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Abstract 

Nowadays, smartphones and other mobile devices are playing a significant role in the 

way people engage in entertainment, communicate, network, work, and bank and shop 

online. As the number of mobile phones sold has increased dramatically worldwide, so 

have the security risks faced by the users, to a degree most do not realise. One of the 

risks is the threat from mobile malware. In this research, we investigate how supervised 

learning with evolutionary computation can be used to synthesise a system to detect 

Android mobile phone attacks. The attacks include malware, ransomware and mobile 

botnets. The datasets used in this research are publicly downloadable, available for use 

with appropriate acknowledgement. The primary source is Drebin. We also used 

ransomware and mobile botnet datasets from other Android mobile phone researchers. 

The research in this thesis uses Genetic Programming (GP) to evolve programs to 

distinguish malicious and non-malicious applications in Android mobile datasets. It also 

demonstrates the use of GP and Multi-Objective Evolutionary Algorithms (MOEAs) 

together to explore functional (detection rate) and non-functional (execution time and 

power consumption) trade-offs. Our results show that malicious and non-malicious 

applications can be distinguished effectively using only the permissions held by 

applications recorded in the application's Android Package (APK).  Such a minimalist 

source of features can serve as the basis for highly efficient Android malware detection. 

Non-functional tradeoffs are also highlight. 
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 CHAPTER 1 

Introduction 

This chapter discusses the problems faced by mobile phones users. These problems motivate the 

research in this thesis, and it gives the proposed research hypothesis. Lastly, a brief overview of 

all remaining chapters is outlined. 

 Motivation  

 Mobile Phones Technologies 

The speed and reach of communications have seen many significant advances over 

several millennia. Early examples would be the use of drums, smoke signals in 200BC 

and carrier pigeons in the 12th century. The telegraph was the first use of electric signals 

for communication and was followed by landlines, the dial-up Internet, SMS, broadband 

Internet, MMS, Skype, Facebook, Smartphone, and more. In the 21st century, high 

bandwidth communication is demanded by everyone, and the emergence of high-speed 

broadband networks has led to a myriad of applications and communication-intensive 

services.  

 

Communication has become more accessible across the globe. Audiences have 

information at their fingertips. Today the communication devices used are not limited 

to telephone and fax; modern communication uses a range of devices, e.g. laptops, PDAs, 

mobile phones, and smartphones. Shifts within the nature of interactions are reflected in 

the continuously quoted 'generation' concept. Mobile services have grown from the first 

generation (1G) for voice traffic to LTE and the fourth generation (4G) [2]. Now, 5G [3] 

becomes trending for mobile phones developer to win the heart of the users, even not all 

mobile service provider provides the service. In [4] Fowler is claimed the 5G line is not 

stable yet and not suggests users in the US upgrade their mobile phones and line to 5G. 
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The 6G technology still under development, and as mentioned in [3], it will bloom in 

2030. The evolution of mobile technology and services are presented in Figure 1 below. 

 
Figure 1.1  Evolution of Mobile Technology and Services [3] 

 

As mobile phones have evolved to embrace connectivity, users have increasingly 

become the target of cybercriminals. The growth of online service access by mobile 

phone users has further increased their vulnerability.  

 Risks Faced by the Mobile Phone User 

There are now many smartphone distributors: iPhone, Samsung, Blackberry, Sony, HTC, 

Nokia, LG, and many more. The global smartphone user base exceeded three billion in 

2018 and increased to 3.2 billion in 2019 and predicted to grow to 3.5 billion and 3.8 

billion at the end of 2020 and 2021  [5], [6].  In India, in 2018, the average smartphone 

user used 1GB data per day and spent at least 90 minutes online [7]. As the emergence 

of Covid-19 in early 2020, all people worldwide ordered to stay inside (lockdown policy) 

and on average UK phone users tend to devote 2 hours and 34 minutes online on their 

smartphones each day  [8]. Smartphone users have the potential to be attacked because 

they use their mobile phone most of the time to carry out online activities such as 

checking emails, social media, working online, attend class online, etc.   
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Users often do not realise that while using the technologies for communication or surfing 

the Internet, they are exposing themselves to cyber and related crimes. The crimes 

included such as fraudulent credit card use, identity theft, hacking, financial theft, spam, 

phishing frauds, malware (spyware), network spoofing, and private data leakage [9]–

[12]. Often users might not realise that they have been attacked since attackers may cover 

up their crime by masking their true identity from the victims. Attackers who conduct 

their criminal or malicious activities on networks, computers, and mobile phones often 

employ such techniques.  

 

Cellular phone users who use their phone to access the Internet and its particular 

services face several risks. One of the mobile phone's benefits is that it can hold a great 

deal of private and personal data and so mobile phones become objects that offer 

significant prospects for criminals' intent on manipulating them. Mobile phones may be 

subject to a variety of risks: limited battery life, private data leakage, exposure to theft 

or other physical loss, unsecured Wi-Fi, improper session handling, vulnerability to 

malware, and camera-based attacks [9]–[11], [13]. 

 

Vulnerability to mobile malware (Trojans, viruses, and spyware) is also a threat to 

mobile phone users [14], [15].  Malware is software installed on a user's mobile phone 

that can perform mischievous actions.  Spyware (one type of malware) is software 

created to collect private data without the knowledge or approval of users. Malware 

attacks are usually not detectable by users. A virus can be distributed via Bluetooth, and 

in 2004 the first widespread Bluetooth worm sample was witnessed, called Cabir [14], 

[15]. Malware with full control of a smartphone can use it as an eavesdropping device 

by turning the smartphone camera or microphone on [9].  The attacker can listen to all 

conversations made, record a video, or take a picture of smartphone victims. A Trojan 

horse can carry malicious code in an attractive package in a smartphone when users are 

installing apps [10]. Such a Trojan can detect a user's location by activating the phone's 

GPS functionality. 

 

The camera-based attack is one example of mobile phone camera security malware [11]. 

Attackers could slyly take pictures and record videos by using the phone camera without 

the smartphone user realising it. Attackers can use spy cameras in malicious apps, with 



CHAPTER 1 : INTRODUCTION 

4 

 

the phone camera launched automatically without the knowledge of the device owner. 

Captured photos and videos can be sent out to the remote intruders via Wi-Fi. 

 

Network threats occur when the mobile phone is connected to public Wi-Fi or Bluetooth. 

When the mobile phone user connects to public Wi-Fi, malware may be automatically 

installed on the mobile device. The user also faces Wi-Fi sniffing while they are 

connected to the public Wi-Fi, and there is a possibility they will be subject to attack by 

viruses spread by other users in the network. Users might not be aware that while 

connected to others' Bluetooth, they might be in danger from Bluetooth attacks. The 

Bluetooth attacks such as Bluejacking (Bluetooth spam), Bluebugging (attackers 

remotely access a user's phone and use its features), and BlueSnarfing (unauthorised 

access to data usually happens over a link between the system pairing between the 

intruder and the devices).  

 

Communication-based threats usually occur on the SMS, MMS, and GSM networks. 

DDoS attacks can be spread by SMS messages sent from the Internet. The attacks can 

cause delays when the text messages overload the network. Viruses can attack MMS by 

using an attachment infected with a virus, and if the MMS is opened, the phone will be 

infected. The infected phone can cause others' phones to be infected with a virus using 

the phone contact address book. The eavesdropping attack is one example of a GSM 

network attack [9]. The Sun [16] reported Google has admitted to its workers listening 

to users private conversation using the Google Assistant, which is an example of 

eavesdropping in an Android device. 

 

Researchers have proposed a variety of countermeasures, e.g., firewalls, anti-virus 

software, anti-spyware software, IDSs, and IPSs. The prime focus of this research is to 

be combating malware by developing malware detection and classification algorithms. 

 Brief Overview of Intrusion Detection Systems (IDSs)  

An IDS was first introduced by James Anderson in his technical report "Computer 

Security Threats Monitoring and Surveillance" more than three decades ago [17]. 

Researchers have given several definitions of IDS in their papers. An IDS is a tool, a 

software program that observes and protects a network and information system from 

malicious events such as attacks, misuse and compromise or policy abuses. An IDS has 
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expectations about 'normal' or non-malicious activity. When it detects something 'odd' 

about the behaviour of a system, it can flag this as suspicious to the system administrator 

[18]–[21]. The ultimate aim of IDS is to catch perpetrators in the act before they do actual 

damage to resources.  

 

Embracing AI with IDS is considered by many researchers as a promising approach. The 

purpose of incorporating AI is to obtain significantly better and more reliable results.  Its 

use began in 1986 [22]. One promising machine learning algorithm example is GP. This 

was employed in 2010 for synthesising robust signature-based detectors for IDS by Sen 

et al. [23]. The results reveal GP can perform better than other AI techniques (SVM and 

Decision trees) as a lightweight method for detecting known flooding and route 

disruption attacks against the routing protocol AODV [23].  

 

The backdoor detection system using an ANN and GA was proposed by Salimi and 

Arastouie in 2011 [24]. They developed a novel approach to reveal backdoor attacks 

using the system and network behaviour. Previous research on machine learning in IDS 

shows encouraging results and motivates us to explore its use in-depth in this research.  

 Brief Overview of Machine Learning 

Machine learning is a branch of AI where systems can engage in self-learning from data, 

identify patterns and then make the decisions with minimal human intervention. 

Machine learning systems can "learn" as they gradually improve their performance on a 

specific task (using data) without having to be directly programmed.  

 

Machine learning techniques can be used to develop highly efficient power detectors for 

sleep deprivation or battery exhaustion attacks such as Denial-of-service power attacks, 

Malware attacks, Spyware attacks and so forth. Narudin et al. reported that malware 

could be detected using a combination of a Bayes network and a random forest [25]. 

Other researchers used ANN, GA, decision trees, SVM, and fuzzy logic to build their 

IDS [26], [27]. 

 

Evolutionary Computation (EC) has achieved promising results for IDS in previous 

research [24], [26], [28]. The details will be discussed in Chapter 2. An EA is a form of 

EC, a general-purpose population-based metaheuristic optimisation algorithm. The 
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mechanisms used in an EA have their roots in biological evolution:  reproduction, 

mutation, recombination, and selection. Perhaps the highest-profile EC algorithm is the 

Genetic Algorithm (GA) GA. Genetic Programming (GP) is a particular form of GA, 

where the essential solution representation is a tree.  

 Mobile Phone Platform 

The mobile phone OS also provides a platform for developers to create applications or 

'apps' (software programs developed for smartphones that can carry out specific 

functions). There are 2.1 million apps available for the Android platform and 2 million 

at Apple's App Store in 2018 [29]. Varieties of mobile phone operating system are 

available, e.g. Android, Windows, iOS, and Symbian. 

 

Android is a software bundle (operating system) for mobile phones that contains an OS, 

middleware, and critical applications based on Linux OSs [30], its development starting 

in November 2007 [31]. It permits developers to write code in a Java-like language using 

Google-developed Java libraries. Various Android platforms were made available under 

[32]the Apache free-software and open-source license since its official release in 2008: 

Cupcake, Donut, Éclair, Froyo, Gingerbread, Honeycomb, Ice Cream Sandwich, Jelly 

Bean 4.1 [31], Jelly Bean 4.3,  KitKat, Lollipop, Marshmallow, Nougat, Oreo, Pie, Android 

10, and Android 11 [33]–[36].  

 

The Android platform was intended to offer an application environment that ensures 

the security of users, data, applications, the device, and the network. Android users also 

have the ability to utilise and control applications. The design includes the expectation 

that attackers would attempt to perform common attacks, i.e. social engineering attacks 

to persuade device users to install malware and attacks on third-party applications [32], 

[37], [38].  

 Summary  

The modern mobile phone stores and processes highly valuable data and has become a 

highly attractive target for attack. A number of researchers have sought to exploit AI in 

providing effective IDS. However, the area is underexplored, and in particular, we might 

ask how AI can be used to provide a robust detection framework that targets mobile 
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phones. The restrictions on resources provide challenges to develop malware detection 

for mobile phones, i.e., the actions taken by the mobile phone itself cannot be resource 

hungry. Inevitably, there are trade-offs to be made between the effectiveness of a 

detector (appropriateness of generating alarms) and its non-functional properties such 

as the speed of detection and consumption of other resources such as power and 

memory.  

 

The Android framework has been chosen as the vehicle for experimentation since there 

is a very active development community, it is a widely used platform, and it is entirely 

open source. If research results prove promising, a natural community would be 

interested in further development. It is acknowledged that the fundamental research 

questions addressed would generally apply to other mobile phone platforms. 

 

Furthermore, since mobiles are low resource platforms, we want to evolve efficient 

detectors where power and execution time, for example, are important criteria — 

accordingly, the aim to use GP in a multi-objective context. Sen et al. stated that a Multi-

Objective Evolutionary Algorithm (MOEA) could allow the combination of multi-

objective optimisation and evolutionary search [23]. We hope the combination between 

GP and MOEA can produce detectors with excellent trade-offs between detection and 

resource usage.  

 Thesis Hypothesis 

The overall thesis hypothesis is:  

  

Supervised learning with Evolutionary Algorithms (specifically genetic 

programming and the multi-objective evolutionary algorithm SPEA2) can be 

used to synthesise a system capable of detecting a wide range of attacks on 

mobile phones and do so efficiently, e.g., speedily and using limited battery 

power.  

 

This research will implement GP to evolve programs to distinguish malicious and non-

malicious applications in mobile datasets and demonstrate the use of GP and MOEA 

together to explore functional and non-functional trade-offs. Results will be compared 
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with those of the research community (whose mobile attacks datasets we acquire and 

make significant use of for case study purposes). The wide range of attacks included 

mobile malware, ransomware and mobile botnet (datasets we acquire from the research 

community). This research also seeks to use only permissions as features in the GP 

program. Permissions in Android Package format (APK) are easily accessible. If 

successful, we will be able to demonstrate highly effective and efficient detection.   

 Brief Overview of the Thesis Chapters 

The remaining chapters of this thesis are outlined below: 

 
Chapter 2. Concepts and Related Work. This section provides an overview of mobile 

phones, identifies the general vulnerabilities and threats faced by Internet users and 

identifies specific threats to, and attacks on, mobile phone users. It also explains the IDS 

concept in general and details extant IDSs for mobile phones. It identifies significant 

issues in IDS, both general and specific to the mobile phone.  

 

Chapter 3. Evolution of Malware Classification and Detection in Mobile Phones. 

This chapter starts with the background of EC and the method applied in this research 

– GP. This chapter also assesses the effectiveness of applying the GP technique. The 

discussion of why this method is chosen is also provided in this chapter. The particular 

sources of attacks targetted (i.e., malware) by the evolved detectors are explained.  

 

Chapter 4. Performance Evaluation of Genetic Programming on Mobile Phones 

Intrusion Detection System. This chapter explores the ability of GP to synthesise 

detectors to identify malware and non-malware APKs. The effects of tuning the GP 

fitness function weight parameters are also discussed to identify whether it affects the 

detection performance. 

 

Chapter 5.  Improving Resource Efficiency. This chapter focuses on non-functional 

properties such as power consumption and execution time. Non-functional properties 

such as there were identified in the literature as a major problem. The combination of 

MOEA and GP is evaluated to explore trade-offs between a specific functional property 

(detection rate) and two important non-functional properties (execution time and power 

consumption). 
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Chapter 6 Further Investigation of GP Performance on Various Threats on Mobile 

Phones. The goal of this chapter is to investigate the GP performances on other datasets 

that are acquired from the research community. (These too can be downloaded with 

sufficient acknowledgement of the researchers.) Three datasets are investigated in this 

chapter. These concern malware, mobile botnets and ransomware.  

 

Chapter 7 Conclusion.  This chapter concludes the thesis. It presents a discussion of the 

contributions of the research and identifies future work. 

 Summary of Thesis Contributions 

The research contributions of the thesis are made in Chapters 4, 5, and 6, as summarised 

below: 

• Chapter 4. This Chapter establishes proof of concept that GP can be used to 

synthesise effective classifiers to distinguish malware and non-malware 

applications in Android mobile applications datasets. It also establishes the 

importance of weight selection in the parametrization of the fitness function 

used. Optimal choices of parameters may vary between target malware types. 

• Chapter 5. This chapter demonstrates empirically how optimisation can be used 

effectively to investigate trade-offs between functional properties (detection rate) 

and non-functional properties such as execution time and power consumption. 

It shows how a specific multi-objective algorithm (SPEA2) gives the best trade-

offs between three important objectives (detection rate, power consumption and 

execution time). 

• Chapter 6. This chapter evaluates our GP based approach to three new datasets, 

demonstrating that the approach can generalise to further malware applications 

including botnets and ransomware. 
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CHAPTER 2 

 Concepts and Related Work 

This chapter starts with an introduction to mobile phones, followed by an overview of operating 

systems in mobile phones and Android security. In order to build up security solutions that are 

suitable for this environment, the understanding of mobile phone vulnerabilities and the way 

mobile phones can be attacked are identified and explained in Section 2.3. Section 2.4 and 

afterwards focus on IDSs, and lastly, the significant issues in IDS are reviewed. 

 Introduction to Mobile  

Mobile phone technologies started by the invention of the fully voice-based mobile radio 

system and the first cellular phone system in 1928 and 1977, respectively [39]. In 1955 

the first mobile telephone was launched in Europe, and it is followed by Nokia 3210 in 

1999 [39]. The 'elegant style' of Nokia 3210 design was a trigger to other mobile 

companies to upgrade their mobile phone designs. Verizon started the revolution of 3G 

in early December 2001 [39].  

 

Desktop computers and laptops manage their hardware, software resources, and 

memory for running multi-tasking programs using software known as an OS. The OS is 

a critical part of the system software in a computer system. Modern smartphones, which 

are inherently highly complex mobile computing platforms, require highly sophisticated 

OSs to service the needs of the many functions they seek to provide. The mobile phone 

OS also provides a platform for developers to create applications or 'apps' (software 

programs developed for smartphones that can carry out specific functions).  

 

 

In the mid-1990s, a few companies attempted to build and market personal data 

assistants (PDAs). PDAs are not considered to be mobile computing devices, but they 

were the forerunner to current smartphones [40]. Research in Motion (RIM) introduced 
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the Blackberry (1999), which started as a straightforward two-way pager but 

expeditiously became the most widespread mobile computing device [40].  

 

Microsoft then followed with their first OS mobile device known as Pocket PC 2000 

installed with Windows CE in 2006 [40], [41]. Several hardware manufacturers (Nokia, 

Ericsson, Panasonic, and Samsung) decided to cooperate on a typical mobile OS known 

as Symbian. In January 2007, Apple revealed the iPhone, which became the first 

smartphone used by the general community [36], [40]. Then in September 2008, Android 

was initially released by Google as a rival to iPhone and its iOS [31], [36].    

 Mobile Operating System Security 

There are four major mobile OSs: Android mobile security, iOS security, Windows 

mobile OS security and Symbian OS security. Nevertheless, here we only discuss the 

security of Android Mobile Security as in this thesis, we are investigating Android 

mobile threat. 

 Overview of Android Mobile Security  

Android is a mobile platform created by Google and the Open Handset Alliance [31], 

[36], [42]. Android versions are typically represented by 'dessert-style and sweets' names 

starting with Cupcake, Donut and leading to the latest such as Pie [31], [36], [37], [43]. 

Android delivers an open-source platform and application background for cellular 

devices. Android platform security is divided into kernel security and application 

security. The kernel security for the Android platform is associated with the Linux 

kernel, along with a protected inter-process communication (IPC) facility to allow secure 

communication between applications running in various processes [44].  

 

Android applications are able to access only a limited selection of system resources. 

Google included a collection of cloud-based services that are accessible to suitable 

Android devices with its Google Mobile Services. The security services provided by 

Google [44] are: Google Play - this is an accumulation of services that enable users to 

discover, install, and purchase applications from their Android devices; Android update 

- this delivers new functions and security updates to preferred Android devices; 

Application service -  frameworks that enable Android applications to utilise cloud 
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functionality;  Verify Apps -  alert or automatically prohibit the installing of harmful 

applications and continuously scan applications; SafetyNet - a privacy-preserving IDS 

to help Google monitor and mitigate known security risks as well as determining new 

security threats; SafetyNet Attestation - the devices are determined to be either CTS 

compatible or not using Third-party API (Android Package Interface); and Android 

Device Manager -  lost and stolen devices can be located using a web app or Android 

app. 

