
i

Android Malware Detection System using
Genetic Programming

Norliza Binti Abdullah

Doctor of Philosophy

University of York

Computer Science

March 2019

ii

This thesis is dedicated to

my family especially for my late father and mother

both of you till Jannah Insya Allah

iii

Abstract

Nowadays, smartphones and other mobile devices are playing a significant role in the

way people engage in entertainment, communicate, network, work, and bank and shop

online. As the number of mobile phones sold has increased dramatically worldwide, so

have the security risks faced by the users, to a degree most do not realise. One of the

risks is the threat from mobile malware. In this research, we investigate how supervised

learning with evolutionary computation can be used to synthesise a system to detect

Android mobile phone attacks. The attacks include malware, ransomware and mobile

botnets. The datasets used in this research are publicly downloadable, available for use

with appropriate acknowledgement. The primary source is Drebin. We also used

ransomware and mobile botnet datasets from other Android mobile phone researchers.

The research in this thesis uses Genetic Programming (GP) to evolve programs to

distinguish malicious and non-malicious applications in Android mobile datasets. It also

demonstrates the use of GP and Multi-Objective Evolutionary Algorithms (MOEAs)

together to explore functional (detection rate) and non-functional (execution time and

power consumption) trade-offs. Our results show that malicious and non-malicious

applications can be distinguished effectively using only the permissions held by

applications recorded in the application's Android Package (APK). Such a minimalist

source of features can serve as the basis for highly efficient Android malware detection.

Non-functional tradeoffs are also highlight.

iv

Contents

ABSTRACT ... III

CONTENTS .. IV

LIST OF FIGURES ... VII

LIST OF TABLES ... IX

ABBREVIATIONS .. X

ACKNOWLEDGEMENT ... XI

DECLARATION ... XII

INTRODUCTION ..1

 Motivation ..1
 Mobile Phones Technologies ... 1
 Risks Faced by the Mobile Phone User .. 2
 Brief Overview of Intrusion Detection Systems (IDSs) .. 4
 Brief Overview of Machine Learning ... 5
 Mobile Phone Platform .. 6
 Summary .. 6

 Thesis Hypothesis ...7

 Brief Overview of the Thesis Chapters ..8

 Summary of Thesis Contributions ..9

 CONCEPTS AND RELATED WORK .. 10

 Introduction to Mobile .. 10

 Mobile Operating System Security .. 11
 Overview of Android Mobile Security .. 11
 Conclusion ... 13

 Threats and Attacks .. 13
 Threats Faced by Users While Using the Internet or Networks ... 13
 Threats Faced by the Mobile Phone User .. 15
 Attacks on the Smartphone ... 17

 Android Malware ... 19
 Intrusion Detection Systems (IDSs)... 20

 Intrusion Detection Systems Approaches ... 21
 Intrusion Detection System Performance Metrics .. 22
 Related Research on Intrusion Detection Systems ... 23
 Evolution of Intrusion Detection Systems ... 27

 Intrusion Detection Systems in Mobile Phones ... 29

 Summary of Major Issues in Intrusion Detection Systems .. 36

v

 High false alarm rates .. 36
 Real-time detection ... 37
 IDS sensor placement ... 37
 Limited resources.. 38
 Limited test datasets ... 39

 Conclusion .. 39

EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

.. 40

 Brief Overview of Evolutionary Computation ... 40
 Genetic Algorithms... 40
 Genetic Programming .. 42
 Application of AI to Detect Attacks: Related Work ... 44
 Why Evolutionary Computation? .. 45

 Proposed Framework of Malware Detection .. 46
 Data Acquisition ... 48
 Data Pre-Processing .. 49
 Features Extraction and Selection ... 51
 Training and Testing .. 53
 Offline Supervised Learning ... 53

 Evolving Detection Rules ... 54
 Feature Selection ... 54
 Application of Genetic Programming to Intrusion Detection in Mobile Phones 57

PERFORMANCE EVALUATION OF GENETIC PROGRAMMING ON MOBILE PHONES

INTRUSION DETECTION SYSTEM... 60

 Introduction ... 60
 Motivation ... 60
 Contributions .. 61

 Experimental Investigation .. 62
 Preliminary Analysis .. 62

 Datasets .. 62
 Parameters.. 63
 Features Selection .. 64
 Results and Discussion ... 64
 Conclusion ... 66

 The Performance Evaluation of Genetic Programming ... 66

 Results Comparison ... 69

 The Evaluation of the Genetic Programming Improvement Using Optimal Parameters 70

 Conclusion .. 78

IMPROVING RESOURCE EFFICIENCY .. 79

 Introduction ... 79
 Motivation ... 79

vi

 Contribution .. 81

 Multi-Objective Evolutionary Computation .. 81
 Strength Pareto Evolutionary Algorithm 2 (SPEA2) .. 83

 Implementation ... 84
 Analysis of Power Consumption and Execution Time of Evolved Programs 85
 Discovering Trade-offs in the Intrusion Detection Programs ... 88

 Experiment: Trade-offs in Detection Programs using DR, Power Consumption and

Execution Time. .. 89

FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES .. 92

 Introduction .. 92
 Motivation ... 92
 Contribution .. 93

 Experimental Parameters .. 94

 Discovering GP Performance using Different Datasets ... 96
 Malware Datasets ... 96

 Experiments Overview ... 97
 Results and Discussion ... 98
 Results Conclusion .. 102

 Android Botnets Datasets .. 103
 Experiments Overview ... 103
 Results and Discussion ... 104
 Results Conclusion .. 110

 Ransomware Datasets .. 110
 Experiments Overview ... 111
 Results and Discussion ... 112
 Results Conclusion .. 116

 Conclusion .. 117

 CONCLUSION ... 118

 Review of Experimentation ... 118

 Thesis Contributions... 121

 Future Research .. 123

REFERENCES .. 125

APPENDIX 1 –OTHER RESULTS FOR USING OPTIMAL PARAMETER CHOICE 144

APPENDIX 2 – OTHER RESULTS FOR PARETO FRONTIER ... 147

 vii

List of Figures

Figure 1.1 Evolution of Mobile Technology and Services [3] ... 2

Figure 2. 1 Total Malware Samples from 2015 - 2017 on Google Play [55] 15

Figure 3. 1 An Example of a GA, based on [144] ... 42

Figure 3. 2 An Example of a Mutation in GP [146] ... 43

Figure 3. 3 An Example of a Crossover in GP [146] .. 43

Figure 3. 4 GP Algorithm [14] .. 44

Figure 3. 5 An Example of a Manifest.xml file extracted from APK .. 47

Figure 3. 6 The Framework of the Malware Detection ... 48

Figure 3. 7 The Manifest.xml File Get from Decompile Process ... 51

Figure 3. 8 Result of One-Sample Uploaded to VirusTotal Website .. 54

Figure 3. 9 Permissions Detect as Suspicious by VirusTotal website. .. 55

Figure 4. 1 The Performance of GP Figure 4. 2 Drebin Detection Rate [119] 68

Figure 4. 3 The poorest GP performance Figure 4. 4 The best GP performance 71

Figure 4. 5 Adrd Pareto Frontier Figure 4. 6 Adrd FNR and FPR 74

Figure 4. 7 DroidDream Pareto Frontier Figure 4. 8 DroidDream FNR and FPR................. 75

Figure 4. 9 DroidKungfu Pareto Frontier Figure 4. 10 DroidKungfu FNR and FPR 75

Figure 4. 11 LinuxLotoor Pareto Frontier Figure 4. 12 LinuxLotoor FNR and FPR 76

Figure 4. 13 Gapussin Pareto Frontier Figure 4. 14 Gapussin FNR and FPR 76

Figure 4. 15 GoldDream Pareto Frontier Figure 4. 16 GoldDream FNR and FPR…………. 77

Figure 4. 17 Iconosys Pareto Frontier Figure 4. 18 Iconosys FNR and FPR 77

Figure 4. 19 SendPay Pareto Frontier Figure 4. 20 SendPay FNR and FPR 77

Figure 5. 1 Example of Multi-Objective Ranking using Pareto-optimal Solutions [180] 82

Figure 5. 2 The SPEA2 Algorithm [184].. 83

Figure 5. 3 Java Code to Calculate Power Consumption [187] ... 85

Figure 5. 4 Evolved Program for Execution Time and Power Consumption.................................. 87

Figure 5. 5 Simplified Concept of Experiments ... 88

Figure 5. 6 Coplot for Program Evolved with Trade-offs using Three Objectives 90

Figure 5. 7 Coplot for Program Evolved without Trade-offs using Three Objectives 91

Figure 6. 1 GP Evolved Program Performance ... 100

Figure 6. 2 Best Individual Trees for Imlog, Kungfu, and SendPay ... 101

Figure 6. 3 Best Individual Trees for Adrd, BaseBridge, and Kmin ... 102

Figure 6. 4 GP Performance on Android Botnets .. 107

Figure 6. 5 GP Tree Evolved for Four Botnet Families ... 108

Figure 6. 6 GP Tree Evolved for Two Botnet Families .. 109

viii

Figure 6. 7 Best Individual GP Evolved Program for Ransomware using 15 Features 113

Figure 6. 8 Best Individual GP Evolved Program for Ransomware .. 116

ix

List of Tables

Table 2. 1 Summary of Research on Intrusion Detection Systems .. 23

Table 2. 2 Summary of Research on IDS using AI Approaches .. 25

Table 2. 3 Summary of Research on Mobile Phone IDS ... 30

Table 2. 4 Summary of Research on Mobile Phone IDS using Artificial Intelligent Approaches..32

Table 3. 1 Manifest.xml Element Reference [151].. 47

Table 3. 2 Malware Families Fraction [119] ... 52

Table 3. 3 Android Malware Families Used for the Evaluation .. 52

Table 3. 4 The Features Explanation [157] .. 55

Table 3. 5 GP Parameters Settings ... 58

Table 4. 1 Malware Families Sample [44] ... 63

Table 4. 2 Testing Population Size and Generation .. 63

Table 4. 3 Results for Preliminary Experiments .. 65

Table 4. 4 Non-malware Samples based on Drebin Datasets .. 67

Table 4. 5 Malware Families Reference .. 68

Table 4. 6 SendPay and Gappusin Results Details .. 69

Table 4. 7 Pareto Optimal (FPR and FNR) Achievement by Used Beta (β) Value. 73

Table 6. 1 Feature used in GP and the Short Form to Build Tree .. 95

Table 6. 2 Training Datasets ... 97

Table 6. 3 Testing Datasets ... 97

Table 6. 4 Android Malware Families, Year Detected and Their Capabilities 98

Table 6. 5 Imlog, Kungfu and SendPay Results .. 100

Table 6. 6 Training Datasets ... 104

Table 6. 7 Testing Datasets ... 104

Table 6. 8 Android Botnets Families, Year Detected and Their Capabilities 105

Table 6. 9 Ransomware Datasets ... 111

Table 6. 10 GP Performance towards Ransomware using 15 Features .. 112

Table 6. 11 GP Performance towards Ransomware using 20 Features .. 114

x

Abbreviations

SMS Short Message Services

MMS Multimedia Message Services

PDA Personal Digital Assistant

LTE Long Term Evolution

GPS Global Positioning System

Wi-Fi Wireless Fidelity

GSM Global Standards for Mobile

DDoS Distributed Denial of Service

IDS Intrusion Detection Systems

IPS Intrusion Prevention Systems

AI Artificial Intelligence

GP Genetic Programming

SVM Support Vector Machine

AODV Ad hoc On-Demand Distance Vector

ANN Artificial Neural Network

GA Genetic Algorithm

EC Evolutionary Computation

EA Evolutionary Algorithm

MOEC Multi-Objective Evolutionary Computation

MOEA Multi-Objective Evolutionary Algorithm

OS Operating System

PC Personal Computer

DoS Denial-Of-Service

URL Uniform Resource Locator

IP Internet Protocol

MANET Mobile Ad hoc Network

APK Android Application Package

xi

Acknowledgement

Alhamdulillah.

Praise to Allah, for His blessing. I managed to complete my thesis through blood sweat

and tears for the past four years of my life dedicated to this research. Finally, this baby

was born.

Firstly, I would like to thank my former supervisor, Professor John A. Clark, for all his

support, assistance, and advice throughout this lonely journey. I would also like to thank

Dr Daniel Kudenko for his help and valuable feedback while he was my internal

examiner before stepping up to be my supervisor. I would like to show my gratitude

and appreciation towards Professor Susan Stepney as my latest supervisor, your support

I needed the most.

I would also like to acknowledge my internal and external examiners, Dr Vasileios

Vasilakis and Professor Siraj Shaikh, respectively, for their valuable and insightful

comments, which inspired me to broaden my research from various perspectives.

Thanks to all RCH 231 residents during ups and downs during four years of struggling

to reach the end of our journey. To all my Malaysian friends, thanks a lot for the moral

support through thick and thin. I would like to thank the Ministry of Education Malaysia

who has supported this study and, I would like to show my gratefulness to the

Department of Polytechnic & Community College Education, Malaysia for allowing me

to take the study leave.

For both my late parent this is for both of you, even you are not here I know you to be

happy to see this finally completed. To my siblings, nieces and nephews, I am so grateful

to be born in our family, and I love all of you. Also, to Q, I know there must be a reason

why ALLAH put you in my path and me into your path at the end of my journey, so I

am not so lonely.

xii

Declaration

I declare that this thesis is a presentation of original work, and I am the sole author. This

work has not previously been presented for an award at this, or any other, University.

All sources are acknowledged as References.

Contributions from this thesis have been present and published in the following

conference and proceedings:

• Norliza Abdullah, John A Clark and Daniel Kudenko. Mobile Network Security.

Poster presentation in Malaysian Students Conference and Research Showcase

United Kingdom (MySECON 2017), May 2017.

(Based on research described in Chapter 3 of this thesis.)

• Norliza Abdullah and Nursakinah Md. Salleh. Permission-based Android

Malware Detection System Using Genetic Programming. Presented in 5th

Technology and Innovation International Conference (TECHON 2019). The paper

published in Diges PMU (Technology and Innovation International Conference)

TECHON 2019, pages 240 – 248, October 2019. [1]

(Based on research described in Chapter 4 of this thesis. The online version can

be accessed at https://www.pmu.edu.my/techon2019/)

https://www.pmu.edu.my/techon2019/

CHAPTER 1 : INTRODUCTION

1

 CHAPTER 1

Introduction

This chapter discusses the problems faced by mobile phones users. These problems motivate the

research in this thesis, and it gives the proposed research hypothesis. Lastly, a brief overview of

all remaining chapters is outlined.

 Motivation

 Mobile Phones Technologies

The speed and reach of communications have seen many significant advances over

several millennia. Early examples would be the use of drums, smoke signals in 200BC

and carrier pigeons in the 12th century. The telegraph was the first use of electric signals

for communication and was followed by landlines, the dial-up Internet, SMS, broadband

Internet, MMS, Skype, Facebook, Smartphone, and more. In the 21st century, high

bandwidth communication is demanded by everyone, and the emergence of high-speed

broadband networks has led to a myriad of applications and communication-intensive

services.

Communication has become more accessible across the globe. Audiences have

information at their fingertips. Today the communication devices used are not limited

to telephone and fax; modern communication uses a range of devices, e.g. laptops, PDAs,

mobile phones, and smartphones. Shifts within the nature of interactions are reflected in

the continuously quoted 'generation' concept. Mobile services have grown from the first

generation (1G) for voice traffic to LTE and the fourth generation (4G) [2]. Now, 5G [3]

becomes trending for mobile phones developer to win the heart of the users, even not all

mobile service provider provides the service. In [4] Fowler is claimed the 5G line is not

stable yet and not suggests users in the US upgrade their mobile phones and line to 5G.

CHAPTER 1 : INTRODUCTION

2

The 6G technology still under development, and as mentioned in [3], it will bloom in

2030. The evolution of mobile technology and services are presented in Figure 1 below.

Figure 1.1 Evolution of Mobile Technology and Services [3]

As mobile phones have evolved to embrace connectivity, users have increasingly

become the target of cybercriminals. The growth of online service access by mobile

phone users has further increased their vulnerability.

 Risks Faced by the Mobile Phone User

There are now many smartphone distributors: iPhone, Samsung, Blackberry, Sony, HTC,

Nokia, LG, and many more. The global smartphone user base exceeded three billion in

2018 and increased to 3.2 billion in 2019 and predicted to grow to 3.5 billion and 3.8

billion at the end of 2020 and 2021 [5], [6]. In India, in 2018, the average smartphone

user used 1GB data per day and spent at least 90 minutes online [7]. As the emergence

of Covid-19 in early 2020, all people worldwide ordered to stay inside (lockdown policy)

and on average UK phone users tend to devote 2 hours and 34 minutes online on their

smartphones each day [8]. Smartphone users have the potential to be attacked because

they use their mobile phone most of the time to carry out online activities such as

checking emails, social media, working online, attend class online, etc.

CHAPTER 1 : INTRODUCTION

3

Users often do not realise that while using the technologies for communication or surfing

the Internet, they are exposing themselves to cyber and related crimes. The crimes

included such as fraudulent credit card use, identity theft, hacking, financial theft, spam,

phishing frauds, malware (spyware), network spoofing, and private data leakage [9]–

[12]. Often users might not realise that they have been attacked since attackers may cover

up their crime by masking their true identity from the victims. Attackers who conduct

their criminal or malicious activities on networks, computers, and mobile phones often

employ such techniques.

Cellular phone users who use their phone to access the Internet and its particular

services face several risks. One of the mobile phone's benefits is that it can hold a great

deal of private and personal data and so mobile phones become objects that offer

significant prospects for criminals' intent on manipulating them. Mobile phones may be

subject to a variety of risks: limited battery life, private data leakage, exposure to theft

or other physical loss, unsecured Wi-Fi, improper session handling, vulnerability to

malware, and camera-based attacks [9]–[11], [13].

Vulnerability to mobile malware (Trojans, viruses, and spyware) is also a threat to

mobile phone users [14], [15]. Malware is software installed on a user's mobile phone

that can perform mischievous actions. Spyware (one type of malware) is software

created to collect private data without the knowledge or approval of users. Malware

attacks are usually not detectable by users. A virus can be distributed via Bluetooth, and

in 2004 the first widespread Bluetooth worm sample was witnessed, called Cabir [14],

[15]. Malware with full control of a smartphone can use it as an eavesdropping device

by turning the smartphone camera or microphone on [9]. The attacker can listen to all

conversations made, record a video, or take a picture of smartphone victims. A Trojan

horse can carry malicious code in an attractive package in a smartphone when users are

installing apps [10]. Such a Trojan can detect a user's location by activating the phone's

GPS functionality.

The camera-based attack is one example of mobile phone camera security malware [11].

Attackers could slyly take pictures and record videos by using the phone camera without

the smartphone user realising it. Attackers can use spy cameras in malicious apps, with

CHAPTER 1 : INTRODUCTION

4

the phone camera launched automatically without the knowledge of the device owner.

Captured photos and videos can be sent out to the remote intruders via Wi-Fi.

Network threats occur when the mobile phone is connected to public Wi-Fi or Bluetooth.

When the mobile phone user connects to public Wi-Fi, malware may be automatically

installed on the mobile device. The user also faces Wi-Fi sniffing while they are

connected to the public Wi-Fi, and there is a possibility they will be subject to attack by

viruses spread by other users in the network. Users might not be aware that while

connected to others' Bluetooth, they might be in danger from Bluetooth attacks. The

Bluetooth attacks such as Bluejacking (Bluetooth spam), Bluebugging (attackers

remotely access a user's phone and use its features), and BlueSnarfing (unauthorised

access to data usually happens over a link between the system pairing between the

intruder and the devices).

Communication-based threats usually occur on the SMS, MMS, and GSM networks.

DDoS attacks can be spread by SMS messages sent from the Internet. The attacks can

cause delays when the text messages overload the network. Viruses can attack MMS by

using an attachment infected with a virus, and if the MMS is opened, the phone will be

infected. The infected phone can cause others' phones to be infected with a virus using

the phone contact address book. The eavesdropping attack is one example of a GSM

network attack [9]. The Sun [16] reported Google has admitted to its workers listening

to users private conversation using the Google Assistant, which is an example of

eavesdropping in an Android device.

Researchers have proposed a variety of countermeasures, e.g., firewalls, anti-virus

software, anti-spyware software, IDSs, and IPSs. The prime focus of this research is to

be combating malware by developing malware detection and classification algorithms.

 Brief Overview of Intrusion Detection Systems (IDSs)

An IDS was first introduced by James Anderson in his technical report "Computer

Security Threats Monitoring and Surveillance" more than three decades ago [17].

Researchers have given several definitions of IDS in their papers. An IDS is a tool, a

software program that observes and protects a network and information system from

malicious events such as attacks, misuse and compromise or policy abuses. An IDS has

CHAPTER 1 : INTRODUCTION

5

expectations about 'normal' or non-malicious activity. When it detects something 'odd'

about the behaviour of a system, it can flag this as suspicious to the system administrator

[18]–[21]. The ultimate aim of IDS is to catch perpetrators in the act before they do actual

damage to resources.

Embracing AI with IDS is considered by many researchers as a promising approach. The

purpose of incorporating AI is to obtain significantly better and more reliable results. Its

use began in 1986 [22]. One promising machine learning algorithm example is GP. This

was employed in 2010 for synthesising robust signature-based detectors for IDS by Sen

et al. [23]. The results reveal GP can perform better than other AI techniques (SVM and

Decision trees) as a lightweight method for detecting known flooding and route

disruption attacks against the routing protocol AODV [23].

The backdoor detection system using an ANN and GA was proposed by Salimi and

Arastouie in 2011 [24]. They developed a novel approach to reveal backdoor attacks

using the system and network behaviour. Previous research on machine learning in IDS

shows encouraging results and motivates us to explore its use in-depth in this research.

 Brief Overview of Machine Learning

Machine learning is a branch of AI where systems can engage in self-learning from data,

identify patterns and then make the decisions with minimal human intervention.

Machine learning systems can "learn" as they gradually improve their performance on a

specific task (using data) without having to be directly programmed.

Machine learning techniques can be used to develop highly efficient power detectors for

sleep deprivation or battery exhaustion attacks such as Denial-of-service power attacks,

Malware attacks, Spyware attacks and so forth. Narudin et al. reported that malware

could be detected using a combination of a Bayes network and a random forest [25].

Other researchers used ANN, GA, decision trees, SVM, and fuzzy logic to build their

IDS [26], [27].

Evolutionary Computation (EC) has achieved promising results for IDS in previous

research [24], [26], [28]. The details will be discussed in Chapter 2. An EA is a form of

EC, a general-purpose population-based metaheuristic optimisation algorithm. The

CHAPTER 1 : INTRODUCTION

6

mechanisms used in an EA have their roots in biological evolution: reproduction,

mutation, recombination, and selection. Perhaps the highest-profile EC algorithm is the

Genetic Algorithm (GA) GA. Genetic Programming (GP) is a particular form of GA,

where the essential solution representation is a tree.

 Mobile Phone Platform

The mobile phone OS also provides a platform for developers to create applications or

'apps' (software programs developed for smartphones that can carry out specific

functions). There are 2.1 million apps available for the Android platform and 2 million

at Apple's App Store in 2018 [29]. Varieties of mobile phone operating system are

available, e.g. Android, Windows, iOS, and Symbian.

Android is a software bundle (operating system) for mobile phones that contains an OS,

middleware, and critical applications based on Linux OSs [30], its development starting

in November 2007 [31]. It permits developers to write code in a Java-like language using

Google-developed Java libraries. Various Android platforms were made available under

[32]the Apache free-software and open-source license since its official release in 2008:

Cupcake, Donut, Éclair, Froyo, Gingerbread, Honeycomb, Ice Cream Sandwich, Jelly

Bean 4.1 [31], Jelly Bean 4.3, KitKat, Lollipop, Marshmallow, Nougat, Oreo, Pie, Android

10, and Android 11 [33]–[36].

The Android platform was intended to offer an application environment that ensures

the security of users, data, applications, the device, and the network. Android users also

have the ability to utilise and control applications. The design includes the expectation

that attackers would attempt to perform common attacks, i.e. social engineering attacks

to persuade device users to install malware and attacks on third-party applications [32],

[37], [38].

 Summary

The modern mobile phone stores and processes highly valuable data and has become a

highly attractive target for attack. A number of researchers have sought to exploit AI in

providing effective IDS. However, the area is underexplored, and in particular, we might

ask how AI can be used to provide a robust detection framework that targets mobile

CHAPTER 1 : INTRODUCTION

7

phones. The restrictions on resources provide challenges to develop malware detection

for mobile phones, i.e., the actions taken by the mobile phone itself cannot be resource

hungry. Inevitably, there are trade-offs to be made between the effectiveness of a

detector (appropriateness of generating alarms) and its non-functional properties such

as the speed of detection and consumption of other resources such as power and

memory.

The Android framework has been chosen as the vehicle for experimentation since there

is a very active development community, it is a widely used platform, and it is entirely

open source. If research results prove promising, a natural community would be

interested in further development. It is acknowledged that the fundamental research

questions addressed would generally apply to other mobile phone platforms.

Furthermore, since mobiles are low resource platforms, we want to evolve efficient

detectors where power and execution time, for example, are important criteria —

accordingly, the aim to use GP in a multi-objective context. Sen et al. stated that a Multi-

Objective Evolutionary Algorithm (MOEA) could allow the combination of multi-

objective optimisation and evolutionary search [23]. We hope the combination between

GP and MOEA can produce detectors with excellent trade-offs between detection and

resource usage.

 Thesis Hypothesis

The overall thesis hypothesis is:

Supervised learning with Evolutionary Algorithms (specifically genetic

programming and the multi-objective evolutionary algorithm SPEA2) can be

used to synthesise a system capable of detecting a wide range of attacks on

mobile phones and do so efficiently, e.g., speedily and using limited battery

power.

This research will implement GP to evolve programs to distinguish malicious and non-

malicious applications in mobile datasets and demonstrate the use of GP and MOEA

together to explore functional and non-functional trade-offs. Results will be compared

CHAPTER 1 : INTRODUCTION

8

with those of the research community (whose mobile attacks datasets we acquire and

make significant use of for case study purposes). The wide range of attacks included

mobile malware, ransomware and mobile botnet (datasets we acquire from the research

community). This research also seeks to use only permissions as features in the GP

program. Permissions in Android Package format (APK) are easily accessible. If

successful, we will be able to demonstrate highly effective and efficient detection.

 Brief Overview of the Thesis Chapters

The remaining chapters of this thesis are outlined below:

Chapter 2. Concepts and Related Work. This section provides an overview of mobile

phones, identifies the general vulnerabilities and threats faced by Internet users and

identifies specific threats to, and attacks on, mobile phone users. It also explains the IDS

concept in general and details extant IDSs for mobile phones. It identifies significant

issues in IDS, both general and specific to the mobile phone.

Chapter 3. Evolution of Malware Classification and Detection in Mobile Phones.

This chapter starts with the background of EC and the method applied in this research

– GP. This chapter also assesses the effectiveness of applying the GP technique. The

discussion of why this method is chosen is also provided in this chapter. The particular

sources of attacks targetted (i.e., malware) by the evolved detectors are explained.

Chapter 4. Performance Evaluation of Genetic Programming on Mobile Phones

Intrusion Detection System. This chapter explores the ability of GP to synthesise

detectors to identify malware and non-malware APKs. The effects of tuning the GP

fitness function weight parameters are also discussed to identify whether it affects the

detection performance.

Chapter 5. Improving Resource Efficiency. This chapter focuses on non-functional

properties such as power consumption and execution time. Non-functional properties

such as there were identified in the literature as a major problem. The combination of

MOEA and GP is evaluated to explore trade-offs between a specific functional property

(detection rate) and two important non-functional properties (execution time and power

consumption).

