to control the local movement of agents in a real-time environment. The local motion model
includes psychological traits such as panic, impatience, memory and orientation. Agents are
driven by forces: repulsive to avoid static and dynamic obstacles (including agents); and steering
to guide pedestrians to the destination.

Li et al. [108] introduced a model in which agents decide their personality, needs, and
interests. These psychological factors are defined using Maslow’s Hierarchy of Needs and the
OCEAN model [184]. Durupinar et al. [33] extended the system presented in [135] by integrating
the OCEAN personality model. Each personality trait is mapped to behaviour parameters such
as leadership, communication, panic and personal space, among others.

Pelechano et al. [134] incorporated roles within pedestrian groups and communication
between agents. Additionally, multiple parameters such as arousal, fatigue, and thirst are



CHAPTER 2. LITERATURE REVIEW 8

considered to calculate the behaviour of a pedestrian. This work is not the only model dividing
the pedestrians into groups. Musse et al. [118] and Musse and Thalmann [117] suggested a
hierarchical structure consisting of a crowd, groups and agents. The behaviour of the agents is
controlled at group level in three possible ways: externally guided, scripted and autonomous by
following rules. Lu et al. [110] followed the same structure as [118] but used a finite state machine
and a decision tree to decide the actions of the groups. A distinct group model was introduced
by Li et al. [107]. Each crowd consists of a leader and followers with flocking behaviour. Qiu and
Hu [142] created an agent group model taking into account intra-group structure and inter-group
relationships to model a crowd simulation.

Particular types of agents have been suggested. Yeh et al. [191] introduced the concept of
‘composite agents’. This model consists of a regular agent and proxy agents to influence other
agents. This interaction enables the modelling of complex behaviours emerging from people’s
response to psychological and social factors - for example, aggression, social priority, authority,
protection and guidance. Schuerman et al. [156] created a model called ‘Situation agents’. These
agents possess the ability to influence the movement and behaviour of nearby pedestrians by
modifying their parameters. These agents are useful in deadlocks and group formations. Stvel
et al. [166] presented ‘Torso crowds’, agents represented by a capsule to emulate the human
body shape (from the top). These pedestrians rotate their body while moving through crowds.

A different approach to model the behaviour of the agents is to use data from real-world
crowds. Lerner et al. [105] manually extracted agent trajectories from a video of real pedestrians.
A database is created with the trajectories. Each agent is assigned a trajectory querying the
database trying to find a similar example based on the surroundings. Lee et al. [102] created an
agent model based on two-dimensional trajectories tracked from aerial view video of a human
crowd. The model determines the motion of the agents taking into account the environment and
nearby pedestrians. Kim et al. [95] presented an algorithm to model crowd simulations combining
real-world data and existing agent models. This method extracts pedestrian dynamics from real
pedestrian videos. These dynamics consist of the start position, preferred velocity and the
collision avoidance rule. Then agent models such as social forces can be combined with the
obtained dynamics to create the final agent trajectories.

A recent approach for agent navigation is the use of reinforcement learning with deep neural
networks. Reinforcement learning uses an agent, its environment and their interaction to find
the most desired agent state. It can be used to find agent trajectories from their current position
to the goal. Lee et al. [100] proposed a deep reinforcement learning method for agent navigation.
The approach uses reinforcement learning to solve a decision making problem. This is defined as
a Markov decision process formed by: States, represented by the agent location, goal and visual
sensory inputs; Actions or decisions; Probabilities of moving between states given an Action;
and Rewards, the desirability of the states. This approach does not need a set of predefined
rules or any parameter tuning. This system presents two main limitations. First, agents cannot
differentiate between other agents or obstacles. Second, the resulting path followed by the crowd
is not always the shortest.

Several systems where the environment is divided into layers or includes information to
facilitate pedestrian navigation have been developed. This information includes agent position;



CHAPTER 2. LITERATURE REVIEW 9

objects and behaviours associated with a certain area [35]; communication between agents
[14]; or information for agent decision-making [109]. Banerjee et al. [9] divided the surface
into three layers: Occupancy to avoid collisions between agents; Obstacles for environment
collision avoidance; and Path-plan for global navigation. Similarly, Tecchia et al. [171] used
layers for inter-agent and environment collision, but two additional layers were implemented to
produce complex behaviours. A further division was suggested by Goldenstein et al. [42]. Three
layers determined the pedestrian movement. First, the local layer is used for reactions such as
obstacle avoidance. Second, the environment keeps track of the agents surroundings and collision
detection. Last, the global layer guides pedestrians towards their goal. Lu et al. [110] followed
a similar approach using layers for inter-agent collision, environment obstacle avoidance, and
global navigation. This work supports dynamic obstacles separating static and dynamic layers.

Shao and Terzopoulos [160] proposed an environment model with several maps: topological,
represented by a navigation graph; two perception maps for static and dynamic objects; and two
path maps for path planning. Lastly, Jiang et al. [71] created a hierarchical structure to represent
multilayer virtual worlds. The hierarchy has three levels. The geometric level represents the
3D model of the environment. The semantic level divides the model into regions; describes
their connectivity; and stores the height coordinates of the world. The application level uses
the semantic information to generate maps storing the position of objects and agents and the
computed path for each agent.

Agent-based simulations present the problem of homogeneity. Agents behave in the same
way, and creating a different look for each pedestrian is a challenging task. To alleviate this
problem, Rudomin et al. [151] suggested an approach to render crowds with varying shapes,
clothes and behaviours. The characters are generated using body part templates such as legs,
head and torso. The combination of these parts results in heterogeneous crowds. Gu and Deng
[45] addressed the problem of behaviour homogeneity by assigning different motion styles to
the agents. The motion of several behaviours was captured and stored in a database. These
motions include walking, running and waiting. The database is queried at runtime to obtain the
corresponding animation.

Two levels of control can be observed in pedestrian simulations. Local motion defines the
short-range movement of the agents, considering their immediate surroundings. This level relates
to the previously mentioned work using rules, behaviours and other factors. Global navigation
guides the agents through environments where pedestrians could get stuck in local minima when
using local rules.

2.1.2 Local motion

Obstacle avoidance and agent interaction are typical behaviours resulting from this level of
control. Agent models with sensors or perception modules to detect the environment have been
proposed. Shao and Terzopoulos [159] presented a model including aspects such as perception,
cognition, behaviour, and motion. The perception module is capable of sensing ground height
and static and dynamic objects. This information is used to analyse the situation, make a
decision and behave accordingly. Sakuma et al. [153] modelled agent behaviours in a crowd
based on the positional relations among nearby pedestrians. Each agent has a personal space
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defined by two radii, one for a critical area and the other for a warning area. The avoidance
response depends on which zone is invaded by other agents. Agents are equipped with a visual
sensor to detect surrounding agents. Pan et al. [130] introduced a framework to simulate human
behaviour in emergency evacuations. Agents are equipped with sensors using ray tracing to
detect the type and distance of nearby objects. This sensed data, a set of rules and psychological
factors produce the agent actions.

Kapadia et al. [84] suggested the use of scalar and vector fields to sense the environment
within a radius with agents as the origin. Three phases determine the motion of pedestrians.
The perception phase detects objects in the world and predicts the position of nearby agents
from their speed and direction. The collected data is fed to the affordance phase to assign a
value to all the possible actions that can be performed. The last stage uses these values to select
the optimal action based on agent goals. Ondfej et al. [127] used a vision-based model to avoid
collision between pedestrians. Agents perceived the environment through an OpenGL camera
positioned at eye level. This camera is used to detect moving objects and evaluate their velocity
based on size change. Lastly, the time to collision is calculated to adjust the position of the
agent accordingly.

Agent collision avoidance is a crucial feature of local motion and, therefore, has been widely
explored. Pettr et al. [141], Olivier et al. [125] conducted an experiment to observe how humans
interact to avoid collisions. The interaction is divided into three phases: observation, reaction
and regulation. As a result of the study, a metric named minimum predicted distance determines
the need to adapt trajectories to prevent a collision.

Fiorini and Shiller [36] proposed a seminal approach named Velocity Obstacle (VO). In this
model, a cone of velocities that cause a collision is generated for each agent. The apex of the cone
is the position of the agent bounded by two tangents to the obstacle radius. All the velocities
outside the VO are guaranteed to not collide with the obstacle. However, this method may
produce an oscillatory movement when agents continuously change between the original and a
collision-free velocity. Van den Berg et al. [178] addressed this issue with a new model called
Reciprocal Velocity Obstacle (RVO). This approach assumes that other agents are going to react
similarly to avoid the collision. In contrast to VO, the new velocity is the average of the current
velocity and one outside the cone. Collision-free trajectories are not guaranteed for multi-agent
simulations.

Van den Berg et al. [179] extended their previous work [178] by limiting the set of velocities
obtained by the RVO solution. Optimal Reciprocal Collision Avoidance (ORCA) uses linear
programming to select the closest possible velocities to the desired agent velocity. ORCA
ensures collision-free movement of independent agents. Charlton et al. [23] implemented a
GPU-optimised version of ORCA. The optimisation resides in balancing the GPU workload
among the threads by subdividing the calculations. The simulation size in this model is
limited by the large data requirements per agent to store the ORCA half-planes used to create
permissible velocities. Figure 2.1 shows an 8-way crossing scenario with 10,000 agents using this
approach. Charlton et al. [24] extended their previous work to incorporate autonomous vehicles
to the simulation. Figure 2.2 shows a section of an ORCA simulation with 2,500 pedestrians
and a few autonomous vehicles.
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Figure 2.1: Crowd of 10,000 agents visualised in Unreal. Eight groups moving to the opposite
environment end. Different colours are used for to identify each group. Top: scene view from
above; An agent is highlighted with a green circle; Inset: view from the perspective of the
selected agent

Figure 2.2: Zoomed-in section of 2,500 agents crowd visualised in Unreal. Four groups navigate
in opposite directions, two moving from left to right and two heading between top and bottom.
Top: scene view from above showing agents and autonomous vehicles; Inset: shows an eye-level
view of the simulation
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2.1.3 Global navigation

Global navigation is used to navigate agents through complex environments, where they could
get stuck in local minima when using local rules. Different techniques have been proposed for
global path planning. These methods include Roadmaps, Navigation graphs, Flow fields and
Navigation meshes.

Roadmaps

Roadmaps represent the walkable areas by randomly sampling the environment. The sampled
points are tested for collision and discarded if their location is an obstacle. The remaining points
are connected, using straight lines, to their nearest neighbours. Links with detected collisions
are removed, and the rest of the links form the roadmap [136]. Bayazit et al. [13, 14] suggested
a simulation system with a roadmap capable of storing behaviour rules. The rules of each node
determine the movement of the agents traversing them. Sud et al. [167] presented an algorithm
for adaptive roadmaps taking into account dynamic objects. Links of the map are removed as
obstacles interpose between two nodes. Deleted links are added again when the path between
the nodes becomes collision-free. Guy et al. [49] created an algorithm to guide pedestrians
following the path with least effort. A roadmap with weights assigned to each edge represents
the environment. These weights represent the required effort to move through the corresponding
link. The edges are dynamically updated as the velocity of the agents change. The algorithm
calculates the path from the current agent position to its goal with the least effort.

Geraerts and Overmars [38] introduced a method to generate roadmaps that ensures finding
a path between two points. Additionally, it creates shorter paths with no detours by adding
nodes and edges. This approach also provides alternative routes for pedestrians. Paths with
clearance are obtained by retracting them to the medial axis. Geraerts and Overmars [40] created
‘Corridor maps’, a novel approach to represent the environment and path planning. This method
consists of a road map. Nodes correspond to a point in the environment, and edges represent
a path connecting the nodes. The corridor map is a graph with clearance information stored
in the paths. Agents move inside the corridor using potential fields by following attraction
points which are located in the calculated path. Geraerts and Overmars [39] improved the
corridor map approach by using graphics hardware to obtain a generalised Voronoi diagram
to create the graph. Additionally, a search structure was defined to accelerate the path-finding
process. Geraerts [37] developed a new structure to represent an environment and path planning
derived from previous work on corridor maps Geraerts and Overmars [40]. The corridor size is
explicitly defined and used to obtain paths with varying clearance. The inside of the corridor is
triangulated to find the shortest path from the start to the destination.