 

The Android security program contains design review, penetration testing and code 

review, open-source and community review, incident response, and monthly security 

updates. Android integrates industry-leading security features and works jointly with 

the developers and device implementers to ensure the Android platform and the 

environment is safe. A resilient security model is essential to allow a dynamic ecosystem 

of applications and devices constructed on and across the Android platform and 

sustained by cloud services [44].  

 

Since the early days of Android development, several improvements have been made to 

enhance security performance. Google gave assurances throughout 2014 – 2020 that the 

team was dedicated to ensuring Android is a safe environment for users and developers; 

would preserve the security and privacy of all Android users; and would enhance the 

security of the platform [38], [45]–[48].  

 

In September 2020, the Android Security Team made a promise to protect every Android 

user as the team introduce the final release of Android 11: which offers layered security 

(all parts of Android system work together to build a strong defence that runs smoothly 

and effectively), transparency and openness (keeping users up to date and sharing 

knowledge amongst Android community), and backed by Google (partnered with other 

experts to keep Android devices safe)[32]. 
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 Conclusion 

Android assists the developer in writing secure applications. It offers a type-safe 

language (Java), an enhanced security model, a successful class library, and a robust set 

of applicable and securable concepts for development on mobile phones. Android's 

framework characteristically defaults to safe behaviour unless the developer 

unambiguously chooses to share data between applications. Android's open design 

means that finding and fixing security flaws is performed by a wide range of people. 

The essential data protection is in place to ensure that if a device is lost, then encrypted 

data is not recovered. 

 

 Android is used plenty of open-source components, several of which have 

vulnerabilities which can be used by attackers to invade the smartphones and access all 

user's data and info. Linux and WebKit both have required abundant security fixes 

within the last few years, but this is not an issue for many application developers who 

seem to appreciate honesty and speedy fixes. Also, some specialists believe that making 

the code closed-source to avoid open inspection would be a delusion.  

  Threats and Attacks 

 Threats Faced by Users While Using the Internet or Networks 

The 21st Century has seen an explosion in communication around the world. In the past, 

people needed to use letters or telegrams that took a few days or longer to reach the 

intended recipient. Communication in the 20th century drastically reduced 

communications times with the emergence of the telephone, radio, fax, mobile phone, 

and email. The 21st Century has seen the emergence and rise of the webcam and 

smartphone, placing sophisticated real-time communication in the hands of over one 

billion people. However, the downside of such an explosion is that there are now over 

one billion platforms available to attack! 

 

We have accustomed ourselves to our communications being confidential, unmodified, 

and reliable. A variety of mechanisms has been developed to ensure that such properties 

hold, for example, 'seals' have been used for thousands of years to ensure the integrity 
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of documents. Threats can be thought of as potential compromises of the above (and 

similar) properties. Thus, for example, a breach of confidentiality is a threat, 

unauthorised modification is a threat, as is lack of availability. 

 

Attackers try to take advantage of each weakness in a system to fulfil their purposes [17], 

[49]. Intruders can realise security threats using a variety of communications methods. 

Attackers may use a range of tools, scripts and programs to damage our communication 

systems [49]. Threats are continually being discovered; effective intrusion detection 

remains a persistent and challenging problem and is likely to remain a significant 

research field for a considerable time to come.  

 

The detection of attacks has been an essential goal of computing since the early days of 

computing. Many authors have sought to characterise the nature of attackers and their 

attacks. In 1980, Anderson produced a technical report that is cited by most IDS 

researchers. The report is based on audit trail analysis and divides possible attackers into 

four categories: external penetrators, misfeasors, clandestine users, and masqueraders 

[17].  

 

Axelsson and Lunt defined external penetrators as users who gain unauthorised access 

to a computer of which they are not a valid user [50], [51]. For example, attackers may 

try to get a username and password using illegal software to get access to a computer or 

account subsequently.  

 

Misfeasors, clandestine users, and masqueraders can be identified as internal 

penetration agents. Internal penetrations are more common than external ones. 

Misfeasors are legitimate or valid users of the system who misuse their privileges [50], 

[51]. For example, a user having access to a computer or system account but trying to 

manipulate his or her privileges by editing or copying private data on the data server 

without getting permission.  

 

Clandestine users try to use supervisor privileges to avoid being captured and escape 

auditing access controls [50], [51].  Attackers may try to use someone else's account that 

has supervisor privileges; they then may damage or exploit private data or information 

on a server. They are challenging to catch because they have used another's authorised 
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account. It is nearly impossible to detect clandestine users by standard audit trail 

methods [17]. 

Masqueraders can be either internal users or external penetrators [17], [50]. They can 

control computers or systems using another user's username and password [51]. They 

pretend to be legitimate users. Thus, if I can obtain your authentication credentials, I can 

log onto a system as you, i.e. I masquerade as you. Masqueraders can be detected by 

how their behaviour differs from that of authorised users; for example, the attacker 

might spend most of his time browsing directories and executing system status 

commands, while an authentic user might focus on editing or compiling and linking 

programs [22], [52]. 

 Threats Faced by the Mobile Phone User 

In Q2  2020, Kaspersky detected 1,245,894 malicious installers compared to Q2 2019 at 

753 550 malicious installers have been blocked [53]. Kaspersky reported in 2018 that they 

blocked 796,806,112 attacks from online resources in 194 countries [54].  For mobiles, 

they detected 1,322,578 malicious packages, 18,912 installation packages for mobile 

banking Trojans, and 8,787 installation packages for mobile ransomware Trojans. In 

2017, Kaspersky was detecting 280,00 malware file per day compared to in 2014; they 

detected nearly 3.5 million malware on 1 million user devices [12]. McAfee [55] reported 

that malware is targeting Google Play on mobile devices are enlarged in all quartile in 

the year 2017 than 2016 and 2015, as shown in Figure 1.1.  

 
Figure 2. 1 Total Malware Samples from 2015 - 2017 on Google Play [55]  

 

Therefore, the threats challenged by mobile phone users are discussed in this section. 

Consequently, reported cases had been increased from 2015 to 2018. Attackers used four 

tactics to infiltrate mobile phones with malware:  infected applications (injecting the 
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malware in applications release in third-party app stores); malvertising (implanting 

malware to valid online ad networks to aim an extensive range of end-users);  scams 

(redirecting users to malicious websites via email, text messages or pop-up screen); and 

direct to the device (the hackers directly install malware when the mobile phones are left 

unattended) [56], [57]. 

 

Viruses, worms, Trojans, and bots are all types of malware; malware is a short form for 

malicious software, also acknowledged as malicious code or malcode [58]. The abilities 

of malware include harming, disrupting, stealing, or in general perpetrating some other 

"evil" or illegal activities on data, host or networks. Attacks have become more 

"innovative" and "wicked".  



Batteries power mobile phones and smartphones. The challenge comes from limited 

battery life - the batteries need to be recharged when drained [59], [60]. Dhaliwal 

explained that infected mobile phone batteries could be drained faster than before, and 

the phones could start overheating [57]. A 2013 survey identified resource-draining via 

installed third-party insecure applications as a major problem in smartphones [60]. A 

smartphone may run many programs in the background that can have a significant effect 

on battery life. Any security solution must reflect this constraint. 

 

A big problem for the mobile phone owners is private data leakage [11], [61]. The thieves 

or attackers can steal private information saved on mobile phones such as credit card or 

bank information, and corporate data. The mobile phone's security system can be 

defeated by sophisticated intruders if there is enough time [10]. For that reason, wiping 

or securing private data from an intruder should be considered (and indeed such 

functionality is available on major mobile phone platforms).  

 

The mobile phone may be stolen from its owner or otherwise physically lost [9]. Mobile 

phones are portable, making them easy to drop or be stolen without the owner realising 

[10]. A mobile phone might contain many pieces of private data, such as pictures, 

account information, personal data, text messages, and contact information.  
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 Attacks on the Smartphone  

Companies are keen to offer ever-more functionality. Security, however, is rarely a 

primary development goal and as a result, many phones find themselves the target of 

attacks. Mobile phone users face attacks such as sniffing, spam, phishing vishing, 

smishing, pharming, and attacker spoofing [9], [14].  

 

Sniffing occurs when the attacker captures and decodes packets as they pass through the 

network [9]. Sniffing is a form of data interception. A well-known example is packet 

sniffing, also known as eavesdropping [49]. Usually, the attacker will sniff or tap 

smartphone calls or SMS (short message services), but 3G and 4G users are also at risk. 

The attacker may also try to steal a username, password, content of an email and transfer 

files while sniffing on the same network as the mobile phone user. 

 

The attackers can use email or MMS (multimedia message services) to spread Spam. A 

DoS attack can also start via MMS spam [9]. Social media users can distribute 

spontaneous messages and produce burgeoning traffic in social networks; this is often 

referred to as Social Network Spam [62]. An example of spam activity would be the 

direction of users to malicious commercial sites such as pornographic webs sites by a 

link posted by friends on a social network. 

 

Phishing is a criminal act where an attacker, masquerading as a trusted party, steals 

privacy-related information, such as username, password, or credit card details [9], [14], 

[61].  Phishing also can be defined as "endeavouring to obtain personal information by 

masquerading as a trustworthy individual in electronic communication." Phishing can 

be circulated via email using attractive email subject and content to convince users to 

open the email and so become victims. In 1996, one of the first known phishing attacks 

was traced when hackers attempted to misappropriate America Online passwords from 

online users [63]. 

 

Georgia Tech first piloted phishing awareness training using the 300-member Office of 

Information Technology (OIT). One out of every four people clicked on the link in the 

phishing email message and could have had their system compromised [64]. 

 



CHAPTER 2: CONCEPTS AND RELATED WORK 

18 

 

Automated messages claiming to be from a bank were used to extricate the details of 

bank accounts and were dubbed 'vishing', a merging of 'voice' and 'phishing'. Vishing 

or "phishing voice calls" use voice calls to abuse an individual's trust in telephone 

services, as the prey often does not suspect that fraudsters can use methods such as caller 

ID spoofing and complex automated systems to initiate this type of scam [18]. Spoofing 

caller IDs can be accomplished by using voice over IP (VoIP) technology; attackers were 

able to exploit the public belief in the landline system. Vishing leverages the power and 

trust invested in voice communication to allow the intruder to gain access to a 

smartphone user's financial and other private information  [9], [10].  

 

Smishing is a form of the attacker that exploits SMS, or text, messages. Text messages 

can contain links to such things as web pages, email addresses, or contact numbers that 

when clicked, may automatically open a browser window, email message, or dial a 

number [14]. A smishing attack usually attacks the nationwide bank as fraudsters 

dispersed their SMS spam to broader mobile users with an account at one of the banks 

[63]. 

 

In pharming, the user's web traffic is redirected to a malicious or fraudulent website [9]. 

Pharming is an example of an advanced phishing attack and is used for online identity 

stealing. It is also known as "phishing without lure" [65]. The attacker may use 

information gained from pharming to hone his attacks. Pharming attacks are hard to 

detect because the fake visited URL sites closely resemble those of the legitimate 

websites [65]. The attackers corrupt DNS information to redirect users to a forged 

website under their control.  

 

Spoofing is a threat where attackers pretend to have a particular caller ID and act as an 

authorised person to get private information from mobile phone users [66].  A spoofing 

attack is a circumstance in which one person or program effectively masquerades as 

another by fabricating information and thus gaining an unauthorised advantage. 

Example attacks are IP address spoofing, DNS spoofing and ARP spoofing. Bellovin 

identified the first IP address spoofing attacks in 1989. In his article, he described a 

variety of IP spoofing attacks and presented defences against them using encryption, 

authentication and trusted system functionality [18]. 
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 Android Malware 

Malware attacks increased significantly in 2019, which is 50% expand from 2018, in 

particularly affected Android mobile phones [67]. In November 2020, Android mobile 

phone users in Southeast Asia have been targeting by a new variant of Android malware 

called WAPDropper [68].  It just a month after Brazil being 'bombed' with a trojan called 

Ghimod that aiming Brazillian Bank apps [69].  This trend shows that the malware 

developer is working hard to create a new strain of malware in a short time. The main 

purpose of this cybercriminal is to steal payment data, confidential information, login 

credentials, phone number or email address, contact lists, device information and money 

from victims bank accounts [67], [69]–[71]. Furthermore, Hautala identifies four signs of 

malware that had been hidden in Android malware to alert Android mobile phone users 

[71]. The signs are; users will frequently seeing ads ( irrespective any apps they are 

using), the app's icon will vanishes after users install an app, the mobile phone battery 

drain faster than before, users will see apps they not installed in their phone [71]. 

 

Kaspersky detected the first wild Android malware in 2010, known as FakePlayer3 [15]. 

Fakeplayer3 and WAPDropperis allowed Android devices to send SMS messages to 

premium numbers  [15], [68]. Others malware families that have been used in this 

investigation are details explaining in Chapter 4 and Chapter 6. Some other popular 

varieties of mobile malware are adware, banker malware, ransomware, rooting 

malware, SMS malware, spyware and Trojans capabilities as explained below [54]–[57], 

[72], [73]: 

Adware – displays continual ads to a user in the shape of pop-ups, sometimes causing 

the unintentional forwarding of users to websites or applications. 

Banker malware – happenings to steal users' bank authorisations without their 

knowledge. 

Ransomware – requests money from users to restore the data or the functionality of the 

devices being locked. 

Rooting malware – 'roots' the device, basically unlocking the OS and gaining extended 

privileges. 

SMS malware – controls devices to send and intercept text messages resulting in SMS 

charges.  

Spyware – observes and records info about users' activities on the devices without their 

knowledge. 
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Worms — can reproduce themselves repeatedly and execute without user interaction. 

Trojans —hidden malicious functionality within legitimate software. Once activated, it 

can compromise phone data and operation. 

 

Android mobile users can take some steps to stop mobile malware; keep update the 

software updated, uninstall apps that users think malicious, install antivirus apps, and 

not install Android apps from third-party app stores [71].  

 Intrusion Detection Systems (IDSs) 

Internet access is essential, not only for computers but also for the population of mobile 

phone users. McKinley reported that 3.9 billion people were unable to connect to the 

Internet and benefit from its services. This included 19.4 million people in rural America, 

even in 2018 [74]. Protecting the private data and information associated with these 

services is now vital, according to Dixon, Gordon and Marceux. The Internet has now 

become a necessity, and access to it is a human right because of the capabilities of the 

Internet can offer to the users [75], [76]. Researchers and antivirus companies have 

sought to find better countermeasures for the attacks at hand as the users of the Internet 

have grown in number, and their vulnerability to attack increased.  

 

The detection of attacks is a crucial component of providing adequate security. An IDS 

comprises devices or applications capable of detecting abnormal events, potential 

security accidents, and intrusions in the computers or network systems and sends 

warnings or alerts to the administrator to counter the identified intrusion [18], [20].  An 

IDS can be viewed as a second protective layer besides firewall and antivirus, and the 

fundamental goal of IDSs is to detect intrusion.   

 

Kemmerer and Vigna denied that IDS could detect an intruder, preferably it can detect 

only the sign of intrusions, either when they happen or afterwards [77]. After more than 

a decade, KhorasaniZadeh et al. issued a new interpretation of the goal of an IDS: the 

IDS is to offer and improve the entire security and robustness of computer structures 

[21].  
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Intrusion detection can be classified based on audit data as either host-based (HID) or 

network-based (NID). HIDs operate on a personal computer or device in the network 

and NIDs observe network traffic to/from the network [78]. Anderson discussed the 

significance of auditing and audit trails in host-based intrusion detection [17]. Network 

intrusion detection uses packet sniffers to read and analyse packet exchanges between 

hosts, usually deployed by broadcast type networks (TCP/IP). Host-based intrusion 

detection monitors the hosts themselves and responds to attacks on them. HIDs usually 

combat internal threats, i.e. intrusions by dishonest employees. 

 

 Intrusion Detection Systems Approaches 

In the early stages, two Intrusion Detection approaches were commonly discussed by 

researchers: anomaly-based detection and misuse based detection [79]. Each approach 

has strengths and weakness. The evolution of systems and attacks on them gave rise 

around 1999 to the third type of approach: specification-based detection [50], [78]–[80]. 

Specification-based detection derived strengths from both anomaly-based detection and 

misuse-based detection. We discuss these below. 

 

Anomaly-based detection refers to the identification of patterns of behaviour that deviate 

from some 'norm' or expected activity [81], [82]. Any events that violate normal 

behaviour are considered suspicious. Profiles of normal behaviour may draw on a 

variety of data, such as normal login time, duration of the login session, CPU usage, disk 

usage, and favourite editor [79]. The IDS observes current user activities and 

characterises them as anomalous (suspicious) or otherwise using the profiles. Deviations 

from profile norms will be flagged as potential intrusions. For example, a normally 

passive public website suddenly attempting too many open connections may be infected 

by a worm. There are four methods used in anomaly-based detection: statistical, 

predictive pattern generation, neural networks, and sequence matching and learning 

[21]. Anomaly-based detection suffers from accuracy problems. It is hard to pin down 

"normality"; often, anomalous behaviour is found on further analysis to be entirely 

respectable. At some level, every user session can be thought of as unique; it is a question 

at which level of granularity attackers chose to observe information. A user's day is 

rarely (never) "exactly" the same as the last. Finding an optimum level at which to 

summarise (profile) information and relate it genuine suspiciousness is hard. 
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Misuse-based detection (also known as signature-based detection) looks for known attack 

patterns in the current events or activities [21], [83].  Misuse-based detection must retain 

attack details (signatures) that correspond to identify attacks. The signatures can be 

developed using a range of techniques, from hand translation of attack manifestations 

to automatic training or learning using labelled sensor data [84].  Detection using this 

approach is often accurate because the signatures stored may summarise 

unambiguously mischievous behaviours. For example, an HTTP request linking to the 

.exe file may indicate attacks to a personal computer. Approaches to misuse-based 

detection include expert systems, keystroke monitoring, model-based, state transition 

analysis, and pattern matching [21]. Misuse-based detection is unable to detect 

accurately novel attacks. It is considered a major weakness for misuse-based detection 

IDS. 

 

Specification-based detection monitors the executing program based on programming 

signatures of benign behaviour, instead of an existing precise outbreak pattern [50], [85]. 

It is mostly used in ad hoc networks, and it is suggested as a way for different types of 

ad hoc routing protocols to be updated [86]. It essentially monitors for deviations from 

specified behaviour. It is a natural candidate when protocols are monitored(because they 

have specifications. DoS attacks are not detected by specification-based detection 

because these types of attacks follow specifications. Specification-based detection can 

produce a lower rate of false alarms than anomaly-based detection, but it cannot 

compete with anomaly-based detection for novel attacks detection. 

 Intrusion Detection System Performance Metrics 

The performance of IDS can be calculated based on the confusion matrix. The confusion 

matrix contains four values such as True Positive (TP), True Negative (TN), False 

Positive (FP) and False Negative (FN).  The explanation of the confusion matrix as below: 

TP  rate refers to the proportion of correct malware detected. 

TN  rate refers to the proportion of correct for non-malware detected. 

FP rate refers to the proportion of incorrect predictions for non-malware detected. 

FN rate refers to the proportion of incorrect predictions for malware detected. 
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 Related Research on Intrusion Detection Systems 

Table 2.1 summarises research on IDS; the main focus is intrusion detection for mobile phones. It aims to show IDS development and trends and 

indicates characteristics of the approaches described.  

 

Table 2. 1 Summary of Research on Intrusion Detection Systems 

Researches Year Way of Detection 

Anomaly-based Detection 

IDES [22], [52] 1988 ● detection by constructing a profile for a group of users that behave in the same manner by their organisational 

status and attempt to correlate behaviour for a particular user. 