CHAPTER 1 : INTRODUCTION

9

Chapter 6 Further Investigation of GP Performance on Various Threats on Mobile

Phones. The goal of this chapter is to investigate the GP performances on other datasets

that are acquired from the research community. (These too can be downloaded with

sufficient acknowledgement of the researchers.) Three datasets are investigated in this

chapter. These concern malware, mobile botnets and ransomware.

Chapter 7 Conclusion. This chapter concludes the thesis. It presents a discussion of the

contributions of the research and identifies future work.

 Summary of Thesis Contributions

The research contributions of the thesis are made in Chapters 4, 5, and 6, as summarised

below:

• Chapter 4. This Chapter establishes proof of concept that GP can be used to

synthesise effective classifiers to distinguish malware and non-malware

applications in Android mobile applications datasets. It also establishes the

importance of weight selection in the parametrization of the fitness function

used. Optimal choices of parameters may vary between target malware types.

• Chapter 5. This chapter demonstrates empirically how optimisation can be used

effectively to investigate trade-offs between functional properties (detection rate)

and non-functional properties such as execution time and power consumption.

It shows how a specific multi-objective algorithm (SPEA2) gives the best trade-

offs between three important objectives (detection rate, power consumption and

execution time).

• Chapter 6. This chapter evaluates our GP based approach to three new datasets,

demonstrating that the approach can generalise to further malware applications

including botnets and ransomware.

CHAPTER 2: CONCEPTS AND RELATED WORK

10

CHAPTER 2

 Concepts and Related Work

This chapter starts with an introduction to mobile phones, followed by an overview of operating

systems in mobile phones and Android security. In order to build up security solutions that are

suitable for this environment, the understanding of mobile phone vulnerabilities and the way

mobile phones can be attacked are identified and explained in Section 2.3. Section 2.4 and

afterwards focus on IDSs, and lastly, the significant issues in IDS are reviewed.

 Introduction to Mobile

Mobile phone technologies started by the invention of the fully voice-based mobile radio

system and the first cellular phone system in 1928 and 1977, respectively [39]. In 1955

the first mobile telephone was launched in Europe, and it is followed by Nokia 3210 in

1999 [39]. The 'elegant style' of Nokia 3210 design was a trigger to other mobile

companies to upgrade their mobile phone designs. Verizon started the revolution of 3G

in early December 2001 [39].

Desktop computers and laptops manage their hardware, software resources, and

memory for running multi-tasking programs using software known as an OS. The OS is

a critical part of the system software in a computer system. Modern smartphones, which

are inherently highly complex mobile computing platforms, require highly sophisticated

OSs to service the needs of the many functions they seek to provide. The mobile phone

OS also provides a platform for developers to create applications or 'apps' (software

programs developed for smartphones that can carry out specific functions).

In the mid-1990s, a few companies attempted to build and market personal data

assistants (PDAs). PDAs are not considered to be mobile computing devices, but they

were the forerunner to current smartphones [40]. Research in Motion (RIM) introduced

CHAPTER 2: CONCEPTS AND RELATED WORK

11

the Blackberry (1999), which started as a straightforward two-way pager but

expeditiously became the most widespread mobile computing device [40].

Microsoft then followed with their first OS mobile device known as Pocket PC 2000

installed with Windows CE in 2006 [40], [41]. Several hardware manufacturers (Nokia,

Ericsson, Panasonic, and Samsung) decided to cooperate on a typical mobile OS known

as Symbian. In January 2007, Apple revealed the iPhone, which became the first

smartphone used by the general community [36], [40]. Then in September 2008, Android

was initially released by Google as a rival to iPhone and its iOS [31], [36].

 Mobile Operating System Security

There are four major mobile OSs: Android mobile security, iOS security, Windows

mobile OS security and Symbian OS security. Nevertheless, here we only discuss the

security of Android Mobile Security as in this thesis, we are investigating Android

mobile threat.

 Overview of Android Mobile Security

Android is a mobile platform created by Google and the Open Handset Alliance [31],

[36], [42]. Android versions are typically represented by 'dessert-style and sweets' names

starting with Cupcake, Donut and leading to the latest such as Pie [31], [36], [37], [43].

Android delivers an open-source platform and application background for cellular

devices. Android platform security is divided into kernel security and application

security. The kernel security for the Android platform is associated with the Linux

kernel, along with a protected inter-process communication (IPC) facility to allow secure

communication between applications running in various processes [44].

Android applications are able to access only a limited selection of system resources.

Google included a collection of cloud-based services that are accessible to suitable

Android devices with its Google Mobile Services. The security services provided by

Google [44] are: Google Play - this is an accumulation of services that enable users to

discover, install, and purchase applications from their Android devices; Android update

- this delivers new functions and security updates to preferred Android devices;

Application service - frameworks that enable Android applications to utilise cloud

CHAPTER 2: CONCEPTS AND RELATED WORK

12

functionality; Verify Apps - alert or automatically prohibit the installing of harmful

applications and continuously scan applications; SafetyNet - a privacy-preserving IDS

to help Google monitor and mitigate known security risks as well as determining new

security threats; SafetyNet Attestation - the devices are determined to be either CTS

compatible or not using Third-party API (Android Package Interface); and Android

Device Manager - lost and stolen devices can be located using a web app or Android

app.

The Android security program contains design review, penetration testing and code

review, open-source and community review, incident response, and monthly security

updates. Android integrates industry-leading security features and works jointly with

the developers and device implementers to ensure the Android platform and the

environment is safe. A resilient security model is essential to allow a dynamic ecosystem

of applications and devices constructed on and across the Android platform and

sustained by cloud services [44].

Since the early days of Android development, several improvements have been made to

enhance security performance. Google gave assurances throughout 2014 – 2020 that the

team was dedicated to ensuring Android is a safe environment for users and developers;

would preserve the security and privacy of all Android users; and would enhance the

security of the platform [38], [45]–[48].

In September 2020, the Android Security Team made a promise to protect every Android

user as the team introduce the final release of Android 11: which offers layered security

(all parts of Android system work together to build a strong defence that runs smoothly

and effectively), transparency and openness (keeping users up to date and sharing

knowledge amongst Android community), and backed by Google (partnered with other

experts to keep Android devices safe)[32].

CHAPTER 2: CONCEPTS AND RELATED WORK

13

 Conclusion

Android assists the developer in writing secure applications. It offers a type-safe

language (Java), an enhanced security model, a successful class library, and a robust set

of applicable and securable concepts for development on mobile phones. Android's

framework characteristically defaults to safe behaviour unless the developer

unambiguously chooses to share data between applications. Android's open design

means that finding and fixing security flaws is performed by a wide range of people.

The essential data protection is in place to ensure that if a device is lost, then encrypted

data is not recovered.

 Android is used plenty of open-source components, several of which have

vulnerabilities which can be used by attackers to invade the smartphones and access all

user's data and info. Linux and WebKit both have required abundant security fixes

within the last few years, but this is not an issue for many application developers who

seem to appreciate honesty and speedy fixes. Also, some specialists believe that making

the code closed-source to avoid open inspection would be a delusion.

 Threats and Attacks

 Threats Faced by Users While Using the Internet or Networks

The 21st Century has seen an explosion in communication around the world. In the past,

people needed to use letters or telegrams that took a few days or longer to reach the

intended recipient. Communication in the 20th century drastically reduced

communications times with the emergence of the telephone, radio, fax, mobile phone,

and email. The 21st Century has seen the emergence and rise of the webcam and

smartphone, placing sophisticated real-time communication in the hands of over one

billion people. However, the downside of such an explosion is that there are now over

one billion platforms available to attack!

We have accustomed ourselves to our communications being confidential, unmodified,

and reliable. A variety of mechanisms has been developed to ensure that such properties

hold, for example, 'seals' have been used for thousands of years to ensure the integrity

CHAPTER 2: CONCEPTS AND RELATED WORK

14

of documents. Threats can be thought of as potential compromises of the above (and

similar) properties. Thus, for example, a breach of confidentiality is a threat,

unauthorised modification is a threat, as is lack of availability.

Attackers try to take advantage of each weakness in a system to fulfil their purposes [17],

[49]. Intruders can realise security threats using a variety of communications methods.

Attackers may use a range of tools, scripts and programs to damage our communication

systems [49]. Threats are continually being discovered; effective intrusion detection

remains a persistent and challenging problem and is likely to remain a significant

research field for a considerable time to come.

The detection of attacks has been an essential goal of computing since the early days of

computing. Many authors have sought to characterise the nature of attackers and their

attacks. In 1980, Anderson produced a technical report that is cited by most IDS

researchers. The report is based on audit trail analysis and divides possible attackers into

four categories: external penetrators, misfeasors, clandestine users, and masqueraders

[17].

Axelsson and Lunt defined external penetrators as users who gain unauthorised access

to a computer of which they are not a valid user [50], [51]. For example, attackers may

try to get a username and password using illegal software to get access to a computer or

account subsequently.

Misfeasors, clandestine users, and masqueraders can be identified as internal

penetration agents. Internal penetrations are more common than external ones.

Misfeasors are legitimate or valid users of the system who misuse their privileges [50],

[51]. For example, a user having access to a computer or system account but trying to

manipulate his or her privileges by editing or copying private data on the data server

without getting permission.

Clandestine users try to use supervisor privileges to avoid being captured and escape

auditing access controls [50], [51]. Attackers may try to use someone else's account that

has supervisor privileges; they then may damage or exploit private data or information

on a server. They are challenging to catch because they have used another's authorised

CHAPTER 2: CONCEPTS AND RELATED WORK

15

account. It is nearly impossible to detect clandestine users by standard audit trail

methods [17].

Masqueraders can be either internal users or external penetrators [17], [50]. They can

control computers or systems using another user's username and password [51]. They

pretend to be legitimate users. Thus, if I can obtain your authentication credentials, I can

log onto a system as you, i.e. I masquerade as you. Masqueraders can be detected by

how their behaviour differs from that of authorised users; for example, the attacker

might spend most of his time browsing directories and executing system status

commands, while an authentic user might focus on editing or compiling and linking

programs [22], [52].

 Threats Faced by the Mobile Phone User

In Q2 2020, Kaspersky detected 1,245,894 malicious installers compared to Q2 2019 at

753 550 malicious installers have been blocked [53]. Kaspersky reported in 2018 that they

blocked 796,806,112 attacks from online resources in 194 countries [54]. For mobiles,

they detected 1,322,578 malicious packages, 18,912 installation packages for mobile

banking Trojans, and 8,787 installation packages for mobile ransomware Trojans. In

2017, Kaspersky was detecting 280,00 malware file per day compared to in 2014; they

detected nearly 3.5 million malware on 1 million user devices [12]. McAfee [55] reported

that malware is targeting Google Play on mobile devices are enlarged in all quartile in

the year 2017 than 2016 and 2015, as shown in Figure 1.1.

Figure 2. 1 Total Malware Samples from 2015 - 2017 on Google Play [55]

Therefore, the threats challenged by mobile phone users are discussed in this section.

Consequently, reported cases had been increased from 2015 to 2018. Attackers used four

tactics to infiltrate mobile phones with malware: infected applications (injecting the

CHAPTER 2: CONCEPTS AND RELATED WORK

16

malware in applications release in third-party app stores); malvertising (implanting

malware to valid online ad networks to aim an extensive range of end-users); scams

(redirecting users to malicious websites via email, text messages or pop-up screen); and

direct to the device (the hackers directly install malware when the mobile phones are left

unattended) [56], [57].

Viruses, worms, Trojans, and bots are all types of malware; malware is a short form for

malicious software, also acknowledged as malicious code or malcode [58]. The abilities

of malware include harming, disrupting, stealing, or in general perpetrating some other

"evil" or illegal activities on data, host or networks. Attacks have become more

"innovative" and "wicked".

Batteries power mobile phones and smartphones. The challenge comes from limited

battery life - the batteries need to be recharged when drained [59], [60]. Dhaliwal

explained that infected mobile phone batteries could be drained faster than before, and

the phones could start overheating [57]. A 2013 survey identified resource-draining via

installed third-party insecure applications as a major problem in smartphones [60]. A

smartphone may run many programs in the background that can have a significant effect

on battery life. Any security solution must reflect this constraint.

A big problem for the mobile phone owners is private data leakage [11], [61]. The thieves

or attackers can steal private information saved on mobile phones such as credit card or

bank information, and corporate data. The mobile phone's security system can be

defeated by sophisticated intruders if there is enough time [10]. For that reason, wiping

or securing private data from an intruder should be considered (and indeed such

functionality is available on major mobile phone platforms).

The mobile phone may be stolen from its owner or otherwise physically lost [9]. Mobile

phones are portable, making them easy to drop or be stolen without the owner realising

[10]. A mobile phone might contain many pieces of private data, such as pictures,

account information, personal data, text messages, and contact information.

CHAPTER 2: CONCEPTS AND RELATED WORK

17

 Attacks on the Smartphone

Companies are keen to offer ever-more functionality. Security, however, is rarely a

primary development goal and as a result, many phones find themselves the target of

attacks. Mobile phone users face attacks such as sniffing, spam, phishing vishing,

smishing, pharming, and attacker spoofing [9], [14].

Sniffing occurs when the attacker captures and decodes packets as they pass through the

network [9]. Sniffing is a form of data interception. A well-known example is packet

sniffing, also known as eavesdropping [49]. Usually, the attacker will sniff or tap

smartphone calls or SMS (short message services), but 3G and 4G users are also at risk.

The attacker may also try to steal a username, password, content of an email and transfer

files while sniffing on the same network as the mobile phone user.

The attackers can use email or MMS (multimedia message services) to spread Spam. A

DoS attack can also start via MMS spam [9]. Social media users can distribute

spontaneous messages and produce burgeoning traffic in social networks; this is often

referred to as Social Network Spam [62]. An example of spam activity would be the

direction of users to malicious commercial sites such as pornographic webs sites by a

link posted by friends on a social network.

Phishing is a criminal act where an attacker, masquerading as a trusted party, steals

privacy-related information, such as username, password, or credit card details [9], [14],

[61]. Phishing also can be defined as "endeavouring to obtain personal information by

masquerading as a trustworthy individual in electronic communication." Phishing can

be circulated via email using attractive email subject and content to convince users to

open the email and so become victims. In 1996, one of the first known phishing attacks

was traced when hackers attempted to misappropriate America Online passwords from

online users [63].

Georgia Tech first piloted phishing awareness training using the 300-member Office of

Information Technology (OIT). One out of every four people clicked on the link in the

phishing email message and could have had their system compromised [64].

CHAPTER 2: CONCEPTS AND RELATED WORK

18

Automated messages claiming to be from a bank were used to extricate the details of

bank accounts and were dubbed 'vishing', a merging of 'voice' and 'phishing'. Vishing

or "phishing voice calls" use voice calls to abuse an individual's trust in telephone

services, as the prey often does not suspect that fraudsters can use methods such as caller

ID spoofing and complex automated systems to initiate this type of scam [18]. Spoofing

caller IDs can be accomplished by using voice over IP (VoIP) technology; attackers were

able to exploit the public belief in the landline system. Vishing leverages the power and

trust invested in voice communication to allow the intruder to gain access to a

smartphone user's financial and other private information [9], [10].

Smishing is a form of the attacker that exploits SMS, or text, messages. Text messages

can contain links to such things as web pages, email addresses, or contact numbers that

when clicked, may automatically open a browser window, email message, or dial a

number [14]. A smishing attack usually attacks the nationwide bank as fraudsters

dispersed their SMS spam to broader mobile users with an account at one of the banks

[63].

In pharming, the user's web traffic is redirected to a malicious or fraudulent website [9].

Pharming is an example of an advanced phishing attack and is used for online identity

stealing. It is also known as "phishing without lure" [65]. The attacker may use

information gained from pharming to hone his attacks. Pharming attacks are hard to

detect because the fake visited URL sites closely resemble those of the legitimate

websites [65]. The attackers corrupt DNS information to redirect users to a forged

website under their control.

Spoofing is a threat where attackers pretend to have a particular caller ID and act as an

authorised person to get private information from mobile phone users [66]. A spoofing

attack is a circumstance in which one person or program effectively masquerades as

another by fabricating information and thus gaining an unauthorised advantage.

Example attacks are IP address spoofing, DNS spoofing and ARP spoofing. Bellovin

identified the first IP address spoofing attacks in 1989. In his article, he described a

variety of IP spoofing attacks and presented defences against them using encryption,

authentication and trusted system functionality [18].

CHAPTER 2: CONCEPTS AND RELATED WORK

19

 Android Malware

Malware attacks increased significantly in 2019, which is 50% expand from 2018, in

particularly affected Android mobile phones [67]. In November 2020, Android mobile

phone users in Southeast Asia have been targeting by a new variant of Android malware

called WAPDropper [68]. It just a month after Brazil being 'bombed' with a trojan called

Ghimod that aiming Brazillian Bank apps [69]. This trend shows that the malware

developer is working hard to create a new strain of malware in a short time. The main

purpose of this cybercriminal is to steal payment data, confidential information, login

credentials, phone number or email address, contact lists, device information and money

from victims bank accounts [67], [69]–[71]. Furthermore, Hautala identifies four signs of

malware that had been hidden in Android malware to alert Android mobile phone users

[71]. The signs are; users will frequently seeing ads (irrespective any apps they are

using), the app's icon will vanishes after users install an app, the mobile phone battery

drain faster than before, users will see apps they not installed in their phone [71].

Kaspersky detected the first wild Android malware in 2010, known as FakePlayer3 [15].

Fakeplayer3 and WAPDropperis allowed Android devices to send SMS messages to

premium numbers [15], [68]. Others malware families that have been used in this

investigation are details explaining in Chapter 4 and Chapter 6. Some other popular

varieties of mobile malware are adware, banker malware, ransomware, rooting

malware, SMS malware, spyware and Trojans capabilities as explained below [54]–[57],

[72], [73]:

Adware – displays continual ads to a user in the shape of pop-ups, sometimes causing

the unintentional forwarding of users to websites or applications.

Banker malware – happenings to steal users' bank authorisations without their

knowledge.

Ransomware – requests money from users to restore the data or the functionality of the

devices being locked.

Rooting malware – 'roots' the device, basically unlocking the OS and gaining extended

privileges.

SMS malware – controls devices to send and intercept text messages resulting in SMS

charges.

Spyware – observes and records info about users' activities on the devices without their

knowledge.

CHAPTER 2: CONCEPTS AND RELATED WORK

20

Worms — can reproduce themselves repeatedly and execute without user interaction.

Trojans —hidden malicious functionality within legitimate software. Once activated, it

can compromise phone data and operation.

Android mobile users can take some steps to stop mobile malware; keep update the

software updated, uninstall apps that users think malicious, install antivirus apps, and

not install Android apps from third-party app stores [71].

 Intrusion Detection Systems (IDSs)

Internet access is essential, not only for computers but also for the population of mobile

phone users. McKinley reported that 3.9 billion people were unable to connect to the

Internet and benefit from its services. This included 19.4 million people in rural America,

even in 2018 [74]. Protecting the private data and information associated with these

services is now vital, according to Dixon, Gordon and Marceux. The Internet has now

become a necessity, and access to it is a human right because of the capabilities of the

Internet can offer to the users [75], [76]. Researchers and antivirus companies have

sought to find better countermeasures for the attacks at hand as the users of the Internet

have grown in number, and their vulnerability to attack increased.

The detection of attacks is a crucial component of providing adequate security. An IDS

comprises devices or applications capable of detecting abnormal events, potential

security accidents, and intrusions in the computers or network systems and sends

warnings or alerts to the administrator to counter the identified intrusion [18], [20]. An

IDS can be viewed as a second protective layer besides firewall and antivirus, and the

fundamental goal of IDSs is to detect intrusion.

Kemmerer and Vigna denied that IDS could detect an intruder, preferably it can detect

only the sign of intrusions, either when they happen or afterwards [77]. After more than

a decade, KhorasaniZadeh et al. issued a new interpretation of the goal of an IDS: the

IDS is to offer and improve the entire security and robustness of computer structures

[21].

CHAPTER 2: CONCEPTS AND RELATED WORK

21

Intrusion detection can be classified based on audit data as either host-based (HID) or

network-based (NID). HIDs operate on a personal computer or device in the network

and NIDs observe network traffic to/from the network [78]. Anderson discussed the

significance of auditing and audit trails in host-based intrusion detection [17]. Network

intrusion detection uses packet sniffers to read and analyse packet exchanges between

hosts, usually deployed by broadcast type networks (TCP/IP). Host-based intrusion

detection monitors the hosts themselves and responds to attacks on them. HIDs usually

combat internal threats, i.e. intrusions by dishonest employees.

 Intrusion Detection Systems Approaches

In the early stages, two Intrusion Detection approaches were commonly discussed by

researchers: anomaly-based detection and misuse based detection [79]. Each approach

has strengths and weakness. The evolution of systems and attacks on them gave rise

around 1999 to the third type of approach: specification-based detection [50], [78]–[80].

Specification-based detection derived strengths from both anomaly-based detection and

misuse-based detection. We discuss these below.

Anomaly-based detection refers to the identification of patterns of behaviour that deviate

from some 'norm' or expected activity [81], [82]. Any events that violate normal

behaviour are considered suspicious. Profiles of normal behaviour may draw on a

variety of data, such as normal login time, duration of the login session, CPU usage, disk

usage, and favourite editor [79]. The IDS observes current user activities and

characterises them as anomalous (suspicious) or otherwise using the profiles. Deviations

from profile norms will be flagged as potential intrusions. For example, a normally

passive public website suddenly attempting too many open connections may be infected

by a worm. There are four methods used in anomaly-based detection: statistical,

predictive pattern generation, neural networks, and sequence matching and learning

[21]. Anomaly-based detection suffers from accuracy problems. It is hard to pin down

"normality"; often, anomalous behaviour is found on further analysis to be entirely

respectable. At some level, every user session can be thought of as unique; it is a question

at which level of granularity attackers chose to observe information. A user's day is

rarely (never) "exactly" the same as the last. Finding an optimum level at which to

summarise (profile) information and relate it genuine suspiciousness is hard.

CHAPTER 2: CONCEPTS AND RELATED WORK

22

Misuse-based detection (also known as signature-based detection) looks for known attack

patterns in the current events or activities [21], [83]. Misuse-based detection must retain

attack details (signatures) that correspond to identify attacks. The signatures can be

developed using a range of techniques, from hand translation of attack manifestations

to automatic training or learning using labelled sensor data [84]. Detection using this

approach is often accurate because the signatures stored may summarise

unambiguously mischievous behaviours. For example, an HTTP request linking to the

.exe file may indicate attacks to a personal computer. Approaches to misuse-based

detection include expert systems, keystroke monitoring, model-based, state transition

analysis, and pattern matching [21]. Misuse-based detection is unable to detect

accurately novel attacks. It is considered a major weakness for misuse-based detection

IDS.

Specification-based detection monitors the executing program based on programming

signatures of benign behaviour, instead of an existing precise outbreak pattern [50], [85].

It is mostly used in ad hoc networks, and it is suggested as a way for different types of

ad hoc routing protocols to be updated [86]. It essentially monitors for deviations from

specified behaviour. It is a natural candidate when protocols are monitored(because they

have specifications. DoS attacks are not detected by specification-based detection

because these types of attacks follow specifications. Specification-based detection can

produce a lower rate of false alarms than anomaly-based detection, but it cannot

compete with anomaly-based detection for novel attacks detection.

 Intrusion Detection System Performance Metrics

The performance of IDS can be calculated based on the confusion matrix. The confusion

matrix contains four values such as True Positive (TP), True Negative (TN), False

Positive (FP) and False Negative (FN). The explanation of the confusion matrix as below:

TP rate refers to the proportion of correct malware detected.

TN rate refers to the proportion of correct for non-malware detected.

FP rate refers to the proportion of incorrect predictions for non-malware detected.

FN rate refers to the proportion of incorrect predictions for malware detected.

CHAPTER 2: CONCEPTS AND RELATED WORK

23

 Related Research on Intrusion Detection Systems

Table 2.1 summarises research on IDS; the main focus is intrusion detection for mobile phones. It aims to show IDS development and trends and

indicates characteristics of the approaches described.

Table 2. 1 Summary of Research on Intrusion Detection Systems

Researches Year Way of Detection

Anomaly-based Detection

IDES [22], [52] 1988 ● detection by constructing a profile for a group of users that behave in the same manner by their organisational

status and attempt to correlate behaviour for a particular user.

● detect not only with the past behaviour for a certain user but also with the behaviour that is recorded as

"normal" for that group

NIDES [87] 1995 ● persistent storage ● agend ● agen

● statistical analysis ● arpool ● resolver

● rule-based analysis ● archiver

● batch analysis ● user interface

CHAPTER 2: CONCEPTS AND RELATED WORK

24

Researches Year Way of Detection

Misuse-based (Signature-based Detection)

MIDAS [88] 1988 ● Attempted break-ins ● Masquerade ● Penetration ● Misuse ● Trojan horse/ virus

USTAT [89] 1993 ● audit collection / pre-processing ● knowledge base

● inference engine ● decision engine

Specification-based Detection

Haystack [90] 1988 ● Attempted break-ins ●Masquerade attacks ● Leakage

● Denial of service ● Malicious use

● Penetration of the security control system

EMERALD [91], [92] 1997 –

1999

● service analysis level ● domain-wide level

● enterprise - wide level

FloGuard [93], [94] 2010 -

2011

• detectors vigorously in a cost-effective manner
• online system-wide forensic

CHAPTER 2: CONCEPTS AND RELATED WORK

25

Table 2. 2 Summary of Research on IDS using AI Approaches

Researches Year Data source Methodology Metric Results

Anomaly-based Detection

ISABA [95] 2010 KDD99 dataset

(normal, probe,

DoS,U2R, R2L)

Naïve Bayesian classifier Detection Rate 99.82%,99.72%,99.49%,99.47,

99.35%

Misused-based Detection (Signature-based Detection)

Artificial

Neural

Networks [96]

1998 RealSecure™ datasets

(source address, a

destination address,

packet data)

Artificial neural networks Mean Square
& Correlation

0.058298, 0.069929

0.982333, 0.975569

NEDAA [97] 1999 DARPA Intrusion

Detection

EvaluationData

AI and Decision trees Not reported

Produce sets of rules for

compilation into the expert

system.

Power-Aware

IDS in

MANETs

[23]

2010 Simulated networks

(flooding attacks, route

disruption attack)

GP and MOEA Detection Rate
& False
Positive Rate

98.65%, 100%,93.29%

1.23%, 0.63%, 4.56%

CHAPTER 2: CONCEPTS AND RELATED WORK

26

Researches Year Data source Methodology Metric Results

Misused-based Detection (Signature-based Detection)

Backdoor

detection

system [24]

2011 Dynamic - system

behaviour and network

traffic

ANN and GA

Not reported

Not reported

Specification-based Detection

Artificial

Intelligence

Techniques

Applied to

Intrusion

Detection [98]

2005 Dynamic – using

SNORT

Neural networks, Fuzzy logic
with network profiling and
Data mining

Not reported Not reported

CHAPTER 2: CONCEPTS AND RELATED WORK

27

 Evolution of Intrusion Detection Systems

James Anderson introduced the IDSs concept in 1980. The technical report [17] discussed

the importance of auditing and audit trails for host-based intrusion detection. From the

early 1980s, SRI International started their IDS research led by Dorothy Denning. The US

government supported their project. Denning's work resulted in the presentation of the

Intrusion Detection Expert System (IDES) in the IEEE Symposium on Security and

Privacy (1986) [22] as reported earlier. IDES used audit trail analysis based on its user

profiles database; it is an implementation of an anomaly-based IDS. It used AI for

encoding an expert's knowledge of known patterns of attack and system weaknesses (if-

then rules) [22], [52].

