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Abstract

The reduction of frictional drag generated by turbulent fluid flow on solid surfaces is an important
problem in fluid mechanics, with the long-term potential to impact the energy efficiency and the per-
formance of many engineering systems. This thesis consists of three essays that elaborate on turbulent
drag reduction through wall-mounted rotating discs, originally introduced by Ricco and Hahn (2013).
The proposed methods are evaluated via direct numerical simulation of turbulent channel flow using the
high-performance solver Incompact3D.

In the first, turbulent channel flow altered by the combination of flush-mounted spinning rings and
vertical-velocity opposition control or hydrophobic surfaces is studied. The two types of distributed
control are applied over the surface area that is not occupied by the spinning rings. Drag reduction is
enhanced by the novel combined methods, with up to 27% reduction compared to 20% of the simple
rotating rings. A idealized predictive model of the combined drag-reduction performance is presented.
A spatially-dependent variant of the Fukagata-Iwamoto-Kasagi integral identity is developed to explain
the influence of the highly non-uniform spatial structure of the flow on the skin-friction. The streamwise
structures forming between discs have a drag-increasing contribution, while drag is highly reduced over
the central region where the rings generate a triangular wave of spanwise velocity. The different outcome
of combining the rings with the opposition control and the hydrophobic surface are clarified by the
alteration to the elongated structures between rings.

The second part investigates the dynamics of rigid discs that are free to rotate under a turbulent
channel flow. Simple yet realistic models are introduced for the actuator geometry and the frictional
torques that are generated by fluid motion in the cavity underneath the disc and in the support bearing,
and the related assumptions are discussed critically. Firstly, the dynamics of isolated, passively rotating
discs of increasing diameter is simulated, finding that the discs oscillate around rest under the action
of the shear-stress fluctuations at the wall. The root-mean-square of the turbulence-induced torque and
the disc velocity show power-law dependence on the disc diameter, respectively positive and negative
in the large-diameter range. A uncoupled model of the disc dynamics, where the disc do not move, is
used as a small-velocity approximation of the disc-fluid system, leading to better understanding of the
frequency-domain response of the disc to the turbulent excitation and the root-mean-square dependence
on the disc diameter. Furthermore, half discs i.e. semicircular free-to-move actuators aligned to the
streamwise direction and arranged in a rectangular array are considered. This configuration simulates
the concept developed experimentally by Koch and Kozulovic (2013) of partially covered discs. The
mean-shear generates a non-zero torque on the disc half and the discs rotate with a finite mean angular
velocity, locally producing a slip velocity at the wall. Drag reduction is found to be directly correlated
to the rotation rate of the discs, the fastest-rotating case yielding above 5% globally and 20% on the
disc surface. Dependence of the rotation velocity on the disc model parameter is discussed and a series
of simulations aimed at a more comprehensive investigation of the half-disc technique is laid out.

The third part of the work proposes a simple proportional feedback-control scheme for the array
of discs, whereby the motor-powered discs are switched on or off to maintain the discs within a pre-
determined velocity range. The actuator model developed previously is augmented with the inclusion of
a model of a typical electric motor, used to power the discs. The optimal values of the control parameters
i.e. the velocity range bounds and the motor torque are investigated by means of a Bayesian Optimization
algorithm, capable of efficiently performing an autonomous search of the three-dimensional parameter
space with a minimal number of simulations. The motorised steadily-rotating case is also simulated
and its performance compared to the ideal model and to the feedback-controlled flow, concluding that
it is highly likely that net power saving can be achieved even accounting for realistic losses in the disc
housing. The power-budget dependence on the feedback-control parameters is analysed extensively and
special consideration is given to its correlation to the disc mean velocity and to the characteristics of
the transients. Although the on-off control can achieve marginal improvements on the reference steady
activation of the discs, an optimised constant-velocity control is superior.
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Chapter 1

Wall-bounded turbulent flow and
drag reduction

1.1 Introduction

The interaction of the turbulent motion of a liquid or a gas with a solid surface is an ubiq-
uitous natural phenomenon of great scientific and technological importance for many areas of
engineering and the applied sciences. The unsteady and irregular character of turbulent motion
distinguishes turbulent flow from the more orderly and predictable laminar flow, which is en-
countered for smaller scales and velocities than those prevalent in the majority of mechanical,
aeronautical, civil, and chemical engineering systems. The resistance force generated by the fluid
flow at the solid surface, called skin-friction drag, is naturally higher in turbulent flow than in
laminar flow. One crucial technological objective has been the reduction of turbulent skin-friction
drag, with the aim of diminishing the dissipation of energy and thus improve performance or
limit fuel consumption of many engineering systems.

From the perspective of understanding (and potentially manipulating) the wall-bounded flow
physics, it is convenient to concentrate on idealised problems, among which are parallel flows,
namely plane channel and circular pipe, and turbulent boundary layers. This work concentrates
on channel flow, that consist in the unidirectional motion of a fluid in the gap between two
infinitely extended parallel flat plates and is convenient to study for its relative simplicity. The
universal nature of the flow physics near the wall ensures the generality of the results obtained in
channel flow, that are applicable to other canonical wall-bounded flows (pipe flow and boundary
layer) and to more complex cases that can be locally approximated by one of the above. This
also motivates the use of plane channel flow for the development and testing of control techniques
that target the near-wall region.

Systematic research on the peculiar nature of turbulent flow and its implications for flow
resistance started with the famous experiments of Reynolds (1883) who studied the appearance
of irregular fluctuations in the flow through otherwise smooth and straight channels. Beforehand,
flow resistance in pipes and channel had already been the subject of empirical investigation for
its importance to practical problems in hydraulics. The study of turbulent flow has remained for
a long time largely experimental, reflecting its complexity and dependence on the characteristics
of each particular problem. Starting from the second half of the 20th century, the availability of
increasing computational power and the progress in numerical methods has allowed fluid flows
to be simulated from first principles (Harlow, 2004). Since around the 1980s, computers become
powerful enough to tackle the resolution of the fine-scale fluctuations that characterise turbulence,
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Chapter 1 1.2. Frictional drag reduction

thus laying the foundation for many developments in the understanding of the physics and the
design of methodologies to control turbulence and diminish drag. Numerical simulations provide
a cheaper and more flexible alternative to experiments, with the additional advantage that a
much more detailed measurement and manipulation of flow data is possible. Experiments are to
this day unavoidable for flows whose complexity lays beyond current computers’ capabilities and
are necessary to validate numerical models.

In Chapter 1 and Chapter 2 we will lay out more precise definitions of the ideas outlined
above, reviewing wall-bounded flow physics, its numerical simulation through high-performance
computing systems and the methodologies devised to reduce turbulent friction.

The chapter is structured as follows. Section 1.2 contains a review of the existing turbulent
drag reduction methods, focusing on in-plane wall motion techniques that form the basis of the
research work developed in the following chapters. In Section 1.3 we define the plane channel
flow problem, we define its mathematical modelling, introduce the physics of turbulent flow, its
statistical description and some well-known results in wall turbulence. The basic definitions of
skin-friction and drag reduction are also given.

1.2 Frictional drag reduction

1.2.1 Flow control for frictional drag reduction

Turbulent skin-friction drag reduction is a subject of great interest in fluid mechanics research, for
its potential to limit fuel consumption and carbon emissions in the airline and marine transport
industries, and to tackle the pressing problem of environmental pollution. Around 60% of the
aerodynamic drag of a typical airliner at cruise conditions is due to frictional drag, with the other
components being form drag and induced drag (Leschziner et al., 2011). In the case of a typical
slow merchant ship, such as a tanker or a container ship, around 70% of the total hull resistance is
frictional drag, the remainder being form drag and wave-making resistance (Larsson and Raven,
2010). For the aerospace industry, it has been estimated that a 1% reduction in skin-friction
drag for a long-range commercial aircraft would decrease fuel consumption by approximately
0.45%. For a typical airline this is equivalent to a reduction in CO2 emissions of 5.4 million
equivalent tonnes per year (Leschziner et al., 2011), and an annual reduction in operating costs
of 0.2% (Reneaux, 2004). In the following, we give an overview of the drag-reduction techniques
that exist in the literature. Turbulent skin-friction is usually studied in channel flow, pipe flow
or in boundary layers, as in these flow skin-friction is the only source of drag, allowing a better
understanding of its mechanism and its response to control. More rigorous formulation of the
ideas and the quantities discussed below is given starting from Section 1.3, where turbulent
channel flow is introduced.

a. Classification of drag-reduction methods

Wall-based flow control methods for drag reduction can be broadly classified as being either active
or passive. The graph in Fig. 1.1 provides a schematic classification of wall-forcing methods for
drag reduction.

In passive methods, the flow is manipulated through macroscopic or microscopic modifications
to the wall surface geometry, or via compliant surfaces that consist the wall being partially free to
move under the action of the flow. Passive methods do not necessitate an external power input,
although the interaction between the new geometry and the fluid may constitute an additional
source of friction.
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Chapter 1 1.2. Frictional drag reduction

Active methods are those requiring an external energy input to manipulate the flow, which
is often altered by devices that rely on an external power supply to operate. For such methods,
the net power saving Pnet = 100(P0−Ptot)/P0 represents a critical performance metric, because
the total power Ptot = Pp + Pin accounts for the input power Pin required to drive the control
devices, beside the flow pumping power Pp. Another performance metrics for active methods is
the gain G = (P0−Pp)/Pin (Quadrio, 2011), which represents the efficiency of the control scheme
to obtain pumping power saving per each unit of input power. It can be noted that, contrary
to active methods, passive methods that achieve drag reduction always have infinite gain. An
important results regarding the power efficiency of flow control methods is that of Fukagata
et al. (2009) who found that “one cannot drive a given flux with less total power than that of
the laminar flow”. The laminar case skin-friction has been demonstrated by Bewley (2009) to
be the true minimum that can be reached (without violating the power principle cited above).

passive

active

compliant surface

fixed surface

open-loop control

feedback control

Figure 1.1: Classification of wall-based flow control techniques.

In this work, we research active open-loop methods (Chapter 3), active feedback-loop methods
(Chapter 5), and passive compliant methods (Chapter 4).

b. Passive methods

Among the passive methods of drag reduction, the broadest class is represented by the perma-
nent surface modification to the geometry of solid boundaries. Typically they come in the form
of “roughness elements”, such as streamwise-aligned riblets that reduce the skin-friction of up
to 10% (Garcıa-Mayoral and Jiménez, 2011) for appropriate values of the spanwise spacing and
the height. In other techniques, the wall geometry is altered in order to induce a secondary
flow in the near wall region that mimics the effect of active methods (Ghebali et al., 2017). A
lubrication-like mechanism forms the basis of the super-hydrophobic surfaces (Min and Kim,
2004; Daniello et al., 2009), where roughness elements and entrapped gas pockets are combined
to generate a finite value of the velocity at the wall, called slip. Luchini (2015) has shown that
the drag-reduction mechanisms of riblets and finite-slip surfaces are analogous and rooted in the
modification of the near-wall high-velocity streaks that characterise wall turbulence. A more
complete introduction to super-hydrophobic surfaces is given in Chapter 3, where a numerically
model of a super-hydrophobic surface is used. In the framework of Fig. 1.1, super-hydrophobic
surfaces can be classified as a type of compliant surface, where the wall surface is not fixed but
realises a sort of natural feedback response to the fluid motion. Another example of a compli-
ant surfaces are pressure-driven coating models with wall-normal velocity response (Fukagata
et al., 2008), or the channel fitted with spanwise-oriented, free-to-move cylinders of Józsa et al.
(2019)that generate a streamwise velocity response.
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c. Active methods

In active frictional drag reduction methods, a distinction is made between methods that operate
the devices at a pre-determined value of the control parameters (called “open-loop” methods)
and those that respond to specific changes in some fluid variable following a prescribed feedback-
control algorithm. Among the feedback-loop techniques, a large body of research has been dedi-
cated to applications of suction and blowing actuators (Choi et al., 1994; Bewley et al., 2001) as a
counter-measure to velocity fluctuations. Suction and blowing devices found applications either
as a tool for fully-developed turbulence manipulation, or to delay the transition to turbulence in
spatially developing flows by appropriately counter-acting flow instabilities. Various open-loop
techniques has been researched such as volume-force methods (Du and Karniadakis, 2000) and
the in-plane wall motions that are discussed thoroughly in Section 1.2.2. Out-of-plane motions,
in the form of sinusoidal wall-deformation travelling waves, have also been successful for drag
reduction (Nakanishi et al., 2012; Tomiyama and Fukagata, 2013). Open-loop drag reduction
studies typically entail a systematic variation of the control parameters in order to locate the
optimum combination that maximises drag reduction. Unconventional methods also exist, such
as the wall-acceleration technique of Kühnen et al. (2018) that is based on the relaminarisation
of the flow via a flow instability mechanism, unlike the rest of the techniques described in this
section, where a turbulent state is preserved.

d. Drag reduction as a logarithmic-layer shift

Wall-based drag reduction techniques aim at altering the structure of near-wall turbulence, pro-
ducing an attenuation of the wall-normal velocity bursts that promote the transport of high-
momentum fluid in the near-wall region and lead to a flatter velocity profile and increased
skin-friction. The consequence on the wall-normal velocity profile is a thickening of the viscous
sub-layer (Choi, 1989) and an upwards translation of the logarithmic layer away from the wall
(an example is found in Sec. 3.3.2). This effect can be assessed quantitatively using the friction
relation defined in (1.26), where a positive (upwards) shift ∆B > 0 (Gatti and Quadrio, 2016)
generates a reduction of Cf .

1.2.2 Turbulent drag reduction by in-plane wall motions

Drag reduction by in-plane wall motion was originally introduced by Jung et al. (1992) in a
numerically simulated turbulent channel flow at Re0

τ = 200 (where Re0
τ is the friction Reynolds

number of the uncontrolled flow) with an oscillating wall. Wall oscillation is defined by the
following temporal law for the spanwise velocity w at the wall:

w = A sin(ωt), (1.1)

where the maximum wall velocity A and the time period of the oscillation T = 2π/ω are the
control parameters. The study demonstrated the possibility of decreasing the turbulent skin
friction of up to 40% by oscillating the wall in the cross-flow direction. They also found that the
flow-control performance is highly dependent on the oscillation period T , with T+ ∼ 100 being the
best-performing value (the superscript “+” denoting scaling in viscous units of the uncontrolled
flow). The optimal oscillation period of around T+ = 100 was found by Quadrio and Ricco (2004)
to produce maximum drag reduction because it matches a characteristic temporal scale of the
near-wall turbulent structures and an optimal thickness of the generated Stokes layer. For any
T+, the drag reduction increases monotonically with A+, but the growth slows at larger values
of A+ (Quadrio and Ricco, 2004). The oscillating technique has been applied successfully to
pipe flow, where the oscillation is performed along the azimuthal direction (Orlandi and Fatica,
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1997), and to boundary layers (Skote, 2013). Experimental confirmation of the oscillating-wall
technique has also been established in boundary-layer (Choi and Graham, 1998) and pipe flow
(Choi, 2002).

a. Spanwise waves

Quadrio et al. (2009) generalised the concept of wall oscillation through travelling waves of
spanwise velocity at the wall:

w = A sin(κxx− ωt). (1.2)

The control parameters are therefore the velocity amplitude A, the wavenumber κx = 2π/λx and
the forcing period T = 2π/ω.

The dependence of the skin-friction drag reduction on the parameters at Re0
τ = 200 and

A+ = 12 is shown in Fig. 1.2b. When ω = 0 a stationary wave of spanwise velocity is formed
(Viotti et al., 2009). The optimal wavelength of the stationary wave is in the interval 1000 <
λ+
x < 1250, where the stationary wave generates drag reduction of around 45%, which is larger

than the best pure wall-oscillation case. Upstream-travelling waves (ω < 0, not shown in Fig.
1.2b) always yield drag reduction, but the absolute maximum drag reduction of 48% is found
for a downstream-travelling wave. A subset of downstream-wave parameter combinations (the
yellow region in Fig. 1.2b) are instead found to give drag increases up to more than 20%. It is
observed that for the drag-increasing cases, the phase speed c = ω/κx of the travelling waves is
similar to the near-wall turbulent convection velocity.

Although drag reduction increases monotonically with A+, the same is not true for the power
efficiency of the scheme. The largest net power saving atA+ = 12 is 18% and an even larger saving
of 26% is found at A+ = 6. A minimal forcing amplitude has been found, i.e., the maximum
velocity of the wall must be larger than a minimal value to affect the near-wall turbulence and
cause drag reduction (Ricco and Quadrio, 2008).

The travelling-wave concept has been experimentally validated by Auteri et al. (2010), yield-
ing up to 33% drag reduction in a pipe flow with independently-rotating wall slabs, and by Bird
et al. (2018) who measured drag reduction rates of up to 21.5% for upstream-travelling waves in
a boundary layer fitted with a actuated-membrane wall surface.

b. Stokes layer

A key finding for the oscillating-wall case was that the spatially-averaged spanwise-alternating
flow follows an exact laminar Stokes layer solution (Quadrio and Sibilla, 2000). The visualizations
by Ricco (2004) show that the streamwise-velocity streaks are dragged laterally by the spanwise
shear of the Stokes layer, while the shorter, faster-travelling quasi-streamwise vortices located
above the streaks (Adrian, 2007) and above the Stokes layer do not move laterally, but are
only indirectly altered by the wall forcing as their energy is attenuated. This optimal Stokes
layer directly affects the buffer-layer velocity streaks, as it is a few wall-units thick. This result
was extended to the case of the streamwise-travelling waves by Quadrio and Ricco (2011), who
derived a generalised Airy-function Stokes layer and revealed a striking correlation between its
thickness and the drag reduction.
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Chapter 1 1.2. Frictional drag reduction

(a) (b)

Figure 1.2: Streamwise-travelling waves of spanwise velocity: (a) sketch of a plane channel flow with
spanwise-velocity waves at the wall from Quadrio et al. (2009), (b) parametric dependence of the drag-
reduction of spanwise-velocity waves at Reτ = 180 from Hurst et al. (2014), blue is drag reduction,
yellow is drag increase and the dashed line marks the maximum ridge.

c. Reynolds number effect

An important question concerns the effect of the Reynolds number on the performance of in-
plane wall motion techniques and is critical to assess their applicability to high-Reynolds-number
scenarios. At the low friction Reynolds number value of Reτ = 200, the near-wall dynamics are
responsible for the largest contribution to the skin-friction (Quadrio, 2011; de Giovanetti et al.,
2016). However, at higher Reynolds numbers, the very large structures or “super-streaks” that
characterise the upper layers become increasingly energetic and account for a growing contribu-
tion to the skin-friction on the wall (Agostini and Leschziner, 2014) . It can be argued that this
constitutes a fundamental limitation to the performance of near-wall control methods at high
Reynolds numbers. Indeed, several numerical studies up to Reτ = 2000 (Hurst et al., 2014; Gatti
and Quadrio, 2016; Yao et al., 2019) have ascertained that drag reduction rates of spanwise wall
motions decrease at higher Reynolds numbers, possibly following a power-law scaling ∼ Re−γτ .
However, the

d. Discs and rings

Spinning circular actuators, or discs, mounted on the wall were first proposed by Keefe (1997,
1998) as a drag-reduction device combined with suction and blowing at the wall as shown by Fig.
1.3. Rotating discs arranged in a rectangular array on the wall have been introduced by (Ricco
and Hahn, 2013) and simulated numerically in a channel flow at Reτ = 180. The disc belonging
to adjacent rows rotate in opposite directions, thus realising, along their centreline, a spanwise-
velocity pattern similar to a standing-wave forcing at the wall. In case of steadily-rotating discs,
the forcing parameters are the disc-tip velocity W (analogous to the wave amplitude) and the
disc diameter D (analogous to the wavelength). The maximum drag reduction of 23% is obtained
for a diameter D+ = 900 and a disc-edge velocity W = 9+, while the maximum net power saved
is 10% for W = 6+ and D+ = 900 (Ricco and Hahn, 2013; Wise and Ricco, 2014). Contrary
to spanwise waves, the drag reduction rate of rotating discs does not increase monotonically
with the forcing amplitude W+ but has a maximum for any value of the forcing scale D+. The
discs offer several practical advantages with respect to spanwise waves or oscillations, i.e. the
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Chapter 1 1.3. Turbulent flow in an infinitely-extended channel

local character that avoids the impractical motion of the whole solid wall and the wider range
of diameters leading to drag reductions of similar magnitude to the maximum (Ricco and Hahn,
2013; Wise et al., 2014).

(a)

Suction/blowing holes

Sensors

Rotating disc

(b)

Figure 1.3: (a) rotating discs actuators combined with wall transpiration, original sketch from Keefe
(1998), (b) sketch of a plane channel flow with array of rotating discs from Ricco and Hahn (2013).

Wise et al. (2014) showed that rotating annular actuators can deliver similar levels of drag
reduction while requiring up to 20% less driving power. The same type of actuator, combined
with opposition control and hydrophobic surfaces is the theme of Chapter 3.

1.3 Turbulent flow in an infinitely-extended channel

The physical problem we study is the motion of a fluid between two infinitely-extended, rigid,
impermeable plates or walls, separated by a distance 2h∗ as shown in Fig. 1.4. We adopt a
right-handed Cartesian coordinate system x∗, y∗, z∗, such that the origin is located on one of the
two walls, the second axis y∗ is orthogonal to the wall and the first axis x∗ is aligned with the
direction of the pressure gradient F that drives the flow. The positive direction of y∗ is towards
the other wall and defines the notions of “upper” and “lower” wall. x∗ is called the streamwise
axis and z∗ is called the spanwise axis.

Adopting the Eulerian description of the flow (Batchelor, 1967), the fluid kinematics is de-
scribed by its pointwise velocity field u(x, t), where x is the position vector in the Cartesian
coordinate system and t ≥ 0 is time. The scalar fields u(x, t), v(x, t) and w(x, t) denote re-
spectively the streamwise, wall-normal and spanwise component of the velocity vector u. The
fluid is incompressible, isothermal, Newtonian and characterised by a constant viscosity µ∗ and a
constant density ρ∗. The fluid is subjected to a uniform pressure gradient F = {P ∗x , 0, 0}. Since
the channel is infinitely extended, we can measure the flow rate per unit area Q∗ as:

Q∗ =
1

2h∗

∫ 2h∗

0

u(x, t) dy. (1.3)

From the flow rate, a reference velocity can be derived as U∗b = Q∗/2h∗, called the bulk velocity.
Alternatively, a reference velocity can be defined as U∗p = 3U∗b /2, which is the centreline velocity
produced in the plane Poiseuille flow at the flow rate Q∗. The reason of this choice will be made
clear in the next paragraph.
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U∗
p

2h∗x∗

z∗

y∗

P ∗
x

Figure 1.4: Plane channel flow: schematic of the fluid domain and the parabolic Poiseuille velocity
profile.

The solution to the physical problem described above depends on a four constants or pa-
rameters, namely the properties of the fluid µ∗ and ρ∗, the reference velocity U∗p or the forcing
P ∗x , and the geometrical parameter h∗. It is always convenient to reduce the problem to its
non-dimensional form, which represents the most compact and general form of the problem by
reducing the number of parameters to the minimum. Any flow variable e.g. the velocity u can
be expressed as a function of the dimensional parameters as u∗ = f∗(µ∗, ρ∗, h∗, U∗p ). A non-
dimensional form of the above problem is obtained by normalising lengths with h∗, velocities
with U∗p and the density with ρ∗. By combining the fundamental units, we can reduce other
quantities to their non-dimensional form: flow rates with h∗U∗p , times with h∗/U∗p , stresses with
ρ∗U∗2p and pressure gradients with ρ∗U∗2p /h∗. The non-dimensional form depends on a single
parameter and reads u∗/U∗p = g(ρ∗h∗U∗p /µ

∗). The parameter is called the Reynolds number and
indicated by the symbol Rep, where the subscript p refers to the Poiseuille velocity Up. Another
possible normalisation is obtained by scaling velocities with U∗b and leads to the definition of
bulk Reynolds number Reb = ρ∗h∗U∗b /µ

∗. Dimensional variables are henceforth indicated with
an asterisk and non-dimensional ones without, for example u = u∗/U∗p , x = x∗/h∗ etc.

The laws of motion of the fluid can be derived (Batchelor, 1967) by considering the conserva-
tion of momentum and the mass on an infinitesimal volume of fluid, and using the incompressible
Newtonian constitutive law. In accordance with all the assumptions described above, the dy-
namics of the fluid is described by the following differential problem, written in non-dimensional
form:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Rep
4 u + F.

∇ · u = 0

u(x, 0, z, t) = 0

u(x, y, z, 0) = u0.

(1.4)

where the first equation expresses point-wise the conservation of momentum and the second
the point-wise conservation of mass. The two equations are known as Navier-Stokes equations
(Navier, 1823).
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The initial condition u0 is the plane Poiseuille flow, that is an exact laminar solution to (1.4)
when no perturbations are present. The plane Poiseuille velocity field reads:

up(x, y, z) = {y (2− y) , 0, 0}. (1.5)

The pressure gradient needed to sustain Poiseuille flow is Px = 2Rep and the flow rate is Q = 4/3.

a. Transition to turbulence

For sufficiently large values of the Reynolds number, wall-bounded laminar flows are unstable to
disturbances. Instability means that when a disturbance of appropriate amplitude is introduced,
the flow does not return to its laminar state but develops a more complex behaviour, characterised
by spontaneous spatial and temporal fluctuations. This behaviour is markedly different from
laminar flow where all the streamlines are parallel to the pressure gradient and do not change in
time.

The plane Poiseuille flow (1.5) is known to be unstable to arbitrarily small perturbations
when Rep > 5772, but obtaining and sustaining a turbulent state is possible for approximately
Rep > 1000 when finite-amplitude disturbances are present (Schmid and Henningson, 2001). To
obtain a turbulent state, the boundary condition is modified as u0 = up + unoise i.e. the plane
Poiseuille flow up is perturbed by a disturbance unoise that has to be chosen appropriately to
generate the transition.

b. Fully developed turbulence

If the Reynolds number is beyond a critical threshold, the transition excites an increasing num-
ber of spatial and temporal modes, eventually reaching the so-called fully developed turbulent
state, characterised by chaotic fluctuations and a continuous energy spectrum. Fully-developed
turbulent flow is ubiquitous in engineering applications, where the Reynolds number is often
very large and some form of random disturbance is almost always present. In fully developed
turbulence the flow field appears as a collection of local, transient features called “turbulent
structures”, that, when examined individually, are practically never identical to another. Such
complexity leads to a statistical description of turbulent flow, as studying averages in space
or time is more tractable than following individual structures (this operation can be justified
as explained in Sec. 1.3.1). Flow statistics such as the structures’ length-scale, life-time, and
behaviour vary in the wall normal direction. Three fundamental length-scales characterise wall-
bounded turbulence: the viscous length-scale δ∗ν , the Kolmogorov microscale η∗ and the outer,
or bulk, scale corresponding to h∗ (Smits et al., 2011). η∗ represent the scale at which most of
the energy dissipation into heat takes place. The minimum spatial scale of motion correspond to
the diameter of the finest structures, around 10η (Smits et al., 2011). On the other extreme, the
very-large scale motions (VLSM) can span a streamwise size of around 40h Lozano-Durán and
Jiménez (2014). The presence near the wall of elongated, roll-like structures (Adrian, 2007) has
important implications for the shear force exerted on the wall because they intermittently blow
high-velocity fluid from above to near the wall, generating steeper, on average, velocity gradients
that in the laminar case. The origin of the emergence and self-sustained dynamics of turbulent
structures from otherwise smooth and plane surfaces is the subject of active research, with the
current understanding being that they are produced through the so-called near-wall regeneration
cycle (Hamilton et al., 1995) that is capable of extracting energy from the mean shear through
instability mechanisms immediately above the wall. These ideas lead to the idea that, if one
wants to modify wall-bounded turbulence and potentially affect the drag, it is reasonable to
focus on the manipulation the near-wall flow.
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1.3.1 Statistical description of turbulence

In the fully-developed turbulent state, it is convenient, for all practical purposes, to describe the
fluid motion in terms of statistical quantities, such as the mean and the variance of the velocity
components, the pressure and other flow variables. The statistical approach to turbulence relies
on some conjectures on the dynamics generated by the equations of motion (Ruelle and Takens,
1971; Frisch, 1995) that can be summarised as follows. A solution u to problem (1.4) belongs to
the functional space G of the solutions to (1.4). Starting from an initial condition u0 = u(0) ∈ G,
the dynamics u(t) evolves following a trajectory in G. For example, the unperturbed laminar flow
up is a fixed point of the dynamics (1.4). The steady-state turbulent solutions are conjectured to
be trajectories that evolve in a subset Ωa ⊂ G, orbiting chaotically while remaining indefinitely in
Ωa. This means that turbulent solutions are highly sensitive to the initial condition, generating
very different trajectories u(t) ∈ Ωa for very similar u0. Ωa is called the attractor set and
it is conjectured that, given any initial condition that leads to fully developed turbulence, the
dynamics will eventually reach Ωa. Therefore the choice of a specific initial condition is not
important as long as it can successfully trigger the transition to fully-developed turbulence. While
the details of the fluctuations are unpredictable, being highly sensitive on the initial condition,
the statistical properties of the turbulent solutions are instead predictable due to the uniqueness
of the attractor set. The statistical study of the flow variables would be otherwise meaningless
because, in general, each (random) initial condition would produce a unique dynamics.

Another important assumption in the statistical description of turbulent flows is ergodicity
(Frisch, 1995). In a flow under stationary (constant in time) forcing, the following ergodic
theorem can be formulated for the velocity field u:

lim
T→∞

1

T

∫ T

0

u(t; ξ) dt =

∫

Ωa

u(ξ) dp(u) ≡ E[u], (1.6)

where ξ is a generic random variable that represents the arbitrariness of the initial condition, and
p is the probability distribution of u on the attractor set Ωa. The right-hand side is the expected
value of u. The left-hand integral is the time-average of u, performed on a finite interval T .
As the size T of the time interval goes to infinity, the average converges asymptotically to the
expected value of u and provides, for finite values of r, an estimate of the true mean E[u] with
some level of uncertainty.

The formulation in time of (1.6) for stationary turbulence can be extended to other variables,
depending on the symmetries of the problem. For example, in a spatially homogeneous flow the
spatial position x can replace time. It is expected that the same flow symmetries of the laminar
flow are restored, this time in the statistical sense, in a fully-developed turbulent flow (Frisch,
1995). In this respect, studying the flow in a plane channel (or a pipe) is convenient in terms of
the collection of statistics because three statistical symmetries are present:

E[u(x, y, z, t)] = E[u(x, y, z, t+ C)], (stationary) (1.7)

E[u(x, y, z, t)] = E[u(x+A, y, z +B, t)], (homogeneous) (1.8)

E[u(x, y, z, t)] = E[{u,−v, w}(x, 2− y, z, t)], (top− bottom) (1.9)

where A,B,C ∈ R arbitrary constants. Each symmetry has an associated averaging operator:

u =
1

T

∫ T

0

u(x, y, z, t) dt, (1.10)

〈u〉 =
1

LxLz

∫ Lx

0

∫ Lz

0

u(x, y, z, t) dxdz, (1.11)

[u]tb = ({u, v, w}(x, y, z, t) + {u,−v, w}(x, 2− y, z, t))/2 (1.12)
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Substituting any of the above operators in the left-hand side of (1.6), gives asymptotically the
mean value of a flow variable. In practice, the averaging operators are always compounded to
minimise statistical uncertainty. The mean velocity field is written as U = E[u] and the mean
pressure field as P = E[p], other mean flow variables are usually denoted using the notation
of one of the operators e.g. the mean Reynolds shear stresses are written 〈uv〉 or uv. New
symmetries and averaging operators will be introduced when they are needed, see for example
the more complex symmetry belonging to the disc boundary conditions presented in Chapter 3.

Whenever the mean value of a flow variable is considered, an associated statistical decom-
position (called “Reynolds decomposition”) can be defined that separates the mean from the
zero-mean fluctuating component. The most basic one is the decomposition of the flow field
between the mean U and the fluctuations ut:

{u, p}(x, t) = {U, P}(y) + {ut, pt}(x, t). (1.13)

Statistical decompositions for any other flow variable can be derived from the flow field decom-
position, for example those for the kinetic energy or the Reynolds stresses shown in the next
section.