●   detect not only with the past behaviour for a certain user but also with the behaviour that is recorded as 

"normal" for that group 

NIDES [87] 1995 ● persistent storage                     ● agend                                           ● agen                 

● statistical analysis                    ● arpool                                          ● resolver                       

● rule-based analysis                   ● archiver                                                    

● batch analysis                           ● user interface 
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Researches Year Way of Detection 

Misuse-based (Signature-based Detection) 

MIDAS [88] 1988 ● Attempted break-ins               ● Masquerade                  ● Penetration        ● Misuse       ● Trojan horse/ virus 

USTAT [89] 1993 ● audit collection / pre-processing                   ● knowledge base                                

● inference engine                                                ● decision engine 

Specification-based Detection 

Haystack [90]  1988 ● Attempted break-ins          ●Masquerade attacks      ● Leakage                                                                    

● Denial of service                ● Malicious use 

● Penetration of the security control system                                   

EMERALD [91], [92] 1997 – 

1999 

● service analysis level                                       ● domain-wide level                       

● enterprise - wide level 

FloGuard [93], [94] 2010 -

2011 

• detectors vigorously in a cost-effective manner 
• online system-wide forensic 
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Table 2. 2 Summary of Research on IDS using AI Approaches 

Researches Year Data source Methodology Metric Results 

Anomaly-based Detection 

ISABA [95] 2010 KDD99 dataset 

(normal, probe, 

DoS,U2R, R2L ) 

Naïve Bayesian classifier Detection Rate 99.82%,99.72%,99.49%,99.47, 

99.35% 

Misused-based Detection (Signature-based Detection) 

Artificial 

Neural 

Networks [96] 

1998 RealSecure™ datasets 

(source address, a 

destination address, 

packet data) 

Artificial neural networks Mean Square 
& Correlation 

0.058298, 0.069929 

0.982333, 0.975569 

NEDAA [97] 1999 DARPA Intrusion 

Detection 

EvaluationData 

AI and Decision trees  Not reported 

 

Produce sets of rules for 

compilation into the expert 

system. 

Power-Aware 

IDS in 

MANETs  

[23] 

2010 Simulated networks 

(flooding attacks, route 

disruption attack) 

 

 
 

GP and MOEA Detection Rate 
& False 
Positive Rate 

98.65%, 100%,93.29% 

1.23%, 0.63%, 4.56% 
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Researches Year Data source Methodology Metric Results 

Misused-based Detection (Signature-based Detection) 

Backdoor 

detection 

system [24] 

2011 Dynamic - system 

behaviour and network 

traffic 

ANN and GA 
 

  

Not reported 

 

Not reported 

Specification-based Detection 

Artificial 

Intelligence 

Techniques 

Applied to 

Intrusion 

Detection [98] 

2005 Dynamic – using 

SNORT 

Neural networks, Fuzzy logic 
with network profiling and 
Data mining 

Not reported Not reported 
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 Evolution of Intrusion Detection Systems 

James Anderson introduced the IDSs concept in 1980. The technical report [17] discussed 

the importance of auditing and audit trails for host-based intrusion detection. From the 

early 1980s, SRI International started their IDS research led by Dorothy Denning. The US 

government supported their project. Denning's work resulted in the presentation of the 

Intrusion Detection Expert System (IDES) in the IEEE Symposium on Security and 

Privacy (1986) [22] as reported earlier. IDES used audit trail analysis based on its user 

profiles database; it is an implementation of an anomaly-based IDS. It used AI for 

encoding an expert's knowledge of known patterns of attack and system weaknesses (if-

then rules) [22], [52]. 

 

In 1988, the Haystack project was developed for US Air Force [90]. It compares audit 

data to define patterns. The Haystack was the first DIDS (Distributed Intrusion Detection 

System) for client and server track that focused on the detection of insiders (legitimate 

users that misuse their privileges). The first Network Intrusion Detection Systems 

(NIDS) began in 1990 with research by University of California researchers [99]. They 

developed the Network Security Monitor (NSM), which contributed to Distributed 

Intrusion Detection System (DIDS) development, and one of the early IDS that 

considering using hybrid intrusion detection. The researchers focused only on the 

security-related issues in a single broadcast LAN such as Ethernet. Their system used a 

four-dimensional matrix with the following elements: Source (a host which generates 

traffic), Destination (a host to which traffic ID destined), Service (example:  mail and 

login), and Connection ID (a unique identifier for a specific connection) [99].  The NSM 

was also the first system to use network data directly as source input.  

 

The DPEM (1994) became the successor of IDS and used a policy-focused anomaly-based 

detection approach [50]. In 1999, the Snort (Lightweight Intrusion Detection for 

Network) was initiated and became the first commercial NIDS [100]. It is a lightweight 

and flexible intrusion detection tool for small, lightly utilised networks. Snort is a free 

IDS and can be used in any environment, and no cost needed to deploy a commercial 

NIDS sensor [100]. It has also acquired a very high public usage profile.  
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In 2011, the researchers proposed the AI approaches based on a combination of ANN 

and GA to identify malicious code (backdoors) in single computers and computer 

networks [24]. Frank's brief survey of AI approaches used in several IDSs [101] 

highlights network-based intrusion detection as the biggest problem in intrusion 

detection. Frank also demonstrated how feature selection could be used to reduce 

overheads and improve classification of network connections. The testing of feature 

selection used data collected from the Network Security Monitor (NSM). Feature 

selection is an essential element of the solution by AI techniques of many pattern 

recognition problems. 

 

Manninen explored how to create an IDS environment that acknowledged the 

preferences of a security officer, seeking to make the security officer's work more 

effective and practically informative by displaying the most viewed anomalies first [102]. 

He compared the AI-based IDS with traditional IDS solutions and analysed how the AI-

based solution might be implemented in the IDS. He proposed three outcome groups:  

usability of the learning process (introduction of noise into data in different cases); ways 

to detect intrusion based on learned examples (response to noise in the data); and 

showing the events to the security officer in the correct order (minimising false alarms). 

The results showed that AI-based solutions could be used in IDS. Neural networks are 

the most popular choice of AI implemented in IDSs. Understanding and handling the 

noise in the learning data to test the accuracy of IDS was highlighted as future work. 

 

SVMs are learning models with a learning algorithm that analyses data and recognise 

patterns, used for classification. The basic SVM takes a set of input data and predicts, for 

each given input, which of two possible classes forms the output. Given a set of training 

samples, each marked as belonging to one of two categories; an SVM training algorithm 

builds a model that assigns new samples into one category or the other. It represents 

these samples as points in space mapped so that a clear gap divides the samples of the 

separate categories. Adigun et al. research proves that the use of SVM with Particle 

Swarm Optimization (PSO) can reduce the computational loads [103]. The Support-

Vector Machine (SVM) technique–based can be used for both anomaly-based and 

signature-based detection [103]–[105].  
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Some researchers suggest that Intrusion Prevention Systems (IPSs) are a better solution 

rather than IDSs because an IPS can identify and counter the intrusion to protect the 

network at initial stages of an attack. IPS is an extension of IDS combining both the 

function of firewall and intrusion detection. However, IPS has issues, which affect the 

system: completeness of any signature database, traffic volume, topology design, quota 

usage logging, protecting the IPS, and managing the monitoring sensor [106]. Therefore, 

the IDS still a preferred security solution for devices and networks. 

 Intrusion Detection Systems in Mobile Phones 

The smartphone can also function similarly as a computer; it is hackable and can be 

attacked by viruses and malware much as with other platforms. As smartphones become 

more complex and powerful to provide increased functionality, security concerns are 

increasing.  

 

A decade ago, the compromising of major computer systems around the world via 

viruses and other malware made many security experts think that malware for mobile 

devices would subsequently emerge as a major problem [107]. Indeed, mobile malware 

and privacy leakage remain significant threats to mobile phone security and privacy. 

Smartphones are not usually equipped with built-in antivirus software, making them 

more vulnerable to attack. The mobile phone has now become a favourite platform to 

attack. Consequently, the development of malware and virus detection for mobile 

phones is becoming urgent.  

 

IDS for mobile phones has received a fraction of the attention of IDS for networks and 

more traditional host platforms. Nevertheless, researchers have sought to use IDS based 

on the three approaches reviewed earlier in this report referred to in Table 2.2 and Table 

2.3. 

 

In [108], [109], they suggested some other mobile malware detection such as static 

analysis, dynamic analysis, hybrid analysis, application permission analysis, cloud-

based malware detection which is currently in trend to be used by the researchers 

worldwide.  
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Table 2. 3 Summary of Research on Mobile Phone IDS 

Researches Year Data source Methodology Metric Value Mobile Platform 

Anomaly-based Detection 

SmartSiren [110] 2007 SMS trace collected from a national cellular 

service provider in India 

Statistical 
Monitoring, 
Abnormality 
Monitoring  

Not reported Not reported Windows Mobile 

Tap-Wave-Rub (TWR) 

[111] 

2013 Dynamic - Permission and accelerometer 

data 

Intuitive human 
gesture 
recognition, 
Tapping the 
detection 
mechanism 
based on 
accelerometer 
data 

Detection 

Rate 

94.67% Android 

DAIDS [112] 2014 Dynamic – (package, process, event, 

network usage, comm, memory usage, CPU 

usage) 

Behaviour 
analysis 

Not reported Not reported Android 

Android Botnets: What 

URLs are Telling Us 

[113] 

2015 Android Genome Malware project ,Malware 

security blog VirusTotal , Samples provided 

by a well-known anti-malware vendor 

Visualisation Not reported Not reported Android 
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Researches Year Data source Methodology Metric Value Mobile Platform 

(URLs) 

Misuse-based (Signature-based Detection) 

Secloud [93], [114], [115] 2010 

- 

2013 

ClamAV malware signature database 

Snort network traffic database 

Forensic 

analysis 

Accuracy Not reported Android 

DroidAnalytics [116] 2013 Using Crawler to automatic download 

application from the repositor 

Multi-layer 

signatures 

generator 

Not reported 

 

 
 

Not reported Android 

Specification-based Detection 

Crowdroid [117] 2011 Dynamic – crowdsourcing system calls k-means 

algorithm 

Accuracy 100% (PJApps), 

85%(Trojan) 

Android 

SBIDF [118] 2011 Dynamic - Simulate the behaviour of real-

world malware 

Temporal Logic 

of Causal 

Knowledge 

Not reported Not reported Android 
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Table 2. 4 Summary of Research on Mobile Phone IDS using Artificial Intelligent Approaches 

Researches Year Data source Methodology Metric Value Mobile Platform 

Anomaly-based Detection 

Malware Detection using 

Machine Learning [105] 

2010 MIT Reality Mining project - 

phone calls, SMS, and 

communication logs  

Support Vector 
Machine (SVM) 
algorithm, 
Statistical 
classification 
model 

Accuracy Not reported Symbian 

DREBIN [119] 2014 Android Malware Genome 

Project, Google Play, Russia 

Market, Chinese Market and 

Android websites. (i.e.API 

calls, Intents, permissions) 

SVM 
 

 

 

 

Accuracy 

False Positive Rate 

94% 

0.1 

Android 

 

Ransomware Steals Your 

Phone. Formal Methods 

Rescue It [120] 

2016 Contagio Mini Dump, 

Ransom Mobi,DREBIN 

Formal Method F-measure 

Accuracy 

0.99 

0.99 

Android 

Identifying malicious 

Android apps using 

permissions and system 

events [121] 

2016 Android Malware Genome 

Project, Market datasets 

(permission and system 

events) 

SVM, 
K-means clustering 

True Positive Rate, 

False Positive Rate, 

Detection Rate 

85.25%, 93.07% 

7.12%, 1.13% 

85.24%,93.07% 

 

Android 
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Researches Year Data source Methodology Metric Value Mobile Platform 

Anomaly-based Detection 

Effective and Explainable 

Detection of Android 

Malware Based on 

Machine Learning 

Algorithms [122] 

2018 DREBIN SVM True Positive Rate 

False Positive Rate 
 

94%, 94% 

1% , 3% 

Android 

Detecting Application 

with malicious Behavior 

in Android Device on GA 

and SVM [123] 
 

2018 DREBIN SVM , 
Genetic Algorithm, 
N-gram 

Accuracy 95% Android 

Misuse-based (Signature-based Detection) 

Neural Fraud Detection 

[124] 

2000 Telecom carrier (i.e. users 

calls) 

Neural network 
classifier 

Not reported Not reported Not reported 

AmoxID [125] 2012 Dynamic (SMS data, Call 

Data, GPRS Data) 

SVM classification, 
Pattern recognition 
algorithms 

Not reported Not reported Android 

MADS [126] 2013 VirusTotal – malware 

datasets 

Naïve Bayes, 
Bayesian 
Network, SVM,     
KNN, J48, 
Random Forest 

True Positive Rate, 

False Positive Rate 

Accuracy, 

ROC Curve 

True Positive Rate 

0.93,0.71,0.93,0.35,0.8

3,0.92 

False Positive Rate 

Android 
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Researches Year Data source Methodology Metric Value Mobile Platform 

0.17,0.13,0.03,0.02,0.1

2,0.13 

AUC 

0.90,0.89,0.95,0.84,0.8

6,0.96 

Accuracy 

88.07%,78.68%,94.70

%,66.24%,85.54%,89.

74% 

 

MOCDroid [127] 2017 Aptoide, VirusShare, 
VirusTotal 

MOEA,  
Genetic Algorithm 

 

 

Accuracy, 

False Positive Rate 

 

 

 

94.6% 

2.12% 

 

 

 

 
 

Android 

Coevolution Malware and 

Anti Malware [128] 

2018 Malgenome Genetic 
Programming 

Detection Rate, 

False Positive Rate 

 

48.44%, 42.86% 

0.00% 

Android 
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Researches Year Data source Methodology Metric Value Mobile Platform 

Specification-based Detection 

12 

SwarmDroid [103] 

2014 NSL KDD dataset • Support Vector 
Machine (SVM) 
classification 

• Particle Swarm 
Optimisation 
(PSO) 

Detection time, 

True Positive Rate 

, False Positive 

Rate 

, and detection 

accuracy 

Accuracy 

80.4375%,90.5625%, 

93.1937% 

Android 
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 Summary of Major Issues in Intrusion Detection Systems  

We can conveniently categorise significant issues as major issues in general IDS and 

major issues in mobile phone IDS. The big issues in general IDS are: a high rate of false 

alarm; real-time detection; response to detected intrusions; and IDS sensor placement 

(efficient sensor placement will reduce the cost). The big issues in mobile phone IDS are 

coping with limited resources and significant IDS overheads. These are now addressed 

below. 

 High false alarm rates 

Denning's (1986) paper introduced ideas for creating IDS with low false alarm rates [22]. 

The false alarm rate must be considered from the early stages of development. High false 

alarm rates have usually been associated with anomaly-based detection approaches 

[129], [130]. The rate of false positives in anomaly-based systems is normally higher than 

in signature-based [26].  

 

Mobile phones are components in a wider MANET, and the high ratio of false alarms in 

MANETs is an important issue [131]. Patel et al. indicated that triggered false alarms 

would have a severe effect on the system's operation such as the disruption of 

information available because of IDPS blockage in suspecting the information to be an 

attack attempt [82]. False alarms also contribute to low detection efficiency [26]. An IDS 

cannot give the best response to detecting the attacks. Most algorithms used to detect 

intrusions try to reduce the false positives and increase the detection rate. However, 

from previous research, it shows that the higher detection rate, the more false positives 

will occur, and minimising the false positives is a challenge [132]. There seems to be a 

natural trade-off being made.  Sechi et al. and Michalopoulos et al. agreed that false 

alarms would be high in IDS in mobile phones [133], [134]. 

 

Nevertheless, false alarms can be reduced significantly by using a specification-based 

detection approach or implementing AI (machine learning) in an anomaly-based 

detection approach [118], [130]. The specification-based detection approach tries to avoid 

the high rate of false alarms affected by the legitimate but previously unseen behaviour 

(not intrusive behaviour, but detected as intrusive) in the anomaly-based detection 
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approach [130]. In the experiments of Uppuluri and Sekar using BSM audit records 

(corresponding to system calls) and specification-based detection methods, no false 

alarms were recorded [80]. The experimental results supported their claim that 

specification-based approaches can detect novel attacks without having to sacrifice on 

the false alarm front [80]. 

 

For system effectiveness, an IDS needs to detect nearly 100% of attacks with minimum 

false positive detection [77]. However, it seems hard to be achieved because the pattern 

of attacks usually different and changes as the nowadays attackers are adept at covering 

their tracks. 

 Real-time detection 

The detection of intruders or attacks has become one of the biggest problems for 

developed IDS. Intrusion detection should be or be near real-time. Researchers have 

proposed many models that include AI in their IDS framework to ensure the detection 

of attackers in real-time. Denning proposed a real-time IDS in 1987 [52].  USTAT was 

designed to be a real-time system [89], attempting to pre-empt an attack in advance 

before any damage is caused to the system. This pre-emption is possible only with real-

time analysis. Real-time detection can trigger an alarm and invoke a message on the 

console to react to the intrusion.  

 

For high-speed and high-performance network nodes, IDSs should seek to carry out 

analysis in real-time [77]. KhorasaniZadeh et al. pointed out that real-time detection 

advantages are not always achievable [132]. For example, an IDS in a MANET  may not 

be able to react to an attack in real-time due to communication delays [83].  

 IDS sensor placement  

IDSs use sensors to monitor the network for signs of disturbing activity. The problem of 

IDS sensor placement had been identified in 2000 [84], and in 2014 it was still be 

mentioned as a big problem for the development of high-performance IDS [135]. 

McHugh, Christie, and Allen (2000) suggested that sensor placement should be re-

examined occasionally to guarantee that the system or network changes have not 

reduced IDS efficiency [84]. Cost-effective sensor placement in large modern systems 
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requires consideration of many criteria [135]. Chen et al. reported the first experiment 

using heuristic optimisation techniques to evolve optimal IDS sensor placements in 2010 

[136]. The IDSs need a network-wide analysis [77], and often there are constraints on 

where sensors/probes can be placed on the network. 

 Limited resources 

The greatest challenge for IDSs is to reduce the resources required to carry out their 

analysis [132]. Smartphones have limited resources [115].  A battery powers a 

smartphone with a limited life, and that must be recharged when drained [9], [137]. 

Mobile phones have limited battery and computing resources. 

 

Consequently, many security solutions developed for desktops are not suited for use in 

mobile phones [118], [125]. Detection must, therefore, be intelligent due to limited 

battery constraints of these devices [138]. Most recently proposed IDSs for malware 

detection on Android devices are based on behaviour analysis for anomaly detection 

[117]. Campbell and Hautala emphasise that mobile phones infected with malware have 

over an hour shorter battery life than clean phones [71], [107].  

 

Real-time monitoring and unnecessary overheads are problems that have to be 

considered in the context of mobile phone IDS [105]. Parsing data communication via BT 

and Wi-Fi to detect malicious activity without incurring high overheads and false 

positives are challenging [118] because the extra overhead in the processor leads to 

battery draining in mobile devices [117]. Thus, IDSs developed for the mobile phone 

should avoid high battery consumption and overheads [103], [112].  

 

Smartphone devices have inadequate energy resources, and so this presents a challenge 

for mobile phone IDS [125]. Other protection systems such as antivirus need to update 

their virus signatures from the central repository frequently. Since updating of phone 

antivirus signatures is energy-expensive, the attackers might try to use newer attack 

strategies to compromise smartphones [125]. 
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 Limited test datasets 

The standard data set used for IDS performance evaluation has often been minimal and 

far from representative of real-world data [132]. Aikelin and Greensmith indicated that 

constructing a “good” dataset is a significant challenge. A major challenge has collated 

a dataset without any trace of anomalies. [127]. It is time-consuming and expensive to 

gather the datasets [132]. Unsurprisingly, datasets made publicly available by the 

research community are necessarily limited. 

 Conclusion 

Mobile phones are a modern-day necessity for users and are coming under increasing 

attack. They have their own specific characteristics, and conventional security 

techniques do not apply to them. Anti-virus software has been developed for traditional 

computers and laptops, but mobile phones lack appropriate anti-virus and anti-malware 

protection. Researchers are now starting to give attention to developing new prevention, 

detection and response tools for mobile phones. 

 

The surveyed literature shows that there is a pressing need to address mobile phone 

protection in general and IDS in particular. In this thesis, we aim to address this need for 

a prevalent form of attack (malicious apps) for a prevalent platform (Android) seeking 

to leverage perhaps the most promising technology of our age – AI. 
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CHAPTER 3 

 Evolution of Malware Classification and 
Detection in Mobile Phones 

 
This chapter introduces Evolutionary Computation (EC) methods that are used to investigate the 

malware classification in this thesis. Two EC methods, Genetic Algorithms (GAs) and Genetic 

programming (GP) are introduced, and the literature detailing the application of EC methods in 

general to the problem of intrusion detection is surveyed. Justification is provided for the selected 

method for our development of detectors and classifiers for mobile phones. The proposed approach 

and the datasets used for its evaluation are detailed. 

