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Abstract

After theory and experimentation, modelling and simulation is regarded as the
third pillar of science, helping scientists to further their understanding of a complex
system. In recent years there has been a growing scientific focus on computational
neuroscience as a means to understand the brain and its functions, with large inter-
national projects (Human Brain Project, Brain Activity Map, MindScope and China
Brain Project) aiming to further our knowledge of high level cognitive functions.
They are a testament to the enormous interest, difficulty and importance of solving
the mysteries of the brain. Spiking Neural Network (SNN) simulations are widely
used in the domain to facilitate experimentation.

Scaling SNN simulations to large networks usually results in more-than-linear in-
crease in computational complexity. The computing resources required at the brain
scale simulation far surpass the capabilities of personal computers today. If those
demands are to be met, distributed computation models need to be adopted, since
there is a slow down of improvements in individual processors speed due to physical
limitations on heat dissipation. This is a significant change that requires careful
management of the workload in many levels: partition of work, communication and
workload balancing, efficient inter-process communication and efficient use of avail-
able memory. If large scale neuronal network models are to be run successfully,
simulators must consider these, and offer a viable solution to the challenges they
pose.

Large scale SNN simulations evidence most of the issues of general HPC systems
evident in large distributed computation. Commonly used distribution of workload
algorithms (round robin, random and manual allocation) do not take into consider-
ation connectivity locality, which is natural in biological networks, which can lead
to increased communication requirements when distributing the simulation in mul-
tiple computing nodes. State-of-the-art SNN simulations use dense communication
collectives to distribute spike data. The common method of point to point communi-
cation in distributed computation is through dense patterns. Sparse communication
collectives have been suggested to incur in lower overheads when the application’s
pattern of communication is sparse. In this work we characterise the bottlenecks
on communication-bound SNN simulations and identify communication balance and
sparsity as the main contributors to scalability. We propose hypergraph partitioning
to distribute neurons along computing nodes to minimise communication (increas-
ing sparsity). A hypergraph is a generalisation of graphs, where a (hyper)edge can
link 2 or more vertices at once. Coupled with a novel use of sparse-aware commu-
nication collective, computational efficiency increases by up to 40.8 percent points
and simulation time reduces by up to 73%, compared to the common round-robin
allocation in neuronal simulators.

HPC systems have, by design, highly hierarchical communication network links,
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with qualitative differences in communication speed and latency between computing
nodes. This can create a mismatch between the distributed simulation communica-
tion patterns and the physical capabilities of the hardware. If large distributed sim-
ulations are to take full advantage of these systems, the communication properties
of the HPC need to be taken into consideration when allocating workload to route
frequent, heavy communication through fast network links. Strategies that consider
the heterogeneous physical communication capabilities are called architecture-aware.
After demonstrating that hypergraph partitioning leads to more efficient workload
allocation in SNN simulations, this thesis proposes a novel sequential hypergraph
partitioning algorithm that incorporates network bandwidth via profiling. This leads
to a significant reduction in execution time (up to 14x speedup in synthetic bench-
mark simulations compared to architecture-agnostic partitioners).

The motivating context of this work is large scale brain simulations, however in
the era of social media, large graphs and hypergraphs are increasingly relevant in
many other scientific applications. A common feature of such graphs is that they
are too big for a single machine to cope, both in terms of performance and memory
requirements. State-of-the-art multilevel partitioning has been shown to struggle to
scale to large graphs in distributed memory, not just because they take a long time
to process, but also because they require full knowledge of the graph (not possible
in dynamic graphs) and to fit the graph entirely in memory (not possible for very
large graphs). To address those limitations we propose a parallel implementation of
our architecture-aware streaming hypergraph partitioning algorithm (HyperPRAW)
to model distributed applications. Results demonstrate that HyperPRAW produces
consistent speedup over previous streaming approaches that only consider hyperedge
overlap (up to 5.2x speedup). Compared to multilevel global partitioner in dense
hypergraphs (those with high average cardinality), HyperPRAW is able to produce
workload allocations that result in speeding up runtime in a synthetic simulation
benchmark (up to 4.3x). HyperPRAW has the potential to scale to very large
hypergraphs as it only requires local information to make allocation decisions, with
an order of magnitude less memory footprint than global partitioners.

The combined contributions of this thesis lead to a novel, parallel, scalable,
streaming hypergraph partitioning algorithm (HyperPRAW) that can be used to
help scale large distributed simulations in HPC systems. HyperPRAW helps tackle
three of the main scalability challenges: it produces highly balanced distributed
computation and communication, minimising idle time between computing nodes;
it reduces the communication overhead by placing frequently communicating simu-
lation elements close to each other (where the communication cost is minimal); and
it provides a solution with a reasonable memory footprint that allows tackling larger
problems than state-of-the-art alternatives such as global multilevel partitioning.
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Glossary of terms and acronyms

• HPC: High Performance Computing.

• SNN: Spiking Neuron Network.

• Complex system: a system formed by a large number of interactive elements
whose combined activity is non-linear.

• Parallel computing: synchronous computation across multiple processors,
generally within a shared memory context.

• Distributed computing: parallel computation across processors connected
via communication links (generally without shared memory).

• NUMA: Non-Uniform Memory Access.

• LIF: Leak integrate-and-fire.

• MPI: Message Passing Interface.

• Process: software execution construct with its own memory address space.

• NBX: Neightbour Exchange communication pattern.

• PEX: Personalised Exchange or Personalised Census communication pattern.

• Hypergraph: Mathematical generalisation of a graph in which edges can
connect two or more vertices.

• ARCHER: UK National Supercomputing Service.

• P2P: Point-to-Point communication.

• MVC model: Macaque Visual Cortex neural model.

• CM model: Cortical Microcircuit model.

• Architecture-aware allocation: Workload allocation algorithms that take
target hardware communication capabilities into account. In contrast to architecture-
agnostic which do not consider it.
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Chapter 1

Introduction: challenges to large
scale distributed simulations

1.1 Motivation

The term simulation is often used as a generic umbrella term that loosely covers
various aspects, from mathematical modelling (a simplification or abstraction) to
reconstruction and duplication (recreating a system or system’s behaviour). In any
of its variants, simulations help scientists to further their understanding of a system:
they allow them to experiment on a scale that would be difficult or infeasible to do
with a real system; act as a test-bed for scientific inquiry, a means to determine
relationships by isolating independent variables; or as a proof of concept for further
research. After theory and experimentation, modelling and simulation has been
labelled as the third pillar of science.

In Computational Neuroscience —a multidisciplinary approach that includes
computer scientists, mathematicians electrical engineers, physicists and biologists—
simulations have become a useful approach to studying the complexity of the brain
and its functions. Evidencing this trend, there has been a wide variety of simulators
being developed in recent years: general purpose software simulators [65, 91, 42];
hardware solutions [130, 43]; targeted systems [89, 163] and systems to reverse en-
gineer behaviour [203].

Simulations have been key to various neuroscientific discoveries, such as under-
standing the mechanisms of learning (decoding of temporal information via Short
Term Plasticity [41]; learning via Spike Timing-Dependent Plasticity (STDP) [191],
understanding the biophysical mechanisms governing STDP [15]), and modelling
and understanding neurodegenerative diseases such as epilepsy [146] and its incep-
tion (epileptogenesis [120]).

Work that aims to improve Spiking Neural Network (SNN) simulations could
benefit engineers in designing better hardware solutions for machine learning. In-
spired by biological SNNs, neuromorphic hardware [196, 168, 185, 148, 118, 182, 77,
198] seeks to deliver machine learning (pattern recognition, signal processing, image
detection) far more energy efficient than deep neural networks [99, 199].

In recent years, there is a growing scientific focus on computational neuroscience
as a means to understand the brain and its functions. Just as the 90s was the era
of genomics (with the Human Genome Project) and the 2000s for physics (with the
CERN Large Hadron Collider), the 2010s-2020s have been marked as the decade
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to push neuroscientific discovery [126, 93]. The most visible effort is perhaps the
implementation of two big science projects on both sides of the Atlantic: the Human
Brain Project (HBP) 1 in Europe and the Brain Activity Map (BAM) [7] in the
United States. Both are set out to further our understanding of the brain, with
complementary focuses: whilst the HBP aims to increase knowledge by building
brain-scale simulations of the human brain, the BAM strives to create a functional
connectome of the brain to understand both structure and function.

Although there has been some criticism to these large projects [207], they are a
testament to the enormous interest, difficulty and importance of solving the myster-
ies of the brain. The sprouting of many other initiatives around the world reinforce
that interest: MindScope [133] (study of the mouse visual cortex), China Brain
Project [175] (study of cognitive function with focus on brain disorders), Brain
Mapping by Integrated Neurotechnologies for Disease studies 2 (Japanese effort to
map the brain of a common marmoset monkey), Israel Brain Technologies 3 (devel-
opment of neuroscience-inspired technology) and the creation of political initiatives
such as the BRAIN Initiative 4 by the USA administration to foster scientific col-
laboration. These projects are attempts to tackle the problem of understanding the
brain that may lie beyond the reach of any individual initiative.

1.2 Need for distributed computing in SNN sim-

ulations

Even though full brain simulations may not be the answer to all neuroscientific
questions (see [67] for a discussion on epistemological issues with large-scale brain
simulations), there is value in modelling and simulating larger networks, and facili-
tating this level of simulation is a clear goal in the field: the creation of a large-scale
brain simulation platform was stated as one of the main aims of the HBP [150].

Scaling simulations to large networks usually results in more-than-linear increase
in computational complexity: biological neurons are often connected via synapses to
102−104 other neurons on average, hence a small increase in the number of neurons
leads to several orders of magnitude increase in synapses. Since both neurons and
synapses need to be modelled using mathematical equations, doubling the number
of neurons on a network typically results in a much higher (greater than 2x) com-
putational demand. In addition, simulating larger systems often requires the use
of multiple neuron and synapse models with varying levels of complexity. More-
over, timing constraints (such as the need for simulations to run within reasonable
times or meet maximum and minimum delays in synapses to accurately account for
synaptic plasticity and learning) increase the computational demands even further.

The computing resources required at the brain scale simulation far surpass the
capabilities of personal computers today. Unfortunately, waiting for the compute
hardware to catch up, expecting faster CPU clocks, is no longer an option, as ev-
idenced by the slow down of improvements in individual processors speed due to
physical limitations on heat dissipation described as the power wall effect [12], and

1https://www.humanbrainproject.eu/en_GB
2http://brainminds.jp/en/
3http://israelbrain.org/
4https://www.braininitiative.nih.gov/
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the slow-down of energy efficiency scaling in recent years [99, 151]). Instead, the
hardware trend to improve processor speed is to increase the number of compu-
tational cores, often of heterogeneous nature, such as a combination of CPUs and
GPUs. In the context of distributed discrete event simulations, Fujimoto [80] reports
a performance increase from 200 million events-per-second to 500 billion between
2003 and 2013. However, when the measurement is performed relative to the num-
ber of cores, the performance gain is less than two-fold (from 138K to 256K). This
results exemplify that the computing gain is not being driven by better or faster
cores, but by an increase in parallelism and distribution.

A distributed approach to computing requires software programmers and de-
signers to enforce new development paradigms that take parallelism into account.
This is a significant change that requires careful management of the workload in
many levels: partition of work, communication and workload balancing, efficient
inter-process communication and effective use of available memory (within shared
and non shared memory spaces). If large scale neuronal network models are to be
run successfully, simulators must consider these, and offer a viable solution to the
challenges they pose.

1.3 Challenges to distributed simulations

The main identified challenges for scalable performance of general parallel and
distributed simulations are workload balancing and communication overhead
[59, 80]. The current trend of heterogeneity of computing hardware (CPU, GPU and
other custom processor types) adds to those challenges with variable communica-
tion costs between nodes, different computational speeds and capabilities or access to
uneven amount of memory per node. Furthermore, this heterogeneity poses new dif-
ficulties, such as Non-Uniform-Memory-Access (NUMA) which requires structured
access patterns to maximise cache utilisation, efficient low-overhead data structures
to reduce memory footprint, and good mapping between tasks and workload.

The need for distributed computation brings three main challenges to SNN sim-
ulations:

• Complex workload balance: motivated by the increasingly heterogeneous
nature of HPC computers nowadays, together with the heterogeneous nature
of biological neuronal networks with elements requiring uneven computing
time.

• Increased communication overhead: elements in biological networks (neu-
rons) are highly interconnected; when simulations are run in parallel, the
probability of connected neurons to reside within the same node is reduced
and hence communication is increased when propagating information between
neurons.

• Large memory requirements: Brain-scale biological simulations will require
processing and running networks that are too big to fit in memory. Distribu-
tion and access of data structures, as well as efficiency of algorithms that deal
with the distribution, is required.

If brain-size simulations are to be run in efficiently, distributed and parallel
simulations must address those challenges effectively.
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1.3.1 Workload balancing

To solve problems faster, one can break down the problem into smaller parts
that are worked on independently and simultaneously by different processors. Load
balancing refers to the assignment of parts of the work to computational resources
that are underutilised [20] in order to reduce overall execution time.

To maximise the utilisation of the computing power of a hardware architecture,
the time any of the processors spends idle should be minimised —as it is time a pro-
cessor could have spent in useful computation. A good balanced application needs
to solve these two elements: division of workload and assignment of work to avail-
able processes. Except so-called embarrassingly parallel problems, most problems do
not have a straightforward answer to at least one of the elements. This is specially
true in the case of dynamic applications, where the workload changes over time.

Large simulations of scale-free networks (with power-law node connectivity) with
irregular topologies and skewed node degree distributions (such as certain SNN) have
been shown to be difficult to parallelise, due to load imbalances [80] (consequence
of highly skewed communication overheads due to skewed connectivity distribution)
and severe communication overheads (difficult to partition, leading to required com-
munication between parallel computing nodes).

1.3.2 Communication overhead

In distributed applications, higher parallelism must be traded off against com-
munication overhead [224]: local updates in a process may need to be communicated
to other processes, or aggregated to determine the final answer. As the number of
processes used to compute a global problem grows, the potential communication
between those processes grows super-linearly.

In the context of parallel SNN simulations, Zenke and Gerstner [229] identify
a hard boundary to the speed up by parallelism due to inter-process communica-
tions and spike propagation as the number of processes is increased. Parallelisation
saturates at some point [8], when increasing number of processes does not yield
lower simulation runtime, as the communication costs become more relevant than
computation costs.

To further improve performance via increased parallelisation, the impact of com-
munication overhead must be minimised, either hiding communication costs or by
reducing the overall communication required. One approach is to carefully divide
the problem domain so less partitions need to communicate —chapter 3 explores
this idea.

Particularly important is communication in neuronal simulations using electric
synapses [96], where the state of pre and post-synaptic neurons cannot be solved
independently and hence each neuron pair needs to communicate on each simulation
step. This is also the case for neuromodulated signals [178], where the synapse needs
to be informed about a population-based signal that, in distributed simulations,
resides in a different process.

1.3.3 Memory requirements

Large scale biological simulations will require processing and running networks
that are too big to fit in a single memory space. Work on efficient memory distri-
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bution for parallel SNN simulations has been carried out [136, 137, 124, 132], with
the focus on optimising simulation data structures that already reside in remote
processes.

Tackling the workload and communication challenges requires processing large
networks to efficiently distribute workload in a way that minimises communication
overhead. This is a non trivial process that requires applying optimisation algo-
rithms such as graph partitioning (explored throughout this thesis). However, at
very large scales, those algorithms have to deal with memory requirements that sur-
pass the capacity of the system. Memory efficient algorithms are required to enable
scalability.

1.4 Challenges to heterogeneous HPC

There are two types of heterogeneity commonly found in HPC systems: com-
munication and computing heterogeneity. The former is due to the varied physical
connectivity between computing nodes. The latter is a result of having different
computing cores (CPU, GPU, Vector Processing Units, other custom accelerators)
present across nodes, or even within the same node.

HPC systems achieve high performance through parallelism and distribution. By
the distributed nature of their architectures, there is a level of communication het-
erogeneity between any two running processes in the system (fast shared-memory
communication between processes within the same computing node versus slower
electric and optic connections between remote nodes). Take as an example the ar-
chitecture of ARCHER5, the UK National Supercomputer Service. Each computing
node has two 12-core Intel Ivy Bridge processor. Four nodes are connected to an
Aries router, 188 nodes are grouped into a cabinet; and two cabinets make up a
group. There are all-to-all electric connections between nodes in the same group
and all-to-all optical connections between different groups. This connectivity pat-
tern (comparable to other HPC systems) leads to different connectivity bandwidths
and latencies between processes, depending on where they are hosted.

This complex connectivity pattern is often a bottleneck for speed of communica-
tions [201]. Hence careful mapping of virtual topology (what needs to be computed)
to the physical topology (the hardware architecture) is required for an optimal exe-
cution to maximise the speed of communication between processes.

McCalpin [155] discusses the different rates of improvement in computing per
component, comparing network bandwidth and latency and memory bandwidth
and latency to the gain in computation speed (measured in floating point operations
per second, FLOPS). He shows how, comparatively, gains in computational power
(FLOPS) are at a much higher rate than network and memory latency (x30 and
x100 respectively), and less acutely gains on bandwidth. Since computing speed
is the fastest growing factor, it follows that to achieve faster parallel computations
software must maximise the time it spends computing whilst reducing the time spent
communicating.

Each processing unit type is more suited for certain types of computation. CPUs
are designed for low latency tasks, whereas GPUs are ideal for high throughput, high
latency ones. This should inform the division of workload to optimise the computing

5http://archer.ac.uk/
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throughput of the overall architecture. The hardware trend of increasing parallelism
to achieve better performance [12] highlights the importance of this consideration.

1.4.1 Other challenges to HPC

In addition to the challenges brought by heterogeneity, there are other difficult
problems in HPC computation that remain an active area of research, such as mem-
ory access patterns [20], parallel-efficient data structures [136] and energy efficiency
[99, 151]. Although these are important challenges, they lie outside the scope of this
thesis.

1.5 Contributions of the thesis

The overall aim of this thesis is to address the performance shortcomings of
large distributed simulations, in particular the poor scalability of the communication
requirements due to the allocation of workload across distributed computing nodes.
The thesis evaluates using hypergraphs to model distributed applications and the
impact of incorporating hardware capabilities as part of the workload allocation
mechanism.

Formally, the research question the thesis attempts to answer is: can hyper-
graph models and architecture-aware partitioning algorithms improve scalability of
large distributed SNN simulations on High Performance (HPC) systems?

Large distributed simulations are often communication bound whose scalability,
required due to the size of the problem, is limited by the increase in communication
needed to synchronise data across computing nodes. The heterogeneous nature of
HPC systems makes this problem more difficult with varied communication band-
width and computational capabilities resulting in uneven costs of computation and
communication across nodes.

This work evidences and proposes solutions for the three main computational
challenges of HPC scaling, namely: keeping workload balance for efficient use of
allocated computing nodes; reducing the communication overhead of large-scale dis-
tributed applications; and creating optimal strategies to adapt to communication
heterogeneity in HPC systems to improve distributed application performance. All
whilst considering the memory requirements associated with optimisation algorithms
at large scale.

The contributions of this work are summarised here:

• C1: (Chapter 3) Demonstrate that communication sparsity between comput-
ing nodes drives performance in communication-bound SNN simulations.

• C2: (Chapter 3) Produce sparser communication patterns (up to 90% less
Average Runtime Neighbours and up to 80% less volume of data) by modelling
SNN simulations as a hypergraph and using partitioning algorithms.

• C3: (Chapter 3) Reduce the overheads on the three phases of P2P commu-
nication (synchronisation, handshake and data exchange) in SNN simulations
with the use of dynamic sparse communication patterns, resulting in more bal-
anced inter-process communication (up to 90% less implicit synchronisation
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time), faster simulation runtime (up to 73% less time) and more computational
efficiency (up to 40.8 percentage points more time spent in computing).

• C4: (Chapter 3) Develop a novel framework for testing communication and
workload allocation strategies Spiking Neural Network simulations.

• C5: (Chapter 4) Speedup runtime (up to 14x) in distributed applications
modelled as a hypergraph by mapping application communication patterns to
hardware architecture communication heterogeneity.

• C6: (Chapter 4) Propose a novel cost function for restreaming hypergraph
partitioning to balance heterogeneous communication costs and workload bal-
ance.

• C7: (Chapter 4) Develop a synthetic benchmark for modelling distributed
applications in heterogeneous HPC systems to aid the evaluation of workload
allocation strategies.

• C8: (Chapter 4) Demonstrate that using a novel global communication metric
that guides the refinement of restreaming partitioning improves the mapping of
application communication patterns and hardware architecture heterogeneity.

• C9: (Chapter 5) Implement a novel parametric hypergraph generator to fa-
cilitate benchmarking of complex distributed applications modelled as hyper-
graphs.

• C10: (Chapter 6) Develop a novel architecture-aware streaming hypergraph
partitioning algorithm that can run in distributed streams efficiently without
significant loss in quality.

• C11: (Chapter 6) Demonstrate the impact that process workload balance and
multistreaming start has on the efficacy of hypergraph partitioning-based work
allocation.

• C12: (Chapter 6) Reduce runtime on modelled distributed applications using
parallel streaming hypergraph partitioning (up to 5.2x over other streaming
partitioners, and up to 4.3x on dense hypergraphs over global partitioners).

• C13: (Chapter 6) Efficient and scalable streaming hypergraph partitioning
with reduced memory footprint compared to global state-of-the-art hypergraph
partitioning algorithm.

As a result of the work in this thesis, I developed and published 6 a novel multi-
streaming hypergraph partitioning algorithm (HyperPRAW ) that maps distributed
applications workload to computing nodes in HPC systems that tackles the main
identified challenges:

• Keeps workload balance by maintaining the ratio between maximum and av-
erage workload amongst computing nodes to a user-defined threshold. By
incorporating a workload parameter within the allocation function, it reduces
the workload imbalances between any two computing nodes, which reduces
both computation and communication idle time.

6https://github.com/cfmusoles/hyperPraw
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• Minimises distributed communication by taking advantage of computation lo-
cality, i.e. placing communicating elements of the application in the same
computing node to avoid inter-node messaging. This is achieved by modelling
the application as a hypergraph that is then partitioned and mapped to nodes
to minimise relevant metrics.

• Optimises the distributed communication of the application by using hardware
bandwidth information (from profiling) to modify the workload allocation in
order to place highly connected computing elements close to each other.

• HyperPRAW, as a parallel streaming partitioner, has an order of magnitude
less memory requirements than global partitioner counterparts, which allows
for further scalability.

1.6 Thesis organisation

The remainder of the thesis is organised as follows.

• Chapter 2 surveys the literature in the core areas in which this work is based.
It offers an introduction to computational neuroscience and Spiking Neural
Network simulations. Previous attempts at distributed computing and work
on optimisation of communication in such simulations are discussed and com-
pared. The industry-standard distributed communication MPI library and
common communication patterns are described. Finally, in the context of
workload allocation, the graph and hypergraph partitioning problems are pre-
sented as a multi-objective solution to optimise load balancing and communi-
cation in parallel and distributed applications. The hypergraph partitioning
state-of-the-art is reviewed to identify gaps and opportunities in relation to
HPC challenges.

• Chapter 3 evidences the bottleneck to scaling communication-bound SNN sim-
ulations and presents a novel approach to minimise communication overheads
by modelling SNN as hypergraphs which can be partitioned with off-the-shelf
partitioning algorithms. Increasing the sparsity of inter-process communica-
tion enables sparse collectives to more efficiently handle data synchronisation
requirements for distributed SNN simulations, resulting in reduced communi-
cation overhead and improved computational efficiency.

• High Performance Computing (HPC) systems have very heterogeneous com-
munication capabilities consequence of their hierarchical architecture, result-
ing in wide variations in the cost of communications between compute units.
Large distributed SNN simulations and other large scale computations have
communication patterns that may not match the capabilities of the HPC sys-
tem. Chapter 4 shows that this mismatch results in performance degradation,
and presents improvements that are brought to distributed applications when
incorporating hardware bandwidth of the targeted computer system (the one
on which the application will run on) during the workload allocation process.
Architecture-awareness allows the communication to be weighed by the rela-
tive bandwidth leveraging faster connections and minimising the use of slow
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ones, resulting in an overall reduction of communication time. This work pro-
poses a novel sequential architecture-aware hypergraph streaming algorithm
to aid workload distribution for large scale distributed simulations.

• To better understand the impact of the properties of a hypergraph in graph
tasks such as partitioning, it is important to sample the space of possible hy-
pergraphs in a way that different categories of hypergraphs are represented.
Chapter 5 proposes a novel hypergraph generator algorithm that can be pa-
rameterised to produce custom hypergraphs with defined vertex and hyper-
edge degree distributions, underlying number of clusters, size and cardinality.
This hypergraph generator furthers benchmarking strategies that work over
hypergraphs, such as hypergraph partitioning used to allocate workload in
distributed simulations.

• The earlier work in chapter 4 shows that partitioning the hypergraph that
models a distributed application communication patterns employing network
bandwidth data leads to significant runtime speedup (up to 14x) compared to
architecture-agnostic partitioner. However, as a sequential, multi-pass algo-
rithm, it operates under strong performance constraints, which result in long
partitioning times (hours for large hypergraphs). Chapter 6 explores ways
of mitigating the above limitations and proposes a parallel streaming imple-
mentation for architecture-aware hypergraph partitioning (HyperPRAW). Hy-
perPRAW is a parallel partitioner, with improved scalability with respect to
global partitioners, which are known to scale poorly for large graphs.

• Chapter 7 sumarises the contributions made in the thesis.

1.7 Published work to date

This thesis expands on the work I have already published. [72] established the
potential gains that are brought by modelling Spiking Neural Network (SNN) sim-
ulations as graphs and applying partitioning algorithms to guide the workload al-
location. The results show a reduction in the communication volume and a con-
sequent decreased simulation runtime. The Frontiers in Neuroinformatics paper
[71] (first presented in the NEST Conference 2019 [73]), explores further models
of SNN simulations, along with the use sparse data exchange algorithms instead
of traditional point to point communication patterns, demonstrating a significant
improvement in computational efficiency —the time a simulation spends in useful
computation. More broadly, [74]7 demonstrates the impact of HPC heterogeneity
on large distributed applications runtime and how a partitioning algorithm that is
architecture-aware can lead to better performing workload allocations.

This previous work sets the basis for HyperPRAW, the proposed novel parallel
architecture-aware hypergraph partitioning algorithm, targeted at optimising work-
load allocation for large-scale distributed applications such as SNN simulations or
large sparse tensor multiplications, a common scientific kernel.

7DOI: https://doi.org/10.1145/3337821.3337876
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Chapter 2

Literature Review

This chapter sets the theoretical basis for the rest of the thesis. It describes the
fundamentals of computational neuroscience and SNN simulations as a case study
for the general problem of reducing communication overhead in distributed scientific
agent-based simulations that was introduced in chapter 1. Previous approaches to
parallel and distributed SNN simulators are discussed, particularly in how they deal
with the HPC challenges (communication overhead, workload balance and hetero-
geneity). In depth review of current optimisation of spike propagation and workload
allocation is offered.

After introducing SNN simulations, I outline concepts around parallelism and
distributed computation such as task and data parallelism with respect to dis-
tributed simulations. As a de-facto standard distributed communication library,
MPI is briefly described, highlighting relevant concepts such as collective versus
point to point communications, synchronous and asynchronous modes, barriers,
neighbouring primitives and one-sided communication. Within the context of MPI,
topology mapping is discussed as an attempt to map application communication
patterns to hardware architectures.

Hypergraphs have been shown to represent well communication in parallel ap-
plications [63, 61]. Graph and hypergraph partitioning models are presented as
theoretical frameworks to be used in optimising load balancing and communication
optimisation in distributed applications in general and in SNN simulations in partic-
ular. The challenges and nuances of hypergraph partitioning with respect to parallel
application modelling are reviewed: edge-centric versus vertex-centric partitioning,
streaming and global approaches, scaling of parallel partitioning.

2.1 Computational Neuroscience

2.1.1 Modelling neural networks

Computational neuroscience aids in the understanding of the behaviour of biolog-
ical neuron networks by building and executing mathematical models that describe
them. From this perspective, a neuron is seen as a cell that contains three functional
parts: dendrite, input connections to the neuron; soma, the body; and axon, the
output connections to other neurons. Neurons are connected using synapses and
communicate information via spikes, which are sudden changes in membrane poten-
tial (voltage) due to opening and closing of ion channels, resulting in polarisation or
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depolarisation of the cell. When a neuron receives input above a threshold it causes
the neuron to spike (or fire) and carry on the message to its output connections.
In this type of networks, the message is temporally-encoded (the frequency and in-
terval between spikes), rather than in the actual content of the spike transmission
(all spikes are all equal). This networks are referred to as Spiking Neural Networks
(SNN).

Early work by Hodgkin [107] set the foundation for biophysical models of neurons.
In their model, neuron dynamics are described by ionic equations, which determine
membrane potential of the cell based on the conductance of multiple ion channels
(sodium, potassium and leaky, which at the time was used to explain channels not
explicitly modelled).

Often the biophysical model based on conductance is too complex and expensive
for execution in real-time. Phenomenological models based on modelling spikes,
rather than the biophysical components of the cell, provide a more economical yet
still useful approach. The model most widely used is the Leaky Integrate-and-Fire
(LIF) [85]. LIF equations include a capacitor u, a resistor R and a current I.

τm
du

dt
= -u(t) + R I(t) (2.1)

Functionally, LIF neurons require two elements: an equation to describe the
evolution of the membrane potential (equation 2.1) and a process to generate spikes.
When the membrane voltage reaches certain threshold, a spike is generated and
propagated to all connected output neurons. The membrane voltage is then reset
to a resting value. Some models include refractory period in which the neuron is
unresponsive after resetting. In absence of input, the membrane potential decays to
the resting value using linear or non-linear functions.

2.1.2 SNN simulation

The use of simulators allows researchers to detach themselves from the low-level
implementation details [60] such as memory management, data structures and com-
munication patterns, and instead focus on specific areas (equations governing neu-
rons and synapses, larger connectivity networks, learning) which in turn facilitates
experimentation.

There are two large groups of simulators: software simulators that run in general
computers and hardware simulators built on specific architectures. This overview
limits its scope to open, currently supported, simulators. For a more in-depth review
of SNN simulators, see [37, 36, 60, 28].

NEURON [42] is one of the oldest neuronal simulators, widely used by the neuro-
scientific community, with over 2300 citations1. Originally designed as a tool for the
simulation of biologically realistic neurons, it has grown to include artificial neuron
models such as LIF and multiple integration methods to choose from.

NEST [86] is a well supported simulator that focuses on the dynamics of a
simulation of spiking neural networks without morphological details. It is part of
the NEST Initiative2, a non-profit organisation that aims to facilitate collaborative
efforts to support the development of large-scale simulations of biological neural

1http://www.neuron.yale.edu/neuron/static/bib/usednrn.html accessed on 1/Apr/2020.
2http://www.nest-initiative.org/
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networks. NEST offers a great variety of neuron and synapse models, connectivity
patterns and runtime access to neuron states.

Nengo [203] is a simulator that helps in the creation of population-coding neurons
for the Neural Engineering Framework (NEF) [202]. Rather than attempting to
model and replicate the behaviour of a particular neuronal network, the goal of NEF
is to reverse engineer a particular function; given the function to be performed, and
a neuronal population as substrate, NEF aims to solve the connection weights to
allow the network to produce the desired behaviour.

In the last few years, other approaches have been proposed to fit different user
needs: high performing GPU simulators [22, 228, 25, 208, 204, 163, 164, 159], ease
to use simulator builders [92] and those with narrower scopes such as Auryn [229]
(focused on mid-sized networks, particularly to study synaptic plasticity), ANNar-
chy [217] (tailored for cognitive modelling, where mean-firing rate neurons may be
appropriate) and Neurokernel [89] (rather than a standard simulator, it is a software
platform that facilitates the design and simulation of fruit fly brain regions, taking
advantage of GPU acceleration).

On the hardware side, there are several avenues being actively researched to sim-
ulate SNN, with advantages and disadvantages to each approach: analogue circuits
[199, 118] (much faster and realistic but less programmable), custom massively paral-
lel hardware [130] (highly parallel but lack of flexibility) and FPGAs [79, 43, 185, 50]
(flexible but with slow development cycle).

2.2 Parallelism and distribution

The need for parallel and distributed computation to scale up simulations has
been established by the power wall effect [12]. This parallelism, however, can be
implemented in multiple ways. Taking advantage of new parallel and distributed
architectures poses new challenges to computation in general, and simulations specif-
ically. The body of knowledge that can be used to tackle those challenges includes
techniques from graph analysis, scheduling, load balancing and topology mapping.
Current simulators offer solutions to some of those problems but not all, demon-
strating a gap in research for scalable SNN simulations of brain-size.

2.2.1 Types of parallelism and computational models

Parallelism can be seen from multiple perspectives (on software, on hardware,
by memory access type) and hence it is difficult to portray a single taxonomy.
Modern computers further blur the line by having a combination of heterogeneous
processors. However, Flynn’s taxonomy of parallelism [20] still offers a good overview
of the different computing paradigms available, based on the number of instructions
executed per cycle and the data targeted by them: Single Instruction Single Data
(one core processors), Single Instruction Multiple Data (vector processors, SMs in a
GPU), Multiple Instruction Single Data (for fault tolerance systems) and Multiple
Instructions Multiple Data (GPUs). MIMD can be refined into shared-memory
MIMD (Uniform Memory Access and Non-Uniform Memory Access, NUMA) and
distributed memory (can only communicate via messages). SIMD is often referred
to as Single Instruction Multiple Threads (SIMT) when a single function is executed
over multiple data but with multiple threads, as is the case in current generation
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GPUs. Table 2.1 summarises the main categories, offering general characteristics
and performance critical aspects of various parallelisation strategies.

