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Abstract 

Medical examination gloves are used worldwide and are one of the most common personal 
protective equipment (PPE) used. The polymers used to develop these gloves undergo rigorous 
testing to ensure they meet the requirements for use. Primarily, these tests assess the barrier 
integrity and tensile properties. The effects of placing a membrane over the hand, however, has 
been shown to be detrimental to the successful performance of tasks carried out by the wearer. The 
extent of this reduced performance is unknown, but any reduction in tactility and/or dexterity could 
be disadvantageous to patient care. It could also impact PPE compliance, causing users to remove 
gloves for certain tasks. As such, this research introduces a range of test methodologies for donning 
and doffing gloves, as well as assessing how friction is modified with the introduction of 
contaminants that are encountered when gloves are worn.   

In order to effectively assess glove performance, the environments gloves encounter, which 
have received little attention in previous studies, should be carefully considered and replicated as 
closely as possible. The aim of this thesis is to investigate the effects of gloves on users when they 
are used in-situ Test protocols were developed to cover three key performance areas: donning and 
doffing, glove contamination, and dexterity. Manual performance tests were set up using readily 
existing dexterity and sensitivity tests (Purdue pegboard and a simulated tactile (bumps) test). To 
better understand donning and doffing, friction assessments were conducted to assess the 
tribological interactions between the skin and the inner surface of glove materials, having 
undergone different treatments. The friction assessments were repeated for interactions between 
the outer surface of glove materials and objects with textures that replicated typical hand and tool 
interactions, both in dry and simulated contamination conditions (water, mucus, blood and other 
bodily fluids).  

Three key stages of the donning process were identified (preparation, hand insertion and 
manipulation), and in all stages, moisture was found to significantly complicate the donning process, 
as the gloves stuck to the hands more frequently. In wet-hand conditions, polymer coated latex 
gloves were quicker to don and had lower friction than chlorinated gloves. In addition, nitrile gloves 
were manufactured specifically for this project, looking at different thicknesses and chlorination 
treatment strengths. Chlorinating nitrile gloves at 2000ppm appeared to be more beneficial for 
donning. Doffing was found to be similar regardless of the material, condition, or thickness.  

The gloves that produced stiffer tensile material samples were found to reduce friction and 
reduce the dexterity performance of the glove users. When gloves were contaminated, friction was 
found to be greatly reduced when compared to the dry condition. This reduction in friction was 
greater for latex, which decreased the gross dexterity and sensitivity of the user. Smaller reductions 
in friction were observed overall with nitrile, combined with an improvement in dexterity and 
sensitivity. A synthetic blood was also developed and validated for the tribological properties to 
circumvent the need for use of animal blood in future friction assessments. 

 Knowledge of which physical properties affect which key performance area is fundamental 
to manufacturers. Optimising the combination of these properties (within other constraints such as 
cost, constituent availability, and ecological impact) will improve task performance, increasing user 
satisfaction, and ultimately, PPE compliance and patient safety. 
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Chapter One: Introduction 
 

1.1 Motivation of research 

The purpose of medical examination gloves is to act as a first line of personal protective equipment 

(PPE) for the hands to protect from contamination. For instance, clinical staff, such as doctors and 

surgeons are required to don medical gloves to protect themselves and patients from pathogens. 

Once manufactured, the industry looks very closely at assessing whether these gloves are good 

enough to act as a barrier. However, there is relatively little research oriented towards how these 

gloves affect the performance the user. This Ph.D. research is sponsored by Synthomer, a global 

supplier of aqueous polymers, who supply nitrile glove polymers to leading glove manufacturers (1). 

Predicted to raise to £6.1 billion in the 2020 global market, up from 7.2% in 2017, the medical glove 

industry dominates the market in PPE. Driving factors around this increase in market value are the 

stringent regulations in clinical settings, personal care, sanitation and any situations where 

contamination of the skin may be an issue (2). The demand for gloves has increased due to the surge 

in the SARS-CoV-2 (covid-19) pandemic, as gloves are worn more frequently, and changed more 

often (3). Generally, three types of medical glove exist: examination, surgical, and chemotherapy. 

The work conducted in this thesis focussed on one type of medical glove, examination, as these are 

most commonly used. Chemotherapy gloves are thicker, to prevent radiation penetrating rapidly to 

the skin. Surgical gloves are similar to examination gloves, but they exist in more precise sizing and 

are said to offer better tactile sensitivity. These are also made more durable, for prolonged periods 

of use (4, 5). Glove manufacturers and material suppliers (such as Synthomer) are the two industries 

that are key to the development of medical gloves and share the same goal; to improve user 

compatibility and performance of medical gloves, whilst maintaining or potentially saving costs. 

Therefore, the main aim of this work is to understand the effects gloves have on users when they are 

replicating the conditions they encounter when in use.  

Research into the glove materials by these industries focuses on streamlining processes, and the 

generation of new glove polymers. This has led to the expansion of non-latex polymers, such as 

nitrile butadiene rubber, popular due to the characteristics being similar to that of natural latex. 

Furthermore, the increased use of synthetics curtails the likelihood of adverse reactions to the 

gloves due to rising latex allergies. The market trends now lean more towards these non-latex 

alternatives, with nitrile being the most common examination glove being developed (2). New 

techniques and processes facilitate an alteration in the chemistry of the butadiene rubber, allowing 

different gloves to be created. These gloves are an improvement on the younger generations of 

nitrile, offering better mechanical properties or different chemical resistant capabilities. However, as 
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these glove materials change, it is unknown if the effects they have on user performance changes. 

Understanding how the differences in material parameters affect different aspects of glove use will 

allow Synthomer, and polymer chemists, to develop gloves that can be manufactured for specific 

purposes (e.g. improved dexterity). It may be worrying to think that what is seen as first line defence 

PPE, could contribute to a reduction in health care capability, and a rise in misdiagnoses. However, 

this may be the case (6–9).  

Although little work exists looking at the impact of gloves on the performance, the World Health 

Organisation estimates there is between a 0.005-0.02% chance of having equipment retained after 

surgery (10). Conversely, studies have stated that the risk is much higher, around 12.5% (11). Most 

commonly, the equipment is small items such as sponges, scissors, and pins. However, measuring 

devices, scopes and even instruction manuals have been found in people after surgeries. It is 

unknown as to how this occurs. It is suggested the hastiness of some surgeries affects the judgement 

of the surgeon (10). However, surgical work requires tactile exploration in order to identify areas in 

the body. It is just as possible that same tactile sensation that allows them to feel the body, has 

failed to allow the identification of foreign objects (6, 7, 12). Although examination gloves are not 

used in surgeries, this is indicative that problems exist, and in the wider context, examination gloves 

are more routinely used than surgical gloves. Another example of this is highlighted in a study by 

Jones, Friend, Dreher, et al. (13) who found that of 3225 patients, 510 may have had their prostate 

cancer missed upon manual exploration. It is not possible to conclude that the gloves are the cause 

of this, but it is reasonable to assume that the gloves may have dampened sensitivity, possibly 

leading to misdiagnosis in some of these cases. The underlying theme of both the retained 

instruments and the missed prostate cancer is that the tactility and dexterity, vital for the tasks, may 

have been impinged by the use of gloves. Studies have shown gloves affect sensitivity, and in some 

instances, dexterity is also affected, which could lead to poor patient care (6, 12). In addition, many 

of these studies do not consider the situations gloves will be used in, and are studied in a dry, 

uncontaminated condition. The understanding of how these gloves both interact with these 

contaminants, and how the performance (task, protection, ease of use) is affected, is also not well 

researched in the literature. Therefore, there is a requirement for assessments that replicate the 

conditions in which gloves are used, to fully assess the effects of various properties on glove 

performance.  
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1.2 Aims of research 

The aim of this research is to improve how medical examination gloves can be assessed in a way that 

replicates their use in working environments, as opposed to previous work where simplistic testing 

was used to assess the effects of gloves on the user. The understanding gained from these 

assessments can then inform manufacturers how the use of different glove polymers, and 

treatments, will affect the performance of tasks carried out when wearing gloves, including the 

donning and doffing process. The research in this thesis can then be oriented at both filling the gaps 

in knowledge and making the assessments more applicable to manufacturers, such as Synthomer. In 

order to do that, the thesis explores the manufacturing of these medical gloves, and the differences 

present between them. The objectives of this thesis are as follows: 

• To review the literature published on the assessment of medical gloves and liaise with 

industry to understand the assessments being conducted under the standardised testing. 

There is a requirement to identify unexplored areas in current literature by the way of a 

paper grading. This allows for identification of how previous research can be made more 

applicable, to replicate representative working conditions.   

• To gain knowledge of where the user issues lie with gloves through the use of 

questionnaires. In conjunction with this, knowledge of what the gloves are used for will 

allow a more targeted approach for understand the contaminants gloves encounter when 

being used. This will be conducted thought the use of surveys to understand the perception 

amongst common examination glove users.  

• Understanding the tribological interactions between gloves and a variety of surfaces is 

salient, and seldom studied (6). Furthermore, assessing how these tribological interactions 

are altered by the presence of contaminants, such as blood and powders, are important, as 

this altered friction could cause issues with equipment being dropped/slipping out of the 

hands. In addition, it is possible that in medical examinations, where gloves are required, 

information that is received through the haptic interface could be missed (13). Thus, 

assessing how contaminants affect glove friction, and ultimately, performance is explored in 

this thesis using common contaminants (mucus, oil, blood, water, disinfectant, and powder), 

informed from everyday glove users. This allows for an assessment of the effects 

contaminated gloves have on friction and the performance parameters of glove users. 

• The interaction between gloves and skin has received little attention in the literature. The 

donnability of gloves is of a great research interest to the manufacturing industry, as 
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different coatings applied to the inside of gloves are said to produce different results in 

terms of ease of donning (14–16). Development of methodologies to assess donning and 

doffing will help investigate how different coating and treatments impact the user 

experience. In addition, the differences in frictional properties can be highlighted and linked 

to the physical parameters of the materials. From this, an understanding of the fundamental 

skin-polymer interactions can be gained, which can inform manufacturers and glove users on 

glove selection and development.  

• The chemistry of medical gloves is well understood in the glove industry, allowing the 

patented formations of nitrile to be developed and used for film formation by the raw 

material manufacturers. Knowledge of how these chemical changes affect the glove 

performance in terms of tensile properties and puncture resistance are studied and 

recognised in the industry. However, the linking of the changes in chemistry, and ultimately 

physical changes, to the performance has had little exploration, and requires investigation. 

By using gloves of the same core materials, but with different additives or treatments, the 

effects of gloves on donning, sensitivity, dexterity and friction can be understood. In 

addition, the thesis focuses on the replicability of these tests, and putting them into industry 

as an assessment method. This understanding can then inform manufacturers of which 

physical properties of the gloves affect the end performance of glove users. 

 

1.3 Novelty and Impact 

The research conducted in this thesis offers new methodologies for assessing glove performance 

from an ergonomic and tribological viewpoint. By obtaining information from glove users about their 

perceived issues with gloves, the research was tailored to replicate the conditions gloves encounter 

when in use. The applicability of tests to the conditions they are used in is lacking in the literature, 

rendering some of the work obsolete, and incomparable. Thus, the assessments conducted in this 

thesis, draws focus on the needs of the users, in order to make the research relevant to the everyday 

problems, and aims to be suitable for adoption by industry. In some cases, the assessments may not 

induce repeatable tests in industries (such as the donning of gloves), without further refinement, but 

the research can give insight into how the gloves affect user performance. The research conducted 

throughout this thesis has led to multiple research outputs including publications (Appendix: Section 

A) and several industry presentations, including to glove material manufacturers, and glove 

manufacturing plants in Malaysia. The originality of the thesis takes a fresh approach on the work 

industry normally conducts, linking their mechanical tests, and chemical development, to the impact 



5 
 

gloves have on users in-situ. Finer details on the novelty and impact can be found in Chapter 10, 

Section 10.1. 

 

1.4 Structure of thesis 

This thesis is organised into ten chapters that address the key aspects of the research. These are also 

set out in Figure 1.1. 

Chapter 1 gives an overview of the issues which drive the need for the research and the novelty and 

impact of the work conducted. In this chapter, the aims and objectives of the thesis are also 

described. 

Chapter 2 provides insight into how gloves are manufactured, processed, and assessed. The review 

also provides an evaluation of the present understanding of how medical examination gloves have 

been assessed in the literature, and the need to incorporate the conditions gloves are used in, to 

fully understand the tribological properties of gloves.  

Chapter 3 investigates where research should be focused, by asking participants who use medical 

examination gloves to provide answers on how gloves affect their performances, and what 

contaminants they are likely to encounter in their profession.  

Chapter 4 focuses on the inner side of the gloves, which is the ‘donning side’. The effects of different 

glove materials and different finishing coatings/treatments are assessed for their donnability and 

doffability, along with assessments of how the frictional properties change between the glove 

coatings and treatments.  

Chapter 5 closely follows the protocols developed in Chapter 4, looking at the donning of medical 

examination gloves. However, this chapter looks gloves that have been formed ad-hoc, to assess the 

frictional properties of different thicknesses and chlorination treatments. The chapter also aims to 

link the performance to the mechanical and chemical nature of the gloves. 

Chapter 6 looks into the differences in the physical and chemical properties of commercially 

available gloves and evaluates the frictional performance in relation to dexterity performance. Also 

discussed in this chapter are issues around fit, and how differences in manufacturing processes, may 

affect the glove users’ experiences.  

Chapter 7 explores the frictional interactions with different surfaces and contaminants, which are 

found throughout the clinical sector. Furthermore, analysis of the chemical changes that may occur 

in gloves is also explored.  
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Chapter 8 investigates how performance parameters, such as dexterity and sensitivity, is affected 

when medical examination gloves are contaminated with mucus.  

Chapter 9 concentrates on the development of synthetic blood surrogates for use in future studies. 

Validation of the bloods is carried out by tribological assessments with whole ovine blood.  

Chapter 10 concludes the work by summarising the key findings from the previous chapters, with 

industry recommendations, and discussing the future work needed. 
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Figure 1.1. Structure of thesis 
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Chapter Two: Literature review 

2.1 Introduction 

The safety performance of medical examination gloves is relatively undisputed. However, it has yet to 

be determined as to how gloves should be assessed for quality of purpose. Does placing a membrane 

over the hand have such an effect on performance that a medical professional cannot perform tasks 

correctly? This review aims to bring together the knowledge available on how medical glove 

performance has been assessed within the literature. Firstly, focusing on the varied materials of gloves 

before discussing how gloves have been assessed in previous studies. The advantages and limitations 

of such assessments will be discussed, and suggestions will be made on improvements if and where 

applicable. As the review is focusing on glove use in-situ,  studies focusing on sensitivity, dexterity, 

friction, grip, and performance perception will be evaluated.  

 

2.2 Medical glove use 

The purpose of medical gloves is to prevent the hands from becoming contaminated, or to avoid 

contaminating a surface or patient. There is a general consensus in the literature, and in guidelines, 

as to when gloves should be donned. The use of gloves in a clinical setting is based on a risk 

assessment of the overall task. This risk assessment takes into account the chances of contact with 

bodily fluids such as blood; broken skin; excretions; secretions and hazardous chemicals/drugs (17–

19). It is generally accepted that gloves are not necessary when administering vaccine injections 

unless broken skin is present on either parties or there is anticipated exposure to bodily fluids (20). 

The National Health Service (NHS) provides a standard operating procedure for all glove use, 

although this differs slightly between trusts. For example, the Lincolnshire trust avoids the use of 

natural rubber latex gloves whereas the Hampshire trust requires participation by users in a skin 

monitoring programme (21, 22).  

Expert opinion appears to be at the forefront of the decision as to when to wear either 

surgical gloves or examination gloves to carry out minor surgeries. Medical examination gloves are 

recommended for oral care; cannulation, blood exposure, rectal/vaginal examinations and many 

minor procedures (21–24). It could be argued that, as minor surgery is still surgery, surgical gloves 

should be donned. Nevertheless, outside of an operating theatre, medical examination gloves are 

the primary gloves used. Figure 2.1 shows a list of procedures carried out using medical examination 

gloves in the NHS (23). 
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Figure 2.1. Glove use procedure policy. Recreated from NHS guidelines (23). 

Nursing Times Magazine published an article on what gloves to wear and when, stating that the NHS 

uses only sterile examination gloves for aseptic procedures and minor surgery (25). Many studies 

have been carried out assessing whether gloves used should be sterile or non-sterile (26–29), all of 

which conclude that gloves do not need to be sterile in minor procedures as the risk of infection is 

low and contamination of gloves is rare. However, it is recommended for sebaceous cyst excisions 

that sterile examination gloves be worn. With the outbreak of covid-19 leading to a pandemic, the 

NHS recommends gloves are worn by all clinical staff, for any contact with a patient (30, 31). 

2.3 Glove Materials and market trends 

The properties of gloves are dependent upon the raw manufacturing materials, manufacturing 

processes followed, and the chemical treatment gloves receive. Natural rubbers are commonly used, 

the most prominent being natural rubber latex (NRL), a substance found in the bark of Hevea trees 

(32). NRL is known as a homopolymer, a repeating unit of the single monomer 1,4-cis polyisoprene as shown 

in Figure 2.2 (33). By nature, the material is a highly deformable elastomer, allowing easy conformation 

to the shape of the hand (14).  

 

Figure 2.2. Structure of the polyisoprene monomer making up the NRL. 
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The Center for Disease Control (CDC) estimates that up to 6% of the worldwide population has a latex 

allergy (34). Furthermore, the increasing incidence in NRL allergies means that alternative glove 

materials must be used where appropriate. Other glove materials include nitrile butadiene rubber 

(NBR), polyvinyl chloride (PVC) and polychloroprene (CR) (35, 36). The most common alternative 

material to NRL is NBR, synthetically created using a copolymer of acrylonitrile and butadiene (Figure 

2.2). However, the elastic loading response of NBR means that the conformability to the hand is 

perceived to be inferior than that of NRL (7). The stiffness of NBR gloves is an issue for some, as they 

report it hinders their ability to carry out tasks (7, 36). Different grades and generations of NBR have 

been developed over time to accommodate various properties and manufacturing processes. The 

most common is the carboxylated NBR (XNBR). XNBR gloves have a carboxyl group (COO-) introduced 

from acrylic acid, which is added to the acrylonitrile and butadiene (Figure 2.3). This allows for ionic 

cross-linking with zinc during glove formation, allowing for more improved physical properties such as 

tensile strength and lower stiffness (37).  

 

 

 

Figure 2.3 a-b. a) Structure of the butadiene (left) and acrylonitrile (right) monomers which form the 

copolymer nitrile butadiene rubber (NBR). b) Most commonly used for glove manufacturing is XNBR, which 

is formed upon the addition of acrylic acid to the monomers shown in a (37). 

 

Due to the prevalence of rising latex allergies, shifts have been evident in the market with regards to 

medical glove use. NBR can be manufactured to a thinner gauge, thus trends over time have seen 

gloves decrease in thickness from a standard of 0.1 mm to around 0.05 mm (38). This uses less 

material, which has reported benefits for the end users, such as a greater tactile sensitivity, allowing 

a greater sense of feeling (39–41). In addition to this, thinner gloves mean cheaper costs for 

manufacturers, as less material is used. The manufacture of NRL gloves, requires the latex to be 

sourced, tapped, and transported. This is added labour and time costs for manufacturing plants. As 

NBR, CR and PVC are synthetic, there is no need for any additional labour costs to obtain natural 

ingredients (39). The relaxation of the EN standard for force at break (9 N to 6 N) has also allowed 

manufacturers to make NBR gloves of a thinner gauge (38, 42). However, challenges are presented 

with this for manufacturers, finding materials that meet the specification of a break force of 6 N at 

a) b) 
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0.05 mm proves difficult. This has led to the development of multiple generations of NBR materials 

over the years, each with different chemical and mechanical properties (38, 43). 

 

2.4 Glove Manufacturing 

The final glove product performance is influenced by many factors in the glove manufacturing 

process, including difference in chemicals used at each stage, raw materials and the differences in 

manufacturing methods (14, 38). In the first instance, the raw glove materials need to be 

compounded with other materials to help control the glove development process. These 

compounded materials contain not only the core glove material (such as NRL), but a variety of 

accelerators, activators, cross linkers, vulcanising agents and anti-ageing additives are also added, 

which will affect the overall end product (14). With the rising cost of materials, gloves are sometimes 

bulked out with filler materials to extend their yield. NRL liquid contains a mixture of the rubber 

suspension, sugars, resins and proteins, whereas synthetics (NBR, PVC, CR) requires polymer 

emulsification to create the raw material (38). This takes place by mechanical shearing of the 

monomers making up the NBR polymer compound. The process allows for particle size, structure, 

and shape to be controlled. The particle size of the synthetic latex matrices (NBR) tends to be 

between 0.1-1.0 µm, whereas the NRL tends to have larger particle sizes around 0.3-2.0 µm (14, 44, 

45).  

2.4.1 Manufacturing Process 

Porcelain formers (moulds) are used to form the gloves following the simplified flow chart shown in 

Figure 2.4. The formers must be clean and free from contamination, as small imperfections, dust, 

glove residues can cause defects in the product formed (46). A clean former is dipped into a 

coagulant. The coagulant acts to destabilise the compounded NRL/NBR material and adhere the 

material to the former, creating the glove film. Thus, the amount of coagulant present on the former 

controls the thickness of the glove material. The longer the former is held in the coagulant (dwell 

time), the thicker the glove will be. Most commonly, the coagulant is calcium nitrate, but other 

coagulants can be used (14). The coagulant covered former is then dried in an oven before being 

dipped into the compounded glove material. The deposited material will take on the shape of the 

former, developing the glove, as shown in Figure 2.5. This is then leached by placing the former in 

hot water to remove residual surfactant from the wet NBR film. Where NRL gloves are used, this 

leaching process has also shown to remove some of the proteins which cause allergies. The leached 

product then undergoes vulcanisation in an oven in order to achieve the final physical properties and 

dry out the material (14, 19, 38).  
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Figure 2.4. Glove manufacturing process 

 

 

Figure 2.5. Glove formed on porcelain mould. 

2.4.2 Post-dip processing 

The final product will need treatment to reduce the surface tackiness of the material. This tackiness 

reportedly makes the gloves harder to don and allows gloves to stick to each other in the packaging, 

causing issues when trying to remove from the boxes (47). It is important to note, that whilst on the 

former, the glove surface exposed to the atmosphere becomes in the inner surface of the glove. This 

form of manufacturing process is known as ‘on-line’ and requires no human intervention to carry out 

any part of the process (48). Until 2000, powder (such as starch) was used to coat the donning surface. 
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However, due to the rise in the incidents of latex allergies, there have been concerns over the proteins 

in NRL being made airborne upon the removal of the glove after the powder has interacted with the 

latex proteins (34, 49). Consequently, in 2010 the Health and Safety Executive (in the UK) released 

guidelines stating that NRL gloves must be free of powder, prompting the NHS to stop purchasing 

powdered NRL gloves (50).  

Chlorination 

Since the halt on using powders on gloves came into effect, chlorination has become the most utilised 

method of treating gloves.  

There are three ways to induce glove chlorination, which are as follows: 

• Chlorine gas can be dissolved into water and gloves subsequently held into the water 

• Exposure of gloves to an aqueous solution of organic chlorine 

• Acidification of an aqueous solution of sodium hypochlorite with hydrochloric acid, and 

sodium thiosulphate neutralisation, which the gloves are then dipped into (51, 52) 

For this research, the acidification process was used. Chlorine (Cl) is released via hydrolysis of the 

Sodium hypochlorite (NaClO) with water (H2O) to release hypochlorous acid (HClO) (53): 

NaClO + H2O  Na++ HClO + OH 

The hypochlorous acid then further dissociates to form chlorine (Cl2): 

HClO + H3O++ Cl─  Cl2 + 2H2O 

In the on-line chlorination procedure, the gloves are still on the former, and are exposed to a chlorine 

solution, usually in a rotating drum (14, 47). This is then neutralised with water and then dried to form 

the final product. Other methods of chlorination exist, including allowing the chlorination of both the 

inside and outside of the gloves (depending on the chlorine strength). However, the on-line method 

is most common (16, 38, 51). In the chlorination process, the polyisoprene double bonds in the latex 

polymer are susceptible to the addition of chlorine (14, 54). This allows chlorine onto the surface, 

acting as an accelerated ageing, which removes the surface tack and stiffens the material. As this is an 

age accelerating process, the chlorination stage needs to be tightly controlled, as this severely affects 

the shelf-life of the finished product. Where NRL has been used, over-chlorination can be identified 

by the discolouration on the glove (16, 55). Double-dip chlorination can also be used, whereby the 

gloves are chlorinated twice to further reduce the surface tack. Gloves that are not chlorinated twice 

have better grip properties for the user, but stick to each other in the box, causing issues regarding 

dispensing (14, 38).  
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Surface coating 

As an extra step to the chlorination process, the glove films can also be treated by a chemical coating. 

Coating with polymers, such as hydrogel, a hydrophilic acrylic polymer which absorbs moisture, gives 

the glove surfaces a smoother finish (56, 57). This is said to improve the donnability of the glove 

material. There are two methods whereby polymer coatings would work. Coating with a hydrogel will 

allow the absorption of water (hydrophilic), causing the inner surface to be slippery, allowing a 

smoother frictional interaction between the skin and the polymer. If coated with a hydrophobic 

coating, then the water will be repelled, separating the skin from the polymer and reducing contact 

(16). This allows the moisture to effectively act as a lubricant. Yip and Cacoli (14) hypothesise that 

these surface treatments are good for donning, as they provide a topography which consists of hard 

spherical particles, which are fixed into the soft polymer matrix. This allows a smooth interaction for 

the skin, as it rolls over in a ‘ball-bearing’ fashion, reducing surface contact area. The application of 

these coatings is not well discussed in the literature, due to them being patented technologies. 

Coatings can be applied on-line before the final drying stage. Priming the wet gel before dipping into 

the coating can aid the adhesion of the coating. The gloves that are removed from the formers at the 

end of the process can also be treated by washing the gloves in the desired treatment polymer. This 

method results in coating both the inside and the outside of the glove, which may affect properties 

such as grip, as discussed with chlorination. Other polymers such as polyurethane can also be used, 

and new polymers are being developed such as the anti-microbial chlorhexidine-gluconate coating 

(58). 

 

2.5 Glove Standards 

After manufacturing, the gloves are tested to check if they comply with appropriate standards. Gloves 

must conform to either the American Society for Testing and Materials (ASTM) or European Norm (EN) 

standards, which contain slightly different requirements of the films, as shown in Table 2.1. In order 

to be used in the United Kingdom, gloves must conform to the EN455 standard (59, 60). This standard 

covers the testing of the gloves for integrity, strength, shelf life and carries the CE mark. Gloves must 

also comply with EN 374, which describe the properties required by gloves to protect from chemicals 

and micro-organisms (61, 62). To test the gloves, every batch formed will have a percentage removed 

and tested for pinhole leaks, chemical permeation, visual defects and tested for their mechanical 

properties. Mechanical properties include testing for the force at break, tensile strength, and the 

elongation. The key differences between the EN and ASTM standards are the width of the material 

sample cut for testing, and the tolerances of these tests (38). These tested gloves must fall into an 

Acceptable Quality Level (AQL), which for the EN is 1.5%, which meets the requirements of the Medical 
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Device Directive. The AQL level is calculated as a percentage of the batch of gloves that contains any 

defects and this must not be exceeded (60).  

 
Table 2.1. Standards for medical examination glove testing (38) showing force at break (Fb), 

elongation (Eb) and tensile strength (Ts). 

Standard 
Sample 

width (mm) 
Thickness 

(mm) 

Before Aging After Aging 

Fb 
(N) 

Eb 
(%) 

Ts 
(MPa) 

Fb 
(N) 

Eb 
(%) 

Ts 
(MPa) 

EN 3  ≥6.0   ≥6.0   

ASTM 6 ≥0.05  ≥500 ≥14.0  ≥400 ≥14 

 

2.6 Medical glove assessments 

Although a lot of testing is present to ensure the glove is acting as an integral barrier to the hands, 

there is little testing in industry with regards to how these gloves interact with the user, and in turn, 

their end performance. It can be argued that the glove assessments and standards should also be 

focusing more on the user compatibility, rather than just the protection properties of the gloves. Very 

few areas of literature aim to seek out how medical gloves can be assessed to fully evaluate the extent 

at which placing a barrier between the fingers and the patient or tools in a medical setting can, for 

instance, affect tactile and haptic feedback.  

 

2.6.1 Tactile Sensitivity 

Tactile sensitivity is defined as the ability to extract information from a foreign object to determine 

the texture, shape, size and possibly orientation via manual exploration (63). To facilitate the tactile 

sensitivity through the glove, thinner gauges have been created. However, questions concerning the 

rupture rate and durability of these thinner gloves are being raised (64, 65). The most common 

method of assessing tactile sensitivity is the use of the monofilament tests (Figure 2.6) (12). In this 

test, the subject is blinded, and a microfilament is pressed onto a part of the hand. Once the filament 

buckles, the examiner ceases pressure application, and the participant confirms if contact has been 

felt. The filaments vary in diameter and are identified by manufacturer assigned values ranging from 

1.65-6.65 (66). The limit of detection is the smallest diameter that can be sensed by the participant. A 
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major limitation of this test is that the thicker filaments buckle at higher loads. Thus, the pressure at 

the filament contact will differ between the varying degrees of thickness, as more force is required to 

make the thicker material buckle. Also, as the filament buckles, the contact area of the thinner 

filaments are likely to increase, as the nylon bends and presses against the skin, which may lead to a 

false positive identification.  

 

 

Figure 2.6. Monofilament test showing a range (2.83, 5.07 and 6.10 gauge) of nylon thread 

thicknesses.  

The literature regarding these tests is conflicting. In the monofilament tests, Park, Davare, Falla, et al. 

(63), Novak, Megan, Patterson, et al. (67), Tiefenthaler, Gimpl, Wechselberger, et al. (68), Bucknor, 

Karhikesalingam, Markar, et al. (69), Mylon, Lewis, Carré et al. (70) Che and Ge (71) and Thompson 

and Lambert (72) state that tactility is reduced whilst using gloves when compared to the bare hand. 

However, Shih, Vasarhelyi, Dubrowski, et al. (73), Nelson and Mital (74) and Johnson, Smith, Duncan 

et al. (75), show that no change in sensitivity is present when donning medical gloves. When 

comparing glove materials, Kopka, Crawford, and Broome (41) found that there was no difference in 

sensitivity between NRL and ‘NRL-free’ gloves. It must be noted, that between these studies, many 

variations are present in the methodology. Some studies use higher thicknesses of monofilaments to 

assess sensitivity and different glove materials are used throughout.  

 
Another common method of assessing tactile sensitivity is the use of the two-point 

discrimination test (Figure 2.7). In this test, two prongs are placed on the skin at varying spacing of 1 

-25 mm, with the aim of identifying at what distance the two prongs feel like one (76). The prongs are 

attached to a disk (10 cm diameter) which allows for easy changing between different sizes. Fry, Harris, 

Kohnke, et al. (77) showed that gloves do not hinder the identification of two distinct points. However, 

other studies investigating this found that gloves can reduce the discrimination of two points (67–69, 

72, 73, 78, 79). Again, this test has limitations, given that there is no limit on how much pressure is put 

onto the surface by the subject and the glove material can spread out the pressure across the finger. 



17 
 

It has also been noted by Lundborg and Rosén (80) that it can be tempting for examiners to apply 

enough pressure to evoke a result, introducing bias into these tests and producing inaccurate results. 

Whilst Fry et al. (77) stated that they did not find any differences in 2-point discrimination tactility 

between gloves and no gloves, they looked at ulnar and radial surface testing. The radial nerve is less 

likely to serve purpose in clinical situations, as the back of the thumb or hand is less likely to be used 

(81), which draws questions on the effect gloves have on tactility.  

 

 

Figure 2.7. Two-point discrimination touch test. Point spacing numbers correspond to mm of the two 

distinct points. 

Other commonly occurring tests in the literature involve the use of roughness discrimination. These 

tests require participants to identify varying bump sizes or roughness/patterns (63, 70, 82–86). Of 

these, only two studies found that detection rates declined when gloves were worn (63, 86). 

Sandpaper (and different paper grits) has also been used as a means of measuring discrimination. 

Mylon, Buckley-Johnstone, Lewis, et al. (87) showed that subjects could perceive roughness 

differences when moving their gloved fingers across sandpaper, but not when statically pressing. 

Palpation or surface anomaly detection with patients would require interaction with skin and tissue 

that is much more viscoelastic and pliable than the materials used in these studies. Thus, it would be 

imprudent to say that gloves have no effect on the ability to discriminate surface anomalies on or 

within the body by these test methods. More advanced assessment methods have been produced, 

such as the Simulated Medical Examination Tactile Tests (SMETT) developed by Mylon, Lewis, Carré, 

et al. (88). In the ‘bumps’ SMETT test, 100-600µm pimples were 3D printed on a soft rubber-like sheet 

which was fixed onto a board. Participants were asked to run their fingers across the sheet to see if 

any pimples were identifiable. The ‘Princess and the Pea’ SMETT test required participants to identify 

pegs of varying heights (2.5-14.5mm) which were submerged in silicone. This was based on the Hans 

Christian Anderson tale, titled by the same name, whereby the royalty of a woman is identified by her 

ability to feel a pea placed under her mattress (89). A similar test was carried out by Gnaneswaran, 
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Mudunuri, and Bishu (86) which utilized 1.25cm dried glue spots covered by sponge. Although the 

SMETT tests in Mylon et al. (88) do appear to be a valid means of in-situ glove assessment, several 

areas with room for improvement exist in the methodology and design. It was found that the silicone 

became stiffer over time, making it harder to identify the pegs. Participants also varied placing their 

fingers flat or perpendicular to the test beds, which could produce different results due to the 

dispersion of mechanoreceptors. This could provide differing results between people and between 

the gloving conditions. Although the bumps and roughness discrimination tests are a good measure 

of identifying tactility loss, it could be argued that the use of more appropriate surfaces that replicate 

the body and environmental conditions would lead to more accurate results in a clinical context.  

 

An inability to detect a pulse is the most common reported reason for removing or not 

donning gloves. A study by Mylon, Lewis, Carré, et al. (8) considered the effects of gloves on pulse 

detection using a design whereby water was pumped through one of five tubes under a layer of 

neoprene sponge using a peristaltic pump. They found significant differences in ability to feel the 

‘pulse’ in gloved and ungloved conditions. The authors note that this cannot accurately simulate a 

pulse test due to the pump limitations on the speed and pressure. Also, there was the potential for 

bias due to the inability to vary the pulse location. Using a pump that will allow the same pressure and 

speed of blood would be more simulative of in-situ glove use. A more quantifiable way of assessing 

tactility differences is by using vibrations. Carré, Tan, Mylon, et al. (90) used a vibrating platform to 

measure the sensitivity difference of fingers when a NRL glove was donned. The glove was found to 

reduce tactility when compared to the no-gloves condition. However, only one participant was used 

for this. Overall, studies regarding tactile sensation show that gloves have an adverse effect on ability 

to feel. However, the extent to which this becomes a detriment remains unknown. Many of these 

tests aim to quantify tactility loss, but results differ between studies, possibly due to the different 

methodology used. To quantify tactility loss, further studies looking at how the gloves dampen 

vibration, like in Carré et al. (90), could prove vital for future work. Some of the studies discussed here 

were conducted prior to the banning of powder coated NRL, thus the results may not be applicable to 

gloves used today due to the differences in manufacturing. Gnaneswaran et al. (86) stated that 

powdered NRL gloves are better because they have ideal properties, such conforming to the hands 

better. There is a chance that this powder could affect the frictional properties of gloves in any of 

dynamic tactility tests, which may give different results. Many of the studies cited regarding sensitivity 

are vague in terminology, describing the gloves tested as ‘thick’ or ‘thin’ without giving any 

measurements. Due to the issues arising with these assessments, it is unknown as to how much 

medical gloves affect the tactile sensitivity of a user, but it is clear they are having a negative effect. 
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When comparing glove thickness, studies have found that the thinner gloves provide more sensitivity 

(41, 78). Surgical gloves are often marketed as offering better ‘tactile sensitivity’. However, studies 

looking at the difference between medical examination and surgical gloves have found no measurable 

difference in sensitivity (68). Table 2.2 shows a breakdown of the available literature regarding tactile 

tests where the use of gloves has been compared to the bare hand condition.  
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Table 2.2. Studies relating to the effect gloves have on tactile sensitivity. Reduced sensitivity is defined as a reduction in ability to discriminate or identify 
sensations.  

Study 
No of 

Participants 
Materials Test Results 

Brunick, Burns, Gross, et al. 
(84) 

29 NRL and Vinyl Roughness discrimination No significant difference observed 

Nelson and Mital (74) 20 NRL Roughness discrimination, needlestick No significant difference observed 

Klatzy and Lederman (85) 12 NRL Roughness discrimination 
Similar results between bare finger and 

gloved finger 

Mylon et al. (87) 30 NRL and NBR Roughness discrimination Reduced roughness perception 

Phillips, Birch, and Ribbans 
(79) 

20 NRL 
Two-point discrimination Roughness 

discrimination 
No significant difference observed 

Thompson and Lambert (72) 20 and 30 NRL 
Two-point discrimination 

Monofilament 
Vein location 

Tactile sensitivity reduced with gloves 

Han, Kim, Moon, et al. (78) 
 

40 NRL Two-point discrimination Tactile sensitivity reduced with glove 

Fry et al. (77) 53 Not Stated Two-point discrimination No significant difference observed 
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Shih et al. (73) 10 NRL 
Two-point discrimination and 

monofilament 
No significant difference observed 

Tiefenthaler et al. (68) 20 NRL 
Two-point discrimination and 

monofilament 
Tactile sensitivity reduced with gloves 

Bucknor et al. (69) 52 Not Stated* 
Two-point discrimination and 

monofilament 
Tactile sensitivity reduced with gloves 

Johnson et al. (75) 42 NRL and NBR Monofilament 
No significant difference observed 

between gloves 

Mylon et al. (70) 
 

18 NRL and Vinyl Monofilament Tactile sensitivity reduced with gloves 

Park et al. (63) 12 NRL Bump discrimination Tactile sensitivity reduced with gloves 

Mylon et al. (8) 19 NRL and NBR Pulse location simulation Tactile sensitivity reduced with gloves 

Mylon et al. (88) 39 and 34 NRL and NBR 
Simulated Medical Examination Tactile 

Tests (SMETT) 
Tactile sensitivity reduced with glove 

Carré et al. (90) 1 NRL Vibration sensitivity Sensitivity reduced with glove 

*Presumed to be NRL as the methodology states the participants were asked about NRL allergies. 



22 
 

2.6.2 Dexterity 

Dexterity is defined as the ability to carry out tasks using motor skill, moving the hands, fingers and 

arms. The conformity of bending of the hands and fingers, material folding, and thickness are the 

main areas were gloves affect dexterity (9). Together these can impact the ability of users to carry 

out tasks and manipulate objects with fine skill. Numerous dexterity tests have been developed 

comparing medical glove material performance. Widely used in these studies, are pegboard tests, 

such as the Purdue Pegboard (Figure 2.8) and the Crawford Small Parts Dexterity Test (CSPDT) 

(Figure 2.9). Tiffin and Asher (91) produced the Purdue Pegboard test, which is designed to assess 

gross dexterity by measuring how many pegs can be placed into the board in a set time using both 

hands and each hand separately. Washers can also be placed on the pegs in the test to allow further, 

finer assessments. The CSPDT test requires the placement of the pins with the use of tweezers, 

assessing finer dexterity. The results generally show that dexterity is only significantly affected when 

thicker or double gloves are worn (31, 37, 40–42, 52, 59–65). Although little difference is observed 

between gloves, vinyl showed more of a decrease in dexterity when compared to barehanded, 

whilst NRL shows a minimal decrease. Drabek, Boucek, Buffington, et al. (97) demonstrated that 

vinyl gloves do not affect performance when using a grooved pegboard test (similar to the Purdue 

Pegboard), regardless of the size of the glove used. However, the study did find that the time taken 

to remove the pegs from the board was significantly increased when best-fit gloves were worn. 

Moore, Solipuram, Riley, et al. (92), Pourmoghami (94) and Drabek, Boucek, Buffington, et al. (99), 

however, found that dexterity was decreased in the Purdue pegboard test with NRL when the wrong 

sized glove was worn. Francis, Hanna, Cresswell, et al. (100) and Hamstra and Dubrowksi (101) 

demonstrated the varied skill of professionals is a factor in these assessments. They found students 

had impaired dexterity and dropped more pins than experienced surgeons in the pegboard tests. 

This would suggest that in order to accurately interpret results of pegboard tests, recruited 

participants should all be at the same level of experience. This is an important factor that should be 

considered in all tests of this manner.  
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Figure 2.8. Purdue pegboard (46 × 30 cm). 

 

Figure 2.9. Crawford small parts dexterity test (24 × 23 cm). 

Gauvin et al. (102) states that these dexterity tests are of a good enough sensitivity to measure 

performance and discriminate between gloves. However, numerous issues exist when using these 

tests to assess the effects of gloves. The primary issue is that the frictional properties of each 

person’s hand are different. Thus, in the ‘no gloves’ variable, results could be different due to the 

variation of skin friction, sweat and oils present naturally on the fingers as well as contaminants 

(such as food residue). No mention of washing the pegs or hands is present in any of the literature, 

which would standardise this test and reduce contamination. Many of these studies include the NHS 

first choice gloves: NBR and NRL as well as gloves that are not commonly used such as butyl and 

vinyl (20). Nelson and Mital (74) and Gnaneswaran et al. (86) investigated the effect of NRL thickness 
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on dexterity by having subjects cut paper along lines using scissors and found that a glove thickness 

of 0.83 mm did not have an adverse effect on dexterity during the task. Studies oriented at more 

specific clinical tasks, look at the effect of gloves on suturing and syringing (8, 86). These studies also 

did not observe any significant effect on dexterity between glove materials. The tasks and protocols 

in most of these studies are very similar throughout and reveal very little to no impact on dexterity 

when any of the gloves are donned. This would suggest that either the gloves are not having any 

effect on dexterity or that the tests are not of a good enough sensitivity to pick up the differences. 

However, dexterity is reported to be affected when thicker gloves are donned. More novel tests 

need to be designed to simulate the tasks encountered when gloves are worn. Work has already 

been carried out in this area (syringing and suturing (8, 86)), but more studies are needed to create a 

test that produces repeatable, reliable results, and provide enough discrimination to highlight 

differences between the effects of dexterity with different gloves. Table 2.3 shows a breakdown of 

available tests within the literature investigating how medical gloves affect dexterity against the bare 

hand.
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Table 2.3: Studies relating to the effect gloves have on the dexterity. Reduced dexterity defined as a reduction in time taken to carry out tasks/quality of 
task.  

Study 
No of 

Participants 
Materials Test Results 

Nelson and Mital (74) 20 NRL Paper Cutting No effect on dexterity 

Mylon et al. (8) 19 NRL and NBR Suturing No effect on dexterity 

Moore et al. (92) 27 NRL Purdue Pegboard 
No effect on dexterity, although 
dexterity reduced if smaller or 

larger gloves used 

Sawyer and Bennet (95) 24 NRL and NBR Purdue Pegboard NBR gloves reduced dexterity 

Drabek et al. (99) 
 

20 NRL Purdue Pegboard 
No effect on dexterity, although 
dexterity reduced if smaller or 

larger gloves used 

Fry et al. (77) 53 Not Stated Purdue Pegboard No effect on dexterity 

Park et al. (63) 
 

12 NRL Purdue Pegboard Gloves reduced dexterity 

Allahyari, Kahnehshenas, 
and Khalkhali (98) 

30 NRL and NBR Purdue Pegboard No effect on dexterity 
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Pourmoghani (94) 10 NRL Purdue Pegboard and O’Connor 
No effect on dexterity, although 
dexterity reduced if smaller or 

larger gloves used 

Berger, Krul, and Daanen 
(96) 

 
30 NBR Purdue Pegboard and O’Connor Gloves reduced dexterity 

Johnson et al. (75) 
 

42 NRL and NBR Purdue Pegboard and CSPDT 
Manual dexterity reduced when 

thicker gloves worn 

Mylon et al. (70) 
 

18 NRL and Vinyl Purdue Pegboard and CSPDT 

Gloves reduced dexterity in the 
Pegboard test but not with the 

CSPDT. Fine dexterity was 
reduced with the screwing 

action in CSPDT 

Drabek et al. (97) 
 

20 Vinyl Grooved Pegboard Test 

No effect on dexterity 
regardless of glove size used. 

Time to remove pegs was 
significantly quicker with best 

fit gloves. 
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2.6.3 Grip and friction  

The frictional properties of medical gloves is an important factor which glove manufacturers should 

consider. It is these properties which allow for the users to ascertain grip and have a sense of force 

they are applying, which is imperative for the ability to carry out tasks such as holding tools and 

applying pressure to wounds. Friction is defined by the resistance to motion of objects, which move 

over each other. Therefore, grip relies on the properties of the materials in contact. At a 

fundamental level, the friction is determined by the contact of minute surface anomalies, known as 

asperities. These asperities can interlock on surfaces and increase friction or sit atop each other and 

reduce friction (103, 104). Two types of friction are commonly measured (105). Static friction is the 

amount of friction present between two stationary objects. When one object moves, in this case the 

hand or glove, the static friction is measured at the start of the sliding process. The sliding friction is 

known as the dynamic friction. Static friction tends to be greater than that of the dynamic, due to 

the increase in friction forces as the surface roughness’ (asperities) locally weld (106). The addition 

of moisture can have a great impact on the friction, by separating the surfaces and reducing the 

friction (71, 107). This could be a problem with bare skin due to the presence of sweat glands and 

introduction of contaminants such as oils from pores (103, 108). c  

Accurate force control for grip precision demands finer detailed information from 

mechanoreceptors in the skin. Thus, when these are blocked by a membrane, it would be reasonable 

to assume that grip force would be impaired (63, 73). Much of the work regarding grip is oriented at 

industrial applications and extra vehicular activity gloves for use in space (9) , with few looking at 

medical gloves. Gnaneswaran et al.  (86) showed that when powder was present on the gloves, more 

grip force was exerted. This is presumably because the frictional properties of the gloves were 

lowered due to the presence of the powder. However, similar findings were reported in Shih et al. 

(73), Willms, wells and Carnahan (109), and Kinoshita (110), who reported that thicker NRL gloves 

made participants exert more grip force when picking up a desired load. They conclude that gloves 

should be thicker in order to retain a greater grip force. However, it has been shown that that 

thicker gloves impair sensitivity (41, 78). Park et al. (63) looked at the role of mechanoreceptors in 

force control and the effect of gloves on precision grip. The study found that there was a 20% 

increase in measured grip force when subjects lifted a heavy object after lifting a light object when 

gloves were not worn. This grip force was not significantly different when the same test was carried 

out with NRL gloves, suggesting the sensorimotor effects of gripping were not affected by the gloves. 

Only one study was located where there was a measured decrease in the grip force with NBR and 

vinyl gloves (111). Many of these studies appear to see an increase in force as beneficial, as grip is 

imperative for control. Although, these studies do not look at the effects of this force increase on the 
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hands. It could be that this increase in grip, however slight, could affect fatigue on the hand and arm, 

thus affecting dexterity and performance. It should also be noted, that the over-gripping effect could 

be due to a reduced friction coefficient between the object and the hands when gloves are 

introduced. As with Willms et al. (109), assessing how much pressure is instinctively applied, and 

then how that adjusts overtime during a surgical procedure is required. However, assessing whether 

the change in load is down to the gloves or the tasks carried out during surgery itself could prove to 

be a difficult. 

Many of the published studies looking at the frictional properties of medical gloves focus on 

surfaces that are impractical to the medical profession, such as glass and sandpaper (73, 112, 113). 

Mylon et al. (87) found no significant difference between NRL and bare hand friction with sandpaper 

but found a significantly lower friction coefficient with NBR. Carré et al. (90) studied the friction of 

surgical gloves on steel and found that the friction coefficients of NRL gloves were greater than the 

bare hand condition. This finding is different from Shih et al. (73), who noted that the coefficient of 

friction decreases when NRL gloves are donned. Laroche, Barr, Dong, et al. (114) looked at the static 

friction of wet NRL and NBR gloves on a variety of dental tool patterns. Greater friction coefficients 

for tools with knurled surface patterns were observed. Although this is the first test to incorporate 

real tool patterns with fluids, this could be greatly improved by having more realistic bodily fluids in 

contact with the gloves, such as blood and saliva (115). The study also did not include a control, such 

as no gloves or dry gloves to compare. A paper published by Anwer (116) includes the use of blood 

to assess friction modification in NRL gloves. They found that blood, and blood and water (1:1 

mixture) increased friction coefficients when the compared to the dry state with NRL gloves. The 

friction tests were carried out on a surgical scalpel. Although a unique study, which is required in this 

area, a few issues are noted. The author states that friction increases as the blood starts to 

coagulate under mechanical stress. However, bloods from different sources and treatments have 

different rheological properties, including different viscosities and different shear rates, which will 

influence the frictional behaviour (117, 118). Furthermore, the temperature of the blood, which is 

not mentioned in the study, will induce a difference in coagulation properties, thus affecting the 

friction. However, this is the only study to date considering the effects that blood could have on the 

friction of medical gloves. In addition, the study found that double gloving induced a greater friction 

coefficient than a single layer. However, no explanation is offered as to why this may be. It is 

possible the frictional changes are due to the relative motion of the latex-latex interaction sliding 

within the gloves, causing a difference in friction. No statistics were performed to conclude that this 

difference is significant. Nevertheless, this study shows that consideration needs to be paid to the 

reason why gloves are worn, that is, for their protective barriers, and contaminants should be 
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incorporated into future tests. This is a fundamental consideration, especially in surgical tasks where 

gloves are more likely to be in contact with bodily fluids, and then a wide range of tools. Including 

fluids into assessments would provide a greater significance to the results of any of the friction and 

grip studies being conducted.  

The frictional properties of the inside of the gloves also requires consideration from glove 

manufacturers. Often a quick change of gloves is needed in fast-paced environments which can be 

made difficult with the presence of moisture (15, 119, 120). Roberts and Brackley (57) found that 

coating the glove with hydrogel gives a lower coefficient of friction than chlorination treatment, thus 

enabling easier donning. Pavlovich, Cox, Thacker, et al. (120) demonstrated that when hands were 

wet, the gloves became more difficult to don and greater force was required to pull the glove on, 

when compared to dry. However, in this study, the hands were wet, with no drying process involved. 

This is unrealistic of the real-world scenario of requiring a quick change of gloves. Damp skin has 

been demonstrated to have higher friction coefficients when compared to dry skin (121). As many 

issues lie with donning gloves with damp hands, this should be of consideration when assessing the 

frictional properties of the inner surface of glove materials (120). 

Medical Glove Surface Interaction 

In the studies where friction and grip are concerned, there is a disregard for surfaces which 

examination gloves encounter when in use. Medical gloves encounter a wide array of substances 

and surfaces in a clinical setting in particular. Therefore, these studies should be accounting for the 

materials that are contacted, allowing for a more targeted approach as to how gloves affect friction 

and grip. In order to do this, it must be understood what surfaces gloves most commonly come into 

contact with. All UK general practitioners (GP) are encouraged to provide minor surgical procedures 

to the populations they see. This generally reduces the pressure in the hospitals around the UK. 

These minor surgeries are all outlined in the Standard General Medical Services Contract (2009) 

(122). The minor surgeries contracted to be carried out in a GP office can be placed into one of two 

categories: 

• Injections and aspirations: Drugs/vaccines injected into the body via a hypodermic needle 

and syringe. For example, the injection of cortisone into the foot to elevate plantar fasciitis 

pain. 

• Excisions and incisions: removal of a small or large area of tissue. For example, the removal 

of a sebaceous cyst (excision) or the draining of an abscess (incision) (NHS, 2017). 
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The list of medical equipment used in these procedures is exhaustive, as is the list of general medical 

equipment nurses and doctors will interact with in hospitals and GP surgeries. Equipment most likely 

to be used is shown in Table 2.4. These have been chosen based on likelihood of contact in common 

minor procedures and general nursing healthcare, along with bodily fluids that are likely to be 

encountered.
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Table 2.4. Tools and equipment used in minor procedures to give an overview of the surfaces and textures encountered. 

Equipment Use/handling Material(s) Surface finish/textures 
Bodily fluid(s) in 

contact (between glove 
surface and equipment) 

Disposable scalpel 

Used to cut into tissues/samples for 
removal of foreign objects or 

implantation of devices. Pressure is 
applied to scalpels, as these are required 

to break the skin, but are equally 
extremely sharp (123, 124) 

Disposable scalpels are 
composed of polystyrene 

handles with stainless steel 
blade. Metal scalpels, more 

often used for surgical 
applications are more 

commonly composed of 
stainless steel handles (124, 

125) 

Smooth top and 
bottom. Sides where 

the thumb and middle 
finger are placed have 

deep ridges present 
(125) 

All major bodily fluids 
could be in contact with 

the scalpel after the 
initial breaking of the 
skin. Blood, mucus, 

saliva, etc. 

Thumb 
tweezers/forceps 

Used for suturing where required and 
removal of foreign materials (126) 

Stainless steel (127) 

Grooved/ridged 
patterns dependent 

upon the manufacturer 
(128) 

Blood/saliva in some 
dental procedures. 

Possible blood exposure 
if used to hold back skin 

and/or extraction of 
foreign objects. 

Syringe (with 
needles and cap) 

Used for the injections of fluids into the 
body as well as the aspiration of blood 
and other fluids such as pus. The force 

applied to syringes is dependent upon the 
task and fluid being injected. The act is 

normally carried out slowly (124). 

Polypropylene plastic syringes 
with a stainless steel needle 

(129) 

Ridges on thumb press 
and where syringe is 

stabilised by index and 
middle finger(128) 

Minimal risk of 
contamination. There is 
a risk of alcohol being in 

contact from alcohol 
wipes used to clean the 
site of puncture when 

taking fluids. 
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Scissors/handled 
forceps 

Used for the handling and cutting of 
tissues and medical aids such as bandages 

and tape (128, 130). 
 

Steel (124, 130) 
Smooth on the handles 

where grasped (131) 

Dependent upon the 
site with which these 

are being used. 
Frequently used to 

cut/make stitches, so it 
can be presumed blood 

would be in contact. 

Curette 
Used for the scraping and debriding of 

tissues (131). 
Steel (114) 

Textured – knurled 
(diamond shape, for 
example) or annular 

(circular grooves) (114) 

Blood in most clinical 
cases, could be other 

fluids present 
depending on area of 
surgery (mucus and 
saliva). Presence of 
saliva in dentistry. 

Tubing – probes, 
catheterisation, 
suction, dialysis, 

and oxygen tubing. 

These tubes have many applications. 
Some are used to aid breathing in 

intubation or as a flow path for bodily 
fluids out of the body or drugs into the 
body, such as blood cleaning in dialysis. 

These tubes are usually attached at their 
end, one normally to the patient/a device 
in/on the patient and an instrument (132) 

Poly vinyl chloride (PVC), 
polyethylene, silicone (132) 

 
Smooth (131, 132) 

May be in contact with 
blood and or/excretive 

bodily fluids such as 
urine and faeces. 
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The list in Table 2.4 is not exhaustive as many other surfaces are contacted, and many more 

contaminants would be present. The surfaces of some of these equipment are manufactured to be 

smooth, whereas others are manufactured to contain spaced grooves to allow enhanced grip (e.g. a 

scalpel). Whilst the friction studies conducted show a difference in the friction of gloves, the surfaces 

they use are not representative of the surfaces which are normally encountered with medical 

examination gloves.  

 

2.6.4 Double gloving  

Throughout the literature, it is recommended that where surgery is a high risk due to diseases, such 

as HIV, two layers of gloves are worn to minimise exposure. Much of the research on double gloving 

is centred around puncture indication during surgeries (i.e. using different coloured gloves to indicate 

the outer glove layer has ruptured) (133). Johnson et al. (75) and Kopka et al. (41) both show that 

dexterity decreases when thicker gloves are worn. Thus, it would seem reasonable to believe that 

dexterity would be more affected when multiple layers are worn, as the thickness is increasing which 

could restrict movement. However, Webb and Pentlow (134) found that double gloving did not affect 

dexterity when assessing knot tying. Fry et al. (77) also determined that there was no statistically 

significant difference in performance when subjects wore two glove layers compared to one when 

completing the Purdue Pegboard test. There are, however, opposing results with regards to the 

effect of double gloving on tactile sensitivity. Novak et al. (67), Shih et al. (73) and Han et al. (78) 

show that there is a loss in tactile sensitivity when assessed by monofilament or two-point 

discrimination. On the other hand, Fry et al. (77) and Webb and Pentlow (134) show no statistical 

difference in two-point discrimination between one and two glove layers. Germaine, Hanson, and de 

gara (135) demonstrated that double gloving is not favoured amongst surgeons. Out of the 170 

medical staff asked, when practice recommends that they double glove, 78 said that they do not as it 

decreases their dexterity and 62 said that it was not comfortable. Regardless of the evidence 

involving the practicality of double gloving during high-risk surgery, there is little discussion in the 

literature as to how to double glove. Hollaus, Lax, Janakiev, et al. (136) discuss using the same sized 

gloves as well as whichever size makes the user comfortable. However, much of the literature 

focuses on the method used in Fry et al. (77) and recommend double gloving by using a larger inner 

layer glove and a smaller outer layer glove. The authors suggest this reduces dermatological issues 

but does not offer any insight into how dexterity and tactile feedback may be affected via this 

method. 
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2.6.5 Donning  

The donning of medical gloves is a relatively unexplored area in the literature. As previously stated, 

much of the research conducted in glove friction applies to the outer interaction with the 

environment, such as glass (113). Glove donning is a complex process due to the stretching and 

bending of the materials as they are being pulled. The hand is inserted to the glove and the other 

hand is pulling the material/holding it in place. If the glove gets stuck, it is common practice to stop 

and manipulate the glove to aid the process of the glove going onto the hand. However, this task is 

made increasingly difficult upon the addition of moisture (15, 57, 119, 120). Previous studies looking 

at glove material donning have used loads as an assessment of donning ‘ease’. Cötë, Fisher, Kheir, et 

al. (119), Pavlovich et al. (120), and Edlich, Heather, Thacker, et al. (15) have looked at the loads used 

in donning medical gloves. By attaching the cuff of the glove to a ring, in which there are load 

sensors, they found they could measure the force applied to don the gloves. The studies collectively 

found load ranges between 29-78 N were being used to don the gloves when the hand was in a wet 

condition. In all studies, the wet condition required a lot of water present on the surface of the 

hands, making the studies unrealistic to a donning scenario. Glove donning with ‘wet’ hands tends to 

arise as a function of improper drying or sweat generation, rather than hands having water dripping 

from them. The loads used in these studies are extremely high, so much so, that in Pavlovich et al. 

(120), the gloves tore under the applied loads and no measurements were recorded in over half of 

the gloves used. Furthermore, the studies do not consider the realistic donning process, in which the 

glove is not in a fixed cuff position held in one location. Much of the time, the gloves are being 

stretched in different places. It is unclear in the studies if the subjects were able to use their other 

hand to pull the material in places where the glove did not fit. If not, then more force would be 

applied to make the hand slide down the glove when the material is stuck to the hands. These 

studies appear to be more about comparing how much force is needed with different internal glove 

coatings, rather than looking at how ‘easy’ it is to don the gloves. It is reasonable to assume that that 

less force used to don the gloves would make the glove easier to don. However, these studies lack 

application to the processes used in the donning of gloves. Furthermore, very few studies have been 

produced linking the internal coatings used on medical gloves to the donning process.  

There are many companies stating the benefits of different coatings and how chlorination 

helps the donning process by smoothening the surface, but little literature is available on this. Much 

of the work conducted in this area is protected under patent, thus it is unknown whether there are 

significant rigorous tests being conducted which could be related to realistic working conditions 

gloves are used in. Roberts and Brackley (137) looked at the friction of medical gloves on the inner 
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surface with skin at a load 4N and a glass surface at 0.32N. Roberts and Brackley (57) also compared 

the friction of hydrogel gloves in a similar study, using a load of 0.4N with fingers. However, no 

reasoning is given for the selection of these loads. The authors find that generally, the hydrogel 

coated gloves are preferred, and the friction coefficients tend to be lower than the chlorinated 

gloves. It should be noted that all these studies are investigating the natural rubber latex gloves with 

different applied coatings. No other gloves appear to have been used. It is important to include other 

materials in these types of studies, as the market trend shift due to the increasing demand for non-

latex gloves, these literatures will allow for up-to-date assessments of the available gloves. 

2.6.6 Durability 

Under EN 455 guidelines, gloves are tested for their durability and puncture resistance. The puncture 

resistance/durability is inferred from the force required to break the materials, as discussed in the 

glove standards (see Section 2.4). In industry, durability on gloves can be tested via the use of 

abrasion resistance, using soft pads which are placed onto the material, and relative movement 

wears the gloves over time (138). As the primary function of gloves is to act as a barrier, and protect 

the hands, several studies exist looking at the barrier integrity of the gloves. Since the introduction of 

non-latex gloves, much of the research has focused on comparing glove materials. Many tests look at 

abrading gloves with abrasive materials such as grit (139), which do not represent the realistic 

working conditions these gloves are used in, when in a medical setting. It is appreciated that gloves 

are not used solely for medical purposes. However, this study compares the grit durability method 

with a simulated clinical study. The simulated clinical work is a good indicator as it shows the 

durability of gloves when in-situ. However, this is impractical to the manufacturing industry (139, 

140). Further tests investigating the failure rate of gloves whilst in surgeries have been conducted 

(136, 141, 142). Many of these tests are looking at NRL gloves. Much of the earlier research focuses 

on PVC gloves, showing that the NRL material has lower failure rates (35, 139, 143, 144). Further 

research looking at NBR gloves found that NRL and NBR had similar failure rates (64, 145). Studies 

which focus on the failure rates of gloves in surgery draw comparisons to other studies to indicate 

that gloves are either more durable, or less durable. However, there are a variety of surgeries used 

between studies (136, 146, 147) ranging from oral surgery, to osteology, where bones are broken 

and many more tools are used. There is also a tendency to statistically compare the perforation 

rates. However, in some studies there are orders of magnitude difference between the duration 

procedure as well as the total number of procedures included, thus making for an unfair comparison 

between studies, leading to erroneous conclusions. Studies have shown that gloves tend to wear out 

between the thumb and the index finger, as this section of the glove undertakes a greater amount of 

mechanical strain. These also highlighted the potential failure for examinations gloves are at the 



36 
 

joints of the knuckles (138, 148). However, little regard is paid to the nature of these gloves in most 

of these studies. Those looking at novel durability methods compare gloves with other studies, 

although no thicknesses are published in some of the work (139). It could be that the differences in 

results between some of the gloves are due to the thickness, rather than the material itself, as 

previously highlighted (12).  

2.7 Size and fit 

Glove fitting is a vital part of both the donning process and the practicality of wearing gloves. Gloves 

should freely fit the contours of the hands, and act like a second skin layer. If too large, the glove will 

be easier to don, but the excess loose material can cause issues with dexterity and sensitivity. If too 

small, the gloves can be difficult to don and restrict movement of the fingers (99). No studies could 

be found which investigate glove sizes, specifically regarding how they are sized and how that relates 

to the general population. The government provides protective glove size recommendations for 

Europe and the United States only, but no information is given as to how these sizes are ascertained. 

To determine the best fit of a glove, two measurements are required, which are shown in Table 2.5 

(149), as provided by the HSE. Firstly, the hand should be measured from the base of the palm to the 

tip of the middle finger. This produces the ‘finger length’. Secondly, the ‘palm circumference’ is 

measured just below the knuckles. These two measurements provide a glove size for the hand. This 

protocol appears to be universally adopted. However, no reference is provided as to where this 

protocol is obtained.  

Table 2.5. Finger and palm measurement sizes for selecting the best sized glove (149).  

Finger length (cm) Palm circumference (cm) Size 

16.0 15.2-17.8 XS 

17.1 17.8-20.3 S 

18.2 20.3-22.9 M 

19.2 22.9-25.4 L 

20.4 25.4-27.9 XL 

21.5+ 27.9+ XXL 

 

2.8 Paper grading 

To identify gaps where research is required with regards to glove performance assessment, a paper 

grading system has been adapted from Harmon and Lewis (150) and Watson, Christoforou, Herrera, 

et al. (151), who found that study design and reporting of key findings was flawed across the field of 
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tribology. The aim of this grading differs from these by the way of trying to identify areas where 

research should be focused in the future. The grading is focused on application of research to 

relevant systems within the clinical environment and categories differ from those used in previous 

papers in order to reflect the aim and the practices used in this area of research. It is noted that this 

way of grading papers is subjective, thus the grading has been kept to matter-of-fact as opposed to 

subjective analysis (i.e. focusing on participant number and statistical analysis as opposed to the 

experimental design). It is important to note that not all of these criteria will be applicable to the 

study designs for this grading. This means that a study which scores highly is not essentially a good 

study, but a study that fulfils more of the criteria. Similarly, a high score may include all criteria, but 

whether the entire study is fundamentally flawed will not be determined by this grading. The 

research papers used in this review have been graded according to the following criteria: 

(1) Repetition of work: does the study repeat tests to obtain an average result?  

(2) Number of participants/samples: does the study have a respectable number of 

participants/tests? (The average participant/sample number throughout the glove 

assessment studies is 30, thus this has been used as a benchmark. Anything <30 does 

not meet these criteria).  

(3) Statistical analysis: has a statistical analysis been conducted?  

(4) Conclusions: are the conclusions in the paper based on the results presented? 

(5) Representative simulation: does the work simulate a clinical and/or surgical scenario? 

E.g. suturing, pulse-feel, etc.  

6) Glove material: have multiple glove materials been studied?  