 Brief Overview of Evolutionary Computation 

The term Evolutionary Computation (EC) was introduced in 1991 and is concerned with 

computational problem-solving methods based loosely on principles adapted from 

Darwinian evolution [139]–[141]. An EA typically maintains a population of potential 

solutions (‘candidates’) and evolves that population using operators analogous to 

mechanisms from nature, such as mutation (where candidates are perturbed in some 

small way), and crossover, where candidate ‘parent’ solutions swap elements to produce 

‘children’, and fitness selection (implementing some variant of ‘survival of the fittest’) [19] 

[20]. 

 Genetic Algorithms 

John Holland introduced the term Genetic Algorithm (GA) in 1960. Bermermann 

implemented the fundamental procedure of a GA in the 1960s [139], [142], [143]. GAs 

usually represent solutions as a linear sequence of components, e.g. solution may be a 

sequence of bits, integers, doubles, or other fundamental types. (Sometimes mixtures of 

data types are used).  
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Mimicking the genetic operators of crossover, mutation and selection allows populations 

to be evolved to contain (hopefully) increasingly more satisfactory candidate solutions. 

In the crossover (usually) two ‘parent’ individuals exchange constituent elements for 

producing new individuals, and so each of these ‘children’ inherits elements from each 

parent. Mutation introduces diversity in individuals in the population. Typically, each 

element of an individual may be perturbed in some way with a small probability. 

 

In a bit sequence individual, each bit may be flipped with a small probability. For integer 

sequence individuals an integer element may be replaced with a randomly chosen value 

or perhaps be incremented or decremented within some chosen range. Selection often 

implements a ‘survival of the fittest regime’ where fitter individuals have a greater 

chance of surviving to the next generation. (There are many ways selection can be 

implemented.) Figure 3.1 illustrates the basic idea of a GA.  

 

In the figure below, the GA evolutionary process starts with a set of individuals 

(candidate solutions to the problem to be solved) commonly referred to as the population. 

Members of the population have their fitnesses evaluated. This allows a new population 

of solutions to be selected based on fitness values. ‘Parents’ are selected from the new 

population to be mated to produce ‘offspring’ using crossover (exchange genes of 

parents). Members of the new population of solutions are then mutated. The mutation 

occurs to maintain diversity within the population and prevent premature convergence. 

The population members then have their fitness evaluated.  The cycle either repeats or 

stops when some criterion stopping criterion is met, e.g., a specified maximum number 

of cycles has been performed, or a solution has been found. 
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Figure 3. 1 An Example of a GA, based on [144] 

 Genetic Programming 

Genetic Programming (GP) is an extension of the GA, introduced by John Koza. The idea 

of GP was to represent a computer program as a tree [145], [146]. GP is an EC technique 

that can work with a wide range of input feature data types: integer, float, binary, string 

and so on. It can automatically solve problems without necessitating the user to be aware 

of the structure or form associated with the solution in advance [147]. In GP a population 

of computer programs is evolved generation by generation. GP implements a tree-based 

variant of mutation (randomly generated) and crossover (subtrees are swapped between 

parent trees). The figures below illustrate the mutation (Figure 3.2) and crossover 

operators (Figure 3.3) of GP. The necessary steps in the GP system programming are 

presented in Figure 3.4.  
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Figure 3. 2 An Example of a Mutation in GP [146] 

 

 
Figure 3. 3 An Example of a Crossover in GP [146] 
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Figure 3. 4 GP Algorithm [14] 

 Application of AI to Detect Attacks: Related Work 

AI has been adopted by many researchers. The integration of IDS with AI started in 1986 

[22]. Machine learning techniques can be used to develop highly efficient detectors for 

sleep deprivation or battery exhaustion attacks such as denial-of-service power attacks, 

malware attacks, spyware attacks and so forth. Narudin et al. reported that 99.97% (true-

positive) of malware could be detected using the Bayes network and random forest 

classifiers on Malgenome datasets [25]. In trend used of machine learning techniques in 

IDS include ANNs; GAs; decision trees; SVMs; and fuzzy logic [26], [27].  

 

GP has usually been employed for synthesising robust signature-based detectors for IDS. 

Garcia-Teodoro et al. reported deployment of GA within an anomaly-based IDS, 

contributing to a flexible and resilient system that did not have prior knowledge about 

the attacks [26]. The results of Sen et al. reveal GP can perform better than other AI 

techniques (e.g. SVM and Decision trees) as a lightweight method for detecting known 

flooding and route disruption attacks against the AODV protocol [23]. Her work 

inspired us to investigate whether the implementation of GP in our research can 

contribute to our main aim to deliver techniques that require fewer features, such as 

using only Android permissions.  

1: Randomly create an initial population of programs from the available 

primitives.  

2: repeat  

3: Execute each program and ascertain its fitness.  

4: Select one or two program(s) from the population with a probability based on 

fitness to participate in genetic operations. 

5: Create new individual program(s) by applying genetic operations with 

specified probabilities.  

6: until an acceptable solution is found or some other stopping condition is met 

(e.g., a maximum number of generations is reached). 

7: return the best-so-far individual. 
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A backdoor detection system using an ANN and GA was proposed by Salimi and 

Arastouie in 2011 [24]. They developed a novel approach to detect backdoor attacks on 

computers using two clusters such as system behaviour and network traffic as their 

features for ANN then the outputs from the process are used by the GA as inputs 

features to identify the backdoor attacks. In [128], the researcher using GP to generate 

new mobile malware from previously known malware and also do the detection using 

static analysis focusing on new malware or new variant of existing malware. This is 

different from us in a part of we used actual datasets that are used by researchers 

globally [23], [24], [26], [120], [128], [148]–[150].  

 

 Why Evolutionary Computation? 

EC has achieved promising results for IDS in previous research [24], [26], [28] as 

discussed in Chapter 2. The modern mobile phone stores and processes highly valuable 

data and has become a highly attractive target for attack. A small number of researchers 

have sought to exploit AI in providing effective IDS, but the area is very much 

unexplored. It is motivating to investigate further how AI can be used to provide a 

robust framework and an application for IDS that target mobile phones.  

 

The Android framework has been chosen as the vehicle for experimentation since there 

is a very active development community, it is a widely used platform, and it is entirely 

open source. If research results prove that promising a natural community would be 

interested in further development.  

 

GP has many benefits, but it has not yet (as of the submission of this Thesis) been 

explicitly used to detect Android mobile attacks by using solely only Android 

permissions (extracted from Manisfest.xml file). This one of the reasons to use GP as a 

method to analyse obtained datasets to distinguish attacks. We also inspired to 

investigate the capability of GP to do detection for mobile malware with fewer features 

(only permissions). In  [128], they used the API calls and permissions to generate their 

coevaluation mobile malware and anti-malware using GP. 
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Furthermore, since mobiles are low resource platforms, we want to evolve efficient 

detectors where low power and low execution time, for example, are essential criteria. 

Accordingly, we aim to use GP in a multi-objective context. Sen et al. stated that an 

MOEA could allow the combination of multi-objective optimisation and evolutionary 

search [23]. A combination of GP and MOEA could produce detectors with excellent 

trade-offs between detection and resource usage.  

 Proposed Framework of Malware Detection 

Researchers have employed various methods to detect malware in the Android 

application package (APK). APK is the file structure employed by the Android OS for 

installation and distribution of mobile apps (programs designed to run on a mobile 

device such as the phone, tablet or watch) and middleware (computer programs that 

deliver services to software programs beyond those available through the OS). The 

primary aim of our research is to provide techniques that require fewer features such as 

using only Android permissions (predicated on Manifest.xml file extraction from APK) 

to distinguish malware from non-malware APKs. Figure 3.5 is an example of a 

Manifest.xml file extracted from the APK, and the explanation of the Manifest.xml 

elements is shown in Table 3.1. Our proposed model in Figure 3.6 is the framework we 

have used to run the experiments starting from pre-processing the data. The data was 

obtained from other researchers, as mentioned in section 3.3. The details of the process 

are explained below.   
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Figure 3. 5 An Example of a Manifest.xml file extracted from APK 

 

Table 3. 1 Manifest.xml Element Reference [151] 

Element Description 

action Adds an action to an intent filter. (An intent is a 

messaging object you can use to request an action 

from another app component) 

activity Declares an activity component. 

application The application’s declaration. 

category Adds a category name to an intent filter. 

intent-filter Specifies the types of intents that an activity, service, 

or broadcast receiver can respond to.  

manifest: The root element of the AndroidManifest.xml file. 

uses-permission Defines the system permissions that the user must 

grant for the app to operate correctly. 
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Figure 3.6 shows the proposed malware detection framework. The details about each 

step within the experiment framework are as below. 

 
Figure 3. 6 The Framework of the Malware Detection 

Data is acquired and pre-processed to remove elements that would disrupt the machine 

learning process. The resulting data then forms the input to the classifier synthesis 

process. The synthesis process uses feature extraction and selection prior to invoking a 

supervised learning approach.  The detection performance of the developed classifier is 

recorded.  The details of each step within the experimental framework process are given 

below. 

 Data Acquisition 

To carry out meaningful work in this area, we need to have available case study datasets. 

Producing these is a significant task in its own right. In this research, we have sought 

assistance from the research community. Four international researchers have made 

datasets available to us, with responsible use and fair acknowledgement restrictions. The 

datasets and corresponding papers are:  

• Drebin datasets from the paper “Drebin: Effective and Explainable Detection of 

Android Malware in Your Pocket” [11]; 

• DroidKin datasets from the paper “DroidKin: Lightweight Detection of Android 

Apps Similarity” [12];  

• Droid Analytics dataset from the paper “DroidAnalytics: A Signature-Based 

Analytic System to Collect, Extract, Analyze and Associate Android Malware” 

[116]; and 

• Ransomware datasets from the paper “Ransomware Steals Your Phone. Formal 

Methods Rescue It” [120]. 
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Unfortunately, we did not get access to Malgenome datasets from the paper “Dissecting 

Android Malware: Characterization and Evolution”, [152], which is highly cited by 

many researchers because of their established work for systematic characterisation of 

existing Android malware. However, we obtained the DREBIN datasets all of whose 

malware files are derived from the Malgenome datasets.  

 

To select the main datasets to be used as the primary source, we performed some 

preliminary experiments. From the results (shown in Chapter 4),  DREBIN is chosen in 

this research as the primary dataset. It is also an established dataset containing an 

extensive collection of malicious APK, and it is still being used worldwide by other 

researchers [23], [24], [26], [120], [128], [148]–[150]. Furthermore, DREBIN inherits most 

of the malware gathered by the Malgenome Project, a pioneer Android malware project 

and one whose datasets are very well known in the Android malware research 

community.  

 

The other datasets will be explained in Chapter 6 (Droidkin datasets, Droid Analytics 

dataset and Ransomware datasets).  

 Data Pre-Processing 

In this section, we focused on investigating the DREBIN datasets.  As mentioned above, 

DREBIN provided our primary datasets in this research. The DREBIN samples were 

gathered between August 2010 and October 2012. The datasets contain 123,453 benign 

and 5,560 malware Android applications. In particular, the datasets hold 96,150 

applications from the Google Play Store, 19,545 applications from various alternative 

Chinese Markets, 2,810 applications from substitute Russian Markets, and 13,106 

samples from other resources, such as Android websites, security blogs and malware 

forums. Furthermore, the DREBIN contains all samples from the Android Malware 

Genome Project [152]. The file provided by DREBIN also contains the SHA256 hashed 

non-malware Android applications used in our experiments. We processed the DREBIN 

raw datasets to identify if the files in the datasets present problems, such as being empty 

(a  file does not contain any information), duplicate files [150] and non-existing filenames 
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(same as in provided listing). The datasets can therefore be ‘cleaned’ to remove such 

awkward instances. 

 

The process to remove all unnecessary instances in the raw APK is done in a virtual 

machine. All data extraction was conducted in an Oracle Virtual Machine (VM) 

environment [153], and the version of the VM used in the experiments is VirtualBox 5.2.0 

for Windows. The purpose of using VM hosts is to prevent the malware from spreading 

to the local machine and the network. In this experiment, we extract the Manifest.xml 

file and Dex code from the Android application data sets using APK Studio [154].  The 

APK Studio software is a cross-platform IDE for reverse-engineering 

(decompiling/editing) & recompiling of Android application binaries within a single 

user interface. The software features include a friendly interface, built with a code editor 

which supports syntax highlighting for Android SMALI (*. smali) code files.  Figure 3.7 

below is an example of one of the Manifest.xml file extracted using APK Studio. All 

datasets have been extracted before proceeding to the next procedure as mentioned in 

Section 3.2.3. 
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Figure 3. 7 The Manifest.xml File Get from Decompile Process 

 Features Extraction and Selection 

After finishing the data pre-processing process, twenty new datasets were obtained. It 

contains a combination of malicious malware applications and non-malware 

applications details (data retrieved from Manifest.xml files). The new database holds 

training and testing datasets based on the DREBIN experiments for detecting malware 

families (a group of malware with the same ability). The twenty malware families we 

use for evaluation, as mentioned in DREBIN [119], were the top Android malware 

families in the datasets and are shown in Table 3.2. Table 3.3 summarises the 

functionality of the five malware families with large samples in DREBIN.  Other 

malware families are described in Chapter 6. 
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Table 3. 2 Malware Families Fraction [119] 

Family  Samples Family Samples 
FakeInstaller  919 Adrd 85 
DroidKungfu 662 DroidDream 80 
Plankton 620 LinuxLotoor 64 
Opfake 608 GoldDream 64 
GingerMaster 334 MobileTx 69 
BaseBridge 324 FakeRun 56 
Iconosys 145 SendPay 54 
Kmin 142 Gapussin 53 
FakeDoc 127 Imlog 38 
Geinimi 87 SMSreg 36 

 

 

Table 3. 3 Android Malware Families Used for the Evaluation 

Family (Year) Ability [155] 

FakeInstaller (2010) FakeInstaller sends SMS messages to numbers with 
the premium rate.  

DroidKungfu (2011), 
also known as 
Kungfu and evolved 
into three variants. 

DroidKungfu decrypts its exploits, deletes specific 
files on infected devices, runs specific apps on a phone 
or tablet, collects system-specific information, and 
avoids detection by the mobile anti-malware solutions 
available at that time. The DroidKungfu3 variant is 
capable of encrypting all malware information related 
to native binaries and conceals their actions as valid 
updates from Google. 

Plankton or Plangton 
was also known as 
Tonclank (2011) 

Plankton steals information and attempts to open a 
backdoor on Android devices, then collects the device 
ID and permissions and sends this information to a 
remote server. 

Opfake is a variant of 
FakeInst (2011) 

Opfake sends SMS messages to numbers with a 
premium rate. 

GingerMaster (2011) GingerMaster collects and uploads system-specific 
information to a remote server. 
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In the feature selection process, we evaluate and identify all of the suspicious 

permissions (SPs) that we intend to use in supervised learning using VirusTotal [156]. 

We carried out some experiments with a small sample to identify which permissions 

most often appear in Android malware packages, and then we identify the riskiest 

Android permissions with the VirusTotal database. The details of this process are given 

in Section 3.3.1. The listing of the SPs we used as features and the capability of the 

permissions to harm the mobile phone are explained in Table 3.4.  

 Training and Testing  

The machine learning algorithm learns from the datasets provided. The training set is 

used to build the detection/classification model in the learning phase.  The testing set 

serves to test the algorithm after the learning phase. The purpose of separating training 

and testing data is to avoid overfitting.  

 

 Offline Supervised Learning 

Online (real-time) learning offers significant benefits, e.g. it allows the system to adapt 

as its environment changes. It may have particular strengths when the form of detection 

model is known, and continuous parameter tuning is the mechanism for adaptivity. 

However, when the form of the classifier is not known and it is a highly intensive 

computational task to discover it, then an off-line learning method is generally a good 

choice.  Discovering the form of a classifier is one of the strengths of genetic 

programming but the approach can be computationally intensive. Accordingly we adopt 

an offline learning approach which allows us to avail ourselves of whatever 

computational resources are available offline to discover a good classifier [132]. 

 

GP can automatically solve problems without necessitating the user to be aware of or 

require the structure or form associated with the solution in advance [147]. In GP the 

population of computer programs evolve generation by generation. Our dataset has 

‘marked’ examples (i.e. we know whether the examples are malicious or non-malicious) 

and this allows us to readily adopt a supervised learning approach for our task. The 

implementation of GP is described in Section 3.3. 
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 Evolving Detection Rules 

In this section, the implementation of an EC technique to develop a detection program 

classifier for Android mobile phone is detailed. 

 Feature Selection  

Features are characteristics of the system that form the essential data that evolved 

decision algorithms may use to reach their decisions. In this research, we focus on 

Android permissions as features. As a feature set, this is very basic and easily accessible 

from an Android app’s Manifest.xml file. Table 3.4 summarises the suspicious 

permissions and what they enable in mobile phones. All our features are essentially 

string type values. To identify all suspicious permissions used in this research, we 

manually uploaded ninety random choosen malware samples from Drebin datasets to 

VirusTotal [156] website and copy the results. This process has been made in Virtual 

Machine as a precautionary step to avoid malware samples affecting machine used for 

the experiments or spreading malware samples in the network. The results we get from 

this process to identify the suspicious permissions. The analysis starts with listing all 

suspicious permissions that VirusTotal highlights (at the time we checked it on 

VirusTotal website) manually in a spreadsheet. Afterwards, we manually cross-checked 

all permissions to eliminate redundant permissions. Lastly, we listed the nineteen most 

frequent permissions in the ninety random malware samples from Drebin datasets.  

Figure 3.8 below shows the result of uploading one sample to VirusTotal website. Figure 

3.9 shows the permissions indicated as dangerous by VirusTotal.   

 
Figure 3. 8 Result of One-Sample Uploaded to VirusTotal Website 



CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES 

 

55 

 

 

 
Figure 3. 9 Permissions Detect as Suspicious by VirusTotal website. 

 

Table 3. 4 The Features Explanation [157] 

Suspicious permissions 
(android. permission) 

Actions 

ACCESS_COARSE_LOCATION Allows applications to access approximate 
location. 

ACCESS_FINE_LOCATION Allows applications to access approximate 
location. 

INSTALL_SHORTCUT Allows applications to install a shortcut in 
Launcher. 

INTERNET Allows applications to open network sockets 
and get full Internet access. 

MODIFY_PHONE_STATE Allows applications to modify the telephony 
state. 

READ_CONTACT 
 

Allows applications to read the user's 
contacts data. 

READ_HISTORY_BOOKMARKS Allows applications to read the Browser’s 
history and bookmarks 

WRITE_HISTORY_BOOKMARKS Allows applications to write the Browser’s 
history and bookmarks 

READ_SMS Allows applications to read SMS messages. 
SEND_SMS Allows applications to send SMS messages. 
WRITE_SMS Allows applications to write and edit SMS 

messages. 



CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES 

 

56 

 

 

READ_PHONE_STATE Allows applications to have read-only access 
to phone state. 

VIBRATE Allows applications to have access to the 
phone vibrator. 

WRITE_APN_SETTINGS Allows applications to write the apn settings. 
WRITE_EXTERNAL_STORAGE Allows applications to write the external 

storage. 
BLUETOOTH 
 

Allows applications to connect to paired 
Bluetooth devices. 

DISABLE_KEYGUARD Allow applications to disable the keyguard if 
it is not secure. 

RECEIVE_BOOT_COMPLETED Allows applications to obtain the 
ACTION_BOOT_COMPLETED that  
broadcast after the system finishes booting. 

SET_WALLPAPER Allows applications to set the wallpaper. 
WAKE_LOCK Allows applications to use the processor to 

avoid the phone from ‘sleeping’ mode or 
dimming the phone screen. 
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 Application of Genetic Programming to Intrusion Detection in Mobile Phones 

The experimental setup starts with data acquisition and proceeds to the data pre-

processing process to set up the training and testing datasets. GP needs as functions, 

variables and a fitness function to be defined for the problem at hand. The list of 

variables utilised in the experiments (adapted from Android permissions) and being 

used as features is shown in Table 3.4. The functions used alongside the substantial GP 

parameters presented in Table 3.5.  