Lamarche [98] suggested ‘Topoplan’, a method to create a topological and roadmap from a 3D
environment based on a prismatic spatial subdivision. The constructed map takes into account
parameters such as maximum slope, minimum height, and maximum step. The first step is to
project the boundaries of each 3D polygon of the mesh on the xy plane. This projection creates
a set of 2D polygons in the plane. Then, constrained Delaunay triangulation [27] is applied to
the polygons. Each 3D environment polygon projects on multiple 2D triangles of the plane.
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Every 2D triangle is associated with the polygons projecting on it. Then, a 3D triangle (cell) is
created for every 2D triangle projecting them to their associated 3D polygons. Adjacent cells
are connected to form zones. With zones defined, a new Delaunay triangulation is performed to
get the final topological map. The roadmap is constructed by sampling the borders and edges
of the topological map. The sampling is done trying to maximise the distance to the obstacles.

Jorgensen and Lamarche [77] proposed an algorithm to identify and classify regions of the
environment. This method applies the same spatial subdivision as Topoplan [98]. The algorithm
uses the topological plan to: identify outdoor and indoor areas; extract floors and stairs; and
divide the floors into rooms and doorsteps. A hierarchical structure is defined by dividing the
environment into four levels according to the identified zones. This hierarchy is used to improve
path-finding quality.

Kallmann [81] developed an automatic approach to generate roadmaps. A Voronoi diagram
is used as a reference to get the nodes of the map. Then, random points are selected and
retracted to the Voronoi diagram. This process ensures maximum clearance for the nodes. The
edges formed when the nodes are connected may be close to obstacles. This issue is solved by
dividing the edge down the middle and retracting the new node to the Voronoi diagram. The
resulting graph has straight-line edges causing unnatural agent paths. Circular blends are added
to bypass connecting nodes and obtain better-looking trajectories.

Roadmaps present some disadvantages. First, since they are based on sampling, they may
require many points to find paths in complex environments. Second, the paths obtained depend
on the sampled points, which could result in unrealistic trajectories. Last, all the walkable areas
of the environment are not represented by the roadmap.

Navigation graphs

A navigation graph consists of dividing the walkable areas of the environment into cells. After the
decomposition, an adjacency graph is calculated to obtain adjacent cells which are linked with
edges to create the graph [99]. Pettre et al. proposed a method to represent multi-layered and
rugged environments with a navigation graph [138, 139, 140]. The search algorithm computes
multiple solution paths to produce heterogeneous pedestrian trajectories.

Yersin et al. [192] presented work where information could be added to a navigation graph.
The user can add a description or label graph nodes and assign them as goals to the crowd.
Sud et al. [168] introduced a global navigation structure for path planning in crowd simulations.
The structure called ‘Multi-agent navigation graph’ is computed using second-order Voronoi
diagrams and can be used in dynamic environments.

Navigation graphs have similar disadvantages to roadmaps. The environment coverage
depends on cell shape and size. Furthermore, many cells are required to represent complex
virtual worlds, thus impacting the path-finding time. Lastly, the paths found may require
smoothing to produce more realistic crowd movement.

Flow fields

Reynolds [145] was the first to propose the idea of flow fields. In this approach, the environment
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is discretised into a two-dimensional grid with cells containing a vector force. Agents align their
movement to the vector present in the cell corresponding to their position. This method presents
the disadvantage that an accurate environment representation and fluid movements depend on
the grid resolution causing poor scalability. Figure 2.3 shows an example of a flow field.
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Figure 2.3: Flow field guiding pedestrians towards the bottom left exit

Several simulation systems have used this global navigation technique. Chenney [26]
proposed a tool to create flow fields by connecting small areas of forces called ‘Flow tiles’.
Jin et al. [73] developed a system to change the underlying flow field by drawing arrows on the
virtual world. Similar work was carried out by Patil et al. [132]. Users sketch lines on top of
the environment to create ‘guidance fields’. The system computes a final flow field based on the
user inputs. Karmakharm et al. [90] used multiple layers of flow fields to guide pedestrians to
different destinations. The force vectors and pedestrians are designed as agents to allow parallel
computation using GPU hardware.

Navigation mesh

Snook [165] introduced the term navigation mesh in his work, creating a mesh of triangles to
represent the walkable areas of a 3D environment. A navigation mesh is a decomposition of
the environment into a mesh of convex polygons. Convexity ensures the free movement of the
agents inside the polygons [29, 30]. According to Kallmann and Kapadia [82], a navigation mesh
should have the following properties:

e Linear number of cells. A small number of nodes in the navigation mesh is required for
fast path-planning algorithms.

e Quality paths. The paths followed by the agents should be realistic.
e (Clearance. The generated paths should have enough separation from the obstacles.

e Robustness. The navigation mesh should be robust to describe the geometry of the

environment.
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e Dynamic updates. The mesh should dynamically adjust to changes in the environment.

Several techniques to generate navigation meshes from the geometry of the environment have
been proposed. Van Toll et al. [180] used medial axis to create a navigation mesh for multilayer
worlds. Connection zones link these layers. The medial axis is computed for each layer without
taking into account the connections. Then, the links are opened to update nearby points and
connect the layers to get the final medial axis. The points of the medial axis are connected to
the nearest obstacle by a line to form the navigation mesh. A limitation of this method is that
the layers must be planar to compute the medial axis. van Toll et al. [181] created a navmesh
using Voronoi diagrams to support dynamic updates in real-time. The insertion and removal of
points, lines and polygons are possible. The navigation mesh is updated locally in the affected
areas. A disadvantage of this approach is that all obstacles (original environment and real-time
insertions) must be partitioned into convex polygons. Some environments may need additional
work to be suitable for this navmesh technique.

Delaunay triangulation is an alternative technique explored to construct navigation meshes.
Kallmann et al. [83] represented a 2D environment with a mesh of polygons using constrained
Delaunay triangulation. The system allows the insertion of points and edges as constraints to
represent obstacles. Kallmann [78] extended his previous work [83] to add path planning. In this
new method, obstacles can be added and removed during runtime. The A* algorithm is used
to find the path between triangles. Kallmann [79] created a new structure for path planning
based on the constrained Delaunay triangulation work [83]. Clearance information was added
to the triangle edges to determine if an agent can traverse the triangle. The resulting paths
have arbitrary clearance from the obstacles. This work was extended to add dynamic updates
[80]. The navmesh created by these approaches is formed by triangles producing more nodes
that polygon-based navmeshes. Even though this accelerates the navmesh generation process,
it has an impact on path-finding calculations.

Hale et al. [53] suggested an approach to represent the walkable areas of an environment with
a 2D navigation mesh. The environment is discretised into a grid; cells containing obstacles are
discarded. Square regions are seeded in the grid to start forming the polygons. The square
grows in every direction following the contours of the cell marked as obstacles. The convexity
of the polygons is checked every iteration of the algorithm. The seeds grow until the walkable
space is covered. This work was extended to allow the 3D decomposition of environments [52].
Neither approach supports real-time environment updates.

Oliva and Pelechano [123] presented an algorithm to create navigation meshes for 2D
environments. The environment is represented as a single polygon that may have holes in
it. This algorithm does not support dynamic updates and only works for 2D. The main idea
is to check the convexity of every vertex in the polygon. If the angle is concave, a new edge is
added to create two new convex polygons. Redundant edges are deleted to reduce the number of
nodes. Oliva and Pelechano [124] introduced a system to automatically generate a navmesh from
a 3D environment taking advantage of the GPU. The user defines four parameters: maximum
step, maximum slope, character height and walkable seed. The first step of the process is a GPU
voxelisation to obtain the walkable areas, which are classified into layers. Zones not accessible to
the agents are discarded. A 2D high-resolution floor plan is obtained after refining the walkable
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layers. The last step is to generate a navmesh with the floor plans and apply convexity relaxation
to reduce the number of nodes.

Akaydin and Giidiikbay [1] created a navigation mesh based on images. A top view image
is used to obtain a grid describing the topology of the environment. Cells represent walkable
areas or obstacles. This grid is divided into rectangular regions called clusters which are created
by selecting a set of initial seeds. These seeds are expanded until all neighbours are occupied or
non-walkable cells. The final clusters represent nodes of the graph. The cost of traversing an edge
is the distance between neighbour nodes. The shortest path between every node is calculated.
A vector field is constructed from these paths. Berseth et al. [15] generated a navmesh based
on the curvature of the original mesh. The acceleration is calculated in each vertex from this
curvature. Traversable areas are determined by a maximum acceleration threshold. The edges
of vertices exceeding the threshold are marked and split. The modified mesh is re-triangulated
to obtain the final mesh.

Recast! is an open-source software system used in video games to generate navmeshes for a
given 3D environment automatically. Chapter 3 will give more details about the use of Recast
in this research. Figure 2.4 shows a navmesh generated with Recast.

Figure 2.4: Environment represented by a navmesh generated with Recast. The navmesh is
represented by the grey polygons formed by the blue lines.

This research implements and compares flow field (grid) and navmesh to find the most
suitable and scalable approach to represent the environment. Section 3.4 provides a detailed

"Mttp://masagroup.github.io/recastdetour/
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comparison considering environment representation, memory usage and path-finding time.

2.2 Commercial Systems

This section briefly describes some of the existing pedestrian simulation software systems,
mentioning the pedestrian navigation method used and some available user-configurable
parameters to control the simulation. Challenger et al. [22] claim that available simulation
tools can be used in different areas, such as security, transport and sports, but they do not show
the reality and do not give definite answers. The purpose of the section is to highlight some of
the issues that these systems present, specifically, complex user interfaces that are not intuitive
for inexperienced users due to the large number of parameters to configure. An additional
limitation is the inability to interact with the simulation in real-time.

Exodus [177] is a software tool used to simulate emergency evacuation situations and
pedestrian dynamics. Three types of interactions are considered: pedestrian-pedestrian,
pedestrian-structure, and pedestrian-environment. A rule-based approach determines the
movement of the agents. Users can set multiple agent parameters including gender, age, height,
weight, patience, mobility, agility and speed. The environment can be created with the tools
provided by the interface or imported from third-party sources. It is divided into a 2D grid
with nodes connected by links. Users can set different types of terrains and states by modifying
the environment nodes. Figure 2.5 shows the graphical user interface of Exodus. The main
window shows the layout of the environment; the dots represent nodes whose parameters can
be configured as shown in the right side windows. This parameter tuning could be potentially
laborious, and the final behaviour might be difficult to predict.

Simulex [162] simulates pedestrian motion and evacuation of a user-defined environment.
Emergent behaviour, such as queuing and overtaking, is observed during the simulation.
Multistorey buildings are permitted. The user specifies the position of the exits. Distance
maps are created to calculate the distance from each location to the exit. These maps are used
to guide pedestrians to the nearest exit. Agents have some configurable parameters including
position, body size, speed and reaction time to alarms. Simwalk [163] models pedestrian flows
and emergency evacuation behaviour. Fire and explosions can be simulated. Simwalk presents
a graphical interface where users can create the environment and define objects such as ramps,
escalators, stairways, service areas, destinations, attraction and danger areas. Multiple agent
parameters can be tuned: speed, age, gender, height, priority and restriction of mobility. The
agents are guided to their destination using potential fields.