Table 2.1: Approaches to parallelism

MIMD SIMD SIMT

Paradigm
Task-parallel

Thread-parallel
Data-parallel Data-parallel

Characteristics
Multiple processes

executing multiple functions
Single execution over
large volumes of data

Single function – multiple threads over
large volumes of data
Threads in lockstep

Performance critical
Communication overhead

Synchronisation
Memory bandwidth

Data volume

Memory access
Thread divergence
Synchronisation

Hardware example
Multicore CPU

Computer cluster
Intel Xeon Phi NVIDA GPUs

From a programmatic perspective, there are three distinct levels of parallelism:
instruction level (CPUs executing multiple instructions per clock cycle), task-level,
data-level. Instruction Level Parallelism is addressed by compilers to make use of
pipelining and therefore it is often out of the scope of parallel application program-
mers. The most relevant for parallel applications are task and data-level parallelisms.

Task-level parallelism refers to multiple processes running concurrently to exe-
cute more than one function or task. From a practical view, these processes are
treated as different applications, and they must use formal messaging to commu-
nicate (normally MPI3). It is limited by the overhead in communication and syn-
chronisation between processes. Multicore CPUs are well suited for this type of
parallelism (taking advantage of the low latency of each individual CPU), as are
clusters of distributed computers where each computer is treated as a node that
can process independently from others, and communicate via network connections.
Applications tuned for task-level parallelism are latency oriented, i.e. finishing in-
dividual tasks as quickly as possible.

Data-level parallelism refers to the execution of a single instruction or function
(SIMD and SIMT) over a large set of data. Usually limited by memory bandwidth
and access patterns to minimise the data transfer costs. Vector processors and GPUs
operate under this paradigm to parallelise execution. Applications tuned for data-
level parallelism are throughput oriented rather than latency, i.e. perform as many
tasks at any given time as possible.

According to the physical access to memory in distributed applications, there
are three computational models: shared memory (where processes have direct access
to each other’s memory spaces), message passing (where processes have to shared
memory via messaging), and hybrid models. Although the limits between shared
and remote memory are being blurred (custom hardware support that allows re-
mote memory access), the most applicable model for large-scale distributed systems
is hybrid; processes within a computing node share memory but intra-node commu-
nication is done via message passing. Therefore message passing and communication
overhead are key for scalable distributed computation.

3Message Passing Interface, a standard protocol to share messages
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Distribution is the process of dividing global computation into independent, exe-
cutable fragments that can be run in non-shared memory devices, such as a network
of computers or a multiprocessor CPU. In distributed systems, each device runs its
own instance of the program, but together they may collaborate to solve a bigger
problem.

Computer engineers have made efforts to design circuits that match data-level
parallelism at the hardware level. Two prominent examples of this type of hardware
are: vector processor unit (VPU) and Graphic Processing Unit (GPU). The use
of hardware accelerators in HPC systems increases computation heterogeneity and
justifies the application of adequate scheduling and load balancing algorithms to
deal with workload allocation of parallel and distributed applications.

Most HPC systems are design as clusters of nodes with distributed memory. This
configuration falls under the category of MIMD model of execution with communica-
tion happening via messaging -though the advent of Remote Direct Memory Access
(RDMA)4 technology blurs the line between remote and local memory access. The
clustered nature of its systems makes task parallelism more relevant to HPCs, with
potential for local data-level parallelism. Therefore, when looking at communication
performance of large-distributed HPC systems, the focus is on communication via
local and remote messaging, for which the Message Passing Interface (MPI) is the
de facto standard.

2.3 Distributed communication: Message Passing

Interface

The Message Passing Interface (MPI)5 is a community defined standard for mes-
sage passing that attempts to gather best features of other message passing systems.
It does not contain implementation details but rather it is an interface that imple-
menters need to follow if they want to meet the standards. It specifically defines
methods for message passing computational model, and it is the de facto standard
in distributed communication. One feature that makes it ideal for distributed sys-
tems is its support for heterogeneous networks (joining together workstations from
different hardware like in HPC systems).

2.3.1 MPI concepts

In MPI, a process has its own parcel of memory addresses and communication
entails copying the data from one process to the portion of memory addresses con-
trolled by the receiving process. A process may contain one or more threads, but it
always has its own address space.

Sending and receiving messages involves the use of buffers for both sender and
receiver (sender places data in a buffer, when receiver gets the message it prepares
a receiver buffer with the information contained in the message: length, data struc-
ture type, etc.). Therefore, when two processes communicate, there is a necessary
handshake between them, which together with the need to create buffers and copy
data to and from them result in a communication overhead per communication.

4http://www.rdmaconsortium.org/
5Maintained by the MPI Forum https://www.mpi-forum.org/
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Initially all processes belong to the same communicator group, and within a
group processes are identified with a rank. Custom communicator groups can be
defined to target multiple processes with one send operation.

MPI supports Blocking and non-blocking send modes, depending on whether
it stops program execution or not, useful to probe for multiple messages without
having to wait for a specific one; as well as multiple communication modes:
standard (sender blocks until buffer can be reused), synchronous (send blocks until
message is received), and more user-controllable ready and buffered modes. These
give the parallel application programmer flexibility to define the best communication
pattern to suit their computation model.

Aside from allowing to send messages from a sender to a specific receiver or
communicator group, MPI defines common collective operations within a commu-
nicator: gather, scatter, reduce, broadcast, all to all (gather and scatter). This are
often heavily optimised in any MPI implementation and should be preferred to cus-
tom implementations as they often incur in less communication overhead. Figure 2.1
summarises the common collectives. More advanced collectives have been proposed
over the years, some of which specifically designed to deal with neighbouring and
sparse communication -see section 2.3.2 for a review.

Figure 2.1: MPI Collective communications. From left to right: Broadcast, Scatter,
Gather, All gather and All to all. The colours represent unique pieces of data to be
sent. The arrows represent the directionality of messages. Numbered circles indicate
distinct MPI processes.

Multi-process applications using MPI have a virtual topology that represents the
relationship between executing processes. In order to run the application, those
processes need to be mapped to the physical topology of the computer running the
program.

2.3.2 Large and sparse distributed communication

Thakur et al. [206] argue that at the peta and exascale computing, current
communication patterns in MPI (the standard library for distributed computing)
struggle to scale. The main two challenges are memory footprint of irregular col-
lective operations and poor scaling of collective communications [17]. The former
is due to the requirement to define buffers the size of the number of processes as
function arguments in every irregular collective call. The latter is a consequence of
the nature of all to all communications, each process sending data to all others, with
little opportunity for optimisation —although work has been done to improve per-
formance on specific hardware [149, 4]. Since brain scale simulations require large
scale distributed architectures, SNN simulations have to deal with those issues too.
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Communication in SNN and many other complex system simulations falls into
the category of census, a common parallel programming function in which a process
receives a piece of data from each of all other processes. Each process knows to
whom it needs to send data (any process hosting post-synaptic targets of spiking
local neurons), but has no information as from whom it is going to receive data
(non-local firing neurons). Personalised census or personalised exchange (PEX ) is
the most basic implementation of census [111] in which communication occurs in two
steps: 1) interprocess handshake and 2) send and receive data. During handshake,
processes inform their targets that they will be sending data to them. In the second
phase, each process post data and listens to messages only from those processes.

Often collective communications become the bottleneck on large-scale distributed
applications as their complexity grow supra-linearly with the number of processes
[172, 58, 143]. There are multiple approaches to dealing with the bottleneck: RDMA
technology, non-blocking collectives, topology collectives and novel sparse specific
communication algorithms.

Remote Direct Memory Access (RDMA) is introduced to help bridging the gap
between shared memory systems and remote memory systems in which thanks to
hardware compatible systems, processes can access predefined areas of a remote
process memory space. This helps overlap computation and communication [95, 4].

Non-blocking collectives combine the benefits from point-to-point non-blocking
communications (overlap of communication and computation) with the elegant and
high performing benefits of collective communications. By not blocking they allow
less idle time in distributed computations. Effective use of non-blocking collectives
as an optimised communication collective is demonstrated by Kumar et al. [135] on
the Blue Gene/P Supercomputer.

Hoefler et al. [113, 109] presents new neighbour collectives using virtual topology
for sparse collective communications for gather, all to all and reduce. Collectives
reflect more accurately the communication patterns of scientific distributed appli-
cations (highly localised), resulting in sparse communication. This type of comm
pattern (collectives with only a subset of processes) was not supported before.

Neighbourhood Exchange (NBX ) belongs to the class of Dynamic Sparse Data
Exchange (DSDE) algorithms proposed by Hoefler et al. [111]. They are based on
non-blocking collectives to overlap communication handshake and data transfer. For
sparse communication, Hoefler et al. [111] demonstrate that NBX performs better
than PEX, and DSDE is already in used in libraries [116].

NBX is depicted and compared to PEX in Figure 2.2. First, each process sends
data asynchronously (non-blocking) to all its targets. Whilst the messages are being
delivered, processes probe for incoming messages. Once a sender process is notified
that its messages have been received, it places an asynchronous barrier and continues
to probe for incoming messages until all other processes have reached the barrier
(with an MPI Ibarrier call), signalling the end of the communication phase. The use
of an asynchronous barrier removes the need for an explicit handshake, effectively
allowing the data exchange to start without explicit knowledge from the receiver.

2.3.3 Topology mapping

When dividing workload to take advantage of parallel computing, there is a
trade off between load balancing and communication overhead [97, 229]. As work
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PEX NBX

Figure 2.2: Point-to-point communication strategies compared. Left: Personalised
Exchange (PEX ) involves an explicit handshake to coordinate communication in-
tention amongst processes before exchanging data. First, processes share metadata
in an all to all manner; in a second round, processes send data only to those that
need to receive spiking data. Right: Neighbour Exchange (NBX ) overlaps both
phases with the use of asynchronous barrier, which allows processes to send and re-
ceive spiking data while waiting for notification that other processes have completed
sending data, minimising synchronisation time.

is divided amongst computational nodes, each processor has to do less work, but in
an interconnected simulation this would incur into more inter-node communication.
Hence, simulation workload placement onto physical nodes becomes an optimisation
exercise where elements with higher levels of communication are placed in cores with
high speed connectivity.

Most MPI implementations offer various levels of virtual to physical topology
mapping. The out-of-the-box solutions are often insufficient, however this is an
active area of research. This section surveys some proposed improvements.

Rodrigues et al. [184] presents a communication-aware computation to process
mapping that uses Dual Recursive Bipartitioning to reduce the amount of communi-
cation in parallel applications. They map process to core to minimise communication
cost by taking into consideration relative speed of intra-chip, inter chip and inter
node communication.

The mapping from virtual to physical topology is a non trivial problem that can
be modelled as the graph embedding problem [181]. This problem is a generalisation
of the graph partitioning problem where the objective function to minimise is the
sum of the physical communication cost (given by a communication cost graph)
of all edges in the process graph. Rather than offering a solution, MPI exposes an
interface for developers to incorporate their own [108]. This way MPI users can tailor
solutions that make the application independent from the runtime system. Examples
of simple, affordable heuristics are [100, 209, 23, 181], based on Kerningham-Lin
(KL) improvement (see section 2.6.2) and considering processor hierarchy. To inform
the physical topology graph it is common to use profiling tools [157, 23, 181].

Hoefler and Snir [112] developed LibTopoMap6, a library that supports process
topology mapping to any arbitrary heterogeneous network topology. It offers multi-
ple mapping functions, from a greedy heuristic to recursive bisection. The target is
to minimise dilation (average length of path taken to go from two different processes)

6http://htor.inf.ethz.ch/research/mpitopo/libtopomap/
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and maximum congestion (traffic link over its capacity).
In addition to communication costs, [157] takes into account memory cache util-

isation, an important feature for NUMA architectures. The assignment of processes
to cores is based on the amount of data they exchange. An improvement is presented
by [121], where hardware hierarchically is represented in a balanced tree-like struc-
ture. It produces good mappings for applications with hierarchical communication
patterns.

MPI topology mapping has been used for load balancing in chemical simulations
[24]. Communication performance is improved by using architecture shape (3d mesh
or torus) to map communicating tasks on processors that are physically close to-
gether. The algorithm assigns invariant static workload to processors and leaves
the code responsible for calculating force between static pairs to be dynamically
balanced based on preference tables.

Bokhari [30] suggests the mapping problem can be modelled as the Quadratic
Assignment Problem (QAP). In order to optimise MPI communication in unstruc-
tured computational fluid dynamics, [34] uses QAP heuristics to map processes to
cores. The communication cost between cores is estimated by locality (local cores
are assumed faster than remote cores).

2.4 Parallel and distributed SNN simulators

This section acts as an overview of how current state-of-the-art neuronal simu-
lators implement parallel and distributed execution. It focuses on aspects of SNN
simulations that are challenging for scalability, particularly around communication
and workload allocation. Although the lens is on SNN simulations, most of the
challenges are applicable to other complex system simulations with high degree of
element interconnectivity.

There are three general steps or phases [97] when performing neuronal simulation:
1) solving phase, which involves the integration of differential equations in the neuron
model; 2) contribution phase, where the propagation of messages (spikes) occurs;
and 3) update phase, in which the changes to target neurons are applied. The
solving phase is the easiest to parallelise [36] as it follows the SIMD model (a single
function that needs to be applied to a large set of data). The propagation of spikes is
the hardest and it becomes the general bottleneck on efficient parallel computation
[79, 36], particularly as the size of the network grows.

There are three general approaches to parallelism in the literature of neuronal
simulators, depending on the level of parallelism they target: task parallelism via
distribution of work (using MPI), data parallelism by multi-threading (with the
utilisation of GPU) and designing and implementing custom hardware (such as
SpiNNaker [130], analogue circuits [199, 118] and FPGAs [43, 185, 50]).

Parallelisation via multithreading is the process of executing fragments of com-
putation concurrently. It differs from distribution in that there is shared memory
access and it generally subscribes to a SIMD model, were a single piece of code is
applied to large amounts of data in parallel.

Current SNN simulators that offer data parallelism via multi-threading employ
GPUs [186, 22, 228, 217, 208, 204, 75, 88] and multicore CPUs [35].

With the technological push of General Purpose computation on GPU (GPGPU),
many research groups have turned to graphic accelerators to speed up their scientific
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computing. Neuroscience has not been an exception and several simulators that
take advantage of GPUs have been proposed: proof of concepts [208] (CUDA),
[204] (OpenCL), and insights into suitable communication patterns and network
representations [164, 36].

Other simulators based on code generation to produce kernels that can be used
by GPUs include CARLsim3 [22], GeNN [228], ANNarchy [217], NeMo [75] and
Neurokernel [139, 88]. These approaches optimise the generated code to enhance
one or more of the following: parallelism (functions that can run concurrently), oc-
cupancy (usage of GPU cores), memory bandwidth (good memory access patterns),
memory usage (via sparse representations) and thread divergence (avoiding threads
of uneven execution time).

Although distribution on multiple GPUs is technically possible with some of
those simulators, the programmer remains responsible for the distribution and man-
agement of the work.

Most sequential SNN simulators support distributed execution ([158, 97, 174,
171]) using the standard MPI to communicate between remote processes. They use
the model based on [160] to distribute synaptic objects to be only represented in the
node that contains the postsynaptic neuron. Thus when propagating spikes, only
the index of the presynaptic neuron is required to be sent.

NEST uses a hybrid approach [174] combining distributed simulation across
nodes -using MPI messaging- and multithreading within nodes with static, round
robin-type allocation. Since NEST targets modelling of a large number of simple
point-like neurons (not considering their morphology or location) simulations are
normally communication-bound, i.e. when scaling the network size, the critical
aspect is not the execution of neuronal equations (as these are relatively simple,
particularly for parallel computation) but the propagation of spikes and synapse
representation –especially in simulations with high communication frequency [124].

2.4.1 Communication challenge

Speed of runtime is important in general SNN simulations, for obvious reasons:
running simulations faster means more experimentation iterations and less use of
expensive resources, specially important in shared resources systems. Runtime is
even more critical in particular cases such as when modelling Spike Time Dependent
Plasticity, since behaviour of the network is ultimately dependent on the accurate
timing between spikes and often experiments may require long simulation runs.
Zenke et al. [229] show in a series of experiments with mid-sized networks that
the bottleneck to speed gain in parallel simulations is ultimately due to latency in
inter-process communication. Since this portion is no easily parallelisable due to
interprocess dependencies [36], it becomes a key component to optimise. Eppler et
al. [69] reports super-linear speed-up on small clusters and parallel systems (up to
10 processors) but then saturates at higher scales.

2.4.1.1 Propagation of messages

The propagation of spikes and its effect on target neurons in simulations is un-
derstood to be difficult to parallelise [134]. Brette et al. [36] identify this step as the
bottleneck for GPU acceleration, as the operation does not follow the SIMD model.
In simulations performed over analogue circuits where computation speed is much
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higher, propagation of spikes becomes the practical bottleneck [199]. Neuron-based
parallelisation [164, 163] and synaptic events-based parallelisation [75] approaches
have been proposed to speed up the propagation of spikes in non-distributed sys-
tems. Distributed systems face an extra challenge: as the number of processes
increases, the probability of a pre and post-synaptic neuron to be assigned to differ-
ent processes increases, hence incurring in higher communication costs when spikes
are propagated [124].

NEST [136] and NEURON [158] use a simple all-to-all communication pattern
between processes to propagate spikes, implemented via MPI Allgather function.
Although it is simple to implement and generally does not impact performance in
small parallel and distributed systems, its overhead quickly raises with the number
of processes. Both acknowledge that the approach is a baseline and should be
improved. NCS 6 [106], hybrid distributed and parallel simulator, uses a similar
approach whereby local parallel threads upcast the spike vector to the machine level
and then all-to-all broadcast to share the information. Machines are then responsible
to downcast the spike information down to threads.

A particular implementation of an MPI multicast communication pattern is pro-
posed in [135] as an alternative to MPI all gather communication pattern designed
on top of IBM’s Blue Gene/P computer. It consists of Deep Computing Messaging
Framework (DCMF) multicast and many-to-many efficient communication patterns
that make use of the hardware architecture. However performance is lower when
neurons have high number of connections (hence probability of any process to need
to listen to all processes is high). In their proprietary simulator HRLsim, [159] uses
non blocking point to point communications. However none of them show a com-
parison of the cost of communication and the gain between point to point and a
collective message passing.

Other complex system simulators include publish-subscribe communication pat-
terns [56] and reduce-scatter primitives to send messages only to processors that
needed it [8].

SpiNNaker [130] follows an Event-Address Mapping scheme [123] to minimise
network communication overhead between chips and boards. When a spike occurs,
a standard message (or bundle of messages) is sent through a series of multicast
routers, following each time a routing table until it reaches the target neuron. The
routing table is pre-loaded upon initialisation with a planning algorithm that ensures
that two neurons are connected using the shortest path between the chips in which
they are hosted. The downside of this approach is that it is only directly applicable
to simulations running on a hardware network (although MPI topology mapping
can be understood as a soft routing table), and there are memory limitations to the
information a routing table can efficiently store, particularly problematic in very
large simulations.

2.4.1.2 Optimisation of message propagation

In a continuous SNN simulation run in distributed processes, after updating
the states of neurons and synapses, each process needs to broadcast spike data
so target postsynaptic neurons are notified of the activity of presynaptic neurons.
This synchronisation event occurs at defined time intervals, with communication
overhead at every step. One method of reducing the overhead is to pack event-
messages together by using the intrinsic synaptic delay property of the neuronal
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connection [160, 86]. The global minimum synaptic delay (smallest synaptic delay in
the simulation) is used to set the frequency at which processes need to communicate.
Hammarlund et al. [98] take this idea further and use a different frequency of
communication per process pair, defined by the minimum synaptic delay in synapses
across those processes, with a reduced overall communication overhead.

Most distributed SNN simulators use the Address Event Representation (AER)
to compress the spike data exchanged between parallel processes. In software
simulators, the AER approach by [160] is commonly used, where synapse objects
are stored where the post-synaptic neuron is placed. Thus, processes containing
firing neurons need only send the neuron ID and time stamp information to other
processes. HRLsim [159] dynamically switches to an alternative bit representation
[29] when the activity of the network is high. The bit representation describes the
state (fired or not fired) of an ensemble of 32 neurons with a bit in a 4 bytes integer,
allowing to represent the entire network more efficiently. Nageswaran et al. [164]
targets the time stamp data to reduce the size of event messages. Instead of sending
neuron id-timing pairs, they employ timing tables at which processes attach spike
data, removing the need to include time data. Similarly, Morrison et al. [160] avoid
having to send individual spiking timestamp by adding markers to the spike buffers
(one per time interval between communication events), thus receiving processes are
able to determine when the remote spike occurred.

After compressing and packing spiking data, parallel simulators must broad-
cast the messages to any and all processes that require it. Software simulators
[42, 86, 106, 229] take the simple approach of sending every message to all other
processes (all gather). Although this design scales poorly, it is easy to implement
and for lower processes counts the hardware optimisations made for such a collective
function call may hide this cost. To support the all gather approach, Lytton et al.
[147] suggest that it may perform better than a discerning point-to-point, provided
the number of processes involved is significantly lower than the average number of
connections per neuron. In this situations, the probability that any neuron has post-
synaptic targets in any other process is high, hence most spiking messages need to
be sent to all other processes. In large scale simulations, however, with the order of
thousands of processes, this may not be the case, as the average neuron connectivity
will quickly be outnumbered by the number of processes, making all gather commu-
nication inefficient. The point at which average neuron connectivity outweighs the
number of processes is dependent on the model in question; for human brain models
it can reach tens of thousands, but for specific microcircuits it is significantly be-
low that, such as the cortical microcircuit (3.8k, [177]) and the multi-area macaque
visual cortex (5.8k, [195]). This relationship between average neuron connectivity
and number of processes is behind the performance demonstrated by Kumar et al.
[135] in their extension to NEURON, which showed higher gains in communication
efficiency in low connectivity density models.

Previous works [158, 124] acknowledge that the communication overhead using
all gather becomes a problem for scalable parallel simulations and better broad-
casting efficiency is needed. SPLIT [98] and HRLSim [159] both implement
point-to-point communication with reported gains over all gather. Jordan et al.
[124] propose using all to all as an alternative collective communication in large
scale NEST parallel simulations. Although they are more interested in reducing the
memory footprint of communication at large scale, this collective method minimises
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the redundancy of data sent across the simulation, with each process sending unique
data to all other processes.

In large scale simulations performed to date, communication overhead is dealt
with in several ways for each case. Kunkel et al. [137] and Jordan et al. [124] rely
on message packing to reduce the communication overhead problem (communicate
only every 15 time steps). In their custom cortical simulator Ananthanarayan et
al. [9, 10, 8] use a point to point communication pattern to reduce communication
volume. Their work includes strong scaling experiments showing that as the number
of processors is increased, the simulation becomes communication bound. Other
large scale simulations do not explicitly optimise communication as they do not
study scalability [119, 68].

2.4.2 Workload balance challenges

Workload allocation in distributed and parallel systems is key to achieve high
performance. The fundamental aspect for parallel applications is to divide workload
in such a way that the time processes spend in useful computation is maximised. In
other words, the overheads of parallelisation need to be reduced. Overheads arise
from dividing the computation in independent processes, and include both extra
communication and computation costs: sharing partial results (sending and receiv-
ing data), coordination (extra computation required to coordinate jobs between
processes) and synchronisation (time processes are idle due to uneven workload as-
signment).

These costs increase with the number of distributed processes, thus the division of
workload in independent portions and the assignment of those to physical computing
nodes is key to HPC systems.

2.4.2.1 Allocation of neurons to processes in SNN simulations

Most SNN parallel simulators use round-robin allocation of neurons to computing
nodes [86, 158, 171, 228]. This can be seen as a simple form of static load balancing
as it tends to distribute evenly both number of neurons and incoming synaptic
connections [137] —both of which contribute to overall workload cost. This results
in almost perfect speed-up in compute-bound simulations, those in which most of
the time is spent in the solving phase (updating neuron membrane potential and
synapse objects), but with simpler artificial models the spike propagation is more
predominant and hence the speed-up is reduced. Other extensions [105, 104] have
gone further and split computation at the compartment level, but they are only
applicable to multi-compartment neuron models. The importance of load balancing
in neuronal simulations is evidenced by the efforts to include interfaces in NEST to
load balancing algorithms7.

Table 2.2 shows parallel and distributed SNN simulators and their load balancing
approaches. Most of them use simple strategies to maintain workload balance such as
round-robin or static allocation, with very few attempts to minimise communication
between processes due to the connectivity of neuron elements.

Neurospaces [57] is one of the first efforts to explore systematic partitioning of
neurons to processors. Neurons are represented as tree graphs that contain infor-

7https://github.com/eth-cscs/nestmc-proto/issues/318
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mation regarding relative computational expense fed from manual tables. The al-
gorithm traverses the graph and assigns neurons to partitions in round-robin. Once
the partition workload reaches the expected balanced load it is finalised and mapped
to a physical node.

NCS 6 [106] achieves workload balance with an arbitrary relative computational
power ranking and cost estimate of neurons (by the number of incoming synapses).
Neurons are sorted in decreasing cost and distributed across nodes, the one with
lowest computational load (total cost over computational power) receiving the next
neuron.

The approaches discussed focus on workload balancing to minimise simulation
synchronisation or idle time. However, very little work has focused on the impact
that neuron allocation has on communication (i.e. spike propagation). HRLSim
[159] suggests assigning neurons based on how tightly connected they are but without
details on how this is done. Urgese et al. [214] present an improvement to the
default division of workload policy PACMAN [82] in SpiNNaker. In their work the
authors use graph partitioning to minimise the amount of communication between
groups of neurons placed in different partitions (i.e. chips and cores). Population
models are broken down to produce a graph where nodes represent neurons and
edges represent synapses. Spectral clustering is used to then group neurons into sub-
populations, where tightly connected groups are kept in the same partition. The last
step consist of mapping those resulting sub-populations into cores using Sammon
mapping to adapt the multidimensional population space to a two-dimensional space
representing the physical location of cores. If any core surpasses the maximum load
allowed, an arbitration step moves sub-populations to other neighbouring cores.

A similar approach, but based on graph partitioning is employed in the complex
system simulator InsilicoSim, now PhysioDesigner 8 [101, 102], demonstrating the
potential benefits of graph partitioning to distribute computation. It then uses
METIS [127], a popular graph partitioning package, to minimise communication cost
between partitions (edge-cut) whilst maintaining balanced computation (workload
between partitions).

Table 2.2: Overview of parallelisation and load balancing techniques on simulators

Parallel Distributed Load balancing
Multithreaded GPU Multiple CPU Multiple GPU

CARLSim 3 No Yes No No N/A
GeNN No Yes No No Round-robin
Neurokernel No Yes No Yes Manual allocation
Brian 2 Yes Yes (with extension) No No N/A
HRLSim No Yes No Yes Connectivity tightness
NCS 6 Yes Yes Yes Yes Computational metrics
NEST Yes No Yes No Round-robin
NEURON Yes No Yes No Round-robin
PCSIM Yes No Yes No Round-robin
NeMo No Yes No No Round-robin
ANNarchy Yes Yes No No N/A
SpiNNaker Yes N/A Yes N/A PACMAN (static)
NeuroFlow Yes N/A Yes N/A Based on spatial proximity

8http://physiodesigner.org/
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2.4.2.2 Workload distribution in other parallel applications

The application of dynamic scheduling algorithms to complex system simulations
is common in agent-based modelling (ABM) parallel systems. They offer life-cycle
management, inter-agent communication, agent perception and environment man-
agement [187].

Traditional approaches to dynamic load balancing focuses on even spread of
computational load with regular re-evaluations throughout runtime. Chow et al.
[51] propose a composite formula to calculate agent load that incorporates inter-
agent communication cost for their risk detector ABM system Comet. Results show
that workload is more balanced amongst distributed machines with their metrics
than when considering computational load alone.

D-Mason [55] and Pandora [188] use a partitioning of agents done via an agent
area of interest (AOI) (positional partitioning). In runtime, agents are allowed
to migrate to neighbouring grids, mimicking their physically movement. It uses
a resource-centric approach to allocate agent-to-agent interaction work, as workers
(physical cores) register their willingness to compute overlapping AOI based on their
computational capacity.

Other scientific simulations can take advantage of the spatial features of the
objects to be simulated, i.e. they can be naturally sorted in a location coordinate
system. Hence, those fields make use of domain decomposition [94] techniques to
break down the real space into a grid to parallelise the solution of the equations. In
engineering many parallel linear iterative solvers for differential equations [66] have
been proposed [162, 179, 38].

NWChem [215] is a framework for large-scale chemical simulations. It provides
functionality to manually achieve data and task parallelism via a custom toolkit,
with a distributed shared-memory model where data transfers (from global address
space to local storage) and message passing between clusters using MPI are handled
by the user.

2.5 Graph partitioning for workload distribution

Agent-Based Simulations (ABS) are a broad class of models that can be used
to represent and simulate complex systems based on simple single-agent rules and
messages to describe interactions between those agents. ABS have three general
phases: update, where the state of each agent is recalculated based on the previous
state; communication between agents, which is handled via discrete messages; and
consolidate, where the information on the messages received by an agent is incorpo-
rated into its state. SNN simulations can be thought of as a type of ABS in which
neurons and synapses are modelled as agents that communicate discrete messages
amongst themselves (i.e. spikes). The computation consists of updating the internal
state of the neurons and synapses.

The computation and consolidation phases of an ABS are an ideal fit for dis-
tributed computing as agents can be updated in parallel, achieving a speedup pro-
portional to the number of computing nodes. The communication phase, on the
other hand, is notoriously hard to parallelise. When two agents that need to share
data are allocated in different computing nodes, a message needs to be sent across
the network. With more computing nodes, the probability of agents that require
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communication being hosted in different nodes increases and with it so does the
required network communication.

To attempt tackling the scaling problem, ABS can be modelled as a graph
[11] where vertices represent agents and edges represent connections between those
agents (potential communication channels). Once the system is represented as a
graph, optimisation algorithms can be applied to map computation (vertices in the
graph) to computing nodes. Graph partitioning is particularly suitable as it can
optimise multiple criteria such as workload balance (number and weight of agents
assigned to each partition) and communication (edges that go across partitions).
Graph partitioning has been applied in the past for load balancing purposes in SNN
domain [57, 214] and other complex computations and simulations [166, 101, 102, 27].

Although graph partitioning has been applied to optimise ABS, the growing
challenges presented by large-scale distributed computing increase the complexity
of the optimisation problem which remains unsolved.

2.6 Graph partitioning problem

Graph partitioning can be used to find solutions to workload distribution to op-
timise both workload balance and communication overhead. The graph partitioning
problem can informally be described as a procedure to divide a graph of intercon-
nected nodes into balanced partitions to minimise the weight of the edges cut by
partitions. Balancing aims to evenly distribute the weight of the vertices associated
with each partition, but standard strategies can accommodate multiple criteria (i.e.
multiple weights per vertex, weighted edges). This is particularly interesting for mul-
tiphase simulations where optimising for one parameter may imbalance execution
time for other phases.

Formally, a graph G = (V,E) consists of V , a set of weighted vertices and E, a
set of weighted edges, where each edge is a pair of vertices e = {v, u}, v ∈ V, u ∈ V .
Given the graph G, and a positive integer p, the graph partitioning problem involves
finding p subsets of V such that ∪pi=1Vi = V and Vi∩Vj = ∅ for i 6= j. The goal is to
minimise the edge-cut, the sum of the edge weights crossing from one partition to
another. For a balanced graph partition, an extra constraint is added W (i) ≈ W/p
for i = 1, 2..., p, where W (i) is the sum of all node weights in partition i and W is
the sum of all weights.

Graph concepts:

• Edge cut: number of edges that connect nodes in different partitions or
clusters. It is traditionally the metric used to assess quality of partition (low
best).

• Vertex Degree: for a given vertex, its degree is the number of incident
edges (incoming connections from other vertices). This is an indication of how
interconnected a vertex is, whether it is a hub. Vertex with high degree are
likely going to be associated with high costs of communication.

• Power-law or sale-free graphs: a scale-free graph is one in which the num-
ber of edges initiating from a given vertex follows a power-law distribution
(probability of vertex to have degree d is P (d) ≈ d−α, with α controlling the
skewness). Intuitively this results in graphs with a few vertices connected

25



Chapter 2. 2.6. GRAPH PARTITIONING PROBLEM

to a large proportion of the population. Power-law graphs are particularly
challenging to partitioning as it is shown in section 2.8.1.

• Hop cut: inter-partition edges (edges cut) count weighed by the physical cost
of communication.

2.6.1 Graph partitioning in distributed simulations

Graph partitioning can consider the cost to optimise neuron to processor map-
ping [115, 219, 161]. More broadly, the mapping problem is central to any multi-
processor application in general, and specifically to all distributed complex system
simulations.

In the context of distributed agent based model simulations, [11] analyses the
effectiveness of graph partitioning to reduce communication costs, and highlights a
strong negative correlation between simulation time and the edge cut of the graph.
Brette [36] identifies graph partitioning as a potential tool to minimise the amount
of communication overhead by grouping spike messages together. SNN simulators
that support distributed execution generally use some type of partitioning to divide
workload, but it is limited to round-robin or simple workload balancing approaches
—see section 2.4.2.1. SNN simulators do not formally utilise graph partitioning to
divide the work into nodes, but authors have pointed out its applicability [214].
Graph partitioning can be used to divide the workload based on parameters such as
network connectivity, computational power and communication speed.