It is also possible to write conservation laws for the mean or the fluctuating quantities. These
equations are useful to understand the mean dynamics of the flow (which is usually the main
object of interest) and its relation with the fluctuating component. The most important of such
equations are the so-called Reynolds-averaged equations for the mean flow, that read:

∂U

∂t
+ (U · ∇)U = −∇P +∇ ·R +

1

Rep
4U + F(t), (1.14)

∇ ·U = 0, (1.15)

U(x, 0, y, t) = 0. (1.16)

where the matrix R contains the Reynolds shear-stresses (RSS) e.g. R12 = E[utvt]. A noteworthy
property of (1.14) is the fact that the conservation equation for the mean flow (a first-order
statistical moment) contains the RSS term (a second-order statistical moment), implying that
it is not possible to solve for the mean flow without knowing the fluctuating dynamics, or, in
more technical terms, the equations are not closed. The closure problem is a general rule, as the
equations for any n-th order moment of a flow variable always contain a moment of order n+ 1
or higher.

1.3.2 Basic results in channel flow

In this section we briefly recall a few important results that can be derived analytically from the
mean-flow equations and that are used to validate and discuss the numerical results in Section
2.2.4 and throughout this work.
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a. Linear total shear-stress profile

First, we observe that from the problem symmetries W = 0. Therefore, the mean-flow equations
(1.14) are reduced to:

0 =
d

dy

(
1

Re

dU

dy
− 〈uv〉

)
+ Px, (1.17)

0 = −d〈v2
t 〉

dy
− ∂P

∂y
, (1.18)

dV

dy
= 0 (1.19)

From continuity (1.19) and the BCs it follows that V = 0 and thus the mean velocity field is
U = {U, 0, 0}. The first equation is the balance of the mean forces along x, meaning that the
total mean shear stress τ , i.e. the sum of the mean viscous stress Re−1

p dU/dy and the turbulent
stresses −〈uv〉, is balanced out by the mean pressure gradient Px. From equations (1.17)-(1.18),
a few exact results can be derived.

From continuity it can be shown that the mean total shear-stress τ(x, y, z) = τ(y) and the
mean pressure P (x, 0, z) = P (x), which implies that both terms in (1.17)-(1.18) are constant.
Knowing that τ is anti-symmetric about y = 1 we obtain a linear profile upon integration of
(1.17)-(1.18):

τ(y) = τw(1− y) (1.20)

where τw = 〈τ(0)〉 is the mean wall shear-stress. Such a conclusion is not valid for the boundary-
layer flow where the transport of momentum takes place also along the wall normal direction
and thus V 6= 0.

Starting from the mean wall-shear stress τ∗w we can define the friction velocity u∗τ =
√
τ∗w/ρ∗

and the viscous length-scale δ∗ν =, such that u∗(y∗ = δ∗ν) = u∗τ . These quantities also define a
new viscosity normalisation, called the friction Reynolds number Reτ = u∗τh

∗/ν∗. Since Re−1
τ =

δ∗ν/h
∗, the friction Reynolds number gives a measure of the relative size of the near-wall length-

scale to the global scale of the flow. Reτ has a sub-linear power-law dependence on the Reynolds
number as Reτ ∝ Re0.88

p . Quantities scaled with u∗τ and δ∗ν , τ∗w or combinations thereof are called
viscous or inner units and are denoted by the superscript ‘+’.

b. The mean velocity profile

In a fully-developed turbulent channel flow, the mean flow is characterised by two length-scales
in the wall-normal direction, the outer scale h∗ and the near-wall scale δ∗ν . Using dimensional
analysis it can be proven that the flow at a distance y∗ from the wall is completely specified by the
ratio to the outer scale y and the ratio to the near-wall scale y+. These observations can be used
to derive asymptotically exact results on several mean-flow variables. The wall-normal velocity
profile U(y) can be partially formulated as a piecewise function of the wall-normal coordinate
(Townsend, 1976; Pope, 2000), based on the asymptotic considerations on magnitude of y and
y+. The most important exact results are shown in Table 1.1.

The profile can be primarily subdivided into two regions, the near-wall layer and the outer
layer. In the inner layer, y is very small and the effects of viscosity are not negligible, thus U
depends only on y+. In the outer layer, y+ is very large and the effects of viscosity are negligible.
The near-wall layer can be further subdivided into the viscous sub-layer, where y+ is very small
and U follows a linear profile, and a second region, where y is still very small but y+ is much
larger than unity. In such conditions, the velocity gradient depends on y−1 and the velocity
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profile has logarithmic dependence specified by the constants k and B. The logarithmic region
is also called the equilibrium layer because in that region, there is no spatial transport of kinetic
energy but a local equilibrium between production and dissipation. Furthermore, the ratio of the
Reynolds shear-stress to the kinetic energy is constant. Between the viscous sub-layer and the
logarithmic layer, a region called buffer layer exist where the viscous and Reynolds stresses have
a similar magnitude and the velocity follows neither a logarithmic profile nor a linear one. The
buffer layer is noteworthy as it contains the maximum of the velocity fluctuations, the maximum
the turbulent kinetic energy production and is the maximally anisotropic region of the flow (see
Section 2.2).

The uppermost region follows the velocity defect law (Coles, 1956), which does not scale in
viscous units and is specified by the flow-dependent constant B1. For a more complete treatment
of all the wall-normal subdivisions of the flow, see for example Table 7.1 and Figure 7.8 in
Chapter 7 of Pope (2000).

As the wall-normal regions are defined asymptotically by y+, by definition they hold exactly
only for Reτ → ∞ i.e. when the inner-outer scale separation is infinitely large. Experiments
and numerical simulations (including our channel-flow simulation of Section 2.2.4) establishes
that at low values of Reτ the velocity profile deviates from a perfect logarithmic law. Many
studies exist on the log-law asymptotic dependence on Reτ (Panton, 2007). In order to observe
a true logarithmic profile, higher values of Reτ must be reached e.g. Lee and Moser (2015) at
Reτ = 5200 and Yamamoto and Tsuji (2018) at Reτ = 8000. Asymptotic convergence is observed
as Reτ increases, the near-wall layer shrinks and the logarithmic layer extends, extending closer
to the wall. Tab. 1.1 also reports the approximate ranges where the exact asymptotic forms
agrees well with the experiments (Pope, 2000).

Table 1.1: Exact results for the wall-normal velocity profile in channel flow, adapted from Pope (2000).
U+
c is the centreline velocity, k, B and B1 are constants.

name asymptotic range empirical range U+

viscous sub-layer y+ � 1 0 < y+ < 5 y+ (1.21)

logarithmic law y+ � 1, y � 1 y+ > 30, y < 0.1
1

k
log(y+) +B (1.22)

velocity-defect law y+ � 1, y � 1 0.1 < y < 0.3 U+
c +

1

k
log(y)−B1 (1.23)

c. Universality of the velocity profile

The velocity profile in the near-wall layer, scaled in wall units as U+(y+) is called “law of the
wall” and applies to all the wall-bounded canonical flows (channel, pipe and boundary layer) and
to any flow that can be locally approximated by one of the above. This property of U+(y+) (and
other statistics e.g. the Reynolds stresses) is called universality. In boundary-layer flows, this also
implies self-similarity along the spatially-developing direction. The constants of the logarithmic
law are universal and determined empirically as k ≈ 0.41 and B ≈ 5.2. The discrepancies
observed in experiments and simulations across different flow types can be corrected based on
the influence of the pressure gradient proposed by Luchini (2017) that retrieves the law of the
wall. The intercept constant B depends on the type of boundary condition and changes when the
boundary conditions are modified such as in presence of wall surface roughness or flow control
for drag reduction.
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1.3.3 Skin-friction and drag

Using the wall-shear stress and the bulk velocity, the skin-friction coefficient Cf can be defined
as:

Cf =
2τ∗w
ρ∗U∗2b

, (1.24)

where τ∗w is the mean wall shear-stress and U∗b is the bulk velocity, defined in Section 1.3. Cf is
the ratio of the resisting force to the flow bulk kinetic energy and can be thus understood as a
measure of the (in)efficiency of the flow. The physical effect quantified by Cf is called “frictional
drag”, “skin-friction drag” and the sub-field of fluid mechanics concerned with the reduction of
Cf is called “frictional drag reduction”, “skin-friction reduction”.

For turbulent flow in plane channels, several experimental measurements of Cf exists, such
as Dean’s correlation in square ducts (Dean, 1978) that reads:

Cf = 0.073Re
−1/4
b , Cf = 0.0336Re−0.273

τ . (1.25)

An useful relation between the skin-friction and Reτ can be derived (Gatti and Quadrio, 2016)
using the definition of the friction coefficient, and substituting the velocity profiles (1.22)-(1.23),
which reads: √

2

Cf
=

1

k
logReτ +B +B1 −

1

k
. (1.26)

The above relation applies well to the skin-friction dependence if Reτ is high enough for the
velocity to agree well with the logarithmic profile. Another important definition is that of mean
pumping power or mean energy flux (per unit wall area), that is expressed in non-dimensional
terms as:

Pp = 2τwQ = CfU
3
b . (1.27)

a. Drag reduction

This study is primarily concerned with decreasing Cf through various flow-control methods,
usually consisting in modifications to the boundary conditions (see Sec. 1.2 for a review). The
performance of such techniques is measured by a quantity called “frictional drag reduction”,
defined as the reduction of the skin-friction coefficient relative to the uncontrolled case and
usually expressed in percent:

R(%) = 100 ·
C0
f − Cf
C0
f

, (1.28)

where C0
f is the skin-friction coefficient of the uncontrolled flow and C0

f of the controlled flow. In
this work and in the literature, frictional drag reduction is simply referred to as “drag reduction”,
even though in practical engineering cases the total hydrodynamic drag includes other phenomena
other than skin-friction, primarily form drag due to the curved geometry of real-world solid
bodies.

b. Forcing paradigm

When a comparison is carried out between the controlled and the uncontrolled channel or pipe
flow, a choice has to be made regarding how to impose the forcing. Typically, the two possibilities
are to drive the controlled flow maintaining either the same pressure gradient or flow rate of the
uncontrolled flow (Hasegawa et al., 2014). The first is known in the literature as constant-
flow-rate (CFR) forcing and the second as constant-pressure-gradient (CPG) forcing. While the
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difference does not matter for a single flow case, for which the flow rate is uniquely determined by
the pressure gradient and vice versa, it does when a comparison is made between the controlled
and uncontrolled case. At CFR, Reb is by definition constant, therefore if R > 0 then Reτ
decreases and thus the mean pumping power Pp decrease. At CPG Reτ is by definition constant,
therefore if R > 0 then Reτ decreases and thus Pp increases. It is useful to introduce the
definitions of drag reduction when the channel flow is driven by a constant-flow-rate (CFR) and
a constant-pressure-gradient (CPG), respectively:

RCFR(%) = 100 · τw,0 − τw
τw,0

(1.29)

RCPG(%) = 100 ·
U2
b − U2

b,0

U2
b

. (1.30)

In this work, as it is done in the majority of the numerical literature, CFR forcing is used.
The forcing paradigm also bears consequences on the numerical simulation of the flow, owing

to the finite size of the fluid domain. For CFR forcing, in order to keep Ub constant at all times,
the gradient Px must be adjusted instantaneously to counteract the fluctuation of the skin-friction
that arise due to the incomplete statistical convergence of spatial fluctuations. Using CFR results
in a shorter transition time to the fully turbulent state compared to the CPG approach (Oliver
et al., 2014) and is convenient for drag-reduction studies.
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Chapter 2

Direct Numerical Simulation of
turbulent channel flow

In this Chapter, the numerical techniques and computational procedures adopted for the simu-
lation of turbulent flow in a plane channel on state-of-the-art high-performance computers are
described and motivated. A simulation of a reference plane-channel flow case is carried out and
its outcome validated. Section 2.2 gives an overview of Incompact3D, the computer code that
is used to efficiently simulate turbulent channel flow on high-performance computers. Section
2.1 applies Incompact3D to the numerical solution of plane channel flow, motivates its numerical
set-up and compares the results with sources from the literature. In Section 2.3, a short account
of the methods used to extract statistics from the simulation data is given.

2.1 Direct Numerical Simulation of turbulent flow

The goal of this section is to provide an overview of the procedures adopted to perform the
numerical simulations that are used to investigate the model channel-flow problem and generally
all the research problems discussed in the later chapters.

All the flow cases presented in this work are carried out through Direct Numerical Sim-
ulation (DNS). The term ‘direct’ means that the Navier-Stokes equations are discretised and
integrated in their natural form, resolving numerically the entire range of spatio-temporal scales
that characterise the turbulent fluctuations. DNS is distinguished from other techniques, such as
Large Eddy (LES) or Reynolds-averaged Navier-Stokes (RANS) simulations, that use models of
varying degrees of sophistication to avoid the computation of a certain range of scales and thus
achieve a computational advantage. For example, LES uses coarser grids and sub-grid models
to avoid the computation of the smallest scales (Meneveau and Katz, 2000), while RANS use
turbulence models (Wilcox, 2006) to solve directly for the mean flow, avoiding the computation
of fluctuations altogether and allowing much coarser grids and larger time-steps than a DNS.

Historically, Direct Numerical Simulations (Moin and Mahesh, 1998) were introduced in the
work of Orszag and Patterson (1972) for homogeneous isotropic turbulence with tri-periodic
boundary conditions at low Reynolds number. The first true channel-flow DNS is the seminal
work of Kim et al. (1987) that, similarly to earlier work, used a spectral method for spatial
derivatives. Finite-difference methods started to be employed later because they offered smaller
aliasing errors than spectral methods, albeit with reduced spectral resolution. A major advance-
ment in finite-difference techniques came with the introduction of compact schemes (Lele, 1992)
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that made possible for the large grid size requirements of standard finite-difference schemes to
be reduced.

This section is organised as follow: Section 2.1.1 explains the numerical methods of the
solver Incompact3D and Section 2.1.2 provides an introduction to parallel computing and the
parallelisation technique used by Incompact3D.

2.1.1 The Incompact3D solver

In order to simulate the flow physics using finite digital computers, the continuum-mechanical
problem (1.4) is approximated through a numerical method. A numerical method consists of
i) finite temporal and spatial domains, ii) a discrete version of the PDEs and the boundary
conditions (Quarteroni et al., 2010). The type and discretisation depends on both the physics of
the problem and the numerical techniques adopted.

The simulations in the present work are carried out using the open-source Incompact3D
solver. Incompact3D is a finite-difference based, highly parallel code that is capable of DNS and
LES of incompressible flows1on Cartesian grids. A detailed description of the solver is outlined
in the papers Laizet and Lamballais (2009) and Laizet and Li (2011). Here we provide a brief
review of the code as applied to the plane channel flow problem (1.4).

Incompact3D discrete spatial domain consists in an orthogonal, partially stretched Cartesian
grid. The domain R× [0, 2]×R of (1.4) is approximated by a finite domain called computational
grid or mesh and defined as:

{xi}nx
i=1 × {yj}

ny

j=1 × {zk}nz

k=1

with x1 = 0, y1 = 0, z1 = 0, xnx+1 = Lx, yny
= 2, znz+1 = Lz,

(2.1)

where the indexes i, j, k are integers. Along x and z the grid is uniformly spaced i.e. ∆x =
xi+1 − xi and ∆z = zk+1 − zk are constants. Along the wall-normal direction the grid is
stretched, meaning that the grid spacing depends on its location as ∆yj = yj+1− yj . In general,
a non-uniformly spaced sequence of points can be defined by a mapping yj = h(sj) where {sj}ny

j=1

has a constant spacing. More precisely, yj is non-uniformly stretched i.e. h(sj) is non-linear. The
use of a stretched grid along the wall-normal direction of a turbulent channel or pipe flow can
lead to a significant reduction of the grid size with respect to a uniformly-spaced grid. Stretching
is possible because the wall-normal spatial scales are about ten times smaller in the near-wall
region than at the centreline. Incompact3D is capable of working with computational grids that
are non-uniform along one direction. As Incompact3D solves the pressure in spectral space (see
Section a.), the functional form of h is constructed (Cain et al., 1984) to reduce the computational
cost of calculating the the FFT on a non-uniform grid (which would generally entail a very costly
convolution product across all wavenumbers). h is adjusted by varying a single parameter, called
β, that controls the stretching along y and determines the size of the near-wall and the centreline
spacing.

The grid size defines the discrete domain in spectral space i.e. the sequence of wavenumbers
that can be ideally resolved on the grid. For instance, the spectral domain along the x direction
is

{κl}nx/2−1
l=nx/2

with κl =
2πl

∆x
. (2.2)

Therefore, the 2π/Lx is largest wavenumber and κl = πl/∆x is the smallest Nyquist wavenumber.
The discrete temporal domain consists in a finite sequence of time points {tn}Nn=1, uniformly

spaced by ∆t.
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The choice of the computational grid parameters Lx, Ly, Lz,∆x, ∆yj , ∆x, ∆t depends on
both the flow physics and the numerical methods adopted as discussed in greater detail in the
next paragraphs.

a. Description of the solver

Algorithm 1 is a pseudo-code representation of Incompact3D’s time-advancement loop. The
Incompact3D Fortran subroutine names corresponding to each algorithmic step are also reported
as comments.

Before entering the time-advancement loop (Step 0), the algorithm reads in an initial condi-
tion, which can consist of a laminar velocity field perturbed by noise (used to produce a turbulent
state) or a previously-generated turbulent flow field (when e.g. resuming a simulation or applying
new forcing/BCs). The random perturbation unoise is defined as:

unoise = sA exp

(
− (y − h)2

5

)
(2.3)

where s is a uniformly distributed random vector in [0, 1] and A is the noise intensity. The above
expression modulates a white-noise perturbation onto a Gaussian profile. The components of
the velocity-gradient tensor are also initialized with the same perturbation.

In Step 1, the forcing Fn+1 is applied to the previous-step velocity field. For the reference
channel flow problem (1.4), different forcing strategies are possible: the two most common in
drag-reduction studies are the constant-flow-rate and the constant-pressure-gradient forcing. In
the latter case, the pressure gradient is constant at every time-step and equal to the Poiseuille
pressure gradient. When a constant flow rate is required, a uniform streamwise pressure gradient
is applied at every time-step, which in non-dimensional form reads:

Gn+1 =

{
Qn −Q

∆t
, 0, 0

}
, (2.4)

where ∆t is the time-step size, Qn is the average flow rate of the previous-step flow field and
Q = 4/3 is the target Couette flow rate.

Step 2 calculates the spatial derivatives of the momentum equation. The terms Hn in Step
2 contains all the convective terms in their skew-symmetric form:

Hn
i = −1

2

(
∂

∂xi
(uniju

n
ij) + unj

∂uni
∂xj

)
, (2.5)

where the repeated-index notation is used. The skew-symmetric form is used because of its
energy-preserving properties in presence of aliasing errors (Kravchenko and Moin, 1997). The
term Fn groups the all the compact-finite-difference discrete form of the spatial terms and there-
fore a big-o error term is also shown.

b. The fractional-step method

Incompact3D uses as a variant of the fractional-step method as the time-advancement algorithm
of the Navier-Stokes Equations. The fractional-step method (Chorin, 1968) addresses the prob-
lem of enforcing the incompressible continuity condition which is an instantaneous, kinematic

1Several variants of the code for different types of flows exist and are available at the main code repository
https://github.com/xcompact3d, including compressible and free-surface flows.
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constraint and therefore cannot be naively decoupled from the momentum equation. To achieve
this, the fractional-step method splits a time step into two parts: the first evolves the velocity
field without preserving incompressibility, the second restores incompressibility by applying a
pressure correction.

The four steps that are marked with a star in Algorithm 1 correspond the fractional-step
time-advancement, where the actual physics is computed. The remaining steps are preliminary,
intermediate, or I/O operations. Following Algorithm 1, the structure of the fractional-step
method reads:

3?: integrates the associated compressible problem i.e. the time- and space-discrete approx-
imation of the momentum equation together with the Dirichlet boundary conditions of
(1.4). There is no pressure gradient and the resulting ∇u∗∗ 6= 0

4?: corrects the Dirichlet boundary conditions in order to prevent the build-up of a O(∆tα)
error at the solid boundaries, where α is the order of the time-advancement scheme (in the
present case, α = 2).

6?: solves the Poisson problem for the numerical pressure π. With respect to the numeri-
cal solution, this is the trickiest step: more background and discussion on the numerical
treatment of pressure is given in Section e..

8?: subtracts the correction −∆t∇pn+1 from u∗∗ to obtain the incompressible solution un+1.
This step is usually called “projection step” because mathematically, it projects u∗∗ into
a divergence-free functional space by subtracting its component.

It can be shown that the pressure in a fractional-step method converges as O(∆t/Rep).
The next paragraphs examine more closely the numerical properties of the temporal and

spatial discretisation and the Poisson problem for the pressure.
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Algorithm 1 Incompact3D’s time-advancement loop.

0: un∗ = Up + noise [read un∗] . initial condition init() [or restart simulation with restart()]

for n ≤ N do

1:
un − un∗

∆t
= Gn+1 . apply pressure gradient channel()

2: Fn +O(∆x6) = −Hn +
1

Re
4 un . spatial derivatives convdiff()

3?:
u∗ − un

∆t
=

3

2
Fn − 1

2
Fn−1 + B.C. . time advancement intt()

4?:
u∗∗ − u∗

∆t
= ∇pn . pressure correction for BC pre correc()

5: ∇ · u∗∗ . calculate divergence divergence()

6?: 4pn+1 =
1

∆t
∇ · u∗∗ . solve poisson decomp 2d poisson stg()

7: ∇pn+1 . calculate pressure gradient gradp()

8?:
un+1 − u∗∗

∆t
= −∇pn+1 . projection step corgp()

9: optional output to disc. . VISU INSTA() and others

end for

c. Temporal discretisation

The time-advancement is fully explicit and uses a 2nd-order Adams-Bashforth scheme, which is
a two-step, linear time advancement scheme. Implicit methods are generally uncompetitive for
DNS because of the small time-step sizes that are needed to resolve the small scales and sustain
a turbulent state (Moin and Mahesh, 1998). Given a general first-order system u′(t) = f(t), its
discrete AB2 time advancement reads:

un+1 = un + ∆t

(
3

2
fn − 1

2
fn−1

)
(2.6)

which applied to the semi-discretised momentum equations gives (3?) step in Algorithm 1. The
choice of the time-step size ∆t must ensure that i the time-advancement scheme is absolutely
stable (Quarteroni et al., 2010), ii the smallest physical time-scales are adequately resolved and
iii the computational cost is optimised. In order to meet the condition iii), the time-step must
be as large as possible while ensuring that conditions i) and ii) are still satisfied. such as the
non-linear Runge-Kutta scheme which Runge-Kutta schemes allow larger time-step sizes. but are
more computationally intensive, therefore at the small time-step sizes needed for a fully-resolved
DNS, AB2 smaller computational costs.

For the simpler case of periodic BC in all directions, the limits for absolute stability of the
compact 6-th order scheme 2.8 coupled with the AB2 time advancement are given in Lele (1992)
for the case of a purely advection and diffusion equations, respectively:

∆t ≤ ∆x

Uc

σi
1.989

; ∆t ≤ ∆x2

ν

σr
6.857

(2.7)
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where σi is the CFL number and σr is the Péclet number. The CFL (convective) condition
dominates. These formulas are used to make first guesses on ∆t, based on the ∆ymin and
considering σi = 0.1, but the final value of ∆t is obtained heuristically by running a number of
short simulations and seeking the smallest possible stable time-step size (see Table 2.2 for the
values used in the reference channel case (1.4)).

d. Spatial derivatives

The discretisation of the spatial derivatives is obtained through compact finite differences schemes
(Laizet and Li, 2011; Lele, 1992). In the following, we discuss the motivation for the use of
such schemes and illustrate their definition and numerical properties (Lele, 1992). In general,
four characteristics of a spatial discretisation scheme have to be considered for turbulent flow
simulation:

(a) formal order of accuracy: this corresponds to the order of the truncation error of the finite
approximation.

(b) spectral resolution: this requirement is a critical for DNS, where all the physically rele-
vant small scales have to be resolved by the computational grid. The main reason of the
widespread use of spectral methods in DNS codes is that they allow the maximum resolv-
ing efficiency (down to the Nyquist frequency of the grid) without numerical dissipation.
Given equal spatial resolution, a finite difference scheme always has lower resolution in the
high wavenumber range, due to its inherently local nature that acts as a low-pass filter.
However, for the same reason FDs also suffer of less severe aliasing errors than spectral
methods.

(c) versatility to adapt to different/complex boundary conditions. Spectral methods present
constraint on the geometry, mostly periodic or semi-periodic. Finite differences instead
allow the use of more complex geometry and boundary conditions.

(d) computational cost: due to the non-linear nature of the convective terms, finite differences
are computationally cheaper than (pseudo-)spectral methods. The spectral approach is
very efficient for linear problems such as the Poisson equation, and is therefore used in the
treatment of pressure.

Compact finite differences offer many advantages with respect to the above points. Compact FD
are capable of higher spectral resolution than normal FD schemes while also ensuring very low
dispersive errors. At the same time, they maintain the flexibility of the FD schemes to adapt to
complex boundary conditions. Incompact3D uses the following central compact scheme for the
first derivatives:

αf ′i+1 + f ′i + αf ′i−1 = a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
, (2.8)

where α = 1/3, a = 14/9 and b = 1/9. The highest-order term of the truncation error for the
above approximation is 4f (7)∆x6/7!, making it formally sixth-order accurate while using only
five stencil points. The implicit relation 2.8 constitutes a tri-diagonal system Af ′ = b that can
be efficiently inverted using O(N) algorithms. On a non-periodic boundary (e.g. a solid wall),
the wall-normal derivative can’t be evaluated through a centred scheme, therefore the following
one-sided, third-order accurate scheme is used:

f ′1 + 2f ′2 =
−5f1 + 4f2 + f3

2∆x
. (2.9)
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On the first point above the boundary fi−2 is not available and a three-point, fourth-order scheme
is used. Similar relations to (2.8) and (2.9) can be derived for second derivatives that preserve
the same sixth and third order of accuracy respectively.

The spectral resolution of several finite-difference schemes can be assessed (Lele, 1992) through
the normalised wavenumber:

wl =
2πl∆x

Lx
=

2πl

nx
, −nx/2 < l < nx/2− 1. (2.10)

Using wl, the spectral resolution of a first-derivative FD scheme can be evaluated by considering
the Fourier series expansion of a periodic function f and its derivative in spectral space. The
exact Fourier coefficients of the first derivative iwlf̂l are compared to those given by the Fourier
series of its FD spectral approximation, that can be written as iw′lf̂l. The graphs in Fig. 2.1
show w′(w) for first-derivative schemes, including the exact spectral differentiation (a straight
line) and the FD approximation (2.8).

Figure 2.1: Plot of the modified wavenumber of several first-derivative finite difference approximations
from Lele (1992). The curve (a) is the standard second-order central difference, the curve (c) a standard
sixth-order central difference and the curve (e) is the sixth-order compact scheme (2.8).

e. Pressure treatment

The pressure p is stored on a mesh that is staggered by one half grid spacing with respect to the
velocity mesh in order to avoid the odd-even decoupling phenomenon. The odd-even decoupling
is a classical issue in computational fluid mechanics, that arises when central differences are
used on a collocated grid (i.e. both p and u on the same grid). When solving the Poisson
equation on a collocated grid, velocity and pressure are decoupled and spurious oscillations (the
“checker-board effect”) may arise, leading to instabilities. Computing the pressure gradient on
a staggered grid greatly reduces this effect. Solving the pressure on a staggered grid entails
two interpolation operations, one before solving the Poisson equation and one after computing
the pressure gradient to perform the velocity correction on the collocated grid. Interpolation is
through a that also requires solving to a tri-diagonal system.

The Poisson equation in Step 6? is solved in spectral space, which is computationally con-
venient as it is a linear problem. The actual solution of the Poisson equation only entails one
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division per Fourier mode to be solved in spectral space:

p̂n+1
lmn =

D̂lmn

Flmn
(2.11)

where D̂ is the Fourier transform of ∇ · u∗∗ and F are coefficients that depend on the spatial
discretisation and the boundary conditions and the indexes l,m, n are the discrete points of the
staggered grid.

The entire procedure entails: 1) interpolating ∇un (Step 5) on the staggered grid, 2) calcu-
lating its 3D Fourier transform, 3) solve (2.11) and 4) calculate inverse FT of π 5) interpolate
π on the collocated grid. The spectral approach based on 3D Fourier transforms is perfectly
adapted to periodic boundary conditions, however is has to be modified in case of the Neumann
BC ∇πy = 0 that is used on solid walls2. In that case, a Cosine transform is used along the
wall-normal direction. The use of this technique introduces and additional error, reducing the
spatial accuracy on the boundary to O(∆y2).

The Discrete Fourier Transforms are computed using a Fast Fourier Transform (FFT) al-
gorithm, with various FFT implementations available in Incompact3D (see Section e.). FFTs
are algorithms that reduce the computational complexity of computing a discrete Fourier trans-
form to O(n log n) floating-point (additions and multiplications) operations (Ferguson Jr., 1982),
where N = nx×ny×nz is the total number of grid points. The FFTs remain the single most com-
putationally intensive step of the whole algorithm.

f. Immersed Boundary Method

The Immersed Boundary Method (IBM) is a numerical technique used to model a solid body that
is located inside the fluid domain (Parnaudeau et al., 2004). The term “immersed boundary”
means that the solid surface is not modelled through a conventional boundary condition but
through the specification of a local velocity field u0 that results in no-slip and/or no-penetration
conditions on the desired surface within the fluid. In the IBM terminology, u0 is called “target
velocity”. The target velocity is realised by modifying the discrete integration of the Navier-
Stokes equations (Step 3 in Algorithm 1) as:

u∗ − un

∆t
=

3

2
Fn − 1

2
Fn−1 −∇pn + f̃∗ (2.12)

The ad-hoc forcing term f̃∗ is specified by:

f̃∗ = e

(
−3

2
Fn +

1

2
Fn−1 +∇pn +

u∗0 − un

∆t

)
(2.13)

where the mask function e(x) is e = 1 at the grid points in the interior of the solid region and
e = 0 outside. The simplest choice of a target velocity is to set u0 = 0. The result of this
procedure is to obtain that in the solid region u = 0 to same order of accuracy of the time
advancement.

The choice of the simple forcing u0 = 0 generates discontinuities in the velocity gradients
when high-order finite differences are used (Parnaudeau et al., 2004).

2.1.2 High-performance computing

The term high-performance computing is used to describe the hardware and software technolo-
gies developed to solve large-size computational problems as rapidly as possible. The computing
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paradigm also bears important consequences for energy efficiency of the computation (Zwart,
2020). The size of a computational problem can be defined by the number of elementary arith-
metical operations that are required for its solution. This leads to the definition of Floating
Point Operations per Second (Flop/s) as a measure of computational performance for scientific
applications. The amount of volatile memory and the amount of data read or written to storage
memory are also critical factors to determine the performance of a machine in executing a given
program. A problem such as the turbulent channel flow outlined above entails a number of
elementary operations of the order of 1015. In the following paragraphs, we outline some basic
ideas of digital computer performance and discuss the realisation of high-performance computing
systems.

The execution time ET of a program (ORNL, 1995) is the product of the number of instruc-
tions to execute ni, the clock cycles per instruction CPI, and the time per clock cycle tc:

ET = ni × CPI× tc (2.14)

The last two factors depend entirely on the design of the CPU. tc is lower in smaller circuits,
that are made possible by advancements in material science and manufacturing techniques and
also depend on the chip organisation. The CPI count is a matter of engineering at the micro-
architecture level, depending on the instruction set architecture of the CPU and the adoption of
techniques such as instruction-level parallelism and instruction pipelining (ORNL, 1995). Since
scientific calculations are generally performed on general-purpose, commercial CPUs, the critical
factor to computational performance is typically the reduction of ni, which can be achieved
through more efficient algorithms, better compilers and through parallelisation. For well-known
computational problems, highly optimised numerical algorithms are already available that reduce
the number of operations required to solve a problem of a given size (for example, the FFT
algorithms discussed in Sec. 2.1.1).

However, very large-size problems such as channel flow DNS would still take tens of thousands
of hours to be solved on a single processor, even using state-of-the-art chips capable of very low
CPI and tc. Therefore, a significant reduction of ET for large-size problems can often only be
achieved by parallelisation, that consists in splitting the program into many independent parts
which are executed on many processors concurrently, resulting in a lower ni per each individual
processor. The speed-up obtained when executing a program requiring N operations on P
processors is measured as:

SP =
ETserial

ETP
. (2.15)

where the serial execution time ETserial corresponds to (2.14) with ni = N and the parallel
execution time EP is:

ETP = ETcomp + ETcomm + ETsync + ETI/O (2.16)

where the computation time ETcomp is (2.14) with ni = N/P , plus the time needed to execute
the parts of the program that cannot be parallelised. The other two terms account for the
time spent in exchanging data between the different processors (ETcomm) and the time spent
synchronising the processors when required by the algorithm (ETsync). Moreover, the time
ETI/O spent performing I/O operations is to be accounted, and depends on the data transfer
speed of the hardware. In large-size problems ETI/O can represent a large fraction of the total
computation time. Under ideal circumstances (no communication overheads and fully parallel
program) the speed-up equals the number of processors, but in real-world applications SP < P .
In order to better understand these performance concepts, we briefly consider the practical design
of parallel computers.
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a. Distributed-memory parallelism

The most convenient way of building a highly scalable parallel computer is the so-called distributed-
memory architecture, schematized in Figure 2.2a. A distributed-memory machine consists of
many (typically identical) independent computers, called nodes, that are interconnected in a
network through which makes possible the exchange of data. Each node sees the others uniquely
through input/output signals sent over the network following an appropriate communication
protocol. This architecture can be scaled up simply by building a larger network with more
nodes.