In 1988, the Haystack project was developed for US Air Force [90]. It compares audit

data to define patterns. The Haystack was the first DIDS (Distributed Intrusion Detection

System) for client and server track that focused on the detection of insiders (legitimate

users that misuse their privileges). The first Network Intrusion Detection Systems

(NIDS) began in 1990 with research by University of California researchers [99]. They

developed the Network Security Monitor (NSM), which contributed to Distributed

Intrusion Detection System (DIDS) development, and one of the early IDS that

considering using hybrid intrusion detection. The researchers focused only on the

security-related issues in a single broadcast LAN such as Ethernet. Their system used a

four-dimensional matrix with the following elements: Source (a host which generates

traffic), Destination (a host to which traffic ID destined), Service (example: mail and

login), and Connection ID (a unique identifier for a specific connection) [99]. The NSM

was also the first system to use network data directly as source input.

The DPEM (1994) became the successor of IDS and used a policy-focused anomaly-based

detection approach [50]. In 1999, the Snort (Lightweight Intrusion Detection for

Network) was initiated and became the first commercial NIDS [100]. It is a lightweight

and flexible intrusion detection tool for small, lightly utilised networks. Snort is a free

IDS and can be used in any environment, and no cost needed to deploy a commercial

NIDS sensor [100]. It has also acquired a very high public usage profile.

CHAPTER 2: CONCEPTS AND RELATED WORK

28

In 2011, the researchers proposed the AI approaches based on a combination of ANN

and GA to identify malicious code (backdoors) in single computers and computer

networks [24]. Frank's brief survey of AI approaches used in several IDSs [101]

highlights network-based intrusion detection as the biggest problem in intrusion

detection. Frank also demonstrated how feature selection could be used to reduce

overheads and improve classification of network connections. The testing of feature

selection used data collected from the Network Security Monitor (NSM). Feature

selection is an essential element of the solution by AI techniques of many pattern

recognition problems.

Manninen explored how to create an IDS environment that acknowledged the

preferences of a security officer, seeking to make the security officer's work more

effective and practically informative by displaying the most viewed anomalies first [102].

He compared the AI-based IDS with traditional IDS solutions and analysed how the AI-

based solution might be implemented in the IDS. He proposed three outcome groups:

usability of the learning process (introduction of noise into data in different cases); ways

to detect intrusion based on learned examples (response to noise in the data); and

showing the events to the security officer in the correct order (minimising false alarms).

The results showed that AI-based solutions could be used in IDS. Neural networks are

the most popular choice of AI implemented in IDSs. Understanding and handling the

noise in the learning data to test the accuracy of IDS was highlighted as future work.

SVMs are learning models with a learning algorithm that analyses data and recognise

patterns, used for classification. The basic SVM takes a set of input data and predicts, for

each given input, which of two possible classes forms the output. Given a set of training

samples, each marked as belonging to one of two categories; an SVM training algorithm

builds a model that assigns new samples into one category or the other. It represents

these samples as points in space mapped so that a clear gap divides the samples of the

separate categories. Adigun et al. research proves that the use of SVM with Particle

Swarm Optimization (PSO) can reduce the computational loads [103]. The Support-

Vector Machine (SVM) technique–based can be used for both anomaly-based and

signature-based detection [103]–[105].

CHAPTER 2: CONCEPTS AND RELATED WORK

29

Some researchers suggest that Intrusion Prevention Systems (IPSs) are a better solution

rather than IDSs because an IPS can identify and counter the intrusion to protect the

network at initial stages of an attack. IPS is an extension of IDS combining both the

function of firewall and intrusion detection. However, IPS has issues, which affect the

system: completeness of any signature database, traffic volume, topology design, quota

usage logging, protecting the IPS, and managing the monitoring sensor [106]. Therefore,

the IDS still a preferred security solution for devices and networks.

 Intrusion Detection Systems in Mobile Phones

The smartphone can also function similarly as a computer; it is hackable and can be

attacked by viruses and malware much as with other platforms. As smartphones become

more complex and powerful to provide increased functionality, security concerns are

increasing.

A decade ago, the compromising of major computer systems around the world via

viruses and other malware made many security experts think that malware for mobile

devices would subsequently emerge as a major problem [107]. Indeed, mobile malware

and privacy leakage remain significant threats to mobile phone security and privacy.

Smartphones are not usually equipped with built-in antivirus software, making them

more vulnerable to attack. The mobile phone has now become a favourite platform to

attack. Consequently, the development of malware and virus detection for mobile

phones is becoming urgent.

IDS for mobile phones has received a fraction of the attention of IDS for networks and

more traditional host platforms. Nevertheless, researchers have sought to use IDS based

on the three approaches reviewed earlier in this report referred to in Table 2.2 and Table

2.3.

In [108], [109], they suggested some other mobile malware detection such as static

analysis, dynamic analysis, hybrid analysis, application permission analysis, cloud-

based malware detection which is currently in trend to be used by the researchers

worldwide.

CHAPTER 2: CONCEPTS AND RELATED WORK

30

Table 2. 3 Summary of Research on Mobile Phone IDS

Researches Year Data source Methodology Metric Value Mobile Platform

Anomaly-based Detection

SmartSiren [110] 2007 SMS trace collected from a national cellular

service provider in India

Statistical
Monitoring,
Abnormality
Monitoring

Not reported Not reported Windows Mobile

Tap-Wave-Rub (TWR)

[111]

2013 Dynamic - Permission and accelerometer

data

Intuitive human
gesture
recognition,
Tapping the
detection
mechanism
based on
accelerometer
data

Detection

Rate

94.67% Android

DAIDS [112] 2014 Dynamic – (package, process, event,

network usage, comm, memory usage, CPU

usage)

Behaviour
analysis

Not reported Not reported Android

Android Botnets: What

URLs are Telling Us

[113]

2015 Android Genome Malware project ,Malware

security blog VirusTotal , Samples provided

by a well-known anti-malware vendor

Visualisation Not reported Not reported Android

CHAPTER 2: CONCEPTS AND RELATED WORK

31

Researches Year Data source Methodology Metric Value Mobile Platform

(URLs)

Misuse-based (Signature-based Detection)

Secloud [93], [114], [115] 2010

-

2013

ClamAV malware signature database

Snort network traffic database

Forensic

analysis

Accuracy Not reported Android

DroidAnalytics [116] 2013 Using Crawler to automatic download

application from the repositor

Multi-layer

signatures

generator

Not reported

Not reported Android

Specification-based Detection

Crowdroid [117] 2011 Dynamic – crowdsourcing system calls k-means

algorithm

Accuracy 100% (PJApps),

85%(Trojan)

Android

SBIDF [118] 2011 Dynamic - Simulate the behaviour of real-

world malware

Temporal Logic

of Causal

Knowledge

Not reported Not reported Android

CHAPTER 2: CONCEPTS AND RELATED WORK

32

Table 2. 4 Summary of Research on Mobile Phone IDS using Artificial Intelligent Approaches

Researches Year Data source Methodology Metric Value Mobile Platform

Anomaly-based Detection

Malware Detection using

Machine Learning [105]

2010 MIT Reality Mining project -

phone calls, SMS, and

communication logs

Support Vector
Machine (SVM)
algorithm,
Statistical
classification
model

Accuracy Not reported Symbian

DREBIN [119] 2014 Android Malware Genome

Project, Google Play, Russia

Market, Chinese Market and

Android websites. (i.e.API

calls, Intents, permissions)

SVM

Accuracy

False Positive Rate

94%

0.1

Android

Ransomware Steals Your

Phone. Formal Methods

Rescue It [120]

2016 Contagio Mini Dump,

Ransom Mobi,DREBIN

Formal Method F-measure

Accuracy

0.99

0.99

Android

Identifying malicious

Android apps using

permissions and system

events [121]

2016 Android Malware Genome

Project, Market datasets

(permission and system

events)

SVM,
K-means clustering

True Positive Rate,

False Positive Rate,

Detection Rate

85.25%, 93.07%

7.12%, 1.13%

85.24%,93.07%

Android

CHAPTER 2: CONCEPTS AND RELATED WORK

33

Researches Year Data source Methodology Metric Value Mobile Platform

Anomaly-based Detection

Effective and Explainable

Detection of Android

Malware Based on

Machine Learning

Algorithms [122]

2018 DREBIN SVM True Positive Rate

False Positive Rate

94%, 94%

1% , 3%

Android

Detecting Application

with malicious Behavior

in Android Device on GA

and SVM [123]

2018 DREBIN SVM ,
Genetic Algorithm,
N-gram

Accuracy 95% Android

Misuse-based (Signature-based Detection)

Neural Fraud Detection

[124]

2000 Telecom carrier (i.e. users

calls)

Neural network
classifier

Not reported Not reported Not reported

AmoxID [125] 2012 Dynamic (SMS data, Call

Data, GPRS Data)

SVM classification,
Pattern recognition
algorithms

Not reported Not reported Android

MADS [126] 2013 VirusTotal – malware

datasets

Naïve Bayes,
Bayesian
Network, SVM,
KNN, J48,
Random Forest

True Positive Rate,

False Positive Rate

Accuracy,

ROC Curve

True Positive Rate

0.93,0.71,0.93,0.35,0.8

3,0.92

False Positive Rate

Android

CHAPTER 2: CONCEPTS AND RELATED WORK

34

Researches Year Data source Methodology Metric Value Mobile Platform

0.17,0.13,0.03,0.02,0.1

2,0.13

AUC

0.90,0.89,0.95,0.84,0.8

6,0.96

Accuracy

88.07%,78.68%,94.70

%,66.24%,85.54%,89.

74%

MOCDroid [127] 2017 Aptoide, VirusShare,
VirusTotal

MOEA,
Genetic Algorithm

Accuracy,

False Positive Rate

94.6%

2.12%

Android

Coevolution Malware and

Anti Malware [128]

2018 Malgenome Genetic
Programming

Detection Rate,

False Positive Rate

48.44%, 42.86%

0.00%

Android

CHAPTER 2: CONCEPTS AND RELATED WORK

35

Researches Year Data source Methodology Metric Value Mobile Platform

Specification-based Detection

12

SwarmDroid [103]

2014 NSL KDD dataset • Support Vector
Machine (SVM)
classification

• Particle Swarm
Optimisation
(PSO)

Detection time,

True Positive Rate

, False Positive

Rate

, and detection

accuracy

Accuracy

80.4375%,90.5625%,

93.1937%

Android

CHAPTER 2 : LITERATURE REVIEW

36

 Summary of Major Issues in Intrusion Detection Systems

We can conveniently categorise significant issues as major issues in general IDS and

major issues in mobile phone IDS. The big issues in general IDS are: a high rate of false

alarm; real-time detection; response to detected intrusions; and IDS sensor placement

(efficient sensor placement will reduce the cost). The big issues in mobile phone IDS are

coping with limited resources and significant IDS overheads. These are now addressed

below.

 High false alarm rates

Denning's (1986) paper introduced ideas for creating IDS with low false alarm rates [22].

The false alarm rate must be considered from the early stages of development. High false

alarm rates have usually been associated with anomaly-based detection approaches

[129], [130]. The rate of false positives in anomaly-based systems is normally higher than

in signature-based [26].

Mobile phones are components in a wider MANET, and the high ratio of false alarms in

MANETs is an important issue [131]. Patel et al. indicated that triggered false alarms

would have a severe effect on the system's operation such as the disruption of

information available because of IDPS blockage in suspecting the information to be an

attack attempt [82]. False alarms also contribute to low detection efficiency [26]. An IDS

cannot give the best response to detecting the attacks. Most algorithms used to detect

intrusions try to reduce the false positives and increase the detection rate. However,

from previous research, it shows that the higher detection rate, the more false positives

will occur, and minimising the false positives is a challenge [132]. There seems to be a

natural trade-off being made. Sechi et al. and Michalopoulos et al. agreed that false

alarms would be high in IDS in mobile phones [133], [134].

Nevertheless, false alarms can be reduced significantly by using a specification-based

detection approach or implementing AI (machine learning) in an anomaly-based

detection approach [118], [130]. The specification-based detection approach tries to avoid

the high rate of false alarms affected by the legitimate but previously unseen behaviour

(not intrusive behaviour, but detected as intrusive) in the anomaly-based detection

CHAPTER 2 : LITERATURE REVIEW

37

approach [130]. In the experiments of Uppuluri and Sekar using BSM audit records

(corresponding to system calls) and specification-based detection methods, no false

alarms were recorded [80]. The experimental results supported their claim that

specification-based approaches can detect novel attacks without having to sacrifice on

the false alarm front [80].

For system effectiveness, an IDS needs to detect nearly 100% of attacks with minimum

false positive detection [77]. However, it seems hard to be achieved because the pattern

of attacks usually different and changes as the nowadays attackers are adept at covering

their tracks.

 Real-time detection

The detection of intruders or attacks has become one of the biggest problems for

developed IDS. Intrusion detection should be or be near real-time. Researchers have

proposed many models that include AI in their IDS framework to ensure the detection

of attackers in real-time. Denning proposed a real-time IDS in 1987 [52]. USTAT was

designed to be a real-time system [89], attempting to pre-empt an attack in advance

before any damage is caused to the system. This pre-emption is possible only with real-

time analysis. Real-time detection can trigger an alarm and invoke a message on the

console to react to the intrusion.

For high-speed and high-performance network nodes, IDSs should seek to carry out

analysis in real-time [77]. KhorasaniZadeh et al. pointed out that real-time detection

advantages are not always achievable [132]. For example, an IDS in a MANET may not

be able to react to an attack in real-time due to communication delays [83].

 IDS sensor placement

IDSs use sensors to monitor the network for signs of disturbing activity. The problem of

IDS sensor placement had been identified in 2000 [84], and in 2014 it was still be

mentioned as a big problem for the development of high-performance IDS [135].

McHugh, Christie, and Allen (2000) suggested that sensor placement should be re-

examined occasionally to guarantee that the system or network changes have not

reduced IDS efficiency [84]. Cost-effective sensor placement in large modern systems

CHAPTER 2 : LITERATURE REVIEW

38

requires consideration of many criteria [135]. Chen et al. reported the first experiment

using heuristic optimisation techniques to evolve optimal IDS sensor placements in 2010

[136]. The IDSs need a network-wide analysis [77], and often there are constraints on

where sensors/probes can be placed on the network.

 Limited resources

The greatest challenge for IDSs is to reduce the resources required to carry out their

analysis [132]. Smartphones have limited resources [115]. A battery powers a

smartphone with a limited life, and that must be recharged when drained [9], [137].

Mobile phones have limited battery and computing resources.

Consequently, many security solutions developed for desktops are not suited for use in

mobile phones [118], [125]. Detection must, therefore, be intelligent due to limited

battery constraints of these devices [138]. Most recently proposed IDSs for malware

detection on Android devices are based on behaviour analysis for anomaly detection

[117]. Campbell and Hautala emphasise that mobile phones infected with malware have

over an hour shorter battery life than clean phones [71], [107].

Real-time monitoring and unnecessary overheads are problems that have to be

considered in the context of mobile phone IDS [105]. Parsing data communication via BT

and Wi-Fi to detect malicious activity without incurring high overheads and false

positives are challenging [118] because the extra overhead in the processor leads to

battery draining in mobile devices [117]. Thus, IDSs developed for the mobile phone

should avoid high battery consumption and overheads [103], [112].

Smartphone devices have inadequate energy resources, and so this presents a challenge

for mobile phone IDS [125]. Other protection systems such as antivirus need to update

their virus signatures from the central repository frequently. Since updating of phone

antivirus signatures is energy-expensive, the attackers might try to use newer attack

strategies to compromise smartphones [125].

CHAPTER 2 : LITERATURE REVIEW

39

 Limited test datasets

The standard data set used for IDS performance evaluation has often been minimal and

far from representative of real-world data [132]. Aikelin and Greensmith indicated that

constructing a “good” dataset is a significant challenge. A major challenge has collated

a dataset without any trace of anomalies. [127]. It is time-consuming and expensive to

gather the datasets [132]. Unsurprisingly, datasets made publicly available by the

research community are necessarily limited.

 Conclusion

Mobile phones are a modern-day necessity for users and are coming under increasing

attack. They have their own specific characteristics, and conventional security

techniques do not apply to them. Anti-virus software has been developed for traditional

computers and laptops, but mobile phones lack appropriate anti-virus and anti-malware

protection. Researchers are now starting to give attention to developing new prevention,

detection and response tools for mobile phones.

The surveyed literature shows that there is a pressing need to address mobile phone

protection in general and IDS in particular. In this thesis, we aim to address this need for

a prevalent form of attack (malicious apps) for a prevalent platform (Android) seeking

to leverage perhaps the most promising technology of our age – AI.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

40

CHAPTER 3

 Evolution of Malware Classification and
Detection in Mobile Phones

This chapter introduces Evolutionary Computation (EC) methods that are used to investigate the

malware classification in this thesis. Two EC methods, Genetic Algorithms (GAs) and Genetic

programming (GP) are introduced, and the literature detailing the application of EC methods in

general to the problem of intrusion detection is surveyed. Justification is provided for the selected

method for our development of detectors and classifiers for mobile phones. The proposed approach

and the datasets used for its evaluation are detailed.

 Brief Overview of Evolutionary Computation

The term Evolutionary Computation (EC) was introduced in 1991 and is concerned with

computational problem-solving methods based loosely on principles adapted from

Darwinian evolution [139]–[141]. An EA typically maintains a population of potential

solutions (‘candidates’) and evolves that population using operators analogous to

mechanisms from nature, such as mutation (where candidates are perturbed in some

small way), and crossover, where candidate ‘parent’ solutions swap elements to produce

‘children’, and fitness selection (implementing some variant of ‘survival of the fittest’) [19]

[20].

 Genetic Algorithms

John Holland introduced the term Genetic Algorithm (GA) in 1960. Bermermann

implemented the fundamental procedure of a GA in the 1960s [139], [142], [143]. GAs

usually represent solutions as a linear sequence of components, e.g. solution may be a

sequence of bits, integers, doubles, or other fundamental types. (Sometimes mixtures of

data types are used).

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

41

Mimicking the genetic operators of crossover, mutation and selection allows populations

to be evolved to contain (hopefully) increasingly more satisfactory candidate solutions.

In the crossover (usually) two ‘parent’ individuals exchange constituent elements for

producing new individuals, and so each of these ‘children’ inherits elements from each

parent. Mutation introduces diversity in individuals in the population. Typically, each

element of an individual may be perturbed in some way with a small probability.

In a bit sequence individual, each bit may be flipped with a small probability. For integer

sequence individuals an integer element may be replaced with a randomly chosen value

or perhaps be incremented or decremented within some chosen range. Selection often

implements a ‘survival of the fittest regime’ where fitter individuals have a greater

chance of surviving to the next generation. (There are many ways selection can be

implemented.) Figure 3.1 illustrates the basic idea of a GA.

In the figure below, the GA evolutionary process starts with a set of individuals

(candidate solutions to the problem to be solved) commonly referred to as the population.

Members of the population have their fitnesses evaluated. This allows a new population

of solutions to be selected based on fitness values. ‘Parents’ are selected from the new

population to be mated to produce ‘offspring’ using crossover (exchange genes of

parents). Members of the new population of solutions are then mutated. The mutation

occurs to maintain diversity within the population and prevent premature convergence.

The population members then have their fitness evaluated. The cycle either repeats or

stops when some criterion stopping criterion is met, e.g., a specified maximum number

of cycles has been performed, or a solution has been found.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

42

Figure 3. 1 An Example of a GA, based on [144]

 Genetic Programming

Genetic Programming (GP) is an extension of the GA, introduced by John Koza. The idea

of GP was to represent a computer program as a tree [145], [146]. GP is an EC technique

that can work with a wide range of input feature data types: integer, float, binary, string

and so on. It can automatically solve problems without necessitating the user to be aware

of the structure or form associated with the solution in advance [147]. In GP a population

of computer programs is evolved generation by generation. GP implements a tree-based

variant of mutation (randomly generated) and crossover (subtrees are swapped between

parent trees). The figures below illustrate the mutation (Figure 3.2) and crossover

operators (Figure 3.3) of GP. The necessary steps in the GP system programming are

presented in Figure 3.4.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

43

Figure 3. 2 An Example of a Mutation in GP [146]

Figure 3. 3 An Example of a Crossover in GP [146]

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

44

Figure 3. 4 GP Algorithm [14]

 Application of AI to Detect Attacks: Related Work

AI has been adopted by many researchers. The integration of IDS with AI started in 1986

[22]. Machine learning techniques can be used to develop highly efficient detectors for

sleep deprivation or battery exhaustion attacks such as denial-of-service power attacks,

malware attacks, spyware attacks and so forth. Narudin et al. reported that 99.97% (true-

positive) of malware could be detected using the Bayes network and random forest

classifiers on Malgenome datasets [25]. In trend used of machine learning techniques in

IDS include ANNs; GAs; decision trees; SVMs; and fuzzy logic [26], [27].

GP has usually been employed for synthesising robust signature-based detectors for IDS.

Garcia-Teodoro et al. reported deployment of GA within an anomaly-based IDS,

contributing to a flexible and resilient system that did not have prior knowledge about

the attacks [26]. The results of Sen et al. reveal GP can perform better than other AI

techniques (e.g. SVM and Decision trees) as a lightweight method for detecting known

flooding and route disruption attacks against the AODV protocol [23]. Her work

inspired us to investigate whether the implementation of GP in our research can

contribute to our main aim to deliver techniques that require fewer features, such as

using only Android permissions.

1: Randomly create an initial population of programs from the available

primitives.

2: repeat

3: Execute each program and ascertain its fitness.

4: Select one or two program(s) from the population with a probability based on

fitness to participate in genetic operations.

5: Create new individual program(s) by applying genetic operations with

specified probabilities.

6: until an acceptable solution is found or some other stopping condition is met

(e.g., a maximum number of generations is reached).

7: return the best-so-far individual.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

45

A backdoor detection system using an ANN and GA was proposed by Salimi and

Arastouie in 2011 [24]. They developed a novel approach to detect backdoor attacks on

computers using two clusters such as system behaviour and network traffic as their

features for ANN then the outputs from the process are used by the GA as inputs

features to identify the backdoor attacks. In [128], the researcher using GP to generate

new mobile malware from previously known malware and also do the detection using

static analysis focusing on new malware or new variant of existing malware. This is

different from us in a part of we used actual datasets that are used by researchers

globally [23], [24], [26], [120], [128], [148]–[150].

 Why Evolutionary Computation?

EC has achieved promising results for IDS in previous research [24], [26], [28] as

discussed in Chapter 2. The modern mobile phone stores and processes highly valuable

data and has become a highly attractive target for attack. A small number of researchers

have sought to exploit AI in providing effective IDS, but the area is very much

unexplored. It is motivating to investigate further how AI can be used to provide a

robust framework and an application for IDS that target mobile phones.

The Android framework has been chosen as the vehicle for experimentation since there

is a very active development community, it is a widely used platform, and it is entirely

open source. If research results prove that promising a natural community would be

interested in further development.

GP has many benefits, but it has not yet (as of the submission of this Thesis) been

explicitly used to detect Android mobile attacks by using solely only Android

permissions (extracted from Manisfest.xml file). This one of the reasons to use GP as a

method to analyse obtained datasets to distinguish attacks. We also inspired to

investigate the capability of GP to do detection for mobile malware with fewer features

(only permissions). In [128], they used the API calls and permissions to generate their

coevaluation mobile malware and anti-malware using GP.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

46

Furthermore, since mobiles are low resource platforms, we want to evolve efficient

detectors where low power and low execution time, for example, are essential criteria.

Accordingly, we aim to use GP in a multi-objective context. Sen et al. stated that an

MOEA could allow the combination of multi-objective optimisation and evolutionary

search [23]. A combination of GP and MOEA could produce detectors with excellent

trade-offs between detection and resource usage.

 Proposed Framework of Malware Detection

Researchers have employed various methods to detect malware in the Android

application package (APK). APK is the file structure employed by the Android OS for

installation and distribution of mobile apps (programs designed to run on a mobile

device such as the phone, tablet or watch) and middleware (computer programs that

deliver services to software programs beyond those available through the OS). The

primary aim of our research is to provide techniques that require fewer features such as

using only Android permissions (predicated on Manifest.xml file extraction from APK)

to distinguish malware from non-malware APKs. Figure 3.5 is an example of a

Manifest.xml file extracted from the APK, and the explanation of the Manifest.xml

elements is shown in Table 3.1. Our proposed model in Figure 3.6 is the framework we

have used to run the experiments starting from pre-processing the data. The data was

obtained from other researchers, as mentioned in section 3.3. The details of the process

are explained below.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

47

Figure 3. 5 An Example of a Manifest.xml file extracted from APK

Table 3. 1 Manifest.xml Element Reference [151]

Element Description

action Adds an action to an intent filter. (An intent is a

messaging object you can use to request an action

from another app component)

activity Declares an activity component.

application The application’s declaration.

category Adds a category name to an intent filter.

intent-filter Specifies the types of intents that an activity, service,

or broadcast receiver can respond to.

manifest: The root element of the AndroidManifest.xml file.

uses-permission Defines the system permissions that the user must

grant for the app to operate correctly.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

48

Figure 3.6 shows the proposed malware detection framework. The details about each

step within the experiment framework are as below.

Figure 3. 6 The Framework of the Malware Detection

Data is acquired and pre-processed to remove elements that would disrupt the machine

learning process. The resulting data then forms the input to the classifier synthesis

process. The synthesis process uses feature extraction and selection prior to invoking a

supervised learning approach. The detection performance of the developed classifier is

recorded. The details of each step within the experimental framework process are given

below.

 Data Acquisition

To carry out meaningful work in this area, we need to have available case study datasets.

Producing these is a significant task in its own right. In this research, we have sought

assistance from the research community. Four international researchers have made

datasets available to us, with responsible use and fair acknowledgement restrictions. The

datasets and corresponding papers are:

• Drebin datasets from the paper “Drebin: Effective and Explainable Detection of

Android Malware in Your Pocket” [11];

• DroidKin datasets from the paper “DroidKin: Lightweight Detection of Android

Apps Similarity” [12];

• Droid Analytics dataset from the paper “DroidAnalytics: A Signature-Based

Analytic System to Collect, Extract, Analyze and Associate Android Malware”

[116]; and

• Ransomware datasets from the paper “Ransomware Steals Your Phone. Formal

Methods Rescue It” [120].

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

49

Unfortunately, we did not get access to Malgenome datasets from the paper “Dissecting

Android Malware: Characterization and Evolution”, [152], which is highly cited by

many researchers because of their established work for systematic characterisation of

existing Android malware. However, we obtained the DREBIN datasets all of whose

malware files are derived from the Malgenome datasets.

To select the main datasets to be used as the primary source, we performed some

preliminary experiments. From the results (shown in Chapter 4), DREBIN is chosen in

this research as the primary dataset. It is also an established dataset containing an

extensive collection of malicious APK, and it is still being used worldwide by other

researchers [23], [24], [26], [120], [128], [148]–[150]. Furthermore, DREBIN inherits most

of the malware gathered by the Malgenome Project, a pioneer Android malware project

and one whose datasets are very well known in the Android malware research

community.

The other datasets will be explained in Chapter 6 (Droidkin datasets, Droid Analytics

dataset and Ransomware datasets).

 Data Pre-Processing

In this section, we focused on investigating the DREBIN datasets. As mentioned above,

DREBIN provided our primary datasets in this research. The DREBIN samples were

gathered between August 2010 and October 2012. The datasets contain 123,453 benign

and 5,560 malware Android applications. In particular, the datasets hold 96,150

applications from the Google Play Store, 19,545 applications from various alternative

Chinese Markets, 2,810 applications from substitute Russian Markets, and 13,106

samples from other resources, such as Android websites, security blogs and malware

forums. Furthermore, the DREBIN contains all samples from the Android Malware

Genome Project [152]. The file provided by DREBIN also contains the SHA256 hashed

non-malware Android applications used in our experiments. We processed the DREBIN

raw datasets to identify if the files in the datasets present problems, such as being empty

(a file does not contain any information), duplicate files [150] and non-existing filenames

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

50

(same as in provided listing). The datasets can therefore be ‘cleaned’ to remove such

awkward instances.