MassMotion [122] is a crowd simulation and analysis tool. The user can create the
environment using the graphical tools provided or by importing models from other software such
as AutoCAD. An obstacle and an approach map represent the 3D world. These maps define the
obstacle positions and the distance from every point to the exits. Pedestrians are modelled as
autonomous agents driven by a social forces model. Figure 2.6 shows MassMotion’s interface. A
menu on the top has a few tabs with multiple objects to create in each one. Moreover, created
objects are displayed on the left panel. Each object has a configuration window like the one
shown in the middle of the figure. Such a complex interface provides many options to create a



CHAPTER 2. LITERATURE REVIEW 18

Figure 2.5: Exodus’ user interface

realistic simulation but perhaps at the expense of ease of use.

OpenSteer [128], an open-source library written in C++, creates steering behaviours for
agents in simulations. These agents can represent pedestrians and vehicles. This software is
capable of modelling several behaviours, including wander, seek, flee, path following, obstacle
avoidance, separation, alignment, cohesion, pursuit, and evasion.

Legion [104] offers several tools for pedestrian simulation, emergency evacuation analysis,
and 3D visualisation. The simulation considers pedestrian interaction with each other and with
the obstacles in the environment. Pedestrians change their behaviour reacting to environmental
factors such as visibility, temperature, and toxicity. Agents decide their movement following the
least-effort principle. This decision takes into account several factors: goal, speed, comfort,
agent’s preferences, environment and other agents. The walkable space is considered as a
continuum rather than a discrete 2D grid.

Massive [113] is used to create large crowds with thousands of agents. Every agent interacts
with the environment and other agents using ‘fuzzy’ logic. This logic returns real values
between 0 and 1 rather than the usual two values of binary logic. Additionally, Massive offers
Artificial Intelligence tools to create custom agent behaviours. Pedestrians possess multiple
modules to perceive their surroundings: vision, hearing, and touch. The user can control
the agent parameters such as position and behaviour. Massive can be installed as part of
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Figure 2.6: MassMotion’s user interface

3D modelling software such as Maya and 3ds Max. This feature allows the creation of more
complex environments.

The main issues of commercial systems are the complexity of their interfaces and the lack
of real-time interaction with the simulation. Users might find it difficult to use these systems
without guidance. The next section discusses graphical control solutions that have been proposed
to facilitate the setup process and control of a simulation.

2.3 Graphical control

Virtual crowd simulations usually involve many parameters to configure to control the behaviour
of the pedestrians. The process of tuning these parameters can be a trial-and-error task since
it is difficult to predict the animation output with complete certainty [76, 92, 96, 129, 170].
Additionally, prior knowledge is required to identify which parameters need to be adjusted to
produce the desired behaviour. Therefore non-expert users are not able to create or modify a
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pedestrian simulation. Graphical tools for the control of crowd simulations make it possible for a
user to interact with a simulation intuitively, eliminating the time-consuming task of parameter
tuning.

This research identifies five categories to describe the different graphical control approaches:
Navigation Graph, Map, Patch, Direct Interaction and Sketching, with a visual illustration of
the different approaches given in Figure 2.7:

e Navigation Graph. An interface enables the creation or modification of navigation graphs

to control the movement of the agents.

e Map. This method consists in drawing maps or layers on top of the environment to add
information and indirectly modify the pedestrians’ behaviour.

e Patch. Users can create large environments by combining multiple small predefined patches

or blocks.

e Direct interaction with agents. A user controls the behaviour of the agents by editing

parameters or specifying movement trajectories.

e Sketching. The user can sketch paths or motion trajectories directly on the environment,
which virtual agents will then follow during the simulation.

Navigation Graph Map Patch

AR E
ldind

Direct Interaction Sketching

—
5‘35’

i

Figure 2.7: Methods to control a pedestrian simulation using a graphical interface

2.3.1 Navigation Graph

Yersin et al. [192] suggested a method, based on a navigation graph, in which users can steer the
crowd towards different locations by using high-level instructions. A predefined environment
is divided into navigable regions where agents can walk. These areas represent nodes of the
graph. Zones outside the nodes are not accessible for the pedestrians. A graphical interface
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is presented to the user showing all the nodes of the graph. Users can select the nodes and
add a description or label to them. Marked nodes can be assigned to agents to change their
destination. A limitation of this approach is that it is not possible to modify the environment
or the graph. Furthermore, assigning new goals to agents in a large crowd or environment could
be a complicated and time-consuming task.

2.3.2 Map

A map refers to a drawing or layer on top of the environment used to add information or
behaviours to specific zones of the environment. A two-level crowd control system was developed
by Sung et al. [169]. Situations are used to define the behaviour of the crowd at the high level.
Two types of situations can be defined: spatial and non-spatial. Spatial situations are defined by
drawing regions in the environment using a painting interface. Multiple layers can be overlapped
to create complex situations. At the low level, an algorithm selects the action of the agents from
a set of choices.

Millan and Rudomin [116] proposed a system called Agent Paint, where image maps are used
to define attributes of the environment. These maps include: height maps to indicate the height
of the terrain; texture maps to modify the scene’s appearance; labelled maps to mark specific
areas; and collision maps used to avoid collisions between agents. A 2D interface is provided for
the creation of these maps.

Jordao et al. [76] developed a crowd simulation system where the user can determine the
direction and density of the crowd. These parameters are specified by painting grayscale layers
on top of the environment model. The graphical user interface was implemented as a plugin of an
open-source image processing software; therefore, tools such as brushes, strokes, and gradients
are available to the user. The type of layers that can be created are: density, depending on the
brightness of the pixels; direction, defined by sketching a gradient; and obstacles, areas of the
environment with zero density.

Pedestrian Environment Designer (PED) [115] is a tool that uses layers on top of the
environment to define the behaviour of the crowd. An interface is provided to the user to
add, delete, rename and hide layers. Figure 2.8 shows an overview of this system. The left
image shows the graphical interface with the defined layers, and the final simulation is running
on the right side. The user can define entrances, exits, collisions, areas of attraction, areas of
avoidance and areas of interest. The layers are used to produce navigation force vector fields
used to guide the movement of the pedestrians as shown in Figure 2.9.

In general, this graphical control method might not be intuitive since the maps are painted
in a separate piece of software [116, 115] or are not created in real-time [76]. Defining a large
environment by painting multiple maps could be a laborious task.

2.3.3 Patch

Patches are small blocks that can be connected to create large environments. Chenney [26]
suggested an approach using small areas of force fields called Flow Tiles. These tiles can be
connected to form larger fields to guide pedestrians through an environment. Connections
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Figure 2.8: PED’s interface with the created layers on the left and the simulation running on
the right. Used with permission [115]

Figure 2.9: Layered force vector fields determining the agent movement. Used with permission
[115]

between tiles have to meet specific requirements. For this reason, an editing tool assists the user
during the tiling process.

Crowd Patches is an approach proposed by Yersin et al. [193]. Patches are blocks with
pre-computed animations and may contain static and animated objects. These animations are
repeated cyclically over time. Users can define the environment in two ways: progressively
connecting patches in an empty scene; or dividing a predefined environment into polygonal
shapes. Jordao et al. [75] extended Yersin’s work [193] to create a new method called Crowd
Sculpting. In this approach, crowd patches can be stretched, shrunk, bent, combined or deleted
using a user interface. A virtual environment can be created from a single patch by deforming
it until the desired configuration is achieved.

Lee et al. [101] presented an approach to generate an environment where animated characters
can interact and navigate. This environment is built with a set of predefined blocks called motion
patches. Each block has embedded motion capture data to animate the characters. Examples
of the animations are: walk, climb, slide, idle, chat and sit down. The patches are constructed
from the geometric shape of the environment. An interface is provided to the user to create and
modify in real-time an environment with multiple objects.

Kim et al. [94] developed a simulation with interacting characters. This work uses the concept
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of motion ‘patches’ [101]. The movement of two actors was captured while performing actions
such as dancing, handshaking, and carrying objects. The patches are constructed by identifying
the interaction between agents from the raw data. Two blocks can be stitched if the last and
first frame have the same pose. Users can define features in the environment to indirectly control
the characters. Additionally, the user can directly determine the action to be performed, the
location and the time.

This control approach suffers from two main drawbacks. First, patches are used to specify
the environment but not to modify it in real-time [26, 193]. Second, patches are predefined; this
reduces the freedom or level of customisation when creating the environment.

2.3.4 Direct interaction with agents

In this graphical control approach, users directly modifies the behaviour of the agents by defining
their trajectories or updating their parameters. The environment is not modified. The previously
mentioned work by Sung et al. [169] also falls into this group. Users can create non-spatial
situations such as friendship. These situations are directly assigned to the agents to modify
their behaviour. Ulicny et al. [176] created a system where the user can directly modify the
behaviour of the virtual characters by using artistic tools, such as brushes, in a 2D canvas
that represents the 3D scene. These tools are controlled with a mouse and a keyboard. The
designer is allowed to create and delete pedestrians, start animations, create paths and modify
the appearance of the agents. This process consists of three steps. First, an area of the 2D world
is selected by the user, and the system chooses 3D objects. Second, the designer changes the
execution mode of the brush, defining how the crowd will be affected. For instance, a random
operator on the creation brush will spawn a varied set of pedestrians. Lastly, the selected agents
will have their parameters affected by the brush.

Kwon et al. [96] devised a technique to edit an existing animation of a group of virtual
characters. The motion clips show the trajectories of all the elements of the group. A graph is
constructed from these clips, and the vertices are sampled from each path. Two types of edges
are created: motion and formation. Users can merge or deform graphs by pinning and dragging
their vertices to change the existing animation.

Similar work was done by Kim et al. [92]; the user can edit an existing animation by enclosing
characters in a cage that supports space and time manipulation. The animation is a collection
of clips or lines that represents the crowd trajectories. Additionally, it includes time tracks for
each character. An interface assists users to construct a cage using a freehand selection tool
and selecting a group of characters. After the cage is defined, users can drag and pin down
boundary vertices or interior points to manipulate it. Merge, cut, append and crop are other
options for changing the animation. The same operations can be applied to the time tracks
enabling warping the time of existing clips. Kim et al. [93] also presented other work where
users interactively modify the movement data of several characters. Users can manipulate the
position, direction, and synchronisation with spatial and temporal constraints.

Takahashi et al. [170] presented an approach to control group formations while keeping
the adjacency relationships between agents. The system requires a set of defined keyframe
formations to interpolate through using spectral analysis. An interface is provided to allow
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the user to define every keyframe formation by directly specifying the position of every agent.
Ecormier-Nocca et al. [34] suggested an authoring tool to create a keyframe animation of animal
herds. The tool interface uses herd photos to create the animation. Users place the photos on
top of the environment to define the keyframes. The system generates a herd from each photo
and calculates a global trajectory based on their centroids. Then, collision-free local trajectories
are computed to produce the final animation.

Henry et al. [60] proposed a method to control pedestrian simulations using a multi-touch
device. A deformable mesh represents the crowd; the user can modify it by selecting control
points and dragging them to define the final mesh. With the deformed mesh completed, a
two-dimensional grid is created on top of the environment to specify a flow field exerted by the
obstacles. The vertices of the mesh are examined and displaced according to the forces in the
corresponding cells. Shen et al. [161] also used a multi-touch device to control a crowd with user
gestures. Multiple crowd motions are associated with user-performed gestures. This information
is stored in a database and used at runtime to generate the motion.

In this direct interaction approach, users might need to modify the behaviour of agents
individually or in small groups, which could be a repetitive task in large-scale simulations.
Additionally, new agents are not affected by any previous modification since the environment is
not altered.

2.3.5 Sketching

Traditional sketching refers to freehand drawing on paper. Sketching does not require special
knowledge and could express ideas without precision. Computer-based sketching refers to
drawing 2D freeform strokes on an interface with a mouse or any input device. These strokes
need to be converted to polylines before using the information. This process is called sampling.
Section 3.1.4 describes how sampling is done in this research. Sketching in computer graphics
has many applications such as sketching 3D objects [68], modelling faces [48], flooding control
[147] and controlling virtual crowds. This section focus on sketching as a graphical control
approach for crowd simulations.