 

Population size is the total number of individuals in a population in every generation. 

Generations identify after how many cycles the evolution process will stop. Crossover 

probability indicates how likely individuals nominated for breeding might swap 

elements. Reproduction probability demonstrates how likely this operator is to be applied 

to the individual selected. The Tournament selection is a strategy for selecting individuals 

for breeding. A set of tournament size individuals are selected, and their finesses 

evaluated. The individual with the highest fitness is deemed the tournament winner and 

selected for breeding. Tournament selection is a means of favouring fitter individuals in 

a population. It thus implements a variant of survival of the fittest. The ECJ 23 [158] 

toolkit is used for the GP implementation. Other parameters not itemised here are the 

default parameters of the toolkit. 

 

The parameter settings below were developed after some preliminary training and 

testing with reduced datasets before we ran all experiments using the full dataset. The 

preliminary results show there is no significant changing of detection rate by using either 

loosely or strongly typed GP and by increasing the population size and the generations. 

The best detection rate and fastest duration to complete the experiments are achieved by 

using the parameters setting below:  
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Table 3. 5 GP Parameters Settings 

Parameter Value 

GP typed Loosely typed (does not enforce a specific type 
between the nodes) 

GP format Tree-based  

Objective Find a program to detect Malware using the 
information in the Android APK. 

Non-Terminal 

Operators 
Contains, AND NOT and OR 

Terminal Operators The feature sets in Table 3.4  

Fitness Function 

The Android APK dataset flagged as malicious 
or non-malicious. 
 
A weighted function of TP, FP, TN, FN were 
TP=True positive count 
TN=True negative count 
FP=False positive count 
FN=False negative count 
 
See below for details.  

Standardised  

Fitness 
Same as raw fitness 

Parameters  

Population Size = 1024 
Termination when Generations = 50 
Crossover Probability.  = 0.9 
Reproduction Probability = 0.1 
Tournament Size = 7 

Termination 
Once an individual at fitness much better than 

0.1 discover 
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The fitness function is a critical component of every evolutionary computational search. 

The search aims to find individual candidate solutions that maximise the fitness 

function. For classification and detection, there are several criteria we would wish to 

maximise, most notably the fraction of malware correctly classified and the fraction of 

non-malware correctly classified.  There are trade-offs to be prepared amongst the two, 

and it is essentially a business decision as to what those trade-offs should be. A typical 

way of searching for candidate solutions in this trade-off space is to choose a fitness 

function that weights the two properties. However, it is not clear what the individual 

properties will be produced when particular weights are used. Accordingly, our 

searches will experiment with a variety of weights. The fitness function family used in 

the evaluation is given below:  

 Fitness = 1-α*(TP/(TP+FN))-β*(TN/ (TN+FP))     (1) 

α - (Range 1 – 0.05) 

β - (Range 1 – 0.05) 

 

TP (true positive) is the number of malicious applications correctly identified as 

malware. FN (false negative) is the number of malicious applications incorrectly 

identified as non-malware. TN (true negative) is the number of non-malicious 

applications correctly identified. FP (false positive) is the number of non-malicious 

applications incorrectly identified as malware. α and β are parameters used to give 

weight to the fitness either to emphasise the True Positive Rate or True Negative Rate. 

In practice, and to provide a means of normalisation, we impose the constraint α + β = 1 

in the experiments in this thesis.
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CHAPTER 4 

 Performance Evaluation of Genetic 
Programming on Mobile Phones Intrusion 

Detection System 
 

This chapter presents the results of using GP to synthesise malware detection and classification 

algorithms for Android mobile phone datasets. The motivation and contribution of the study are 

given in Section 4.1. Then, parameter settings are determined using preliminary experiments 

using a sample of datasets, as described in Section 4.2. The performance of programs evolved 

using GP is evaluated and discussed in Section 4.3. The performance is also compared with the 

results of previous research (Drebin) in Section 4.44. Section 4.5 examines the effects of different 

weights for elements of fitness function elements.  

 Introduction 

 Motivation 

From Table 2.3 in Chapter 2, we can conclude that most of the researchers have been 

interested in investigating the performance of SVM to identify malicious and non-

malicious applications in Android mobile phones datasets. There seems little reason to 

believe a priori that SVMs are optimal for such tasks, and there is plenty of scopes to 

apply other supervised machine learning approaches.  GP has shown encouraging 

results when evolving intrusion detection programs for MANETs [83], and in [128] GP 

was shown capable of evolving both malware and anti-malware.  Conceptually, GP also 

works in a very different way to SVMs. It is difficult to predict how the performance of 

the two approaches will compare. In this chapter, we will investigate the performance 

of GP evolved programs in detecting malware and non-malware applications in 

Android datasets. 
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In any search-based approach to solving a problem, a fitness function is used to guide 

the search (or, equivalently, a cost function). The analyst provides the search system with 

the function to be maximized.  Where there are competing finesses, because we want 

performance on multiple axes, the fitness function often comprises a weighted sum of 

individual fitness components. There is generally little in the way of the convincing 

rationale for the specific choice of weights. In our case we wish to minimize false positive 

(FP) identifications, i.e. incorrectly identifying normal app as malicious, but also 

minimize the number of false-negative identifications, i.e. incorrectly identifying a 

malicious app as normal.  

 

However, for malware detection, we are actually seeking to identify many different 

types of malware, not just one.  The choice of weightings used may radically alter the 

performance of the search process when we attempt to evolve a detector for any one type 

of malware. There seems to be no research indicating how optimal choices of weightings 

vary across specific target malware types. It is entirely possible that a “one-size fits all” 

approach to choosing weights will not prove effective.  If so, this is important 

information for those seeking to use EC approaches for malware detection. We choose 

to investigate this aspect.  

 

 Contributions 

The contributions in this chapter are: 

• the production of empirical evidence to demonstrate that GP approaches are an 

effective method to identify malware and non-malware applications in Android 

mobile applications datasets. 

• the production of empirical evidence to show that the efficacy of weight choices 

for GP’s fitness function varies according to malware type targeted. Loosely, we 

demonstrate clearly what works best for one type of target malware does not 

work best for others. Thus, any specific choice of weights is limited in what it can 

achieve over the whole set of targeted malware types.  
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 Experimental Investigation 

In all experiments reported here, the datasets were obtained from the public access 

Android community website; all datasets can be used with an appropriate citation by 

the researchers. All experiments conducted in this chapter use the Drebin dataset as the 

primary source. In Chapter 3, we explained the procedures used to extract Drebin 

datasets and the data elements we need for our experiments.  

 

As mentioned in Chapter 3, we use the Evolutionary Computation in Java (ECJ) [158] 

toolkit for our experiments. ECJ is a research EC system written in Java. It is highly 

flexible and configurable and contains basic implementations of many EAs: GP is just 

one.   

 

Since Android permissions are recorded as strings within our database, we have 

developed a GP approach that manipulates Strings and incorporates logical connectives, 

allowing evolved expressions over the strings to form our malware detection predicates.  

 Preliminary Analysis 

For the preliminary experiments, the method was discussed in Chapter 3. The purpose 

of preliminary experiments is to test the configurations and select the best parameters 

and features to use for our further experiments—the GP parameter settings used in this 

chapter and throughout chapter 6 are those given in Table 3.5. 

 Datasets 

The training and testing samples are derived from the Drebin datasets, and we only used 

the small size of samples. The malware families were randomly selected to evaluate the 

parameter settings. Five hundred two non-malware samples and four hundred sixty-

three malware samples were selected randomly from the Drebin datasets. The reason of 

random selection for both samples and malware families because it is a precise scientific 

procedure for the individual unit in a population will get an equal chance to be selected 

for inclusion in a sample [159]. The details of the malware sample dataset used in this 

experiment are shown in Table 4.1. 
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Table 4. 1 Malware Families Sample [44] 

Family  Samples Family Samples Family Samples 
Adrd 66 FakeTimer 12 Nandrobox 13 
Basebridge 5 Geinimi 65 Nisev 5 
DroidDream 5 GinMaster 25 Opfake 25 
DroidKungfu 5 Iconosys 25 Plankton 65 
FakeDoc  5 Imlog 25 Smforw 2 
FakeInstaller 10 Kmin 25 Spitmo 11 
FakeRun 63 LinuxLotoor 6   

 Parameters  

Population size and the number of generations allowed in a run are known to be important 

parameters for GP.  In these experiments, we test these to determine which combination 

will produce the best results for detection.  The other parameters did not change, and 

we used the standard configuration supplied by ECJ. Each combination of population 

sizes (1024, 2048, 3072, 4096) and generation (50, 100, 150, 200) was investigated with  20 

runs for each experiment, as shown in Table 4.2.  

 

Table 4. 2 Testing Population Size and Generation 

Population sizes Generations Results 

1024 50,100,150,200 There is no significant 
change to the results. 

2048 50,100,150,200 There is no significant 
change to the results. 

3072 50,100,150,200 There is no significant 
change to the results. 

4096 50,100,150,200 There is no significant 
change to the results. 

 

When running the experiments with vast datasets, we need to consider the time taken 

by the program to execute, as increased population size and the generations will also 

increase the execution time. From the results, we can conclude that using 1024 as 

population size and 50 as the generation in the experiment is a plausible approach; there is 

little reason to increase or decrease these parameter values. We also take into account 
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the opinion in  [160], where Langdon indicates most of Koza’s original GP work used 50 

as the generation for termination criterion. 

 Features Selection 

In Chapter 3, nineteen features were discussed. For preliminary experiments, we started 

using nineteen features and gradually reduced the number of features one by one based 

on the lowest detection rate per family. In the end, fifteen features have been selected to 

be used in the next experiments. The purpose of this process was to identify the features 

that give the best performance malware detection with a high detection rate and low 

false-positive rate for the GP programs evolved. The fifteen features that have been 

selected are   ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, 

INSTALL_SHORTCUT, INTERNET, MODIFY_PHONE_STATE, READ_CONTACT, 

READ_HISTORY_BOOKMARKS, WRITE_HISTORY_BOOKMARKS, READ_SMS, 

SEND_SMS, WRITE_SMS, READ_PHONE_STATE, VIBRATE, 

WRITE_APN_SETTINGS, and WRITE_EXTERNAL_STORAGE. The actions that can be 

taken by the permissions are discussed in Chapter 3. 

 Results and Discussion 

Chapter 3 describes the procedure for the preliminary experiments. Our experiments 

target a single malware family dataset (training and testing datasets) per run.  There are 

twenty malware families, as indicated in the table below, involved in preliminary 

experiments. The features sets are also reduced one by one with five features eliminated 

at the end of experiments. The results (the best individual of the ten runs) are presented 

below in Table 4.3 using Population size = 1024, generation = 50, and fourteen features. The 

fitness function is described in Section 3.3.2 and is used 0.5 for both α + β (Equation 1).  
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Table 4. 3 Results for Preliminary Experiments 

Malware Family TPR TNR FPR FNR Accuracy 

Adrd 74.24% 95.62% 4.38% 25.76% 93.13% 

Basebridge 60.0% 95.62% 4.38% 40.00% 95.27% 

DroidDream 80.00% 59.56% 40.44% 20.00% 59.76% 

DroidKungfu 100.00% 59.56% 40.44% 0.00% 59.96% 

ExploitLinuxLotoor 83.33% 59.56% 40.44% 16.67% 59.84% 

FakeDoc 100.00% 95.62% 4.38% 0.00% 95.66% 

FakeInstaller 80.00% 95.62% 4.38% 20.00% 95.31% 

FakeRun 100.00% 99.60% 0.40% 0.00% 99.64% 

FakeTimer 100.00% 51.20% 48.80% 0.00% 52.33% 

Geinimi 98.46% 99.60% 0.40% 1.54% 99.47% 

GinMaster 100.00% 65.34% 34.66% 0.00% 69.31% 

Iconosys 100.00% 95.62% 4.38% 0.00% 95.83% 

Imlog 100.00% 65.34% 34.66% 0.00% 66.98% 

Kmin 100.00% 95.62% 4.38% 0.00% 95.83% 

Nandrobox 100.00% 95.62% 4.38% 0.00% 95.73% 

Nisev 20.00% 99.60% 0.40% 80.00% 98.82% 

Opfake 100.00% 95.62% 4.38% 0.00% 95.83% 

Plankton 89.23% 99.60% 0.40% 10.77% 98.41% 

Smforw 100.00% 95.62% 4.38% 0.00% 95.63% 

Spitmo 100.00% 95.62% 4.38% 0.00% 95.71% 

 

Twelve of the twenty malware families have 100% True Positives and 0% False negatives 

in the testing phase (preliminary experiments). The worst detection of malware occurs 

with the Nisev malware family; unbalanced datasets might cause a detection rate of only 

20% as only five samples (Drebin provides only five samples in their datasets) were used 

in this experiment. Probably, the GP did not learn properly using the samples. However, 

as we can see the in Nisev datasets, the FPR is the lowest with only two samples detect 

as non-malware samples.  Six malware families do not get above 90% for TNR, which 

also affects accuracy. Regarding the results shown above, we are still satisfied with the 
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GP performance as Geinimi and FakeRun average detection rate of more than 99%, 

which is the best detection rate.   

 Conclusion 

The purpose of preliminary experiments is to identify the parameters and the features 

that will be used to evaluate the performance of the GP to evolve the best programs to 

distinguish malware from non-malware samples.  

 

In the end, the values of generation and population size do not significantly affect the 

detection and false alarm rates. As the number of features was reduced from nineteen to 

fourteen, we realised the execution time to complete the full cycle of evolved GP 

program had also been reduced, and the performance had been improved. The five 

permissions excluded from the features are permissions that do not contribute 

meaningfully to the detection rate of evolved programs. We now use the remaining 

permissions in the experiments described below in section 4.2.  

 The Performance Evaluation of Genetic Programming 

GP was used to evolve classifiers – programs which, when presented with an 

appropriate input data set indicate whether each of its constituent apps is a malware or 

normal APK. We have source data sets for non-malware and malware examples from 

datasets used by the community. Particularly, we used Drebin datasets [2]. Table 4.4 

indicates the number of examples of non-malware samples used. The numbers of 

malware samples used are those given in Table 3.2.  
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Table 4. 4 Non-malware Samples based on Drebin Datasets 

Family  Training Testing Family Training Testing 

FakeInstaller  40,467 42,787 Adrd 42,771 42,742 

DroidKungfu 40,365 42,127 DroidDream 40,305 42,945 

Plankton 40,570 42,399 LinuxLotoor 40,043 42,729 

Opfake 40,552 42,414 GoldDream 40,067 42,707 

GingerMaster 40,201 42,419 MobileTx 40,028 42,734 

BaseBridge 42,752 42,667 FakeRun 40,092 42,681 

Iconosys 40,081 42,649 SendPay 40,294 42,975 

Kmin 40,126 42,668 Gapussin 40,038 42,724 

FakeDoc 40,078 42,645 Imlog 40,276 42,691 

Geinimi 40,056 42,924 SMSreg 40,043 42,714 

 

Each family is targeted in turn (i.e., we seek to evolve a detector for that specific family). 

We carry out twenty runs for each target malware family with the parameter settings in 

Table 3.5, and the fitness function is as in equation 1 in Chapter 3. Subsequently, we 

calculate the average to distinguish any bias that might occur during the experiments is 

running.  

 

For each evolved program (detector), we calculate the accuracy (ACC), false-positive 

rate (FPR), and the false-negative rate (FNR). The formula for each of these measures is 

given below:  

ACC = (TP/TN)/ (TP+FP+FN+TN) x 100   (2) 

FPR = ((FP/ (FP +TN)) x 100     (3)  

FNR = (FN / (FN + TP)) x 100                           (4) 

 

ACC is the proportion of correct predictions for all detection. 

TP  rate is the proportion of correct malware detected. 

TN  rate is the proportion of correct for non-malware detected. 

FP rate is the proportion of incorrect predictions for non-malware detected. 

FN rate is the proportion of incorrect predictions for malware detected. 
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For the presentational purpose, it is convenient to denote each malware family by a 

single letter identifier. Table 4.5 gives the identifiers for each malware family of Figure 

4.1.   

Table 4. 5 Malware Families Reference 

Family  Reference Family Reference Family Reference 
FakeInstaller  A Kmin H MobileTx O 
DroidKungfu B FakeDoc I FakeRun P 
Plankton C Geinimi J SendPay Q 
Opfake D Adrd  K Gapussin R 
GinMaster E DroidDream L Imlog S 
Basebridge F LinuxLotoor M SMSreg T 
Iconosys G GoldDream N   

 

 

  

Figure 4. 1 The Performance of GP                    Figure 4. 2 Drebin Detection Rate [119] 

In these experiments, the fitness function uses a value of 0.5 for both α and β (refer to 

equation 1 in Chapter 3 for calculating the fitness), essentially viewing false positives 

and false negatives as equally important. The detection performance using GP for each 

family is shown in Figure 4.1 for the twenty malware families. The figure shows that GP 

can detect all families with an average accuracy of 93% and 7% average false positive 

rate. Correspondingly, almost all families have a detection rate of above 90%, and three 

families (Basebridge (F), Kmin (H), and FakeRun (P)) have a detection rate above 99%.  
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However, two families SendPay (Q) and Gappusin (R) give rise to the accuracy of only 

64%. Figure 4.2 also shows that the detection rate for family R is only around 44% (but 

this is better than Drebin’s rate). The results are summarised in Table 4.6:  

Table 4. 6 SendPay and Gappusin Results Details 

Family TPR TNR FPR FNR ACC 

SendPay 100% 64% 36% 0% 64% 

Gappusin 100% 64% 36% 0% 64% 

 

Both families achieve 100% TPR, but their FPR is very high at 36%. Although the TNR 

for both families is considerably worse at 64%, this happens due to the unbalanced data 

between both SendPay and Gappusin (refer to Table 3.2 in Chapter 3) and non-malware 

samples as shown in Table 4.4. In this experiment, we select only five samples for 

SendPay and Gappusin randomly for the training datasets and the balance of remain 

samples for both (SendPay and Gappusin) are used as testing dataset. Five samples for 

training datasets might not be enough for the GP to learn and evolve the best program 

to identify the malware. 

 Results Comparison   

The results obtained in Section 4.2 and those from Drebin [119] are now compared. The 

evolved GP program detects F almost perfectly, which is better than Drebin, but Drebin 

detects O nearly perfectly. For R, our GP can detect 65% of the malware, which is better 

than the Drebin detection at 45%. Nevertheless, for Q Drebin gives better detection than 

our GP approach. The results for other families for both our evolved GP and Drebin 

reveal little difference. The average detection rate for Drebin is the same as our GP 

average detection rate at 93%. However, Drebin seems to detect almost perfectly for five 

families such A, D, H, P and Q. Though, and our detection is better because eighteen out 

of twenty families got 93% and above whilst with Drebin three families come below the 

average detection rate.  
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Our approach uses only permission as features and so may be regarded as a deliberately 

minimalist approach. The results above seem promising, but our approach may also be 

too limiting because some APK does not include permissions and also the combination 

of the permissions sometimes will generate false alarms.  

 

It is well known in the EC community that the fitness function can matter a great deal. 

The above results were obtained, assuming an equal weighting for FPs and FNs. Our 

equal weighting of competing factors in the fitness/cost function may have been critical.  

In the next section, we investigate what are the optimal choices of a fitness function for 

the detection of each malware family and determine whether there is any commonality 

across families. 

 The Evaluation of the Genetic Programming Improvement Using Optimal 

Parameters  

This section aims to evaluate the performance of the weight parameters to get the best 

performance from the evolved GP programs. In section 4.2, the work used a balanced 

fitness function (with α and β both having values of 0.5). In this section, we explore a 

variety of weights for α and β in the fitness function. Approximations to the optimal 

parameters for each α and β in the fitness function are identified at first. Then fair 

comparisons of these procedures under their optimal parameter settings are made to 

identify those that give rise to the best detection rates. All parameter values of the 

approach are as indicated in Chapter 3.  

 

We explore the values of α and β in the range of 0.05 to 1.0 in steps of 0.05. We also 

impose a normalisation constraint that α + β = 1 (refer to equation (1) in Chapter 3).  