The process to remove all unnecessary instances in the raw APK is done in a virtual

machine. All data extraction was conducted in an Oracle Virtual Machine (VM)

environment [153], and the version of the VM used in the experiments is VirtualBox 5.2.0

for Windows. The purpose of using VM hosts is to prevent the malware from spreading

to the local machine and the network. In this experiment, we extract the Manifest.xml

file and Dex code from the Android application data sets using APK Studio [154]. The

APK Studio software is a cross-platform IDE for reverse-engineering

(decompiling/editing) & recompiling of Android application binaries within a single

user interface. The software features include a friendly interface, built with a code editor

which supports syntax highlighting for Android SMALI (*. smali) code files. Figure 3.7

below is an example of one of the Manifest.xml file extracted using APK Studio. All

datasets have been extracted before proceeding to the next procedure as mentioned in

Section 3.2.3.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

51

Figure 3. 7 The Manifest.xml File Get from Decompile Process

 Features Extraction and Selection

After finishing the data pre-processing process, twenty new datasets were obtained. It

contains a combination of malicious malware applications and non-malware

applications details (data retrieved from Manifest.xml files). The new database holds

training and testing datasets based on the DREBIN experiments for detecting malware

families (a group of malware with the same ability). The twenty malware families we

use for evaluation, as mentioned in DREBIN [119], were the top Android malware

families in the datasets and are shown in Table 3.2. Table 3.3 summarises the

functionality of the five malware families with large samples in DREBIN. Other

malware families are described in Chapter 6.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

52

Table 3. 2 Malware Families Fraction [119]

Family Samples Family Samples
FakeInstaller 919 Adrd 85
DroidKungfu 662 DroidDream 80
Plankton 620 LinuxLotoor 64
Opfake 608 GoldDream 64
GingerMaster 334 MobileTx 69
BaseBridge 324 FakeRun 56
Iconosys 145 SendPay 54
Kmin 142 Gapussin 53
FakeDoc 127 Imlog 38
Geinimi 87 SMSreg 36

Table 3. 3 Android Malware Families Used for the Evaluation

Family (Year) Ability [155]

FakeInstaller (2010) FakeInstaller sends SMS messages to numbers with
the premium rate.

DroidKungfu (2011),
also known as
Kungfu and evolved
into three variants.

DroidKungfu decrypts its exploits, deletes specific
files on infected devices, runs specific apps on a phone
or tablet, collects system-specific information, and
avoids detection by the mobile anti-malware solutions
available at that time. The DroidKungfu3 variant is
capable of encrypting all malware information related
to native binaries and conceals their actions as valid
updates from Google.

Plankton or Plangton
was also known as
Tonclank (2011)

Plankton steals information and attempts to open a
backdoor on Android devices, then collects the device
ID and permissions and sends this information to a
remote server.

Opfake is a variant of
FakeInst (2011)

Opfake sends SMS messages to numbers with a
premium rate.

GingerMaster (2011) GingerMaster collects and uploads system-specific
information to a remote server.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

53

In the feature selection process, we evaluate and identify all of the suspicious

permissions (SPs) that we intend to use in supervised learning using VirusTotal [156].

We carried out some experiments with a small sample to identify which permissions

most often appear in Android malware packages, and then we identify the riskiest

Android permissions with the VirusTotal database. The details of this process are given

in Section 3.3.1. The listing of the SPs we used as features and the capability of the

permissions to harm the mobile phone are explained in Table 3.4.

 Training and Testing

The machine learning algorithm learns from the datasets provided. The training set is

used to build the detection/classification model in the learning phase. The testing set

serves to test the algorithm after the learning phase. The purpose of separating training

and testing data is to avoid overfitting.

 Offline Supervised Learning

Online (real-time) learning offers significant benefits, e.g. it allows the system to adapt

as its environment changes. It may have particular strengths when the form of detection

model is known, and continuous parameter tuning is the mechanism for adaptivity.

However, when the form of the classifier is not known and it is a highly intensive

computational task to discover it, then an off-line learning method is generally a good

choice. Discovering the form of a classifier is one of the strengths of genetic

programming but the approach can be computationally intensive. Accordingly we adopt

an offline learning approach which allows us to avail ourselves of whatever

computational resources are available offline to discover a good classifier [132].

GP can automatically solve problems without necessitating the user to be aware of or

require the structure or form associated with the solution in advance [147]. In GP the

population of computer programs evolve generation by generation. Our dataset has

‘marked’ examples (i.e. we know whether the examples are malicious or non-malicious)

and this allows us to readily adopt a supervised learning approach for our task. The

implementation of GP is described in Section 3.3.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

54

 Evolving Detection Rules

In this section, the implementation of an EC technique to develop a detection program

classifier for Android mobile phone is detailed.

 Feature Selection

Features are characteristics of the system that form the essential data that evolved

decision algorithms may use to reach their decisions. In this research, we focus on

Android permissions as features. As a feature set, this is very basic and easily accessible

from an Android app’s Manifest.xml file. Table 3.4 summarises the suspicious

permissions and what they enable in mobile phones. All our features are essentially

string type values. To identify all suspicious permissions used in this research, we

manually uploaded ninety random choosen malware samples from Drebin datasets to

VirusTotal [156] website and copy the results. This process has been made in Virtual

Machine as a precautionary step to avoid malware samples affecting machine used for

the experiments or spreading malware samples in the network. The results we get from

this process to identify the suspicious permissions. The analysis starts with listing all

suspicious permissions that VirusTotal highlights (at the time we checked it on

VirusTotal website) manually in a spreadsheet. Afterwards, we manually cross-checked

all permissions to eliminate redundant permissions. Lastly, we listed the nineteen most

frequent permissions in the ninety random malware samples from Drebin datasets.

Figure 3.8 below shows the result of uploading one sample to VirusTotal website. Figure

3.9 shows the permissions indicated as dangerous by VirusTotal.

Figure 3. 8 Result of One-Sample Uploaded to VirusTotal Website

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

55

Figure 3. 9 Permissions Detect as Suspicious by VirusTotal website.

Table 3. 4 The Features Explanation [157]

Suspicious permissions
(android. permission)

Actions

ACCESS_COARSE_LOCATION Allows applications to access approximate
location.

ACCESS_FINE_LOCATION Allows applications to access approximate
location.

INSTALL_SHORTCUT Allows applications to install a shortcut in
Launcher.

INTERNET Allows applications to open network sockets
and get full Internet access.

MODIFY_PHONE_STATE Allows applications to modify the telephony
state.

READ_CONTACT

Allows applications to read the user's
contacts data.

READ_HISTORY_BOOKMARKS Allows applications to read the Browser’s
history and bookmarks

WRITE_HISTORY_BOOKMARKS Allows applications to write the Browser’s
history and bookmarks

READ_SMS Allows applications to read SMS messages.
SEND_SMS Allows applications to send SMS messages.
WRITE_SMS Allows applications to write and edit SMS

messages.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

56

READ_PHONE_STATE Allows applications to have read-only access
to phone state.

VIBRATE Allows applications to have access to the
phone vibrator.

WRITE_APN_SETTINGS Allows applications to write the apn settings.
WRITE_EXTERNAL_STORAGE Allows applications to write the external

storage.
BLUETOOTH

Allows applications to connect to paired
Bluetooth devices.

DISABLE_KEYGUARD Allow applications to disable the keyguard if
it is not secure.

RECEIVE_BOOT_COMPLETED Allows applications to obtain the
ACTION_BOOT_COMPLETED that
broadcast after the system finishes booting.

SET_WALLPAPER Allows applications to set the wallpaper.
WAKE_LOCK Allows applications to use the processor to

avoid the phone from ‘sleeping’ mode or
dimming the phone screen.

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

57

 Application of Genetic Programming to Intrusion Detection in Mobile Phones

The experimental setup starts with data acquisition and proceeds to the data pre-

processing process to set up the training and testing datasets. GP needs as functions,

variables and a fitness function to be defined for the problem at hand. The list of

variables utilised in the experiments (adapted from Android permissions) and being

used as features is shown in Table 3.4. The functions used alongside the substantial GP

parameters presented in Table 3.5.

Population size is the total number of individuals in a population in every generation.

Generations identify after how many cycles the evolution process will stop. Crossover

probability indicates how likely individuals nominated for breeding might swap

elements. Reproduction probability demonstrates how likely this operator is to be applied

to the individual selected. The Tournament selection is a strategy for selecting individuals

for breeding. A set of tournament size individuals are selected, and their finesses

evaluated. The individual with the highest fitness is deemed the tournament winner and

selected for breeding. Tournament selection is a means of favouring fitter individuals in

a population. It thus implements a variant of survival of the fittest. The ECJ 23 [158]

toolkit is used for the GP implementation. Other parameters not itemised here are the

default parameters of the toolkit.

The parameter settings below were developed after some preliminary training and

testing with reduced datasets before we ran all experiments using the full dataset. The

preliminary results show there is no significant changing of detection rate by using either

loosely or strongly typed GP and by increasing the population size and the generations.

The best detection rate and fastest duration to complete the experiments are achieved by

using the parameters setting below:

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

58

Table 3. 5 GP Parameters Settings

Parameter Value

GP typed Loosely typed (does not enforce a specific type
between the nodes)

GP format Tree-based

Objective Find a program to detect Malware using the
information in the Android APK.

Non-Terminal

Operators
Contains, AND NOT and OR

Terminal Operators The feature sets in Table 3.4

Fitness Function

The Android APK dataset flagged as malicious
or non-malicious.

A weighted function of TP, FP, TN, FN were
TP=True positive count
TN=True negative count
FP=False positive count
FN=False negative count

See below for details.

Standardised

Fitness
Same as raw fitness

Parameters

Population Size = 1024
Termination when Generations = 50
Crossover Probability. = 0.9
Reproduction Probability = 0.1
Tournament Size = 7

Termination
Once an individual at fitness much better than

0.1 discover

CHAPTER 3 : EVOLUTION OF MALWARE CLASSIFICATION AND DETECTION IN MOBILE PHONES

59

The fitness function is a critical component of every evolutionary computational search.

The search aims to find individual candidate solutions that maximise the fitness

function. For classification and detection, there are several criteria we would wish to

maximise, most notably the fraction of malware correctly classified and the fraction of

non-malware correctly classified. There are trade-offs to be prepared amongst the two,

and it is essentially a business decision as to what those trade-offs should be. A typical

way of searching for candidate solutions in this trade-off space is to choose a fitness

function that weights the two properties. However, it is not clear what the individual

properties will be produced when particular weights are used. Accordingly, our

searches will experiment with a variety of weights. The fitness function family used in

the evaluation is given below:

 Fitness = 1-α*(TP/(TP+FN))-β*(TN/ (TN+FP)) (1)

α - (Range 1 – 0.05)

β - (Range 1 – 0.05)

TP (true positive) is the number of malicious applications correctly identified as

malware. FN (false negative) is the number of malicious applications incorrectly

identified as non-malware. TN (true negative) is the number of non-malicious

applications correctly identified. FP (false positive) is the number of non-malicious

applications incorrectly identified as malware. α and β are parameters used to give

weight to the fitness either to emphasise the True Positive Rate or True Negative Rate.

In practice, and to provide a means of normalisation, we impose the constraint α + β = 1

in the experiments in this thesis.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

60

CHAPTER 4

 Performance Evaluation of Genetic
Programming on Mobile Phones Intrusion

Detection System

This chapter presents the results of using GP to synthesise malware detection and classification

algorithms for Android mobile phone datasets. The motivation and contribution of the study are

given in Section 4.1. Then, parameter settings are determined using preliminary experiments

using a sample of datasets, as described in Section 4.2. The performance of programs evolved

using GP is evaluated and discussed in Section 4.3. The performance is also compared with the

results of previous research (Drebin) in Section 4.44. Section 4.5 examines the effects of different

weights for elements of fitness function elements.

 Introduction

 Motivation

From Table 2.3 in Chapter 2, we can conclude that most of the researchers have been

interested in investigating the performance of SVM to identify malicious and non-

malicious applications in Android mobile phones datasets. There seems little reason to

believe a priori that SVMs are optimal for such tasks, and there is plenty of scopes to

apply other supervised machine learning approaches. GP has shown encouraging

results when evolving intrusion detection programs for MANETs [83], and in [128] GP

was shown capable of evolving both malware and anti-malware. Conceptually, GP also

works in a very different way to SVMs. It is difficult to predict how the performance of

the two approaches will compare. In this chapter, we will investigate the performance

of GP evolved programs in detecting malware and non-malware applications in

Android datasets.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

61

In any search-based approach to solving a problem, a fitness function is used to guide

the search (or, equivalently, a cost function). The analyst provides the search system with

the function to be maximized. Where there are competing finesses, because we want

performance on multiple axes, the fitness function often comprises a weighted sum of

individual fitness components. There is generally little in the way of the convincing

rationale for the specific choice of weights. In our case we wish to minimize false positive

(FP) identifications, i.e. incorrectly identifying normal app as malicious, but also

minimize the number of false-negative identifications, i.e. incorrectly identifying a

malicious app as normal.

However, for malware detection, we are actually seeking to identify many different

types of malware, not just one. The choice of weightings used may radically alter the

performance of the search process when we attempt to evolve a detector for any one type

of malware. There seems to be no research indicating how optimal choices of weightings

vary across specific target malware types. It is entirely possible that a “one-size fits all”

approach to choosing weights will not prove effective. If so, this is important

information for those seeking to use EC approaches for malware detection. We choose

to investigate this aspect.

 Contributions

The contributions in this chapter are:

• the production of empirical evidence to demonstrate that GP approaches are an

effective method to identify malware and non-malware applications in Android

mobile applications datasets.

• the production of empirical evidence to show that the efficacy of weight choices

for GP’s fitness function varies according to malware type targeted. Loosely, we

demonstrate clearly what works best for one type of target malware does not

work best for others. Thus, any specific choice of weights is limited in what it can

achieve over the whole set of targeted malware types.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

62

 Experimental Investigation

In all experiments reported here, the datasets were obtained from the public access

Android community website; all datasets can be used with an appropriate citation by

the researchers. All experiments conducted in this chapter use the Drebin dataset as the

primary source. In Chapter 3, we explained the procedures used to extract Drebin

datasets and the data elements we need for our experiments.

As mentioned in Chapter 3, we use the Evolutionary Computation in Java (ECJ) [158]

toolkit for our experiments. ECJ is a research EC system written in Java. It is highly

flexible and configurable and contains basic implementations of many EAs: GP is just

one.

Since Android permissions are recorded as strings within our database, we have

developed a GP approach that manipulates Strings and incorporates logical connectives,

allowing evolved expressions over the strings to form our malware detection predicates.

 Preliminary Analysis

For the preliminary experiments, the method was discussed in Chapter 3. The purpose

of preliminary experiments is to test the configurations and select the best parameters

and features to use for our further experiments—the GP parameter settings used in this

chapter and throughout chapter 6 are those given in Table 3.5.

 Datasets

The training and testing samples are derived from the Drebin datasets, and we only used

the small size of samples. The malware families were randomly selected to evaluate the

parameter settings. Five hundred two non-malware samples and four hundred sixty-

three malware samples were selected randomly from the Drebin datasets. The reason of

random selection for both samples and malware families because it is a precise scientific

procedure for the individual unit in a population will get an equal chance to be selected

for inclusion in a sample [159]. The details of the malware sample dataset used in this

experiment are shown in Table 4.1.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

63

Table 4. 1 Malware Families Sample [44]

Family Samples Family Samples Family Samples
Adrd 66 FakeTimer 12 Nandrobox 13
Basebridge 5 Geinimi 65 Nisev 5
DroidDream 5 GinMaster 25 Opfake 25
DroidKungfu 5 Iconosys 25 Plankton 65
FakeDoc 5 Imlog 25 Smforw 2
FakeInstaller 10 Kmin 25 Spitmo 11
FakeRun 63 LinuxLotoor 6

 Parameters

Population size and the number of generations allowed in a run are known to be important

parameters for GP. In these experiments, we test these to determine which combination

will produce the best results for detection. The other parameters did not change, and

we used the standard configuration supplied by ECJ. Each combination of population

sizes (1024, 2048, 3072, 4096) and generation (50, 100, 150, 200) was investigated with 20

runs for each experiment, as shown in Table 4.2.

Table 4. 2 Testing Population Size and Generation

Population sizes Generations Results

1024 50,100,150,200 There is no significant
change to the results.

2048 50,100,150,200 There is no significant
change to the results.

3072 50,100,150,200 There is no significant
change to the results.

4096 50,100,150,200 There is no significant
change to the results.

When running the experiments with vast datasets, we need to consider the time taken

by the program to execute, as increased population size and the generations will also

increase the execution time. From the results, we can conclude that using 1024 as

population size and 50 as the generation in the experiment is a plausible approach; there is

little reason to increase or decrease these parameter values. We also take into account

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

64

the opinion in [160], where Langdon indicates most of Koza’s original GP work used 50

as the generation for termination criterion.

 Features Selection

In Chapter 3, nineteen features were discussed. For preliminary experiments, we started

using nineteen features and gradually reduced the number of features one by one based

on the lowest detection rate per family. In the end, fifteen features have been selected to

be used in the next experiments. The purpose of this process was to identify the features

that give the best performance malware detection with a high detection rate and low

false-positive rate for the GP programs evolved. The fifteen features that have been

selected are ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION,

INSTALL_SHORTCUT, INTERNET, MODIFY_PHONE_STATE, READ_CONTACT,

READ_HISTORY_BOOKMARKS, WRITE_HISTORY_BOOKMARKS, READ_SMS,

SEND_SMS, WRITE_SMS, READ_PHONE_STATE, VIBRATE,

WRITE_APN_SETTINGS, and WRITE_EXTERNAL_STORAGE. The actions that can be

taken by the permissions are discussed in Chapter 3.

 Results and Discussion

Chapter 3 describes the procedure for the preliminary experiments. Our experiments

target a single malware family dataset (training and testing datasets) per run. There are

twenty malware families, as indicated in the table below, involved in preliminary

experiments. The features sets are also reduced one by one with five features eliminated

at the end of experiments. The results (the best individual of the ten runs) are presented

below in Table 4.3 using Population size = 1024, generation = 50, and fourteen features. The

fitness function is described in Section 3.3.2 and is used 0.5 for both α + β (Equation 1).

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

65

Table 4. 3 Results for Preliminary Experiments

Malware Family TPR TNR FPR FNR Accuracy

Adrd 74.24% 95.62% 4.38% 25.76% 93.13%

Basebridge 60.0% 95.62% 4.38% 40.00% 95.27%

DroidDream 80.00% 59.56% 40.44% 20.00% 59.76%

DroidKungfu 100.00% 59.56% 40.44% 0.00% 59.96%

ExploitLinuxLotoor 83.33% 59.56% 40.44% 16.67% 59.84%

FakeDoc 100.00% 95.62% 4.38% 0.00% 95.66%

FakeInstaller 80.00% 95.62% 4.38% 20.00% 95.31%

FakeRun 100.00% 99.60% 0.40% 0.00% 99.64%

FakeTimer 100.00% 51.20% 48.80% 0.00% 52.33%

Geinimi 98.46% 99.60% 0.40% 1.54% 99.47%

GinMaster 100.00% 65.34% 34.66% 0.00% 69.31%

Iconosys 100.00% 95.62% 4.38% 0.00% 95.83%

Imlog 100.00% 65.34% 34.66% 0.00% 66.98%

Kmin 100.00% 95.62% 4.38% 0.00% 95.83%

Nandrobox 100.00% 95.62% 4.38% 0.00% 95.73%

Nisev 20.00% 99.60% 0.40% 80.00% 98.82%

Opfake 100.00% 95.62% 4.38% 0.00% 95.83%

Plankton 89.23% 99.60% 0.40% 10.77% 98.41%

Smforw 100.00% 95.62% 4.38% 0.00% 95.63%

Spitmo 100.00% 95.62% 4.38% 0.00% 95.71%

Twelve of the twenty malware families have 100% True Positives and 0% False negatives

in the testing phase (preliminary experiments). The worst detection of malware occurs

with the Nisev malware family; unbalanced datasets might cause a detection rate of only

20% as only five samples (Drebin provides only five samples in their datasets) were used

in this experiment. Probably, the GP did not learn properly using the samples. However,

as we can see the in Nisev datasets, the FPR is the lowest with only two samples detect

as non-malware samples. Six malware families do not get above 90% for TNR, which

also affects accuracy. Regarding the results shown above, we are still satisfied with the

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

66

GP performance as Geinimi and FakeRun average detection rate of more than 99%,

which is the best detection rate.

 Conclusion

The purpose of preliminary experiments is to identify the parameters and the features

that will be used to evaluate the performance of the GP to evolve the best programs to

distinguish malware from non-malware samples.

In the end, the values of generation and population size do not significantly affect the

detection and false alarm rates. As the number of features was reduced from nineteen to

fourteen, we realised the execution time to complete the full cycle of evolved GP

program had also been reduced, and the performance had been improved. The five

permissions excluded from the features are permissions that do not contribute

meaningfully to the detection rate of evolved programs. We now use the remaining

permissions in the experiments described below in section 4.2.

 The Performance Evaluation of Genetic Programming

GP was used to evolve classifiers – programs which, when presented with an

appropriate input data set indicate whether each of its constituent apps is a malware or

normal APK. We have source data sets for non-malware and malware examples from

datasets used by the community. Particularly, we used Drebin datasets [2]. Table 4.4

indicates the number of examples of non-malware samples used. The numbers of

malware samples used are those given in Table 3.2.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

67

Table 4. 4 Non-malware Samples based on Drebin Datasets

Family Training Testing Family Training Testing

FakeInstaller 40,467 42,787 Adrd 42,771 42,742

DroidKungfu 40,365 42,127 DroidDream 40,305 42,945

Plankton 40,570 42,399 LinuxLotoor 40,043 42,729

Opfake 40,552 42,414 GoldDream 40,067 42,707

GingerMaster 40,201 42,419 MobileTx 40,028 42,734

BaseBridge 42,752 42,667 FakeRun 40,092 42,681

Iconosys 40,081 42,649 SendPay 40,294 42,975

Kmin 40,126 42,668 Gapussin 40,038 42,724

FakeDoc 40,078 42,645 Imlog 40,276 42,691

Geinimi 40,056 42,924 SMSreg 40,043 42,714

Each family is targeted in turn (i.e., we seek to evolve a detector for that specific family).

We carry out twenty runs for each target malware family with the parameter settings in

Table 3.5, and the fitness function is as in equation 1 in Chapter 3. Subsequently, we

calculate the average to distinguish any bias that might occur during the experiments is

running.

For each evolved program (detector), we calculate the accuracy (ACC), false-positive

rate (FPR), and the false-negative rate (FNR). The formula for each of these measures is

given below:

ACC = (TP/TN)/ (TP+FP+FN+TN) x 100 (2)

FPR = ((FP/ (FP +TN)) x 100 (3)

FNR = (FN / (FN + TP)) x 100 (4)

ACC is the proportion of correct predictions for all detection.

TP rate is the proportion of correct malware detected.

TN rate is the proportion of correct for non-malware detected.

FP rate is the proportion of incorrect predictions for non-malware detected.

FN rate is the proportion of incorrect predictions for malware detected.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

68

For the presentational purpose, it is convenient to denote each malware family by a

single letter identifier. Table 4.5 gives the identifiers for each malware family of Figure

4.1.

Table 4. 5 Malware Families Reference

Family Reference Family Reference Family Reference
FakeInstaller A Kmin H MobileTx O
DroidKungfu B FakeDoc I FakeRun P
Plankton C Geinimi J SendPay Q
Opfake D Adrd K Gapussin R
GinMaster E DroidDream L Imlog S
Basebridge F LinuxLotoor M SMSreg T
Iconosys G GoldDream N

Figure 4. 1 The Performance of GP Figure 4. 2 Drebin Detection Rate [119]

In these experiments, the fitness function uses a value of 0.5 for both α and β (refer to

equation 1 in Chapter 3 for calculating the fitness), essentially viewing false positives

and false negatives as equally important. The detection performance using GP for each

family is shown in Figure 4.1 for the twenty malware families. The figure shows that GP

can detect all families with an average accuracy of 93% and 7% average false positive

rate. Correspondingly, almost all families have a detection rate of above 90%, and three

families (Basebridge (F), Kmin (H), and FakeRun (P)) have a detection rate above 99%.

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
ra

te
 (A

cc
ur

ac
y)

Malware Families

 Average detection rate

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

69

However, two families SendPay (Q) and Gappusin (R) give rise to the accuracy of only

64%. Figure 4.2 also shows that the detection rate for family R is only around 44% (but

this is better than Drebin’s rate). The results are summarised in Table 4.6:

Table 4. 6 SendPay and Gappusin Results Details

Family TPR TNR FPR FNR ACC

SendPay 100% 64% 36% 0% 64%

Gappusin 100% 64% 36% 0% 64%

Both families achieve 100% TPR, but their FPR is very high at 36%. Although the TNR

for both families is considerably worse at 64%, this happens due to the unbalanced data

between both SendPay and Gappusin (refer to Table 3.2 in Chapter 3) and non-malware

samples as shown in Table 4.4. In this experiment, we select only five samples for

SendPay and Gappusin randomly for the training datasets and the balance of remain

samples for both (SendPay and Gappusin) are used as testing dataset. Five samples for

training datasets might not be enough for the GP to learn and evolve the best program

to identify the malware.

 Results Comparison

The results obtained in Section 4.2 and those from Drebin [119] are now compared. The

evolved GP program detects F almost perfectly, which is better than Drebin, but Drebin

detects O nearly perfectly. For R, our GP can detect 65% of the malware, which is better

than the Drebin detection at 45%. Nevertheless, for Q Drebin gives better detection than

our GP approach. The results for other families for both our evolved GP and Drebin

reveal little difference. The average detection rate for Drebin is the same as our GP

average detection rate at 93%. However, Drebin seems to detect almost perfectly for five

families such A, D, H, P and Q. Though, and our detection is better because eighteen out

of twenty families got 93% and above whilst with Drebin three families come below the

average detection rate.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

70

Our approach uses only permission as features and so may be regarded as a deliberately

minimalist approach. The results above seem promising, but our approach may also be

too limiting because some APK does not include permissions and also the combination

of the permissions sometimes will generate false alarms.

It is well known in the EC community that the fitness function can matter a great deal.

The above results were obtained, assuming an equal weighting for FPs and FNs. Our

equal weighting of competing factors in the fitness/cost function may have been critical.

In the next section, we investigate what are the optimal choices of a fitness function for

the detection of each malware family and determine whether there is any commonality

across families.

 The Evaluation of the Genetic Programming Improvement Using Optimal

Parameters

This section aims to evaluate the performance of the weight parameters to get the best

performance from the evolved GP programs. In section 4.2, the work used a balanced

fitness function (with α and β both having values of 0.5). In this section, we explore a

variety of weights for α and β in the fitness function. Approximations to the optimal

parameters for each α and β in the fitness function are identified at first. Then fair

comparisons of these procedures under their optimal parameter settings are made to

identify those that give rise to the best detection rates. All parameter values of the

approach are as indicated in Chapter 3.

We explore the values of α and β in the range of 0.05 to 1.0 in steps of 0.05. We also

impose a normalisation constraint that α + β = 1 (refer to equation (1) in Chapter 3).

From first principles, we would expect differences in results to emerge from different

choices. Specific choices for these parameters define the relative weights given to the two

components. These two components are generally in opposition to each other, and so

improving the performance of one aspect will often degrade performance in the other.

There will come the point where simultaneously improving both becomes impossible.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

71

As we range over 0.05 to 0.95, we would expect FPs and FNs rates to cross at some point.

However, the choice of parameters that gives the most attractive trade-offs is not known.

Our experiments should provide insight into this aspect also, and we can check such

crossing points against measurements of the balance of the malicious versus non-

malicious sample sizes.

All experiments were run twenty times. The accuracy average is calculated, and the

graphs are illustrated below to summarise the results. The results indicate a mix of

plausible and poor results. Below the poorest and the best performance results are

shown in Figure 4.3 and Figure 4.4. The summary of other results is given in Appendix

1. As deduction of outcomes in Appendix 1, the results are shown when the fitness

function weight change either on α or β the results also change significantly.