A grade ‘A’ constitutes as fulfilling 5–6 of the criteria; grade ‘B’ constitutes fulfilling 3–4 of the criteria 

and grade ‘C’ constitutes 0–2 of the criteria. A graphical representation of the results is displayed in 

Figure 2.10. Much of the research is focused on durability; this is most likely to be because the 

durability of medical gloves is significant to function. Thus, this is an area of primary focus. However, 

these assessments have focused mainly on obtaining and testing gloves after surgical procedures 

have been performed. As there are a great number of different surgical procedures, each with 

different tasks and different periods of glove wearing, this may result in incomparable data within 

the literature. Very few studies focus on the grip and frictional properties of medical gloves. It is 

recommended that further research should be carried out into the frictional properties as well as the 

performance effects of tactile sensitivity and dexterity of gloves. Although many of the studies here 

have good grades by these defined criteria, many of the methodologies lack standardisation and do 
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not have a control or a baseline reading of the gloves (8, 35, 71–75, 77, 78, 80, 83, 84, 41, 85–88, 90, 

92–96, 42, 97–101, 109–113, 57, 114, 116, 138–144, 146, 63, 147, 148, 152–159, 67, 160, 68–70).  

 

Figure 2.10. Grading of glove related papers to assess gaps in knowledge. 

2.9 Conclusions 

Overall, the literature suggests that sensitivity, friction, and grip are affected when medical gloves 

are worn, but dexterity is not. The differences in results between studies of the same tests may be a 

result of the difference in glove properties, arising from differences in manufacturing. Many studies 

do not discuss this possibility, and numerous studies looking at dexterity do not assess thickness of 

the gloves. Linking the key manufacturing parameters to performance will give better information 

about which processes affect performance. When assessing medical gloves, the purpose of the 

barriers should be considered in the tests. Thus, contaminants should be incorporated where 

possible. Understanding how these contaminants affect the frictional properties of the gloves will 

provide insight into how medical gloves perform. Including the assessment of a desired performance 

characteristic into the manufacturing process will ensure the production of high-quality gloves that 

are fit for purpose. 
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Chapter Three: Questionnaire  

In the first instance, it is important to establish the issues surrounding medical glove use. Exploring 

user perceptions is key to unlocking the areas where problems may occur. In the literature review in 

Chapter 2, it was shown that there are flaws in previous work, as the studies conducted lack the 

realistic conditions gloves are used in. Therefore, it is important to establish what gloves are in 

contact with, which may contaminate them, and affect their performance. The areas where 

performance is then affected can then be explored in more detail in order to further assess the 

effects examination gloves have on users.  

3.1 Introduction 

Very little has been published on the perception of how examination gloves affect the user. This 

leaves very little understanding about how gloves affect the users. Mylon, Lewis, Carré,  et al. (7) 

used a focus group of thirty four NHS medical staff to ascertain areas where perceived problems lie 

with surgical gloves. It is important to note that this study focused on surgical gloves, which are 

different from examination gloves in that they are designed to be worn for longer periods of time, 

and have more precise sizing (161). Examination gloves, however, are to be worn for shorter time 

periods and range in sizes (extra small, small, medium, large and extra-large) (149). Many studies 

show gloves have an effect on the performance of the user when carrying out tasks (6, 12). 

Furthermore, gloves have been shown to cause issues with contact dermatitis and the skin drying out 

when gloves are worn for longer periods of time, or if any allergies are present (34, 162, 163).  

In most cases, gloves are used to protect the user from contaminants (such as blood), but 

there is little literature assessing how these contaminants affect performance (114, 116). 

Furthermore, there is no literature suggesting what contaminants gloves commonly come into 

contact with. To determine how these contaminants are affecting the performance, it is important to 

establish the nature of these contaminants which are coming into contact with the gloves. 

Examination gloves are used extensively throughout various sectors. Arguably, the most important of 

these sectors is the area of medical care. Although, many other sectors rely on the performance of 

examination gloves for health and safety. For example, forensic scientists rely on examination gloves 

to protect evidence from contamination (164) as well as protecting themselves from contaminants, 

such as blood. These gloves need to provide the same level of dexterity and sensitivity that any 

medical care professional would require, in order to fully evaluate physical evidence. 
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3.2 Aim and scope 

It is thought that, as few studies can be found regarding glove perception, further questions should 

be asked in order to uncover further issues surrounding gloves. As observed in the literature review 

in Chapter 2, there is a huge gap in studies relating to the performance of examination gloves once 

exposed to contamination. In order to assess this, it was pertinent to obtain information regarding 

what contaminants are contacted amongst glove users, what the perceptions of the gloves are and 

what issues they are facing with the two most common glove materials. Thus, the aim of this study is 

to gather views on the perception of examination gloves amongst common users. The purpose of this 

study is not to obtain differences on the glove preferences, but rather to obtain information on what 

glove materials are being worn routinely, the perception of the gloves being used, the ease of 

donning and doffing the gloves, the contaminants they come into contact with, and how the users 

perceive the way that contamination affects the performance when carrying out tasks. 

3.3 Methodology  

3.3.1 Questionnaire  

Due to the regulations and restrictions surrounding research into medical devices within the NHS, it 

was decided that data would be gathered via questionnaires. Although limitations exist with 

questionnaires, in terms of user response and bias from the questions (i.e. leading questions), they 

are effective ways to reach a wider range of participants quickly and efficiently, without the 

requirement of obtaining participants for focus groups. The use of focus groups was discussed; 

however, it was decided that as the aim was to reach a wider audience a questionnaire would be 

more efficient. Attaining a wider audience would give a more accurate and varied view of the kinds 

of issues that arise from glove use. The research received ethical approval from the Department of 

Mechanical Engineering (No: 022731).  

Participants were approached by e-mail, as well as verbal communication, aimed at professions 

which require frequent glove use (e.g. private medical centres, dentists, testing laboratories, police 

forces, forensic laboratories etc.) based in the United Kingdom. In addition to this, the questionnaire 

was also posted on nursing/medical/laboratory forums in the United Kingdom (.co.uk domain). 

Participants were invited from various job roles to take part in the survey. The only requirement for 

participation was that either NBR and/or NRL examination gloves had to be routinely worn in order 

to conduct their daily tasks. Only NBR and NRL were asked about this study due to trends in the 

market leaning towards a shift from NRL material to NBR (38). As discussed in Chapter 2, other glove 

materials are used (PVC and chloroprene), but these are less frequently encountered. The 
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participants were asked to fill out a questionnaire consisting of eight questions, based on the 

perceived issues with gloves obtained from the literature review in Chapter 2 (dexterity, sensitivity, 

durability etc.). The questions were also asked to further explore the issues brought up by the focus 

group in Mylon et al. (7), and then questions were asked to see whether these issues were present 

when gloves were contaminated. Some of these questions asked were presented with set multiple 

choice answers, using the answers which were similar to those obtained from the focus group in 

Mylon et al. (7). This was to entice more participants by making the form easier and quicker to 

complete. Participants were asked the following questions:  

1. What is your job title? 

2. Which glove material(s) do you routinely wear? 

o Latex 

o Nitrile 

o Other (please specify) 

3. Regarding LATEX medical gloves, if you have worn this material currently/previously, which 

of the following do you think are ISSUES with the gloves (please state other issues where 

applicable).  

o Fit 

o Comfort 

o Dexterity (ability to carry out tasks) 

o Sensitivity 

o Grip 

o Ability to put on 

o Ability to remove 

o Tearing 

o No issues 

o Other (please specify) 

4. Regarding NITRILE medical gloves, if you have worn this material currently/previously, which 

of the following do you think are ISSUES with the gloves (please state other issues where 

applicable).  

o Fit 

o Comfort 

o Dexterity (ability to carry out tasks) 

o Sensitivity 

o Grip 

o Ability to put on 

o Ability to remove 

o Tearing 

o No issues 

o Other (please specify) 
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5. What are the most common contaminants that these gloves encounter in your job role? 

o Blood 

o Urine 

o Saliva 

o Mucus 

o Other bodily secretions (please state the nature) 

o Liquid drugs (please state nature of drug) 

o Powders (please state nature of powder) 

o Other (please state) 

6. When LATEX gloves are contaminated with these substances, what issues does this cause? 

o Comfort 

o Dexterity (ability to carry out tasks) 

o Sensitivity 

o Grip 

o Ability to remove 

o Tearing 

o No issues 

o Other (please specify) 

7. When NITRILE gloves are contaminated with these substances, what issues does this cause? 

o Comfort 

o Dexterity (ability to carry out tasks) 

o Sensitivity 

o Grip 

o Ability to remove 

o Tearing 

o No issues 

o Other (please specify) 

8. Do you feel there are any issues with carrying out specific tasks because of the medical 

gloves you normally wear? E.g. it is more difficult to open a box with gloves on. 

To limit response bias (tendency to give false answers), the questionnaire was completely 

anonymised, with no names or any personal data being gathered in conjunction with the answers 

provided.   

 

3.4 Results 

In order to show the frequency of responses the results are displayed either as a percentage or the 

total number of user responses. A total of 172 useful responses were obtained over a period of five 

months. This number did not include seven responses where the respondents did not answer any of 

the questions. 
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3.4.1 Respondent roles 

The different roles of the questionnaire responders have been categorised into job sectors and 

displayed in Figure 3.1. Over half of the respondents worked in a clinical role as a nurse or doctor 

(n=100). Other respondents came from the health-related fields of dentistry (n=14), veterinary 

(n=11), care (n=12) or were medical students (n=5). Collectively, these roles make up a total of 82% 

of the respondents. The remaining 18% of respondents had either a forensic, medical, or non-stated 

field laboratory technician role (n=30). 

 

Figure 3.1. Respondents of questionnaire by job sector (n=172). 

 

3.4.2 Glove materials 

Participants were asked which examination gloves they routinely wear in their day-to-day work. A 

total of 102 of the respondents said that they used the NBR gloves, whereas 66 respondents stated 

they used NRL. Three respondents stated they use vinyl routinely, two of which were in the clinical 

field (nursing) and one a care assistant. These results are displayed in Figure 3.2. Only one person 

stated they used chloroprene gloves. None of the respondents indicated they did not know what 

material they routinely used, and all respondents indicated they routinely wear only one type of 

glove. Some of the users of NRL, however, did state they used NBR where NRL allergies are present in 

patients (n=12).  
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Figure 3.2. Gloves routinely worn by respondents (n=172). 

 

3.4.3 Contaminants contacted 

Figure 3.3 shows the responses for what contaminants are frequently encountered. Many of the 

respondents reported exposure to multiple contaminants. The contaminants encountered has been 

broken down by job sector and shown in Section 3.4.4. Overall, blood is indicated to be the most 

contacted contaminant (n=149) followed by: urine (n=95); medical disinfectants (n=81); saliva (n=68); 

liquid drugs (n=54); water (n=52); sweat (n=50); faeces (n=46); powders (n=44); mucus (n=40); 

pus/discharge (5); vomit (n=1); dirt(n=1) and food (n=1). Where powders or liquids were indicated, 

respondents were prompted to state what type of substance was touched (i.e. oily liquid or fine 

powder). The results of this are shown in Figure 3.4. These responses come mainly from lab 

technician roles, where finer powders are contacted. Some respondents also indicated they have 

regular contact with granular powders, but the nature of these powders was not disclosed. In terms 

of liquid drugs, it appears there are three categories these drugs fall into which are solvent, watery, 

or oily.  
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Figure 3.3. Contaminants coming into contact with medical gloves used throughout the various fields. 

 

Figure 3.4. Liquid drugs and powders contaminating gloves as indicated by respondents. 
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(Figure 3.5a) where the gloves are exposed to all of the contaminants shown in Figure 3.3. Also, as 

indicated by the compilation of responses in Figure 3.3, blood exposure is prevalent throughout all 

job sectors. All (100%) of workers in the clinical sector stated they had regular exposure to blood, 

along with dental (Figure 3.5b) and veterinary care (Figure 3.5d). Saliva is also common throughout 

the varied job sectors. Many respondents from the lab technician role stated they were 

contaminated with fine powders from illicit drugs (n=30). On the other hand, respondents from the 

clinical field stated they had drug residues from tablets (i.e. paracetamol) contaminating the gloves. 

Some respondents also indicated they had contact with granular powders. However, they did not 

state what the nature of these powders were (n=4). Lab technician and clinical respondents also 

indicated contact with oily liquids such as steroids (e.g. testosterone) (n=32) and watery liquids (n=6), 

as well as solvents (n=6). The responses for each role are to be expected, e.g. more bodily fluids in 

the clinical, than in the laboratory roles. The result that stands out more, is the sweat in the dental 

sector (7%, Figure 3.5b). It is unclear how sweat would be exposed to medical examination gloves in 

a dental setting, as the oral cavity is the area where most activity would take place. However, there 

could be issues with stabilising patients’ heads, which could contaminate gloves with sweat.  
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Figures 3.5 (a-f). Breakdown of all contaminants contacted by job sector. 
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3.4.4 Perceived issues with NRL and NBR gloves 

Four of the 172 respondents stated they had never worn NRL or had NRL allergies. Also, nine of the 

respondents stated they had no issues; thus, the NRL results are displayed as issues amongst the 159 

respondents. In the NBR gloves, 10 respondents stated they had no issues and 2 stated they have not 

worn NBR gloves before. This brings the total number of respondents for the issues with NBR to 160. 

The results of both NRL and NBR are shown in Figure 3.6. In total there were 429 responses to the 

issues regarding the NRL gloves and 597 for the NBR gloves. The issues perceived encompass both 

material issues (e.g. stiffness) and the performance (e.g. dexterity). The major issue reported with 

both gloves is the loss of tactile sensitivity (NRL n=77, NBR n=94). Table 3.1 shows the results and the 

between the number of responses with each issue. The greatest differences are noted in the 

thickness, ‘elasticity’, and dexterity between the two glove types. Due to the comments surrounding 

the elasticity (e.g. more stretchy/stronger), it is likely that the respondents were referring to the 

stiffness of the material. 

 

Figure 3.6. Results obtained from questionnaire regarding issues perceived with NBR and NRL gloves. 
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Table 3.1. Differences in response volume for issues between NBR and NRL gloves. 

 
No of 

responses Difference 
Issue NBR NRL 

Fit 64 44 20 

Comfort 44 63 19 

Elasticity 69 34 35 

Dexterity 74 44 30 

Sensitivity loss 94 77 17 

Thickness 90 39 51 

Grip 68 45 23 

Ability to put on 50 48 2 

Ability to remove 11 10 1 

Tearing 33 25 8 

Sweatier 6 0 6 

No Issues 10 9 1 

Do not wear/never worn 2 4 2 

Total responses 597 429 168 

 

3.4.5 Perceived issues with contaminated gloves 

Figure 3.7 shows the responses regarding medical glove use once they have been contaminated with 

the powders/fluids stated in Figure 3.4. The results are shown in Table 3.2, which shows that fit, 

dexterity, and sensitivity loss have the greatest differences between the two glove types. In the NRL, 

a total of 402 issues were reported, compared to 527 issues for NBR. When NRL and NBR gloves are 

contaminated, most issues arise with regards to grip (NRL n=101, NBR n=119); tactility loss (NRL 

n=82, NBR n=105) and dexterity (NRL n=73, NBR n=107). A total of forty respondents for the NRL, and 

fifty-six respondents for the NBR, stated there were issues with the ‘elasticity’ after contamination. 

More issues are reported in the NBR than the NRL, except in the issue of tearing (NRL n=23, NBR 

n=17). Overall, it is shown that more issues exist for the NBR gloves. 
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Figure 3.7. Results obtained from questionnaire regarding issues perceived with NBR and NRL gloves 
once contaminated. 

 

Table 3.2. Response volume for issues between NBR and NRL gloves once contaminated with 
substances indicated in Figure 3.4. 
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Fit 38 10 28 

Comfort 48 49 1 

Elasticity 56 40 16 

Dexterity 107 73 34 

Loss of Sensitivity 105 82 23 

Grip 119 101 18 

Ability to remove 37 24 13 

Tearing 17 23 6 

No issues 7 7 0 

Do not 
wear/never worn 

2 4 2 

Total 527 402 125 
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3.4.6 Further issues 

When prompted to discuss further issues where gloves may affect specific tasks, 49 respondents did 

not answer or responded with no further issues. Many of the remaining comments expanded on the 

issues previously mentioned. For example, some respondents stated that the gloves were ‘too 

slippery’ and saying NBR was thicker, and more uncomfortable rather than reporting on a specific 

area they feel is affected. Although the question asked was to name specific tasks, there were only 

eight specific tasks identified. The remaining issues fall into problems such as: slipping of fingers 

inside the gloves, changing gloves, sweat generation, and size/fit of the gloves. All of the results are 

displayed in a sunburst diagram in Figure 3.8. An attempt has been made to identify and split up 

specific gloves where they have been stated. However the majority of comments did not state a 

particular glove material.  

 

Figure 3.8. Diagram showing range of comments regarding specific issues with gloves. ‘Not stated’ 
indicates no specific material was given in the response. 
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Major issues identified are around the size/fit of gloves (n=25) as well as the changing of gloves 

(n=24). Where fit was mentioned, many respondents also commented on the slipping of their fingers 

inside of the glove. This was reported to cause issues in forensic laboratory respondents, as the 

materials cause them to incorrectly identify bumps and striations on materials. Also, in a clinical 

setting, there were comments focused on slipping affecting respondents’ ability to carry out port 

connections where gloves are worn. There were 24 respondents who expanded on the donning 

incapability, stating it was extremely difficult to don gloves once any moisture was present on the 

hand, hindering their ability to carry out further tasks due to ill-fitting gloves. These issues are 

highlighted in Figure 3.9. Other comments included the colour of NRL was not nice once it was 

exposed to sweat in the hand (latex staining, n=2) and gloves made the hands sweatier (n=9). Which 

is a common issue noted in NRL gloves, whereby the chlorination treatment of the gloves causes 

them to yellow, even more so on exposure to sweat (14). When specific material issues were 

mentioned, most of these focused on NBR tearing (n=10), causing gloves to be changed which is time 

consuming. Along with this, comments appeared around NRL being ‘too elastic’ (less stiff) in nature, 

and snags easily (n=7). This reportedly leads to issues with glove tearing, snapping back onto the skin 

and sometimes misidentification of evidence in forensic laboratory tasks.  

 

 

Figure 3.9. Breakdown of the responses surrounding issues from the comment section of the 
questionnaire. ‘Not stated’ indicates that no specific glove was given in the response. 
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Comments regarding specific tasks have been split into two sections; dexterity and sensitivity and are 

displayed in Figure 3.10. The only sensitivity issues mentioned were with regards to pulse 

identification (n=28) and physical examination by using percussion to feel organs (n=2). Issues with 

dextrous tasks included equipment slipping from contamination (n=4); tearing/sticking of gloves in 

cap lids (n=5); applying dressings (n=2); undoing small knots for evidence preservation (n=3); fine 

control, such as applying pressure with a scalpel (n=3) and others reported ‘issues with dexterity in 

most tasks’ (n=8). Although more issues were identified regarding dexterity, more respondents 

reported specific issues with sensitivity, all of which were respondents working in the clinical sector 

(n=30).  

 

Figure 3.10. Breakdown of the responses regarding specific tasks affecting participants of the 
questionnaire. Tasks have been split into two sections to show the two main issues affected. 

 

3.5 Discussion 

The questionnaire shows that, although it is clear that NRL is still being used, the NBR gloves are 

more routinely worn. This is what is reported and predicted in line with the market trends (38). Three 

respondents stated that they used PVC gloves. All of which were in the medical field, dealing directly 

with patient healthcare. However, it is recommended by the National Health Service that vinyl gloves 

are not be worn where contact with bodily fluids is apparent due to their high failure rates (165). 
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majority of the respondents working in the medical field (83%). These fluids are the fluids that would 

be expected to be in contact with gloves, the most common being blood, urine, and saliva. However, 

not previously considered, medical disinfectants also appeared as common contaminants. 

Regulations include that clinical staff maintain good environmental hygiene, thus cleaning around the 

patients/hospital/equipment is a vital part of their practice (22, 165). Furthermore, there are needs 

to come into contact with cleaning/disinfectants, when it comes to phlebotomy (inserting a needle to 

remove blood) (166, 167). These cleaners are normally alcohol-based wipes; thus gloves can be 

contaminated before proper use (168, 169).  

NBR and NRL gloves are perceived to have similar issues; however, it is shown that NBR has 

more issues than the NRL glove. This could be due to the fact that only 39% of the respondents use 

NRL routinely, whereas 59% routinely use NBR. The largest issue for both gloves is around the 

sensitivity and ability to put on. Issues which were both highlighted in Mylon et al. (7), with the 

sensitivity issues being prevalent with 23% of the participants. In this study, only one issue was raised 

in the NBR that did not appear in the NRL, which was that the glove induced more sweat. The term 

‘sweatier’ was used with the participants, thus it is thought that this means more sweat is generated 

when NBR is worn, in comparison to the NRL glove. Ability to put gloves on is a notably frequent 

issue with both gloves, which is an area which has seldom been explored in the literature (6, 9, 12). 

The only issue where NRL is more frequent than NBR is in the area of comfort. This could be due to a 

skin reaction to the NRL or from the material parameters (i.e. tighter on the skin). Mylon et al. (7) 

found contradictory issues, whereby more contact dermatitis was reported by the participants (5.9%) 

using the NBR gloves.  

When the gloves are contaminated, the number of issues reported decreased by 6% for NRL 

and 12% for NBR. This is likely to be because the question was concerned about issues which were 

exacerbated by the presence of contaminants (i.e. not the issues that were already perceived to be 

present). Unsurprisingly, grip is the highest reported issue with both gloves, and dexterity/sensitivity 

is also reported to be affected. Comments were made on ‘elasticity’ being an issue after 

contamination, which could be due to the way these contaminants are reacting with the gloves, to 

either affect the stiffness of the material or elicit such a feeling. In addition, the ability to remove is 

noted as a more frequent issue when compared to the general issues with gloves asked previously. 

This is likely to be because it is harder to grab the glove due to the reported perception in reduced 

grip capability. It is unclear why fit would be an issue once gloves are contaminated. It is possible that 

the glove reaction to certain substances makes the user feel less comfortable, which respondents are 

perceiving as issues with fit (such as solvents making the glove feel tighter as they evaporate). It 
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should be noted that ‘fit’ was not on the multiple-choice section for this and was typed in the ‘other 

issues’ section. 

3.6 Questionnaire limitations 

As with any questionnaire, there are several limitations with the results obtained from this study. 

Recollection bias is the most prominent issue in surveys. It is possible that some participants will not 

know which glove materials they are wearing but will have attempted to answer under the 

assumption of using a particular glove (i.e. participants could be using NBR but believe it is NRL). 

Also, if one particular glove has been worn for a long period of time, participants could, perhaps, 

think of issues that they believe may be associated with the other glove materials rather than 

reporting experienced issues. This has been highlighted in Mylon et al. (7) where participants 

reported the ‘thicker feeling’ gloves affected their tactility; however, the gloves were not measurably 

thicker. This may arise as a function of bias due to glove preference through use. As market trends 

lean towards other glove materials (such as the synthetic NBR over the NRL) there is a shift from 

hospitals purchasing habits, and more synthetic gloves are favoured from a business point of view 

(i.e. less incidences of allergies) (38, 165). However, as discussed in the Mylon et al. study (7) this 

leads to a bias in ‘favoured’ gloves. In essence, the people who wore NRL gloves for longer before the 

switch to NBR, show a preference for the NRL material. A way that this could have been mitigated 

was by asking if the gloves being used currently in their job role was their preferred glove choice, or 

part of an institutional decision of which gloves are being used. However, this study was pertaining to 

what gloves are used and the issues are perceived with these gloves, not about how users compare. 

Although it would be interesting to fully assess how glove users, who have had to change from their 

preferred glove materials, evaluate different gloves.  

Although the contamination questions asked about any further issues, when providing 

answers, it is possible that participants filled out answers with the mind-set that the issues had not 

gone away, rather than them being further issues. For example, a respondent could have reported 

comfort as an issue for a NBR glove. Then when asked for further issues once the NBR glove had 

been contaminated, the participant responds with ‘comfort’ as the issue has not gone away, inducing 

a false positive for comfort being an issue when the glove is contaminated. Due to the nature of the 

questionnaire, multiple choice answers were provided with encouragement to include issues which 

were not stated in the answers provided. This box was utilised to add a wide range of substances for 

the section regarding which contaminants the gloves came into contact with. However, this was 

seldom used for the list of issues. Some of the participants used this box to comment on an issue that 

was already in the multiple-choice section or to put an issue which was already present (i.e. writing 
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‘glove ripping’ instead of clicking on ‘tearing’). This could cause the issues, whereby recollection bias 

makes the respondent think issues are present where none exist, just because they have seen the 

word in front of them (170, 171). Furthermore, common issues with the gloves could be undetected 

as participants do not have to think too deeply into their answers on an anonymised multiple-choice 

questionnaire. Another limitation is how the participants link the perceived issues together is also 

unobtainable from this study. This could be vital for perception of how glove users perform. For 

example, the largest issue in NBR is the loss of sensitivity (n=94) and the second largest issue is 

thickness (n=90). There is no indication in this questionnaire that the respondents believe that these 

two could be linked.  

3.7 Conclusions 

The findings from this chapter are: 

• The most common examination gloves being used are composed of the NBR material, which 

participants appear to have more issues with than gloves composed of NRL. Although, this 

could be due to the NBR gloves being more widely used, hence more issues are noticed. It 

was shown, however, the more frequent issues being reported are similar for both of the 

materials.  

• The most frequently reported issues are the loss of sensitivity, dexterity, grip, and ability to 

don. These issues, with the exception of donning ability, are reported to become further 

issues when both of these glove materials become contaminated.  

• Comfort is also reported as a larger issue in NRL when compared to NBR, which could be 

down to the tightness of the gloves creating more sweat (although sweat was a reported 

issue in NBR and not NRL), being tighter or underlying allergies/sensitivity.  

• Fit is more of a perceived issue with the NBR gloves, but an inherent issue throughout both 

glove types. 

Overall, this questionnaire reveals the contaminants gloves come into contact with most frequently, 

as well as highlighting what effect glove materials may have on user performance. This allows for a 

greater depth of study into how glove behaviour is influenced by contamination. The issues 

surrounding donning and doffing the gloves are of great interest. Although the issues surrounding 

glove donning are relatively unexplored in the literature, there appears to be a problem amongst the 

general population of glove users.  
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Chapter Four: Donning and doffing 

As previously discussed in Chapter 2, there is a lack of studies linking glove properties to donning 

capability and ease (6). To date, there is little literature regarding how the donning process is 

affected when moisture is introduced via either sweat or hand washing (172, 173). This was further 

identified as an issue from the questionnaire analysis in Chapter 3. It is referenced in the literature, 

and a selling point of many gloves, that the internal coatings e.g. polymer coatings (such as acrylics or 

hydrogels), or surface treatments help aid the donning of gloves (16, 57, 137, 174). The studies 

investigating the differences between coatings show that friction is reduced when hydrogels are used 

compared to chlorination (16, 57, 137, 174). However, beyond the fact that the friction is decreased, 

there is no evidence that this makes a glove ‘easier’ to don. In addition to this, there is an issue raised 

regarding the fit of gloves, and many people reported in the questionnaire (Chapter 3) that they 

were ‘between sizes’ and found gloves either too small or too large (172). Thus, assessing whether 

commercial gloves correlate to the hand sizes is required for assessing donning performance, as 

larger gloves are easier to don, but ill-fitting, which may affect performance (172, 173). This chapter 

concentrates on the inner glove interaction, that is, the donning side of the glove and the skin with 

different glove materials and treatments. The efficiency of donning and doffing gloves with different 

treatments, and with moisture present, is explored to mimic the conditions in which gloves are 

donned.  

 

4.1 Introduction 

Performing basic hand washing between glove use decreases the risks of infection between patients 

as the gloves could become damaged, contain pinholes, or break during use, leading to the hand 

being contaminated (175). However, the use of hand hygiene is considered unnecessary by some, 

and it has been shown that washing prior to and after glove use does not reduce pathogen 

transmissions (176). Nevertheless, it is still recommended that hands should be washed every time 

gloves are worn, especially given the covid19 pandemic where the use of PPE has increased and 

encouraged to be used where they would not have prior to the outbreak (31, 177, 178). A quick 

change of gloves is salient in high pressure environments, such as the medical field. The issues with 

donning gloves with wet hands are documented, as the glove sticks to the skin more and creates 

issues when trying to don gloves (7, 15, 119, 120, 179–181). Previous studies exploring force-donning 

relationships have shown that that wet hands require more force to don medical gloves (15, 119, 

120, 179, 180). However, in the ‘wet hands’ condition, no drying took place, which is not 

representative of the conditions gloves are donned in The increase in force and sticking increases the 
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time taken to put gloves on and/or leads to ill-fitting gloves with loose material in areas, and is 

regarded as unpleasant (181). Thus, assessing how the internal coatings and treatment of 

examination gloves could enable manufacturers investigate different coating requirements, and help 

purchasers/users make more informed choices regarding the selling point of gloves. Roberts and 

Brackley have previously assessed  the coating applied to NRL surgical gloves, studying friction with 

skin and glass (57, 137). The work suggests longer chlorination time induces less friction, and 

hydrogel performs better due to an overall decrease in friction when compared to the chlorination. 

The wet condition was attained by applying water to the glove, rather than the finger. This could 

alter friction in two ways which are not replicable of the realistic donning scenario. Firstly, the 

coatings applied could affect the contact angle and the wetting of the surface, causing the moisture 

to spread. Secondly, the water-finger interaction should be present prior to hand insertion into the 

glove. Moisture in the hands has been shown to change morphology, which may induce changes in 

contact area (182). Furthermore, only one participant was used, and skin has been proven to have 

great variation between people, different interactions with moisture and thus, more people would 

have induced a greater variation in results. It is possible that the conclusions based on these results 

are erroneous and no statistical analysis was performed on any of the results. More recently 

Manhart, Hausberger, Maroh, et al. (174) looked at the tribological aspects of gloves with skin and 

compared porcine skin in an attempt to correlate human friction to an animal model. The study 

found that the skin had a good match with correlations between porcine and human skin friction. 

However, the human testing was only conducted once, whereas the porcine was tested 10 times. 

Although, similar conclusions were drawn to other friction studies, leading to the inference that 

gloves with polymer coatings are easier to don because there is less friction present (57, 137). No 

gloves, to date, compare the findings of internal glove coatings and their effects on the donning 

process and link this directly to the frictional properties of medical examination gloves.  

 

4.2 Aim and scope 

The aim of this study was to investigate the effects of donning different glove materials with dry and 

wet hand conditions, replicating in-situ donning scenarios. Wet skin has been shown to have higher 

friction coefficients when compared to dry skin (121, 183). This difference in friction can highlight the 

differences between glove treatments, coatings, materials, and the hand conditions, as well as 

informing better glove selection. These differences were determined by defining a protocol in which 

different gloves are assessed for how long they take to don and doff in dry and wet conditions. In 

conjunction with this, the frictional interactions between the skin and different internal glove 



59 
 

coatings were assessed, with the aim of exploring correlations of medical glove friction to the time 

taken to don the glove.  

 

4.3. Materials and Methods 

4.3.1 Glove materials and characterisation 

Glove Selection 

Four types of commercially available medical examination gloves were used in this study. Chlorinated 

(cl) NRL (branded UltraCruz) and chlorinated NBR (branded Arco) were selected. These types of 

gloves are the most commonly used in industry due to the ease of access in the market, and they are 

relatively inexpensive (38). The intention of this study was to compare multiple glove coatings with 

the chlorinated treatment; however, the nature of the coatings is not determinable, as they are 

patented to the manufacturers and not disclosed on the packaging. Attempts were made to 

determine the coating via contacting the manufacturers, however no response was received. Thus, 

only one brand (Glove+) was used which had an internal polymer coating (PC) inside the NBR and NRL 

gloves. This led to a total of four gloves being used (Figure 4.1). Obtaining the roughness of each 

glove would be beneficial to the study, however due to the nature of the gloves, the surface 

roughness could not be obtained. This is because the surface roughness measurement instrument 

(Alicona) uses light to map the surface profile. In some cases, the material can reflect the light, which 

causes issues with the image. The materials used in this study were either too thin, or too reflective 

to obtain a detailed surface profile in which the average roughness could be determined.  
 

 
Figure 4.1. Glove selection used in this study. From left to right; chlorinated NRL; polymer coated 

NRL; chlorinated NBR; and polymer coated NBR. 
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Thickness and size measurement 

Glove thickness (T) was measured using a Mitutoyo micrometer (quick-mini, ± 0.01mm). Twenty 

samples of each glove type were measured at the location of the palm, middle finger, and fingertip. 

Each measurement was repeated three times in each area per glove. The Health and Safety Executive 

(HSE) recommends the measuring of hands across the palm, and the total length of the glove finger. 

Therefore, in order to assess if the gloves were of similar sizes, the same measurements were 

conducted on the gloves. Glove sizes were measured using a ruler in three areas, as shown in Figure 

4.2. The areas measured were from:  

 

• The distal middle finger to the knuckle 

• The distal middle finger to the cuff 

• The width across the palm 

 

Where gloves were wrinkled/folded due to the packaging (as is visible in Figure 4.2), the glove was 

flattened as best as possible and held in place to ensure no folds/wrinkles were visible. However, 

some wrinkles may have contributed to differences in glove sizes. A total of 20 gloves were measured 

from each batch to get an average size for all three measurements.  

 

 
Figure 4.2. Depiction of areas of glove used for measurements. 

 

Tensile strength 

Gloves were tested as per EN regulations, using a tester Tinius Olsen TL-190 tensometer (Figure 4.3a) 

with a deflection rate of 500 (±2) mm/min. The EN 455-2 standards lay out the requirements of 

testing for physical properties (60). Standards state gloves should be cut to yield a 3 mm wide strip to 

= Thickness 

measurement 

area 
Finger base 

Palm 
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be tested at 21°C (±2) with a humidity at 50% (±5) for physical properties. The glove was press cut 

around the palm area to yield a 9 cm long section, which had a 3 (±0.05) mm  wide testing section, as 

in Figure 4.3b. The thickness along the 3mm wide strip was measured three times and averaged 

using a micrometer (Mitutoyo, C11XBS). The cut glove section was marked at an initial 2.5 cm spacing 

along the 3 mm strip. This was then loaded on the tensile tester and tested for the force at break 

(Fb), elongation at break (Eb), and tensile strength (Ts). Testing was carried out in a temperature and 

humidity-controlled room within the EN standards specification range, previously mentioned. 

Acceptable Quality Levels (AQL) requires gloves be checked to ensure they meet these standards. 

The standard practice is to test 2% of each batch of gloves, which should have no more than 1.5% of 

glove fail (61). If above 2.5%, the gloves are seen as low quality and the batch, as a whole, fails. For 

this study, as only a limited number of gloves were received, 12 repeats of these tests were 

conducted. Two sections were press-cut from each glove (around the palm area), thus only 6 gloves 

were tested (184).  

 
 

 

 
Figure 4.3. a) Tinius Olsen TL-190 tensometer and b) Press-cut sample for EN standard testing 

 

The modulus of the gloves was also measured at 100, 300 and 500% strain, as per EN standards to 

produce stress-strain graphs for comparison of modulus. The stiffness (K) of the gloves was also 

calculated for discussion on how stiffness of the gloves could affect the donning process. The stiffness of 

each of the gloves was calculated using the stress at 100% strain using the following formula: 

 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 (𝐾)  =
𝑠𝑡𝑟𝑒𝑠𝑠 (𝑎𝑡 100% 𝑆𝑡𝑟𝑎𝑖𝑛) × 𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑖𝑑𝑡ℎ × T

𝐼𝑛𝑖𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

 

Equation 4.1 

(a) (b) 

Sample 

holder 

Laser 
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where T is the glove thickness (185). The stress at 100% strain was used as it is thought that stretching the 

glove beyond a 100% strain is unlikely. Stretching beyond this is an indication that the hand is not fitting into 

the glove correctly, due to incorrect sizing. This was noted in the video analysis of donning (discussed in section 

4.4.2), whereby it was visually apparent that the gloves were not strained to over 100%. This is, however, 

unmeasured and a best estimate of the strain applied to the gloves when donning.  

 

Contact angle goniometer 

The wettability of a surface is measured through the contact angle (186). Contact angle measurements 

were carried out using a goniometer (ramé-hart, model 100-06, Figure 4.4) with a static sessile drop 

method. The gloves were placed onto the goniometer platform and 2 µl droplets of deionised (DI) 

water was syringed onto the sample surface, from a height of 0.8 mm. The droplet was analysed 

immediately after contact with the glove and was not left for a period of time.  

 

 
Figure 4.4. Schematic of goniometer. The syringe deposits a measured drop onto the substrate on the 

platform. This is then viewed via the viewing lens with sight aided by the light behind. 

 

Strain 

The gloves were tested for contact angles under strains of 0%, 25% and 50% to assess if strain affected 

the contact angle of the fluids (assessing donned/un-donned scenarios). The strain of the gloves was 

achieved using a stretching device, shown in Figure 4.5. This device is composed of two sections, a 

static section affixed to moveable section, which allows stretching of an attached glove. The glove 

sample was placed into the device and held with screws. All gloves were measured three times at each 

strain.  
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Figure 4.5. Stretching device with glove attached 
 
 

4.3.2 Donning methodology 

Three video cameras were set up in a triangulated position in order to capture all areas of the hand 

as the glove was being donned and doffed. A schematic of this set-up is shown in Figure 4.6. Prior to 

the study taking place, participants were asked to ensure their hands were washed and thoroughly 

dried around 15 minutes prior to starting. No gloves were worn in this 15-minute period. This was to 

get the hands into a natural state of moisture and temperature, ensuring all participants had a similar 

environment for the ‘dry’ condition. Gloves were placed side by side on a stool in front of the 

participants, who were then signalled verbally to proceed donning the gloves. Once participants had 

donned the gloves, they were asked to hold their hands out palms down to signal they had 

completed donning. They were then asked to doff the gloves and then hold out their hands once 

again, to signal that they had finished the process. To measure the donning efficiency with wet 

hands, participants were asked to wash their hands with liquid soap and warm water from the taps 

within the laboratory, and then partially dry, by patting with paper towel, using only two sheets of 

paper towel. Some remnants of moisture were still visible on the surface of the skin. The participants 

were then asked to don and doff the gloves in the same manner as before. This was repeated for all 

four types of gloves, in both wet and dry conditions in a forced randomised fashion, whereby the 

random pattern was checked over and changed to avoid a particular glove type always being in a 

particular position. In an attempt to double blind the experiment, both the participants and the 

principal researcher were blinded to which gloves were being used. The gloves were numbered 1-4 

and placed into separate bags by a separate party. Thus, it was unknown which glove belonged to 

which brand until the end of the study, an approach suggested by Watson et al. (151). However, the 

gloves are distinct colours with NBR being blue and NRL being white/beige, thus the particular glove 

material was identifiable when watching the video footage. Nevertheless, the inner coating was not 

determinable by the colour without prior knowledge.  
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Figure 4.6. Schematic of the equipment set-up for capturing the donning and doffing process. 

Participants 

Participants were recruited from a forensic drug analysis laboratory (SOCOTEC, Burton-on-Trent, UK) 

where the analysis took place. These participants routinely don gloves, using on average 10-15 pairs 

of gloves per day. A total of 14 participants took part in the study, seven of which were male, and 

seven were female. The ages of the participants ranged between 22-40 and had all consented to 

being recorded and had no known allergies to NRL. It was determined that measuring the glove size 

and matching that to the HSE recommended size would not be representative of what occurs when 

gloves are selected. Consequently, all participants were given the option of selecting the size of 

gloves based on their own perception of what was ‘best-fit’. That is, the participants selected the 

glove size based on the fit they were used to routinely. Participants hands were measured, using a 

tape measure, for the length (from the tip of the middle finger to the wrist), width (across the top of 

the palm), and circumference (measuring around the palm) by adapting a procedure used in Jee and 

Yun (187). Ethical approval was obtained from the University of Sheffield Department of Mechanical 

Engineering (No: 022731).  

 

4.3.3 Questionnaire 

As the participants in this study were experienced glove users, it was thought best to get their 

perceptions of the donnability and doffability of the gloves. This questionnaire was conducted for 

two reasons, to correlate perception with the results, and to assess preference correlation to results. 

The latter arising due to previous focus studies concluding that preferred glove types are seen to 

have better performance (7). As gloves and hand size were measured to assess whether the glove 

being donned was appropriate, the participants were also asked about the fit of the gloves (did the 

glove fit well?). To simplify, the questions asked were short, to the point and required a ‘yes’ or ‘no’ 

answer. This was asked after each test was conducted. The questions were as follows: 
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• Did the gloves fit well? 

• Were the gloves easy to don? 

• Were the gloves easy to doff? 

 

4.3.4 Friction 

Friction measurements 

The friction between the skin and the gloves was measured for the same two hand moisture 

conditions used when assessing the donning. A multiaxial force plate (AMTI) was used (15cm × 15cm) 

to measure the friction between the skin and each glove. The force plate measures the force applied 

(Z) and the frictional force in both directions of the plate: side-to-side frictional force (y) and forward-

backward frictional force (x), as shown in Figure 4.7. The force measured in the opposite direction of 

the sliding is the ‘frictional force’ (the force opposing the movement), whereas the force applied is 

the ‘normal force’ which is the vertical force utilized by the user pressing their finger down onto the 

plate.  

 

 

 

 

 

 

 

 

 

 

Figure 4.7. a) AMTI plate with glove attached, arrow shows the direction of finger travel, and b) the direction 

of forces with the z force as the normal load, the y force is the lateral (sideways) force across the plate and x 

is the force of the direction of the finger being dragged along the glove. 

 

Friction Methodology 

Each glove was cut open and fastened to the force plate using double sided tape to secure the glove 

completely to the plate, ensuring no relative movement, as in Figure 4.7. The exposed glove surface 

was the inner ‘donning’ side. To assess the frictional interaction between the finger pad and the 

gloves, the angle between the finger and the surface was kept at around 40o and the finger pad was 

dragged along the plate, inducing a sliding action. Attempts were made with the palm of the hand, 

but the force plate was not large enough, and it was thought that the glove is rarely in contact with 

(a) (b) 

Direction 

of travel 
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the whole hand during the donning process, due to the gloves being pulled and stretched. Thus, only 

the index finger of the participants was used to assess friction as used in previous studies (90, 116). 

The index finger of each participant was placed onto the glove and held at the desired force for 2-3 

seconds before sliding was initiated. Participants were instructed to drag their finger down the glove 

for around 8-10 seconds, which results in a sliding speed of around 1.2-1.5 cm/s. Participants 

repeated each test three times in each condition (wet and dry). Previous studies had participants wet 

their hands and then don gloves (15, 119, 120, 179, 180). However, hands would be dried more 

rigorously prior to donning. Therefore, in this study, the wet condition was achieved by dipping the 

finger (as friction is only being assessed with the finger) in warm water at 30-32 °C and then blotting 

with a paper towel to remove most surface water. This was to recreate the act of drying the skin 

after washing the hands in tap water (181, 188). However, some moisture was still visible on the 

finger surface, as with the glove donning assessments. Ethical approval was obtained from the 

University of Sheffield Department of Mechanical Engineering (No:022735). 

 

Participants 

Four participants were recruited for the friction analysis (2 males and 2 females, aged 25-34). The 

participants were not the same participants used in the donning analysis due to participant 

availability. 

 

Load selection 

Five loads were used to assess the frictional properties, these were 0.1, 0.25, 0.5, 0.75 and 1 N. These 

loads were selected based on the load ranges used in the literature looking at the friction between 

glove materials and skin (57, 137, 174). However, this study looked at multiple loads as an 

assessment of different areas of the skin-glove interaction. A force of 1 N is similative of gripping and 

holding, thus has been selected as the highest load (189). At the fingers, the force will be higher as 

they have most contact due to the hand being forced into the glove. The low loads in this study 

represent the interaction between the glove and the palm/back of the hand region/side of the palms, 

which tend to have the glove stretched over them with little contact, until the fingers reach the end 

of the gloves.  

 

Moisture measurements 

MoistSense (Moritex, USA) was used for moisture measurement in the outer layer of the skin known, 

as the stratum corneum (Figure 4.8) (190). Moisture measurements were taken on the centre of the 
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index finger three times for each friction test conducted. The moisture measurements were only 

taken for the friction tests, to highlight the difference in moisture.  

 

 

Figure 4.8. MoistSense used to measure the moisture in participant’s skin. 

 

 

4.3.5 Data Analysis 

Friction analysis 

As the donning procedure is a dynamic system (i.e. the hand and the glove move over each other in 

order to don the glove), dynamic friction has been measured. The dynamic friction has been 

calculated from a period where there is a plateau in the friction force, as shown in Figure 4.9, which 

shows an ideal graph with easily identifiable difference between the friction types.  

 

 

Figure 4.9. Typical graph for determination of friction coefficient. Dynamic CoF has been taken from 

the plateau in the normal force. 

 

For analysis, the resultant horizontal friction force was calculated to account for any changes in local 

deformation (as the finger moves bulk-wise on the glove in the same direction) and for the misalignment of 

sliding (191). Resultant horizontal friction force was calculated using the equation: 

 

𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 (𝑁) = √𝑥[𝑁]2 + 𝑦[𝑁]22
 

Equation 4.2 
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where x is the friction force moving up and down the force plate, and y is the friction force moving side to 

side (Figure 4.7b). Coefficient of friction (CoF, µ) was then calculated via the equation: 

 

µ =
Resultant friction force (N)

Normal force (N)
 

Equation 4.3 

 
Power law relationships between the skin and glove friction have been previously reported in literature (90, 

103, 107). Power fit laws have been applied to the data to obtain the best-fit lines for the trends using 

the formula: 

 
𝑃𝑜𝑤𝑒𝑟 𝐿𝑎𝑤 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 = 𝑎 + 𝑏𝑁𝑛 

          Equation 4.4 

 
where a and b are constants determined by the data, N is the normal force, and n is the exponent 

determined by the data set.  

 

Statistical analysis 

The Shapiro-Wilk test for normality was used to assess the data for normal distribution (192). Data 

which was found to be normally distributed was analysed using one-way analysis of variance 

(ANOVA). This test looks to see if there are significant differences between all data sets (193). If 

significance was determined by the ANOVA test, a further post-hoc Tukey’s Honestly Significant 

Difference (HSD) was conducted (194). If the data was found to be non-parametric, significance was 

tested for via the Kruskal-Wallis method (195). The non-parametric post hoc test chosen for this is 

the commonly used Dunn’s Multiple Comparison Test (195). Statistical differences between the dry 

and wet conditions for each glove was assessed using a two tailed paired t-test (where parametric) or 

Wilcoxon Signed Ranks Test (where non-parametric) (196, 197). The significance level for the data 

being significantly different is set at α=0.05. Thus, probability values (p), which indicate the 

significance of the test, must be <.05 in order to be defined as statistically significantly different.  

 

4.4 Results 

4.4.1 Glove properties 

The average glove thicknesses at each measured location are shown in Table 4.1, along with the 

average thickness. It was found that the gloves have a tendency be thicker at the fingers than the 
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palm. The gloves have a similar thickness overall, with the exception of the chlorinated NBR, which is 

just over half of the thickness of the polymer coated NBR gloves, on average.  

 
Table 4.1. Gloves used and thickness measurement. 

Glove ID Treatment 
Average Thickness (mm) 

Palm Finger Fingertip Average 

Cl NBR Chlorinated 
0.06 

(0.006) 

0.06 

(0.003) 

0.08 

(0.005) 

0.07 

(0.005) 

PC NBR Polymer 
0.10 

(0.011) 

0.13 

(0.006) 

0.15 

(0.006) 

0.13 

(0.007) 

Cl NRL Chlorinated 
0.09 

(0.010) 

0.12 

(0.005) 

0.12 

(0.006) 

0.11 

(0.008) 

PC NRL Polymer 
0.10 

(0.012) 

0.11 

(0.006) 

0.13 

(0.007) 

0.12 

(0.008) 

 denotes standard deviation. Cl = Chlorinated, PC = Polymer coated 

 

Physical properties 

The gloves show differences in the break force, tensile strength, and elongation at break. It would 

appear that the greatest tensile strength is present in the PC NBR (33.40 MPa), which also has a large 

elongation at break (516%), as shown in Table 4.2. The greatest differences in the gloves are 

exhibited with the elongation at break. The NRL, when chlorinated, was shown to have the highest 

elongation at break (846%), whereas the least was the NRL when polymer coated (275%).  

 
Table 4.2. Measured physical properties of gloves. 

Glove Fb (N) Ts (MPa) Eb (%) K 
(N/mm) 

Cl NBR 
6.25 

(0.68) 

25.77 

(5.26) 

442.00 

(79.38) 

0.022 

(0.002) 

PC NBR 
9.53  

(1.69) 

33.40 

(5.00) 

516.42 

(47.05) 

0.024 

(0.002) 

Cl NRL 
8.62 

(0.60) 

23.20 

(1.59) 

846.08 

(77.28) 

0.009 

(0.002) 

PC NRL 
7.53 

(0.50) 

22.73 

(1.47) 

275.92 

(142.39) 

0.012 

(0.001) 

 denotes standard deviation 

 

Contact angles  

The results obtained from the contact angles over the strain range showed similar results between 

strains for each glove type, with no statistically significant differences following ANOVA (Cl NBR 

F(2,6)=1.036, p=.411; PC NBR F(2,6)=0.087, p=.918; Cl NRL F(2,6)=0.116, p=.892; PC NRL F(2,6)=0.124, 

p=.886). This indicates that there is no difference in the contact angle of water when the gloves are 
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strained. Thus, the results were collated, and are shown in Figure 4.10, as an average of the 9 

measurements. The contact angles of the NBR show a good surface wettability, shown with contact 

angles less than 90°. This shows that the NBR material has a hydrophilic nature. The paired t-test 

shows no differences in the contact angles between the two NBR gloves (t(8)=-0.029, p=.977), with 

the contact angle for chlorinated averaging at 43.78° (±8.63) and the polymer coated glove averaging 

at 43.89° (±7.77). The NRL materials, on the other hand, is shown to have a hydrophobic nature, with 

contact angles greater than 90°. This shows poor surface wettability across both coatings. There are 

slight differences with the polymer coating having a slightly higher contact angle (121.78° ±5.25) 

when compared to the chlorinated glove (121.78° ±5.74). However, the contact angles are not found 

to be significantly different following a paired t-test (t(8)=-1.612, p=.212).  

 
 

 
Figure 4.10. Contact angles of DI water on the inside of each glove. Error bars indicate standard error. 

 

4.4.2 Glove size and fit 

Glove size 

The results from the measured glove sizes are displayed in Table 4.3. As only medium and large 

gloves were used in this study, only those have been measured and included here.  
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Table 4.3. Measurements of gloves used in this study. 

Glove 
Type 

Glove length (cm) Finger to Knuckle (cm) Palm width (cm) 

M L M L M L 

CL NBR 
24.7    

(0.18) 

26.3     

(0.12) 

8.1 

(0.10) 

9.0 

(0.23) 

9.2   

(0.08) 

9.4 

(0.25) 

PC NBR 
24.2    

(0.21) 

25.9     

(0.15) 

7.6     

(0.19) 

7.9 

(0.15) 

9.2   

(0.03) 

10.2   

(0.21) 

Cl NRL 
24.8   

(0.25) 

24.9 

(0.18) 

7.8     

(0.12) 

8.3 

(0.11) 

9.3    

(0.21) 

9.7 

(0.31) 

PC NRL 
25.3    

(0.12) 

25.3     

(0.17) 

8.0    

(0.18) 

8.3 

(0.16) 

9.5 

(0.18) 

10.2  

(0.20) 

Average 
24.75 

(0.45) 

25.60  

(0.62) 

7.88  

(0.22) 

8.38 

(0.46) 

9.30  

(0.14) 

9.88  

(0.39) 

 denotes standard deviation 
 

Glove fit 

The participants perceived best-fit of gloves were compared against the HSE recommended size in 

Table 4.4. There was one participant who had a recommended size which matches their perceived 

best fit, and one participant wore gloves that were a size smaller than that recommended, based on 

the sizing of their hands. The remaining 12 participants had a preference to wear gloves that were 

larger than recommended based on their finger and/or palm size. 

 

Table 4.4. Comparison of perceived best fit gloves used by participants to HSE glove size 
recommendations from hand sizing (149). 

Perceived best fit size 
HSE recommended size 

Finger Palm 

M S S 

L S M 

M M M 

L L M 

M M S 

M S S 

M S S 

M S S 

M S M 

M S M 

L L XL 

L M L 

M S S 

M S S 

S = Small, M = Medium, L = Large and XL = Extra Large.  
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4.4.3 Donning and doffing 

Donning steps 

Upon analysing the videos, it was noticed there were four key steps to donning a glove. The first step 

is picking up the glove(s). Participants were instructed to don and doff the gloves in the manner they 

normally would and reminded that this was not competitive. Nevertheless, it is viewed that the time 

taken to pick up the glove does not affect the key donning action, as picking up the glove does not 

affect the act of donning. Thus, for the purpose of this study, the time taken to pick up the gloves has 

been removed for analyses. The remaining three steps consist of the following:  

 

• Preparation: This is the time taken to orient and mechanically separate the glove whilst 

preparing to insert the hand (Figure 4.11a). 

• Hand insertion: This is the time taken for the fingers to reach the end of the fingertips of the 

glove (i.e. the hand is fully inserted into the glove) (Figure 4.11b). 

• Material pulling/Glove manipulation: This is the total time taken to manipulate the glove 

after hand insertion. These actions consisted mostly of manipulating the cuff/unrolling the 

cuff and pulling the glove to ensure fit (Figure 4.11c). 

 

 

                  (a)                                        (b)                                          (c) 

 
Figure 4.11. Glove donning steps. (a) shows the preparation step, opening the glove, (b) shows the 
hand insertion step and (c) shows the pulling of material down the fingers to comfortably fit hands. 
 

Donning  

In all cases, there were no large differences between the left and right hands. Thus, the time taken to 

don a glove has been averaged, and the results presented show the time taken to don one glove 

only. Figure 4.12 shows the average of the results obtained, broken down into the three stages of 

donning in both the dry and wet hand conditions. The results show that chlorinated NBR and 
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polymer coated NRL were the quickest to don overall when the hands were dry, taking 3.99 (±1.18) 

seconds and 4.00 (±1.71) seconds, respectively. When the hands were wet, the gloves took longer to 

don, and there were more visible issues with the gloves, such as sticking to the fingers. Paired t-tests 

show that the differences between the time taken to don the gloves in both hand conditions was 

statistically significant for the chlorinated NBR and NRL, as well as the PC NBR (p<.05, Appendix B1). 

The polymer coated NRL gloves were the quickest to don when wet (4.83 (±2.74) seconds), and there 

is no significant difference between the dry and wet conditions (t(13)=2.160, p=.124). Table 4.5 

shows the results from conducting ANOVA on all gloves, in both conditions. No significant differences 

were observed between any of the gloves at any of the three stages in the both the dry and wet 

conditions (p>.05). Differences were, however, found in the total time taken to don the gloves in the 

dry condition (F(3,52)=-4.283, p=.009). Tukey’s (HSD) tests were further conducted on the total time 

in the dry condition, which showed statistically significant differences between Cl NBR and PC NBR 

(Q=4.130, p=.026) as well as PC NRL and PC NRL (Q=4.552, p=.012). The results of these tests are 

shown in Table 4.6. Paired t-tests on the dry and wet conditions for each glove reveal that the largest 

differences are present in the ‘hand insertion’ step, as the time taken was significantly increased for 

each glove (p<.05. Table 4.7).  

 

 

* Indicates statistical significance (p<.05)  

Figure 4.12. Average times taken to don the medical gloves broken down into the three key tasks. 
Error bars denote standard error. 



74 
 

 

 
Table 4.5. Results of ANOVA/Kruskal-Wallis test conducted across the total donning time, and each 
step of the donning process in both dry and wet conditions.  

Donning stage 
Result 

Dry Wet 

Total F(3,52)=4.283, p=.009* F(3,52)=1.876, p=.176 

Preparation F(3,52)3.399, p=.101 F(3,52)=3.992, p=.054 

Hand insertion F(3,52)=1.907, p=.340 H(3,52)=0.289, p=.529 A 

Manipulation H(3,52)=3.191, p=.717 A F(3,52)=1.122, p=.329 

* Indicates statistical significance (p<.05). A Denotes the use of Kruskal-Wallis test due to non-
parametric distribution of data.  
 
Table 4.6. Post Hoc Tukey’s test results conducted on the total time in the dry condition (ANOVA= 
.009). 

  Glove  

  PC NBR Cl NRL PC NRL 

Glove  

Cl NBR 
Q=4.130 
p=.026* 

Q=0.721 
p=.900 

Q=0.4219 
p=.900 

PC NBR  Q=1.142 
p=.086 

Q=4.552 
p=.012* 

Cl NRL   Q=3.410 
p=.834  

* Indicates statistical significance (p<.05).  
 
Table 4.7. Results of paired t-tests comparing dry to wet in all glove types at each step of the donning 
process. 

Donning stage 
Glove  

Cl NBR PC NBR Cl NRL PC NRL 

Prep 
t(13)=-1.224 

p=.183 
t(13)=-0.354 

p=.682 
t(13)=-0.387 

p=.647 
t(13)=-0.209 

p=.884 

Hand 
insertion 

W(13)=8 
p=.013* A 

W(13)=5 
p=.013* A 

W(13)=5 
p=.002* A 

W(13)=10 
p=.002* 

Manipulation 
t(13)=-1.537 

p=.118 
W(13)=5 
p=.083 A 

t(13)=-0.424 
p=.577 

W(13)=35  
p=.395 A 

* Indicates statistical significance (p<.05). A Denotes the use of Wilcoxon-signed ranks test due to non-
normal distribution of data.  
 

Doffing 

Figure 4.13 shows that the time taken to doff the gloves had an average time range of 1.68-1.93 

seconds across the eight conditions. When the hands were wet, there was a slight increase in the 

average time taken to remove the gloves, with the exception of PC NBR, where the time taken to 

remove decreased, on average (dry= 1.93s ±0.29; wet= 1.84s ±0.65). Paired t-tests show there are no 

significant differences between the any of the hand conditions (p>.05, appendix B2). ANOVA also 
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reveal that there is no significant difference between all gloves in either the dry (F(3,52)=1.250, 

p=.301) or wet (F(3,52)=0.011, p=.999) conditions.  

 

 
Figure 4.13. Average results of time taken to doff the medical gloves, with paired t-test (p-value) 

results between the two conditions Error bars denote standard error. 
 
 

4.4.4 Gloves sticking incidence 

As hands were placed into the glove, it was observed that on several occasions the gloves stuck to 

the fingers in localised areas, decreasing the efficiency of placing the glove on the hand. These 

incidences of sticking were noted down for each glove. A sticking incidence was noted when the 

glove was being pulled by the participant, but there was no movement of the overall glove. In some 

cases, these sticking incidences were quickly fixed by harder pulling of the gloves, which lasted 

around 0.1-0.2 seconds. In other cases, the gloves required total cessation of the pulling action, to 

manipulate the glove and pull the specific areas. A total of 329 incidences of sticking were noted 

across the 14 participants. Figure 4.14 shows the different hand locations where sticking was 

observed. This was formulated based on the common areas where the fingers became stuck to the 

hand. It is important to note, that only one finger may have been stuck in any of the locations. All 

locations have been labelled the same across the fingers for the sake of visual simplicity. In all the 

gloves, there was a greater frequency of sticking/high friction at the section at the top of the palm 

(location D) and the proximal location of the fingers (location C). The number of incidences of sticking 

increased in the wet condition, due to the increased moisture causing adhesion (Figure 4.15). 
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Figure 4.14. Map of the glove showing areas where sticking of the fingers/hand occurred on the 

glove throughout the study. 
 

 
Figure 4.15. Incidences of sticking in the different areas within all of the gloves shown in Figure 4.14.  
 

4.4.5 Perception of fit, donning and doffing 

Results from the participant questions after donning/doffing the gloves are shown in Figure 4.16. The 

graph shows how many responded ‘yes’ to the questions asked. Chlorinated NRL has a good overall 

reported fit with 9 out of the 14 participants responding that the glove fit well. On the other hand, 

the polymer coated NRL gloves had the poorest reported fit with only 4 participants responding that 
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the fit was good. When the hands are wet, the gloves were perceivably harder to don with only two 

respondents stating that both of the PC gloves were easy to don. However, the chlorinated gloves 

were perceived to be harder to don with only one participant stating that the chlorinated gloves 

were easy to don when the hands were wet. On the other hand, doffing the gloves had no significant 

impact on the user perception. The chlorinated NBR was perceived to be slightly less easy to don 

when the hands were wet. However, the polymer coated NRL was shown to increase from 12 people 

finding it easy to doff to 14 when the hands were wet.  

 
Figure 4.16. Responses of the participant questionnaire regarding the fitting of the gloves and the 

ease of donning and doffing. 
 

 

4.4.6 Friction 

Data has been processed and only graphs are shown in this section. All calculated CoFs for each load, 

complete with the statistical analysis conducted is included in the appendix (B3-B5).  

 

Moisture 

The readings produced from the MoistSense give a reading in Arbitrary Units (A.U). A reading of 0-40 

means the skin is lacking in moisture and is dry. When between 40-70 the skin is at a healthy 

moisturised state, whilst a reading over 70 suggests the skin contains more moisture than the natural 

state. As participants had similar skin moisture results across each of the gloves, averages have 

displayed for each participant (Figure 4.17). The results were similar for each participant in the dry 

section, showing a healthy dry skin around 57-61 A.U. The wet skin moisture results were 

significantly higher in each participant (94-98 A.U) following paired t-tests (P1: t(11)=22.411, p=<.01; 

P2: t(11)=-24.740, p=<.01; P3: t(11)=-61.660, p=<.01; P4: t(11)=-53.334, p=<.01).  
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Figure 4.17. Average moisture per participant across the 4 gloves. Error bars denote standard error.  

 

NBR friction 

The results obtained from the friction between the skin and NBR are shown in Figures 4.18 (a-h). In 

all instances, the friction increases with increasing load, leading to a lower CoF as the load increases. 

It is clear from the data that the inclusion of moisture causes an increase in friction with both the 

polymer coated and the chlorinated gloves. Most significant differences between the wet and dry 

friction were noted in the polymer coated gloves (p<.05). The statistical analysis for these datasets is 

included in the appendix (B2-3). In the wet hand condition, there was little difference between 

friction observed between the chlorinated and polymer coated gloves, with very little statistical 

differences amongst the participants following paired t-tests across all loads (p>.05). However, 

significant differences were found between the friction of the two coatings in the dry condition 

(p<.05). The statistical analysis for these datasets is included in the appendix (B2). In the wet 

condition, more friction was present in the polymer coated, which is converse to what is expected to 

happen, as the polymer coating is said to reduce friction to enable a smoother donning process. At a 

low load when wet, the highest friction coefficients are observed between all participants (µ=5.17, 

6.73, 6.50 and 8.81, respectively). In addition, stick-slip was identified in some participants in the 

polymer coated gloves. As the load increases, the CoFs become quite similar across the gloves, but 

chlorinated dry glove has a tendency of producing the lowest friction across the gloves, with CoFs 

ranging between 3.79 and 1.1.  
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Figures 4.18 a-h. Average friction and the CoF of chlorinated and polymer coated NBR gloves across 
all participants. Error bars denote standard deviation. 

 

 
Figure 4.19. Example of the stick-slip induced by the rapid alternation between static and dynamic 

friction. 
 

NRL friction 

Figures 4.20 (a-h) show the friction forces and the CoFs of the skin-glove interactions with the NRL 

gloves. The NRL friction shows to have differing behaviours to the NBR, with the friction produced in 

both the wet and dry being generally lower than the friction produced in the NBR material. In most 

cases, CoFs between the skin and gloves increased upon the addition of moisture, with some 

statistically significant differences observable with the chlorinated glove samples. Full statistical tests 
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are shown in the appendix (B4-5). With participant 1 there is very little fluctuation in CoF as the load 

increases. T-tests show little difference between the gloves in all participants (p>.05). However, 

across all participants in the wet condition, significant difference is noted between the polymer 

coated films and the chlorinated films in all participants at the lowest target load (p<.05), as noted 

with the NBR. In general, the friction of the polymer coated gloves is lower in the dry condition with 

the lowest CoF observed in the 0.5 N target load in participant 1 (µ=0.88). The increase of friction 

once moisture is introduced is minimal in the polymer coated gloves when compared to the 

chlorinated. For example, with participant 3, the polymer coated gloves show an average CoF 

difference of 0.06 between the wet and dry conditions at the highest target load (1 N). On the other 

hand, in the chlorinated gloves, there is a CoF difference of 0.66. No significant differences were 

found between the CoFs in the wet and dry conditions following paired t-tests (p>.05) however 

differences were noted in some of participants friction in the chlorinated samples. These significant 

differences were mostly observed at the higher loads (appendix B4). Stick-slip was also observed with 

the NRL gloves, however, this time participants had stick-slip observed in the chlorinated gloves, 

rather than the polymer coated as seen in the NBR.  

 

  

0

1

2

3

0.0 0.3 0.6 0.9 1.2

Fr
ic

ti
o

n
 F

o
rc

e 
(N

)

Load (N)

Participant 1

Cl Dry

Cl Wet

PC Dry

PC Wet

a)

0

1

2

3

4

5

6

0.0 0.3 0.6 0.9 1.2

C
o

F

Load (N)

Participant 1

Cl Dry

Cl Wet

PC Dry

PC Wet

b)



82 
 

   
 

 
 

 
 

Figures 4.20 a-h. Average friction and the CoF of chlorinated and polymer coated NRL gloves across 
all participants. Error bars denote standard deviation. 
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4.5. Discussion 

4.5.1 Donning and friction 

Of the gloves used in this study, it is shown that there is little difference between the time taken to 

don the different glove materials, with different coatings, when the hands are dry. The longest time 

was shown in the polymer coated NBR glove. It is evident from the results, that participants generally 

take longer to don the gloves when hands are wet. This reflects the issue of donning gloves with 

sweaty or wet hands from washing (15, 57, 120). The polymer coated NRL was the only glove type 

found to be unaffected by moisture changes, as indicated by the lack of a statistically significant 

difference between the two hand conditions 

 

When broken down into the three key steps present within donning, statistically significant 

differences were found between the polymer coated NRL when compared to the other gloves in the 

wet hand condition. This further indicates that this glove was quicker to don than the other glove. 