Users of SNN simulations frequently describe their targeted models at a popu-
lation level, with a list of neuronal populations and a deterministic or probabilistic
connectivity between them to define the system. Figure 2.3A shows a simplified
Cortical Microcircuit model at this level. Populations are eventually broken down
to the neuronal level by SNN simulators and then mapped to computing nodes. To
be able to use graph partitioning to aid workload allocation, these models need to
be represented as a graph of vertices and edges. A direct translation is to represent
neurons as vertices and synaptic connections as edges. Figure 2.3B shows the graph
representation that corresponds to the Cortical Microcircuit model. An advantage
of using graph to model SNN is that one can modify the level of granularity of the
unit of workload, i.e. instead of having vertices for neurons, vertices can represent
higher level concepts such as sub-populations or regions.

Figure 2.4 shows different graph types, from independent networks, to small
world and random connectivity. Biological plausible SNN are expected to sit some-
where in the middle of this continuum [39], where locality is relevant, i.e. local
connectivity is expected to outnumber remote connectivity. This is also the case
for physically based (location) complex system simulations such as traffic, chemical
or particle simulations, due to the fact that interactions mostly happen locally, i.e.
between nearby agents. This suggests that using connectivity-agnostic workload al-
location algorithms such as round-robin may incur higher communication costs due
to increased inter-process connectivity —connected neurons hosted in different par-
titions. Graph partitioning can be used to find local connectivity hubs and therefore
improve simulation performance, as Chapter 3 demonstrates.
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Figure 2.3: Cortical Microcircuit neuronal model (only connections with p > 0.05
shown).A: High level definition of the CM model with excitatory (circle) and in-
hibitory (rectangle) populations. B: Simplification of a low level representation of
the same CM model at the neuron (circle) level.

Figure 2.4: Graphs to model SNN mapping to computing nodes. From left to right:
isolated networks, small world networks, random networks. Biologically plausible
SNNs lie somewhere in the middle, which gives the opportunity to optimise neuron
allocation by placing highly connected neurons in near computing nodes.

2.6.2 Graph partitioning algorithms

Graph and hypergraph partitioning is an NP-Complete problem [83], which
means one must use heuristic approaches to find approximate solutions. For more
in-depth surveys on the field please see [165, 200], or [40] for recent advances. Here
we highlight the most commonly used algorithms.

Graph partitioning algorithms can be classified into three groups [165] depending
on what they prioritise:

• Local improvement methods: based on local search, they process a vertex
at a time to optimise the cost (usually edge-cut). Local methods usually have
less memory requirements as they do not need to work with the entire graph
concurrently, but tend to find local minima.

• Global methods: they work with the entire graph to produce a solution,
i.e. set of partitions. Heavier in memory requirements, they tend to provide
higher quality results since they have full knowledge of the graph.
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• Multilevel algorithms: the graph is coarsened prior to partitioning, and
then it is expanded to assign nodes to partitions. Multilevel algorithms are a
compromise between local and global methods, providing good quality results
with a fraction of the memory requirements of global methods. Current state
of the art partitioning methods use multilevel algorithms.

Classic local improvement methods are based on Kerningham-Lin (KL) algo-
rithm [129]. KL iteratively attempts to improve 2 given partitions by finding an
approximation to the best exchange of λ pairs (any number of nodes from one set
to the other) that minimises the overall edge-cut. Fiduccia and Mattheyses (FM)
[76] proposed an improvement on KL to tackle the exponential costs of selecting
a candidate to exchange and having to recalculate gains when nodes are swapped.
Although KL and FM operate on 2 partitions, they can be easily extended to be
k-way by operating recursively. Other search-based algorithms have been presented:
memetic algorithm with tabu search [81] and simulated annealing [180].

Popular global methods are based on:

• Distance-based methods generally involve selecting two nodes within the graph
to act as centroids for two future partitions [200], then sort all nodes by their
relative distance. The distance list is finally used to assign nodes to par-
titions. Various algorithms vary in their distance measurement: Euclidean
distance (Recursive Coordinate Bisection); longest path distance (Recursive
Graph Bisection); eigenvector of the Laplacian matrix [176] (Recursive Spec-
tral Partitioning).

• Growing methods start with a random node and traverse the graph using
breadth first to keep adding nodes until more than half are assigned to the
cluster. The remaining are assigned to the other cluster. Often requires several
restarts to find good partitions.

Multilevel graph partitioning [103] is a three step process that consists of: 1)
coarsening or clustering of the original graph; 2) partition performed on the coarse
graph; 3) final expansion or uncoarsening to assign vertices to partitions with a final
local improvement to refine them. Various versions exists based on the coarsening
algorithm chosen, although the most common one is contracting a pair of nodes
(single edge). The edge selected is determined using edge rating functions, which
trade off between edge weight and node weight uniformity. Multilevel partitioning
is usually a very effective heuristic for several reasons: at coarse level, partitioning
can be much deeper (more work per step) since there are less elements involved;
larger exploration of the solution space since single coarse node move produces big
changes to final solution; final local improvements are expected to run fast as they
start from a good partition already.

Most modern graph partitioning algorithms are based on multilevel approach
[127, 219, 3, 211, 138, 115, 48, 31].

2.7 Hypergraph partitioning for workload distri-

bution

Hypergraphs are a mathematical generalisation of graphs in which edges can
connect any number of vertices (thus are called hyperedges). Graphs are good at
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representing computing elements and their interactions. However, hypergraphs have
been shown as better models of communication in parallel and distributed applica-
tions [63, 61] as they can represent communication groups naturally. Hypergraphs
are relevant in a wide variety of domains: applications in VLSI [140], social network
analysis [122], distributed database design [125, 226], text [114] and image [144]
retrieval and machine learning [221].

2.7.1 Hypergraph formalisation

A hypergraphH = (V,E) consists of a set of vertices V and a set of hyperedges E,
where each hyperedge is a subset of V that defines the connectivity pattern. The size
of each hyperedge is denoted as its cardinality. Hypergraphs are a generalisation of
graphs that can have any cardinality, i.e., one hyperedge connects multiple vertices,
where graphs have a maximum cardinality of 2. Hypergraph partitioning is a process
that assigns vertices to partitions in such a way that a connectivity metric (usually
hyperedge cuts, or hyperedges that span more than one partition) is minimised. To
avoid trivial solutions that minimise the hyperedge cut (such as assigning all vertices
to one partition) partitioning algorithms maintain load balancing by only allowing
solutions that have a total imbalance factor that is below a specified value. The
total imbalance I is calculated dividing the maximum imbalanced partition in the
scheme by the average imbalance across partitions. Formally:

I =
maxp∈P (L(p))

(
∑|P |

i=0 L(pi))/|P |
where P is the set of partitions and L(p) is the load cost for partition p defined as

the sum of the weights of all its nodes, L(p) =
∑N

i=0W (ni) where N is the number
of nodes in partition p and ni ∈ p. The total imbalance must be lower or equal than
an arbitrary tolerance value.

Hypergraphs are good at modelling parallel communication when each hyper-
edge represents a frequent communication group of vertices. The higher external
degree per hyperedge (more incident partitions, formally defined below) the more
the modelled application will have to send data across partitions and hence more
communication is required. In chapter 3 I demonstrate that hypergraphs can be
used to model large scale distributed scientific simulations [73]. When using hy-
pergraphs to model parallel applications, the goal is to partition the hypergraph
in k partitions, where each partition represents a computing node in the hardware
architecture the application runs on.

Hypergraph-specific concepts:

• hyperedge cut: number of hyperedges that contain vertices allocated to more
than one partition or cluster.

• Hyperedge degree or cardinality: number of participating vertices in a hy-
peredge. When using hyperedges to represent vertex communication groups,
the cardinality is an important metric to determine the cost of cutting a hy-
peredge.

• Connectivity metric or fanout: sum of all hyperedges cut, weighed by the
number of participant partitions minus one. This is an alternative objective
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metric to hyperedge cut to minimise that closely models total volume of com-
munication in parallel applications.

• Sum of External Degrees (SOED): an external degree of a partition is
defined as the number of hyperedges that are incident in it and also in at
least another partition. The SOED is the sum of all external degrees across
partitions.

2.7.2 Hypergraph partitioning algorithms

Partitioning algorithms for hypergraphs with good quality results have been pro-
posed, using a variety of techniques: multilevel partitioning (PaToH [45], hMetis
[128], ParKway [211]), multiconstraint [14, 61] and with multilevel with fixed ver-
tices (Zoltan [31]). Parallel versions, which allow the algorithm to tackle larger
hypergraphs faster, also exist [62, 210].

2.8 Challenges to graph and hypergraph parti-

tioning

There are three general challenges to graph and hypergraph partitioning: limita-
tions of current algorithms on large-scale graphs; partitioning quality on power-law
natural graphs; and modelling heterogeneity. The first two are discussed in this
section, and the latter issue is described in section 2.9.

2.8.1 Highly skewed and power-law graphs

In previous sections we have discussed graph and hypergraph partitioning as
the allocation of vertices to partitions. This is specifically referred to as vertex
partitioning. An alternative approach is to allocate edges instead. This has been
shown to be superior to vertex partitioning in certain domains such as partitioning
power-law graphs [189, 90], graph processing [122] and distributed database entity
placement [125, 227].

Intuitively, the task in edge partitioning is analogue to that of vertex partitioning
but assigning edges to partitions instead of vertices. When an edge is assigned, it
results in the partition holding both associated vertices (or more for hyperedges) in
it. Because multiple edges can include the same vertex, this results in replicas of
that vertex spanning across all partitions that contain edges incident to that vertex
—see right diagram in Figure 2.5, where all vertex replicas have been coloured in
red.

Given the graph G = (V,E), with V vertices and E edges, and a positive integer
p, the edge partitioning problem consists of finding p subsets of E such that ∪pi=1Ei =
E and Ei ∩ Ej = ∅ for i 6= j. The vertex-cut is defined as the set of vertices that
span across more than one partition. The vertex-cut is also referred to as the vertex
replication factor (VRF). The common target in edge partitioning is to minimise
the vertex replication factor.

Although vertex partitioning approaches to tackle highly skewed vertex degree
distributions graphs exist [3], it has been shown that edge partitioning approaches
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Figure 2.5: Edge vs Vertex partitioning diagram. Both diagrams show the same
graph connectivity. Left: vertex partitioning (highlighted in red the edges that
are being cut). Right: Edge partitioning (highlighted in red the vertices that are
replicated).

are far more suitable for this type of graphs and hypergraphs [189, 90]. Power-
Graph [90] proposes a graph processing abstraction designed to work with power-law
graphs, offering an edge partitioning placement to distribute the graph in several
machines. It uses a greedy approach to sequentially assign edges to partitions to
reduce vertex replication.

HDRF [173] builds upon PowerGraph but instead of using a simple greedy as-
signment of edges it uses an objective function that includes the partial degree of
vertices involved in the edge (an approximation of the actual vertex degree that is
built from past observations), the current vertex replication factor in the partition
and a load balancing parameter. Sajjad et al. [189] offer a parallel implementa-
tion of HDRF with a centralised state to share the partial vertex degree amongst
otherwise independent substreams of edges, resulting in significant speedup.

Combined vertex-edge partitioning algorithms have also been proposed (HYPE
[122]) to attempt to balance the benefits of either method. HYPE uses iterative
label propagation. In each iteration, a hyperedge is assigned a label based on the
label (i.e. partitions) of its incident vertices. The optimal label is found based on
a objective function that takes balance and reduction of replicas into account. The
same is done per vertex, considering the labels of all its hyperedges.

Edge partitioning based on minimising vertex replication factor lends itself nat-
urally as an ideal partitioning algorithm to distributed databases [227]. When dis-
tributing data across different machines, query cost is directly related to where the
data entities are hosted, hence entity copies are situated (and replicated) where they
are needed. Data requests have to be generated to communicate updates when the
entities change, with communication increasing with the number of replicas. Edge
partitioning has been used to reduce the number of replications [125].

2.8.2 Limitations to large-scale hypergraph partitioning

Large hypergraphs are increasingly relevant in research and applications (social
media graph analytics, web networks, recommendation systems). As the size of the
graphs increases, it surpasses the local resources of a single machine, both in terms
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of memory (too big to fit in memory) and computational capacity (too large to be
processed in an acceptable time scale). Parallel multilevel partitioners alleviate some
of the burden by distributing the coarsen hypergraph [31]. However, they struggle
to tackle very large graphs [49, 125] because the coarsening phase and refinement
during uncoarsening do not scale well.

Since converting a hypergraph to a graph cannot be done without compromises
(eg. size of the graph) [117, 122], new hypergraph partitioning heuristics have been
proposed to tackle large-scale hypergraphs. The most common heuristic is based
on local swapping or refinement of an existing partitioning, where vertices or edges
are swapped between partitions to maximise the gain measured by an objective
function.

The Social Hashing Partitioner (SHP) [125] proposes a vertex partitioning algo-
rithm to reduce storage sharding in distributed databases. Storage sharding occurs
in database queries when records that are linked are hosted in different machines,
therefore requiring messaging to fulfil the request. The algorithm optimises for min-
imum hyperedge fanout by performing local search on all vertices. The local search
is done distributively to allow for large hypergraphs.

HyperSwap [227] is another local swapping approach that uses edge partitioning
for scalable distributed hypergraph partitioning. In contrast to SHP it performs
swapping of hyperedges instead of vertices. [226] is similar but with a centralised
heuristic to improve quality and partitioning performance.

Local search can often fall into local optima. To increase the quality of the parti-
tioning, Nicoara et al. [166] uses METIS as a starting point for the local search and
refines it with distributed vertex migration to improve edgecut whilst maintaining
load balance. Although using a better starting partitioning does improve the final
quality, using a static partitioner such as METIS acts as a practical bottleneck for
the size of graphs to be used: METIS is a sequential algorithm and does not scale
well.

In addition to local swapping, heuristics to optimise hypergraph processing have
been proposed. HyperX [122] is a hypergraph processing framework with a novel
partitioning algorithm: label propagation partitioning (LPP). LPP performs itera-
tive partition update using hyperedge and vertex labelling, guaranteeing that both
vertex and hyperedges are balanced. In each iteration, a hyperedge is assigned a la-
bel based on the label (partitions) of its incident vertices (optimal one is found based
on a objective function that takes balance and reduction of replicas into account).
The same is done per vertex, considering the labels of all its hyperedges.

In Chapter 6 I explore the memory limitations on large scale hypergraphs for
state-of-the-art global partitioners [31] and how streaming and restreaming algo-
rithms are more suitable for such tasks -see section 2.8.3.

2.8.3 Dynamic and unknown graphs

Large graphs and hypergraphs may require more memory than is available to
computing nodes. This is particularly true in the era of social media graphs, where
real applications must handle billions of nodes and trillions of edges ([122]). Due to
increasing memory requirements, hypergraphs may not be knowable all at once cen-
trally. Furthermore, large hypergraphs in real applications are likely to be dynamic
with regular changes to nodes and hyperedges. Those limitations are not handled

32



Chapter 2. 2.9. COMMUNICATION HETEROGENEITY CHALLENGE

adequately by state-of-the-art global partitioning algorithms. Streaming algorithms
are designed to tackle those limitations to produce partitionings in challenging large
scale graphs.

Streaming graph partitioners differ from global ones (such as multilevel or recur-
sive bisection) in that vertex allocation decisions are made based on local, partial
information. This means the algorithm does not have the entire graph in view when
calculating the cost of allocating a vertex to a partition. They are frequently called
greedy since once they make a decision, it is not revoked later on after seeing more
vertices.

When an algorithm applies more than one pass (repeats the stream that visits the
vertices once), it is often referred to as a restreaming approach. When performing
restreaming, i.e. reassignment of units to partitions, it is important to consider
the cost of migrating data [46, 47] against the gains brought by the new streaming
process.

FENNEL [212] is a generalisation framework for streaming partitioning. Its
objective function includes the cost of edge-cut and a balancing parameter (i.e.
number of vertices within a partition). Performance is shown to be competitive
against offline methods (e.g. METIS ) in certain scenarios, and generally more scal-
able. FENNEL shows that Linear Deterministic Greedy is one of the most effective
algorithms, where each node is assigned to a partition based on whether any of its
neighbours is already assigned to it and the remaining capacity of the partition.

Streaming partitioning prioritises low partitioning latency over partitioning qual-
ity, with the risk of finding local optima. ADWISE [153] proposes a controllable
algorithm that allows to find an adequate balance between the two for the problem
at hand. It does so by considering a window of edges at a time, instead of one (for
streaming) or all (for global). The window size is adaptable and found automatically.

HYPE [152] performs hypergraph partitioning using heuristic neighbourhood ex-
pansion. Neighbourhood expansion has been formulated for graph partitioning [230],
but up to now was unfeasible for hypergraphs due to the large size of neighbourhood
set for each vertex in a hypergraph. Partitions are grown via neighbourhood expan-
sion, one vertex at a time, in a form of streaming. Instead of arbitrarily receiving
vertices, the algorithm grows by selecting neighbouring vertices.

2.9 Communication heterogeneity challenge

Previous work has already highlighted the impact that uneven computation and
communication architectures in HPC and Cloud computing has on computation per-
formance [223, 225, 48]. The communication heterogeneity is significant enough to
be considered in the workload allocation of distributed applications. Although there
are graph partitioning approaches that are architecture-aware, this is not the case for
hypergraph models. This section surveys the current literature in architecture-aware
partitioning as a means to optimise workload allocation in heterogeneous distributed
systems such as HPC and Cloud clusters.

2.9.1 Architecture-aware graph partitioning

In order to factor architecture heterogeneity in both communication and compu-
tation, graph partitioning algorithms frequently build a model of the target hardware
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in the form of a graph. This graph, commonly referred to as machine or physical
graph, models computation as weighed vertices and communication bandwidth or
cost as weighed edges. To help differentiate between the machine graph and the
target graph to partition, the latter is referred to as application or data graph.

Authors have indicated that edge-cut weight alone is an inadequate measurement
when mapping machine graphs in heterogeneous architectures [219, 233]. In topolo-
gies with uneven communication between nodes (bandwidth and latency) optimising
for edge-cut may lead to worse performance by using slow channels of communica-
tion. Hence there is a need for architecture-aware partitioning that goes beyond
computational load.

Walshaw and Cross [219] consider communication links between processors as
part of the partitioning algorithm. They use a multilevel algorithm with a cost
function that combines edge-cut with the weight of the processors connection.

Another aspect in which partitioning algorithms can be architecture-aware is by
considering the availability of memory and computational resources. It has been
shown that suboptimal execution times are found [233] if local resource contention
is not considered. A well-known case is the impact of data locality and memory
access patterns in performance in GPU parallelism [64, 167]. Unaware algorithms
place as much communication and computation as possible within one node as the
cost associated during graph partitioning is zero. This situation could lead to high
computation and communication in neighbouring cores, increasing the probability
of resource queuing to wait for availability. PARAGON [234] and PLANAR [232]
are parallel partitioning refinement algorithms that take resource contention and
network heterogeneity into consideration. Their optimisation goal is to minimise the
edge-cut whilst reducing the edge-cuts amongst partitions with high communication
costs (known as hop-cut). To consider resource contention they use a penalty score
based on the degree of contentiousness between cores. A similar score is used for
load balancing in [131].

Teresco et al. [205] present a hierarchical partitioning algorithm that takes into
consideration the communication cost of the network. Although the original library
that provided the functionality has been discontinued, the hierarchical partitioning
feature is still part of Zoltan as a system for resource-aware partitioning using a tree
like structure to model the communication and processing power of the network.

In the context of job scheduling, Xu et al. [223] demonstrate an adaptive stream-
ing graph partitioning algorithm able to deal with heterogeneous networks, both in
terms of computational capability and communication cost. It receives one vertex
at a time and must decide to which partition it belongs from the info it already has.
The objective function contemplates computational capabilities of each node as well
as relative communication costs. Thus, the target is to reduce job completion time
rather than exclusively minimising edge-cut.

Previous attempts to achieve architecture-aware graph partitioning have been
proposed to multiple partitioning strategies: local refinement, streaming and global
approach. They are discussed below.

Local refinement refer to strategies that take the current graph partition and
improve it by swapping vertices around. PARAGON [234] is a parallel refinement
partitioning that considers physical communication cost and resource contention to
move vertices between partitions. Moulitsas and Karpys [161] present a refinement
approach to graph partitioning that includes architecture-specific information to
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improve partitions. The initial partitioning optimises computational balance and
memory resources amongst processors. The refinement stage considers the machine
graph to modify initial partitioning. A greedy algorithm (swap vertices) is employed
to minimise communication volume.

Streaming partitioning : [225] proposes graph streaming over a machine graph in
which vertices represent computing nodes and edges represent communication band-
width, both weighed to reflect the system capabilities. Vertices from the application
graph are then assigned using a greedy function that balances the weighed compu-
tation and communication. [154] uses edge streaming greedy policy to reduce vertex
replication, then clustering to partition the machine graph and map partitions to
physical clusters, considering heterogeneity.

Global approach: Surfer [48] is sequential network aware graph partitioning for
graph processing in the cloud. The authors recognises the heterogeneity of cloud
computing bandwidth as a consequence of tree topology connectivity infrastructure.
Surfer models the network as an undirected graph that is recursively partitioned
(multilevel algorithm) synchronously with the data graph until the data graph par-
titions can fit in main memory.

Partitioning algorithms for hypergraphs with good quality results exist using a
variety of algorithms: multilevel partitioning (PaToH [45], hMetis [128], ParKway
[211]) and multiconstraint [14, 61]. Unfortunately none of those approaches considers
the physical architecture of the network. When modelling parallel applications as a
hypergraph, not only it is important to reduce the hyperedge cut, but also the hop
cut (connections including the physical cost of communication).

Zoltan [62] offers a hierarchical approach for partitioning a hypergraph. It al-
lows users to partition their hypergraphs at different levels of granularity, using a
sequence of partitioning schemas (refinements on subgraphs). Each level can be used
to model a level in the architecture hierarchy (socket, board, group, cluster). The
focus of the approach is on being able to use high cost algorithms at levels where
reducing communication is more important and low cost ones when the communica-
tion may not impact as much. However, this approach only establishes qualitatively
differences between architecture levels (whether a pair of nodes connection is faster
or slower than another pair) and does not model well the cost of communication
between computing units belonging to different hierarchies (how much faster or
slower).

2.9.2 Other approaches to model communication hetero-
geneity

In section 2.3.3 we described topology mapping. By modelling the machine
graph and the application graphs topology mapping can be used to optimise the
assignment of workload to computing nodes at a high level of granularity [112, 184,
181, 209, 23, 157, 121].

Dynamic load balancers are focused on maintaining workload balance to reduce
idle time between processes. Although they are generally not concerned with com-
munication costs (let alone variable costs), some approaches do model it to optimise
simulation runtime. Bhatele et al. [24] proposes a centralised approach in which a
process collects compute and communication metrics of compute elements in molec-
ular simulations. That information is used to make decisions about load balancing
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and to place communicating objects in nearby computing nodes. The simulation
space is divided using geometric decomposition to group atoms in patches of equal
size, then they are mapped to the hardware, keeping load balance and minimising
communication by avoiding placing communicating objects in nodes that do not
have other connected objects (thus avoiding creating more communication). The
compute is modelled as a different object which is mapped to nearby nodes, making
the approach topology-aware.

Dynamic schedulers target task or job-based allocation in distributed machines.
Although there may be some inter-task communication, the main concern in this
scenario is task dependency and job execution time. Thus, dynamic load balance
systems are more concern with computation heterogeneity [13, 16, 26, 33, 32, 52,
84, 183] and not communication heterogeneity.

2.10 Identified areas of research

Based on the review of the literature in this chapter, there are several areas of
research that have been identified. The remainder of the thesis is structured to
target each of these areas:

• Hypergraphs are good models of communication in parallel applications [63,
61]. Can hypergraphs be used to model and optimise communication in SNN
simulations? (Chapter 3).

• MPI collectives do not scale well [206], particularly in distributed applications
that exhibit sparse communication patterns [111]. Can hypergraph partition-
ing drive sparsity to make dynamic sparse communication a more efficient
collective for SNN simulations? (Chapter 3).

• Communication heterogeneity in HPC has a significant impact on performance
[223, 225, 48], however hypergraph partitioning algorithms do not consider
this heterogeneity when performing partitioning. This might impact the per-
formance of distributed applications that are modelled as a hypergraph. Are
there performance improvements, measured in a reduction of communication
time at runtime, to be gained by incorporating bandwidth data to the parti-
tioning process? (Chapter 4)

• Hypergraphs models are useful in many applications, such as VLSI [140], social
network analysis [122], distributed database design [125, 226] and distributed
and parallel applications [63, 61], which highlights the importance to have ap-
propriate benchmarks and datasets to test and evaluate hypergraph partition-
ing strategies. However, current benchmarks [193] focus on static partitioning
quality metrics (hyperedge cut, SOED) which are of limited use when using
hypergraphs to model dynamic applications such as distributed simulations.
More adequate benchmarks (Chapter 4) and datasets (Chapter 5) are needed
to accurately measure the impact that hypergraph partitioning has on the
performance of distributed simulations.

• Current state-of-the-art hypergraph partitionings use a multilevel approach,
achieving a good balance between lowering memory requirements and reach-
ing good quality results. However, they struggle to tackle very large graphs
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[49, 125] because the coarsening phase and refinement during uncoarsening
do not scale well. Streaming partitionings can deal with dynamic, not-fully
known graphs. To date there have been very limited efforts dedicated to
streaming hypergraph partitioning. Can efficient, scalable, streaming hyper-
graph partitioning be used to model distributed communication and map its
communication patterns to the hardware bandwidth specifications it runs on?
(Chapter 6)
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Chapter 3

Communication sparsity in
distributed Spiking Neural
Network Simulations to improve
scalability

3.1 Overview and contributions

Chapter 2 evidences the limitations of state-of-the-art SNN simulations at large-
scale, where distribution and parallelism of computation is required:

• Common distribution of workload algorithms (round robin, random and man-
ual allocation) do not take into consideration connectivity locality, which is
natural in biological networks ([39, 170]). This may lead to increased commu-
nication requirements when distributing the simulation across multiple com-
puting nodes.

• Hypergraphs have been presented as good models of communication in parallel
applications [63, 61], but their applicability to SNN is not well understood.

• State-of-the-art SNN simulations use dense communication collectives to dis-
tribute spike data. These collectives have been shown to not scale well [206].
Sparse communication collectives have not been explored and they have been
suggested to incur in lower overheads when the application’s pattern of com-
munication is sparse [111].

Research question: Can the sparsity of connectivity inherent in biologically
plausible SNNs be exploited to improve the efficiency of collective communication
methods and reduce simulation time?

This chapter tackles both limitations to demonstrate that sparsity in distributed
SNN simulations can be exploited to improve simulation runtime by reducing over-
heads of communication. The contributions of this chapter to the overall thesis
are:

• C1: (Chapter 3) Demonstrate that communication sparsity between comput-
ing nodes drives performance in communication-bound SNN simulations.
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• C2: (Chapter 3) Produce sparser communication patterns (up to 90% less
Average Runtime Neighbours and up to 80% less volume of data) by modelling
SNN simulations as a hypergraph and using partitioning algorithms.

• C3: (Chapter 3) Reduce the overheads on the three phases of P2P commu-
nication (synchronisation, handshake and data exchange) in SNN simulations
with the use of dynamic sparse communication patterns, resulting in more bal-
anced inter-process communication (up to 90% less implicit synchronisation
time), faster simulation runtime (up to 73% less time) and more computational
efficiency (up to 40.8 percentage points more time spent in computing).

To facilitate the experimentation and evaluation of alternative workload alloca-
tion and communication strategies, a novel framework for testing communication
and workload allocation strategies Spiking Neural Network simulations is developed
(contribution C4).

3.2 Communication in timestep-driven simmula-

tions

Simulations of Spiking Neuronal Networks consist of discrete time-steps at which
the membrane potential of the neurons involved is recalculated. When the potential
reaches a certain threshold, neurons fire, producing a spike that is transmitted to
connecting neurons. This spike in turn affects the membrane potential of receiving
neurons. Thus, the simulation is divided in two phases: computation phase, at which
neuron and synaptic models are updated based on partial differential equations; and
exchange phase, where the spikes are propagated from firing neurons to post-synaptic
targets.

3.2.1 Phases in P2P communication

In distributed systems, the exchange phase involves inter-process communication
when pre- and post-synaptic neurons are hosted in different processes. In such
cases, inter-process dependencies are introduced that force them to be implicitly
synchronised (at the same step in the simulation) before starting data exchange
(sending and receiving spiking information).

State-of-the-art SNN distributed simulators have demonstrated the effectiveness
of the use of point-to-point (P2P) communications [159, 98, 124, 135]. Using P2P
introduces a necessary handshake protocol between processes to know which pro-
cesses each one has to listen to. Thus, each communication stage consists of three
phases (Figure 3.1):

1. Implicit synchronisation, in which processes must wait until every other pro-
cess is ready for communication. Computation and communication imbalance
contribute to this phase.

2. Communication handshake (informing target processes of the intent to com-
municate). In naive P2P communication this operation has O(P ) complexity
[111], with P number of processes, a problem for scalability.
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Figure 3.1: Diagram showing synchronisation phases in point-to-point (P2P) com-
munication. Implicit synchronisation (light blue): processes waiting for each
other to start communication. Communication Handshake (white): explicit no-
tification to other processes of the intention to send data (receiver processes must
prepare buffers). Send-receive data (dark blue): processes send spiking data to
each other. Computation is noted in red. The cost of the send-receive data is
determined by the number of neurons on two communicating processes (Na and
Nb), how densely connected those populations are (d conna b and d connb a) and the
frequency at which those populations communicate (Fab and Fba)

3. Data exchange (actual send and receive of spiking data). The cost of the
send-receive data is determined by the number of neurons hosted on two com-
municating processes, their interconnection density and the frequency of com-
munication, i.e. the firing rate.

3.2.2 Bottleneck to scalability

Past approaches to parallel and distributed neuronal simulators have focused
their efforts on load balancing [86, 137], and not on the communication overhead of
increased parallelism. However, in large scale SNN distributed simulations, propaga-
tion of spikes between processes has been suggested as the bottleneck for scalability
[36, 229]. To demonstrate this, figure 3.2 shows a strong scaling experiment1 of
the Cortical Microcircuit [177] distributed simulation with frequent communication
(at every time step) and random allocation of workload, i.e. neurons to processes.
Whilst computation shows near-perfect scaling (Figure 3.2B), the simulation time
scales poorly after a point (figure 3.2A). Looking at the proportion of time the
simulation spends in each phase, figure 3.3A shows how the communication (both
implicit synchronisation and data exchange) quickly becomes the dominant part and
acts as a bottleneck to scalability.

Jordan et al. [124] and Schenck et al. [192] suggest that spike propagation
may not be limiting scalability for simulations that make effective use of message
packing. Event-message packing is one of the spike delivery optimisations [160, 86]
that was discussed in section 2.4.1.2, in which simulations share spikes only at certain
discrete intervals and not when they occur, reducing the burden of communication
overhead. Since such simulations employ synaptic delays that are larger than the

1The details of the 77k neurons model and SNN simulator employed are described in section
3.3 and section 3.4.1.
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Figure 3.2: Evidence of the bottleneck to large-scale distributed SNN simulations
scaling. Graphs show strong scaling results for a simulation with the same com-
munication and computation time step, δsyn (synaptic delay) and τstep (time step)
both set to the same value (0.1ms), which is known to be the worse case scenario
in communication. A: Simulation time as the number of processes is increased. B:
The time the simulation spends in computing.

resolution of the simulation time step, communication steps only occur on multiples
of the global minimum synaptic delay. This significantly reduces the number of
synchronisation events and therefore minimises the impact of communication on
the overall simulation time. However, event-message packing does not solve the
issue but rather pushes it to the right —i.e. it manifests at larger distributed scales.
Figure 3.3B shows the same Cortical Microcircuit simulation but with event-message
packing. Synaptic delay is set to 0.8s, with a timestep of 0.1ms, resulting in messages
being sent every 8 time steps. The proportion of time spent in useful computation
(red) still decreases as the parallelisation is scaled up, albeit at a lower rate.

Therefore, spike propagation is an important limiting factor for distributed SNN
simulations, more so for models that cannot make use of message packing (such as
the Cortical Microcircuit (CM ) and Macaque Visual Cortex (MVC ) models with
random synaptic delays).

We define computational efficiency as the proportion of time a distributed
simulation spends in the computation phase. Figure 3.2A shows overall simulation
time stagnation in strong scaling experiments, as a result of poor communication
scalability. Even though the computation part of the simulation scales well (Figure
3.2B), the benefits of increased parallelism are limited by communication —as shown
by the shift in time spent in communication and computation.

3.3 Custom SNN simulator testing framework

The goal of this research project is not to develop a novel simulator, but to explore
new algorithms and methods to optimally divide workload in neuronal simulations as
well as to identify appropriate communication patterns. Current simulators do not
permit custom allocation of work (see section 2.4.2.1) or alternative communication
patterns, thus we have developed our own framework to measure the appropriateness
of the strategies proposed. This constitutes contribution C4 of the thesis.
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Figure 3.3: Evidence of the communication problem in large-scale distributed SNN
simulations by showing the proportion of time SNN simulations spend in each phase
(computation, synchronisation and communication). A: SNN simulation with fre-
quent communication (no event-message packing). B: SNN simulation with event-
message packing (delivery every 8 time steps). Both simulations show how communi-
cation (shades of blue) scales poorly and becomes the effective bottleneck to scaling.
Using event-message packing pushes the issue to the right (larger distribution scales)
but does not solve it.