Figure 4. 3 The poorest GP performance Figure 4. 4 The best GP performance

In Figure 4.3, the results show a low detection rate for most of the malware families; the

results are even worse than the result discussed in Section 4.3. Besides, the fitness

function used for experiments, as shown in Figure 4.3 is 0.95 (α) and 0.05 (β). The

conclusion can be made when α is at peak and β at the lowest the detection rate decreases

for five families (B, E, L, M and N). Nevertheless, there is no significant change for other

families, even for family Q and R, which have the lowest detection rate in Section 4.3. It

is interesting to figure out how the modification to fitness function calculation affects the

detection rate performance.

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
ra

te
 (

A
cc

)

Malware Families

Detection per malware family
(Weight : 0.95 (α),0.05 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
ra

te
 (

A
cc

)

Malware Families

Detection per malware family
(Weight : 0.05 (α),0.95 (β))

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

72

The best performance of evolved GP programs is shown in Figure 4.4, where the

detection rate is almost perfect for all malware families. The graph also shows better

results than those presented in [2] (where the Drebin Dataset was introduced). The

detection decreases drastically from the results of the first experiment using balance 0.5

weight for α and β in the fitness function. In these experiments, β is set as 0.95, and α is

fixed to 0.05 in the fitness function. This fitness function shown the best result for all

malware families as shown in Figure 4.4.

The variety of results for the different combination of α and β are shown in Appendix 1.

All results in these experiments prove the idea by using different weight in α and β in

fitness function would improve or deteriorate the results. To investigate further of the

results obtained, Table 4.7 is the matrix of the Pareto front for FPR and FNR for all range

of α and β parameter used in the experiments. Table 4.7 shows the indicated values of

β in the fitness function, whether the programs evolved using that fitness, function

exhibited Pareto optimal performance.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

73

In the table is the matrix of each parameters weight has been used in the calculation of the fitness function, and the details of each item are described

subsequently.

Table 4. 7 Pareto Optimal (FPR and FNR) Achievement by Used Beta (β) Value.
Weights 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

Adrd × × × × × × × × ×

Basebridge × × × × × × × × × × × × × × × × × × ×

DroidDream ×

DroidKungfu × ×

LinuxLotoor × × × ×

FakeDoc × × × × × × × × × × × × × × × × × × ×

FakeInstaller × × × × × × × × × × × × × × × × ×

FakeRun × × × × × × × × × × × × × × × × × × ×

Gapussin × × × × × × × × × × ×

Geinimi × × × × × × × × × × × × ×

GinMaster × × × × × × ×

GoldDream × × × × × × × × × × × × ×

Iconosys × × × × × × × × × × × × × × × × × ×

Imlog × × × × × × × × × × × × × × × × × ×

Kmin × × × × × × × × × × × × × × × × × × ×

MobileTx × × × × × × × × × × × × × × × × × ×

Opfake × × × × × × × × × × × × × × × × × ×

Plankton × × × × × × × × × × × × × × × × × × ×

SendPay × × × × × × × × × × × × × ×

SMSreg × × × × × × × × × × × × × × × × × ×

Families

 X – The β weight that give Pareto optimal for Malware Families.

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

74

Table 4.7 above summarises the best performance of FPR and FNR; an “x” denotes that

a program evolved using the corresponding β weight (to calculate the fitness) as a

parameter achieved a Pareto optimal performance. As explained before, α will vary as β

is changing. The results showed some of the families get the Pareto optimal results for

FPR and FNR in each experiment using different weight β, and some of the families only

get Pareto results for FPR and FNR when specific values are given to the weight β. The

details of the eight malware families show impressive results clarified below, and other

results are given in Appendix 2.

Figure 4. 5 Adrd Pareto Frontier Figure 4. 6 Adrd FNR and FPR

The Pareto front for Adrd is shown in Figure 4.5, the range of β (weight for fitness) is

grouping into six, and it indicates there is static FPR and FNR at 1% and 40%

subsequently when 0.05 is given as the weight for β. The best Pareto frontier lies down

between 0.10 - 0.25 and 0.55 – 0.35 weight for β. Figure 4.6 shows how FPR and FNR vary

as with β. Interestingly the FPR also at the lowest but the FNR at the highest. The FNR

drastically decrease from 40% to 15% as the β increase from 0.05 to 0.10, but afterwards,

the FNR gradually increase as the β also rise. Figure 4.7, Figure 4.9, Figure 4.11, Figure

4.13, Figure 4.15, Figure 4.17, and Figure 4.19 can be summarised as both FPR and FNR

are changing to be better or worse.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

-10.00% 0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

FP
R

FNR

Pareto Frontier for Adrd (Weight = 0.95 - 0.05)

0.95- 0.60

0.55-0.35

0.3

0.20-0.25

0.10-0.15

0.05

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0.05 0.25 0.45 0.65 0.85

Ra
te

β

False Negative Rate and False Positive Rate for
Adrd

FPR FNR

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

75

A conclusion can be drawn from Figure 4.8, Figure 4.10, Figure 4.12, Figure 4.14, Figure

4.16, Figure 4.18, and Figure 4.20. We can see that FPR and FNR meet at one point, which

becomes a turning point either the results will be worse or better as the weight for the β

increase.

Figure 4. 7 DroidDream Pareto Frontier Figure 4. 8 DroidDream FNR and FPR

Figure 4. 9 DroidKungfu Pareto Frontier Figure 4. 10 DroidKungfu FNR and FPR

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

-20.00% 0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

FP
R

FNR

Pareto Frontier for DroidDream
(Weight = 0.05 - 0.95)

0.05

0.10-0.55

0.60-0.75

0.80-0.95

0%

10%

20%

30%

40%

50%

60%

0.05 0.25 0.45 0.65 0.85

Ra
te

β

False Negative Rate and False Positive Rate for
DroidDream

FPR FNR

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0.00% 20.00% 40.00% 60.00% 80.00%

FP
R

FNR

Pareto Frontier for DroidKungfu
(Weight = 0.05 - 0.95)

0.05-0.10

0.15-0.20

0.25

0.30&0.65-0.75

0.35,0.50&0.60

0.40-0.45&0.55

0.8

0.85-0.95

0%

10%

20%

30%

40%

50%

60%

70%

0.05 0.25 0.45 0.65 0.85

Ra
te

β

False Negative Rate and False Positive Rate for
DroidKungfu

FPR FNR

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

76

Figure 4. 11 LinuxLotoor Pareto Frontier Figure 4. 12 LinuxLotoor FNR and FPR

Figure 4. 13 Gapussin Pareto Frontier Figure 4. 14 Gapussin FNR and FPR

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

-20.00% 0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

FP
R

FNR

Pareto Frontier for LinuxLotoor
(Weight = 0.05 - 0.95)

0.05

0.10-0.25&0.35-0.50

0.30&0.55

0.6

0.65-0.95

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.05 0.25 0.45 0.65 0.85

Ra
te

β

False Negative Rate and False Positive Rate for
LinuxLotoor

FPR FNR

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

-10.00% 10.00% 30.00% 50.00%

FN
R

FPR

Pareto Frontier for Gapussin
(Weight = 0.05 - 0.95)

0.05-0.10
0.15
0.20-0.30
0.35-0.40
0.45-0.95

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.25 0.45 0.65 0.85

Ra
te

β

False Negative Rate and False Positive Rate for
Gapussin

FPR FNR

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

77

Figure 4. 15 GoldDream Pareto Frontier Figure 4. 16 GoldDream FNR and FPR

Figure 4. 17 Iconosys Pareto Frontier Figure 4. 18 Iconosys FNR and FPR

 Figure 4. 19 SendPay Pareto Frontier Figure 4. 20 SendPay FNR and FPR

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

22.00%

24.00%

0.00% 10.00% 20.00% 30.00% 40.00%

FN
R

FPR

Pareto Frontier for GoldDream
(Weight = 0.05 - 0.95)

0.70-0.95
0.65
0.15-0.60
0.05-0.10

-10%

0%

10%

20%

30%

40%

0.05 0.25 0.45 0.65 0.85

Ra
te

β

False Negative Rate and False Positive Rate for
GoldDream

FPR FNR

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

FN
R

FPR

Pareto Frontier for Iconosys
(Weight = 0.05 - 0.95)

0.80-0.95

0.10-0.75

0.05

-10%

0%

10%

20%

30%

40%

50%

0.05 0.25 0.45 0.65 0.85

Ra
te

β

False Negative Rate and False Positive Rate for
Iconosys

FPR FNR

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

0.00% 10.00% 20.00% 30.00% 40.00%

FN
R

FPR

Pareto Frontier for SendPay (Weight = 0.05 - 0.95)

0.05-0.20

0.25

0.30-0.95

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.25 0.45 0.65 0.85

R
at

e

β

False Negative Rate and False Positive Rate for
SendPay

FPR FNR

CHAPTER 4 : PERFORMANCE EVALUATION OF GENETIC PROGRAMMING IN MOBILE PHONES

78

 Conclusion

When we use 0.5 as α and β values to calculate the fitness function, the best-evolved

detectors achieved 93% accuracy. Our experimentation over the range 0.05-0.95 for α and

β revealed that GP programs able to achieve a 98.8% average detection rate accuracy

with 0.89% false-positive rate. As a conclusion (refer to Appendix 1) each time β value is

increased, the detection rate accuracy declined. Nevertheless, when α increases, the

detection accuracy improves. Even a slight change of the fitness function (i.e. via

different weightings) can affect the detection rate.

In this chapter, an EC technique is presented to distinguish Android mobile attacks from

the normal samples of APK. The evaluation results support the main hypothesis of this

research - that GP will be able to evolve programs to distinguish malicious applications

from non-malicious applications in mobile phone datasets. The results of the detection

rate improve at the optimal detection as we used different weight for the fitness function

calculation at α = 0.05 and β = 0.95. The experiments result also indicate a slight change

of α and β in fitness function could give impact to the performance of the evolved GP

program. Finally, we figure out the best weight for the fitness function to get optimal

performances of GP to detect and classify the Android malware and its family.

This research was the first IDS for Android APK using GP for detection synthesis. The

evolved GP program used only permissions collected from Manifest.xml file. A GP

approach has been shown capable of evolving programs that can distinguish malware

from non-malware Android applications.

MOEA has been shown to be capable of finding high performing solutions that make

trade-offs between detector performance, execution time and power consumption.

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

79

CHAPTER 5

Improving Resource Efficiency

In this chapter, we consider how functional performance (detection rate) and non-functional

properties (resource consumption and execution time) can be traded off using MOEC. We

motivate our addressing this topic and summarise contributions. The multi-objective EC trade-

offs are explained in Section 5.2. The power consumption of GP evolved programs is analysed in

Section 5.3 along with the different trade-offs that can be made between classification accuracy,

power consumption, and execution time of the evolved programs. Finally, the results are

evaluated and discussed in Section 5.3.2.

 Introduction

 Motivation

According to KhorasaniZadeh et al., the ultimate challenge for malfeasance detectors is

to decrease the resources needed to perform their function [132]. Mobile phones are well-

known for being ‘resource-hungry’ devices [9], [115], [161]–[163]. The integration of

multiple hardware parts accessible in modern smartphones increases their usability but

decreases their battery lifespan to a couple of hours of functioning without recharge

[137]. Energy-efficiency is the crucial constraint in mobile application design nowadays

[163], [164] and app developers may not be entirely aware of how power-hungry their

apps are [165].

Power usage can be measured or estimated in a variety of ways such as using dedicated

hardware, cycle-accurate simulators and OS-level instrumentation, through to carefully

calibrated software-based energy profilers that offer coarse-grained energy predictions

to measure the power consumption of the device [166]. In [167], it was noted that power

consumption varies across different mobile phone models.

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

80

The mobile phones research community is starting to investigate improving energy

consumption in Android mobile phone applications [162], [164], [166], [168]–[171]. The

Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for minimising

energy consumption whilst maintaining desirable colour palette properties of a GUI

screen [164]. Android developers can evaluate their applications using vLens to estimate

the source code line-level energy consumption [169], or eLens to calculate the energy

consumption per-instruction for the whole application [166].

Researchers have examined the trade-offs between power consumption and detection

rate [172]–[174] in mobile phones. The energy consumption and performance of mobile

antivirus (AV) software (Sophos, AVG, NQ, Avast, Dr Web and Norton) in Android has

been investigated [172] at a low-level, concluding that AV software is often inefficient.

Researchers have also investigated the security versus energy trade-offs along two axes:

attack surface and malware scanning frequency, for both code and data-based rootkit

detectors [19]. (We note in passing that details of the power consumption waveform

itself can be used to detect malware, as proposed in [173]. Such use is interesting for IDS,

but it is not the focus of the research reported here.).

The faster a detection is made, the less is the damage to mobile phones. In addition, a

quicker detection program means that resources are available for other uses. Therefore,

the execution time of a check is also of some importance. Therefore, in this chapter, we

propose to investigate the use of the MOEA to explore the potential trade-offs between

functional and non-functional performance measures.

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

81

 Contribution

The contributions in this chapter are:

• Establishment of empirical evidence to demonstrate how optimisation can be

used to explore trade-offs between functional properties (detection rate) and

non-functional properties such as execution time and power consumption.

• Establishment of empirical evidence of how SPEA2 can give the best trade-offs

for three objectives (detection rate, power consumption and execution time).

 Multi-Objective Evolutionary Computation

The majority of real-world engineering problems have multiple objectives [141], [175]. A

multi-objective optimisation finds values for multiple objective functions (typically in

conflict with each other) acceptable to a designer (decision maker) [176], [177].

Optimisation problems with conflicting objectives are often addressed by aggregating

the objectives into a single scalar function and solving the resulting single-objective

optimisation problem [178]. Optimising a weighted sum of the individual objectives is

commonly used. However, designers may have reservations about such an approach,

e.g., the specific values of weights may be critical, and choices are often made in a

somewhat ad hoc manner. However, there are principled alternatives. Multi-objective

optimisation (MOO) (also known as multiperformance, multicriteria, vector, or Pareto

optimisation) is defined as finding a vector of decision variables that satisfy constraints

and optimises a vector function whose elements represent the objective functions [176],

[179]. In a multi-objective search, either one solution ‘dominates’ another or neither

dominates [178]. In contrast to single-objective optimisation, a solution to this problem

is not a single point, but a group of points known as the Pareto-optimal set or ‘front’

[180].

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

82

In Figure 5.1 below, we can see a set of points labelled with ‘1’ that make up the primary

Pareto front. For each point labelled ‘1’, there is no other point that is simultaneously

better (higher performing) on criteria f1 and f2, where we seek to minimise f1 and f2. If

‘dominance’ means better on all (here both) criteria, none of these points is dominated.

Figure 5. 1 Example of Multi-Objective Ranking using Pareto-optimal Solutions [180]

The multi-objective optimisation problem (MOOP) solving in EC has focused on two

approaches: weight-based and Pareto-based [181]. The weight-based technique uses a

single fitness function derived as a weighted sum of single property fitness functions.

However, this approach cannot find Pareto-optimal solutions in the non-convex portion

of the Pareto-optimal front [175], [181]. The Pareto-based technique offers a set of

solutions acknowledged as Pareto-optimal solutions. In this thesis, we use the Strength

Pareto Evolutionary Algorithm 2 (SPEA2) MOEA algorithm to find such sets of

solutions.

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

83

 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is a successor to Strength Pareto

Evolutionary Algorithm [181]–[183] (SPEA) introduced by Zitzler et al. in 2001 [184]. The

steps of the SPEA2 algorithm are shown in Figure 5.2.

Figure 5. 2 The SPEA2 Algorithm [184]

The SPEA2 archive size is fixed (when non-dominated individuals are less than

predefined archive size it will be filled with dominated individuals). Only participants

of the archive participate in the mating selection process. In SPEA2 the fitness

assignment is different from SPEA (defined as a fine-grained fitness assignment strategy

which integrates density D (i) and raw fitness R (i)) to avoid the individuals dominated

by the same archive members that have identical fitness value.

The equation 5.3 is the fitness of an individual i in SPEA2. The equation 5.3 is defined by

two components: the raw fitness R(i) (equation 5.1) and the density D(i) (equation 5.2).

The raw fitness (R) of an individual i is determined by the strengths (S) of its dominators

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

84

in both the archive and the population. The fitness is aimed to be minimised. The density

(D) is calculated by the adaption from the k-th nearest neighbour element 𝑘𝑘 = �𝑁𝑁 +𝑁𝑁�

and distance as (𝜎𝜎𝑖𝑖𝑘𝑘) to the individual.

𝑅𝑅(𝑖𝑖) = � 𝑆𝑆(j)

𝑗𝑗∈𝑃𝑃𝑡𝑡+𝑃𝑃𝑡𝑡,𝚥𝚥>𝚤𝚤��������

𝐷𝐷 (𝑖𝑖) = 1
𝜎𝜎𝑖𝑖
𝑘𝑘+2

 (5.2)

The individual fitness F (i):

𝐹𝐹 (𝑖𝑖) = 𝑅𝑅 (𝑖𝑖) + 𝐷𝐷 (𝑖𝑖) (5.3)

SPEA2 is known to reduce bloat in GP evolved programs [34] and has out-performed

NSGAII in high-dimensional objective problems [35]. We are motivated to investigate

SPEA2 as it is successfully used in the research of [23], [176] where three objectives are

adopted: detection rate, false-positive rate, and energy consumption of the program. In

our study, we are also using three objectives, malware detection rate and two non-

functional properties (power consumption and execution time of the evolved program).

 Implementation

In this section, we implement the SPEA2, one of the established multi-objective

evolutionary algorithms (MOEAs) used by researchers [23], [136], [185], [186]. We are

evaluating the optimising of non-functional and functional properties of the GP program

using SPEA2. In the previous chapter 4, programs evolved using ECJ are evaluated. An

implementation of SPEA2, which is an extension to ECJ [158], is used in this research.

The power consumption and execution time of the GP programs evolved to detect

twenty malware families (each malware family was targeted individually) are analysed

in this section.

 (5.1)

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

85

In our implementation framework, we integrate jRAPL [187]with our evolved programs.

The jRAPL tool is capable of calculating the power consumption directly in the evolved

GP program. jRAPL is a framework for profiling a Java program executing on CPUs with

Running Average Power Limit (RAPL) support with the capability to control, monitor,

and receive notification of energy and power consumption from different hardware

stages, such as DRAM and CPU [187]. The tool is relatively easy to use. An example

code block is given below.

Figure 5. 3 Java Code to Calculate Power Consumption [187]

The jRAPL tool runs under the Linux operating system with sudo permission (superuser

account). This is because the tool needs to access model-specific registers (MSR) in the

Linux kernel to calculate power consumption for DRAM, CPU and Java packages

separately. jRAPL can only calculate the energy for two sockets CPUs; consequently, all

our experiments are carried out in a two sockets CPU machine. Subsequently, to

estimate the precise actual execution time, we used Java’s System function, the

nanoTime() method [188]. We use the jRAPL tool (to calculate the power consumption)

and Java’s nanoTime() method (to estimate the execution time) in the experiments

discussed in the next section.

 Analysis of Power Consumption and Execution Time of Evolved Programs

In this section, our purpose is to study the power consumption and the execution time

for GP evolved programs. The configuration and parameters of these experiments are

the same as in Table 3.5, and the fitness function are same as in equations 1 in Chapter

3. GP programs are evolved for each malware family individually. The best individual

programs for each malware families were executed ten times. Their power consumption

and execution times are shown in Figure 5.4.

double beginning = EnergyCheck.statCheck();
doWork();
double end = EnergyCheck.statCheck();

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

86

Figure 5.4 presents the graph of time (execution time) versus power (power

consumption) for the twenty malware families. For FakeDoc, DroidKungfu, and Opfake

the execution time and power consumption is reduced continuously for all ten runs. For

other malware families, the evolved program’s execution time and power consumption

are continuously increased. A phenomenon in GP called bloat might cause these results,

where the code bloating consumes increasing resources, and ultimately the search grinds

to a halt because all available resource has been used [189]. Furthermore, such increasing

resource consumption is not usually associated with an increase in functional

performance. The SMSreg results show clear trade-offs between execution time and

power consumption. For conclusion, we can identify that for most malware families, the

execution time for the evolved program increases in tandem with power consumption.

In these experiments, we demonstrate that different trade-offs can be made between

execution time and power consumption in the GP programs and the results encourage

us to identify whether there are adequate trade-offs between these objectives. Therefore,

in the next section, we use a MOEC algorithm (SPEA2) to investigate possible trade-offs

among three objectives detection rate (DR), execution time, and power consumption.

The SPEA2 approach has also been proven to reduce bloat in GP evolved program [23],

[190].

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

87

Figure 5. 4 Evolved Program for Execution Time and Power Consumption

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

88

 Discovering Trade-offs in the Intrusion Detection Programs

In this section, we investigate trade-offs between the detection rate (DR), power

consumption and execution time of the program. The following three objectives will be

minimised concurrently.

f1 = 1-(no. of attacks detected /no. of attacks) (5.4)

f2 = power consumption (5.5)

f3= time-consumed (5.6)

 The conceptual diagram of the experimental framework is shown in Figure 5.5.

Figure 5. 5 Simplified Concept of Experiments

Figure 5.5 illustrates the process of the experiments reported in this section. The power

consumption of the evolved program is calculated by jRAPL, and GP and SPEA2 used

the results as the first objective. The second objective is derived from the execution time

of the evolved program using nanoTime (measured elapsed time). The third objective is

derived from the detection rate. SPEA2 is used to optimise the objectives. We have used

the same experimental procedure as in Chapter 4; a program is evolved separately for

each of the twenty malware families. The parameters used in this experiment are those

in Table 3.5, and we set the SPEA2 archive size to 512. The results are explained below.

GP and SPEA2

Individuals
Evolved

program

jRAPL

Power

consumption (j)

Execution time

(n-Time)

DR

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

89

 Experiment: Trade-offs in Detection Programs using DR, Power Consumption

and Execution Time.

In this experiment, we evolved the detection programs using three objectives: DR, power

consumption, and execution time. Furthermore, we simultaneously minimise power

consumption and execution time for the evolved program and maximise the detection

rate. We aim to investigate whether there is a trade-off between power consumption

and execution time when the detection rate is optimal.

The outcomes of these experiments can be divided into two, as displayed in Figure 5.6

and Figure 5.7. The conditional plot below shows the optimal results proposed for the

evolved program using three objectives for the twenty-malware families. For fourteen

malware families (Adrd, Basebridge, DroidDream, DroidKungfu, LinuxLotoor,

FakeDoc, FakeRun, GinMaster, GoldDream, Imlog, Kmin, MobileTx, Plankton, and

SendPay) a high detection rate was obtained in these experiments with trade-offs

between power consumption and execution time.

These experiments show that different trade-offs could be obtained between power

consumption and execution time when the detection rate is optimal. The trade-offs are

discovered by using the MOEC method.

I think the clearest deduction from the 14 graphs is that there is not much variation in

the time consumption. However, there is a fair amount of variation in the power

consumed. This means effectively that there for optimal detection rates; some programs

may be more power-efficient than others.

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

90

Figure 5. 6 Coplot for Program Evolved with Trade-offs using Three Objectives

Detection Rate (%)

CHAPTER 5 : IMPROVING RESOURCE EFFICIENCY

91

The Figure below illustrates the outcomes for six malware families without trade-offs for

power consumption and execution time as results at optimal detection rate. All families

show that power consumption and execution time vary inversely (i.e. they are in

conflict). All detection programs evolved for all five malware families used less than 0.04

Joule. The results in Figure 5.7 show the time to execute the detection program is less

than shown in Figure 5.4. This proves the implementation of MOEC capable of reducing

power consumption and execution time.

Figure 5. 7 Coplot for Program Evolved without Trade-offs using Three Objectives

Detection Rate (%)

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

92

CHAPTER 6

Further Investigation of GP Performance
on Various Threats on Mobile Phones

This chapter investigates the evolved GP program’s performance on three different mobile phone

datasets. The current trends for mobile phone attacks are explained in Section 6.1 as our

motivation that led to our contribution to this Chapter. The experimental parameters are

discussed in Section 6.2. In section 6.3, the efficiency of the evolved GP programs are evaluated

using three different mobile phone datasets obtained from other researchers. Finally, in Section

6.4 sumarries the effectiveness of GP performance for detecting various mobile phone attacks

datasets.

 Introduction

 Motivation

Google Play store was introduced a decade ago, but Google still struggles to protect it.

As reported by McAfee, millions of new threats have affected users since its launch,

malware in particular [55]. TrendMicro, McAfee, and CSO Online have also released a

report about the diversity of mobile phone threats from around 2016 through to 2020,

such as mobile ransomware, banking trojans, adware, spyware, ad and click fraud,

botnet, dead apps, and Internet of Things (IoT) malware. There are significant trends

towards monetisation using mobile malware such as toll fraud and premium SMS scams

[55], [191]–[193].

In 2018, McAfee reported that a botnet was used as a spying method to hijack IP cameras.

The botnet was also capable of distributing DDoS attacks by bombarding a popular

website [55]. The first mobile botnet targeting Android mobile phones was VikingHorde,

first detected in 2016 [192] and the first mobile botnet detected in 2009 that effected

Symbian phone users [55], [194]. VikingHorde is a botnet, working with root or non-

rooted Android mobile phones that use proxied IP addresses, which is capable of

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

93

masking ad clicks and making revenue for the attackers. Subsequently, in mid-2016,

Hummingbad infected over 10 million Android mobile phones [192].

Ransomware has emerged as a major problem in the past few years. For example, in

January 2018, mobile phone users from Indiana and New Mexico were affected by the

SamSam ransomware [195]. The targeted victims of SamSam ransomware were from

hospitals, city municipalities, universities, corporate companies, telecommunication

companies, and others. Ransomware criminals now use Bitcoin, LiteCoin, and Monero

(digital currency) as the payment method instead of a money transfer using Western

Union and PayPal, which was common a few years ago [191], [196].

The events usually impact computer users, but it is possible that mobile phones fell

victim to ransomware since they are often connected to the network and other devices

by Wifi or Bluetooth. Today, smartphones are also targeted because they are essentially

portable and powerful computers. The first iPhone ransomware attacks in May 2014

occurred in Australia, and the first Android ransomware occurred in late August 2014

in United States users [197].

Extensive research has been conducted in the field of mobile phones threats

classification, detection, and analysis to counter the rapid growth of mobile phones

attacks over the past several years. Trend Micro has identified significant trends for

threats to mobiles [175]. Challenges have emerged that pose significant problems, e.g. a

diverse range of mobile malware and advanced and targeted malware that includes

mobile botnets and a variety of mobile ransomware. In this chapter, we examine three

different Android mobile datasets obtained from international researchers: the first is

from the DroidAnalytics project and focused on further Android malware; the second

concerns Android botnets; and the third concerns ransomware [113], [116], [120].

 Contribution

The contribution of the research reported in this chapter is:

• the provision of empirical evidence that GP can produce programs that detect

other Android types of attack in the highlighted datasets.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

94

 Experimental Parameters

The parameters used in all three experiments are the same as those given in Table 3.5 in

Chapter 3. In this section, we run a GP program with two different sets of features for

ransomware datasets. The first experiments use the same selected features as the

experiments in Chapter 4. The second experiments use all twenty selected features. We

used two different features in these experiments because we want to test which

combination of features are best suited to the different type of datasets.

For Malware datasets and Android botnet datasets, only fifteen features were used. For

all three datasets, the experiments use 0.5 for both α and β in the fitness function. Table

6.1 shows the shortened identifiers used for features, used to make graphical

representations of trees manageable.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

95

Table 6. 1 Feature used in GP and the Short Form to Build Tree

Each malware family is the target of ten runs. The ten runs in each case are executed

using ECJ’s job function. The best results achieved are discussed in Section 6.3.