Statistically significant differences were present mostly in the preparation stage when the hands are 

wet. This is likely to be due to participants not being able to grip and/or open the gloves as efficiently 

than with the dry hands. There are also large variations in the hand insertion step, due to the glove 

sticking to the skin or fingers getting stuck in the glove. There is a greater frequency of sticking/high 

friction at the section at the top of the palm (location D, Figure 4.14) and the first location of the 

fingers (location C, Figure 4.14). This could be due to a combination of the nature of glove packaging 

as well as the behaviour of the participants when donning the gloves. Medical gloves are normally 

compressed into boxes for packaging (14). In some cases, this causes the inner surface of the gloves 

to stick together, which are only separated by mechanical action prior to donning the glove or whilst 

the glove is being donned. Separating the glove to insert the hand takes time, and when the gloves 

are manipulated by the participants in the preparation stage, the participants tended to open the 

glove, either by rubbing or pulling the glove, at the palm or cuff only. The sticking and friction with 

the skin then occurs as the participant opens the finger holes using their fingers once the hand is in 

the glove. This appears to be more problematic in the wet hand condition, led by the adhesion of the 

glove to the skin surface. As the finger slides up and into the finger region of the glove, more friction 

is likely as there is larger contact area with the hand, than at the opened palm. Manufacturers may 

dip their gloves in silica to aid reinforcement of their tensile properties, prior to the chlorination step, 

which changes the properties between gloves of the same bulk material. Also, in the case of NRL, this 

further prevents latex allergies arising. Manufacturers may also use different chlorination strengths 

and exposure times. These can all impact the final physical properties of the gloves (14, 38, 198). 

 



84 
 

The time taken to don the gloves has some correlation to the results obtained from the 

friction study. There is little difference between the chlorinated and polymer coated friction in the 

dry state with the NBR gloves. However, in both the NRL and NBR gloves, a higher friction coefficient 

is induced when moisture is applied. The way the moisture reacts to the material strongly influences 

the friction. NBR, by nature is polar, whereas NRL is non-polar. Thus, when moisture is introduced, it 

would be expected to have slightly differing frictional behaviours because of the material interaction. 

The goniometer results show clear differences in the way the water is interacting with the NBR and 

NRL surfaces. In the NBR gloves, a low contact angle is observed. This means that there is a high 

surface energy, which pulls the moisture towards the surface, inducing more wetting (hydrophilic). 

This moisture addition creates local welding and more interaction with the glove surface will be 

present via electrostatic interaction (121). The NBR pulling the liquid to the surface causes more 

contact area with the finger, which increases friction, as shown in Figure 4.21a. Thus, the increased 

time taken to don the PC NBR glove could be due to the hydrophilic nature of the coating itself, 

which is used to aid donning, rather than hinder it. On the other hand, the NRL glove exhibits a high 

contact angle, showing a low surface energy which leads to a low surface wetting (hydrophobic). This 

means the water would have a stronger affinity for the skin, causing a separation of the skin-glove 

surfaces and adding lubrication to the system, as shown in Figure 4.21b. This allows for the skin to 

glide smoothly, allowing a quicker donning of the NRL glove, when compared to the NBR. In the NRL, 

the polymer coating exhibits the lowest friction amongst the participants, which is not highly 

impinged by the addition of moisture. This difference in friction between the chlorinated and 

polymer coated NRL gloves is also observed by Roberts and Brackley (137), who obtained friction 

coefficients of 0.15 for polymer coated and 0.5 with chlorinated gloves at 0.32 N. In this study, 

friction coefficients for the gloves are found to be much higher. The average CoF for chlorinated 

gloves in all participants at 0.32 N (following the trendlines) is in a range between 1.23 and 4.03. The 

CoFs for the polymer coated gloves were also found to be much higher than in the previous study 

(between 1.12 and 1.23). However, it is unknown what polymer coating has been used in either of 

the studies.  
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Figure 4.21. Interaction between different glove surfaces when water is introduced. NBR brings the 
finger to the surface due to the polar nature, whereas NRL repels water, causing it to lubricate. 

 
The explanation behind the proposed interactions can be further evidenced by the friction graphs. 

Figure 4.22 shows a typical graph of the glove friction obtained in these results. In some participants, 

after a few seconds, friction started to increase in all gloves when moisture was added. This was 

predominantly observed in the NBR gloves, more so with the polymer coated, as the hydrophilic 

nature allows spreading of the moisture, ultimately increasing the skin-NBR contact area. In the NRL 

gloves, this was more apparent at the higher loads, as the moisture is pushed out of the side of the 

finger, inducing more contact area.  

 

 
Figure 4.22. Friction of PC NBR gloves showing how the moisture changes in the wet condition 

increase friction overtime as a sliding interaction with the glove spreads moisture away from the 
finger surface in contact. 

 
It is also important to note, that the process of coating NBR gloves is not as straight-forward as 

coating NRL gloves. Close attention needs to be paid to the surface tension of the wet NBR film. 

Without adequate modification of this surface tension, the polymer coating deposited onto the film 

can be distributed with an uneven thickness (14, 199). In conjunction with this, high surfactant 
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NRL NBR 
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content from the NBR gloves can leach into the polymer coating bath, causing issues whereby the 

coating does not bind well to the surface (200). However, these issues are not widely discussed in the 

literature. This could be one of the reasons for the polymer coated NBR gloves to have higher CoF 

than the polymer coated NRL. 

 

Morphological changes 

Changes in the morphology in the finger throughout the study in both the dry and wet conditions can 

contribute to slight differences in frictional properties, a variable factor in this study (108, 121, 201). 

Repeated wetting of the skin fingertip could cause wrinkling of the skin, affecting the contact area 

and overall frictional properties of the skin. Although this was not visibly noticed, and there was little 

constant exposure to water/breaks between friction tests, there is still the possibility of micro-

wrinkling having an impact on the results (183). As low loads are used in this study, the small changes 

in the skin topography could have an impact on these results. 

 

Secretion-water interaction 

The differences in the donning time and friction in some of the participants may be attributed to skin 

contaminants. Skin, by nature, contains secretions of moisture, salts, and lipids on the surface, from 

the underlaying sweat glands (202). This sweat held on the surface can attract or repel the water, 

causing differences in electrostatic properties, which could cause either a reduction or increase in 

friction (203, 204). As the contaminants on the fingers interact with the water, two things could 

occur, which are dependent on the volume of contaminants, and their affinity for the glove material 

or skin. The sweat-water molecules could pull down towards the polymers, causing a spreading of 

the moisture throughout the contact area and beyond as the polymer acts as a capillary. This would 

lead to an increase in contact area as surface asperities are brought closer together, as well as 

electrostatic interaction with the glove film.  

 

The other mechanism could be a reduction in friction as the moisture stays on the skin 

surface, causing more separation between the finger and the gloves. This would cause a more 

complex interaction as the individual contaminants (oils and water) would separate, due to their 

immiscibility. Although the hands were washed prior to testing there is no guarantee, when 

conducting studies of this nature, that these contaminants were not present. It is possible that, 

although small, the immiscibility of these contaminants from sweat contribute to the stick-slip 

exhibited in some of the gloves. Stick-slip is defined as rapid alternation between the static and 

dynamic friction. Derler and Rotaru (205) previously defined stick-slip as the measured CoF with a 
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greater than 10% variation, which was observed in some participants (as shown in Figure 4.19). This 

means that both the donning and friction of the gloves is dependent on how much water the 

materials will absorb/repel, the interaction between the water and the finger, and the presence of 

oils/contaminants on the skins surface. 

 

Perception 

As discussed by Mylon et al. (7), the perception of performance with routine medical glove users is 

normally indicated by preference. The gloves used amongst the participants in their daily work were 

chlorinated NBR and NRL gloves. On average, chlorinated natural rubber NRL was perceived to be the 

easiest to don, but the results indicate that those gloves took longer to don whist the polymer coated 

NRL was the quickest. Some participants also stated that the polymer coated NRL gloves were harder 

to put on because they felt thicker than any of the other gloves, but the thickness was similar to the 

polymer coated NBR.  

 

4.5.2 Doffing 

Doffing was not viewed to be an issue in this study. The results showed no differences between the 

gloves. There was an increase in the time taken to doff the gloves when moisture was present, 

however, this increase was minor and had no significant differences. In the PC gloves, there is a 

tendency for NBR to take longer to don when compared to NRL. This is presumably because of the 

hydrophilic nature of the NBR being drawn towards the skin. This would mean there is likely a 

stronger interaction brought about by electrostatic charges between the skin and glove, causing 

more of a peeling action to remove the gloves. In the NRL, however, the moisture will be separating 

the glove from the skin, leading to a smoother transition when removing the glove, as described in 

the donning actions. Very few participants thought that the different glove materials and coatings 

affected their ability to remove the gloves, indicating that doffing is not an issue with these glove 

users. However, the gloves were removed soon after donning, it may be that when more sweat is 

generated in the glove, issues with glove sticking to the hands could cause more adhesion, possibly 

making it harder to doff the gloves. Most participants indicated that all the gloves were easy to doff, 

but a few commented that the polymer coated gloves ‘felt thicker’ and perceived that to be a slight 

hindrance upon removal. 
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4.5.3 Glove properties 

The gloves have been tested under EN standards; however, it is not known how old the gloves are 

before these tests were conducted. Donning assessments were carried out around 1 year prior to 

testing the physical parameters, and it was unknown when the gloves were manufactured prior to 

the donning testing. Gloves degrade over time, and the longevity of their physical properties is 

dependent on the correct storage, light exposure (206) and relative temperature/humidity (207). It is 

very likely that this is not a true representation of the properties of the gloves when formed. For this 

reason, the physical properties were not checked for correlation between either the donning or 

physical properties with these gloves. This is because it is thought that this is not replicable of what 

the properties will have been when the tests were conducted.  

 

The differences in thickness along the glove length can be explained by inverted nature of 

the dipping process of the glove manufacture procedure. When gloves are made on the dipping line, 

formers are dipped into the compounded glove material finger first, left for the dwell time (usually 5-

10 seconds), and then then pulled back out of the compounded material. Therefore, the finger areas 

have a longer dwelling time in the material, and have more coagulated rubber onto the surface of 

finger areas, which produces a thicker film when compared to the palm (14, 38). 

 

Issues were noticed when donning the gloves, mostly around the rolling of the glove on the 

back of the hand, as shown in Figure 4.23. This adds time to the ‘after manipulation’ stage of donning 

as participants take the time to unroll the glove and bring the cuff up the wrist to complete the 

donning process. This rolling was more commonly seen in the NRL gloves. As the glove begins to roll 

up the back of the hand, the chlorinated NRL glove will continue to roll with it due to it being less stiff 

and conforming more to the hand. The NBR material, however, is stiffer compared to that of the NRL 

and appeared to roll on the back of the hand less frequently, and not as severely. The gloves were of 

a similar thickness except for the chlorinated NBR which was almost half the thickness of the other 

gloves on average. As there are no statistically significant differences between the dry handed 

gloving conditions, it is indicated that the thickness of the glove is not a factor in this study. However, 

the lack of difference could be due to the differences in skin-glove coating interactions. Further work 

needs to be carried out to assess if, and how, the thickness of gloves affects the donning process.  
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Figure 4.23. Rolling of glove on the back of the hand when donning.  

 

4.5.4 Fit  

When compared to the recommended glove sizes by the HSE, the participants did not appear to wear 

the correct recommended sizes. Seven out of the 14 participants wore a size larger than 

recommended and only one participant wore the correct recommended glove size. The literature 

shows that these gloves need to be a good fit to ensure maximum comfort, dexterity, and tactile 

sensitivity (99). As there was a small amount of excess material around the fingers for three of the 

participants, it was viewed that the gloves were larger than needed when fitted. These three 

participants wore medium gloves and said that when smaller gloves are used, they are difficult to put 

on and too tight once on. It would be expected that if the hands are smaller than the recommended 

glove size, they would be easier to don. However, this is not the case as the time taken to don the 

gloves were similar across all participants. It is clearly indicated from this study that the ‘best-size’ to 

fit a participants’ hand has little relation to the recommended ‘best-fit’ gloves size.  

 

4.6 Conclusions 

A summary of the findings from this chapter are shown in Table 4.8. This shows the results of the 

three tested parameters in this chapter, when comparing the wet hand to the dry hand condition. In 

all of the tests with NBR, the wet hand complicates the process and increases the time taken to don 

the gloves and increases friction.  
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Table 4.8. Findings of the chapter comparing the outcome of performance of the wet hand to the dry 

hand condition. 

 Glove donned in the wet hand condition 
 NBR NRL 

Measured 
parameter 

Chlorinated Polymer Coated Chlorinated Polymer Coated 

Donning Time Increases Increases Increases 
Increases/Similar 

to dry 

Doffing Time No difference No difference No difference No difference 

Friction Increases Increases Increases 
Decreases/ Similar 

to dry 

 

The conclusions of this chapter are as follows: 

• When the gloves were donned in dry conditions, the performance times were similar across 

the gloves. However, polymer coated NRL generally exhibited lower friction, had less 

incidences of sticking, and took less time to don when the glove was wet. Little difference 

was observed in the friction between the dry and wet conditions with the polymer coating in 

the NRL, however greater differences were noted in the NBR, with the polymer coated 

having greater friction, and the gloves took longer to don on average. The two chlorinated 

gloves used had little difference in donning time, but lower friction was observed in the NRL 

gloves.  

• Doffing is not affected by glove material, coating, or hand condition. It could be that 

prolonged periods of wearing could induce more sweat, making the gloves harder to remove. 

This would be reflected by the ‘wet’ condition in this study, which shows no difference from 

the dry condition.  

• The entire donning process needs more thought in studies, other than just the frictional 

properties. The nature of the material, size, fit and stiffness can all contribute to the glove 

donning process, and cause problems, such as the glove rolling up the hands, or adhesion of 

the gloves to the hands.  

• There are issues with glove size amongst some glove users. HSE recommendations match 

only one participant in both palm and finger sizes in this study. Some participants wore sizes 

that were a little too big for their hands.  

• Chlorinating gloves is extremely common, but the finishing processes are not widely revealed 

to the purchaser/user. Manufacturers may dip their gloves in silica to aid the reinforcement 

of their tensile properties, and some manufacturers may use different chlorination strengths. 

Thus, the two chlorinated gloves in this study may not have had the same treatment.  
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Chapter Five: The effects of NBR glove properties on 
donning 

 

5.1 Introduction 

In Chapter 4, it was shown that the choice of polymer coating in the NBR material was more 

detrimental to the donning process than the chlorinated gloves. The study conducted, however did 

not study the effects of the effects of thickness but indicated that there was little difference in results 

regarding thickness in the dry condition (172). Nor did the experiments have the capability of making 

the test fair, by comparing gloves that only differed by their raw materials and treatments/coatings. 

When purchasing gloves, it is impossible, without the manufacturer’s information, to determine the 

exact components used and the treatment methods. There are a range of ways manufacturers can 

finish gloves. This includes dipping in silica to protect the physical properties, ranging chlorination 

strengths and the length of exposure to the chlorination (14, 38, 198). A higher chlorination leads to 

a smoother surface, reducing tack and ultimately reducing the friction (16, 173). However, there is 

little to link this chlorination process to an easier donning process, especially in the way of human 

skin friction in conjunction with the donning mechanisms (173). In order to study the effects of 

chlorination with skin, gloves need to be made with the same materials.  

 

5.2 Aim and scope 

The aim of this study covered in this chapter was to investigate the effects of thickness, chlorination 

strength, and moisture on the donning process. To study the effects of thickness and chlorination, 

gloves needed to be sourced which had the same manufacturing profiles and only differed in surface 

treatment and thickness. In order to obtain these, gloves had to be manufactured specifically for this 

test. Due to the leaning of the sales market towards the NBR gloves, only this material was studied 

for the effects of different chlorination strengths and thickness (38). As with Chapter 4, the donning 

of gloves was assessed in both dry and moist conditions.  

 

5.3 Materials and methodology 

5.3.1 Glove manufacture 

NBR gloves were produced in-house at the Technical Centre of Synthomer Sdn Bhd, Kluang, Malaysia. 

The NBR films were formed using Synthomer 6348HS grade rubber, via two manufacture methods 

which mimic the process used for standard glove manufacture, but on a smaller scale. Synthomer 
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6348HS is a colloidal suspension of carboxylated acrylonitrile butadiene, containing emulsifiers and 

antioxidant stabilisers. The manufacture methods used in this study differed only by the dwell time 

of the former dipped into the coagulant and the compounded NBR material, in order to create gloves 

of two different thicknesses.  

Glove formation 

The NBR was compounded using the constituents shown in Table 5.1. Medium size porcelain glove 

formers were placed into a mixture of calcium nitrate and calcium carbonate coagulant for three 

seconds. The formers were then heat dried in a 65°C oven before being dipped into the compounded 

NBR for a further three seconds (Figure 5.1). Following this, the formers were placed into an oven to 

gel set at 100°C for one minute, before being dipped again for a further three seconds. This method 

created the thinner of the two films. The thicker film was produced using the same approach, but 

with double the dwell time (six seconds for compounding and dipping). After the gelling process, the 

gelled films were manually beaded. The beading was achieved by rolling the end of the glove down a 

few mm, which creates the cuff of the gloves. The films were then leached for one minute in water at 

100°C and then left to cure at 100-120°C in an oven to create the finished glove. Due to the 

availability of equipment and small-scale production, films were only manufactured on medium sized 

formers. 

Table 5.1. Components used to make compounded solution of the NBR material for the glove film 
formation 

Component Parts per hundred rubber (phr) 

6348HS NBR 100 

Potassium Hydroxide 1.2 

Zinc oxide 1 

Sulphur 0.8 

Zinc diethyldithiocarbamate 0.7 

Titanium dioxide 1.5 
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Deposited NBR 

(brighter 

white) 

 

 

Figure 5.1. NBR material coagulated on the former surface (covered by coagulant salts) to form the 

wet NBR film. 

 

Chlorination 

For this research, the acidification process was used, as discussed in Chapter 2 (53). Sodium 

hypochlorite and hydrochloric acid (HCl) were mixed to create the concentrations in large plastic 

containers, in which the formers could be immersed. Chlorine solutions were created at 

concentrations of 500, 1000, and 2000 ppm (parts per million of chlorine). These concentrations 

were chosen based on the typical industrial practices reported in Ong (16). A quarter of the gloves 

from each thickness variant were skipped for the chlorination process to serve as control for testing. 

Formers containing the attached glove film were placed into the chlorine solutions for 10 minutes. 

Following this, formers were then immersed in a neutraliser solution (sodium thiosulphate) for 6 

minutes before being leached, at 60°C with hot water. This removes any chlorine residue on the film 

surface. The films were then dried in an oven for 5 minutes at 100-120°C, before being removed from 

the former. One of the aims of this study was to assess to what extent chlorination made the whole 

donning process easier, including a control which had no treatment. However, the control gloves 

were found to be hard to release from the formers and became overstretched/torn. Thus, the 

control glove was covered in a light dusting of calcium carbonate, which helped release the glove 
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from the contours of the former. Attempts were made to keep the powder distribution minimal, 

however, the fine powder is likely to still be present on the inner surface.  

Glove characterisation  

The gloves were characterised as in Chapter 4, using the same thickness and size, tensiometer and 

goniometer measurements (see Section 4.4). As it was found that strain did not affect the contact 

angle, these were measured with the gloves in the unstrained condition. Also, in this section, two 

extra tests were conducted on the gloves: surface characterisation by surface roughness and Fourier 

transform infrared spectroscopy (FTIR).  

Surface Roughness  

Surface roughness of the donning side of the gloves was measured using Alicona optical 3D 

measurement. In Chapter 4, the ability to measure the surface roughness was not possible due to the 

nature of the finish on the materials. As the finish on these gloves rendered a ‘duller’ surface finish, 

roughness was able to be obtained. Two samples of approximately 4 × 4 cm samples were cut from 

the finger area of two separate gloves. For surface analyses, 1.5 × 1.5 cm sections were scanned onto 

the instrument to obtain an average surface roughness (Sa) of the gloves, with a 5x objective lens 

with magnification between -1.46 – 15.85x, a lateral resolution of 2.89 µm, and a vertical resolution 

of 900 nm. 

FTIR 

A Thermo Scientific (T1-139) Fourier transform infrared spectrometer (FTIR) was used to assess the 

chemical differences on the inner (donning) surface of the different manufactured gloves. This was to 

establish if there were any chemical differences between the gloves receiving different chlorination 

strengths. Each sample was scanned 16 times in the 400-4000cm-1 region with a resolution of 4cm-1.  

 

5.3.2 Experimental methodology 

The donning methodology was completed following the same set-up and procedure as in Chapter 4 

(see Section 4.4). This study was conducted in the same conditions; dry and wet. There are, however, 

a few differences between this study and the one previously conducted in Chapter 4, which are as 

follows: 

• The participants donning the gloves were not regular day-to-day glove users but use gloves 

1-2 times a week on average. Thus, perceptions of donning/doffing were not ascertained. 
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• Moisture was measured on the fingers, palm and back of the hand using a moisture sensor 

before trying on each glove type in dry and wet conditions.  

• A drawback of the in-house manufacturing was the time taken to produce gloves on a small 

batch scale, resulting in a lower volume of gloves being manufactured. Thus, the number of 

participants was less than half of that of the previous study (n=6). 

• Friction was measured in the same way as previously (see Section 4.4.3). However only three 

loads were tested to allow time to repeat tests in an efficient manner. The selected loads 

were the low (0.1N), medium (0.5N) and high (1N) loads used in the previous study.  

• An extra friction study was used to determine the effects of the sample properties on the 

donning behaviour. This was conducted by only affixing the glove around the edges of the 

force plate. This left the centre free to move with the fingers, allowing assessment of the 

behaviour of the different sample thicknesses. 

• The doffing of these gloves was not assessed due to it not being highlighted as an issue in 

Chapter 3, nor were there any differences between gloves in the previous study. 

 

Participants 

For the donning part of this study, four males and two females participated in this experiment (n=6). 

Ages ranged between 22-28, and they did not have any known skin issues or any allergies that could 

be triggered by using gloves. Participants used gloves on average 1-2 times per week and had a 

preference of wearing ‘medium’ sized gloves. Hands were measured in the same manner as the 

previous methodology in Chapter 4 (see Section 4.4). Prior to being recruited, participants were 

asked to don a pair of the gloves to allow an assessment of fit. These gloves were picked at random, 

and which glove was tried on was not noted. There did not appear to be any visual issues with fit 

once the gloves were donned. Nor were there any comments around the fit of the gloves and 

participants stated the gloves fit as they would expect.  

Moisture  

To assess the moisture present on the hands during the donning process, MoistSense readings were 

taken in three regions. One reading at each of the fingers/thumb tip. Two readings at the top of the 

palm, one in the centre and two at the base of the palm. The final set of readings were taken at the 

back of the hand. Two were taken below the knuckle, one in the centre and two at the base of the 

back of the hand. A diagram of the measurement locations is shown in Figure 5.2. These locations 
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were picked due to their likelihood of contact with the skin as noticed in the previous study. The 

donning procedure was conducted as soon as the moisture measurements were taken. 

 

 

 

 

 

 

Figure 5.2. Diagram of hands where measurements were taken. 

 

5.3.3 Analysis 

The analysis follows as described in Chapter 4. In conjunction with this study, friction measurements 

were carried out on three of the participants who took part in the donning study (2 males and 1 

female, aged 26-28). As these participants took part in both tests, correlations between measured 

friction and donning performance could be examined. These correlations were assessed using 

Pearson correlation regression analysis (208). .  

 

5.4 Results 

5.4.1 Physical properties 

The results obtained from the mechanical testing of the gloves are shown in Table 5.2. This provides 

the sample IDs of the gloves used in the following results and discussions, and the measured 

parameters, as well as the calculated stiffness (using the equation in Chapter 4, see Equation 4.1).  

 

 

 

 

 

Fingers 

Palm 

Back of hand 
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Table 5.2. Results of physical testing of the gloves under EN standards and calculated stiffness. 
Where T= thickness, Fb= force at break, Ts= tensile strength, Eb=elongation at break and K= stiffness. 

Sample 
ID 

Chlorination 
Strength 

(ppm) 

T 
(mm) 

Fb 
(N) 

Ts 
(MPa) 

Eb 
(%) 

K (N/mm) 

A 500 
0.054 

(±0.003) 
6.50 

(±0.49) 
39.90 

(±2.88) 
506.58 

(±25.69) 
0.022 

(±0.003) 

B 1000 
0.054 

(±0.004) 
6.93 

(±0.55) 
42.79 

(±3.37) 
511.00 

(±16.73) 
0.030 

(±0.006) 

C 2000 
0.055 

(±0.004)  

6.71 
(±0.80) 

40.96 
(±3.40) 

489.00 
(±23.63) 

0.030 
(±0.009) 

D 0 
0.059 

(±0.003) 
6.93 

(±0.90) 
38.97 

(±4.93) 
436.00 

(±39.06) 
0.026 

(±0.003) 

E 500 
0.098 

(±0.003) 
16.50 

(±1.12) 
56.00 

(±3.64) 
528.50 

(±10.88) 
0.059 

(±0.003) 

F 1000 
0.100 

(±0.005) 
16.30 

(±1.14) 
54.55 
(±3.45 

502.83 
(±16.35) 

0.059 
(±0.005) 

G 2000 
0.104 

(±0.004) 
17.64 

(±2.23) 
56.78 

(±7.68) 
526.75 
(14.67) 

0.059 
(±0.005) 

H 0 
0.103 

(±0.006) 
17.23 

(±1.45) 
55.98 

(±4.65) 
523.00 
(13.82) 

0.055 
(±0.004) 

± denotes standard deviation 

 

The stress-strain curves obtained from the sample strength testing are shown in Figure 5.3. The 

thicker gloves chlorinated at 1000 ppm (F) shows the highest stress at 500% strain, with the thin 500 

ppm (A) sample showing the lowest stress at 500% strain. Only one glove sample ruptured before 

500% strain, which was the thinner control (D). The average elongation at break of sample C was also 

below the 500% strain (489.00 (±23.63) %), however some of the samples did break after the 500% 

strain, and the pattern of deviation puts the average before the 500% strain measured. This suggests 

the chlorination process has provided the gloves with a greater elastic modulus; however, this is not 

observed in the thicker gloves as all the moduli are in the same region. However, sample F does have 

a slightly higher modulus than the other thicker glove chlorination strengths and the control. 
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Figure 5.3. Stress-strain curves of each in-house formed glove. Error bars indicate standard error. 
 

Statistical analysis 

Thickness 

ANOVA tests carried out show no significant differences in thickness across the thicker gloves at 

different chlorination strengths (F(3, 44)=2.951, p=.059). However, statistically significant differences 

in thickness are shown in the thinner gloves (F(3, 44)=5.877, p=.002). Tukey’s (HSD) tests (Table 5.3) 

reveal that the differences are present between gloves A, B and C when compared to the control 

(p<.05). 

Table 5.3. Tukey’s (HSD) test carried out on thinner gloves. 

  p-Value 

 Glove sample B C D 

p-value 

A 
Q=0.162 
p=.900 

Q=0.243 
p=.900 

Q=4.864 
p=.007* 

B  
Q=0.4053 

p=.899 
Q=5.026 
p=.005* 

C   
Q=4.621 
p=.011* 

*Denotes statistical significance (p<.05). 
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Tensile strength 

No significant differences in tensile strength are present throughout the two sets of glove 

thicknesses following ANOVA tests (thin F(3,44)=2.319, p=.089; thick F(3,44)=0.392, p=.760). Thicker 

glove samples exhibit greater tensile strength than the thinner samples, which was expected due to 

the thickness being double that of the thinner samples. 

Force at break 

Chlorination does not appear to have affected the break force of the either the thicker or thinner 

glove samples, as no significant difference is present between any of the strengths following ANOVA 

tests thin (F(3,44)=1.061, p=.375; thick F(3, 44)=1.960, p=.134). As expected, a higher force is 

required to break the thicker gloves, when compared to the thinner. Overall, the results show that in 

the thicker gloves, glove G (2000ppm) gives the highest force break (17.64 N) amongst the 

chlorinated gloves. However, in the thinner samples, glove B (1000ppm) shows to have the highest 

break force at 6.93 N (±0.55).  

Elongation at break 

ANOVA testing shows that the elongation at break is significantly different across both the thinner 

(F(3,44)=18.817, p=<.001) and thicker (F(3,44)=14.986, p=<.001) gloves. In the thinner samples, the 

chlorination process has shown to significantly increase the elongation at break as all chlorination 

strengths (A, B, & C) are significantly higher than the control (D) via the post-hoc Tukey’s (HSD) 

testing (Table 5.4). The thicker gloves, however, show differences in the chlorination strengths 

following post-hoc testing. Differences are shown to be statistically significant between sample E and 

F (Q=6.320, p=.004) as well as E and G (Q=8.153, p=.001). Differences are also present between the 

control (H) and the other two chlorinated gloves (F and G).  
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Table 5.4. Tukey’s (HSD) test carried out elongation at break results after ANOVA results for both 
thick and thin gloves show significant differences (thin F(3,44)=1.061, p=.375; thick F(3,44)=1.960, 
p=.134).  

   p-value   p-value 
   Thin gloves   Thick Gloves 

  Glove  B C D Glove  F G H 

p-
value 

A 
Q=0.556 
p=.898 

Q=2.215 
p=.410 

Q=8.892 
p=.001* 

E 
Q=5.127 
p=.004* 

Q=8.440 
p=.001* 

Q=1.099 
p=.085 

B   
Q=2.772 
p=.220 

Q=9.448 
p=.001* 

F   
Q=3.313 
p=.104 

Q=4.029 
p=.031* 

C     
Q=6.677 
p=.001* 

G     
Q=7.341 
p=.001* 

*Denotes statistical significance (p<.05). 
 

Stiffness 

Stiffness is found to be similar in the thicker gloves which are chlorinated (on average 0.059 N/mm), 

however more variation is noted in the thinner gloves (Table 5.5). Sample A has a lower stiffness at 

0.022 (±0.003) N/mm, whereas B and C have greater stiffness at 0.030 N/mm which leads to 

significant differences in the ANOVA test (F(3,44)=4.774, p=.006). Significant differences are noted 

between gloves A with B (Q=4.585, p=.012) and C (Q=4.683, p=.010). This is also noted in the thicker 

glove samples (F(3,44)=7.887, p=<.001), whereby glove E shows significant differences in stiffness to 

glove F (Q=5.731, p=.001) and glove G (Q=5.798, p=.001). Sample A also shows a lower stiffness than 

the non-chlorinated control 0.026 (±0.003) N/mm, although this is not significantly different ( 

(Q=1.578, p=.663).  

 
Table 5.5. Tukey’s (HSD) test carried out on the stiffness of the glove samples after ANOVA results for 
both thin (F(3, 44)=4.774, p=.006) and thick (F(3, 44)=7.887, p=<.001) show significant differences.  

   p-value   p-value 

   Thin gloves   Thick Gloves 

  Glove  B C D Glove  F G H 

p-
value 

A 
Q=4.585 
p=.012* 

Q=4.683 
p=.010* 

Q=3.106 
p=.141 

E 
Q=5.731 
p=.001* 

Q=5.798 
p=.001* 

Q=2.427 
p=.328 

B   
Q=0.099 
p=.900 

Q=1.479 
p=.702 

F   
Q=0.067 
p=.900 

Q=3.304 
p=.105 

C     
Q=1.578 
p=.663 

G     
Q=3.371 
p=.095 

*Denotes statistical significance (p<.05). 
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5.4.2 FTIR 

Results of the FTIR spectra are shown in Figure 5.4. Some slight differences exist between the 

chlorinated samples. These differences pertain to absorbance only, indicating that there are some 

small changes to the frequency of functional groups present on the samples, but ultimately the 

samples have similar spectra. The thicker gloves tend to have less absorbance of the functional 

groups, but all samples have the same spectral patterns. However, the control samples do have some 

noticeable differences to the chlorinated samples. Samples D and H show a major absorbance at 

1450cm-1, which shows a much stronger presence of methylene groups (-CH2-). These are present in 

the chlorinated samples, but with a much weaker absorbance. At 2512cm-1 there are some peak 

absorbances which correspond to S-H (thiol) stretching, in the samples D and H. This peak is not 

present in the chlorinated samples. Other notable peaks are present in the controls that are not 

present in the chlorinated samples. These peaks arise at 1576cm-1, 871cm-1 and 712cm-1 and 

correspond to ketenes (C=C=O), H-C=C bending, and C-H bending, respectively. These groups are 

likely to be changed when the chlorine process is conducted. Peaks present in the 2356-2330cm-1 

region with samples B, C, G and F correspond to carbon dioxide (209–211). These peaks arise due to 

a change in concentration in the air around the FTIR instrument and are not considered to be part of 

the results.  

 

 

Figure 5.4. FTIR spectra of gloves A-H with major functional group differences highlighted and 
labelled with corresponding functional groups. 
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5.4.3 Surface roughness 

The results show that the surface area roughness (Sa) decreases as the chlorination strength 

increases, as shown in Table 5.6. The control samples are found to possess the highest surface 

roughness (0.44-0.49µm) whilst the highest strength chlorination (2000ppm) is found to be the 

smoothest (0.18µm). Little differences exist between the thinner and thicker gloves, indicating that 

the thickness does not affect the surface roughness of the gloves in this study. As both sets of gloves 

were produced using the same formers, it was expected that roughness would be similar. 

Table 5.6. Results from surface roughness measurements of developed gloves. 

Chlorination 
Concentration 

(ppm) 

Thin Thick 

Image 
Surface 

Roughness 
(µm) 

Image 
Surface 

Roughness 
(µm) 

500 

 

0.27 
(±0.04) 

 

0.22 
(±0.06) 

1000 

 

0.21 
(±0.03) 

 

0.18 
(±0.05) 

2000 

 

0.18 
(±0.02) 

 

0.18 
(±0.01) 

0 (control) 

 

0.44 
(±0.05) 

 

0.49 
(±0.05) 

± indicates standard deviation between Sa of two separate measurements 

 

5.4.4 Contact angle 

The results of the contact angles are similar for all the gloves, which have an average contact angle 

between 40.0 and 43.4° (Figure 5.5). Similar to the NBR gloves in Chapter 4, there are large overlaps 
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in the standard deviations, which show some variability in the readings. ANOVA shows there are no 

statistically significant differences for either the thin (F(3,16)=0.113, p=.986) or thick (F(3,16)=0.425, 

p=.738) glove samples, showing the chlorination strength has no effect on the contact angle of the 

water.  

 

Figure 5.5. Average contact angles of gloves with DI water. Error bars indicate standard error. 
 

5.4.5 Donning 

Skin  moisture   

An average of the moisture results for all participants is shown in Figure 5.6. In the dry conditions, 

the average moisture between the participants is shown to be 59.23 (±8.85) A.U. for the fingers, 

60.55 (±6.70) A.U. for the palm area, and 56.07 (±5.24) A.U. for the back of the hand. After the hands 

were wettened from washing, the average moisture between the participants is shown to be higher 

at 93.95 (±2.57) A.U. for the fingers, 94.19 (±2.39) A.U. for the palm area, and 85.15 (±4.49) A.U. for 

the back of the hand. Wilcoxon signed rank tests were performed between the dry and wet 

conditions due to non-normal distribution of the data, as determined by the Shaprio-Wilk test. 

Differences in moisture presence are found to be statistically significant between the two conditions 

for all the regions tested (p<.05). 
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Figure 5.6. Average skin moisture on the hands in dry and wet conditions. Error bars indicate 

standard error. 

 

Donning time 

Table 5.7 shows the average time taken to don one glove. There is an increase in the average time 

taken to don gloves when the hands had more moisture present, which was also seen in in Chapter 4. 

Glove C was the quickest to don when dry, taking 10.31 (±2.98) s on average, whilst glove F took the 

longest, taking 16.12 (±4.56) s on average. When the hands were wet, both controls were the 

quickest to don, with glove D taking 16.46 (±3.51) s, and glove H taking 18.14 (±3.98) s. Figure 5.7 

shows the average time taken for the participants to don one glove in both dry and wet conditions. 

As with Chapter 4, analysis was only conducted on the three steps of the process where the glove is 

being used (i.e. the ‘pick up’ stage has been removed from analysis).  

 

Table 5.7. Total average time taken to don one glove with pick up time removed.  

Glove 
Time (S) 

Dry Wet 

A 13.39 (±2.75) 20.88 (±6.41) 

B 11.24 (±2.26) 16.67 (±6.21) 

C 10.31 (±2.98) 21.48 (±6.11) 

D 12.64 (±1.49) 16.46 (±3.51) 

E 16.06 (±6.42) 25.82 (±5.42) 

F 16.12 (±4.56) 21.89 (±4.82) 

G 11.40 (±3.60) 24.13 (±5.76) 

H 12.46 (±3.98) 18.14 (±3.98) 

± indicates standard deviation.  
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Figure 5.7. Average time taken for each of the three donning steps to be completed for one glove. 
Error bars denote standard error across the 6 participants. 

Thickness 

Statistical analysis results are shown in full in the appendix C1. ANOVA tests across the glove 

thicknesses show no statistically significant differences throughout the thin gloves in either condition 

(dry F(3,44)=2.464, p=.075 ; wet F(3,44)=1.753, p=.170). However, significant differences are present 

across the thick gloves in the wet condition (dry F(3,44)=2.329, p=.087; wet F(3,44)=2.845, p=.048). 

Tukey’s (HSD) found significance only between samples E and H (Q=3.902, p=.040). Statistical 

analyses were also performed on each step of the donning process. As most of the datasets being 

compared were non-parametric, Kruskal-Wallis tests for non-parametric data was used to compare 

thin and thick gloves in both the dry and wet conditions. No statistically significant differences were 

present between the gloves in the preparation or the manipulation stage of the donning process 

(p<.05, Appendix C1.3-C1.5). However, significant differences were found between the thick gloves in 

the wet condition during the hand insertion step (H(3, 44)=8.736, p=.019, Appendix C1.4). This is 

where most of the differences are observed in the donning process. The hand insertion step was 
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then subjected to a post-hoc Dunn’s test for non-parametric data, which shows statistically 

significant differences between the gloves in E and H (Z=2.878 p=.002).  

Gloves were also checked for statistical significance at each chlorination strength between 

the thick and thin gloves. Paired t-tests show no statistically significant differences between thin and 

thick gloves at each chlorination, except for 1000ppm chlorination when gloves are donned in the dry 

condition (t(11)=-2.823, p=.008). The smallest difference is observed with the control gloves (D and 

H), which differ by 0.14 seconds on average between thickness in the dry condition. The largest 

difference observed is with the 500ppm gloves in the wet condition, which differ by 4.94 s, on 

average. 

Hand condition comparison 

Significant differences were found between donning times in the dry and wet conditions with each of 

the gloves, with the exception of glove sample F (p>.05). Results from the t-tests are shown in Table 

5.8. In the preparation and manipulation stages, no statistically significant differences were found for 

any of the samples (p>.05). In the hand-insertion phase, however, statistically significant differences 

were found for all glove samples (p<.05).  

Table 5.8. Results of paired t-tests between gloves in dry and wet conditions at each stage of the 
donning process. 

Glove Sample 
p-value 

Total Time Preparation Hand Insertion Manipulation 

A 
T(11)=3.447 

p=.001* 
W=18 

 p=.122Δ 
T(11)=-3.313 

p=.002* 
W=19 

p=.158Δ 

B 
T(11)=-2.976 

p=.008* 
T(11)=0.672 

p=.552 
T(11)=-3.047 

p=.002* 
T(11)=-1.269 

p=.145 

C 
T(11)=-4.887 

p=.013* 
T(11)=0.467 

p=.580 
T(11)=-4.392 

p=.001* 
W=25 

p=.159Δ 

D 
W=12 

p=.016Δ 
T(11)=1.121 

p=.255 
W=3 

 p=.005 Δ 
W=13 

p=.502Δ 

E 
T(11)=-3.461 

p=.006* 
T(11)=-0.579 

p=.588 
T(11)=-3.116 

p=.005* 
T(11)=-1.928 

p=.125 

F 
W=14      

p=.075 Δ 
W=22 

 p=.177Δ 
W=12 

 p=.047* Δ 
W=32 

p=.464Δ 

G 
T(11)=-4.826 

p=.001* 
T(11)=-0.755 

p=.521 
T(11)=-5.089 

p=.003* 
W=37 

p=.107Δ 

H 
T(11)=-2.892 

p=.010* 
T(11)=-1.943 

p=.828 
T(11)=-3.332 

p=.005* 
W=30 

p=.381Δ 

*Denotes statistical significance (p<.05). Δ Denotes Wilcoxon Signed Rank Tests carried out due to 
either one or both datasets being non-parametric 
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5.4.6 Physical parameters to donning time 

Measured physical parameters to donning time 

It is important to establish if the physical properties, tested by the industries, have correlations to the 

performance, as this will allow manufacturers to quickly assess the implication different parameters 

may have on donning. Table 5.9 shows the correlation coefficients (r) and statistical analysis obtained 

from the regression analysis for both the total donning time, and the hand insertion step. The r can 

range from 1 and -1. A value of 0 shows no association between the two variables. Correlation 

coefficients between 0.3 and 0.5 are viewed as weak positive correlations, whereas above this (0.5-1) 

are seen as moderate-stronger positive correlations. (212, 213). The hand insertion step has also 

been included as this is the step where the hand has more interaction with the glove overall. 

Stronger correlations can be seen in the wet conditions, rather than the dry. The thickness of the 

gloves shows a moderate correlation to the time taken to don the gloves, which is stronger in the 

wet condition in the hand insertion step (r=.557; p=.152). However, it is shown that the thickness is 

similar throughout the gloves in each set. While the donning times are not too dissimilar between 

glove sets, this correlation is stating that the thicker the glove, the longer the glove takes to put on. 

The elongation at break of the gloves shows moderate correlation to both the total donning time and 

the hand insertion step, but only in the wet condition. Moderate correlations observed with the 

force at break have similar correlation coefficients to the thickness parameter, with more correlation 

being observed in the wet condition. Surface roughness shows moderate correlations to both the 

total donning time and the hand insertion step in the wet condition only (r=-.655 and r=-.589, 

respectively). This indicates that, as the surface roughness decreases, the donning time increases. 

However, this is not statistically significant in any of the conditions (p>.05, Table 5.9). Tensile 

strength shows to have moderate correlations to the total donning and hand insertion step. In the 

wet condition, these are statistically significant (p<.05, Table 5.9). This strongly indicates that in the 

wet conditions, the higher the tensile strength of the glove, the longer it takes to don (Figures 5.8 

and 5.9).  
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Table 5.9. Pearson correlation coefficient results for total donning time and the hand insertion step 
against the physical parameters, where r is the Pearson correlation coefficient, and p is the statistical 
significance. 

 Total donning time to tested parameter 

 Surface Roughness Strength Thickness Elongation 
Force at 

Break 
 r p r p r p r p r p 

Dry -.065 .878 .511◊ .196 .476 Δ .233 .171 .686 .460Δ .247 

Wet -.655◊ .078 .726◊ .041* .510◊ .197 .599◊ .117 .534◊ .173 
 ‘Hand Insertion’ step time to parameter 

 Surface Roughness Tensile Strength Thickness Elongation 
Force at 

Break 
 r p r p r p r p r p 

Dry -.206 .626 .638◊ .089 .545◊ .162 .257 .539 .540◊ .167 

Wet -.589◊ .124 .770◊ .025* .557◊ .152 .627◊ .096 .583◊ .129 
Δ Denotes a weak correlation. ◊Denotes a moderate correlation. *Denotes statistical significance 

 

 

Figure 5.8. Correlation of tensile strength to the total donning time of the gloves in the wet 
condition. Thin gloves are indicated by blue, and thick gloves by red. 
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Figure 5.9. Correlation tensile strength to the ‘hand insertion’ step time of the gloves in the wet 
condition. Thinner gloves are indicated by blue, and thick gloves by red. 

Stiffness and donning time 

Stiffness of the material is thought to be an important characteristic when assessing these gloves. 

Firstly, the stiffness was compared to the physical parameters, to assess if there were any 

correlations between the measured parameters and the calculated stiffness. Of the parameters, only 

tensile strength was found to have strong correlations with the calculated stiffness, as shown in 

Table 5.10. The results shown strong correlations with the measured stiffness at 100, 300 and 500 % 

strain (p<.05). As a greater stiffness is noted in the thicker samples, the results appear as two 

clusters, as in Figure 5.10.  

Table 5.10. Pearson correlation coefficient results comparing the stress at 100% strain and the tensile 
strength of the samples, where r is the Pearson correlation coefficient, and p is the statistical 
significance. 

 
 

Correlation of tensile strength to stress at % strain 

100 300 500 

r .976¤ .901¤ .991¤ 

p <.001* .002* <.001* 
¤ Denotes a strong correlation. * Denotes statistical significance  
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Figure 5.10. Correlation of tensile strength to stress at 100% strain. Thinner gloves are indicated by 

blue, and thick gloves by red. 

 
As 100% strain is much more likely in the glove donning process, correlations have been drawn 

against the stiffness at this point, and the time taken to don the gloves. Furthermore, the glove 

stiffness has also been compared to each of the stages of the donning process, which is shown in 

Table 5.11. The results show correlations between the steps in the dry hand condition; however, 

correlations are only found in the total donning time and the hand insertion step with the wet hand 

condition. Additionally, a statistically significant negative correlation is shown in the preparation 

stage in the dry condition (r=-.908; p=.002). This strongly indicates that the stiffer the glove sample, 

the quicker participants completed the preparation step (Figure 5.11). However, overall, a moderate 

correlation is drawn between the total time to don the gloves in the wet condition (r=.503; p=.204), 

compared to the dry condition which shows a weaker moderate correlation (r=.420; p=.300). 

Table 5.11. Correlation of donning time to stiffness of each of the samples at 100% strain at the total 
donning time and each of the three stages of the donning process. 

 
Stiffness @100% strain 

 Total Preparation Hand Insertion Manipulation 

 r p r p r p r p 

Dry .420 Δ .300 -.908¤ .002* .510◊ .197 .419 Δ .301 

Wet .503◊ .204 .221 .599 .535◊ .172 .069 .871 

Δ Denotes a weak correlation. ◊ Denotes a moderate correlation. ¤ Denotes a strong correlation. * 
Denotes statistical significance (p<.05). 
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Figure 5.11. Correlation of stiffness at 100% strain with the preparation stage of the donning process 

in the dry condition. Thinner gloves are indicated by blue, and thick gloves by red. 

 

5.4.7 Friction 

Moisture 

The results obtained from the moisture measurements for the friction tests are shown in Figures 5.12 

a-c. In the donning test, the average results had moisture levels of 59.23 A.U. on average for the dry 

and 93.95 A.U. on average for the wet condition. The participants for the friction moisture show 

results similar donning moisture results. Paired t-tests between dry and wet conditions show the 

moisture content is statistically significant for each participant in each glove condition (p<.001). 
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Figure 5.12 a-c. Results of moisture measurements for each participant in each glove test. Error bars denote 

standard error. 

 
 

Glove-skin behaviour 

The glove-skin behaviour was assessed in the first assessment of the friction, where the glove sample 

was attached to the force plate around the edges only, leaving the centre free to undertake relative 

movement. Many of the results obtained followed a typical friction graph, as seen in Chapter 4 (see 

Section 4.3.5). However, via this method, stick-slip and some sample stiffness contributed to the 

friction measurements. There are overall differences in the way the NBR reacts to the friction in both 

sets of thicknesses, and when moisture is added. This was mostly noticeable in the medium and high 

loads. Figures 5.13 and 5.14 show an example of the friction behaviour with one participant at 1 N 

with glove A (500ppm) and D (control) in the thinner gloves. In the chlorinated samples, the dry 

condition shows some ‘snapping’ of the NBR. The ‘snapping’ is defined as the glove being pulled with 

the finger, and then ‘snapping’ back into place, as shown in Figure 5.15. In the control, it can be seen 

that this snapping behaviour is more frequent, and in some participants, stick-slip also occurs. With 

the addition of water, the ‘snapping’ action worsens in these chlorinated samples, which can be seen 

from the friction graph on the right of Figure 5.14. When moisture is added in the unchlorinated 

sample, there are many more incidences of the snapping in combination with stick-slip. As observed, 

the finger would drag some of the glove, and when it snaps back, stick-slip would then occur, and 

then some of the glove would be pulled with the finger again. However, in the thicker samples, a 

slightly different behaviour is observed. In the dry condition, the gloves exhibit some of this snapping 

action, in combination with stick-slip (Figure 5.16). When moisture is added, there is more 

pronounced stick-slip with little of the ‘snapping’ action observed. No major differences are observed 

in the behaviour between the control and the chlorinated samples in the thicker gloves. 
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Figure 5.13. Friction graphs obtained from glove A (500ppm) in dry and wet conditions at the 1 N 
target load. 

 

Figure 5.14. Friction graphs obtained from the thin control sample (D) in dry and wet conditions at 
the 1 N target load. 
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Figure 5.15. Glove stretching with finger and ‘snapping’ back. 

 

Figure 5.16. Friction graphs obtained from glove sample E (500ppm) in dry and wet conditions at the 
1 N target load. 

 
As the snapping action was occurring, this means there was relative motion of the glove across the 

force plate, thus CoFs calculated may not be an accurate measure of the skin-glove interaction, but 

rather the glove-force plate friction. Therefore, the experiment was repeated, with the glove section 

fully secured (with double-sided tape) to the force plate to prevent movement, as in Chapter 4.  

Friction Coefficients 

Where discussed, friction coefficients obtained for each participant are shown in the appendix (C2) 

with complete statistical analysis (C3-C5). 
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Thin gloves 

The average friction and CoFs at each normal load in the thinner gloves are shown in Figures 5.17 (a-

f). In most of the participants, with all gloves, the CoF decreases as the load increases between the 

maximum and minimum target load. However, friction does increase with increasing target load. 

When moisture is introduced, the friction increases throughout the samples, in most instances. 

However, there are some exceptions to this, for example participant 3 at a target load of 0.1 N 

produces a dry CoF of 4.78 (±0.08) and a wet CoF of 4.02 (±0.01). Statistically significant differences 

are shown across all loads between the dry and wet conditions (p<.05). However, participants 2 and 

3 show no significant differences in friction between wet and dry conditions in gloves A and D at the 

minimum load (p<.05). In the wet condition, glove D shows the highest friction at the minimum load 

with participants 1 and 2. Glove A (wet) shows a greater friction coefficient at the minimum load with 

participant 2. There is a slight trend that can be followed with the friction decreasing as chlorination 

strength is increased in the dry condition for participants 2 and 3. Overall, the control sample (D) has 

a greater friction coefficient, followed by glove A. Then B and C tend to have similar friction 

coefficients throughout the participants, with glove B generally lower than C, except in participant 3. 

No statistical difference is shown between B-C friction at the low and mid load in participants 1 and 

2, following ANOVA and post-hoc Tukey’s (HSD) tests (p<.05). The full statistical analysis (appendix 

C3-C4) shows that the most differences are highlighted between the D and gloves B and C at all loads 

in all conditions.  
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Figures 5.17 a-f. Average friction results from participants 1-3 with the thinner glove samples. Error 
bars denote standard deviation. 
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Thick gloves 

The average friction and CoFs at each normal load in the thicker gloves are shown in Figures 5.18 (a-

f). Friction increases with the increasing target load. As with the thinner gloves, when moisture is 

added, there is an increase in friction. Differences between dry and wet CoFs are shown to be 

significantly different (p<.05, appendix C3-C5). However, glove H in participant 3 shows no significant 

difference between the wet and dry conditions at the minimum (dry µ=1.22; wet µ=1.29; t(2)=0.356, 

p=.756) and maximum (dry µ=2.08 ; wet µ= 2.04; t(2)=3.683, p=.066) loads. Glove H is shown to have 

the lowest CoF when compared to the chlorinated gloves, followed closely by glove G at the medium 

and high loads. However, many of the loads show statistical differences between G and H across the 

participants (p<.05). When wet, there is little pattern in the results, as the gloves show different 

friction coefficients with the participants. As with the thinner samples, significant differences are 

shown frequently between the chlorinated gloves and the control sample (p<.05). In conjunction 

with this gloves F and G show frequent statistical differences from glove E (p<.05), but less frequent 

differences with each other (p>.05). Overall, across the participants, glove G, when the finger is dry, 

produces the lowest CoFs across the target loads. In the wet conditions, glove G gloves lower friction 

in participants 1 and 2, followed closely by glove F, which shows to produce lower friction with 

participant 3. 
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Figures 5.18 a-f. Average friction and CoF from participants 1-3 with the thicker glove samples. Error 
bars denote standard deviation. 

0

1

2

3

4

0.0 0.3 0.6 1.0 1.3

Fr
ic

ti
o

n
 F

o
rc

e 
(N

)

Load (N)

Participant 1

E dry

E wet

F dry

F wet

G dry

G wet

H dry

H wet

a)

0

1

2

3

4

5

6

7

8

0.0 0.3 0.6 1.0 1.3

C
o

F

Load (N)

Participant 1

E dry

E wet

F dry

F wet

G wet

G wet

H dry

H wet

b)

0

1

2

3

4

0.0 0.3 0.6 1.0 1.3

Fr
ic

ti
o

n
 F

o
rc

e 
(N

)

Load (N)

Participant 2

E dry

E wet

F dry

F wet

G dry

G wet

H dry

H wet

c)

0

1

2

3

4

5

6

7

8

0.0 0.3 0.6 1.0 1.3

C
o

F

Load (N)

Participant 2

A dry

A wet

B dry

B wet

C dry

C wet

D dry

D wet

d)

0

1

2

3

4

0.0 0.3 0.6 1.0 1.3

Fr
ic

ti
o

n
 F

o
rc

e 
(N

)

Load (N)

Participant 3

E Dry

E Wet

F Dry

F Wet

G Dry

G Wet

H Dry

H Wet

e)

0

1

2

3

4

5

6

7

8

0.0 0.3 0.6 1.0 1.3

C
o

F

Load (N)

Participant 3

E dry

E wet

F dry

F wet

G dry

G wet

H dry

H wet

f)



119 
 

Thickness differences 

Paired t-tests show significant differences between thicknesses at the different loads. Participant one 

shows most of these differences, as each of the target loads produces a statistically different (p<.05) 

CoF between the thick and thin gloves. In general, the friction in the thicker gloves is slightly higher 

than those in the thinner gloves, with the exception of the control, which is significantly lower in the 

thicker gloves. In the thin gloves, the friction of the control (D) tends to be a higher friction at each 

load (in two out of the three participants), whereas in the thicker gloves, the friction for the control 

(H) is generally the lower. This difference in behaviour is highlighted in the t-tests, which show the 

majority of differences between gloves D and H being statistically significant (p<.05, appendix C3-C5). 

In both thickness sets the 2000 ppm (C and G) gloves show to produce the lowest CoF in the dry 

condition. However, when wet, the 1000 ppm (B and F) produces a the lowest CoFs. The thicker 

samples also showed stick-slip behaviour in some participants at the med/higher loads when 

moisture was added. 

 

5.4.8 Friction correlation to donning 

Both of the donning tests have shown that most variation is present in the ‘hand insertion step’, and 

this is where more friction occurs. Thus, this step has been explored in conjunction with the total 

donning time for each of the three participants taking part in the friction tests. Tables 5.12-5.14 show 

the Pearson correlation coefficients for each participant. The results show mostly moderate 

correlations between CoF and time taken in the wet condition. Much of this correlation is noted in 

the hand insertion step. However the stronger correlations are present in the total donning time. 

Participant 1 shows a moderate correlation in the wet condition to the time spend in the hand 

insertion step at the maximum load (r=.621, p=.101). On the other hand, the stronger correlations in 

participant 2 (Table 5.13) and 3 (Table 5.14) are noted in the total donning time. The strongest 

correlation coefficient for participant 2 is present at the minimum force (r=.682, p=.063), whereas 

the strongest for participant 3 is noted in the maximum force (r=.699, p=.054). None of the 

correlations had any statistical significance across the participants (p>.05). There is little in the way of 

pattern of behaviour in the correlation. However, it should be noted that glove E has a consistently 

high CoF with all participants and took the longer to don with participants 1 and 2.  
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Table 5.12. Correlation of CoF to total donning time and hand insertion step in participant 1. 

Donning step Condition 
Min load (0.1 N) Med load (0.5 N) Max load (1 N) 

r p r p r p 

Total 
Dry .532◊ .175 .115 .787 .070 .870 

Wet .253 .546 -.141 .740  .568◊ .142 

Hand insertion 
Dry .498Δ .209 .145 .732  .075 .859 

Wet .349 Δ .397 .117 .783  .621◊ .101 
Δ Denotes a weak correlation. ◊ Denotes a moderate correlation.  
 
Table 5.13. Correlation of CoF to total donning time and hand insertion step in participant 2 

Donning step Condition Min load (0.1 N) Med load (0.5 N) Max load (1 N) 

r p r p r p 

Total Dry .296 .477 .079 .853 -.115 .786 

Wet .682◊ .063 .444Δ .271 -.108 .799 

Hand insertion Dry .160 .704 -.117 .828 -.294 .480 

Wet .630◊  .824 .434Δ .282 -.109 .799 
Δ Denotes a weak correlation. ◊ Denotes a moderate correlation.  
 
Table 5.14. Correlation of CoF to total donning time and hand insertion step in participant 3 

Donning step Condition Min load (0.1 N) Med load (0.5 N) Max load (1 N) 

r p r p r p 

Total Dry .143 .736 .638◊ .088 .699◊ .054 

Wet .526◊ .180 -.216 .607 .127 .764 

Hand insertion Dry .072 .865 .455Δ .257 .698◊ .054 

Wet .627◊ .096 -.221 .601 .069 .871 
Δ Denotes a weak correlation. ◊ Denotes a moderate correlation.  

 

5.5 Discussion 

5.5.1 Physical properties  

The results of the physical properties suggest that, in the thinner gloves, chlorination may have 

impacted the thickness, making the glove slightly thinner as the concentration of chlorine increases. 

The aim of the chlorination process is to chemically change the surface of the gloves, in order to 

improve the donning process and reduce tack (16, 198). These chemical changes may be the reason 

for the slight reduction in thickness. However, due to an incredibly small difference (±0.005mm), it is 

likely that this is a random result. Another difference is highlighted in the elongation at break of the 

different samples. In the thick gloves, the 500ppm sample has similar elongation at break to that of 

the control, which is statistically different from the 1000-2000ppm chlorination strengths. However, 

the results are similar, having no large differences in the elongation, with standard deviations 

overlapping. Thus, the differences may have some statistical significance, but the results are too 

similar to conclude that this is anything more than random, as statistical difference may have arisen 
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as a result of the variation in the data, rather than any overall difference. Further work would have to 

be conducted to reveal any differences if present. The aim of this study was to compare gloves with 

the same manufacturing process and chemical constituents, with the exception of the treatment 

method, which has been achieved by the virtue of these physical property results.  

Comparison of developed samples to industry 

It is noted that there is some discrepancy between this data, and what is normally found within 

industry. When gloves are chlorinated, the polymers vulcanise and cross link (14, 38, 214). This 

lowers the tensile strength, elongation, force at break and modulus  of the gloves. In effect, the 

chlorination process is detrimental to the gloves, decreasing their shelf life. However, in the gloves 

manufactured in this study, the detriment is not greatly reflected. In many cases, there is little 

difference in the physical properties when comparing the chlorinated gloves to the control sample. In 

the elongation at break, the control sample is shown to be significantly lower in the thinner gloves. 

The difference in the results here, in comparison to what is shown in the industry, may be down to 

the small-scale production. Gloves were dipped in batches for this study, whereas in manufacturing 

plants they are continuously on-line producing gloves, with hundreds of formers (14, 38, 51). This is 

all done successively, from the moment the former is dipped into the coagulant it follows a linear, 

timed process. However, in this small-scale production, the batches were dipped (two gloves at a 

time) and then left whilst other gloves were dipped. It is possible that the small-scale, room 

temperature/humidity and time left between dipping could have affected the properties of the 

gloves. It could also be that the chlorination method and time of chlorine exposure has contributed 

to the differences (16, 51, 52, 214). However it has been previously discussed by Karunaratne (51), 

that the chlorination method should not affect the process, as they all work in a similar way. It must 

also be noted, that more variation (standard deviation) is observed in the control samples in the 

thinner gloves. In the thicker gloves the sample with the highest physical properties is the control 

sample. Therefore, it is likely that the properties were affected by the chlorination as expected, but 

not as significantly as seen in the industry (16, 51).  

The control sample is proven to be unexposed to the chlorination process via the results of 

the FTIR. The IR spectra shows that the control samples in this study have not been fully cured. The 

peak around 900cm-1 shows the H-C=C bending, which is not present in the chlorinated samples. In 

addition the thiol peak (H-S-H) is present in the control at ~2500 cm-1 (210, 215). These peaks 

strongly indicate that the vulcanisation is incomplete, and there are no sulphur cross links present. 

Without sufficient vulcanisation, the glove film tends to be softer. Consequently, the controls should 

have superior physical properties, which is observed in many of the physical properties. However, 
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Tohsan, Joomcom, and Limphira (216) does show that the tensile strength of NRL gloves tends to 

decrease when the vulcanisation time is longer than 10 minutes due to the disulphide and 

polysulphide links created during the vulcanisation process. Therefore, it does seem there is some 

discrepancy between the processes used when manufacturing gloves on a small scale such as this, 

and a larger scale in industry, which slightly affects the properties of the end products.  

5.5.2 Donning and friction 

Size 

All participants had stated they wear medium gloves as their ‘best fit’ size, hence their recruitment 

for this study as only medium sized gloves were manufactured. However, according to the HSE (149) 

chart for glove sizing, it was found that 2 participants were recommended to wear large while 3 were 

medium and 1 was small. There did not appear to be any visual issues with fit once the gloves were 

donned. Nor were there any comments around the fit of the gloves.  

Chlorination Strength 

The results of the donning process do not show statistically significant differences between the 

various glove chlorination strengths in the dry conditions. It was presumed that the controls (D and 

H) would take longer to don due to the increased friction from the ‘tacky’ surface, originating from 

the manufacturing process. However, this does not appear to be the case, which is likely to be a 

result of the powder being present. In both thicknesses, the 2000ppm (C, G) chlorination was quicker 

to don in the dry conditions, but the non-chlorinated gloves were quicker in the wet conditions. Only 

one significant difference was found to be present, which was between 500ppm concentration and 

the control in the thicker gloves when the hands were wet. As the control was faster to don, this 

suggests that chlorinating to 500ppm has an adverse effect on the donning process.  

When correlating the donning to the friction, much of the correlations are present in the wet 

conditions, rather than dry, presumably due to similar incidences of the glove sticking to the skin 

across the participants. There is slight evidence that chlorinating to 2000ppm does improve the 

frictional properties and donnability of the glove in the thinner samples. For all participants glove C 

tends to be closer to the bottom of the correlation trendline (low friction and low donning time). 

However, the frictional properties of the thicker sample (G) were found to have a greater CoF and 

took longer to don. This would make it appear that there is some ‘optimum’ friction to aid the 

donning process, around the 1000-2000ppm region. Knowing the region of strength for optimal 

friction can be salient for manufacturers to improve glove user compatibility. However, the material 

parameters must be factored into the donning process. The difference in donning ability between the 
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two gloves (C and G) is most likely to do with the difference in the physical properties of the two 

glove thicknesses and behaviour of the samples when donning.  

Thickness 

The thickness of the glove does appear to have affected the donning time, with the thicker gloves 

taking longer on average to don than the thinner gloves. Significant differences were observed 

between samples with the 1000ppm (B-F) chlorination strength (p=.008). This indicates that 

1000ppm is the only chlorination strength at which gloves affect donning between the thicker and 

thinner gloves. This strength of chlorination is also shown to have the ‘optimum’ friction in the 

thinner gloves. This could be due to it being the minimum concentration to needed to reduce the 

anti-tack properties of the manufacturing process. The lack of statistical difference in the other 

results is likely to be due to the physical properties, and how these properties affected each step of 

the donning process. Firstly, participants spent less time on average in the ‘preparation’ stage with 

the thicker gloves. This is likely to due to the glove stiffness. The thicker gloves were shown to be 

stiffer than the thinner gloves. Therefore, these gloves were less likely to be subjected to creasing 

and folding when in the packaging, as shown in Figure 5.19. This means they did not require as much 

opening and mechanical separating as the thinner gloves. Furthermore, the ergonomics of easily 

gripping the cuff of the thicker samples is likely to be more streamlined, as the thinner gloves may be 

harder to grasp given less material being present. A possible way to circumvent these problems, is to 

make the cuff of the thinner gloves thicker, and therefore easier to grab. However, this will not solve 

the problem of the gloves being more creased due to packaging, which will cause issues with opening 

up the glove as well as sliding the fingers in, as discussed in Chapter 4, where the fingers experienced 

more sticking at the top of the palm and the base of the fingers. 

 

 

Figure 5.19. 1) thicker glove (F); 2) thinner glove (B) 

 

1 2 
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Secondly, the ‘manipulation’ of the gloves also differed between glove thicknesses. Where the 

thicker glove was donned, the rolling of the glove restricted the hand from being fully inserted and 

more time was added to unroll the glove. This was a by-product of the hand insertion step, where 

the glove moved easier down the fingers/hand in the thicker gloves but induced more rolling. In the 

thinner gloves, the glove was found to stick more to the fingers and participants spent time pulling at 

the fingers and pushing down at the top of the palm/joints of the fingers to ensure the glove fit, all of 

which was also noted in the previous work (Chapter 4).  