At present, the computing performance of the simulator framework is not the
primary concern and it does not attempt to compete with other high performance
simulators in raw simulation time. The framework is be used as a test-bed for load
balancing and scheduling algorithms to provide correct comparative results in both
communication weight and computational balance. The findings from this research
could and should inform the development of novel workload distribution strategies
on other simulators.

3.3.1 Main components

The simulator framework is written in C++ and it has three stages:

1. Neuron initialisation and network construction.

2. Distributed sequential simulation in discrete time steps.

3. Gathering of statistics.

During phase 1, users write the models to be simulated. Three elements must be
defined: populations (groups of neurons of a single type), connections (links between
populations) and injections (regular input to populations during simulations). Phase
2 executes the simulation in distributed incremental time steps, whereas phase 3
gathers network activity to produce statistics regarding the simulation (such as
spike rates, inter-spike intervals, simulation time and neuron and compute node
communication).

The framework follows the general process of a discrete-time neuronal simulator
consisting of three phases that are repeated at each time step: update agents,
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update connections and propagate messages. In the case of a neuronal net-
work simulation, update agents solves the partial differential equations that model
the membrane potential of neurons, update connections solves the equations that
model synapses and propagate messages transports spikes from pre-synaptic to post-
synaptic neurons.

At its core, the framework is built to support distributed computation via mes-
sage passing parallelism with MPI. Although the current version targets CPUs exclu-
sively, the framework could be extended to support other computational paradigms
(such as GPUs).

In order to allow testing of various communication and workload distribution
strategies, the framework follows a modular design via a series of interfaces to specify
the behaviour of the simulator:

• Communication interface: How the propagation of messages between MPI
processes is performed.

• Mapping of agents and connections to processes interface: How the workload
is distributed amongst MPI processes.

In addition to those interfaces, the framework exposes two more to define the
agent model (neuron) and communication link model (synapse), which facilitates
the use of the framework for other domains outside neuroscience.

To facilitate benchmarking, the framework keeps probes to measure the com-
putation and communication in different parts of the simulator via MPI profiling
API.

The code base for the simulator framework is open-source and can be found at
https://github.com/cfmusoles/distributed_sim.

3.3.2 Validation

To validate the behaviour of the simulator framework, the SNN model presented
by Vogels and Abbot [218] is implemented and executed. The VA model is chosen
due to its simple formulation and ability to be easily scaled. It is a widely used
benchmark in computational neuroscience and hence the expected behaviour is well
defined.

The model, shown in figure 3.4, consists of a group of Leaky-Integrate and fire
(LIF) neurons split into two populations, excitatory and inhibitory, based on the
nature of their synapses. The model can accommodate any number of neurons as
long as the excitatory to inhibitory ratio is kept to 4 to 1. Both populations are
connected to themselves and to each other with fixed probability (0.02).

In the validation tests the number of neurons is set to 4000, with 3200 excitatory
and 800 inhibitory. The simulation is run for 1 second with a 0.1ms time step.
Neuron and synaptic parameters are left as those originally proposed by [218].

To validate the framework, a PyNN implementation (using NEST as back-end) 2

of the VA model is executed with the same parameters to produce a series of metrics
commonly used to describe neuronal network behaviour at the system level:

2from https://github.com/NeuralEnsemble/PyNN/blob/master/examples/VAbenchmarks.

py
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3.2K Excitatory

0.8K Inhibitory

Figure 3.4: Diagram of the Vogels and Abbott model. Blue for excitatory connec-
tions, red for inhibitory connections; circles for excitatory populations and boxes for
inhibitory populations.

• Inter-spike interval (ISI): histogram displaying the measured time between
spikes across neurons in all populations.

• Coefficient of Variation of the ISI (CV-ISI): measurement of the distribution
of the ISI (calculated as the standard deviation over the mean of the ISI per
neuron).

• Spike frequency per population: Average spike rate per second per population.

Figure 3.5 shows qualitative similarities between the neuronal activity recorded
by both simulators in one run. Both excitatory and inhibitory populations exhibit
similar patterns of activity, with comparable Inter-spike interval counts and distri-
butions (as shown by the CV-ISI graphs). Average spike frequency recorded across
5 runs (with random network connectivity but maintaining the parameters) on both
simulators is shown in table 3.1 and indicate similar network activity in both pop-
ulations.

Due to the internal random nature of the VA model (with random neuron con-
nectivity and probabilistic initialisation of neuron membrane voltage), the behaviour
expressed by the network is not expected to be identical on each simulation, but
the general population trend must be kept. These results validate the behaviour
of the simulator framework and are consistent when run distributed across multiple
processes.

Table 3.1: Average spike rate in both simulators

PyNN Simulator framework
Excitatory rate 5.486 ± 0.222 Hz 5.626 ± 0.212 Hz
Inhibitory rate 5.579 ± 0.032 Hz 5.514 ± 0.041 Hz

3.4 Improving communication in distributed SNN

simulations

This section presents work that targets the three phases of communication to im-
prove overall computational efficiency in distributed simulations: implicit synchro-
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PyNN simulator Custom simulator

Figure 3.5: Inter-spike intervals (ISI) and Coefficient of Variance of ISI (CV ISI)
counts from 1 second simulation of the VA model. PyNN implementation (top) and
our simulator (bottom).

nisation, process handshake and data exchange. We introduce a connectivity-aware
allocation of neurons to compute nodes by modelling the SNN as a hypergraph. Par-
titioning the hypergraph to reduce interprocess communication increases the spar-
sity of the communication graph (contribution C2). We propose dynamic sparse
exchange as an improvement over simple point-to-point exchange on sparse commu-
nications (contribution C3). Results show a combined gain when using hypergraph-
based allocation and dynamic sparse communication (contribution C1), increasing
computational efficiency by up to 40.8 percentage points and reducing simulation
time by up to 73%. The findings are applicable to other distributed complex system
simulations in which communication is modelled as a graph network.

In other complex system simulations (such as molecular interactions, fluid dy-
namics, etc.), computation is divided based on position and communication tends
to happen primarily (or exclusively) in the overlapping or adjacent locations. Com-
munication in parallel SNN simulations is very different since neurons can commu-
nicate (i.e. spike) with potentially any other neuron in the model, irrespective of
their location. The format of the communication is also unique, as it takes the
form of low frequency, discrete messages (spikes) from one neuron to all of its post-
synaptic targets. These two facts make communication in SNNs very dynamic
(target neighbours change across the simulation) and sparse (target neighbours at
each communication step are a subset of the total). Hoefler et al. [111] proposes
Dynamic Sparse Data Exchange (DSDE ) algorithms for scalable sparse communi-
cation in large neighbourhoods with good scalability. This section demonstrates the
benefits of DSDE as a communication pattern in SNN simulations.

The allocation of neurons and communication strategies are evaluated using a
scientifically relevant model: the Cortical Microcircuit. This models is well suited
to evaluate allocation and communication strategies in SNN simulations for the
following reasons: it is arbitrarily scalable; its scalability is communication-bound
when using random synaptic delays (as shown in figure 3.3); and it is a very popular
model in neuroscience [199, 177] and its structure is similar to other more complex
models ([195, 119, 9, 10]).
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3.4.1 Cortical Microcircuit SNN model

For the benchmark experiments, the model used is based on the Cortical Mi-
crocircuit (CM ) described by Potjans and Diesmann [177], scaled to 77k neurons
and 150M synaptic connections. The CM model is representative of microcircuit-
type models in which a SNN is constructed by layers of neurons and connectivity
probabilities within and between layers. As such, findings on the CM model can be
applicable to other microcircuit models and similarly structured biologically plausi-
ble networks.

The size of the model is sufficient to display the limitations of scalability in
distributed simulations due to communication overhead —see Figure 3.3. This is
a consequence of the high frequency of synchronisation required in the simulation:
event-message packing optimisation is not allowed because the model contains ran-
dom synaptic delays, forcing processes to synchronise at each time step.

To ensure network activity across the simulation with resting potential (-45mV)
and spiking threshold (-50mV). The choice of having a higher resting potential than
a spiking threshold is justified in [37] for current-based connections —note that the
resting potential (natural value the neurons tend towards in absence of input) is
not the same as the reset potential (potential value set after spiking). All neurons
receive a constant current of 0.95mA, which differs from [177] Poisson spike trains
but results in an equivalent global average activity of 5–7 spikes/s. A constant input
is more advantageous in our scenario since it is simpler to implement than a Poisson
spike train; previous work has demonstrated that an equivalent activity pattern can
be achieved with either approach [216].

All experiments shown in this chapter involving increasing number of processes
are strong scaling experiments in which the size of the CM model is constant as the
number of processes increases.

3.4.2 Hardware architecture

Simulations of the CM model are run on the ARCHER Cray XC30 MPP super-
computer, with 4920 nodes, each with two 12 cores Intel Ivy bridge series processors
(for a total of 24 cores) and up to 128 GB RAM available. Computing nodes are
connected via fast low latency Cray Aries interconnect links 3.

ARCHER allocates exclusive computing nodes (cores and memory), however, as
a cluster computer, network related resources are potentially shared. There are two
types of noise that can affect benchmarking results: external application traffic con-
tention and distance on the allocated computing nodes. Traffic noise is minimised by
running each iteration (same seed) of an experiment multiple times (with the same
node allocation) and selecting the fastest sample. Node distance variability (com-
munication between any two nodes depends on how close they are in the topology)
is smoothed by running each set of experiments multiple times with different node
allocations. Furthermore, when comparing communication and allocation strategies,
all candidates within an experiment set run with the same node allocation.

3More information regarding ARCHER hardware can be found on https://www.archer.ac.

uk/about-archer/hardware/
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3.4.3 Hypergraph representation of SNNs

Communication in distributed SNN simulations happens due to pre- and post-
synaptic neurons being hosted by different processes. Figure 3.6 shows the Process
Communication Graph (PCG) resulting from a mapping of neurons to 8 processes.
In the PCG, edges are shown only if there are any synapses between neurons of both
populations. As a consequence, during simulation, each process has to synchronise
(i.e. receive information) with every neighbouring process it has in the PCG.

Figure 3.6: Process Communication Graph (PCG) that represents parallel SNN
simulation communication. Left: the graph with blue nodes represents the SNN
synaptic connectivity and the red circles are processes to which the neurons are
mapped. Right: Resulting process graph in which edges represent processes that
need to synchronise during simulation, i.e. have an inter-process synaptic connec-
tion between themselves. The PCG describes the process neighbourhood for each
computing node.

This work tackles the communication overhead issues that limit distributed scal-
ability in large scale SNN simulations. The goal is to increase overall computational
efficiency by reducing the time simulations spend on the three phases of commu-
nication between processes. We focus on reducing the overhead of communication
by: 1) using a connectivity-aware allocation of neurons to compute nodes; and 2)
employing scalable sparse parallel communication patterns. These two strategies
are complementary and address the sparsity of communication in the PCG.

Since communication in distributed SNN simulations only happens when there is
inter-process connectivity in the PCG, minimising this connectivity directly reduces
the communication requirements. The topology of biological plausible complex neu-
ronal networks is found to show presence of clusters, where local connectivity is ex-
pected to outnumber remote connectivity [39, 170]. Hence, there is an opportunity
to optimise communication by considering this clustering when assigning neurons to
compute nodes.

A hypergraph is proposed as a model of the SNN to increase the sparsity of the
PCG. A hypergraph has been shown to successfully model total communication in
parallel applications [63, 61]).

A SNN can be thought of as graphs with neurons as nodes and synaptic con-
nections as edges. To better model the cost of communication, instead of using
edges (one to one connectivity) we use hyperedges. Each hyperedge contains a
pre-synaptic neuron and all of its post-synaptic targets —see Figure 3.7A. This cap-
tures the all-or-nothing communication behaviour of neurons, where when a neuron
spikes, a message is sent to all its post-synaptic targets (and not a subset of tar-
gets). Thus, a hyperedge adequately models the unit of communication in a SNN. To
model workload, hypergraph nodes are weighed by the number of dendritic inputs,
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(a)
(b)

Figure 3.7: Representing the SNN as a hypergraph. A: three hyperedges (black,
red and green) shown, where a hyperedge includes a pre-synaptic neuron and all
its post-synaptic neurons (the numbers describe neuron IDs). This representation
corresponds to the manner neurons communicate, i.e. when a neuron fires all its
post-synaptic targets need to be notified. B: The hypergraph nodes are weighed by
the number of dendritic inputs to a neuron as an estimate of the workload located
at each process. In this example, edges represent synaptic connections between
neurons (nodes), with the thicker end indicating direction. The number on the node
represents the weight associated to each neuron, equal to the sum of its input plus
one.

following a similar approach proposed by [106] for workload balance —Figure 3.7B.
The number of inputs is a good estimate of the workload associated with hosting a
neuron; synaptic objects handling dendritic input computation are located on the
post-synaptic side, therefore more dendritic input requires more computation during
the synaptic update phase.

3.4.4 Hypergraph partitioning for neuron allocation

When neurons within the same hyperedge are assigned to different nodes of
the PCG, communication between them is required during simulation. Note that
inter-process communication is therefore not required if there are no hyperedges
spanning more than one process. Hence, the allocation of neurons to processes can
be formulated as an optimisation problem where the goal is to reduce the number
of hyperedges cut between processes. Multilevel hypergraph partitioning, generally
understood to produce better partitions faster than other alternatives [103], is used.
See section 2.7.2 for an in-depth review on hypergraph partitioning algorithms. This
work makes use of the state-of-the-art partitioning library Zoltan [31], with the
agglomerative inner product matching coarsening method [47] and FM refinement
method [76]. To better represent the communication costs, each hyperedge cut is
weighed based on the number of participant parts minus one. Formally, the total
cost of a partition scheme is

∑|E|
i=0 P (ei), where ei = {p1, p2..., pn} represents the

set of partitions that contain any node in hyperedge ei, and E is the set of all
hyperedges. The cost P (e) of hyperedge e is defined as P (e) = |e| − 1.

To avoid trivial solutions that minimise the hyperedge cut (such as assigning
all vertices to one partition) partitioning algorithms maintain load balancing by
only allowing solutions that have a total imbalance factor that is below a specified
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tolerance value (in our experiments, 1.001). The workload of each node (neuron) in
the hypergraph is estimated by the number of incoming post-synaptic connections,
and using that as the weight of the node (see Figure 3.7). The computation in
the simulation is dominated by synaptic updates, based on experimental validation.
Post-synaptic objects live in the same partition local to the post-synaptic neuron,
hence those partitions with more incoming synapses will have more computation to
perform during updates.

3.4.5 Results of the hypergraph partitioning-based alloca-
tion

The baseline neuron allocation strategy Random Balanced is a variation of ran-
dom allocation that takes the number of post-synaptic connections into account to
keep processes balanced. Random Balance performance is compared to Hypergraph,
our allocation strategy that uses hypergraph partitioning to minimise the total inter-
connectivity between nodes in the PCG. Both strategies use standard point-to-point
PEX to communicate spiking data. As reviewed in section 2.3.2 and 2.4.1.2 this
is a common pattern used for P2P communication in distributed complex system
simulations.

Figure 3.8 shows comparative results from both allocation strategies. Since they
are based on the same metrics for load balance, there are no differences in implicit
synchronisation time between strategies (Figure 3.8A). Hypergraph has its impact
in terms of interprocess connectivity. As expected, the number of average runtime
neighbours (ARN, average number of target processes at each communication step
per process) is reduced (Figure 3.8C), making communication more sparse. This
leads to fewer remote spikes, when a local neuron spike needs to be propagated to
other processes (Figure 3.8D) and a decreased total amount of data exchanged (Fig-
ure 3.8E). Despite the improvement in sparsity, data exchange time (Figure 3.8B)
is not significantly reduced and therefore simulation time is not affected since PEX
is not designed to take advantage of sparsity —see discussion in section 3.4.10.1.

3.4.6 Dynamic sparse data exchange communication to im-
prove distributed simulation scalability

As discussed in section 2.3.2, communication in SNN simulations falls into the
category of census, a common parallel programming function in which a process
receives a piece of data from each of all other processes. Personalised census or
personalised exchange (PEX ), the most basic implementation of census [111], occurs
in two steps: inter-process handshake and send and receive data. During handshake,
processes inform their targets that they will be sending data to them. In the second
phase, each process post data and listens to messages only from those processes.
Those phases are depicted in figure 3.1.

With respect to scalability, there are two issues with PEX : on the one hand, due
to the dependency between phases, they occur sequentially, i.e. each process must
wait until it has completed the handshake before sending data. This adds waiting
time that is dependent on the total number of processes (messages will take longer to
propagate in larger topologies). On the other hand, during handshake, each process
sends metadata to all others, even if they do not need to send spiking data to them
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Figure 3.8: Performance results of Random balanced allocation compared with hy-
pergraph partitioning. The top part shows quantitative timings during the different
phases of communication: A implicit synchronisation time and B data exchange
time. The bottom part of the figure shows reductions brought by hypergraph par-
titioning over random: C Average number of Runtime Neighbours (ARN, average
number of processes each process communicates to at any given communication
step, a subset of the total neighbourhood defined in the PCG); D remote spikes
(local spikes that need to be propagated to other processes); E spiking data volume
exchanged difference.
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Figure 3.9: Theoretical data volume exchanged in the two phases of communication
by PEX on an artificial network with constant spiking activity (20 spikes/s for low
activity, 80 spikes/s for medium activity and 160 spikes/s for high activity). During
spiking data exchange, processes send data to each other in two phases: handshake
(coordinating intention to send information) in solid red line; and send-receive spik-
ing data, in dashed lines. The send-receive exchange volume is dependent on the
activity density (spiking average) per process. The communication profile of the
simulation and the number of processes used determines which phase is dominant.

(they still need to inform others that they will not be receiving data). This causes
an overhead of metadata with a quadratic growth with the number of processes,
shown in figure 3.9, and quickly becomes the dominant part of the exchange.

Neighbourhood Exchange (NBX ) is a type of Dynamic Sparse Data Exchange
algorithms proposed by Hoefler et al. [111]. It targets the overhead caused by the
handshake phase of communication by overlapping it with the send-receive data
phase. For sparse communication, Hoefler et al. [111] demonstrate that NBX per-
forms better than PEX.

Previous attempts to optimise data exchange in SNN simulators have been lim-
ited to implement PEX -like point-to-point communication [135, 98, 159, 124, 9]. To
the best of our knowledge, no SNN simulation has considered using DSDE algo-
rithms. It is proposed here that NBX alongside hypergraph partitioning can exploit
the increased sparsity of communication of the PCG to reduce the overheads of
communication in all its phases.

3.4.7 Implementation of PEX and NBX

To commpare PEX and NBX communication patterns, both algorithms are
implemented as communication methods on the custom SNN simulator framework.

Both algorithms require each process to maintain a lookup table of target pro-
cesses each local neuron connects to (populated before starting the simulation).
When a process is in the communication stage, it matches the local spiking neu-
rons to the lookup table to generate the data to be sent to each process. PEX and
NBX differ in the way they distribute this data. Both PEX and NBX follow the
implementations described by Hoefler et al. [111].

For the comparisons, PEX is implemented with an all to all call for the hand-
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shake, which informs other processes of which processes to listen to. An asymmetric
all to all follows, where each process may send different amounts of data, to send-
receive data (which is preferred to individual send and receive postings per process
as it incurs in less call overheads).

NBX is implemented as depicted in Figure 2.2. First, each process sends data
asynchronously (non-blocking) to all its targets. Whilst the messages are being
delivered, processes probe for incoming messages. Once a sender process is notified
that its messages have been received, it places an asynchronous barrier and continues
to probe for incoming messages until all other processes have reached the barrier
(with an MPI Ibarrier call), signalling the end of the communication phase. The use
of an asynchronous barrier removes the need for an explicit handshake, effectively
allowing the data exchange to start without explicit knowledge from the receiver.

3.4.8 Results of NBX as communication pattern for SNN
simulations

NBX and PEX communication patterns are compared in simulations using Ran-
dom Balanced allocation. Figure 3.10 shows how NBX reduces communication time
by significantly decreasing implicit synchronisation time (Figure 3.10A), as a result
of a more balanced communication time amongst processes —see discussion in sec-
tion 3.4.10.2. Total amount of spiking data sent across processes is decreased (Figure
3.10B) due to the elimination of the handshake phase during communication. Data
exchange time is not impacted (Figure 3.10C) despite the reduction in data —see
discussion in section 3.4.10.2.

3.4.9 Using hypergraph partitioning to increase the effec-
tiveness of NBX

Once the hypergraph partitioning allocation and the dynamic sparse data ex-
change strategies have been evaluated independently, we combine them to identify
synergies. The four candidates compared are Random-PEX, Random-NBX, Hyper-
graph partition-PEX and Hypergraph partition-NBX, indicating which neuron allo-
cation algorithm (random balanced or hypergraph partitioning) and communication
strategy (PEX or NBX ) is used.

The results in Figure 3.11 show the effectiveness of Hypergraph partition-NBX
over the rest, with reduced simulation time (Figure 3.11A) as a consequence of
decreased communication time. The improvement is due to implicit synchronisation
time gain (Figure 3.11B) brought by the use of NBX, as well as a reduction of data
exchange time of Hypergraph partition-NBX over Rand-NBX —see discussion in
section 3.4.10.3 for an in depth analysis.

The Hypergraph partition-NBX approach is not only faster than the random
alternatives, but as figure 3.11A demonstrates, it also manages to improve scaling
by delaying the point at which the increased communication overhead outweighs the
gains in simulation time. The approach scales up to 1536 processes for this model
(per 768 of the other alternatives).
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Figure 3.10: Communication time using PEX and NBX are shown. A: implicit
synchronisation time per simulation. B: total volume of spiking data exchanged
during simulation. C: data exchange time per simulation.

53



Chapter 3. 3.4. IMPROVING COMMUNICATION IN DISTRIBUTED SNN
SIMULATIONS

(a)

96 192 384 768 1536 3072
Number of processes

102

4 × 101

6 × 101

2 × 102

3 × 102

Ti
m

e(
s)

Random-PEX
Random-NBX
Hypergraph partition-PEX
Hypergraph partition-NBX

(b)

96 192 384 768 1536 3072
Number of processes

101

Ti
m

e(
s)

Random-PEX
Random-NBX
Hypergraph partition-PEX
Hypergraph partition-NBX

(c)

96 192 384 768 1536 3072
Number of processes

101Ti
m

e(
s)

Random-PEX
Random-NBX
Hypergraph partition-PEX
Hypergraph partition-NBX

Figure 3.11: Simulation performance measurements for Rand-PEX, HP-PEX, Rand-
NBX and HP-NBX. A: overall simulation time. B: implicit synchronisation time
per simulation. C: data exchange time per simulation.
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3.4.10 Discussion of hypergraph partitioning and NBX re-
sults

Most SNN simulators allow users to describe their models at population level.
Biological data at that level of detail is common [195, 218, 177, 8] and therefore it
is natural to use when building simulations. Regardless of the model definition, at
some point the simulation needs to build representations of neurons and connectivity,
at which level we can now apply our partitioning approach. Alternatively, because
vertices in the hypergraph are an abstraction, they can be used to represent groups of
neurons such as populations and regions. Partitioning can be performed at any level
of detail, but doing it at the neuron level allows finer control of workload balance by
assigning a few neurons to nodes that are almost full to capacity, instead of having
to assign whole populations. It also allows better communication optimisation as
the algorithm treats individual connections instead of aggregations that would be
necessary when using higher levels of abstraction. Moreover hypergraph partitioning
can find optimal intra-population divisions that may not be apparent to the user
in models at the brain-scale, should they have to manually allocate workload to
computing nodes (both impractical in larger models and suboptimal).

3.4.10.1 Hypergraph partitioning as a neuron allocation strategy

Our proposed neuron allocation method based on hypergraph partitioning offers
an alternative to approaches employing graph partitioning [102] or clustering [214].
A hypergraph allows the total communication volume of the simulation to be mod-
elled more accurately than using a normal graph [63, 61]) which enables a better
allocation of neurons to computing nodes to reduce connectivity between processes.

Hypergraph partitioning is effective in minimising interprocess connectivity, as
shown by a 10–20% reduction in remote spikes (Figure 3.8D) and 20–25% in average
runtime neighbours (Figure 3.8C). Increased sparsity of the communication graph,
however, does not impact data exchange time —see figure 3.8B. This is because PEX
is not designed to take advantage of this sparsity: send-receive data is implemented
with MPI Alltoall, which results in global synchronisation of all processes even with
reduced interconnectivity. Therefore, performance improvement on simulation time
is negligible.

Partitioning alone brings a very moderate reduction in volume of data exchanged
(Figure 3.8E) that becomes negligible as the parallelism is increased. The effect is
expected since partitioning optimises only the data send-receive portion of the ex-
change phase, and as shown in Figure 3.9 this is not the dominant part of the com-
munication, less so as the number of processes increases. Parallel SNN simulations
in which the send-receive part is dominant (e.g. high frequency of neuronal activity
or increased neuronal density per process) could see a significant improvement here.

Lytton et al. [147], point out that simple collective communication patterns like
all gather may perform better than point-to-point provided the number of ranks
is significantly lower than the average number of connections per neuron. This
tipping point assumes random allocation of neurons and hence random chance of
post-synaptic targets being placed at any computing node. Using partitioning ac-
tively increases the probability of a pre- and post-synaptic neuron living in the same
process (as seen by a reduction in runtime neighbours in Figure 3.8C) and therefore
neurons will normally have less targeted process than post-synaptic targets. This
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shifts the tipping point in favour of point-to-point communications to be reached
much sooner, at fewer processes.

3.4.10.2 NBX dynamic sparse exchange

NBX has a strong impact on implicit synchronisation time (Figure 2.2A), which
is an indirect measurement of load balance between processes. With both alterna-
tives employing Random Balanced allocation, the computation phase remains the
same. Therefore any change in load balance, reflected in implicit synchronisation,
can be attributed to the communication strategy —some processes taking longer
than others to finish communication phase which carries over to the next communi-
cation step when processes re-synchronise again. PEX makes use of collective MPI
calls, which ensure that processes are synchronised at the point of entry of that
function. Note that each process may continue execution as soon as it has receive
messages from all others. This is not guaranteed to happen at the same time for all
processes, introducing imbalance —a well known phenomena in parallel synchroni-
sation [110]. With NBX processes are implicitly synchronised with an asynchronous
MPI Ibarrier: all processes are guaranteed to have sent all data before any of the
processes finish the communication phase and continue with the simulation. This
acts as a balancing mechanism whilst not forcing processes to be idle, since the
barrier notification messaging happens in parallel whilst receiving data.

The cost of synchronisation for NBX shows in the measured time for data ex-
change on Figure 2.2C. NBX scales in a more predictable way than PEX, but at
the level of communication of the simulation (random allocation of neurons leads
to almost all to all process connectivity) it is often slower. Hoefler et al. [111]
indicates that the performance of NBX is dependent on the number of neighbours
(sparsity) during communication. Hence, increasing sparsity would improve NBX
performance —see discussion in section 3.4.10.3.

Figure 2.2B shows volume of data sent by both alternatives, with a qualita-
tively improvement of NBX. This measurement accounts only for explicit data sent;
for PEX this includes handshake metadata, which as we have discussed becomes
dominant with increased parallelism (each process needs to send data to all other
processes specifying whether further communication is to be expected). NBX per-
forms the handshake implicitly with MPI Ibarriers, which has a payload of 0 and
does not require all to all messaging.

3.4.10.3 Synergy between Hypergraph partitioning and NBX

The combined Hypergraph partition-NBX strategy performs better than either
one on its own (Figure 3.11A). It keeps the reduced implicit synchronisation time
(Figure 3.11B) that comes with NBX better process balance during communica-
tion. Furthermore, when compared to Random-NBX, Hypergraph partition-NBX
has enhanced communication sparsity due to partitioning allocation that increases
the effectiveness of the sparse communication pattern, resulting in data exchange
time reduction (3.11C). With sparsity, Hypergraph partition-NBX matches the data
exchange performance of PEX alternatives in lower processor counts, and improves
upon it as the parallelisation increases.

The dual nature of Hypergraph partition-NBX could impact performance in SNN
models with different communication profiles. In high frequency communicating
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SNN simulations (high neuron firing rate or high process neuronal density), where
communication is dominated by data send-receive (Figure 3.9), the impact of hyper-
graph partitioning in reducing the volume of communication is expected to increase:
when more neurons are spiking, more data is sent across processes, making any re-
duction in inter-process synapses more significant. This effectively increases the
sparsity of communication, improving the effectiveness of NBX. In low frequency
communicating SNN simulations (low neuron firing rate, low process neuronal den-
sity or a modular SNN model that can be partitioned well), where communication is
sparse, NBX is expected to speed up data exchange time —as discussed in section
3.4.10.2 and by [111]. Therefore, with increased network communication sparsity,
NBX is a more suitable communication pattern than point-to-point strategies used
by SNN distributed simulators [159, 98, 135, 124].

3.5 Larger model with round robin allocation

We have shown that the proposed strategy leads to significant performance im-
provement on the CM model. The main limitations of this model are its relatively
small size and the random connectivity between its layers, which can pose a chal-
lenge to workload distribution (particularly the random connectivity, as it makes
reducing communication through partitioning more challenging). To demonstrate
further applicability of the proposed strategy to larger and modular models, the
effect of HP-NBX on the MVC model is evaluated. The MVC model has 660k
neurons with 620 million synapses, arranged in 32 modular areas as described by
Schmidt et al. [195]. The internal structure of each area resembles that of the
Cortical Microcircuit model.

Round robin is a standard neuron allocation algorithm employed by many neu-
ronal simulators (such as NEST or NEURON). Although it is an adequate load
balancing approach [124], round robin represents the worst-case scenario in terms
of connectivity, as it purposefully separates neurons which are more likely to be
more interconnected (those belonging to the same population). As a consequence,
round robin forces each process to be communicating with a high number of other
processes.

The experiment in this section is performed on the same HPC system as described
for the CM (ARCHER).

3.5.1 Macaque visual cortex multi-scale model

To understand how the hypergraph partitioning allocation and the NBX commu-
nication scale to larger models, we implement the multi-scale model of the macaque
visual cortex (MVC ) described by Schmidt et al. [195]. The model bridges the
gap between local circuit models (such as the CM ) and large-scale abstractions to
represent one hemisphere of the macaque visual cortex. It is comprised of 32 areas,
each one constructed as a CM and connected to others with fixed probability, i.e.
a cell on one area is connected to cells in another area with a probability that is
fixed for all cells between said two layers. The nature of the model is modular (i.e.
divided in areas) which makes it a suitable candidate for HP-NBX allocation.

The model is implemented at 16% of the original scale, with 660k neurons and
approximately 620 million synapses, with the same connectivity probability. Neu-
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rons share the same parameters as the ones detailed in the original model [177]. As
with the CM model, a constant current of .38mA is introduced to all neurons. To
produce an average activity of 20–23 spikes/s, the weight multiplier of inhibitory
connections is set to -15 (instead of -4).

3.5.2 Results of HP-NBX on the MVC model vs round
robin

A set of strong scaling experiments has been performed to analyse how HP-NBX
scales to larger, modular models, such as the MVC model. The experiments involve
simulating the MVC model over a 700ms time interval with a 0.1ms timestep, using
the following range of scales: 192, 384, 768, 1536, 3072 and 6144 processes.

Round robin scheduling of computations is a common workload distribution
strategy in neuronal simulators. It is used as a simple load balancing approach,
spreading neurons with similar activity patterns across the network [124]. Thus,
round robin is used in here as a baseline, with PEX communication.

Figure 3.12 shows the results of the strong scaling experiments for the larger,
modular MVC model. It compares our proposed strategy HP-NBX to the base-
line Round robin-PEX. The computation time scales linearly with the number of
processes (figure 3.12C), indicating the simulation does benefit from parallel execu-
tion. HP-NBX significantly impacts interprocess communication by reducing the
number of average runtime neighbours by around 90% (figure 3.12B). Hosted neu-
rons have to send spikes to fewer neighbours, and thus data exchanged is reduced
in comparison (figure 3.12A). This is a qualitative reduction, as the data volume
has a quadratic growth for Round robin-PEX but linearly for HP-NBX. With less
data volume being sent and a more balanced communication pattern, both phases
of communication are reduced: data exchange time (3.12D) and implicit synchroni-
sation time 3.12E). As a consequence, HP-NBX simulation time scales well with the
number of processes, whereas Round robin-PEX struggles with high process counts
(no improvement with 1536 processes or higher).

The overall computational efficiency gain of HP-NBX (proportion of time spent
in computation) is outlined in Figure 3.13, which compares it to the baseline Round
robin-PEX. Not only overall simulation time is reduced by up to 73% (Figure 3.12F)
but the proportion of time spent in computation is increased (Figures 3.13A and
3.13B), resulting in an improved computational efficiency, by up to 40.8 per-
centage points (from 22.2% to 63%).

3.6 Discussion of MVC results

3.6.1 HP-NBX vs round robin in large and modular model

HP-NBX is capable of taking advantage of the modularity of the model and
decreases the average number of neighbours each process communicates with by 90%
(figure 3.12B). The lower ARN impacts the data exchanged not only in reducing its
volume but also allowing linear scaling with the number of processes, compared to
the quadratic growth of Round robin-PEX.