The major performance bottleneck of this architecture is due to the latency occurring in
the exchange of data from one node’s memory to another, corresponding to ETcomm in (2.16).
To reduce latency, several design aspects have to be considered, the major ones being the net-
work topology, the interconnect technology, and the software protocols used to organise the ex-
change of data between the nodes, called message passing standards. Specialist, high-bandwidth
(> 10Gbit/s) interconnect technologies are necessary for the largest supercomputers with tens
of thousands of processors. Examples of network topologies are the simple ring, fully connected,
butterfly, or the dragonfly topology used in the Archer supercomputer. In most modern topolo-
gies the nodes are connected hierarchically to reduce the total number of connections.

In the next section we are going to examine more closely the message passing standards,
which is the most relevant aspect for developers and users of parallel scientific applications such
as Incompact3D.

(a) (b)

Figure 2.2: Distributed-memory architecture. (a) schematic of a 4-node distributed-memory machine
(from ORNL, 1995): P = processor, M = memory, K = network interfaces, PE = node, black line =
local interconnect (BUS), grey line = network interconnect. The interconnect topology is of the ring
type. (b) schematic of a message-passing computation on 4 processes from EPCC, 2016-2020.

b. Message Passing Interface

The execution of computations on a distributed-memory machine requires a message passing
protocol to manage data transfer to and from remote memory locations. Figure 2.2b shows a
program executed in parallel on four processors. During the computation, the machines exchange
data (symbolised by the horizontal arrows) at different points in time according to what required
by the code.

The Message Passing Interface (MPI) is a specification that defines a communication model
for distributed-memory computers. MPI is the de-facto industry standard in parallel computing,
allowing the development of portable applications. Several libraries exist that implement the MPI
standard for a variety of programming languages including Fortran and C, such as OpenMPI or
MPICH. MPI defines a set of processes, that typically correspond to the physical cores being
used to execute the program. The workload is distributed among these processes, that can only
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operate on local variables in their memory space. Processes can not access each other’s memory
spaces, but communicate data by passing messages over the network between a send and a
receive buffer. Regardless of any form of memory sharing such as multi-core or multi-socket
systems, MPI considers each core as a fully independent process, communicating via message
passing. Messages can be passed between two individual processes, in what are called point-to-
point communications (such as those in Fig. 2.2b), or can take place between several processes
simultaneously, which is the case of collective communications. Moreover, data from several
processes can be reduced to a single result by performing a global mathematical operation. MPI
subroutines are called at the appropriate points in the program source code, meaning that each
communication must be explicitly defined by the programmer.

An example of an MPI subroutine is the global sum reduction that is used to implement
the coupled boundary conditions in Chapter 4. What follows is an example of its syntax with
minimal context:

USE MPI !loads the MPI library

MPI_INIT ()

...

MPI_ALLREDUCE(SENDBUF , RECVBUF , COUNT , DATATYPE , OP , COMM , IERROR)

...

The subroutine MPI INIT initialises MPI and creates the communicator COMM, which defines
a communication environment shared among all the processes. COMM groups the N processes
together in a global space and orders them from 0 to N − 1, a number known as the process
“rank”. SENDBUF and RECVBUF contain respectively the local variables that have to be sent and
their destination in the remote machine’s memory. In this case, MPI ALLREDUCE is a collective, all-
to-all communication, therefore a send and a receive buffer exist on all the processes in COMM. OP is
an object that specifies the type of global operation to be performed e.g. MPI SUM. COUNT specifies
how many elements of type DATATYPE are in the send buffer. The function MPI ALLREDUCE is a
synchronous operation, meaning that messages are passed and the sender process stays in stand-
by until the operation has completed. Synchronous communications affect the term ETsync in
(2.16).

c. HPC systems

The parallel simulations were carried out using two specialised systems of different computational
capability. The “Archer” system is the UK’s national (Tier-1) supercomputer located at the
University of Edinburgh, while the Sheffield Advanced Research Computer “ShARC” is the
local (Tier-3) HPC cluster at the University of Sheffield. The main specifications of the two
architectures are listed in Tab 2.1.

ShARC was used to perform preliminary or moderate-size simulations, typically requiring
resources for about 1000 core-hours. Archer was used for the majority of the computationally
demanding cases, with the median case requiring around 6,000 core-hours and largest cases more
than 10,000 core-hours. Access to the ShARC compute nodes is unlimited for UoS researchers,
while access to Archer is granted through fixed-budget calls issued every six months by the UK
Turbulence Consortium (https://www.ukturbulence.co.uk/). Both systems adopt the PBS
job scheduler (https://www.openpbs.org/) to manage submission queues.

26

https://www.ukturbulence.co.uk/
https://www.openpbs.org/


Chapter 2 2.1. Direct Numerical Simulation of turbulent flow

Table 2.1: Specifications of the two HPC systems used to perform the simulations presented in this work.

Archer ShARC

Machine Cray XC30 Dell PowerEdge C6320
CPU model Intel Xeon E5-2697 v2 Intel Xeon E5-2630 v3
Clock frequency 2.7 GHz 2.40 GHz
No. nodes 4920 98
CPUs per node 2 2
Cores per CPU 12 8
Total no. cores 118,080 1,568
Memory per node 64 GB 64 GB 1866MHz DDR4
NUMA domains per node 2 2
Interconnect Cray Aries Intel Omni-Path
Storage technology SAS 12.0Gbit/s HDDs SATA 6.0Gbit/s HDDs
Benchmark performance 1,642.54 TFlop/s1 44.88 TFlop/s2

Operating System Cray Linux CentOS

The Archer system is currently being replaced by its successor Archer2, which is due to enter
service in late 2020 and will have 748,544 total cores and a peak performance of around 28,000
TFlops/s.

d. Data management

The DNS simulations produced a significant amount of data, Data in excess of 20TB were pro-
duced over the course of the development of this work. The data have been stored on two facilities:
the EPSRC Research Data Facility at the University of Edinburgh (http://www.rdf.ac.uk/)
and the local Research storage at the University of Sheffield (https://www.sheffield.ac.uk/
it-services/research-storage). The RDF facility provides a flexible amount of storage space
while Sheffield’s Research storage allocates 10TB. Both facilities provide fast data access to the
HPC clusters (Archer and ShARC respectively) and they provide some form of data redun-
dancy. The main advantage of storing data at Sheffield’s local cluster consists in the reduced
data processing latencies and remote data transfer times, as well as increased flexibility in data
management.

Data are prepared for long-term storage by collecting them into tarball archives, using LZMA
compression to reduce their size, and splitting them into multiple smaller files. Remote data
transfer were performed through the rsync utility using the Secure Shell (SSH).

e. Incompact3D’s parallel strategy

Incompact3D exhibits very good (linear) scalability on massively parallel systems (Laizet and
Li, 2011), achieved by using the 2DECOMP&FFT library (Laizet and Li (2010); http://www.
2decomp.org). 2DECOMP&FFT implements a 2D domain decomposition strategy for spatial
derivatives on Cartesian meshes, parallel Fast Fourier Transform and parallel I/O subroutines
and is based on MPI.

To compute spatial derivatives, the 3D mesh is subdivided in prow × pcol blocks as specified
by the user, each of which is assigned to a separate MPI process. The blocks are organized in

1LINPACK benchmark retrieved at https://www.top500.org/system/178188
2Double-precision matrix multiplication benchmark retrieved at https://rse.shef.ac.uk/blog/

iceberg-vs-sharc/
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a prow × pcol 2D grid, so that each processor is assigned a block in a 2D array which spans the
whole third direction of the domain. This strategy makes it possible to compute the compact
finite difference along the third direction of each block, a task that would not be possible with
a 3D decomposition because all the points along the direction of the derivative are necessary
in an implicit formulation. For example, Fig. 2.3a shows the decomposition of a cubic domain
in a 4 × 4 grid along y and z, leaving it uninterrupted along x so that each processor can
compute the x-gradients autonomously. Each block is assigned to a different processor and once
the finite difference has been calculated in parallel, the whole subdivision process is repeated
using prow × pcol blocks but spanning the y direction. This operation involves a transposing the
domain across different processors, which is a very communication-intensive process, much more
so than a halo-cell 3D decomposition. This methodology can require a large number of transpose
operations, 24 being necessary to compute the convective and diffusive terms and 16 to compute
the divergence. The transpositions are always performed sequentially i.e. from the x-pencils to
the y-pencils to z-pencils in order to reduce the number of global communication operations.
Despite the large number of communication operations, the high scalability properties of the
software makes this strategy convenient on thousands of compute cores (Laizet and Li, 2011). The
choice of prow×pcol is also critical for computational performance and the best practice outlined
in Laizet and Li (2011) recommends that max(prow, pcol) = min(nx, ny, nz) and prow = pcol.

Figure 2.3: . 2D decomposition of a computational domain into 16 parallel sub-domains, from Laizet and
Li (2011): (a) x-pencils, (b) y-pencils, (c) z-pencils. Each colour identifies an individual MPI process.

2DECOMP&FFT includes parallel ports of several Fortran FFT engines through a 1D de-
composition strategy of the domain. To perform a 3D FFT, 2 domain transpositions are used,
and the same holds for the inverse FFT. This brings the total number of communication oper-
ations for a periodic channel flow to 61. The FFT implementation can be specified by the user
at compile time: in this work, we used MKL-FFTW3 on ShARC and Cray-FFTW on Archer,
which are the versions of the well-known FFTW3 library (Frigo and Johnson, 2005) optimised
for running on each machine respectively. The native machine-optimised compilers are used
where possible, namely Intel compilers on ShARC and the Cray compilers on Archer. Perfor-
mance improvements can be sizeable: compiling the code on ShARC using Intel compilers and
MKL-FFTW3 implementation on ShARC reduces ET of 10% with respect to using gfortran

compiler and the generic FFT – the average execution time per time-step is respectively 0.076sec
and 0.085sec when run on 64 computational cores with a 8× 8 block decomposition.

Incompact3D also makes use of the 2DECOMP&FFT parallel I/O subroutines that make
possible for multiple processes to write and read to and from a single file (EPCC, 2016-2020).
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2.2 Reference channel flow

This section illustrates the numerical solution of the flow problem (1.4). The numerical param-
eters used as input to Incompact3D to realise the flow are found and motivated in 2.2.1. A
number of flow statistics is presented in Section 2.2.4. Relevant aspects of the flow physics are
highlighted in the text as the data are presented.

2.2.1 Numerical set-up

In a Direct Numerical Simulation, all the spatial and temporal scales relevant to achieve transition
to turbulence and sustain the fully-developed turbulent state must be resolved. We recall that
wall turbulence has three length-scales, i.e. the viscous length-scale δ∗ν , the Kolmogorov scale
η = (ν∗3/ε∗)1/4 (which is around η = 1.5δ∗ν at the wall (Pope, 2000)) and the outer scale h∗

(Smits et al., 2011). Ideally, the computational grid must be designed in order to resolve the
viscous sub-layer (a few δ∗ν thick), the smallest-scale and the largest-scale turbulent structures.
The longest time scale is of the order of the largest-eddy turnover time h/uτ , while the shortest
time-scales correspond to a few viscous time units δν/uτ (Quadrio and Luchini, 2003). While it
is important to ensure the resolution of the physical time-scales, the time-step size is most often
dictated by numerical stability reasons when explicit methods are used.

Table 2.2 below lists the simulation parameters used to simulate the channel flow using
Incompact3D.

The simulations are performed at a nominal Reτ = 180. As the value of Reτ is not known
in advance, the value of Rep needed to obtain Reτ can be estimated through the empirical
correlation Reτ = 0.123Re0.875

p (Pope, 2000).
Since the time-advancement scheme is explicit, the CFL stability condition must be satisfied.

The approximate CFL formula (2.7) yields ∆t = 0.0012, however we find by trial-and-error that
the larger ∆t = 0.0025 is still stable and is therefore used for these simulations.

The best practice (Pope, 2000) for DNS meshes suggests that the first near-wall point should
be located below δν and the grid spacing at the centre of the channel should be roughly equal to
∆z. This allows to resolve the near-wall viscous layer and save grid points in the nearly-isotropic
region at the centreline. The stretching parameter β and the grid count ny must be tuned to
yield a minimum spacing ∆y+

min < 1 at the wall ∆y+
max < 10 at the centre of the channel. The

choice of β = 0.25 and ny = 129 is satisfactory.
The chosen box dimensions Lx and Lz are identical to Moser et al. (1999) and are large enough

to correctly reproduce the one-point statistics (Lozano-Durán and Jiménez, 2014), especially the
wall-shear stress (de Giovanetti et al., 2016). The domain is smaller than the largest naturally
occurring scale and thus expected to be unable to resolve VLSMs.

Once the box dimensions are fixed, the grid size nx and nz are chosen, according to good
practice, such that ∆x+ ≤ 10 and ∆z+ ≤ 5. nx and nz must ideally be multiples of the
number of processors in a compute node, so that each node is fully exploited and the workload
is distributed evenly among all processors, thus avoiding communication bottlenecks. Moreover,
choosing a grid count which are small multiples of a power of 2 is generally good practice to
maximise the efficiency of the FFT algorithms.

The total integration time of the simulation Tint is the time interval over which, after reaching
steady state, the statistics are calculated. A value of 40 eddy turnovers is suggested in the
literature to produce well-converged statistics, here we pick Tint = 43uτ/h = 1000Up/h. This
means that a total of 400,000 time steps (given that ∆t = 0.0025) are required to integrate the
problem after discarding the initial transients.

A series of preliminary runs with a refined resolution (and time-step) have been carried out
and achieving an almost neglectable change in statistics, which indicates consistency. For an
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easier comparison with the data available in our group’s database, the numerical set-up in terms
of time-integration scheme, time-step and spatial resolution or stretching has been only slightly
altered from the reference channel simulation of Khosh Aghdam (2016).

Table 2.2: Simulation parameters for the direct numerical simulations of the reference channel flow.
∆y+

max is the spatial resolution in the centre of the channel, in wall units.

Rep nom. Reτ Lx Lz nx×ny×nz ∆x+ ∆z+ ∆y+
min ∆y+

max ∆t+ Tintuτ/h

4200 180 4π 4π/3 256×129×128 8.8 5.9 0.9 7.8 0.04 43

The initial-condition noise intensity A in (2.3) is set at 12% of Up. The channel is also
subjected to a rotation around the z axis for the initial 5000 time-steps, realised by introducing
(Kristoffersen and Andersson, 1993) in the momentum equation the following forcing term:

−Rok× u (2.17)

where k is the span-wise unit vector and Ro = 2ω∗h∗/U∗p is the Rossby number, a non-
dimensional parameter that specifies the ratio of the mean-shear vorticity to the background
imposed vorticity ω∗. In this simulation, the rotation intensity is chosen by setting Ro = 1/9.
The rotation is necessary to obtain the turbulent transitions from a noisy initial condition, oth-
erwise the initial noise would dissipate and the flow relaminarise.

2.2.2 Computational performance

The numerical problem defined by the parameters of Table 2.2 is specified on N = 4, 227, 072
discrete grid points and entails the execution of more than 400,000 time-steps. In Incompact3D,
its solution requires around 2×109 floating-point operations per time step or 1015 in total. The
total number of parallel communication operations is of the order of 106.

The simulation is run on the ShARC system (Tab. 2.1) using 64 individual cores on 4 compute
nodes. The domain is decomposed into 8×8 blocks, as an equal number of columns and rows is
generally recommended to maximise performance (see Sec. e.).

The problem takes a total of 8 hours and 26 minutes to compute, equivalent to an average
0.07 seconds per time-step and an average computational performance of around 32 GFlop/s.
The volatile memory usage amounts to 6GB. The storage memory requirement is 67GB, needed
to write to disc 2000 double-precision arrays (4 scalar arrays every 1000 time-steps), each of size
256×129×128 = 4227072.

2.2.3 Verification and validation of computational simulations

In general, performing numerical simulations of a physical system entails a verification step
and a validation step. Borrowing Roy (2005) definitions, “verification deals with mathematics
and addresses the correctness of the numerical solution to a given model. Validation, on the
other hand, deals with physics and addresses the appropriateness of the model in reproducing
experimental data.”

a. Code verification

The first step entails code verification, that consists in satisfying the requirements of convergence
and consistency of the numerical algorithm and the correctness of the code with respect to the
underlying continuous mathematical model. Code verification is a crucial requirement that
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code developers address carefully. Generally, code verification must be carried out once and
for all integrated into the code design phase. For the Incompact3d code, the convergence and
consistency of the numerical schemes, parallel scaling and performance are illustrated in Laizet
and Lamballais (2009) and Laizet and Li (2011).

b. Solution verification

A second verification step deals with verifying that the code can correctly reproduce a known
exact solution. This might not be the case even when the code is verified due to its failure to
accurately resolve some property of the solution or the presence of numerical instabilities. There-
fore solution verification must be carried out for each specific case as it depends on the physics
to be simulated. Solution verification may entails adjusting numerical parameters such as the
spatial discretisation, the time-step size, the degree of the interpolation schemes, implicit solver
iterations and many others. In many practical cases, such as turbulent flow, an exact benchmark
is not available therefore techniques exist to asses the numerical error in terms of grid refinement,
such as the Richardson extrapolation. More detail on grid refinement in Incompact3D, including
data for turbulent channel flow, can be found in Laizet and Lamballais (2009) and Khosh Agh-
dam (2016). Section 2.2 showcases with validation by benchmarking against literature fixed-wall
data.

c. Solution validation

Solution validation refers to comparison of the exact solution against experimental data in order
to evaluate the ability of the mathematical and numerical models and their code implementation
to correctly simulate all the relevant physics. Explicit validation against experimental data is,
for the reference flows presented in this work, avoided because the numerical data of Moser et al.
(1999) are shown in the original and later publications to be in excellent agreement with channel-
flow experimental data. Since no experimental results exist for the novel drag-reduction methods
developed in this work, the appropriateness of the numerical time and spatial discretisation to
resolve the physics have to be generally compared to closely related methods such as the spanwise
waves.

2.2.4 Results

a. Convergence to the statistically steady state

The flow develops from the perturbed laminar flow to the statistically stationary, fully developed
turbulent state. The noise level and the rotation parameters are chosen, ideally, in order to
reach the stationary turbulent state in a reasonably small amount of time-steps and therefore
save computer time to collect the steady-state statistics. The stationarity of the flow is assessed
by visually monitoring several flow variables time-series3 and verifying the flow satisfies exact
steady-state equilibrium.

Figure 2.4a shows the time evolution of three quantities, the skin-friction coefficient, the total
kinetic energy of the flow and the distance of the wall-normal mean velocity V (y) from its exact
value of zero. The latter is calculated as the L2 norm of the wall-normal velocity profile as
‖∆V ‖2 = ‖〈v〉xz(y)‖2. All three variables are normalised with the steady-state mean value.

Monitoring V (y) is important to verify that the effects of the initial channel rotation have
vanished. It can be observed that after around t = 200 or 80000 time-steps the flow has reached

3Several approximate yet rigorous stationarity tests for time series also exist e.g. Dickey and Fuller (1979),
that may provide a useful tool for assessing such transient problems quantitatively.
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the stationary turbulent state. Statistics are therefore accumulated and steady-state integration
time started from t = 200.

The shear-stress profiles obtained by time and space averaging on the stationary interval
are shown in Figure 2.4b, matching the exact linear functional form expected from (1.20). The
graph is useful to visualize the separation between the viscous sub-layer and the upper inertia-
dominated layers. The so-called buffer layer occurring between the two is located in proximity
of the point yb where the viscous stresses τlam and Reynolds stresses τRSS are equal, which is
also where the peak production of turbulent kinetic energy occurs.

A number of other steady-state statistics are discussed in detail in the following sections and
compared to exact and numerical results from the literature.
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Figure 2.4: Convergence to a statistically stationary turbulent state. (a) evolution of several variables
during the initial transition to turbulence. All variables are normalised with their final steady-state mean
value. (b) viscous (Re−1

p dU(y)/dy), turbulent (−〈uv〉(y)), and total (τ(y)) mean shear-stress profiles.

b. Global parameters at steady state

Table 2.3 reports a list of the main integral parameters or functionals defined using the non-
dimensional units used in the simulation. Since the equations are scaled in outer units (UPois, h),
the definitions below can be seen as a the mapping between outer and inner units. The inner
units, wall-units or plus-units are defined based on τw and represent the characteristic scale of
dynamical variables in the near-wall region.

Table 2.3: Global functionals as computed from the simulation data.

Name Symbol Definition Mean value

Wall-shear stress τw 〈∂yU〉/Rep 1.810× 10−3

Skin-friction coefficient Cf 2τw/U
2
b 8.123× 10−3

Friction velocity uτ
√
τwRep 4.248× 10−2

Friction Reynolds number Reτ uτRep 1.785× 102

Viscous time tν Rep/Re
2
τ 1.319× 10−1

Bulk velocity Ub (1/4)
∫ 2

0
Udy 6.667× 10−1

Bulk Reynolds number Reb ReτUb/uτ 5.600× 103
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c. Local statistics

In Fig. 2.5 the mean streamwise velocity and the six components of the Reynolds-stress tensor
are plotted. The mean-velocity profile and the components of the velocity-correlation tensor
are found to be in excellent agreement with the DNS data of Moser et al. (1999) which are
shown therein to be in accordance with experimental evidence. A linear viscous sub-layer can
be observed below y+ ≈ 5 and a region with logarithmic dependence on y+ is obtained between
around 30 < y+ < 100.
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Figure 2.5: Reference channel results: velocity and Reynold-stress statistics along y. The simulation
data are plotted against Moser et al. (1999) (empty red symbols).

d. Kinetic Energy budget

The study of the turbulent kinetic energy k = 〈u · u〉/2 has an important role in turbulent flow
research. When turbulence is statistically inhomogeneous, such as over walls, studying the TKE
becomes important because its production, transport and dissipation become also inhomogeneous
and their spatial distribution provide insight on the physics occurring under to the influence of
the wall and the boundary conditions.

The evolution equation for the TKE can be derived from the Reynolds-averaged momentum
equations (Pope, 2000) and reads:

Dk

Dt
+∇ ·T = P − ε, (2.18)

where P = 〈uv〉∂yU is the power extracted locally by the Reynolds stresses from the mean
flow (called the production term) and ε = 2〈∂iuj∂jui〉/Re is the viscous dissipation of TKE in
the small-scale fluctuations. The term T is a vector representing the non-equilibrium turbulent
transport of TKE:

Ti =
1

2
〈uiujuj〉+ 〈uip〉 − 2〈ujsij〉/Rep (2.19)

the first term is the advection of TKE by the fluctuating velocity, the second is the pressure
transport and the third one is the diffusion. The term-by-term budget is reported in Fig. 2.6a,
showing good overlap with the validation data. The plot blows up on the near-wall portion, as all
the terms decay in the centre of the channel, with P and ε being slowest to decrease. The ratio
of the production to the dissipation term is plotted in Fig. 2.6b. The region where the curve
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flattens to a nearly constant P/ε ≈ 0.9 corresponds to the logarithmic layer, between about
30 < y+ < 100, where almost all k is produced and dissipated locally and spatial transport of k
is reduced. The imperfect energy equilibrium in the logarithmic layer is due to the low Reynolds
number of the flow, whereas at asymptotically high Reynolds number P/ε = 1 is expected. The
peak TKE production is located in the buffer layer at y+

b ≈ 10 where the viscous and Reynolds
shear stresses are equal (Fig. 2.4b). The maximum production can be calculated exactly as

Pmax = 1
4 (τyb/τw)
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Figure 2.6: Turbulent kinetic energy and related statistics. Current data are compared to the data
of Moser et al. (1999) (empty red symbols). (a) TKE budgets from the TKE equation (2.18). (b)
Production to dissipation ratio.

e. Two-point statistics

In this paragraph, we briefly present some two-point statistics, that are statistics of flow variables
calculated at two spatially separated locations, as opposed to the “one-point” statistics discussed
above. Two-point statistics are used to reveal the spatial structure of the velocity fluctuations
that characterise turbulent flows. The most basic two-point statistics is the two-point covariance
matrix of the velocity fluctuations:

Cij(δx, δz; y) = 〈ui(x, y, z)uj(x+ δx, y, z + δz)〉, (2.20)

that goes back to the foundational work of Kolmogorov (1941). Cij allows the study of the
spatial structure of the velocity fluctuations in terms of spatial separation δx and δx. This tool
can also be extended to spatio-temporal correlations which are important in near-wall turbulence
for the discussion of topics such as the Taylor approximation (Zhao and He, 2009).

Fig.2.7a shows that the one-dimensional streamwise correlation shown in are in good agree-
ment with the data of Moser et al. (1999) at different wall-normal heights y.

The Wiener-Khinchin theorem (Chorin and Hald, 2013) states the spatial information carried
by a two-point auto-covariance Cii corresponds, after a Fourier transform, to the power spectral
density. For example, the following Fourier transform pair holds for the streamwise kinetic energy
〈u2〉/2 :

Euu(κ) = Fδx{Cuu(δx)}(κ), (2.21)
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where Euu is the streamwise-velocity PSD, κx is the streamwise wavenumber and Fδx is the
forward Fourier transform operator. In order to visualise the scale-wise distribution of the kinetic
energy, the PSD is plotted on semi-logarithmic axes and pre-multiplied by the wavenumber to
preserve area proportionality. Figure 2.7b shows the pre-multiplied streamwise TKE spectra
Euu at two different wall-normal locations, proving good agreement with the literature data
and demonstrating the good spectral resolution of the compact FD schemes. Due to aliasing
errors, spectral codes often report a cusp at high wavenumbers (Vreman and Kuerten, 2014),
which is artificially cut off in the reference data of Moser et al. (1999) but is not present in the
Incompact3D spectra. Pre-multiplication is also useful to visualise the spectra of other energy-
related statistics, for example the PSD of the dissipation ε is Eε(κ) ∝ κ2Eii(κ) (Smits et al.,
2011) because multiplication by the wavenumber in Fourier space correspond to differentiation.

In Figure 2.7c the entire wall-normal domain is represented as a contour plot. It can be
noticed that the spectrum is incomplete at low wavenumbers due to the streamwise extension of
the computational domain, that is not long enough to resolve the largest wavelengths. The cut-off
coincides with the smallest wavenumber resolved within the computational box i.e. κx = 4π/Lx.
The spectral peak (×) lies at around y+ = 11 and κ+

x = 0.0056 , i.e. a wavelength λ+
x = 1100,

in agreement with the literature data on the streamwise length of the near-wall high-velocity
streaks.

0 500 1000
0

1

2

3

δx+

C
u
u

(a)

y+ = 5

y+ = 98

10−2 10−1

10−10

10−5

100

κ+
x

κ
x
E

u
u

(b)

y+ = 5

y+ = 98
5

98

10−2 10−1
100

101

102

κ+
x

y
+

(c)

Figure 2.7: Reference channel: two-point statistics. The present simulation data ( ) are compared
to Moser et al. (1999) ( ) . (a) Longitudinal auto-covariance functions C+

uu of the streamwise
turbulent fluctuations. (b) pre-multiplied power spectral densities E+

uu of the streamwise turbulent
fluctuations at the same wall-normal locations as (a), normalised with their maximum. (c) contour map
of κxEuu(κx, y).

The numerical spectral estimation is performed using a Fortran program that first computes
the auto-correlation function using the naive estimator (von Storch and Zwiers, 2001) and then
takes its Fourier transform using 2DECOMP&FFT’s Glassman algorithm. The program can
compute both 1D and 2D correlations and spectra: an example of the 2D spectrum can be seen
in Fig. 4.16 applied to the wall-shear stress. A better alternative to this approach, especially for
shorter 1D time-series, is provided by using the Welch estimator for 1D time-series, as done in
Section 4.4.

Other statistics of the plane reference channel flow are shown in the next chapters and applied
to the research problems. For example, fine-scale vortical structures are shown in Section 3.3.2
and their identification techniques are reviewed in Appendix 3.A. Another useful statistical tool
are the integral identities for the skin-friction budget, that are also explained in Chapter 2.
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2.3 Statistical methods

A large portion of this work relies on estimating the moments of unknown probability distri-
butions from the finite amount of data that is produced by the numerical simulations. In this
section, we review some basic concepts and good practices in statistical estimation that have
been used throughout the work to produce reliable statistics from numerical data. The basic
concepts are recalled in Section 2.3.1, criteria for sampling are described in b. and b. presents
the uncertainty quantification models.

2.3.1 Statistical estimation

An estimator is a statistics on some property of a random variable, i.e. a method used to guess
that property from a set of N observations or data, called the sample. In DNS of turbulent flows,
the objects of study are random functions of time and space, therefore the sample is typically a
time-series, a discrete spatial array or simply a collection of repeated experiments depending on
which statistically symmetries are present. Typically, the property we are interested in is some
moment µ of a probability distribution of one or more flow variables.

An estimator M for a quantity µ must converge to its true expected value as the sample size
tends to infinity, according to the Law of large numbers. This is equivalent to requiring that the
mean squared error MSE = E[(M − µ)2)] goes to zero. The MSE of the estimator M is given
by its bias B and its variance, according to the decomposition MSE(M ;µ) = B2(M) + Var(M),
where the bias is defined as B(M) = E[M ] − µ. For a random variable X with exact mean µ
and variance σ2, the estimators M for the mean and for the variance s are given by the familiar
formulas:

MN =
1

N

N∑

n=1

wiXn

sN =
1

N − 1

N∑

n=1

wi(Xn −MN )2

(2.22)

where N is the sample size and wi = 1 for uniformly spaced samples. Non-unitary weights are
used to account for sampling non-uniformity, such as in the case of the wall-normal direction
where wi = ∆yi. The estimators (2.22) are unbiased, with B = 0 for any N . The square root
of the variance estimator is called “root mean square” and is used extensively in the text. The
remainder of the MSE is given by Var(M) i.e. the uncertainty, which depends on the distribution
of X and the sample size. The uncertainty is discussed at length in Section 2.3.2.

Throughout this work, a number of other estimators are used for covariance (e.g. in Section
2.2), probability distributions (e.g. in Section 4.4), two-point correlations (e.g. in Section 4.4)
and power spectral densities (e.g. in Section 4.4). Whenever a new statistics is introduced, an
appropriate description of the estimator used will be provided.

a. Numerical estimation

The numerical aspect of statistical estimation is also of great importance (Chan et al., 1983)
for performance and stability. In DNS the computational cost of moving large files in and out
of memory can be significant and is therefore desirable that it be reduced. Welford’s algorithm
computes the mean and variance estimators (2.22) accessing each data point only one time and
ensuring good numerical properties (Chan et al., 1983): General one-pass algorithms for arbitrary
higher-order moments also exist, see Pebay (2008).
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b. Optimal time sampling

Run-time data storage affects ETI/O slowing down the simulation and leads to high disc space
utilisation, especially if large double-precision arrays are stored very frequently. It is therefore
important to reduce data writing to disk to the essential.

In this work, most of the data processing has been postponed after the simulation and only
the three velocity components and the pressure are stored to disc. Spatial gradients and other
costly spatial operations have been executed in post-processing through the same high-order
compact finite difference schemes of the solver.

Another aspect that has to be carefully considered is the sampling rate, which ideally has
to be reduced as much as possible, bringing the write-out period Tout to the minimum without
compromising the quality of the statistics. Since a turbulent time-series is always correlated
in time, sampling at a very small Tout is not convenient because it does not contribute to the
information content of the sample. The minimum Tout can be understood as either: a) the
smallest interval of time for which the shortest-correlated flow variable is uncorrelated, b) the
smallest interval of time for which the longest-correlated flow variable is uncorrelated. The first
is the best choice if one wants to minimize uncertainty for the shortest-correlated variables,
and has been used here for time-series obtained through high-sampling-rate probing of certain
variables such as the wall gradient or the unsteady disc velocity in Chapter 4. Choice b) is
more reasonable for whole-field snapshot sampling of a stationary flow, because it ensures a
similar quality to the statistics of flow variables while minimising ETI/O and disc utilisation.
These scales can be determined in a preliminary study upon reaching the statistically steady
state. We refer to Zhao and He (2009) who carried out DNS investigations of the space-time
correlations in channel flows at Reτ = 180. The integral time-scale grows closer to the wall and
reaches values around 30 t+, which is taken as the sampling interval. The same value of 30t+ is
calculated from the reference channel simulations of Section 2.2. The time-step expressed in wall
units is ∆t+ = 0.04, therefore saving to disk every ∼ 760 time-steps in order to work with well
uncorrelated data, however for practical reasons the sampling is performed every 1000 time-steps
which ensures even more independence.