The first friction test conducted, looking at the behaviour of the different samples, confirms 

there are differences in the way both the thick and thin glove sets react to the normal load. 

Furthermore, the correlation of mechanical parameters indicates that the stiffness of the material is 

an intrinsic part in the donning procedure. In the dry conditions, the thinner gloves exhibit more 

‘snapping’, which is problematic when donning. It would appear, even though the skin is dry, there is 

some adhesion and/or the stiffness of the sample is allowing conformation and bending of the glove 

around the skin. When donning the gloves, this is likely to incur more incidences of sticking as the 

glove bends around the fingers, previously discussed in Chapter 4. This is much more problematic in 

the control gloves (D), in which stick-slip is then introduced. It is important to remember that glove D 

and H will have contained some powder residue from the manufacturing/former releasing process. It 

is possible that the powder may have been more present on the thicker gloves. However, the gloves 

were of a similar roughness (0.44µm and 0.49µm respectively). Thus, it is expected that the powder 

held onto the surface, however minimal, would be similar. Due to the similarity and frequency of the 

issues in the donning, there is little difference in the overall time taken to don the gloves of different 

thicknesses. Some participants commented that when donning the thicker gloves, the rolling had 

restricted their movement to the point that it caused some pain. This was noted only after they had 

donned the gloves and was not a level of pain where the participants did not wish to continue the 

study. This was noted more in the two participants who had a recommended fit of ‘large’ by the HSE 

(149).  

Moisture 

Across the total time taken to complete the three steps, wet hands were shown to significantly 

increase the time taken to don the gloves (p<.05). The only exception to this was glove F. Although, 

the wet hand condition took on average 5.77 seconds longer to don than the dry condition, no 

significance was found. Most variation is noted in the hand insertion step, which is to be expected as 

this is where most of the friction occurs between the glove and the skin. These findings were also 

touched upon in Chapter 4. In the thicker gloves, there is a visually smoother transition as the fingers 
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slide down the gloves in the dry condition. However, when moisture is added, this step is slower, 

indicating stick-slip behaviour between the skin and the glove, which was confirmed in the friction 

results. The thinner gloves had a tendency to stick more to the hand, causing many issues whereby 

the participants had to pull harder on the glove and/or pull the glove away from the skin where the 

glove had stuck. Gloves C and G (2000ppm) had to have the greatest difference between the dry and 

wet conditions, increasing by 11.17 and 12.73 seconds respectively when moisture was present. This 

indicated that 2000ppm is more detrimental to the donning process when moisture is present. 

However, when dry, this appears to offer optimal friction and a quicker overall donning time. As the 

chlorination strength increases, the roughness of the surface decreases. In the dry condition this 

appears to aid the friction, but not necessarily the donning process, which is likely to be down to 

physical behaviour of the glove samples, as discussed. However, the smoother surface in the wet 

condition can cause more contact through capillary action and contact area, as discussed in Chapter 

4 (see Section 4.6.1). Whilst it is clear that moisture adversely affects the donnability of the gloves, 

there is no clear indication that there is a strength of chlorination which aids or exacerbates this 

issue. 

Surface roughness 

The correlation of surface roughness to donning time suggests that the rougher the surface, the 

quicker the glove was to don. This is due to the rougher surfaces of the unchlorinated gloves D and H, 

pulling the trendline up, and indicating a greater correlation. The rougher surface could increase 

friction due to the gaps being filled by finger ridges as the surfaces move over each other (rough-

rough contact), increasing asperity contact through an increase in surface area contact. Furthermore, 

when moisture is present, the water will flood these asperities, and cause capillary adhesion to the 

gloves. When the surface is smoother, as in the case of the 2000 ppm chlorinated samples, there 

appears to be a decrease the skin friction when compared to the 1000ppm samples. At 500-

1000ppm, the smoother, but rougher than 2000ppm, surface is a little more detrimental, as 

evidenced through increased CoFs. This is due to several factors, but mostly the stiffness and 

behaviour of the samples under load, which leads to different skin-glove interactions.  

5.5.3 Physical parameters 

The elongation at break parameter has a weak correlation to donning when the hands are wet. This 

is likely suggesting that the less stiff the sample is (the more elongated it can ger), the more likely the 

glove is to conform to the fingers, causing issues with the glove adhesion to the skin when moisture 

is present. In conjunction with this, there is a weak correlation of the donning time to tensile 

strength. There is a statistically strong correlation between the sample stiffness and the tensile 
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strength of the gloves observed in this study. This indicates that these properties are dependent 

upon each other, however more samples should be studied to conclude this. If this is a true 

correlation, this may allow for manufacturers to determine the donning capability and/or behaviour 

by assessing the tensile strength, as the tensile strength shows some correlations to the donning 

time, and stiffness also indicates correlation to the preparation stage. The correlations suggest that 

the stronger/stiffer the glove, the longer the glove takes to put on. Gloves chlorinated to 500ppm (A, 

E) and the thicker 2000ppm (C, G) have the highest tensile strengths, and highest hand insertion 

times, with respect to their thickness. The unchlorinated gloves (D, H) show the lowest tensile 

strength (for their respective thicknesses), and take the least time spent in the hand insertion step. 

This suggests that when the gloves are chlorinated to 1000ppm, the tensile properties formed in this 

glove allow for an easier donning process, as the hands spend less time in the ‘hand insertion’ step of 

the donning process. However, the 2000ppm glove is proven quicker to don overall, and has the 

lowest friction coefficients in the thinner gloves, further indicating the optimum chlorination strength 

is between 1000-2000ppm.  

 

5.6 Conclusions 

A summary of the findings from this chapter are shown in Table 5.15. The table shows the results of 

which gloves were quicker to don and compares the results of donning and friction with the wet 

hand condition to the dry condition. In all of the tests, the wet hand was shown to complicate the 

process and increase the time taken to don the gloves and increase friction.  

Table 5.15. Findings of the chapter comparing the outcome of performance of the wet hand to the 

dry hand condition with comments on the quickest glove to don.  

 Chlorination Strength (ppm) 

Measured 
parameter 

0 500 1000 2000 

Donning 
performance 

Quickest to don 
when thicker 

Greatest friction of 
chlorinated gloves 

Quickest to don 
when wet 

Quickest to don 
when dry 

 Thin gloves (A-D) 

Donning Time Increases Increases Increases Increases 

Friction Increases Increases Increases Increases 
 Thick gloves (E-H) 

Donning Time Increases Increases Increases Increases 

Friction Increases Increases Increases Increases 
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• Together with Chapter 4, a methodology has been designed to identify the complications of 

donning, and assess the ease of donning of gloves, as they are being donned in their natural 

state. This has allowed identification of how differences in gloves affect the donning process. 

The results of this protocol highlight four key stages of the process. Most variation and 

complication in this process is highlighted at the hand insertion step of donning a glove where 

the hand-glove system is more complex.  

• Inclusion of moisture increases friction in all gloves, as seen with the previous study in Chapter 

4. This is the same for all chlorination strengths, and the controls used in this study, showing 

no chlorination strength lessens the complexity of donning gloves with wet hands.  

• When donning gloves it is clear that the skin-material friction is salient, which is dependent on 

the degree of chlorination, and the thickness of the material. In the thinner gloves, the 

chlorination is shown to aid the donning process through a decrease in surface roughness and 

friction. This decrease in friction is shown to be beneficial to donning in previous studies (57, 

137). The thicker gloves, however, show a lower friction coefficient in the control, and the 

gloves were quicker to don. When chlorinating gloves, concentrations between 1000 and 

2000ppm appear to be optimal, with a lower friction coefficient and quicker donning times 

observed in the dry conditions. Assessing chlorination strengths in between the 1000 and 2000 

ppm may reveal a more optimum chlorination required for reducing friction with both dry and 

wet hands. However, the control gloves are easier to don than the chlorinated materials, with 

the thicker of the gloves showing a lower friction coefficient. This is likely to be due to the 

presence of powder, reducing the friction more than the chlorination.  

• The bulk physical properties of the gloves should be accounted for when assessing the ease of 

donning gloves, not just the friction. Correlations have been shown between the stiffness of 

the material and the donnability. The internal coating/treatment is only discussed in previous 

literature. However, this study shows the complexity of the donning process requires a lot 

more consideration.  

• Elongation at break and tensile strength are highlighted to be two of the mechanical 

parameters which require consideration during the manufacturing process. In particular, 

tensile strength shows statistically significant correlations to the material stiffness, which in 

turn shows correlations to the donning process at the preparation step. It is proposed that the 

stiffer glove samples bend and fold less in the packaging, which makes it easier to separate the 

two layers, and grab the cuffs to don the gloves. Material manufacturers should consider the 

effects these physical parameters have on the ease of donning, in order to improve the user 
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experience and increase compliance. However, more work should be conducted in this area in 

order to assess these correlations further. 

• As noted in Chapter 4, there are issues amongst the sizes of gloves with some users. Gloves 

should fit well to the hand of the user, and the sizes measured in correlation with the glove 

users in this study, and the previous chapter, show some discrepancies. When donning, a 

smaller glove may suit the user by providing a better fit but is more difficult to don. A larger 

gloves would be easier to don, but may be loose around the fingers, which was a common 

complaint amongst glove users from the questionnaire in Chapter 3. Overall, there are clear 

issues highlighted between the best-fit of glove sizes and the recommended fits of the gloves, 

which requires further examination. 
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Chapter Six: Dexterity and friction 

Dexterity was shown to be one of the highest reported issues amongst glove users in Chapter 3. 

Whilst it could be argued that gloves have been well assessed for dexterity in the literature, there are 

some issues present with these tests (6). The majority of studies assessing dexterity have attempted 

to differentiate glove performance by the use of the pegboard tests (6, 9, 12). However, as discussed 

in Chapter 2, the results of these studies give somewhat mixed results. Generally, the consensus in 

the literature is that medical gloves do not have a significant impairment on dexterity, although in 

some cases, there are observable differences in performance between gloves, or the bare hand. 

Many of the studies conducted on dexterity tend to compare two materials (normally NRL and NBR), 

with the hypothesis that one glove has a superior performance to the other. None of these studies, 

however, consider the material properties and the constituents of the gloves. Little work looks at 

why some gloves perform better than others. The aim of this chapter is to assess whether 

performance differences exist across similar glove materials with different properties. These 

properties could then be evaluated when manufacturing materials to predict what constituents and 

parameters may impact dexterity and friction. The novelty of this approach, in comparison to 

previous literature, considers the chemical differences between gloves of the same core materials, as 

well accounting for the physical parameters to assess gloves which have similar materials.  

6.1 Introduction 

As discussed in Chapter 2 and further highlighted in Chapter 4, manufacturing procedures, bulk raw 

materials, and treatment methods differ between gloves composed of the same material (such as 

NBR). These differences have been shown to affect the performance of donning in Chapter 4. No 

studies could be found assessing a range of gloves with known chemical and physical parameters. 

The differences between gloves materials are well known amongst glove users. NBR is stiffer and has 

a greater tensile strength than NRL, which gives it the perception of feeling thicker and hindering 

performance (7). However, linking these exact differences in properties to the performance has had 

little consideration. Two gloves made of NBR, for example, could be manufactured from different 

grades of acrylonitrile butadiene, and have different compounding agents, affecting the physical 

properties. Therefore, comparing dexterity across studies, where the same glove materials are used, 

may yield different results. Dexterity performance is commonly measured via the use of pegboard 

tests. The most frequent test encountered in the literature is the Purdue pegboard, as described in 

Tiffin and Asher [13] and discussed in Chapter 2. This test can be easily implanted into material 

manufacturing plants, and into the glove manufacturing plants for vital glove performance 

assessments and requires very little time to complete.  
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Furthermore, very little work has been shown considering the tribology of gloves and their effect on 

carrying out dexterous tasks. It is possible, that in the tests used, the actual dexterity is not affected 

as such by the gloves, but rather the introduction of a different surface contact into the system, 

which introduced tribological issues. Tribology plays an important role in the grip of the pins in 

studies of this ilk. Thus, without proper assessment of the tribology of gloves, it is difficult to 

determine whether the effects gloves have on dexterity are due to movement restriction or are a 

result of differences in friction, or a combination of the two. 

6.2 Aim and scope 

The aim of this chapter is to assess whether different gloves with different properties affect the 

dexterity of users. The novelty of this approach will consider the bulk material properties, as well as 

the chemical differences between the gloves. Furthermore, the tribological properties of the gloves 

will be assessed to understand the friction occurring between the glove films and the smooth metal 

components. The Purdue pegboard will be used to assess dexterity as it is a common test. Assessing 

whether there are specific properties which affect the tribological properties of the gloves, and the 

dexterity of glove users, will help inform glove manufacturers of the most important properties of 

the materials they are using. Additionally, this will inform raw material manufacturers how the 

chemical nature of the bulk raw materials affects glove properties, which in turn may affect tribology 

and consequently the ability of the wearer to carry out dexterous tasks.  

6.3 Materials and methodology 

6.3.1 Glove selection 

The glove materials were chosen with the help of the Synthomer technical centre Sdn Bhd Kluang, 

Malaysia. The gloves were selected to reflect what is on the current glove market, available for 

purchase. Although rare, some exposure to the accelerants used in the NBR gloves can cause skin 

irritation amongst some users. However, there are NBR gloves which are manufactured without 

accelerants (162). To negate irritation by these chemicals used in NBR, PVC gloves are also used as 

alternatives where required. Although these gloves are not commonly used in the NHS, it is not 

obsolete, and is still used around the world (5). Thus, this study also incorporates the use of medical 

grade PVC for reference. The gloves used in this study are described in Table 6.1. 
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Table 6.1. List of gloves and known constituents. 

Glove  Glove constituents 

NBR 6348HS 
Carboxylated acrylonitrile butadiene rubber made with Synthomer 
6348HS. High level of acrylonitrile recommended for thinner gloves 

with superior break forces. Finished with chlorination treatment. 

NBR 6329 
Acrylonitrile butadiene rubber made with Synthomer 6329. 

Medium level of acrylonitrile recommended for thin gloves with 
greater tensile strength. Finished with chlorination treatment. 

NBR 6311 
Acrylonitrile butadiene rubber made with Synthomer 6311. 

Medium level of acrylonitrile recommended for softness. Finished 
with chlorination treatment. 

NRL 
Natural rubber latex, with stabilising agents and no bulking 

adulterants. Finished with chlorination treatment 

NRL 10% filler 
Natural rubber latex with 10% bulking adulterants added. Finished 

with chlorination treatment 

PVC 
Medical grade polyvinyl chloride. Finished with chlorination 

treatment. 

 

6.3.2 Physical property measurements 

The physical properties of the gloves were measured using a Tinius Olsen (TL-190) tensometer. 

Testing was carried out under the same EN standard testing conditions described in Chapter 4 (see 

Section 4.3.1). A total of 12 gloves of each set were analysed. The standards for testing were 

previously discussed in Chapter 4, stating gloves need to have a ≥6 N break force to pass. However, 

this is only true of natural and synthetic rubbers. Thermoplastics, such as PVC, have a lower break 

force tolerance at ≥3.6 N (59). The gloves were manufactured and then delivered to the Synthomer 

technical centre where they were tested. Therefore, the gloves were not left for a long time period 

prior to testing, which was noted as an issue in Chapter 4 whereby the physical properties decreased 

over time. Thickness was measured using a Mitutoyo micrometer (quick-mini, ± 0.01 mm) along the 

palm, finger, and finger pad, using the method stated in Chapter 4 (see Section 4.3.1).  

 Stiffness calculations 

Stiffness has been calculated as with the gloves used in the Chapter 4. This was done using the 

formula given in Equation 4.1. Unless stated otherwise, the stiffness has been compared using the 

stiffness obtained at the lowest measured strain (100%) when assessing the modulus. In the donning 

Chapters (4 and 5), the stiffness around the 100% strain was likely more replicative of the conditions 

when pulling on a glove compared to the 300% and 500% stress. However, the strain of the glove, 

once on the hand, is likely to be much lower than 100%. Therefore, the strain used in these 

correlations may not be an accurate representation of the strain of a glove once donned on the 

hand.  
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 Size measurements 

Using a ruler, a total of ten of each of the gloves were measured for size across the palm, middle 

finger length and total length (middle finger-tip to cuff). This was the same procedure described in 

Chapter 4. In addition, the width of the fingers was also measured across the base of the middle 

finger.  

FTIR 

FTIR was conducted on the outer surfaces of the gloves to assess differences between the NBR gloves 

and the differences between the NRL gloves. This was to highlight any areas where chemistry may 

differ in the final glove products of the same bulk material. Analysis was conducted using a Brucker 

ATR-FTIR instrument. Each sample was scanned 26 times in the 550-4000 cm-1 region with a 

resolution of 4 cm-1. Two sections of each glove were analysed and averaged by OMNIC software. 

6.3.3 Task performance assessment 

Dexterity was chosen to be a measure of performance for these gloves, due to it being a commonly 

reported issues in Chapter 3. The Purdue pegboard (Figure 6.1) was used for this study, as this is 

sometimes used in industry as part of a battery of standardized tests when evaluating newly 

designed gloves (12, 217). Furthermore, the test is easy to implement into the assessment process as 

it is not time consuming or a large piece of equipment. The test measures both gross and an element 

of finer dexterity and is comprised of a rectangular wooden board containing 25 holes running 

vertically both sides. The top of the board houses four concave dishes. The outermost dishes contain 

cylindrical metal pins, whilst the two central dishes house metal washers and collars. The test 

consists of four separate tasks, which are as follows: 

• Left hand: total number of pins placed into the left column in 30 seconds, using only the left 

hand. 

• Right hand: total number of pins placed into the right column in 30 seconds, using only the 

right hand. 

• Both hands: total number of pairs of pins placed into the both the left and right columns at 

the same time, in 30 seconds. 

• Assembly: total number of assemblies constructed. These assemblies consist of a pin-washer-

collar-washer combination (as in Figure 6.2). The assembly of one structure had to be 

completed before moving onto the next. A total score was obtained from the parts of the 

structure assembled. 
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Figure 6.1. Purdue pegboard test 

 

Figure 6.2. Assembly test construction  

The test manufacturers recommend combining scores from all four tests to assess the results. 

However, it is deemed that as the pin placement tests are assessing dexterity on a grosser scale than 

the assembly test. Consequently, the tests were separated into the ‘combined test’ and the 

‘assembly test’ with separate results recorded. In the combined test, scores are given as a total of the 

three 30 second pin placement tests, and the assembly consists only of the score obtained from the 

one-minute assembly test. Participants were instructed to not pick up any pins which were dropped 

in the test, as it was found these were difficult to grab and consumed a large portion of time. Any 

dropped pins/parts were counted. The total test combination was conducted in 7 gloving conditions, 

once with each of the glove films, and a bare (no-gloves) condition. Tests were carried out in the 

Human Interaction Group laboratory at the University of Sheffield with a room temperature range of 

22-25°C and 50-57% humidity.  

Participants 

A total of 21 participants were recruited for the dexterity test. The gloves manufactured and donated 

by manufacturing companies for this project were of a “medium” standard size. This is said to be the 
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most common size manufactured and sold in bulk by glove manufacturing companies. As this was the 

only size present, participants were selected based on their size preference being a medium. The 

participants were aged between 22-42 with no known sensorimotor conditions. Ethical approval was 

received by the Research Ethics Committee of the Department of Mechanical Engineering, The 

University of Sheffield (No: 016619/022735). 

 Hand size measurements 

The hands of the participants were measured using the same method described in Chapter 4 (see 

Section 4.3.2). These were the same measurements recommended by the Health and Safety 

Executive (HSE) for sizing gloves for best fit to the hands (149). An additional measurement was 

taken in this study, which was across the base of the middle finger of both the participants and the 

gloves. Only the middle finger was arbitrarily chosen to save time. This was carried out due to the 

results of possible ill-fitting gloves noted in Chapter 4, where it was not considered if finger width 

could be a factor in hand insertion. Also, this measurement allowed for the assessment of any 

discrepancy between participants perceived best-fit size choice, and those published for 

recommendation of best-fit.  

 

6.3.5 Friction methodology 

The methodology for the friction analysis follows identically that described in Chapter 4 (see Section 

4.3.4). A strip of steel (1.7 × 58 cm) was affixed to the AMTI plate using double sided tape, as in 

Figure 6.3. A surface profilometer (Mitutoyo, SJ400 ±0.01 µm) was used to determine the Ra of the 

steel surface. The surface was shown to have an Ra of 0.11 µm, a profile of which is shown in Figure 

6.4.  

 

Figure 6.3. AMTI plate with steel strip attached. 
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Steel strip 

Direction of finger 

movement 40° 

 

Figure 6.4. Surface roughness profile of steel strip. 

A smooth steel was chosen as to represent the cylindrical metal pins used in the Purdue pegboard. In 

addition to this, the smooth metal surface is also representative of some of the commonly 

encountered surfaces (bedpans, trolleys, smoothed surface tools) discussed in Chapter 2 (see Section 

2.6.3.). The angle between the finger and the surface was kept at approximately 40o, as with previous 

studies (57, 90, 104, 137), and held in contact with a near constant desired force as shown in Figure 

6.5. The force was shown on a screen, and participants could see the force that was being applied. 

This allowed them to maintain a target force for each of the normal loads. Static friction was then 

measured by the sliding of the finger down the metal strip. Only static friction was measured for this 

study, as this is the friction most relevant in a medical setting (such as holding equipment and 

precision work) (114, 116). An example of how static friction is determined has been discussed 

previously (see Chapter 4, section 4.3.5). Gloves were donned on the right hand of the sole 

participant (male, aged 28). The friction tests were carried out with all six of the gloves and in a no-

gloves condition.  

 

Figure 6.5. Schematic of friction test set-up. 
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 Normal force selection 

In preceding literature, loads of 0.3-40 N have been used to assess glove friction with varying 

surfaces (90, 113, 114, 116). As noted with the donning friction (Chapter 4), these studies rarely 

report why certain loads are selected. Forces of 1 N have been used in many studies looking at grip 

force, as it has been reported that this is the force used in precision grip (189). Therefore, the target 

loads selected in this study are 1, 2, 3, 4 and 5 N. As with the donning methodology in Chapter 4, this 

provides an understanding of how friction differs with normal load. Tests were repeated three times 

at each load to obtain an average.  

6.3.6 Data analysis 

As with the previous friction study, the resultant horizontal force was determined prior to the 

coefficient of friction (CoF) being calculated (equations 4.2 and 4.3). The data was then processed to 

a power fit law, also described in Chapter 4 (see equation 4.4). 

Statistical analysis 

The data was assessed for normal distribution following the Shapiro-Wilk test for normality (192). 

Where normally distributed, one-way ANOVA was conducted. Statistical significance is set at α=0.05. 

ANOVA was followed up with a post-hoc Tuckey’s (HSD). Where non-normally distributed, the non-

parametric Kruskal Wallis test was conducted, followed by the Dunn’s multiple comparison test 

where relevant (195). The null hypothesis of the test states that there is no difference between the 

performance in both the Purdue tests, and the friction tests, across all glove conditions and the bare 

hand. Where a probability (p) of difference is <.05, the null hypothesis is rejected, and a significant 

difference is shown between results.  

 Correlation 

Pearson correlation coefficients (r) were also calculated following the same regression analysis 

detailed in Chapter 5 (see Section 5.3.3). The regression analysis was used to assess for correlation 

between each measured physical property on the tensiometer to both the combined scores and the 

total assembly scores for each hand condition. In conjunction with this, as stiffness was found to 

correlate to the donning performance, the stiffness of the gloves was also used to assess whether 

correlations are shown to both the dexterity and the friction.  
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6.4 Results 

6.4.1 Physical characteristics 

The results from the physical characteristic testing are shown in Table 6.2, with the stress-strain 

curves shown in Figure 6.6. As the various grades of NBR are manufactured to create gloves with 

slightly different properties, obtaining gloves of the same film thickness is difficult, as many of the 

grade formulations are designed to create thinner gloves. The thickness (T) of NBR 3648 and 6329 

are shown to be similar at 0.06 (±0.02) mm and 0.07 (±0.03) mm, respectively. However, the 6311 

grade is slightly thicker at 0.10 (±0.05) mm. The thickness of the gloves is shown at the palm only, as 

is standard when recording glove thickness (59). Nevertheless, as discovered when measuring the 

gloves for donning in Chapter 4, it was noticed that the thickness slightly increased by around 0.01-

0.02 mm towards the fingers. The gloves are shown to have slightly differing mechanical properties 

throughout. In the NBR gloves statistical differences are found between all NBR gloves in the break 

force (ANOVA F(5, 66)=145.227, p<.001. Table 6.3). No statistical differences are found between the 

NRL and NBR 6348HS (Q=0.829, p=.900), however, significant differences are shown between the 

other two grades of NBR, which are found to possess high break forces. Large differences are shown 

between the NRL and the NRL with 10% filler added. Break force (Fb) (Table 6.3), tensile strength (Ts) 

(Table 6.4), elongation (Eb) (Table 6.5), and stiffness (K) (Table 6.6) all show statistically significant 

increases when filler is added to the NRL. Significant differences are shown throughout all of the 

glove’s stiffness following ANOVA (F(5, 66)=975.567, p<.001), with the exception of the NBR 6348HS 

(0.022 (±0.001) N/mm) and the NBR 6329 (0.020 (±0.001) N/mm) gloves (Q=2.672, p=.419). These 

two NBR gloves are also shown to have very similar properties with regards to other parameters. 

PVC, which is shown to have lower force at break, tensile strength and elongation was also found to 

be stiffest (0.065 (±0.004) N/mm), with the highest modulus of all of the gloves used.  
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Table 6.2. Physical properties of gloves. 

 T (mm) Fb (N) Ts (MPa) Eb (%) K (N/mm) 

NBR 6348HS 
0.06 

(±0.02) 
6.33 

(±0.31) 
35.80 

(±2.07) 
514.25 
(±9.74) 

0.022  
(±0.001)  

NBR 6329 
0.07 

(±0.03) 
7.01 

(±0.74) 
35.28 

(±4.30) 
565.83 
(±9.15) 

0.020  
 (±0.001) 

NBR 
6311 

0.10 
(±0.05) 

8.88 
(±0.91) 

29.45 
(±2.41) 

496.58 
(±17.33) 

0.038   
(±0.002) 

NRL 
0.10 

(±0.03) 
6.77 

(±0.31) 
20.17 

(±0.94) 
626.83 

(±24.61) 
0.013   

(±0.002) 

NRL (10% 
filler) 

0.11 
(±0.06) 

9.12 
(±0.52) 

28.06 
(±1.24) 

837.58 
(±35.95) 

0.010   
(±0.002) 

PVC 
0.07 

(±0.03) 
3.87 

±0.41) 
18.64 

(±0.96) 
348.33 

(±30.73) 
0.065   

(±0.004) 

± denotes standard deviation 

 

Figure 6.6. Stress-strain of gloves. 
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Table 6.3. Results of Tukey’s (HSD) test following ANOVA (t(5, 66)=145.227, p<.001) on the force at 
break. 

 NBR 6329 NBR 6311 NRL NRL (10% filler) PVC 

NBR 6348HS 
Q=6.598 
P=<.001* 

Q=17.805 
P=<.001* 

Q=0.829 
P=.900 

Q=19.233 
P=<.001* 

Q=12.266 
P=<.001* 

NBR 6329  Q=11.207 
P=<.001* 

Q=7.427 
P=<.001* 

Q=12.636 
P=<.001* 

Q=18.863 
P=<.001* 

NBR 6311   Q=18.634 
P=<.001* 

Q=1.428 
P=.900 

Q=30.071 
P=<.001* 

NRL    Q=20.062 
P=<.001* 

Q=11.437 
P=<.001* 

NRL (10% filler)     Q=31.499 
P=<.001* 

* denotes statistically significant differences (p<.05). 

 

Table 6.4. Results of Tukey’s (HSD) test following ANOVA (t(5, 66)=635.368, p<.001) on the tensile 
strength. 

 NBR 6329 NBR 6311 NRL NRL (10% filler) PVC 

NBR 6348HS 
Q=0.786 
P=.090 

Q=9.571 
P=<.001* 

Q=23.494 
P=<.001* 

Q=11.629 
P=<.001* 

Q=25.800 
P=<.001* 

NBR 6329  Q=8.786 
P=<.001* 

Q=22.709 
P=<.001* 

Q=10.844 
P=<.001* 

Q=25.015 
P=<.001* 

NBR 6311   Q=13.923 
P=<.001* 

Q=2.058 
P=.670 

Q=16.229 
P=<.001* 

NRL    Q=11.865 
P=<.001* 

Q=2.306 
P=.571 

NRL (10% filler)     Q=14.171 
P=<.001* 

* denotes statistically significant differences (p<.05). 

 

Table 6.5. Results of Tukey’s (HSD) test following ANOVA (t(5, 66)=573.568 p<.001) on the 
elongation. 

 NBR 6329 NBR 6311 NRL NRL (10% filler) PVC 

NBR 6348HS 
Q=7.594 
P=<.001* 

Q=2.601 
P=.450 

Q=16.574 
P=<.001* 

Q=47.598 
P=<.001* 

Q=24.426 
P=<.001* 

NBR 6329  Q=20.195 
P=<.001* 

Q=8.980 
P=<.001* 

Q=40.006 
P=<.001* 

Q=32.019 
P=<.001* 

NBR 6311   Q=19.175 
P=<.001* 

Q=50.201 
P=<.001* 

Q=21.825 
P=<.001* 

NRL    Q=31.026 
P=<.001* 

Q=41.000 
P=<.001* 

NRL (10% filler)     Q=72.025 
P=<.001* 

* denotes statistically significant differences (p<.05) 
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Table 6.6. Results of Tukey’s (HSD) test following ANOVA (t(5, 66)=975.567, p<.001) on the calculated 
stiffness at 100% strain. 

 NBR 6329 NBR 6311 NRL NRL (10% filler) PVC 

NBR 6348HS 
Q=2.672 
P=.419 

Q=24.432 
P=.001* 

Q=13.234 
P=.001* 

Q=18.069 
P=.001* 

Q=65.533 
P=.001* 

NBR 6329   
Q=27.104 
P=.001* 

Q=10.562 
P=.001* 

Q=15.397 
P=.001* 

Q=68.206 
P=.001* 

NBR 6311     
Q=37.666 
P=.001* 

Q=42.501 
P=.001* 

Q=41.102 
P=.001* 

NRL       
Q=4.836 
P=.013* 

Q=78.767 
P=.001* 

NRL (10% filler)         
Q=83.603 
P=.001* 

* denotes statistically significant differences (p<.05) 

 

6.4.2 FTIR 

NBR 

The FTIR spectra for the NBR gloves are shown in Figure 6.7. NBR 6311 and 6329 show very similar 

spectra, except in the 1575-1540cm-1 region. This absorbance corresponds to the carboxylate group 

(COO-), which is not present in the NBR 6311 gloves. The presence of the carboxylate may be masked 

in the 6311 by the inclusion of stabilisers and materials used to compound the NBR. The most 

dissimilar of the three gloves is the 6348HS grades. There is strong peak absorbed by the 6348HS 

material at 3690cm-1, which are not present in the other gloves. This peak corresponds to silanol 

groups (Si-OH). This strongly indicates that this glove was finished with a silica dip or silica has been 

used in the compounding process. Further differences between the 6348HS grade and the other 

gloves are highlighted by peaks being present in 6348HS around 1055-1010cm-1. These correspond to 

Ester (O=C-O) stretching or aliphatic amine (C-N) bending (209, 210). Differences are expected, due 

to the gloves being manufactured by different companies, using different processes, and different 

preparation techniques. Changes in the crosslinking, degrees of crystallisation of the polymers and 

polymer chain orientation are all factors which can contribute to slight differences in the spectra 

between absorbance with different functional groups (209).  
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Figure 6.7. FTIR spectra obtained from NBR gloves. Differences are highlighted in red. 

 

NRL 

The NRL gloves are shown to be very similar from the spectra, shown in Figure 6.8. Although no great 

differences are present in the spectra, absorbance is noticeably lower in the glove which has had 

adulterants added. More absorbance, however, is noticed in the hydroxyl (OH) region between 3550-

3200cm-1 (210). This is showing that the added adulterants could have slightly decreased the 

absorbance, likely due to less presence of the natural rubber. Although, the results do show no great 

differences are present in the overall spectra between the chemical structures of the different 

gloves. It is possible that there are slight differences further down the spectra (>500cm-1 region), but 

as the region (1500-500cm-1) has strong similarities in spectra, it is likely the bulking agents have not 

changed the overall chemical structure of the glove. As stated with the NBR, the difference in the 

polymer chains can cause slight changes in absorbance between spectra.  
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Figure 6.8. FTIR spectra obtained from NRL gloves and NRL gloves with filler.  

6.4.3 Glove and hand size 

Glove size  

The glove measurements are shown in boxplots showing glove/hand length (Figure 6.9), finger length 

(Figure 6.10), palm span (Figure 6.11) and finger width (Figure 6.12). These plots show the range of 

data (indicated by the error bars), the median indicated by the line in the interquartile box range and 

the mean represented by the cross. Additional data points are shown as outliers, which deviate from 

the normal distribution within the data. There are some small variations noted between the gloves. 

Most difference is present in the glove length, where the largest difference is between PVC (23.32 

±0.11 cm) and NBR 6311 (24.91 ±0.20 cm). Slight differences are observed in the finger length also, 

where the NBR 6329 gloves shows to be slightly longer at 7.69 (±0.07) cm, whilst the other gloves 

range from 7.50-7.68 cm. When the gloves were donned, they were inspected for fit prior to the 

experiment being conducted. No great visual issues were present. However there was a little excess 

material noted in some participants with NBR 6329 and the PVC gloves in some participants. In the 

NBR 6329, the excess was noted at around the tip (finger length= 7.69 ± 0.07 cm), whereas in the 

PVC, the excess was noted around the base of the fingers (finger length = 7.61 ± 0.10 cm). However, 

this was not excessive and was not indicative of an incorrect size being used (e.g. a smaller size would 

have been tight around the palm and possibly the fingers).  
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Figure 6.9. Comparison of the length of gloves used and the length of the participants’ hands. 

  

Figure 6.10. Comparison of the length of middle finger of the gloves used and the length of 
participants’ middle finger. 

 

Figure 6.11. Comparison of the palm span of the gloves used and the span of the participants’ hands. 
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Figure 6.12. Comparison of the finger width of the gloves used and width of the participants’ index 
fingers. 

 

 Participant sizes 

As is clear from the results presented in Figure 6.9-6.12, there are differences between the glove 

sizes, and the participant hand sizes. However, these size differences are marginal in most cases. The 

length of the total glove is larger than the participant’s hands. However, this is normal, as the glove 

measurement includes the cuff, which tends to cover the wrist. The most important sizes pertain to 

the palm span, finger length and finger width. A larger palm span is observable in the participants, 

with a much greater variation. The average lengths of the fingers show similar measurements 

throughout the gloves and the participants. The NBR 6311 shows the largest deviation from the 

participant’s average (NBR: 7.69 ± 0.07 cm; participants: 7.61 ± 0.13 cm). Most variation is shown in 

the finger width, where the NBR 6829, 6311, NRL with filler and the PVC have greater width. 

However the difference between the averages is minimal. Comparisons of this nature must be 

approached with caution when interpreting, as the gloves are measured when flat. Therefore, it may 

appear that the measurements are likely to be different between the gloves and the participant hand 

sizes, however these measurements do not account for the geometry of the glove expansion once 

the hand is inside.  

The hand measurements taken were compared to the HSE size gloving chart (149). All 

participants had at least one hand measurement that aligned with that to recommend a ‘medium’ 

glove sizing. Of the 21 participants, only 4 had a finger length and palm circumference which both 

aligned with the medium size category (Figure 6.13). Of the remaining participants, a total of 13 

participants had a recommended palm circumference, and 4 had a recommended finger length as 

appropriate for medium glove sizing.  
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Figure 6.13. Distribution of recommended glove sizes amongst the participants based on palm 
circumference and finger length measurements. 

 

6.4.4 Dexterity 

Combined 

The results of the combined test are shown in Figure 6.14. Scores have been normalised to show the 

differences in gloved score to the bare hand condition (gloved score – bare hand score). As the data 

was found to be non-parametric, the Kruskal Wallis test was conducted, which shows significantly 

different results across the conditions (H(6)=41.014, p=<.001). All gloves are shown to significantly 

reduce performance, with a lower number of pins placed when compared to the bare hand following 

the Dunn’s test (p=<.001, Table 6.7). However, the difference between some of the results is not 

large. For example, when the NRL with filler was worn, the score was an average of 42.5 (±5.90), NBR 

6348HS with an average of 42.10 (±5.82) and the bare condition an average of 46.14 (±5.60). The 

bare hand also showed less pins being dropped, with only 5 people dropping pins, and only 6 pins 

were dropped across the entire tests (0.42 pins on average, Table 6.8). Across the NBR gloves, the 

6311 grade scored the lowest when donned, across all participants, with an average score of 37.71 

(±5.90). Only one significant difference is noted between participants with the NBR gloves, which is 

between the 6311 and the 6348HS grades (Z=2.015, p=.022). Although the dexterity performance 

was not as good as when the 6348HS glove was worn, the 6329 glove showed the least pins dropped, 

with only 7 participants contributing to dropping 11 pins (0.52 on average). In the NRL gloves, the 

difference in scores when these two gloves are donned is not significantly different. However, the 

NRL which included filler allowed the participants to perform better than when the other gloves were 
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donned. When the PVC glove was donned, performance was worse than any of the other gloving 

conditions, and on average, 2 pins were dropped per person. 

 

Figure 6.14. Normalised results (gloved score – bare hand score) of the combined test (left hand, 
right hand and both hands) in the Purdue Pegboard test. Error bars denote standard error. 

 

Table 6.7. Post-hoc Dunn’s test results conducted after Kruskal-Wallis on combined test scores 
(H(6)=11.014, p=<.001). 

Glove 
NBR 

6348HS 
NBR 6329 NBR 6311 NRL NRL (10% filler) PVC 

No gloves 
Z=3.090 

p=<.001* 
Z=3.076 

p=<.001* 
Z=2.346 

p=<.001* 
Z=3.090 

p=<0.001* 
Z=2.978 

p=<.001* 
Z=2.652 

p=<.001* 

NBR 
6348HS 

 Z=0.028 
p=.511 

Z=2.015 
p=.022* 

Z=0.665 
p=.253 

Z=0.048 
p=.519 

Z=3.174 
p=<.001* 

NBR 6329   Z=0.048 
p=.104 

Z=0.327 
p=.628 

Z=0.867 
p=.193 

Z=3.317 
p=<.001* 

NBR 6311    Z=0.066 
p=.254 

Z=2.748 
p=.003* 

Z=0.533 
p=<.297 

NRL     Z=1.447 
p=.074 

Z=1.896 
p=.029* 

NRL (10% 
filler) 

     Z=3.115 
p=<.001* 

* denotes statistically significant differences (p<.05) 
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Table 6.8. No of pins dropped in the combined test. 

Glove Pins dropped 
No of participants 
who dropped pins 

Average 

No gloves 6 5 0.29 

NBR 6348HS 16 10 0.76 

NBR 6329 11 7 0.52 

NBR 6311 23 13 1.10 

NRL 23 13 1.10 

NRL (10% filler) 19 13 0.91 

PVC 42 18 2.00 

 

Assembly 

The results of the assembly test are shown in Figure 6.15. As with the combined test, the scores have 

been normalised (gloved score – bare hand score) to compare dexterity to the bare hand condition. 

As fewer pieces were assembled on average when compared to the no-gloves condition, this shows 

that dexterity was impaired with all gloves. The Kruskal-Wallis test was conducted due to non-

parametric data, which shows statistically significant differences between the glove conditions 

(H(6)=31.241, p=.001). Table 6.9 shows the results of the post-hoc Dunn’s test, which shows 

significantly less pins were placed when NBR 6311 (27.86 ±5.19), NRL (30.62 ±7.16), and PVC (25.10 

±4.66) are compared to the bare hand condition (35.57 ±5.97) (p<.05).  

In the NBR gloves, the participants wearing the 6311 grade performed significantly worse 

than when the 6329 (32.52 ±6.01, Z=2.067, p=<.018) and the 6348 (31.86 ±6.37, Z=1.774, p=.038) 

gloves were worn. A superior performance is observed when the adulterated NRL (32.52 ±6.98) was 

worn, when compared to the unadulterated NRL (30.62 ±7.16). As with the combined test, 

performance was lowest with the PVC glove, which is statistically significant across all glove 

conditions (p<.05), except with the NBR 6311 (Z=0.726, p=.234) gloves. The number of parts dropped 

was higher when the PVC glove was worn, with 3.1 parts dropped on average. Across 12 of the 

participants, 29 parts were also dropped when the 6311 NBR glove was worn (average 1.38 across all 

21 participants), as displayed in Table 6.10. In the gloved conditions, the least amount of dropped 

pins was observed when the adulterated NRL gloves were worn, which showed an average of 0.43 

parts dropped. It was also noted that participants knocked off the top washer in the already 

assembled parts when completing other assemblies. Participants were asked to ignore the washers 

that had been knocked off and were counted as complete assemblies. The knocked off washers were 

counted and are also shown in Table 6.10. It is shown that the when the PVC gloves were donned, 

1.76 parts were knocked off on average, whereas when the NBR 6348HS and adulterated NRL were 

donned, only 0.22 washers were knocked off on average. In comparison to the bare hand condition, 
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gloves appear to incur this knocking off of washers, as only one participant knocked one washer off 

over the course of the tests in the bare hand condition.  

 

Figure 6.15. Normalised results (gloved score – bare hand score) of the assembly test of the Purdue 
Pegboard test. Error bars denote standard error. 

 
Table 6.9. Post-hoc Dunn’s test results conducted after Kruskal Wallis on assembly test scores 
(H(6)=31.241, p=<.001). 

Glove 
NBR 

6348HS 
NBR 
6329 

NBR 6311 NRL 
NRL (10% 

filler) 
PVC 

Bare 
Z=1.911 
p=.208 

Z=1.70 
p=.121 

Z=3.163 
p=<.001* 

Z=1.943 
p=.026* 

Z=0.871 
p=.192 

Z=3.4408 
p=<.001* 

NBR 6348HS  Z=0.792 
p=.767 

Z=2.067 
p=.018* 

Z=0.454 
p=.325 

Z=0.256 
p=.665 

Z=3.548 
p=<.001* 

NBR 6329   Z=1.774 
p=.038* 

Z=0.020 
p=.492 

Z=0.845 
p=.801 

Z=3.6843 
p=.001* 

NBR 6311    Z=0.971 
p=.166 

Z=2.053 
p=<.020* 

Z=0.726 
p=.234 

NRL     Z=0.391 
p=.348 

Z=2.326 
p=.010* 

NRL (10% 
filler) 

     Z=0.028 
p=<.001* 

* Indicates statistical significance (p<.05) 

 

 

-12 -10 -8 -6 -4 -2 0 2 4

NBR 6348

NBR 6329

NBR 6311

NRL

NRL (10% filler)

PVC

No of parts

G
lo

ve

Dropped parts Normalised assembly score



149 
 

Table 6.10. Number of pins dropped, and washers knocked off in the assembly test. 

Glove 
Parts 

dropped 

No of 
participants 

who 
dropped 

parts 

Average of 
all 

participants 

Knocked 
off 

No of 
participants 

who 
contributed 
to knocking 

pins off 

Average of 
all 

participants 

Bare 2 2 0.1 1 1 0.05 

NBR 
6348HS 

10 6 0.48 6 6 0.29 

NBR 6329 21 16 1.00 7 5 0.33 

NBR 6311 29 12 1.38 15 9 0.71 

NRL 25 14 1.19 6 4 0.38 

NRL (10% 
filler) 

9 7 0.43 6 3 0.48 

PVC 49 20 2.33 37 19 1.76 

 

6.4.4.1 Physical property correlation 

As mentioned in Chapter 4, as industries measure glove parameters to EN standards, correlations 

were drawn between the measured physical properties and the dexterity scores obtained from both 

the combined and the assembly pegboard test. In addition to this, the sample stiffness has been 

calculated, as previously described (equation 4.1), and correlated to the dexterity performance. 

Moderate positive correlation is noted in the force at break in both the combined (r=.539) and 

assembly tests (r=.627), as displayed in Table 6.11. The correlation tests also indicate that the 

elongation properties have stronger positive correlation in the assembly tests (r=.774), but a weaker 

negative correlation in the combined tests (r=.466). None of these correlations show any significant 

differences (p>.05). On the other hand, stiffness is shown to have statistically strong correlations with 

both the combined (r=-.888; p=.018) and the assembly tests (r=-.930; p=.007), as shown in Figure 

6.16. The stiffer PVC glove has shown to decrease the average pegboard score by 14.9 (±10.5) % with 

the combined test, and by 21.0 (±12.4) % in the assembly test, when compared to the high scoring, 

least stiff NRL (with filler). This indicates that the less stiff the glove is, the better the performance in 

the dexterity tests.  
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Table 6.11. Pearson’s correlation coefficients of measured physical parameters. 

 Combined Assembly 
 r p r p 

Force at break .539Δ .270 .627Δ .184 

Tensile Strength -.247 .637 .488◊ .326 

Elongation -.446◊ .427 .774Δ .071 

Stiffness at 100% strain -.888¤ .018* -.930¤ .007* 

r= Pearson correlation score. p= statistical significance. Δ denotes weak correlations,◊ denotes 
moderate correlations ¤ denotes strong correlations * denotes statistically significant differences 
(p<.05) 

 
Figure 6.16. Pearson correlation graph of combined Purdue pegboard scores to the stiffness 

parameter of the gloves used. 

 

6.4.5 Friction 

The results of the static friction for each glove and the CoFs are shown in Figure 6.17 (a-b). In this 

experiment, the gloves have shown to reduce friction when compared to the no gloves condition. 

Friction increases across the increase in load with all materials and the no-gloves condition. 

Noticeably, the skin CoF reduces between the minimum (~1 N) and maximum (~5 N) target load, 

whereas the glove CoF increases slightly between the two extremes. ANOVA tests were conducted at 

each load and statistically significant differences between results are indicated (1N F(6,14)=451.186, 

p=.001; 2N F(6,14)=625.368, p=.001; 3N F(6,14)=613.098, p=.001; 4N F(6,14)=593.868, p=.001; 5N 

F(6,14)=591.329, p=.001). The results of the post-hoc Tukey’s test are shown in Tables 6.12-6.16, 

showing that the bare hand condition has significantly higher CoF than each of the glove conditions 

at each given load (p<.05). Between gloving conditions, the NRL gloves produce the highest CoF, 
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ranging between 1.22 (±0.12) and 1.52 (±0.08). There is little difference between CoFs across all 

loads with the NRL and the NRL with filler, which show no statistically significant differences at each 

load. However, the CoF of the NRL with filler is slightly higher on average. For example, at ~2 N, the 

NRL without filler averages a CoF of 1.60 (±0.02) and when filler is added the CoF is slightly increased 

at 1.65 (±0.03). A similar result is shown for the ~5N load, however the NRL is shown to have a 

slightly higher friction (µ= 1.52 ±0.02) than the NRL with filler (µ= 1.50 ±0.01). Among the different 

NBR grades, 6311 produces a higher friction than the 6329 and 6348HS gloves. The CoF of the 6311 is 

shown to be significantly different from all gloves, with the exception 6329 at the 4 N load 

(Q=11.859, p=.082). Both the 6348HS and 6329 grade gloves produce similar friction coefficients at 

each load, with no significant differences. The lowest friction is produced in the PVC gloves, showing 

friction coefficients between 0.51 (±0.05) at the minimum applied force, and 0.69 (±0.01) at the 

maximum applied force. The results of all CoFs produced in the PVC condition show statistically 

significant differences from all other gloves at each load (p<.05). 

 

Figure 6.17 (a-b). Friction and CoFs of different gloving conditions and no-glove condition. Error bars 
denote standard error. 
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Table 6.12. Results of Tukey post-hoc test for all glove conditions at 1 N target load. ANOVA: 
F(6,14)=451.186, p=.001. 

Glove 
NBR 

6348HS 
NBR 6329 NBR 6311 NRL 

NRL (10% 
filler) 

PVC 

Bare 
Q=56.670  
p=<.001* 

Q=50.924  
p=<.001* 

Q=47.439  
p=<.001* 

Q=33.688  
p=<.001* 

Q=29.849  
p=.001* 

Q=62.592 
p=<.001* 

NBR 
6348HS 

 Q=5.149  
p=.216 

Q=9.231  
p=.001* 

Q=22.927  
p=.001* 

Q=26.821  
p=<.001* 

Q=5.922  
p=.009* 

NBR 6329   Q=3.485  
p=.182 

Q=17.236  
p=<.001* 

Q=21.075  
p=.001* 

Q=11.668  
p=.001* 

NBR 6311    Q=13.751  
p=.001* 

Q=17.590  
p=.001* 

Q=15.153 
p=.001* 

NRL     Q=3.839  
p=.122 

Q=28.904  
p=<.001* 

NRL (10% 
filler) 

     Q=32.743  
p=<.001* 

* denotes statistical significance (p<.05) 

 

Table 6.13. Results of Tukey post-hoc test for all glove conditions at 2 N target load. ANOVA: 
F(6,14)=625.368, p=.001. 

Glove 
NBR 

6348HS 
NBR 6329 NBR 6311 NRL 

NRL (10% 
filler) 

PVC 

Bare 
Q=134.870  
p=<.001* 

Q=132.12  
p=<.001* 

Q=115.83  
p=<.001* 

Q=74.733  
p=<.001* 

Q=71.360  
p=.001* 

Q=145.54  
p=<.001* 

NBR 
6348HS 

 Q=2.571  
p=.084 

Q=19.042  
p=<.001* 

Q=60.140  
p=.001* 

Q=63.513  
p=.001* 

Q=10.669  
p=.007* 

NBR 6329   Q=16.291  
p=.001* 

Q=57.389  
p=.001* 

Q=60.762  
p=<.001* 

Q=13.420  
p=<.001* 

NBR 6311    Q=51.098  
p=.001* 

Q=44.471  
p=.001* 

Q=29.711  
p=.001* 

NRL     Q=3.373  
p=.273 

Q=70.810  
p=.001* 

NRL (10% 
filler) 

     Q=74.183  
p=.001* 

* denotes statistical significance (p<.05) 
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Table 6.14. Results of Tukey post-hoc test for all glove conditions at 3 N target load. ANOVA: 
F(6,14)=613.098, p=.001. 

Glove NBR 6348HS NBR 6329 NBR 6311 NRL 
NRL (10% 

filler) 
PVC 

Bare 
Q=59.106  
p=<.001* 

Q=58.201  
p=<.001* 

Q=41.064  
p=<.001* 

Q=21.400  
p=<.001* 

Q=20.940  
p=.001* 

Q=65.150 
p=<.001* 

NBR 
6348HS 

 Q=0.905  
p=.901 

Q=12.042  
p=.001* 

Q=37.707  
p=.001* 

Q=38.167 
p=<.001* 

Q=6.044  
p=.011* 

NBR 
6329 

  Q=11.137  
p=<.001* 

Q=36.802  
p=.001* 

Q=37.262  
p=.001* 

Q=6.942  
p=.003* 

NBR 
6311 

   Q=25.664  
p=<.001* 

Q=26.125  
p=<.001* 

Q=18.086  
p=.001* 

NRL     Q=0.460  
p=.890 

Q=43.751  
p=<.001* 

NRL (10% 
filler) 

     Q=44.211  
p=.001* 

* denotes statistical significance (p<.05) 

 
Table 6.15. Results of Tukey post-hoc test for all glove conditions at 4 N target load. ANOVA:  
F(6,14)=593.868, p=.001. 

Glove 
NBR 

6348HS 
NBR 6329 NBR 6311 NRL 

NRL (10% 
filler) 

PVC 

Bare 
Q=57.178  
p=<.001* 

Q=56.512  
p=<.001* 

Q=44.653  
p=<.001* 

Q=18.821  
p=<.001* 

Q=19.087  
p=.001* 

Q=63.391  
p=<.001* 

NBR 
6348HS 

 Q=0.666  
p=.901 

Q=12.525  
p=.093 

Q=38.358  
p=<.001* 

Q=38.091  
p=.001* 

Q=6.213  
p=.008 

NBR 6329   Q=11.859  
p=.182 

Q=37.691  
p=.001* 

Q=37.425  
p=<.001* 

Q=6.878  
p=.003 

NBR 6311    Q=25.833  
p=.021* 

Q=25.566  
p=.001* 

Q=18.737  
p=<.001* 

NRL     Q=0.267 
p=.899 

Q=44.570  
p=<.001* 

NRL (10% 
filler) 

     Q=44.304  
p=.001* 

* denotes statistical significance (p<.05) 
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Table 6.16. Results of Tukey post-hoc test for all glove conditions at 5 N target load. ANOVA: 
F(6,14)=591.329, p=.001. 

Glove 
NBR 

6348HS 
NBR 6329 NBR 6311 NRL NRL (10% filler) PVC 

Bare 
Q=51.918  
p=<.001* 

Q=51.073  
p=<.001* 

Q=37.515  
p=<.001* 

Q=8.99  
p=<.001* 

Q=9.951  
p=<.001* 

Q=58.877 
p=<.001* 

NBR 
6348HS 

 Q=0.845  
p=.582 

Q=14.403  
p=<.001* 

Q=42.926  
p=.001* 

Q=41.961  
p=<.001* 

Q=6.960  
p=.003* 

NBR 6329   Q=13.556  
p=.001* 

Q=42.081  
p=.001* 

Q=41.117  
p=<.001* 

Q=7.805  
p=.001* 

NBR 6311    Q=28.524  
p=<.001* 

Q=27.558 
p=.001* 

Q=21.362 
p=.001* 

NRL     Q=0.966 
p=.900 

Q=49.886  
p=.001* 

NRL (10% 
filler) 

     Q=48.923  
p=<.001* 

* denotes statistical significance (p<.05) 

 

6.4.5.1 Correlation to performance and glove stiffness 

Performance 

Weak correlations are noted between the dexterity performance scores obtained and the CoF at 

each load (Table 6.17). The most pertinent load is likely to be at the lower 1 N grasp force (218), 

which shows no correlation with the combined test (r=.087), but a slightly stronger correlation is 

observed in the assembly test (r=.397). This implies that dexterity performance is not greatly 

influenced by the glove friction.  

Table 6.17. Correlation of friction at each load to the dexterity performance scores.  

 
 Force (N) 

 1 2 3 4 5 

Combined 
r .087 .447 .425 .413 .409 

p .871 .374 .401 .416 .421 

Assembly 
r .397 .423 .402 .392 .391 

p .436 .403 .429 .442 .443 

r= Pearson correlation score. p= statistical significance. 

Stiffness 

The glove stiffness has been compared with the friction coefficients obtained, which are shown in 

Table 6.18. Moderate correlations are shown between the friction and the stiffness of the different 

gloves. However, none of these results show statistical significance. The greatest correlation is shown 

at the 1 N force (r=-.735; p=.096), which is shown in Figure 6.18. The correlations imply that the 
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stiffness affects the frictional properties of the gloves, whereby the stiffer the glove, the lower the 

friction coefficient. 

Table 6.18. Correlation of friction to glove stiffness.  

 
Force (N) 

1 2 3 4 5 

r -.735◊ -.679◊ -.665◊ -.659◊ -.663◊ 

p .096 .138 .150 .155 .151 

r= Pearson correlation score. p= statistical significance. ◊ denotes moderate correlations 

 
Figure 6.18. Correlation of stiffness to the friction coefficient at 1 N (r=-.735). 

 

6.5 Discussion 

6.5.1 Performance and friction 

The results show, on the whole, that dexterity is adversely affected when gloves are donned 

compared to the bare hand. This was also shown with previous studies (63, 70, 75, 96) which 

compare dexterity with a pegboard using NBR or NRL gloves. However, the nature of the glove 

materials used in this study is much more understood than in previous studies, as the constituents 

are known, and the physical parameters have been studied.  

Carré et al. (90) studied the friction of NRL surgical gloves. The authors found that friction 

was reduced when gloves were worn, compared to that of bare skin. Similar findings were produced 

in this study. Furthermore, this study has highlighted that gloves of the same bulk material have 

different frictional properties, and in turn, different dexterity performance scores. NBR 6311 shows 

to have the highest friction of the three NBR gloves, and the lowest performance scores. Although 

NBR 6348HS and 6329 show similar frictional properties, the performance was overall better with the 

NBR 6348HS

NBR 6329
NBR 6311

NRL
NRL (filler)

PVC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070

C
o

F

Stiffness (N/mm)



156 
 

6348 gloves. In addition to adhesion of the gloves to the metal, contact areas could be the reason for 

the differences in frictional performance (189). This is a limitation of studies involving gloves from 

different manufacturing plants, as different formers and pattern imprints may be used. The 

differences are visible in Figure 6.19 which shows the NRL (Figure 6.19a), NBR (Figure 6.19b), and 

PVC (Figure 6.19c) finger patterns. The PVC shows to have no visible pattern on. Thus, in comparison 

to the other gloves used, the PVC glove is ‘smooth’. The NRL shows to have a rougher texture all over 

the glove surface, whereas the NBR shows to have a smooth area which is then textured at the finger 

pad only. This grooved surface may be the cause for the reduction in friction between the textured 

gloves. In the skin, the rough, grooved finger pad will cause a reduced contact area, however 

moisture in the skin will cause capillary adhesion, whereby the finger will have more interaction with 

the metal due to the asperity contact and surface attraction, which has been discussed in Chapter 4. 

At higher loads, the finger ridges are deformable, which will cause an increased contact area through 

rough-rough asperity contact, to help gain friction (219). When gloves are donned, as no moisture is 

present, the capillary adhesion between the glove and the metal is reduced severely, leading to a 

decrease in friction. As the NBR surface appears more textured, there will be less contact of the two 

surfaces.  

 

Figures 6.20a-c. Figure a shows the NRL glove fingertip, b shows NBR 6311 and c shows the PVC. 

 
Positive correlations were noted between the friction of the gloves and the stiffness, a correlation 

also noted in Chapters 4 and 5. The NRL gloves have a lower stiffness, indicating that they are easier 

to deform. Thus, when the greater forces are applied, the more the NRL will deform and increase the 

contact surface area, increasing the friction. As the NBR is more rigid and stiff, there will be less 

deformation and the rough applied pattern will keep the surfaces separated, resulting in lower 
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contact areas and lower asperity contact. Therefore, in the NBR and NRL gloves, the lower stiffness 

allows for deformation of the local asperities, likely inducing local welding and making the static 

friction harder to overcome. On the other hand, in the stiffer PVC, the asperities will sit atop the 

smoother surface and little deformation will occur. Thus, friction is lower in the smoother PVC glove, 

as shown in Figure 6.20. This is similar to the friction between the skin and the gloves discussed in 

Chapters 4 and 5. However this time, the deformability of the glove is increasing friction by 

increasing the contact of asperity junctions, whilst the stronger gloves do not deform, reducing 

friction. In Chapter 5 it was shown that the donning gloves had different frictional behaviours based 

on the stiffness. The higher stiffness exhibited more stick-slip as the finger was run down the glove, 

whereas the less stiff gloves exhibited more movement as the glove stuck to the fingers more. 

However, with the gloves used in this study, different thicknesses are apparent throughout the 

gloves, which may have an effect on the friction due to the differences in bulk material properties. 

 

Figure 6.20. Schematic of the glove-metal asperity contact. 

Due to the translucent nature of both the PVC and NRL, surface roughness details were unobtainable 

as the method of surface roughness used deploys optical microscopy. However the physical glove 

properties appear to be a greater factor than the surface roughness. The PVC is also shown to have 

the poorest performance, with more pins/assembly parts being dropped on average than any other 

condition. This leads to the inference that the frictional properties have led to the differences in 

performance.  

Capillary adhesion 

The moisture in the bare skin is a reason for the differences in performance in the bare hand 

condition. Although this is not shown in the results due to the normalisation, there was some 

variation in the results. The reason for these differences is mostly down to the dexterity of each 
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individual conducting the test. In conjunction with this, however, the friction when grabbing the pins 

is also an important factor to consider. It is important to note all gloving conditions either decreased 

performance or matched the score in all participants. No one person performed better in any gloved 

condition than their no gloves score. An increase in surface contact area is possible due to the 

introduction of moisture in the skin. This can cause the two surfaces to pull together, and friction will 

greatly increase. However, this is applicable to hard but rough surfaces, and not necessarily the case 

when one of the materials is soft (189, 220). A study by Persson (105), shows that when water is 

decreased between elastically deformable solids, the area of contact greatly increases. This effect 

has been demonstrated and discussed in Chapter 4 (see Section 4.5.1). However, this friction was 

dependent on two deformable solid materials, whereas this friction is between the skin and metal 

surface. This effect of the increase in friction is said to be dependent on the Young’s modulus of the 

materials in contact (105, 121). In the skin, the top layer (stratum corneum) will have a varied 

Young’s modulus between participants, due to the differences in components in the skin, and the 

moisture content (221). Where the bare hand test is being conducted, the Young’s modulus of the 

stratum corneum is the most salient factor in whether capillary adhesion will occur to increase 

friction. No water or increased moisture was used in this study, therefore the differences in capillary 

adhesion between the skin and the metal is likely to not be as great an effect as discussed in previous 

chapters. However, it could be argued that this adhesion is vital for precision control when placing 

the pins. When gloves were donned, which contain no moisture, the friction of all gloves decreased 

in comparison to the bare hand, as demonstrated with the sole participant in the friction study. This 

is possibly because the adhesion between moisture, in the stratum corneum, and the metal is 

blocked by the glove. It may be possible that this capillary adhesion could allow for a better grip and 

sensibility regarding the task, allowing for greater precision when placing the pins/parts. 

The role of capillary adhesion in grip has been studied previously, revealing it may only have 

a little effect, if any, on the role of friction. Pailler-mattéi and Zahouani (222) studied the ‘pull off’ 

force of a steel probe on the forearm skin and found the capillary adhesion forces to be around 5 

mN. The small values, which are a small percentage of the force applied in normal tactile exploration, 

are also found throughout other studies (104, 218). Therefore, there is little evidence suggesting that 

the capillary adhesion of the skin is a significant factor in friction in this study. However, it should not 

be ruled out as a factor entirely. It is likely that the frictional differences observed in this study are 

combined a result of the deformability of the gloves as previously discussed, leading to an increase or 

decrease of asperity contact, which may be shaped by capillary adhesion in the skin.  
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6.5.2 Physical properties 

It could be argued in these tests that the measurements conducted when gloves are worn depend on 

the glove friction, rather than dexterity. As, for example, the lower friction in the PVC gloves lead to 

more pins being dropped in the performance tests. However, this study shows this is not likely to be 

the case and is more of a combination of dexterity and friction. As the loads used by the participants 

in the dexterity test will vary, more force could be applied to hold and place the pins/parts. In order 

to assess the correlation between the friction of the gloves and the performance accurately, there 

needs to be a constant force applied with each glove in order to fairly assess these parameters. 

However, the fact that there are correlations between the stiffness of the gloves, with both the 

friction and the performance implies that friction is important. For example, the NRL gloves show 

differences in performance, but similar frictional behaviour. When filler is added to NRL, the gloves 

become less stiff than when no filler is added. However, there are slightly different performance 

scores between the two gloves. Additionally, there are positive correlations noted between both the 

elongation of the gloves and the performance. In the combined test, this correlation is negative. The 

correlation between elongation and the performance in the assembly is stronger, which shows better 

correlation between the score and the elongation. This correlation was also noted between the 

donning time and elongation in Chapter 4, giving further evidence that elongation may provide an 

indication to the performance of examination gloves.  

6.5.3 Effects of gloves on dexterity 

There is little discussion in the literature on how gloves affect dexterity enough to conclude that a 

decrease in performance is detrimental. Proud, Miller, Bilney, et al. (223) studied the use of the 

Purdue pegboard with patients diagnosed with Parkinson’s disease. The study compared the results 

to those who did not have Parkinson’s, and found on average, those with the diagnosis placed 12.4 

fewer pins. In this study, the greatest difference to the bare hand was found to be 10 fewer pins 

placed on average when the PVC glove was worn, indicating a greatly reduced performance. Morris 

(224) and Korniewicz, Garzon, Seltzer, et al. (225) suggest that dexterity is affected by gloves through 

inducing hand fatigue over time. However, little work has been conducted into how this causes 

fatigue, and results in a loss of dexterity. From the review of the work looking at dexterity, it is clear 

that many of these types of tests are short and succinct. For example, this test took the participants 

each 2.5 minutes to do all of the tests, with breaks in between whilst the board was cleared, and 

participants rested. This is the case for many of the tests conducted in the literature, and far fewer 

test conditions are normally used (6, 9, 12). Therefore, it is more likely that the reason for dexterity 

loss is through the gloves restricting lateral movement of the joints between the fingers, as well as 

movement of the thumb both horizontally and laterally, rather than solely a time-dependent issue. 
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Hubner, Goerdt, Mannerow, et al. (226) also show that gloves tend to have a higher failure rate 

(more perforation) between the index finger and the thumb, indicating more stress is put in this 

area. It is likely that this wear is present as the glove is stretched and relaxed more due to the natural 

movement involved in gripping. In this study, participants grabbed parts predominantly with a pinch-

grip, holding pins between the thumb, index, and middle finger as in Figure 6.21. Thus, if the glove is 

restricting the natural movement of this thumb-finger area, the participant may struggle to conduct 

the task when trying to grab the pins. 

 

Figure 6.21. Pinch grip exhibited with pin grabbing and placement amongst the participants. 

It is thought that if the gloves are stiffer, this would be harder to move more naturally, due to the 

resistance of stretching from the glove. The results of this study do provide some evidence for this. 