The decreased ARN allows the NBX algorithm to be more efficient and balanced
and hence simulations spend less time in implicit synchronisation (figure 3.12E). The
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Figure 3.12: Simulation results of the MVC model showing performance improve-
ments of HB-NBX over the baseline round robin-PEX. The top part of the figure
displays connectivity-related metrics. A: data volume exchanged during simulation;
B: average runtime neighbours in communication phases reduction in percentage.
The bottom part of the figure shows results of the MVC scaling experiments with
both alternatives. C: computation time which decreases linearly, demonstrating
the potential benefit of increased parallelism; D: data exchange time; E: implicit
synchronisation time; F: total simulation time.
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Figure 3.13: HP-NBX computational efficiency gains over the baselineRound robin-
PEX during MVC simulations. The graph shows the proportion of time an MVC
simulation spends in computation (red), implicit synchronisation (light blue) and
data exchange (dark blue) when using Round robin-PEX (A) and HP-NBX (B).
The proposed strategy HP-NBX consistently increases computational efficiency in
all processes counts (percentage points improvement in increasing process count
order: 5.2, 2.7, 12, 22.3, 40.8 and 32).

qualitative difference in scaling of data volume (linear for HP-NBX and quadratic
for Round robin-PEX ) leads to reduced data exchange time (figure 3.12D). Both
figures 3.12D and 3.12E show how our approach scales better: data exchange time
growth slows down with the number of processes, in contrast with a continuous
quadratic growth of the baseline; similarly, implicit synchronisation time decreases
with higher processor counts, whereas it is increased in the baseline. This limits
the scalability of simulations with Round robin-PEX (figure 3.12F), with simulation
time not being improved despite the extra computing resources (1536 processes and
above). In contrast, HP-NBX scales well, with simulation time reduced for all
process counts.

The impact of HP-NBX on data exchange time reduction contrasts with those
seen when comparing random allocation and hypergraph partitioning using the CM
model, in which a moderate reduction on average runtime neighbours (25%) or data
volume (1–3%) on their own did not significantly impact data exchange time. There
are two key factors that explain the difference. The first one is quantitative: the
communication reduction is much greater in the MVC model (90% average runtime
neighbours and 80% data volume). The second reason is qualitative and is due
to the scaling of both data volume and ARN. The data volume difference (figure
3.8E) and the ARN difference (figure 3.8C) in the CM simulation decreases with the
number of processes, whereas both differences increase rapidly in the MVC model,
making it more significant the more the simulation is parallelised. This is therefore
sufficient to impact communication time.

Overall figure 3.12 shows that HP-NBX is a more effective allocation and commu-
nication algorithm than Round robin-PEX, yielding shorter simulation times (figure
3.12F). It is worth noting that our implementation of round robin does not take
advantage of short cuts such as finding the target process for a post-synaptic neuron
by simply using mod operator, however this is a memory optimisation rather than a
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computation one and therefore does not affect our results. Our results demonstrate
the need of careful neuron allocation based on connectivity and the inadequacy of
round robin on large scale communication bound simulations.

In terms of scalability, the models tested in this chapter reach a lower compu-
tational density load per process as the level of parallelism is increased (since the
model size is fixed, it reaches an average of 107 neurons per process in MVC simu-
lated over 6,144 processes). Together with the increased communication overhead,
this makes simulations markedly commmunication-bound. An argument could be
made to attribute performance gains seen in figure 3.12 to an over-parallelisation of
the simulation, resulting in a simulation that has an unrealistically low computation
to communication. Nonetheless, figure 3.12F shows that with the same computa-
tion ratio (at any scale), our proposed HP-NBX clearly outperforms the alternative
round robin-PEX, thus making it the preferred choice in high or low computation ra-
tios. In larger, more complex simulations it could be the case that the computation
ratio may be higher and therefore the simulation spends more time in computation;
those cases are candidates for further parallelisation, in which our approach helps
mitigate the poor scaling of communication requirements.

3.7 Cost of HP-NBX against the gains in simu-

lation time

Performing hypergraph partitioning adds a cost to building the simulation that
is calculated by taking the difference between build time for baseline and HP-NBX.
Similarly, the time gain of the simulation is defined as the difference in simulation
time between the baseline and HP-NBX, as a percentage of the build time. Figure
3.14 shows the build time and simulation time gain between Round robin-PEX and
HP-NBX in 700ms of MVC simulations. Due to the use of a parallel implementation
of hypergraph partitioning, build time difference (red in figure 3.14) is reduced when
scaling. With lower simulation time (figure 3.12F), the runtime gain of HP-NBX
reaches over 90% with 6144 processes. Taking the extra build time that HP-NBX
requires, there is a total net gain (build and simulation time) for simulations run in
3072 and 6144 processes (denoted by time gains being higher than extra build time
in figure 3.14).

3.8 Conclusions

Communication has been shown to be the dominant part of parallel SNN simula-
tions as the number of processes is increased, limiting scalability. This chapter shows
how to improve computational efficiency in distributed SNN simulations by optimis-
ing the three phases of communication: implicit synchonisation, process handshake
and data exchange. We use neuronal connectivity to reduce inter-process communi-
cation, applying hypergraph partitioning to drive neuron allocation to processes. To
tackle the impact of the mandatory handshake in point-to-point parallel communi-
cations, we implement NBX dynamic sparse strategy as a communication pattern.

With the use of a custom SNN simulator framework, which is representative of
more general SNN simulators, this chapter demonstrates:
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Figure 3.14: Comparing the cost of computing hypergraph partitioning in extra
build time (in red) to the gains in simulation time by HP-NBX as a percentage of
the build time (in green). As the simulation scales, the gains in simulation time
compensate the extra build time associated with hypergraph partitioning.

• Hypergraph partitioning is shown to produce communication sparsity in dis-
tributed SNN simulations (up to 90% less ARN) and to reduce volume of data
exchanged (up to 80% less volume of data) (contribution C2).

• Dynamic sparse communication NBX smooths process load imbalance intro-
duced by PEX, resulting in reduced implicit synchronisation time by up to
90% (contribution C3).

• Synergy between partitioning and NBX : Hypergraph partitioning sparsity
makes NBX more effective and reduces data exchange time. Hypergraph
partitioning neuron allocation combined with NBX communication pattern
increases computational efficiency by up to 40.8 percent points and reduces
simulation time by up to 73%, compared to round robin allocation, a standard
algorithm in neuronal simulators (contribution C1).

The findings are application agnostic and are applicable to other distributed
complex system simulations in which communication can be modelled as a graph
network.

3.9 Further work

This chapter evidences the benefits of using hypergraph models of SNN simu-
lations and employ state-of-the-art partitioning algorithms to increase sparsity and
performance on distributed simulations. However, current state-of-the-art hyper-
graph partitioning algorithms (multiscale) do not scale well [49, 125] and may incur
in high memory requirements for very large graphs. Furthermore, those algorithms
do not take hardware communication costs into consideration; with HPC systems
being highly heterogeneous in nature, this is a potential source for optimisation.

Those limitations are addressed in further chapters of this thesis.

62



Chapter 3. 3.9. FURTHER WORK

3.9.1 Out of scope work

In the context of neuromodulated plasticity, synapses weights are modified dur-
ing learning influenced by synaptic activity and neuromodulator concentration in
the brain region. Potjans et al. [178] show an efficient model to inform non-local
synapses of the neuromodulator activity via a volume transmitter to reduce com-
munication in distributed systems. Their model does not attempt to optimise this
communication based on the locality of the synapses targeted. Including the vol-
ume transmitters in our hypergraph model had the potential to help reduce this
communication.

It is conceivable that nature and evolution have shaped neuron populations to
optimise communication, placing frequently communicating neurons closer together.
Working at the neuron level we may be rediscovering this optimisations that nature
has found. Comparing the partitions found via the hypegraph partitioning algorithm
to actual biological structures based on proximity is an interesting area of future
work.

A frequent alternative to optimise the synchronisation of parallel applications is
to overlap communication and computation. The development of RDMA-capable
hardware facilitates this —see section 2.3.2. An area of future work is to implement
RDMA-enabled communication patterns and compare them to dynamic sparse data
exchange.

We have assumed a fairly stable firing pattern across the SNN during our sim-
ulations. This is a simplification that has allowed us to study workload allocation
and communication patterns in a simplified stable scenario. Natural SNN activity is
more complex and dynamic and a model that attempts to optimise communication
needs to reflect that. Repartitioning the hypergraph model based on actual activity
of neurons can help model this complexity and improve runtime performance —see
appendix A. Repartitioning requires faster online partitioning algorithms, which
justifies the work in the next chapters.
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Chapter 4

Architecture-Aware Restreaming
to Improve Performance of
distributed Applications Running
on High Performance Computing
Systems

4.1 Overview

High Performance Computing (HPC) demand is on the rise, particularly for large
distributed computing. HPC systems have, by design, very heterogeneous commu-
nication capabilities consequence of their hierarchical architecture, resulting in wide
variations in the cost of communications between compute units. Chapter 3 demon-
strated the runtime performance benefits of using hypergraphs to model distributed
applications and partitioning for workload allocation to minimise distributed com-
munication. Chapter 2 summarised that current hypergraph partitioning algorithms
do not consider heterogeneity when performing partitioning. It was suggested that
this might impact the performance of distributed applications that are modelled as
a hypergraph. If large distributed applications are to take full advantage of HPC,
the physical communication capabilities must be taken into consideration when allo-
cating workload. Strategies that take heterogeneous physical communication capa-
bilities into account are considered to be architecture-aware. In contrast, strategies
that do not account for this heterogeneity are referred to as architecture-agnostic.

Research question: can performance of distributed applications be improved
by using architecture-aware hypergraph partitioning algorithms to allocate distributed
workload in such a way as to reduce the cost of the necessary parallel communica-
tion?

When using hypergraph partitioning to drive workload in distributed applica-
tions in heterogeneous hardware, measuring the quality of the resulting partitions
is not sufficient. The real cost of partitioning for a distributed application is de-
termined not only by the number of hyperedges cut or the span of those cuts, but
also by the real cost of communication between the computing nodes that host the
elements within a hyperedge. Therefore it is necessary to develop appropriate bench-
marks to analyse the impact of hypergraph partitioning algorithms on the runtime
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of distributed applications.
To help answer the research question, this chapter proposes a synthetic dis-

tributed application runtime benchmark. The benchmark is required to address the
limited availability of appropriate benchmarks summarised after reviewing the liter-
ature in Chapter 2. It simulates communication and computation needs of generic
distributed applications that are modelled as hypergraphs.

4.1.1 Contributions

Hypergraphs are good at modelling total volume of communication in parallel
and distributed applications. To the best of our knowledge, there are no hypergraph
partitioning algorithms to date that are architecture-aware. In this chapter we pro-
pose a novel hypergraph partitioning algorithm (HyperPRAW ) that takes advantage
of peer to peer physical bandwidth to improve distributed applications performance
in HPC systems. Physical bandwidth is estimated prior to partitioning through pro-
filing. The results show that not only the quality of the partitions achieved by our
algorithm is comparable with state-of-the-art multilevel partitioning, but that the
runtime performance in a synthetic benchmark is significantly reduced in 10 hyper-
graph models tested, with speedup factors of up to 14x over architecture-agnostic
state-of-the-art multilevel partitioning.

This chapter focuses on the benefits on runtime execution for distributed ap-
plications running on HPC systems when using architecture-aware partitioning. It
does so by demonstrating performance improvement on a synthetic benchmark pro-
posed in this chapter that models communication in distributed applications. The
contributions of this chapter to the overall thesis are:

• C5: Demonstrate measurable runtime speedup (up to 14x) in distributed
applications by allocating workload through a novel architecture-aware hyper-
graph partitioning algorithm.

• C6: Propose a novel cost function for restreaming hypergraph partitioning to
balance heterogeneous communication costs and workload balance.

• C7: Develop a synthetic benchmark for modelling distributed applications
in heterogeneous HPC systems to aid the evaluation of workload allocation
strategies.

• C8: Improve the mapping of application communication patterns and hard-
ware architecture heterogeneity by using a novel global communication metric
(partitioning communication cost) that guides the refinement of restreaming
partitioning.

4.2 Communication heterogeneity in HPC

In the world of Big Data and large scientific simulations, there is huge demand
for High Performance Computing (HPC) systems. HPC systems achieve high per-
formance through parallelism and distribution. By the distributed nature of their
architectures, there is a level of communication heterogeneity between any two pro-
cesses within nodes.
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Figure 4.1: Discrepancies between network bandwidth in HPC systems and com-
munication patterns in parallel applications. A: Peer to peer bandwidth heatmap
on a 144 node job in ARCHER. B: Peer to peer communication activity pattern
on a typical distributed application (run of our synthetic benchmark with sparsine
hypergraph).

Take as an example the architecture of ARCHER1, the UK National Supercom-
puter Service. Each compute node has two 12-core Intel Ivy Bridge processor. Four
nodes are connected to an Aries router, 188 nodes are grouped into a cabinet; and
two cabinets make up a group. There are all-to-all electric connections between
nodes in the same group and all-to-all optical connections between different groups.
This connectivity pattern, comparable to other HPC systems, leads to different con-
nectivity speeds between computing units, depending on where they are hosted.
Figure 4.1A shows the profiled bandwidth (real communication speed) between any
two computing units within a cluster of 6 nodes in ARCHER (144 units), indicating
substantial differences between processes communication bandwidth depending on
where the processes are hosted. The graph closely represents the architecture of the
system, with the highest speed connectivity between computing units within the
same processor (red), followed by communication between the two processors in the
same node (yellow, light blue)). All other connectivity is considerably slower (dark
blue).

Data exchanged during a typical parallel application is shown in Figure 4.1B. The
allocation of work is done with state-of-the-art hypergraph partitioning (Zoltan).
The noisy pattern of the peer to peer data activity is a common feature of naive
partitioning in which the total communication is optimised globally (total data sent
over the entire network) but not at individual unit to unit link cost.

The mismatch between the network bandwidth pattern and the actual data sent
during simulation (Figure 4.1) leads to uneven costs of communication. Since band-
widths between units are significantly different, the cost of sending data (in terms
of time) is also different.

Even though profile results have been shown only for ARCHER, the findings
are generalisable to any HPC systems, including cloud computing, due to their
distributed architecture. Parallel applications running in HPC systems can improve
their communication performance and overall runtimes by considering the network

1http://archer.ac.uk/
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bandwidth of the architecture they run on to reduce the real cost of communication.
Minimising the overall real cost of communication can be seen as an optimisation
process and it is hypothesised here that automating it through architecture-aware
strategies can lead to significant performance impact.

The goal of this chapter is to optimise distributed communication in HPC sys-
tems by reducing the mismatch observed in Figure 4.1. We propose a novel re-
streaming hypergraph partitioning that is architecture-aware to reduce the real cost
of communication in distributed applications.

4.3 A synthetic distributed application runtime

benchmark

Hypergraph partitioning is used in domains such as VLSI circuit design and
boolean satisfiability problems. Those are one-shot problems, once a solution has
been found, there is no further problem. Hypergraphs can also model dynamic par-
allel applications to reduce total volume of communication in scientific simulations
[73] and in sparse matrix multiplication [19]. In these cases, a good partitioning
results in runtime improvements of the applications.

To benchmark communication in distributed applications, let us introduce the
concept of null-compute simulations. A null-compute simulation is a model of a
simulation that does not perform meaningful computation by either bypassing it
or by using simple placeholders. They are often used to measure bottlenecks or
performance impact that arise from specific parts of a computer system such as
communication or memory overheads. Similar micro-benchmarks have been pro-
posed as indirect estimates of communication time [87].

To measure the impact that our proposed strategy has on runtime communica-
tion of modelled distributed applications, we propose a synthetic benchmark. The
benchmark is a null-compute simulation based on the input hypergraph and us-
ing a vertex allocation determined by the partitioning strategy selected. Since the
simulation does not have any compute, it is purely communication-bound. The
communication is proportional to hyperedge cut and SOED of the hypergraph and
it is generated as follows: for each hyperedge on a given hypergraph, a message is
sent to and from each vertex in the hyperedge if the vertices are located in different
partitions (computing units). This is repeated for all hyperedges in the hypergraph.
All communication is performed with discrete point-to-point2 messages using the
MPI library for distributed systems communication. Figure 4.2 highlights the com-
munication required (arrows) for a simple hypergraph partitioned across three nodes
(different colours).

Although the synthetic benchmark is an extreme case of parallel application
(no compute and communication of all connected compute elements on every time
step) it abstracts a communication-bound distributed application (such as certain
Spiking Neuronal Network simulations [73]). It allows us to compare the impact
of different partitioning algorithms and understand how they improve communica-
tion in communication-bound distributed applications, in which scaling is limited
by the overheads imposed with increased communication. A general benchmark al-
lows cross-domain applications to be evaluated, from matrix multiplication to SNN

2MPI Send and MMPI Recv calls from sending and receiving processes respectively.
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Figure 4.2: Synthetic benchmark proposed to measure the impact that hypergraph
partitioning workload allocation has over distributed applications. The diagram
shows a hypergraph with 9 vertices (circles) allocated to three different computing
nodes / partitions (red, blue and green). Hyperedges connecting vertices are shown
as dashed rectangles. Communication in runtime (arrows) happens between vertices
belonging to the same hyperedge but allocated to different partitions (i.e. vertices
within the same rectangle but of different colours).

simulation to circuit design, which would not be possible if we were to use a domain-
specific framework.

To account for variable network traffic and different nodes configurations pro-
vided by the job scheduler, the runtime experiments are run on three different jobs
(hence different node placement and communication costs), with each job doing two
iterations. Therefore the total number of simulations run per experiment is 6.

4.4 Restreaming partitioning to improve distributed

application performance

Previous work on graph partitioning has already highlighted the impact that
uneven computation and communication architectures in HPC and Cloud comput-
ing has on computation performance [223, 225]. A hypergraph (a generalisation
of graphs where edges can link n number of vertices) is shown to model total vol-
ume of communication in parallel applications [44, 63, 61]. Once the application is
modelled as a hypergraph, partitioning algorithms can be used to reduce the com-
munication volume. Chapter 3 demonstrates how hypergraph partitioning improves
the performance of SNN simulations.

Partitioning algorithms for hypergraphs with good quality results exist using a
variety of algorithms —see section 2.7.2 for an overview. However, as discussed in
section 2.9.1, there is currently no approach that considers the physical architecture
of the network to partition and allocate hypergraph models. When modelling par-
allel applications as a hypergraph, not only it is important to reduce the hyperedge
cut (connection between two vertices located in two different partitions), but also
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the hop cut (connections including the physical cost of communication).
Parallel applications may not have constant communication patterns across their

runtime. Using static approaches ahead of execution to distribute workload may not
yield the best results in those circumstances. Repartitioning algorithms (those that
perform the partitioning more than once) consider this and previous work proposes
to model the cost of migrating data [46, 47] as part of the partitioning, in addition
to cut minimisation.

Section 2.8.2 reviews the difficulties of partitioning and repartitioning algorithms
at large scale. Multilevel partitioning algorithms run into problems with large scale
graphs [49, 125], since they require the graph to be fully loaded in memory to be
processed. This imposes excessive memory requirements in the era of social media
graphs and whole brain simulations, where real applications must handle billions
of nodes and trillions of edges ([122]). Furthermore, even if graphs can be stored
in memory, having to process the entire graph before allocating vertices to nodes
imposes practical limitations such as long partitioning times.

Streaming and restreaming approaches do not suffer from the limitations ex-
pressed above: they can make allocation decisions with only local information (not
needing the entire graph in memory) which means they can work with partially
known graphs. This makes streaming algorithms ideal for large-scale graphs, which
is the case in problems such as large neuronal simulations or multiplication of very
large sparse matrices.

Figure 4.3 depicts the streaming process for the case of hypergraph partitioning.
Figure 4.3A represents the input hypergraph, whereas Figure 4.3B models the cur-
rent workload of each of the partitions based on current allocations. Figure 4.3C
represents the streaming process, where one vertex is considered at a time. Based
on local information, a value function is calculated per partition and the vertex is
assigned to the one with higher value. The parameters included in the value func-
tion determine what characteristics the partitioning algorithm prioritises. To date,
no streaming hypergraph partitioning algorithm considers network communication
(bandwidth or latency) in the value function.

4.4.1 Architecture-aware streaming hypergraph partition-
ing

A hypergraph is a generalisation of a graph H = (V,E) consisting of a set of
vertices V and a set of hyperedges E, where each hyperedge is a subset of V (one or
more vertices) that defines the connectivity pattern. The difference between graphs
and hypergraphs is that in the latter the cardinality (size) of edges is always 2. For a
formal definition, see section 2.7. Hypergraph partitioning is a process that assigns
vertices to partitions in such a way that the hyperedge cut or the fanout metric is
minimised. To avoid trivial solutions (such as assigning all vertices to one partition)
partitioning algorithms maintain load balancing by only allowing solutions that have
a total imbalance factor that is below a specified value (a tolerance imbalance).

Hypergraphs are good at modelling parallel communication when each hyperedge
represents a frequent communication group of vertices. The more a hyperedge is cut
(more partitions are involved) the more the modelled application will have to send
data across partitions and hence more communication is required. When using
hypergraphs to model parallel applications, the goal is to partition the hypergraph
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(a)

(b)

(c)

Figure 4.3: Overview of a hypergraph streaming partitioning process. A: Arbritrary
hypergraph with vertices coloured based on the partition they are currently assigned
to and hyperedges represented by dotted rectangles. B: model of the architecture
and the current workload allocation; each box represents a partition (a compute unit
in the architecture), with links weighed based on the physical peer to peer bandwidth
of the architecture; an adjacent vertical bar represents whether the partition is
currently overloaded or underloaded (measure of imbalance). C: Streaming process
in which one vertex at a time is considered and assigned to a partition based on
local information.
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in k partitions, where each partition represents a computing unit in the hardware
architecture the application runs on.

A streaming graph partitioner algorithm does not have the entire graph in view
when calculating the cost of allocating a vertex to a partition. They are frequently
called greedy since once they make a decision, it is not revoked later on after seeing
more vertices. When an algorithm applies more than one pass (repeats the stream
that visits the vertices once), it is often referred to as a restreaming approach.
Our proposed algorithm takes a similar approach to the graph restreaming software
GRaSP [21] but it is applied to hypergraphs. To keep a good balance between the
two opposing goals (workload balance and minimisation of total communication) we
use a tempering parameter α that weighs the importance of workload imbalance. In
the streaming partitioning algorithm FENNEL, [212] suggest a good starting value
for α that scales with other hypergraph features:

α =
√

(p)× |E|√
|V |

,

where p is the fraction of partitions, |E| is the number of hyperedges and |V | is the
number of vertices. After each stream this α value is updated (the update parameter
is set to 1.7). Our approach differs from GRaSP in two ways: the restreaming is
allowed to continue until the partition is no longer improved (what we call the
refinement phase) instead of stopping once the imbalance tolerance is reached; we
reverse the tempering of the workload imbalance weigh once we are within imbalance
tolerance—see section 4.7.1. These two key differences allow for a refinement of the
quality of the partition after reaching workload imbalance tolerance.

4.5 Proposed architecture-aware restreaming al-

gorithm

The proposed architecture-aware restreaming algorithm (HyperPRAW ) is de-
scribed in Algorithm 1. The key step is the assignment of a vertex to a partition
based on a value function. The partition that ends up with the highest value is the
one to which the algorithm assigns the vertex.

The algorithm has a computational complexity that grows with the number of
iterations (N), the number of vertices (|V |) and hyperedges (|E|), the hyperedge car-
dinality and the number of partitions (p). The implementation of HyperPRAW can
be found on the GitHub repository at https://github.com/cfmusoles/hyperPraw

The next section describes what goes into calculating the value of assigning any
vertex to each partition.

4.5.1 Vertex assignment cost function

To incorporate the harware communication costs, a novel vertex cost function
for streaming partitioning is proposed. The value function Vi(v) in equation 4.1
determines the value associated with assigning vertex v to partition i.

Vi(v) = −Ni(v)× Ti(v)− αW (i)

E(i)
(4.1)

where Ni(v) represents the number of partitions in which vertex v has neighbour-
ing vertices (described by equation 4.2), Ti(v) is the total cost of communication
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Algorithm 1: Sequential HyperPRAW : architecture-aware restreaming algo-
rithm

Input : p (number of partitions); α (starting workload balance weight); tα
(workload balance tempering parameter); imbalance tolerance
(maximum imbalance tolerance); N (maximum iterations)

Output : Pk, for k = 1, ..., p, where Pk is the subset of V that is allocated to
partition k

Data : H = (V,E), where V is a set of vertices and E is a set of
hyperedges for hypergraph H

Initialise Pk: Round robin assignment of each v ∈ V
Calculate W (k) for each partition k
for n = 1 to N do

for v ∈ V do

j ← arg maxk=1,...,p = −Nk(v)× Tk(v)− αW (k)
E(k)

Add v to set Pj
Recalculate W (j)

α← α× tα
if imbalance > imbalance tolerance then

continue
else if Cost of P n

k > Cost of P n−1
k then

return P n−1
k

else
continue

return PN
k
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due to assigning vertex v to partition i (described in equation 4.4), W (i) is the cur-
rent workload of partition i and E(i) is the expected workload for partition i. The
parameter α weighs the importance of workload balance in the overall cost. Since it
starts at a low value, the initial streams partition mostly based on communication
cost. At later streams, the workload balance gains importance to achieve balanced
partitions.

Throughout our experiments we have assumed even cost of computation per
vertex and homogeneous work capacity for partitions, hence assigning one vertex to
one partition increases by 1 its workload, and the expected workload for all partitions
is the total workload divided the number of partitions. However the algorithm can
easily account for heterogeneous computation and work capacities.

Ni(v) =

p∑
j=0

Aj(v)

p
(4.2)

Aj(v) =

{
1, if Xj(v) > 1

0, otherwise
(4.3)

The function Ni(v) indicates the number of neighbouring partitions of vertex
v, should it be placed in partition i. That is, in how many other partitions v has
connecting vertices (Aj(v) indicates whether vertex v has neighbours in partition j).

Ti(v) =

p∑
j=0

Xj(v)× C(i, j) (4.4)

The function Ti(v) computes the cost of communication associated with allo-
cating vertex v to partition i. That cost, for another partition j is the number of
neighbours v has in j (Xj(v)) multiplied by the cost of communication between par-
titions i and j (C(i, j) which is discussed in section 4.5.2). The total communication
cost is the sum of all costs for each partition other than the one v is assigned to (i)
—communication within a single node is considered free.

In order to successfully calculate the total cost due to communication, the algo-
rithm requires information regarding the cost of communicating between partitions
(i.e., computing units). The next section describes how to map this cost.

4.5.2 Mapping cost of communication

The cost of communication matrix is derived from the peer to peer bandwidth
calculated through profiling before the partitioning starts the streaming process.
Discovery through profiling gives the flexibility as it can be applied to any archi-
tecture topology and it will discover the network costs automatically. This is an
advantage in environments where the architecture is not known (in Cloud comput-
ing), or when it is known but unreliable due to contextual circumstances (shared
network resources). If the bandwidth or communication costs are known, they can
be used directly without the need for profiling. Profiling is a common method to
discover the physical topology graph in partitioning algorithms [157, 23, 181].

When the cost of communication is done through profiling, first the bandwidth
matrix is found, then it is transformed to represent cost of communication and not
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speed. The bandwidth profiling is done by iteratively sending data to and from MPI
processes arranged in a ring formation3 and timing how long it takes for them to
reach back. One MPI process per core is used.

With the peer to peer bandwidth data we calculate the cost of communication
in the following way:

C(i, j) = 2− bij − bmin
bmax − bmin

(4.5)

where i and j represent two cores, bij is the bandwidth between core i and core
j, and bmin and bmax are the maximum and minimum bandwidth between any two
cores in the network. This normalises the costs to 1 for the fastest link, and 2 for
the slowest. When i == j, C(i, j) = 0. The normalisation step helps the streaming
to be independent of the magnitude of bandwidth values. Since different hardware
architectures can have different orders of magnitude bandwidths, the magnitude
affects the balance between workload and communication cost used in the vertex
assignment function (equation 1), potentially resulting in slower performance (if the
cost values are too high) or sub-optimal solutions (if the cost values are too low, the
stream can end underestimating the communication cost)

To accurately model the underlying architecture, the cost matrix must be calcu-
lated every time a new allocation of computing nodes is presented. In typical HPC
jobs, this requires us to profile the architecture of the allocated cluster of nodes each
time a job is started (since potentially new nodes are given).

4.5.3 Monitoring metrics during refinement

To improve the quality of partitioning, we propose a refinement phase to the
restreaming algorithm after the workload imbalance has reached values below the
desired imbalance tolerance. During the refinement phase, the restreaming con-
tinues (i.e., further iterations are run) until a monitored quality metric ceases to
improve. A novel metric used is proposed: the partitioning communication cost.
For a partitioning P , the partitioning communication cost PC(P ) is:

PC(P ) =
k∑
i=0

∑
v

Ti(v), for all v ∈ Pi (4.6)

This uses the cost of communication Ti(v) in equation 4.4 for all vertices and
any partition i and aggregates it. Intuitively, this metric measures both the number
of neighbours per vertex that live in different partitions to the vertex and the cost
of communication between those partitions. This closely represents the volume
and cost of communication in parallel applications that can be modelled with a
hypergraph.

3The tool available in https://github.com/LLNL/mpiGraph is used for profiling bandwidth
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Table 4.1: Hypergraphs used in quality and runtime evaluation

Hypergraph Vertices Hyperedges Non zeros Avg car-
dinality

H/V

sat14 itox dual 441729 152256 1143974 7.51 0.34
2cubes sphere 101492 101492 1647264 16.23 1.00

ABACUS shell hd 23412 23412 218484 9.33 1.00
sparsine 50000 50000 1548988 30.98 1.00

pdb1HYS 36417 36417 4344765 119.31 1.00
sat14 10pipe primal 77639 2082017 6164595 2.96 26.82

sat14 E02F22 27148 1301188 11462079 8.81 47.93
webbase-1M 1000005 1000005 3105536 3.11 1.00

ship 001 34920 34920 4644230 133 1.00
sat14 atco dual 561784 59517 2167217 36.41 0.11

4.6 Experimental evaluation

4.6.1 Experimental design

To evaluate the performance of the architecture-aware streaming, a public dataset4

[193] is used. It includes a wide collection of hypergraphs used in various com-
petitions (routability placement, circuit benchmark, SAT competition) and sparse
matrices repositories. To test our approach we have selected 10 instances from
within this collection that range in size, average cardinality and ratio number of
hyperedge/vertex—see table 4.1.

The evaluation consists on running hypergraph partitioning algorithms over a
collection of hypergraphs and measuring the partition quality and runtime on the
proposed synthetic benchmark —see section 4.3. For both quality and runtime ex-
periments we use a state-of-the-art multilevel recursive bisection partitioning algo-
rithm (Zoltan implementation [62]) as a baseline. To understand the impact of using
the physical architecture cost of communication in our restreaming approach we use
two versions of the proposed partitioning algorithm: HyperPRAW-basic (where uni-
form cost of communication matrix is used) and HyperPRAW-aware (where cost of
communication matrix from bandwidth profiling is used).

Three experiments are carried out: the impact of refinement in restreaming
(in section 4.7.1), resulting partitioning quality evaluation (in section 4.7.2), and
runtime performance of hypergraphs on the synthetic benchmark (in section 4.7.3).
The experiments are designed to help assess the impact of the proposed architecture-
aware restreaming algorithm on modelling distributed applications:

• Demonstrate the importance of incorporating communication costs when using
hypergraphs as models of distributed applications by baseline performance
with an architecture-agnostic hypergraph partitioning (Zoltan).

• Show the isolated impact of incorporating architecture-awareness in the re-
streaming algorithm by comparing bandwidth data through profiling versus
predetermined uniform bandwidth cost.

4Dataset is accessible via Zenodo at https://zenodo.org/record/291466
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• Demonstrate that Partitioning Communication cost (PC) is good as a proxy
for total application communication by using it as the metric to optimise
during refinement.

All experiments are run in ARCHER, the UK National Supercomputing system.
To ensure there is enough architecture communication heterogeneity, the job size
is set to 576 cores. With 24 computing units per computing node this ensures
multiple distributed nodes (24) are employed across physically distinct (6) blades
—see section 3.4.2 for a detailed description of ARCHER’s architecture.

4.6.2 Quality and runtime metrics

Hypergraph partitioning algorithms traditionally optimise one of the two metrics:
hyperedges cut (number of hyperedges that contain vertices that are allocated to
more than one partition); Sum Of External Degrees (for each partition, sum of the
hyperedges that are incident on the partition but not fully contained in it).

Formally, the Sum Of External Degrees (SOED) is
∑k

i=0 |E(Pi)| for k partitions,
where E(Pi) is the number of hyperedges that are incident but not fully inside
partition i. Intuitively, high values of SOED indicate hypergraphs are being cut
across several partitions, representing more volume of communication.

Both hyperedge cut and SOED are cut-based metrics (calculated on the basis
of hyperedges cut across partitions) and give an indication of the static quality of
the partition. They are used in this work to report the quality of HyperPRAW. In
addition, the PC cost defined in equation 4.6 is also used as a metric that combines
cut information and physical cost of communication.

Quality of hypergraph partition only describes the results on the hypergraph
itself. The hypergraph in this work is used as a model for a parallel application to
improve performance. To measure the improvement that HyperPRAW can bring
to these parallel applications, we use time execution on a synthetic benchmark to
measure communication time during simulated runtime —see section 4.3.

4.7 Results

4.7.1 Refinement phase

To understand the effect of the refining phase, we compare the partition history
of HyperPRAW for alternative stopping conditions of the restreaming process: no
refinement (stop restreaming when the imbalance tolerance has been reached), re-
finement 1.0 and refinement 0.95 (continue restreaming until the partitioning quality
is no longer improved). The refinement value determines the update of the temper-
ing parameter used once the imbalance tolerance is reached (1.0 results in the α
parameter not being updated, whereas 0.95 decreases the value of α, and hence the
importance of workload imbalance, instead of increasing it).