2.3.2 Uncertainty quantification

When performing a DNS of a turbulent flow, it is highly beneficial to have an estimate of the
uncertainty on the statistics of interest. Uncertainties in DNS data stem from the finite numerical
accuracy and from sampling errors (Roy, 2005). Numerical errors are inherent to the spatial and
temporal discretisation, while sampling uncertainty depends on the sampling frequency for the
statistics and the total integration time. The total steady-state integration time Tint of the
simulation shall be long enough to collect good-quality statistics but also as short as possible
in face of limited computing resources. As evident in the definitions (2.22), the choice of the
time-averaging interval and the number of samples affect the accuracy of the estimator. It is of
interest to give bounds on the uncertainty of a statistics, in the form of confidence intervals.

We discuss here the sampling uncertainty quantification procedure for the mean of the
spatially-averaged wall shear-stress 〈τw〉(t) as an example. The confidence interval for an es-
timator M of some statistics of X is defined by its upper and lower bounds ML and MU , such
that:

Pr[ML < µ < MU ] = P̃ , (2.23)

where µ is the true value and P̃ is a given probability. Unless otherwise stated, we will assume
P̃ = 0.95.

The most basic approach to confidence intervals is based on the Central Limit Theorem
(CLT), which requires the sample to be identically distributed and independent (i.i.d.) Under
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the i.i.d. assumption, then the 95% confidence interval on the mean is (M−cLSEN ,M+cUSEN ).
SEN is the Standard Error for the sample size N which is defined as:

SEN =
sN√
N

(2.24)

where N is the number of samples and sN is the estimator of the standard deviation of τw
calculated as in (2.22). The constants cL and cU depend on the distribution of the underlying
variable X and on the statistics that we are trying to calculate. For example, if X is normally
distributed and M is the estimator for the mean, then cL and cU are determined from Student’s
t-distribution. If the quantity being estimated is the variance, the χ2 distribution is used. If X
is not normally distributed, then more general methods have to be used such as bootstrapping.

More references on the handling of uncertainty in DNS are provided in Oliver et al. (2014).

a. Sampling uncertainty in DNS time-series

The theory explained until here relies on the assumption of an i.i.d. variable. The assumption
of identical distribution can be justified for a stationary turbulent channel flow both in time and
across different realizations of the same flow. However, any variable measured in a turbulent flow
displays some degree of (spatio-)temporal correlation, invalidating the assumption of indepen-
dence. Down-sampling or batching a turbulent time-series are two ways in which an uncorrelated
sample can be obtained.

Down-sampling means sampling at a large sampling period or discarding a certain number of
data points in order for the newly obtained time-series to be less correlated. The most obvious
disadvantage of this approach is the loss of information, especially if the correlation time of the
original time series is of the same order of the total sampling time.

Batching methods instead are conceived to avoid such losses while still yielding an uncorre-
lated sample. The idea of this class of methods is to process a correlated time-series in batches
and then use the partial batch-wise statistics to assemble an uncorrelated sample – see e.g. Russo
and Luchini (2017) and references therein.

The effect of correlation on the accuracy of a statistics µ can be quantified by defining an
equivalent sample size n′ such that:

Var(M) =
Var(X)

n′
. (2.25)

When X is an uncorrelated process, (white noise) trivially n′ = n. For red-shifted processes (such
as the velocity fluctuations) it turns out that n′ < n, implying a larger statistical uncertainty
than an uncorrelated noise with equal σX . Therefore, neglecting the correlation would result
in underestimating the uncertainty. An equivalent definition is that of ‘decorrelation time’ τD
which is defined asymptotically:

τD = lim
n→∞

n

n′
(2.26)

Given a finite sample of a discrete process with auto-correlation function C, the decorrelation
time can be estimated as:

τD = 1 + 2

n−1∑

k=1

(
1− k

n

)
C(k). (2.27)

Therefore, the problem of estimating n′ (or τD) consists in finding a good approximation of the
true auto-correlation function C(k). Direct estimation of C from the data is not recommended
because suffers from both finite-time bias and variance errors (Thiébaux and Zwiers, 1984). In
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this work we follow Oliver et al. (2014) and we use an alternative approach, namely fitting an
auto-regressive (AR) model to the data and using its exact correlation function as the estimate
of C. An auto-regressive process of order p, denoted as AR(p), is a discrete-time process with a
linear dependence on the previous p steps:

Xt = α0 +

p∑

i=1

αiXt−i +Wt. (2.28)

where Wt is a Gaussian white noise term of variance σW (von Storch and Zwiers, 2001). An
AR(p) model is therefore specified by the choice of the parameters {σW , α1, α2, ..., αp}. It can
be proven that an AR(p) approximation to any weakly stationary process exists and is unique
(von Storch and Zwiers, 2001). It must be pointed out that time-series of turbulent flow vari-
ables are not an AR process because, in general, they are not Gaussian and have an non-linear
inter-temporal dependence. The AR-based uncertainty quantification procedure follows the steps
outlined in Algorithm 2. The process order is selected by maximising the Akaike information cri-
terion (AIC). The correlation function is calculated using Wilson’s algorithm (Tunnicliffe Wilson,
1979), implemented in own code. The procedure is implemented in Python, using the statistical
functions of the library SciPy that includes some AR modelling classes.

Algorithm 2 AR(p) based estimation of the uncertainty on the mean in a correlated time-series
(von Storch and Zwiers, 2001).

1: select the order p
2: fit the parameters to the simulation data using Maximum Likelihood
3: calculate the correlation function C using Wilson’s algorithm
4: substitute the exact correlation function into (2.27)

Figure 2.8 shows the validation of the AR-based uncertainty quantification method through
its application to a synthetic AR(2) process. Among the methods compared in Fig. 2.8, the AR
fitting appears to be the best for large sample sizes, of the same order of those available from
the DNS. For smaller samples, of size closer to the decorrelation time, its accuracy is worse than
using the direct correlation estimator.
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Figure 2.8: Estimation of a simulated AR(2) process with zero exact mean, exact variance σ2
X = 4.63 and

exact τD = 21.62. a) Estimated and exact auto-correlation function of the same process. The estimates
are made from a single realization of a 100-element time-series. The direct estimator is truncated at
n/2. b) Convergence of the variance of the sample mean. c) convergence of the variance of the sample
variance. Comparison between three different methods and the exact case. The values are the average
of 1000 Monte-Carlo realizations of each sample size.
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b. Application to τw

We now provide an estimate of the mean wall-gradient from the Reτ = 180 reference channel,
based on the theory above. The data consist of a time series of the spatially averaged gradient
d〈u〉(ti)/dy|y=0 sampled at each time-step for 100000 time-steps, adding up to a total integration
time of 250h∗/U∗p . Our model does not account for spatial correlation, which is more complex
to assess and requires spatial correlation models.

Four levels of down-sampling are applied to the time series, from 1/1000 (the typical sampling
rate for e.g. Chapter 3 simulations) to the 1/1 full resolution. The 95% confidence intervals on
the mean value dU/dy|y=0 are calculated for each sample according to both the uncorrelated
model and the AR-based correlated model.

Table 2.4 the convergence the τw, showing that correlation can significantly affect the level
of uncertainty on the wall-shear stress statistics. It also shows the sampling interval, sample
size N , the AR order and the decorrelation lag τD. It can be noted that for large sampling
period, the uncertainties on the correlated and the iid estimates are much closer than for higher
sampling rates, which is explained by the increasing sample correlation. Moreover, the iid-based
uncertainty decreases following an exact N−1/2 dependence, while the AR-based one is much
more stable.

Table 2.4: Statistical estimation of the mean wall gradient dU/dy(y = 0) from a correlated time-series.

sampling ∆t N p τD mean 95% CI (AR) 95% CI (iid)

2.5 100 2 4.538 7.613 0.067 0.031
0.25 1000 6 64.90 7.613 0.082 0.010
0.025 10000 32 807.3 7.612 0.092 0.003
0.0025 100000 67 10980 7.612 0.109 0.001

2.3.3 Post-processing software

The statistics were computed using different software, selected based criteria such as ease of use
and the availability of existing code and libraries for the type of post-processing task. Post-
processing Fortran code has been used mostly when dealing with reading and processing the
large raw flow field data into statistics. We have developed (mostly serial) fully autonomous
in-house post-processing framework leveraging Incompact3D’s I/O routines and made use of the
existing post-processing code available since the 2018 Incompact3D update.

Nevertheless, we aimed towards a more extensive use of Python for scripting and post-
processing DNS data. This tool has a number of advantages, such as i) the availability of a
large number of open-source numerical and statistical libraries, ii) the relative simplicity of mod-
ifying and tailoring the code to a specific case and iii) the integration of the entire process from
raw data to visualisation into a single framework.

Data visualisation has also been carried out through a diverse set of software. The Python
library Matplotlib (https://matplotlib.org/), and the open-source software Gnuplot have
been employed for quickly visualising time-series and flow fields. ParaView (https://www.
paraview.org/) is a powerful open-source tool that has been essential for quickly inspecting
3D spatial data, observe and plan higher quality visualisations. The latex package PFGplots
(http://pgfplots.sourceforge.net/) has been used for producing publication-quality vector
graphs. Flow animations have been produced with Matplotlib’s animation class.
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Chapter 3

Open-loop turbulent drag
reduction combining rotating
actuators and other techniques

3.1 Introduction

Flush-mounted spinning discs have been proved to be a promising technique for turbulent drag
reduction, yielding up to around 23% drag reduction at low Reynolds numbers (Ricco and Hahn,
2013; Wise and Ricco, 2014; Wise et al., 2014). Wise et al. (2014) showed that annular actuators,
or “rings”, with an optimal inner-to-outer radius ratio equal to 0.6 deliver a slightly larger drag
reduction than the full discs, while requiring up to 20% less driving power. The rings used by
Wise et al. (2014) covered 50% of the wall area, while the other half of the surface was stationary.
Although the rings generate a maximum drag reduction of about 20%, thus smaller than the
uniform spanwise-wall oscillations, the net power saved, computed by accounting for the frictional
resistance of the fluid, is comparable for the two methods, about 10%. Advantages of the rings
with respect to the in-plane motions are the localized actuation, the double optimal spanwise
forcing scale, and the wide range of diameters leading to drag reductions that are comparable
with the maximum (Ricco and Hahn, 2013; Wise et al., 2014).

In the present work, we study the spinning rings in detail and we utilize the stationary
wall surface confined between the rings and within the circles defining the inner-ring edges to
enhance the drag-reduction performance by enforcing two types of distributed control. The word
“distributed” is used herein to indicate that the control scale matches that of the near-wall
turbulence, acting locally on the turbulent structures. This implies that the control performance
is expected to scale proportionally to the actuated area. The two distributed control methods
considered in this work are opposition control and hydrophobic surfaces.

Opposition control (OC) is an active control technique (Choi et al., 1994; Hammond et al.,
1998) that works by detecting the instantaneous wall-normal velocity on a wall-parallel plane
located at a height of yd and, at the same time, by forcing the wall-normal wall velocity by the
same amount of that detected in the yd-plane, but with opposite sign:

v(x, 0, z, t) = −v(x, yd, z, t). (3.1)

This may result in drag reduction as a consequence of the attenuation of the sweeping motions
of high-momentum fluid toward the wall and of the ejections from the near-wall region towards
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the bulk of the flow. The detection plane acts as a virtual wall, which means that any convective
transport of momentum between the plane and the physical wall is greatly hampered. The
optimal distance of the detection plane is y+

d ≈ 15 (Choi et al., 1994). Opposition Control is
challenging to realise practically because it entails detecting and actively controlling small spatial
and temporal scales.

The practical realisation of opposition control in wall turbulence (Kasagi et al., 2009) neces-
sarily entails compromising with respect to the ideal numerical case. In the latter, sensing and
actuation are both instantaneous and spatially co-located, wheareas in a real-world design both
control elements are necessarily lagged, sparse and occur at separate locations. Furthermore, the
sensing of flow quantities must ideally occur at the wall rather than at an positive wall-normal
height. This can be achieved by means of either wall-shear stress or pressure sensors, typically
thermal or mechanical devices, whose measurements can be correlated to the wall-normal veloc-
ity sweeps. Many types of acuators have been devised in the experimental literature, such as
synthetic jets driven by pistons (Rebbeck and Choi, 2001) or membranes (Rathnasingham and
Breuer, 2003), flap devices (Jacobson and Reynolds, 1998) or plasma actuators (Moreau, 2007).

In academic wind-tunnel experiments (Rathnasingham and Breuer, 2003; Rebbeck and Choi,
2006), the actuation was provided by blowing/suction orifices or slits, and the sensing by hot-wire
anemometers collocated upstream of the actuator (at a distance of 76δν in Rebbeck and Choi
(2006)). In real-world applications, an added layer of complexity is present due to fabrication,
installation and concurrent operation of a significant number of micro-devices (given that the
control performance is proportional to the controlled wall area).

The experimental evidence with suction/blowing devices demonstrated the viability of the
approach to reduce turbulence intensity, such as in the feedforward-controlled Rathnasingham
and Breuer (2003) who obtained respectively 30% turbulence intensity reduction and estimated
7% drag reduction.

This flow has been further examined by Chung and Talha (2011), who considered several
detection planes and wall-forcing amplitudes. The dependence of drag reduction on the wall-
normal location of the detection plane is linked to the relative position of this plane with respect
to the near-wall eddies. If the plane is placed underneath the quasi-streamwise vortices, the
OC actuation has a beneficial effect due to the disruption of the near-wall ejections and sweeps.
If instead the plane is too distant from the wall, the OC actuation promotes the momentum
transport and the drag increases. In our study the location of the detection plane has been fixed
to y+ = 14.5, scaled in terms of the wall units of the reference fixed-wall channel.

The drag reduction effect produced by the hydrophobic surfaces (HS) has been explained in
terms of the shift of the virtual origin of the mean velocity profile (Min and Kim, 2004). The slip
length that models the hydrophobic surface allows the streamwise velocity to take a finite value
at the wall, which means that the point where the extrapolated velocity vanishes (the virtual
origin) is shifted below the wall surface. This attenuates the intense sweeps and ejections typical
of the no-slip wall layer. A spanwise wall slip instead promotes the growth of streamwise rolls
leading to drag increase due to an enhanced lift-up effect. Both constant (Min and Kim, 2004)
and shear-dependent (Aghdam and Ricco, 2016) slip-length wall boundary conditions have been
proposed to describe the effect of different types of hydrophobic surfaces, modeling lotus-leaf-
type surfaces, where air pockets are trapped in small cavities (Ling et al., 2017; Seo et al., 2018;
Reholon and Ghaemi, 2018), and pitcher-plant-type surfaces, where oil is imbibed in the porous
surface (Wong et al., 2011) or in transverse microcavities (Ge et al., 2018).

In the present work we follow the approach of Min and Kim (2004) where the no-slip boundary
condition on the streamwise velocity is replaced by the following constant-slip-length condition:

u(x, 0, z, t) = ls
∂u

∂y

∣∣∣∣
y=0

. (3.2)

42



Chapter 3 3.1. Introduction

ls is chosen from the literature and fixed at l+s = 3.6 which is the optimal value at Reτ = 180
found through direct numerical simulations by Min and Kim (2004).

A superhydrophobic surface (Rothstein, 2010) is made of an hydrophobic material and has
a roughness texture that can span a size range from nanometers to micrometers. Once a super-
hydrophobic is submerged in water, gas bubbles become entrapped in the grooves of the surface
roughness, effectively preventing most of the surface from direct contact with the liquid. This
non-wetting state represent the ideal working state of superhydrophobic surfaces (Cassie and
Baxter, 1944), because the solid-liquid interface is partially replaced by gas-liquid interfaces and
thus a ”lubrication” effect is achieved due to the dynamic viscosity of air being much lower than
that of water. The resulting finite slip at the wall leads to reduced skin friction compared to
conventional no-slip (smooth) walls.

Conversely, in the fully wetted state, where no gas bubbles are present and the liquid fills
roughness elements, drag increase is typically produced. The fully wetted state can be reached
when the unsteady shear stresses produced by a turbulent flow destabilise the bubbles, a phe-
nomenon called bubble depletion. Bubble depletion represents one of the major technological
issues for the wide-scale application of superhydrophobic surfaces to engineering problems and is
the subject of active research aimed at increasing the wetted state robustness (Seo et al., 2015).

Experimental works in laminar flow (Ou and Rothstein, 2005) demonstrated slip lengths of
ls = 25µm and drag reductions of more than 25%. A variety of experiments on turbulent flows
over superhydrophobic surfaces have been carried out, consisting of either structured textures
with regular arrays (Daniello et al., 2009), or randomly distributed textures (Bidkar et al., 2014).
Drag reductions of up to 50% and slip lenghts ls ≈ 100µm were found by Daniello et al. (2009)
thorugh near-wall PIV measurement.

Riblets (Garcıa-Mayoral and Jiménez, 2011) are one of the most well-studied passive drag-
reduction method, consisting in covering the wall surface with a series of parallel grooves that run
along the streamwise direction for the entire length of the channel. Riblets are largely inspired
by the grooved surface of shark skin scales (Dean and Bhushan, 2010; Lloyd et al., 2021).

Riblets are a geometric surface modification and thus require zero driving power, even though
wall-wave methods lead to a theoretically higher overall power saving due to their superior
performance in reducing friction. On the other hand, rotating discs entail the installation of
actuators whose operation requires spending energy to overcome frictional losses (for more on
the power budget of rotating discs, see Section 4.3).

Furthermore, wall waves, discs and other active and passive near-wall turbulence control
methods can be analysed using the concept of equivalent roughness (or equivalent slip), meaning
that their action is confined to the inner layer and they similarly induce a shift to the logarithmic
velocity profile scaled in native wall units Luchini (2015). This theory can be leveraged to ex-
trapolate the drag reduction performance of near-wall control methods to high Reynolds number
regimes (Gatti and Quadrio, 2016). While the theory provides an unifying framework for bulk
flow statistics far from the wall, it does not imply that their mechanisms of action on the near-
wall turbulence are related in any obvious way. In fact, while the streak-modifying mechanism of
riblets is based in the spanwise vortices from the wall (Garcıa-Mayoral and Jiménez, 2011), for
wall-waves and related methods it is rooted in a complex transient growth mechanism (Blesbois
et al., 2013).

a. Objectives

The objectives of the present work are

• to further the understanding of physical mechanisms behind the drag-reduction effects
induced by the spinning discs. In particular, we are interested in studying the streamwise-
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elongated structures appearing between spanwise-adjacent discs that have been reported
by Ricco and Hahn (2013), Wise and Ricco (2014), and Wise et al. (2014) to contribute
significantly to the alteration of the near-wall momentum exchange;

• to enhance the drag-reduction performance given by the spinning rings by enforcing two
different types of distributed control, i.e., opposition control based on wall-normal veloc-
ity actuation and hydrophobic surfaces. We aim to maintain the localized rotation that
Ricco and Hahn (2013), Wise and Ricco (2014), and Wise et al. (2014) have shown to be
effective in operating at large-flow scales and, at the same time, we want to evince whether
the distributed control methods can weaken the elongated structures between rings that
contribute detrimentally to drag reduction Wise et al. (2018). The original publications by
Keefe (1997, 1998) do suggest to utilize the space between and within the rotating actuators
to enforce wall-normal transpiration to fully specify a three-dimensional flow field. Keefe
(1998) states:“Suction and blowing holes can be interspersed among, or made coaxial with,
the disks for creating general three-dimensional velocity perturbations in the near-surface
region.” An adaptation of the original sketch by Keefe (1998) is shown is Figure 1.3a,
where the flow is actuated by rotating discs and wall transpiration;

• to make a case for the combined scheme as a strategy to improve the robustness of the
individual methods. At the high Reynolds numbers typycal of engineering boundary layers,
super-hydrophobic surfaces notoriously suffer a progressive increase of drag, which origi-
nates from the depletion of the surface bubble layer by high shear (Aljallis et al., 2013;
Bidkar et al., 2014). Opposition-control schemes have the well-known drawback that the
ideal continuous coverage of the wall is hard and real-time detection of is not practical.
Therefore localised pressure or spanwise shear-stress sensing is used and actuation systems
have to be put in place that are often impractical. Furthermore, at large Reynolds num-
bers, increasing frequencies and smaller spatial scales imply that sophisticated devices are
needed to be capable of a very fast response at miniature scale (Kasagi et al., 2009). This
opens up the possiblity that rotating actuators and wall-normal suction and blowing can
prove mutually beneficial to each other, as employing steady forcing on (marginally) larger
scales and using a open-loop, sensing-free control method can prove more practical than
the localised, near-instantaneous actuation. Another option is to operate the combined
scheme adaptively, activating discs or suction/blowing in order to improve performance or
increase the method’s robustness to disturbances.

• for the first time, to develop and use an extended form of the Fukagata-Iwamoto-Kasagi
identity (Fukagata et al., 2002) that can be employed to study active control strategies
that are non-uniform in both the streamwise and spanwise directions.

• to advance a simple idealized model for predicting the upper bound of the drag reduction
that can be achieved by combining the spinning-ring method and the distributed control
actuations. This approach can be easily generalized to other combinations of drag-reduction
techniques.

Section 3.2 describes the solver of the Navier-Stokes equations, the numerical procedures,
the statistical tools, and the decomposition of the flow variables. Section 3.3 discusses the flow
visualizations, the turbulence statistics, and the turbulent drag reduction. A summary of the
results is presented in §3.4.
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3.2 Numerical and statistical procedures

3.2.1 Numerical simulations

The combined effect of the spinning rings and the distributed forcing on wall turbulence is tested
numerically in a channel with periodic boundary conditions along the streamwise direction x∗

and the spanwise direction z∗. Dimensional quantities are henceforth denoted by the superscript
∗. The wall-normal coordinate is y∗ and the parallel walls are separated by a distance 2h∗.
The numerical domain of the channel has dimensions L∗x and L∗z along x∗ and z∗, respectively,
and the velocity components are u∗, v∗, and w∗ along x∗, y∗, and z∗, respectively. A ring is
characterized by the outer diameter D∗ and the inner diameter D∗i . The shape factor a = D∗i /D

∗

is fixed for all the cases at the optimal value of 0.6 found by Wise et al. (2014). The portion of
the wall surface that is not covered by the rings is subjected to the distributed actuation. For
a = 0.6 this part of the surface amounts to 50% of the total wall surface. The ring motion is
defined by the constant velocity W ∗ at the outer edge. Each ring has two 0.05D∗-wide gaps
along the internal and external edges, where the velocity decays from the edge values to zero,
following a linear profile. This greatly reduces the numerical oscillations arising from the sharp
velocity discontinuity that would occur if the gaps were not present (Ricco and Hahn, 2013) and
also models the absence of rigid wall between the rings and the stationary surface that would
unavoidably occur in a laboratory set-up. Extensive resolution checks have been carried out to
ensure the robustness and accuracy of the drag reduction values and of the turbulent statistics.
The rings are fitted on both walls and form spanwise rows spanning the entire channel width,
as shown in Fig. 3.1. Rings belonging to the same row share the same sense of rotation, which
is opposite to that of the next row. This arrangement creates triangular waves of spanwise
velocity along the streamwise lines passing through the centers of the rings, thereby resembling
the standing wall waves that have been shown to be very effective in reducing the turbulent drag
(Quadrio et al., 2009). The periodicity of the computational box ensures that the flow field over
a periodic array of rings is simulated correctly. Along the spanwise direction, the periodic BC
ensures that the ring neighboring the domain limit faces the flow field produced by its analogous
on the opposite side. The same is established along the streamwise direction, provided that the
device array has an even number of rows along x.

The flow is simulated using the code Incompact3D (Laizet and Li, 2011; Laizet and Lambal-
lais, 2009), presented extensively in Section 2.1.1. The simulations are run on the Cray XC30
“Archer” supercomputer of the National Supercomputing Service. The simulations are run using
1024 parallel computational cores and adopting a 32× 32 block decomposition.

Quantities scaled in outer units, i.e., by the channel half-height h∗ and the centerline velocity
U∗p of the laminar parabolic Poiseuille flow at the same flow rate, are not indicated by any symbol.
The diameter and the tip outer velocity of the rings are kept constant to D = 3.39 and W = 0.38
to focus on the combined effect of the spinning rings and the distributed control. This pair of
W and D leads to the near-optimum drag reduction of 19.5% for the full discs (Ricco and Hahn,
2013) which increases to 20% for the rings with a = 0.6. Scaled in the wall units of the reference
channel, these parameters are W+ = 9 and D+ = 604. The fluid flows at the fixed volumetric
flow rate per unit spanwise depth of 2h∗U∗p /3 in all the cases. This is maintained by applying
a numerical correction to the mean velocity profile at every time step. The Poiseuille Reynolds
number is Rep = U∗ph

∗/ν∗ = 4200, where ν∗ is the kinematic viscosity of the fluid.
The computations are initiated from the laminar Poiseuille channel flow between solid station-

ary walls, disturbed by random velocity fluctuations. This initial flow field evolves to the fully-
developed uncontrolled turbulent flow, identified by the main statistics displaying convergence
and the total mean stress profile being linear (Orlandi, 2012). This reference fully-developed
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Figure 3.1: Schematic of the arrangement of the ring-fitted channel. Only the rings on the bottom wall
are shown. The rings are shown in grey, while distributed actuation is applied in the white regions. The
sense of rotation of the rings is highlighted by the curved arrows, while the longer arrow indicates the
mean-flow direction. The sketch on the right illustrates the triangular-wave spanwise velocity pattern
created along the centerline of the rings by two streamwise-adjacent counter-rotating rings.

turbulent flow is used as the initial flow for the computations of the controlled cases. The initial
transient flow response to the modified boundary conditions is discarded to acquire meaningful
statistics of the controlled flow. The flow statistics are collected by averaging well-delayed ve-
locity and pressure flow fields at a temporal distance of about t+d = 20 to reduce the statistical
correlation between the flow fields. The total averaging time is ta = 950, starting from the end
of the transient flow.

Table 3.1 summarizes the main numerical parameters of the simulations. The wall no-slip
Dirichlet boundary condition is used to impose the ring motion and the wall-transpiration bound-
ary condition (3.1) is enforced for the OC simulations. When OC is applied to the entire wall
surface through condition (3.1), the suction/blowing mean flow rate at the walls is zero, but in
the combined ROC case a mean negative wall velocity Voc(y = 0) of the order of 10−4 exists if
(3.1) is applied over the portion of the wall not covered by the rings. Above this controlled-wall
region in the plane y = yd the wall-normal velocity has a positive mean value, which is mainly
due to the wall-normal ejections associated with the streamwise-elongated structures existing
between rings. It is clear from the continuity equation that, in order to maintain a constant
mass flow rate at each streamwise location and at each time step, it is therefore not sufficient to
impose (3.1) only, but it is also necessary to impose a blowing wall velocity −Voc(y = 0) over the
surface not occupied by the rings to obtain V = 0 at the wall and at any wall-normal location.
The Robin boundary condition at the wall (3.2) is applied to simulate the HS. We take the slip
length to be ls = l∗s/h

∗ = 0.02, yielding a drag reduction of about 30% (Min and Kim, 2004)
at low Reynolds numbers. This slip length corresponds to a realistic physical value l∗s = 100µm
for a channel height of about 1 cm (Lauga and Stone, 2003; Choi and Kim, 2006; Bidkar et al.,
2014). The numerical routines for the implementation of the combined control methods were
written by Dr S. Khosh Aghdam for his Ph.D. research work (Khosh Aghdam, 2016), although
his original routines did not enforce the zero-mass-flow-rate condition at the walls and the wall
velocity adjustment along the inner circle of the rings. All the data presented herein are the
output of novel simulations.

In table 3.1 and henceforth, the letter “R” indicates ring forcing, while “OC” and “HS” refer
to the cases where the distributed control is applied on the entire wall surface. “R0” denotes cases
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Table 3.1: Simulation parameters. The ring outer diameter D+ and tip velocity W+ are scaled in the
wall units of the reference channel flow. The number of grid points are along x, y, and z, respectively.
The Reynolds number is Rep = 4200 and the inner-outer diameter ratio is a = 0.6 for all the cases.

Case Lx × Lz grid points D+ W+

Reference flow 4π×1.33π 256×129×128 - -
Opposition control (OC) 4π×1.33π 256×129×128 - -
Hydrophobic surface (HS) 4π×1.33π 256×129×128 - -
Rings (R) 4.53π×2.26π 256×129×256 605 9
Rings + oppos. control (ROC) 4.53π×2.26π 256×129×256 605 9
Rings + hydroph. surface (RHS) 4.53π×2.26π 256×129×256 605 9
Hydroph. surface + fixed rings (HSR0) 4.53π×2.26π 256×129×256 605 0
Oppos. control + fixed rings (OCR0) 4.53π×2.26π 256×129×256 605 0

where the rings do not move and the distributed control is applied over the portion of the surface
that is not covered by the rings. The letters “ROC” and “RHS” denote the combined cases of
rings with opposition control and rings with hydrophobic wall, respectively. These notations are
also used as subscripts to indicate that a quantity refers to that specific case.

3.2.2 Averaging operators

In this section the averaging operators are defined. The time average of a flow variable f(x, y, z, t)
over a time interval [0, T ] for which f is statistically stationary is defined as:
Time average

f(x, y, z) =
1

T

∫ T

0

f(x, y, z, t) dt. (3.3)

The flow is statistically periodic along x with period 2D and along z with period D, that is, the
minimal geometrical flow unit that repeats itself along the streamwise and spanwise directions
consists of two streamwise-adjacent rings spinning in opposite directions. A spatial ensemble-
averaging operator is therefore defined as:
Spatial ensemble average

[f ]e (xe, y, ze, t) =
2

NxNz

Nx/2−1∑

nx=0

Nz−1∑

nz=0

f (x+ 2nxD, y, z + nzD, t) , (3.4)

where 0 ≤ xe ≤ 2D and 0 ≤ ze ≤ D are the ensemble spatial coordinates, while Nx and Nz are
the number of rings in the numerical domain along x and z, respectively. The two streamwise-
adjacent rings share a statistical mirror symmetry, which allows us to symmetry-average the
ensemble-averaged flow quantities as follows:
Two-disc symmetry average

[u]s (xs, y, zs, t) = {[u]e (xe, y, ze, t) + [u]e (xe +D, y,−ze, t)} /2, (3.5)

[v]s (xs, y, zs, t) = {[v]e (xe, y, ze, t) + [v]e (xe +D, y,−ze, t)} /2, (3.6)

[w]s (xs, y, zs, t) = {[w]e (xe, y, ze, t)− [w]e (xe +D, y,−ze, t)} /2, (3.7)

[p]s (xs, y, zs, t) = {[p]e (xe, y, ze, t) + [p]e (xe +D, y,−ze, t)} /2, (3.8)

47



Chapter 3 3.2. Numerical and statistical procedures

where −D/2 ≤ xs, zs ≤ D/2 and {xe, ze} = {0, 0} is at center of one ring. We choose to maintain
the spatial ensemble average (3.4) and the two-disc symmetry average (3.5) separate for clarity
of notation and because flow visualizations in Fig. 3.3(a) utilize the xe, ze coordinates.

Spatial averaging along xs and zs, i.e., averaging over wall-parallel planes and over a square
of size D2 confining the minimal symmetry-averaged flow unit generated by one spinning ring,
is defined as:
Spatial average

〈f〉(y, t) =
1

D2

∫ D/2

−D/2

∫ D/2

−D/2
[f ]s (xs, y, zs, t) dxsdzs. (3.9)

The statistical sample is doubled by averaging a quantity across the two channel halves. A
capital letter indicates a global average, F (y) = [f ]g, defined as:
Global average

[f ]g = 〈f〉. (3.10)

For example, the global-averaged streamwise velocity is U(y) = [u]g.

3.2.3 Flow symmetries

In this section, we examine closely the derivation of the two-disc symmetry transformation (3.8),
that is applied in the following to obtain higher-quality statistics of the single-ring flow unit.

We seek out a transformation mapping the flow field u(x) on a disc into another of opposite
rotation. The transformation necessarily acts on x and z since the flow has no symmetry along
y.

The statistical symmetry of the flow descends from the symmetry of the ring boundary
conditions (inducing the swirling component of the flow) and that of the mean pressure gradient
(inducing the mean shear). We first examine the symmetry of the swirling flow and then the
symmetry of the mean flow.