Features Short-form
ACCESS_COARSE_LOCATION ACL
ACCESS_FINE_LOCATION AFN
INSTALL_SHORTCUT IS
INTERNET I
MODIFY_PHONE_STATE MPS
READ_CONTACT RC
READ_HISTORY_BOOKMARKS RHB
WRITE_HISTORY_BOOKMARKS WHB
READ_SMS RS
SEND_SMS SS
WRITE_SMS WS
READ_PHONE_STATE RPS
VIBRATE V
WRITE_APN_SETTINGS WAS
WRITE_EXTERNAL_STORAGE WES
BLUETOOTH B
DISABLE_KEYGUARD D
RECEIVE_BOOT_COMPLETED RBC
SET_WALLPAPER SW
WAKE_LOCK WL
Contain C
Not N
O O
X X

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

96

 Discovering GP Performance using Different Datasets

In this section, the effectiveness of our proposed IDS is investigated by using three

different Android mobile phones threat datasets. The datasets used are from real

Android applications and real malware. They have been acquired from established

researchers. All datasets were pre-processed to extract the Manifest.xml information

from APK.

 Malware Datasets

The evaluation of the evolved GP programs against Android malware samples is

described in this section. These experiments are extended from experiments completed

in Chapter 4, where GP successfully detected Android malware in the DREBIN datasets

[119]. Here we test our evolved GP programs with different Android malware datasets.

The DroidAnalytics datasets contain real malware (current at the time it was collected).

DroidAnalytics is a cloud based APK scanner and functions as an Android malware

analysis system. The research generated signatures for the malware and facilitated

information retrieval [116]. The DroidAnalytics datasets include 98 malware families

(although their paper indicates 102 malware families). The datasets comprise 2,475

malware samples and include 327 zero-day malware samples from six different malware

families.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

97

 Experiments Overview

We use 17 of the 98 malware families supplied in DroidAnalytics datasets (i.e. the same

as for the experiments in Chapter 4). These 17 are selected because they contain enough

samples to allow a plausible split into meaningfully sized training and testing

components. We also use precisely the same features (permissions) as the experiments

in Chapter 4 identified as giving the best detection.

The training datasets used in these experiments are presented in Table 6.2 and the testing

datasets, as shown in Table 6.3 below.

Table 6. 2 Training Datasets

Family Malware Non-malware Family Malware Non-malware
FakeInstaller 919 40,467 Adrd 85 42,771
DroidKungfu 662 40,365 DroidDream 80 40,305
Plankton 620 40,570 LinuxLotoor 64 40,043
Opfake 608 40,552 GoldDream 64 40,067
GingerMaster 334 40,201 MobileTx 69 40,028
BaseBridge 324 42,752 FakeRun 56 40,092
Iconosys 145 40,081 SendPay 54 40,294
Kmin 142 40,126 Gapussin 53 40,038
FakeDoc 127 40,078 Imlog 38 40,276
Geinimi 87 40,056 SMSreg 36 40,043

Table 6. 3 Testing Datasets

Family Malware Non-Malware Family Malware Non-Malware
FakeInstaller 3 42,787 Adrd 141 42,742

DroidKungfu 142 42,127 Rooter 14 42,945

Plangton 126 42,399 LinuxLotoor 112 42,729

Opfake 8 42,414 GoldDream 6 42,707

GingerMaster 31 42,419 MobileTx 15 42,734

BaseBridge 546 42,667 SendPay 9 42,975

Kmin 192 42,668 Imlog 2 42,691

FakeDoc 1 42,645 SMSreg 1 42,714

Geinimi 97 42,924

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

98

 Results and Discussion

In this section, the details of each particular malware family and the results are

discussed. Table 6.4 below provides descriptions for each of the Android malware

families, the year they were discovered, and their capabilities. In the table, only 12

malware families are described as another 5 of malware families have been described in

Chapter 3. Figure 6.1 shows the best individual results.

Table 6. 4 Android Malware Families, Year Detected and Their Capabilities

Family (Year) Capabilities [155], [198]–[204]

Geinimi (2010)

Transmits info, contact details and geographic location

from the device to a remote location. It can also upload

SMS data to remote servers, call or send an SMS to a

specified number, delete SMS messages, silently

downloading files, snatching a list of installed

applications and uploading it to the command and

control (C&C) server, installing or uninstalling the

software. It also can show a map or a Web page, show a

pop-up message, change the device wallpaper, create a

shortcut, and change a list of command and control

servers when instructed by hackers.

Adrd (2011)

Uploads device specific data to remote servers via DES-

encrypted communication.

BaseBridge (2011) Sends SMS messages to predetermined numbers with a

premium rate, deletes SMS messages, dials phone

numbers, monitors phone usage and terminates browser

application.

GoldDream (2011)

Spies on SMS messages received and incoming/outgoing

phone calls by users and then uploads them to a remote

server without the knowledge of the users. It can fetch

and execute commands from a remote C&C server.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

99

Rooter (2011)

was known as

DroidDream

It first gains root privilege on a remote device then takes

control of the mobile system.

Imlog (2011)

Sends device info such as maker, manufacture and model

to a particular website.

FakeDoc (2012) Sends sensitive information such as Contact List, User

email address, Phone number, Device Information (IMEI,

model, manufacturer, OS version, screen size) and

Device Location to a remote server.

Lotoor also was known as

ExploitLinuxLotoor(2012)

This is a universal detector for hack tools that use

vulnerabilities to gain root privileges on affected

Android devices.

MobileTx (2012)

Steals info from the affected device and sends SMS

messages to a premium rate number.

Kmin (2012)

Sends IMEI and phone number to a remote server,

sending SMS messages to a premium number such as

10669500718. It also can download and install another

application without the user being aware of it.

SendPay (2012)

Can handle remote access connections, accomplish DoS

or DDoS, capture keyboard inputs, delete files or objects,

or terminate processes.

SMSReg (2012)

Collects the API key, application ID, carrier, device

manufacturer, device model, GPS location, IMEI number,

network operator, package name, and SDK version.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

100

 Figure 6. 1 GP Evolved Program Performance

Performance seems varied. Figure 6.1 shows eleven out of nineteen malware families

being detected with an average accuracy of more than 91% and three families (Adrd,

BaseBridge and Kmin) with an accuracy of nearly 100%. Nevertheless, the detection

accuracy of three malware families (Imlog, Kungfu and SendPay) is low (63%, 63% and

64% respectively). Table 6.5 below provides details for these three malware families. As

we can see, the real issue is with false positives.

Table 6. 5 Imlog, Kungfu and SendPay Results

The low detection rate for SendPay is the same as found in Table 4.6. We can conclude

that this has happened because the evolved GP program combines permissions that

could not give the best results. As shown in Figure 6.2 for Imlog, Kungfu and SendPay,

the combination of permissions evolved by the GP includes quite a few that might also

be included in non-malicious samples. The trees of the best individual evolved by GP

for each of six malware families are shown in Figure 6.2 and Figure 6.3. All evolved

Family TPR TNR FPR FNR ACC
Imlog 100% 63% 37% 0% 63%
Kungfu 100% 63% 37% 0% 63%
SendPay 100% 64% 36% 0% 64%

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q

A
cc

ur
ac

y

Malware Families

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

101

programs gave a different tree for each malware family because each of them contains

different permission being selected for the best individual.

Family Evolved Program

Imlog

Kungfu

SendPay

Figure 6. 2 Best Individual Trees for Imlog, Kungfu, and SendPay

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

102

Family Evolved Program

Adrd

BaseBridge

Kmin

Figure 6. 3 Best Individual Trees for Adrd, BaseBridge, and Kmin

 Results Conclusion

The results are mixed. We can achieve more than 91% accuracy for 14 out of 17 malware

families. However, some apps are less amenable to detection via our approach. For three

apps the lack of accuracy is entirely due to false positives, so all malware is detected, but

time may be wasted analysing apps erroneously flagged as malware. In all cases these

results have been obtained by programs with limited complexity/depth (as is apparent

from Figure 6.2 and Figure 6.3).

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

103

 Android Botnets Datasets

An Android botnet can disguise itself as a trusted Android APK and the damage only

happens when the hackers activate the botnet. Once users realise their device is infected

by the botnet, it is too late because the botnet owner has already taken control of their

devices using command and control (C&C) software. Mobile phone targetted botnet

attacks began around 2012. The following year saw an increase ([205]) that served to

inspire researchers to address the issue.

Researchers from Georgia Teach [206] revealed that 23% of Windows systems showed

marks of a botnet infection. According to McAffee, mobile botnets and C&C outbreaks

increased from 2016 to 2017 by 22% [55]. This rise in botnets motivated us to consider

the use of our GP approach for their detection. As far as we are aware, GP has never

been investigated for this purpose.

Kadir et al. [113] provide a significant collection of Android mobile botnet datasets for

14 botnet families. The collection includes botnet datasets from the Malgenome project,

malware security blog, VirusTotal and samples supplied by acknowledged anti-

malware suppliers. In general, the mobile botnets dataset consists of 1929 samples

covering a period between 2010 (the first presence of Android botnet) and 2014.

 Experiments Overview

In these experiments, all mobile botnet APKs have been processed to extract the

information from the Manifest.xml. The source of trusted APKs came from the DREBIN

datasets [119] because the provided botnets dataset did not contain any trusted APKs.

For two families indicated in [113], the data pre-processing led to the remove of some

samples. The two families are Geinimi and Pjapps. Both training and testing datasets are

randomly selected. The division of testing and training datasets is as in Table 6.6 and

Table 6.7 below:

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

104

Table 6. 6 Training Datasets

Family Botnets Trusted
APK

Family Botnets Trusted
APK

Anserverbot 5 42,771 PJapps 5 40,570

Bmaster 5 42,752 Pletor 5 40,365

DroidDream 5 40,304 Rootsmart 5 40,275

Geinimi 5 40,056 Sandroid 5 40,126

MisoSMS 5 40,043 TigerBot 5 40,552

NickySpy 5 40,294 Wroba 5 40,043

NotCompatible 5 40,304 Zitmo 5 40,078

Table 6. 7 Testing Datasets

Family Botnets Trusted
APK

Family Botnets Trusted
APK

Anserverbot 239 42,742 PJapps 231 42,399

Bmaster 1 42,667 Pletor 80 42,127

DroidDream 358 42,945 Rootsmart 23 42,691

Geinimi 233 42,924 Sandroid 39 42,668

MisoSMS 95 42,714 TigerBot 91 42,414

NickySpy 194 42,975 Wroba 95 42,729

NotCompatible 71 42,945 Zitmo 75 42,645

 Results and Discussion

The details of the Android mobile botnet families and the results are discussed in this

section. The Android botnet families, the year it was detected, and their abilities are

reflected in Table 6.8 below. In the table, 12 botnet families are discussed, as Geinimi and

DroidDream can be referred to in Table 6.4.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

105

Table 6. 8 Android Botnets Families, Year Detected and Their Capabilities

 Family (Year) Capabilities [155], [200], [203], [207]–[209]

Zitmo, 2010 This botnet can obstruct one-time passcodes supplied by banks

to mobile devices as a security feature of logging into their

accounts or making account modifications relating to sensitive

data, and it will send all incoming text messages to a remote

server.

Anserverbot (2011) This botnet ran quietly in the background to connect to the blog,

decrypt a URL string, and then connect to that server.

NickySpy (2011) This botnet collects devices IMEI, access cell-ID, WIFI location

and updates, GPS location and WIFI network details and sends

it via SMS message. It can initiate a phone call without going

through the dialer GUI so that the user is unaware of any

outgoing calls, monitor, modify, or abort outgoing calls, open

network sockets, read SMS messages, obtain the user’s contacts

data, record audio, send SMS messages, and write (but not read)

the user’s contacts data.

PJapps (2011) This botnet had numerous features included application

installation, visiting Web sites, adding bookmarks to the

browser, and sending and blocking text messages.

TigerBot (2012) This botnet opens a back door on the compromised device and

listens for specifically created SMS messages, allowing an

attacker to execute, stop and start processes and services, change

network settings, send the contact list to a remote location, take

screenshots, reboot the compromised device, record incoming

and outgoing call numbers, and deactivate the software.

Rootsmart (2012) This botnet links to a remote location to get the GingerBreak root

exploit required to gain root permission on the compromised

device.

Bmaster (2012) This botnet exfiltrates sensitive data from the phone, including

the device ID, GPS data, and IMEI number. It is also capable of

sending SMS messages to premium numbers.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

106

MisoSMS (2013) This botnet was capable of gathering and sending SMS

messages to remote servers in China.

NotCompatible (2014) This botnet was proficient at delivering access to private

networks by transforming an infected device into a network

proxy, which could then be used to gain access to other

protected data or systems.

Pletor (2014) This botnet can control the phone and its data, lock user devices

then ask for ransom.

Sandroid (2014) This botnet can intercept all incoming SMS messages and

gathers relevant banking information. The victim’s code,

username and password are unprotected. These data are

automatically transferred to the botnet-master.

Wroba (2014) This botnet can start remote access connections, capturing

keyboard input, collecting system information,

downloading/uploading files, dropping other malware into the

infected system, performing denial-of-service (DoS) attacks, and

running/terminating processes.

Figure 6.4 below shows the GP evolved program performance on several Android Botnet

families; an average accuracy at 91.55% is demonstrated. Shortened identifiers for the

families are given alongside the graph. The results show that four (A, B, J, and L) botnets

families gave rise to an accuracy of 99% and eight (C, D, E, F, I, K, M and N) botnet

families an accuracy of 93%. Nevertheless, two (G and H) botnets families incurred a

very low accuracy of 60%.

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

107

Figure 6. 4 GP Performance on Android Botnets

Our work differs from that of [113]. They do behavioural analysis based on URL patterns

analysis, and we seek to detect Android botnets and distinguish them from clean APKs

using permission use. We are able to improve the detection rate for the Sandroid family

to 94.45%. Previously the best rate was 86% [113].

In detail, NotCompatible and PJapps have the lowest accuracy; however, their TPR

shows 100% and 91.53% accordingly. Our GP evolved program can detect all Android

samples from clean APK samples, but the permission combination is also contained in

the clean APK, and so the GP identifies it as a suspicious. Thus, permissions here are

simply insufficiently discriminating (whatever technique is used for detection). Below

in Figure 6.5 and Figure 6.6 are the examples of the best individual trees evolved in these

experiments for the best detection performance and the lowest detection rate. The best

individual trees for PJapps show when the APK permission contains RPS it will be

detected as a botnet but that clean APKs with that permission will also be subject to such

classification.

Figure 6.5 and Figure 6.6 give the best individual trees for six Android botnet families.

It shows there is a varied form of tree evolved by GP for each of the botnet families. We

can conclude the combination of permissions needed to detect each botnet family is

different.

Legend

A Anserverbot H PJapps

B Bmaster I Pletor

C DroidDream J Rootsmart

D Geinimi K Sandroid

E MisoSMS L Tigerbot

F NickySpy M Wroba

G NotCompatible N Zitmo

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N

A
cc

ur
ac

y

Android Botnet Families

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

108

Botnets Evolved Program
PJ

ap
ps

N
ot

C
om

pa
tib

le

Ro
ot

sm
ar

t

BM
as

te
r

Figure 6. 5 GP Tree Evolved for Four Botnet Families

CHAPTER 6 : FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS DATASETS ON

MOBILE PHONES

109

Figure 6. 6 GP Tree Evolved for Two Botnet Families

Botnets Evolved Program

A
ns

er
ve

rb
ot

D
ro

id
D

re
am

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

110

 Results Conclusion

Since the first appearance in 2010 [8] Android botnets remained a major form of a threat

right through to 2018 [55]. Previously researchers used approaches such as static analysis

[194], [210], behavioural analysis [113], [211], SVM [103] to study Android botnet

characteristics. In this section, we have investigated whether a GP evolved program can

distinguish Android botnets from clean APK. We show that GP is capable of evolving

programs to detect Android botnets. Nevertheless, some results do not achieve a

detection rate of 90% for some Android botnet families.

No optimal tree size can be discerned that gives the best performance overall. Bigger is

certainly not better. It would seem prudent to experiment with several max tree depths

for GP tree evolution. The results may also reflect limitations of the datasets e.g., the

BMaster dataset contained only six samples [113].

 Ransomware Datasets

On Friday 12 May 2017, nations across the world experienced outbreaks of WannaCry

ransomware attacks. WannaCry encrypted data and asked for payment to recover files.

The UK’s NHS (National Health Service) was one of the worst affected [72]. In mid-2018,

a new mobile ransomware variant detected by Check Point researchers called Charger

succeeded in breaking into the Google Play store by using numerous obfuscation

methods [73].

Mobile ransomware is predicted to continue to grow and develop new and more robust

capabilities targeting increased profits. We are therefore motivated to test whether our

GP evolved programs can detect mobile ransomware. The mobile ransomware datasets

used are those mentioned in the paper “Ransomware Steals Your Phone. Formal

Methods Rescue It” [120]. They used two sets of datasets for mobile ransomware [120].

The first mobile ransomware sample is a publicly available collection from two well-

known websites: Contagio Mobile [212] and Ransom Mobi [213]. Only the Contagio

Mobile page is still available up to now, and the Ransom Mobi webpage is now obsolete.

The datasets were collected between December 2014 – June 2015. The datasets are

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

111

selected because they also used 600 samples from the DREBIN datasets as the second

source of samples. The researchers did not mention which samples they used in their

paper [120]. Therefore, we randomly select the samples.

 Experiments Overview

The samples obtained from downloading the APK from the websites stated above had

to undergo preprocessing as described in Chapter 3 to extract the information needed

for the experiments from the Manifest.xml files. Six hundred and eighty samples were

gathered. We removed three duplicates in the files provided by the authors of [9].

Some files did not contain Android permissions in their Manifest.xml file; therefore, we

could not use them in our experiments. In these experiments, the trusted APK samples

come from the DREBIN datasets [119], and both training and testing datasets are

randomly selected. Details of the testing and training datasets are as follows in Table 6.9

below:

Table 6. 9 Ransomware Datasets

Training Testing
Ransomware Trusted APK Ransomware Trusted APK

5 40126 675 42668

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

112

 Results and Discussion

 Table 6.10 shows the performance of GP using fifteen features selection, and Figure 6.6

shows the best individual tree for the GP evolved program:

Table 6. 10 GP Performance towards Ransomware using 15 Features

Experiments TPR TNR FPR FNR Accuracy

Job 0 96.59% 59.67% 40.33% 3.41% 60.25%

Job 1 96.59% 59.67% 40.33% 3.41% 60.25%

Job 2 96.59% 59.67% 40.33% 3.41% 60.25%

Job 3 96.59% 59.67% 40.33% 3.41% 60.25%

Job 4 96.59% 59.67% 40.33% 3.41% 60.25%

Job 5 96.59% 59.67% 40.33% 3.41% 60.25%

Job 6 96.59% 59.67% 40.33% 3.41% 60.25%

Job 7 96.59% 59.67% 40.33% 3.41% 60.25%

Job 8 96.59% 59.67% 40.33% 3.41% 60.25%

Job 9 96.59% 59.67% 40.33% 3.41% 60.25%

Table 6.10 gives results from the best-evolved program for each of ten runs. At the end

of each run, the TPR, TNR, FPR, FNR and Accuracy are calculated. There is no variation

in results between jobs. The results above are not encouraging as the accuracy and TNR

of all runs are 60.25% and 59.57% respectively.

Nevertheless, the TPR and the FNR show some encouraging results at 96.59% and 3.41%.

These results show that the GP evolved program can contribute to truncated FPR at

40.33%. However, the FNR is still at low and did not even achieve 5%. The results

applied for 23 ransomware APK samples not correctly detected as ransomware.

In these experiments, we used unbalanced datasets (with more non-malware samples

than malware samples). The results are identical across all runs but, as can be seen in

Figure 6.8, the actual program trees vary.

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

113

Experiments Evolved Program

Job 0

Job 1

Job 2

Job 3

Job 4

Job 5

Figure 6. 7 Best Individual GP Evolved Program for Ransomware using 15 Features

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

114

In the figure above, there are five different trees evolved by GP to distinguish

ransomware APK samples from clean APK samples, but they have the same

performance. The other four experiments run to display the same tree build in Job 1,

which is only one feature that turns out could detect ransomware APK samples. The

short form of used features can be referred to in Section 6.2. In all trees from Job 0 to Job

5 shown, the tree must contain RPS to be able to distinguish the ransomware APK

sample from clean samples. The RPS is capable of allowing access to the phone state,

which is now identified as the permission that allows an intruder to get access to the

mobile phone. As we know ransomware accomplished to lock the mobile phone from

the user unless they pay the ransom. We want to investigate further either GP evolved

program can detect ransomware samples more efficiently than the dataset’s owner

managed to get (99.53% TPR [120]). Table 6.11 shows the results when we use 20 features

in our GP framework. All 20 features are discussed in Table 3.4.

Table 6. 11 GP Performance towards Ransomware using 20 Features

Experiments TPR TNR FPR FNR Accuracy

Job 0 99.41% 93.02% 6.98% 0.59% 93.12%

Job 1 99.41% 93.02% 6.98% 0.59% 93.12%

Job 2 99.56% 93.02% 6.98% 0.44% 93.12%

Job 3 99.41% 93.02% 6.98% 0.59% 93.12%

Job 4 99.41% 93.02% 6.98% 0.59% 93.12%

Job 5 99.41% 93.02% 6.98% 0.59% 93.12%

Job 6 99.41% 93.02% 6.98% 0.59% 93.12%

Job 7 99.41% 93.02% 6.98% 0.59% 93.12%

Job 8 99.41% 93.02% 6.98% 0.59% 93.12%

Job 9 99.41% 93.02% 6.98% 0.59% 93.12%

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

115

In these experiments, ten runs of experiments are represented as Job 0 to Job 9 in Table

6.11. For each Job, the TPR, TNR, FPR, FNR and Accuracy are calculated. Job 2 shows

the highest TPR at 99.56% and FNR at 0.44% which denote only three ransomware

samples flag as non-attacks out of 675 samples; the results are better than others’

detection rate TPR at 99.41% and the FNR at 0.59. Although the owner of the dataset

managed to get 99.53% TPR [120], slightly different 0.02% from detection using GP

evolved program; we cannot compare the results directly. Only used 675 samples out

of 1,271 samples used by them because they did not specify which samples they selected

from DREBIN datasets and which other samples they were using.

Other results do not indicate any significant change as the TNR is 93.02%, the FPR is

6.98%, and the accuracy for all experiments is 93.12%. This results of high TPR are

induced by the unbalanced datasets implicated in Table 6.11. Nine out of ten

experiments gave the same results. Figure 6.9 shows some of the best individual GP

evolved program trees.

The results in Table 6.11 above show almost identical performance across the 10 runs. (9

of the 10 are identical, with Job 2 improving TPR and FNR marginally.) The results in

Figure 6.9 show they need RPS to distinguish ransomware samples from clean samples.

Figure 6.8 shows that the RBC permission can have a very significant impact, allowing

a TPR rise to 99%. (RBC was not an available feature in the first experiments.) The RBC

permission allows an application to obtain the ACTION_BOOT_COMPLETED that is

broadcast after the system finishes booting. This feature gives hackers the ability to

control the mobile phone once they penetrate the system.

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

116

Experiments Evolved Program

Job 0

Job 1

Job 3

Job 5

Figure 6. 8 Best Individual GP Evolved Program for Ransomware

 Results Conclusion

Results showed the mobile ransomware could be detected using the evolved GP

program at 96.59% TPR in the Android platform when the GP program was evolved

with fifteen features. The evolved GP program’s TPR increased to a 99.56% detection

rate when using twenty features. We run the experiments using two sets of selected

features because this is the first time GP has been used to evolve programs to detect

ransomware. The result is encouraging; our sole focus on APK permissions facilitates a

simple charactersation of benign and malicious apps.

CHAPTER 6: FURTHER INVESTIGATION OF GP PERFORMANCE ON VARIOUS THREATS ON

MOBILE PHONES

117

 Conclusion

In this section, we run three different datasets of infected Android APK by malware,

botnets and ransomware to investigate the performance of an evolved detection

program. For all experiments, the evolved GP program run targeted a specific family

and the outcome shows each family has a different character because the evolved trees

are different from each other. All datasets for training and testing used unbalanced

samples of harmful APKs and clean APKs. The reason is that we want to consider real-

world situation in GooglePlay there are millions of APKs uploaded, and there are

probably one out of thousand is a ‘harmful’ APK. We also followed the DREBIN

implementation, using a combination training and testing datasets with unbalance data.

In summary, our GP-based approach, when applied to three datasets achieved 90%

accuracy detection rate, and some of them gave rise to an accuracy of 99%. The results

prove GP can be used for a different type of malware detection.

CHAPTER 7 : CONCLUSION

118

 CHAPTER 7

 Conclusion

This chapter summarises the research carried out and discusses the contributions made. The thesis

hypothesises presented in Chapter 1 is revisited in the light of the results obtained. Finally, future

work is identified.

 Review of Experimentation

The problems of existing methods for intrusion detection in Android mobile phones

have been identified in Chapter 2. The primary concerns can be summarised as follows:

a) The previous detection of malfeasance in Android mobile phones suffers from

low detection efficiency caused by high false alarm rates.

b) Detection of attacks and malicious activities in mobile phones is a challenging

research problem because fast detection response is needed to avoid further

damage to mobile phones.

c) Android mobile phones have limited resources. Their batteries have a limited

life, and existing solutions do not acknowledge this problem appropriately.

Researchers have mainly focused on the first two issues so far. Nevertheless, the concern

about power consumption and execution time for detection is vital. In this thesis, the

limited power resources of the mobile phones are taken into consideration to deliver

more effective detectors, and execution time has also has been taken into account in our

mobile IDS synthesis experiments.

This research explores the implementation of EC approaches, particularly the use of GP,

to evolve intrusion detection programs for Android mobile phones. We aimed to

synthesise a high performing and reliable IDS for Android mobile phones.

CHAPTER 7 : CONCLUSION

119

This thesis shows how to use EC methods for the synthesis of detectors and classifiers of

malware on Android mobile phones platform. A variety of experiments evaluates the

hypothesis of thesis statement 1: GP will be able to evolve programs to distinguish malicious

applications from the non-malicious applications in mobile phones datasets.

The performance of GP evolved programs is evaluated on real-world mobile phone

application datasets that have been obtained from Android research community. The

approach shows good performance for detecting twenty malware families at an average

of 93% accuracy with a poor false alarm rate of 7%. Our approach achieves the same

average accuracy but has a higher false alarm rate than Drebin. Limitations and possible

causes of those limitations have been identified, e.g. unbalanced datasets for training

and testing and very limited size of datasets for some malware families.

A standard form of fitness function was adopted. We proceeded to investigate variation

in weights for the components of the overall fitness function. The results of GP evolved

program with optimal parameter using different weight for fitness function show that

GP can achieve high detection rate with a low false alarm rate. The average accuracy

increases to 98.8%, and the average false alarm rate decrease to 0.89%. With all malware

families, the detection rate (accuracy) is above 95% per family. The results outperform

those of the dataset’s owner in both average accuracy and false alarm rate. The results

have shown that GP can indeed evolve programs that can distinguish suspicious

Android APKs from clean APKs only using Android permissions extracted from

Manifest.xml file as its selected features.

The work on weightings for our GP synthesis of detectors shows that the optimal values

for alpha and beta may vary significantly between malware families. This may place

limits on the best that can be achieved by any ML approach based on optimising a fitness

function such as the one used in this work, i.e. it is unclear just how much further

improvement can be expected.

There are potential limits on the overall approach. Privileges have a purpose, and

specific applications need specific privileges. With some applications, we are happy for

them to run with them; they are trusted to exercise those privileges in a means that

CHAPTER 7 : CONCLUSION

120

accords with our interests. However, malicious applications may simply have sets of

privileges that are identical to those possessed by valid apps. In which case any

detection based purely on permissions will necessarily is classify. In some ways we

might well be surprised at just how well permission based discrimination has worked.