The PVC gloves scored the lowest on average in both of the tests. This glove was shown to be the 

stiffest of all of the gloves used, whereas the NRL which contained adulterants was the least stiff and 

performed better overall. In addition, the stiffer nitrile glove (NBR 6311), was shown to perform the 

worst out of all the NBR gloves used. In conjunction, correlations were found between the glove 

stiffness and the performance score with both of the tests. 

To highlight the effects these different gloves may have on the restriction of movement a 

small test was produced to assess how hand span may be decreased with donned gloves. Figure 6.22 

shows the hand is placed as wide as possible on a series of grids (1cm × 1cm). Each of the gloves was 

then donned and placed onto the grid to assess any visual reduction in hand span. However, this is a 

rudimentary test which would require a greater assessment with a larger number of gloves, and 

participants with different hand sizes, in order to form a solid conclusion on the hypothesised effects. 
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Nevertheless, it can be seen that when the stiffer PVC glove is donned, the glove restricts adduction 

of the thumb. Thus, when doing tasks quickly, the restriction may have an effect on the psychomotor 

ability due to the small differences in freedom of movement. In addition to this, it can be seen there 

is excess material between the fingers with the PVC, but not with the NRL, highlighting issues with 

the sizing of gloves and further indicating a restriction of movement of the fingers.  

 

Figure 6.22. Left: hand spanned without gloves. Centre: hand spanned with NRL. Right: hand and 
spanned with PVC gloves. 

 
The knocking of the washers in the assembly test strengthens this reasoning. A total of two washers 

were accidentally knocked off the completed assemblies in the bare hand condition. However, when 

gloves were donned, more washers were knocked off. The PVC glove shows a greater number of 

washers being knocked off. The knocking off of the parts could be due to a combination of the 

compression of the hands, the gloves restricting movement, and the overall feel of the gloves. This 

indicates that once the gloves are donned, the movements are less co-ordinated, showing that the 

gloves do decrease dexterity. A greater bank of gloves should be analysed, with known chemical 

compositions, as in this study, in order to fully understand the effects these gloves have on dexterity. 

It was previously postulated by Mylon et al. (8) that the combined portion of the Purdue pegboard 

test is redundant for use in glove assessments. However, this test is becoming a more widely used 

and standardised test for motor skill assessments. Using the board between studies, where the exact 

components and physical characteristics of the gloves are known could prove useful for assessments 

by manufacturers, as this study shows measurable differences.  

Comparison of common gloves 

A common theme noted in the review of literature in Chapter 2 was the frequency of studies 

comparing NRL and NBR gloves. This leads to a underlying theme in the literature of comparing the 

two gloves, where similar or slightly differing results are shown (6, 9, 12). Although this study is 
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similar to the other studies in respect to this comparison, the addition of the chemical knowledge 

and differences between the bulk materials is advantageous for better understanding the effects of 

gloves on performance. As discussed earlier, comparing studies where chemical/material information 

is not ascertainable does not allow for a fair comparison. It would seem that the comparison of NRL 

and NBR gloves has reached its course without the fundamental understanding of why or how 

dexterity is affected. Very little differences exist between the two gloves in terms of performance in 

this area. However the NRL does provide slightly better dexterity than the different grades of NBR. 

Although the NBR does show remarkably similar results. Future work in this area should focus on 

much longer tasks, looking at the induction of hand fatigue proposed by Morris (224) and Korniewicz 

et al. (225) whilst giving great consideration to the physical and frictional properties. Whilst it could 

be argued that examination gloves are used for a short amount of time, therefore studies looking at 

prolonged use would be more pertinent to surgical gloves, examination gloves are worn across many 

fields. In clinical settings, a frequent glove change is encouraged to avoid cross contamination. 

However, in roles such as mechanics, forensics, cleaning, laboratory work etc., gloves will be worn 

much longer without the need for frequent changes.  

6.5.4 Glove size and fit 

There is some mixed messaging regarding how the fit of gloves affects dexterity. Drabeck et al. (99) 

speculates that the thickness of NRL surgical gloves impairs the dexterity of glove users, and the 

dexterity is rather unaffected by the glove size. On the other hand the authors found in another 

study that wearing vinyl gloves did not impair manual dexterity (97). Mylon et al. (70) also showed 

that wearing gloves larger than the perceived best fit diminished dexterity when using the Purdue 

pegboard. Although differences in glove size performance was not assessed in this study, it is clear 

that glove sizing is an inherent issue.  

It was discussed in Chapter 4 how the fit of gloves may not account for the general 

population, which has also been highlighted in this study. Of the 21 participants only four had gloves 

that fit into the HSE guide chart. In Chapters 4 and 5, only four of the 20 participants used in both of 

the donning studies had gloves that fit the participants recommended size. Ooka and Morimoto 

(227) assessed the perception of fit on 325 female dental students. They found the participants had 

‘optimum’ perceived best-fit when the gloves had slightly shorter fingers than the participant. This 

study shows similar findings, with the gloves being shorter than the fingers, which shows conformity 

to the fingers. The less stiff the glove, the better the gloved looked to fit. However, Ooka and 

Morimoto’s (227) findings are only applicable to the less stiff gloves. As discussed around Figures 

6.10-6.13, there are areas where the gloves are visibly shorter than the fingers in the PVC gloves. 
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However, the gloves are all the same gross size (medium), and therefore should have very little 

difference between the sizing and fit. Measurement of the gloves themselves, however, do show 

very slight differences in the sizes of gloves. The most variation is noted at the total length, which is 

likely a result of the difference in the dipping process and/or how far down the glove is beaded. 

More emphasis should be placed on the differences in measurements at the finger length, palm 

span, and finger width. The palm span was shown to differ most in the NBR 6311 and the PVC gloves. 

Although the difference is not great between the two gloves, it would indicate that a perfect fit with 

the NBR 6311 glove would lead to some excess material with the PVC glove. This is likely to arise due 

to a possible variation in former size, rather than the manufacturing process.  

Glove formers and fit 

The glove formers used to manufacture gloves can be purchased by different manufacturers, and 

due to the difference in the glove sizes there is a suggestion that the formers differ in geometry, even 

in the same sizes. One company was found selling two different formers for medical examination 

gloves with sizes extra small, small, and medium. When compared, the formers were found to have 

different dimensions, as shown in Table 6.19 (228). As the total glove length is dependent on the 

manufacturing dipping process, the height is arguably unimportant, as long as the gloves can be 

dipped to similar lengths. However, there are differences highlighted between the formers. As much 

as a 2 cm difference is shown in the medium sized former at the height. The greatest difference 

noted at the palm circumference is in the extra-small gloves (6 mm difference). The wrist 

circumference with the greatest difference is noted in the extra-small and the medium formers (2 

mm difference). 

Table 6.19. Former sizes obtained from one former manufacturer (228).  

 

A question arises as to why these medical glove formers are different geometries for the same sized 

gloves. There is no literature guidance surrounding the shrinkage of films once removed from the 

former, such as if particular gloves shrink to a particular size when removed. As the chlorination 

process, and other treatment processes, harden the surface of the glove, it is highly unlikely that 

there is any significant film shrinkage once the glove is stripped from the former (51). As the gloves 

being made are sized in increments of extra-small, small, medium, large, and extra-large, it is likely 

 Extra-small Small Medium 

Former 1 Former 2 Former 1 Former 2 Former 1 Former 2 

Height (mm) 400 380 400 380 400 380 

Palm circumference (mm) 170 164 177 178 202 202 

Wrist circumference (mm) 151 149 166 167 180 182 
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that that one former size should be used to yield the respective glove size, regardless of the bulk 

material being used. This size variation between formers, that is prevalent throughout the industry, 

causes fitting problems, whereby one user may be a between sizes or have to use different sizes for 

different brands. In an emergency, this causes  complications with the ability to don the gloves (as 

highlighted in Chapters 4 and 5), and with the user performance, such as tactility and dexterity as 

seen in this chapter and with previous studies (70, 72, 99). The sizing of gloves was highlighted as a 

concern in Chapter 3, with 62% of the participants indicating that the size of gloves they routinely 

wear do not properly fit. By virtue of the formers mimicking the hands, the sizes must be based on 

the anthropomorphic sizes of the hands of a general population. However, no information can be 

found on the sizing regarding former manufacturing, and it is difficult to ascertain how these sizes 

have been developed and established worldwide. Given some of the variations in size and how these 

relate to the populations using the work in both this chapter, and in Chapters 4 and 5, it is clear to 

see why participants who responded to the questionnaire in Chapter 3 stated that they believe they 

are ‘between’ the glove sizes available. This was more prevalent in the NBR gloves. Although, more 

users stated they wore NBR, the perception of NBR being ‘between sizes’ could be down to the 

stiffness, the gloves not conforming to the hand, and having a ‘looser’ feel as indicated by Ooka and 

Morimoto (227). As with much of the PPE, it is highly likely that the formers existing today are based 

on the producing gloves fit for a male population. This is a timely issue, with the Royal College of 

Nursing stating the problem of a one-size fits all sizing system is problematic for female nursing staff 

(229). This problem has also been highlighted as more PPE is required, where it may have not been 

use previously, over safety concerns regarding the covid-19 pandemic (177).  

Anthropomorphic data, over time, has shown that there are clear and distinct differences 

between hand sizes between men and women (230). Furthermore, hand sizes have been shown to 

variate throughout different races (231). It is clear that the gloves manufactured today are not the 

‘one size fits all’ that they perhaps were when glove manufacturing became more prevalent. 

Although, it is appreciated how difficult it would be, from a manufacturing point of view, to 

differentiate and create different sizes for different populations. On the other hand, a more specific 

sizing does exist for the use of surgical gloves (99). Data is available that strongly indicates that glove 

sizing requires a lot more research and changes should be made to ensure the safety of users, and to 

not adversely affect performance. If glove sizes cannot be accurately ascertained by glove users, 

there is a potential for diminished performance with regards to dexterous tasks (70, 99). 
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6.6 Conclusions 

Figure 6.23 summarises the findings in this chapter by showing the effects of stiffness on the 

measured performances and ranks the gloves by their effects on dexterity.  

 

Figure 6.23. Summary of chapter findings, showing the effects of the different materials on dexterity. 
NRL with filler offers better dexterity, due to less restricted movement. 

 

The findings of this chapter are: 

• Dexterity of the participants was affected by the examination gloves used in this study, and 

the differences in properties between gloves play an important role in both the friction and 

dexterity of the gloves. The work conducted also highlights that gloves between studies 

cannot be accurately compared, as previous studies looking at dexterity with different gloves 

will have fundamental differences in their physical properties. In this study different grades 

of NBR have different properties, leading to a difference in overall dexterity amongst the 

glove users.  

• The fundamental causes for differences that are apparent in studies of this nature are not 

well understood. This study finds strong correlations between the glove stiffness and the 

performance, which strongly indicates that a stiffer glove (such as the PVC) adversely affects 

performance. This is hypothesised to restrict movement around the fingers, which decreases 

dexterity. The stiffer gloves in this study were shown to reduce the dexterity of the 

participants, whereas the less stiff gloves showed to increase the participants dexterity. 

Further work assessing why, and how, medical gloves affect dexterity is pertinent to the 

understanding of how to overcome issues whereby gloves decreased dexterity. 

Understanding the parameters which may affect the gloves will allow the manufacturers to 

understand and predict how newer glove materials may affect dexterity. 

• Gloves decrease the frictional properties when compared to skin. The frictional properties 

are found to be much lower for the stiffer gloves, due to behaviour of asperity contact. 

Stiffer gloves 

Decreased 
friction 

Restricted 
movement 

Decreased 
dexterity 

Gloves ranked by user 
dexterity 

 

1. NRL (10% filler) 
2. NBR 6348 
3. NBR 6329 
4. NRL 
5. NBR 6311 
6. PVC 



166 
 

However, little correlation was noted between performance and the friction coefficients of 

each glove.  

• The sizing of gloves needs to be reviewed in accordance with the general population. 

Although the gloves in this study were chosen as participants ‘best-fit’ there were clear 

discrepancies in the fit between both participants and the gloves. Issues were also found in 

previous chapters regarding the fit of gloves which further highlights this issue.  
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Chapter Seven: Effects of contamination on glove friction 

Having determined the requirement for the knowledge about the physical and chemical properties of 

the materials, it is clear gloves need testing in the conditions they will be used in (6, 172, 232). New 

industry standard testing can be difficult to implement. However, adapting existing tests to make 

them more replicable of the conditions glove are used in, is easier to execute. Much of the work 

carried out on friction has been previously discussed in Chapter 6. However, in the literature review 

conducted in Chapter 2, it was shown that the reason gloves are donned is neglected from these 

tests (6). That is, to protect the hands from contamination. Therefore, frictional properties may be 

affected by this contamination, which in turn, could have an effect on performance. Only two papers 

were found incorporating contaminants; water (114) and blood (116). This chapter of the thesis 

focuses on that contamination, exploring how gloves may be affected in terms of friction when 

exposed to a variety of substances. The frictional implications will then be discussed in terms of how 

they affect dexterity and sensitivity in a later chapter (Chapter 8).  

7.1 Introduction 

Potentially, gloves are exposed to contaminants every time they are donned, hence the reason for 

using them. Many of these contaminants have been discussed in Chapter 3, where it was discovered 

that bodily fluids make up the majority of contaminant sources. However, the main respondents of 

the questionnaire were from medical and clinical fields, thus the answers regarding bodily fluids are 

to be expected. Blood was shown to be the most common contaminant for medical gloves. However 

that has not been used in this chapter. This was due to reasons regarding quantity and stability over 

the course of the tests. Nevertheless, blood was used in other tests and is discussed later in Chapter 

9.  

Other than blood, the most common fluids in contact were reportedly watery solutions such 

as urine, sweat, water and liquid drugs. Medical disinfectants were also indicated to contaminate 

gloves frequently. Combined, mucus and saliva make up the second (next to blood) most common 

contact contaminant. A major protein constituent of these two fluids is mucin. Mucin is a central 

component of mucus, found in saliva, nasal mucus, and the linings of the respiratory, urinogenital, 

and gastrointestinal tracts (233). Composed of long peptide chains, mucins are of a characteristically 

high molecular mass owing to the abundance of hydrophilic carbohydrate side chains that span off 

the central protein (234). Due to this size, and hydrophilicity of the carbohydrates, charge repulsion 

enables the mucin protein to entangle and form muco-adhesive gels. When the water evaporates 

from the mucin gel, a thin muco-adhesive film is left behind, which can act as a tribo-film (235, 236). 
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Mucin was chosen due to the abundance in the body, making it a likely source of contamination for 

medical gloves (233).  

7.2 Aim and scope 

Analysing the friction present between tools and glove surfaces is key for the assessment of medical 

gloves. Examination gloves need to retain a certain amount of friction for the user to be able to 

precisely hold equipment, but not have too much friction as to make it difficult to manipulate and 

hinder their dexterity. In this chapter, the frictional properties of NRL and NBR examination gloves 

will be investigated. This includes assessing how the frictional properties change in response to 

contamination. The questionnaire results in Chapter 3 revealed that, other than blood, common 

contaminants are solvents, proteins, watery liquids, and powders. Thus, the contaminants used are 

centred around substances with these properties to assess how they affect the frictional properties 

of gloves with different tools used in clinical practice. 

7.3 Materials and Methodology 

7.3.1 Glove Material Selection and characterisation 

Glove selection 

The gloves used in this study were NRL gloves branded ‘Safe Touch’, purchased commercially, and 

carboxylated NBR gloves, which were obtained from Synthomer. Both sets of gloves were powder 

free and chlorinated. Other than the core material (acrylonitrile butadiene and natural latex), the 

chemistry of the glove films was not able to be determined, as detailed information regarding 

manufacturing was not available. Thickness of the gloves was measured at the palm and fingertips 

using a micrometer (Mitutoyo, quickmini ±0.01 mm), and the gloves were found to be of a similar 

thickness (NBR= 0.106 (±0.006) mm; NRL= 0.114 (±0.007) mm). 

Surface roughness 

Surface roughness was measured using the Alicona microscope (InfiniteFocusSL), as in Chapter 5. 

Two samples of each glove were obtained from the fingers (4.0 × 4.0 cm) and two scans (1.5 × 1.5 

cm) were made of each surface, with a 5x objective lens with magnification between -5.47 – 17.11x, 

a lateral resolution of 3.71 µm, and a vertical resolution of 900 nm. Problems occurred with the 

scanning of the NRL glove due to the colour and translucency of the material, a problem which is 

noted in Chapters 4 and 6 with the NRL and vinyl gloves. The instrument could not scan small 

sections of the NRL gloves, leading to small holes in the images produced; thus, a full surface area 

measurement of scanned samples was not obtainable. Roughness was measured using an averaged 

surface roughness (Sa) of a 0.5 × 0.5 cm portion of each scan.  
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 Atomic Force Microscopy 

To assess the topography of the gloves in greater detail, atomic force microscopy (AFM) was used. One 

5 × 5 mm section was cut off of three finger sections of each glove and mounted onto the AFM plate 

(6 samples in total). The fingers of the gloves were used for this study to assess the surface topography, 

as this is where the friction is most pertinent. The gloves were cleaned by the application of nitrogen 

gas being blown onto the surface. This removed loose contaminants that may be present on the 

surface of the material. AFM measurements were performed using a Bruker AFM (800 Multimode). 

Scans were completed using the dual pass method, whereby the scanning cantilever probe passes over 

the surface, taking topographical information and allowing phase images to be taken. Tapping mode 

was used to obtain height, phase, and amplitude measurements at ambient temperature with a dual-

scanning rate of 4 and 12 Hz. In tapping mode, the cantilever oscillates up and down near the sample 

surface via a piezo element. The tip of the cantilever will interact with the surface of the glove film via 

electrostatic forces, Van der Waals bonds and dipole-dipole interaction. This causes the cantilever to 

change in oscillation frequency the closer the tip is drawn to the sample (237). Thus, the image 

produced is provided by the force of the interactions with the sample surface. Three different 2 × 2 

µm areas of each glove sample were analysed. The inside of both of the gloves were also analysed for 

any similarities to the outer. As the gloves are affixed with a low-tack adhesive to the AFM instrument, 

the inner and outer surfaces are from different locations of the glove, and not the same section flipped 

over, as this may have incurred some contamination. Each area analysed was further zoomed in and 

analysed at 100 nm for further topographical information. Sample data and roughness measurements 

were processed using Gwyddion imaging software. 

 

7.3.2 Contaminant selection and characterisation 

Six contaminants were selected for this study, based on responses regarding common contaminants 

in Chapter 3. Whilst most of the contaminants suggested originate from the body, there are some 

which were shown to be from different origins (e.g. solvents, cleaning, oils). The contaminants 

selected here were chosen based on their likeness to bodily fluids, availability, ease of storage and 

safety of disposal. In addition to this, contaminants were selected based on their differences in 

properties, to allow assessment of how glove friction may be affected by the differences in behaviour 

and interaction. The fluids selected are based across two major professions: forensic and clinical. 

However some of these contaminants can be applied to multiple professions where gloves are used. 

A mixture of the individual contaminants was also included. This was to mimic conditions 

encountered when in gloves are in use, whereby contaminants may mix together, and to understand 
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how mixtures would affect the tribology of gloves (e.g. different affinity of components for the 

gloves). The contaminants are shown in Table 7.1.  

Table 7.1. Contaminants selected for friction assessment.  

Contaminant Constituent Appearance Selection rational 

Alcohol 

Ethanol ≥99.8% 
absolute with 2% 

chlorhexidine 
disinfectant 

Clear, watery liquid 

Comes into contact with the 
gloves when cleaning (such as 
cleaning skin) and sterilising 

equipment (238) 

Mucin 

Porcine gastric 
mucin protein 
(PGM, Type II, 

unpurified). 
[10 mg/ml] solution 
made with DI water 

Globular liquid 
Colloidal proteins 

suspended in 
solution 

Globular protein, which is the 
major component of mucus, saliva 

and found lining organs in the 
body. Mucus/saliva was said to be 
a common-contact contaminant in 
Chapter 3. The solutions display a 

non-Newtonian behaviour and 
viscosity reduces in response to 

shear rate increase (235) 

Oil Triglyceride fat 
Viscous, greasy 

liquid 

Constituent of fats, which can be 
found in the body. Questionnaire 
showed contaminants of steroidal 

oil suspensions is known to 
contaminate gloves when 

discussed in Chapter 3. 

Powder 

Magnesium Silicate 
(talc) 

(Johnson and 
Johnson) 

White, fine powder 

Powder residues are common 
from tablet handling in the 

medical field and are frequently 
encountered in the forensic sector 

Water DI water Clear liquid 
Commonly many contaminants 

from the body are watery in 
nature (e.g. urine). 

Mixture 

5ml Ethanol, Mucin 
5ml, Vegetable oil 
5ml, Baby Powder 

0.5g, and 25ml 
water 

Colloidal liquid, 
mucin suspended. 
Oil and powder on 

liquid surface 

A mixture of the individual 
contaminants is included to assess 

differences in glove behaviour. 

 

Viscosity 

To measure the viscosity (η), 10 ml of each solution was measured with an AND vibro-viscometer 

(SV-1A, ±0.01 mPa s.). Each solution was measured three times to obtain an average. Solutions were 

shaken for 2 minutes before filling the sample well to disperse any colloidal suspensions and induce 

homogeneity. Samples were measured at room temperature (23.9-24.9°C), with the exception of 

mucin, which was heated to physiological temperature. As this is the only fluid being used which 

originates from a body, it was thought a more realistic view of the effects of the protein interaction 

was to heat it to physiological temperature (36-37°C). 
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Contact angles  

Contact angles were measured using the sessile drop method used in Chapter 4 and 5 (see Section 

4.3.1). Samples were measured 5 times with the solutions at room temperature (24-27°C), with the 

exception of mucin which was heated to 37°C with a water bath. In Chapter 4, it was shown that the 

contact angle was not affected by the strain of the material. Thus, the gloves in this chapter were 

studied in an unstrained condition using the stretching device shown in Section 4.3.1 (Figure 4.5). 

Contact angles were determined to assess the initial interaction with the gloves and assess the 

wettability of the different surfaces. 

7.3.3 Tool selection 

The tools and patterns used in this study are shown in Table 7.2. Tools were provided by The 

University of Sheffield Dental School and were selected based on the difference in tool patterns on 

commonly used equipment. Measurements of the manufactured patterns were made using a scaled 

compound microscope (Kern, KEOBS-101) and a ruler. The steel strip (tool 7) is the same strip used in 

Chapter 6, where it was used to compare frictional performance to dexterity with pegboard pins. 

Where the roughness (Ra) is reported, the measurement was recorded using a surface profilometer 

(Mitutoyo, SJ400) over a 2.5 (±0.001) cm section with a measuring speed of 1 mm/s and a force of 0.75 

mN. This was repeated three times along the surface.   
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Table 7.2. Tools used for analysis of frictional properties. Wavelength refers to the distance between 
repeating parts of the pattern.  

Tool Material Image 
Pattern 
shape 

 

Pattern 
depth 
(mm) 

Wave-
length 
(mm) 

1 Metal 

 

 0.02 1.0 

2 Metal 
  

 0.08 2.8 

3 Ceramic 
  Smooth 

Ra = 0.08 µm 

4 Metal 

 

 
0.03 0.02 

5 Metal 
 

 

0.04 1.0 

6 Plastic 
 

 

0.05 3.0 

Smooth Metal   Smooth 
Ra = 0.11 µm 

 

7.3.4 Friction methodology 

The methodology for the friction analysis follows the same as described out in the previous chapters 

but follows more closely to the friction tests designed in Chapter 6 (see Section 6.3.5). The tools were 

alternately fixed to the AMTI force plate and secured with tape to ensure there was no relative 

movement, as in Figure 7.1. Further tape was placed over the end of the tools to further secure the 

tools to the plate and cover the sharp edges. The angle between the finger and the surface was kept 

at approximately 40° in order to measure just the gloved finger pad friction. After holding the finger 

in place on the tools for 2-3 seconds, the finger pad was dragged along the plate to cause a sliding 

action (at around 0.6 mm/s). As in Chapter 6, only static friction was used for this study, as this is 

friction most relevant to holding tools of this nature (114, 116). Gloves were donned on the right 

hand of the sole participant (male, aged 28), and the tools/force plate were cleaned with 

acetone/water and dried before repeating with another contaminant. The gloves were also changed 
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between contaminants to avoid cross contamination. The friction tests were carried out with both 

gloves in the dry condition, and with gloves exposed to each of the six contaminants (14 tests in 

total).  

 

 Figure 7.1. Tool 2 affixed to the AMTI force plate. 

 Load selection 

Force selection was chosen based on the loads used in Chapter 6 for consistency. These loads were 

selected to replicate grip forces based on literature, as discussed in Chapter 6. The target loads 

selected in this study are 1, 2, 3, 4 and 5 N. A range of loads allows for the understanding of how the 

contaminants are changing friction with different grip force, as well as how the contaminants may 

change in behaviour over the load range. Tests were repeated three times at each load to obtain an 

average.  

 

7.3.5 Contaminant application 

Fluid contaminants were applied to the glove by dipping the gloved index finger into the fluid 

contaminants. The solution covered the finger up to the proximal-intermediate interphalangeal joint 

(around 5 cm up the finger, Figure 7.2) and was held for 10 seconds. This was to ensure coverage of 

the finger pad and allow interaction between the fluid and the glove film. The finger was removed, 

and excess fluid was shaken off of the finger before placing onto the tool. 

 

 

Direction of finger travel 
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Figure 7.2. Location of contaminant on finger (shown in green) to the interphalangeal joint of the 
index finger. 

 

All contaminants were tested at room temperature (22-25°C,) with the exception of mucin, which 

was heated to 37 (±1.5) °C via a water bath to achieve physiological temperature, as previously 

discussed. When the test was being conducted, the temperature of the mucin was monitored using 

an infrared thermometer (Raytek, RSCMTFSU ±0.5°C) from removal of the water bath to application 

of the tool. It was found the mucin temperature dropped 3-5°C to around (32-33°C). Initially, the 

mucin was going to be heated to 40-42°C in order to account for this drop in temperature. However, 

proteins are intricate, changing their shape and ultimately their behaviour depending on the 

temperature (233, 234). Changing the temperature higher could have caused some denaturation to 

the proteins, changing their interaction with the gloves, and lead to erroneous conclusions of their 

effects. Therefore, the testing was continued by initially heating the mucin to 37°C. To apply the 

powder, the finger pad was place in the powder, patted, and then rolled around to ensure coverage, 

as shown in Figure 7.3. 

 

 

Figure 7.3. Powder application to the finger pad. 

 

Contaminant mass and film thickness 

To determine the amount of contaminant on each glove, the gloves were weighed using an analytical 

balance (Ohaus, PR124 ±0.0001 g), before and after application of contaminants. This test was 

conducted as a separate study to determine the differences in contaminant deposition onto the 

Proximal-intermediate interphalangeal joint  

Contaminant  

Radius 

(r)  

Length of contamination  
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gloves and followed the same application procedure described. This was conducted three times with 

each contaminant to obtain an average.  

The thickness of the deposited contaminants has been calculated to further highlight 

differences in the liquid contaminants surrounding the gloves. Whilst many instrumental methods 

exist to assess film formation thickness, the precision of these instruments are used to measure 

extremely thin films deposited onto the surfaces using controlled synthesis of materials (239, 240). 

Given the procedure used to deposit the contaminants, and the evaporation rate of the 

contaminants (such as alcohol), it was thought that instrumental analysis was not applicable. Thus, 

analysis has been conducted using an estimated film thickness. The estimated thickness (t) of each 

film was calculated using the density (ρ) and the mass (m) transfer of the contaminants to the 

calculated surface area (a) of the glove (239, 241). Estimated film thickness was calculated using 

Equation 7.1. 

𝑡 =
𝑚

𝑎 ×  𝜌
 

Equation 7.1 

Density (ρ) was calculated by pipetting (Scorex, Acura ±5 µL) 1 ml of each sample to a pre-weighed 

Eppendorf tube. The density was then calculated using Equation 7.2. 

 𝜌 =
𝑚

𝑉
 

Equation 7.2  

where m is mass of solution and V is volume. The area with which the finger was contaminated (A) 

was calculated using the formula for a flat ended cylinder (with only the area of one flat end 

calculated), by using Equation 7.3. 

𝐴 = (2𝜋 𝑟 𝑙) + (𝜋 𝑟2 ) 

Equation 7.3  

where r = radius and l = length, depicted in Figure 7.3. It is appreciated this method of determining 

film thickness has some shortcomings, as it assumes that the shape, and that the film is even and 

uniform along the entire surface, and the same volume of liquid is on the finger in every friction test. 

However, together with the calculations of how much of the contaminant is deposited onto the 

finger, these calculations highlight the differences in interaction between the glove films. 
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7.3.6 FTIR 

FTIR was conducted on different regions of the gloves following the discovery of an adsorbed 

substance on the surface by the AFM. FTIR analysis was conducted using a Brucker ATR-FTIR 

instrument. Each sample was scanned 26 times in the 550-4000 cm-1 region with a resolution of 4 cm-

1. FTIR was conducted on both of the gloves in 3 separate regions. 

7.3.7 Data and statistical analysis 

Data was processed as in previous chapters, calculating the resultant horizontal force to account to 

for misalignment when sliding the finger down the tools (Equation 4.2) and then the friction 

coefficients calculated via Equation 4.3. The data was processed to a power fit law, also described in 

Chapter 4 (Equation 4.4). Data was analysed using a two-tailed paired t-test to test for statistical 

significance. As the aim of this study is to evaluate whether the glove friction is affected by each 

contaminant, paired (two-tailed) t-tests were performed to compare the frictional of differences 

between the contaminant and the dry gloves. In conjunction with this, NBR and NRL gloves were also 

checked for differences, in order to establish any behavioural variations between the two gloves 

when contaminated. The alpha value for determining whether a result is statistically significant is set 

at α=0.05. Therefore, a probability of difference value (p) should be less than 0.05 to be defined as 

statistically significant.  

 

7.4 Results 

7.4.1 Surface roughness and AFM of gloves 

Three images are shown for each AFM sample, which represent the different types of scanning. In the 

height images, the brighter areas denote higher sections of the sample. In amplitude error, the brighter 

areas indicate a greater amplitude error, and in the phase mode, a brighter area indicates less viscous 

portions of the sample.  

Figure 7.4 (a-c) shows a selection of the height, amplitude error and phase measurements of 

the outer surface of the NBR gloves and NRL is shown in Figure 7.5 (a-c). The results of the topography 

(height) show smaller clusters of the NBR compounds, whereas NRL shows larger clusters with bigger 

gaps between the groups of latex rubber. The gaps are possibly due to the differences in the patterns 

of the gloves, created during the manufacturing process. The NBR has a fixed random bump pattern 

manufactured at the fingertip, similar to the NBR gloves described in Chapter 6. The NRL gloves have 

a textured surface all the way around the glove, which is not too dissimilar from the NBR, also noted 

in Chapter 6. 
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Figure 7.4 (a-c). AFM images of NBR glove showing height (a), amplitude error (b), and phase (c) 
images. 

 

 

Figure 7.5 (a-c). AFM images of NRL glove showing height (a), amplitude error (b), and phase (c) 
images. 

 

a) b) 

c) 

a) b) 

c) 
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Adsorption 

Where the interaction between the cantilever and the surface of the sample changes, there will be a 

change in the resonance frequency of the AFM instrument. For forces where more attraction is 

present, the frequency will be lower. For the forces where more repulsion is present, the frequency 

will be higher. Thus, the phase image allows for visualisation of the changes in properties of the 

material. Due to the nature of the attraction-repulsion forces of the AFM cantilever, any material 

property will show as a difference in the image (dissipation, adsorption, viscoelasticity, stiffness, 

adhesion) (242). Therefore, the phase images must be read with some caution (243). Nevertheless, a 

noticeable feature on both the NBR (Figure 7.6) and NRL (Figure 7.7) AFM scans was the presence of 

a possible adsorbed layer on the sample surface. Where the topographical image (height) shows a 

lighter section (higher) and the phase image shows a darker area (lower) this indicates the presence 

of liquid or gas adsorbed onto the material (244). In the NBR particularly, there are areas where 

‘smearing’ is present (as is visible in Figure 7.6 b). Therefore, it was thought this was a result of 

contamination. As stated in the method, three samples of each glove were analysed, and this 

smearing and adsorption was noted in all three. Gloves were cleaned with nitrogen gas to remove 

any contaminants prior to analysis; however, this does not remove the presence of contaminants 

from handling, although gloves were worn. Figures 7.8 (NBR) and 7.9 (NRL) show the inner surface of 

the gloves. These also show the difference in phases seen on the outer gloves. In the NBR, this 

possible adsorption appears more in localised areas, rather than smeared as in Figure 7.6. The NRL, 

however, shows some similarities to the outer surface, however there are smaller, more frequent 

lighter areas (Figure 7.9). 

 

 

 

 

 

 

 

 

 

 



179 
 

 

Figure 7.6. Height (a) and phase (b) images of the outer side of the NBR glove section showing the 
possible adsorption onto surface. Area of smearing has been highlighted. 

 

 

 

 

 

 

Figure 7.7. Height (a) and phase (b) images of the outer side of the NRL glove section showing the 
possible adsorption onto surface.  

 

 
 
 
 
 
 
 
 
 

Figure 7.8. Height (a) and phase (b) images of the inner side of the NBR glove section showing the 
possible adsorption onto surface.  

 
 
 
 
 
 
 
 
 

 

Figure 7.9. Height (a) and phase (b) images of the inner side of the NRL glove section showing the 
possible adsorption onto surface.  

a) b) 

a) b) 

a) b) 

a) b) 
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Adsorption identification 

  Visual analysis  

Upon visual examination of the gloves, it can be seen that the gloves are not homogenous in colour. 

In essence, the gloves are not one solid shade of colour and show regions which are darker/lighter. In 

some cases, the differences are visible as dried drips. Figure 7.10 shows areas (around 25 cm2) of the 

gloves where there are differences in light transparency when held up against a light source. The 

images have been saturated and overexposed in order to highlight these differences (NBR: +40 

brightness, -40 contrast and +200% saturation; NRL: +30 brightness, -20 contrast and +400% 

saturation). Images are shown which are similar to the AFM phase mode in terms of contrast, clearly 

indicating the presence of different adsorbed substances onto the surface.  

 

 

 

 

 

 

 

 

Figure 7.10. Difference in NBR and NRL films when exposed to light. a) NBR, colour correction +40 
brightness, -40 contrast and +200% saturation and b) NRL, +30 brightness, -20 contrast and +400% 

saturation. 
 

  FTIR 

In an attempt to identify the suspected adsorbed substance, FTIR was conducted on the gloves in 3 

separate regions. The FTIR analysis was targeted on different places of the glove, ensuring the visible 

‘drips’ noted were captured in the scans. No measurable variations are seen in the spectra (Figure 

7.11).  

a) b) 
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Figure 7.11. FTIR of NRL and NBR outer layers assessing for differences between scans. 

Localised roughness 

The AFM shows clusters of the core materials, with deep grooves between them. These grooves on 

the NBR are less deep, with an average depth of 60.71 (±13.43) nm, whereas NRL has grooves with 

depths of 151.88 (±4.78) nm. The clusters of materials were also scanned to assess the localised 

roughness. Figure 7.12 shows a typical roughness of the NBR sample (Ra=6.89 (±0.13) nm) and Figure 

7.13 shows a profile of the NRL roughness (Ra=10.72 (±1.19) nm). It is important to note, this is only 

a 2 µm section shown. Therefore, the roughness differences shown are only on a small scale. Of the 

three scans taken, roughness measurements were taken on the 2 µm samples only, as these gave the 

clearest images for measurements. 

 

 

Figure 7.12. AFM roughness profile of NBR glove section 
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a) Sa 1.83 µm 

 

 

Figure 7.13. AFM roughness profile NRL glove section. 

 

Surface roughness 

The surface roughness scans using the 3D measurement instrument shows the average film 

roughness on a greater scale. Both of the gloves are shown to have similar surface roughness. NBR 

has a Sa of 1.83 (±0.27) µm, whereas NRL is slightly rougher with a Sa of 1.90 (±0.25) µm. Samples of 

the scans are shown in Figure 7.14. Although the gloves show similar Sa, the patterns on the glove 

are visually different. The NRL has a more concave nature of grooves, whereas the NBR appears more 

textured.  

 

Figure 7.14. Surface roughness (Sa) of NRL (a) and NBR (b) gloves. 
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7.4.2 Contaminant characterisation 

The viscosities of the contaminants can be found in Table 7.3. The lower end of the viscosity ranges 

from very low at 0.90 mPa-s with water to 7.25 mPa-s with the mixture solution. The highest noted 

viscosity is the oil at 70.10 mPa-s. Also, in Table 7.3 is the estimated film thickness. The NBR material 

is most likely to allow a thicker film to develop (with the exception of the alcohol, NBR t=2.40 µm; 

NRL t= 2.59 µm). This is also indicated from the results of the mass transfer used to calculate the film 

thickness, which are shown in Figure 7.15. In the mass transfer, it is shown that more substance is 

deposited on the NBR material, indicating higher affinity for the material over the NRL. All data was 

found to be within a normal distribution via the Shapiro-Wilk test for normality (192). The results 

show that the oil gives the greatest mass transfer, and the greatest film thickness (NBR mass= 0.14 

(±0.006) g, t=5.74 µm; NRL mass=0.12 g (±0.005), t=5.00 µm). With exception of the powder, the 

alcohol shows the lowest transfer of substance for both NBR and NRL gloves. This also leads to the 

lowest estimated film thickness.  

Table 7.3. Viscosity (η), density (ρ), and estimated film thickness (t) of fluid contaminants. 

Contaminant 
η 

(mPa-s) 
ρ 

(kg/M3) 

t 
(µm) 

NBR NRL 

Alcohol 
1.02 

(±0.01) 
814.69 
(±0.05) 

2.40 2.59 

Mucin 
3.13 

(±0.05) 
1085.25 
(±1.09) 

4.40 3.64 

Oil 
70.10 

(±0.01) 
929.95 
(±0.06) 

5.74 5.00 

Water 
0.90 

(±0.01) 
984.32 
(±0.06) 

2.84 2.76 

Mixture 
7.25 

(±0.05) 
1007.91 
(±0.05) 

4.82 3.43 

± denotes standard deviation 
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Figure 7.15. Weight of contaminants deposited onto the gloves. Error bars indicate standard 
deviation. 

 

Contact angle 

Figure 7.16 shows the results of the contact angles of the fluid contaminants with both glove films. 

With the exception of alcohol, all contaminants show a high surface wetting with NBR (low contact 

angle) and a low surface wetting (high contact angle) with NRL. The alcohol, however, shows to have 

a similar, low contact angle and high surface wetting of both samples (NBR= 21.67°, ±3.06; NRL= 

22.33°, ±5.13). These were shown to be statistically similar following a paired two tailed t-test (t(2)=-

0.193, p=.886). 

 
Figure 7.16. Contact angles of contaminants on the NBR and NRL material. Error bars indicate 

standard deviation 
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7.4.3 Friction 

Over the load range it was discovered there was little difference between the coefficient of friction 

(CoF) at the minimum and maximum normal force applied for many of the contaminants, most 

notably in the NBR gloves. For this reason, and for simplicity in data presentation, only the CoFs at 

the minimum (~1 N) and maximum (~5 N) normal forces are displayed. CoFs at each load for each 

tool and contaminant can be found in the appendix, Section D.  

NBR 

In all of the tests conducted, the friction was found to increase with an increasing normal force. The 

CoF at minimum and maximum normal force for all of the tools and contaminants with NBR are 

shown in Figure 7.17. The t-test results comparing contaminant to the dry CoF are shown in Table 

7.4. With the exception of tools 5 and 7, there is little change exhibited between the dry condition 

with some of the contaminants. However, there is a noticeable increase in CoF when compared to 

the contaminated friction. Statistical significance is shown between the dry condition and all other 

conditions in tools 5, 6, and 7 (p<.05). In tools 1-5 the water produces the lowest CoF, with the 

lowest being observed in tool 5 at the maximum normal force (µ= 0.19 ± 0.03), however there is little 

overall trend in which contaminant produces the greatest friction. Tools 1-4 show a more clustered 

variation in the results between the contaminants, indicating little difference in friction behaviour 

with notable exceptions (such as the mucin in tool 1), however there are many significant differences 

seen from the dry condition (p<.05). There is no contaminant which shows consistently significant 

differences from the dry condition. However, the greatest differences between the dry gloves and 

the contaminants are shown in tools 5 and 7, where contaminants are shown to greatly decrease the 

frictional properties of the gloves (p<.05). This is also observable in tools 4 and 6, but to a lesser 

extent. In general, the CoFs exhibit slight changes over the increasing loads, however these are not 

greatly different in many of the cases.  
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Figure 7.17. CoFs at the minimum (min) and maximum (max) normal forces applied with the NBR gloves in dry and contaminated conditions with each tool. Error 
bars denote standard error in the obtained CoFs. 
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Table 7.4. Results of t-tests comparing CoFs of contaminants to the dry NBR glove at the minimum (~1 N) and maximum (~5 N) normal forces.  

Contaminant 
Normal 
Force 

Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 

Alcohol 
min 

t(2)=6.288 
p=.002* 

t(2)=-1.172 
p=.153 

t(2)=-2.345 
p=.039* 

t(2)=-7.620 
p=.001* 

t(2)=-21.357 
p=<.001* 

t(2)=-19.451 
p=<.001* 

t(2)=20.667 
p=<.001* 

max 
t(2)=-1.546 

p=.099 
t(2)=-8.255 

p=.001* 
t(2)=8.877 

p=.023* 
t(2)=1.228 

p=.143 
t(2)=35.554 

p=<.001* 
t(2)=-14.569 

p=<.001* 
t(2)=23.305 

p=<.001* 

Mucin 
min 

t(2)=-48.932 
p=<.001* 

t(2)=-1.665 
p=.086 

t(2)=1.600 
p=.092 

t(2)=24.419 
p=<.001* 

t(2)=26.685 
p=<.001* 

t(2)=-3.089 
p=<.018* 

t(2)=11.895 
p=<.001* 

max 
t(2)=-64.383 

p=<.001* 
t(2)=-0.930 

p=.203 
t(2)=-1.380 

p=.120 
t(2)=4.274 

p=.006* 
t(2)=36.518 

p=<.001* 
t(2)=-2.345 
p=<.039* 

t(2)=11.771 
p=<.001* 

Oil 
min 

t(2)=-5.265 
p=.003* 

t(2)=-2.334 
p=.040* 

t(2)=3.302 
p=.015* 

t(2)=9.67 
p=<.001* 

t(2)=16.406 
p=<.001* 

t(2)=-6.513 
p=<.001* 

t(2)=25.134 
p=<.001* 

max 
t(2)=-26.169 

p=<.001* 
t(2)=26.144 

p=<.001* 
t(2)=1.439 
p=<.001* 

t(2)=1.094 
p=.168 

t(2)=22.458 
p=<.001* 

t(2)=-13.795 
p=<.001* 

t(2)=14.983 
p=<.001* 

Powder 
min 

t(2)=-2.604 
p=.030* 

t(2)=1.550 
p=.098 

t(2)=3.491 
p=.013* 

t(2)=5.100 
p=<.001* 

t(2)=11.930 
p=<.001* 

t(2)=17.413 
p=<.001* 

t(2)=33.788 
p=<.001* 

max 
t(2)=0.751 

p=.247 
t(2)=19.922 

p=<.001* 
t(2)=31.616 

p=<.001* 
t(2)=3.715 
p=<.001* 

t(2)=29.297 
p=<.001* 

t(2)=8.317 
p=<.001* 

t(2)=27.290 
p=<.001* 

Water 
min 

t(2)=0.899 
p=.210 

t(2)=2.787 
p=.025* 

t(2)=11.284 
p=<.001* 

t(2)=15.145 
p=<.001* 

t(2)=27.693 
p=<.001* 

t(2)=3.030 
p=<.019* 

t(2)=33.788 
p=<.001* 

max 
t(2)=11.224 

p=<.001* 
t(2)=1.342 

p=.125 
t(2)=15.415 

p=<.001* 
t(2)=4.025 

p=.008* 
t(2)=72.825 

p=<.001* 
t(2)=8.317 
p=<.002* 

t(2)=20.238 
p=<.001* 

Mixture 
min 

t(2)=-2.632 
p=.029* 

t(2)=-1.558 
p=.097 

t(2)=10.349 
p=<.001* 

t(2)=11.791 
p=<.001* 

t(2)=21.584 
p=<.001* 

t(2)=17.193 
p=<.001* 

t(2)=21.220 
p=<.001* 

max 
t(2)=-9.898 
p=<.001* 

t(2)=-7.341 
p=.001* 

t(2)=10.276 
p=<.001* 

t(2)=3.360 
p=.014* 

t(2)=38.824 
p=<.001* 

t(2)=-4.825 
p=<.004* 

t(2)=25.357 
p=<.001* 

*denotes statistical significance p<.05 
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NRL 

In all cases, with all contaminants and tools, the friction force increased with an increase in load with 

both gloves. The CoFs at the minimum and maximum normal force applied for all of the tools with NRL 

are shown in Figure 7.18. With the exception of tool 6, the dry condition has a greater CoF than when 

contaminants are added. Large variations in CoFs are observed with the dry conditions over the load 

range. Tool 1 is the only tool were the CoF increases with the increasing load, whereas the CoF 

decreases over the load range with the other tools. When contaminants are present, mucin induces 

more friction than the other contaminants, with higher friction coefficients observed for tools 2, 4, 5 

and 6. Water is also observed to have higher friction than the other contaminants in tool 1 and is 

highest in tool 7 (µ at minimum normal force= 1.28 ±0.03; µ at maximum normal force= 1.31 ±0.03). 

Water and mucin exhibit similar CoFs over the loads with tool 3, and both produce the highest friction 

coefficients. Tools 3, 4 and 5 show small variations for the obtained CoFs, with similar ranges across 

the contaminants (µ=0.46-0.18). The CoFs however, do show slight changes in behaviour, such as 

water and mucin showing a decrease in CoF between minimum and maximum normal forces with tool 

3, but increasing friction in tool 4 over the load range. In all of the tools used in this study, statistically 

significant differences are exhibited between each contaminant and the dry glove (p<.001, Table 7.5). 

Only one contaminant was found to be statistically similar to the dry condition is the water in Tool 6 at 

both the maximum (dry µ=0.97 ±0.02; water µ=0.99 ±0.02) and minimum (dry µ=1.03 ±0.02; water 

µ=0.97 ±0.05) normal forces. Mucin also shows similarities to the dry condition in tool 6 at the 

minimum force (mucin µ=1.10 ±0.06; t(2)=-0.840, p=.224). Although no clear trends are observed, 

there is a pattern of oil producing the lowest CoFs for each of the tools, and the mucin contaminant is 

generally of greater friction in 5 of the 7 pattern textures.  
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Figure 7.18. CoFs at the minimum (min) and maximum (max) normal forces applied with the NRL gloves in dry and contaminated conditions with each tool. Error 
bars denote standard error in the obtained CoFs. 
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Table 7.5. Results of t-tests comparing CoFs of contaminants to the dry NRL glove at the minimum (~1 N) and maximum (~5 N) normal forces. 

Contaminant Normal Force Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 

Alcohol 
Min 

t(2)=72.385 
p=<.001* 

t(2)=17.959 
p=<.001* 

t(2)=149.484 
p=<.001* 

t(2)=31.998 
p=<.001* 

t(2)=193.131 
p=<.001* 

t(2)=9.203 
p=<.001* 

t(2)=39.299 
p=<.001* 

Max 
t(2)=62.638 

p=<.001* 
t(2)=20.115 

p=<.001* 
t(2)=20.905 

p=<.001* 
t(2)=63.515 

p=<.001* 
t(2)=30.516 

p=<.001* 
t(2)=8.546 

p=.001* 
t(2)=70.241 

p=<.001* 

Mucin 
Min 

t(2)=27.899 
p=<.001* 

t(2)=16.961 
p=<.001* 

t(2)=28.314 
p=<.001* 

t(2)=32.050 
p=<.001* 

t(2)=69.464 
p=<.001* 

t(2)=-0.840 
p=.224 

t(2)=39.768 
p=<.001* 

Max 
t(2)=35.961 

p=<.001* 
t(2)=17.488 

p=<.001* 
t(2)=19.496 

p=<.001* 
t(2)=61.744 

p=<.001* 
t(2)=35.482 

p=<.001* 
t(2)=-4.963 

p=.004* 
t(2)=33.903 

p=<.001* 

Oil 
Min 

t(2)=76.008 
p=<.001* 

t(2)=27.445 
p=<.001* 

t(2)=170.868 
p=<.001* 

t(2)=35.157 
p=<.001* 

t(2)=188.489 
p=<.001* 

t(2)=9.005 
p=<.001* 

t(2)=87.840 
p=<.001* 

Max 
t(2)=92.196 

p=<.001* 
t(2)=35.309 

p=<.001* 
t(2)=20.495 

p=<.001* 
t(2)=45.253 

p=<.001* 
t(2)=34.512 

p=<.001* 
t(2)=74.220 

p=<.001* 
t(2)=103.418 

p=<.001* 

Powder 
Min 

t(2)=45.321 
p=<.001* 

t(2)=22.987 
p=<.001* 

t(2)=64.026 
p=<.001* 

t(2)=29.602 
p=<.001* 

t(2)=177.797 
p=<.001* 

t(2)=22.357 
p=<.001* 

t(2)=71.882 
p=<.001* 

Max 
t(2)=77.302 

p=<.001* 
t(2)=13.482 

p=<.001* 
t(2)=20.276 

p=<.001* 
t(2)=34.720 

p=<.001* 
t(2)=27.804 

p=<.001* 
t(2)=105.939 

p=<.001* 
t(2)=334.923 

p=<.001* 

Water 
Min 

t(2)=17.081 
p=<.001* 

t(2)=17.313 
p=<.001* 

t(2)=58.469 
p=<.001* 

t(2)=27.587 
p=<.001* 

t(2)=48.554 
p=<.001* 

t(2)=1.035 
p=.180 

t(2)=28.949 
p=<.001* 

Max 
t(2)=53.224 

p=<.001* 
t(2)=24.225 

p=<.001* 
t(2)=20.003 

p=<.001* 
t(2)=56.984 

p=<.001* 
t(2)=22.365 

p=<.001* 
t(2)=-1.272 

p=.136 
t(2)=11.282 

p=<.001* 

Mixture 
Min 

t(2)=29.370 
p=<.001* 

t(2)=24.807 
p=<.001* 

t(2)=28.314 
p=<.001* 

t(2)=32.050 
p=<.001* 

t(2)=69.464 
p=<.001* 

t(2)=24.257 
p=<.001* 

t(2)=82.262 
p=<.001* 

Max 
t(2)=96.434 

p=<.001* 
t(2)=32.020 

p=<.001* 
t(2)=19.496 

p=<.001* 
t(2)=61.744 

p=<.001* 
t(2)=35.482 

p=<.001* 
t(2)=97.908 

p=<.001* 
t(2)=6.647 
p=<.001* 

*denotes statistical significance p<.05 
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Material comparison 

Figure 7.19 shows the CoF at minimum and maximum normal force for both NRL and NBR gloves with 

contaminants (combined graphs of the above Figure 7.17 and 7.18). As can be see, there is little 

similarity between the CoFs of the contaminants. In tool 1, the powder contaminant does produce 

similar CoFs between the NBR (µ at minimum normal force= 0.37 ±0.04, µ at maximum normal force= 

0.27 ±0.01) and the NRL (µ at minimum normal force= 0.39 ±0.01, µ at maximum normal force= 0.29 

±0.01). The lowest overall CoF is observed with NRL and oil on the smooth steel (µ= 0.09 ±0.02). A 

comparison of the averaged CoFs is presented in Table 7.6 along with statistical significance between 

the two gloves highlighted via paired t-tests. There are no observed statistically significant differences 

in tool 1 with the alcohol, mixture, mucin, and the powder at the minimum force. Indicating at a low 

load there is no significant difference in friction between these contaminants on either of the gloves 

(p>.05). The only occurrence of a contaminant not changing frictional properties between the two 

gloves, at the minimum and maximum normal force, was with alcohol when applied to tool 2, and 

powder applied to tool 1 (p>.05). As many of the comparisons show significant differences between 

the gloves, it is highlighted that there are likely differences in the contaminant interaction with the 

glove materials causing differences in frictional behaviour. 
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Figure 7.19. CoFs at the minimum (min) and maximum (max) normal forces applied both NBR and NRL gloves. NBR is represented by straight lines, whereas NRL is 

represented by dashed lines. Error bars denote standard deviation in the obtained friction coefficients.
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Table 7.6. Average friction coefficient values obtained from each tool with the different contaminants used for the NRL and NBR gloves. Those highlighted in green 
show statistically significant differences between the two glove materials at the retrospective force (p<.05), whereas those in blue do not show any statistically 
significant differences between the two average friction coefficients (p>.05). 

Condition 

Friction Coefficient 

Tool 1 Tool 2 Tool 3 Tool 4 

Min force Max force Min force Max force Min force Max force Min force Max force 

NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL 

Dry 0.26 1.23 0.26 1.47 0.51 1.71 0.43 1.12 0.57 1.78 0.46 1.56 0.47 1.62 0.48 0.99 

Alcohol 0.24 0.18 0.28 0.24 0.55 0.58 0.56 0.61 0.59 0.39 0.41 0.2 0.39 0.32 0.43 0.28 

Mix 0.31 0.32 0.35 0.14 0.46 0.43 0.51 0.41 0.42 0.33 0.38 0.24 0.27 0.28 0.34 0.21 

Mucin 0.5 0.56 0.53 0.39 0.57 0.78 0.43 0.77 0.53 0.44 0.48 0.34 0.28 0.43 0.31 0.46 

Oil 0.33 0.22 0.36 0.18 0.58 0.29 0.59 0.37 0.42 0.22 0.25 0.22 0.42 0.22 0.43 0.21 

Powder 0.37 0.39 0.27 0.29 0.45 0.51 0.58 0.59 0.38 0.29 0.22 0.24 0.28 0.39 0.35 0.34 

Water 0.22 0.61 0.21 0.57 0.37 0.71 0.40 0.58 0.37 0.45 0.23 0.26 0.28 0.39 0.33 0.4 

Condition 

Friction Coefficient     

Tool 5 Tool 6 Tool 7     

Min force Max force Min force Max force Min force Max force     

NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL     

Dry 0.74 1.35 0.66 1.05 0.36 1.03 0.30 0.97 1.05 2.15 1.1 1.67     

Alcohol 0.32 0.33 0.43 0.26 0.49 0.7 0.52 0.77 0.36 0.43 0.42 0.44     

Mix 0.21 0.28 0.22 0.12 0.30 0.33 0.37 0.32 0.53 0.42 0.30 0.18     

Mucin 0.24 0.47 0.40 0.54 0.46 1.1 0.33 1.03 0.72 0.97 0.79 0.67     

Oil 0.34 0.22 0.31 0.18 0.63 0.68 0.53 0.29 0.25 0.09 0.28 0.09     

Powder 0.35 0.29 0.26 0.32 0.16 0.36 0.21 0.32 0.31 0.29 0.33 0.21     

Water 0.23 0.45 0.19 0.35 0.34 0.97 0.35 0.99 0.42 1.28 0.52 1.31     
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7.5 Discussion 

7.5.1 AFM and roughness profile 

There are similarities between the NRL and NBR materials. However, on the nano scale, a great 

difference in roughness is shown, with the NBR being half the roughness of the NRL. Between both 

of the glove films, there are clusters of the core compounds present with grooves in between these 

clusters. The grooves on the NBR are smaller and shallower than observed in the NRL. This clustering 

and size difference between particles is to be expected due to the reported particle size of NBR 

being smaller on average (0.1-1.0 µm) than the NRL material (0.3-2.0 µm) (14, 44, 45). It is possible 

the gaps present are the edges of the raised bumps pattern on the NRL gloves; however, they were 

present frequently throughout each scan. When looking at the roughness of the gloves on a greater 

scale (using the optical microscopy) the gloves are shown to have similar surface roughnesses. Thus, 

the frictional difference in the dry gloves is possibly a result of the material properties, as discussed 

in Chapter 6.  

 Adsorption 

Noticeably on both the NBR and NRL scans, there is the presence of an adsorbed substance onto the 

films. The phase images of the NBR material are similar to images published by Zhao, Xiang, Tian, et 

al. (245) who looked at NBR composites, and used AFM to find localised regions of different co-

polymers after dispersing in manufacturing. However, the images from Zhao et al. (245) are taken 

from 0.5 × 0.5 nm areas, which are incredibly small areas. As multiple gloves were scanned, and they 

all had the similar phase images, this study shows that there is likely to be an adsorbed layer on the 

surface. This leads to the inference that this is a result of the post film manufacturing (leaching, 

chlorination etc.) once the core film has been dipped. Therefore, it is reasonable to assume that the 

chlorine has been adsorbed onto the surface, as discussed in depth in Chapter 5. When chlorinating 

the gloves in industry, the gloves are also sometimes ‘double chlorinated’, exposing both the inside 

and the outside to the chlorination treatment. In the NRL material, this reduces the amount of 

extractable proteins, leading to a lower exposure to the latex protein which causes allergies (14). 

Furthermore, tumble washing is a method of chlorinating gloves, which would expose both sides of 

the gloves to the chlorine (51). However, it is well documented that the chlorination process 

deteriorates the gloves, and the smoother surface on the outer side of the gloves can lead to 

problems with gripping through the reduced surface roughness (16, 47, 51). As stated in the results, 

due to the sensitivity of the phase imaging measuring different properties, these differences in the 
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phase images could be due to mechanical properties, rather than chemical (e.g. slightly thicker 

regions of the gloves).  

As no measurable variations are seen in the spectra (Figure 7.11), this indicates that the adsorbed 

substance is either: 

• Inert to the glove (such as water used for washing after the chlorination step),  

• In such a small quantity that it is immeasurable to the FTIR, 

Or 

• Not an adsorbed substance, but the film itself with varied, with inhomogeneous regions 

throughout which affect the material properties in these localised regions.  

 
The results seen in the NRL AFM scans are similar to those seen in Ho and Khew (56) who used AFM 

to analyse the films at different stages of the vulcanisation process. Although phase images were not 

obtained, the authors indicate that the differences in surface topography is likely to be due to the 

diffusion of the vulcanising reagents. The authors suggest that pre-vulcanisation is good for cross-

linking of the polymers and forming a smooth film, where the traditional vulcanising method cause 

uneven cross-linking. It is possible the AFM is measuring differences in the latex particle coalescence, 

and that is what is visible on the films simply exposed to light (Figure 7.10). Differences in surface 

chemistry could have a great influence on the contacting surfaces, however minor. Thus, there may 

be stronger localised attractions in certain areas of the gloves, which could give rise to the variations 

seen in the contact angle measurements and friction, which will ultimately affect the performance of 

gloves, as seen in Chapter 6.  

 

7.5.2 Friction and effects of tool patterns 

A study conducted by Laroche et al. (114), looking at the effects of glove friction on different tool 

patterns of a similar nature, found, on average, the friction of the NBR gloves was higher than the 

NRL. However, in this study, the opposite is observed in most of the tools. The study by Laroche et 

al. (114) only looked at the effects of water on the static friction, with no control (dry condition) and 

looked at higher normal forces (40 N). Furthermore, the study does not state whether the gloves 

were examination or surgical, which was indicated to be a factor in the frictional properties due to 

the bulk material properties in Chapter 6. Anwer (116) showed that blood and blood-water mixtures 

lowered friction with NRL gloves on a scalpel, which is observed with some of the contaminants in 

this study with the scalpel. As blood was not used in this study, the results cannot be compared 

directly, but will be discussions around blood friction can be found in Chapter 9. 
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In this study, few trends are observed with the contaminants through the various tools, 

although most differences are shown in the NRL gloves in dry condition and in smoother surfaces 

when mucin is applied. It was hoped there would be more observable trends in behaviour with each 

contaminant, in order to quantify how friction was affected in a consistent manner. This would 

better inform glove manufacturers on how their materials were responding to certain contaminants, 

allowing for a better targeted marketing with regards to frictional properties of gloves depending on 

their use. However, great frictional differences are apparent when the NBR and NRL gloves are in 

contact with different tool surfaces. Tool 2, with the annular deep ridged surface, produced a 

greater CoF with the contaminants in both of the glove materials. This was expected due to the 

deeper pattern (0.8mm) which will allow contaminants to fall into the gaps and prevent separation 

of the glove-tool surface. Therefore, contact area would be increased between the gloves and the 

metal. This is evidenced by the general increase in the CoF with both glove materials, except mucin 

and water, in which the CoF decreased as the load increased. It is likely that the differences in 

affinity for the materials leads to this increase in CoF, as well as the material behaviour, previously 

discussed in Chapter 6. The NRL gloves display greater CoFs than the NBR gloves, on average. It is 

also observed there is little change in CoF as the load increases with the dry NBR gloves, where NRL 

has much greater CoF changes over the loads with each tool. However, friction does increase with 

each load, but the friction is greater with the NRL material. In many of the gloves, it could be seen 

that the NRL was stretching during the movement of the glove down the tools, indicating the NRL 

material was getting trapped more in the grooves than the NBR material, as shown schematically in 

Figure 7.20. The less stiff NRL glove will depress more into the grooves and get stuck as the finger 

attempts to break the static friction and initiate sliding. This was demonstrated in Chapter 6 when 

discussing the asperity contact and deformation with the steel strip. In this study however, the bulk 

of the NRL material will be deforming on a macro level into the gaps of the tool treads, as well as at 

an asperity level. The stiffer NBR however, will glide easier over the material due to less deformation 

of the material into the gaps.  
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NRL NBR 
 

 

 

 

Figure 7.20. Deformation of gloves observed with tools. The lower stiffness of the NRL means the 
material fills the gap, incurring more static friction. The NBR material is stiffer and sits atop the close-

gap tool pattern, incurring a lower static friction. 

 

7.5.3 Contaminant interaction 

Tools 1 and 5 have similar patterns with slightly differing depths and separation of 

patterns/wavelengths. However, the friction coefficients between the glove materials are different. 

This shows the effects the tread has on the presence of contaminants, as they will flow through the 

tread pattern upon contact, either increasing friction or decreasing friction. Tool 4 has a close-knit 

diamond pattern with a low tread depth, and little separation between the diamond tread. Overall, 

this tool shows to have the lowest average friction amongst the contaminants. Contact area is the 

likely reason for this decrease in friction. As the contaminants are introduced, the low depth tread 

will be quickly filled by the fluids or the powder. This will cause the contaminant to ride above the 

tread and ensure separation of the glove from the tool pattern, acting as an initial lubricant for the 

system (106, 246). The thickness of the contaminant film/the amount deposited onto the glove, as 

determined by the affinity and viscosity of the contaminant, will impact on how much separation 

occurs once the glove is in contact with the surface (247). For example, in the NRL, the more viscous 

oil tends to produce the lower friction but produces higher friction in many of the tools in the NBR. 

This difference is noted with most contaminants between the gloves. In the NBR gloves, the 

contaminants tend to show an increase in CoF with load, although in many cases, these are only 

small changes, whereas NRL tends to show a decrease over the load. However, this is not true for all 

contaminants. This is because of the way the contaminants are reacting on the surface. The 

contaminants show affinity for the NBR gloves but are repelled by the NRL. High contact angles from 

the contaminants with NRL indicate the contaminants are being pushed away as the force is 
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increased, and friction decreases as the gaps are filled, as shown schematically in Figure 7.21. 

However, alcohol was found to have a good surface wettability of the NRL and produces varied 

results in friction across the tools. 

 

 

 

Figure 7.21. NRL reaction with tools with low tread depth. Contaminants fill gaps easier as repelled 
by the NRL material, this separates the glove from the surface, decreasing friction. 

 
It is proposed that affinity and interaction with the gloves are the most important factors in whether 

the contaminants will affect friction. These chemical interactions determine how the contaminants 

behave on the gloves, as well as the prevalence of thicker films with different glove materials. In the 

mixture solution, CoFs are notably higher in NBR than the NRL (except tools 5 and 6). In addition, 

there are multiple differences in frictional behaviour between the materials. For example, in tool 4, 

the CoF in both gloves is the same at the minimum normal force (~1 N), but an increase in load 

causes an increase in CoF with the NBR material, but a decrease is observed with the NRL. During the 

application of the contaminants, the fingers were held into the solutions and moved around to 

encourage binding and interaction with the different components. Thus, differences in interaction 

with the distinct components will encourage variances in surface wettability, film thickness, and 

adherence of components to the gloves. This means, there was likely a difference in what 

constituents were attracted to the different gloves when the finger was removed from the solution.  

Electrostatic interaction 

The gloves possess slight surface charges and contact with both the metal and the contaminants can 

increase this charge potential. However, the influence of the charge increase is highly unpredictable 

(248). NBR films encompass a positive surface charge, with more polar characteristics, whilst the NRL 

film possess a negative surface charge with non-polar characteristics (14, 248, 249). Thus polymers 

such as the oil, composed of triglyceride fats, protein (mucin), and the mixed solution will have greater 
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differences in reactions over the loads between gloves (233). This would have either a lubricating effect 

or increase adhesion properties of the contaminant, depending on the interaction with the glove 

film.  