 

From first principles, we would expect differences in results to emerge from different 

choices. Specific choices for these parameters define the relative weights given to the two 

components. These two components are generally in opposition to each other, and so 

improving the performance of one aspect will often degrade performance in the other. 

There will come the point where simultaneously improving both becomes impossible. 

 



CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES 

 

71 

 

As we range over 0.05 to 0.95, we would expect FPs and FNs rates to cross at some point. 

However, the choice of parameters that gives the most attractive trade-offs is not known. 

Our experiments should provide insight into this aspect also, and we can check such 

crossing points against measurements of the balance of the malicious versus non-

malicious sample sizes. 

 

All experiments were run twenty times. The accuracy average is calculated, and the 

graphs are illustrated below to summarise the results. The results indicate a mix of 

plausible and poor results. Below the poorest and the best performance results are 

shown in Figure 4.3 and Figure 4.4. The summary of other results is given in Appendix 

1. As deduction of outcomes in Appendix 1, the results are shown when the fitness 

function weight change either on α or β the results also change significantly. 

  
Figure 4. 3 The poorest GP performance   Figure 4. 4 The best GP performance 

In Figure 4.3, the results show a low detection rate for most of the malware families; the 

results are even worse than the result discussed in Section 4.3. Besides, the fitness 

function used for experiments, as shown in Figure 4.3 is 0.95 (α) and 0.05 (β). The 

conclusion can be made when α is at peak and β at the lowest the detection rate decreases 

for five families (B, E, L, M and N). Nevertheless, there is no significant change for other 

families, even for family Q and R, which have the lowest detection rate in Section 4.3.  It 

is interesting to figure out how the modification to fitness function calculation affects the 

detection rate performance.   
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The best performance of evolved GP programs is shown in Figure 4.4, where the 

detection rate is almost perfect for all malware families.  The graph also shows better 

results than those presented in [2] (where the Drebin Dataset was introduced). The 

detection decreases drastically from the results of the first experiment using balance 0.5 

weight for α and β in the fitness function. In these experiments, β is set as 0.95, and α is 

fixed to 0.05 in the fitness function. This fitness function shown the best result for all 

malware families as shown in Figure 4.4. 

 

The variety of results for the different combination of α and β are shown in Appendix 1. 

All results in these experiments prove the idea by using different weight in α and β in 

fitness function would improve or deteriorate the results. To investigate further of the 

results obtained, Table 4.7 is the matrix of the Pareto front for FPR and FNR for all range 

of α and β parameter used in the experiments.  Table 4.7 shows the indicated values of 

β in the fitness function, whether the programs evolved using that fitness, function 

exhibited Pareto optimal performance.
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In the table is the matrix of each parameters weight has been used in the calculation of the fitness function, and the details of each item are described 

subsequently.  

Table 4. 7 Pareto Optimal (FPR and FNR) Achievement by Used Beta (β) Value. 
Weights 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 

Adrd          × × × × ×  × × × ×  

Basebridge × × × × × × × × × × × × × × × × × × × 

DroidDream    ×                

DroidKungfu        ×  ×          

LinuxLotoor          × × × ×       

FakeDoc × × × × × × × × × × × × × × × × × × × 

FakeInstaller × × × × × × × × × × × × × × × × ×   

FakeRun × × × × × × × × × × × × × × × × × × × 

Gapussin × × × × × × × × × × ×         

Geinimi       × × × × × × × × × × × × × 

GinMaster × × × × × × ×             

GoldDream       × × × × × × × × × × × × × 

Iconosys × × × × × × × × × × × × × × × × × ×  

Imlog × × × × × × × × × × × × × × × × × ×  

Kmin × × × × × × × × × × × × × × × × × × × 

MobileTx × × × × × × × × × × × × × × × × × ×  

Opfake × × × × × × × × × × × × × × × × × ×  

Plankton × × × × × × × × × × × × × × × × × × × 

SendPay × × × × × × × × × × × × × ×      

SMSreg × × × × × × × × × × × × × × × × × ×  

Families 

 X – The β weight that give Pareto optimal for Malware Families. 
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Table 4.7 above summarises the best performance of FPR and FNR; an “x” denotes that 

a program evolved using the corresponding β weight (to calculate the fitness) as a 

parameter achieved a Pareto optimal performance. As explained before, α will vary as β 

is changing. The results showed some of the families get the Pareto optimal results for 

FPR and FNR in each experiment using different weight β, and some of the families only 

get Pareto results for FPR and FNR when specific values are given to the weight β. The 

details of the eight malware families show impressive results clarified below, and other 

results are given in Appendix 2. 

 

       
Figure 4. 5 Adrd Pareto Frontier                Figure 4. 6 Adrd FNR and FPR  

 

The Pareto front for Adrd is shown in Figure 4.5, the range of β (weight for fitness) is 

grouping into six, and it indicates there is static FPR and FNR at 1% and 40% 

subsequently when 0.05 is given as the weight for β. The best Pareto frontier lies down 

between 0.10 - 0.25 and 0.55 – 0.35 weight for β. Figure 4.6 shows how FPR and FNR vary 

as with β. Interestingly the FPR also at the lowest but the FNR at the highest. The FNR 

drastically decrease from 40% to 15% as the β increase from 0.05 to 0.10, but afterwards, 

the FNR gradually increase as the β also rise. Figure 4.7, Figure 4.9, Figure 4.11, Figure 

4.13, Figure 4.15, Figure 4.17, and Figure 4.19 can be summarised as both FPR and FNR 

are changing to be better or worse. 
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A conclusion can be drawn from Figure 4.8, Figure 4.10, Figure 4.12, Figure 4.14, Figure 

4.16, Figure 4.18, and Figure 4.20. We can see that FPR and FNR meet at one point, which 

becomes a turning point either the results will be worse or better as the weight for the β 

increase. 

 

       
Figure 4. 7 DroidDream Pareto Frontier     Figure 4. 8 DroidDream FNR and FPR  

          
Figure 4. 9 DroidKungfu Pareto Frontier     Figure 4. 10 DroidKungfu FNR and FPR  
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Figure 4. 11 LinuxLotoor Pareto Frontier                Figure 4. 12 LinuxLotoor FNR and FPR 

          
Figure 4. 13 Gapussin Pareto Frontier    Figure 4. 14 Gapussin FNR and FPR 
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Figure 4. 15 GoldDream Pareto Frontier      Figure 4. 16 GoldDream FNR and FPR

          
Figure 4. 17 Iconosys Pareto Frontier               Figure 4. 18 Iconosys FNR and FPR 

 

         
  Figure 4. 19 SendPay Pareto Frontier               Figure 4. 20 SendPay FNR and FPR 
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 Conclusion 

When we use 0.5 as α and β values to calculate the fitness function, the best-evolved 

detectors achieved 93% accuracy. Our experimentation over the range 0.05-0.95 for α and 

β revealed that GP programs able to achieve a 98.8% average detection rate accuracy 

with 0.89% false-positive rate. As a conclusion (refer to Appendix 1) each time β value is 

increased, the detection rate accuracy declined. Nevertheless, when α increases, the 

detection accuracy improves. Even a slight change of the fitness function (i.e. via 

different weightings) can affect the detection rate.  

 

In this chapter, an EC technique is presented to distinguish Android mobile attacks from 

the normal samples of APK. The evaluation results support the main hypothesis of this 

research - that GP will be able to evolve programs to distinguish malicious applications 

from non-malicious applications in mobile phone datasets. The results of the detection 

rate improve at the optimal detection as we used different weight for the fitness function 

calculation at α = 0.05 and β = 0.95. The experiments result also indicate a slight change 

of α and β in fitness function could give impact to the performance of the evolved GP 

program. Finally, we figure out the best weight for the fitness function to get optimal 

performances of GP to detect and classify the Android malware and its family.  

 

This research was the first IDS for Android APK using GP for detection synthesis.  The 

evolved GP program used only permissions collected from Manifest.xml file.  A GP 

approach has been shown capable of evolving programs that can distinguish malware 

from non-malware Android applications. 

 

MOEA has been shown to be capable of finding high performing solutions that make 

trade-offs between detector performance, execution time and power consumption.  
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CHAPTER 5 

Improving Resource Efficiency 

 
In this chapter, we consider how functional performance (detection rate) and non-functional 

properties (resource consumption and execution time) can be traded off using MOEC. We 

motivate our addressing this topic and summarise contributions.  The multi-objective EC trade-

offs are explained in Section 5.2. The power consumption of GP evolved programs is analysed in 

Section 5.3 along with the different trade-offs that can be made between classification accuracy, 

power consumption, and execution time of the evolved programs. Finally, the results are 

evaluated and discussed in Section 5.3.2. 

 Introduction 

 Motivation 

According to KhorasaniZadeh et al., the ultimate challenge for malfeasance detectors is 

to decrease the resources needed to perform their function [132]. Mobile phones are well-

known for being ‘resource-hungry’ devices [9], [115], [161]–[163]. The integration of 

multiple hardware parts accessible in modern smartphones increases their usability but 

decreases their battery lifespan to a couple of hours of functioning without recharge 

[137]. Energy-efficiency is the crucial constraint in mobile application design nowadays 

[163], [164] and app developers may not be entirely aware of how power-hungry their 

apps are [165].  

 

Power usage can be measured or estimated in a variety of ways such as using dedicated 

hardware, cycle-accurate simulators and OS-level instrumentation, through to carefully 

calibrated software-based energy profilers that offer coarse-grained energy predictions 

to measure the power consumption of the device [166]. In [167], it was noted that power 

consumption varies across different mobile phone models.   
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The mobile phones research community is starting to investigate improving energy 

consumption in Android mobile phone applications [162], [164], [166], [168]–[171]. The 

Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for minimising 

energy consumption whilst maintaining desirable colour palette properties of a GUI 

screen [164]. Android developers can evaluate their applications using vLens to estimate 

the source code line-level energy consumption [169], or eLens to calculate the energy 

consumption per-instruction for the whole application [166]. 

 

Researchers have examined the trade-offs between power consumption and detection 

rate [172]–[174] in mobile phones. The energy consumption and performance of mobile 

antivirus (AV) software (Sophos, AVG, NQ, Avast, Dr Web and Norton) in Android has 

been investigated [172] at a low-level, concluding that AV software is often inefficient. 

Researchers have also investigated the security versus energy trade-offs along two axes: 

attack surface and malware scanning frequency, for both code and data-based rootkit 

detectors [19]. (We note in passing that details of the power consumption waveform 

itself can be used to detect malware, as proposed in [173]. Such use is interesting for IDS, 

but it is not the focus of the research reported here.). 

 

The faster a detection is made, the less is the damage to mobile phones. In addition, a 

quicker detection program means that resources are available for other uses. Therefore, 

the execution time of a check is also of some importance. Therefore, in this chapter, we 

propose to investigate the use of the MOEA to explore the potential trade-offs between 

functional and non-functional performance measures.   
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 Contribution  

The contributions in this chapter are: 

• Establishment of empirical evidence to demonstrate how optimisation can be 

used to explore trade-offs between functional properties (detection rate) and 

non-functional properties such as execution time and power consumption. 

• Establishment of empirical evidence of how SPEA2 can give the best trade-offs 

for three objectives (detection rate, power consumption and execution time).   

 Multi-Objective Evolutionary Computation 

The majority of real-world engineering problems have multiple objectives [141], [175]. A 

multi-objective optimisation finds values for multiple objective functions (typically in 

conflict with each other) acceptable to a designer (decision maker) [176], [177]. 

Optimisation problems with conflicting objectives are often addressed by aggregating 

the objectives into a single scalar function and solving the resulting single-objective 

optimisation problem [178].  Optimising a weighted sum of the individual objectives is 

commonly used. However, designers may have reservations about such an approach, 

e.g., the specific values of weights may be critical, and choices are often made in a 

somewhat ad hoc manner. However, there are principled alternatives. Multi-objective 

optimisation (MOO) (also known as multiperformance, multicriteria, vector, or Pareto 

optimisation) is defined as finding a vector of decision variables that satisfy constraints 

and optimises a vector function whose elements represent the objective functions [176], 

[179]. In a multi-objective search, either one solution ‘dominates’ another or neither 

dominates [178]. In contrast to single-objective optimisation, a solution to this problem 

is not a single point, but a group of points known as the Pareto-optimal set or ‘front’ 

[180].  
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In Figure 5.1 below, we can see a set of points labelled with ‘1’ that make up the primary 

Pareto front. For each point labelled ‘1’, there is no other point that is simultaneously 

better (higher performing) on criteria f1 and f2, where we seek to minimise f1 and f2.  If 

‘dominance’ means better on all (here both) criteria, none of these points is dominated. 

 
Figure 5. 1 Example of Multi-Objective Ranking using Pareto-optimal Solutions [180] 

 

The multi-objective optimisation problem (MOOP) solving in EC has focused on two 

approaches: weight-based and Pareto-based [181]. The weight-based technique uses a 

single fitness function derived as a weighted sum of single property fitness functions. 

However, this approach cannot find Pareto-optimal solutions in the non-convex portion 

of the Pareto-optimal front [175], [181]. The Pareto-based technique offers a set of 

solutions acknowledged as Pareto-optimal solutions. In this thesis, we use the Strength 

Pareto Evolutionary Algorithm 2 (SPEA2) MOEA algorithm to find such sets of 

solutions. 
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 Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is a successor to Strength Pareto 

Evolutionary Algorithm [181]–[183] (SPEA) introduced by Zitzler et al. in 2001 [184]. The 

steps of the SPEA2 algorithm are shown in Figure 5.2.  

 

 

 

Figure 5. 2 The SPEA2 Algorithm [184] 

 

 

The SPEA2 archive size is fixed (when non-dominated individuals are less than 

predefined archive size it will be filled with dominated individuals). Only participants 

of the archive participate in the mating selection process. In SPEA2 the fitness 

assignment is different from SPEA (defined as a fine-grained fitness assignment strategy 

which integrates density D (i) and raw fitness R (i)) to avoid the individuals dominated 

by the same archive members that have identical fitness value.   

 

The equation 5.3 is the fitness of an individual i in SPEA2. The equation 5.3 is defined by 

two components: the raw fitness R(i) (equation 5.1) and the density D(i) (equation 5.2). 

The raw fitness (R) of an individual i is determined by the strengths (S) of its dominators 
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in both the archive and the population. The fitness is aimed to be minimised. The density 

(D) is calculated by the adaption from the k-th nearest neighbour element 𝑘𝑘 = �𝑁𝑁 +𝑁𝑁� 

and distance as (𝜎𝜎𝑖𝑖𝑘𝑘) to the individual. 

𝑅𝑅(𝑖𝑖) =   � 𝑆𝑆(j) 

𝑗𝑗∈𝑃𝑃𝑡𝑡+𝑃𝑃𝑡𝑡,𝚥𝚥>𝚤𝚤��������

 

 

𝐷𝐷 (𝑖𝑖) = 1
𝜎𝜎𝑖𝑖
𝑘𝑘+2

                                       (5.2) 

 

The individual fitness F (i): 

𝐹𝐹 (𝑖𝑖) = 𝑅𝑅 (𝑖𝑖) + 𝐷𝐷 (𝑖𝑖)                                                         (5.3) 

 

SPEA2 is known to reduce bloat in GP evolved programs [34] and has out-performed 

NSGAII in high-dimensional objective problems [35]. We are motivated to investigate 

SPEA2 as it is successfully used in the research of [23], [176] where three objectives are 

adopted: detection rate, false-positive rate, and energy consumption of the program.  In 

our study, we are also using three objectives, malware detection rate and two non-

functional properties (power consumption and execution time of the evolved program). 

 Implementation 

In this section, we implement the SPEA2, one of the established multi-objective 

evolutionary algorithms (MOEAs) used by researchers [23], [136], [185], [186]. We are 

evaluating the optimising of non-functional and functional properties of the GP program 

using SPEA2. In the previous chapter 4, programs evolved using ECJ are evaluated.  An 

implementation of SPEA2, which is an extension to ECJ [158], is used in this research. 

The power consumption and execution time of the GP programs evolved to detect 

twenty malware families (each malware family was targeted individually) are analysed 

in this section.   

 

 

   (5.1) 
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In our implementation framework, we integrate jRAPL [187]with our evolved programs. 

The jRAPL tool is capable of calculating the power consumption directly in the evolved 

GP program. jRAPL is a framework for profiling a Java program executing on CPUs with 

Running Average Power Limit (RAPL) support with the capability to control, monitor, 

and receive notification of energy and power consumption from different hardware 

stages, such as DRAM and CPU [187]. The tool is relatively easy to use.  An example 

code block is given below.   

 

 

 

 

Figure 5. 3 Java Code to Calculate Power Consumption [187] 

The jRAPL tool runs under the Linux operating system with sudo permission (superuser 

account). This is because the tool needs to access model-specific registers (MSR) in the 

Linux kernel to calculate power consumption for DRAM, CPU and Java packages 

separately.  jRAPL can only calculate the energy for two sockets CPUs; consequently, all 

our experiments are carried out in a two sockets CPU machine. Subsequently,  to 

estimate the precise actual execution time, we used Java’s System function, the 

nanoTime() method [188].  We use the jRAPL tool (to calculate the power consumption) 

and Java’s nanoTime() method (to estimate the execution time) in the experiments 

discussed in the next section. 

 Analysis of Power Consumption and Execution Time of Evolved Programs 

In this section, our purpose is to study the power consumption and the execution time 

for GP evolved programs. The configuration and parameters of these experiments are 

the same as in Table 3.5, and the fitness function are same as in equations 1 in Chapter 

3. GP programs are evolved for each malware family individually. The best individual 

programs for each malware families were executed ten times.  Their power consumption 

and execution times are shown in Figure 5.4.   

 

 

double beginning = EnergyCheck.statCheck(); 
doWork(); 
double end = EnergyCheck.statCheck(); 
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Figure 5.4 presents the graph of time (execution time) versus power (power 

consumption) for the twenty malware families.  For FakeDoc, DroidKungfu, and Opfake 

the execution time and power consumption is reduced continuously for all ten runs. For 

other malware families, the evolved program’s execution time and power consumption 

are continuously increased. A phenomenon in GP called bloat might cause these results, 

where the code bloating consumes increasing resources, and ultimately the search grinds 

to a halt because all available resource has been used [189]. Furthermore, such increasing 

resource consumption is not usually associated with an increase in functional 

performance. The SMSreg results show clear trade-offs between execution time and 

power consumption. For conclusion, we can identify that for most malware families, the 

execution time for the evolved program increases in tandem with power consumption.   

 

In these experiments, we demonstrate that different trade-offs can be made between 

execution time and power consumption in the GP programs and the results encourage 

us to identify whether there are adequate trade-offs between these objectives. Therefore, 

in the next section, we use a MOEC algorithm (SPEA2) to investigate possible trade-offs 

among three objectives detection rate (DR), execution time, and power consumption. 

The SPEA2 approach has also been proven to reduce bloat in GP evolved program [23], 

[190].   
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Figure 5. 4 Evolved Program for Execution Time and Power Consumption 
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 Discovering Trade-offs in the Intrusion Detection Programs 

In this section, we investigate trade-offs between the detection rate (DR), power 

consumption and execution time of the program. The following three objectives will be 

minimised concurrently. 

 

f1 = 1-(no. of attacks detected /no. of attacks)         (5.4) 

f2 = power consumption                             (5.5) 

f3= time-consumed     (5.6) 

                                               

  The conceptual diagram of the experimental framework is shown in Figure 5.5. 

 

 

  

 

 

 

 

 

Figure 5. 5 Simplified Concept of Experiments 

 

Figure 5.5 illustrates the process of the experiments reported in this section. The power 

consumption of the evolved program is calculated by jRAPL, and GP and SPEA2 used 

the results as the first objective.  The second objective is derived from the execution time 

of the evolved program using nanoTime (measured elapsed time). The third objective is 

derived from the detection rate. SPEA2 is used to optimise the objectives. We have used 

the same experimental procedure as in Chapter 4; a program is evolved separately for 

each of the twenty malware families. The parameters used in this experiment are those 

in Table 3.5, and we set the SPEA2 archive size to 512. The results are explained below.  

GP and SPEA2 

Individuals 
Evolved 

program 

jRAPL 

Power 

consumption (j) 

Execution time 

(n-Time) 

DR 
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 Experiment: Trade-offs in Detection Programs using DR, Power Consumption 

and Execution Time. 