The final category includes work that interacts with the simulation by sketching. This
interaction could be by modifying the environment or by controlling the path or actions of a
group. Jin et al. [73] developed a system to control pedestrians at a global and local level by
drawing arrows in the environment. Vector fields determine the global movement of the agents.
The graphical interface allows the user to draw anchor points with direction to determine the
path of the pedestrians. This system calculates a function that represents the final vector field
using a radial basis function interpolation, the position, and direction of the points specified
by the user. A disadvantage of this system is that to control multiple groups requires a vector
field per group. Furthermore, the anchor points only guide the movement of the crowd; it is not
possible to define the exact path of the pedestrians.

In Oshita and Ogiwara’s work, [129], sketching is used to define the area where pedestrians
will appear. Afterwards, the designer must determine the main moving trajectory of the entire
crowd. Additional lines or paths might be drawn to set other parameters, such as the distance
between virtual characters. From the user-specified routes, different parameters are extracted:
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guiding path, speed, and distance between agents. These parameters produce three forces which
dictate the final motion of the pedestrians. This control approach has some limitations. First,
it does not support real-time control of the crowd. Second, it only focuses on groups and not on
individual behaviours or interactions. Last, it does not modify the environment (i.e. barriers or
waypoints), it only creates paths to be followed by the crowd.

Patil et al. [132] suggested a graphical user interface where brush tools are provided to the
users. These tools enable the animator to draw arrows to guide pedestrians throughout the
environment. These arrows contain controlling parameters specified by the user: width of the
stroke and decay ratio. A navigation field is constructed using the drawn motion trajectories as
a reference. The velocity of each virtual agent is obtained by mapping their positions into the
vector field. The vector field used in this method is based on a grid which has a high memory
cost and does not scale well for large environments.

Hughes et al. [66] presented a sketch-based approach to populate environments initially based
on an image. These environments cannot be used in automatic navigation mesh generation
tools. Thus, the user first defines the boundaries of the navigation mesh and the borders of
the obstacles (e.g. buildings) in an offline process using sketching. The mesh is triangulated to
obtain a navigation graph. Then, users can dynamically use sketching to add waypoints, select
pedestrians, create a path, and define behaviour areas where agents perform a specific action.
This work is the only approach that uses sketching on top of a navmesh. However, the navmesh
is not updated in real-time based on user input.

The creation of crowd formations is a popular application of sketching interfaces. The goal
of formation systems is to move agents from one position to a specific location. Therefore, these
systems offer limited control to create complex scenarios such as emergency evacuations. Gu
and Deng [47] carried out work where users can draw or sketch lines and curves, via an interface,
to define the boundaries of the formation. More complex group formations can be created by
including exclusive edges to form holes inside the group. After the shape has been defined, the
system assigns agents special coordinates relative to the group centre.

Gu and Deng [46] extended their previous work [47] by adding new tools to facilitate the
control of group formations. The user can input the formation in three ways. First, a brush
painting tool is provided to generate simple formation shapes where only the width of the brush
is specified. Second, texture maps could be used for more complex formations; the shape is
obtained by mapping from texture to world coordinates. Last, ‘boundary sketches’ is a freehand
tool to define the boundaries of the formation, similar to their previous work. Additionally,
the user can sketch global trajectories or lines to guide the group from one location to a final
formation.

Allen et al. [4] developed a similar system to control characters at individual or group level
by creating formations specified by the user. An additional feature of this work is the possibility
of defining subgroups and specifying their path. To accomplish this, users must sketch multiple
lines using a graphical interface. First, a group is selected by drawing a shape around the
characters. A subgroup could be defined by selecting units inside the first group. Second, users
specify the moving trajectory. An additional line could be drawn if a different path is desired for
the subgroup. Last, the final formation is sketched at the end of the trajectory. If users define
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two trajectories, both groups arrive simultaneously to the final location by adjusting their speed.
Figure 2.10 shows a group selected and a trajectory to be followed (left), the group moving along
the sketched line (centre) and the group arriving at its destination (right).

Figure 2.10: Group following a path to reach the destination. Used with permission [4]

Xu et al. [186] presented a flock simulation constrained by a user-defined shape. The flock
followed the same three rules proposed by Reynolds [144]: separation, cohesion, and alignment.
The user can define fixed positions over time and the path followed by the flock. Mathew et al.
[114] suggested an inverse method to create crowd models. The system infers crowd motion
models from trajectories. These trajectories can be from real or virtual data. The system
interface allows the sketching of motion trajectories. The sketched data is used to obtain the
origin and destination of the crowd, groups, paths and speeds. This information is used to create
the final animation.

Xu et al. [187] developed a system to transform crowd formations. Users specify the
source and target formations. The system matches the agent positions on both formations
by calculating the squared Euclidean distance. Xu et al. [188] created a similar crowd formation
transformation model but using different criteria to assign the final positions. Subgroups are
formed to maintain the cohesion of the group. The movement of the agents is determined using
the principle of least effort and an enhanced social forces model.

Zheng et al. [196] suggested a novel method to create formations with crowds. The system
is based on geometry and does not require collision avoidance algorithms. The user defines
the initial and final shapes of the group, and the path to follow. Source and target shapes are
interpolated to obtain intermediate formations for a smooth transition. The agent distribution is
calculated using centroidal Voronoi tesselation. Zhang et al. [195] carried out similar research. In
this work, the user can specify the final formation by importing an image or sketching the shape.
The system creates a 3D representation of the input and generates the final agent positions using
a concentric circles model. Moreover, users can define the density of the formation. Hauri et al.
[54] proposed a flocking algorithm to represent user-defined formations with a robot swarm.
Users can create static shapes or animations using a drawing interface. The algorithm is based
on Reynold’s [144] work, which uses a set of rules to control the robots. A new rule is added to
create the formation; robots outside the shape are moved towards the group.

Table 2.1 lists the previously mentioned works, indicates the category where they fall into
and points out whether they control the agent and/or modify the environment. The majority
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Category Control | Discretisation Research
paper(s)
NavGraph Env Graph [192]
Maps/Direct A/Env not stated [169]

Maps Env Grid [116, 115]

Maps Env Graph [76]

Patches Env Grid [26, 101]

Patches Env Graph [193, 75]

Patches Env not stated [94]

Direct Agent not stated [176’133’ ??42]’ 93,

Direct Agent Grid [60]

Direct A/Env not stated [161]
Sketching Env Grid [132]
Sketching Env Navmesh [66]
Sketching Env not stated [73]

[129, 47, 46, 4, 186,
Sketching Agent not stated 114, 187, 188, 196,
195, 54]

Table 2.1: Summary of the graphical control approaches for crowd simulations. The Control
column indicates whether the agent behaviour is controlled by changing agent (A) parameters
and/or by modifying the environment (Env). The Discretisation column indicates how the
environment is represented: Grid, Navmesh or Graph (where Graph includes techniques that
use a graph structure based on circles or polygons).

of the work exploring sketching does not state what memory structure is used to represent the
environment. The reason is that crowd formation has been the main focus, which only involves
moving pedestrians from a starting position to a final destination. An underlying structure is
not needed since agents can move freely (no elements are influencing their movement) to the
specified position. There is a shortage of work exploring sketching to modify the simulation
environment. This thesis explores sketching using the grid and navmesh navigation approaches.
Current work on grids only includes the use of flow lines to guide the agent movement. The
only navmesh work found uses sketching to define the navmesh and waypoints in an offline
step. Table 2.1 highlights the lack of research done on this graphical control approach and the
opportunity to explore more possibilities that sketching could offer, for instance, the creation of
more control elements (barriers, areas, storyboards and real-time interaction.

2.4 Evaluation approaches

The graphical approaches described in the previous section not only require an intuitive user
interface but also need to produce a plausible simulation. This section covers methods to evaluate
the realism of crowd simulations, techniques that have been used to assess sketching interfaces
in crowd simulations and some formal approaches to examine user interfaces in general.
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2.4.1 Realism of the simulation

Three main techniques can be identified that have been used to evaluate how realistic a
pedestrian simulation is. First, real-world data is used to obtain metrics, such as position,
acceleration and distance, to compare them against the virtual crowd simulation. Second, the
same idea of extracting metrics is used but to compare two simulations. Third, the realism is
evaluated based on user perception producing more subjective results. This is the least reliable
and objective technique since results depend on the perception of the users, which could be
affected by many factors.

An objective approach to compare and evaluate pedestrian simulations uses real-world data.
Multiple metrics have been proposed to compare virtual and real crowds. However, extracting
these metrics from real crowds can be challenging [119]. Wolinski et al. [185] compared crowd
simulations to real crowds by estimating the best set of parameters to match the real data.
With values, the distance to the reference data can be obtained. Multiple metrics are computed:
difference in agent positions, path length, inter-agent distance, progressive difference, vorticity
and fundamental diagram. A different example of a metric is the fundamental diagram which
compares the relationship between agent speed and density of the environment. This metric has
been used to compare crowd from Germany and India in a corridor [25].

Karamouzas and Overmars [89] suggested two metrics to assess the behaviour of a group
within a crowd. These measure the distortion and dispersion of the group. The metrics are used
to validate the group simulation against real crowd data. Guy et al. [51] suggested an ‘Entropy
Metric’ to evaluate crowd simulations against real crowds. This metric assesses the predictability
of simulations based on their similarity to real-world data. First, a set of simulation states that
better fit the real data is selected. Then, the simulation is used to predict succeeding steps.
Finally, the prediction error is calculated by comparing both states. An experiment was carried
out to compare this metric with perceptual evaluation. Participants were asked to rate the
similarity of a set of video pairs (consisting of one real data video and one simulated video).
The rates were compared to the metric obtained for each pair. The results showed a strong
correlation between the Entropy metric and user perception.

Seer et al. [157] validated three social forces model using real-crowd movement data. The
trajectories of the people are extracted and used to calculate parameters such as acceleration,
position, and current and desired velocity. These values are used to evaluate the models based on
non-linear regression parameter estimation. Wang et al. [182] proposed an approach to compare
simulated and real crowd data by extracting path patterns of both data sets. These patterns
involve global and local attributes of the crowd movement and provide quantitative attributes
that are not obtainable from mere inspection. Furthermore, two similarity metrics are defined
to compare individual and overall path pattern similarities. He et al. [55] proposed a method
to decompose real-world crowd data with trajectories into a set of modes. These modes store
multidimensional pattern information: space, time and speed. This data is used to propose
two comparative metrics, average likelihood and distribution-pair distance. These are the same
metrics suggested in [182], but now they consider three dimensions rather than just space.

Lerner et al. [106] used real crowd videos to create a database with a set of ‘normal’
behaviours and example state-action pairs. A state stores parameters such as speed, position
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and nearby individuals at a specific point in time. An action could be a change of velocity.
The simulated crowd is also analysed to obtain a set of query state-action pairs. A similarity
function is used to determine the distance between the ‘normal” and the simulated state-action
pairs.

A further method to evaluate crowd simulations also extracts metrics from the crowd
movement but compares two pedestrian simulations. Campanella et al. [19] proposed a validation
score for pedestrian models. This metric is a combination of scores of quantitative and qualitative
assessments. The quantitative assessments include average travel time, speed-density relation
and bottleneck capacity. The quantitative score is based on the relative errors of the results.
The qualitative assessments are graded by visual inspection. These focus on the avoidance
behaviour in bidirectional flows, unidirectional flows and narrow corridors. Singh et al. [164]
created a benchmark suite to evaluate steering behaviours. It includes test cases such as crossing,
overtaking and bottlenecks, and offers metrics to compare algorithms. Metrics include the
number of collisions, time and effort efficiency. Kapadia et al. [85] proposed a different set of
metrics to compare steering behaviours in different scenarios: scenario completion, path length
and total time. Each metric is defined as a ratio to its optimal value to allow comparison on
an absolute scale. Musse et al. [119] proposed a method to compare the characteristics of two
crowds (real or virtual). A 4D histogram is used to compare properties such as global flow,
spatial occupancy, main orientations and speeds. This approach requires pedestrian trajectories
to be extracted from the crowd.