For the swirling flow, it is necessary to find a transformation that turns a clockwise-rotating
ring flow into a anti-clockwise one i.e. performs a sign change of the wall-normal component of
the angular velocity Ωy. The angular velocity is defined as the cross product Ω = (x× u)/|x|2.
We recall that under a linear transformation R, the cross product of two vectors a and b has
the following property:

Ra×Rb = (det R)(R−1)Ta× b. (3.11)

which applied to the angular velocity definition gives:

Rx×Ru = |Rx|2(det R)RΩ. (3.12)

This suggests that mapping Ωy into −Ωy requires det R = −1 and |Rx|2 = |x|2. These properties
define an improper orthogonal transformation, i.e. a reflection. A suitable choice is the z-
reflection Rz, defined by:

Rz =




1 0 0
0 1 0
0 0 −1


 . (3.13)

The analogous x-reflection can also be applied to up
d with the same result.

The mean flow U = (U, 0, 0) is homogeneous for any given y and invariant under z-reflections:

RzU = U, (3.14)

whereas it is not invariant under an x-reflection because its sign changes. Any interaction between
U and up

d is therefore expected to be invariant under Rz but not under Rx. This establishes Rz
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as the symmetry of both ur
d and the total flow ud. The above arguments can be validated by

considering the relation:
〈[Cf ]s〉 = 〈Cf 〉x, (3.15)

where the spatial average on the left-hand side is performed over two attached symmetry-averaged
flow units of opposite rotation. This equation must be satisfied if the transformation (3.13)
represents the correct symmetry of the flow. Figure 3.2 shows good agreement between the two
approaches. The discrepancies are to be ascribed to a small residual spanwise velocity gradient
W .
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Figure 3.2: Symmetry transformation applied to the skin-friction data (Equation. (3.15)). Spanwise
skin-friction budgets using (a) spatial averaging on the symmetry-averaged flow and (b) direct spatial
averaging. The shaded areas represent the spanwise extension of the ring on a cross-flow section passing
through its centre.

3.2.4 Flow decomposition

A useful analytical tool is the three-component (”triple”) decomposition first introduced by
Reynolds and Hussain (1972) for time-periodic flows, who split the flow field into the uniform,
steady component U , the time-periodic, zero-mean component ũ and the random turbulent
fluctuations u′. Each component is derived from the full flow by sequentially performing partial
averages and then removing the averaged component, realising a hierarchy of increasingly detailed
time resolution. A set of RANS-like governing equations can be derived, one for each component,
and used to study their reciprocal influence. The idea of a triple decomposition can be adapted
to spatially periodic flow such as the flow over the array of rings, following Ricco and Hahn
(2013). The key difference is that spatial averaging replaces the original time averaging:

u(x, y, z, t) = U(y) + ud(xs(x), y, zs(z)) + ut(x, y, z, t), (3.16)

ud(xs, y, zs) = {ud, vd, wd} = [u]s −U(y), (3.17)

∂p

∂x
(x, y, z, t) =

dP

dx
+
∂pd
∂x

(xs(x), y, zs(z)) +
∂pt
∂x

(x, y, z, t), (3.18)

where the mean pressure gradient dP/dx is constant in fully-developed conditions and U(y) =
{U(y), 0, 0}. For clarity, we express the symmetry-average coordinates xs, zs as functions of the
physical coordinates x, z. The flow field {ud, pd} is named the ring flow, while {ut, pt} indicates
the fluctuating flow field. The governing equations for these quantities are obtained in Section
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3.2.5 by applying the averaging operators to the full Navier-Stokes equations. A relation of
central importance is found by substituting the decomposition (3.16) in the definition of the x-y
Reynolds stresses:

[uv]g = 〈udvd〉+ [utvt]g , (3.19)

which appears in the mean-flow equation (3.22).

3.2.5 Governing equations for the three-component flow

We herein summarize the derivation of the governing equations obtained upon the three-dimensional
flow decomposition (3.16)-(3.18), following the procedure of Reynolds and Hussain (1972). Sub-
stituting (3.16)-(3.18) in the Navier-Stokes equations and applying the time- and symmetry-
averaging operators in §3.2.2 leads to the equation for the i-th component of the average flow
U + ud:

U j
∂

∂xjs
(U i + uid) + U j

∂uid

∂xjs
= −∂pd

∂xis
+

1

Rep

∂2

∂xjs∂x
j
s

(U i + uid)−
∂

∂xjs

(
uidu

j
d +

[
uitu

j
t

]
s

)
+

dP

dxis
, (3.20)

where the Einstein repeated-index summation convention is used. The streamwise momentum
equation (3.20) reads:

U
∂ud
∂xs

+ vd
∂U

∂y
=− ∂pd

∂xs
+

1

Rep

∂2

∂xjs∂x
j
s

(U + ud)−
∂

∂y
(udvd + [utvt]s)

− ∂

∂zs
(udwd + [utwt]s)−

∂

∂xs

([
u2
d

]
s

+
[
u2
t

]
s

)
+

dP

dxs
.

(3.21)

The spatial average of (3.21) leads to the equation for the globally-averaged flow:

1

Rep

∂2U

∂y2
− ∂

∂y
(〈udvd〉+ [utvt]g) +

dP

dxs
= 0. (3.22)

The governing equations for ud are derived by subtracting (3.22) from (3.20).

3.2.6 Definition of turbulent drag reduction

The separation of scales typical of wall-bounded turbulence is measured by the friction Reynolds
number Reτ = h∗/δ∗ν , where δ∗ν = ν∗/u∗τ is the near-wall viscous length scale, u∗τ =

√
τ∗w/ρ∗ is the

wall-friction velocity, τ∗w = ν∗ρ∗dU∗/dy∗|y=0 is the global-averaged wall-shear stress, and ρ∗ is the

density of the fluid. The skin-friction coefficient is Cf = 2τ∗w/ρ
∗U∗2b , where Ub =

∫ 1

0
U(y)dy = 2/3

is the bulk velocity. The drag reductionR is defined as the percentage decrease of the skin-friction
coefficient:

R(%) = 100(%) ·
C0
f − Cf
C0
f

, (3.23)

where C0
f is the skin-friction coefficient of the uncontrolled flow. We also define a spatially

dependent turbulent drag reduction as follows:

Rxz (xs, zs) (%) = 100(%) ·
C0
f − cf (xs, zs)

C0
f

, (3.24)

where

cf (xs, zs) =
2

RepU2
b

∂(U + ud)

∂y

∣∣∣∣
y=0

. (3.25)

It follows that 〈Rxz〉 = R because 〈cf 〉 = Cf , which is a direct consequence of 〈ud〉 = 0, given
by the definitions (3.17) of ud and (3.10) of U .
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3.2.7 Uncertainty analysis

The sampling uncertainty is estimated via normal confidence intervals, corrected for the presence
of temporal correlation by fitting an auto-regressive model to the time series of the sampled
variable (von Storch and Zwiers, 2001; Oliver et al., 2014). The uncertainty is first computed for
the wall-shear stress τ0

w in the reference conditions, i.e., ε0, and for the reduced wall-shear stress
τw, i.e., ε. The uncertainty εR of the drag reduction R is then found as follows:

εR = 1− R
100
− τw − ε
τ0
w + ε0

(3.26)

Table 3.2 presents the uncertainty values.

Table 3.2: Confidence intervals (95%) of the wall-shear stresses τ0
w and τw, i.e., ε and ε0, respectively,

and of the drag reduction R, i.e., εR.

Reference flow R ROC RHS

100ε0/τ
0
w, 100ε/τw ±0.7% ±0.3% ±0.5% ±0.5%

εR − ±0.9% ±0.9% ±0.9%

3.3 Results

3.3.1 Ring flow

The main features of the non-uniform ring flow ud are discussed in this section. Some visualiza-
tions of ud for the case without distributed control (case R) are shown in Figs. 3.3 and 3.4. The
three-dimensional contour plot of Fig. 3.3a clearly shows that the ring flow ud mainly consists of
the near-wall swirling motion above the rings and streamwise-elongated structures at the sides
of the rings. The isosurfaces represent the magnitude of the velocity vector |ud| = 0.1, while the
color shows vd. The structures are mainly characterized by wall-normal and upstream ejections.
Over the rotating annular actuators, the wall-normal ring-flow velocity is directed towards the
wall. These features were also observed in the full-disc case (Ricco and Hahn, 2013; Wise and
Ricco, 2014; Wise et al., 2014, 2018), although they have not been described exhaustively. The
swirling motion on top of the rings is due to the diffusive shearing action of the rings, while the
elongated structures are caused by the interaction of the radial flows of two spanwise-adjacent
rings and by the radial flows encountering the stationary surface at the outer ring edge. The
radial flow is produced by the wall-normal pressure gradient that draws fluid towards the wall on
top of the rotating parts and then toward the outer edge of the rings. This is a consequence of
the centrifugal acceleration of the fluid near the wall and it is analogous to the three-dimensional
swirling laminar flow over a rotating infinite plane (Von Kármán, 1921).

The streamwise component ud exhibits a near-wall region of negative values centered at zs =
D/2 and confined below y = 0.2. Above this region, it acquires weakly positive values directly
above the central region of the ring and a narrower, intensely negative region between spanwise-
adjacent rings, as shown in the left graphs of Fig. 3.3b in cross-sectional planes perpendicular to
the mean flow and in the right graphs of Fig. 3.3b in planes parallel to the streamwise direction.
These ud-regions balance one another because of continuity, i.e., the net flow rate of ud across
y-z planes, is null.

On x-y planes between rings (right column in Fig. 3.3b), the wall-normal ring-flow compo-
nent vd shows large positive values corresponding to ejections towards the channel core. These
ejections persist in the streamwise direction and largely correspond to the low-speed regions of
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Figure 3.3: Rings-only flow (case R in Tab. 3.1). (a) The isosurface represents the magnitude |ud| = 0.1
and the colors show the wall-normal velocity vd on the isosurface and on the y− z plane. (b) Symmetry-
averaged ring-flow ud(xs) on three cross-flow planes (left graphs) and three streamwise planes (right
graphs). The in-plane components are represented by the arrows and the third component is quantified
by the colors of the contours. The scale of the arrows in the right column is three times smaller than in
the left column. The abscissa axes span one diameter in length.
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Figure 3.4: Rings-only flow (case R in Tab. 3.1). (a) Streamlines of ud +U in the zs ≈ −D/2 plane. (b)
Streamlines of ud + U in the y = 0.04 plane. The dark gray three-dimensional structure is an isosurface
where |ud| = 0.14 and ud < 0.

ud, forming the streamwise-elongated structures between the rings, depicted in Fig. 3.3a. The
product udvd is thus negative where these structures exist, sharing the same sign of the turbu-
lent Reynolds stresses utvt. Above the spinning portion of the rings, vd acquires negative values
because it balances the intense positive ejections at the sides of the rings and the weaker positive
motion toward the portion of stationary wall above the center of the rings, as shown in Fig.
3.3b. These positive and negative regions of vd cancel one another out over wall-parallel planes
as 〈vd〉 = 0. This alternating suction/ejection pattern induces four coherent streamwise rolls,
visualized by the v − w vectors of Fig. 3.3b (left graphs). Two of these vortices are small and
intense, appearing close to the blue region of negative ud and to the red region of positive ud,
while the other two rolls are larger and weaker, existing over the central region of the rings and
located at around y = 0.5. These larger rolls produce the weak upward motion directly over
the centerline of the ring. All four rolls are persistent in the streamwise direction as they are
observed in all the cross-stream sections of Fig. 3.3b (left graphs).

The upstream-rotating side of the ring is responsible for the creation of intense wall-normal
gradients of ud. Fig. 3.4a shows that, as the upstream-moving side meets the incoming mean
flow, it gives rise to a local stagnation point in the vicinity of the wall where U + ud = 0. This
stagnation point moves away from the wall as the spanwise distance increases from the ring
center and ud grows from −0.6W at the inner-ring edge to −W at the outer-ring edge. Between
these points and the wall a region of upstream motion thus occurs, while above the stagnation
points the downstream flow is restored. The dark gray three-dimensional contour in Fig. 3.4b
shows the region where ud is most negative. This corresponds to the center of the upstream-flow
region and occurs downstream of the ring.

a. Three-dimensional streamlines

Two-dimensional streamlines have been used in Fig. 3.4 for the sake of simplicity, integrating the
flow field on plane sections. We report here a more complete three-dimensional visualisation of the
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flow morphology at the disc upstream-rotating side. The 3D streamlines of the mean flow do not
stay confined onto planes but bend in all three spatial directions. The four streamlines in Figure
3.5 represent the main types of behaviour found in the side region. They are integrated starting
from four initial conditions located upstream of the ring, uniformly spaced between y = 0.01 and
y = 0 and numbered in order of decreasing distance from the wall. Type I streamlines belong
almost perfectly to a wall-normal, streamwise-aligned plane. Type II streamlines instead bend
significantly in the spanwise direction. Type III and Type IV streamlines exhibit a more complex
pattern with twists and reversals. Such topologies arise because the fluid trajectories become
entrained into the near-wall layer where the swirling flow dominates. They undergo a partial
rotation until the streamwise velocity component becomes large enough to deviate them across
the fixed-wall region. At that point, their behaviour diverge. Type III finds itself sufficiently far
from the edges and continues downstream, being only partially deflected by the swirling flow.
Type IV instead re-enters the rotating region at a location where it is pushed backwards and
sideways, lifted up and eventually attracted back to the same streamline bundle of Types I and
II.

Fig. 3.5b depicts the streamwise symmetry-averaged velocity profiles at several spanwise
positions in order to show the existence of a region of reverse flow at the ring upstream rotating
edge. The red points are located at y0+ = 11 to visualise the wall-normal scale of the reverse
flow region with respect to the viscous sublayer.
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Figure 3.5: Three-dimensional organization of the flow at the upstream-rotating edge of a ring. (a) 3D
streamlines integrated from four initial conditions uniformly spaced along the wall-normal direction. (b)
Streamwise velocity profiles U + ud at the ring outer edge. Wall-normal scale is 9x exaggerated. The
flow is the clockwise-rotating ensemble. Streamlines Type I ( ), Type II ( ), Type III ( ) and
Type IV ( ).

As illustrated in Fig. 3.1, along the centreline of the rings the wall velocity distribution
matches a triangular wave of spanwise velocity, with the exception of the stationary-wall central
regions. This wave-pattern is analogous to that induced by the standing spanwise-velocity waves
studied by Viotti et al. (2009) and Quadrio et al. (2009). For the rings, the equivalent wavelength
is 2D∗, which translates to about 1200δ∗ν . At comparable wavelength, Reynolds number, and
forcing amplitude, the standing waves lead to their maximum drag reduction of about 45%
(Viotti et al., 2009; Hurst et al., 2014). It is therefore useful to inspect the spanwise velocity

54



Chapter 3 3.3. Results

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

xs = D

xs = 0.8D

xs = 0

xs = 0.2D

wd/W

y

0

10

20

30

y
0
+

Figure 3.6: Profiles of the spanwise ring-flow velocity wd at different xs locations along the centerline of
a ring. The shaded regions denote the uncertainty of the time-averaged field. Legend: R case;

ROC case; RHS case.

profile wd along the ring centreline at different streamwise locations. Figure 3.6 shows that
these profiles qualitatively resemble the generalized Airy-function Stokes-layer profiles studied
by Quadrio and Ricco (2011), and that, in the three control cases, they collapse on one another,
irrespectively of the type of distributed forcing. This thus proves that the distributed control
does not interfere with the beneficial drag-reducing action of the spinning rings because the
viscous streamwise-modulated layer is unaffected when opposition control or hydrophobicity is
imposed.

It is also relevant to quantify the thickness of this viscous layer. It has been shown by Quadrio
and Ricco (2011) for the standing and traveling sinusoidal waves that the drag reduction scales
linearly with the wall-normal penetration length, which quantifies the thickness of the boundary
layer created by wall motion. In the present case, we define this length as δ = −〈wd(y =
0)/w′d(y = 0)〉x,c, where 〈·〉x,c denotes the spatial average along the centerline of the ring where
wd(y = 0) 6= 0 and the prime symbolizes differentiation with respect to the wall-normal direction.
We find that the penetration depth is δ+ = 6.5 in all the cases, which matches to the optimal
value found by Quadrio and Ricco (2011) for the sinusoidal-wave forcing.

3.3.2 Turbulence statistics

a. Global statistics

Figures 3.7 and 3.8 present the wall-normal statistical profiles scaled in the reference wall units,
i.e., by u∗τ and δ∗ν (superscript 0+), and scaled in native wall units, i.e., by u∗τ and δ∗ν of each
drag-reduced flow (superscript +), respectively. Drag reduction is shown in Fig. 3.7a for the R
and ROC cases (R = 20% and R = 27.4%) as a lower streamwise velocity is computed in the
viscous sublayer. The skin-friction coefficient also drops in the RHS case (R = 26.5%), but this
is not immediately evident due to the wall-slip velocity. As the flow rate is constant, the R and
ROC profiles display slightly larger velocity in the outer layer due to the near-wall reduced flow
rate. The RHS profile shows lower velocities near the centreline, balancing the increased near-
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wall velocity due to the hydrophobic slip. The inception of the logarithmic layer shifts upwards,
denoting a thicker viscous sublayer. The mean profiles shift upward above the viscous sub-layer
when scaled with their native wall-friction velocities, as shown in Fig. 3.8.

The turbulent fluctuations are significantly attenuated. Both the [utut]
0+
g profiles in Fig 3.7b

and the [uv]
0+
g profiles in Fig. 3.7c are reduced mostly up to y0+ = 100. ROC is the most

effective in decreasing [uu]
0+
g and [uv]

0+
g , although the latter increases in the viscous sub-layer

because of the enhanced wall-normal velocity fluctuations. The wall-normal peaks of [utut]
0+
g

are shifted away from the wall by about 10δ∗ν with respect to the reference case. The components

of [uv]
0+
g , defined in (3.19), are shown in Fig. 3.7d. Since [udvd]

0+
g is negative over most of the

channel height, the coherent streamwise and wall-normal ejections between spanwise-adjacent
rings increase the drag. The turbulent Reynolds stresses [utvt]

0+
g are instead strongly suppressed,

showing the beneficial drag-reducing influence of the rings. The cases with distributed forcing
are observed to further weaken the total Reynolds stresses with respect to the rings-only case.
The ROC [udvd]

0+
g profiles are weaker than in the rings-only case, whereas in the RHS case they

are more intense than in the rings-only case outside the near-wall region. All the native-scaled
profiles are lower than in the fixed-wall condition. This is due to the lower native Reτ caused by
drag reduction and to the wall-bounded flow being altered with respect to the reference flow.

b. Local Reynolds stresses

The wall-normal turbulent [utvt]
0+
s profiles, shown in Fig. 3.9 at fixed xs, zs locations, are sig-

nificantly non-uniform along zs. The Reynolds stresses along the ring centreline are significantly
diminished by the spanwise wave-like motion caused by the rings. The opposite behaviour char-
acterizes the ring sides, where the strengthened Reynolds stresses reach peaks up to 150% of the
reference case. These regions are narrower than those where the stresses are weakened, so the
global effect is a reduction. The profiles (b) and (d) of Fig. 3.9 are representative of the central
middle 60% of a ring. The two types of distributed control act differently and not uniformly,
especially at location (a), i.e., over the stationary wall surface confined between four adjacent

rings. Here ROC yields lower [utvt]
0+
s peaks, while RHS is not very effective in reducing the

fluctuations. In the region confined within the rings, the distributed controls offer little addi-
tional damping of the turbulent fluctuations compared to the R case as the turbulence intensity
is already low.
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Figure 3.7: Wall-normal profiles of the turbulent statistics, scaled in wall units of the reference channel
flow. (a) Mean velocity. (b) Streamwise turbulent intensity. (c) Total Reynolds shear stress. (d)
Reynolds stress decomposition according to (3.19). Color key: reference channel flow; R
case; ROC case; RHS case.
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RHS case. The shaded green regions denote the uncertainty of the time-averaged field.

c. Fine-scale vortical structures

Fig. 3.10 illustrates, via the λ2 invariant (explained in Appendix 3.A), the fine-scale turbulent
structures in the reference case and in the drag-reduced cases. The vortices are almost absent
in the central region over the rings, in stark contrast with the more intense vortices on the
streamwise-elongated structures between rings. These visualizations are consistent with the
profiles of Fig. 3.9, which show the intense non-uniformity of the Reynolds stresses along the
spanwise direction.
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Figure 3.10: Instantaneous λ+
2 -isocontours at λ0+

2 = −0.007. (a) reference flow, (b) rotating rings, (c)
rotating rings and opposition control, (d) rotating rings and hydrophobic surface.

d. Turbulent kinetic energy

Due to the presence of ud, nonzero spatial fluxes of the turbulent kinetic energy k = [utiu
t
i]s /2 are

present in all three spatial directions. The general TKE evolution equation for the inhomoghenous
flow reads:

Ds

Dst
k +∇ · T = P − ε̃, (3.27)

where the terms are defined as follows, using the repeated-index notation:

Ds

Dst
= (U j + ujd)

∂

∂xj
k, material derivative (3.28)

Tj =

(
1

2

[
ujtu

i
tu
i
t

]
s

+
[
ujtpt

]
s

+
2

Re

∂k

∂xj

)
, turbulent transport (3.29)

P =
[
uitu

j
t

]
s

∂

∂xj
(U i + uid), production (3.30)

ε̃ =
2

Rep

[
∂uit
∂xj

∂uit
∂xj

]

s

. pseudo-dissipation (3.31)

Fig. 3.11a shows that most of the TKE production is concentrated at the disc upstream-rotating
edge. The same holds for the pseudo-dissipation (Fig. 3.11c). The collective transport term
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Figure 3.11: Turbulent kinetic energy budget at y0+ = 11. (a) mean production P, (b) mean transport
∇ · T , (c) mean dissipation ε.

3.3.3 Turbulent drag reduction

In this section, the turbulent drag reduction generated by the spinning motion of the rings
combined with the effects of the opposition control and the hydrophobic surfaces is examined,
both globally and locally in space. The contribution of the different terms of the Navier-Stokes
equations to the drag reduction is studied through an extended form of the Fukagata-Iwamoto-
Kasagi identity (Fukagata et al., 2002).

3.3.4 Ideal prediction of combined-forcing drag reduction

We first predict the turbulent drag reductions Rid generated by the combination of the rings
and the distributed controls and compare these ideal predictions with the values computed via
the direct numerical simulations. We use two assumptions:

0. For the first assumption, we consider the drag reduction generated by the distributed
controls without the spinning rings. We assume that the reduction of the total drag is
obtained by multiplying the fraction of actuated area by the drag reduction obtained if the
whole surface area were altered by the distributed control, irrespectively of the geometrical
arrangement of the controlled area.

1. For the second assumption, we first consider the wall-turbulent flow altered by the dis-
tributed actuation imposed over the area not occupied by the stationary rings. We assume
that the action of the rings on this drag-reduced flow leads to the same amount of drag
reduction RR as if the rings operated on the reference turbulent channel flow without con-
trol. This assumption is directly related to the spanwise ring-flow not being influenced by
the distributed actuation, as demonstrated in Fig. 3.6.

It is useful to introduce the following definitions. We define Rdis-tot as the drag reduction via
distributed control when the whole wall is actuated, Cf,1 as the skin-friction coefficient obtained
via the distributed control activated over the area not occupied by the rings when the rings are
not in motion, and Cf,2 as the skin-friction coefficient produced by the combination of the rings
and the distributed control. The ratio between the combined skin-friction coefficient Cf,2 and
the uncontrolled value C0

f is written as:

Cf,2
C0
f

=
Cf,2
Cf,1

· Cf,1
C0
f

. (3.32)
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According to the first assumption:

Cf,1
C0
f

= 1− Rdis-totSdis

Stot
, (3.33)

where Sdis is the area not occupied by the rings and Stot = LxLz is the total surface area.
According to the second assumption:

Cf,2
Cf,1

= 1−RR. (3.34)

Substitution of (3.33) and (3.34) into (3.32) leads to:

Rid = RR +
Rdis-totSdis

Stot
−RR

Rdis-totSdis

Stot
. (3.35)

The equation (3.35) shows that the predicted drag reduction is equal to the sum of the drag
reductions produced by the two methods as if they operated separately minus the last term on the
right representing the ideal loss. In our idealized model, this loss accounts for the drag reduction
effect caused by the rings operating on a wall-bounded flow with a skin-friction coefficient that
is lower than the reference one. We quantify the non-ideal interaction between the rings and
the distributed control by defining the difference between the drag reduction computed via the
direct numerical simulations and the ideal prediction given by (3.35):

∆R = R−Rid. (3.36)

The difference ∆R arises mainly because the second assumption is not fully applicable, i.e., the
effects of non-uniformity of the drag-reduced flow caused by the distributed forcing alone and by
the ring-flow being altered by the distributed control between spanwise-adjacent rings.

Table 3.3: Drag reduction values obtained by the combination of the rings and the distributed controls.
The full-disc drag reduction from Ricco and Hahn (2013) at the same diameter velocity are also added
for comparison.

Discs Rings OC HS ROC RHS OCR0 HSR0

R(%) 19.5 20.0 23.3 27.7 27.4 26.5 11.5 13.2
Rid(%) - - - - 29.3 31.1 11.7 13.8
∆R(%) - - - - -1.9 -4.6 -0.2 -0.6

Table 3.3 reports the values of the numerically-computed R, the predicted Rid, and their
difference ∆R. For the distributed control cases with stationary rings, OCR0 and HSR0, Rid
is calculated by adopting the first assumption, i.e., by multiplying the R values given by the
full-wall OC and HS controls by the fraction of actuated area Sdis/Stot. These ideal values
agree well with the numerically computed ones, i.e., within 95% confidence intervals, especially
the opposition-control values. These agreements support the first assumption. In the combined
cases, the drag reduction R increases by a similar amount with respect to the rings-only case, i.e.
7.4% in the ROC case and 6.5% in the RHS case. However, neither fulfils the ideal expectation as
∆R < 0 in both cases. As these values are negative, the ideal estimate (3.35) represents an upper
bound for the combined-forcing drag reduction. The ∆R values in the ROC and RHS cases are
comparable in magnitude and larger than the estimated uncertainties (refer to Table 3.2), but
the agreement between the predicted and the numerical values is satisfactory. The discrepancy
is larger in the hydrophobic-wall case than in the opposition-control case: the predicted drag
reduction value is about 17% larger than the numerical value, whereas in the ROC case the
prediction is about 6.5% higher than the computed value.
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Figure 3.12: Spatial distribution of (a) the drag reduction Rxz for the rings-only case, the difference
between Rxz in the rings-only case and the ROC and the RHS cases, (b) and (c) respectively, and
the differences between Rxz for the ROC and the RHS cases and the predicted Rxz,id, (d) and (e)
respectively.

3.3.5 Spatial distribution of drag reduction

The contour maps of Fig. 3.12 show Rxz, defined in (3.24), for the rings-only case (Fig. 3.12a),
the differences between Rxz in the rings-only case and in the two combined-forcing cases (Fig.
3.12b,c), and the differences between the numerical Rxz values in the combined-forcing cases
and the predicted Rxz,id, defined as

Rxz,id = Rxz,R +Rxz,OC/HS −Rxz,RRxz,OC/HS , (3.37)

where Rxz,OC/HS is Rxz generated by the opposition control or the hydrophobic control applied
over the area not covered by the rings. These differences highlight the regions where the drag
reduction is markedly altered with respect to the rings-only case. The spatial distribution of the
time- and ensemble-averaged wall-shear stress reduction is strongly non-uniform and depends on
the type of distributed forcing.

Fig. 3.12a shows that Rxz,R is determined by the rotation on the ring surface, thus negative
on the upstream-rotating half (drag increase, blue color) and positive on the downstream-rotating
half (drag reduction, red color). The red positive-Rxz region on the rotating ring surface is larger
than the blue negative-Rxz region. The stationary inner-ring region benefits from levels of drag
reduction as high as 40% and the wall-shear stress distribution is quite uniform. It is therefore
not directly influenced by the ring sides spinning in opposite directions. The region outside of
the ring is largely dominated by the combined effects of the radial swirling flow, the interaction
between adjacent rings, and the adjustment of the flow from the rotating portion of the wall and
the stationary surface. Drag reduction is observed downstream of the upstream-rotating part
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of the ring, whereas drag increase occurs downstream of the downstream-rotating part of the
ring. The drag is reduced upstream of the downstream-rotating side of the ring and increases
upstream of the upstream-rotating side. On the lateral strips located directly underneath the
ejections/low-speed regions, Rxz,R takes highly positive values. This proves that the streamwise-
elongated structures have a direct but spatially limited beneficial effect on the wall-shear stress
reduction, although their associated ring-flow Reynolds stresses are negative, as shown in Fig.
3.7d.

Fig. 3.12b shows that the combined forcing ROC yields about 10% more drag reduction in
the inner-ring region than the rings-only case and has a similar beneficial effect on the large
portions of the rotating rings, although it is not applied there. The bands between spanwise-
adjacent rings experience a drag increase of up to 27% with respect to Rxz,R, consistently with
the weaker ring-flow structures in the ROC case, as displayed in Fig. 3.7d. Fig. 3.12c shows
that the drag reduction Rxz of the RHS case is less uniform than the ROC case. Therefore, their
similar R values, reported in table 3.3, do not reveal the markedly different physics. In the inner
region, the RHS case delivers an improvement of about 15% drag reduction with respect to the
rings-only case, which is much larger than in the ROC case. Outside of the ring, RHS has a
uniform beneficial effect on the drag reduction. On the rotating region instead the average drag
increases.

Several studies (e.g. Min and Kim (2004)) have established that in the reference channel flow
the level of drag reduction depends on U+

s , the mean slip velocity scaled in native wall units.
In the full-wall hydrophobic case, U+

s = 3. The global drag reduction achieved by the HSR0
case is very close to its Rid, as shown in Table 3.4, and the mean slip velocity is very close to
U+
s = 3 when scaled with the viscous length obtained from the averaged wall-shear stress over

the hydrophobic surface. This supports the hypothesis that when the rings are not rotating, the
ideal prediction is accurate. In the combined RHS case the slip velocity is smaller, i.e., U+

s = 2.65
in the central region, which is consistent with the intense reduction of wall-shear stress induced
by the ring rotation.

The contours 3.12d and 3.12e depict the difference between the numerical Rxz and the ideal
Rxz,id, defined in (3.37). In the ROC case, the Rid overpredicts the numerical value over the
regions not occupied by the rings, whereas the opposite occurs on the ring surface. In the RHS
case, the difference is more non-uniform than the ROC case and the streamwise increase/re-
duction pattern along the streamwise direction is due to the local adjustment of the flow from
the finite-slip over the hydrophobic surface to the no-slip condition on the ring surface and
vice-versa.

3.3.6 Decomposition through the Fukagata-Iwamoto-Kasagi identity

In this section we examine the relation between the spatially-dependent skin-friction coefficient
cf defined in (3.25) and the terms of the Navier-Stokes equations to understand the origin of
drag reduction and its spatial distribution. To this purpose, we apply the Fukagata-Iwamoto-
Kasagi (FIK) theory (Fukagata et al., 2002) to our time- and ensemble-averaged streamwise
momentum equation (3.21) for U + ud. This leads to the following integral identity for the
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spatially-dependent skin-friction budget:

cf (xs, zs) =
6

RepUb︸ ︷︷ ︸
C lam
f

− 6U(0)

RepU2
b︸ ︷︷ ︸

Csf

− 6

U2
b

∫ 1

0

(1− y)udvddy

︸ ︷︷ ︸
cdf

− 6

U2
b

∫ 1

0

(1− y) [utvt]s dy

︸ ︷︷ ︸
ctf

+
6

RepU2
b

∫ 1

0

(ud − ud,0) dy

︸ ︷︷ ︸
cudf

− 3

U2
b

∫ 1

0

(1− y)2I ′′xdy

︸ ︷︷ ︸
cxf

− 3

U2
b

∫ 1

0

(1− y)2I ′′z dy

︸ ︷︷ ︸
czf

− 3

U2
b

∫ 1

0

(1− y)2C′′dy
︸ ︷︷ ︸

cCf

− 3

U2
b

∫ 1

0

(1− y)2Π′′xdy

︸ ︷︷ ︸
cΠf

,

(3.38)

where cf is defined in (3.25) and ud,0 = ud(xs, 0, zs). Following the notation adopted by Fukagata
et al. (2002), the superscript ′′ indicates the difference between a quantity q and its bulk integral,
as follows

q′′ = q −
∫ 1

0

q dy. (3.39)

The last four integrals in (3.38) are defined by grouping the terms in the streamwise momentum
equation (3.21) that are null when averaged over xs and zs, as follows:

Ix =
∂

∂xs

(
u2
d +

[
u2
t

]
s
− 1

Rep

∂ud
∂xs

)
, (3.40)

Iz =
∂

∂zs

(
udwd + [utwt]s −

1

Rep

∂ud
∂zs

)
, (3.41)

C = U
∂ud
∂xs

+ vd
∂U

∂y
, (3.42)

Πx =
∂pd
∂xs

. (3.43)

The term C lam
f represents the laminar part of the skin-friction coefficient. The term Csf in (3.38)

is non-zero only in the RHS case: it is due to the finite average wall-slip velocity caused by the
hydrophobicity of the surface (Aghdam and Ricco, 2016). Its magnitude is about 2% of Cf .