Figure 4.4 shows the partitioning history for 4 hypergraphs. The figure demon-
strates how partitioning communication cost decreases with more iterations; this is
the metric that is used to monitor and stop refinement and directly correlates with
the amount of communication modelled by the hypergraph. Comparatively, both
refinement strategies perform better than not refining at all. Using an update value
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Figure 4.4: Partition history of the HyperPRAW algorithm comparing different
refinement strategies: no refinement (black), refinement 1.0 (red dashed) and refine-
ment 0.95 (blue dotted). A: 2cubes sphere hypergraph. B: sat14 itox vc1130 dual
hypergraph. C: sparsine hypergraph. D: ABACUS shell hd hypergraph.

for the tempering parameter that decreases the importance of workload balance (by
a factor of 0.95 at each iteration) reaches the lowest levels of partitioning commu-
nication cost, therefore improving the restreaming quality. The initial worsening of
the outcome of the partition, indicated by a peak of the Partitioning communication
cost (PC) in the earlier iterations is due to the algorithm settling on partitions that
meet imbalance tolerance criteria, as often the α parameter starts low enough to
encourage solutions that place most vertices within the same partition —hence with
low PC.

4.7.2 Quality of partitioning

The quality of the partitioning of both versions of HyperPRAW and Zoltan is
shown in Figure 4.5. In terms of standard hyperedge cut, HyperPRAW shows results
that are below but comparable to Zoltan (from the 10 hypergraphs, the hyperedge
cut is worse in 4, better in 2 and about the same in the other 4). When measuring
the SOED, a metric that better models total volume of communication in parallel
applications, the results are slightly better for HyperPRAW (3 worse instances, 1
about the same and 6 where it is better).

Neither the SOED nor the hyperedge cut include the physical cost of communi-
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(a)

(b)

(c)

Figure 4.5: Quality metrics on 10 hypergraphs comparing the partitioning algo-
rithms: Zoltan (black), HyperPRAW-basic (orange vertical lines) and HyperPRAW-
aware (yellow horizontal lines). A: Hyperedge cut. B: Sum of External Degrees
(SOED) in logarithmic scale. C: PC in logarithmic scale.

cation. The PC metric considers it and it is where HyperPRAW obtains the best
results, with improvements over Zoltan on all hypergraphs and HyperPRAW-aware
outperforming the basic alternative. Note that HyperPRAW-aware is the only one
that uses the real cost of communication matrix during the partitioning. Both Zoltan
and HyperPRAW-basic assume uniform costs and only make use of the physical cost
of communication to calculate the final partitioning cost displayed in the figure.

4.7.3 Runtime performance on benchmark

Figure 4.6 shows the overall runtime for 10 hypergraphs on our synthetic bench-
mark. The results show that HyperPRAW-basic reduces the simulation runtime
with respect to Zoltan and HyperPRAW-aware further improves that significantly.
The speed up factors of HyperPRAW-aware over Zoltan range from 1.3x to 14x.
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Figure 4.6: Runtime performance (in logarithmic scale) on a synthetic bench-
mark for 10 hypergraphs comparing the partitioning algorithms: Zoltan (black),
HyperPRAW-basic (orange vertical lines) and HyperPRAW-aware (yellow horizon-
tal lines). The speedup factors of HyperPRAW-aware over Zoltan are annotated in
the figure.

4.8 Discussion

In other restreaming partitioning algorithms, the iterative streams are halted
when the workload imbalance tolerance is reached [21]. Nonetheless it is possible
that the partitioning quality could improve if streams are allowed to continue despite
being within acceptable imbalance. Figure 4.4 demonstrates the effectiveness of a
refinement phase, where the streams continue until a partitioning metric ceases
to be improved. Although the restreaming goes for longer (more iterations), this
results in a higher quality partition (as measured by the PC, a suitable metric for
hypergraphs that model parallel communication). The best alternative is found to
be when during the refinement phase, the workload imbalance weight parameter α is
reduced (refinement 0.95), instead of increased as it is done when outside of workload
imbalance tolerance (update value of 1.7). The value 0.95 was found experimentally,
since lower values may force the algorithm to fluctuate in and out of the acceptable
load balance range, degrading performance. Nonetheless, the intuition is that the
best partition is found when the balance constraints are relaxed (an extreme case
is when all workload is assigned to one partition; there is no cut or communication
in such an assignment, but we have maximum imbalance). Once the algorithm is
within the range of acceptable partitions (i.e., within the imbalance tolerance), we
can search for slightly more imbalanced solutions in an attempt to find an acceptable
solution that is maximally imbalanced.

Figure 4.4 also shows that the effectiveness of the refinement phase varies with
the hypergraph, indicating that some types of hypergraphs do benefit more from a
refinement than others. The refinement factor is therefore a candidate parameter to
tune empirically.

Figures 4.5A and 4.5B show the cut-based metrics. In hyperedge cut, Hyper-
PRAW underperforms Zoltan in 4 of the 10 hypergraphs, but in SOED the Zoltan
benchmark is outperformed in 6 hypergraphs, resulting in an overall comparable
performance. When the physical communication cost matrix is considered, as is the
case with PC (Figure 4.5C), the quality metric shows HyperPRAW being consis-
tently superior to Zoltan in all hypergraphs. This work attempts to improve the
performance of distributed applications, for which we model the application as a
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hypergraph that is partitioned using our proposed restreaming approach. The out-
put from the restreaming algorithm is a scheme that is used to distribute workload
in a heterogeneous environment and its quality is ultimately evaluated indirectly by
timing how long the application runs for under the new scheme. Therefore our fo-
cus is on end runtime performance improvement, and although we report traditional
partitioning quality metrics, this is done descriptively and not as a target metric.
This is the reason to report the partition quality with the PC, since it reflects more
accurately the needs of the target to optimise (peer to peer communication in a
heterogeneous environment). Therefore, the resulting quality of the restreaming
partitioning shown in Figure 4.5C indicates a net improvement over Zoltan.

The runtime performance on the synthetic benchmark in Figure 4.6 confirms the
results obtained in the PC metric. In 9 out of 10 hypergraphs, both versions of Hy-
perPRAW outperform Zoltan, showing the effectiveness of the proposed restreaming
approach. The results also show that the restreaming approach benefits from us-
ing the physical communication cost matrix, where in all cases HyperPRAW-aware
achieves faster simulation times than the basic counterpart and Zoltan. When com-
pared with Zoltan, HyperPRAW-aware reaches significant speedup factors ranging
from 1.3x to 14x (with 3 hypergraphs reaching speedups above 4x).

A paradigmatic case of the importance of the PC metric over the cut-based
ones is found on two hypergraphs: sat14 itox vc1130 dual and sat14 atco enc1
opt1. In both cases, the hyperedge cut and the SOED metrics are worse on the
restreaming approach than in Zoltan. However, the PC is better in HyperPRAW,
with an outstanding runtime speedup on the synthetic benchmark of 8.1x and 14x
respectively.

HyperPRAW relies on the information built through profiling to construct the
communication cost matrix. Using a simple MPI send-receive ring protocol is em-
pirically seen to be sufficient to successfully map the known hardware topology in
ARCHER. Figures 4.1A and 4.7A show the characteristic 24 process clusters of high
speed communication in ARCHER, which map to cores within a single computing
node. Within a 24 process cluster we also see two tiers, corresponding to the two
12 cores Intel Ivy Bridge processors.

Earlier we evidenced the issue of running parallel applications in heterogeneous
HPC systems by profiling the communication pattern of distributed application and
the peer to peer bandwidth of a group of computing units.. Figure 4.7A shows the
peer to peer bandwidth for a job allocation in ARCHER where we run the synthetic
benchmark. As expected from its architecture, the fastest communication links are
on neighbouring units (each group of 24 units belonging to the same computing
node), thus the pattern of high bandwidth in the central band. For an optimal
utilisation of the hardware architecture, the patterns of activity of the parallel ap-
plication should resemble that of the bandwidth profile. This is what we see when
showing the pattern of activity of our synthetic benchmark for sparsine hypergraph
partitioned with Zoltan (4.7B), HyperPRAW-basic (4.7C) and HyperPRAW-aware
(4.7D). For the first two, since they do not use the physical communication cost ma-
trix, the pattern of communication is uniformly random. However, for HyperPRAW-
aware, using the communication cost matrix makes the restreaming distribute the
communication pattern to closely resemble the peer to peer bandwidth. Therefore
our approach is able to better exploit fast interconnections between computing units.
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Figure 4.7: Architecture bandwidth compared to peer to peer communication pat-
tern on the synthetic benchmark. A: peer to peer bandwidth of a 576 computing
units job in ARCHER. The bottom part of the figure represents the peer to peer
communication pattern on the synthetic benchmark run of the sparsine hypergraph:
B: communication pattern after using Zoltan; C: Communication pattern using
HyperPRAW-basic; D: Communication pattern using HyperPRAW-aware.
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4.8.1 Design of the allocation cost function

In the proposed allocation cost function shown in equation 4.1, Ni(v) and Ti(v)
play complementary roles. Ni(v) measures the future external degree of the hyper-
edge, or in how many partitions the hyperedge has a presence (i.e. vertices in them).
Ni(v) is therefore designed to penalise allocations that spread hyperedges across
partitions, but would not mind assigning further vertices to a partition where the
hyperedge is already present. Ti(v) measures instead the weighted external degrees
using both the number of vertices present on each partition per hyperedge as well
as the communication cost between partitions. Ti(v) is designed to penalise adding
vertices to partitions with slow communication links between partitions where the
hyperedge is present, but often may result in adding a vertex in a partition where
the hyperedge is not present as long as the communication cost between existing
and new partition is fast enough. Combining both results in a good balance of both.

To make the algorithm architecture-aware, communication costs are estimated
indirectly via profiling. Profiling helps discover the bandwidth between computing
nodes (higher is better). First, the bandwidth value is normalised to remove the
influence of magnitude on the overall cost function; this helps the algorithm not
to overwhelm other parameters (such as workload imbalance). After normalisation,
bandwidth still needs to be converted to cost (lower is better), by performing linear
inversion (2 minus the normalised bandwidth). The rationale for choosing linear
inversion is to keep relative distances between bandwidths uniform independent
of the value of bandwidth (linear transformation). Alternative bandwidth to cost
conversions may include inverting the value (1 over the normalised bandwidth),
which would penalise more having lower bandwidth. A comparison of the impact of
bandwidth to cost conversion is identified and left as future work.

4.8.2 Related work

Previous work on architecture-aware graph partitioning can be divided accord-
ing to their partitioning strategy: local improvement or refinement with greedy
strategies considering communication costs ([234, 161, 154]); streaming greedy par-
titioning with communication cost as part of the allocation function ([225, 223]);
and synchronous partitioning of the machine graph and the application graph [48].
Although these approaches are indirectly applicable to hypergraphs by converting
the model to a graph version, it has been shown that doing so cannot be done
without trade offs, such as increase in graph size and edge explosion [117, 122].

Zoltan [62] offers a hierarchical approach for partitioning a hypergraph. The
focus is on being able to use high cost algorithms at levels where reducing communi-
cation is more important and low cost ones when the communication may not impact
as much. However, this approach only establishes qualitatively differences between
architecture levels and does not model well the cost of communication between com-
puting units belonging to different hierarchies. This approach is not easily applicable
in environments where the architecture is not know directly (in Cloud computing)
or it is known but unreliable due to contextual circumstances (e.g. shared network
resources).

An alternative to optimise network communication in parallel applications is
achieved via topology mapping —see section 2.3.3 for an overview. LibTopoMap
[112] maps MPI processes to arbitrary network topologies to direct high communi-
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cating processes to high bandwidth links. Note that this strategy does not redis-
tribute work to minimise communication but rather maps the existing application
parts (application processes or jobs) to a computing node network. Our approach
has a finer level of granularity, since it is able to create the application partitions to
minimise inter-partition communication, as well as mapping that communication to
faster network links.

4.9 Conclusion

This chapter demonstrates the importance of architecture-awareness for distribu-
tion of workload in HPC systems in parallel applications. We propose HyperPRAW,
an architecture-aware restreaming partitioning algorithm that optimises communi-
cation by understanding the underlying network bandwidth. The contributions of
this chapter are:

• Incorporating physical cost of network communication to streaming partition-
ing has been shown to significantly improve runtime simulation on a synthetic
benchmark, with up to 14x compared to architecture-agnostic strategies (con-
tribution C5).

• Experimental validation has shown that specifically architecture-awareness can
be attributed to most of the performance improvement (contribution C6).

• Propose a novel synthetic benchmark to aid distributed application runtime
communication and computation modelling using hypergraphs (contribution
C7).

• Using a novel global communication metric (PC) to guide the partitioning
refinement phase (restreaming) is shown to result in reduced communication
time in runtime benchmark (contribution C8).

4.10 Further work

This chapter has focused on the performance gains of parallel and distributed
applications that an architecture-aware partitioning approach provides. One limi-
tation of this work is that the restreaming partitioning is performed sequentially on
a single processor. This limits the applicability to larger scale problems (high num-
ber of partitions and larger hypergraphs), both in terms of speed of execution and
memory requirements —currently requiring the entire hypergraph to fit in memory.
This limitation could be mitigated if the restreaming algorithm is adapted to work
in parallel. Parallelisation of the streaming partitioning algorithm is explored in
chapter 6, as well as other performance aspects such as memory requirements (re-
moving the need to load the entire graph in memory) and working with partially
known hypergraphs (a far more realistic scenario in real-world hypergraphs such as
social networks, where it is not possible to know the state of the entire network at
any one given time).

This chapter has proven the applicability of the architecture-aware restreaming
approach on a synthetic runtime benchmark. Once the scaling limitations have been
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addressed, chapter 6 shows the suitability of HyperPRAW on real applications such
as SNN simulations in large distributed systems.

To evaluate HyperPRAW this chapter has used a selection of hypergraphs from a
known hypergraph dataset. Though these are sufficient to demonstrate the improve-
ment brought by architecture-aware partitioning, it limits the analysis that can be
made based on hypergraph parameters. Relevant parameters that may impact the
performance of partitioning algorithms are vertex and hyperedge cardinality, average
vertex and hyperedge degree distribution, number and size of hidden clusters and
the size of the hypergraph. A hypergraph generator that can produce hypergraphs
of specific profiles is therefore highly desirable. To date, there are no such paramet-
ric generators available. Chapter 5 proposes a simple and performant parametric
hypergraph generator.

For simplicity, HyperPRAW does not model dynamic communication patterns
or asymmetric communication patterns (where some hyperedges may communicate
more than others). Both could be tackled by weighing hyperedges and consider the
cost of partitioning accordingly, which is easily accommodated into HyperPRAW
by weighing the cost of communications in the vertex assignment objective function
with the hyperedge weight. This is an interesting area of future work that may
impact performance in highly dynamic asymmetric parallel applications.
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A novel parametric hypergraph
generator

5.1 Overview

In chapter 4 a collection of hypergraphs from hypergraph-related competitions
is used to demonstrate the positive impact of architecture-awareness in performance
of distributed applications that are modelled as hypergraphs. Although the results
show significant communication speedup, the improvement varied across hypergraph
models. In addition, the cardinality and vertex degree distribution of a hypergraph
can have an impact both in the communication requirements of the modelled appli-
cation and in the quality of partitioning of the graph. For instance, scale-free graphs
(that exhibit power-law degree distribution in their vertex degree) have been shown
to be better partitioned using hyperedge partitioning [189, 90] instead of vertex
partitioning.

To better understand the impact of the properties of a hypergraph in graph tasks
such as partitioning, it is important to sample the space of possible hypergraphs in
a way that different categories of hypergraphs are represented. To achieve such a
sampling, this chapter proposes a parametric hypergraph generator that can produce
graphs that exhibit certain desired properties such as degree distribution, hyperedge
cardinality and internal clustering. To the best of my knowledge there are no existing
parametric hypergraph generators which go beyond basic metrics such as number of
vertices and hyperedges and uniform degree distributions.

Thus, the contribution of this chapter (C9) is to propose and evaluate a para-
metric hypergraph generator that allows researchers to produce graphs
that exhibit custom complex properties, including parameters such as: hyper-
edge and vertex count, hyperedge cardinality distribution, vertex degree distribu-
tion, number of clusters, density of the clusters. The resulting hypergraphs can be
used in any benchmark application that uses hypergraphs as models, such as Boolean
Satisfiability, circuit design, and sparse matrix algebra. Spiking Neural Networks, as
other biologically-plausible networks, have been shown to display internal clustering
[39, 170] and very high connectivity (102 to 104 synapses per neuron). A hypergraph
generator that produces SNN-like graphs can be used to evaluate downstream tasks
such as workload allocation and communication optimisation.
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5.2 Justification

When developing algorithms to optimise hypergraph processing and partition-
ing it is important to evaluate them with hypergraphs that exhibit a wide range of
internal features to analyse limitations and strengths and estimate how they fare
when facing real world hypergraphs. In the case of hypergraphs used to model dis-
tributed applications (such as the ones presented in chapters 3, and 4) the nature
of the graphs will vary depending on the nature of the application and its patterns
of communication. Different types of hypergraphs categorised by different features
are needed to simulate the range of applications they model and to understand the
effectiveness of the partitioning approach. For instance, take the average cardinal-
ity, or number of vertices included on a hyperedge; hypergraphs with high average
cardinality may represent applications with highly connected clusters of elements in
which a message needs to be shared amongst a group of elements. Thus, research on
partitioning hypergraphs for workload allocation requires considering graphs with
different cluster density. Therefore, a procedural approach to generate such different
graphs would be beneficial for researchers.

There are a number of parametric hyperedge generators in the literature, but
they are limited in the features they can produce: [190, 220] cannot produce power
law distribution of cardinality or vertex degree and unable to generate internal
clusters; SageMath1 has limited scalability and it is applicable only to small graphs.
All reviewed generators are limited to only a few key parameters such as number of
vertices and hyperedges.

Many real-world graphs, including biologically plausible networks, exhibit power-
law distributions [142, 70, 39], hence it is important to generate hypergraphs that
exhibit this. Power-law graphs are important as they are prominent in nature [170]
and can be relevant to the way applications communicate (with hubs) that are hard
to replicate with uniform graphs.

5.3 Approach

From the narrow case of graph generation (a specific hypergraph case where the
hyperedge cardinality is equal to 2, i.e. the number of vertices joint by an edge is 2),
there are two generators that inspired the proposed approach: [54] where graphs are
defined by number of vertices and hyperedges, inter-cluster and intra-cluster edge
probabilities; and [53], which allows the sampling of vertex degrees (number of edges
per vertex) from a power-law distribution.

The proposed approach is a generative hypergraph process [190] in which hy-
peredges are created and added to the hypergraph one at a time, sampling vertices
from a collection. The collection of vertices is sampled from a population based on
the hidden partition model used in FENNEL [212] (but now expanded to accom-
modate for hyperedges), where vertices are defined by number of inter-cluster and
intra-cluster connectivity probabilities.

We allow the size of the next hyperedge to be sampled from a power-law dis-
tribution. The vertices to generate each hyperedge are sampled from a separate

1http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/hypergraph_

generators.html
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power-law distribution. This sampling distribution results in scale-free or power-
law graphs. If a uniform distribution is preferred, a uniform sampling can be chosen
instead.

The main parameters input for the generator, for a hypergraph G = (V,E) where
V is the set of vertices and E is the set of hyperedges are:

• Total number of vertices (|V |)

• Total set of hyperedges (|E|)

• Number of internal (hidden) clusters (k). A cluster is a subpopulation of
vertices that exhibits higher intraconnectivity amongst member vertices.

• Cluster density: probability of a vertex to belong to a particular hidden cluster.
D = d1, d2, ..., dk where

∑k
n=1 dn = 1

• Probability of intra cluster connectivity (p): for a vertex belonging to a cluster,
its probability to connect to a vertex belonging to a different cluster.

• Distribution of hyperedge cardinality dh(x) = c × x−γh , where x is the size
of the hyperedge, c is a normalisation constant and dh(x) is the power-law
distribution, i.e. the probability function for each value of x. The distrubution
is controlled by a γh parameter, which determines the skeweness of the power-
law distribution to choose hyperedge sizes for any hyperedge. With γh = 0 the
distribution is uniform. High values of γh result in highly skewed power-law
distributions.

• Minimum (cmin) and maximum (cmax) hyperedge cardinality, or number of
vertices per hyperedge.

• Distribution of vertex sampling dv(x) = c × x−γv where x is the vertex index
to be selected when building the hyperedge, c is a normalisation constant and
dv(x) is the power-law distribution, i.e. the probability function for each value
of x. Like dh, the distribution is controlled by γv.

The code for the current algorithm can be found at https://github.com/

cfmusoles/hypergraph_generator.
Algorithm 2 lists the complete hypergraph generation procedure. First, a collec-

tion of vertices is created and assigned to one or more hidden clusters, following the
defined cluster density. Then, hyperedges are created sequentially until the total
number of hyperedges is reached. For each hyperedge, the algorithm decides how
many vertex slots it will contain (sampled from the hyperedge cardinality distribu-
tion) and which cluster or population to target (random uniform). For each slot,
it assigns either a local vertex (vertex from the target cluster) or a remote vertex
(from any other cluster) with a probability set by the probablility of intra cluster
connectivity. Irrespective of the origin of the vertex, the vertex is drawn from its
population with a random distribution defined by the vertex sampling distribution
(either uniform random or power-law).

Once the required hyperedges have been created, if required, the generator cre-
ates hyperedges (with size capped to maximum hyperedge cardinality) with any
remaining vertices that have not been yet assigned to any hyperedge. This can be
used to ensure that all vertices are at least present once in the graph.
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Algorithm 2: Hypergraph generation algorithm

Input : |V | number of vertices; |E| number of hyperedges; k number of
clusters; D cluster density; p intra cluster probability; dh and dv
distributions; cmin and cmax cardinality range.

Output : Hypergraph G = (V,E)
Initialise V : Random generation of |V | vertices and assign to Ck cluster set
with k drawn from D distribution.

for i = 1 to |E| do
Create hi empty hyperedge
Size of hyperedge sizee sampled from de(x)
Local cluster c sampled from 1 to k
for j = 1 to sizee do

prob sampled from 0 to 1
if prob < p then

Vertex v ← Cc drawn using distribution dv
Add v to hi

else
cluster sampled from 1 to k, where cluster! = c
Vertex v ← Ccluster drawn using distribution dv
Add v to hi

Add v to W visited vertices
Add hi to G

if |W | > 0 then
for i = 1 to |W | do

Create h empty hyperedge
for i = 1 to min(cmax, |W |) do

Add w[i] to h
Remove w[i] from W

Add h to G
return G
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5.4 Evaluation

To demonstrate the correctness of the hypergraph generator, a series of hyper-
graphs are generated using the procedure described in algorithm 2. Once generated,
the hypergraphs are analysed to prove that they show the expected properties as
defined by the input parameters. The influence of each input parameter is demon-
strated:

• Number of clusters (k) in section 5.4.1

• Cluster density (D = d1, d2, ..., dk) in section 5.4.2

• Cluster recoverability in section 5.4.3 to evidence that the vertices are being
drawn from the hidden cluster populations under different values of intracon-
nectivity p.

• Hyperedge cardinality (cmin and cmax) in section 5.4.5

• Cardinality distribution (dh(x)) in section 5.4.4

• Vertex sampling distribution (dv(x)) in section 5.4.4

All properties in the generated hypergraphs are kept equal, unless otherwise
stated for each evaluation:

• 100000 Vertices.

• 100000 Hyperedges.

• Uniform cluster density.

• Cluster intraconnectivity p = 1.0 (i.e. 0 inter connectivity).

• Hyperedge cardinality range 10, 100.

• Uniform vertex sampling distribution (γv = 0.0).

• Powerlaw hyperedge cardinality distribution (γh = 1.8).

5.4.1 Number of clusters

The number and density of clusters in a hypergraph have a strong influence in
the success of partitioning algorithms; due to the high interconnectivity of vertices
within a cluster, dividing a cluster into two partitions would incur in higher hyper-
edge cut (a common hypergraph partitioning quality metric) than splitting partitions
at cluster boundaries. Therefore, when evaluating partitioning algorithms it is im-
portant to include hypergraphs with different hidden cluster properties such as the
number of clusters and their density.

To demonstrate the proposed algorithm can generate a specific number of clus-
ters, hypergraphs generated with various number of clusters are fed to a state-of-the-
art hypergraph partitioner (Zoltan [31]). Uniform density (same number of vertices
per cluster) and no inter-cluster connectivity is assumed for this evaluation. If the
hypergraph contains the same number of clusters as partitions requested from the
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Table 5.1: Cluster size results that show how the hypergraph generator does form
the specified number of clusters. AR and AMI are only applicable when the number
of populations match between compared clusters.

Original clusters Partitions Hyperedge cut AR AMI
cluster 5 5 5 0.0 1.0 1.0
cluster 5 5 12 0.972 N/A N/A
cluster 12 12 5 0.107 N/A N/A
cluster 12 12 12 0.0 1.0 1.0

partitioner, the number of hyperedges cut must be zero —the partitioner will divide
vertices at the cluster boundaries, since no inter-cluster connectivity exists. If the
values are not equal, the hyperedges cut must be higher than zero —the partitioner
will divide at least one cluster into two different partitions. Table 5.1 shows the
results obtained for two generated hypergraphs with 5 and 12 clusters. The parti-
tioner is asked to partition each graph to 5 and 12 partitions. As expected, when
the partitioner partitions the hypergraph with the same number of clusters as parts,
the resulting hyperedge cut is 0.

In addition to hyperedge cut, two standard cluster similarity metrics are used
to compare the original clustering output by the hypergraph generator and the
partitioning results from the partitioner: Adjusted Mutual Information (AMI) and
Adjusted Random (AR) scores 2. Both metrics have a range score between 0 (no
similarity) and 1 (identical), by comparing the vertices that are assigned to the two
sets of clusters. Table 5.1 shows that quality of partition is higher when the number
of clusters match the number of partitions (1 AR and AMI). When the two values do
not match, the hyperedge cut is non zero. This demonstrates that the hypergraph
generator has produced graphs from the desired hidden cluster properties.

5.4.2 Cluster density

Cluster density (i.e. relative proportion of vertices in each cluster) is rarely
uniform in real world hypergraphs. Thus it is important that a hypergraph generator
is able to produce custom cluster densities. To demonstrate that the proposed
algorithm can generate custom cluster densities, the expected density ratio input to
the generator (ratios for each cluster, where all ratios added up to 1) is compared to
the actual vertex proportion (percentage of vertex in a cluster over the total). Since
the generator knows what vertices belong to which clusters, this can be done with
a simple look-up.

Figure 5.1 shows the vertex ratio and cluster density for two generated hyper-
graphs, for all clusters. On the left, with uniform cluster density (same expected
density for all partitions); on the right, with custom cluster density (different ex-
pected densities). The results show that both vertex ratio and cluster density match,
demonstrating that the generator algorithm can produce custom cluster density.

2The scikit-learn implementation of both algorithms is used in this work: https://

scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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Figure 5.1: Cluster density measured in the ratio of vertices belonging to each cluster
(orange) vs expected cluster density (blue) input to the generator algorithm. A:
hypergraph with uniform cluster probabilities. B: hypergraph with custom cluster
density ([0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.1, 0.05, 0.20, 0.25, 0.05, 0.05]).

5.4.3 Cluster recoverability based on intraconnectivity

In section 5.4.1 the generator used cluster intraconnectivity p = 1, which results
in independent, non overlapping clusters. In real world hypergraphs this is highly
unlikely and therefore a desired generator should be able to produce clusters with
some degree of inter-connectivity.

More inter-connected clusters (i.e. lower values of p) would result in harder to
partition hypergraphs. A hypergraph that has intraconnectivity of 0.5 results in
partitions that are dissimilar to the original clusters featured in the hypergraph,
since the probability of a vertex to connect with a neighbour belonging to the same
cluster is equal to the probability of connecting to an external cluster —this makes
it hard for the partitioner to group vertices and effectively splits them randomly. To
help measure this, a new metric is proposed: Cluster Recoverability (CR) factor per
partition. The CR on a resulting partition is measured as the highest ratio of vertices
belonging to the same original cluster. For example, if a partition contains 75% of
vertices belonging to cluster A and the rest belonging to clusters B (10%) and C
(15%), then the CR for that partition is 0.75. On a randomly connected hypergraph,
the expected CR for each partition is 1

P
, where P is the number of partitions. The

expected average CR increases with the probability of intraconnectivity p.
Figure 5.2 shows the CR for hypergraphs after being partitioned. As expected,

when the vertices are randomly connected (p = 0.5), the CR is low (approximately
equal to 1

12
). As the probability of intraconnectivity increases, the CR is higher. For

hypergraphs with p = 1 (total intraconnectivity), the CR is 1.0, indicating that the
partitions and clusters are identical.

To complement the results shown by CR, table 5.2 shows quality partitioning
metrics (hyperedge cut) and cluster similarity metrics (AMI and AR) for the same
hypergraphs. The hypergraph with p = 0.5, or random connectivity, shows poor
partitioning quality (all hyperedges are cut) and similarity (near 0 AR and AMI).
Greater values of intraconnectivity show, as expected, better quality and similarity
scores. Note that even though the hyperedge cut may be high (as is the case with
graph p conn 0 85 ), as long as intraconnectivity is high enough, clusters can be
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Figure 5.2: Cluster Recoverability (CR) for each partition on hypergraphs featuring
different levels of intraconnectivity. A: intraconnectivity 0.5, B: intraconnectivity
0.85, C: intraconnectivity 1.0.
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Table 5.2: Probability of intraconnectivity determines partitionability of graphs

p conn Hyperedge cut AR AMI
p conn 0 5 0.5 1.0 0.001 0.001
p conn 0 85 0.85 0.848 0.931 0.915
p conn 1 0 1.0 0.0 0.997 0.996

recovered efficiently (5.2B).

5.4.4 Cardinality and vertex degree distribution

Many real world graphs and hypergraphs exhibit power-law distributions [142,
70, 39], both in the distribution of hyperedge cardinality (size of hyperedges) and
vertex degree (number of hyperedges a vertex belongs to). This is an important
feature of graphs that make few vertices highly inter-connected, and it has been
shown to impact the type of partitioning techniques that are suitable [189, 90].
Therefore it is important to include it in a hypergraph generator.

To demonstrate the degree of distribution of hypergraphs generated with and
without power-law distributions, hyperedge cardinality histograms are shown. Fig-
ure 5.3 depicts the distribution of hyperedge cardinalities as the number of hyper-
edges with each possible cardinality value. Three hypergraphs are shown, where
the cardinality was ranged but followed different dh() distributions: uniform (figure
5.3A), power-law with γh = 1.0 (figure 5.3B) and power-law with γh = 2.0 (fig-
ure 5.3C). As expected, the higher the γh value, the more skewed the cardinality
distribution appears.

Similarly, vertex sampling histograms are used to show the impact of using
power-law distributions to sample vertex from a population. For this, the following
properties were used to generate hypergraps: 10,000 vertices, 10,000 hyperedges, 1
cluster, with a variable γv to evaluate the effect of the vertex sampling distribu-
tion. Figure 5.4 shows the distribution of vertex across the hyperedge, counting the
number of occurrences of each vertex id. For simplicity, the underlying generator
samples vertices from a single population (cluster) using either a uniform (figure
5.6A) or a powerlaw sampling distribution (figures 5.6B and 5.6C). The vertex sam-
pling distribution matches the expected count of vertices (in red). For the uniform
distribution, this is an average number of hyperedges containing each vertex. In
the case of powerlaw distribution, the expected number of hyperedges containing a
particular vertex (its vertex degree) is determined by a compound probability based
on the powerlaw distribution. Each time a hyperedge draws a vertex from the pop-
ulation it uses the vertex sampling distribution (powerlaw), doing so as many times
as the cardinality of the hyperedge. The figure shows that higher γv results in more
skewed vertex sampling distributions as expected.

Figure 5.5 demonstrates the effect that hyperedge cardinality has over the ver-
tex distribution. As more vertex are sampled to construct the hyperedge (higher
cardinality), the probability of any vertex being present is a compound probability
(multiple samples) in which each sample i governed by the powerlaw distribution se-
lected. This results in higher probability verties being selected more often, the higher
the cardinality. Figure 5.5A shows the vertex degree histogram for hyperedge car-
dinality equals 2, which closely resembles the corresponding powerlaw distribution

93



Chapter 5. 5.4. EVALUATION

(a)

20 40 60 80 100
Size of hyperedge

0

200

400

600

800

1000

1200

Co
un

t

Hyperedges sizes

(b)

20 40 60 80 100
Size of hyperedge

0

2000

4000

6000

8000

10000

Co
un

t

Hyperedges sizes

(c)

20 40 60 80 100
Size of hyperedge

0

2500

5000

7500

10000

12500

15000

17500

20000

Co
un

t

Hyperedges sizes

Figure 5.3: Hyperedge cardinality power-law distribution demonstrated by counting
the size of hyperedges in hypergraphs generated under different values of γh of a
power-law distribution. A: γh = 0 (equivalent to uniform distribution); B: γh = 1.
C: γh = 2. Red line represents the expected distribution for the given γh.
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Figure 5.4: Vertex sampling power-law distribution demonstrated by counting the
vertex degree in a population generated under different values of γv of a power-
law distribution. A: γv = 0 (equivalent to uniform distribution); B: γv = 0.2. C:
γv = 1.5.
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for γv = 0.5 —since for each hyperedge, only two samples occur. In figure 5.5B, the
hyperedge cardinality is 20, resulting in a much more skewed distribution. In both
cases, the results matched the expected compound probability.