A standard method to evaluate the realism of a simulation is perceptual experiments. The
disadvantage of this approach is that it depends on the participants perception, potentially
leading to non-consistent results. Paris et al. [131] used real data captured to calibrate and
validate their pedestrian model. The qualitative evaluation, based on perception, focused on
emergent behaviours such as lane formation. The authors concluded that similar phenomena
emerged from both the model and the real data.

Peters and Ennis [137] conducted a perceptual study to assess the plausibility of the virtual
crowd animation. Participants were shown a series of short animations, divided into three
groups, to rate the realism of the simulation. The groups were: plausible, implausible and no
groups. The results of the study confirmed that the plausible group was the most realistic for
the participants. Guy et al. [50] carried out a study to evaluate the performance of a crowd
modelled with personality traits. Multiple behaviours were modelled, and participants were
asked to identify the video showing each behaviour from a set of videos. Participants were able
to select the correct video for each behaviour with high accuracy.

Real world data is the most reliable source to validate virtual simulations. However, it might
be challenging to capture situations that want to be simulated. For instance, obtaining data
for emergency evacuations is risky since a dangerous scenario would need to be reproduced.
This method is also not suitable for simulations that can be modified in real-time. In these
simulations, users can modify the environment (add obstacles) and the virtual crowd immediately
reacts to the user input. Real world data with the same changes to the environment might be
difficult to find.

This research evaluates the simulation model using the second approach discussed, by
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comparing the agent metrics extracted from the simulations. The comparison is made against
the validated [149] commercial system MassMotion.

2.4.2 Graphical User Interface

There appears to be little work on evaluating sketching in crowd simulation. This section
presents this work but also explores some formal approaches to evaluate user interfaces in general.

Sketch-based interfaces for controlling crowd simulations have been evaluated with user
studies. Oshita and Ogiwara [129] evaluated the effectiveness of a user interface for controlling
the path of a crowd with an experiment. Four people were given an example of animation and
were asked to create it using the sketch-based system and a conventional interface. Completion
time for each interface was taken and compared. The results showed that participants reproduced
the animation more than ten times faster using the sketching approach. Similarly, Allen et al.
[4] used participants to create scenarios, involving crowd formation and movement, in a classic
control system and also using a sketch-based interface. The results indicated that the sketching
method is more precise and easier to use, but takes more time to draw the shape of the formation.

Sketch-based interfaces for diverse applications have also been perceptually evaluated
based on user experience. Xu et al. [189] assessed the usability of a user interface for
conceptual /schematic design with symbols. The sketch-based interface was compared to a
traditional button-based interface. Participants were asked to draw some sketches with both
systems. Users found sketching more intuitive and faster compared to the button interface.
Kara et al. [88] evaluated a sketch-based 3D modelling system conducting a study to find three
aspects based on user perception: personal satisfaction, usefulness and ease of use. Participants
were asked to complete a brief tutorial, design an object and complete a questionnaire. Users
found the system intuitive and had a favourable opinion about the interface. However, some
participants described the menus as cumbersome. This study made no comparison against
traditional modelling systems.

Tsiros and Leplatre [173] carried out a user study to evaluate the effectiveness and usability
of a sketching interface to control a sound synthesiser. The study consisted of designing two
soundscapes and answering a questionnaire. Overall, the participants were satisfied with the
interface but also highlighted usability issues such as lack of options found in traditional image
processing systems. Arora et al. [8] evaluated sketching in VR under different circumstances to
analyse the factors influencing the ability to sketch strokes in mid-air. The user study was divided
into two experiments. The first task compared traditional and VR sketching. Participants were
asked to draw a predefined shape on a solid surface, mid-air in a VR environment and on a
physical surface while using the VR headset. The difference between the target shape and the
sampled sketch points was calculated. Traditional sketching showed the most accurate results.
The second experiment evaluated the use of visual guidance to facilitate mid-air sketching in
VR. The forms of guidance included a grid and a target stroke. Participants performed better
when the grid and target stroke were used together.

A key aspect of determining the quality of user interfaces is usability. An ISO standard
defines quality of use as: “the degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context
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of use” [69]. Seffah et al. [158] summarises several factors that are considered when measuring the
usability of a system: Efficiency, Effectiveness, Productivity, Satisfaction, Learnability, Safety,
Trustfulness, Accessibility, Universality and Usefulness.

Wetzlinger et al. [183] used some of these metrics to compare the user experience when
using laptops and tablets for frequently executed tasks. The tasks included writing an email,
creating an appointment in a calendar app, browsing and filling forms. The user study measured
Effectiveness as the task completion ratio based on the participant attempts. Efficiency was
defined as the time taken to complete each task. Additionally, other perceptual metrics were
considered, such as ease of use, usability and user experience. Usability was assessed by asking
participants to complete the System Usability Scale (SUS) questionnaire designed by Brooke
et al. [18]. The results showed that users struggled to complete some of the tasks on the tablet.
All the tasks were accomplished faster using a laptop, and participants considered that the
laptop was more comfortable to use. However, the questionnaire indicated higher perceived
usability of the tablet. These findings suggest a discrepancy between measurable features and
user perception.

The SUS questionnaire has ten questions that users answer using a 5-step Likert scale from
“strongly disagree” to “strongly agree”. SUS has been added to commercial evaluation toolkits
and is referred to as an “industry standard” [17]. An advantage of this questionnaire is the fact
that a single value representing the user perception is obtained [10]. This score ranges from 0
to 100, with lower scores indicating worse usability. However, it is still open to interpretation
from which score the system is considered usable. Bangor et al. [11] conducted a study adding
an eleventh question to get an overall usability user perspective of the system. The question has
seven options from “Worst imaginable” to “Best imaginable”. The purpose of the study is to
provide an interpretation of the SUS score by matching it to user opinion. The study found that
the adjective given by participants was strongly related to the SUS score. The results ranged
from 12.5 (Worst imaginable) to 90.0 (Best imaginable).

A different approach to evaluate user interfaces is the Goals, Operators, Methods and
Selection rules model (GOMS) proposed by Card et al. [21]. This user interface design model
describes the knowledge required by the user to perform a task. Kieras [91] summarises in
detail the components of the model. Goals are presented by an action-object pair to identify
the tasks that users try to complete. Operators are actions to be performed by the user.
Goals and operators are similar, but the difference is that the operator is executed and the
goal is a task to be accomplished. Methods are a set of operators needed to complete a
goal. Lastly, selection rules are used to choose a suitable method to achieve the goal. The
GOMS model has generated a family of four modelling techniques based on it: Card Moran &
Newell GOMS (CMN-GOMS), Keystroke-Level Model (KLM) [20], Natural GOMS Language
(NGOMSL) and Cognitive-Perceptual-Motor GOMS (CPM-GOMS). John and Kieras [74] made
a detailed comparison of the four techniques with an example task of editing a manuscript in
a word-processor. Total time prediction showed similar values. NGOSML predicted more time
since it includes more mental preparation operators. In contrast, CPM-GOMS was the fastest
because it assumes extreme expertise and allows overlapping operators.

This thesis focuses on the KLM model since it is used as part of the evaluation of the system
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in Chapter 5. Card et al. [20] proposed the Keystroke-Level Model, which is a quantitative
analysis tool used to evaluate interactive systems. The goal of this model is to predict the time
needed to complete a task by counting the number of low-level operations needed. This method
is used in computer systems but has been adapted and extended to work with mobile phones
[63] and in-vehicle systems [155, 103]. KLM assumes that expert users are performing the tasks
being evaluated. Each low-level operation is represented by an operator which is given a time
value to obtain the total amount of time required for the task.

The work done on assessing sketch-based interfaces mentioned in this section does not use
a formal evaluation method such as KLM. The majority of the studies rely on participant
perception and do not include a quantitative evaluation of the interface. This research proposes
a modified KLM version to include a new sketching operator and compares the commercial
system MassMotion and the sketch-based system. The KLM analysis is used to compare the
number of actions used by each system, rather than predicting the task completion time.

2.5 Summary

This chapter has given an overview of virtual crowd simulation models focusing on agent-based
modelling. Two levels of control were identified: local motion and global navigation. The
local level refers to the short-range motion of the agents, taking into account their immediate
surroundings. Global navigation is used to guide pedestrians through the environment to their
destination. Four main approaches to represent a virtual world were analysed: roadmaps,
navigation graphs, flow fields and navigation meshes.

Roadmaps present some disadvantages. First, they may require many points to find paths in
complex environments. Second, the paths obtained could be unrealistic. Last, all the walkable
areas of the environment are not represented. Navigation graphs have similar disadvantages to
roadmaps. Additionally, environment coverage depends on cell shape and size, which may lead
to a considerable number of cells for complex scenes. Grids scale poorly compared to navmeshes
in terms of environment representation, memory usage and path-finding time.

Multiple commercial pedestrian simulation systems were analysed describing how the agents
are controlled and mentioning the different options and variables that can be defined by the
user.

A classification of graphical tools to control crowd simulations was proposed. This
categorisation included: navigation graph, map, patch, direct interaction and sketching. The
selected approach to explore in this research is sketching. Each of these graphical controlling
techniques has some issues.

e The navigation graph method has the limitation of not supporting the modification of the
environment or the graph.

e The maps approach might not be intuitive since the maps are painted in a separate piece
of software [116, 115] or are not created in real-time [76].

e Patches suffer from two main drawbacks. First, patches are used to specify the environment
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but not to modify in real-time [26, 193]. Second, patches have a limited level of
customisation when defining the environment.

e In the direct interaction approach, users might need to modify the behaviour of agents
individually or in small groups, which could be a repetitive task in large-scale simulations.

e The sketching method has only been used to force agents to follow a certain path [129,
132, 73] or to create formations, but not to modify the environment. The only work using
sketching on top of a navmesh was proposed by Hughes et al. [66]. However, in that work,
the navmesh is not updated in real-time based on user input.

Lastly, this chapter outlined the techniques used to evaluate the realism of crowd simulations
and the effectiveness and usability of user interfaces. Metrics extracted from the crowd,
real-world data and user perception are methods used to evaluate and compare virtual crowd
models. User interfaces have been qualitatively assessed with user studies and questionnaires,
such as the System Usability Scale (SUS). Other methods have been suggested to carry out
quantitative evaluations, for instance, the Keystroke-Level Model (KLM). Sketch-based interface
evaluations have not used a formal evaluation method and rely on participant perception.



Chapter 3

Sketch-based control and navigation
methods

This chapter describes the sketching approach and the data structure to support it and represent
the environment. Controlling a crowd simulation by sketching can be done in two ways (see
Section 2.3.5): modifying the environment with the user strokes or directly changing the
parameters of the agents (i.e. drawing a path). This chapter concentrates on the first approach.
Users control the behaviour of the virtual crowd by sketching elements, such as barriers, flow lines
and waypoints, on top of the environment. These sketches need to be mapped to a data structure
representing the environment. Later chapters look into extending the sketching approach to
create more advanced control features. These options include storyboards to specify the journey
of the crowd and a timeline interface to simulate different times of the day.

This chapter uses two data structures, grid and navigation mesh, to develop a sketch-based
control system to explore their advantages and disadvantages. Previous work [132] used a
grid-based approach to sketch flow lines to direct the crowd. A contribution of this chapter
is a grid-based simulation (extending the work in [132]) updated in real-time by sketching
entrances, exits, obstacles and flow lines to modify the environment. Sketching with navigation
meshes have also been used in crowd simulations. Hughes et al. [66] created the navmesh of the
simulation environment by sketching the boundaries of the non-walkable areas. The novelty of
the navmesh work in this chapter is the use of sketching to modify a navmesh in real-time by
adding barriers, flow lines and areas. Another contribution is a detailed comparison between
the grid and navmesh navigation approaches.