The terms cdf (xs, zs) and ctf (xs, zs) are the contributions of the two Reynolds-stress compo-
nents udvd and [utvt]s to the skin-friction coefficient. The terms in the second and third lines
of (3.38) are zero when (3.38) is averaged along xs and zs. The term cudf originates from the
spatial distribution of the ring-flow streamwise component ud. The terms cxf and czf are related
to Ix in (3.40) and Iz in (3.41), respectively, and therefore to the x-x and x-z Reynolds and
viscous stresses. The term cCf involves C, defined in (3.42), and thus expresses the influence of
the convective transport due to the interaction between the mean flow and the ejections at the
sides of the rings. The term Πx accounts for the non-uniform part of the pressure gradient.

By averaging (3.38) along xs and zs, the following expression for the skin-friction coefficient
is found (Ricco and Hahn, 2013):

Cf = C lam
f + Cdf + Ctf + Csf , (3.44)
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Table 3.4: Contributions of the Reynolds-stress components to the global skin-friction budget. The
values of the partial skin-friction coefficients are multiplied by 103 and the values of the partial drag
reduction values are percentage.

Cf C lam
f Cdf Ctf Csf R Rd Rt Rs

Reference flow 8.12 2.14 - 5.97 - - - - -
Rings 6.48 2.14 0.42 3.92 - 20.0 −5.2 25.2 -
ROC 5.88 2.14 0.36 3.38 - 27.4 −4.4 31.9 -
RHS 5.96 2.14 0.53 3.41 −0.12 26.5 −6.6 31.6 1.5

where Cdf = 〈cdf 〉 and Ctf = 〈ctf 〉. Table 3.4 reports the values of the terms in (3.44) for the

drag-reduction cases, revealing that Ctf exceeds Cdf by one order of magnitude in all the cases.
Table 3.4 also shows the partial drag reductions that add up to the total drag reduction, i.e.,
Rd + Rt + Rs = R, where Rd(%) = −100 · Cdf/C0

f , Rt(%) = 100 · (C0
f − Ctf )/C0

f , Rs(%) =

−100 · Csf/C0
f , and Ct,0f = C0

f − C lam
f . The values of Rd show the detrimental role of ud, which

always increases the global drag. The analysis of the partial drag reduction budget also uncovers
fundamental differences between the two combined control schemes. While both ROC and RHS
can substantially reduce Ctf to a very similar level, in the ROC case Rd is more than 2% smaller

than in the RHS case, while in the latter case Cdf is larger than the rings-only case.
To improve the understanding of the flow, we average the terms in (3.38) along xs, obtaining

zs-dependent quantities. This procedure leads to a limited loss of spatial information since the
turbulence statistics are approximately uniform along the streamwise direction, as evident from
Fig. 3.9. The budget of the skin-friction coefficient becomes

〈cf 〉x(zs) = C lam
f + Csf + 〈cdf 〉x + 〈ctf 〉x + 〈cudf 〉x + 〈cxf 〉x + 〈czf 〉x + 〈cCf 〉x + 〈cΠf 〉x (3.45)

The graphs in the first row of Fig. 3.13 show 〈cdf 〉x(zs) and 〈ctf 〉x(zs), thereby providing more
insight into the values of Table 3.4.

The rings-only case is first examined (left column in Fig. 3.13). In the central region, the
viscous boundary layer induced by the ring motion, shown in Fig. 3.6, reduces 〈ctf 〉x (blue line)
by 40%, i.e., at a level similar to that given by a sinusoidal wave at the same amplitude and
wavelength, whereas at the ring sides, 〈ctf 〉x has peaks at the ring sides exceeding the reference

channel value Ct,0f (black dashed line) by 150%. This detrimental effect adds up to that of 〈cdf 〉x
(red line) that also peaks at the same locations. In all the configurations, the peak contributions
to the global Cf originate from the sides of the rings where both 〈cdf 〉x and 〈ctf 〉x have a maximum.
Since in the central region ud is almost uniformly positive, the sign of udvd is dictated by the
positive wall-normal component vd, shown in the y-z plane of Fig. 3.3a. In the central region,
the term 〈cdf 〉x thus has a mild drag-reducing influence where ejections occur and a slightly more
significant drag-increasing effect beneath the sides of the central rolls.

Although most of the globally drag-increasing contributions (i.e., peaks of 〈ctf 〉x and 〈cdf 〉x)
originate from the side regions, in Fig. 3.12a the above-average values of Rxz,R occur between
rings because the structures locally decrease the drag as ud is negative between spanwise adjacent
rings. The sum of all the terms of (3.45) (black circles in Fig. 3.13, second row) shows that
the total 〈cf 〉x has a minimum on the right upstream-rotating side of the ring. This minimum
is due to 〈cCf 〉x (light blue line), which has drag-reduced negative peaks that are much more

intense in absolute value than the local peaks of the drag-increasing 〈ctf 〉x and 〈cdf 〉x in the ring-
side region. This explains the narrow region of large positive Rxz at the right ring side. Once
averaged along xs, 〈cCf 〉x consists only of the term vd∂U/∂y, i.e., the wall-normal advection of

U along vd. Therefore 〈cCf 〉x is maximum at the sides of the ring because of the lateral ejections
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Figure 3.13: Spatially-dependent skin-friction budget defined in (3.45). The leftmost column is relative
to rings-only control, the central column to ROC, and the rightmost column to RHS. The first row
displays the first four terms of (3.45). The horizontal blue segments represent the global mean value Ctf
and the black dashed line denotes Ct,0f . The second row displays the last three terms and the sum of all
the terms of (3.45). The third row shows the progressively-averaged drag reduction, according to (3.46).
The shaded areas represent the spanwise extension of the ring on a cross-flow section passing through
its centre.
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identified in §3.3.1. The term 〈czf 〉x (purple line) instead contributes detrimentally to the local
skin friction by the intense peak at the sides. Most of the contribution to 〈czf 〉x is due to the
Reynolds stresses [utwt]s. The sum of the terms (black circles) coincides with 〈cf 〉x calculated
from the wall-normal velocity gradient at the wall (dashed red line).

Further insight is gained by the bottom graphs of Fig. 3.13, which show

Rzp(zs) =
100(%)

2zs

∫ zs

−zs

C0
f − 〈cf 〉x(ẑs)

C0
f

dẑs, (3.46)

i.e., the progressive spanwise average of the local drag reduction from the ring centerline at
zs = 0 towards the edges. At zs = D/2, the global drag reduction R is retrieved by the integral
(3.46). The partial spanwise-averaged drag reduction corresponding to the terms of equation
(3.45), named Rizp(zs) (where i denotes the corresponding superscripts of the terms), are found
by substituting these terms into (3.46). The curves of Rtzp(zs) demonstrate that more than 20%
of the global RR is lost in the side regions, while it remains essentially constant over the central
region and of similar magnitude to the drag reduction produced by the standing waves (Viotti
et al., 2009).

We now discuss how the wall-shear stress is modified in the ROC case by inspecting the
graphs in the central column of Fig. 3.13. The action of OC results in a pronounced weakening
of both the lateral peaks of 〈cdf 〉x and 〈ctf 〉x, explaining the partial drag reductions Rt and Rd in

Table 3.4. In the central region, 〈ctf 〉x is slightly reduced with respect to the rings-only case. The

progressively-averaged Rtzp curve of Fig. 3.13 (bottom central graph) confirms the additional 5%
reduction of 〈ctf 〉x with respect to the rings-only case in the central region. The weaker central
rolls of ud, shown in Fig. 3.3b, are also attenuated as a consequence of the opposition control
on vd. The resulting reduction of udvd explains the slightly flattened 〈cdf 〉x curve in the central

region. In the ROC case, the negative peak of 〈cCf 〉x is also diminished by more than 30% with
respect to the rings-only case. This explains why the drag at the ring sides is higher than in the
rings-only case despite 〈cdf 〉x and 〈ctf 〉x being much smaller in the same region. More insight into

how 〈cdf 〉x and 〈cCf 〉x are affected by the OC is obtained by comparing the graphs 3.14-a (rings-
only) and 3.14-b (ROC case), which show the flow field between two adjacent rings. At the ring
sides the core of the negative-ud region is located further away from the wall in the opposition-
control case than in the rings-only case. This effect results in stronger gradients of ud +U at the
wall with respect to the rings-only case. The wall-normal velocity vd is also mitigated because
of the direct opposing action of vd(yd). This explains the lower peaks of 〈cCf 〉x because the term
vd∂U/∂y is less intense. The magnitude of udvd is also weakened and its minimum pushed away
from the wall, resulting in the maximum of 〈cdf 〉x being reduced.

We now examine the spatial skin-friction budgets of the RHS case from Fig. 3.13. On the
side regions, 〈cdf 〉x is increased with respect to the rings-only case. The peaks of 〈ctf 〉x is reduced,
but less than in the ROC case. In the central region the hydrophobic surface delivers a similar
reduction of 〈ctf 〉x as the ROC case, leading to an average 45% drag reduction. The progressively-

averagedRtzp curve of Fig. 3.13 (bottom right graph) also gives about an additional 5% reduction
of 〈ctf 〉x with respect to the rings-only case in the central region, similarly the opposition control

case. The behaviour of the zero-global-mean, streamwise-averaged terms 〈cCf 〉x and 〈czf 〉x, shown
in the second row of Fig. 3.13, remains largely unchanged.

These insights from the modified FIK analysis can help the future development of drag-
reduction strategies, especially methods that require localized actuators. If, similar to our ring
actuators, localized actuators interact detrimentally to induce additional Reynolds stresses that
increase the wall-shear stress, wall-normal actuation confined between the actuators (wall tran-
spiration in our case) is more efficient than streamwise wall-parallel forcing. We have also learned
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Figure 3.14: Action of the opposition control on ud, visualized on cross-stream sections at xs = D/2.
The contours depict the streamwise component ud. (a) Rings-only forcing. (b) case ROC. The dashed
red line marks the detection height y0+

d = 14.5.

that the additional benefit of the distributed control in the central part of the ring is limited
because the shearing drag-reducing action of the rings already operates effectively there.

3.3.7 Details of the skin-friction budget terms

Figure 3.15 depicts the complete local skin-friction budget on the wall surface. Each graph
corresponds to one of the terms of Equation 3.38 for the symmetry-averaged flow unit. The
three graphs in the top line are the terms that have a non-zero contribution to the global skin-
friction. The remaining four terms do not contribute to the global skin-friction because of their
symmetries that make their spatial average go to zero. As observed in Sec. 3.3.6, it can be noted
that ctf (x, z) and cdf (x, z) are almost uniform along the streamwise direction but not along the
spanwise direction. On the other hand, the term czf (x, z) is characterised by The other zero-mean
skin-friction budget terms show a similar behaviour.
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Figure 3.15: Full 2D maps of the skin-friction budget, forcing by rings only.

In order to avoid overcomplicated notation, some of the contributions of the individual terms
of (3.21)-(3.22) to the skin-friction budget Eq. (3.38) were grouped into terms reflecting a
common physical origin. The terms grouped under the name of cCf all belong to the convective
transport of momentum ud by means of U. The term czf collects the spanwise fluxes of both
the Reynolds and viscous stresses. Figure 3.16 represent the breakdown of these terms into their
individual components.

The dominant component comes from the term vd∂U/∂y, representing the transport of . The
component U∂ud/∂x, which Since no mean wall-normal velocity is present, the mean wall-normal
convection contribution V ∂u/∂y is zero everywhere.

The contributions to the spanwise-inhomogenous component czf show little variability across
the different forcing configurations. The two major contributions come from the mean and the
turbulent x, z-Reynolds stresses. In the lateral regions they have opposite sign, the positive
(drag-increasing) turbulent stress contribution being larger in magnitude and leading to the
maximum czf .
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3.3.8 Detection height modification for case ROC

When the OC is applied on the entire wall surface with no wall motion (case OC), the drag
reduction ROC is a function of y+

d only. If we consider a smaller value of Reτ , raising yd to
maintain y+

d = 14.5 in the new wall units would preserve the same drag reduction value. Since
the definition of Rid assumes that yd is rescaled, we expect that adjusting yd to match Reτ
of the rings-only case would reduce ∆R. However, the failure of ROC to obey the wall-unit
scaling is demonstrated in Fig. 3.17 where the results of four simulations with higher values of
yd are displayed. Starting from the left, the lowest height is the original configuration RHS with
y0+
d = 14.5 that has been discussed up to this point. The third value of yd matches a detection

height of yd ·160 = 14.5, preserving the wall-unit scaling for Reτ = 160 of the rings-only case. The
two rightmost values (up to y0+

d = 26) are also considered to test raising yd based on the local
friction at the ring centreline, which is lower than the global average. This attempt is motivated
by the hypothesis that the canonical scaling is more likely to hold in the central region rather
than at the heavily non-uniform ring sides. Any new yd fails to reduce ∆R or improve R (Fig.
3.17, filled symbols), eventually resulting in drag increase for the largest detection height for
which R < RR (dashed line). The same trend holds for the global contributions to the drag
calculated at the ring centreline (Fig. 3.17, empty symbols).
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Figure 3.17: Effect of the variation of yd on the drag reduction for the combined case ROC. Solid symbols
( ) indicate the and empty symbols ( ) refer to drag reduction calculated on the streamwise centreline
of the disc.

3.4 Summary and conclusions

This study has examined two novel drag-reduction methods, i.e., the combination of rotating
flush-mounted annular actuators and distributed control methods, i.e., opposition control and
hydrophobic surfaces. The main conclusions of our work are outlined in the following.

(i) Rings-only flow

Despite the significant non-uniformity of the annular actuators, the resulting turbulence
statistics are quasi-uniform along the streamwise direction. The ring-side streamwise-
aligned structures, generated by the radial flow encountering stationary portion of the
wall surfaces at the ring edges and interacting with the flow produced by neighbouring
rings, carry a large fraction of the turbulent kinetic energy. While the local effect of these
structures is to decrease the wall-shear stress in narrow streamwise-stretched bands be-
tween rings because of their negative near-wall streamwise velocity, they are responsible
for additional negative ring-flow Reynolds stresses, which globally contribute detrimentally
to the turbulent drag. The turbulence intensity at the ring side is larger than in the corre-
sponding reference channel case, whereas the flow over the central part of the ring is almost
relaminarized by the action of the spanwise triangular wave generated by the rotating rings.
In this central region, the Stokes-type steady boundary layer produced by the rotation of
the rings is responsible for the drag reduction and its thickness is equal to the optimal one
proper of the streamwise-traveling waves of spanwise wall velocity studied by Quadrio and
Ricco (2011). The damping of the turbulence in the central region occurs quite uniformly
in the stationary ring core. The total influence of the rings on the turbulence intensity is
an attenuation as the central low-turbulence region is much wider than the high-turbulence
region of the narrow elongated structures. For the tip ring velocity and the diameter used in
our study, the drag reduction produced by the rings is 20%. A spatially-dependent form of
the Fukagata-Iwamoto-Kasagi identity has been useful to quantify the drag-altering effects
of each term of the Navier-Stokes equation.

(ii) Combined flow: rings with distributed control

The combined control schemes deliver additional drag reduction with respect to the rings-
only case: 7.4% in the case of the spinning rings with opposition control and 6.5% for
the spinning rings with hydrophobic surface. We have used an idealized model, based on
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reasonable assumptions, to predict the drag reduction produced by the combined actua-
tions. The prediction is satisfactory and the ideal values are always slightly larger than
the actual drag reduction, which renders the idealized value an upper bound. This simple
model can be easily generalized to other combined drag-reduction techniques. The ring-
Stokes boundary layer over the central ring region is unaffected by the distributed control
schemes, which implies that the drag-reduction effect due to the rings is not altered in the
combined cases.

Although the global drag-reduction performance of the two combined cases is similar, it
is achieved via two different mechanisms. The modified form of the Fukagata-Iwamoto-
Kasagi identity reveals that the attenuation given by the opposition control is more uniform
than that of the hydrophobic surface. The rings-opposition control case exceeds the ideal
performance in the side regions, weakening the Reynolds stresses carried by the streamwise-
elongated structures at the ring sides. In the central region, the beneficial effect of the
opposition control is almost negligible because the wall forcing is directly proportional to
the near-wall wall-normal fluctuations, which are already strongly damped by the spinning
rings. This view is endorsed by the intense attenuation produced by the opposition control
in the central-ring region when the rings are not spinning. The rings-hydrophobic control
case fares better in the central-ring region than at the ring sides, where the Reynolds stresses
associated with the streamwise structures are strengthened by surface hydrophobicity while
the turbulent Reynolds stresses are instead less affected by the surface hydrophobicity than
in the opposition-control case. In the central-ring region, the hydrophobicity reduces the
drag more than the rings-opposition control method and the flow globally benefits from the
mean drag-reducing slip velocity. The distributed-control cases with fixed rings matches
the ideal prediction very well, indicating that the additional actual losses are rooted in the
interactions between the swirling flow and the distributed controls.

Experiments on wall turbulence over spinning discs and rings is certainly needed for valida-
tion of the numerical results. Given the highly three-dimensional character of these flows, the
pressure-driven channel flow is certainly a preferred option over the free-stream boundary layer
flow without a pressure gradient in order to measure the drag reduction by global pressure-drop
measurements. The main reason for this choice is certainly the difficulty of measuring the highly
spatially-dependent wall-shear stress through the wall-normal velocity gradient at the wall. An-
other very important topic of research is the effect of Reynolds number on the amount of drag
reduction produced by the rotating rings and on the scaling of the optimum ring forcing param-
eters, i.e., the diameters defining the rings and the tip ring velocity, which deliver the maximum
attenuation of wall-shear stress. It needs to be verified whether the rings, alone or combined
with opposition control, can suppress effectively the large super-structures populating the outer
part of high Reynolds number flows (Hutchins and Marusic, 2007). Another point of interest is
the possible interaction of the ring-side structures, which scale in outer units (Wise and Ricco,
2014), with the super-structures at high Reynolds numbers.

We close our discussion with a short remark on the implementation of active control techniques
in industrial scenarios. As amply discussed in Ricco and Hahn (2013), assuming that wall-unit
scaling applies at high Reynolds numbers proper of commercial flight conditions, the optimal
ring diameter would be of the order of 1mm and the typical period of rotation would be of
the order of 0.1ms. These numbers render the practical realization of the rings method (and of
any other active drag reduction technique) extremely difficult. Further complications obviously
arise if feedback control is considered, even in the simplistic case of opposition control studied
herein, because of the enormous database of the order of terabytes to be processed per second.
Nevertheless, motivated by the enormous benefits from economical/environmental aspects, we
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hope that research in turbulent drag reduction will continue to inspire generation of scientists and
receive increased attention in order to achieve the ultimate goal of technological implementation
in aircraft industry.

3.5 Further work

The flow decomposition Section 3.2.4 and the extended FIK identity (3.38) have proven critical
tools to understand the fluid mechanics and the skin-friction of the disc-like actuators. In this
section, we list a series of preliminary data and results about some research questions where the
FIK analysis plays a central role and that may be considered as future research directions. We
present three distinct lines of work:

• In Section 3.5.1 we argue that the same tools can be helpful in clarifying some issues that
were left open in earlier work on rotating disc, namely the dependence on the parameters
D and W and its origin in the spatially dependence FIK budget. Section 3.5.2 investigates
qualitatively how differently the near-wall turbulent streaks are affected by homogeneous
spanwise waves and by localised rings.

• Section 3.5.3 proposes a modification of the rotating-disc control based on sheltering the
disc edges from the mean shear and reports promising results from a numerical simulation.

• Section 3.5.4 briefly examines a higher-Reynolds number flow case.

3.5.1 Dependence of R on the control parameters

The original work on drag reduction by rotating disc by Ricco and Hahn (2013) left the open
question of how the drag reduction R depends on the control parameters W and D. In particular
the authors note that, in contrast with a traditional spanwise wall forcing, the dependence of R
on the forcing amplitude W has a non-monotonic character, displaying a maximum at every value
of D. The disc-flow decomposition and the spatially-dependent FIK identity help in answering
this question.

Fig. 3.18a reveal that, while the disc flow generates drag increase that grows monotonically
with W , the turbulent contribution Rt is responsible for the convex character of R and the
existence of an optimal value of W .

Fig. 3.18b-c show how the spatially-dependent skin-friction budget changes with the control
parameters. The turbulent contribution ctf increases with W at the sides while is decreases at

the centre. An extreme increase at the sides is also seen in the disc-flow term cdf . We conjecture

that the convex shape of Rt(W ) is caused by the contrasting behaviour of ctf at the centre and
at the sides, which would occur when the detrimental drag increase at the sides overtakes the
increasingly marginal gains at the centre.
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Figure 3.18: (a) Dependence of R on W for discs with D+ = 605, data from Wise et al. (2014). (b)-(c)
Spatially dependent skin-friction components for three combinations of W and D for the ring forcing;
the data are elaborated from the simulations performed by S. K. Aghdam (Khosh Aghdam, 2016).

3.5.2 Ring-like and wave-like boundary conditions

Since the rotating actuators create a partial triangular wave at their centreline, it is of great
interest to compare the ring forcing with conventional spanwise wave forcing. To this purpose, a
simulation of a channel flow was performed with standing triangular waves of spanwise velocity,
having a wavelength λ = 2D and amplitude W to match the corresponding parameters of the
array of rings. The waves are enforced homogeneously along the spanwise direction. Another
simulation has been carried out enforcing a traditional sinusoidal spanwise-velocity wave at the
wall, also with the same parameters as the triangular wave. The numerical configuration of the
simulations is the same for the wave and the ring simulations and can be found in Tab. 3.1.

Fig. 3.19 shows an instantaneous snapshot of the near-wall streaks over the periodic unit of
the three flows. The streak organisation are known to be closely linked to the near-wall drag-
reducing mechanism of the oscillating wall (Blesbois et al., 2013) and the analogous spanwise
waves (Quadrio et al., 2009). The spanwise forcing gives rise to the pattern observed in Fig.
3.19b-c where the streaks are tilted to positive or negative angles depending on the forcing
phase. A qualitatively similar pattern can be observed in the central region of Fig. 3.19a,
although the streak organisation is heavily influenced by the spanwise inhomogeneity at the
ring sides. Although the streak organisation in the central region is similar in all three cases,
the triangular and sinusoidal waves appear to produce larger streak tilting angles than the ring
forcing. The streak angle can be calculated as θ = arctan(λz/λx) where λz, λx are respectively
the spanwise and the streamwise length scales of the streamwise velocity (Blesbois et al., 2013).
The length-scales can be computed for a given wall-normal distance by considering the maximum
of the streamwise velocity spectrum along a given direction.
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In order to compare the mean flow of the ring forcing to the one produced by the perfect
waves, the centreline spanwise velocity profiles are visualised in Fig. 3.20a.
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Figure 3.20: Flow statistics for rotating rings and perfect spanwise-velocity waves. The colour key is: R
( ), triangular waves ( ), spanwise waves ( ). (a) wall-normal profiles of the mean spanwise
velocity wd. The profiles are taken at the positions marked by (×) in Fig. 3.19. Profiles at the outer edge
(amplitude ±W ) and inner edge (amplitude ±0.6W ) of the ring are represented and at the equivalent
location in the perfect wave cases.
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3.5.3 Disc edge sheltering

The modification to the rotating-disc control presented in this section is motivated by the finding
that the upstream-rotating disc edges are responsible for a large portion (around 20%) of the
skin-friction drag. suggests that preventing them to interact with the mean shear might produce a
more orderly flow, possibly leading to higher drag-reduction. The proposed forcing configuration
is illustrated in Fig. 3.21 and consists in fitting the disc array with platelets that suppress
the direct interactions between the fast disc edge tips and the mean shear. The screens run
continuously in the streamwise direction, they have a spanwise width of Bplat = 0.1D and a
thickness of b+plat = 1. The platelet’s lower surface is positioned at an height of y+ = 10 above
the channel wall. The platelets are modelled numerically via the Immersed Boundary Method
of Parnaudeau et al. (2004) that is already integrated into Incompact3D’s source code.
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Figure 3.21: Arrangement of the disc-fitted channel, with and without edge sheltering: (a) discs, (b)
discs and platelets. The sense of rotation of the discs is highlighted by the curved arrows, while the
longer arrows indicates the mean-flow direction.

The fluid domain and the numerical parameters are identical to those used for the ring
forcing of Sec. 3.2 and can be found in Tab. 3.6. Although the drag increase from the disc-flow
contribution more than doubles with respect to the simple discs, a further 10% reduction of the
turbulent contribution Ctf is achieved, resulting in a more than 7% cumulative improvement in
the performance of the scheme. More extensive analysis of the flow field and the skin-friction
budget is still necessary to understand the drag reduction performance and speculate on the
potential of this scheme.

Table 3.5: Contributions of the Reynolds-stress components to the global skin-friction budget. The
values of the skin-friction coefficients are multiplied by 103 and the values of the partial drag reduction
values are percentages.

Case Cf C lam
f Cdf Ctf R(%) Rd(%) Rt(%)

no-slip 8.12 2.14 0.00 5.97 - - -
discs 6.44 2.14 0.25 4.03 20.0 -3.1 23.1
discs+plats 6.10 2.14 0.64 3.10 27.3 -7.9 35.4

3.5.4 Higher-Reynolds flow

In this section we compare the effect of rotating discs in a channel flow at two values of the friction
Reynolds numbers, Reτ = 180 and Reτ = 400. The work is motivated by the observation (Gatti
and Quadrio, 2016), that the efficacy of the spanwise-velocity forcing methods declines with the
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Reynolds number. A simulation of a no-slip and a controlled case is carried out at each value
of Reτ , for a total of four simulations. The parameters of the base channel flow and the forcing
parameters are listed in Table 3.6. The values of the diameter D+ and the disc-tip velocity W+

are kept constant (in the wall units of the reference case at the same Rep).

Table 3.6: Parameters of the higher-Reynolds channel-flow simulations with rotating discs.

Case Rep Re0
τ D+ (D) W+ (W ) Lx Lz nx×ny×nz ∆y+ ND

D180 4200 180 600 (3.38) 9 (0.39) 4.5π 2.3π 256×129×256 0.9 2×4
D400 10500 400 600 (1.51) 9 (0.34) 2π π 256×257×256 0.9 2×4

The results of the simulations are reported in Tab. 3.7. It must be noted that in a Re0
τ = 400

flow, the turbulent skin-friction Ctf contributes to an higher share of the total skin-friction than

in a Re0
τ = 180 flow. However the simulations indicate that at Re0

τ = 400 the disc forcing is
worse at reducing Ctf than at Re0

τ = 180, thus resulting in an around 4% smaller total drag
reduction R than the lower Reynolds case.

Table 3.7: Comparison of the drag-reduction performance of wall forcing through discs at Re0
τ = 180

and Re0
τ = 400. The values of the skin-friction coefficients are multiplied by 103.

BC Re0
τ Cf C lam

f Cdf Ctf R(%) Rd(%) Rt(%)

no-slip 180 8.12 2.14 - 5.97 - - -
no-slip 400 6.35 0.86 - 5.48 - - -

D180 180 6.44 2.14 0.25 4.03 20.0 -3.1 23.1
D400 400 5.32 0.86 0.22 4.24 16.2 -3.5 19.5

The elements of the FIK skin-friction budget are visualised in Fig. 3.22, where each term is
defined identically to (3.38) and they are normalised with the Cf of the no-slip channel at the
corresponding value of Re0

τ . Compared to Re0
τ = 180, the following differences can be noticed

in Re0
τ = 400: i) the streamwise Reynolds-stress term ctf displays an around 30% increase in the

central region but remain largely unchanged at the sides, ii) the disc-flow term cdf is less intense
and iii) the spanwise inhomogeneous term czf is significantly stronger. The above points require
a more extensive analysis of the simulation data to be explained, similarly to what undertaken
in Sec. 3.3.1. It is also an open question whether the occurrence of i) is connected to the
Reynolds-number effects reported in the literature to affect the spanwise-velocity drag-reduction
methods.
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Figure 3.22: Skin-friction budgets of the ensemble-averaged flow for Re0
τ = 180 and Re0

τ = 400. The
curves are normalised with C0

f i.e. the skin-friction coefficient of the no-slip case at the same Re0
τ .
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Appendix to Chapter 3

3.A Identification of coherent vortical structures

The problem of identification of coherent vortices in a fluid flow is addressed in the seminal
work of Jeong and Hussain, 1995 where the authors reviewed all the then-current methods and
proposed a new one, called the “λ2-method”, based on the spectral analysis of the velocity-
gradient tensor. Recalling earlier vortex-identification criteria, the authors highlight three issues
regarding the unambiguous identification of vortexes:

The criterion that in a vortex the pressure tends to have a minimum on the axis of swirling
motion, and that this inward pressure gradient is the centripetal constraint holding the vortex
together, is not strictly true other than in steady inviscid planar flows.

Criteria based on streamline patterns, such as spirals or closed paths of revolution around a
vortex core, do not satisfy the requirement to be Galilean invariant. The observation of stream-
lines in different reference frames does not yield the same curves. In addition, the trajectories
may not close due to the topology of the vortex rapidly changing.

Isosurfaces of vorticity magnitude |ω| are a better criterion compared to the previous two but
still are not able to capture vortex cores correctly. For instance when shear, walls and vorticity
sheets are present it is not able of telling true vortexes from other non-vortical structures. The
starting point for the λ2-method is the method of pressure minima and the observation that its
failure is essentially due to two key facts: the pressure minima may be due to unsteady stretching,
and the viscous effects may prevent a minimum to occur in the vortex’ core. A reliable criterion
must overcome these two issues and must be Galilean-invariant. The local extrema of pressure
are determined by the pressure’s Hessian ∂ijp. Taking the gradient of the Navier-Stokes equation
we have:

∂jai = −∂ijp+
1

Re
∂jkkui (3.47)

where ∂jai is the acceleration gradient tensor which can be decomposed into a symmetric and
an antisymmetric part, just like the velocity gradient. The symmetric part of (3.47) is:

DtSij −
1

Re
∂jkkui + ΩikΩkj + SikSkj = −∂ijp (3.48)

where S and Ω are the symmetric and the skew-symmetric parts of the velocity-gradient tensor.
The first two terms of (3.48) represent the contribution of the unsteady stretching and viscous
effects to the pressure Hessian. Therefore by dropping them we obtain a kinematic characteriza-
tion of the local extrema of pressure which excludes the two unwanted causes. In order to have
a local pressure minimum on a plane, ∂ijp must have two negative eigenvalues:

Definition 1 (Vortex core) Let the real numbers λ1,λ2,λ3 be the three eigenvalues of the sym-
metric, real-valued tensor S2 + Ω2, being λ1 ≥ λ2 ≥ λ3. A connected region of the flow where
λ2 < 0 is defined as a vortex core.

This condition is well-defined as it excludes the possibility of vortex cores on a wall, where S2+Ω2

vanishes.
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Chapter 4

Passively moving discs for
frictional drag reduction

4.1 Introduction

While the previous chapter the intent was to with the design and the analysis of better per-
forming, robust and convenient methods, the remainder of this work will focus primarily on the
energy efficiency aspect of wall-mounted rotating devices for drag reduction. To this purpose, the
energy losses occurring when to actively drive the actuators need to be assessed accurately and
realistically and, if possible, strategies to reduce them need to be devised. Furthermore, the ideal
solution in terms of energy efficiency is to achieve drag reduction through a purely passive form of
flow control, without any external power input. In this direction, the characteristics of passively
moving wall mounted discs are studied. In the next Chapter a different path to higher energy
efficiency is undertaken, namely the possibility of achieving higher power efficiency through a
unsteady, closed-loop control of the disc velocity.

First, we carry out direct numerical simulations of a turbulent channel flow over flush-mounted
rotating discs that are free to move under the action of the wall turbulence. We consider the full
numerical modelling of the rotating actuators, taking into account the coupled dynamics of the
turbulent flow and the discs, and the frictional losses occurring in a realistically designed disc
housing.