It is worth noting that when sampling multiple times, particularly in powerlaw
distributions, the likelyhood of drawing the same vertex twice within the same hy-
peredge increases. In real life graphs, it is meaningless to have the same vertex
twice; hence, the generator avoids adding a vertex when it is already present. The
generative algorithm can choose what to do if a vertex is duplicated: skip it and
move on to the next slot reducing the cardinality of the hyperedge (figures 5.5A and
5.5B) or resample from the population. Resampling is a sensible strategy to keep
the hyperedge cardinality, but it affects the vertex degree distribution. Figure 5.5C
shows how resampling increases the expected presence of vertices in the hypergraph
due to resampling. Users must choose between accurate vertex sampling or ensuring
hyperedge cardinality, which is a limitation of a generative approach.

Figure 5.5 demonstrates that our generative algorithm can sample vertices from
uniform and powerlaw distributions. However this does not exactly result in vertex
degree distribution that matches the sampling distribution. This is shown in figure
5.6, where a histogram of the frequency of vertex degrees across the hypergraph has a
normal distribution. Although this is expected (due to the Central Limit Theorem in
statistics), it may not be what the user has in mind when generating a hypergraph.
If a vertex degree distribution needs to be exactly defined, the algorithm can be
reinterpreted as a vertex generation process instead of a hyperedge one without
further changes, by swapping vertex ids for hyperedge ids. The graph produced
can be interpreted as folows: each element produced, instead of a hyperedge, is
a vertex; and each id (or pin) within that element is a hyperedge id where the
vertex is present. In this case, the user can accurately define the vertex degree
distribution function and the hyperedge sampling distribution, but only approximate
the hyperedge cardinality distribution. This is a limitation of a generative approach.

5.4.5 Size boundaries for hyperedge cardinality

The last parameter to evaluate is the hyperedge cardinality range, i.e. the max-
imum and minimum permissible hyperedge size. Figure 5.7 shows two hypergraphs
generated with two sets of hyperedge cardinality ranges. Figure 5.7A presents the
distribution of cardinality for the input range [2, 10], whereas figure 5.7B shows the
distribution for range [50, 200], matching the input parameters passed to the gen-
erator. The plots demonstrate that the hypergraph generator can produce ranged
hypergraph cardinality, and that it can maintain the appropriate power-law cardi-
nality distribution that is within the input range as expected.

5.5 Conclusion

Tasks that use hypergraphs as models (boolean satisfiability, circuit design,
sparse matrix multiplication, partitioning, communication in distributed applica-
tions) require a wide range of hypergraphs to evaluate and analyse their effective-
ness. Up to now, algorithms have been tested with limited collection of handcrafted
or handpicked hypergraphs. This makes it difficult to study algorithms against cor-
related features, and in that case it is difficult to find a hypergraph that matches
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Figure 5.5: Effect that hyperedge cardinality (number of vertices) has over the
vertex sampling distribution. All graphs are generated using γv = 0.5. Different
hyperedge cardinalities used in A (5) and B (20), showing how sampling more often
within the same hyperedge skews the powerlaw distribution. C shows the effect of
resampling when the same vertex is drawn twice: when reselecting, more vertices
are used (avoiding duplicates) which results in increased vertex degree (higher than
the expected value).
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Figure 5.6: Vertex degree power-law distribution, counting the vertex degree in
hypergraphs generated with a uniform random vertex sampling distribution. In red,
expected values for a uniform random vertex degree distribution, which highlights
the difference between vertex sampling and vertex degree distributions.
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Figure 5.7: Hyperedge cardinality boundaries. A: [2, 10]; B: [50, 200]. Both
hypergraphs are generated using a power-law distribution for hyperedge cardinality.
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those.
This chapter has demonstrated an effective parametric algorithm to gen-

erate custom hypergraphs that exhibit desired properties, listed below:

• Total number of vertices.

• Total set of hyperedges.

• Number of internal (hidden) clusters.

• Cluster density.

• Probability of intra cluster connectivity.

• Distribution of hyperedge cardinality.

• Minimum and maximum hyperedge cardinality.

• Distribution of vertex sampling.

In the context of SNN simulation, the hypergraph generator presented in this
chapter produces SNN-like graphs that can be used to evaluate downstream tasks
such as workload allocation and communication optimisation.

The proposed hypergraph generator can aid research in the wider partitioning
and processing algorithms that use hypergraphs as models. In chapter 6, the hyper-
graph generator proposed here is used to help characterise a novel parallel streaming
hypergraph partitioning algorithm to aid workload allocation in distributed appli-
cations.

5.5.1 Limitations

As discussed in the chapter, due to the generative nature of our approach (grow-
ing the hypergraph one hyperedge or vertex at a time), there are currently some
limitations to what the user can control:

• Vertex sampling distribution versus hyperedge cardinality guarantee: since
vertices are sampled one by one to generate the hyperedge, the algorithm must
choose what to do when the same vertex is drawn more than once; resampling
results in a deviation from the expected vertex sampling distribution, whereas
skipping the vertex reduces the expected hyperedge cardinality. One must
choose between the two based on user needs.

• Some vertices may not be selected with a vertex sampling distribution, which
may result in smaller graphs than expected. This can be corrected with adding
new hyperedges that contained missing vertices, but this would skew both the
hyperedge cardinality and the vertex distribution.

• The algorithm can describe precisely hyperedge size distribution or vertex
degree distribution by reinterpreting the output graph (each element as a hy-
peredge or vertex), but not both.
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Chapter 6

HyperPRAW: Architecture-Aware
Parallel streaming hypergraph
partitioning to model large scale
distributed applications

6.1 Overview

Chapter 3 and chapter 4 show that SNN simulations can be further parallelised
(strong scaling, using more computing nodes) with the use of architecture-aware
hypergraph partitioning. To achieve the field’s ambition of brain-scale simulations
[150], (weak) scaling to large graphs is required. Whilst challenging, whole brain
simulations are not alone in the requirement for data processing of large scale graphs
and hypergraps. In the era of social media, such large graphs and hypergraphs are
increasingly relevant in many scientific applications [122] and analytics. Similarly
to neural networks, these vast graphs are too big for a single machine to process,
both in terms of performance and memory requirements. State-of-the-art graph
partitioning uses multilevel partitioning algorithms (based on [103]). The literature
review in Chapter 2 concluded that these approaches have been shown to struggle
to scale [49, 125] with large graphs on distributed memory. Streaming partitioning,
in which elements (vertices or edges) are presented one at a time, is an optimised
performance alternative to multilevel partitioning [46, 47, 212, 153].

The earlier work in chapter 4 showed that partitioning the hypergraph that mod-
els a distributed application communication patterns employing network bandwidth
data leads to significant runtime speedup (up to 14x) compared to architecture-
agnostic partitioner. However, as a sequential, restreaming algorithm, it operates
under strong performance constraints, which result in long partitioning times (hours
for large hypergraphs). This is worsen by the need to do several passes to refine the
partitioning quality. The performance limitations of a sequential implementation
reduce its applicability and appeal on large scale hypergraps.

This chapter explores ways of mitigating the above limitations and proposes a
parallel streaming implementation for architecture-aware hypergraph partitioning
(HyperPRAW). The research question is formulated as: can an architecture-
aware streaming hypergraph partitioning retain performance whilst op-
erating under scalable memory and processing time requirements?
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The process of parallelising a streaming partitioning approach requires some de-
centralisation of the data leading to distributed processing with an imperfect view
of the entire graph. This inevitably makes parallel partitioning worse (in terms of
partitioning performance) than an un-scalable approach with overvoew of the entire
graph. Therefore, a key factor is to balance loss of partitioning quality (e.g. each
stream operates with local information only) and performance boost (e.g. faster
partitioning time and reduced memory requirements). The results show that Hy-
perPRAW continues to improve synthetic simulation runtime (up to 5.2x speedup
over sequential hypergraph partitioner and up to 4.3x speedup over global parti-
tioner), whilst keeping a good, scalable partitioning performance (with comparable
partitioning times to a global partitioner, and significantly less memory require-
ments). Importantly, HyperPRAW partitioning performance allows it to scale to
larger, partially unknown hypergraphs that global partitioners cannot.

This work is relevant for large scale distributed applications in which the com-
munication between computing nodes may be limiting performance and scalability.
It can help SNN simulations to scale to meet the computational demands of brain-
size simulations [73], an ambition of the field. Examples of other domains in which
this work is applicable are: general irregular distributed applications [197] such as
distributed n-body problem [2] and scientific simulations ([215, 214, 231]; iterative
solvers for non symmetric linear systems [213] and sparse matrix multiplication
[44, 18, 19, 5].

6.2 Contributions

The chapter contributions to the overall thesis are:

• C10: Describe a novel architecture-aware streaming hypergraph partitioning
algorithm that can run in distributed streams efficiently without significant
loss in quality.

• C11: Demonstrate the impact of workload balance, architecture-awareness
and staggered streaming has on the quality and performance of the parallel
streaming partitioning.

• C12: Faster runtime on modelled synthetic distributed applications using par-
allel streaming hypergraph partitioning by up to 5.2x over sequential streaming
partitioners and up to 4.3x over state-of-the-art global partitioners.

• C13: Demonstrate scalable parallel streaming partitioning with reduced mem-
ory footprint compared to a global state-of-the-art partitioning algorithm that
allows it to tackle larger hypergraphs.

The remainder of the chapter is organised as follows: section 6.3 discusses how
to parallelise a streaming hypergraph partitioning algorithm and identifies workload
balance and staggered streaming as key performance factors. This defines the base
approach that is further improved in subsequent sections. Section 6.4 proposes a
way to incorporate architecture awareness (network bandwidth) into the algorithm
and compares the runtime on a synthetic simulation benchmark to that of a global
parallel partitioner —Zoltan [62]. Finally, section 6.5 highlights the reduced memory
requirements of the parallel streaming algorithm compared to a global partitioner.
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6.3 Parallel streams of elements

Sequential streaming partitioning is time consuming and as hypergraphs get
larger, time and memory requirements increase beyond the capabilities of a single
computing node. To speed up the process, and to help reduce the memory re-
quirements, the partitioning can be approached with parallel streams. For graph
partitioning, Battaglino et al. [21] demonstrate that parallel streaming with minimal
quality loss is possible by creating one stream per partition and periodically syn-
chronising workload and partition assignments. The loss of quality can be mitigated
by doing several passes (restreaming), until an adequate balance between workload
balance and partition quality is reached. This is the approach we took in chapter 4.

Restreaming partitioning assumes the graph is static and known ahead of time.
Those limitations are too restrictive for applications such as large social networks,
in which graphs change rapidly. This chapter proposes a single pass streaming par-
titioning algorithm that extends to hypergraphs that works in parallel via multiple
streams. This tackles the following limitations: reduced memory requirements by
working on independent parts of the hypergraph in parallel; can handle partially
unknown hypergraphs (single pass); and it is applicable to hypergraphs as well as
graphs.

Streaming partitioning allocates a single element of the graph at any given time,
taking only partial information —in contrast with complete information on global
approaches. For vertex-centric partitioning, each element is a vertex and all the
hyperedges in which it is present. Alternatively, in edge-centric partitioning, an
element is a hyperedge and all the vertices contained in it. As discussed in section
2.8.1, edge-centric partitioning has been shown to be superior to vertex partitioning
in power-law graphs [189, 90], graph processing [122] and distributed database entity
placement [125, 227].

This work uses the following terminology when referring to streaming partition-
ing: an element is the unit of allocation for the partitioner. Each stream receives an
element (either a vertex or a hyperedge) at a time, and makes a partitioning alloca-
tion based only on the information available at the time —i.e. previous allocations
and the element itself. Multiple streams work on non-overlapping subsets of the
hypergraph to divide the partitioning workload. The allocation decision consists of
assigning the current element to one of the available partitions. Elements contain a
list of pins (ids) —vertices contained in a given hyperedge, or a hyperedges a given
vertex belongs to.

The algorithm proposed in this chapter can be applied as both vertex- and edge-
centric by simply modifying the input stream of elements. If each element is a list
of hyperedges that a vertex belongs to, the algorithm behaves as a vertex-centric;
alternatively, if an element contains a list of vertices a hyperedge contains, it acts
as edge-centric. This dual nature provides flexibility as the hypergraph can be
partitioned based on the application domain that is going to use it.

6.3.1 Base approach: single pass multistreaming partition-
ing

In order to create a parallel implementation of an architecture-aware streaming
partitioner, each feature of the algorithm is evaluated individually to understand its
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impact to the overall result. The base approach consists of adding parallelism to an
architecture-agnostic streaming hypergraph partitioning.

The proposed base approach is a parallel extension of [6]. It is a greedy, single
pass approach in which elements are received one at a time and once allocated
they are not reconsidered. In the base approach, the allocation value function is
a pin overlap count. Informally, the more pins that are already present in a given
partition, the higher the score for that partition candidate. The element is assigned
to the partition with higher score. In case of equal score, the element is assigned to
the least full partition.

The algorithm is formally described in Algorithm 3, where the Overlapk(Ne)
function for partition k, Ne list of pins p belonging to element e is defined as:

Overlapk(Ne) =
∑
p∈Ne

{
1, if p ∈ Pk
0, otherwise

(6.1)

The function Overlapk only uses information that is available to streams, i.e.
past assignment information, stored as seenPinse,k for element e and partition k.
After each element allocation, streams share the element allocation and the list of
pins to update seenPinse,k. In the current implementation, this synchronisation is
done with all to all MPI communication after each element allocation.

Instead of having a single stream of elements, our approach allows for multiple
streams. The number of streams does not have to be the same as the number of
targeted partitions. Each substream performs the allocation value function inde-
pendently, which speeds up the allocation process.

The load imbalance of a partitioning allocation is measured as the largest par-
tition over the average partition size, where size is given by the element count. To
achieve non-trivial partitioning allocations 1, load imbalance must be kept under a
tolerance value. To maintain load balance, partitions that are full (element count
reaches max allowed) are not considered for future assignments. The parallel algo-
rithm is guaranteed to reach load imbalance tolerance if in the last round of streams
assigning elements to partitions, an allocation cannot be moved from a position of
acceptable imbalance to one outside the imbalance tolerance. The worst case sce-
nario is when all streams assign the last element to the same partition. To ensure
that this does not exit imbalance tolerance, the maximum cardinality of an element
(number of pins, or workload associated with it) times the number of streams must
be lower than the total workload times the imbalance tolerance:

W × i > W + Cmax × s (6.2)

where W is the expected workload for a stream (total workload over the number
of partitions or streams), i is the imbalance tolerance (1 being perfect balance) and
s is the number of streams. By definition, the total workload W is the total number
of elements times the average cardinality of elements: W = |E| × |pins|×Cavg

p
, where

p is the number of partitions. Substituting and solving for s, imbalance tolerance is
guaranteed provided the hypergraph satisfies:

1A trivial allocation with no edgecut is achieved by assigning all elements to the same partition.
Although this results in zero edgecut (perfect partitioning quality), it is of little value in the context
of workload distribution as the entire application works now sequentially.
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s <
|E| × Cavg × (i− 1)

Cmax × p
(6.3)

In practice, if a hard guarantee is not required, Cmax can be swapped for Cavg.
To simplify, if p = s, solving for the number of streams s gives the soft limit:

s <
√

(|E| × i− |E|)) (6.4)

Algorithm 3: Parallel HyperPRAW: implementation of streaming hypergraph
partitioning

Input : s number of parallel streams; p (number of partitions); ε
(maximum imbalance tolerance)

Output : Pk, for k = 1, ..., p, where Pk is the subset of E that is allocated to
partition k

Data : H = (V,E), where V is a set of vertices and E is a set of
hyperedges for hypergraph H.

Round robin population of streams Sx(E,N) for s streams of E elements, and
N pins; Ne denotes the pins belonging to element e.

Set W (k) = 0 for each partition k
Set seenPinsi = ∅ and Pi = ∅ for i = 1 to p
for s in S do

maxWorkload = |E|
|N | ∗ ε

for e = 1 to E do
candidateParts← select all k = 1, ..., p if W (k) < maxWorkload
j ← arg maxk∈candidateParts = Overlapk(Ne)
Synchronise all s: store* (Ne, j)
Add e to set Pj
Add pin to seenPinspin,j for all pin ∈ Ne

W (j)+ = 1

return P

6.3.2 Evaluation

To evaluate the impact of parallelising a streaming partitioner, scaling experi-
ments with increasing number of streams are performed. 1, 4, 16 and 64 streams
alternative are evaluated on a fixed task of partitioning the synthetic hypergraphs
in 96 parts. The aim is to show partitioning quality degradation and partitioning
speedup as a function of the number of streams. As a baseline, a sequential version
(single stream) is included. This baseline approach is a custom implementation of
the sequential streaming hypergraph vertex partitioner proposed by [6].

Using the parametric hypergraph generator proposed in chapter 5, a diverse
collection of synthetic hypergraphs is generated. These hypergraphs are used in the
scaling experiments to understand how the parallel streaming deals with different
types of hypergraphs. The hypergraph parameters are chosen to sample a wide
range of hypergraphs features in terms of hyperedge cardinality density, size of the
hypergraph, vertex degree distribution and number of internal clusters. Using a
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collection of synthetic graphs for the evaluation avoids potential biases that specific
SNN models may have. Here is a summary that describe each feature:

• Hypergraph sizes: Small ( 50k hyperedges), Large ( 500k hyperedges), Huge
(> 800k hyperedges).

• Hyperedge cardinality range: Dense (den, 50 to 200), Sparse (sp, 4 to 20).

• Vertex degree distribution: Uniform (uni, uniform distribution), Powerlaw
(pw, power-law distribution, with gamma = 1) —see section 5.4.4 for more
details.

• Number of internal populations: 96 vertex clusters / populations (c96). 48
clusters (c48). 192 clusters (c192); where a population is a region of the graph
with high intra-connectivity between vertices.

In all cases, other parameters are set equal (uniform cluster density, intra-
connectivity of 0.99, resulting in clustered populations of vertices with some inter-
cluster connectivity, which is representative of biologically plausible networks [170,
39]). For a detailed description of each hypergraph parameter, see chapter 5. Table
6.1 lists the most important characteristics of all synthetic hypergraphs. All hyper-
graphs are represented by very sparse matrices (where rows are vertices and columns
are hyperedges), with a Number of Non-Zero (NNZ) elements ratio between 3×10−5

and 3×10−4 (for example, a ratio of 0.01 would indicate that 1% of the elements on
the matrix are non-zero). This indicates very localised connectivity between vertices,
which makes them good candidates for partitioning, and a good model of real world
distributed applications that can benefit from partitioning —such as sparse matrix
multiplication [44, 18, 19, 5] and large scale scientific simulations ([73, 215, 214, 231].
The hypergraphs generated share properties with SNN models, such as highly sparse
connectivity and presence of internal populations or clusters.

6.3.3 Results of parallel streaming

Figure 6.1 demonstrates that multiple streams reduce partitioning time across
all tested hypergraphs. The speedup is linear with the number of streams, until the
total time approaches 0, where the speedup gains are balanced against the overheads
of running the algorithm. Even though more streams accelerate the processing time,
the speedup factor is less than the stream multiplier in certain graphs (power-law),
highlighting the synchronisation costs of running parallel streams.

Streams working in parallel have to make allocation decisions based on local in-
formation only (information available since the last synchronisation event). To un-
derstand how multiple streams impact the quality of partitioning, Figure 6.2 shows
the partitioning quality loss as streams are scaled up. Standard metrics of hyper-
edge cut (number of hyperedges that span across partitions) and Sum Of External
Degree (SOED, or the number of participating partitions in all cut hyperedges) are
used as a proxy for partitioning quality. For both quality metrics shown, SOED and
hyperedge cut, the quality starts to degrade from 16 streams.

Figure 6.1 and 6.2 show that partitioning with multiple streams achieves faster
processing time as expected, at the expense of quality degradation. However, it is
unclear what is behind the quality loss. Section 6.3.4 investigates this by character-
ising the quality degradation and proposes a mitigation strategy.
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Table 6.1: Synthetic hypergraphs generated for benchmarking

Name V H Avg. H
cardinal-
ity

V degree
distrib.

Clusters Total
NNZ
(ratio)

large pw
sp 96

200,000 500,344 6.24 power-
law

96 3,122,874
(3×10−5)

small pw
den 96

200,000 50,018 58.45 power-
law

96 2,923,497
(3×10−4)

large uni
sp 96

200,000 500,000 6.24 uniform 96 3,118,515
(3.1×
10−5)

small uni
den 96

200,000 50,000 58.51 uniform 96 2,925,264
(2.9×
10−4)

small uni
sp 96

200,000 52,121 6.78 uniform 96 353,129
(3.4×
10−5)

small uni
sp 48

200,000 52,106 6.79 uniform 48 353,639
(3×10−5)

small uni
den 192

200,000 50,000 58.37 uniform 192 2,918,637
(3×10−5)

huge uni
den 96

1,000,000 1,700,000 16.33 uniform 96 27,767,042
(3×10−5)

huge uni
pack 192

800,000 800,000 86.76 uniform 192 69,403,637
(3×10−5)

Figure 6.1: Partitioning time gains with increased parallelism (multiple streams)
on a fixed task of partitioning hypergraphs in 96 parts. 1, 4, 16 and 64 streams
are compared, showing reduction in partitioning time as the number of streams
increases.

106



Chapter 6. 6.3. PARALLEL STREAMS OF ELEMENTS

(a)

(b)

Figure 6.2: Partitioning quality loss with increased parallelism (multiple streams)
on a fixed task of partitioning hypergraphs in 96 parts. 1, 4, 16 and 64 streams are
compared. Top: Hyperedge cut ratio; bottom: Sum Of External Degrees (SOED).
The quality starts to degrade from 16 streams upwards across most hypergraphs.
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6.3.4 Staggered vs uniform streams

To demonstrate the cause of quality degradation as the number of streams in-
creases, Figure 6.3 shows the cluster recoverability (CR) plots for scaling hypergraph
partitions (only one hypergraph is shown here). Recall from section 5.4.3 that CR
on each part on a partition is measured as the highest ratio of vertices belonging
to the same original cluster (true cluster). A high average CR (highlighted in red)
indicates the partitioning algorithm is able to recover the original clustering (which
is known in these synthetic graphs). The top part of Figure 6.3 shows that CR is
poor at 16 and 64 parallel streams.

Recall that the allocation value function in Algorithm 3 evaluates candidate par-
titions sequentially and chooses the candidate with highest score. If two candidates
have the same score, the element is assigned to the partition with lower workload,
or the first one seen if all is equal. Since all parallel streams follow the same pro-
cedure, initial partition candidates (with lower ids) have a higher chance of being
used first. At large numbers of streams, this has a compound effect that does a poor
job at keeping connected elements together, since it attempts to fill initial partitions
first —overlap would be higher on those candidates, which encourages filling those
partitions. Top Figure 6.3 shows how initial partitions at high stream counts have
poor CR as a consequence.

To mitigate the compounding effect of loading initial partitions first, we propose
a staggered start for candidate evaluation, in which each stream starts evaluating
candidates on the n partition:

n = round(
streamID

s
× |P |) (6.5)

where streamID is the unique ID of the stream, s is the number of streams
and P is the set of partitions. Note that this does not affect the score for partition
candidates, it just avoids all streams compounding allocations on the same partition
candidate. Bottom Figure 6.3 shows the impact of staggered streaming, with no
noticeable CR degradation at any scale.

A second effect of staggered streaming is that it distributes workload more evenly.
This is because elements are assigned to initial partitions, henceforth making overlap
more likely to happen on those partitions, assigning more elements to them. Then
in the end, final processes are used —see 6.3C, where initial partitions tend to be
full, whereas final ones tend to be under capacity. We call this the tail-end effect.

The staggered start also has a mitigation effect on the overall quality metrics
degradation. Figure 6.4 show that a uniform start (non staggered) results in SOED
degradation at high stream counts (16 and above) in three sample hypergraphs.
However, a staggered start does not display degradation of SOED even at 64 streams.

6.3.5 Adding workload balance parameter

The streaming algorithm is guaranteed to keep a desired global workload balance
by pre-computing the maximum load allowed for a single partition (imbalance toler-
ance times the average expected workload) and not assigning further elements to full
partitions. However, this can still lead to large imbalances amongst individual par-
titions (tail-end effect). To avoid the effect, a workload parameter is incorporated
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Figure 6.3: Cluster recoverability (CR) on non staggered and staggered streaming
with increased parallelism. Top: non staggered streaming with 1 (A), 4 (B), 16
(C) and 64 (D) streams. Bottom: staggered streaming with 1 (E), 4 (F), 16
(G) and 64 (H) streams. Staggered approach maintains good CR at high streaming
counts, whereas non staggered streaming CR is significantly affected from 16 streams
upwards. Hypergraph used: small uniform dense 96.
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Figure 6.4: Comparing loss of partitioning quality in staggered (streams start
evaluating partition candidates at different points) and non staggered (same start)
streaming. Target partitioning: 96 parts. Hypergraphs: A small uniform dense
192, B small uniform dense 96, C large powerlaw sparse 96. Staggering the start of
candidate partition across streams mitigates the quality degradation.
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as part of the element allocation value function that encourages choosing candidate
partitions with less workload.

From Algorithm 3, the candidate partition evaluation is modified to incorporate
a parameter that is a function of the workload currently assigned to the partition,
as shown in equation 6.6. λ is an extra input parameter that modulates the weight
of workload imbalance differences in the total allocation value function.

j ← arg max
k∈candidateParts

= Overlapk(Ne)−W (k)λ (6.6)

λ is used as an exponent to produce a non-linear weighting of the workload
imbalance. Since λ is in the [0-1] range, differences in workload matters more for
relatively emptier partitions. This is advantageous to make the algorithm care less
about workload differences between partition candidates when both of them are
relatively full, paying more attention to the communication cost when partitions are
about to be closed.

Figure 6.5 shows the effects of choosing different values for λ (λ = 0 representing
no workload), with λ = 0.5 being the value that brings the best partitioning quality
results (lower SOED). A too high λ results in partitions that have low quality (low
SOED) as too much importance is given to workload, overpowering the overlap
parameter —λ = 1.

Global workload imbalance only indicates that there will not be a single partition
that has more than 1.2 times the expected average workload (if imbalance tolerance
is set to 20%). However, this does not guarantee that all partitions will have similar
workload, as many can be severely underutilised. Individual imbalance in parallel
computations can lead to an increase of idle time between processes that need to
synchronise information, as discussed in 3.4.10.3. Figure 6.6 shows the impact λ
has on workload balance and cluster recoverability. On top, partitioning without
workload balance parameter show great variances of individual process workload
(the height of the bars). At the bottom, the same partitioning but using workload
balance parameter; it is clear that more uniform individual workload balance is
achieved, with small differences between elements assigned to any process. In terms
of cluster recoverability, using a workload balance parameter has a small positive
impact, with 5-15% higher Adjusted Random (AR) score in all stream counts —a
common cluster comparison metric, discussed in 5.4.1.

6.4 Architecture aware parallel streaming

Chapter 4 demonstrated the impact of using information on network bandwidth
communication to improve runtime performance of distributed applications by incor-
porating computing node peer to peer communication cost in streaming hypergraph
partitioning. As a result, runtime simulation is sped up by mapping parallel com-
munication application patterns to the underlying hardware network bandwidth
patterns. This section explores modifications to the allocation value function in
parallel streaming to incorporate network bandwidth communication with the same
ambition of reducing simulation runtime on modelled distributed applications.
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Figure 6.5: Partition quality loss in parallel streaming using an additional workload
parameter in the element allocation value function. Target partitioning: 96 parts.
Four different λ values are tested: 0 (no workload, red), 0.25 (green), 0.5 (blue)
and 1 (orange). Hypergraphs used: A small uniform dense 192, B small uniform
dense 96, C large powerlaw sparse 96, D small uniform sparse 96, E small uniform
sparse 48, F small powerlaw dense 96, G large uniform sparse 96. λ = 0.5 results
in negligible quality degradation and better (lower SOED) partitioning quality.
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Figure 6.6: Impact of workload balancing parameter on cluster recoverability, Ad-
justed Random score and partition workload balance. Top: without workload bal-
ance parameter, increasing number of streams; 1 (A, 0.665 AR), 4 (B, 0.701 AR), 16
(C, 0.660 AR) and 64 (D, 0.667 AR). Bottom: with workload balance parameter,
λ = 0.5, increasing number of streams; 1 (E, 0.765 AR), 4 (F, 0.740 AR), 16 (G,
0.762 AR) and 64 (H, 0.745 AR). Hypergraph used: large uniform sparse 96.
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6.4.1 Incorporating communication cost

To incorporate communication cost in the allocation value function, first we
introduce the concept of pin replica. A pin replica is each partition in which the pin
appears, as a consequence of allocating elements in which the pin is contained to
different partitions. In the context of distributed application modelling, pin replicas
are a proxy for volume of communication; the intuition is that we want to weight pins
that are used by multiple elements so the algorithm is less inclined to create further
replicas for it –further replicas would result in communication during runtime, the
more communication the more elements that use that pin.

Thus, communication cost for each candidate partition k is calculated as follows:

CCostk(pins) =
∑

pin∈pins

p∑
j=0

Aj(pin)× C(k, j) (6.7)

where adjacency Aj(pin), or the number of times pin has been previously seen in
partition j, accounts for pin replicas. Communication cost matrix C(k, j) represents
cost of communication calculated via profiling2 between partitions k and j. Final
allocation value function incorporating communication cost, instead of just overlap:

j ← arg max
k∈candidateParts

= −CCostk(Ne)−W (k)λ (6.8)

6.4.2 Quality and simulation time for architecture-aware
streaming

To understand the impact of using network cost of communication on paral-
lel streaming, the new allocation value function (6.8) is compared to the previous
overlap-only approach, described and evaluated in section 6.3.1. Two variants of
architecture-aware streaming are used: uniform, that uses uniform costs of commu-
nication between all processes; and bandwidth communication, which uses profile-
discovered peer to peer cost of communication. Note that uniform cost is not the
same as overlap, since we are using now pin replica counts (0 or many), not just pin
overlap (0 or 1). Figure 6.7 shows partitioning quality for all candidates. Quality
metrics (hyperedge cut and SOED) provide mixed results, with no clear advantage
of one strategy over another.

In order to understand the impact of architecture-awareness it is important to
consider hypergraphs are models of parallel communication, hence the quality is not
the primary metric. The metric we are interested in is whether the new partitioning
yields better simulation times for our application —i.e. if the communication time
is reduced as a consequence of the new allocation. For this, the synthetic bench-
mark proposed in 4.3 is used, a null-compute simulation which communication is
proportional to the SOED of the hypergraph.

Figure 6.8 considers bandwidth communication costs on the same graphs as figure
6.7. Results shows that the bandwidth communication cost strategy is superior
across all hypergraphs tested, with significant simulation time reductions (up to
5.2x speedup). Using uniform communication costs yields worse results than overlap

2Using the same approach as in 4.5.2, calculated through P2P profiling prior to streaming.
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(a)

(b)

Figure 6.7: Partitioning quality (top: hyperedge cut, bottom: SOED) on a col-
lection of hypergraphs. Target partitioning: 96 parts. Three streaming approaches
that use different allocation value functions are compared: overlap only (black), uni-
form communication cost (red) and bandwidth communication cost (yellow). The
quality of partitioning is comparable across alternatives, with a general degradation
when using bandwidth compared to uniform communication costs. Partitioning is
done using a single stream.
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A

Figure 6.8: Simulation time measured on synthetic benchmark on a collection of
hypergraphs. Three streaming approaches that use different allocation value func-
tions are compared: overlap only (black), uniform communication cost (red) and
bandwidth communication cost (yellow). Using profiled bandwidth communication
costs significantly reduces the simulation time (speedup up to 5.2x). Uniform com-
munication costs yields worse results than overlap, which demonstrates that profile
bandwidth data is responsible for simulation time improvement. Partitioning is done
using a single stream.

alone, which demonstrates that using profile-based communication costs is good to
guide streaming partitioning algorithms in order to reduce communication cost.

To demonstrate the impact bandwidth communication cost has in allocation of
workload, Figure 6.9 shows actual network communication during simulation for
three selected hypergraph synthetic simulations. Total peer to peer communication
for overlap and bandwidth communication cost alternatives is shown. Using band-
width communication data results in allocations that display more communication
around the central band, which is between computing nodes with fast connectivity
(red band in Figure 6.9). As discussed in Figure 4.8, for an optimal utilisation of
the hardware architecture, the communication activity of the parallel application
should resemble the bandwidth profile. Figure 6.9 shows that this is the case for
parallel streaming using bandwidth communication cost, whereas using overlap ex-
hibits near random communication pattern. This is ultimately responsible for the
improved simulation performance exhibit in Figure 6.8.

6.5 HyperPRAW partitioner

The combination of staggered parallel multistreaming, use of workload balance
parameter and architecture-awareness from network communication cost forms the
proposed partitioner: HyperPRAW. This section benchmarks HyperPRAW to
state-of-the-art global hypergraph partitioning (Zoltan [62]) in the context of mod-
elling communication in distributed applications. We continue to use the proposed
synthetic simulation benchmark in section 4.3.