In this experiment, we evolved the detection programs using three objectives: DR, power 

consumption, and execution time. Furthermore, we simultaneously minimise power 

consumption and execution time for the evolved program and maximise the detection 

rate.  We aim to investigate whether there is a trade-off between power consumption 

and execution time when the detection rate is optimal.  

 

The outcomes of these experiments can be divided into two, as displayed in Figure 5.6 

and Figure 5.7. The conditional plot below shows the optimal results proposed for the 

evolved program using three objectives for the twenty-malware families. For fourteen 

malware families (Adrd, Basebridge, DroidDream, DroidKungfu, LinuxLotoor, 

FakeDoc, FakeRun, GinMaster, GoldDream, Imlog, Kmin, MobileTx, Plankton, and 

SendPay) a high detection rate was obtained in these experiments with trade-offs 

between power consumption and execution time. 

 

These experiments show that different trade-offs could be obtained between power 

consumption and execution time when the detection rate is optimal. The trade-offs are 

discovered by using the MOEC method. 

 

I think the clearest deduction from the 14 graphs is that there is not much variation in 

the time consumption. However, there is a fair amount of variation in the power 

consumed.  This means effectively that there for optimal detection rates; some programs 

may be more power-efficient than others. 
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Figure 5. 6 Coplot for Program Evolved with Trade-offs using Three Objectives 

Detection Rate (%) 
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The Figure below illustrates the outcomes for six malware families without trade-offs for 

power consumption and execution time as results at optimal detection rate. All families 

show that power consumption and execution time vary inversely (i.e. they are in 

conflict). All detection programs evolved for all five malware families used less than 0.04 

Joule. The results in Figure 5.7 show the time to execute the detection program is less 

than shown in Figure 5.4. This proves the implementation of MOEC capable of reducing 

power consumption and execution time. 

 

  

 
Figure 5. 7 Coplot for Program Evolved without Trade-offs using Three Objectives

Detection Rate (%) 
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CHAPTER 6 

Further Investigation of GP Performance 
on Various Threats on Mobile Phones 

 

This chapter investigates the evolved GP program’s performance on three different mobile phone 

datasets. The current trends for mobile phone attacks are explained in Section 6.1 as our 

motivation that led to our contribution to this Chapter. The experimental parameters are 

discussed in Section 6.2. In section 6.3, the efficiency of the evolved GP programs are evaluated 

using three different mobile phone datasets obtained from other researchers. Finally, in Section 

6.4 sumarries the effectiveness of GP performance for detecting various mobile phone attacks 

datasets.  

 Introduction 

 Motivation 

Google Play store was introduced a decade ago, but Google still struggles to protect it. 

As reported by McAfee, millions of new threats have affected users since its launch, 

malware in particular [55]. TrendMicro, McAfee, and CSO Online have also released a 

report about the diversity of mobile phone threats from around 2016 through to 2020,  

such as mobile ransomware, banking trojans, adware, spyware, ad and click fraud, 

botnet, dead apps, and Internet of Things (IoT) malware. There are significant trends 

towards monetisation using mobile malware such as toll fraud and premium SMS scams 

[55], [191]–[193]. 

          

In 2018, McAfee reported that a botnet was used as a spying method to hijack IP cameras. 

The botnet was also capable of distributing DDoS attacks by bombarding a popular 

website [55]. The first mobile botnet targeting Android mobile phones was VikingHorde, 

first detected in 2016 [192] and the first mobile botnet detected in 2009 that effected 

Symbian phone users [55], [194]. VikingHorde is a botnet, working with root or non-

rooted Android mobile phones that use proxied IP addresses, which is capable of 
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masking ad clicks and making revenue for the attackers. Subsequently, in mid-2016, 

Hummingbad infected over 10 million Android mobile phones [192].  

 

Ransomware has emerged as a major problem in the past few years. For example, in  

January 2018, mobile phone users from Indiana and New Mexico were affected by the 

SamSam ransomware [195]. The targeted victims of SamSam ransomware were from 

hospitals, city municipalities, universities, corporate companies, telecommunication 

companies, and others. Ransomware criminals now use Bitcoin, LiteCoin, and Monero 

(digital currency) as the payment method instead of a money transfer using Western 

Union and PayPal, which was common a few years ago [191], [196].  

 

The events usually impact computer users, but it is possible that mobile phones fell 

victim to ransomware since they are often connected to the network and other devices 

by Wifi or Bluetooth.  Today, smartphones are also targeted because they are essentially 

portable and powerful computers. The first iPhone ransomware attacks in May 2014 

occurred in Australia, and the first Android ransomware occurred in late August 2014 

in United States users [197].   

 

Extensive research has been conducted in the field of mobile phones threats 

classification, detection, and analysis to counter the rapid growth of mobile phones 

attacks over the past several years. Trend Micro has identified significant trends for 

threats to mobiles [175]. Challenges have emerged that pose significant problems, e.g. a 

diverse range of mobile malware and advanced and targeted malware that includes 

mobile botnets and a variety of mobile ransomware. In this chapter, we examine three 

different Android mobile datasets obtained from international researchers: the first is 

from the DroidAnalytics project and focused on further Android malware; the second 

concerns Android botnets; and the third concerns ransomware [113], [116], [120].  

 Contribution 

The contribution of the research reported in this chapter is: 

• the provision of empirical evidence that GP can produce programs that detect 

other Android types of attack in the highlighted datasets. 
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 Experimental Parameters 

The parameters used in all three experiments are the same as those given in Table 3.5 in 

Chapter 3. In this section, we run a GP program with two different sets of features for 

ransomware datasets. The first experiments use the same selected features as the 

experiments in Chapter 4. The second experiments use all twenty selected features. We 

used two different features in these experiments because we want to test which 

combination of features are best suited to the different type of datasets. 

 

For Malware datasets and Android botnet datasets, only fifteen features were used. For 

all three datasets, the experiments use 0.5 for both α and β in the fitness function. Table 

6.1 shows the shortened identifiers used for features, used to make graphical 

representations of trees manageable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON 

MOBILE PHONES 

95 

 

 

Table 6. 1 Feature used in GP and the Short Form to Build Tree 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each malware family is the target of ten runs. The ten runs in each case are executed 

using ECJ’s job function. The best results achieved are discussed in Section 6.3. 

 

 

 

 

Features Short-form 
ACCESS_COARSE_LOCATION ACL 
ACCESS_FINE_LOCATION AFN 
INSTALL_SHORTCUT IS 
INTERNET I 
MODIFY_PHONE_STATE MPS 
READ_CONTACT RC 
READ_HISTORY_BOOKMARKS RHB 
WRITE_HISTORY_BOOKMARKS WHB 
READ_SMS RS 
SEND_SMS SS 
WRITE_SMS WS 
READ_PHONE_STATE RPS 
VIBRATE V 
WRITE_APN_SETTINGS WAS 
WRITE_EXTERNAL_STORAGE WES 
BLUETOOTH B 
DISABLE_KEYGUARD D 
RECEIVE_BOOT_COMPLETED RBC 
SET_WALLPAPER SW 
WAKE_LOCK WL 
Contain C 
Not N 
O O 
X X 
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 Discovering GP Performance using Different Datasets 

In this section, the effectiveness of our proposed IDS is investigated by using three 

different Android mobile phones threat datasets. The datasets used are from real 

Android applications and real malware. They have been acquired from established 

researchers. All datasets were pre-processed to extract the Manifest.xml information 

from APK.   

 Malware Datasets  

The evaluation of the evolved  GP  programs against Android malware samples is 

described in this section. These experiments are extended from experiments completed 

in Chapter 4, where GP successfully detected Android malware in the DREBIN datasets 

[119]. Here we test our evolved GP programs with different Android malware datasets. 

The DroidAnalytics datasets contain real malware (current at the time it was collected).  

  

DroidAnalytics is a cloud based APK scanner and functions as an Android malware 

analysis system. The research generated signatures for the malware and facilitated 

information retrieval [116]. The DroidAnalytics datasets include 98 malware families 

(although their paper indicates 102 malware families). The datasets comprise 2,475 

malware samples and include 327 zero-day malware samples from six different malware 

families. 
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 Experiments Overview 

We use 17 of the 98 malware families supplied in DroidAnalytics datasets (i.e. the same 

as for the experiments in Chapter 4). These 17 are selected because they contain enough 

samples to allow a plausible split into meaningfully sized training and testing 

components.  We also use precisely the same features (permissions) as the experiments 

in Chapter 4 identified as giving the best detection. 

 

The training datasets used in these experiments are presented in Table 6.2 and the testing 

datasets, as shown in Table 6.3 below. 

Table 6. 2 Training Datasets 

Family  Malware Non-malware Family Malware Non-malware 
FakeInstaller  919 40,467 Adrd 85 42,771 
DroidKungfu 662 40,365 DroidDream 80 40,305 
Plankton 620 40,570 LinuxLotoor 64 40,043 
Opfake 608 40,552 GoldDream 64 40,067 
GingerMaster 334 40,201 MobileTx 69 40,028 
BaseBridge 324 42,752 FakeRun 56 40,092 
Iconosys 145 40,081 SendPay 54 40,294 
Kmin 142 40,126 Gapussin 53 40,038 
FakeDoc 127 40,078 Imlog 38 40,276 
Geinimi 87 40,056 SMSreg 36 40,043 

 

Table 6. 3 Testing Datasets 

Family  Malware Non-Malware Family Malware Non-Malware 
FakeInstaller  3 42,787 Adrd 141 42,742 

DroidKungfu 142 42,127 Rooter 14 42,945 

Plangton 126 42,399 LinuxLotoor 112 42,729 

Opfake 8 42,414 GoldDream 6 42,707 

GingerMaster 31 42,419 MobileTx 15 42,734 

BaseBridge 546 42,667 SendPay 9 42,975 

Kmin 192 42,668 Imlog 2 42,691 

FakeDoc 1 42,645 SMSreg 1 42,714 

Geinimi 97 42,924    
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 Results and Discussion 

In this section, the details of each particular malware family and the results are 

discussed. Table 6.4 below provides descriptions for each of the Android malware 

families, the year they were discovered, and their capabilities. In the table, only 12 

malware families are described as another 5 of malware families have been described in 

Chapter 3. Figure 6.1 shows the best individual results. 

 

Table 6. 4 Android Malware Families, Year Detected and Their Capabilities 

Family (Year) Capabilities [155], [198]–[204] 

Geinimi (2010) 

 

Transmits info, contact details and geographic location 

from the device to a remote location. It can also upload 

SMS data to remote servers, call or send an SMS to a 

specified number, delete SMS messages, silently 

downloading files, snatching a list of installed 

applications and uploading it to the command and 

control (C&C) server, installing or uninstalling the 

software. It also can show a map or a Web page, show a 

pop-up message, change the device wallpaper, create a 

shortcut, and change a list of command and control 

servers when instructed by hackers.   

Adrd (2011) 

 

Uploads device specific data to remote servers via DES-

encrypted communication.   

BaseBridge (2011) Sends SMS messages to predetermined numbers with a 

premium rate, deletes SMS messages, dials phone 

numbers, monitors phone usage and terminates browser 

application. 

GoldDream (2011) 

 

Spies on SMS messages received and incoming/outgoing 

phone calls by users and then uploads them to a remote 

server without the knowledge of the users. It can fetch 

and execute commands from a remote C&C server.  
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Rooter (2011) 

was known as 

DroidDream 

It  first gains root privilege on a remote device then takes 

control of the mobile system. 

Imlog (2011) 

 

Sends device info such as maker, manufacture and model 

to a particular website. 

FakeDoc  (2012) Sends sensitive information such as Contact List, User 

email address, Phone number, Device Information (IMEI, 

model, manufacturer, OS version, screen size) and 

Device Location to a remote server. 

Lotoor also was known as 

ExploitLinuxLotoor(2012)  

This is a universal detector for hack tools that use 

vulnerabilities to gain root privileges on affected 

Android devices. 

MobileTx (2012) 

 

Steals info from the affected device and sends SMS 

messages to a premium rate number.  

Kmin (2012) 

 

Sends IMEI and phone number to a remote server, 

sending SMS messages to a premium number such as 

10669500718. It also can download and install another 

application without the user being aware of it.  

SendPay (2012) 

 

Can handle remote access connections, accomplish DoS 

or DDoS, capture keyboard inputs, delete files or objects, 

or terminate processes. 

SMSReg (2012) 

 

Collects the API key, application ID, carrier, device 

manufacturer, device model, GPS location, IMEI number, 

network operator, package name, and SDK version. 
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              Figure 6. 1 GP Evolved Program Performance 

 

Performance seems varied. Figure 6.1 shows eleven out of nineteen malware families 

being detected with an average accuracy of more than 91% and three families (Adrd, 

BaseBridge and Kmin) with an accuracy of nearly 100%. Nevertheless, the detection 

accuracy of three malware families (Imlog, Kungfu and SendPay) is low (63%, 63% and 

64% respectively). Table 6.5 below provides details for these three malware families. As 

we can see, the real issue is with false positives.  

  

Table 6. 5 Imlog, Kungfu and SendPay Results 

 

 

 

 

The low detection rate for SendPay is the same as found in Table 4.6. We can conclude 

that this has happened because the evolved GP program combines permissions that 

could not give the best results. As shown in Figure 6.2 for Imlog, Kungfu and SendPay, 

the combination of permissions evolved by the GP includes quite a few that might also 

be included in non-malicious samples. The trees of the best individual evolved by GP 

for each of six malware families are shown in Figure 6.2 and Figure 6.3. All evolved 

Family TPR TNR FPR FNR ACC 
Imlog 100% 63% 37% 0% 63% 
Kungfu 100% 63% 37% 0% 63% 
SendPay 100% 64% 36% 0% 64% 
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programs gave a different tree for each malware family because each of them contains 

different permission being selected for the best individual.   

 

Family Evolved Program 

Imlog 

 

 

Kungfu 

 

 

 

 

 

SendPay 

 

Figure 6. 2 Best Individual Trees for Imlog, Kungfu, and SendPay 
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Family Evolved Program 

Adrd 

 

BaseBridge 

 

Kmin 

 
Figure 6. 3 Best Individual Trees for Adrd, BaseBridge, and Kmin 

 

 Results Conclusion 

 
The results are mixed. We can achieve more than 91% accuracy for 14 out of 17 malware 

families. However, some apps are less amenable to detection via our approach. For three 

apps the lack of accuracy is entirely due to false positives, so all malware is detected, but 

time may be wasted analysing apps erroneously flagged as malware. In all cases these 

results have been obtained by programs with limited complexity/depth  (as is apparent 

from Figure 6.2 and Figure 6.3). 
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 Android Botnets Datasets  

An Android botnet can disguise itself as a trusted Android APK and the damage only 

happens when the hackers activate the botnet. Once users realise their device is infected 

by the botnet, it is too late because the botnet owner has already taken control of their 

devices using command and control (C&C) software. Mobile phone targetted botnet 

attacks began around 2012. The following year saw an increase ([205]) that served to 

inspire researchers to address the issue.  

 

Researchers from Georgia Teach [206] revealed that 23% of Windows systems showed 

marks of a botnet infection. According to McAffee, mobile botnets and C&C outbreaks 

increased from 2016 to 2017 by 22% [55]. This rise in botnets motivated us to consider 

the use of our GP approach for their detection. As far as we are aware, GP has never 

been investigated for this purpose. 

 

Kadir et al. [113] provide a significant collection of Android mobile botnet datasets for 

14 botnet families.  The collection includes botnet datasets from the Malgenome project, 

malware security blog, VirusTotal and samples supplied by acknowledged anti-

malware suppliers. In general, the mobile botnets dataset consists of 1929 samples 

covering a period between 2010 (the first presence of Android botnet) and 2014. 

 Experiments Overview 

In these experiments, all mobile botnet APKs have been processed to extract the 

information from the Manifest.xml. The source of trusted APKs came from the DREBIN 

datasets [119] because the provided botnets dataset did not contain any trusted APKs. 

For two families indicated in [113], the data pre-processing led to the remove of some 

samples. The two families are Geinimi and Pjapps. Both training and testing datasets are 

randomly selected. The division of testing and training datasets is as in Table 6.6 and 

Table 6.7 below:  
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Table 6. 6 Training Datasets 

Family  Botnets Trusted 
APK 

Family Botnets Trusted 
APK 

Anserverbotapps 5 40,570 

Bmaster 5 42,752 Pletor 5 40,365 

DroidDream 5 40,304 Rootsmart 5 40,275 

Geinimi 5 40,056 Sandroid 5 40,126 

MisoSMS 5 40,043 TigerBot 5 40,552 

NickySpy 5 40,294 Wroba 5 40,043 

NotCompatible 5 40,304 Zitmo 5 40,078 

 

Table 6. 7 Testing Datasets 

Family  Botnets Trusted 
APK 

Family Botnets Trusted 
APK 

Anserverbotapps 231 42,399 

Bmaster 1 42,667 Pletor 80 42,127 

DroidDream 358 42,945 Rootsmart 23 42,691 

Geinimi 233 42,924 Sandroid 39 42,668 

MisoSMS 95 42,714 TigerBot 91 42,414 

NickySpy 194 42,975 Wroba 95 42,729 

NotCompatible 71 42,945 Zitmo 75 42,645 

 

 Results and Discussion 

The details of the Android mobile botnet families and the results are discussed in this 

section. The Android botnet families, the year it was detected, and their abilities are 

reflected in Table 6.8 below. In the table, 12 botnet families are discussed, as Geinimi and 

DroidDream can be referred to in Table 6.4.  
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Table 6. 8 Android Botnets Families, Year Detected and Their Capabilities 

 Family (Year) Capabilities [155], [200], [203], [207]–[209] 

Zitmo, 2010 This botnet can obstruct one-time passcodes supplied by banks 

to mobile devices as a security feature of logging into their 

accounts or making account modifications relating to sensitive 

data, and it will send all incoming text messages to a remote 

server.  

Anserverbot (2011) This botnet ran quietly in the background to connect to the blog, 

decrypt a URL string, and then connect to that server. 

NickySpy (2011) This botnet collects devices IMEI, access cell-ID, WIFI location 

and updates, GPS location and WIFI network details and sends 

it via SMS message. It can initiate a phone call without going 

through the dialer GUI so that the user is unaware of any 

outgoing calls, monitor, modify, or abort outgoing calls, open 

network sockets, read SMS messages, obtain the user’s contacts 

data, record audio, send SMS messages, and write (but not read) 

the user’s contacts data. 

PJapps (2011) This botnet had numerous features included application 

installation, visiting Web sites, adding bookmarks to the 

browser, and sending and blocking text messages. 

TigerBot (2012) This botnet opens a back door on the compromised device and 

listens for specifically created SMS messages, allowing an 

attacker to execute, stop and start processes and services, change 

network settings, send the contact list to a remote location, take 

screenshots, reboot the compromised device, record incoming 

and outgoing call numbers, and deactivate the software. 

Rootsmart (2012) This botnet links to a remote location to get the GingerBreak root 

exploit required to gain root permission on the compromised 

device.  

Bmaster (2012) This botnet exfiltrates sensitive data from the phone, including 

the device ID, GPS data, and IMEI number. It is also capable of 

sending SMS messages to premium numbers.  
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MisoSMS (2013) This botnet was capable of gathering and sending SMS 

messages to remote servers in China. 

NotCompatible (2014) This botnet was proficient at delivering access to private 

networks by transforming an infected device into a network 

proxy, which could then be used to gain access to other 

protected data or systems. 

Pletor (2014) This botnet can control the phone and its data,  lock user devices 

then ask for ransom.  

Sandroid (2014) This botnet can intercept all incoming SMS messages and 

gathers relevant banking information. The victim’s code, 

username and password are unprotected. These data are 

automatically transferred to the botnet-master.  

Wroba (2014) This botnet can start remote access connections, capturing 

keyboard input, collecting system information, 

downloading/uploading files, dropping other malware into the 

infected system, performing denial-of-service (DoS) attacks, and 

running/terminating processes.  