Mucin film development 

Of all the contaminants used, mucin appears to consistently give the highest CoFs between the 

gloves with most of the tools. Previous studies have shown the development of mucoadhesive films 

on surfaces. These mucoadhesive films form as a result of interaction with the environment, causing 

proteins to fold in an loose water through self-assembly (250). This film development depends on 

the environmental conditions, such as temperature and interaction, as well as the viscosity and 

shear (233, 251, 252). Higher shear rates in a system have been shown to potentially elongate polymer 

chains, making the system more ordered, affecting the lubrication and adhesion properties of mucin (233, 

253). The groups surrounding the core peptide (central protein) of the mucin are dominated by 

negatively charged carbohydrates. This gives an overall negative charge to the mucin structure at 

physiological pH (234), and is also the contaminant which contains greater differences in positive 

and negative domains (233), indicating the likelihood of differences in interaction with the two 

oppositely charged materials. In addition, mucin has been shown to have good wettability with 

different surface charges, such as the case with holding dentures (254). Together, the viscosity of the 

mucin along with surface wettability and film development can increase adhesive properties when 

handling equipment in a clinical setting (250). Great differences are observed with this protein 

between the glove materials. Overall, the friction of the NRL gloves is higher with mucin applied in 

tool 2, 3, and the smooth steel when compared to the mucin contaminated NBR. Furthermore, there 

is a larger decrease in friction with the NRL in tool 1 and tool 7, whereas an increase is observed with 

the NBR gloves with the mucin protein, indicating the nature of the protein behaviour is intrinsic to 

the frictional properties. 

The adhesive and lubricious properties of the mucin are dependent upon the interaction 

with the gloves. Many oral tribology studies assessing mucin interactions study how the mucin 

interaction is dependent upon the charge and the environment (255, 256). The protein will naturally 

contort and respond to the environment it is put in. In this study, the interactions are based on the 

electrostatic attraction and repulsion between both the gloves, and the protein itself (233). The 

most dominant charge in mucin is the negatively charged carbohydrates, causing the negative 

charge of mucin to interact more with positive charges. Thus, the protein will have a greater 

interaction with the NBR gloves. Figure 7.22 indicates that the negatively charged mucin will be 

attracted to both the positively charged NBR and the positively charged surfaces (248, 249, 257). 
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This would bring the two surfaces together, increasing friction through both electrostatic interaction 

and possible increased asperity contact. The NRL will, however, feel more charge repulsion from the 

mucin, and the more positively charged regions of the core peptide will interact with the NRL, 

leading to a weaker interaction than with the NBR.  

 

Figure 7.22. Proposed representation of the attraction of charges between mucin-steel and mucin-
NBR and mucin-NRL. 

 
In some cases the frictional properties of the NBR are decreased, such as the smoother tools (3, 4 

and 7). This could be due to the interaction with the surfaces creating lubricating properties allowing 

less time for film formation. Previous work with mucin has highlighted that the film formation is 

more apparent on surfaces which have hydrophobic tendencies, such as the case in the NRL used in 

this study (251). This is likely to be the reason for a higher friction than other contaminants. It is 

proposed that the mucin has a higher affinity for the NBR, which causes a lubricating effect in some 

tools, and in others, causes friction through film formation and the materials being pulled together. 

On the other hand, the mucin is hydrophobically repelled from the NRL, causing surface separation 

and decreased friction. As the CoF of the dry glove is generally greater than the NBR gloves, this 

could be of a greater detriment to the glove user. 

Film formation over time 

Where these studies have been conducted, it must be kept in mind that the development of a 

mucoadhesive tribofilm is not instantaneous. To assess the change in possible confirmation of the 
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proteins, the dynamic friction was checked. Figure 7.23 shows that at 5.02 N, after around 7 seconds, the 

friction of the NRL gloves steadily begins to increase on the smooth steel (tool 7). This is the likely to be the 

development of a mucoadhesive film brought about by shear stress on the mucin, and the slight affinity of 

the weakly positively charged metal surface (235, 252). This increase was apparent in both the NRL and NBR 

gloves but was more prominent in the NRL. Further tests would need to be conducted by holding the 

contaminated finger for longer on the surface before initiating the sliding. This would allow for a greater 

insight into the development of the film formation.  

 

Figure 7.23. Example of film development over time for a NRL glove with mucin applied, sliding on steel. 

 

Alcohol 

The alcohol solution shows similar contact angles with both gloves with similar estimated film 

thicknesses. However, although a similar wettability was observed, the tribological properties of the 

gloves were still affected in different ways. This is likely due to the way in which the gloves are 

wetted, leading to different surface chemistry and interaction, as previously discussed with 

protein/polymers. The alcohol is composed of two key components, ethanol (C2H5OH) and 

chlorhexidine gluconate (C22H30Cl2N10). The hydroxyl group (OH) of the ethanol makes the compound 

strongly polar, which will cause the OH group to attract to the NBR glove. On the other hand, the 

ethyl group (C2H5) is non-polar, which will cause high wettability of the NRL surface (258). The 

chlorhexidine gluconate is a strongly polar compound, which will be dissolved in the alcohol and 

further add to the interaction with the polar NBR surface (259). As the gluconate is dissolved into 

ethanol, there will be interaction, albeit weakly, with the non-polar NRL surface. A similar effect has 

been noted with all contaminants. As different frictional properties, and behaviours are observed 
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between the gloves, it is clear that knowledge of the affinity of the contaminants for the glove films 

is vital for assessing frictional behaviour. 

Evaporation and flow 

Evaporation would cause more contact between the surface pattern and the glove than with other 

contaminants. Although the gloves are of similar roughness, the NRL gloves are shown to have more 

concave grooves, whereas the NBR looks to possess more convex grooves. This was also noticed in 

the AFM images produced by Ho and Khew (56). The evaporation of the contaminant from the 

surface is most likely to occur with the alcohol solvent, which was also included in the mixed 

solution. This evaporation would be dependent on the airflow around the tool/glove and the time 

between the solution being removed from the stock and placed onto the finger. Due to the concave 

nature of the NRL pattern, as well as the deeper groves noted on the AFM, it is possible that when 

the finger is placed on the tools, there would be less evaporation as more of the contaminant is 

trapped in the deeper grooves. This would lead to a lower static friction, which is frequently 

observed in the NRL glove, as the surfaces remain separated for longer. However, not considered in 

this study, is that the fingers have some element of movement when gripping tools, the users may 

pick up and put down the tool’s multiple times during use. This would, in effect, re-contaminate the 

tool and the gloves, and the contamination already stuck to the surfaces may cause different 

reactions on the surface.  

Influence of powder on friction 

When the gloves are contaminated with powder, rather than a fluid, the friction, is on average, 

lower with the NBR gloves than the NRL. The lowest friction is observed when powder is present 

with tool 6 when NBR gloves were worn, indicating that the powder could cause slipping when 

holding disposable scalpels. For the frictional measurements with this tool, the finger was placed 

onto the circle in the centre of the tool pattern, which does not have any groves, which would 

maximise the contact area. The lower friction is due to the powder reducing contact area and 

separating the surfaces sufficiently to reduce the friction of the glove-surface contact, similar to that 

seen in Figure 7.21. This is also observed on the smooth steel (tool 7), which shows a greatly reduced 

friction with both gloves when the powder is present. In some instances, such as tools 4 and 6 with 

both gloves, there is an observed increase in CoF with increasing load. This could be due to the 

differences in powder stuck to the gloves or small areas of inhomogeneity in the powder. 

The powder used in this study consists of talc, also known as hydrated magnesium silicate. 

As with the fluid contaminants discussed, the magnesium silicate contains domains that allow for 
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both polar and non-polar interactions (260). Therefore, the powder will interact with both gloves. 

However, more powder was found to be stuck to the NBR than the NRL. Although the amount on the 

finger was small, and the difference between the two were found to be insignificant (t(2)=-1.538, 

p=.541). Furthermore, the results of the AFM indicate the differences in behaviour, observed 

primarily in tools 6 and 7, could be due to the variations in the way the gloves are being 

contaminated. In the NRL, the large latex rubber clusters cause deeper gaps to form between 

clusters, whereas the NBR is much smaller, and overall smoother. These smooth isolated regions 

may have an effect on the interaction with the powder. As there are larger clusters of the NRL 

material, there is surface interaction due to reduced isolated areas. However, more powder is likely 

to be trapped in larger gaps between these clusters. It is possible that minute weights of this powder 

fall out of these gaps upon contact/movement, which causes a reduction in friction by separation of 

the surfaces.  

Table 7.7 summarises the increase or decrease in friction at a 1 N force, to ease visualisation 

of the effects the contaminants have on the gloves. In most cases, friction is reduced by the 

contaminants. Those where friction is greater than the dry glove occurs with the NBR material, 

primarily with alcohol and with tool 1, which has a low tread depth. Although similar in surface 

texture, tools 3 and 7 were different materials, and different widths, and therefore contact area, 

which gives rise to the differences in some of the frictional properties observed with the NBR. 
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Table 7.7. Summary of frictional differences to the dry glove at 1 N load, where ‘L’ = lower than the 
dry CoF, and ‘H’ = higher than the dry CoF. 

 Alcohol Mucin Oil Powder Water Mixture 

Pattern NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL NBR NRL 

 

H L H L H L H L L L H L 

 

H L H L H L L L L L L L 

 

H L L L L L L L L L L L 

 

L L L L L L L L L L L L 

 

L L L L L L L L L L L L 

 

H L H L H L L L L L L L 

 

L L L L L L L L L L L L 

 

7.6 Conclusions 

The findings of this chapter are as follows: 

• AFM of the glove films reveals the possibility of an adsorbed surface on the glove materials. 

This is thought to arise as a function of the chlorination of the glove materials during the 

manufacturing process and could impact the interaction of contaminants with the glove 

materials. 

• It has been shown that friction can be modified upon exposure to the contaminants used in 

this study. NRL gloves were shown to be severely affected by contaminants, greatly reducing 

friction. On the other hand, NBR gloves were shown to have both increases and decreases in 

frictional properties, depending upon the tool pattern. The differences in the CoF of the 

contaminated materials, in many cases, are not greatly affected by an increase in load.  

• The change in frictional behaviour is dependent on the affinity of the contaminant for the 

gloves, which modifies the ability to separate the surfaces and allows lubrication into the 

system. The thicker the film, the greater the initial separation, which would induce lower 

friction, which is observed in some cases in the NRL, which shows a poor surface wettability, 

with hydrophobic tendencies. On the other hand, the NBR shows a good surface wettability, 
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with hydrophilic characteristics. In addition to this initial film thickness, the chemical 

interactions have changed the way the contaminants interact with the gloves, causing great 

differences in the frictional properties between the two materials studied.  

• The differences in frictional behaviour also depend on the tread pattern. Where the tools 

were smoother, the friction was reduced greater when contaminants were present at the 

maximum load.  

• Differences in friction are likely to adversely affect grip in the NRL gloves, as decreases in 

friction are more observable than in the NBR when contaminated, indicating equipment is 

more likely to be near dropping/sipping from the user’s fingers. The tools which exhibit 

higher friction coefficients will allow easier grip with less pinch force, which will in turn 

reduce hand fatigue.  

• As it is understood that the frictional properties of the gloves are easily modified by the 

addition of contaminants, it needs to be identified as to how that impacts user performance. 

It could be that the small friction modifications that are present have no effect on the user, 

reducing the likelihood of problems occurring. However, the contaminants could change the 

perception of the glove user, changing their sensitivity and affecting their dexterity.  
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Chapter Eight: Effects of contamination on dexterity and 
sensitivity 

 

At the forefront of the literature assessing medical gloves is dexterity and sensitivity. However, the 

inclusion of contaminants, making the assessments more relevant to realistic situations, have been 

neglected in the literature (6). Highlighted in Chapter 7 was the requirement for more performance 

assessments to be conducted in-situ. It was shown that the frictional properties of both NRL and 

NBR materials were affected by contamination from a variety of substances. In many cases, this 

lowered the frictional properties of the gloves, especially with the NRL gloves. This chapter explores 

this contamination further, assessing if, and how, contaminants affect the performance capabilities 

(dexterity and sensitivity) of the user (232).  

8.1 Introduction 

Understanding if the differences in frictional properties, observed in Chapter 7, influence the 

performance measures, such as dexterity and sensitivity, is vital to understanding the effects gloves 

have on the user. Stimuli changes on the fingers are a result of friction created by the deformation of 

skin. This deformation and friction create surface strains that propagate to mechanoreceptors, 

which are vital for sensory perception, allowing for physical feeling (63, 189). They also play a vital 

role in providing feedback regarding grasp. Therefore, the tactile sensation is also pivotal in 

preventing slipping and manipulation of objects (261). The presence of a contaminant on the gloves 

could affect tactile sensation by way of dampening the stimulus, which could lead to incorrect 

patient care through missed information or dropped equipment. Furthermore, external substances 

on the gloves could change the perception of the glove user, especially in cases where the 

contaminants are of a different temperature. This has been shown to affect the dexterity of 

participants when completing pegboard dexterity tasks (262). 

8.2 Aim and objectives 

The aim of this study is to assess to what extent glove user dexterity and sensitivity is affected by the 

contamination assessed in Chapter 7. Mucin has been chosen from the contaminants used in the 

previous chapter to contaminate the gloves. Due to the differences in frictional behaviour observed, 

mucin was perhaps the most intriguing due to the intrinsic nature of the protein. Specifically, 

porcine gastric mucin has been observed to display similar behaviour and viscosity to human mucin 

found in saliva (233, 254). This allows for conclusions to be drawn on how saliva/mucus in the body 

may influence the dexterity and sensitivity performance of the glove users. In Chapter 7, the mucin 
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was shown to give different frictional properties for both of the gloves. This was due to the 

differences in behaviour of the polymer chains, the interactions with the tools, and ultimately the 

reactions with the glove films (233, 234, 250). Mucin is a long chain protein, surrounding by 

carbohydrate chains, which aid interaction through the contortion of proteins (233). This contortion 

happens due to the interaction with the glove material surfaces. The negatively charged NRL repels 

the mucin, which aids mucoadhesive film formation over time. The positively charged NBR draws 

more mucin to the surface and causes differences in frictional properties when compared to the NRL 

(248, 249). Therefore, it is expected that there will be differences in dexterity and sensitivity 

performance due to the different way in which the gloves and mucin are interacting with the 

environment. In addition, out of the contaminants selected in Chapter 7, mucin is most likely to be 

contacted in a medical setting, given the contaminants discussed in Chapter 3 (233). Understanding 

the effects of contaminants on examination glove users is salient to comprehending whether 

contamination is detrimental to the tasks being carried out.  

8.3 Materials and methods 

8.3.1 Participants 

A total of 15 participants (13 male and 2 female) took part in the dexterity tests, and 12 (10 male 

and 2 female) took part in the sensitivity tests. All participants were asked if they had any 

sensorimotor deficiencies, any allergies to latex, or any conditions that could affect their sensitivity 

or dexterity. All participants were recruited from The University of Sheffield and were aged between 

22 and 34 years (for both tests). Ethical approval was received by the Research Ethics Committee of 

the Department of Mechanical Engineering, University of Sheffield (No: 016619).  

8.3.2 Glove selection and analysis 

Participants donned the same glove make and model used in Chapter 7, for consistency. These were 

powder free, chlorinated NBR and NRL gloves, which were found to have similar thicknesses NBR= 

0.106 (±0.006) mm; NRL= 0.114 (±0.007) mm). Participants were selected gloves based on their 

perceived “best-fit” (the glove size they would ordinarily use), however no measurements were 

taken of the hands for this section of work. Visual inspections were carried out to ensure gloves fit as 

expected. Gloves were expected to conform to the fingers and the hands with little to no areas of 

loose material, as described in Chapters 4, 5 and 6. The medium glove size was the “best-fit” choice 

for all participants with both glove materials, except for two who requested large NBR gloves but 

were comfortable with the medium NRL gloves.  
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FTIR 

In Chapter 7, it was shown through contact angles, estimated film thickness, and the amount of 

mucin deposited onto the gloves, that the mucin has a stronger affinity for the NBR than the NRL, 

Therefore, to further assess if any surface binding takes place, FTIR was conducted. Samples were 

prepared by cutting off the fingertip of the glove (around 3 cm). Two samples were produced for 

each glove type: washed and unwashed. This allowed the determination of whether the surface has 

been cleaned by the water, or if the mucin has bonded/changed the surface chemistry. FTIR analysis 

was conducted using a Brucker ATR-FTIR instrument. Each sample was scanned 26 times in the 550-

4000 cm-1 region with a resolution of 4 cm-1. Two areas of each glove were analysed and averaged by 

OMNIC software. Using a Pasteur pipette, 1 ml of the mucin solution was placed onto the outer 

surface of each glove left for 10 minutes. The ‘washed’ sample was then held in a beaker of water (at 

20-22oC) and stirred for 10 seconds. The sample was then removed and left to out dry. The 

‘unwashed’ sample was patted with a clean, dry tissue to remove any visible residue on the surface 

of the glove. Both washed and unwashed samples were left to dry for a minimum of 24 hours before 

analysis (16-24oC). Each test was repeated three times for the NBR and NRL gloves (three washed 

samples and three unwashed samples). Three samples of each glove material were also analysed in 

an uncontaminated condition.  

8.3.3 Dexterity measurements 

Gross dexterity 

Gross dexterity was measured using the Purdue pegboard, as discussed, and used in Chapter 6 (see 

Section 6.3.3). This was chosen in line with the previous reasons, the ease of implementation of the 

test to be used in industry, the ease of results comparison, and the ease of the test to be conducted 

by participants. As in the previous pegboard test, the participants completed all four tasks, which 

was split into two scores (combined and assembly test). The combined test consists of the number 

of pins placed in thirty seconds using the left hand, right hand and both hands (1.5 minutes in total). 

The assembly test consisted of the number of parts assembled in the pin-washer-collar-washer 

structure within the 1 minute allocated time. Participants who dropped pins, or assembly parts, 

were instructed to leave them and then pick up another for their allocated dish, so as not to waste 

time.  
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Fine dexterity 

The Crawford Small Parts Dexterity Test (CSPDT) was chosen as an extra measurement of dexterity in 

this test. In medical tasks, fine dexterity using tweezers (and other tools) is salient to performance, 

thus assessing the effects of contaminants on the gloves with finer measurements would be 

insightful (114). As with the Purdue pegboard test, the board is small, and easy to use as well as 

implement into industry. The CSPDT, designed by Crawford and Crawford (263), has been discussed 

in Chapter 2 as a common test used for glove performance assessments (see Section 2.6.2). This test 

consists of two parts: pin and collar placement and screws placement. For this study, only the pin 

and collar test were chosen to be conducted, for both the constriction of time and the relevance to 

medical glove users in clinical practice.  

The pin and collar test consists of a board filled with 36 holes. Next to the board there are 

three dishes, one contains screws (not used for this test), one contains cylindrical metal pins, and 

one contained small metal collars. The aim of the test is to use tweezers to place the pins into the 

board and place a collar on top, as shown in Figure 8.1. Each pin must contain a collar before moving 

onto the next pin placement. The score is the time taken to complete the task. Due to the number of 

conditions and tests in this study leading to time restraints, only half the board was filled (n=18). As 

with the Purdue pegboard test, the participants were told if they dropped any part, to not attempt 

to pick up the parts and obtain a new respective part from the dishes.  

 

Figure 8.1. CSPDT pins and collar test. 

 

 Test familiarisation and learning behaviour 

As in Chapter 6, the participants were made to practice the tests prior to the experiment being 

conducted. This was to circumvent any learning behaviour as the tests were conducted. These tests 

were carried out in the bare hand condition and were scored to establish a plateau in the results. A 
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plateau was defined as three results in a row being similar (±2 pin/assembled parts for the Purdue 

test and ±3.0 seconds for the CSPDT), after a minimum number of 5 trials in each of the tests. In 

addition to this, to assess the possible effects of further learning behaviour throughout the dexterity 

tests, participants were asked to repeat one random condition to check for differences with their 

previous result. For example, once a participant had completed a test, they were then instructed to 

repeat the test in the same condition. The choice of which condition was re-tested was 

predetermined for each participant before the tests were conducted, and always fell near the end of 

the study (3rd or 4th test) as this is where learning behaviour is more likely to take effect. With the 

repeated test results, the first score was used in the data analysis if the results were different upon 

repetition.  

8.3.4 Sensitivity measurement 

The sensitivity test was chosen based on previous work conducted by Mylon et al. (88) who 

developed two simulated medical tactile tests (SMETT) to measure cutaneous sensibility. These tests 

have been discussed in Chapter 2 (see Section 2.6.1). Only the ‘Bumps’ SMETT test was selected for 

this study, as differences between gloves were more apparent in the study by Mylon et al. (88) with 

this test.  

The bumps sensitivity test is composed of a flat elastomeric sheet with an attached guide, 

allowing for the finger to move down the columns, as shown in Figure 8.2a (14.0 × 14.0 × 0.8 cm). At 

random location across the sheet, 26 bumps have been manufactured onto the surface. The 

hemispherical bumps start at a height of 100 µm in size and increase by 20 µm up to 600 µm (Figure 

8.2b). The participants were instructed to place their finger pads flat onto the surface, keeping the 

finger at around a 40° angle to the test bed, similar to the friction tests conducted previously in this 

thesis. This was to standardize the test and make the results more comparable between 

participants. If participants had applied their fingers so as to be aligned perpendicularly to the 

elastomeric sheet, the dispersion of mechanoreceptors activated is fewer than when the finger pad 

is horizontal to the board (264). In the previous study by Mylon et al. (88), the finger position varied 

between participants, making the results incomparable. 
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a) b)  

 

 

 

 

 

 

 

Figure 8.2. a) Bumps test bed developed by Mylon et al. (88) b) location and size of bumps (µm). 

 
A light dusting of talcum powder was used, as in the original study (88). Efforts were made to avoid 

using this, to better understand the effect of gloves on tactile ability without a contaminant present. 

However, the contact induced too much friction and the fingers were found to slip in the gloves, and 

the polymer-polymer contact induced stick-slip friction. The talcum powder was spread as lightly as 

possible on the surface and practices were conducted to assess how light the dusting could be to 

reduce the friction. It was found that that a light dusting was sufficient. As this made some of the 

bumps visible on the surface, the participants were asked to close their eyes and their finger was 

guided by the researcher to the top of the plastic guide. Thus, the participants did not see the test 

bed in detail until after all tests were completed, to eliminate bias. Participants could explore each 

column at their own speed and were allowed run their finger up and down at their own leisure. All 

columns were used in each test and the columns were chosen in a forced randomized fashion before 

the study to further eliminate bias. In addition to this, the test bed was rotated 180° to increase the 

randomized possible orientations and prevent learning behavior for each test. 

8.3.5 Mucin and application 

Porcine gastric mucin (Type II, un-purified) was heated to physiological body temperature (37oC) via 

a water bath whilst in use. The mucin solution was the same as used in the previously in Chapter 7. 

To apply mucin to the gloves, participants dipped their gloved fingers into the solution (Figure 8.3). 

Unlike the application in Chapter 7, there the finger was dipped to the interphalangeal joint, in this 

study the fingers were dipped up to the knuckles to cover all the fingers. The fingers were held into 

the solution for 10 seconds. When removed, the mucin was rubbed over the palm and between the 

fingers using the dipped fingers of the same hand. This was to assess if the drying, crystallisation, or 
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presence of mucin around the hand had an effect on performance. Excess mucin was shaken off 

until no drops fell from the glove, and then the test was conducted. 

 

Figure 8.3. Application of mucin to the glove. 

 

Mass transfer 

As with the contaminants in Chapter 7, preliminary experiments were carried out to measure the 

weight of mucin transferred to the gloves by following the mucin application procedure. Participants 

were found to wear only medium and large gloves, thus only these sizes were measured. Two 

participants (both best-fit medium sized hands) donned five of each glove type and size (20 gloves in 

total). Mucin was applied using the procedure described. Gloves were then removed and weighed 

using a 5-point analytical balance (Analytical Sartorius, ±0.0001 g) to determine the amount of mucin 

transferred to the gloves.  

8.3.6 Experimental procedure 

All of the tests (Purdue pegboard, CSPDT and Bumps sensitivity) were performed in one 2 – 2.5-hour 

session with time for resting in between to avoid fatigue. Each of the dexterity tests were carried out 

in were carried out in 4 hand conditions: NRL, NRL + mucin, NBR and NBR + mucin. The sensitivity 

test encompassed the same conditions and a no-gloves condition. The order of tests conducted, and 

hand test conditions were conducted in a forced randomised fashion. This is a way of randomising 

test conditions, whereby permutations were checked and altered where applicable, to prevent 

certain conditions always being in a certain position. Participants were also not informed of the 

gloves being used, and packaging was removed prior to glove selection. However, due to the 

common colour variation between gloves, some participants were aware of which glove materials 

they were using. Tests were carried out at The University of Sheffield with a room temperature 

between 21.0-24.3oC. To eliminate the possibility of contamination, all of the equipment, with the 
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exception of the gloves which were changed between tests, was cleaned with acetone and water 

between all tests.  

 

8.3.7 Statistical analysis 

Gloving conditions were compared to check for statistically significant differences within the raw 

data. Each set of data was checked for normal distribution using the Shapiro-Wilk Test for normality 

(192). The null hypothesis is that the mean result of each condition showed no difference between 

the two compared tests. Statistically significant differences are shown at p<.05. Where the null 

hypothesis of normality was not rejected within the data, statistical analysis was carried out using 

one-way analysis of variance (ANOVA) followed by a post-hoc Tukey’s Honestly Significant Difference 

(HSD) where applicable (194). Where the dataset was rejected for normal distribution, the non-

parametric Kruskal-Wallis test was conducted followed by a Dunn’s Multiple Comparison test to 

assess where any significant difference occurs, if applicable (195). 

 

8.4 Results 

8.4.1 Mucin transfer 

The weight of mucin determined to be on the gloves is shown in Figure 8.4. The medium sized NRL 

gloves averaged a deposit of 0.49 g (±0.026 g) of mucin, whereas larger gloves averaged 0.52 g 

(±0.056 g). Mucin on the medium NBR weighed, on average, 0.60 g (±0.067 g) whereas on the large, 

mucin weighed 0.62 g (±0.025 g).  

 

Figure 8.4. Mucin adherence to medium and large sized NRL and NBR glove. Error bars denote 
standard deviation. 
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8.4.2 FTIR 

NBR 

After the mucin application, there are slight changes in the NBR spectra compared to the washed 

glove, which are shown in Figure 8.5. The unwashed mucin sample has the absence of the C-O ester 

peaks at the 1050-1000cm-1 wavelength. The washed sample does have these peaks, but they are 

severely decreased in absorbance compared to the uncontaminated NBR gloves. This could be due 

to mucin being present on the surface. The increase in broadness and intensity of the peak from 

3500-3100cm-1 indicates the presence of more hydroxyl groups (OH) on the NBR gloves. The overall 

absorbance of the uncontaminated NBR is dominant in the spectra, indicating that some of the 

mucin could still be present on the surface in the washed sample, reducing peak intensities. A higher 

intensity of peaks in the region from 900-400cm-1 is shown for the unwashed sample. This  could be 

due to the mucin carbohydrates increasing the C-H intensities and the presence of disulphide 

bridges from the existing cystine links within the mucin (265). However, this is decreased after 

washing, indicating that washing has decreased some of the presence of the mucin (210). The peak 

shown at 2356-2332cm-1 shows the C-O bond of carbon dioxide, which has arisen because of an 

increase of CO2 in the atmosphere around the sample, rather than the sample itself. These results 

show there are some changes to the surface of the NBR gloves when exposed to the mucin, which 

cannot be reversed with washing.  

 

Figure 8.5. Spectra of NBR and mucin contamination. 
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NRL 

The spectra for NRL when mucin is applied is shown in Figure 8.6. The unwashed sample has a peak 

at 1256 cm-1 which is absent from the washed sample. This is indicative of the carboxylic acid 

(COOH), which could arise from the terminus of the mucin proteins (265). Confirming mucin is likely 

to be on the gloves surface, as expected. There is also less absorbance of the main peaks in the 

unwashed samples, which indicates a reduction in the C-O/amine region between 1500-1300 cm-1 

(210). There is very little difference between the clean sample and the washed sample. The slight 

reduction in absorbance could be due to the washing procedure or variation in the structure, as 

discussed regarding the AFM in Chapter 7. These absorbance shifts are minimal and are enough to 

indicate that the mucin has been removed from the surface of the NRL, showing very little and weak 

affinity of the mucin for the NRL material. 

 

Figure 8.6. Spectra of NRL and mucin contamination. 

 

8.4.3. Gross dexterity (Purdue pegboard test) 

Left, Right and Both Hands (Combined Test) 

The results of the combined Purdue pegboard test are shown in Figure 8.7. Data have been 

normalised against the dry glove condition (mucin contaminated time - dry glove time) to highlight 

the differences between gloving conditions and compare the impact of the mucin on the score. 

ANOVA tests were conducted, after the data were found to be normally distributed throughout the 
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four conditions. The ANOVA shows statistically significant differences within the data (F(3,66)=3.042, 

p=.009). Tukey’s HSD test results are shown in Table 8.1. NRL was shown to perform better, on 

average, than NBR with a score of 43 (±8) pins being placed, which is 1 greater than the NBR gloves 

(42 pins placed ±6). However, this was not significantly different (H=1.400, p=.786). When mucin was 

applied to the gloves, NBR was shown to have significant increase in dexterity, with the number of 

pins being placed averaging 46 (±6) (H=4.209, p=.012). This increase in performance was observed 

throughout all participants. On the other hand, with the NRL gloves, scores were lower than the dry 

condition with 43 pins being placed (±6). However, this was not significantly different from the dry 

performance (H=1.400, p=.786). The score was found to be 4 pins greater, than dry condition, with 

mucin contaminated NRL gloves in 2 participants. The remaining 13 participants were found to have 

lower performance scores with the contaminated NRL. Significant differences were found between 

the NBR and NRL when mucin is applied to both sets of gloves (H=4.209, p=.013).  

 
Figure 8.7. Normalised (mucin contaminated time - dry glove time) scores of combined Purdue 

Pegboard test. Error bars denote standard error. 

 

Table 8.1. Tukey’s (HSD) test results for the different gloving conditions in the Purdue pegboard 
combined hands result (ANOVA F(3,66)=3.042, p=.009). 

Condition 
NBR + 
Mucin 

NRL 
NRL + 
Mucin 

NBR 
H=4.209 
p=.012* 

H=1.400 
p=.786 

H=0.002 
p=.900 

NBR + 
Mucin 

 
H=2.829 
p=.179 

H=4.209 
p=.013* 

NRL   
H=1.400 
p=.786 

*Indicates statistical significance (p<.05) 
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The number of dropped pins are displayed in Figure 8.8. The results show that the number of pins 

dropped when the NBR is contaminated, is no different from the uncontaminated (NBR= 0.60, NBR + 

mucin= 0.60). The same is observed in the NRL, however, more pins were dropped on average (NRL= 

0.67; NRL + mucin= 0.67). Although the average number of pins dropped is higher in the NRL, only 9 

pins were dropped in both sets of NBR gloves, and 10 were dropped in the NRL condition. 

 
Figure 8.8. Average number of pins dropped across the gloving conditions in the combined test. 

 

Assembly Test 

The normalised (mucin contaminated time - dry glove time) results of the assembly segment of the 

Purdue pegboard test are displayed in Figure 8.9. The average number of parts assembled for the 

NBR (32.53 ±4.70) was found to be lower than the NRL (33.80 ±7.42). When contaminated with 

mucin, the gloves do exhibit differences in results. A decrease of 4.27 parts assembled is observed 

with the NRL gloves (average= 29.53 ±4.55). A decrease in the parts assembled were noted in all but 

one of the participants wearing contaminated NRL gloves. However, the number of parts assembled 

when the NBR glove was donned, increased by 1.60 (average= 34.13 ±3.85). This increase in score 

was observed in all participants. ANOVA tests show there is no statistically significant differences 

present between any of the data sets (F(3,66)=1.838, p=.084). 
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Figure 8.9. Normalised (mucin contaminated time - dry glove time) scores of assembly Purdue 
Pegboard test. Error bars denote standard error. 

 

The number of parts dropped between the two conditions with each gloves also shows a difference, 

which is shown in Figure 8.10. When gloves are contaminated, both materials led to the dropping of 

5 more parts than in the dry condition. In addition, more parts were dropped in this section of the 

test than previously (NBR=0.53; NRL; 0.67). More parts were dropped with the NRL gloves (10 pins, 

0.87 average) than the NBR (8 pins, 0.67 average). 

 
Figure 8.10. Average number of parts dropped across the gloving conditions in the assembly test. 

8.4.4 Fine dexterity (CSPDT) 

The results of the fine dexterity test (with pins and collar placement being completed with tweezers) 

show that when the NRL gloves were donned, the user performance was slightly quicker (1.83 ± 0.36 

min) than the NBR (1.88 ± 0.34 min). However, the slight increase in speed is not significantly 
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different (Z=0.874, p=.382). The normalised (mucin contaminated time - dry glove time) results for 

the CSPDT are shown in Figure 8.11. The results show that the performance with both gloves 

increased upon addition of mucin. When mucin was exposed to the NRL, the test was completed 3.6 

(±16.8) s  quicker than the dry condition. The increase in speed was noted in 12 of the participants, 

where three were found to take longer in the contaminated condition. When the NBR was 

contaminated, the test was performed 15 (±21.0) s quicker than the dry condition. All participants 

were shown to perform quicker when the mucin contaminated gloves were worn. All datasets were 

found to be non-normally distributed. Therefore, statistical analysis was carried out using the 

Kruskal-Wallis test. Statistically significant differences were found amongst the different conditions 

(H(3)=9.754, p=.045). Table 8.2 shows the results of the Dunn’s post-hoc tests, which reveals 

significant differences to be between NBR conditions (dry and with mucin) (Z=-2.652, p=.008).  

 
Figure 8.11. Normalised (mucin contaminated time - dry glove time) time from CSPDT test. Error bars 

denote standard error. 

 
Table 8.2. Dunn’s post-hoc test results for the different gloving conditions in the CSPDT results.  

Condition 
NBR + 
Mucin 

NRL 
NRL + 
Mucin 

NBR Z=-2.652 
P=.008* 

Z=0.874  
p=.382 

Z=-1.405  
P=.160 

NBR + Mucin  Z=-1.787  
p=.074 

Z=-1.256  
p=.209 

NRL   Z=0.532 
p=.595 

*Indicates statistical significance (p<.05) 
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Figure 8.12 shows the average number of pins dropped per test. On average, the participants 

dropped fewer pins in this test than the gross dexterity tests, with 4 pins being dropped in the NRL 

condition (average= 0.27), and 5 pins dropped in the NBR (average= 0.33). When mucin is added, 

there is a slight decrease with the NBR, with 4 pins being dropped in total (average 0.27). The NRL 

however, remains the same, with 4 pins being dropped across all participants (average= 0.27). 

 

 
Figure 8.12. Average number of pins dropped across the gloving conditions in the CSPDT. 

 

8.4.5 Sensitivity 

One participant was only able to identify grooves running parallel between B and C as well as F (highlighted 

in Figure 8.13). These are not part of the test and presumed to be a fault in the manufacturing process. 

However, they were not mentioned in the previous experimentation by Mylon et al. (88). These grooves 

were noted by some of the other participants; however, they were also able to identify the bumps 

intended to be sensed. Another participant did not identify any bumps in any of the conditions, or without 

any gloves donned. Therefore, data for these two participants has been eliminated from the analysis (n=10).  
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Figure 8.13 a-c. Grooves horizontal to the board. a) bumps test bed. b) groove running across 
between rows B and C, and c) groove running across row F. 

 

Figure 8.14 shows the percentage of bumps detected in each gloving condition plotted for each 

bump size. All participants detected all of the bumps between 600 m and 300 m in the bare hand 

condition. When gloves were donned, this was shown to increase to 380 m for the dry gloves. With 

the bare hand, participants felt bumps down to 180 m, giving an average detection of all bumps at 

75.2%. However, when gloves were donned, the LOD was shown to decrease. In the NBR gloves, the 

LOD 280 m, when contaminated with mucin the LOD did not decrease, however 30% more 

participants were able to detect down to the 280 m, rather than 10% in the dry condition. NRL had 

a greater rate of detection, with a LOD down to 220 m. However, when mucin was applied, the 

detection rate decreased to 260 m. Although the detection rate of the bumps is still better in the 

NRL, the mucin has been shown to increase detection of the bumps in the NBR.  
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Figure 8.14. Results of bumps sensitivity test showing the percentage (%) detection rates at each 
bump size. 

 

8.5 Discussion 

8.5.1 Binding of mucin 

The spectra of the FTIR confirms the previous tests regarding the binding and affinity of the mucin 

for the NBR glove, and less attraction to the NRL. The mucin was easily washed off of the NRL, but 

changes remained on the surface of the NBR after washing. That is not to say that mucin is still 

present on the surface of the NBR after washing, as the changes in the spectra could be down to 

other factors, one of which could be due to the leaching of phthalates out of the gloves. It is 

documented that the microstructures of polymers change with exposure to water due to phthalate 

leaching (207, 266). However, this process tends to occur over a longer period than used in this 

study. There are several other additives that contribute to the observed spectra, such as the 

stabilisers, dyes, antioxidants, and treatment methods. It is possible that some of these additives 

could have reacted with the mucin in this study, resulting in the observed spectral changes. NBR and 

NRL both degrade by oxidative chain scission, a process whereby oxygen will break the C=C bonds to 

become C=O, breaking the polymer chain (267, 268). Occurrence of a C=O band does occur at 

stronger absorbances with NRL and mucin, but not in the NBR and mucin, leading to the inference 

that there may be differences in the changes with the microstructure of the mucin itself when on the 

gloves. Differences could arise due to changes in orientation of polymer chains, degree of 
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crosslinking and degree of crystallisation of the mucin, as discussed in Chapter 6 (269). In order to 

understand the changes on the surface, confirmatory chemical analyses could be used to explore 

that. However that was considered to be beyond the scope of this work. It is clear that the mucin has 

a stronger attraction to the NBR material, as it causes changes in the surface chemistry of the glove, 

has a larger estimated film thickness and greater contact angles than the NRL material.  

8.5.2 Effects of mucin on dexterity 

In Chapter 6, it was shown that the stiffer gloves had a greater detriment to dexterity. Therefore, it 

was thought that, as the mucin dried, the gloves may feel stiffer due to the evaporation, and the 

differences in this perception may affect performance. As no other studies have been found 

assessing how contamination affects the dexterity performance of gloves, is it not clear what is 

occurring to improve dexterity with NBR, but not with NRL in the pegboard test. The assembly test 

proved to be more difficult when the mucin was present on both gloves, and participants noted 

more difficulty in their ability to carry out the task when using NRL. Where lubricated, a greater level 

of fatigue can be induced through increased, and prolonged, gripping. The drying and stiffening of 

the mucin protein may occur over a prolonged period, especially with more tasks and a variety of 

movements seen in the medical profession. However, it does not appear to be the case in this study, 

or with this particular contaminant. It is most likely the increase in dexterity is a result of a more 

‘optimum’ friction, and ability to feel. If pins and parts are easier to grab and place, as is the case 

with NBR and mucin, performance will be quicker. 

External stimuli and temperature 

When gloves are contaminated with proteins, such as mucus, there is a greater risk of dexterity 

changes due to changes in feel and possible micro changes in the surface structure, as shown in the 

FTIR results. Perception of performance is also known to have an effect on dexterity (270). It has 

been shown in previous studies that performances are affected by an environmental stimulus. A 

review by Heus, Daanen, and Havenith (271) showed that both gross and fine finger dexterity is 

significantly reduced when the psychological effects of the cold are exerted onto the human body. 

More specifically when assessing effects of external stimuli on or around the hands, Maley, Minett, 

Bach, et al. (272) found that performance with the Purdue pegboard was significantly decreased 

when the arms of the participants were cooled to 10°C. However, Ray, Sanli, Brown, et al. (273) 

found little difference between dry hands and hands when wet or cold after completing the 

pegboard test. However, the study does show a decrease in performance when the hands are both 

wet and cold. It is possible these studies are measuring the effects of muscles constricting to 

preserve warmth. In this study,  warming of the hands (through the heated mucin) may have 
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improved gross dexterity with the NBR but decreased gross dexterity with the NRL gloves. An 

increase in dexterity as a function of increase in temperature has been shown previously by Chen, 

shih, and Chi (262), who showed a strong correlation between warm hands and an improved 

performance with the Purdue pegboard. As the gloves move, the protein will cool down over time, 

which will induce evaporation and different sensations on the hands. The cooling effect could be 

perceived differently through the materials, brought about by distinct interactions of the mucin with 

the glove, specific hand movements, film thicknesses, and heat transfer. It is possible the dexterity of 

the NRL was affected by the cooling action as the mucin was repelled, however the temperature was 

not checked over the course of the study. Much of the work conducted looking at the effects of 

external stimuli are centred around lighting and temperature, rather than something pressing 

against the hand or the sensations as something being exposed to the hands/evaporated. 

Protein conformational changes 

The mucin would have changed in viscosity due to the movement and differences in pressure being 

applied (235, 274), which would affect how the mucin feels when pins are being grabbed (i.e. a 

thicker formed mucoadhesive gel will change instinctive applied force, than a watery solution). 

Furthermore, the movements and airflow around the protein can cause differences in mucin interaction as 

well as the physical properties of the gloves. As the gloves move, the already decreasing temperature will 

be rapidly decreased further. Ligtenberg, Meuffels, and Veerman (275) shows that at a lower temperature 

the flow rate of saliva decreases, due to mucin aggregation and changes in protein conformation. Again, this 

would have an effect on the perception when participants grab the pins in the Pegboard test, and when 

holding the tweezers in the CSPDT. The results of dexterity tests, where changes are occurring over the 

course of the test, need to incorporate the psychological aspects of the perception of the task. It is 

proposed that as the NRL is generally tighter fitting to the hand, as observed in previous chapters (Chapters 

4, 6 and 7), the cooling effects as well as the changes in protein viscosity and conformation have a greater 

effect on the participants. This could be the reason for the increase in dexterity with the CSPDT, because of 

the more static position, the participants may not be feeling and responding to the changes over time.  

The changes in conformation of the protein may also be a reason for performance decrease in both 

gloves with the assembly tests. Excess mucin dropping off of the gloves into the washers appeared to be the 

greatest hurdle, as the washers stuck together and required separation. The mucin in this position would 

also pull the positively charged metal to the mucin, making separation of these washers slightly more 

difficult. This was more frequent in the NRL gloves, over the NBR, as more mucin ran off of the NRL gloves 

due to less mucin-glove interaction.  
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8.5.3 Friction and film formation 

 Purdue Pegboard 

Where mucin was present, it was noticed when participants had NBR gloves donned, users had 

difficulty trying to grab washers from the concave dishes. However, the difficulty was apparent when 

trying to grab all components when NRL was donned. The frictional properties of both the NRL and 

NBR gloves are shown in Figures 8.15 (a-b). These are taken from the friction obtained in Chapter 7 

(see Section 7.4.3), assessing friction with tool 7 (smooth steel), which is replicable of the surface of 

the pegboard pins, as discussed in Chapter 6. The CoFs decrease on average by around 0.19-0.28, across 

all loads, when mucin is applied to the NBR glove. When mucin is applied to NRL gloves, the friction 

decrease is greater. At the 1 N target load, the CoF decreased by 1.18, which then reduces to between 0.84 

and 0.89 across the loads. However, it does not appear that the mucin affected the frictional properties 

to the extent that many more pins were being dropped. Further work could be conducted to 

measure the loads used to grab the pins, in addition to further assessments of the dropping 

frequencies, in order to evaluate how the mucin may affect grip. It may be that the participants were 

likely experiencing difficulties in adjusting the grip to accommodate the changes in frictional properties. 

Thus, participants could have been taking longer to pick up the pins when the gloves are 

contaminated with the mucin. The higher affinity of mucin for the NBR gloves is aiding optimal 

friction and adhesion, allowing pins to be picked up more easily in the Purdue pegboard test. The 

protein conforming under a higher load over time as the water is pushed aside appears to decrease the 

friction in the NRL.  

 

 
Figure 8.15 (a-b). CoF of a) NBR and NBR with mucin; b) NRL and NRL with mucin on smooth steel 

across a 1-5 N target load range (as tested in Chapter 7). Error bars show standard deviation.  
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CSPDT 

When assessing fine dexterity in the CSPDT, it is shown that when mucin is present, there is an 

increase in dexterity with both glove materials. The NBR is shown to allow a much greater dexterity 

than the NRL when contaminated with mucin. It would appear in the fine dexterity, addition of the 

mucin causes an ‘optimum’ friction, due to the formation of a mucoadhesive film. This is aided by 

the static positioning of the thumb and proximal index finger skin/index finger pad, which would 

contain some mucin between the metal and the gloves. Under shear stress, this film formation 

prevents microslips through an increased adhesion (233, 250). However, the friction coefficient of 

the gloves when mucin is applied, is shown to be lower in Figure 8.16(a-b), which is reproduced from 

the results in Chapter 7 (see Section 7.3). It must be considered that the friction test was unlike the 

conditions used in the CSPDT, where the average elapsed time was around 3.5 minutes and there 

was some movement of the hand. In the friction tests the finger pad was placed onto tweezers and 

moved down after holding for a few seconds. Thus, it is unlikely a tribofilm had developed during the 

friction tests.  

 

Figure 8.16 (a-b). CoF of a) NBR and NBR with mucin; b) NRL and NRL with mucin on tweezers (tool 
5) across a 1-5 N target load range. Error bars show standard deviation. 

 
Thus, it is hypothesised that there is more affinity of mucin for both the NBR gloves and the metal, 

which is aiding friction by bringing the surfaces closer together, allowing pins to be picked up more 

easily in the Purdue Pegboard test. This allows for greater precision when completing the tasks. 

When applied to NRL, the mucin has less affinity for the surface and may be acting as a lubricant in 

the first instance, making the surfaces more slippery and harder to grip. However, over time, the 
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movement and change in force when grabbing pins/tweezers aided the thinning of the mucin 

viscosity, which would have contributed to changes in the mucin. The muco-adhesive film takes time 

to form and is not instantly apparent, as these tests were 30 seconds/1 minute, there may have not 

been enough time to allow development of this film. This hypothesis is also supported by the results 

of the CSPDT which shows that mucin improved dexterity to participants when wearing both glove 

materials. The static positioning of the finger and thumb used to hold the tweezers has allowed the 

formation of a thin muco-adhesive film, negating any microslips between the gloves and the metal. 

In conjunction with this, the tweezers had textured grooves on the surface to enhance grip. The 

mucin could have flowed into these and increased the contact area with the gloves, further 

increasing friction. 

8.5.4 Effects of mucin on sensitivity 

Mylon et al. (88) observed that NBR had a higher detection rate than NRL when compared to the 

bare hand, whereas this study presents an opposite result. The difference in participant number (32 

V.S 10) could be a reason for this difference. However, in the previous study by Mylon et al. (88) the 

thickness of the NBR gloves was less than that of the NRL (NRL= 0.123 mm, NBR= 0.074 mm). Thus, it 

could be argued that a better comparison can be drawn from this study, due to the gloves being of 

similar a thickness. Another reason could be the standardisation of finger orientation used in this 

test. In the previous study, participants were not instructed on how to place their fingers onto the 

test bed. Having the fingers flat would induce more accurate results through an increase in surface 

contact area, and participants are more inclined to feel the bumps through increased contact area 

and mechanoreceptor activation (276). When the gloves are dry, the gloves will deform to the bumps, 

increasing the likelihood of mechanoreceptors picking up the change in stimuli (264). In addition, the 

material stiffness may hinder the detection of the bumps. When the gloves are moving over the bump, 

there will be some minor pulling of the glove as it deforms, shown in Figure 8.17. In the stiffer NBR material, 

this effect will be lessened as the material is stiffer and will deform less (277). This has been explored and 

discussed in terms of asperity contact in Chapter 6. 

 

Direction of glove travel 

a) b) 
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Direction 

of finger 

travel 

Figure 8.17 (a-b). a) Materials pulling when deformed to elicit tactile sensation b) mucin allowing the 
material to glide over the bump. 

When mucin contaminates the NBR gloves, the affinity of the mucin for the glove will cause some tack as 

the mucin competes for interaction with the nylon and the gloves. This increases some adhesion of the 

mucin to the bumps over time, improving detection rate of the bumps. However, the mucin did not allow 

for better sensitivity beyond the limit of detection of the dry gloves in the NBR – both conditions had a 

detection limit of 280 µm. When mucin is present on the NRL gloves, only weak interactions hold the 

substance to the surface. Therefore, when in contact with the test bed, the mucin will run off the NRL and 

cause flooding around the bumps. This separates the two surfaces, causing a decrease in detection, as seen 

in Figure 8.17. However, it is possible there is also development of a tribofilm, as seen with the metal pins. 

As the finger is run down the test bed, the mucin will change due to motion, pressure, and temperature 

changes. It is possible that due to the interaction with the NRL, the mucin is pushed out at the start of the 

test, but as the finger runs down the column, less mucin is present. Also, the participants ran their fingers 

from side-side and up and down to determine the bumps. As this movement occurs the mucin will 

experience shear thinning (278). This has the potential to increase the rate of tribofilm development, due to 

less solution presence and more water evaporation, as in Figure 8.18. This could also be the reason for a 

loss of detection when mucin is added to the NRL, as many of the smaller bumps felt by participants, when 

wearing the dry NRL are at the top half of the board. In the NBR, the low tack film will be established earlier 

as the mucin binds to the gloves, causing some possible stick-slip with the bumps, enhancing the detection 

rate. 

 

 

 

 

 

 

 

 
Figure 8.18. Representation of the mucin quantity of NRL on the bumps test board. 
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8.5.5 Significance of findings 

A summary table (Table 8.3) is provided to show the implications of contaminating gloves, and their 

effects on performance.  

Table 8.3. Performance of mucin contaminated glove performance when compared to the dry 
condition.  

 Glove material 

Test NBR NRL 

Gross dexterity Increase Decrease 

Fine dexterity Increase Increase 

Sensitivity Increase Decrease 

 

In Chapter 7 it was shown that contaminants, such as mucin, affected the frictional properties of the 

gloves. This was expected, due to the addition of a substance that would act to serve as a lubricant, 

lowering friction. This chapter has further shown the implications of that change in friction. By 

lowering friction vastly, as observed with the NRL gloves, the detriment to gross dexterity is 

apparent. In addition, the contaminated gloves are shown to decrease the sensitivity in NRL gloves, 

which may lead to sensitivity issues, which could lead to missed lumps, small lacerations, and 

damage to the skin (13). The impact of the contaminants on the NBR gloves, however, are shown to 

be beneficial, increasing dexterity and sensitivity, in this case. This would suggest that, of the two 

most common materials, the NBR material is a better selection for glove users, particularly in the 

medical field. However, this must be interpreted with some caution. Whilst the NBR shows an 

improvement over the dry condition, and the NRL, in this work, it has only been conducted on one 

type of NBR glove. It may be the case that gloves which have been subjected to a different surface 

finishing (such as silica dipping), will have a different surface chemistry, and therefore a different 

chemical reaction to the contamination.  

8.6 Conclusions 

The findings of this chapter are as follows: 

• The mucin contaminant has been shown to affect both the performance measures of 

sensitivity and dexterity. Through different interactions, the results exhibited are different 

between the materials.  
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• Mucin has a greater affinity for the NBR gloves due to the polarity, leading to mucin-NBR 

interaction. On the other hand, the NRL gloves will repel the mucin through hydrophobic 

mechanisms and exhibit less interaction. 

• When contaminated, the NRL gloves show a severe reduction in friction and a decreased 

gross dexterity and sensitivity. NBR on the other hand, shows a smaller, but significant, 

decrease in friction but an increase in performance. The development of the protein film, 

however, has aided performance in the CSPDT by the way of adhesion, circumventing any 

micro-slips between the glove and the tweezers, improving dexterity with both glove 

materials.  

• The chapter has overall shown that contaminants affect performance when medical 

examination gloves are worn. If the contaminants are decreasing performance, as seen in 

the NRL, then the effects could be potentially detrimental to the medical practice. On the 

other hand, if there is an improvement, then understanding how the gloves are improved, 

and with what particular glove films, could aid the market targeting of gloves for specific 

use. 
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Chapter Nine: Blood friction and synthetic development 

In Chapter 7, it was shown that contaminants have a varied affinity, and reaction, to the different 

glove materials. However, in Chapter 3, the respondents to the questionnaire demonstrated that 

blood is the most frequent contaminant to contact the gloves, at least in a medical setting. This was 

not used as a contaminant in the previous chapter due to the availability and shelf life of blood. 

Therefore, this chapter will explore the use of blood in assessing how the friction of medical 

examination gloves can be modified upon exposure (232). This chapter closely relates to the 

frictional tasks carried out in Chapter 7. As blood is the most commonly contacted biological fluid, as 

discovered in the questionnaire in Chapter 3, assessing frictional modifications of gloves is important 

for understanding the conditions gloves are used in (6). To circumvent the storage and ethical issues 

there is a need for a synthetic blood for use in future studies, in order to allow this to be replicable in 

industrial settings. Thus, this chapter of the thesis focuses on the development of a representative 

synthetic blood which may be used in industry to assess friction modification.  

9.1 Introduction 

Blood characterisation 

Blood is a liquid connective tissue which is comprised of red blood cells (erythrocytes), white blood 

cells (leukocytes), fragmented cells known as blood platelets (thrombocytes), and an extracellular 

matrix, which is often referred to as plasma (279). The plasma is composed mostly of water, which 

helps with the suspension of ions, proteins, and nutrients in the blood matrix. Blood tissue which 

contains all of the plasma and cell components is known as ‘whole blood’ (280). The viscosity of 

whole blood is found to be between the range of 1.38 and 5.84 mPa-s at 37°C (281–285), with most 

of those studies placing the viscosity in the 3-4 mPa-s range. However, most of these studies mixed 

anticoagulants into the blood, most commonly ethylenediamine tetraacetic acid (EDTA) to prevent 

clotting. Although only a small amount is added (around 2µl per ml), there is a change in the way the 

blood behaves and reacts. This is because EDTA works by chelating (removing) the calcium ions to 

prevent any cross-binding in the blood, which prevents clotting. Mayer and Kiss (285) have shown 

that anticoagulants added to the blood do give a small change in the viscosity. Blood was measured 

at a viscosity of 3.54 mPa-s at 37°c, which, on average, dropped to 3.40 mPa-s when EDTA was 

added. Reuf, Gehm, Gehm, et al. (284) made similar findings to this. Citrate can also be added 

instead of EDTA, however, this does not bind as strongly to the calcium-blood complex as EDTA, thus 

can be reversed with the addition of calcium. This is a much more complex method, as the citrate 

needs to be added at the correct concentration and volume in order to prevent coagulation (286). 

Several studies have also reported variations in the density of whole blood. Vitello, Ripper, 
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Fettiplace, et al. (287) states the density of blood is measured to be around 1043-1060 kg/m3. 

Whereas Benson (288) states the density is between 1025 and 1125kg/m3. Most of the published 

studies place the density of whole blood between 1025 and 1060 kg/m3 (287, 289–293).  

Synthetic bloods 

To better study how fluids, such as blood, affect glove material performance there is a requirement 

for the development of a synthetic blood. This is to avoid the issues with storage and ethical queries 

regarding using blood in research practice. Much of the research around synthetic bloods created in 

the literature are based on matching the viscosity of whole blood. Where studies using bloods are 

published, they use whole bovine, porcine, ovine, or equine blood (294). This is because the physical 

properties of the animal blood are similar to those of whole human blood. In order to assess the 

effect of blood on glove performance whole blood is required, as this is the blood which is most 

likely to be contacted. Blood which has been separated into cells and plasma could also contaminate 

gloves, such as that in a medical laboratory setting. Although, in more emergency clinical 

applications, whole blood is most likely present. The likelihood of developing a fluid that acts exactly 

like whole blood in terms of behaviour out of the body and chemical reactivity is low, due to the 

variety of biological compounds constructing the tissue. Existing synthetic bloods are separated into 

two areas; one of which is the medical use, focusing on the ability of oxygen to readily bind and 

unbind as required (280). The second is for scientific study, mostly concerning forensics, such as 

blood spatter and use for medical research regarding equipment and flow (295). These materials are 

developed to mimic a specific characteristic of blood, primarily viscosity, none of which look at the 

frictional properties or interactions with medical gloves.  

9.2 Aim and Objectives 

There are two aims to this chapter. The first aim is to identify if the presence of blood affects the 

frictional properties of NBR and NRL gloves. This allows for a fundamental understanding how blood 

interacts with the different glove materials, allowing an assessment of how friction is modified, 

much like in Chapter 7. A previous study looking at the friction of medical gloves with blood (116) did 

not state the nature of the blood which was used, nor whether the blood had been treated (e.g. 

whole blood, fresh, or any if any anti-coagulants were present). In an ideal setting, the blood would 

be drawn fresh, just before the frictional analysis is conducted. However, to get fresh whole blood, 

without an anti-coagulant is difficult due to the rapid coagulative nature of the blood (296, 297). To 

circumvent this coagulation, as mentioned, anticoagulants are normally used.  
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The second aim of this study is to develop a synthetic blood which may be used for future 

studies regarding friction. As blood is contacted in various stages of the drying properties (fresh, 

gelled, and dried) there are challenges with mimicking the properties of these. This work will focus 

on creating a synthetic blood which is fresh (i.e. still wet without drying). In a medical situation, this 

will be more representative of the blood exposed to during minor medical procedures. A variation of 

sugars, stabilisers and proteins, which have been used previously to make bloods of varying 

viscosities (295), and are easily obtainable and require little storage issues, were selected. 

Comparisons will be drawn between the friction coefficients of the blood and the friction obtained 

from the synthetics in order to assess if blood can be removed from future studies of this ilk. By 

removing the tissue, this allows industries to assess frictional behaviour modification of a common 

contaminant, without the need for safe storage, considerations for shelf life and ethics, or concerns 

around disposal of materials.  

9.3 Materials and methodology 

Ethical approval was received by the Research Ethics Committee of the Department of Mechanical 

Engineering, University of Sheffield (No 022733 and 022735).  

9.3.1. Glove Materials  

The NRL gloves were branded ‘Safetouch’ and the NBR gloves were provided by Synthomer. These 

materials were the same as those used in Chapter 7 and 8, regarding contaminated glove friction 

and effects on user performance. 

9.3.2 Blood 

Whole ovine blood was used with a citrate anti-coagulant added for this study. The blood used was 

also compared to that of the fresh, whole human blood for contact angle analysis and FTIR. This was 

to assess whether the initial behaviour and interaction with the different materials is the same 

between the two tissues. If the behaviour is shown to be similar, this would give the further 

validation to using a blood which has anti-coagulants present for future tests. 

Whole blood 

For the whole blood comparison, blood was drawn from the finger of one participant, (male, 28) 

using an Abbott lancet kit, as seen in Figure 9.1(a). This kit consists of a spring-loaded lancet device 

(10 × 1.2 cm) which is loaded with a lancet needle (0.3 cm). This is placed over the fingertips and the 

button forces the lancet to pierce the skin to the depth of a few mm, drawing blood, as shown in 

Figure 9.1 (b).  
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Figure 9.1 (a-b). a) Lancing device with protective head detached to reveal the lancet; b) blood 
drawn from finger after pricking with the lancet device. 

 

Ovine blood 

Whole ovine blood was purchased commercially, with a sodium citrate anticoagulant added. This 

was stored in the fridge when not in use as to prevent warming. When in use, the blood was heated 

to 36-37°C in a water bath to get to physiological temperature, which is the temperature in which 

fresh blood is most likely to come into contact with the gloves.  

9.3.3 Synthetic blood development 

Solutions were made up using methods from previously published literature looking at viscosity and 

flow (295). For industry, the materials used in this study are easy to obtain, with little concern 

regarding storage. There are many variations of synthetic bloods in the literature and available to 

purchase commercially, however by creating variations of blood materials already tested for 

viscosity, the study can easily assess which synthetic solution gives similar friction properties to that 

of real whole blood. Slight variations have been made to those proposed by Millington (295) based 

on availability of materials, viscosity of materials, and use of stabilising solutions to prevent mould 

growth over time. Some of the constituents were used which have a similar nature to the chemicals 

used by Millington (295), and the volumes adjusted accordingly. Synthetic blood solutions (SB) were 

created consisting of variations of: 

• Glucose syrup (Lyons) 

• Glucose anhydride (α-D-Glucose, Boots)  

• Glycerol (100%, Value Health)  

Lancet 

a) b) Protective 

Head 
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• Flour (plain, BeeRo) 

• Methyl cellulose (Sigma Aldrich) 

• Porcine gastric mucin (Sigma-Aldrich, Type II, unpurified) 

• Sodium chloride (Sigma-Aldrich) 

All materials were purchased commercially. Red food colouring was also added to the solutions for 

aesthetic reasons, as well as adding colour to visually see the solutions on the gloves, as many were 

colourless. The solutions were made up in accordance with the differences in their properties (some 

solutions contained more agents which thickened the solutions or made them waterier). The 

solutions were mixed together into a beaker, poured into sealed containers, and stored at room 

temperature in a dark and dry area. A total of 7 solutions were developed, via mixing the ingredients 

shown in Table 9.1. Solutions 1-3 were made in the first instance, with the proceeding solutions 

being created based on the observations made from the initial material characteristic testing. 

 

Table 9.1. Constituents of the SB solutions 

 Solution 

Ingredient SB1 SB2 SB3 SB4 SB5 SB6 SB7 

Glucose syrup (g) 2.25  3.75 0.25 2.25 

½ of SB1 ¼ of SB1 

Methyl cellulose 
(g) 

1.25    0.2 

Sodium chloride 
(g) 

0.25  0.25 0.25 0.25 

Glycerol (ml) 1.5   0.25 1 

Plain flour (g)  7.85  3.75  

Glucose anhydride 
(g) 

 1   1.4 

Porcine gastric 
mucin (Type II) (g) 

 0.15    

DI water (ml) 44.5 30 20 44 20 40 40 

Food colouring 
(ml) 

0.5 4 0.5 2 2   

 

9.3.4 Properties of blood and synthetics 

Density 

The density of the SB solutions, and the ovine blood, were calculated using the method described in 

Chapter 7 (Section 7.3.5). Density was measured by weighing 1 ml of each solution (Analytical 

Sartorius, ±0.0001 g). The density was then determined using equation 7.2. This test was repeated 

three times for each of the solutions.  
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Viscosity 

To measure the viscosity of the SB solutions and the ovine blood, 10 ml of each solution was 

measured with a vibro-viscometer (AND, SV-1A, ±0.01 mPa-s.), discussed in Chapter 7 (see Section  

7.3.2). Each solution was measured three times to obtain an average viscosity. Each sample was 

shaken for one minute, before filling the sample well, to disperse colloidal suspensions and induce 

homogeneity.  

 

pH measurement 

The pH of the developed SB was monitored using HANNA benchtop pH meter (HI-2211, ±0.01 pH). 

The glass probe was inserted into each solution and left to reach a pH balance reading, which was 

then recorded. This test was conducted only once due to the high sensitivity and availability of the 

equipment.  

 

9.3.5 Contact angles 

Contact angles were measured to compare the surface interaction of the SBs, and both the fresh 

whole blood, and the anti-coagulated ovine blood. Sections of the NBR and NRL gloves were cut off 

and placed onto the stretching device used in Chapter 4 (Section 4.3.1) to flatten the material and 

secure it in place. Contact angles were measured via a contact angle goniometer (ramé-hart, model 

100-06) using the sessile drop method used in Chapter 4 (Section 4.3.1). The previous work also 

showed that the contact angle is unaffected by the strain of the material. Thus, the material was 

studied in the ‘unstrained’ condition.  

9.3.6 FTIR 

FTIR (described in Chapter 5, Section 5.3.1) was used to assess whether binding to the gloves was 

similar between the ovine and the whole blood samples. Whole human blood (0.4 ml, acquired by 

the lancing device in Figure 9.1), and ovine blood (0.4 ml) was syringed onto the NRL and NBR gloves, 

separately (4 samples in total). The samples were left to dry for 30 minutes before washing the 

solutions in DI water. The gloves were then scanned on the FTIR (Thermo Scientific, Nicolet iS5) in 

the 4000-600 cm-1 region with a scanning resolution of 4cm-1. Three samples of each glove and each 

blood source were obtained (12 scans in total).  
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9.3.7 Friction measurements 

Anwer (116) previously analysed the friction coefficients of blood on a scalpel handle with a serrated 

surface on both the flat and serrated section. However, scalpels come with a variety of serrated 

patterns. In many cases, these patterns contain large areas of smoother material where fingers are 

placed. Therefore, for consistency and comparison to the previous work conducted in this thesis, the 

friction was measured using a polished steel strip, which was used to represent smooth metal in the 

medical profession (bedpans, smooth medical tools, trolleys etc.) and the pegboard pins in Chapters 

6 and 8.  

As with the previous tests (see Chapter 6 and 7), the gloved index finger pad of the sole 

participant (male, aged 28) was placed onto the metal strip (attached to the AMTI force plate using 

double sided tape) at a 40° angle. The finger was held for 2-3 seconds at the desired force before it 

was moved down the strip. The forces used were chosen based on the grasping forces discussed and 

used in previous chapters, with target loads of 1, 2, 3, 4 and 5 N (189). The static friction was 

assessed for this work, as this is considered more relevant to studies of this ilk with medical 

examination gloves (114, 116). The friction assessments were carried out on the ovine blood and the 

synthetic bloods only. The fresh blood volume obtained from the lancing device was not enough to 

carry out frictional assessments, as previously stated. 

Blood and SB deposition 

Contaminants were deposited in the same manner as in Chapter 7, whereby the finger was placed 

into the solution, up to the proximal-intermediate interphalangeal joint, for 10 seconds (Figure 9.2). 

Prior to putting the finger into the glove, the glove was ensured to fit around the finger, meaning no 

loose material was present. The finger was then removed, the excess shaken off and the friction 

analysis conducted. All contaminants were tested at room temperature (23.1-24.8°C), with the 

exception of the blood, which was heated to physiological temperature 37°C (±1.5) via a water bath 

and monitored with an infrared thermometer (Raytek, RSCMTFSU ±0.5°C).  
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Figure 9.2. Application of solutions to the glove materials 

Weight deposited 

The mass transfer of blood was measured by analysing the weight transferred to the glove. The 

gloves were weighed using a 5 point balance (Analytical Sartorius ±0.0001 g) and then the blood was 

applied following the application method. The gloves were then weighed again to determine the 

mass. Three of each glove were assessed with each SB and the ovine blood. As is visible from the 

image in Figure 9.3, the distribution of blood onto the glove is not homogenous, i.e. the blood pools 

in some areas and is thinner in others. Therefore, the film thickness has not been calculated (as in 

Chapter 7) due to the visually uneven dispersion. 