Section 3.1 gives an overview of the sketching system; some aspects vary depending on the
underlying data structure representing the environment. These differences are described in later
sections. Section 3.2 explains the implementation of the grid approach, the sketching process,
and shows some simulation results. Section 3.3 covers the navmesh method and the modification
of the tool Recast to support sketching. Section 3.4 compares both navigation approaches in
terms of environment representation, memory usage and path calculation time. Finally, Section
3.5 summarises the sketching process and the work done on both data structures.

34
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3.1 System Overview

The objective of the system is to create an intuitive and simple way for non-technical users
to interact in real-time with crowd simulations. Figure 3.1 gives an overview of the system.
In general, a domain specialist defines the agent model, their behaviour and the underlying
data structure used to represent the environment (grid or navmesh). Users interact with the
simulation by sketching on top of the environment to modify it in real-time. The shortest path
from the agent position to the goal is computed from the new scene. Agents follow this global
path and use local forces (based on the model and behaviour specification) to calculate their
movement avoiding inter-agent collisions.
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Figure 3.1: Overview of the crowd control system. A domain specialist specifies the model of
the agents and the underlying navigation approach. The user interacts with the environment by
sketching on top of it in real-time. The updated environment is used to find the shortest path
for each pedestrian. Agents follow the global path and use local forces to avoid collisions with
other agents. Based on Figure 1 in [86].

In practice, some decisions were made about particular pieces of software to create the system.
Figure 3.2 gives an overview of these. There are two main modules: a visualisation module
created by making use of Unreal Engine and a simulation module based on the FLAMEGPU
framework [148], which handles the agent and behaviour specifications. The main modules
communicate with each other through a CPU-based shared memory segment. The data required
by each module is shown in Figure 3.2. The agent data used in the FLAMEGPU framework
must be available to the visualisation module running on the CPU, which, in turn, must send
sketched updates to the environment back to FLAMEGPU to influence the simulation running
on the GPU. The system diagram slightly changes depending on the navigation method. The
navmesh approach uses the tool Recast to generate and update the navmesh. This tool was
embedded in the Unreal project. The grid-based method does not use any open-source tool to
generate the grid.



CHAPTER 3. SKETCH-BASED CONTROL AND NAVIGATION METHODS 36

OpenStreet
Map

OSM2World

Agent data :_ |
4 . .
ST E i Grid/Navmesh | Vlsballsa?on |
FLAME GPU , ; frea |
Options | Engine

| ——

Figure 3.2: System diagram. The Recast module is only used for the navmesh approach.

3.1.1 Environment

The first step is to create an environment to run the pedestrian simulation. The environment
could have been a simple scene created with blocks, such as the one shown in Section 3.2, but the
idea was to create a more complex and realistic simulation. Therefore, the tool OpenStreetMap*
was used to obtain the data of a real city. The area selected for the simulation is part of the
city centre of Sheffield, UK. Figure 3.3 shows the area in OpenStreetMap together with the final
3D model of the environment. The tool OSM2World? was used to convert the OpenStreetMap
data into a 3D model before importing it into the game engine. Some modifications were made
to the model prior to the import: imperfections on the ground were removed, tree models were
substituted with a new 3D model, and a few materials were replaced.

3.1.2 Character Models

The pedestrians are rendered as instances of eight base character models. The advantage of
using instances is that all of them are drawn in a single draw call. Five different outfits for
each model were created with varying hair and clothing colour. This gives a total of 40 models
to produce a more heterogeneous crowd. The characters were created with the free online
tool Autodesk Character Generator®. Unreal Engine does not allow the instance creation of
models with skeleton and animation. Therefore, this approach could not be used to render the
crowd. The solution to this problem was to remove the skeleton of the models and create a

"https://www.openstreetmap.org/
2http://osm2world.org/
3https ://charactergenerator.autodesk.com/
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(a) (b)

Figure 3.3: (a) Map of the selected area in OpenStreetMap. (b) Part of the final 3D environment
in Unreal Engine.

keyframe vertex walking animation using the software Autodesk 3ds Maz* (Figure 3.4). Once
the animation was ready, an Unreal script for Autodesk 3ds Max was employed to convert the
animation into a texture. This texture is applied to the Unreal material used in the static meshes
of the characters to animate the pedestrians. Since the animation is embedded in the material,
it could not be stopped when agents were not moving. The issue was addressed by creating an
idle animation, following the same process, and blending both animations based on the agent
speed.

3.1.3 Agent model

The simulation module was developed using the FLAME GPU framework, and it is based on
the work done by Karmakharm et al. [90]. An adapted version of this work was created to
meet the requirements of the system. The FLAME GPU simulation requires an zml file to
define the agent variables and functions. The agent-based simulation uses the social forces
model [58] to determine the movement of the agents. This is a relatively simple model but
can be implemented on GPUs and it is sufficient to support the combined sketching work and
grid/navmesh use. More complex agent models could be used. The agent motion is the result
of the weighted sum of three forces.: (i) The pedestrian avoidance force for inter-agent collision
avoidance. This is computed taking into account the position and velocity of nearby agents;
(ii) The collision force used to prevent agents colliding with the environment; (iii) The goal
force to guide agents to their destination. The calculation of the collision and goal forces differs
depending on the use of grid or navmesh. The force weights and some constant parameters (e.g.
agent radius) were tuned by trial and error and are not modified by user inputs. Sections 3.2
and 3.3 explain how these forces are calculated for each navigation method.

‘http://www.autodesk.co.uk/products/3ds-max/overview
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Figure 3.4: Frames of the character walking animation.

3.1.4 Sketching

The first step to sketch on top of the environment is to deproject the mouse screen position to
the 3D world. Then, this position must be projected to the plane where the simulation takes
place. To do this, Unreal Engine provides a function to transform the mouse location from
2D screen coordinates into 3D world coordinates. This function returns the position and the
direction of the cursor. Then, a line trace is performed, starting from the cursor location in
world coordinates. This information is used to build a line and check the intersection with the
environment (Figure 3.5). The system performs this task every frame if the left mouse button
is being pressed. The number of points tested depends on how fast the user sketches the line.

Mouse position in 3D world

Environment

Figure 3.5: Line trace from mouse position in 3D world coordinates where collision point is
indicated in red.

The game engine offers a line trace function that returns the hit object and the coordinates
of the collision. If the ground plane is hit, the impact coordinates are stored in an array that
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represents the line sketched. The point sequence must be sampled to reduce noise and ensure
a minimum number of equidistant points. This sampling can be done during the sketch by
eliminating points within a specific distance between previous samples, or after completing the
stroke in several ways [126]. An example is polyline approximation. This method is used in the
Teddy [68] interface; a polygon is formed from the sketch by connecting the first and last point,
then the polygon is sampled to have edges of the same size. Other methods include keeping
every ny, point and curve fitting. The method used in this research is polyline approximation.

The user stroke is sampled to create line segments of equal size. The distance between two
consecutive points must not be greater than the specified size (20 units in Unreal). This gap
between captured points might be large for quick strokes. Therefore, it is necessary to add
twenty points between each pair of consecutive captured points (Figure 3.6). The new point
sequence now can be sampled at every 20.0 units to get the starting and ending point of every
line segment.

(c) (d)

Figure 3.6: (a) Line sketeched by the user. (b) Red points are captured from the user sketch
and blue points are automatically added by the system. For this illustration, less than twenty
points were added between each pair of samples. (¢) New equidistant points obtained. (d) Final
barrier created from the sketch.

This section described the components that are used in both the grid and the navmesh
approach. The following sections explain in detail the work done for each navigation method.



CHAPTER 3. SKETCH-BASED CONTROL AND NAVIGATION METHODS 40

3.2 The grid-based approach

The objective of the system is to allow real-time user control of the movement of the agents in an
easy and intuitive manner. In this approach, the user can specify the pedestrian spawn and exit
locations, create barriers to block pedestrian movement and force pedestrians to follow a path
by sketching lines in the environment. All the strokes update the underlying grid in real-time
affecting the movement of the agents. Two types of map are obtained from the grid: collision
and navigation (Figure 3.7). These maps guide pedestrians to their destination.
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Figure 3.7: Collision (a) and Navigation (b) maps obtained from the environment shown in
Figure 3.8.

3.2.1 Environment Representation

The environment grid is obtained by getting the z value of the environment at the centre of
each cell. A threshold height determines if the cell contains an obstacle or a walkable area. This
method allows the use of 3D environment models since the grid can be quickly obtained before
starting the simulation. The user can define the position of the entrances/exits by sketching
lines on the environment. The stroke position is mapped to a cell of the grid and marked as
an entrance or exit. Figure 3.8 shows a simple environment consisting of blocks and its grid
representation. The grid shows obstacles in red, entrances/exits in green and walkable cells in
white. Edges of the environment are considered obstacles to avoid pedestrians walking out of
bounds. Figure 3.9 shows a top view of the final environment with a low-resolution grid to
illustrate the idea of the grid. The resolution of the grid used for the simulation is much higher
to represent the environment accurately.
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(a) (b)

Figure 3.8: (a) Toy environment formed by 9 blocks. (b) Grid representing the environment.
Obstacles, exits and paths are represented by red, green and white cells respectively.

Figure 3.9: Top view of the environment divided into a low resolution grid for illustration
purposes.
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Collision map

This map is represented by a 2D array where each cell contains x and y components of the
repulsive force of the obstacles to push away pedestrians. There are two types of objects for
this map: (i) static, which will never change throughout the simulation, and (ii) dynamic, which
could be added, cut or deleted by the user at any time. The collision map is initialised with
the static objects of the environment. Empty cells are assigned with ‘0’ whereas obstacles are
marked with -1’. Dynamic obstacles update the collision grid while the simulation is running.
The last step is to compute the z and y force components of every cell with a ‘-1’. Since the
desired force is repulsive, its direction must be pointing to cells with no obstacles. For each
marked cell, its eight neighbours are analysed, and the normalised sum of forces of the empty
neighbours is used as the resultant force component. Normalising the result means that all the
occupied cells generate the same force strength. This could be improved by adding weights to
differentiate types of obstacles. For example, the repulsive force exerted by buildings should be
stronger to avoid crowd walking through them (See section 3.2.5). Figure 3.10 shows an example
of an obstacle cell (the blue cell). Adjacent walkable cells are assigned with a normalised force
based on their position relative to the processed cell. For instance, the top neighbour receives a
force of (0,1). In this case, the resulting force is the same as the top-left neighbour after adding
all the forces and getting its unit vector.
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Figure 3.10: Resulting repulsive force (in blue) of the cell in the centre. Black arrows represent
the direction of empty neighbouring cells with respect of the processed cell, red cells represent
obstacles.

Figure 3.11 shows the steps to produce the final collision map for the environment shown
in Figure 3.8. First, the environment grid is computed. Second, cells are assigned with a value
depending on their state (obstacle or empty). Last, a repulsive force is calculated for each
obstacle cell based on its neighbours.

Navigation map

Navigation maps are used to guide the pedestrians from every position in the environment
towards their assigned exit following the shortest path. One map is generated per exit. Every
map is represented by a 2D array containing a force pointing towards the specified exit in every
walkable area cell. The array is initialised with ‘0’, and obstacle cells are filled with ‘-1’ following
the same procedure as the collision map. The cells corresponding to the exits are set to a ‘-2’
value. A wavefront propagation algorithm is used to fill the remaining reachable cells. This
algorithm works as follows:
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Figure 3.11: (Left) Initial grid obtained from the environment. (Centre) Two-dimensional array
where ‘-1’ indicates obstacles and ‘0’ walkable areas. (Right) Final collision map after computing
the force of each cell.

Adjacent cells to an exit are set to ‘1.

The immediate neighbouring cells (only the four cardinal directions) that are not exits or

obstacle are set to currentvalue + 1.

The second step is repeated for every visited cell until the array is filled.