 

Figure 6.4 below shows the GP evolved program performance on several Android Botnet 

families; an average accuracy at 91.55% is demonstrated. Shortened identifiers for the 

families are given alongside the graph. The results show that four (A, B, J, and L) botnets 

families gave rise to an accuracy of 99% and eight (C, D, E, F, I, K, M and N) botnet 

families an accuracy of 93%. Nevertheless, two (G and H) botnets families incurred a 

very low accuracy of 60%.  
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Figure 6. 4 GP Performance on Android Botnets 

Our work differs from that of [113].  They do behavioural analysis based on URL patterns 

analysis, and we seek to detect Android botnets and distinguish them from clean APKs 

using permission use. We are able to improve the detection rate for the Sandroid family 

to 94.45%. Previously the best rate was 86% [113]. 

 

In detail, NotCompatible and PJapps have the lowest accuracy; however, their TPR 

shows 100% and 91.53% accordingly. Our GP evolved program can detect all Android 

samples from clean APK samples, but the permission combination is also contained in 

the clean APK, and so the GP identifies it as a suspicious. Thus, permissions here are 

simply insufficiently discriminating (whatever technique is used for detection). Below 

in Figure 6.5 and Figure 6.6 are the examples of the best individual trees evolved in these 

experiments for the best detection performance and the lowest detection rate. The best 

individual trees for PJapps show when the APK permission contains RPS it will be 

detected as a botnet but that clean APKs with that permission will also be subject to such 

classification.  

 

Figure 6.5 and Figure 6.6 give the best individual trees for six Android botnet families. 

It shows there is a varied form of tree evolved by GP for each of the botnet families. We 

can conclude the combination of permissions needed to detect each botnet family is 

different.
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Figure 6. 5 GP Tree Evolved for Four Botnet Families 
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Figure 6. 6 GP Tree Evolved for  Two Botnet Families 
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 Results Conclusion 

Since the first appearance in 2010 [8] Android botnets remained a major form of a threat 

right through to 2018 [55]. Previously researchers used approaches such as static analysis 

[194], [210], behavioural analysis [113], [211], SVM [103] to study Android botnet 

characteristics. In this section, we have investigated whether a GP evolved program can 

distinguish Android botnets from clean APK.  We show that GP is capable of evolving 

programs to detect Android botnets. Nevertheless, some results do not achieve a 

detection rate of 90% for some Android botnet families.  

 

No optimal tree size can be discerned that gives the best performance overall. Bigger is 

certainly not better. It would seem prudent to experiment with several max tree depths 

for GP tree evolution. The results may also reflect limitations of the datasets e.g., the 

BMaster dataset contained only six samples [113]. 

 Ransomware Datasets  

 

On Friday 12 May 2017, nations across the world experienced outbreaks of WannaCry 

ransomware attacks. WannaCry encrypted data and asked for payment to recover files. 

The UK’s NHS (National Health Service) was one of the worst affected [72]. In mid-2018, 

a new mobile ransomware variant detected by Check Point researchers called Charger 

succeeded in breaking into the Google Play store by using numerous obfuscation 

methods [73]. 

 

Mobile ransomware is predicted to continue to grow and develop new and more robust 

capabilities targeting increased profits. We are therefore motivated to test whether our 

GP evolved programs can detect mobile ransomware. The mobile ransomware datasets 

used are those mentioned in the paper “Ransomware Steals Your Phone. Formal 

Methods Rescue It” [120]. They used two sets of datasets for mobile ransomware [120]. 

The first mobile ransomware sample is a publicly available collection from two well-

known websites: Contagio Mobile  [212] and Ransom Mobi [213]. Only the Contagio 

Mobile page is still available up to now, and the Ransom Mobi webpage is now obsolete. 

The datasets were collected between December 2014 – June 2015. The datasets are 
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selected because they also used 600 samples from the DREBIN datasets as the second 

source of samples.  The researchers  did not mention which samples they used in their 

paper [120]. Therefore, we randomly select the samples. 

 Experiments Overview 

The samples obtained from downloading the APK from the websites stated above had 

to undergo preprocessing as described in Chapter 3 to extract the information needed 

for the experiments from the Manifest.xml files. Six hundred and eighty samples were 

gathered. We removed three duplicates in the files provided by the authors of [9]. 

 

Some files did not contain Android permissions in their Manifest.xml file; therefore, we 

could not use them in our experiments. In these experiments, the trusted APK samples 

come from the DREBIN datasets [119], and both training and testing datasets are 

randomly selected. Details  of the testing and training datasets are as follows in Table 6.9 

below:  

 

Table 6. 9 Ransomware Datasets 

Training Testing 
Ransomware Trusted APK Ransomware Trusted APK 

5 40126 675 42668 
 

 

 

 

 

 

 

 



CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON 

MOBILE PHONES 

112 

 

 

 Results and Discussion 

 Table 6.10 shows the performance of GP using fifteen features selection, and Figure 6.6 

shows the best individual tree for the GP evolved program:  

 

Table 6. 10 GP Performance towards Ransomware using 15 Features 

Experiments TPR TNR FPR FNR Accuracy 

Job 0 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 1 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 2 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 3 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 4 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 5 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 6 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 7 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 8 96.59% 59.67% 40.33% 3.41% 60.25% 

Job 9 96.59% 59.67% 40.33% 3.41% 60.25% 

 

Table 6.10 gives results from the best-evolved program for each of ten runs. At the end 

of each run, the TPR, TNR, FPR, FNR and Accuracy are calculated. There is no variation 

in results between jobs. The results above are not encouraging as the accuracy and TNR 

of all runs are 60.25% and 59.57% respectively. 

 

Nevertheless, the TPR and the FNR show some encouraging results at 96.59% and 3.41%. 

These results show that the GP evolved program can contribute to truncated FPR at 

40.33%. However, the FNR is still at low and did not even achieve 5%. The results 

applied for 23 ransomware APK samples not correctly detected as ransomware.  

 

In these experiments, we used unbalanced datasets (with more non-malware samples 

than malware samples). The results are identical across all runs but, as can be seen in 

Figure 6.8, the actual program trees vary. 
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Figure 6. 7 Best Individual GP Evolved Program for Ransomware using 15 Features 
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In the figure above, there are five different trees evolved by GP to distinguish 

ransomware APK samples from clean APK  samples, but they have the same 

performance. The other four experiments run to display the same tree build in Job 1, 

which is only one feature that turns out could detect ransomware APK samples. The 

short form of used features can be referred to in Section 6.2. In all trees from Job 0 to Job 

5 shown, the tree must contain RPS to be able to distinguish the ransomware APK 

sample from clean samples. The RPS is capable of allowing access to the phone state, 

which is now identified as the permission that allows an intruder to get access to the 

mobile phone. As we know ransomware accomplished to lock the mobile phone from 

the user unless they pay the ransom. We want to investigate further either GP evolved 

program can detect ransomware samples more efficiently than the dataset’s owner 

managed to get (99.53% TPR [120]). Table 6.11 shows the results when we use 20 features 

in our GP framework. All 20 features are discussed in Table 3.4. 

 

Table 6. 11 GP Performance towards Ransomware using 20 Features 

Experiments TPR TNR FPR FNR Accuracy 

Job 0 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 1 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 2 99.56% 93.02% 6.98% 0.44% 93.12% 

Job 3 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 4 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 5 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 6 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 7 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 8 99.41% 93.02% 6.98% 0.59% 93.12% 

Job 9 99.41% 93.02% 6.98% 0.59% 93.12% 
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In these experiments, ten runs of experiments are represented as Job 0 to Job 9 in Table 

6.11.  For each Job, the TPR, TNR, FPR, FNR and Accuracy are calculated. Job 2 shows 

the highest TPR at 99.56% and FNR at 0.44% which denote only three ransomware 

samples flag as non-attacks out of 675 samples; the results are better than others’ 

detection rate TPR at 99.41% and the FNR at 0.59. Although the owner of the dataset 

managed to get 99.53% TPR [120], slightly different 0.02% from detection using GP 

evolved program; we cannot compare the results directly.  Only used 675 samples out 

of 1,271 samples used by them because they did not specify which samples they selected 

from DREBIN datasets and which other samples they were using.  

 

Other results do not indicate any significant change as the TNR is 93.02%, the FPR is 

6.98%, and the accuracy for all experiments is 93.12%. This results of high TPR are 

induced by the unbalanced datasets implicated in Table 6.11. Nine out of ten 

experiments gave the same results. Figure 6.9 shows some of the best individual GP 

evolved program trees.  

 

The results in Table 6.11 above show almost identical performance across the 10 runs. (9 

of the 10 are identical, with Job 2 improving TPR and FNR marginally.) The results in 

Figure 6.9 show they need RPS to distinguish ransomware samples from clean samples. 

Figure 6.8 shows that the RBC permission can have a very significant impact, allowing 

a TPR rise to 99%.  (RBC was not an available feature in the first experiments.) The RBC 

permission allows an application to obtain the ACTION_BOOT_COMPLETED that is 

broadcast after the system finishes booting. This feature gives hackers the ability to 

control the mobile phone once they penetrate the system. 
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Figure 6. 8  Best Individual GP Evolved Program for Ransomware 

 Results Conclusion 

Results showed the mobile ransomware could be detected using the evolved GP 

program at 96.59% TPR in the Android platform when the GP program was evolved 

with fifteen features. The evolved GP program’s TPR increased to a 99.56% detection 

rate when using twenty features. We run the experiments using two sets of selected 

features because this is the first time GP has been used to evolve programs to detect 

ransomware. The result is encouraging; our sole focus on APK permissions facilitates a 

simple charactersation of benign and malicious apps. 
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 Conclusion 

In this section, we run three different datasets of infected Android APK by malware, 

botnets and ransomware to investigate the performance of an evolved detection  

program. For all experiments, the evolved GP program run targeted a specific family 

and the outcome shows each family has a different character because the evolved trees 

are different from each other. All datasets for training and testing used unbalanced 

samples of harmful APKs and clean APKs. The reason is that we want to consider real-

world situation in GooglePlay there are millions of APKs uploaded, and there are 

probably one out of thousand is a ‘harmful’ APK. We also followed the DREBIN 

implementation, using a combination training and testing datasets with unbalance data. 

 

In summary, our GP-based approach, when applied to three datasets achieved 90% 

accuracy detection rate, and some of them gave rise to an accuracy of 99%. The results 

prove GP can be used for a different type of malware detection. 
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  CHAPTER 7 

 Conclusion 

This chapter summarises the research carried out and discusses the contributions made. The thesis 

hypothesises presented in Chapter 1 is revisited in the light of the results obtained. Finally, future 

work is identified. 

 Review of Experimentation 

The problems of existing methods for intrusion detection in Android mobile phones 

have been identified in Chapter 2. The primary concerns can be summarised as follows:  

a) The previous detection of malfeasance in Android mobile phones suffers from 

low detection efficiency caused by high false alarm rates.  

b) Detection of attacks and malicious activities in mobile phones is a challenging 

research problem because fast detection response is needed to avoid further 

damage to mobile phones. 

c) Android mobile phones have limited resources.  Their batteries have a limited 

life, and existing solutions do not acknowledge this problem appropriately.  

 

Researchers have mainly focused on the first two issues so far. Nevertheless, the concern 

about power consumption and execution time for detection is vital. In this thesis, the 

limited power resources of the mobile phones are taken into consideration to deliver 

more effective detectors, and execution time has also has been taken into account in our 

mobile IDS synthesis experiments. 

 

This research explores the implementation of EC approaches, particularly the use of GP, 

to evolve intrusion detection programs for Android mobile phones.  We aimed to 

synthesise a high performing and reliable IDS for Android mobile phones. 
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This thesis shows how to use EC methods for the synthesis of detectors and classifiers of 

malware on Android mobile phones platform. A variety of experiments evaluates the 

hypothesis of thesis statement 1:  GP will be able to evolve programs to distinguish malicious 

applications from the non-malicious applications in mobile phones datasets.  

 

The performance of GP evolved programs is evaluated on real-world mobile phone 

application datasets that have been obtained from Android research community. The 

approach shows good performance for detecting twenty malware families at an average 

of 93% accuracy with a poor false alarm rate of 7%. Our approach achieves the same 

average accuracy but has a higher false alarm rate than Drebin.  Limitations and possible 

causes of those limitations have been identified, e.g. unbalanced datasets for training 

and testing and very limited size of datasets for some malware families.  

 

A standard form of fitness function was adopted. We proceeded to investigate variation 

in weights for the components of the overall fitness function. The results of GP evolved 

program with optimal parameter using different weight for fitness function show that 

GP can achieve high detection rate with a low false alarm rate. The average accuracy 

increases to 98.8%, and the average false alarm rate decrease to 0.89%. With all malware 

families, the detection rate (accuracy) is above 95% per family. The results outperform 

those of the dataset’s owner in both average accuracy and false alarm rate. The results 

have shown that GP can indeed evolve programs that can distinguish suspicious 

Android APKs from clean APKs only using Android permissions extracted from 

Manifest.xml file as its selected features.  

 

The work on weightings for our GP synthesis of detectors shows that the optimal values 

for alpha and beta may vary significantly between malware families. This may place 

limits on the best that can be achieved by any ML approach based on optimising a fitness 

function such as the one used in this work, i.e. it is unclear just how much further 

improvement can be expected.  

 

There are potential limits on the overall approach. Privileges have a purpose, and 

specific applications need specific privileges. With some applications, we are happy for 

them to run with them;  they are trusted to exercise those privileges in a means that 
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accords with our interests. However,  malicious applications may simply have sets of 

privileges  that are identical to those possessed by valid apps. In which case any 

detection based purely on permissions will necessarily is classify. In some ways we 

might well be surprised at just how well permission based discrimination has worked. 

 

Weighted fitness functions are a staple approach in GP and related evolutionary search 

approaches. They provide one means of approaching multi-criteria tradeoffs. 

 

One of the critical problems mobile phones face is the limited power supply. MOEC is 

employed to investigate the relations between detection rate, power consumption and 

execution time of the evolved program.  

 

The findings show there are a set of solutions with different trade-offs amongst the three 

chosen objectives is achieved for each malware family. The results show to obtain 

optimal detection rate the power consumption is decreased, but the execution time is 

increased and vice-versa when the power consumption increases the execution time will 

plunge. Nevertheless, we also obtained results from five malware families that do not 

furnish us with trade-offs among the objectives. The findings also show that the best 

detection rate is achieved with high execution time and low power consumption. Thus, 

the power consumption will increase when the execution time is reduced. The 

conclusion can be drawn that the best detection rate can be achieved with low power 

consumption (but with response time being the price we have to pay). The outcomes 

from the experiments serve as an evaluation of thesis statement 2: GP and MOEA can be 

set to synthesise a system capable of the efficient detection of malware on mobile phones, e.g. using 

limited battery power.  

 

Finally, we evaluated the GP evolve program performance towards other types of 

malware, as mentioned in thesis statement 3: The performance of new IDS is evaluated by 

using different mobile phone datasets. Estimation of this hypothesis is performed by using 

three different datasets acquired from three different Android malware projects, and a 

range of experiments was carried out as described in Chapter 6. This work explores the 

performance of GP evolved programs on malware families using a different source of 
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training and testing datasets. All evaluation used different GP evolved programs based 

on the malware families.  

 

The results for the DroidAnalytics malware datasets indicate that the evolved GP 

program can detect 14 malware families at average accuracy at 91% with three malware 

families attaining the lowest accuracy detection rate at almost 63% (but their false 

negative rate is 0%). The reason is that the fraction of training and testing datasets are 

unbalanced. The performance of the Android botnets datasets shows the GP evolved 

program achieved a 93% average accuracy for eight Android botnets families with four 

Android botnets families producing 99% accuracy detection rate. However, two families 

resulted in less than 60% accuracy detection rate.  The average accuracy for both families 

decreases to 91.55%. The last datasets which are ransomware show the performance of 

GP evolved programs can achieve 99.56% TPR, 6.98% FPR and 93.12%accuracy. We can 

conclude that other type of malware can be detected using GP evolved programs with 

average results at above 91%. We had suffered from a high false-positive rate as we knew 

anomaly-based IDS faced this problem [214]. However, for some malware families, the 

results are plausible, and on average our detector results still acceptable (due to almost 

perfect TPRs). 

 Thesis Contributions 

The primary contributions of this research are defined as follows: 

 

Evolutionary computation approaches for intrusion detection in mobile phones: 

 

This study investigates the use of AI to develop intrusion detection programs for this 

challenging new environment. EC methods principally “breed" intrusion detection 

programs by assessing populations of prospective programs and subjecting them to a 

variety of genetical operators. In this thesis, we have demonstrated that GP can be used 

to evolve effective detectors for mobile phone attacks such as viruses, Trojan horses, 

mobile botnets, adware, rootkits, spyware and worms. To the best of our knowledge, 

this is the first investigation of Android mobile phones IDSs developed using GP used 

only Android permissions as features. Previous work has usually implemented SVM or 
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GA (EC method), as explained in Chapter 2. In [128], they used GP as a method to do 

coevaluation of mobile malware and anti-malware, which they generate the malware 

using GP and then they use GP to detect the malware. The features they used are API 

features and permissions for the anti-malware, which is different from us that only solely 

used permissions as features. 

 

An anomaly approach: 

This study demonstrates how GP can evolve programs to detect mobile phone threats 

such as malware. We took a risk by implementing an anomaly-based approach for our 

detectors since their FPR can be high with a low detection rate for known attacks [214]. 

However, we overcame it by using different weights for calculating the fitness function 

implementation. We showed that the detection system we developed could distinguish 

maliciously behaving Android applications.  

 

Efficiency: 

Our work explored trade-offs between functional and non-functional properties of 

programs. They showed how our approaches could synthesise programs with excellent 

trade-offs between intrusion detection capability, power consumption and execution 

time. Furthermore, we investigated whether SPEA2 gave the best trade-offs.  

 

Mobile malware detector framework: Our framework is the first to combine  GP and MOEA, 

to consider limited resources and to use only Android permissions as detection features. 

Energy consumption and execution time of programs are also taken into account. 

 

Significant different datasets: In this thesis, we evaluate the performance of our proposed 

system on several enormous datasets. We sought four different datasets from Android 

community researchers and tested our proposed system on them. The datasets contain 

different types of Android attacks, including ransomware. 

 

This thesis demonstrates that EC approaches can learn the complex properties of 

Android mobile phones and synthesise appropriate intrusion detection programs for 

this environment. The properties of Android mobile phones taken into consideration in 

this research are Android app permissions and power consumption and execution time 

of evolved programs. We used only Android permissions for features in our proposed 
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system because it is the common thing in the Manifest.xml file in Android APK, which 

can be manipulated by the attackers. This has happened when the mobile phone users 

allow permissions to be used inside a mobile phone after they install apps. Power 

consumption and execution time are important non-functional properties.  

 Future Research 

The undeveloped areas for future research are summarised below: 

 

Applying evolutionary computation techniques to other areas: In this study, we demonstrated 

how to utilise EC approach to overcome the issue of intrusion detection in Android 

mobile phones and exactly how to explore different trade-offs in such resource-limited 

devices. The approaches examined in this thesis might be adapted easily to other areas, 

for instance, like the detection of malware in the iOS platform. As mentioned by Price, it 

is rare for an iPhone, or iPad to get infected by a virus, but it is still possible [215] as 

mobile platforms become a target of choice.  Similar concerns about power consumption 

will apply. 

 

Exploration of new attacks: Android mobile phones are still under attack.  Attackers are 

changing their ‘prey’ from computers and laptops to mobile phones. There should be 

more research to identify the range of possible Android mobile phone attacks. The 

proposed system in this thesis can be used to explore new attacks that are not mentioned 

in this research.   

 

Exploration of new attacks: Our work reported here targeted specific known families of 

malware that had been assembled by researchers. As new malware (e.g., the recently 

discovered Man-in-the Disk attack [216]) and variants are discovered, our approach can 

be redeployed on an enhanced dataset that covers these elements. 
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Improving our approach: In this study, we used only Android permissions as our main 

features selection to identify malicious behaviour APK from normal behaviour APK. It 

remains perfectly plausible to expand the range of attributes used, e.g. using different 

attributes such as api_call, intent, activity, URL and other information we can extract 

from the APK. 

 

Off-line and online approaches: all work reported in this thesis is off-line. The potential for online 

collaborative and adaptive approaches is an important avenue to consider. This could again cover 

functional and non-functional properties. 

 

In conclusion, AI approaches for program syntheses such as GP and MOEC can give 

significant benefits for the evolution of IDS programs for challenging complex 

environments such as Android mobile phones. We recommend this area to the research 

community.
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