 

Figure 9.3. Blood deposited onto the finger 

 

Temperature changes 

As with the mucin in Chapter 7, the blood was measured for changes in temperature when removed 

from the water bath once transferred to the finger. This was measured five times to obtain an 

average. The temperature was found to drop to an average of 34.6 (±0.32) °C. As with the mucin 

used previously in Chapters 7 and 8, the proteins in blood are sensitive to heat and the interactions 

with their surroundings (290, 296, 298). Thus heating beyond physiological temperature may have 
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changed some of these interactions with the glove materials, leading to differences in bonding, 

triboelectric interactions, and drying properties (299). Furthermore, in scenarios where blood has 

contaminated medical examination gloves, the blood has usually already left the body. Thus, it will 

have dropped in temperature, as seen in this study, whereas the physiological temperature would 

be more appropriate to maintain when assessing surgical gloves, as the gloves are likely to be in a 

more temperature regulated and controlled environment. 

Drying 

In order to assess the drying efficacy, 0.5 ml of blood was syringed onto sections (approx. 5.0 × 5.0 

cm) of the glove materials and rubbed with the syringe to spread the sample. This was weighed and 

then left to dry on the weighing scales (Analytical Sartorius ±0.0001 g), with the weight taken every 

30 seconds to assess the drying time over 5 minutes. This was carried out 5 times for each material. 

9.3.8. Statistical analysis 

In order to assess the similarities of each synthetic sample to the ovine blood, two-tailed paired t-

tests were performed on the CoFs at each of the target loads (300). The null hypothesis states that 

no differences exist between the SB and the blood. Therefore, a p-value greater than .05 shows that 

there is no evidence of a difference between the SB friction and the whole ovine blood. T-tests were 

also carried out on the contact angles of human blood and ovine blood to assess how similar the 

initial contact behaviour is between the two.  

 

9.4 Results 

9.4.1 FTIR 

The spectra of the human and ovine bloods are shown in Figure 9.4 with NBR and Figure 9.5 with 

NRL. As is visible there are changes present to the spectra between the clean, uncontaminated NBR 

and the blood contaminated NBR. Major changes to functional groups and peak absorbances have 

been highlighted on both figures. There are some minor absorbance differences between the two 

blood types on both glove materials, but the results show very similar spectral patterns, indicating 

that in both materials, similar changes also occur. When blood is present in both glove materials the 

amide (NH) peaks around 6340-6390 cm-1 disappear, and a stronger presence of the hydroxyl (OH) is 

noted in the broad peaks at 3500-3150 cm-1. A carbonyl (C=O)/Diene (C=C) peak is also present when 

blood has contaminated the surface of both materials at around 1650 cm-1. The presence of two 

peaks at 1575-1540 cm-1 indicates amide C=C stretching. However, this noticeably then becomes one 

peak when contaminated with blood, indicating the presence of a carboxylate (COO-) around the 
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1540 cm-1 wavelength. The final major peak change is seen with the dissolution of the ester C-O-R) 

stretching/Aliphatic amine (C-N) peaks present around the 1052-1010 cm-1 region when the gloves 

are contaminated with blood (209, 210, 265). The peaks present around the 2360-2340 cm-1 region 

indicate the presence of CO2 in the atmosphere and are not regarded as changes to the surface in 

these results. The changes in spectra show that blood has either bound to the surface chemically or 

chemically modified the surface. After washing both of the materials, the gloves were found to have 

discoloured, thus it is likely that blood has bound to the surface and cannot be washed off.  

 

Figure 9.4. FTIR spectra of the NBR gloves and gloves contaminated with ovine and human blood 

 

Figure 9.5. FTIR spectra of the NRL gloves and gloves contaminated with ovine and human blood 

 



241 
 

9.4.2 Material characterisation 

The first SB formed (SB1) formed a rigid gel-like substance. This rendered the material unusable for 

the purposes of this experiment, thus no testing has occurred using SB1. However, the substance 

was further diluted to make a 6th and 7th synthetic blood (SB6 and SB7), as described in the 

methodology (Table 9.1). The overall results of the density measurements, pH, and contact angles 

are shown in Table 9.2. As can be seen similar results are observed for the pH of the solutions. 

Putting them in the neutral range, with slightly basic properties, which is similar to that observed 

with the blood.  

Table 9.2. Properties of the synthetic bloods and blood. Red cells indicate the results that are not 
close to blood. Amber indicates results which are close to that of blood, and green indicates little to 
no difference with blood.  

Solution pH 
𝝆 

(kg/m3) 
η 

(mPa-s) 
Contact Angle (°) 

NBR NRL 

SB1 7.19 Solution formed a thick gel – unsuitable for further testing 

SB2 7.27 
1071.90 
(±1.32) 

6.49 
(±0.03) 

42.67 
(±8.74) 

135.67 
(±10.26) 

SB3 7.29 
1010.99 
(±0.37) 

1.45 
(±0.03) 

43.00 
(±10.15) 

107.67 
(±6.11) 

SB4 7.25 
1031.85 
(±0.17) 

1.18 
(±0.01) 

26.33 
(±2.08) 

122.33 
(±4.36) 

SB5 7.32 
1043.62 
(±2.47) 

3.67 
(±0.00) 

43.67 
(±1.53) 

97.00 
(±3.06) 

SB6 7.29 
1035.57 
(±0.17) 

3.45 
(±0.04) 

37.33 
(±7.57) 

125.00 
(±12.53) 

SB7 7.22 
1030.51 
(±0.11) 

2.98 
(±0.01) 

33.00 
(±2.65) 

102.90 
(±6.28) 

Whole Ovine Blood Δ 7.31 
1052.38 
(±2.15) 

3.38 
(±0.00) 

32.00 
(±4.92) 

95.00 
(±9.18) 

Whole Human Blood 7.35-7.45* 1025-1060* 3.00-4.00* 
33.00 

(±2.65) 
92.00 

(±11.87) 

Δ = testing carried out at 37°C. ± indicates standard deviation. *averages obtained from literature 

Density 

The density of each of the samples is shown in Figure 9.6. The results show that SB2 (ρ= 1071.90 ± 

0.17 kg/m3) and SB3 (ρ= 1010.99 ± 0.37 kg/m3) do not fit into the density range of the blood 

provided in the literature (shown in faded red on Figure 9.6). However, there is little variation in the 

density between the SB4, SB6, and SB7. The closest match of density to the ovine blood is SB5, 

which is also the only SB to have no significant difference to the blood following a paired t-test 

(t(2)=-1.010, p=.158, Table 9.3).  
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Figure 9.6. Density of synthetic bloods and ovine blood. Opaque red band indicates density range of 
whole human blood in the literature. Error bars denote standard deviation. 

 
Table 9.3. Paired t-tests, comparing the developed SB to the measured ovine density. 

Sample  t-test 

SB2 
t(2)=8.149 

p=.001* 

SB3 
t(2)=-20.990 

p=<.001* 

SB4 
t(2)=-9.837 

p=.006* 

SB5 
t(2)=-1.010 

p=.158* 

SB6 
t(2)=-7.626 
p=<.001* 

SB7 
t(2)=-10.740 

p=.001* 

*indicates statistically significant differences (p<.05) 

Viscosity 

The viscosities between the solutions have some differences (Figure 9.7). The solutions range from 

6.49 to 1.18 mPa-s within a temperature range between 23.1-23.5°C. The results indicate that SB2 is 

the most viscous of the solutions at 6.45 (±0.03) mPa-s. This is likely due to the amount of flour 

present in the solution. The samples were homogenised by mixing/shaking. However, in this 

solution, it was found that the suspended flour quickly settled to the bottom of the mixture. The 

average reported viscosity of whole blood is reported to be between 3-4 mPa-s, which is highlighted 

on the graph in Figure 9.7. Only SB5 (3.67 ±0.00 mPa-s) and SB6 (3.45 ±0.04 mPa-s) fall into the 
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average viscosity range of blood, whilst SB7 is on the verge at 2.98 mPa-s (±0.01). Although, none of 

the viscosities measured show statistical similarities to the ovine blood, SB5, SB6 and SB7 all show 

similar results to the ovine blood (p<.05, Table 9.4). 

 
Figure 9.7. Viscosity of synthetic bloods and ovine blood. Opaque red band indicates viscosity range 

of blood in the literature. Error bars denote standard deviation. 
 

Table 9.4. Paired t-tests, comparing the developed SB to the measured ovine viscosities. 

Sample  t-test 

SB2 
t(2)=-230.409 

p=<.001* 

SB3 
t(2)=140.750 

p=<.001* 

SB4 
t(2)=288.900 

p=<.001* 

SB5 
t(2)=-37.123 

p=<.001* 

SB6 
t(2)=-7.506 

p=.016* 

SB7 
t(2)=40.442 

p=.001* 

* indicates statistically significant differences (p<.05) 

Contact angles 

The results for contact angles with the SB, ovine and human blood are shown in Figure 9.8. When whole 

human blood was exposed to the NBR surface, there is a good surface wettability with an average contact 

angle of 32.78° (±1.79). An example of SB4 in contact with the NBR is shown in Figure 9.9 (a). When in 

contact with NRL, there is a lower surface wettability with an angle of 92.0° (±11.87). An example of SB5 in 

contact with the NRL is shown in Figure 9.9 (b). The results obtained from the ovine blood have similar 

contact angles, and no statistically significant differences are shown between the two samples with human 
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blood (NRL t(2)=0.451, p=.949 ; NBR t(2)=0.707, p=.816). The SBs show similarities through their results in 

the NBR samples, with the exception of SB4 which has a lower contact angle on average (26.3° (±2.08)). As 

this solution contains flour, the solution has become colloidal, with suspended particulates of flour, 

this could affect the contact angle of the solution with the gloves. However, SB2 contains more flour 

than SB4, but does not exhibit the same behaviour. When applied to NBR, SB4 and SB7 have a 

similar contact angles to real blood at 33.0° (±4.92). When applied to NRL, SB5 (97.00° (±9.18) and 

SB7 (102.90° (±6.28)) have similar contact angles to ovine blood at 95.00° (±9.18). Paired t-tests 

show no statistical differences to any of the contact angles with the ovine blood for both materials 

(p>.05, Table 9.5). However, a significant difference is found between SB5 (43.66°) and the ovine 

blood in the NBR material (t(2)=-6.407, p=.007). 

 

 
Figure 9.8. Contact angles of synthetic bloods, ovine blood, and human blood. Error bars denote 

standard deviation. 
 

 
Figure 9.9 (a-b). Contact angles of a) NBR and b) NRL. The lower contact angle in NBR indicates a 

surface with hydrophilic properties whilst the NRL indicates hydrophobic with high contact angles, as 

observed with all of the synthetic bloods. 
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Table 9.5. Paired t-tests, comparing the developed SB to the measured ovine contact angles as well 
as comparing the human to the ovine blood. 

Sample  
Glove t-test 

NBR NRL 

SB2 
t(2)=-1.834 

 p=.279 
t(2)=-3.919  

p=.055 

SB3 
t(2)=-1.651 

p=.161 
t(2)=-0.841  

p=.551 

SB4 
t(2)=-1.546  

p=.135 
t(2)=-6.146  

p=.042 

SB5 
t(2)=-6.407  

p=.007* 
t(2)=-2.377  

p=.134 

SB6 
t(2)=-0.935  

p=.520 
t(2)=-2.284  

p=.134 

SB7 
t(2)=-0.621 

 p=.686 
t(2)=-1.011  

p=.992 

Human blood 
t(2)=0.707  

p=.816 
t(2)=0.451  

p=.949 

*indicates statistically significant differences 

Deposited material 

The amount of each SB and blood deposited onto both glove materials, following the application 

method, is shown in Figure 9.10. Similar amounts of the blood and SB’s are deposited onto both of 

the glove materials. NRL is shown to have slightly less of each solution transferred to the gloves, 

which was also noted in Chapter 7 and 8. The average amount deposited for all SBs onto the NBR is 

0.101 (±0.006) g, whereas the NRL was found to have 0.089 (±0.008) g deposited. The largest noted 

difference between the two materials is with SB4. As SB4 was a suspension of flour in a sugar 

solution, this could have been due to the amount of flour getting stuck to the glove material. In the 

NBR, 0.097 (±0.005) g was found to stick to the glove, whereas 0.076 (±0.012) g was found on the 

NBR. More ovine blood was also found on the NBR (0.090 (±0.01) g) when compared to the NRL 

(0.073 (±0.004) g). Statistically significant differences are not found between the weight of blood and 

the weight of solutions SB4, SB5, SB6, and SB7 when on the NBR material (p>.05, Table 9.6). SB4 

shows no statistically significant difference to the blood deposition when on the NRL (t(2)=0.561, 

p=.494). 
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Figure 9.10. Amount of SB, and blood deposited onto the NBR and NRL glove materials. Error bars 

denote standard deviation. 
 

Table 9.6. Paired t-tests results of weight deposition between ovine blood and each synthetic blood. 

Sample 
Glove t-test 

NBR NRL 

SB2 
t(2)=-3.595  

p=.024* 
t(2)=-4.627 

p=.013* 

SB3 
t(2)=-3.211  

p=.032* 
t(2)=-5.208 

p=.002* 

SB4 
t(2)=-1.383  

p=.282 
t(2)=-0.561  

p=.494 

SB5 
t(2)=-1.018 

p=.452 
t(2)=-3.736  

p=.001* 

SB6 
t(2)=-1.174  

p=.365 
t(2)=-5.476  

p=.003* 

SB7 
t(2)=-2.264  

p=.168 
t(2)=-4.477  

p=.020* 

*indicates statistically significant differences 

 

Drying 

The results of blood drying show similar rates of evaporation for each of the materials (Figure 9.11), 

with the NBR having a slightly higher evaporation rate than the NRL. On average, the NBR has a 

weight loss of 0.06412 (±0.00199) g every 30 seconds, whereas the NRL lost an average of 0.05429 

(±0.00123) g every 30 seconds.  
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Figure 9.11. Evaporation of blood from the surface of the NRL and NBR materials 
 

9.4.3 Friction  

Resultant horizontal force and power fit laws were fitted to the data, and CoFs were calculated as 

per the preceding chapters in this thesis, using the equations in Chapter 4 (see equations 4.2-4.4) 

9.4.3.1 NBR 

Blood 

An example of the raw data for the NBR with blood is shown in Figure 9.12. The friction results 

obtained from the uncontaminated NBR gloves are shown in Figures 9.13 (a-b) along with the blood 

contaminated glove friction. The addition of blood produces lower CoFs than for the dry condition. 

When contaminated, the behaviour is similar to the dry condition across the loads, as the CoF ranges 

between 0.72-0.67. The dry condition does, however, show a slight trend of increasing CoF as the 

load increases, which does not occur when the gloves are contaminated with the ovine blood (µ 

ranges 1.10-1.01 when dry). The decrease in friction is significantly different across each load 

following paired t-tests (1N t(2)=3.318, p=.081; 2N t(2)=0.917, p=.935; 3N t(2)=-2.553, p=.125; 4N 

t(2)=-2.886, p=.102; 5N t(2)=0.934, p=.449).  
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Figure 9.12. Normal and Horizontal force of the NBR glove contaminated with ovine blood at the 4 N 

target load on smooth steel.  

 

 

Figure 9.13 (a-b). Static friction (a) and CoFs (b) for dry NBR gloves and NBR gloves when 
contaminated with ovine blood on smooth steel. Error bars denote standard deviation. 

 

Synthetic validation 

The static friction of the NBR gloves when contaminated with the SB’s and the ovine blood are 

shown in Figure 9.14 (a-b). SB3 has a consistently higher CoF on average across all of the loads when 

compared to the ovine blood sample. SB6 is higher at the 1 N load, and then lower as the load 

increases. SB5 and SB6 show similar trends in decreasing CoF over the increased load, whereas SB2 

is the only solution which is shown to increase CoF over the load range. The CoF of SB4 also 

increases, however there is a decrease in CoF initially (1 N µ= 0.79 ±0.02; 3 N µ= 0.52 ±0.01; 5 N µ= 

0.66 ±0.01). At the 1 N load SB4 (µ= 0.79 ±0.02) and SB7 (µ= 0.75 ±0.01) produce similar CoFs to the 

ovine blood (µ= 0.73 ±0.02). SB7 has similar CoFs to the ovine blood, exhibiting little friction 
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differences across the range of loads. Due to the similarity in results, only SB7 has been tested for 

statistical significance (Table 9.7). The t-tests shows no significant differences between the blood 

and SB7, indicating similar CoFs at each of the target loads.  

 
Figure 9.14 (a-b). Static friction (a) and CoFs (b) for dry NBR gloves when contaminated with 

synthetic bloods and ovine blood. Error bars denote standard deviation. 
 

 
Table 9.7. Static CoFs obtained from SB7 and whole ovine blood with paired t-test results with NBR 

contaminated gloves. 

SB7 Blood 
CoF t-test 

Load (N) CoF  Load (N) CoF  

1.04 
(±0.04) 

0.75 
(±0.02) 

1.03 
(±0.07) 

0.73 
(±0.01) 

t(2)=0.142 
p=.901 

2.14 
(±0.04) 

0.68 
(±0.04) 

1.99 
(±0.14) 

0.69 
(±0.01) 

t(2)=1.634 
p=.243 

3.04 
(±0.01) 

0.67 
(±0.01) 

3.28 
(±0.10) 

0.68 
(±0.01) 

t(2)=-3.745 
p=.065 

4.09 
(±0.07) 

0.67 
(±0.07) 

4.19 
(±0.06) 

0.69 
(±0.01) 

t(2)=0.967 
p=.436 

5.31 
(±0.11) 

0.68 
(±0.09) 

5.15 
(±0.04) 

0.70 
(±0.02) 

t(2)=2.702 
p=.114 

± denotes standard deviation 

 

The 1N force is the force most observed with grasping and holding equipment lightly, therefore it 

could be considered more important that the friction at the 1N force needs to be similar between 

the synthetic and the blood (218). Figure 9.15 highlights the similarity in friction between SB7 and 

the ovine blood at the 1N target load. No statistical difference is found between the CoFs with SB7 
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showing a CoF of 0.75 (±0.01) and blood showing a CoF of 0.73 (±0.02). As shown in Table 9.7, the 

results are statistically similar following a paired t-test (t(2)=0.142, p=.901).  

 
Figure 9.15. Comparison of the Static CoF at the 1 N target load for SB7 and ovine blood. Error bars 

denote standard deviation.  
 
 

9.4.3.2 NRL 

Blood 

An example of the raw data for the NBR with blood is shown in Figure 9.16. The results comparing 

the dry NRL to the blood contaminated NRL are shown in Figure 9.17 (a-b). As with the NBR, the NRL 

is shown to decrease in friction. However, the decrease is far greater than observed in the NBR. This 

was also noted with the mucin protein used in Chapter 7. When blood is applied, the CoF is shown to 

be significantly greater (p<.05) than the dry condition between all of the loads. The greatest 

difference is observed between the 1N target loads. The CoF is shown to decrease by 1.44 when the 

gloves are contaminated by blood (dry µ= 2.15 ±0.02; blood µ= 0.71 ±0.01, p=<.001). As the load 

increases the CoF of the blood decreases slightly to 0.50 ±0.01. The CoF at all loads is shown to be 

significantly different (1N t(2)=-64.246, p=<.001; 2N t(2)=-75.466, p=<.001; 3N t(2)=-238.713, 

p=<.001; 4N t(2)=-199.080, p=<.001; 5N t(2)=-331.705, p=<.001). 
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Figure 9.16. Normal and horizontal force of the NRL glove contaminated with ovine blood at the 4 N 

target load on smooth steel. 
 
 

 
Figure 9.17 (a-b). Static friction (a) and CoFs (b) for dry NRL gloves and NRL gloves when 
contaminated with ovine blood on smooth steel. Error bars denote standard deviation. 

 

Synthetic validation 

The static friction results of NRL gloves are shown in Figure 9.18 (a-b). Noticeably the friction of the 

solutions is higher with NRL than with NBR. SB7 shows a sustained higher friction than all of the 

other SBs, with the exception of SB3 at the 1N load (SB3 µ= 1.82 ±0.01; blood µ= 1.69 ±0.01). With 

the exception of SB2, which behaved similar to the NBR material, and SB6, all SBs showed a trend of 

decreasing CoF with an increase in load. SB7 shows a sustained higher friction than all of the other 

SBs, with the exception of SB3 at the 1N load (SB3 µ= 1.82 ±0.01; blood µ= 1.69 ±0.01). Overall blood 

produces a lower CoF than the other SB’s except for SB2 at 1 N (SB2 µ= 0.61 ±0.11; blood µ= 0.71 

±0.05). This similarity was found to be statistically similar (t(2)= 1.593, p=.204, Table 9.8). Statistical 
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significance was found at each of the other loads (2-5 N, p<.05, Table 9.8). SB3 at 5 N has a similar 

CoF to the blood at 5 N (SB3 µ= 0.60 ±0.01; blood µ= 0.51 ±0.04), however this is statistically 

different (t(2)=-11.269, p=<.001). With the exception of SB2, which behaved similar to the NBR 

material, and SB6, all SBs had a trend of decreasing friction with an increase in load. SB7 shows a 

sustained higher friction than all of the other SBs, with the exception of SB3 at the 1N load (SB3 µ= 

1.82 ±0.01; blood µ= 1.69 ±0.01). 

 

 
Figure 9.18 (a-b). Static friction (a) and CoFs (a) for dry NRL gloves when contaminated with 

synthetic bloods and ovine blood. Error bars denote standard deviation. 

 
Table 9.8. CoFs obtained from SB2 and whole ovine blood with paired t-test results with NRL 

contaminated gloves. 

SB2 Blood 
CoF t-test 

Load CoF Load CoF 

1.18 
 (±0.14) 

0.61 
 (±0.09) 

1.12  
(±0.05) 

0.71  
(±0.02) 

t(2)=1.593  
p=.204 

2.20  
(±0.05) 

0.90  
(±0.03) 

2.23  
(±0.04) 

0.73 
 (±0.05) 

t(2)=-96.190  
p=<.001* 

3.12  
(±0.11) 

0.85  
(±0.01) 

3.18  
(±0.04) 

0.64  
(±0.01) 

t(2)=-44.715  
p=<.001* 

4.18  
(±0.21) 

0.78  
(±0.02) 

4.25  
(0.04) 

0.56  
(±0.02) 

t(2)=-24.545  
p=<.001* 

5.13 
 (±0.11) 

0.72 
(±0.01) 

5.27  
(0.07) 

0.51  
(±0.04) 

t(2)=-47.039  
p=<.001* 

± denotes standard deviation *indicates statistically significant differences 

As with the NBR, focus should be placed around the 1 N load, for easier comparison. Figure 9.19 

highlights the similarity in friction between SB2 and the ovine blood at the 1N target load. No 

statistical difference is found between the CoFs with SB2 showing a CoF of 0.61 (±0.11) and blood 
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showing a CoF of 0.73 (±0.02). As shown in Table 9.7, the results are statistically similar (t(2)=1.593, 

p=.204).  

 

 
Figure 9.19. Comparison of the Static CoF at the 1 N target load for SB2 and ovine blood with NRL. 

Error bars denote standard deviation.  
 

9.5 Discussion 

9.5.1 Whole human and citrated blood 

Many minor procedures exist where anti-coagulants are provided (301). Therefore, a part of this 

study was aimed at assessing if the chemical behaviour was the same between whole blood and 

anti-coagulated blood upon contact with the glove materials. The results indicate that the contact 

and reactions are similar between the two whole bloods used. The FTIR shows similar spectra for 

both the ovine and human blood in both NRL and NBR. This is likely due to the fact that the 

components of blood which are interacting with the gloves are the same for both samples, thus the 

spectra are similar. There is evidence of some sustained differences on the gloves surface once 

exposed to blood. These changes appear to be more prevalent in the NRL, as indicated by the 

greater differences in absorbances, likely to be because of blood protein and latex protein residue 

interactions. The initial contact of the bloods on the gloves also shows similar angles for both the 

NRL and NBR materials. It is shown that for this study, the chemical interactions between the blood 

and the glove are not dependent on the presence of an anti-coagulant. This means using the 

anticoagulated blood reflects the initial interactions that would be seen in a clinical situation.  

9.5.2 Effects of blood on glove friction 

The results obtained from the NRL gloves reflect those from the study by Anwer (116), which 

showed the friction increased by 0.2 when blood was applied to NRL gloves. The results of this study 
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also show a decrease in friction, showing that at 1 N, the CoF decreases by 1.44. Although, at the 

higher loads, the material will conform and bend more, causing a difference in the way the materials 

both contact the surface, and behave under that load, which has been shown and discussed in 

Chapter 6. Anwer (116) used greater forces for their study with blood, which led to a lot of 

fluctuation in the applied load (between 22.8 and 35.3 N). This fluctuation is most likely due to the 

extraordinary amount of pressure being placed onto one finger. This in unlikely to happen in 

surgeries, as the load applied will be spread across the fingers holding the tool, and not applied to 

one particular area.  

As detailed in Chapter 6, the nature of the glove is important to their function, and when 

drawing comparisons between studies. The gloves used by Anwer (116) were only declared as NRL 

gloves. No information was present on whether the gloves were examination or surgical, nor how 

well the glove fit the finger. The study also set out to compare double gloves to single glove use 

when contaminated, which would imply that the gloves were surgical as double gloving is most likely 

to be used here (133). A question around this research has been that if blood can be used for friction 

tests, should it be fresh whole blood, most commonly encountered in minor wounds, or blood with 

an anti-coagulant, more often encountered in surgeries and minor procedures (301)? Unfortunately, 

as discussed, no fresh whole blood was available for the friction assessments, it is unable to 

ascertain if major differences would be between present between anti-coagulated and fresh blood. 

It is certain that the blood will dry and clot upon exposure to the atmosphere, thus friction changes 

will likely occur (296). What this work does show, however, is that blood decreases friction in both 

glove materials in very different ways, as observed in Chapter 7 with the other contaminants used. 

Blood-glove material interactions 

The differences in frictional behaviour are more observable as the loads increase. At the 1 N load, 

the gloves have similar frictional properties when contaminated by the blood (0.71 for NRL and 0.73 

for NBR). As revealed in Chapter 7, both the affinity of the contaminant for the gloves, and the 

electrostatic interactions, both play a pivotal role in the frictional properties of contaminated glove 

materials. Much like the contaminants used in Chapter 7, this study has shown that the blood has a 

higher affinity for the NBR, and a lower affinity for the NRL. This is exhibited by the contact angle of 

blood on the NRL being greater than 90° and then when being exposed to the NBR, the contact angle 

is less than 90° (302). As blood is a tissue composed of many individual components, each with their 

own affinity and aversion to the materials further interactions complicate the frictional properties. 

Protein affinity will change and compete with weak electrostatic interactions depending on the 
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environment, which make it difficult to determine exactly what is happening over the course of the 

changing loads (136).  

Electrostatic and chemical interaction 

As with the contaminants used in Chapter 7, and the water in in Chapters 4 and 5, blood will form 

capillary bridges, induced by electrostatic interactions, between the metal counter-face and the 

gloves. Oliver and Barnard (303) showed that the charges on blood are strongly influenced by the 

blood electrolytes, which in turn will influence the overall charges, and thus, the attraction to the 

different glove materials. Therefore, the effects of the electrostatic charges play an important part in 

the lubrication and adhesion processes with blood. Blood has been shown to have a varied charge 

depending on how it is suspended and the environment. Overall, the general charge on blood is 

negative (298, 304). However, constituents of blood possess some positive charges (such as the 

haemoglobin protein (305)), which are dependent upon the surroundings of the molecules (such as 

ions, dissolved gases etc.) (306). Although the proteins and constituents are different, the blood 

proteins will behave very similarly to the mucin proteins. That is to say, as noted with the mucin in 

Chapters 7 and 8, charge repulsion and charge attraction play a major role in how blood will bind to 

the gloves and cause changes in frictional properties.  

Also previously discussed in Chapter 7, the triboelectric series places NRL as a negatively 

charged species and NBR as a positively charged species (14, 248). Therefore, more migration of the 

blood will occur towards the NBR material, which is seen by the contact angle and surface wetting as 

well as the higher mass being deposited onto the glove material. In the performance tests carried 

out in Chapter 8 with the mucin, this aided the dexterity and sensitivity. As the drying properties of 

blood are different, and tend to form gels which have greater tack than the mucin (297), it would be 

prudent to assume the same increase in performance would be present. But it can be presumed that 

differences in performance measures when different glove materials are contaminated with blood 

would be apparent, as this has been previously observed with the mucin protein in Chapter 8. It is, 

however, important to note that in both materials, the CoF drops to around 0.6-0.75 in both 

material, therefore it is possible that the presence of blood is similar, regardless of the glove 

material being used. This suggests the lubrication of the blood is an important factor, not just the 

chemical interaction. This means that a single synthetic blood being developed needs to be good 

enough to pick up the minor differences which exist between the friction with the two materials. 
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Blood drying and evaporation 

In emergency situations where blood is present, there is likely to be dried blood already present 

which may not contaminate the gloves. However, once the wet blood has contacted the gloves, the 

probability of that blood drying is high. The drying property is also a function of the coagulation of 

the blood, which begins to occur once the blood has been exposed to a different environment. In 

coagulation, the fibrin proteins cross-link and form harder, solidified structures whilst the 

evaporation of water causes platelet adhesion and aggregation. This leads to gelation, and then 

solidification of the blood material (307). Laan, Smith, Nicloux, et al. (296) shows that, when blood 

pools, the substance undergoes two drying stages. The first of which is where the evaporation rate 

of the water increases towards zero. In the second stage, the liquid/gel diffuses the vapour to the 

surface of the material. Subsequently, the blood dries out and becomes a sticky gel, before 

becoming a solid mass through further evaporation. However, the study was looking at blood 

pooling, rather than smaller amounts of blood already applied to a surface. It is reasonable to think 

that since the blood is present in a smaller, thinner layer on the surface of the glove material, the 

drying process would be quicker in the study conducted here. Nonetheless, the drying process is 

slower at standard room temperature when compared to extreme conditions, thus is not likely to 

have a great affect in this friction study (297).      

 The reason for the difference in evaporation rate could be due to the affinity of the blood 

for the NBR surface, which could push the water to the surface, inducing a quicker evaporation than 

that seen with the NRL (296, 307). In standard examinations, where the gloves are exposed to blood, 

there is a greater likelihood that over time the frictional properties will change, due to the gelation, 

evaporation and ultimately drying of the blood. Neither this study, or the study by Anwer (116), 

looked into the effects of this. This study is looking more at examination gloves, which are more 

likely to be changed before the blood fully gels and turns into a tacky film. However, this depends on 

the volume of blood and the procedures involved, so may be of relevance for future work. The 

synthetic bloods developed will also undergo some evaporation, however, this was not explored 

here as the main constituent is water, so it was thought the evaporation would have less of an effect 

over the course of these studies. 

 

9.5.3 Protein behaviour with gloves 

Given that mucin and blood are both protein based substances, it is also important to compare the 

results from this chapter, and those observed in Chapter 7 when the gloves were contaminated by 

mucin. Although there are some differences, which are shown in Figures 9.20 (a-b), there are also 
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similarities in the pattern of behaviour between the blood and mucin. At the 1 N target force, CoFs 

are shown to be similar between the two substances on both materials. This has been highlighted in 

the bar graph in Figure 9.21. The similarities in behaviour are likely to be due to the resemblances 

with the interaction. Both mucin and blood are primarily composed of water and proteins (234, 279). 

This strongly implies that the protein interaction and attraction/repulsion is of significance when 

studying the friction properties. Further work should be conducted looking at a range of protein 

based contaminants to fully understand the behaviour of the proteins under the load range. It does 

appear that at the lower load, more representative of a grasp force (189), a similar behaviour and 

friction coefficients are observed between the two materials with the proteins. It may be that the 

protein behaviour is similar when exposed to each material, which leads to a similar friction 

behaviour across the range of bodily fluids of the same ilk.  

  

Figure 9.20 (a-b). Friction of blood and mucin over the 1-5 N load range with NBR (a) and NRL (b). 

 

 
Figure 9.21. Static CoF for blood and mucin at 1N. Error bars denote standard deviation. 
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9.5.4 Synthetic blood development 

The physical properties of the SBs are very similar to that of the blood, but none are an exact match. 

However, the density, contact angles and viscosity are deemed close enough to be similar to that of 

blood, with the exception of the gelatinous SB1. Of the 6 tested SBs, the frictional behaviour 

observed was different, especially between glove materials. Friction coefficients are shown to have 

little variance over the load range with the NBR material. On the other hand, the NRL materials show 

greater differences with friction over the loads. This pattern in behaviour of little change over the 

load range with NBR, but NRL exhibiting greater variation was also noted when using contaminants 

on the various surfaces in Chapter 7. There are two major categories that the SBs can be placed in. 

Those that contained particulate suspensions, and the more homogenous sugary solutions. Both of 

these types of solutions appeared to exhibit very different behaviours to each other.  

Particulate solutions 

The difference in frictional properties and behaviour over the load range is due to both the 

interaction with the materials and the individual constituents. However, when compared to the NRL, 

the NBR CoF range does not vary all that greatly. For example, in SB2 where flour is present, the 

friction goes from a low CoF (µ= 0.40) to a higher CoF (µ= 0.57) in the NBR, which is similar to the 

NRL (µ= 0.52 at 1 N; µ= 0.68 at 5 N). The presence of flour, which is undissolved, can cause both an 

increase and a decrease in friction. The friction will be low at a lower load as flour separates the two 

surfaces, which allows the glove to move easily down the counter surface in a ball-bearing fashion. 

On the other hand, as the force increases, the fine flour particles will fill asperities, increasing 

contact area or increase the occurrence more concentrated pockets of flour particles. This is 

dependent on how much of the flour is present between the glove material and the metal. This is 

shown schematically in Figure 9.22.  

  

 

 

 

 

Figure 9.22. Behaviour of flour particulates under an increasing load. 

 

Glove material “rolling” 
Flour particulates 

squashed/clumping on the 
metal/gloves 

Particles in solution  

Metal 

Glove 



259 
 

Due to the hydrophilic nature of the NBR, this will bring the moisture closer to the surface, and in 

effect, hold some of the particulates there, causing greater separation of the metal and glove 

material. This is evidenced by the lower friction observable in the powder containing SB’s with the 

NBR. In the NRL however, the moisture is pushed away because of the hydrophobic nature of the 

material, which could push out some of the suspended flour particles as more load is applied, hence 

a greater observed friction with the NRL. The CoF also shows a decrease with the increasing load in 

the NRL, which could be due to the water being pushed out and leaving more powder. Furthermore, 

AFM of the NRL gloves, in Chapter 7, showed greater gaps between the bulk glove materials, and it 

was hypothesised that this allows more contaminant to be pushed into the material under greater 

loads, which increased the friction in the NRL over the NBR material, in some cases. This behaviour is 

also observed in the SB4 solution at the lower loads, but not to as great and extent, as less flour was 

present, and the solution was of a more viscous consistency than SB2.  

Sugary solutions 

The greatest difference in friction and blood is observed with SB3, which is composed primarily of 

diluted sugar syrup, although not too viscous (compared to other sugar solutions), the result was a 

sticky watery solution. Due to the simple sugary nature of the material, the CoF is shown to be the 

highest in the NBR materials as more adhesion will occur. However, in the NRL, the CoF decreases 

with load. As described with the flour containing solutions, this is likely to be down to the repulsion 

of the SBs from the NRL surface. However, the interaction of the SBs with the NBR gloves produces 

very little differences over the load range in this work. Of the SB1 diluted samples (SB6 and SB7) 

there are varying behaviours between the two synthetics. In the NBR, SB6 acts very similar to SB5, 

exhibiting the highest friction coefficient at the low load, possibly because the primary ingredients 

are sugar and the thickening agent (methyl cellulose), which produced similar behaviour to the 

sugary solution of SB5. 

 

9.6 Synthetic blood validation 

SB7, which was only a quarter of SB1 mixed with water, had the highest friction along loads 2-5 N in 

the NRL gloves. However, in the NBR gloves, the CoFs produced are very similar to the blood. The 

synthetic solution was so similar that there were no statistically significant differences found 

between the two substances at each of the load used. This shows that a diluted mix of simple sugars 

can be used in lieu of blood for friction analysis across a 1-5 N load. However, this is only pertinent 

to the NBR gloves, as shown in the summary table (Table 9.9). With the NRL, none of the synthetic 
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fluids matched the behaviour of the blood over the load range. However, there was a similar result 

produced between the blood and the flour based liquid of SB2 at the 1 N load. Due to the 

disbursement of the flour particulates when applied to the finger, it was presumed the similarity in 

friction may have been a random correlation. In essence, the amount of flour and mucin contained 

to the finger during the dipping procedure added is random. However, multiple repeats show 

similarities to the ovine blood the 1 N target load. It was found to get this match, the solution had to 

be homogenous, otherwise the friction was too high. Further work would have to be carried out with 

the solutions find a solution with a similar behaviour at a higher load with the NRL. Further work 

would have to be carried out with the solutions find a solution with a similar behaviour at a higher 

load. However, for the purposes of industry checking how the blood has modified behaviour, looking 

at the 1 N load, which is more simulative of gripping forces (189), would suffice to show the effects 

of contaminants on the frictional modification of gloves. 

Table 9.9. Summary of synthetic bloods which have a similar CoF to blood on each of the glove 
materials along with their properties.  

Glove Material NBR NRL 

Synthetic Blood SB7 SB2 

Synthetic Blood 
Constituents 

2.25g glucose syrup 
 1.25g methyl cellulose 
 0.25g sodium chloride     

1.5 ml glycerol 
45 ml DI water 

(Take ¼ of solution and 
dilute with 40 ml of water) 

7.85g plain flour 
1g glucose anhydride 

0.15g porcine gastric mucin 
34 ml DI water 

PH 7.22 7.27 

Density 1030.51 (±0.11) 1071.90 (±1.32) 

Viscosity 2.98 (±0.01) 6.49 (±0.03) 

Contact Angle 33.00 (±2.65) 135.67 (±10.26) 

Static CoF at 1 N 0.75 (±0.02) 0.61 (±0.09) 

± denotes standard deviation 

Further work is also needed to explore the existence of an ideal substance which can give similar 

frictional properties to blood with both glove materials. The solutions used here were adapted and 

changed from one study only, which looked at viscosity (Millington paper). It is possible that, by 

adjusting the constituents in solutions made in this work, a better match for the frictional properties 

of both glove materials could be found. The aim of this study was to remove the requirement for 

animal blood to prevent storage issues. However, porcine gastric mucin was used as a thickening 

agent in the SB2 solution after finding the solution visually watery. This could draw some ethical 

quandaries, as the product is from animal origins. This could be substituted with other solution-

thickening ingredients, if required. However, it could be argued that, as companies are turning more 
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towards the NBR material (38, 43), the work regarding the NBR material with SB7 is more pertinent 

to the assessments required in manufacturing. This solution is solely comprised of sugary water, 

using ingredients that are easy to obtain.  

 

9.7 Conclusions 

A summary of the findings of this Chapter are shown in Table 9.10, detailing the CoF differences 

when gloves are contaminated, compared to dry, and surmising the SB’s which closely match the 

CoFs of the different blood contaminated glove materials. SB2 and SB7 have very different 

constituents, which is less than ideal, especially for industry preparation, and quick testing. Further 

work is required to find a synthetic blood that works for both materials.  

Table 9.10. Summary of results comparing dry gloves to blood contaminated, and the SB which 
replicates the frictional properties of blood across all loads and the 1 N target force. 

 Glove material 

Friction tests NBR NRL 

Blood friction Decrease Decrease 

SB match at all loads SB7 None 

SB match at 1 N SB7 SB2 

 

The findings of this chapter are as follows: 

• Blood that possesses anti-coagulants has the same chemical interaction with NBR and NRL gloves 

as fresh whole blood. In addition, spectral results show that gloves exposed to blood are 

contaminated permanently, as blood has shown to bind to both the NBR and NRL materials, 

causing changes to the surface chemistry. This binding is similar for both the fresh and blood and 

anti-coagulated blood.  

• The friction of gloves is reduced when blood is exposed to both the NRL and the NBR gloves. 

However, a greater reduction in friction is observed in the NRL. It is important to note that when 

the blood is applied to both materials, the friction is reduced to similar levels due to the overriding 

effect of blood being present. 

•  The blood used in this study has a similar behaviour and frictional properties to the mucin used in 

Chapter 7. Due to the presence of proteins, and conformation changes in these proteins, being 

responsible for changes in viscosity when drying, it is presumed proteins affect gloves in a similar 

way, regardless of the nature, and source, of the protein. This would require a greater study to 

understand if this is the case. If it is found that proteins have similar reactions across different glove 
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materials. This means that one protein could be used to assess the friction modification of gloves in 

industrial assessment practices.  

• The work conducted in this chapter has shown a suitable match for NRL by using a combination of 

sugars and flour. Although, this is only significantly similar at the 1 N load only. However, with the 

NBR a match was found using a formulation of diluted sugars. This was significantly similar across 

all loads used in this study. It was hoped that the development would yield a synthetic material 

which matches the frictional properties of both NRL and NBR, however this is not the case. It could 

be that further materials match the frictional properties of both glove materials, but this would 

require further investigation.  

• As the industry is aiming more focus at the NBR material, a solution had been created which 

provides a suitable alternative to using blood tissues to assess frictional changes. This study has 

therefore proved a suitable alternative for friction analysis for NBR without the use of animal 

models, negating any storage issues, biohazardous waste disposal, or ethical concerns. 

• Where this work validates synthetic models to assess blood friction, the inherent differences 

in blood nature and behaviour must be considered for other studies. This work shows that 

the models can be used to assess how blood modifies friction immediately after 

contamination whilst still wet, but not after the blood has become tacky or dried onto the 

gloves, which will occur in some cases.  
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Chapter Ten: Conclusions and future work 

Three areas have been explored in this thesis in order to further advance the understanding of glove 

assessments and their effects on glove users. The first is the assessment of the ease of donning and 

doffing different glove materials in realistic conditions (172, 173), followed by understanding how 

the key chemical and physical parameters of the glove polymers affect user performance. Finally, an 

understanding of the key differences between glove materials when contaminated, and how this 

impacts the performance of the glove users (232). By assessing these key areas, the whole thesis has 

taken the innovative approach of looking at tying together the chemistry, mechanical, and 

performance parameters.  

 

10.1 Importance of results for glove assessments 

It is clear from the responses of the glove users in Chapter 3 of this thesis that gloves are perceived 

to have an adverse impact on the user’s performance. The impact of these gloves still receives little-

to-no assessment at the manufacturing stage. Namely, the gloves are assessed for their main 

purpose of protection and tested for their barrier properties. However pertinent the barrier integrity 

is, the findings in this thesis shows that the effects gloves have on users’ performance needs to be 

considered (6).  

One of the most common themes noted throughout this thesis is that there is discord, in some 

areas, between the published literature and industry. It would appear, through the continued 

marketing of gloves aimed at improving tactility, grip, and dexterity, that the manufacturers are 

aware of the common issues noted from glove users (69, 75, 95). However, it is unclear what 

investigations glove manufacturers are performing to evaluate, and ultimately alleviate these issues 

in-house. From the manufacturer’s perspective, understanding how the behaviour of these gloves 

are modified through their daily use, and how the gloves affect user performance, will allow the 

modification of properties to maximise the performance of glove users. Manufacturers do not 

publish the criticisms on their products, as this allows them to improve and lead the industry with 

novel technologies. However, this leaves collaboration on projects of this ilk problematic. More 

transparency with the issues known by the manufacturing companies would lead to more targeted 

assessments, which would lead to greater user satisfaction if perceived issues can be corrected. 

Whilst it is appreciated that having an advancement in a technological area is vital for business 

performance, the privacy around the technologies, and tests conducted within the industries, leaves 

a vacuum in the literature, especially regarding how glove materials are assessed for their effects on 

user performance (6).  
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Key findings 

The work conducted in this thesis has shown that the key parameters of stiffness and thickness, as 

well as the way the material interacts with moisture in the skin, require critical consideration. This is 

particularly important for the tribological aspects of the glove materials. The key 

contributions/findings of this thesis are as follows: 

• Development of methodology to assess glove donning and investigating correlations to 

friction/physical properties, in both dry and wet conditions, to understand the behaviour of 

gloves with different treatments. Including the manufacturing of bespoke gloves and 

assessing donning performance through defined protocols. Overall, to quickly don, gloves 

should be stiff, thin, and no moisture should be present. 

   

• Development of synthetic blood surrogates that are easy to create using commercially 

available constituents. These can be used in lieu of animal blood to assess the differences 

in tribological properties of gloves and circumvent any safety concerns. 

  

• Established understanding of the glove-contaminant chemical interaction, the 

tribochemical effects of substances on gloves, and how this affects the performance of 

glove users (dexterity and sensitivity). The hydrophobicity of the NRL shows a greater 

decrease in friction, and decreased performance when contaminated. On the other hand, 

the NBR gloves show little changes in friction. However, some contaminants and surfaces 

lead to an increase in friction of the NBR gloves. These interactions lead to an increase in 

performance when NBR gloves are contaminated with mucin. By assessing the changes 

caused by contaminants, the user performance can be evaluated in more realistic 

conditions, with measurable differences.  

 

• A key outcome of this thesis shows that comparing gloves between studies, just because 

they are of the same material, is imprudent. There are clear differences in the dexterity 

performance of the glove users, which is linked to the polymer chemical constituents, and 

in turn, their differences in mechanical properties. These mechanical properties have been 

found to have correlation to their performance, especially in the case of material stiffness. 

The stiffer materials were found to have lower friction coefficients, and lower 

performances in dexterity. 

 



265 
 

The work in this thesis also revealed a gap in knowledge around the sizing of examination gloves. 

The participants used throughout these studies showed to have either a finger length, or a palm 

circumference measurement, larger or smaller than the recommended glove size by the Health and 

Safety Executive (HSE) (149). This would imply that either the gloves are the wrong size for the users, 

or that the sizing of gloves is not fit for the general population. Further research around this subject 

has yielded very little, but confusing and contradictory results. Many female healthcare workers 

cannot find gloves that fit their hands (229), leading to the inference that the sizes used today, are 

based on archaic anthropometric data based on the hands of males (308). Thus, the HSE makes 

glove size recommendations which appear to be based on outdated information, leading to 

erroneous size suggestions. A more accurate sizing scale, with a wider range of glove sizes, which is 

in accordance with updated anthropometric data, should be created in order to negate the issues 

arising as a function of loose or tight fitting gloves which would be beneficial to improve user 

performance, and in some cases, compliance (19).  

A summary of the tests conducted in this thesis is shown in Table 10.1, which highlights the 

principles of the protocols and tests, the outcomes from the tests, and recommendations for 

improvements in the future. The tests used in this thesis could easily be implemented into glove 

manufacturing plants, and into the raw material suppliers’ labs for newly developed polymers. Some 

tests however require more refinement in order to save time, such as cutting down the analysis time 

of the donning tests, or analysing friction at one load, rather than a range.  
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Table 10.1. Summary of methodologies and assessments used in this thesis along with the key findings and recommendations for future work. 

Chapter 
Assessment 
conducted 

Developed protocols Findings/Novelty of Research 
Recommendations for 

Improvement and future use 
Limitations 

4 & 5 

Donning and 
doffing of 

gloves in wet 
and dry 

conditions 

Method of 
measuring the time 
taken for gloves to 

be donned and 
doffed and 

identifying the key 
stages of donning.  

Three key stages to donning are affected by 
the presence of moisture. 

 

Doffing unaffected by material or moisture 
presence. 

 

Correlations found between the glove 
donning time and stiffness, with the thicker 

gloves taking longer to don. 
 

NBR gloves treated with 1000-2000 ppm are 
quicker to don, as well as polymer coated 

NRL. 

Addition of sweat, rather 
than water could highlight 
further differences in the 

donning process 

Assessing the key 
stages of donning is 

time consuming. 
Can be 

circumvented by 
assessing the time 

taken to don gloves 
as a whole, rather 

than assessing 
stages. 

4, 5, & 6 
Fit of gloves to 

the hand 

Existing 
measurement 

methods 

Discrepancies between glove sizes, glove 
former sizes, and general hand size, leading 

to issues with fit. 

A data bank of glove size and 
fit to more recent 

anthropometric data could 
further highlight 

discrepancies. 

 

4 & 5 

Glove-skin 
friction with 
AMTI force 

plate 

Assessment 
methodology of skin 
and material friction 
as well as the bulk 

behaviour of 
material under load.  

NBR gloves treated with 1000-2000 ppm 
produce the least friction, as were the 
polymer coated NRL gloves in the wet 

condition.  
 

Bulk behaviour of the material changes 
depending on thickness. Thicker gloves 

rolled more, whilst the thinner gloves caused 
more skin adhesion to the glove. 

Protocol could be useful with 
just one or two materials and 
using only one specified load. 

 
Securing at the side of the 

plate can help assess 
material behaviour under 

load.  

Time consuming for 
multiple gloves and 

conditions with 
multiple 

participants 
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6 

Outer material 
friction with 
AMTI force 

plate and tools. 

Repeatable and easy 
assessment 

methodology of 
gloves with tools. 
Understanding of 

material behaviour 
on tool patterns. 

The stiffer the glove, the lower the friction 
coefficients were. 

Using more participants with 
different glove sizes to fully 
understand how loose/tight 
fitting gloves would change 

the tribology, and in turn 
could affect 

dexterity/sensitivity.  

To assess the 
friction coefficients 
accurately across 

multiple gloves and 
surfaces is time 

consuming. 

7, 8 & 9 

Contamination 
friction with 
AMTI force 

plate and tools. 
Application of 

the 
contaminant to 
the gloves and 
monitoring of 
evaporation.  

Friction protocol 
that can aid the 

Understanding of 
the effects of 

different 
contaminants on 

gloves.  

Affinity of the contaminant affects the 
tribological behaviour of the glove materials. 

 

NRL shows a greater reduction in friction 
when contaminated, and has a generally low 

surface wettability  
 

NBR shows a reduced friction with most of 
the contaminants, however the decrease is 
not great, and generally has a high surface 

wettability. 
 

Development of a synthetic blood which can 
be used in place of whole blood to assess 

frictional differences with gloves. 

More work needs to be 
conducted on the effects of 

blood in the various stages of 
drying.  

 
Further exploration of a 

synthetic blood which can be 
used on both NRL and NBR 

gloves to replicate the 
frictional effects of blood. 

Further analysis of blood in 
different drying stages is 

required 

Time taken to clean 
the instrument 

between 
contaminant use. 

Can be improved by 
sticking to one 

contaminant, such 
as blood (or the 

synthetic version 
created in chapter 

9). 
 

Different synthetic 
bloods needed for 
each glove type.  

6 
Dexterity: 
Pegboard 

Existing test 
methods 

Comparing gloves of the same material is 
imprudent without chemical knowledge. 
Gloves of the same core material have 

different physical properties based on the 
chemical additives and physical parameters. 

 

The assembly test shows greater differences, 
thus may be more useful for assessing finer 

differences. 
 

Correlation between performance and 
stiffness as stiffer gloves restrict movement. 

Will be useful for 
determining effects of newer 

gloves with different grip 
patterns/thicknesses when 

correlated to the mechanical 
and tribological 
performance. 
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8 

Dexterity: 
contaminated 
pegboard and 

CSPDT 

Application of mucin 
contaminant to 

gloves and assessing 
both dexterity and 
sensitivity through 
defined protocols . 
Novel to assessing 

dexterity with 
medical gloves. 

 
Fine dexterity is increased due to the film 

formation effects of mucin. 
 

Clear differences in glove behaviour can be 
distinguished. NRL performs worse than NBR 

when contaminated.  
 

Reduction in friction with the NRL adversely 
affects the gross dexterity and sensitivity of 

NRL glove users. 
 
 

Needs to be used with a 
greater variety of 

contaminants with different 
properties to fully 

understand the effects 
different contaminants may 

have. 
 

Using different tests, where 
varied tasks and different 
tools are required, could 

highlight further differences 
between materials and the 

effects of different 
contaminants. Assessments 

that require greater 
interaction with the 

environment would be more 
simulative of tasks 

conducted when gloves are 
worn.  

Time taken to clean 
between tests is a 

limitation, 
especially when 

multiple conditions 
are studied. This 

could be minimised 
by changing the 
assessment to 

assess 
contamination on 
the equipment in 
the first instance, 
rather than the 

gloves. 

8 

Sensitivity: 
contaminated 

simulated 
medical tactile 
test (bumps) 

Protocol developed 
to apply 

contaminants and 
repeatable 

measures of 
sensitivity. Novel to 
assessing sensitivity 
with medical gloves. 

  

NRL provides greater sensitivity than the 
NBR glove. 

 

NBR shows improved sensitivity when 
contaminated. 

 

NRL shows a decrease in sensitivity when 
contaminated. 

 

Useful method for determination of 
dampened sensitivity from placing gloves 

over the fingers. 

Re-print test bed to remove 
defects on board. 

 

Conduct with a greater 
variety of contaminants.  

 

 Further tests could be 
developed to measure the 

impact of contaminants, such 
as measuring vibration 

transmission.  

Requires a wider 
bumps range, also 

some other 
discrimination on 
the test (such as 

purposely 
manufactured 

grooves) to help 
with differentiating 

differences 
between gloves and 

conditions. 
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10.2 Effects of glove properties 

A summary of the gloves’ properties, and their effects on the user/performance are shown in Figure 

10.1. The figure highlights the effects of each of the properties analysed in this thesis if the property 

is increased. For example, in the case of the wettability of the glove materials, an increase in the 

surface wettability property leads to an increase in friction and chemical interaction over the less 

wettable surface. The increase in both of these behaviours, leads to an increase in dexterity and 

sensitivity. The positive icons indicate an increase, whilst the negative indicates a decrease. In each 

case, these can be reversed to obtain an opposite effect.  

Caveats do exist however, for example as the size decreases, this still has a negative effect 

on the glove fit, as it will be too small, which will incur restricted movement and greater effects on 

dexterity. Ideally, a glove should be of a low stiffness, with a good surface wettability with a good fit. 

This produces gloves which are easy to don and increases dexterity and sensitivity performance of 

users when compared other gloves. Of the parameters addressed, the most affected is the dexterity 

of the glove users. By changing the material properties studied in this thesis, at the manufacturing 

stage, improvements could be made on the performance of the gloves, as noted in the donning in 

Chapter 5 where different thicknesses and chemical treatment strengths were analysed. In some 

cases, the material parameters are intrinsically affected by one another, such as the material 

thickness having an effect on the stiffness. Therefore, adjusting the thickness will impact the 

stiffness of the gloves, which will, in turn, affect the dexterity and ease of glove donning. 
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Figure 10.1. Properties assessed in the thesis and how they link to the effects on the gloves and the user performance as the property increases (e.g. 
thickness gets thicker). ‘+’ indicates an increase, whilst ‘-‘ indicates a decrease.
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10.3 Recommendations to industry 

• The work conducted in this thesis shows that there is a correlation between the stiffness of the 

gloves and the performance parameters (such as dexterity and donning) as well as between 

tensile strength and performance. It is possible that the correlation between tensile strength 

and the performance is not a causation, but an indirect correlation as correlations were found 

between the stiffness and the tensile strength. Further research would need to be carried out 

to assess this correlation, but the research presents interesting findings, nonetheless. The work 

conducted suggests that by paying closer attention to these parameters, the performance could 

be predicted. Stiffer materials were shown to induce a poorer user performance, but reduced 

friction as the stiffer material is less likely to locally deform. 

• For the examination gloves being sold, there are statements of ‘increased friction’ or ‘increased 

grip’, but no information around the effect of contamination of these gloves, or even the tests 

used to assess the friction, can be ascertained. The work in this thesis has shown that the 

frictional properties of gloves are modified upon exposure to both powder and liquid 

contamination. Assessing these contaminant tribological interactions with newer NBR grade 

gloves will greatly inform of the differences in contaminant interaction, and tribological 

changes, which are salient to the performance. The use of the synthetic blood developed in 

Chapter 9 of this thesis would be useful in aiding this understanding.  

• Assessing frictional properties in-house when different glove formulations are developed is vital 

for moving the industry forward. Tribological differences are present between different grades 

of nitrile materials, which could cause issues with dropping equipment, and more fatigue 

overtime, as more force is exerted to grip equipment. This is especially pertinent in covid-19 

outbreaks, in which glove use is becoming more and more frequent, and gloves are worn for 

tasks which they were previously not worn before. 

• When developing gloves with novel polymer coatings, assessing the time taken to don the 

gloves, in conjunction with the friction measurements would be beneficial, and may show 

greater differences. In addition, when chlorinating gloves, chlorinating to around 1000ppm 

appears to be more beneficial to NBR materials. However, when the hands have some moisture 

present, chlorinating to 2000 ppm shows to be more advantageous. It is possible that an 

optimum chlorination strength exists in between these two strengths, however the frictional 

properties should not be the only consideration in the process. The material stiffness, as 

suggested, plays an important part in the way the gloves move around the fingers, as well as 

stretch around the hand to ensure an easier donning.  
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• One of the common comments obtained from the questionnaire in the third Chapter of this 

thesis was around the fit of gloves. There is a requirement for manufacturers to assess how the 

sizing grades may affect the donning performance, as it would appear the sizing is based on 

outdated information and does not apply to the majority of the population. Newer, or even 

reviewed, sizing could alleviate some of the issues glove users have, as better fitting gloves 

could remove dexterity and sensitivity issues which users often encounter.  

 

10.4 Future work 

The work presented in this thesis brings up some interesting correlations between the physical 

parameters and the performance of dexterity and donning. Further analysis of these parameters 

with a larger sample size will provide further confidence in these results. Some of the test 

procedures, such as the donning methodology created, could be repeated using sweat, rather than 

just water in order to assess the differences in frictional interactions. Additionally, as the covid-19 

pandemic is very much prevalent, and regular hand-washing is encouraged, a larger range of skin 

care products are likely to be present on hands prior to donning gloves (178). These products are 

namely moisturisers used due to frequent hand washing, which will provide more moisture to the 

skin. As well as an increase in moisturisers, hand cleaning products are also more frequently used. 

Under current guidelines, these are 70% (minimum) alcohol based hand sanitisers (309), which will 

dry the skin out, reducing the moisture to abnormal levels. Assessing how these materials and 

coatings interact with these products would further advance the knowledge of how the different 

coatings affect donning and doffing in different hand conditions.  

As covid-19 forces industries to use more PPE, particularly gloves, there is a likelihood more 

issues will arise as a result of an increase of both more frequent use, and more frequent users (30). 

This does not pertain solely to the medical field. As stated in the introduction to this thesis, medical 

gloves are worn in a myriad of fields, and are used for many more applications. Gloves will now be 

worn for situations where they were not required previously, highlighting further issues. 

Ascertaining greater information regarding how gloves may affect performance in other fields will 

increase the knowledge of how to incorporate more standard tests, more contaminants that gloves 

are exposed to, and understand the material parameters which may affect the performance in 

different areas. Therefore, it would be interesting to carry out another study based on the views of 

glove users to widen the particular issues of interest.  

A few caveats exist in the studies conducted in the thesis, such as the correlation of 

parameters to the strain once the glove is on the hand. Measuring strain when the glove is on the 
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hand has not been previously carried out. Using instrumentation such as digital image correlation 

would advance the knowledge in this area. Knowing the strain that a glove undergoes and assessing 

how that strain affects dexterity and sensitivity, could be vital for performance measuring. This ties 

in very closely for the requirement to assess the general sizing of medical examination gloves. 

 One of the issues highlighted by glove manufacturers was with getting polymer coatings to 

bind to the NBR material. This knowledge is missed in the literature but is known by the glove 

manufacturers, which would explain some of the differences in results between studies assessing 

these coatings. Studies oriented at these technologies will allow greater understanding of what is 

happening at the skin-glove material interface, allowing insight for further technological 

advancements to help with glove donning. 

Many of the contaminants used in this thesis are of both a polar and non-polar nature, 

meaning their interactions will be difference based upon exposure to different glove materials. 

However, the interaction, although based on a lot of information regarding the chemistry of the 

materials and contaminants, does need further work for confirmation of key interactions. Knowing 

what the gloves are composed of, in full, is key to understanding this. X-ray diffraction is a useful tool 

for targeted analysis of what may be present on the surface of the glove materials, which will allow 

for greater understanding of the surface chemistry. By understanding this on a molecular level, the 

interaction with the contaminants can then be understood, and the surface chemistry could be 

modified to increase or decrease the tribological interactions with different surfaces. Additionally, 

more analytical chemistry techniques could be used to assess how contaminants are affecting gloves 

on a chemical level, such as mass spectrometry to assess if contaminants are present on the gloves 

through simple adhesion, or if there are chemical interactions. 

Tying together the physical and chemical interactions gloves have with their environment is 

paramount to identifying how gloves are affecting both user perception and performance. Only by 

assessing the gloves in the conditions they are used in can the effects of gloves be identified. Future 

tests should be considering the impacts gloves have on users once they are contaminated, rather 

than just assessing in dry, unrealistic conditions. Ultimately, by making the tests more representative 

of the environments gloves are used in, this thesis shows that sensitivity, dexterity, friction, and the 

donning efficiency of gloves are affected by contamination (172, 173, 232). It is hoped that the 

methodology developed and implemented in this thesis, along with the advancement in knowledge 

of the chemical interactions and friction differences, can lead the industry to a better understanding 

of how medical examination gloves affect user performance. 
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Appendix B – Supplementary data for Chapter Four 

B1. Total donning times for each step with paired t-test results for total time taken between dry and 
wet conditions (n=14). 

 Average times taken for each step (s) 

Glove/Condition Preparation 
Hand 

Insertion 
Manipulation 

Total 
donning time 

t-test 

Cl 
NBR 

Dry 
1.21  

(±0.71) 
1.95  

(±0.93) 
0.83  

(±0.54) 
3.99  

(±1.18) t(13)=-3.183 
p=.007* 

Wet 
1.48  

(±0.99) 
3.88  

(±.2.13) 
1.14  

(±0.98) 
6.50  

(±3.34) 

PC 
NBR 

Dry 
1.53 

 (±1.43) 
2.33  

(±1.06) 
0.97  

(±0.77) 
4.83  

(±2.74) t(13)=-2.901 
p=.012* 

Wet 
1.67  

(±0.85) 
4.84  

(±3.10) 
1.08  

(±0.63) 
7.59  

(±4.35) 

Cl 
NRL 

Dry 
1.14  

(±0.71) 
1.94  

(±0.91) 
1.2  

(±0.92) 
4.28  

(±1.47) t(13)=-3.125 
p=.008* 

Wet 
1.21 

 (±0.63) 
4.63  

(±3.24) 
1.07  

(±0.98) 
6.91  

(±4.13) 

PC 
NRL 

Dry 
0.95  

(±0.54) 
2.13 

 (±1.07) 
0.92  

(±0.75) 
4.00  

(±1.71) t(13)=-1.646 
p=.124 

Wet 
0.99  

(±0.63) 
3.06  

(±1.47) 
0.78  

(±0.51) 
4.83  

(±1.70) 

± denotes standard deviation, * Indicates statistical significance (p<.05) 
 

B2. Time taken for participants to doff gloves, with paired t-tests comparing dry and wet conditions.  