Walkable cells surrounded by obstacles are not modified by the algorithm; therefore, no
force is assigned.

The final step is to compute the x and y force components of every walkable cell. For each
element, the values of the neighbouring cells are compared. The final force is in the direction of
the lowest value cell. An example of a wavefront propagation algorithm and a navigation map
are shown in Figure 3.12.

The shortest path, created by the navigation maps, produces non-realistic behaviour. This
issue is more evident in open areas. In Figure 3.14(a), it can be seen that all the cells are
pointing to the middle line, which is the shortest path. This navigation grid produces unnatural
pedestrian flows since agents will walk in a single line. This problem is addressed by applying a
smoothing algorithm to the navigation maps in order to create more realistic paths.

The main idea of the algorithm (Algorithm 1) is to follow the shortest path from each cell to
the goal, pushing the visited cells into a stack. The sum of forces is calculated in reverse order
from the last element to the initial cell of the stack. The algorithm is terminated early if any
cell neighbour is an obstacle. Figure 3.13 illustrates the steps of the algorithm. The resulting
grid (Figure 3.14(b)) forces pedestrians to spread along the path rather than following the same
line.

3.2.2 Agent motion

As mentioned earlier, the movement of the agents is driven by three forces: navigation, collision
and pedestrian avoidance. The first two forces are based on the collision and navigation maps,
and the location of the agents. Figure 3.15 shows the set of maps created for the toy environment
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(a) (b)

Figure 3.12: (a) 2D array after applying wavefront propagation algorithm. Red, green and white
cells represent obstacles, exits and walkable areas respectively. The number in each cell is the
distance to the exit. (b) Final navigation map, where red arrows represent the force directions.
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Figure 3.13: (a) Initial grid after applying the wavefront algorithm. The numbers indicate the
distance to the goal; the blue colour indicates the starting point and red colour the exit. (b)
The shortest path is indicated in blue. (¢) The sum of the forces is calculated in reverse order
for each blue cell, starting from the goal. The forces are divided into x and y components. (d)
The resulting force is computed.

with four exits shown in Figure 3.8. The agent positions are mapped to corresponding cells of
the two maps to get the collision and navigation forces. The pedestrian avoidance force is
computed using the position and velocity of each agent within a certain radius. The resulting
force that determines the movement of the agents is calculated as a weighted sum of the three
forces. Pedestrians are spawned at every entrance/exit location and are assigned a random exit.
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(a)

Figure 3.14: (a) Navigation map before applying the smoothing algorithm. (b) Same grid after
applying the algorithm. The dotted circle shows a zoomed in area to highlight the direction of

the vector field.

Collision
Map

Navigation
Maps

Figure 3.15: Grids generated for a simple, illustrative environment with four exits. There is one
common collision map and one navigation map per exit. Spawn and exit points are marked in

green.
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Algorithm 1 Smoothing algorithm

for all cells do
ForceDirection[cell] < 0
end for
for all walkable cells do
enqueue(cell)
push(cell)
while queue not empty do
currentCell + dequeue()
minimum <— get Lowest N eighbour(currentCell)
if minimum # exit and minimum # obstacle then
enqueue(minimum)
push(minimum,)
end if
end while
while stack not empty do
currentCell < pop()
minimum <— get Lowest N eighbour(currentCell)
if ForceDirection[minimum] # 0 then
ForceDirection[currentCell] + = ForceDirection|minimum]|
end if
direction < getDirection(minimum)
ForceDirection|currentCell] + = direction
end while
FinalForce[cell] < getForce(ForceDirection]|cell])
end for

3.2.3 Sketching

The system allows users to specify entrance/exit locations, create barriers to block pedestrian
movement and force pedestrians to follow a path by sketching lines in the environment. After
sketching, the information for newly created barriers and flow lines is communicated to the
simulation module through the shared memory segment residing on the CPU (Figure 3.1). From
Unreal, sketched data is copied to the shared memory segment. The simulation module reads
this data and uses it to recompute the maps, which are then copied to the GPU to process the
next iteration of the simulation. After the iteration, the simulation module copies the pedestrian
positions back to the shared memory for Unreal to use in visualisation. Figure 3.16 shows the
menu interface provided to the user. The following list briefly describes the functionality of
every option:
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e Barrier: Sketch a line on the floor plane to build
a barrier from it.

e Arrow: Sketch a line on the floor plane to spawn
a flow line in the environment.

e Delete: Select a barrier and delete it.
e Cut: Cut part of existing barriers.
e Undo: Undo the last action.

e Exit Probability: Modify the probability of a
pedestrian walking towards a specific exit.

e Camera Speed: Adjust the camera movement
speed.

e Save: Save the current environment and barriers
to a file.

Quit: Exit the simulation.

Figure 3.16: Main grid menu.

Barriers

The user can create, cut and delete barriers using the mouse. The Barrier button of the menu
enables line sketching by holding down the left mouse button and dragging the mouse. Once the
sketch is completed, releasing the mouse button will spawn a barrier replacing the drawn line.
The user input is mapped to the grid. The affected cells are marked as obstacles (‘-1’), and all
the maps are recalculated. This process is shown in Figure 3.17. The first image shows a line
sketched by the user, followed by the barrier created after completing the stroke. Figure 3.17c
shows the updated collision map. Figure 3.17d and 3.17e show pedestrians walking through a
gap in the barrier and the corresponding collision map.

Flow Lines

The flow of pedestrians can also be controlled by drawing flow lines. The Arrow button enables
this functionality. The sketching and sampling process is identical to the barrier creation. An
arrow is drawn in the environment, pointing towards the direction of the user sketch (see Figure
3.18b). This flow line is mapped to all the navigation maps, replacing the previous force values
of the involved cells. An alternative would be to blend the new values with the existing values.
However, replacement avoids the problem where overlapping opposing arrows could cancel out
their respective forces, resulting in a null zone of no movement. The width of influence of the
arrows is set to three cells and is not currently user-configurable.

A potential problem may occur when a flow line force and a neighbouring cell force of the
navigation map are completely or nearly opposite. A pedestrian walking in that area could
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(d) ()

Figure 3.17: (a) Line sketched by the user. (b) Barrier spawned in the same place after the
stroke. (c) Collision map updated with the new obstacle. (d) Crowd walking through a barrier
gap. (e) Collision map reflecting the cut barrier.

become ‘trapped’ by those two forces, circulating in a small area. The issue is addressed by
considering the opposite flow line cells as obstacles. The navigation map is recalculated, avoiding
the opposing arrow (see Figure 3.18d). As a result, pedestrians avoid walking into the cells
with opposite direction. In densely crowded environments, agents might be pushed into these
undesired flow lines. In this case, agents will follow the arrow and then retake their original path,
walking around the flow line, to their destination. This is a simple solution for a complicated
problem and can cause sharp turns. Patil et al [132] solved this problem by assigning a cost
to each cell. This cost depends on the direction in which the cell is traversed respecting the
sketched flow line.

3.2.4 Results

The simulation was tested on a PC with the following specifications: Intel Core i5 6500 S Quad
Core 3.2GHz 3.6GHz Turbo 6MB Cache, 2x Corsair 8GB Module DDR4 3000Mhz, and NVIDIA
GeForce GTX 1060 SC Gaming 6GB GDDR5 1280 Core VR Ready. The performance of crowds
with different sizes is listed in Table 3.1. Figure 3.19 shows a simulation running of a 50,000
pedestrian crowd at 15 frames per second.
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Figure 3.18: (a) Line sketched by the user and (b) arrow created when finishing the sketch.
Navigation map (c) before and (d) after the flow line.

The system provides an intuitive graphical way to interact with the simulation by modifying
the environment and influencing the pedestrian movement. This is illustrated using a range of
scenarios: path control using barriers (Figure 3.20), controlled lane formation (Figure 3.21) and
the use of turnstiles to control movement (Figure 3.22). A video of the system is available at
https://tinyurl.com/y6dusa8t. Figure 3.20 shows pedestrians adjusting their path to avoid the
barriers created by the user. A barrier is used to block off access to one corridor, and multiple
barriers are used to produce a snake of movement for a group of pedestrians.

Figure 3.21 shows lane formation control. Such motion can be observed in real crowds, for
example, when groups of pedestrians walk in opposite directions at road crossing points. This
behaviour can be simulated by sketching opposite arrows next to each other. In Figure 3.21,
multiple lanes are created in the same corridor, and pedestrians avoid collisions with pedestrians
walking in a different direction. While lane formation can emerge in agent-based simulations,
the sketch-based system offers easy control over where it occurs.

Figure 3.22 shows the use of barriers, cuts and arrows to create turnstile-like behaviour, as
might be seen at the entrance/exit of a train station. A barrier is created to block the path,
and two holes are cut to allow pedestrian flow. Pedestrians trying to walk through a narrow
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No. of Agents | Frames per second
1,000 90-91
5,000 82-84
10,000 49-50
20,000 26-27
50,000 14-16

Table 3.1: System performance for multiple crowd sizes.

Figure 3.19: Simulation with 50,000 pedestrians running at 15 frames per second.

Figure 3.20: Pedestrians following the path created by barriers.
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Figure 3.21: Lane formation behaviour simulated with multiple flow lines.

space in opposing directions cause congestion for each turnstile, as illustrated in Figure 3.22c.
To address this issue opposite arrows are drawn, one in each gap, to force pedestrians to move
in the specified direction. A similar scenario is shown in Patil et al’s work [132]. However, a
predefined environment is needed in their work, whereas in this system the entire scenario can
be recreated by real-time sketching at any position in any environment.

This sketching approach can be compared to other research work. Jin et al’s work [73] uses
flow fields to control multiple crowds, which can be updated in real-time by the user adding or
deleting ‘anchor points’ with associated direction. However, as the number of points increases,
the generation of the vector fields by radial basis functions based vector interpolation becomes
more expensive, having an impact on the simulation performance. In this research, the number
of arrows does not affect the performance since only the existing grid forces are altered. Oshita
and Oqiwara’s work [129] uses ‘guiding paths’ for pedestrians, but does not allow the user to
update these in real-time. Also, neither of these approaches has the feature of adding obstacles
to modify the environment.

3.2.5 Limitations

The sketching approach is an intuitive way to control certain aspects of the simulation. However,
the grid-based navigation approach also has some issues and disadvantages. First, a serious
drawback is evident in dense crowds where the sum of repulsive forces between agents may
result in a value greater than the force exerted by obstacles in the environment. This problem
leads to pedestrians walking through buildings, as shown in Figure 3.23. Second, an issue with
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Figure 3.22: Simulation of turnstile behaviour. (a) Pedestrians moving towards their assigned
exit. (b) Agents changing direction after a barrier was created. (c) Congestion created due to
opposing agent flow in small gaps. (d) Free pedestrian flow following the direction specified by
the flow lines.

the navigation map is homogeneity since all the agent walking towards the same exit will follow
the same path. Third is poor scalability — the resolution of the grid has to be increased for larger
environments for a more accurate representation. High resolutions lead to increased memory
usage and more computation time to generate the navigation maps. Fourth, modifying the
environment updates the underlying grid that controls all the pedestrians. Therefore, drawing
guiding paths for individual agents or small groups of agents is not possible. Last, pedestrians
trapped between obstacles do not move since they are not able to find a way to their destination
(Figure 3.24). The last two limitations are not specific to the grid but to the sketch approach.
Sketching on top of the environment affects the entire crowd. Creating a flow line for a specific
group of agents would require an extra copy of the environment specific to the group. The issue
of trapping pedestrians between obstacles exists since users can freely sketch elements. The
system should check if new elements cause any problems to the existing crowd before updating
the environment. This would involve ensuring, after each sketch, that there is a clear path from
every polygon to all the exits. Chapter 4 explores further uses of sketching to control only a
group of agents.
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Figure 3.23: Pedestrians walking through buildings.