Full modelling of the actuators in active control methods is critical to their success as it
can produce better estimates of the power spent by the actuators, closer to those that would
be observed in a real-world setting. This also addresses illustrates the wider task of modelling
actuation devices together with the fluid mechanics (i.e. in a two-way coupling), which implies a
more accurate prediction of the flow physics and therefore of the drag-reduction characteristics.
In the case of the discs, the two-way coupling is able to capture the detailed physics of the
stress and torque fluctuations to which a disc rotating under a turbulent flow is subjected.
Józsa et al. (2019) simulated the coupled fluid/body dynamics of passive, shear-stress driven
cylindrical actuators as a compliant-wall technique able to generate a finite in-plane wall velocity.
They proposed an ideal model of the cylindrical actuators and considered the variation of three
parameters governing their dynamics to produce drag reduction. Mahfoze et al. (2018) simulated
suction and blowing control in a boundary layer and used an empirical model of the frictional
losses in the electromagnetic speaker used to generate wall-normal blowing. To the authors’
knowledge, no attempt exist yet to model the realistic losses and the coupled fluid/actuator
dynamics for a spanwise in-plane wall forcing method.
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The dynamics of freely-rotating full discs and half discs is studied. Freely-rotating discs
are studied to determine the nature of their shear-driven motion, how it depends on the disc
size, and whether it can modify the near-wall turbulence and influence the skin-friction. Half
discs are realised by preventing the interaction of one half of a freely rotating disc (in the cross-
flow direction) with the flow, thereby producing a non-zero average shear-stress torque on its
surface. The half discs rotate with a non-zero velocity and introduce a slip velocity at the wall,
potentially affecting the skin-friction. Two configurations of half discs have been the subject of
an experimental boundary-layer study by Koch and Kozulovic (2013), who report a reduction
skin-friction of up to 17% on the disc surface. The two types of freely-rotating discs can be
classified as belonging to the class of compliant-surface methods.

The numerical and statistical procedures that are shared by all the simulations are presented
in Sec. 4.2. Sec. 4.3 describes the flow, the actuators and the detailed modelling of their
dynamics. In Sec. 4.4 we study of the passive response of freely-rotating discs to the turbulent
flow through numerical simulations. In Sec. 4.5, the simulation of an array of half-discs are
discussed and compared to the existing experimental work. In Sec. 4.6, summarises the results
and conclusions of the study.

4.2 Numerical and statistical procedures

4.2.1 Numerical solver

The open-source code Incompact3D (illustrated extensively in Chapter 1) has been used to
simulate all the flows in the present work. The code has been and The freely rotating disc
simulations of Section 4.4 have been run on the Cray XC30 “Archer” supercomputer of the
National Supercomputing Service, using 1024 parallel computational cores in a 32 × 32 block
decomposition. The half-disc simulations of Section 4.5 have been performed on the “ShARC”
cluster at the University of Sheffield using 64 compute cores in an 8 × 8 block decomposition.
All computations are initiated from the laminar Poiseuille channel flow between solid stationary
walls, perturbed by random noise. The initial transient flow response to the modified boundary
conditions is discarded to acquire meaningful statistics of the controlled flow.

The fluid interacts with the disc actuators via a Dirichlet boundary condition for the velocity
on the walls. This means that the boundary conditions of the fluid velocity are updated at
each time step in order to realise the wall-normal vorticity given by motion of the disc. The
latter is itself determined by a rigid-body dynamical model that takes the instantaneous fluid
shear-stresses on its surface as an input. The details of the disc dynamical model are given
in Sec. 4.3.1. The time integration of the disc boundary conditions is performed using the
same numerical scheme as the fluid solver and the same temporal resolution to preserve the same
overall order of accuracy. Further details on the numerical procedures used for the disc boundary
conditions are given in the next paragraph.

Numerics of the fluid-body coupling and torque calculation

The disc dynamical model is implemented as a rigid-body boundary condition on the wall. In the
context of the fractional-step method, the problem is to update the Dirichlet boundary conditions
of the first-step velocity u∗ = {u∗, v∗, w∗} as follows:

u∗n+1(y = 0) = ωn+1r sin θ + ∆t(∇pn)x

v∗n+1(y = 0) = 0 + ∆t(∇pn)y

w∗n+1(y = 0) = −ωn+1r cos θ + ∆t(∇pn)z

(4.1)
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where ωn+1 is obtained by integrating the discrete-time version of (4.12) and the pressure cor-
rection is also applied. The 2nd-order Adams-Bashforth time advancement for (4.12) reads:

ωn+1 = ωn + ∆t

(
3

2
RHSn −

1

2
RHSn−1

)
(4.2)

θn+1 = θn + ∆t

(
3

2
ωn −

1

2
ωn−1

)
(4.3)

where:
RHSn = (Tnf + Tnb + Tnh )/I. (4.4)

The chosen scheme preserves the same second-order accuracy of the main solver. The first
integration step is performed using a simple Euler scheme.

The fluid torque Tnf is obtained by applying the midpoint quadrature rule to Eq. (4.14) :

Tnf =
∆x∆z

Re

∑

i,k

(
xi
∂

∂y
wni0k − zi

∂

∂y
uni0k

)

for i, k such that
√

(i∆x− xC)2 + (k∆z − zC)2 ≤ D/2
(4.5)

where (xC , zC) is the disc centre. The quadrature error for the midpoint rule is of the order
O(∆x2∆z2) for well-behaved functions.

The Power Spectral Densities of Tf and W are estimated via the SciPy implementation of the
Welch algorithm (https://github.com/scipy/scipy/blob/v1.2.1/scipy/signal/spectral.py#L294-L457)
applied to the time series. Hanning windowing is used, the segment length is set at 80000 points
(i.e. 200 Poiseuille time units) and the overlapping at 40000 points.

4.2.2 Reference channel flow and non-dimensional units

We first describe the fixed-wall numerical case that is used as the reference flow to the other flow
cases and to compute the drag-reduction performance. Unless explicitly stated otherwise, the
same numerical set-up illustrated here is used for the freely-rotating cases described in Section
4.4.2 and the half-disc flow cases of Section 4.5.3.

An incompressible turbulent channel flow with a constant flow rate is studied via direct
numerical simulation (DNS). The channel walls are separated by a distance L∗y = 2h∗, where
henceforth the ∗ superscript indicates a dimensional quantity. The channel is assumed to be pe-
riodic in the streamwise (x∗) and spanwise (z∗) directions. The dimensions of the computational
domain in the x∗ and z∗ directions are L∗x and L∗z, and the velocity components in the x∗, y∗

and z∗ directions are u∗, v∗, and w∗, respectively. The flow is driven by an uniform pressure
gradient P ∗x along the x∗ direction, which is adjusted at each time-step to maintain a constant
flow rate per unit wall-area Q∗. The bulk velocity U∗b is obtained by dividing Q∗, by the channel
height as U∗b = Q∗/2h∗. A schematic of the reference channel configuration is given in Fig. 4.1.

Non-dimensional quantities are obtained by choosing the channel half-height h∗ as the unit of
length, the fluid density ρ∗ as the unitary density, and the unit of velocity as U∗p , the centreline
velocity of the laminar Poiseuille flow at the same flow rate, defined as U∗p = 3Q∗/4h∗. The unit
of time is thus h∗/U∗p and the unitary stress is ρ∗U∗2p /h∗. This normalisation choice defines the
outer units of the flow and quantities expressed in outer units are written with no superscript.
All simulations are conducted at a Reynolds number Rep = U∗ph

∗/ν∗ = 4200, where ν∗ is the
kinematic viscosity of the fluid.
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Figure 4.1: Schematic of the base plane channel used as the reference flow.

The reference stationary-wall friction Reynolds number for the simulations isReτ = u∗τh
∗/ν∗ =

180, where u∗τ=
√
τ∗w/ρ∗ is the wall-friction velocity and τ∗w is the mean wall shear-stress. Quanti-

ties scaled in viscous units, i.e. with respect to the scales that characterise the fluid motion near
the wall, are denoted by a + superscript. The viscous length is δν = Re−τ 1 and the viscous time
unit is tν = δν/uτ Unless otherwise stated, scaling in viscous units is performed with respect to
the reference stationary-wall case.

4.2.3 Averaging operators and performance quantities

The time-average of a variable f is indicated by f . When estimating the mean of a disc variable,
such as the disc-tip velocity W , we always average over each disc, i.e. f =

∑ND

i |f i|/ND where
f i is the signed time-averaged variable from the i-th disc, and ND is the number of discs.

We give here the definition of the spatial period-averaging that is applied to the array of
rotating half discs used in Section 4.5.3. For the flow field variables such as the velocity u and
pressure p, the periodic-averaging operator has to account for the spatially periodic symmetry
induced by the array of rotating discs. Given the rectangular array of Fig. 4.19, the mean flow
obeys the following linear transformation:

u(x, y, z, t) = u (x+D, y, z +D, t) , (4.6)

p(x, y, z, t) = p (x+D, y, z +D, t) . (4.7)

for any x, y, z.
The period-averaged flow field is therefore defined as:

{[u]s , [p]s}(x) =
1

ND

rD∑

l=1

cD∑

m=1

{u, p}(x+ lD, y, z +mD, t). (4.8)

where rD and cD are the number of rows and columns of an array of ND = rD × cD discs.
Using the definitions of the period-averaged flow field us = [u]s and ps = [p]s we introduce the
following flow decomposition:

{u, p} = {us, ps}+ {ut, pt}. (4.9)

where {ut, pt} represent the random fluctuations. The period-averaged component can be further
decomposed into the spatially averaged flow {U, P} (the “velocity profile”) and the spatially
inhomogeneous component {ud, pd} as:

{us, ps} = {U, P}+ {ud, pd}. (4.10)
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The spatial average {U, P} = {〈u〉, 〈p〉} is obtained by integrating over x and z and dividing by
the wall area LxLz, thus obtaining wall-normal profiles {U(y), P (y)}.

The global skin-friction coefficient is defined by normalising the mean wall-shear stress τw
with the bulk kinetic energy as Cf = 2τw/U

2
b , where τw = dU/dy|y=0/Rep. The percentage

skin-friction drag reduction R(%) is defined as:

R(%) = 100
Cf,0 − Cf
Cf,0

, (4.11)

where the subscript “0” denotes the reference channel flow. It also possible to define the local
drag reduction Rxz(x, z) by using the spatially dependent, period-averaged wall-shear stress
τsw(x, z) = dus/dy|y=0/Rep.

4.3 Description and modelling of the actuators

One or more discs are flush mounted on the surfaces of the upper and the lower wall of the
channel. The discs have radius R∗ = D∗/2, are rigid and homogeneous, and are free to rotate
about their central axis. The discs are characterised by the thickness b∗ and material density ρ∗s.
The moment of inertia of a disc around the central axis is I∗ = πb∗D∗4ρ∗s/32. A thin gap of width
0.05D∗ is modelled around the edge of each disc to simulate the clearance region between the
disc and the stationary channel walls. Within the annular gap the velocity is modelled to decay
linearly from its maximum value on the disc edge to zero on the no-slip wall. This treatment of
the gap closely represents a real experimental set-up where such gaps would always be present,
and it drastically reduces the numerical oscillations that would arise from a discontinuity in the
velocity profile.

Each disc is fitted with a short shaft and housed in a cavity in the wall deep enough for
the upper surface of the disc to be flush with the channel wall. A layer of fluid of thickness d∗h
exists between the lower surface of the disc and the bottom of the cavity. The shaft is supported
by a bearing mounted into a purpose-built hole at the bottom of the disc housing. The disc
housing has a similar design to those realised in the experimental study of Koch and Kozulovic
(2013) and in a preliminary experimental apparatus built at the Deutsches Zentrum für Luft- und
Raumfahrt (DLR) Göttingen (M. Rutte and U. G. Becker, private communication). A schematic
of the disc housing is shown in Fig. 4.2.

dh

D

Dh

Figure 4.2: Schematic of the disc housing. The axis of rotation of the disc is indicated by a dash-dotted
line.

In order to simplify the simulations, the fluid within the cavity will not be simulated, instead
exact laminar models of the torque in a cylindrical cavity with a rotating lid will be used.
The model is presented in Section 4.3.3, where it is also shown that the models are in realistic
agreement with the flow regime that is expected to exist in the cavity in the range of disc
velocities considered in this work.
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4.3.1 Dynamics of the rotating discs

The motion of each disc at time t is described by its angular velocity Ω(t) or, alternatively, by
its outer-edge or disc-tip velocity W (t) = RΩ(t). The disc-tip velocity evolves according to the
following dynamical equation:

2I

D

dW

dt
= Tf + Th + Tb (4.12)

where Tf is the torque exerted by the wall-shear stresses of the channel flow on the flow-facing
surface of the disc, Th is the torque arising from the fluid contained in the housing beneath the
disc and Tb is the frictional torque within the bearing. Using the non-dimensional units given in
Section 4.2.1, torques are scaled with ρ∗U∗2p h∗2 and the moment of inertia is scaled with h∗5ρ∗.
The definitions and models for each torque component are detailed in the following sections.

4.3.2 Torque from fluid shear stresses

The fluid torque Tf on each disc results from the wall-shear stresses exerted by the turbulent
flow over the surface S of the disc and is expressed by the integral:

Tf (t) =
1

Rep

∫∫

S
τ × (x− xC) dS (4.13)

=
1

Rep

∫ R

−R

∫ √R2−(x−xC)2

−
√
R2−(x−xC)2

[(z − zC)τx − (x− xC)τz] dzdx, (4.14)

where R is the disc radius, xC = (xC , zC) are the coordinates of disc centre and the components
of the shear-stress τ are defined as:

τx = −z 1

Rep

∂u

∂y

∣∣∣∣
y=0

(4.15)

τz = x
1

Rep

∂w

∂y

∣∣∣∣
y=0

. (4.16)

The integral in (4.14) is evaluated at each time-step and the boundary condition on the disc
are updated accordingly, realising a fully coupled simulation of the body-fluid dynamics. More
details on the numerical approximation to (4.14) are given in Appendix 4.2.1.

4.3.3 Resisting torques from disc housing

The motion of the fluid within the cavity results in a resisting torque Th acting on the shaft, that
can be calculated, knowing the flow field in the cavity, by applying (4.14) to the lower surface of
the disc. For the aims of the present work, we want to use an approximate predictive model for
Th, thus avoiding the need to explicitly simulate the flow within the cavity.

To introduce the problem, we consider an idealised case where the disc angular velocity fluc-
tuates following a monochromatic sinusoidal wave of zero mean and frequency f . The amplitude
of the fluctuating angular velocity is denoted by Ω′. The dependence of the resisting torque T ∗h
on the parameters of the flow within the cavity follows a non-dimensional law of the form:

T ∗h = Ω′∗3D5∗ρ∗Fh

(
D∗

d∗h
d∗h

√
f∗

ν∗
,

Ω′∗d∗2h
ν∗

,

)
. (4.17)

where Fh is an unknown function and d∗h is the depth of the cavity. When the aspect ratio
D∗/d∗h � 1, the discs can be regarded as of infinite size and the effect of the cylindrical cavity
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walls neglected. When the frequency parameter d∗h
√
f∗/ν∗ is much smaller than unity, the

flow is in a quasi-steady regime (a similar definition for a different oscillating-flow configuration
is found in Barenghi and Jones, 1989). The last parameter is the cavity Reynolds number
Reh = Ω′∗d∗2h /ν

∗ which determines the flow regime inside the cavity. If both the infinite size
and quasi-steadiness can be safely assumed, the model (4.17) becomes much simpler, depending
only on Reh.

The infinite size is assumed and verified for most of the geometries discussed in this work The
extreme cases are D∗/d∗h = 2.8 and D∗/d∗h = 67. In two flow cases in Section 4.5 the assumption
is purposefully violated for reasons that are made clear therein.

In the flow cases presented below, the disc velocity fluctuates randomly, i.e. it shows a
continuous frequency spectrum. The quasi-steady analysis has to be adapted to this case by
considering the power spectrum of the angular velocity and calculating the frequency parameter
over the energy-containing frequency range. If a large fraction of the disc kinetic energy resides in
frequencies f∗ where d∗h

√
f∗/ν∗ � 1, the quasi-steadiness condition can be considered satisfied.

For freely-oscillating discs that have zero-mean angular velocity, our simulations show that this
criterion is satisfied. In the half-discs cases, which rotate with a non-zero mean angular velocity,
the quasi-steadiness assumption is always verified due to the standard deviation of the velocity
fluctuations being much smaller than the mean component.

From the assumption of infinite disc moving quasi-steadily, it follows from (4.17) that the
disc dynamics depends uniquely on the cavity Reynolds number. For randomly fluctuating full
discs, Reh is defined using the standard deviation of the angular velocity, as Reh = Ω∗SDd

∗2
h /ν

∗,
whereas for the half-discs Reh the mean angular velocity is used, i.e. Reh = Ω

∗
d∗2h /ν

∗. The
steady flow between two coaxial infinite discs, one at rest and the other moving with angular
velocity Ω, has been studied by Stewartson, 1953 in the laminar regime of small to moderate
Reh. Within the laminar regime, for very small values of Reh the equations of motion become
linear and the azimuthal velocity uθ is independent of the other two components. The solution
takes the simple form:

uθ =
rΩ

dh
y. (4.18)

where the polar coordinates r, θ, y with origin at the centre of the disc are used. The associated
resisting torque, in non-dimensional form is:

Th = − πD4

32dhRep
Ω. (4.19)

Even though the linear regime hold exactly for Reh < 1, the linear solution describes reasonably
well the cavity flow up to around Reh = 10 (Stewartson, 1953). When Reh > 10 the non-linear
effects become increasingly important and the flow field is in a transitional regime where the
velocity gradient on the disc at rest decreases and the one on the rotating disc grows. For
around Reh > 40 the swirling boundary-layer solution of Von Kármán (1921) for a disc beneath
a semi-infinite fluid applies to the cavity flow. The non-dimensional torque of the Von-Kármán
solution reads:

Th = −sgn(Ω)
πGD4

32Re
1/2
p

|Ω|3/2, (4.20)

where G = 0.6159 is a numerically-determined constant.
In principle, the validity of the assumptions has to be verified by carrying out a full DNS

simulation of the cavity flow for each case and measuring the resulting value of the frequency
parameter and of Reh. In this work we will assume quasi-steadiness in all the cases and restrict
the validation to a self-consistency test. This means performing the simulations using one of the
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approximate steady laminar models (4.19) or (4.20), and verifying that the resulting frequency
parameter assumes sufficiently low values in the sense of the spectral analysis described above.
In a similar way, the consistency of the laminar flow regime and the choice between the Von-
Kármán or Couette model for Th are verified by checking that Reh, calculated with the disc
velocity from the simulation, belongs to the appropriate range. In the freely rotating cases, the
laminar regime and the Couette model are always found to be consistent with the assumptions,
while for the half discs a comprehensive analysis of the results is found in Section 4.5.4.

a. Flow in a rotor-stator cavity

Several experimental and numerical studies exist on the resisting torque acting on finite discs
that rotate in an enclosed cylindrical cavity with stationary walls. These works can be used to
estimate the flow regime occurring in the cavity beneath the freely rotating (full and half) disc
cases. The flow regime occurring in an enclosed cavity with a steadily rotating disc is classified,
in the seminal work of Daily and Nece (1960), based on the two parameters ReR = Ω∗R∗2/ν∗

and d∗h/R
∗, analogous to those used in (4.17). Some authors also stress that the the presence of

a central hub constitutes a third parameter that must be carefully considered when determining
the flow regime (Launder et al., 2010). However, data at very low ReR are only available for hub-
less cavities. Review of several studies (Daily and Nece, 1960; Launder et al., 2010; Schouveiler
et al., 2001) provides convincing evidence that in the freely rotating, and most of the half disc
cases the cavity flow is correctly identified by the linear Stewartson solution; this also holds for
low aspect ratios comparable the smallest freely rotating cases (Pao, 1972; Bertelá and Gori,
1982).

4.3.4 Frictional torque of a ball bearing

Each disc is supported by a ball bearing fixed onto its shaft, as shown in dark grey in Fig.
4.2. The resisting torque Tb of a rolling-element bearing is the combination of a number of
phenomena such as lubrication, material deformation, thermal losses and others. Its complete
modelling is complex and all the practical estimates are usually performed through the use of
empirical formulae (Harris and Kotzalas, 2006).

The main component of Tb is the load-induced rolling friction, that arises from the pressure
contact between the solid surface of the rotary elements and the metal grooves (the “races”),
similar to train wheels on a rail track. In our application, the critical aspect is the capability of
the bearing to support axial loads (i.e., the weight of the disc) without generating high friction
torques. Radial loads such as the effect of the shear forces on the surface of the disc are orders
of magnitude smaller.

Our estimates are based on the empirical formulae provided by the leading manufacturer
of rolling-element bearings, the Swedish company SKF, which are freely available online (www.
skf.com). This requires the selection of a real bearing model using dimensional quantities,
obtained by considering the hypothetical water channel presented in Sec. 4.3.5. An example
of a reasonable choice is represented by the SKF angular-contact thrust bearings of the series
7009, that produce a small amount of friction under high axial loads and are available in a
size range that is compatible to the dimensionalised size of the disc. Using the bearing data-
sheet parameters and an axial load corresponding to the weight of a disc of diameter D = 5
the SKF formulae return a friction torque that, translated back into non-dimensional units is
|Tb| = 0.0001. In the same way, the values of |Tb| for discs of different diameter are calculated
using the same bearing and changing the axial load intensity. Using a value of |Tb| that does not
depend on W is justified because at the slow rotation rates found in the simulations, only rolling
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friction occurs, that depends on the loading conditions but is nearly independent of the velocity.
Accordingly, the bearing torque enters the RHS of (4.12) as Tb = |Tb|sgn(W ).

In a practical realisation of a water-immersed bearing, the presence of watertight seals might
be unavoidable in order to protect the lubricant. Here however seals are neglected because,
for a slowly rotating and lightly loaded bearing, lubrication plays a secondary role and can be
avoided altogether with modern solutions, such as water-lubricated, ceramic-ball bearings. A
velocity-independent model of the bearing frictional torque is also suggested in the experimental
papers Koch and Kozulovic (2013) experimental work, where the bearing is not lubricated and
thus subjected to pure rolling friction.

4.3.5 Flow parameters and dimensional reference

The flow statistics of the passively-rotating-disc channel flow, for example the skin-friction coef-
ficient Cf and the disc-edge velocity W , can be written as a function of the parameters:

Cf = f(Rep, D, dh, Tb, ρs). (4.21)

Tab. 4.1 shows the characteristics of the water channel used as a reference when dimensional
quantities are needed. For the reference water channel in Tab. 4.1 the disc thickness translates
to the realistic values of 0.5mm and the cavity depth to 10mm. The disc used in the bearing
selection example above would result in D∗ = 0.5m and a weight of 0.27Kg. The material
density ρ∗s is assumed as that of aluminium, or 2.7 times the water density ρ∗ = 1000kg/m3,
which translates into a non-dimensional disc density of ρs = 2.7. This allows us to calculate
the dimensional disc weight and inertia needed for the bearing selection, and to determine the
dimensional resisting torques.

The choice of ρs = 2.7 allows disc angular accelerations of a magnitude around 1000 times
those possible in an air channel at the same Rep, for which instead ρs = 2200. This is possible
because the disc inertia is linearly dependent on ρs while the order of magnitude of the fluid shear-
stresses on the disc surface is dictated by Rep. This is relevant to this work because larger angular
accelerations lead to higher oscillation amplitudes and therefore shorter simulation times with
better statistical convergence, due to shorter integral time-scales of the disc variables. Moreover,
this choice of dimensional units is also important for a practical experimental realisation of freely-
rotating full discs, where one wants to produce measurable oscillations using a disc actuator that
is constructively feasible with respect to the disc thickness and material choice.

Table 4.1: Physical characteristics of the water channel taken as the reference for dimensional quantities.

h∗ U∗p ν∗ ρ∗ Rep b∗ d∗h

0.1 m 0.042 m/s 10−6 m2/s 103 kg/m3 4200 0.5 mm 10 mm

4.4 Freely rotating discs

This section presents the results of simulations involving freely rotating full discs, i.e. discs
that are not driven by any external power source, but are set in motion by the action of the
fluid shear stresses on their surface. The computational domain is depicted in Fig. 4.3 and it
consists of two isolated coaxial discs located on the two opposite walls. This configuration allows
a flexible modification of the disc diameter with little change to the numerical domain. The
domain dimensions are Lx = 4.53π, Ly = 2 and Lz = 2.26π and are solved on a discrete grid of
size 256×129×256.
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For a single diameter (D = 3.38) the isolated-disc set-up was compared to a simulation of an
array configuration, resulting in minor differences in the statistics. No drag reduction (local or
global) is measured, neither in the isolated nor in the arrayed configuration. An isolated disc was
also simulated within a wider channel, in order to make sure that no numerical issues related to
the spanwise periodicity are present.

Only the diameter is is varied, while the thickness b = 0.005 and the material density ρs = 2.7
remain constant. The resulting moments of inertia for each different diameter are listed in Table
4.2. The cavity depth is also kept unchanged at dh = 0.1.

x

z

y

Lx

Lz

Ly

Figure 4.3: Schematic of the arrangement of the numerical channel used to simulate isolated, freely-
rotating discs of increasing diameter. Only the disc on the bottom wall is shown. Three discs of different
diameter are sketched.

We perform simulations of both the coupled and the uncoupled disc-fluid system, according
to the framework introduced in Section 4.4.1. In Sec. 4.4.2 simulations of the coupled system
are carried out for eleven different diameters, whereas in Sec. 4.4.3 the uncoupled dynamics of
the discs is simulated independently of the fluid equations and compared to the coupled case. In
Section 4.4.4, the system is analysed in the frequency-domain, especially the uncoupled case.

4.4.1 Description of the disc-fluid system

In this section we consider the dynamical system composed by the rotating disc and the fluid
flow, and we develop some analytical tools that are applied in the following section to study the
freely-rotating disc dynamics.

The dynamics of the disc obeys equation (4.12), while the fluid dynamics evolves according
to the Navier-Stokes equations (NSE) and their boundary conditions (BCs). The two sets of
governing equations are mathematically coupled because of the presence of two elements. First,
the fluid torque Tf (4.14) couples the fluid to the disc, acting as an input term to the disc
dynamics. Second, the disc boundary conditions to the NSE couple the disc to the fluid dynamics.
On a discs centred at (xC , zC) and rotating with a disc-edge velocity W , the velocity boundary
condition for the streamwise and the spanwise velocity components read:

u(x, 0, z, t) = W (t)(z − zC) (4.22)

w(x, 0, z, t) = −W (t)(x− xC). (4.23)

The system is visualised in Fig. 4.4 using a block diagram (Åström and Murray, 2008). A block
can be viewed as a black-box function that takes one (or more) input and returns an output.
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Each block in Fig. 4.4 corresponds to an element of the system, following the description outlined
above. Since we are primarily interested in the motion of the disc, the diagram features the disc
velocity as the main output. It can be noted that the system displays a closed-loop shape that
is due to the two coupling elements, i.e. the fluid torque and the fluid BCs. A simple form of
the response functions is difficult to calculate in the coupled case because they depend on their
input and output through the dependence of the entire system on W .

NSE

fluid dynamics

∫∫
S τ×(x− xC) dS

fluid torque (4.14)

τ
Ẇ IR−1 =

∑
T

disc dynamics (4.12)

Tf W

W (x− xC)

disc BCs (4.22)-(4.23)

u(y = 0)

Px

Figure 4.4: Block-diagram representation of the disc-fluid system as a feedback loop on the fluid.

Fig. 4.5 depicts the uncoupled system, where the discs are fixed (W = 0) and thus there is no
feedback from the disc to the fluid boundary conditions. It follows that the system consists in a
simple open-loop series, equivalent to considering the no-slip channel flow, calculating the shear-
stress torque on a disc-shaped region of the wall, and independently solving the disc dynamics.

The uncoupled model has a number of advantages. Firstly, contrary to the coupled case, it
does not require to perform a new DNS simulation for each disc of different diameter, but it is
sufficient to simulate a no-slip channel flow once and extract the fluid torque on many disc-shaped
wall patches simultaneously. This allows the study of a larger number of cases and benefits from
potentially longer integration times to collect statistics. Secondly, when the system is studied
in the frequency domain (Section 4.4.4), linearity makes it possible to calculate the frequency
response of the disc to the fluid torque. Third, the uncoupled results can be compared to those
of the coupled simulations, assessing the impact of the dynamical coupling on the dynamics.

NSE,
no-slip BC

fluid dynamics

∫∫
S τ

0×(x− xC) dS

fluid torque (4.14)

τ 0

Ẇ 0IR−1 =
∑
T

disc dynamics (4.12)

T 0
f W 0Px

Figure 4.5: Block-diagram representation of the uncoupled system.

The uncoupled system of Fig. 4.5 can be characterised, in a more rigorous way, as the zeroth-
order term of a regular expansion of diagram 4.14a in powers of W . For example, expanding the
wall-shear stress τ with respect to the disc velocity around W = 0 gives:

τ (x, t;W ) = τ 0(x, t) +O(W ), (4.24)

meaning that for very small values of W , the fixed-wall stress τ 0 is a zeroth-order approximation
to the fully coupled stress τ . The feedback loop vanishes because the zeroth-order term of
the disc boundary conditions (4.22)-(4.23), which are linear in W , is zero. To emphasise the
reduced-order view, the elements of the uncoupled system are indicated by “0” subscripts and
superscripts.
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4.4.2 Numerical simulation of coupled discs-fluid dynamics

The dynamical equation for the disc motion used in the simulations assumes the linear housing
torque solution (4.19). Its non-dimensional form for the disc-tip velocity W reads:

dW

dt
=
D

2I
Tf (t)− Ch

I
W (t)− Tb, (4.25)

where Ch = πD4/(32Repdh) is the constant from the linear torque model (4.19). The bearing
torque Tb is typically one order of magnitude smaller than Th and therefore can be considered as
a minor source of friction. Eleven diameters in the range D+=50 to D+=1000 are considered.
Three time-histories of the disc-tip velocity, each 400 time units long, for three values of the
diameter are shown in Fig. 4.6a. The simulations establish that for all the diameters considered,
the discs oscillate randomly around W = 0. The variance of W is larger at small diameters, the
oscillations of the disc becoming less intense as the diameter increases. The torque time-series
on the same time interval are shown in Fig. 4.6b and they reveal an opposite trend, the variance
of Tf growing rapidly with the diameter.
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Figure 4.6: Extracts of the DNS time-series for three discs of increasing diameter. (a) disc-tip velocity
W . (b) fluid torque Tf .

The r.m.s. estimates of the standard deviation of W and their chi-squared confidence intervals
are reported in Table 4.2 for all the diameters. No reduction of the frictional drag is obtained.
The work of Ricco and Quadrio (2008) and Quadrio and Ricco (2011) for transverse wall motions
and Ricco and Hahn (2013) for rotating discs established that a minimal value of the velocity
at the wall of W = uτ is required for the mean wall gradient to be affected by the wall motion.
The r.m.s. of the disc-tip velocity fluctuations W+ remains always < 1 and does not affect the
near-wall skin-friction significantly.
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Table 4.2: r.m.s. of W (t) from the simulations of the fully coupled freely rotating discs. The confi-
dence intervals shown are at the 95% level. The two rightmost columns report the main results in the
dimensional the water channel case of Tab. 4.1.

D D+ I × 103 rms W × 102 rms W+ CI on rms W × 102 D∗ [mm] W ∗ [m/s]

0.28 50 0.01 1.94 0.45 +1.57, −1.16 2.8 0.081
0.56 100 0.1 2.31 0.54 +1.87, −1.39 5.6 0.097
0.84 150 0.7 2.01 0.47 +1.63, −1.21 8.4 0.084
1.13 200 2.10 1.83 0.43 +1.48, −1.10 11.3 0.077
1.69 300 10.8 1.51 0.35 +1.22, −0.91 16.9 0.063
2.25 400 34.2 1.23 0.29 +1.00, −0.74 22.5 0.052
3.38 600 173 0.95 0.22 +0.77, −0.57 33.8 0.040
4.44 800 515 0.79 0.19 +0.64, −0.48 44.4 0.033
5.00 900 828 0.70 0.16 +0.56, −0.42 50.0 0.029
5.60 1000 1350 0.60 0.14 +0.49, −0.36 56.0 0.025
6.70 1200 2670 0.58 0.13 +0.47, −0.35 67.0 0.024

Figs. 4.7a-b depict the r.m.s. values of W and Tf for all the diameters considered in the
simulations. The blue series represents the data from Table 4.2. The red series are the results
from the uncoupled simulations and will be discussed in Sec. 4.4.3.

In the range D+<100, the r.m.s. W follows a rapidly increasing regime, the maximum being
located at around D+=100. It can be noticed that the maximum response of the disc is for
D+=100, which is comparable with the characteristic spanwise spacing of the low-speed streaks.
The r.m.s. of W scales approximately as D−0.55 in the the 100<D+<900 range.