Weighted fitness functions are a staple approach in GP and related evolutionary search

approaches. They provide one means of approaching multi-criteria tradeoffs.

One of the critical problems mobile phones face is the limited power supply. MOEC is

employed to investigate the relations between detection rate, power consumption and

execution time of the evolved program.

The findings show there are a set of solutions with different trade-offs amongst the three

chosen objectives is achieved for each malware family. The results show to obtain

optimal detection rate the power consumption is decreased, but the execution time is

increased and vice-versa when the power consumption increases the execution time will

plunge. Nevertheless, we also obtained results from five malware families that do not

furnish us with trade-offs among the objectives. The findings also show that the best

detection rate is achieved with high execution time and low power consumption. Thus,

the power consumption will increase when the execution time is reduced. The

conclusion can be drawn that the best detection rate can be achieved with low power

consumption (but with response time being the price we have to pay). The outcomes

from the experiments serve as an evaluation of thesis statement 2: GP and MOEA can be

set to synthesise a system capable of the efficient detection of malware on mobile phones, e.g. using

limited battery power.

Finally, we evaluated the GP evolve program performance towards other types of

malware, as mentioned in thesis statement 3: The performance of new IDS is evaluated by

using different mobile phone datasets. Estimation of this hypothesis is performed by using

three different datasets acquired from three different Android malware projects, and a

range of experiments was carried out as described in Chapter 6. This work explores the

performance of GP evolved programs on malware families using a different source of

CHAPTER 7 : CONCLUSION

121

training and testing datasets. All evaluation used different GP evolved programs based

on the malware families.

The results for the DroidAnalytics malware datasets indicate that the evolved GP

program can detect 14 malware families at average accuracy at 91% with three malware

families attaining the lowest accuracy detection rate at almost 63% (but their false

negative rate is 0%). The reason is that the fraction of training and testing datasets are

unbalanced. The performance of the Android botnets datasets shows the GP evolved

program achieved a 93% average accuracy for eight Android botnets families with four

Android botnets families producing 99% accuracy detection rate. However, two families

resulted in less than 60% accuracy detection rate. The average accuracy for both families

decreases to 91.55%. The last datasets which are ransomware show the performance of

GP evolved programs can achieve 99.56% TPR, 6.98% FPR and 93.12%accuracy. We can

conclude that other type of malware can be detected using GP evolved programs with

average results at above 91%. We had suffered from a high false-positive rate as we knew

anomaly-based IDS faced this problem [214]. However, for some malware families, the

results are plausible, and on average our detector results still acceptable (due to almost

perfect TPRs).

 Thesis Contributions

The primary contributions of this research are defined as follows:

Evolutionary computation approaches for intrusion detection in mobile phones:

This study investigates the use of AI to develop intrusion detection programs for this

challenging new environment. EC methods principally “breed" intrusion detection

programs by assessing populations of prospective programs and subjecting them to a

variety of genetical operators. In this thesis, we have demonstrated that GP can be used

to evolve effective detectors for mobile phone attacks such as viruses, Trojan horses,

mobile botnets, adware, rootkits, spyware and worms. To the best of our knowledge,

this is the first investigation of Android mobile phones IDSs developed using GP used

only Android permissions as features. Previous work has usually implemented SVM or

CHAPTER 7 : CONCLUSION

122

GA (EC method), as explained in Chapter 2. In [128], they used GP as a method to do

coevaluation of mobile malware and anti-malware, which they generate the malware

using GP and then they use GP to detect the malware. The features they used are API

features and permissions for the anti-malware, which is different from us that only solely

used permissions as features.

An anomaly approach:

This study demonstrates how GP can evolve programs to detect mobile phone threats

such as malware. We took a risk by implementing an anomaly-based approach for our

detectors since their FPR can be high with a low detection rate for known attacks [214].

However, we overcame it by using different weights for calculating the fitness function

implementation. We showed that the detection system we developed could distinguish

maliciously behaving Android applications.

Efficiency:

Our work explored trade-offs between functional and non-functional properties of

programs. They showed how our approaches could synthesise programs with excellent

trade-offs between intrusion detection capability, power consumption and execution

time. Furthermore, we investigated whether SPEA2 gave the best trade-offs.

Mobile malware detector framework: Our framework is the first to combine GP and MOEA,

to consider limited resources and to use only Android permissions as detection features.

Energy consumption and execution time of programs are also taken into account.

Significant different datasets: In this thesis, we evaluate the performance of our proposed

system on several enormous datasets. We sought four different datasets from Android

community researchers and tested our proposed system on them. The datasets contain

different types of Android attacks, including ransomware.

This thesis demonstrates that EC approaches can learn the complex properties of

Android mobile phones and synthesise appropriate intrusion detection programs for

this environment. The properties of Android mobile phones taken into consideration in

this research are Android app permissions and power consumption and execution time

of evolved programs. We used only Android permissions for features in our proposed

CHAPTER 7 : CONCLUSION

123

system because it is the common thing in the Manifest.xml file in Android APK, which

can be manipulated by the attackers. This has happened when the mobile phone users

allow permissions to be used inside a mobile phone after they install apps. Power

consumption and execution time are important non-functional properties.

 Future Research

The undeveloped areas for future research are summarised below:

Applying evolutionary computation techniques to other areas: In this study, we demonstrated

how to utilise EC approach to overcome the issue of intrusion detection in Android

mobile phones and exactly how to explore different trade-offs in such resource-limited

devices. The approaches examined in this thesis might be adapted easily to other areas,

for instance, like the detection of malware in the iOS platform. As mentioned by Price, it

is rare for an iPhone, or iPad to get infected by a virus, but it is still possible [215] as

mobile platforms become a target of choice. Similar concerns about power consumption

will apply.

Exploration of new attacks: Android mobile phones are still under attack. Attackers are

changing their ‘prey’ from computers and laptops to mobile phones. There should be

more research to identify the range of possible Android mobile phone attacks. The

proposed system in this thesis can be used to explore new attacks that are not mentioned

in this research.

Exploration of new attacks: Our work reported here targeted specific known families of

malware that had been assembled by researchers. As new malware (e.g., the recently

discovered Man-in-the Disk attack [216]) and variants are discovered, our approach can

be redeployed on an enhanced dataset that covers these elements.

CHAPTER 7 : CONCLUSION

124

Improving our approach: In this study, we used only Android permissions as our main

features selection to identify malicious behaviour APK from normal behaviour APK. It

remains perfectly plausible to expand the range of attributes used, e.g. using different

attributes such as api_call, intent, activity, URL and other information we can extract

from the APK.

Off-line and online approaches: all work reported in this thesis is off-line. The potential for online

collaborative and adaptive approaches is an important avenue to consider. This could again cover

functional and non-functional properties.

In conclusion, AI approaches for program syntheses such as GP and MOEC can give

significant benefits for the evolution of IDS programs for challenging complex

environments such as Android mobile phones. We recommend this area to the research

community.

REFERENCES

125

REFERENCES

[1] N. Abdullah and N. Md.Salleh, “Permission-based Android Malware Detection

System Using Genetic Programming,” Diges PMU (Technology Innov. Int. Conf.

Techon 2019, vol. 6, no. October 2019, pp. 240–248, 2019.

[2] J. R. Koza and H. Iba, “Genetic programming : proceedings of the first annual

conference, 1996,” Proc. 1st Annu. Conf. Genet. Program., p. 568, 1996.

[3] T. Nakamura, “5G Evolution and 6G,” 2020.

[4] G. A. Fowler, “The 5G lie: The network of the future is still slow,” The

Washington Post, 2020. [Online]. Available:

https://www.washingtonpost.com/technology/2020/09/08/5g-speed/.

[Accessed: 31-Oct-2020].

[5] S. Meena, “The Data Digest: Forrester Forecasts Single-Digit Growth For Global

Smartphone Unique Subscribers For The First Time in 2018,” Forrester, 2018.

[Online]. Available: https://go.forrester.com/blogs/the-data-digest-forrester-

forecasts-single-digit-growth-for-global-smartphone-unique-subscribers-for-the-

first-time-in-2018/. [Accessed: 27-Nov-2018].

[6] S. O’Dea, “Smartphone Users from 2016 to 2021,” Statista, 2020. [Online].

Available: https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/. [Accessed: 22-Nov-2020].

[7] IANS, “Smartphone users spend over 90 mins online daily,” THe Economic Times,

2018. .

[8] M. Boyle, “Mobile Internet Satistics,” Finder UK, 2020. [Online]. Available:

https://www.finder.com/uk/mobile-internet-statistics#:~:text=Quick

overview,up from 66%25 in 2018. [Accessed: 22-Nov-2020].

[9] Y. Wang, K. Streff, and S. Raman, “Smartphone security challenges,” Computer,

vol. 45, pp. 52–58, 2012.

[10] P. Ruggiero and J. Foote, “Cyber Threats to Mobile Phones,” 2011.

[11] L. Wu, X. Du, and X. Fu, “Security threats to mobile multimedia applications:

REFERENCES

126

Camera-based attacks on mobile phones,” IEEE Commun. Mag., vol. 52, no.

March, pp. 80–87, 2014.

[12] Kaspersky Lab, “Top 7 Mobile Security Threats in 2020,” 2020. [Online].

Available: https://usa.kaspersky.com/resource-center/threats/top-seven-

mobile-security-threats-smart-phones-tablets-and-mobile-internet-devices-what-

the-future-has-in-store. [Accessed: 22-Nov-2020].

[13] Kaspersky Lab, “Top 7 Mobile Security Threats in 2020,” 2020. .

[14] U.-C. C. R. Team, “Technical Information Paper-TIP-10-105-01 Cyber Threats to

Mobile Devices,” 2010.

[15] D. Crăciunescu, “A Short History of Mobile Malware,” 2020. [Online]. Available:

https://proandroiddev.com/a-short-history-of-mobile-malware-296570ed5c1b.

[Accessed: 10-Nov-2020].

[16] S. Keach, “GOOG-HELL Google ‘eavesdropping on your PRIVATE

conversations’ with Android phones and smart speakers,” The Sun, 2019.

[Online]. Available: https://www.thesun.co.uk/tech/9487748/google-listen-

private-conversations-android-phones-home-assistant-smart-speakers/.

[Accessed: 20-Nov-2020].

[17] J. P. Anderson, “Computer security threat monitoring and surveillance,”

Washington, 1980.

[18] Á. MacDermott, Q. Shi, M. Merabti, and K. Kifayat, “Intrusion Detection for

Critical Infrastructure Protection,” ISBN:9781902560267, pp. 1–6, 2012.

[19] N. K. M and R. Kumar, “Survey on Network Based Intrusion Detection System

in MANET,” Int. J. Comput. Sci. Mob. Comput., vol. 3, no. 4, pp. 660–663, 2014.

[20] T. Verwoerd and R. Hunt, “Intrusion detection techniques and approaches,”

Comput. Commun., vol. 25, pp. 1356–1365, 2002.

[21] E. Biermann, E. Cloete, and L. M. Venter, “A Comparison of Intrusion Detection

Systems,” Comput. Secur., vol. 20, pp. 676–683, 2001.

[22] D. E. Denning, “An Intrusion-Detection Model,” in Proceedings of the 1986 IEEE

Symposium on Security and Privacy, 1986, pp. 118–131.

[23] S. Şen, J. a Clark, and J. E. Tapiador, “Power-Aware Intrusion Detection in

REFERENCES

127

Mobile Ad Hoc Networks,” in Ad Hoc Networks, Springer Berlin Heidelberg,

2010, pp. 224–239.

[24] E. Salimi and N. Arastouie, “Backdoor Detection System Using Artificial Neural

Network and Genetic Algorithm,” Comput. Inf. Sci. Int. Conf., pp. 817–820, 2011.

[25] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of machine

learning classifiers for mobile malware detection,” Soft Comput., pp. 1–15, 2014.

[26] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez,

“Anomaly-based network intrusion detection: Techniques, systems and

challenges,” Comput. Secur., vol. 28, no. 1–2, pp. 18–28, 2008.

[27] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by machine

learning: A review,” Expert Syst. Appl., vol. 36, no. 10, pp. 11994–12000, 2009.

[28] S. Sen and J. A. Clark, “Evolutionary computation techniques for intrusion

detection in mobile ad hoc networks,” Comput. Networks, vol. 55, no. 15, pp.

3441–3457, 2011.

[29] Statista, “Number of apps available in leading app stores as of 3rd quarter 2018,”

2018.

[30] C. Nimodia and H. Deshmukh, “Android Operating System,” Softw. Eng. ISSN,

vol. 3, no. 1, pp. 10–13, 2012.

[31] Android OS Project, “Android (OS),” 2013.

[32] Google, “Protect every Android user,” 2020. [Online]. Available:

https://www.android.com/security-center/. [Accessed: 30-Oct-2020].

[33] T. Android and O. Source, “Android (OS),” 2008.

[34] M. Narmatha and S. V. Krishnakumar, “Study on Android Operating System

And Its Versions,” Int. J. Sci. Eng. Appl. Sci. -, vol. 2, no. 2, pp. 439–445, 2016.

[35] J. Callaham, “The history of Android: The evolution of the biggest mobile OS in

the world,” 2020. [Online]. Available:

https://www.androidauthority.com/history-android-os-name-789433/.

[Accessed: 22-Nov-2020].

[36] J. Callaham, “The history of Android OS: its name, origin and more,” 2018.

[Online]. Available: https://www.androidauthority.com/history-android-os-

REFERENCES

128

name-789433/. [Accessed: 24-Oct-2018].

[37] Android, “Android,” 2018. [Online]. Available: www.android.com/history.

[Accessed: 24-Oct-2018].

[38] Android Open Source Project, “Secure an Android Device,” 2020. [Online].

Available: https://source.android.com/security. [Accessed: 30-Oct-2020].

[39] J. Agar, Constant Touch: A Global History of the Mobile Phone, Second. Cambridge,

UK: Icon Book Ltd, 2003.

[40] S. P. Hall and E. Anderson, “Operating systems for mobile computing,” J.

Comput. Sci. Coll., vol. 25, pp. 64–71, 2009.

[41] V. Beal, “The History of Microsoft Operating Systems,” IT Business Edge, 2012.

[Online]. Available:

http://www.webopedia.com/DidYouKnow/Hardware_Software/history_of_

microsoft_windows_operating_system.html. [Accessed: 25-Oct-2018].

[42] H. Dwivedi, C. Clark, and D. Thiel, Mobile Application Security. McGraw Hill,

2010.

[43] K. W. Tracy, “History and Evolution of the Android OS,” 2011 Second Int. Conf.

Innov. Bio-inspired Comput. Appl., no. November, pp. 1–8, 2011.

[44] Android, “Android - Security,” 2018. [Online]. Available:

https://source.android.com/security/. [Accessed: 24-Oct-2018].

[45] Google. Inc, “Android Security 2017 Year In Review: March 2018,” no. March,

2018.

[46] Google. Inc, “Android Security - 2014 Year in Review,” 2014.

[47] Google. Inc, “Android Security - 2015 Year In Review,” no. April, 2016.

[48] Google. Inc, “Android Security - 2016 Year In Review,” no. March, 2017.

[49] A. W. Rufi, “Vulnerabilities, Threats, and Attacks,” in Network Security 1 and 2

Companion Guide (Cisco Networking Academy), First Edit., Indianapolis, USA:

Cisco Press, 2006, pp. 1–49.

[50] S. Axelsson, “Research in Intrusion-Detection Systems: A Survey,” 1999.

[51] T. Lunt, “A survey of intrusion detection techniques,” Comput. Secur., vol. 12, pp.

405–418, 1993.

REFERENCES

129

[52] D. E. Denning, “An Intrusion-Detection Model,” IEEE Trans. Softw. Eng., vol. SE-

13, no. 2, pp. 222–232, 1987.

[53] V. Chebyshev, “IT threat evolution Q2 2020. Mobile statistics,” 2020. [Online].

Available: https://securelist.com/it-threat-evolution-q2-2020-mobile-

statistics/98337/. [Accessed: 22-Nov-2020].

[54] V. Chebyshev, F. Sinitsyn, D. Parinov, A. Liskin, and O. Kupreev, “IT Threat

Evolution Q1 2018. Statistics,” 2018. [Online]. Available:

https://securelist.com/it-threat-evolution-q1-2018-statistics/85541/. [Accessed:

29-Oct-2012].

[55] G. Davis and R. Samani, “Mobile Threat Report Q1,” 2018.

[56] L. La Porta, “4 Ways Hackers are Infiltrating Phones with Malwares on Android

Phones,” 2018. [Online]. Available: https://www.wandera.com/malware-on-

android/. [Accessed: 29-Oct-2018].

[57] J. Dhaliwal, “How to Detect and Remove a Virus from Your Android Phone,”

2018. [Online]. Available: https://blog.avast.com/remove-android-virus.

[Accessed: 29-Oct-2018].

[58] Cisco, “What Is the Difference: Viruses, Worms, Trojans, and Bots?,” 2018.

[Online]. Available: https://www.cisco.com/c/en/us/about/security-

center/virus-differences.html. [Accessed: 14-Oct-2018].

[59] S. Allam, S. V. Flowerday, and E. Flowerday, “Smartphone information security

awareness: A victim of operational pressures,” Comput. Secur., vol. 42, pp. 55–65,

2014.

[60] A. Mylonas, A. Kastania, and D. Gritzalis, “Delegate the smartphone user?

Security awareness in smartphone platforms,” Comput. Secur., vol. 34, pp. 47–66,

2013.

[61] Tektonika Staff, “5 Mobile Threats You Should Shut Down in 2018,” 2018.

[Online]. Available:

https://www.tektonikamag.com/index.php/2018/05/04/5-mobile-threats-

you-should-shut-down-in-2018/. [Accessed: 29-Oct-2018].

[62] Y. R. Man, Wireless Mobile Internet Security, Second Edi. West Sussex, UK: John

Wiley and Sons Ltd, 2013.

REFERENCES

130

[63] RSA Security Inc, “Phishing, Vishing and Smishing : Old Threats Present New

Risks,” Ireland, 2009.

[64] W. Lee and B. Rotoloni, “Emerging Cyber Threats Report 2015,” Atlanta, 2015.

[65] J. Patel and P. S. D. Panchal, “A survey on Pharming attack Detection and

prevention methodology,” IOSR J. Comput. Eng., vol. 9, no. 1, pp. 66–72, 2013.

[66] J. B. D. Cabrera, C. Gutiérrez, and R. K. Mehra, “Ensemble methods for anomaly

detection and distributed intrusion detection in Mobile Ad-Hoc Networks,” Inf.

Fusion, vol. 9, no. 1, pp. 96–119, 2008.

[67] D. Palmer, “Mobile malware attacks are booming in 2019: These are the most

common threats,” ZDNet, 2019. [Online]. Available:

https://www.zdnet.com/article/mobile-malware-attacks-are-booming-in-2019-

these-are-the-most-common-threats/. [Accessed: 26-Nov-2020].

[68] C. Cimpanu, “New WAPDropper malware abuses Android devices for WAP

fraud,” ZDNet, 2020. [Online]. Available: https://www.zdnet.com/article/new-

wapdropper-malware-abuses-android-devices-for-wap-fraud/. [Accessed: 26-

Nov-2020].

[69] C. Cimpanu, “New ‘Ghimob’ malware can spy on 153 Android mobile

applications,” ZDNet, 2020. [Online]. Available:

https://www.zdnet.com/article/new-ghimob-malware-can-spy-on-153-

android-mobile-applications/. [Accessed: 20-Nov-2020].

[70] D. Palmer, “Android malware returns and this time it will record what is on

your screen, too,” ZDNet, 2020. [Online]. Available:

https://www.zdnet.com/article/android-malware-returns-and-this-time-it-

will-record-what-is-on-your-screen-too/. [Accessed: 26-Nov-2020].

[71] L. Hautala, “4 signs your Android phone has hidden malware, and how to deal

with it,” Cnet, 2020. [Online]. Available: https://www.cnet.com/how-to/4-

signs-your-android-phone-has-hidden-malware-and-how-to-deal-with-it/.

[Accessed: 22-Nov-2020].

[72] National Cyber Security Centre, “The Cyber Threat to UK Business 2017 - 2018

Report,” 2018.

[73] Check Point Software Technologies LTD, “When Ransomware Goes Mobile,”

REFERENCES

131

2018. [Online]. Available: https://blog.checkpoint.com/2018/06/15/when-

ransomware-goes-mobile/. [Accessed: 18-Oct-2018].

[74] S. McKinley, “Before We Solve the World’s Problems, We Need to Connect It to

the Internet,” 2018. [Online]. Available: https://qz.com/1233010/before-we-

solve-the-worlds-problems-we-need-to-connect-it-to-the-internet/. [Accessed:

30-Oct-2018].

[75] L. Dixon, “Internet Access a Necessity in the Talent Economy,” 2018. [Online].

Available: https://www.clomedia.com/2017/04/10/internet-access-necessity-

talent-economy/. [Accessed: 30-Oct-2018].

[76] L. Gordon and P. Marceux, “Has Internet Access Become a Basic Human

Right?,” 2017. [Online]. Available: https://blog.euromonitor.com/internet-

access-basic-human-right/. [Accessed: 30-Oct-2018].

[77] R. A. Kemmerer and G. Vigna, “Intrusion detection : A Brief History and

Overview,” Secur. Priv., vol. 35, no. 4, pp. 27–30, 2002.

[78] C. Fung and R. Boutaba, Intrusion Detection Networks A Key to Collaborative

Security. Boca Raton, USA: CRC Press, 2014.

[79] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson, “A

Methodology for Testing Intrusion Detection Systems 1,” IEEE Trans. Softw.

Eng., vol. 22, no. October, pp. 719–729, 1996.

[80] P. Uppuluri and R. Sekar, “Experiences with Specification Based Intrusion

Detection,” in Fourth International Symposium on Recent Advances in Intrusion

Detection, W. Lee, L. Mé, and A. Wespi, Eds. CA, USA: Springer-Verlag Berlin

Heidelberg, 2001, pp. 172–189.

[81] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM

Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[82] A. Patel, M. Taghavi, K. Bakhtiyari, and J. Celestino Júnior, “An intrusion

detection and prevention system in cloud computing: A systematic review,” J.

Netw. Comput. Appl., vol. 36, no. 1, pp. 25–41, Jan. 2013.

[83] S. Sevil and J. A. Clark, “Intrusion Detection in Mobile Ad Hoc Networks,” in

Computer Communications and Networks, S. Misra, I. Woungang, and S. Chandra

Misra, Eds. London: Springer London, 2009, pp. 427–454.

REFERENCES

132

[84] J. McHugh, A. Christie, and J. Allen, “Defending Yourself: The role of Intrusion

Detection Systems,” IEEE Softw., no. October, pp. 42–51, 2000.

[85] C. Ko, M. Ruschitzka, and K. Levitt, “Execution Monitoring of Security-Critical

Programs in Distributed Systems: A specification-based Approach,” Proceedings.

1997 IEEE Symp. Secur. Priv. (Cat. No.97CB36097), pp. 175–187, 1997.

[86] S. Sen, “A Survey of Intrusion Detection using Evolutionary Computation,”

2015, p. 24.

[87] D. Anderson, T. Frivold, and A. Valdes, “Next-generation Intrusion Detection

Expert System (NIDES): A summary,” Menlo Park, 1995.

[88] M. M. Sebring, E. W. Shellhouse, M. E. Hanna, and R. A. Whitehurst, “Expert

systems in intrusion detection: A case study,” in Proceedings of the 11th …, 1988,

no. October, pp. 74–81.

[89] K. Ilgun, “USTAT: A Real-time Intrusion Detection System for UNIX,” in IEEE

Symposium on Security and Privacy, 1993, pp. 16–28.

[90] S. E. Smaha, “Haystack: An Intrusion Detection System,” IEEE, pp. 37–44, 1988.

[91] P. a Porras and P. G. Neumann, “EMERALD: Event Monitoring Enabling

Responses to Anomalous Live Disturbances,” in Proc. 20th NIST-NCSC National

Information Systems Security Conference, 1997, pp. 353–365.

[92] P. G. Neumann and P. a Porras, “Experience with EMERALD to date,” Proc. 1st

Conf. Work. Intrusion Detect. Netw. Monit. - Vol. 1, p. 8, 1999.

[93] S. A. Zonouz, K. R. Joshi, and W. H. Sanders, “Cost-aware systemwide intrusion

defense via online forensics and on-demand IDS deployment,” SafeConfig, vol.

6894 LNCS, pp. 71–74, 2010.

[94] S. A. Zonouz, K. R. Joshi, and W. H. Sanders, “FloGuard: Cost-aware

systemwide intrusion defense via online forensics and on-demand IDS

deployment,” Comput. Safety, Reliab. Secur., vol. 6894 LNCS, pp. 338–354, 2011.

[95] D. M. Farid and M. Z. Rahman, “Anomaly network intrusion detection based on

improved self adaptive Bayesian algorithm,” J. Comput., vol. 5, no. 1, pp. 23–31,

2010.

[96] J. D. Cannady, “Artificial neural networks for misuse detection,” Proc. Natl. Inf.

REFERENCES

133

Syst. Secur. Conf., pp. 368–381, 1998.

[97] C. Sinclair, L. Pierce, and S. Matzner, “An application of machine learning to

network intrusion detection,” Proc. Comput. Secur. Appl. Conf. 1999.(ACSAC’99) .

15th Annu., no. 0293, pp. 371–377, 1999.

[98] N. B. Idris and B. Shanmugam, “Artificial Intelligence Techniques Applied to

Intrusion Detection,” 2005 Annu. IEEE India Conf. - Indicon, pp. 52–55, 2005.

[99] T. L. Heberlein, V. G. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber,

“A Network Security Monitor,” IEEE, pp. 296–304, 1990.

[100] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks.,” LISA ’99

13th Syst. Adm. Conf., pp. 229–238, 1999.

[101] J. Frank, “Artificial Intelligence and Intrusion Detection : Current and Future

Directions,” Proc. 17th Natl. Comput. Secur. Conf., vol. 10, pp. 1–12, 1994.

[102] M. Manninen, “Using Artificial Intelligence in Intrusion Detection Systems,”

Helsinki Univ. Technol., vol. 13, p. 6, 2007.

[103] A. A. Adigun, T. M. Fagbola, and A. Adegun, “SwarmDroid : Swarm Optimized

Intrusion Detection System for the Android Mobile Enterprise,” Int.Jour. Com.

Sci. Issues, vol. 11, no. 3, pp. 62–69, 2014.

[104] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, “AntiMalDroid: An efficient SVM-based

malware detection framework for android,” Commun. Comput. Inf. Sci., vol. 243

CCIS, no. PART 1, pp. 158–166, 2011.

[105] A. S. Shamili, C. Bauckhage, and T. Alpcan, “Malware Detection on Mobile

Devices Using Distributed Machine Learning,” 2010 20th Int. Conf. Pattern

Recognit., pp. 4356–4359, 2010.

[106] D. Stiawan, A. H. Abdullah, and M. Y. Idris, “The Trends of Intrusion

Prevention System Network,” ICETC 2010 - 2010 2nd Int. Conf. Educ. Technol.

Comput., vol. 4, pp. 217–221, 2010.

[107] M. Campbell, “Phone invaders,” New Scientist, vol. 223, no. 2977, pp. 32–35, Jul-

2014.

[108] R. Riasat, M. Sakeena, C. Wang, A. H. Sadiq, and Y. Wang, “A Survey on

Android Malware Detection Techniques,” DEStech Trans. Comput. Sci. Eng., no.

REFERENCES

134

wcne, 2017.

[109] Y. Salah, I. Hamed, S. Nabil, A. Abdulkader, and M. M. Mostafa, “Mobile

Malware Detection : A Survey,” Int. J. Comput. Sci. Inf. Secur., vol. 17, no. 1, 2019.

[110] J. Cheng, S. H. Y. Wong, H. Yang, and S. Lu, “SmartSiren: Virus Detection and

Alert for Smartphones,” Proc. 5th Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’07, p.

258, 2007.