Figure 3.24: Pedestrians trapped between barriers.
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3.3 Navmesh

A navmesh is a mesh of polygons that represent the walkable areas of an environment (see
Section 2.1.3 for details). The polygons must be convex so agents can move freely within the
polygon. An advantage of navmeshes over grids is that polygons can cover larger areas than
cells. This might reduce the memory used and the pathfinding time.

Hughes et al. [66] presented an approach where a navmesh is generated by sketching
the boundaries of non-accessible areas. Additionally, users can sketch waypoints, paths and
behaviours. However, the navmesh is not updated in real-time. This research presents three
novel contributions. First, sketching is used to update a navmesh in real-time. This includes the
ability to draw barriers, unlike previous work where a list of points was used to add an obstacle
to a navmesh [78], which is less intuitive for the user. Second, flow lines can be sketched, and
the cost of traversing each flow line can be individually changed. Third, areas can be sketched
onto an environment, similar to [66], but with explicit control being given over the percentage
of agents visiting each (waypoint) area. This section covers the implementation of these three
contributions. Chapter 4 build on the use of this data structure to add more complex features
and identify problems of modifying simulation environments in real-time.

3.3.1 Environment Representation

The underlying navmesh used to represent the environment and determine the movement of the
agents is created with Recast, which is an open-source tool used in games to automatically create
a navmesh from a 3D environment. The tool includes Detour, which is a toolkit for navmesh
path planning using the A * algorithm. Recast divides the environment into tiles (i.e. a grid) and
then creates the navmesh for each tile individually to form the polygons representing walkable
areas. The polygons of adjacent tiles are connected to allow movement between tiles. This tiled
approach permits the real-time update of individual tiles rather than the entire navmesh. Figure
3.25 shows a top view of the environment on the left, and the navmesh created for the highlighted
area on the right. Later updates are only made in affected tiles. This feature facilitates the
real-time modification of the mesh. Recast follows several steps to create a navmesh from input
geometry:

e Voxelisation: The first step is to discard triangles based on the maximum slope defined by
the user. The remaining triangles are rasterised into a grid.

Filtering: Voxels that are not walkable are discarded. This is determined by agent
parameters such as height and radius.

e Partition: Walkable surfaces are partitioned into simpler regions for easier triangulation.

Identify contours of the regions.

Build polygons to create the mesh representing the walkable surfaces.

Create a detailed mesh to obtain the polygon heights.
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(a) (b)

Figure 3.25: (a) The tiled navmesh created with Recast and displayed in Unreal Engine. The
underlying square tile pattern is shown, as well as the polygons created to connect different
parts of the environment such as buildings and trees. (b) The environment where the simulation
runs. The red rectangle highlights the area shown in (a).

The Recast software was modified to support sketching and to update the navmesh according
to user actions. After every navmesh change, the shortest path from every polygon to the target
is recalculated. The navmesh is represented by a structure storing the polygon data (see code
snippet below). The structure includes the number of vertices, edges, neighbours and the route
of the shortest path to every exit. This information is sent to the simulation module through
the shared memory segment described in Section 3.1 and Figure 3.2.

struct poly

{
int count;
int *xvertexCount ;
int xfirst_vertex_index;
int xxedges;
int xxneighbours;
int kxxroutes;

I

struct vertex

{

int count;
glm::vec3d xvertices;

&

3.3.2 Pathfinding

A navmesh can be represented by a graph. This graph is formed by nodes (polygons) and the
edges shared by adjacent polygons. Each node contains a list of neighbouring polygons and the
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connecting edges. The navmesh includes all the walkable areas of the environment. Some of
these regions might not be reachable; thus, the polygons representing these disconnected zones
are discarded to accelerate the pathfinding process and reduce the graph size. The resulting
graph is used to calculate the shortest path from every polygon to all the exits and areas. The
A* algorithm is used to compute the shortest path - this uses a heuristic value to guide the
search for better performance. A route is computed for each exit and area. To create the route,
every polygon stores the adjacent polygon leading to the corresponding target. In this manner,
agent movement can be calculated knowing the current polygon and the assigned exit/area of
the agents. A grid search is used to find the polygon faster. Every polygon is stored in a cell of
the grid based on the vertices of its bounding box. The agent location is then used to obtain
the grid cell and to test containment in every polygon of that cell.

One approach to generate a path is by following the middle point of the edges connecting the
polygons of the shortest route. However, this would produce unrealistic paths where pedestrians
would move along a zigzag course. This problem can be solved by smoothing the resulting path.
The algorithm employed to achieve this is called The Simple Stupid Funnel Algorithm [31]. This
technique finds the corners of the path staying inside the polygons found by the A* route. Figure
3.26 shows the navmesh of an environment area with three exits in red. The lines starting from
the middle of the area indicate the shortest path found from that point to every exit.

Figure 3.26: Part of the environment with three exits in red. The shortest path from the
centre to each exit is represented by the coloured lines. The polygons crossed by the paths are
highlighted in white.

3.3.3 Agent motion

The simulation again uses the social forces model to control the agent movement. The forces
are: (i) The pedestrian avoidance force for inter-agent collision avoidance. (ii) The collision
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force used to prevent agents from colliding with the environment. The polygon edges without
neighbours exert a repulsive force on agents depending on the distance; (iii) The goal force to
guide agents to their destination. This force is obtained from the shortest path found by the A*
and the funnel algorithm. The parameters of the social forces model were tuned by trial and
error and cannot be modified by the users.

The FLAMEGPU module needs to store information about every agent. This data includes
id, position, destination, storyboard followed, among others. The full list of agent properties is
shown in the listing below. Not all this information is required by Unreal to render the crowd;
it only uses a random texture, id, position, velocity to obtain the rotation, and speed.

struct agent 2 float x;
{ 3 float y;
int id; 4 float velX;

int navmesh; 6 int currentPoly;

7 int nextPoly;

1
1
1

int texture; 15 float velY;
1
int entrance; 1
1

int exit; 8 int storyPosition;
int story; 19 float speed;
int group; 0 float currentSpeed;

int area; float tempSpeed;

NN N

int behaviour;

3.3.4 Sketching

The interface, implemented in Unreal, allows the user to perform a series of actions by sketching
or clicking in the environment. These actions include definition of agent spawn and goal
locations, sketching obstacles to alter the crowd movement, creation of flow lines to guide
the motion of the agents, drawing areas to create waypoints, and definition of journeys via
storyboards. Figure 3.27 shows the menu interface of the navmesh-based system. The options
are described in the following list:
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e Select: Click on elements previously created to
open a configuration window.

e Entrance/Exit: Select a polygon edge to create
an entrance/exit.

e Barrier: Sketch a line to create a barrier.
e Flow line: Sketch a line to create a flow line.

e Area: Sketch a shape on the environment to
create an area.

e Storyboard: Opens a menu to create/edit
storyboards. Chapter 4.

e Group: Sketch a shape to select a group of
agents and create a storyboard specific to the
group. Section 4.1.

e Show timeline: Open timeline interface to create
events at specific times. Section 4.2.

e Show navmesh: Show/hide navmesh.
e Show info: Open information panel.
e Simulation Speed: Adjust the simulation speed.

e Camera Speed: Adjust the camera movement
speed.

e Start: Start simulation.

e Quit: Quit simulation. Figure 3.27: Main navmesh menu.

The first step to update the navmesh via sketching is to capture the user sketch and sample
the line into equidistant points. Each sequence of points can represent an obstacle, a flow line
or an area edge. Then, the line is mapped to the navmesh. This is achieved by marking the
area covered by the sketch in the navmesh. These regions are given an id to differentiate among
obstacles, flow lines and areas. The tiles affected by the user sketch are identified, and the
navmesh of these tiles is rebuilt with the new information. Figure 3.28 shows the sketching
process. Column (a) shows the initial navmesh, column (b) illustrates the three user strokes.
Each colour line represents a different element: blue for barriers, green for flowlines and orange
for areas. The elements created and updated navmesh are shown in column (c).

Entrances and Exits

The entrances and exits are created by selecting a polygon edge with no neighbours. These
locations define the spawning position of the agents and also serve as goals. Figure 3.29 illustrates
the creation of an entrance (yellow) and an exit (red). The user can set the number of pedestrians
to be spawned, the emission rate and the exit probability per entrance.

Entrances and exits store information needed for agent navigation. This data includes
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(a) (b) (c)

Figure 3.28: (a) Original navmesh. (b) User-sketched lines. (c¢) Updated navmesh and the
elements created: barrier, flowline and area.

(a) (b) (c)

Figure 3.29: (a) Original navmesh. (b) Yellow entrance created on the polygon edge selected.
(c) Red exit created on the polygon edge selected.
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the number of entrances/exits, state (open/close), the index of the polygon and the edge.
Entrances also store the number of storyboards assigned. The code snippet below illustrates
this information.

struct entrance

{

int count;
int xnoStoryboards;
int xstate;
int xpoly;
int xedge;

B

struct exit

{

int count;
int xstate;
int *xpoly;
int xedge;

Barriers

The barrier obstacles are created by marking the affected navmesh area as null. A null area
cannot be crossed and is not used in navigation computation. The process is made efficient by
using the tiles that the relevant navmesh area overlaps. Each overlapped tile is divided into an
integer grid of voxels, the size of which can be controlled by a Recast parameter. Every voxel
in the grid is tested to determine if it lies within the sketched obstacle region, at which point
it is marked as empty. (The use of integer grid coordinates speeds up the calculation process,
but has implications when sketching flow lines that cross tile boundaries—see next section.)
Using this information, the contours of the updated walkable areas inside the affected tiles are
calculated, and these are used to re-triangulate this area to obtain the new polygons of the
navmesh. Figure 3.28 shows the process of producing a barrier by sketching a line—mnavmesh
polygons are generated on both sides of the barrier. Figure 3.30 shows how the addition of a
barrier changes the shortest path from the starting point (yellow entrance) to the goal (red exit).

Flow lines

A similar procedure to that for barriers is used to create flow lines. The main difference is that
the area is given an id to identify it as a flow line, rather than labelled as null. The sketched flow
line is divided into a set of polygons which are traversable only in the direction of the sketch
(Figure 3.28). Currently, the size of these polygons is not configurable by the user. The cost of
traversing the flow lines can be changed individually—a higher value means that a flow line is
more likely to attract agents from the surrounding area.

The addition of flow lines converts the navmesh in the flow line area into a directed graph
which means that adjacent polygons are not necessarily connected for navigation purposes.
Therefore, agents inside flow lines must follow the complete flow line until the end of it is reached.
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(b)

Figure 3.30: (a) Shortest path in blue from the entrance (yellow) to the exit (red). (b) A barrier
has been added and the shortest path is recalculated.

The routes to areas and exits are recalculated when the cost of the flow lines is changed. Figure
3.31 shows how flow lines impact the path followed by agents. The new path is no longer the
shortest, but the preferred path since flow lines attract pedestrians.

Sketching flow lines that cross tile boundaries complicates the process of creating a new
navmesh. These situations occur when the same flow line area is mapped to two abutting tiles,
as shown in Figure 3.32. Numerical conversion issues can result in a misalignment between
adjacent flow line polygons. When mapping the sketched flow line to the tile, a conversion from
floating-point (line coordinates) to integer (tile coordinates) is performed, and this conversion
may produce a misalignment. This problem generates small gaps where pedestrians can ‘escape’
from the flow line. In Figure 3.32, pedestrians would be able to leave the flow line early. The
problem was solved by modifying the adjacency conditions of polygons from different tiles.
Regular polygons from one tile are connected to the flow line polygons of the adjacent tile, but
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(a) (b)

Figure 3.31: (a) Shortest path in blue from the entrance (yellow) to the exit (red). (b) A flow
line has been added and the path is recalculated.

not vice-versa.

Figure 3.32: Flow line polygons misaligned when crossing tile boundaries.

It is possible to overlap flow lines, and pedestrians are free to move between flow lines
at a crossing point. In Figure 3.33, pedestrians follow their specifi