Figure 6.10 shows quality and simulation runtime results comparing Zoltan to
HyperPRAW on a benchmark of 8 graphs. Quality results of HyperPRAW are
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Figure 6.9: Network communication recorded during synthetic benchmark simu-
lation. A: measured architecture bandwidth profile where the simulations are run
(ARCHER supercomputer). Overlap streaming algorithm for graphs small uniform
dense 96 (B), small powerlaw dense 96 (C) and large powerlaw sparse 96 (D). The
same network activity is shown for streaming using bandwidth communication costs
for graphs small uniform dense 96 (E), small powerlaw dense 96 (F) and large pow-
erlaw sparse 96 (G). Using profiled bandwidth communication costs in partitioning
results in applications that exhibit communication clustered around faster comput-
ing node pairs.
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(a)

(b)

Figure 6.10: HyperPRAW vs Zoltan partitioning across benchmark hypergraphs.
A: partitioning quality (SOED). B: synthetic simulation time. Even though there is
significant quality loss in all partitions, HyperPRAW exhibits comparable or better
simulation times in 5 out of 8 graphs (up to 4.3x), and all the dense ones. Target
partitioning task size of 192 parts.

worse than Zoltan, consistent with results in the work on architecture-aware se-
quential streaming in chapter 4, and as demonstrated in Figure 6.7. In terms of
simulation runtime, results show that HyperPRAW algorithm performs strongly on
dense graphs, with speedup factors of up to 4.3x. Unsurprisingly, the streaming
approach performs worse on graphs with low average cardinality (sparse), since the
local information available to streams is limited and therefore it is harder to make
allocation decisions that minimise global communication.

Figure 6.9 and Figure 6.10 only look at a single partitioning task of 192 partitions.
To study the scalability of the approach, a series of scalability experiments are run to
compare Zoltan and HyperPRAW at different parallel stream counts. Characterising
scalability is important in two dimensions: strong scaling (how the algorithm reacts
to partitioning the same graph using increasing number of parallel streams) and
weak scaling (how the algorithm scales to bigger problems, i.e. larger partitioning
tasks). The scaling experiments are done for increasing partitioning sizes (96, 192,
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Figure 6.11: Scaling of HyperPRAW. Strong scaling is shown for each partitioning
size target (96, 192, 384, 768), where the same graph is partitioned at increasing
levels of parallelism (1, 12, 24, 48 ans 96 streams). Weak scaling is shown across
partitioning size targets, where the same graph and at the same level of parallelism
is partitioned into increasing partitioning sizes. A: SOED; B: simulation time.
HyperPRAW shows good strong scaling (similar quality and simulation times using
more streams). Compared to Zoltan, HyperPRAW results in significantly faster
simulation times across most experiments. Hypergraph: huge uni packed 192.

384 and 768) an an extra large hypergraph —to be able to partition a graph at large
part counts.

Figure 6.11 show the results of the scaling experiments. Good strong scaling for
HyperPRAW, showing almost no differences between 1 and 96 streams. Similar weak
scaling as Zoltan in terms of quality of partitioning (SOED). In terms of simulation
runtime, HyperPRAW provides significant speedup at all partitioning sizes, with
better results achieved with higher parallel stream counts.

6.5.1 Streaming memory requirements

Global partitioners such as Zoltan require the entire hypergraph to be loaded in
memory during partitioning, in addition to having the graph also live in persistent
storage as input. Pins associated with each vertex are expressed efficiently using
Compressed Sparse Row (CSR) format. Through profiling Zoltan, the following are
its memory requirements:

• Per process : number of local vertices (int), number of pins (int) and process
id (int); list of partition allocation for each vertex (list of double, the length
of the number of total vertices).

• Global : list of vertex ids (length of number of vertices, double), list of pin ids
(length of number of pins, double), list of vertex pointers (length of number
of vertices, int) and list of vertex weights (length of number of vertices, float).

Streaming partitioners do not require, in principle, full knowledge of the graph at
once, since they perform allocation decisions one element at a time. Therefore, the
graph does not need to reside in memory at once, nor is it needed in the harddrive
at the beginning of the partitioning process. For HyperPRAW, the following data
structures must be kept accessible to each stream:
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• list of element (number of elements, float) and pin weights (number of pins,
float)

• list of partition workload (number of partitions, double)

• list of partition allocation for each vertex (number of elements, double)

• data buffers for partition candidates (number of partitions, double; 3 times
number of streams, int)

• communication cost matrix (number of partitions times number of partitions,
float)

• seen pins (up to number of pins times number of partitions, int), dependent
on the average replication factor for each pin –see discussion in section 6.6.

In Figure 6.12 the following assumptions are taken to calculate memory require-
ments: int and float 4 bytes and double 8 bytes (common in many architectures
and programming languages). For HyperPRAW we present results using RDMA op-
timisation, showing only the best case implementation memory requirements where
streams have access to a single central data structure for synchronisation —see sec-
tion 6.6 for further discussion.

To understand the memory requirements of HyperPRAW as it scales in large
graphs in real-world SNN models, Figure 6.12 shows theoretical memory require-
ments to partition the MVC ([195] 4.13 million neurons, 24.2 billion synapses) and
the CM models ([177], 80000 neurons and 300 million synapses) with Zoltan (global
approach) vs hyperPRAW (parallel streaming). There are four candidates for hy-
perPRAW, depending on the average replication factor chosen (average number of
partitions that contain each hyperedge). The replication factor is dependent on the
quality of the partitioning and hence we are providing different values as this ulti-
mately depends on how partitionable graphs are. Values of 0.01, 0.05, 0.1 and 0.5
are chosen to be representative of reasonable partitioning results. Figure 6.12 shows
that the memory requirements of HyperPRAW are significantly less than those for
Zoltan, in both SNN models. The main memory contributor to HyperPRAW is
the centralised data structure that holds information about what pins have been
visited so far and where are they replicated. This grows as the number of streams
is increased and therefore the increase in memory footprint with large partitions.
Zoltan shares the entire graph amongst all processors, hence leaving most of the
memory requirements independent from the number of partitions. This compari-
son uses a highly optimised version of HyperPRAW in which central database and
data structures for partitioning are shared amongst streams —see section 6.6 for a
discussion.

One important difference with HyperPRAW with respect to Zoltan is that the
number of partitions (size of the partitioning task) and the number of parallel
streams used are independent. Because the memory footprint of HyperPRAW grows
primarily with the number of streams (not the size of the partitioning task), one can
always limit the number of streams used to fit the hardware available and still be
able to partition large graphs. This would not be possible with global partitioners
since the entire graph must reside in memory, independent of the level of parallelism.
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Figure 6.12: Memory requirements for Zoltan vs HyperPRAW when partitioning
the MVC model (A) and CM model (B). There are four candidates for hyperPRAW,
depending on the average replication factor chosen. For HyperPRAW, the number
of processes indicate the size of the problem (number of partitions) and the parallel
scale (number of streams). Due to the streaming nature of HyperPRAW, graphs do
not have to reside in memory and therefore memory requirements are significantly
lower than for Zoltan. The average pin replication is calculated as the chosen replica-
tion factor times the number of partitions. The value is then capped to a maximum
of the number of pins over number of elements (number of pin replicas cannot exceed
the average cardinality, or number of elements containing a pin), which explains the
plateau seen in HyperPRAW (0.5) in MVC.

6.5.2 Partitioning performance

HyperPRAW has been shown to be effective in modelling distributed applications
to reduce simulation time, and doing so with far less memory requirements than
global partitioners. Figure 6.13 shows scaling of partitioning time in hyperPRAW
with more number of streams vs Zoltan. HyperPRAW maximum parallelism shown
is up to 96 streams, whereas Zoltan runs in parallel across all computing nodes.
Therefore the only one that is an accurate comparison is when the partitioning
size is 96, in which the partitioning times are similar. In terms of weak scaling,
HyperPRAW scales well as the partitioning problem increases (higher number of
partitions). Partitioning with more streams (strong scaling) does not seem to have
an impact on the time it takes to partition the hypergraph. This is likely due to the
increased communication demands for synchronising parallel streams. See discussion
in section 6.6 on the possibility of using a centralised data structure, instead of a
synchronisation-based parallelisation.

6.6 Discussion

Global hypergraph partitioners require the hypergraph to be fully loaded in
memory. State of the art multilevel partitioners struggle to scale to large graphs,
with the coarsening and refinement phases acting as a bottleneck [49, 125]. There-
fore, streaming algorithms are an alternative to tackle those limitations as they only
required local, streamed (one element at a time) information.
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(a) (b)

Figure 6.13: Partitioning time for HyperPRAW vs Zoltan synthetic hypergraphs.
A: huge uni den 96, B huge uni packed 192. Both plots show partitioning times at
different partition sizes (number of partitions) at increasing parallel levels (number
of streams). HyperPRAW displays on par performance with Zoltan at its maximum
parallelism level (96 partitions / streams). Good weak scaling shown by Hyper-
PRAW, with comparable times of partitioning with an increased task (higher num-
ber of partitions). Poor strong scaling, likely due to the increased communication
demands of parallel synchronisation with high number of streams.

Previous approach to hypergraph streaming partitioning [6] is limited in its ap-
plicability to large graphs as it is sequential. Our approach in chapter 4 is sequential,
suffering from the same performance limitations.

The work in this chapter demonstrates that a staggered allocation start helps mit-
igate partitioning quality degradation when scaling to high stream counts (greater
than 16), resulting in partitions with higher Cluster Recoverability. A staggered ap-
proach makes each stream start evaluating candidate partitions at a different point,
which helps to avoid overcrowding initial partitions at the start of the process. This
has been shown to degrade the quality of partition since future allocations will be
more likely to continue to place elements there, potentially under utilising other par-
titions. Employing a parameterised workload imbalance factor within the allocation
value function further increases inter-process work balance (Figure 6.6), increase
Cluster Recoverability (between 5-15%) and reduce loss of partitioning quality (Fig-
ure 6.5) in multistreams. A new parameter, λ, is introduced to control the weight
of workload imbalance in the allocation value function. For all the graphs in this
chapter an optimal value seems to lay between 0.5 and 1.0. All results shown use a
handpicked λ value that minimises workload imbalance (found during exploratory
search by restreaming with different values to find the value that leads to sufficient
imbalance between maximum and average workload). Finding adequate λ values
based on hypergraph features is left as future work.

An alternative approach to fixed staggered start to avoid overcrowding partitions
is to start evaluating partition candidates at a random point for each stream and
element. In practice, using a workload imbalance factor in the allocation function
is likely to mimic some of the benefits of a random restart (favouring less filled
partitions), and a careful evaluation is left as future work.
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When using hypergraphs to model communication in distributed applications,
chapter 4 demonstrated that including network bandwidth data in the allocation
value function leads to reduced application runtime by redirecting heavy and fre-
quent communication via faster peer to peer links. This chapter shows that Hy-
perPRAW, a parallel multistream approach, also benefits from using profile-based
network communication costs, with runtime speedups of up to 5.2x (Figure 6.8)
on synthetic benchmark simulations. The resulting simulation communication pat-
tern resembles the network peer to peer bandwidth graph (Figure 6.9), which is
responsible for the increased performance.

Compared to Zoltan (state-of-the-art global partitioner), HyperPRAW shows
significant runtime speedup on hypergraphs with high average cardinality (up to
4.3x in a synthetic simulation benchmark, Figure 6.10). High cardinality allows the
algorithm to leverage the history of previously seen pins (seenPinspin,j in algorithm
3) and make better allocation decisions to reduce the replication of pins. Hyper-
PRAW shows good strong scaling, with minimal quality loss or runtime simulation
performance degradation with 1, 12, 24, 48 and 96 streams (Figure 6.11). This re-
sults demonstrate that HyperPRAW is an effective parallel multistream hypergraph
partitioning approach with minimal loss as the algorithm scales to higher stream
counts.

For power-law graphs [166] demonstrates that distributing the coarsening phase
of a multilevel partitioning algorithm is close to require to have global knowledge
of the graph for each parallel worker, which makes it impractical for very large
graphs. Therefore it is important that the memory requirements of a partitioner
are within reason. Figure 6.12 shows that HyperPRAW memory footprint is far less
than loading the entire graph in memory. Two real world hypergraphs representing
Spiking Neural Networks (CM and MVC models) show memory requirements that
scale with the average pin replication factor (i.e. how well the partitioner clusters
elements without splitting them) and the number of parallel streams. In all cases,
memory requirements are significantly less than loading the entire graph. This can
also serve as a tool to detect overpartitioning for a model. If memory requirements
scale poorly in Figure 6.12, it may be an indication that we are over parallelising
the partitioning. Note that global parallel partitioners such as Zoltan cannot dis-
sociate the size of the partitioning problem (number of partitions) and the level of
parallelism. HyperPRAW treats these as different input parameters and therefore
offers flexibility to limit the level of parallelism if it surpasses the capacity of the
running system (i.e. still split the hypergraph in high number of partitions whilst
reducing the number of streams employed to do so).

A naive implementation of a multistreaming algorithm has all required data
structures replicated per stream. However, there are optimisation tweaks that can
be made to reduce the memory footprint. In cluster computers, one can share data
structures amongst processes that have access to shared memory (in ARCHER, every
24 processes). In addition, modern architectures allow access to non-shared memory
spaces, such as Remote Direct Memory Access (RDMA 3) which further reduces the
number of replications to one for the entire algorithm. We have only implemented
the first level of optimisation (shared-memory access) but on architectures that are
RDMA compatible the second level should be trivial to implement. Replicating
data structures only on non-shared memory spaces requires, in ARCHER, one copy

3http://www.rdmaconsortium.org/
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of the central data structure every 24 processes (since 24 processes share memory
space within the same computing node); hence for 768 parallel streams, there is a
redundancy of 32 copies.

In terms of partitioning computational performance, Figure 6.13 shows Hyper-
PRAW has good weak scaling: simulation time scales linearly with the size of the
problem. HyperPRAW shows significant speedup when scaling from 1 to 12 streams
but further parallelism has minimal impact, likely due to increased synchronisation
during the partitioning process between more streams. Further work to improve
this may include: using window-based synchronisation to reduce the number of syn-
chronisation events, use of central data structures and RDMA architectures which
bypass the need for explicit synchronisation.

Across all experiments, HyperPRAW has assumed uniform element and pin
weights. However, HyperPRAW offers support for element and pin weighing, by
using multiplier factors associated with element and pin ids. In the context of
modelling distributed applications, element weights can be used to model irregular
computations, which would reflect more accurate workload balance if elements in
fact do carry out different computation sizes. Likewise, pin weights can be used
to control the importance of a hyperedge, or the volume of communication associ-
ated with each hyperedge. This is in line with previous work on modelling message
volume and count [197, 213] and modelling skewed graph traversals [78].

Chapter 6 demonstrated that graph partitioning and sparse exchange communi-
cation patterns significantly reduce overhead of communications in SNN simulations.
HyperPRAW can further the improvement by allowing the neuron allocation process
to be architecture-aware, placing frequently communicating neurons in clusters with
high bandwidth. This chapter has shown the memory requirements of HyperPRAW
for two SNN models: CM and MVC, displaying better scalability than global parti-
tioners. Thus, HyperPRAW is a suitable candidate to replace workload allocation
algorithms in SNN simulations to reduce communication overhead and enable better
scaling. Current SNN simulators do not offer the flexibility to test SNN simulations
distributed using HyperPRAW, since they do not allow custom neuron allocation
process or custom distributed communication patterns. This justified building a new
SNN test-bed framework to test our hypothesis in section 3.3. Unfortunately the
test-bed simulator does not apply memory optimisations that have been proposed
in state-of-the-art SNN simulators over the years [136, 137, 124], as the purpose is
to validate the impact of workload allocation and communication strategies, not to
undertake the huge task of designing a feature complete simulator. To fully benefit
from the optimisations brought by HyperPRAW in large scale distributed models,
SNN simulators must allow for custom workload allocation procedures to be used.

6.7 Related work

Hypergraph partitioning and modelling application communication as hyper-
graphs has been identified as a good approach that can help mimimise communica-
tion cost in distributed application problems [197, 213, 44, 18, 19, 5, 194]. But they
are limited to using off-the-shelf hypergraph partitioning and focus their efforts on
modelling their constraints as part of the hypergraph. HyperPRAW demonstrates
that those constraints can be effectively made part of the partitioning process itself.

Our focus is not on graph streaming, but on hypergraph streaming. For a survey
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on graph streaming, see [156, 1]. Converting a hypergraph into a graph has been
proposed, but cannot be done without compromises [117, 122].

GraSP [21] proposes a parallel streaming approach but it is only applicable to
graphs and only considers overlap and workload. Our approach is based on GraSP,
but with key differences: 1) it is applicable to hypergraphs; 2) there is frequent
synchronisation of workload and partition assignments between streams to preserve
high quality partition metrics; 3) it mitigates the impact on workload that a mul-
tistream has using staggered allocation; 4) it includes network bandwidth in the
allocation value function. HoVerCut [189] is a parallel graph streaming partitioning
that uses a central state that is updated every few iterations between streams.

Alistarh et al. [6] proposes the only streaming hypergraph partitioner known to
date. It is sequential and limited to only consider pin overlap as the only factor for
element allocation (architecture-agnostic). The results in this chapter demonstrate
that this can be improved upon by using network bandwidth costs during element
allocation and with the use of a workload parameter.

Mapping processes to resources to reduce communication has been done before
[112, 121], but assumes process workload allocation has been done already. This
is a coarser level of granularity than considering individual computing and commu-
nicating elements and therefore limits the amount of communication optimisation
possible.

Two domains that rely on efficient processing and representation of large graphs
are graph processing applications (such as social media analysis) and graph em-
bedding frameworks (learning efficient representations of large graphs). Promi-
nent frameworks have shown the importance of graph partitioning to tackle bigger-
than-memory graphs [141, 222, 145] but have been limited to using off-the-shelf
architecture-agnostic partitioners. Using architecture-aware HyperPRAW could fur-
ther improve the performance of those algorithms at large distributed scale.

6.8 Conclusion

The work in this chapter has presented HyperPRAW, an efficient architecture-
aware parallel streaming hyperpgraph partitioning algorithm implementation that
overcomes the limitations of sequential streaming partitioners (low performance)
and global partitioners (high memory requirements). The results of this chapter
are:

• Characterised parallel streaming performance contributors: staggered stream-
ing start to improve partitioning quality enhances quality metrics (AR, CR,
SOED); and the use of workload balance parameter increases quality of par-
titioning by 5-15% better AR, with less quality loss when scaling to multiple
streams (contribution C11).

• Improved synthetic simulation runtime performance by up to 5.2x speedup us-
ing network bandwidth communication-based allocation function over overlap-
only streaming [6] (contribution C12).

• Faster synthetic simulation runtime (up to 4.3x speedup) compared to global
state-of-the-art global hypergraph partitioners on graphs with high average
cardinality (contribution C12).
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• Reduced memory requirements against global partitioners (over an order of
magnitude on real world SNN models), making HyperPRAW capable of han-
dling larger hypergraphs (contribution C13).

6.9 Further work

This chapter shows an effective implementation of an architecture-aware parallel
multistreaming hypergraph partitioning algorithm. The focus has been on charac-
terising the features of the algorithm, such as parallel scalability, use of workload
and network bandwidth parameters, staggered vs uniform streaming start; and how
those features impact distributed applications modelled as hypergraphs. Future
areas of research may include:

• Explore λ workload parameter and see dependencies with graph attributes

• Explore alternatives to overlap allocation value function, in particular those
that have been shown to work well with power-law graphs (High Degree Repli-
cation First, HDRF [173, 189]).

• Explore parallel optimisations such as use of central data structures to reduce
synchronisation events with RDMA-enabled architectures, or window-based
streaming [169] (batching elements before synchronising).

• Experiment with variable workload imbalance tolerance. Instead of fixing it
to an arbitrary value, show how this value impacts overall performance (with
non null-compute simulations).
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Conclusion

In the last decade there has been a growing scientific focus on computational
neuroscience as a means to learn about the brain and its functions, with mul-
tiple international projects setting out to further our understanding of the brain
[150, 7, 133, 175]. In that journey, the simulation of large-scale models of neural
networks are key to scientific discovery. Due to the size and complexity of the brain,
the computing resources required at the brain scale simulation far surpass the capa-
bilities of single computers today. Unfortunately, indefinitely increasing the speed of
single computing processors is no longer an option. Two factors contribute to that:
physical limitations on heat dissipation (power wall effect [12]), and the slow-down
of energy efficiency scaling [99, 151]). Instead, the hardware trend to improve pro-
cessor speed is to increase the number of computational cores, with large distributed
systems commonly used in HPC systems. Scaling applications to efficiently run on
distributed computation model is non-trivial and brings new challenges, mainly the
extra communication overhead imposed by dividing workload into a mix of shared
and non shared memory computing nodes. This communication becomes a bottle-
neck and limits scalability.

This research aimed to propose effective architecture-aware strategies with hyper-
graph models and partitioning algorithms to increase scalability of large distributed
applications in High Performance Computing (HPC) systems, of which SNN simu-
lations are a typical example. Based on quantitative profiling and experimentation,
it can be concluded that targeting the communication phase of distributed applica-
tions leads to significant runtime speedup when considering the network bandwidth
during workload allocation. To that end, this work has proposed and characterised
a novel architecture-aware parallel streaming partitioning algorithm that success-
fully models distributed application execution to minimise communication overhead
resulting in faster application execution time.

Chapter 3 characterises the communication overhead as a bottleneck in scaling
Spiking Neural Network (SNN) simulations. The three phases of communication
(implicit synchronisation, process handshake and data exchange) are shown to con-
tribute to most of the execution time during simulation when running in > 6000
distributed computing units (over 60% of total simulation time). The chapter shows
the potential of using hypergraphs to model SNN simulations, and hypergraph par-
titioning to optimise neuron allocation to computing nodes to minimise communi-
cation. By itself, graph partitioning increases the communication sparsity between
computing nodes (less than 90% Average Runtime Neighbour processes), but it is
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not enough to improve runtime performance with commonly use communication
patterns such as personalised census (PEX), which are highly inefficient for sparse
communications. Making use of the increased sparsity, sparsity-aware Dynamic
Sparse Data Exchange communication collective (NBX) is able to significantly re-
duce implicit synchronisation time (up to 90%), a measurement of communication
imbalance. The synergy between hypergraph partitioning (which increases sparsity)
and NBX communication (which efficiently handles sparse communication) signifi-
cantly reduce volume data exchanged (up to 80%) and simulation time (up to 73%)
on a large scale SNN model running over HPC systems. SNN simulators to date lack
customisation on the neuron allocation processes (round-robin, random) or commu-
nication algorithm (all to all, PEX), which makes it hard to benchmark alternative
allocation or communication strategies. To facilitate benchmarking in SNN sim-
ulations, the chapter proposes a novel framework for testing communication and
workload allocation strategies Spiking Neural Network simulations.

HPC systems show highly hierarchical, non-uniform communication links, with
communication speed and latency varying wildly in between computing nodes. Rout-
ing distributed applications communication patterns through faster communication
links would increase overall simulation performance. Having proved that hypergraph
partitioning allocation of computing elements in SNN improves computational ef-
ficiency in simulations, Chapter 4 presents a novel hypergraph partitioning algo-
rithm that incorporates network bandwidth cost in its allocation function. The
results demonstrate that making use of bandwidth communication cost leads to ap-
plication communication patterns that resemble the hierarchical network bandwidth
costs, routing frequent communication elements through fast computing node links.
This leads to significantly reduced simulation times (up to 14x speedup compared
to architecture-agnostic partitioners). The chapter proposes an application-agnostic
synthetic benchmark to evaluate communication costs in runtime for applications
modelled as hypergraphs, which goes beyond SNN-specific simulation and can help
assess workload and communication in other distributed applications.

Working with hypergraph partitioners and hypergraphs to model distributed
applications, it is important to be able to benchmark algorithms on a collection
of hypergraphs that exhibit the range of features that the application themselves
possess. For instance, many real-world graphs exhibit power-law degree distribu-
tions ([142, 70, 39]). An algorithm that aims at allocating work on such a graph
would need to be evaluated on graphs that have that distribution. To date, there
are no hypergraph generation algorithms that are sophisticated enough to specify
features such as vertex degree and hyperedge cardinality distributions, number of
clusters, average cardinality and graph size. Chapter 5 proposes a novel parametric
hypergraph generator that can be used to automatically generate hypergraphs with
custom features, facilitating benchmarking in tasks that involve hypergraph models
such as workload allocation in distributed applications. In particular it can generate
a class of hypergraphs that represent common features in neural simulation.

The architecture-aware sequential streaming hypergraph partitioner proposed
in chapter 4 is effective in improving distributed simulation performance. How-
ever, there are strong performance limitations that reduce its applicability to large
hypergraphs: being sequential and with several passes, it is slow and requires full
knowledge of the graph. State-of-the-art global multilevel partitioners produce good
quality partitions, but have high memory requirements (the entire graph must fit in
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memory) and have been shown to struggle to scale [49, 125]. Chapter 6 proposes and
characterises a novel architecture-aware, parallel multistreaming hypergraph parti-
tioner (HyperPRAW) that tackles all the limitations above, and demonstrates that
it produces consistent speedup over naive streaming approaches that only consider
hyperedge overlap (up to 5.2x speedup). Compared to global partitioners in dense
hypergraphs, HyperPRAW is able to produce workload allocations that result in
speedup runtime in synthetic simulation benchmark (up to 4.3x), even with a sig-
nificant degradation in quality metrics (which are not representative of the outcome
of partitioning when it is used to model distributed applications in runtime sys-
tems). HyperPRAW has the potential to scale to very large hypergraphs as it only
requires local information to make allocation decisions, with an order of magnitude
less memory footprint than global partitioners.

The work in this thesis has the following scope limitations which sets up avenues
for future work:

• SNN simulations have been used as a case in point for complex system simu-
lations that requires scaling to large scale distributed systems.

• Dynamic application runtime communication and computation patterns have
not been considered during the allocation process. Gathering real time application-
specific data during simulation could be considered to further improve the
mapping of hardware capabilities and distributed application patterns.

• Focus on one distributed computational model (CPU in shared and non-shared
memory settings), which is the most common scenario in HPC systems. The
algorithms could be extended to other computational models such as GPU
farms or vector processors.

• All communication, profiling and benchmarking in the modelled distributed
application between computing nodes is done using MPI, the lingua franca of
HPC systems. Other systems also used in HPC could be considered for optimi-
sation over heterogeneous architectures: NVLink for NVIDIA GPU to GPU,
OpenMP and OpenACC for multithreaded shared memory communication.

• In a cloud computing distributed environment, communication cost goes be-
yond runtime to include a monetary dimension. Models that minimise not
only communication volume, but also cost, could have a big impact in cloud
computing users. Extending the proposed partitioners to include economic
parameters can help in this space.

HyperPRAW is a suitable candidate to replace workload allocation algorithms
in SNN simulations to reduce communication overhead and enable scaling to larger
models. Current SNN simulators do not offer the flexibility to test simulations with
sophisticated neuron allocation algorithms such as HyperPRAW. Thus, to fully ben-
efit from the optimisations brought by HyperPRAW in large scale distributed mod-
els, it is recommended that SNN simulators allow for custom workload allocation
procedures to be employed. On the back of the reduced inter-process connectiv-
ity brought by partitioning algorithms, communication can be made more efficient
with the use of sparse data exchange collectives. A second recommendation to the
SNN simulation community is to enable research on the field by allowing custom
communication patterns to be used.
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In summary, this thesis proposes a novel, parallel, scalable, streaming hyper-
graph partitioning algorithm (HyperPRAW) that can be used to help scale large
distributed simulations in HPC systems. HyperPRAW addresses three of the main
scalability challenges: it produces highly balanced distributed computation and com-
munication, minimising idle time between computing nodes; it reduces the commu-
nication overhead by placing frequently communicating simulation elements close
to each other, where the communication cost is minimal; and it provides a solu-
tion with a reasonable memory footprint that allows tackling larger problems than
state-of-the-art alternatives such as global multilevel partitioning.

HyperPRAW achieves better distribution of workload by reducing the communi-
cation costs that limit scalability of distributed applications such as SNN simulations
to large scale distributed HPC systems. This key contribution enables bigger and
more complex models to be simulated, pushing the field one step closer to whole-
brain simulations.

130



Bibliography

[1] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov. Streaming Graph Par-
titioning: An Experimental Study. In Proceedings ofthe VLDB Endowment,
volume 11, pages 1590–1603, Rio de Janeiro, Brazil, 2018.

[2] M. Abduljabbar, G. Markomanolis, H. Ibeid, R. Yokota, and D. Keyes. Com-
munication Reducing Algorithms for Distributed Hierarchical N-Body Prob-
lems with Boundary Distributions. In ISC 2017: High Performance Comput-
ing, pages 79–96. Springer Link, 2017.

[3] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-
law graphs. In IPDPS’06 Proceedings of the 20th international conference
on Parallel and distributed processing, pages 124–124, Rhodes Island, Greece,
2006.

[4] T. Adachi, N. Shida, K. Miura, S. Sumimoto, A. Uno, M. Kurokawa, F. Shoji,
and M. Yokokawa. The design of ultra scalable MPI collective communication
on the K computer. Computer Science - Research and Development, 28(2-
3):147–155, 2012.

[5] K. Akbudak and C. Aykanat. Simultaneous input and output matrix parti-
tioning for Outer-product-parallel sparse matrix-matrix multiplication. SIAM
Journal on Scientific Computing, 36(5):568–590, 2014.

[6] D. Alistarh and J. Iglesias. Streaming Min-max Hypergraph Partitioning.
Advances in Neural Information Processing Systems 28 (NIPS 2015), pages
1–17, 2015.

[7] A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and
R. Yuste. The Brain Activity Map and Functional Connectomics. Neuron,
6(January 2012):1–42, 2012.

[8] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D S Modha. The cat
is out of the bag: cortical simulations with 10ˆ9 neurons, 10ˆ13 synapses. In
Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, number c, pages 1–12, Portland, Oregon (USA), 2009.

[9] R. Ananthanarayanan and D. S. Modha. Anatomy of a cortical simulator. In
Proceedings of the 2007 ACM/IEEE conference on Supercomputing - SC ’07,
number c, page 1, Reno, Nefvada (USA), 2007.

[10] R. Ananthanarayanan and D. S. Modha. Scaling, stability and synchronization
in mouse-sized (and larger) cortical simulations. BMC Neuroscience, 8(Suppl
2):P187, 2007.

131



Chapter 7. BIBLIOGRAPHY

[11] A. Antelmi, G. Cordasco, and C. Spagnuolo. On Evaluating Graph Partition-
ing Algorithms for Distributed Agent Based Models on Networks. In Euro-Par
2015: Parallel Processing Workshops, pages 367–378, 2015.

[12] K. Asanovic, B. C. Catanzaro, D. Patterson, and K. Yelick. The Landscape
of Parallel Computing Research : A View from Berkeley. Technical report,
University of California, 2006.

[13] C. Augonnet and R. Namyst. A unified runtime system for heterogeneous
multicore architectures. In 2nd Workshop on Highly Parallel Processing on a
Chip (HPPC 2008), Las Palmas de Gran Canaria, 2008.

[14] C. Aykanat, B. B. Cambazoglu, and B. Uçar. Multi-level direct K-way hy-
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Appendix A

Using neuronal activity to improve
communication optimisation

Work published in Frontiers Event Abstracts for the 2nd Human Brain Project
Student Conference [72]. It demonstrates the potential gains to be made by incorpo-
rating runtime simulation communication profiling to improve workload allocation
by reducing communication overhead.

Introduction/Motivation: In distributed computation, higher parallelism is
desira- ble to split the computation into independently executable parts. Ideally
such parts do not require any synchronisation to speed-up execution time. In Spik-
ing Neuron Network (SNN) simulations, this is not realistic due to the high level of
interconnectivity amongst neurons. Thus, higher parallelism increases communica-
tion overhead, limiting scalability [229].

There are two ways of mitigating parallel overhead in neuronal simulations:
commu- nicating more efficiently (targeted propagation); and decreasing the amount
of data to be sent (number of spikes going across partitions). This work proposes
solutions to the scale of communication at both levels.

Methods: Sending every spike to all processes has been shown to scale poorly
for large parallel sims and be wasteful because not all partitions require all spike
data [134, 135]. Thus, by only sending the relevant data to the interested processes,
communication volume can be reduced. Two alternative point-to-point strategies
are proposed, based on how the inter-process messages are coordinated at each time
step.

Parallel simulators that have considered the mapping of neurons to processes
have focused on computational load balance alone [5]. To date, state-of-the-art par-
allel sim- ulators are not considering communication amongst neurons to inform the
mapping of neurons to processes. Authors have suggested the impact of neuron con-
nectivity would have [159, 214], but not on actual network activity. The proposed
approach models the SNN as a graph, where the vertices (neurons) are weighted
proportional to their activity during simulation (neurons with high activity spike
frequently, hence com- municating more often with post-synaptic neurons). Multi-
level k-way partitioning is used to minimise the volume of communication between
vertices and map them to processes. To gather results, simulations of a Cortical
Microcircuit model [177] are performed across both experiments.

Results and Discussion: Figure A.1A shows poor scalability of the collective
all-to-all communication strategy and the reduction in communication volume when
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using point-to-point strategies with respect to an all to all pattern. Not only the
communi- cation is reduced, but it scales linearly with the number of processes.

A B

Figure A.1: A: Scaling of the number and weight of messages sent across during
distributed simulations using three different communication strategies. B: Commu-
nication costs with different workload allocation strategies (SNN model is scaled
with the number of processes)

The distribution of workload based on the communication volume of neurons
is shown to reduce communication in distributed simulations in Figure A.1B. Two
baselines are shown: random allocation and static partitioning (graph partitioning
with equal weights edges and vertices). Repartitioning based on network activity
shows an improvement of 40% over random and 12–15% over static partitioning.

As the total communication during simulation is reduced, simulations are ex-
pected to run faster, particularly given the scale of the communication volume in
spiking neuron simulations. Further work could look into dynamic partitioning and
graph analysis to inform partitioning in heterogeneous architectures (where pro-
cesses can accept different workload).
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