[111] H. Li, D. Ma, N. Saxena, B. Shrestha, and Y. Zhu, “Tap-Wave-Rub: Lightweight

Malware Prevention for Smartphones Using Intuitive Human Gestures,” ACM

Conf. Secur. Priv. Wirel. Mob. Networks WISEC’13, pp. 25–30, 2013.

[112] A. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “DAIDS : An Architecture for

Modular Mobile IDS,” 28th Int. Conf. Adv. Inf. Netw. Appl. Work., pp. 328–333,

2014.

[113] A. Fitriah, A. Kadir, N. Stakhanova, and A. A. Ghorbani, “Android Botnets:

What URLs are Telling Us,” vol. 9408, pp. 78–91, 2015.

[114] A. Houmansadr, S. a. Zonouz, and R. Berthier, “A cloud-based intrusion

detection and response system for mobile phones,” 2011 IEEE/IFIP 41st Int. Conf.

Dependable Syst. Networks Work., pp. 31–32, 2011.

[115] S. Zonouz, A. Houmansadra, R. Berthiera, N. Borisova, and W. Sanders,

“Secloud: A cloud-based comprehensive and lightweight security solution for

smartphones,” Comput. Secur., vol. 37, pp. 215–227, 2013.

[116] M. Zheng, M. Sun, and J. C. S. Lui, “DroidAnalytics: A Signature Based Analytic

System to Collect, Extract, Analyze and Associate Android Malware,” 2013 12th

IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun., pp. 163–171, 2013.

[117] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-Based

Malware Detection System for Android,” Proc. 1st ACM Work. Secur. Priv.

smartphones Mob. devices - SPSM ’11, p. 15, 2011.

[118] A. Chaugule, Z. Xu, and S. Zhu, “A Specification Based Intrusion Detection

Framework for Mobile Phones,” Proceeding 9th Int. Conf. Appl. Cryptogr. Netw.

Secur. June 07-10,2011, Nerja, Spain, pp. 19–37, 2011.

[119] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck, “Drebin: Effective

and Explainable Detection of Android Malware in Your Pocket,” Symp. Net. Dist.

REFERENCES

135

Sys. Sec., pp. 23–26, 2014.

[120] F. Mercaldo, V. Nardone, A. Santone, and C. A. Visaggio, “Ransomware Steals

Your Phone. Formal Methods Rescue It,” in International Federation for

Information Processing, vol. 1, 2016, pp. 212–221.

[121] H. Han, R. Li, and X. Gu, “Identifying malicious Android apps using

permissions and system events,” vol. 8, no. 1, pp. 46–58, 2016.

[122] R. Kumar, Z. Xiaosong, R. U. Khan, J. Kumar, and I. Ahad, “Effective and

Explainable Detection of Android Malware Based on Machine Learning

Algorithms,” Proc. 2018 Int. Conf. Comput. Artif. Intell. - ICCAI 2018, pp. 35–40,

2018.

[123] N. Liu, M. Yang, and S. Zhang, “Detecting Applications with Malicious Behavior

in Android Device Based on GA and SVM,” vol. 140, no. Ecae 2017, pp. 257–261,

2018.

[124] A. Boukerche, A. Notare, and S. M. Moretti, “Neural Fraud Detection in Mobile

Phone Operations,” Lect. Notes Comput. Sci. Distrib. Process., vol. 1800, pp. 636–

644, 2000.

[125] M. Halilovic and A. Subasi, “Intrusion Detection on Smartphones,” arXiv eprint

arXiv:1211.6610, 2012.

[126] B. Sanz, I. Santos, J. Nieves, C. Laorden, I. Alonso-Gonzalez, and P. G. Bringas,

“MADS: Malicious Android applications detection through string analysis,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 7873 LNCS, pp. 178–191, 2013.

[127] A. Martín, H. D. Menéndez, and D. Camacho, “MOCDroid: multi-objective

evolutionary classifier for Android malware detection,” Soft Comput., vol. 21, no.

24, pp. 7405–7415, 2017.

[128] S. Sen, E. Aydogan, and A. I. Aysan, “Coevolution of Mobile Malware and Anti-

Malware,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 10, pp. 2563–2574, 2018.

[129] A. Patcha and J. M. Park, “An overview of anomaly detection techniques:

Existing solutions and latest technological trends,” Comput. Networks, vol. 51, no.

12, pp. 3448–3470, 2007.

[130] R. Sekar et al., “Specification-based anomaly detection: a new approach for

REFERENCES

136

detecting network intrusions,” in Proceedings of the Ninth ACM Conference on

Computer and Communication Security, 2002, pp. 265–274.

[131] P. Mukesh Krishnan, M.B Sheik Abdul Khader, “Estimating Detection Trust

Hold For Intrusion Detection Systems in Mobile Ad hoc Network: A

Comprehensive Study,” J. Comput. Appl. Res. Dev., vol. 1, no. 1, pp. 1–7, 2011.

[132] H. KhorasaniZadeh, Z. Mohamed Sidek, and J.-L. Ab Manan, “An Overview on

Intrusion Detection Systems,” Kuala Lumpur, 2013.

[133] M. Sechi, M. Annoni, A. Boukerche, and F. Augusto, “An Intrusion Detection

System to Mobile Phone Networks,” in EXPO 2000, 2000, pp. 362–370.

[134] D. S. Michalopoulos and N. L. Clarke, “Intrusion Detection System for mobile

devices,” in Advances in Networks, Computing and Communications, 2000, pp. 205–

212.

[135] L. O. Babatope, L. Babatunde, and I. Ayobami, “Strategic Sensor Placement for

Intrusion Detection in Network-Based IDS,” Int. J. Intell. Syst. Appl., vol. 6, no. 2,

pp. 61–68, 2014.

[136] H. Chen, J. A. Clark, S. A. Shaikh, H. Chivers, and P. Nobles, “Optimising IDS

Sensor Placement,” ARES 2010 - 5th Int. Conf. Availability, Reliab. Secur., pp. 315–

320, 2010.

[137] N. Vallina-Rodriguez and J. Crowcroft, “ErdOS: Achieving Energy Savings in

Mobile OS,” in Proceedings of the sixth international workshop on MobiArch -

MobiArch ’11, 2011, pp. 37–42.

[138] M. Alam and S. T. Vuong, “An Intelligent Multi-Agent Based Detection

Malware,” pp. 226–237, 2014.

[139] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary Computation Basic

Algorithms and Operators, First. Taylor & Francis, 2000.

[140] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing. 2003.

[141] K. A. De Jong, “Evolutionary Computation,” in Evolutionary Computation: A

Unified Approach, Cambridge, UK: A Bradford Book, 2006, p. 272.

[142] C. Reeves, “Genetic algorithms,” Handb. metaheuristics, pp. 109–140, 2010.

[143] M. Mitchell, “An Introduction to Genetic Algorithms (Complex Adaptive

REFERENCES

137

Systems),” MIT Press, p. 221, 1998.

[144] J. A. Clark, “Evolutionary Computation (EVO) Genetic Algorithms (L3).” 2016.

[145] S. Marsland, Machine Learning: An Algorithmic Perspective, First. Boca Raton,

USA: Chapman & Hall/CRC, 2009.

[146] H. Crc and S. Marsland, MACHINE Learning - an algorithmetic view 2nd Edition.

2015.

[147] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic Programming,

no. March. 2008.

[148] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,

“Adversarial Perturbations Against Deep Neural Networks for Malware

Classification,” 2016.

[149] M. Dimjasevic, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Android Malware

Detection Based on System Calls,” UUCS-15-003, vol. 11, no. 1, pp. 209–216,

2015.

[150] P. Irolla and A. Dey, “The duplication issue within the Drebin dataset,” J.

Comput. Virol. Hacking Tech., pp. 1–5, 2018.

[151] Android, “Developer Guide Manifest,” 2018. [Online]. Available:

https://developer.android.com/guide/topics/manifest/manifest-intro.

[Accessed: 03-May-2018].

[152] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and

Evolution,” 2012 IEEE Symp. Secur. Priv., no. 4, pp. 95–109, 2012.

[153] Oracle, “Oracle Virtual Oracle VM VirtualBox.” 2016.

[154] V. Pandey, “APK Studio.” 2015.

[155] K. Dunham, S. Hartman, J. A. Morales, M. Quintans, and T. Strazzere, Android

malware and analysis, First. Boca Raton, USA: CRC Press, 2014.

[156] VirusTotal, “VirusTotal.” [Online]. Available: https://www.virustotal.com/.

[Accessed: 10-Jan-2016].

[157] Android, “Developer Guides Permissions,” 2018. [Online]. Available:

https://developer.android.com/guide/topics/permissions/overview.

[Accessed: 25-Sep-2018].

REFERENCES

138

[158] S. Luke et al., “ECJ,” The ECJ Owner’s Manual ver. 23, 2015. [Online]. Available:

https://cs.gmu.edu/~eclab/projects/ecj. [Accessed: 14-Sep-2015].

[159] N. Salkind, “Encyclopedia of Research Design.” Thousand Oaks, California,

2010.

[160] W. B. Langdon, Genetic Programming and Data Structures: Genetic Programming +

Data Structures = Automatic Programming!, First Edit. Springer Science & Business

Media, 1998.

[161] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a

Smartphone,” in USENIX Annual Technical Conference, 2010, p. 14.

[162] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An Empirical Study of the Energy

Consumption of Android Applications,” in IEEE International Conference on

Software Maintenance and Evolution, 2014, pp. 121–130.

[163] Y. Zhu, M. Halpern, and V. J. Reddi, “Event-based scheduling for energy-

efficient QoS (eQoS) in mobile Web applications,” in 2015 IEEE 21st International

Symposium on High Performance Computer Architecture, HPCA 2015, 2015, pp. 137–

149.

[164] C. Bernal-Cárdenas, “Improving energy consumption in Android Apps,” in

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,

2015, pp. 1048–1050.

[165] N. Li, N. Zhang, S. K. Das, and B. Thuraisingham, “Privacy preservation in

wireless sensor networks: A state-of-the-art survey,” Ad Hoc Networks, vol. 7, no.

8, pp. 1501–1514, Nov. 2009.

[166] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile application

energy consumption using program analysis,” in Proceedings - International

Conference on Software Engineering, 2013, pp. 92–101.

[167] S. Zhidkov, A. Sychev, A. Zhidkov, and Alexander Petrov, “On Smartphone

Power Consumption in Acoustic Environment Monitoring Applications,” Appl.

Syst. Innov., vol. 1, no. 1, p. 8, 2018.

[168] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating Android

applications’ CPU energy usage via bytecode profiling,” in 2012 1st International

Workshop on Green and Sustainable Software, GREENS 2012 - Proceedings, 2012, pp.

REFERENCES

139

1–7.

[169] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating Source Line Level

Energy Information for Android Applications,” in Proceedings of the 2013

International Symposium on Software Testing and Analysis, 2013, pp. 78–89.

[170] M. Bokhari and M. Wagner, “Optimising Energy Consumption Heuristically on

Android Mobile Phones,” in Proceedings of the 2016 on Genetic and Evolutionary

Computation Conference Companion - GECCO ’16 Companion, 2016, pp. 1139–1140.

[171] M. A. Bokhari, B. R. Bruce, B. Alexander, and M. Wagner, “Deep Parameter

Optimisation on Android Smartphones for Energy Minimisation-a tale of Woe

and a Proof-of-Concept,” in GECCO 2017 - Proceedings of the Genetic and

Evolutionary Computation Conference Companion, 2017, pp. 1–8.

[172] I. Polakis, M. Diamantaris, T. Petsas, F. Maggi, and S. Ioannidis, “Powerslave:

Analyzing the energy consumption of mobile antivirus software,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2015, vol. 9148, pp. 165–184.

[173] H. Yang and R. Tang, “Power Consumption Based Android Malware

Detection,” J. Electr. Comput. Eng., vol. 2016, pp. 1–7, 2016.

[174] J. Bickford, F. Park, A. Varshavsky, and F. Park, “Security versus Energy

Tradeoffs in Host-Based Mobile Malware Detection,” MobiSys’11 Proc. 9th Int.

Conf. Mob. Syst. Appl. Serv., no. July, 2011.

[175] K. Deb, “Multi-Objective Optimisation,” in Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques, E. K. Burke and G.

Kendall, Eds. Springer Science Business Media,Inc, 2005, pp. 273–316.

[176] S. Şen, “Evolutionary Computation Techniques for Intrusion Detection in Mobile

Ad Hoc Networks,” University of York, 2010.

[177] Samadar Salim Majeed, “Multi-Objective Optimization,” 2014. [Online].

Available: https://www.slideshare.net/SEMEDARSALIM/multi-objective-

optimization. [Accessed: 12-Nov-2018].

[178] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results,” Evol. Comput., vol. 8, no. 2, pp. 173–195, 2000.

[179] Samadar Salim Majeed, “Multi-Objective Optimization,” 2014. .

REFERENCES

140

[180] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective

optimization: formulation, discussion and generalization,” in Fifth International

Conference on Genetic Algorithms, 1993, vol. 93, no. July, pp. 416–423.

[181] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization : Methods

and Applications,” 1999.

[182] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization : Methods

and Applications,” Berichte aus der Inform. Shak. Verlag, Aachen-, vol. no13398, no.

30, p. 120, 1999.

[183] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary

Algorithm: Empirical Results,” 1999.

[184] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2 : Improving the Strength Pareto

Evolutionary Algorithm,” 2001.

[185] J. L. Guardado, J. Torres, S. Maximov, and E. Melgoza, “An Encoding Technique

for Multiobjective Evolutionary Algorithms Applied to Power Distribution

System Reconfiguration,” vol. 2014, 2014.

[186] R. T. F. A. King, K. Deb, and H. C. S. Rughooputh, “Comparison of NSGA-II and

SPEA2 on the Multiobjective Environmental / Economic Dispatch,” vol. 16, pp.

485–511, 2010.

[187] K. Liu, G. Pinto, and Y. D. Liu, “Data-oriented characterization of application-

level energy optimization,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2015, vol. 9033, pp. 316–331.

[188] Tutorials Point, “Java.lang.System.nanoTime() Method,” 2015. [Online].

Available: https://www.tutorialspoint.com/java/lang/system_nanotime.htm.

[Accessed: 20-Jul-2015].

[189] A. Purohit, N. S. Choudhari, and A. Tiwari, “Code Bloat Problem in Genetic

Programming,” Int. J. Sci. Res. Publ., vol. 3, no. 4, p. 1612, 2013.

[190] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective genetic

programming: Reducing bloat using SPEA2,” in Proceedings of the IEEE

Conference on Evolutionary Computation, ICEC, 2001, vol. 1, pp. 536–543.

[191] I. Grutze, “The New Mobile Threat Landscape, circa 2017 to 2018,” 2018.

REFERENCES

141

[Online]. Available: https://blog.trendmicro.com/the-new-mobile-threat-

landscape-circa-2017-to-2018/. [Accessed: 09-Apr-2018].

[192] S. Collet, “Five new threats to your mobile security,” 2017. [Online]. Available:

https://www.csoonline.com/article/2157785/data-protection/five-new-

threats-to-your-mobile-security.html. [Accessed: 09-Oct-2018].

[193] R. Samani, “McAfee Mobile Threat Report Mobile Malware Is Playing Hide and

Steal,” 2020.

[194] A. Karim, “On the Analysis and Detection of Mobile Botnet,” J. Univers. Comput.

Sci., vol. 22, no. 4, pp. 567–588, 2016.

[195] C. Boyd, “SamSam ransomware: what you need to know,” 2018. [Online].

Available: https://blog.malwarebytes.com/cybercrime/2018/05/samsam-

ransomware-need-know. [Accessed: 14-Oct-2018].

[196] Sarah, “Spotlight on ransomware: Ransomware payment methods,” 2017.

[Online]. Available: https://blog.emsisoft.com/en/28256/ransomware-

payment-methods. [Accessed: 15-Oct-2018].

[197] S. Sjouwerman, “The Evolution of Mobile Ransomware,” 2018. [Online].

Available: https://blog.knowbe4.com/evolution-of-mobile-ransomeware.

[Accessed: 15-Oct-2018].

[198] McAfee, “Virus Profile: Android/FakeDoc.A,” 2013. [Online]. Available:

https://home.mcafee.com/virusinfo/virusprofile.aspx?key=2290837.

[Accessed: 20-Oct-2018].

[199] McAfee, “Virus Profile: Android/Imlog.A,” 2011. [Online]. Available:

https://home.mcafee.com/VirusInfo/VirusProfile.aspx?key=731165. [Accessed:

20-Oct-2018].

[200] F-Secure, “Mobile Threat Report Q1 2012,” 2012.

[201] Symantec Corporation, “Android.Lotoor,” 2012. [Online]. Available:

https://www.symantec.com/security-center/writeup/2012-091922-4449-99.

[Accessed: 20-Oct-2018].

[202] Symantec Corporation, “Android.Mobiletx,” 2012. [Online]. Available:

https://www.symantec.com/security-center/writeup/2012-052807-4439-99.

[Accessed: 20-Oct-2018].

REFERENCES

142

[203] F-Secure, “Mobile Threat Report Q4 2012,” 2012.

[204] FortiGuard Labs, “Android/SendPay.G!tr,” 2012. [Online]. Available:

https://fortiguard.com/encyclopedia/virus/3682676/android-sendpay-g-tr.

[Accessed: 20-Oct-2018].

[205] Huawei, “2013 Botnets and DDoS Attacks Report,” 2013.

[206] C. Wueest, “The continued rise of DDoS attacks,” pp. 1–31, 2014.

[207] FortiGuard Labs, “Android/Pletor.A!tr,” 2014. [Online]. Available:

https://fortiguard.com/encyclopedia/virus/6235399. [Accessed: 20-Oct-2018].

[208] B. Krebs, “Android Botnet Targets Middle East Banks,” 2014. [Online].

Available: https://krebsonsecurity.com/tag/sandroid/. [Accessed: 20-Oct-

2018].

[209] FortiGuard Labs, “Android/Wroba.AP!tr,” 2014. [Online]. Available:

https://www.fortiguard.com/encyclopedia/virus/6495604. [Accessed: 20-Oct-

2018].

[210] A. Karim, R. Salleh, and S. A. A. Shah, “DeDroid: A Mobile Botnet Detection

Approach Based on Static Analysis,” 2015 IEEE 12th Intl Conf Ubiquitous Intell.

Comput. 2015 IEEE 12th Intl Conf Auton. Trust. Comput. 2015 IEEE 15th Intl Conf

Scalable Comput. Commun. Its Assoc. Work., pp. 1327–1332, 2015.

[211] A. J. Alzahrani and A. a Ghorbani, “SMS Mobile Botnet Detection Using A

Multi-Agent System : Research in Progress Categories and Subject Descriptors,”

2014.

[212] M. Parkour, “Contagio Mobile,” 2016. [Online]. Available:

http://contagiominidump.blogspot.it/. [Accessed: 15-Nov-2016].

[213] “Ransomware Samples,” 2016. [Online]. Available: http://ransom.mobi/.

[Accessed: 15-Nov-2016].

[214] L. H. Yeo, X. Che, and S. Lakkaraju, “Understanding Modern Intrusion

Detection Systems : A survey,” 2017.

[215] D. Price, “How to remove a virus from an iPhone or iPad,” 2018. [Online].

Available: https://www.macworld.co.uk/how-to/iphone/remove-virus-

iphone-ipad-3658975/. [Accessed: 07-Nov-2018].

REFERENCES

143

[216] S. Khandelwal, “New Man-in-the-Disk attack leaves millions of Android phones

vulnerable,” 2018. [Online]. Available:

https://thehackernews.com/2018/08/man-in-the-disk-android-hack.html.

[Accessed: 07-Nov-2018].

APPENDIX 1 - OTHER RESULTS FOR USING OPTIMAL PARAMETER CHOICE

144

APPENDIX 1 –OTHER RESULTS FOR USING OPTIMAL

PARAMETER CHOICE

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.90 (α),0.10 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.85 (α),0.15 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.80 (α),0.20 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.75 (α),0.25 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.70 (α),0.30 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.65 (α),0.35 (β))

APPENDIX 1 - OTHER RESULTS FOR USING OPTIMAL PARAMETER CHOICE

145

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.60 (α),0.40 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.55 (α),0.45 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.45 (α),0.55 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.40 (α),0.60 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.35 (α),0.65 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
ur

ac
y)

Malware Families

Detection per malware family
(Weight 0.30 (α),0.70 (β))

APPENDIX 1 - OTHER RESULTS FOR USING OPTIMAL PARAMETER CHOICE

146

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.20 (α),0.80 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.15 (α),0.85 (β))

0%

20%

40%

60%

80%

100%

A B C D E F G H I J K L M N O P Q R S T

D
et

ec
tio

n
Ra

te
 (A

cc
)

Malware Families

Detection per malware family
(Weight 0.10 (α),0.90 (β))

APPENDIX 2 - OTHER RESULTS FOR PARETO FRONTIER

147

APPENDIX 2 – OTHER RESULTS FOR PARETO FRONTIER

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0.00% 0.10% 0.20% 0.30% 0.40% 0.50%

FP
R

FNR

Pareto Frontier for BaseBridge
(Weight = 0.05 - 0.95)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
BaseBridge

FPR FNR

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.00% 2.00% 4.00% 6.00% 8.00%

FP
R

FNR

Pareto Frontier for FakeDoc
(Weight = 0.05 - 0.95)

-1%

0%

1%

2%

3%

4%

5%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
FakeDoc

FPR FNR

-10%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
FakeInstaller

FPR FNR

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0.00% 2.00% 4.00% 6.00%

FP
R

FNR

Pareto Frontier for FakeInstaller
(Weight = 0.05 - 0.95)

0.05

0.15-0.95

APPENDIX 2 - OTHER RESULTS FOR PARETO FRONTIER

148

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.00% 2.00% 4.00% 6.00% 8.00%

FP
R

FNR

Pareto Frontier for FakeRun
(Weight = 0.05 - 0.95)

-1%

0%

1%

2%

3%

4%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
FakeRun

FPR FNR

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.00% 2.00% 4.00% 6.00%

FN
R

FPR

Pareto Frontier for Geinimi (Weight = 0.05 - 0.95)

0.15-0.95

0.05-0.10

-1%

1%

3%

5%

7%

9%

11%

13%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
Geinimi

FPR FNR

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0.00% 10.00% 20.00% 30.00% 40.00%

FN
R

FPR

Pareto Frontier for GinMaster
(Weight = 0.05 - 0.95)

0.65-0.95

0.05-0.60

-10%

0%

10%

20%

30%

40%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
GinMaster

FPR FNR

APPENDIX 2 - OTHER RESULTS FOR PARETO FRONTIER

149

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00% 2.00% 4.00% 6.00% 8.00%

FP
R

FNR

Pareto Frontier for Imlog (Weight = 0.05 - 0.95)

0.10-0.95

0.05

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
Imlog

FPR FNR

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

0.00% 2.00% 4.00% 6.00% 8.00%

FP
R

FNR

Pareto Frontier for Kmin (Weight = 0.05 - 0.95)

-1%

0%

1%

2%

3%

4%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
Kmin

FPR FNR

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0.00% 2.00% 4.00% 6.00% 8.00%

FP
R

FNR

Pareto Frontier for MobileTx
(Weight = 0.05 - 0.95)

0.10-0.95

0.05

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
MobileTx

FPR FNR

APPENDIX 2 - OTHER RESULTS FOR PARETO FRONTIER

150

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

-1.00% 1.00% 3.00% 5.00% 7.00%

FP
R

FNR

Pareto Frontier for Opfake (Weight = 0.05 - 0.95)

0.10-0.95

0.05

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
Opfake

FPR FNR

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

0.00% 0.50% 1.00% 1.50% 2.00%

FP
R

FNR

Pareto Frontier for Plankton (Weight = 0.05 -
0.95)

-1%

0%

1%

2%

3%

4%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
Plankton

FPR FNR

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0.00% 0.50% 1.00% 1.50% 2.00%

FP
R

FNR

Pareto Frontier for SMSreg (Weight = 0.05 - 0.95)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.05 0.25 0.45 0.65 0.85

D
et

ec
tio

n
Pe

rc
en

ta
ge

Weight

False Negative Rate and False Positive Rate for
SMSreg

FPR FNR

	1.1 Motivation
	1.1.1 Mobile Phones Technologies
	1.1.2 Risks Faced by the Mobile Phone User
	1.1.3 Brief Overview of Intrusion Detection Systems (IDSs)
	1.1.4 Brief Overview of Machine Learning
	1.1.5 Mobile Phone Platform
	1.1.6 Summary

	1.2 Thesis Hypothesis
	1.3 Brief Overview of the Thesis Chapters
	1.4 Summary of Thesis Contributions
	Introduction to Mobile
	2.2 Mobile Operating System Security
	2.2.1 Overview of Android Mobile Security
	Conclusion

	2.3 Threats and Attacks
	2.3.1 Threats Faced by Users While Using the Internet or Networks
	2.3.2 Threats Faced by the Mobile Phone User
	2.3.3 Attacks on the Smartphone
	2.3.3.1 Android Malware

	2.4 Intrusion Detection Systems (IDSs)
	2.4.1 Intrusion Detection Systems Approaches
	2.4.2 Intrusion Detection System Performance Metrics
	2.4.3 Related Research on Intrusion Detection Systems
	2.4.4 Evolution of Intrusion Detection Systems

	2.5 Intrusion Detection Systems in Mobile Phones
	2.6 Summary of Major Issues in Intrusion Detection Systems
	2.6.1 High false alarm rates
	2.6.2 Real-time detection
	2.6.3 IDS sensor placement
	2.6.4 Limited resources
	2.6.5 Limited test datasets

	2.7 Conclusion
	Brief Overview of Evolutionary Computation
	Genetic Algorithms
	3.1.2 Genetic Programming
	Application of AI to Detect Attacks: Related Work
	3.1.4 Why Evolutionary Computation?

	3.2 Proposed Framework of Malware Detection
	Data Acquisition
	Data Pre-Processing
	3.2.3 Features Extraction and Selection
	3.2.4 Training and Testing
	3.2.5 Offline Supervised Learning

	3.3 Evolving Detection Rules
	3.3.1 Feature Selection
	3.3.2 Application of Genetic Programming to Intrusion Detection in Mobile Phones

	Introduction
	4.1.1 Motivation
	Contributions

	4.2 Experimental Investigation
	4.2.1 Preliminary Analysis
	4.2.1.1 Datasets
	4.2.1.2 Parameters
	4.2.1.3 Features Selection
	4.2.1.4 Results and Discussion
	4.2.1.5 Conclusion

	4.3 The Performance Evaluation of Genetic Programming
	4.4 Results Comparison
	4.5 The Evaluation of the Genetic Programming Improvement Using Optimal Parameters
	4.6 Conclusion
	Introduction
	5.1.1 Motivation
	5.1.2 Contribution

	5.2 Multi-Objective Evolutionary Computation
	5.2.1 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

	5.3 Implementation
	5.3.1 Analysis of Power Consumption and Execution Time of Evolved Programs
	5.3.2 Discovering Trade-offs in the Intrusion Detection Programs
	5.3.2.1 Experiment: Trade-offs in Detection Programs using DR, Power Consumption and Execution Time.

	Introduction
	6.1.1 Motivation
	6.1.2 Contribution

	6.2 Experimental Parameters
	6.3 Discovering GP Performance using Different Datasets
	6.3.1 Malware Datasets
	Experiments Overview
	6.3.1.2 Results and Discussion
	6.3.1.3 Results Conclusion

	6.3.2 Android Botnets Datasets
	6.3.2.1 Experiments Overview
	6.3.2.2 Results and Discussion
	6.3.2.3 Results Conclusion

	6.3.3 Ransomware Datasets
	6.3.3.1 Experiments Overview
	6.3.3.2 Results and Discussion
	6.3.3.3 Results Conclusion

	Conclusion
	Review of Experimentation
	7.2 Thesis Contributions
	Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