Glove/Condition Time taken (s) t-test 

Cl NBR 
Dry 1.68 (±0.45) t(13)=-0.587 

p=.562 Wet 1.80 (±0.80) 

PC NBR 
Dry 1.93 (±0.29) t(13)=-0.090 

p=.407 Wet 1.84 (±0.65) 

Cl NRL 
Dry 1.80 (±0.41) t(13)=-0.089  

p=.928 Wet 1.80 (±0.46) 

PC NRL 
Dry 1.63 (±0.55) t(13)=-0.765  

p=.452 Wet 1.78 (±0.42) 

± denotes standard deviation. 
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B3. Friction coefficients for each participant in each condition  

 Chlorinated NBR 

 Participant 

 1 2 3 4 

Condition Load (N) µ Load (N) µ Load (N) µ Load (N) µ 

Dry 

0.09 3.04 0.10 3.63 0.10 3.79 0.10 3.55 

0.22 2.55 0.23 2.60 0.21 2.52 0.24 2.16 

0.57 1.27 0.57 1.73 0.50 1.55 0.33 2.28 

0.71 1.49 0.80 1.74 0.83 1.56 0.77 1.85 

1.04 1.10 0.98 1.68 1.03 1.19 1.04 1.44 

Wet 

0.14 2.26 0.17 4.09 0.11 4.42 0.15 4.80 

0.30 1.85 0.39 2.17 0.26 2.96 0.30 2.67 

0.39 1.70 0.42 2.20 0.35 2.47 0.44 2.35 

0.80 1.28 0.87 1.32 0.84 1.33 0.85 1.87 

1.13 1.39 0.93 1.87 1.04 1.52 1.03 1.62 
 Polymer Coated NBR 
 Participant 
 1 2 3 4 

Condition Load (N) µ Load (N) µ Load (N) µ Load (N) µ 

Dry 

0.11 2.73 0.12 4.51 0.11 3.71 0.13 3.52 

0.36 1.93 0.3 2.05 0.28 2.85 0.32 1.97 

0.41 1.72 0.4 2.18 0.33 2.74 0.39 2.11 

0.82 1.58 0.77 2.15 0.70 1.57 0.79 1.73 

0.95 1.01 0.94 2.06 0.94 1.67 1.04 1.57 

Wet 

0.10 5.17 0.12 6.73 0.10 6.50 0.09 8.81 

0.29 3.50 0.29 3.67 0.28 4.38 0.23 5.60 

0.37 3.00 0.36 3.18 0.34 3.95 0.34 4.22 

0.76 2.03 0.79 2.62 0.63 2.27 0.78 1.76 

1.08 1.68 1.01 1.88 1.02 1.47 1.09 1.69 
 Chlorinated NRL 
 Participant 
 1 2 3 4 

Condition Load (N) µ Load (N) µ Load (N) µ Load (N) µ 

Dry 

0.12 1.93 0.11 3.44 0.13 2.65 0.11 5.39 

0.30 1.34 0.20 3.36 0.25 2.75 0.27 1.66 

0.48 1.20 0.39 2.19 0.43 2.07 0.37 1.15 

0.79 1.08 0.89 1.93 0.79 2.08 0.76 1.29 

1.04 1.11 0.90 1.65 1.06 1.52 0.88 1.39 

Wet 

0.10 1.99 0.08 4.86 0.11 4.27 0.10 4.86 

0.28 2.07 0.35 2.19 0.27 4.78 0.38 2.23 

0.38 1.86 0.51 2.52 0.48 3.44 0.48 2.18 

0.80 1.56 0.73 2.20 0.80 2.12 0.72 2.31 

1.05 1.49 0.89 2.11 1.03 2.21 1.09 2.26 
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 Polymer Coated NRL 
 Participant 
 1 2 3 4 

Condition Load (N) µ Load (N) µ Load (N) µ Load (N) µ 

Dry 

0.10 1.18 0.09 2.66 0.12 1.26 0.13 1.21 

0.25 1.32 0.22 1.86 0.21 2.25 0.25 1.82 

0.44 1.26 0.42 1.67 0.39 1.85 0.45 1.79 

0.74 1.24 0.74 2.00 0.78 1.61 0.73 1.81 

1.03 1.03 0.96 1.54 1.02 1.48 0.96 1.61 

Wet 

0.13 1.71 0.09 2.81 0.11 2.29 0.12 2.64 

0.28 2.05 0.28 2.19 0.31 1.78 0.29 1.99 

0.34 2.05 0.44 1.80 0.37 1.75 0.34 1.48 

0.81 1.83 0.72 1.83 0.8 1.40 0.73 1.54 

1.04 1.9 0.89 1.90 1.02 1.56 0.99 1.84 

 

B4. Paired t-tests of friction between wet and dry conditions of NBR gloves 

  Participant 

Condition Load 1 2 3 4 

Polymer 
coated 

0.1 
t(2)=8.437 

p=.047* 
t(2)=6.867 

p=.037* 
t(2)=4.706 

p=.032* 
t(2)=5.243 

p=.014* 

0.25 
t(2)=0.990 

p=.124 
t(2)=1.520 

p=.523 
t(2)=2.452 

p=.138 
t(2)=10.267 

p=.659 

0.5 
t(2)=0.273 

p=.158 
t(2)=-5.620 

p=.034* 
t(2)=1.606 

p=.514 
t(2)=1.797 

p=.648 

0.75 
t(2)=4.634 

p=.478 
t(2)=1.175 

p=.134 
t(2)=2.645 

p=.184 
t(2)=0.407 

p=.325 

1 
t(2)-3.077 

p=.156 
t(2)=-0.678 

p=.189 
t(2)=-1.372 

p=.844 
t(2)=0.725 

p=.072 

Chlorinated 

0.1 
t(2)=2.051 

p=.103 
t(2)=-1.681 

p=.960 
t(2)=-8.630 

p=.020* 
t(2)=-7.278 

p=.014* 

0.25 
t(2)=3.942 

p=.272 
t(2)=-1.633 

p=.008* 
t(2)=-4.301 

p=.006* 
t(2)=-0.644 

p=.238 

0.5 
t(2)=-5.399 

p=.001* 
t(2)=-1.300 

p=.695 
t(2)=-5.008 

p=.313 
t(2)=0.930 

p=.164 

0.75 
t(2)=-4.704 

p=.065 
t(2)=1.899 

p=.641 
t(2)=2.740 

p=.028* 
t(2)=-0.046 

p=.183 

1 
t(2)=-2.133 

p=.046* 
t(2)=-2.133 

p=.295 
t(2)=-2.119 

p=.053 
t(2)=-1.284 

p=.218 

*Denotes statistical significance (p<.05) 
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B5. Paired t-tests of friction between wet and dry conditions of NRL gloves 

  Participant 

Condition Load 1 2 3 4 

Polymer 
coated 

0.1 
t(2)=-1.856 

p=.241 
t(2)=-2.78 

p=.007 
t(2)= -2.794 

p=.157 
t(2)=4.117 

p=.016* 

0.25 
t(2)=-2.283 

p=.144 
t(2)=-1.418 

p=.342 
t(2)=-0.523 

p=.634 
t(2)=-0.198 

p=.847 

0.5 
t(2)=-3.373 

p=.165 
t(2)=0.474 

 p=.720 
t(2)=3.559 

p=.890 
t(2)=1.327 

p=.323 

0.75 
t(2)= 1.319 

p=.436 
t(2)=-0.455 

p=.536 
t(2)=0.778 

p=.404 
t(2)=0.763 

p=.524 

1 
t(2)= -3.526 

p=.128 
t(2)=-1.065 

p=.352 
t(2)=-0.682 

p=.623 
t(2)=-0.992 

p=.440 

Chlorinated 

0.1 
t(2)=1.445 

p=.080 
t(2)=3.443 

p=.121 
t(2)=-10.030 

p=.002* 
t(2)=-1.227 

p=.252 

0.25 
t(2)=16.978 

p=.005* 
t(2)=-3.383 

p=.067 
t(2)=-2.594 

p=.206 
t(2)=-0.442 

p=.777 

0.5 
t(2)= 14.599 

p=.054 
t(2)=1.278 

p=.109 
t(2)=0.0569 

p=.250 
t(2)=4.515 

p=.049 

0.75 
t(2)=13.631 

p=.002* 
t(2)= 1.460 

p=.198 
t(2)=-0.96 

p=.808 
t(2)=7.695 

p=.023* 

1 
t(2)=23.100 

p=.014* 
t(2)=44.530 

p=<.001* 
t(2)=-4.343 

p=.081 
t(2)=4.762 

p=.036* 

*Denotes statistical significance (p<.05) 
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Appendix C – Supplementary data for Chapter Five 

C1. Statistics for differences in donning time regarding thickness (Section 5.4.5) 

C1.1. One-Way ANOVA analysis of the donning time of a single glove in dry and wet conditions.  

Condition 
p-value 

Thin Thick 

Dry 
F(3, 44)=2.464 

p=.075 
F(3, 44)= 2.329 

p=.087 

Wet 
F(3, 44)=1.754 

p=.170 
F(3, 44)=2.845 

p=.048* 

*Denotes statistical significance (p<.05). 

C1.2. Tukey HSD analysis donning time of the thick gloves in wet condition (ANOVA =F(3, 44)=2.845 

p=.048). 

Pair Q-stat p-value 

E vs F 1.996 .500 

E vs G 0.859 .900 

E vs H 3.902 .040* 

F vs G 1.137 .835 

F vs H 1.906 .534 

G vs H 3.043 .153 

*Denotes statistical significance (p<.05). 

C1.3. Kruskal-Wallis of thin and thick gloves in dry and wet conditions from the preparation stage of 

donning. 

Condition 
Results 

Thin Thick 

Dry 
H(3, 44)=1.325 

p=.222 
H(3, 44)=1.200 

p=.753 

Wet 
H(3, 44)=0.876 

p=.831 
H(3, 44)=4.260 

p=.235 

 

C1.4. Kruskal-Wallis of thin and thick gloves in dry and wet conditions from the hand insertion stage 

of donning. 

Condition 
Results 

Thin Thick 

Dry 
H(3, 44)=3.650 

p=.302 
H(3, 44)=2.641 

p=.133 

Wet 
H(3, 44)=2.746 

p=.433 
H(3, 44)=8.736 

p=.019* 
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*Denotes statistical significance (p<.05). 

C1.5. Kruskal-Wallis of thin and thick gloves in dry and wet conditions from the manipulation of 

donning. 

Condition 
Results 

Thin Thick 

Dry 
H(3, 44)=1.486 

p=.686 
H(3, 44)=2.852 

p=.415 

Wet 
H(3, 44)=2.328 

p=.507 
H(3, 44)=0.723 

p=.868 

 

C1.6. P-values of Post-Hoc Dunn test of thick gloves in the wet condition from the hand insertion 

stage of donning. 

Glove 
sample  

p-value 

E F G 

F 
Z=1.506 

p=.066 
    

G 
Z=-0.619 

p=.268 
Z=0.085 

p=.466 
  

H 
Z=2.878 
p=.002* 

Z=0.769 
p=.221 

Z=1.635 
p=.051 

*Denotes statistical significance (p<.05). 

 

C1.7. t-test results comparing thin and thick gloves in dry and wet conditions.  

Glove Sample 
Results 

Dry Wet 

500ppm 
t(11)=-1.140 

p=.115 
t(11)=-1.842 

p=.630 

1000ppm 
t(11)=-2.823 

p=.008* 
t(11)=-1.440 

p=.828 

1500ppm 
t(11)=-0.698 

p=.503 
t(11)=-0.848 

p=.252 

Control 
t(11)=0.116 

p=.897 
t(11)=-0.904 

p=.350 

*Denotes statistical significance (p<.05). 
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C2. Friction coefficients for participants 1-3 

C2.1. CoF of wet and dry for participant 1 

Glove Sample Condition 
Load (N) 

Low Medium High 

A 
Dry 2.80 (±0.05) 1.89 (±0.01) 1.98 (±0.01) 

Wet 5.44 (±0.27) 2.17 (±0.02) 1.98 (±0.01) 

B 
Dry 1.58 (±0.04) 2.56 (±0.02) 2.09 (±0.04) 

Wet 1.88 (±0.03) 2.11 (±0.02) 1.82 (±0.05) 

C 
Dry 2.49 (±0.07) 2.64 (±0.01) 2.44 (±0.01) 

Wet 3.39 (±0.01) 1.96 (±0.05) 1.84 (±0.01) 

D 
Dry 5.65 (±0.17) 3.07 (±0.03) 2.69 (±0.01) 

Wet 6.78 (±0.01) 3.75 (±0.21) 1.99 (±0.03) 

E 
Dry 2.66 (±0.01) 2.18 (±0.04) 1.95 (±0.01) 

Wet 6.40 (±0.24) 2.68 (±0.04) 2.98 (±0.03) 

F 
Dry 2.80 (±0.05) 2.15 (±0.01) 1.89 (±0.01) 

Wet 3.15 (±0.01) 2.85 (±0.01) 2.65 (±0.01) 

G 
Dry 2.02 (±0.07) 1.52 (±0.01) 1.38 (±0.01) 

Wet 6.81 (±0.43) 2.77 (±0.04) 1.82 (±0.03) 

H 
Dry 2.11 (±0.06) 1.82 (±0.01) 1.67 (±0.01) 

Wet 1.40 (±0.32) 2.45 (±0.03) 1.79 (±0.03) 

 

C2.2. CoF of wet and dry for participant 2 

Glove Sample Condition 
Load (N) 

Low Medium High 

A 
Dry 5.06 (±0.19) 2.66 (±0.04) 2.17 (±0.03) 

Wet 6.55 (±0.71) 2.62 (±0.01) 2.76 (±0.02) 

B 
Dry 2.36 (±0.07) 1.83 (±0.01) 1.63 (±0.02) 

Wet 2.64 (±0.01) 2.10 (±0.01) 2.07 (±0.01) 

C 
Dry 3.32 (±0.14) 2.14 (±0.08) 1.91 (±0.01) 

Wet 4.88 (±0.05) 3.37 (±0.04) 3.08 (±0.02) 

D 
Dry 4.78 (±0.06) 3.94 (±0.02) 4.44 (±0.07) 

Wet 5.63 (±0.33) 3.63 (±0.04) 3.16 (±0.02) 

E 
Dry 7.33 (±0.40) 3.19 (±0.18) 2.13 (±0.06) 

Wet 10.43 (±0.40) 3.70 (±0.12) 2.55 (±0.04) 

F 
Dry 3.43 (±0.07) 2.17 (±0.01) 1.78 (±0.02) 

Wet 4.77 (±1.13) 2.44 (±0.08) 3.38 (±0.03) 

G 
Dry 4.84 (±0.29) 1.87 (±0.06) 1.34 (±0.06) 

Wet 10.76 (±1.18) 3.48 (±0.10) 2.34 (±0.13) 

H 
Dry 2.96 (±0.02) 2.17 (±0.03) 1.91 (±0.01) 

Wet 2.81 (±0.02) 2.56 (±0.01) 2.41 (±0.04) 
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C2.3. CoF of wet and dry for participant 3 

Glove Sample Condition 
Load (N) 

Low Medium High 

A 
Dry 3.18 (±0.21) 1.33 (±0.01) 1.68 (±0.02) 

Wet 3.06 (±0.06) 2.23 (±0.02) 2.08 (±0.01) 

B 
Dry 1.85 (±0.22) 1.97 (±0.01) 1.58 (±0.01) 

Wet 3.58 (±0.27) 2.89 (±0.02) 1.85 (±0.01) 

C 
Dry 1.12 (±0.22) 0.46 (±0.01) 1.29 (±0.17) 

Wet 3.15 (±0.13) 2.88 (±0.03) 2.34 (±0.01) 

D 
Dry 3.76 (±0.23) 0.93 (±0.03) 0.62 (±0.06) 

Wet 4.15 (±0.17) 2.19 (±0.12) 1.58 (±0.03) 

E 
Dry 2.93 (±0.02) 2.45 (±0.19) 1.91 (±0.08) 

Wet 5.16 (±0.13) 2.34 (±0.01) 2.29 (±0.01) 

F 
Dry 4.78 (±0.08) 2.22 (±0.04) 1.40 (±0.03) 

Wet 4.02 (±0.01) 2.03 (±0.02) 2.14 (±0.11) 

G 
Dry 3.44 (±0.88) 0.93 (±0.01) 1.35 (±0.13) 

Wet 4.61 (±0.10) 3.36 (±0.05) 2.28 (±0.12) 

H 
Dry 1.22 (±0.01) 1.62 (±0.05) 2.08 (±0.02) 

Wet 1.29 (±0.35) 2.91 (±0.01) 2.40 (±0.17) 
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C3. Data and statistical tests for friction regarding participant 1 (Section 5.4.6)  

C3.1. ANOVA tests conducted on friction results from Participant 1 investigating for differences in 

results across all conditions 

 Thin Thick 

Load Dry Wet Dry Wet 

Low 
F(3,8)=976.320 

p=<.001* 
F(3,8)=756.732 

p=<.001* 
F(3,8)=176.097 

p=<.001* 
F(3,8)=241.911 

p=<.001* 

Medium 
F(3,8)=2482.993 

p=<.001* 
F(3,8)=174.823 

p=<.001* 
F(3,8)=530.352 

p=<.001* 
F(3,8)=88.559 

p=<.001* 

High 
F(3,8)=595.879 

p=<.001* 
F(3,8)=30.076 

p=<.001* 
F(3,8)=379.920 

p=<.001* 
F(3,8)=1551.714 

p=<.001* 

* Denotes statistical signifnicance (p<.05) 
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C3.2. Tukey’s HSD test conducted on thin and thick gloves in dry and wet conditions from Participant 

1.  

  Dynamic Dry Dynamic Wet 

Load 
(N) 

Glove 
Sample 

A B C A B C 

0.1 

B 
Q= 21.711 
p=.001* 

  Q= 45.155 
p=.001* 

  

C 
Q=5.492 
p=.020* 

Q=16.219 
p=.001* 

 Q=25.959 
p=.001* 

Q=19.196 
p=.001* 

 

D 
Q=50.641 
p=.001* 

Q= 72.352 
p=.001* 

Q= 53.133 
p=.001* 

Q=17.007 
p=.001* 

Q=62.162 
p=.001* 

Q=42.966 
p=.001* 

0.5 

B 
Q=68.380 
p=.001* 

  Q=0.936 
p=.900 

  

C 
Q= 76.908 
p=.001* 

Q=8.528 
p=.001* 

 Q=3.362 
p=.159 

Q=2.426 
p=.377 

 

D 
Q=120.490 

 p=.001* 
Q=52.110 
p=.001* 

Q=43.582 
p=.001* 

Q=24.859 
p=.001* 

Q=25.796 
p=.001* 

Q=28.221 
p=.001* 

1 

B 
Q=7.670 
p=.003* 

  Q=9.661 
p=.001* 

  

C 
Q=34.373 
p=.001* 

Q=26.703 
p=.001* 

 Q=8.689 
p=.001* 

Q=0.972 
p=.896 

 

D 
Q=25.942 
p=.001* 

Q= 45.272 
p=.001* 

Q=18.569 
p=.001* 

Q=0.580 
p=.900 

Q=10.241 
p=.001* 

Q=9.269 
p=.001* 

Load 
(N) 

Glove 
Sample 

E F G E F G 

0.1 

F 
Q=4.791 
p=.039* 

  Q=19.395 
p=.001* 

  

G 
Q=21.715 
p=.001* 

Q=26.505 
p=.001* 

 Q=2.424 
p=.378 

Q=21.818 
p=.001* 

 

H 
Q=18.771 
p=.001* 

Q=23.562 
p=.001* 

Q=2.944 
p=.238 

Q=29.871 
p=.001* 

Q=10.476 
p=.001* 

Q=32.294 
p=.001* 

0.5 

F 
Q=34.088 
p=.001* 

  Q=8.836 
p=.001* 

  

G 
Q=30.275 
p=.001* 

Q=3.812 
p=.102 

 Q=4.771 
p=.039* 

Q=4.065 
p=.080 

 

H 
Q=13.752 
p=.001* 

Q=20.336 
p=.001* 

Q=16.523 
p=.001* 

Q=12.845 
p=.001* 

Q=21.68 
p=.001* 

Q=17.616 
p=.001* 

1 

F 
Q=21.651 
p=.001* 

  Q=21.651 
p=.001* 

  

G 
Q=76.115 
p=.001* 

Q=54.464 
p=.001* 

 Q=76.115 
p=.001* 

Q=54.464 
p=.001* 

 

H 
Q=78.472 
p=.001* 

Q=56.821 
p=.001* 

Q=2.357 
p=.399 

Q=78.472 
p=.001* 

Q=56.821 
p=.001* 

Q=2.357 
p=.400 

* Denotes statistical signifnicance (p<.05) 
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C3.3. T-tests conducted on participant 1 assessing differences in friction between the thin and thick 

gloves chlorinated to the same concentration.  

 
Load 

Dynamic 
 Dry Wet 

A-E 

Low 
t(2)=-4.457 

p=.047* 
t(2)=-3.536 

 p=.072 

Medium 
t(2)=11.764 

p=.007* 
t(2)=-39.991  

p=.879 

High 
t(2)=-5.741 

p=.029* 
t(2)=9.274  

p=.033* 

B-F 

Low 
t(2)=24.497 

p=.002* 
t(2)=57.704  

p=<.001* 

Medium 
t(2)=-73.674 

p=<.001* 
t(2)=41.284 

 p=.224 

High 
t(2)=7.143  

p=.019* 
t(2)=25.335 

p=.002* 

C-G 

Low 
t(2)=-5.932 

p=.027* 
t(2)=13.554  

p=.005* 

Medium 
t(2)=-296.052  

p=<.001* 
t(2)=-28.273  

p=.002* 

High 
t(2)=-157.469  

p=<.001* 
t(2)=0.760 

p=.527 

D-H 

Low 
t(2)=-28.301 

p=.001* 
t(2)=-29.714  

p=.001* 

Medium 
t(2)=-13.996  

p=.005* 
t(2)=11.157 

p=.008* 

High 
t(2)=29.425 

p=.001* 
t(2)=5.676  

p=.030* 

* Denotes statistical signifnicance (p<.05) 
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C3.4. T-tests conducted on participant 1 assessing differences in friction between the dry and wet 

conditions. 

 Dynamic 

Glove Sample Low Load Mid Load High load 

A 
t(2)=18.993 

p=.003* 
t(2)=20.669 

p=.002* 
t(2)=-7.777 

p=.016* 

B 
t(2)=51.525 

p=<.001* 
t(2)=-18.514 

p=.003* 
t(2)=-17.843 

p=.003* 

C 
t(2)=27.000 

p=.001* 
t(2)=-27.712 

p=.001* 
t(2)=-117.081 

p=<.001* 

D 
t(2)=11.484 

p=.007* 
t(2)=5.643 

p=.030* 
t(2)=-34.865 

p=.001* 

E 
t(2)=27.912 

p=.007* 
t(2)=16.842 

p=.003* 
t(2)=46.854 

p=.001* 

F 
t(2)=15.067 

p=.004* 
t(2)=113.934 

p=.004* 
t(2)=153.871 

p=<.001* 

G 
t(2)=23.361 

p=.004* 
t(2)=47.888 

p=<.001* 
t(2)=24.634 

p=.002* 

H 
t(2)=-4.724 

p=.042* 
t(2)=39.733 

p=<.001* 
t(2)=7.098 

p=.019* 

* Denotes statistical signifnicance (p<.05) 
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C4. Data and statistical tests for friction regarding participant 2 (Section 5.4.6)  

C4.1. ANOVA tests conducted on friction results from Participant 2 investigating for differences in 

results across all conditions 

 Thin Thick 

Load Dry Wet Dry Wet 

Low 
F(3,8)=41.645 

p=<.001* 
F(3,8)=64.916 

p=<.001* 
F(3,8)=183.069 

p=<.001* 
F(3,8)=68.383 

p=<.001* 

Medium 
F(3,8)=1229.862 

p=<.001* 
F(3,8)=2008.825 

p=<.001* 
F(3,8)=112.884 

p=<.001* 
F(3,8)=156.675 

p=<.001* 

High 
F(3,8)=3418.990 

p=<.001* 
F(3,8)=2462.809 

p=<.001* 
F(3,8)=176.040 

p=<.001* 
F(3,8)=137.126 

p=<.001* 

* Denotes statistical signifnicance (p<.05) 
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C4.2. Tukey’s HSD test conducted on thin and thick gloves in dry and wet conditions from Participant 

2.  

  Dry Wet 

Load 

(N) 

Glove 

Sample 
A B C A B C 

0.1 

B 
Q=13.735 

p=.001* 
  

Q=18.79 

p=.001* 
  

C 
Q=8.854 

p=.001* 

Q=4.882 

p=.035* 
 Q=8.090 

p=.002* 

Q=10.789 

p=.001* 
 

D 
Q=1.422 

p=.733 

Q=12.313 

p=.001* 

Q=7.432 

p=.003* 

Q=4.468 

p=.053 

Q=14.411 

p=.001* 

Q=3.622 

p=.124 

0.5 

B 
Q=32.264 

p=.001* 
  Q=33.169 

p=.001* 
  

C 
Q=20.189 

p=.001* 

Q=12.076 

p=.001* 
 Q=48.154 

p=.001* 

Q=81.323 

p=.001* 
 

D 
Q=49.530 

p=.001* 

Q=81.794 

p=.001* 

Q=69.718 

p=.001* 

Q=64.798 

p=.001* 

Q=97.697 

p=.001* 

Q=16.644 

p=.001* 

1 

B 
Q=24.738 

p=.001* 
  

Q=69.602 

p=.001* 
  

C 
Q=11.765 

p=.001* 

Q=12.973 

p=.001* 
 Q=31.124 

p=.001* 

Q=100.730 

p=.001* 
 

D 
Q=103.021 

p=.001* 

Q=127.760 

p=.001* 

Q=114.78 

p=.001* 

Q=39.695 

p=.001* 

Q=109.300 

p=.001* 

Q=8.571 

p=.001* 

Load 

(N) 

Glove 

Sample 
E F G E F G 

0.1 

F 
Q=26.883 

p=.001* 
  

Q=11.678 

p=.001* 
  

G 
Q=17.141 

p=.001* 

Q=9.742 

p=.001* 
 

Q=0.670 

p=.900 

Q=12.349 

p=.001* 
 

H 
Q=30.112 

p=.001* 

Q=3.229 

p=.181 

Q=12.972 

p=.001* 

Q=15.709 

p=.001* 

Q=4.031 

p=.082 

Q=16.379 

p=.001* 

0.5 

F 
Q=18.685 

p=.001* 
  

Q=24.803 

p=.001* 
  

G 
Q=24.308 

p=.001* 

Q=5.632 

p=.017* 
 

Q=4.411 

p=.056 

Q=20.391 

p=.080 
 

H 
Q=18.770 

p=.001* 

Q=0.085 

p=.900 

Q=5.539 

p=.019* 

Q=22.381 

p=.001* 

Q=2.422 

p=.378 

Q=19.969 

p=.001* 

1 

F 
Q=13.736 

p=.001* 
  

Q=20.289 

p=.001* 
  

G 
Q=31.495 

p=.001* 

Q=17.759 

p=.001* 
 Q=4.915 

p=.034* 

Q=25.204 

p=.001* 
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H 
Q=8.808 

p=.001* 

Q=4.927 

p=.034* 

Q=22.686 

p=.001* 

Q=3.390 

p=.155 

Q=23.679 

p=.001* 

Q=1.521 

p=.696 

* Denotes statistical signifnicance (p<.05) 

C4.3. T-tests conducted on participant 2 assessing differences in friction between the thin and thick 

gloves chlorinated to the same concentration.  

 
Load 

Dynamic 
 Dry Wet 

A-E 

Low 
t(2)=6.782 

p=.021* 
t(2)=15.110 

p=.004* 

Medium 
t(2)=-5.799 

p=.029* 
t(2)=-14.241 

p=.005* 

High 
t(2)=1.897 

p=.198 
t(2)=-21.918 

p=.002* 

B-F 

Low 
t(2)=13.407 

p=.006* 
t(2)=-3.297 

p=.081 

Medium 
t(2)=148.035 

p=<.001* 
t(2)=-7.755 

p=.016* 

High 
t(2)=-39.222 

p=<.001* 
t(2)=86.392 

p=<.001* 

C-G 

Low 
t(2)=6.175 

p=.025* 
t(2)=9.010 

p=.012* 

Medium 
t(2)=7.674 

p=.017* 
t(2)=-3.132 

p=.089 

High 
t(2)=-16.351 

p=.004* 
t(2)=-9.568 

p=.011* 

D-H 

Low 
t(2)=-4.842 

p=.040* 
t(2)=-102.853 

p=<.001* 

Medium 
t(2)=-55.720 

p=<.001* 
t(2)=49.795 

p=.001* 

High 
t(2)=-73.001 

p=<.001* 
t(2)=-77.280 

p=<.001* 

* Denotes statistical signifnicance (p<.05) 
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C4.4. T-tests conducted on participant 2 assessing differences in friction between the dry and wet 

conditions. 

  Dynamic 

Glove 
Sample 

Low Load Mid Load High load  

A 
t(2)=3.765 

p=.064 
t(2)=-1.582 

p=.254 
t(2)=95.714 

p=<.001* 

B 
t(2)=5.386 

p=.033* 
t(2)=37.738 

p=.001* 
t(2)=50.673 

p=<.001* 

C 
t(2)=25.514 

p=.002* 
t(2)=22.431 

p=.002* 
t(2)=179.052 

p=<.001* 

D 
t(2)=2.401 

p=.138 
t(2)=-20.580 

p=.002* 
t(2)=-34.379 

p=.001* 

E 
t(2)=18.172 

p=.003* 
t(2)=5.632 

p=.030* 
t(2)=21.085 

p=.002* 

F 
t(2)=2.047 

p=.177 
t(2)=6.599 

p=.022* 
t(2)=-67.194 

p=<.001* 

G 
t(2)=7.281 

p=.018* 
t(2)=-44.289 

p=.001* 
t(2)=24.042 

p=.002* 

H 
t(2)=-8.162 

p=.013* 
t(2)=25.873 

p=.001* 
t(2)=29.958 

p=.001* 

* Denotes statistical signifnicance (p<.05) 
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C5. Data and statistical tests for friction regarding participant 3 (Section 5.4.6)  

C5.1. ANOVA tests conducted on friction results from Participant 2 investigating for differences in 

results across all conditions 

 Thin Thick 

Load Dry Wet Dry Wet 

Low 
F(3,8)=71.470 

p=<.001* 
F(3,8)=23.610 

p=<.001* 
F(3,8)=33.434 

p=<.001* 
F(3,8)=68.383 

p=<.001* 

Medium 
F(3,8)=581.474 

p=<.001* 
F(3,8)=113.568 

p=<.001* 
F(3,8)=17.400 

p=<.001* 
F(3,8)=156.675 

p=<.001* 

High 
F(3,8)=14.975 

p=.001* 
F(3,8)=712.821 

p=<.001* 
F(3,8)=65.387 

p=<.001* 
F(3,8)=2.967 

p=.092 

* Denotes statistical signifnicance (p<.05) 
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C5.2. Tukey’s HSD test conducted on thin and thick gloves in dry and wet conditions from Participant 

3.  

  Dynamic Dry Dynamic Wet 

Load 
(N) 

Glove 
Sample 

A B C A B C 

0.1 

B 
Q=10.593  
p=.001* 

    
Q=5.096 
p=.027* 

    

C 
Q=16.394 
p=.001* 

Q=2.802 
p=.015* 

  
Q=0.879  
p=.900 

Q=4.217 
p=.068 

  

D 
Q=4.692  
p= .043* 

Q=15.284 
p=.001* 

Q=21.086 
p=.001* 

Q=10.632 
p=.001* 

Q=5.536 
p=.019* 

Q=9.753 
p=.001* 

0.5 

B 
Q=18.638  
p=.001* 

    
Q=18.112 
p=.001* 

    

C 
Q=26.423  
p=.001* 

Q=45.061 
p=.001* 

  
Q=17.686 
p=.001* 

Q=0.423  
p=.900 

  

D 
Q=12.213 
p=.001* 

Q=30.851 
p=.001* 

Q=14.210 
p=.001* 

Q=1.081 
p=.857* 

Q=19.193 
p=.001* 

Q=18.768  
p=.001* 

1 

B 
Q=2.013  

p=.52 
    

Q=18.952 
p=.001* 

    

C 
Q=7.279 
p=.004* 

Q=5.266 
p=.024 

  
Q=20.929 
p=.001* 

Q=39.881 
p=.001* 

  

D 
Q=19.925 
p=.001* 

Q=17.912 
p=.001* 

Q=12.646 
p=.001* 

Q=41.651 
p=.001* 

Q=22.699 
p=.001* 

Q=62.579 
p=.001* 

  Dynamic Dry Dynamic Wet 

Load 
(N) 

Glove 
Sample 

E F G E F G 

0.1 

F 
Q=1.458 
p=.720 

    
Q=8.423 
p=.001* 

    

G 
Q=6.671 
p=.007* 

Q=25.212 
p=.026* 

  
Q=4.024 
p=.900 

Q=4.399 
p=.001* 

  

H 
Q=415.289 

p=.001* 
Q=13.831 
p=.001* 

Q=8.618 
p=.001* 

Q=28.564 
p=.001* 

Q=20.141 
p=.082 

Q=24.540 
p=.001* 

0.5 

F 
Q=0.211 
p=.900 

    
Q=18.112 
p=.001* 

    

G 
Q=9.922 
p=.001* 

Q=10.133 
p=.001* 

  
Q=19.024 
p=.001* 

Q=83.234 
p=.001* 

  

H 
Q=2.707 
p=.295 

Q=2.918 
p=.243 

Q=7.215 
p=.004* 

Q=64.210 
p=.001* 

Q=54.855 
p=.001* 

Q=28.379 
p=.001* 

1 

F 
Q=19.437 
p=.001* 

    
Q=2.386 
p=.390 

    

G 
Q=21.652 
p=.001* 

Q=2.216 
p=.448 

  
Q=0.106 
p=.900 

Q=2.280 
p=.425 

  

H 
Q=6.621 
p=.007* 

Q=26.057 
p=.001* 

Q=28.273 
p=.001* 

Q=1.819 
p=.600 

Q=4.205 
p=.070 

Q=1.925 
p=.552 

* Denotes statistical signifnicance (p<.05) 
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C5.3. T-tests conducted on participant 3 assessing differences in friction between the thin and thick 

gloves chlorinated to the same concentration.  

 
Load 

Dynamic 
 Dry Wet 

A-E 

Low 

t(2)=-2.064 

p=.175 

t(2)=18.621 

p=.003* 

Medium 

t(2)=10.433 

p=.009* 

t(2)=-1.951 

p=.191 

High 

t(2)=-6.589 

p=.022* 

t(2)=34.541 

p=.001 

B-F 

Low 

t(2)=23.696 

p=.002* 

t(2)=2.774 

p=.109 

Medium 

t(2)=17.595 

p=.003* 

t(2)=-71.294 

p=<.001* 

High 

t(2)=-8.960 

p=.012* 

t(2)=-12.179 

p=.004* 

C-G 

Low 

t(2)=4.266 

p=.051 

t(2)=-37.379 

p=.001* 

Medium 

t(2)=8.662 

p=.013* 

t(2)=21.260 

p=.002* 

High 

t(2)=0.532 

p=.648 

t(2)=0.826 

p=<.001* 

D-H 

Low 

t(2)=124.862 

p=<.001* 

t(2)=-19.007 

p=.003* 

Medium 

t(2)=-16.654 

p=.001* 

t(2)=10.435 

p=.005* 

High 

t(2)=8.542 

p=.013* 

t(2)=-9.725 

p=.010* 

* Denotes statistical signifnicance (p<.05) 
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C5.4. T-tests conducted on participant 3 assessing differences in friction between the dry and wet 

conditions. 

 Dynamic 

Glove 
Sample 

Low Load Mid Load High Load 

A 
t(2)=-0.890 

p=.468 

t(2)=85.889 

p=<.001* 

t(2)=40.748 

p=.001* 

B 
t(2)=42.782 

p=.001* 

t(2)=110.648 

p=<.001* 

t(2)=-12.226 

p=.007* 

C 
t(2)=19.715 

p=.003* 

t(2)=32.034 

p=.001* 

t(2)=10.561 

p=.009* 

D 
t(2)=13.439 

p=.005* 

t(2)=-3.203 

p=.085 

t(2)=4.387 

p=.048* 

E 
t(2)=33.119 

p=<.001* 

t(2)=-1.107 

p=.384 

t(2)=8.174 

p=.015* 

F 
t(2)=-6.799 

p=.021* 

t(2)=10.540 

p=.013* 

t(2)=113.914 

p=<.001* 

G 
t(2)=2.176 

p=.161 

t(2)=61.761 

p=<.001 

t(2)=11.348 

p=.008* 

H 
t(2)=0.356 

p=.756 

t(2)=47.580 

p=<.001* 

t(2)=3.683 

p=.066 

* Denotes statistical signifnicance (p<.05) 
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Appendix D – Supplementary data for Chapter Seven 
D1. Friction coefficients of NBR gloves in each condition, with the different tools at each load.  

 Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 

Load CoF Load CoF Load CoF Load CoF Load CoF Load CoF Load CoF 

Dry 

1.05 
(±0.05) 

0.26 
(±0.01) 

1.11  
(±0.09) 

0.51  
(±0.05) 

1.02  
(±0.04) 

0.57 
(±0.01) 

0.97  
(±0.07) 

0.47 
(±0.01) 

0.80  
(±0.16) 

0.74  
(±0.11) 

1.01  
(±0.03) 

0.36  
(±0.06) 

1.22  
(±0.11) 

1.05 
(±0.09) 

2.18 
(±0.01) 

0.25  
(±0.01) 

2.08  
(±0.03) 

0.50  
(±0.02) 

2.05  
(±0.11) 

0.44  
(±0.04) 

2.09  
(±0.11) 

0.36  
(±0.04) 

2.00  
(±0.01) 

0.67  
(±0.01) 

1.95  
(±0.08) 

0.35  
(±0.15) 

2.03 
(±0.02) 

1.01  
(±0.02) 

3.01 
(±0.04) 

0.25  
(±0.01) 

3.03  
(±0.09) 

0.48  
(±0.04) 

3.02  
(±0.07) 

0.43  
(±0.03) 

3.05  
(±0.02) 

0.38  
(±0.01) 

3.03  
(±0.06) 

0.66  
(±0.04) 

2.90  
(±0.06) 

0.35  
(±0.08) 

2.98  
(±0.19) 

1.02  
(±0.21) 

4.02 
(±0.07) 

0.26  
(±0.02) 

3.92  
(±0.13) 

0.45  
(±0.05) 

4.05  
(±0.02) 

0.44  
(±0.01) 

4.09  
(±0.11) 

0.43  
(±0.07) 

4.04  
(±0.01) 

0.66  
(±0.01) 

4.01  
(±0.06) 

0.26 
(±0.07) 

4.36  
(±0.14) 

1.06  
(±0.17) 

4.97 
(±0.15) 

0.26  
(±0.04) 

5.02  
(±0.11) 

0.43  
(±0.04) 

5.16  
(±0.17) 

0.46  
(±0.10) 

4.98  
(±0.01) 

0.48  
(±0.01) 

5.03  
(±0.04) 

0.66  
(±0.02) 

4.95  
(±0.04) 

0.30 
(±0.05) 

5.36  
(±0.25) 

1.10  
(±0.32) 

Alco-
hol 

1.01 
(±0.01) 

0.24 
(±0.01) 

0.94  
(±0.03) 

0.55  
(±0.02) 

1.01  
(±0.02) 

0.59  
(±0.01) 

1.00  
(±0.05) 

0.39  
(±0.01) 

0.94  
(±0.04) 

0.32 
(±0.01) 

0.99  
(±0.02) 

0.52 
(±0.01) 

1.16  
(±0.05) 

0.36  
(±0.09) 

2.10  
(±0.07) 

0.26  
(±0.02) 

2.03  
(±0.06) 

0.55  
(±0.03) 

2.02  
(±0.12) 

0.49  
(±0.04) 

2.00  
(±0.07) 

0.33  
(±0.02) 

2.00  
(±0.01) 

0.24  
(±0.01) 

2.08  
(±0.02) 

0.24  
(±0.01) 

1.98  
(±0.03) 

0.38  
(±0.02) 

2.97  
(±0.05) 

0.27  
(±0.02) 

3.11  
(±0.02) 

0.55  
(±0.01) 

3.01  
(±0.07) 

0.45  
(±0.03) 

2.95  
(±0.04) 

0.35  
(±0.02) 

2.96  
(±0.08) 

0.25  
(±0.02) 

3.04  
(±0.08) 

0.25  
(±0.02) 

3.01  
(±0.07) 

0.39  
(±0.21) 

4.05  
(±0.12) 

0.28  
(±0.04) 

4.07  
(±0.04) 

0.56  
(±0.02) 

3.99  
(±0.05) 

0.43 
(±0.02) 

4.02  
(±0.09) 

0.39  
(±0.05) 

4.06  
(±0.12) 

0.25  
(±0.03) 

4.10  
(±0.15) 

0.26  
(±0.04) 

4.13  
(±0.04) 

0.41  
(±0.17) 

4.95  
(±0.29) 

0.28  
(±0.09) 

4.93  
(±0.10) 

0.56  
(±0.06) 

5.18  
(±0.10) 

0.41  
(±0.03) 

5.07  
(±0.03) 

0.43  
(±0.02) 

4.93  
(±0.10) 

0.43  
(±0.02) 

5.12  
(±0.04) 

0.52 
(±0.01) 

5.23  
(±0.12) 

0.42  
(±0.32) 

Mix 

1.06  
(±0.10) 

0.31  
(±0.01) 

1.00  
(±0.05) 

0.46  
(±0.02) 

1.03  
(±0.01) 

0.42  
(±0.01) 

1.09  
(±0.06) 

0.27  
(±0.05) 

0.97  
(±0.15) 

0.21  
(±0.04) 

1.02  
(±0.02) 

0.37  
(±0.02) 

1.06  
(±0.05) 

0.53 
(±0.05) 

2.02  
(±0.09) 

0.26  
(±0.02) 

1.96  
(±0.05) 

0.47  
(±0.02) 

2.03  
(±0.03) 

0.44  
(±0.01) 

1.99  
(±0.11) 

0.35  
(±0.05) 

1.90  
(±0.09) 

0.25  
(±0.01) 

2.03  
(±0.11) 

0.24  
(±0.05) 

1.95  
(±0.10) 

0.33  
(±0.09) 

3.01  
(±0.07) 

0.26 
(±0.02) 

3.05  
(±0.05) 

0.49  
(±0.03) 

2.93  
(±0.05) 

0.42  
(±0.02) 

3.03  
(±0.07) 

0.35  
(±0.02) 

3.06  
(±0.01) 

0.20  
(±0.01) 

3.06  
(±0.03) 

0.20  
(±0.01) 

3.04  
(±0.05) 

0.28  
(±0.04) 
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4.00  
(±0.06) 

0.28  
(±0.02) 

4.00  
(±0.15) 

0.50  
(±0.08) 

3.99  
(±0.03) 

0.40  
(±0.01) 

4.01  
(±0.03) 

0.33  
(±0.01) 

3.94  
(±0.04) 

0.17  
(±0.01) 

4.08  
(±0.05) 

0.16  
(±0.01) 

4.02  
(±0.08) 

0.28  
(±0.06) 

4.93  
(±0.04) 

0.35  
(±0.02) 

5.00  
(±0.06) 

0.51  
(±0.03) 

4.96  
(±0.05) 

0.38  
(±0.01) 

4.97  
(±0.06) 

0.34 
(±0.01) 

4.99  
(±0.05) 

0.22  
(±0.01) 

4.80  
(±0.07) 

0.33  
(±0.01) 

4.89  
(±0.06) 

0.30  
(±0.04) 

Muci
-n 

1.02  
(±0.03) 

0.50  
(±0.02) 

0.96  
(±0.04) 

0.57 
(±0.02) 

1.03  
(±0.05) 

0.53  
(±0.02) 

0.92  
(±0.04) 

0.34 
(±0.03) 

1.07  
(±0.03) 

0.24  
(±0.02) 

1.09  
(±0.02) 

0.30 
(±0.02) 

0.97  
(±0.05) 

0.72  
(±0.05) 

2.07  
(±0.07) 

0.52  
(±0.04) 

1.97  
(±0.08) 

0.51  
(±0.04) 

2.07  
(±0.05) 

0.49  
(±0.02) 

2.00  
(±0.02) 

0.38  
(±0.01) 

2.05  
(±0.04) 

0.50  
(±0.02) 

2.07  
(±0.5) 

0.56  
(±0.05) 

1.90  
(±0.10) 

0.83  
(±0.09) 

2.99  
(±0.10) 

0.52  
(±0.05) 

3.06  
(±0.07) 

0.47  
(±0.03) 

2.95  
(±0.09) 

0.48  
(±0.04) 

2.78  
(±0.16) 

0.36  
(±0.04) 

3.08  
(±0.05) 

0.49  
(±0.01) 

2.96  
(±0.03) 

0.50  
(±0.01) 

3.04  
(±0.05) 

0.82  
(±0.04) 

4.12  
(±0.10) 

0.53  
(±0.05) 

3.92  
(±0.07) 

0.46  
(±0.02) 

4.08  
(±0.08) 

0.48  
(±0.04) 

4.01  
(±0.10) 

0.32  
(±0.02) 

4.00  
(±0.06) 

0.44  
(±0.01) 

3.99  
(±0.05) 

0.44  
(±0.01) 

4.05  
(±0.08) 

0.80  
(±0.06) 

5.12  
(±0.06) 

0.53  
(±0.03) 

4.99  
(±0.09) 

0.43 
(±0.03) 

5.09  
(±0.08) 

0.48  
(±0.04) 

5.17  
(±0.01) 

0.28  
(±0.01) 

4.98  
(±0.06) 

0.40  
(±0.01) 

5.04  
(±0.07) 

0.39  
(±0.01) 

5.03  
(±0.06) 

0.79  
(±0.04) 

Oil 

1.03  
(±0.05) 

0.33 
(±0.03) 

0.99  
(±0.07) 

0.58  
(±0.03) 

0.96  
(±0.02) 

0.42 
(±0.01) 

1.07  
(±0.03) 

0.42  
(±0.08) 

1.00  
(±0.01) 

0.34  
(±0.01) 

1.08  
(±0.03) 

0.46  
(±0.01) 

1.04  
(±0.07) 

0.25  
(±0.03) 

1.97  
(±0.10) 

0.40  
(±0.04) 

1.97  
(±0.13) 

0.55  
(±0.07) 

1.93  
(±0.07) 

0.36 
(±0.02) 

1.97  
(±0.08) 

0.39  
(±0.03) 

1.90  
(±0.03) 

0.16  
(±0.01) 

2.04  
(±0.05) 

0.16  
(±0.01) 

2.02  
(±0.08) 

0.27  
(±0.03) 

3.00  
(±0.10) 

0.39  
(±0.03) 

3.04  
(±0.11) 

0.55  
(±0.06) 

3.05  
(±0.10) 

0.30 
(±0.02) 

3.01  
(±0.11) 

0.40  
(±0.10) 

2.94  
(±0.07) 

0.16  
(±0.02) 

2.95  
(±0.02) 

0.16  
(±0.01) 

3.09  
(±0.02) 

0.27  
(±0.01) 

4.12  
(±0.20) 

0.37  
(±0.06) 

4.08  
(±0.08) 

0.56  
(±0.05) 

3.95  
(±0.11) 

0.27  
(±0.01) 

4.12  
(±0.10) 

0.41  
(±0.06) 

3.95  
(±0.06) 

0.16  
(±0.02) 

3.94  
(±0.02) 

0.16  
(±0.01) 

4.25  
(±0.09) 

0.28  
(±0.03) 

4.88  
(±0.15) 

0.36  
(±0.04) 

5.07  
(±0.07) 

0.57  
(±0.04) 

5.02  
(±0.23) 

0.25  
(±0.02) 

5.02  
(±0.07) 

0.43  
(±0.02) 

4.98  
(±0.10) 

0.31  
(±0.03) 

5.04  
(±0.11) 

0.53  
(±0.03) 

5.15  
(±0.15) 

0.28  
(±0.05) 

Pow-
der 

0.96  
(±0.06) 

0.37  
(±0.02) 

0.96  
(±0.05) 

0.45  
(±0.03) 

0.98  
(±0.02) 

0.38  
(±0.05) 

0.98  
(±0.05) 

0.28 
(±0.05) 

0.96  
(±0.05) 

0.35  
(±0.05) 

0.96  
(±0.05) 

0.16  
(±0.01) 

0.96  
(±0.03) 

0.32 
(±0.02) 

1.99  
(±0.04) 

00.31  
(±0.01) 

1.98  
(±0.09) 

0.51  
(±0.05) 

2.07  
(±0.08) 

0.33  
(±0.03) 

1.95  
(±0.01) 

0.34  
(±0.02) 

1.98  
(±0.05) 

0.31  
(±0.02) 

1.97  
(±0.07) 

0.31  
(±0.02) 

1.95  
(±0.05) 

0.33 
(±0.03) 

2.99  
(±0.09) 

0.29 
(±0.02) 

2.85  
(±0.14) 

0.55  
(±0.09) 

2.97  
(±0.03) 

0.28  
(±0.05) 

3.04  
(±0.01) 

0.35  
(±0.03) 

2.99  
(±0.04) 

0.29  
(±0.07) 

2.95  
(±0.06) 

0.29  
(±0.01) 

3.01  
(±0.21) 

0.33  
(±0.01) 

3.98  
(±0.16) 

0.28  
(±0.04) 

4.01  
(±0.06) 

0.57  
(±0.05) 

3.97  
(±0.18) 

0.24  
(±0.05) 

3.93  
(±0.03) 

0.35  
(±0.05) 

3.97  
(±0.06) 

0.29  
(±0.03) 

3.99  
(±0.02) 

0.29  
(±0.12) 

3.97  
(±0.06) 

0.33  
(±0.03) 
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5.05  
(±0.07) 

0.27  
(±0.02) 

5.14  
(±0.05) 

0.58  
(±0.06) 

5.07  
(±0.11) 

0.22  
(±0.01) 

5.04  
(±0.03) 

0.35  
(±0.01) 

4.94  
(±0.09) 

0.26  
(±0.03) 

5.08  
(±0.10) 

0.21  
(±0.01) 

4.90  
(±0.08) 

0.33  
(±0.02) 

Wat 
-er 

1.05  
(±0.09) 

0.22  
(±0.02) 

1.01  
(±0.10) 

0.7  
(±0.04) 

1.04  
(±0.08) 

0.37 
(±0.09) 

0.96  
(±0.04) 

0.28 
(±0.02) 

1.05  
(±0.08) 

0.23 
(±0.10) 

1.02  
(±0.02) 

0.34  
(±0.02) 

1.02  
(±0.03) 

0.42  
(±0.01) 

2.11  
(±0.01) 

0.23  
(±0.01) 

2.00  
(±0.07) 

0.39  
(±0.03) 

2.08  
(±0.03) 

0.32  
(±0.05) 

1.94  
(±0.15) 

0.27  
(±0.02) 

1.96  
(±0.025) 

0.75 
(±0.10) 

2.03  
(±0.02) 

0.75  
(±0.01) 

1.96  
(±0.04) 

0.43  
(±0.02) 

3.08  
(±0.05) 

0.23  
(±0.01) 

3.08  
(±0.09) 

0.40  
(±0.04) 

3.08  
(±0.08) 

0.28  
(±0.04) 

3.03  
(±0.01) 

0.29  
(±0.01) 

2.98  
(±0.08) 

0.69  
(±0.04) 

3.07  
(±0.04) 

0.69  
(±0.03) 

2.94  
(±0.04) 

0.46  
(±0.02) 

4.03  
(±0.06) 

0.22  
(±0.01) 

3.98  
(±0.05) 

0.40  
(±0.02) 

4.16  
(±0.07) 

0.24  
(±0.17) 

4.14  
(±0.01) 

0.30  
(±0.06) 

3.97  
(±0.06) 

0.63  
(±0.02) 

4.07  
(±0.02) 

0.62  
(±0.13) 

4.00  
(±0.04) 

0.49  
(±0.03) 

5.05  
(±0.04) 

0.21  
(±0.01) 

5.04  
(±0.07) 

0.40  
(±0.03) 

5.09  
(±0.15) 

0.23  
(±0.13) 

5.03  
(±0.01) 

0.33  
(±0.05) 

5.07  
(±0.09) 

0.19  
(±0.03) 

5.07  
(±0.03) 

0.35  
(±0.02) 

4.94  
(±0.02) 

0.52  
(±0.01) 
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D2. Friction coefficients of NRL gloves in each condition, with the different tools at each load.  

 Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 
 Load CoF Load CoF Load CoF Load CoF Load CoF Load CoF Load CoF 

Dry 
 
 
  

1.04 
(±0.04) 

1.23 
(±0.09) 

1.19 
(±0.07) 

1.71 
(±0.12) 

1.09 
(±0.02) 

1.78 
(±0.04) 

1.10 
(±0.08) 

1.62 
(±0.12) 

0.93 
(±0.03) 

1.35 
(±0.07) 

0.97 
(±0.01) 

1.03 
(±0.03) 

1.18 
(±0.04) 

2.15 
(±0.03) 

2.12 
(±0.02) 

1.60 
(±0.03) 

1.89 
(±0.07) 

1.86 
(±0.08) 

2.00 
(±0.13) 

1.43 
(±0.23) 

2.02 
(±0.07) 

1.49 
(±0.07) 

2.09 
(±0.02) 

1.25 
(±0.04) 

1.10 
(±0.07) 

1.18 
(±0.12) 

2.23 
(±0.16) 

2.22 
(±0.07) 

2.95 
(±0.06) 

1.59 
(±0.10) 

3.03 
(±0.08) 

1.32 
(±0.07) 

3.12 
(±0.05) 

1.23 
(±0.07) 

3.11 
(±0.08) 

1.39 
(±0.06) 

3.02 
(±0.02) 

1.19 
(±0.05) 

3.01 
(±0.06) 

1.29 
(±0.09) 

3.02 
(±0.06) 

2.14 
(±0.08) 

4.04 
(±0.06) 

1.53 
(±0.07) 

4.05 
(±0.05) 

1.46 
(±0.04) 

4.05 
(±0.16) 

1.58 
(±0.20) 

4.29 
(±0.13) 

1.23 
(±0.08) 

4.00 
(±0.09) 

1.14 
(±0.12) 

3.97 
(±0.03) 

1.14 
(±0.03) 

3.90 
(±0.05) 

1.84 
(±0.08) 

5.08 
(±0.12) 

1.47 
(±0.14) 

5.02 
(±0.03) 

1.12 
(±0.02) 

5.18 
(±0.26) 

1.56 
(±0.29) 

5.26 
(±0.12) 

0.99 
(±0.06) 

5.02 
(±0.08) 

1.05 
(±0.10) 

4.98 
(±0.08) 

0.70 
(±0.09) 

5.35 
(±0.32) 

1.67 
(±0.66) 

Alco
hol 

 
 
  

1.08 
(±0.04) 

0.18 
(±0.01) 

0.97 
(±0.04) 

0.58 
(±0.03) 

1.03 
(±0.02) 

0.39 
(±0.01) 

0.24 
(±0.10) 

0.32 
(±0.01) 

1.02 
(±0.01) 

0.33 
(±0.04) 

1.12 
(±0.03) 

0.19 
(±0.01) 

1.04 
(±0.02) 

0.43 
(±0.02) 

2.10 
(±0.04) 

0.24 
(±0.01) 

1.95 
(±0.05) 

0.66 
(±0.03) 

2.03 
(±0.01) 

0.28 
(±0.01) 

0.27 
(±0.07) 

0.35 
(±0.01) 

2.00 
(±0.03) 

0.24 
(±0.11) 

1.88 
(±0.11) 

0.24 
(±0.03) 

2.07 
(±0.04) 

0.46 
(±0.02) 

3.03 
(±0.09) 

0.25 
(±0.02) 

2.98 
(±0.17) 

0.65 
(±0.10) 

3.10 
(±0.12) 

0.23 
(±0.01) 

0.24 
(±0.06) 

0.32 
(±0.01) 

2.99 
(±0.05) 

0.25 
(±0.03) 

2.95 
(±0.01) 

0.25 
(±0.01) 

3.07 
(±0.04) 

0.46 
(±0.02) 

4.07 
(±0.16) 

0.25 
(±0.04) 

4.07 
(±0.08) 

0.62 
(±0.04) 

4.01 
(±0.06) 

0.20 
(±0.01) 

0.21 
(±0.13) 

0.28 
(±0.06) 

3.88 
(±0.02) 

0.26 
(±0.15) 

4.01 
(±0.14) 

0.25 
(±0.04) 

4.00 
(±0.28) 

0.45 
(±0.12) 

4.97 
(±0.05) 

0.24 
(±0.01) 

5.05 
(±0.12) 

0.61 
(±0.06) 

5.14 
(±0.02) 

0.20 
(±0.01) 

0.19 
(±0.06) 

0.28 
(±0.02) 

3.88 
(±0.02) 

0.25 
(±0.07) 

4.81 
(±0.07) 

0.77 
(±0.02) 

5.15 
(±0.05) 

0.44 
(±0.02) 

Mix 
 
 
  

1.05 
(±0.05) 

0.32 
(±0.01) 

0.97 
(±0.03) 

0.43 
(±0.01) 

0.94 
(±0.01) 

0.33 
(±0.03) 

0.98 
(±0.01) 

0.28 
(±0.02) 

1.02 
(±0.01) 

0.28 
(±0.01) 

0.99 
(±0.05) 

0.33 
(±0.01) 

1.02 
(±0.03) 

0.42 
(±0.01) 

2.08 
(±0.06) 

0.24 
(±0.01) 

2.02 
(±0.14) 

0.38 
(±0.06) 

2.00 
(±0.01) 

0.33 
(±0.02) 

2.01 
(±0.04) 

0.27 
(±0.07) 

1.97 
(±0.01) 

0.25 
(±0.04) 

2.02 
(±0.07) 

0.25 
(±0.01) 

1.98 
(±0.08) 

0.31 
(±0.01) 

3.01 
(±0.11) 

0.20 
(±0.01) 

2.93 
(±0.01) 

0.39 
(±0.01) 

2.93 
(±0.01) 

0.29 
(±0.01) 

2.98 
(±0.01) 

0.24 
(±0.04) 

3.06 
(±0.01) 

0.20 
(±0.01) 

3.02 
(±0.02) 

0.20 
(±0.01) 

3.03 
(±0.11) 

0.24 
(±0.01) 

3.94 
(±0.08) 

0.17 
(±0.01) 

3.93 
(±0.09) 

0.41 
(±0.04) 

3.86 
(±0.01) 

0.26 
(±0.01) 

4.05 
(±0.01) 

0.21 
(±0.01) 

4.01 
(±0.01) 

0.17 
(±0.01) 

4.13 
(±0.11) 

0.16 
(±0.01) 

3.93 
(±0.01) 

0.20 
(±0.01) 
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5.02 
(±0.08) 

0.14 
(±0.01) 

5.11 
(±0.11) 

0.41 
(±0.05) 

4.99 
(±0.01) 

0.24 
(±0.01) 

4.95 
(±0.01) 

0.21 
(±0.06) 

5.02 
(±0.01) 

0.12 
(±0.01) 

4.92 
(±0.10) 

0.32 
(±0.01) 

4.91 
(±0.10) 

0.18 
(±0.01) 

Muci
n 
 
 
  

1.11 
(±0.02) 

0.56 
(±0.02) 

0.93 
(±0.04) 

0.78 
(±0.04) 

0.94 
(±0.05) 

0.44 
(±0.03) 

1.21 
(±0.09) 

0.43 
(±0.04) 

1.00 
(±0.02) 

0.47 
(±0.02) 

1.10 
(±0.08) 

1.10 
(±0.06) 

1.11 
(±0.05) 

0.97 
(±0.06) 

2.03 
(±0.09) 

0.57 
(±0.04) 

1.99 
(±0.04) 

0.85 
(±0.13) 

2.08 
(±0.06) 

0.38 
(±0.02) 

1.98 
(±0.05) 

0.45 
(±0.02) 

1.94 
(±0.03) 

0.57 
(±0.07) 

1.95 
(±0.05) 

0.57 
(±0.02) 

1.97 
(±0.10) 

0.97 
(±0.08) 

3.02 
(±0.05) 

0.50 
(±0.01) 

2.92 
(±0.10) 

0.83 
(±0.08) 

2.97 
(±0.08) 

0.34 
(±0.02) 

3.08 
(±0.07) 

0.46 
(±0.07) 

2.99 
(±0.02) 

0.50 
(±0.05) 

3.07 
(±0.12) 

0.49 
(±0.03) 

3.01 
(±0.12) 

0.85 
(±0.06) 

4.00 
(±0.10) 

0.44 
(±0.02) 

4.01 
(±0.06) 

0.80 
(±0.04) 

4.04 
(±0.04) 

0.29 
(±0.01) 

3.98 
(±0.02) 

0.46 
(±0.07) 

3.98 
(±0.01) 

0.44 
(±0.01) 

4.21 
(±0.09) 

0.43 
(±0.02) 

4.05 
(±0.12) 

0.74 
(±0.05) 

4.99 
(±0.09) 

0.39 
(±0.02) 

5.09 
(±0.05) 

0.77 
(±0.03) 

5.00 
(±0.13) 

0.34 
(±0.01) 

5.00 
(±0.06) 

0.46 
(±0.11) 

4.90 
(±0.02) 

0.54 
(±0.01) 

5.14 
(±0.08) 

1.03 
(±0.01) 

5.03 
(±0.06) 

0.67 
(±0.02) 

Oil 
 
 
  

1.07 
(±0.03) 

0.22 
(±0.01) 

1.03 
(±0.09) 

0.29 
(±0.05) 

1.00 
(±0.02) 

0.22 
(±0.01) 

1.00 
(±0.01) 

0.22 
(±0.01) 

1.03 
(±0.08) 

0.22 
(±0.01) 

1.01 
(±0.02) 

0.68 
(±0.01) 

1.05 
(±0.03) 

0.09 
(±0.01) 

2.13 
(±0.15) 

0.16 
(±0.02) 

1.98 
(±0.12) 

0.39 
(±0.05) 

1.98 
(±0.04) 

0.24 
(±0.01) 

1.88 
(±0.07) 

0.24 
(±0.02) 

2.00 
(±0.03) 

0.16 
(±0.01) 

2.26 
(±0.66) 

0.46 
(±0.10) 

2.13 
(±0.06) 

0.07 
(±0.01) 

2.91 
(±0.05) 

0.17 
(±0.01) 

3.07 
(±0.18) 

0.39 
(±0.07) 

2.90 
(±0.13) 

0.23 
(±0.02) 

3.00 
(±0.14) 

0.23 
(±0.02) 

2.97 
(±0.08) 

0.17 
(±0.01) 

2.67 
(±0.57) 

0.36 
(±0.09) 

3.10 
(±0.09) 

0.07 
(±0.01) 

4.00 
(±0.08) 

0.16 
(±0.02) 

4.03 
(±0.08) 

0.38 
(±0.03) 

3.89 
(±0.15) 

0.20 
(±0.02) 

4.15 
(±0.07) 

0.20 
(±0.02) 

4.00 
(±0.23) 

0.17 
(±0.05) 

4.11 
(±0.13) 

0.27 
(±0.03) 

4.06 
(±0.08) 

0.08 
(±0.01) 

5.09 
(±0.14) 

0.18 
(±0.04) 

5.00 
(±0.03) 

0.37 
(±0.01) 

5.03 
(±0.06) 

0.22 
(±0.01) 

4.86 
(±0.14) 

0.21 
(±0.01) 

4.96 
(±0.06) 

0.18 
(±0.01) 

4.97 
(±0.07) 

0.29 
(±0.02) 

5.08 
(±0.02) 

0.09 
(±0.01) 

Pow
der 

 
 
  

0.98 
(±0.06) 

0.39 
(±0.01) 

1.09 
(±0.07) 

0.51 
(±0.06) 

1.05 
(±0.07) 

0.29 
(±0.03) 

1.01 
(±0.05) 

0.39 
(±0.02) 

1.00 
(±0.05) 

0.39 
(±0.01) 

0.99 
(±0.05) 

0.36 
(±0.01) 

1.04 
(±0.03) 

0.29 
(±0.01) 

1.87 
(±0.06) 

0.32 
(±0.01) 

1.93 
(±0.04) 

0.61 
(±0.03) 

1.93 
(±0.04) 

0.31 
(±0.01) 

1.94 
(±0.07) 

0.40 
(±0.02) 

2.06 
(±0.03) 

0.31 
(±0.02) 

1.92 
(±0.04) 

0.32 
(±0.01) 

2.03 
(±0.10) 

0.23 
(±0.02) 

2.94 
(±0.04) 

0.29 
(±0.01) 

3.02 
(±0.08) 

0.62 
(±0.05) 

3.00 
(±0.06) 

0.27 
(±0.01) 

2.86 
(±0.05) 

0.38 
(±0.02) 

3.11 
(±0.03) 

0.29 
(±0.02) 

3.00 
(±0.03) 

0.29 
(±0.01) 

3.07 
(±0.03) 

0.21 
(±0.01) 

4.00 
(±0.02) 

0.29 
(±0.01) 

3.95 
(±0.11) 

0.61 
(±0.06) 

3.92 
(±0.15) 

0.24 
(±0.02) 

3.99 
(±0.04) 

0.35 
(±0.01) 

3.93 
(±0.07) 

0.29 
(±0.02) 

3.95 
(±0.08) 

0.29 
(±0.02) 

3.97 
(±0.09) 

0.21 
(±0.02) 

4.99 
(±0.09) 

0.29 
(±0.03) 

4.99 
(±0.03) 

0.59 
(±0.01) 

4.96 
(±0.05) 

0.24 
(±0.01) 

5.01 
(±0.12) 

0.34 
(±0.03) 

5.01 
(±0.04) 

0.32 
(±0.01) 

4.80 
(±0.04) 

0.32 
(±0.01) 

5.08 
(±0.20) 

0.21 
(±0.04) 
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Wat
er 
 
 
  

1.03 
(±0.03) 

0.61 
(±0.03) 

0.94 
(±0.02) 

0.71 
(±0.01) 

1.08 
(±0.01) 

0.45 
(±0.01) 

1.03 
(±0.04) 

0.39 
(±0.01) 

0.99 
(±0.03) 

0.45 
(±0.03) 

0.98 
(±0.05) 

0.97 
(±0.06) 

1.01 
(±0.02) 

1.28 
(±0.05) 

2.09 
(±0.08) 

0.75 
(±0.05) 

1.98 
(±0.09) 

0.67 
(±0.06) 

2.06 
(±0.03) 

0.39 
(±0.01) 

2.00 
(±0.07) 

0.34 
(±0.02) 

1.99 
(±0.07) 

0.75 
(±0.05) 

1.99 
(±0.07) 

0.75 
(±0.04) 

1.97 
(±0.05) 

1.55 
(±0.08) 

3.04 
(±0.13) 

0.69 
(±0.06) 

3.00 
(±0.07) 

0.63 
(±0.04) 

2.95 
(±0.03) 

0.33 
(±0.01) 

3.01 
(±0.14) 

0.35 
(±0.06) 

2.97 
(±0.02) 

0.69 
(±0.01) 

2.96 
(±0.08) 

0.69 
(±0.04) 

3.16 
(±0.13) 

1.46 
(±0.15) 

4.00 
(±0.09) 

0.63 
(±0.04) 

4.08 
(±0.06) 

0.61 
(±0.03) 

4.11 
(±0.07) 

0.28 
(±0.01) 

3.97 
(±0.07) 

0.37 
(±0.03) 

3.82 
(±0.12) 

0.64 
(±0.05) 

3.99 
(±0.03) 

0.63 
(±0.01) 

4.20 
(±0.10) 

1.37 
(±0.11) 

4.95 
(±0.13) 

0.57 
(±0.04) 

4.89 
(±0.09) 

0.58 
(±0.05) 

5.11 
(±0.08) 

0.26 
(±0.01) 

5.04 
(±0.01) 

0.40 
(±0.01) 

5.12 
(±0.09) 

0.35 
(±0.03) 

4.97 
(±0.11) 

0.99 
(±0.04) 

5.00 
(±0.09) 

1.31 
(±0.08) 

 