The r.m.s. of Tf (D) is a monotonically increasing function of D+. In the range 0<D+<100,
Tf (D) shows a positive slope, that is steeper at lower D+. The r.m.s. Tf is proportional to D2.2

in the range 100<D+<900, as obtained by logarithmic regression.
For very small D, the torque is too small to exert the required power to move the discs, while

for large discs, the inertia thwarts the action of the torque. The maximum r.m.s. W occurs
at the disc size where the action of Tf is most effective. These qualitative considerations are
explained mathematically by the frequency-domain analysis of the disc dynamics carried out in
Section a..
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Figure 4.7: Root mean square values of (a) the disc-tip velocity and (b) the fluid torque as a function
of the disc diameter. The time-averaging interval is 2500h∗/U∗p or 19300tν for each simulation. The
confidence intervals are constant for any D when plotted in logarithmic coordinates, therefore only one
is plotted for reference. The blue filled symbols are the coupled case data in Table 4.2, while the red
circle symbols are the uncoupled case data i.e. W0 and T 0

f , which will be discussed in Sec. 4.4.3.

We also examine how the two components of the shear-stress contribute to the fluid torque on
the disc surface. The streamwise component T xf corresponds to (4.14) with only the streamwise
shear-stress term of the integrand:

T xf (t) =
1

Rep

∫ R

−R

∫ √R2−x2

−
√
R2−x2

−(z − zC)τx dzdx. (4.26)

where the point-wise torque contribution is τx = Re−1
p ∂u/∂y||y=0 and zC is the spanwise position

of the disc centre. The spanwise component T zf is defined analogously, with the corresponding

point-wise contribution being τz = Re−1
p ∂w/∂y||y=0. It follows that Tf = T xf + T zf .

Fig. 4.8 visualises two instantaneous snapshots of the two point-wise torque contributions on
the channel wall. As the moment arm grows linearly with the distance from the disc centre, the
most intense contributions to the torque come from the edge regions.
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Figure 4.8: Instantaneous snapshot of the point-wise torque at the wall for a disc with D = 6: (a)
contribution from the streamwise wall-shear stress, (b) contribution from the spanwise wall-shear stress.

Fig. 4.9a (bottom) reports a time-history snapshot of T xf and T zf for the coupled case, it can
be seen there is a noticeable inverse correlation between T xf and T zf . From the definitions of the
torque components, the torque variance is expressed as:

Var Tf = T xf
2 + T zf

2 + 2T xf T
z
f , (4.27)

where the last term is the covariance of the streamwise and the spanwise terms. The dependence
of the right-hand side terms on the disc diameter are shown in Fig. 4.9b by the red unfilled
symbols. All three components across both cases share a very similar power-law dependence
on the disc diameter. The streamwise-stress components dominate the other two components,
explaining more than 90% of the total variance. Additionally, the negative contribution from
the correlation component is larger (in absolute value) than the contribution of the spanwise
component.
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Figure 4.9: Spanwise- and streamwise-stress components of the fluid torque. (a) time-series of T xf (t) and
T zf (t) for for the uncoupled (top) and the coupled case (bottom). (b) mean-square values and covariance
as a function of the disc diameter. The blue series correspond to the data from the coupled simulations,
the red series are from the uncoupled simulations.

The standardised histograms for W and Tf are shown in Fig. 4.10 and compared to the
standard normal pdf. The values of the disc-tip velocity W appear to be normally distributed
for all the diameters. The tail behaviour of Tf instead indicates deviation from normality for the
smaller diameters. The pdf of Tf for D+ = 50 has heavy tails, with the estimated value of the
standardised fourth moment being > 4 to a statistically significant level. A possible explanation
of the tail behaviour is that, owing to the small size of the disc (smaller than the spanwise integral
scale of the wall shear-stress of ≈ 100δν), the torque fluctuations depend on the localised extreme
events that characterise the positive tail of the wall shear-stress distribution (Hu et al., 2006).
For larger discs, the extreme shear-stress events are likely to play a more marginal role because
they tend to be averaged out on a larger wall region.
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Figure 4.10: Coupled dynamics: Standardised histogram plots of (a) W and (b) Tf , compared to the
standard normal distribution.
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The Power Spectral Densities for the disc-tip velocity and the fluid torque are shown in Fig.
4.11. Normalising the PSDs with the total power does not result in a collapse of the curves for
all diameters. At smaller diameters, the higher frequencies carry a larger contribution to the
total power, progressively shifting to lower frequencies as D increases. For small D, the power
contributions are spread over a broad high-frequency range, while for moderate values of D they
are concentrated around f = 0.04, that is an oscillation period of almost 200tν . Such behaviour
is observed in the PSDs of both W and Tf . The peak frequency and the shape of the spectra
are determined by how the spatial and temporal scales of the wall shear-stress are filtered by
the disc (Quadrio and Luchini, 2003). However, while Tf maintains a peak around f = 0.04, the
spectral peak of W is rapidly lost, and energy is distributed more evenly at frequencies below
f<0.03.
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Figure 4.11: Coupled dynamics: PSDs normalised with the total power and shown in a pre-multiplied
form. (a) disc-tip velocity. (b) fluid torque.

4.4.3 Uncoupled dynamics

In this section we study the dynamics of the discs subject to the fixed-wall fluid torque for a
number of diameters. The disc dynamics is described by the following linear equation:

dW0

dt
=
D

2I
T 0
f (t)− Ch

I
W0(t) + Tb, (4.28)

and is integrated independently of the equations of motion of the fluid.
The forcing torque T 0

f is sampled from a single DNS of the fixed-wall channel at every time

step, corresponding to a sampling frequency of 400Up/h. The time-series of T 0
f is then used as an

external forcing to numerically integrate (4.28) at the same temporal resolution. The integration
is carried out through a second-order Adams-Bashforth scheme, identical to that employed to
simulate the disc dynamics in the coupled simulations. Seventy diameters in the range D+ = 20
to D+ = 1200 have been considered, the discs are initially at rest, i.e. W0(0) = 0 and the first
125 time units are discarded. Additionally, since (4.28) is linear, certain exact models can be
derived for its average dynamics that provide a useful tool for understanding the dependence on
D in both the uncoupled and the coupled cases. This will be further discussed in Sec. 4.4.4.

Fig. 4.7 (red symbols) shows that the r.m.s. of the uncoupled disc-tip velocity fluctuations
is inversely proportional to the disc size for D+ > 100, as it is in the fully coupled case. In that
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range, the r.m.s. of W0 scales as D−0.7 as calculated by logarithmic regression. The fixed-wall
fluid torque T 0

f is also observed to follow a similar behaviour to the coupled case. The dependence

of T 0
f on D in the large-D range is also consistent with the D2.2 scaling observed in the fully

coupled case. Neither scaling holds in the range 0<D+<100, where W0 show an opposite trend
and T 0

f a steeper slope, as already found in the fully coupled dynamics.

The r.m.s. values of both T 0
f and W0 are between 2.5 and 3 times higher than the fully

coupled case, regardless of D. This implies that the two-way interaction between the disc and
the fluid produces an attenuating effect on the disc velocity and the torque. The r.m.s. intensity
of this effect also scales approximately as D2.2 in the large-D regime, as shown by the curves
for the coupled and uncoupled cases remaining approximately parallel in log-log coordinates. At
the present stage, the physical mechanism of the torque attenuation in the two-way coupling still
remains an open question. Addressing this issue is complicated by the turbulence being locally
modified by the disc motion.

The time-series of the fluid torque components T xf (t) and T zf (t) for the uncoupled case are
shown in Fig. 4.9a (top). In comparison to the coupled case, the uncoupled simulations demon-
strate a qualitatively different behaviour. In the uncoupled case there is no noticeable correlation
between T xf and T zf , contrary to what found in the coupled simulations.

The contribution to Var(Tf ) from the streamwise, spanwise, and covariance components for
the uncoupled case is shown in Fig. 4.9b (right) by the blue symbols. Similar to the coupled sim-
ulations, the streamwise-stress component dominates the other two components. The magnitude

of the contributions from T z,0f , and T x,0f T z,0f is much smaller than in the coupled simulations,
and the contribution from the covariance term is > 0.

Fig. 4.12 shows the standardised histograms of W0 and T 0
f for 9 diameters. The values of

W0 are normally distributed for all the diameters. As also observed in the fully coupled case,
the tail behaviour of T 0

f deviates from normality at small diameters. It follows that the coupling
has a negligible effect on the shape of these distributions.
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Figure 4.12: Uncoupled dynamics: standardised histogram plots of (a) W0 and (b) T 0
f , compared to a

standard distribution.

The normalised PSDs of the disc-tip velocity and the fluid torque are shown in Fig. 4.13.
Similar to that observed for Tf , the PSD of T 0

f also presents a red shift for increasing D and a
peak contribution at around f=0.04. The PSDs of W0 also follow an analogous behaviour to the
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coupled case, with the lower frequencies contributing more to the total power as D increases. In
general the PSDs exhibit a flatter shape than in the coupled case, the energy being more evenly
distributed with less pronounced peaks.
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Figure 4.13: Uncoupled dynamics: PSDs normalised with the total power and shown in a pre-multiplied
form. (a) disc-tip velocity PSDs, (b) fluid torque PSDs.

4.4.4 Frequency-domain analysis

The most natural approach to study the dynamics of freely-rotating discs under a statistically
stationary turbulent flow is to investigate their behaviour in the frequency domain. Since the
disc-fluid system is time-invariant and statistically stationary, the analysis is carried out through
Fourier analysis.

The block diagrams in Fig. 4.14 provide a schematic view of the system in the frequency
domain. The fully coupled system, represented by Fig. 4.14a is the frequency-domain equivalent
of Fig. 4.4, the blocks representing each subsystem, namely the fluid governing equations (NSE),
the torque induced by the wall-shear stresses on the disc, the dynamics of the rigid disc and the
fluid boundary conditions. Each subsystem is characterised by a response function, i.e. a sort of
spectral filter function that maps the Fourier transform of the input to that of the output.

The fluid governing equations with the boundary conditions produce the wavenumber-frequency
FT of the wall-shear stresses τ̂ (κx, κz, f), where κx, and κz are the streamwise and spanwise
wavenumbers, f is the frequency and the hat indicates the Fourier transform of a variable. In
the time domain, Ĝ corresponds to the fluid torque integral (4.14) and F̂ corresponds to the disc

dynamical equation (4.25). The response function Ĝ acts on τ̂ and returns the torque FT as

T̂f (f) = Ĝ(τ̂ ). The rigid-disc response function F̂ in turn characterises the rigid-disc velocity

response Ŵ (f) to the torque T̂f , i.e. Ŵ (f) = F̂ (T̂f ). The response functions are difficult to
study in the coupled case because they depend on their input and output and the entire system
is non-linear. In the uncoupled system of Fig. 4.14b, the disc dynamics is linear and thus its
response function can be calculated analytically. Moreover, the analysis of the fluid torque in the
frequency domain of is also more tractable. To emphasise the reduced-order view, the elements
of the uncoupled system are indicated by “0” subscripts and superscripts.

In the next sections we apply the framework of Fig. 4.14 to understand the dependence of
the variance of Tf and W on the diameter. Specifically, we construct models for Ĝ0 and F̂0 and
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(a)
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fluid dynamics
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fluid torque
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f (f) Ŵ0(f)P̂x
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Figure 4.14: Block-diagram representation of the disc-fluid system in the wavenumber-frequency domain.
(a) fully coupled case, (b) uncoupled case.

analyse how they depend on D, which is helpful in elucidating the dependence on D of the PSDs
shown in Fig. 4.13 and the variance of Tf and W shown in Fig. 4.7 (i.e. is the integral of the

PSDs). Sec. b. investigates the modelling of Ĝ0 and its application to the uncoupled dynamics.
In Sec. a. we explain the r.m.s. response of the discs to the fluid torque by deriving a model of
F̂0. The results are discussed and compared with the coupled case.

a. Models for the disc dynamics

In this section we examine the frequency-domain response of the uncoupled disc to the turbulent
fluid torque, and compare it to the fully coupled case. As (4.28) is linear and time-invariant, a
steady-state frequency-domain solution can be found by applying the Fourier analysis. Taking
the Fourier transform of both sides (excluding Tb that is negligible) and reordering the terms
gives:

2πifŴ0 =
D

2I
T̂ 0
f −

Ch
I
Ŵ0 (4.29)

Ŵ0 =

(
c1

D3(2πif + c2)

)
T̂ 0
f (4.30)

(4.31)

where i is the imaginary unit, f is the frequency, and the hat indicates the temporal Fourier
transform of a variable. c1 = 16/πbρs and c2 = 1/(Repdhbρs) are two constants. The expression

in brackets in (4.31) is the linear transfer function for (4.28), that is defined as a function Ĥ0

such that Ĥ0 = Ŵ0/T̂ 0
f . Using the transfer function, we can write the exact linear form of the

uncoupled response function as F̂0(T̂ 0
f ) = Ĥ0T̂

0
f and calculate the PSD response as:

SWW (f) = |Ĥ0(f)|2STT (f), (4.32)

where the transfer function magnitude, or gain, reads:

|Ĥ0| =
c1

D3
√

4π2f2 + c22
. (4.33)

Equation (4.33) characterises the frequency response of the uncoupled disc to the external input
torque T 0

f .
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It is also useful for later discussion to derive a simplified model of the dynamics, where only
the terms independent of W are kept on the right-hand side of (4.31):

dW0,s

dt
=
D

2I
T 0
f (t). (4.34)

Applying Fourier analysis to (4.34) and calculating the modulus of the transfer function gives:

|Ĥ0,s| =
c1

D32πf
(4.35)

where c1 = 16/πbρs.

Fig. 4.15b depicts the reduced-order response magnitude |Ĥ0| scaled with D3. The fully cou-

pled response functions Ĥ, also shown in Fig. 4.15b, are calculated from the coupled simulations
according to the definition of linear transfer function i.e. |Ĥ|2 = SWW /STT . Since the system is
not linear this is not a rigorous operation, however it provides a convenient tool to compare the
coupled system to the reduced-order model and asses whether and when the second is applicable
to the first. By inspecting (4.33) and its application to a number of diameters in Fig. 4.15b, a
few facts can be outlined:

i) The reduced-order transfer function (4.33) reveals an exact D−3 dependence due to inertia,

which is already present in the zeroth-order model (4.35). As Ĥ0 exhibits an inverse
dependence on ρs and to b, implying that a thinner disc or a lighter material would result
in larger velocity amplitudes, all other parameters held constant.

ii) Ĥ0 shows a f−1 slope at high frequencies and flattens out at low frequencies. These

two features are also present in the fully coupled transfer functions Ĥ, although with
quantitative differences. While the f−1 dependence is already present in the zeroth-order
model (4.35), the flat shape at low frequencies is only explained after accounting for the
disc housing torque, represented mathematically by the constant c2 in the denominator of
the augmented model (4.33).

iii) In general, the reduced-order model over-predicts the coupled response intensity i.e. Ĥ0(D) ≥
Ĥ(D) for any D, with the difference increasing at lower frequencies and smaller Ds. The
difference is progressively reduced for increasing D, decreasing as D−0.8. At large diame-
ters, Ĥ(D) is observed to converge to a ∝ D3 function that is very closely approximated

by Ĥ0.

iv) As Ĥ0 is proportional to D−3 and the r.m.s. of T 0
f to D−2.2, one may expect the r.m.s. of

W0 to scale as D−0.8. However, as shown in Fig. 4.7, the r.m.s. of W0 scales as D−0.7. The
discrepancy is explained by the spectral red shift of T 0

f at large D (see Fig. 4.13). Since

Ĥ0 is a decreasing function of f , the red shift ultimately allows more power to contribute
to the r.m.s. of W at higher Ds. In a similar fashion, the gentler slope of the r.m.s. of the
fully coupled W is associated with the lower intensity of Ĥ at smaller diameters.
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Figure 4.15: Uncoupled modelling. (a) Dependence of the r.m.s. T 0
f on the disc diameter for the fixed-

wall channel, as calculated from the spatial-domain shear stress fields and by the spectral-domain model,
(b) Response functions from the uncoupled exact theory (4.33) (dashed lines) and calculated from the
coupled DNS simulations (solid lines).

b. Models for the fluid torque

In this section we study how the statistical properties of the fluid torque on a fixed disc originate
from the statistical properties of the wall-shear stress, and how they depend on D. In the
framework of Fig. 4.14, this mean studying the function Ĝ0. Examining the fixed-wall case is
convenient because the wall shear-stress is statistically homogeneous and therefore analytically
more tractable.

In order to keep the analysis simple and focused on the primary object of interest, that is the
dependence of the torque (variance) on D, we introduce an additional assumption: exploiting the
fact that the flow is statistically stationary, we neglect the dependence of T 0

f on time, and study

its variance as resulting from an ensemble of temporally uncorrelated realisations T 0
f (ti) where

the ti
Nt
i = 1 are sufficiently delayed to be temporally uncorrelated.This simplified approach

is sufficient to study the dependence of Var(T 0
f ) (i.e. the integral of S0

TT (f)) on D, but not

of Ĝ0, for which it is necessary to consider full wavenumber-frequency spectra of the shear
stresses. However, since only the spatial spectra are used, the more difficult computation of the
wavenumber-frequency spectra can be avoided.

The analysis is carried out as follows: first, we derive the expression of a single realisation of
T 0,x
f – i.e. the torque induced by a single instantaneous snapshot of the wall-shear-stress field

– and we study how it changes with the disc size; secondly, we calculate numerically Var(T 0,x
f ),

using the ensemble of uncorrelated snapshots mentioned above.
We recall that the instantaneous torque T 0

f acting on the disc surface S of radius R = D/2

at time t is given by (4.14), and can be decomposed into the two contributions from τ0
x and τ0

z ,
respectively called T 0,x

f and T 0,z
f . For ease of explanation, in the following we will derive formulas

for the streamwise-stress contribution T 0,x
f only. The spanwise contribution is analogous and will

be discussed afterwards.
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The fluid torque T 0,x
f acting on a disc of radius R at time instant ti can be expressed as:

T 0,x
f (ti;R) =

∫∫

S
zF−1

xz {τ̂0
x(κx, κz)}dxdz, (4.36)

where τ̂0
x is the spatial Fourier transform of τ0

x(x, z) and F−1
xz {·} its inverse. By explicitly writing

the inverse Fourier transform and swapping the order of integration (τ̂0
x being spatially homoge-

neous) we obtain:

T 0,x
f (ti;R) =

∫∫

R2

τ̂0
x(κx, κz)

(
1

4π2

∫∫

S
zeiκxxeiκzzdxdz

)
dκxdκz (4.37)

=

∫∫

R2

τ̂0
xΨx

R dκxdκz. (4.38)

where the expression in brackets in (4.37) corresponds to the function Ψx
R(κx, κz) that encodes the

filtering effect of the disc size and the moment arm z on the shear-stress spectrum. Its definition
can be simplified (refer to Appendix 4.A for the calculations) to the following self-similar form:

Ψx
R(κx, κz) = R3Ψ(Rκx, Rκz), (4.39)

where Ψ is defined (using the generic variables κ1, κ2) as follows:

Ψ(κ1, κ2) =
1

2π2κ1

∫ 1

−1

z sin(κ1

√
1− z2)eiκ2zdz. (4.40)

No closed-form solution is found for the remaining integral, which is therefore evaluated numer-
ically.

We note that since the integral in (4.38) is real-valued (because T 0,x
f is real number), the

integrand can be reduced to its real part Re{τ̂0
xΨx

R} = |τ̂0
x ||Ψx

R| cos(Φτ + Φψ), where Φτ and Φψ
are the phase angles of τ̂0

x and Ψx
R respectively. In the following paragraphs, the magnitudes |τ̂0

x |
and |Ψx

R| are studied, because they are determined numerically to be the largest contribution to

Var(T 0,x
f .)

The phase spectra Φτ and Φψ also contribute to Var(T 0,x
f ), even though only marginally

compared to the magnitudes. The fixed-channel simulation data establish that Φτ is a uniformly
distributed random phase. Φψ (shown in Fig. 4.16c) takes discrete values of either −π/2 or π/2,
the sign being dictated by the same radial period observed for the oscillations of |Ψx

R|.
Fig. 4.16a shows the magnitude |Ψx

R| of the spectral filter function, calculated by solving the
integral in (4.40) numerically. The axes use the reciprocal of the wavelength (i.e. 1/λx=κx/2π)
normalised with the disc diameter in order to visualise the filtering behaviour of Ψx

R relative
to the disc size. |Ψx

R| is an even function with respect to both wavenumbers and thus only
the first quadrant is shown. A series of regularly-spaced oscillations can be observed, centred
at the origin and decreasing in intensity at higher values of the radius-wavelength ratio. The
period of these oscillations, calculated along a radial direction centred at the origin, is D/λ=1
where λ =

√
λ2
x + λ2

z. |Ψx
R| privileges spanwise modes, gradually decreasing at low spanwise

wavenumbers and vanishing completely for purely streamwise modes. The maximum of |Ψx
R|

is determined to be a purely spanwise mode such that D/λz = 0.732. The largest individual
contribution to the torque is given by the spanwise mode of τ0

x whose wavelength is 1.37 times
the diameter.

The map of Fig. 4.16a depict |Ψx
R| when D = 1. When the disc size is increased to values

> 1, the coordinates scale linearly with D, therefore in absolute terms the maximum of |Ψx
R|
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moves (linearly with D) closer to κz = 0, the period of the oscillations decrease linearly and
areas decrease quadratically, generating an effect of “shrinking” centred at the origin. Similarly,
when D < 1, |Ψx

R| undergoes an “expansion” according to the same linear proportionality to
D. The second effect of varying the disc size is that |Ψx

R| is uniformly amplified by a factor of
R3, according to (4.39). Larger discs therefore produce a very strong, localised filtering near the
origin while smaller disc have a weaker, spread-out filtering across a broad wavenumber range.

Fig. 4.16b displays the square root of the PSD of the streamwise shear-stress. The PSD shows
where the contributions to |τ̂0

x | are located on average. The axes use the reciprocal wavelengths
without normalisation (absolute units) as the wall shear-stress does not depend on D. As τ0

x

is a real function, the amplitude of its PSD is even and thus only the first quadrant is shown.
When D = 1, multiplying the map of Fig. 4.16a to the amplitude spectrum returns the mean
amplitude of the integrand of (4.38). As |Ψx

R| decreases and spreads out for increasingly large
D, an attenuation of the entire shear-stress PSD is expected, leading to smaller torque values.
Conversely, for sufficiently small D, Ψx

R has an amplifying effect, with the most amplified modes
being those of small streamwise wavenumbers, which correspond to the energy-containing region
of the shear-stress PSD. Therefore, we expect increasingly intense value of the torque as the
disc size increases. This corresponds qualitatively to what observed in Fig. 4.7, the precise
dependence on D being determined by the specific form of the shear-stress spectrum.
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Figure 4.16: Filtering effect of the disc torque on the streamwise wall-shear stress. (a) Color map plot
of |Ψx

R| as a function of the streamwise and spanwise wavelengths, normalised with the disc diameter.
This choice of coordinates emphasises how the relative scale of the shear-stress wavelengths to the disc
size affects the filtering properties of Ψx

R. (b) Color map plot of the fixed-wall streamwise wall-stress
PSD |S0,x

ττ |1/2. (c) map of the phase ΦΨ of Ψx
R.

As illustrated in Sec. 4.4.2, the spanwise shear-stress torque T zf (R) is much smaller than the
streamwise contribution. A relation analogous to (4.38) can be derived for the spanwise-stress
induced component T zf (R) and reads:

T 0,z
f (R) =

∫∫

R2

τ̂0
zΨz

R dκxdκz. (4.41)

The filter spanwise filter function Ψx
R is reported in Fig. 4.17a, together with the spanwise shear-

stress mean amplitude in Fig. 4.17b. The difference between the spanwise filter function and
the streamwise case is that Ψz

R(κx, κz) = R3Ψ(Rκz, Rκx), i.e. the spanwise and the streamwise
wavenumbers are exchanged. This can be shown by substituting z with x in (4.38) and calculating
the spatial integral. As implied by its definition, Ψz

R privileges streamwise modes of τ̂0
z (as

105



Chapter 4 4.5. Freely rotating half discs

opposed to spanwise for Ψz
R) and its maximum amplification happens for the purely streamwise

mode such that D/λx ≈ 0.732.
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Figure 4.17: Filtering effect of the disc torque on the streamwise wall-shear stress. (a) Color map plot
of |Ψz

R| as a function of the streamwise and spanwise wavelengths, normalised with the disc diameter.
(b) Color map plot of the fixed-wall spanwise wall-stress PSD |S0,z

ττ |1/2.

Finally, the variance of T 0
f is calculated by evaluating the variance of the right-hand side

of (4.38) and (4.41) over the ensemble of uncorrelated shear-stress fields produced from the
numerical simulation of the fixed-wall channel. After taking the square root, the resulting curve
is shown in Fig. 4.15a alongside the r.m.s.(T 0

f (D)) curve measured directly from the spatial wall
shear-stress fields as per (4.14), showing good quantitative agreement.

The slope change occurring at around D+=100 originates from the scaling behaviour of the
(4.39). A rough estimate of the slope turning point can be obtained by considering the diameter
Dc at which the maximum of |Ψx

R| and the maximum of Sττ overlap. Knowing that the latter
(Fig. 4.16b) is located around 1/λz = 1.2, we have Dc=0.732/1.2=0.61, which in viscous units
is D+

c ≈ 110.

4.5 Freely rotating half discs

Passively rotating half discs have been studied experimentally by Koch and Kozulovic (2013) and
Koch and Kozulovic (2014) as a method to reduce the skin-friction drag through a large-scale
slip at the wall. The half discs consist of freely-rotating discs that have one half (in the spanwise
direction) exposed to the mean shear, while the other half is covered by a solid surface and does
not face directly the main body of the flow. The half disc therefore rotates with a non-zero-mean
velocity, caused by the non-zero fluid torque (Tf 6= 0) induced by the mean shear stress that acts
on the exposed half of the disc. Since a steadily moving disc introduces a streamwise slip velocity
at the wall, it is reasonable to expect a local flattening of the velocity profile and a reduction of
the mean wall gradient.

In Section 4.5.1 we review and analyse the experimental results of Koch and Kozulovic (2013),
in Section 4.5.2 we define the flow parameters of the half-disc channel flow. Section 4.5.4 describes
the set-up and the results of the simulations, carrying out a comparison with the available
experimental results.
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4.5.1 Review of the experimental results

The original wind-tunnel experiments of Koch and Kozulovic, 2013 and Koch and Kozulovic,
2014 (KK13 and KK14 in the following) included half-discs of diameter D∗=100 mm in two
different housing configurations. We focus on the more promising configuration, shown in Fig.
4.18a, that is the best performing of the two and is also more easily realised numerically. The
experimental rig and the coordinate system used in the experiments is depicted in Fig. 4.18b.
The centre of the disc is chosen as the coordinate origin.

(a) (b)

Figure 4.18: Experimental set-up of Koch and Kozulovic, 2013. (a) disc mount configuration. (b)
schematic of the system.

KK13 and -14 estimate a drag-reduction rate of up to 17% on the exposed half of the disc.
This number is not obtained from a direct measurement of forces or stresses but from an indirect
estimate that proceeds as follows. The shear-stress distribution on the disc surface is not mea-
sured directly in the experiments of Koch and Kozulovic (2013) and Koch and Kozulovic (2014)
but through an indirect estimate that proceeds as follows. First, the number of revolutions per
second f∗ of the disc is measured. Then, under the assumption that the boundary-layer thickness
over the rotating half-disc is identical to the the fixed-wall reference case, the wall-shear stress
τ∗w on the rotating half-disc surface is estimated according to the following empirical formulas:

τ∗w(x∗, z∗) = 0.0225ρ∗[U∗∞ − u∗s(x∗, z∗)]2
[

ν∗

δ99(x∗, z∗)(U∗∞ − u∗s(x∗, z∗))

]1/4

, (4.42)

δ∗99(x∗, z∗) = 0.37(x∗ − x∗t,v)
[

ν∗

U∗∞(x∗ − x∗t,v)

]1/5

(4.43)

where U∗∞ is the far-field velocity of the boundary layer and u∗s(x
∗, z∗) = 2πf∗z∗ is the streamwise

slip velocity on the disc surface and δ∗99 is the 99% boundary-layer thickness. x∗t,v is the virtual
origin of the turbulent boundary layer, which is extrapolated from the measurements of δ∗99

yielding x∗t,v = −118mm. Seven experiments (Table 4.3), each of increasing U∗∞, are carried out
in an closed-circuit wind tunnel. A kinematic viscosity ν∗ = 1.5× 10−5m2/s is assumed for air.
The boundary-layer thickness is measured experimentally at three spanwise distances from the
disc centre and shown to be in good agreement with the fixed-wall value, supporting the initial
assumption. The authors thus conclude that the wall shear-stress value can be estimated via
(4.42)-(4.43).

As the turbulent boundary-layer is a spatially developing flow, we choose the centre of the
disc as the reference position for the purpose of calculating non-dimensional flow variables. For
the boundary-layer flow, non-dimensional values are obtained by normalising lengths with δ0∗

99 ,
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velocities with U∗∞ and stresses with τ∗w(0, 0). Viscous units are defined in a similar way at the
reference position.

The reference friction Reynolds number Reτ , needed to match the experiment with the
channel-flow simulations as required by the principle of near-wall similarity, is defined as Reτ =
u∗τ,0δ

0∗
99/ν

∗, where δ0∗
99 = δ∗99(0, 0) and u∗τ,0 =

√
τ∗w(0, 0)/ρ∗.

For the sake of comparison with the numerical simulations and other passive drag-reduction
methods, it is also convenient to model the freely-rotating half-disc as a slip-velocity surface,
through the definition of the equivalent slip velocity Us,D :

Us,D ≡ UD(y = 0), (4.44)

where UD identifies the streamwise velocity, conditionally averaged on the exposed disc half
(region D in Fig. 4.20) i.e. UD = 〈us〉D. Knowing the mean disc edge velocity W , the equivalent
slip velocity is calculated exactly as Us,D = 4W/3π. The main performance metric used to
discuss experiments and simulations is the half-disc drag reduction rate RD, defined as:

RD(%) = 100
τw,0 − τw,D

τw,0
, (4.45)

where τw,0 is the value obtained from formula (4.42) for us = 0 (fixed wall) and τw,D =
〈τw(x, z)〉D.

Table 4.3 contains the flow parameters estimated for the experimental turbulent boundary-
layer according to the definitions given above.

Table 4.3: Flow parameters and results of the boundary-layer experiments from Koch and Kozulovic,
2013.

U∗∞ [m/s] δ0∗
99 [mm] f∗ [1/s] Reτ D+ W

+
U+
s,D RD(%)

20.32 3.98 9.94 276 6943 3.00 1.27 11.2
25.38 3.80 14.33 322 8481 3.54 1.50 12.6
30.41 3.67 19.01 366 9980 3.99 1.69 13.9
35.6 3.55 23.78 409 11500 4.33 1.84 14.7
40.7 3.46 28.78 449 12973 4.65 1.97 15.6
45.86 3.38 34.04 488 14444 4.94 2.09 16.3
50.96 3.31 39.04 525 15882 5.15 2.19 17.1

The experiments also find a persistent reduction of the momentum thickness of the boundary-
layer downstream of the disc, according to measurements performed at three different spanwise
locations. The reduction, of up to 5.3% in the best performing case, is present at least up to
one disc radius downstream from the disc edge and therefore hints at the possible existence of a
beneficial region where the skin-friction is persistently reduced by the disc rotation. The authors
also observe that the streamwise extension of the beneficial region is proportional to the upstream
extension of the disc, which is minimal at the disc edge and increases towards its centre.

4.5.2 Parameters of the channel flow with half discs

In this section we analyse the non-dimensional parameters of the half-disc channel flow, neces-
sary to compare the numerical channel-flow simulations to the boundary-layer experiments. As
explained in Section 4.3.5 any flow statistics can be expressed as a function of the reference (i.e.
of the no-slip case) friction Reynolds number Reτ , the diameter D, the disc inertial parameters
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ρs, D, b and the parameters of the disc housing, namely dh and Tb. The disc inertia can be ne-
glected because mean disc-edge velocity W (or alternatively, the angular velocity Ω) of a half disc
is uniquely determined by the steady-state balance between the fluid torque and the frictional
housing torques T f (W ) = Th(W ) + Tmin(W ). For half discs, it is convenient to reorganise the
parameters introducing the equivalent slip velocity Us,D (defined in (4.44)) to obtain:

R = fR(Reτ , D, Us,D) (4.46)

Us,D = fs(Reτ , dh, D). (4.47)

4.5.3 Numerical cases

The dependence ofR and Us,D on the parameters is investigated via a number of direct numerical
simulations, each involving the variation of a parameter of the problem. All simulations (Tab.
4.4) are performed in a channel instead of a boundary-layer and at Reτ = 180, lower than
the experiments of KK13. Although Reynolds similarity to the experiments is not enforced in
the simulations, some considerations on the drag reduction can be made in the framework of a
slip-velocity surface model. For slip-length surfaces, it is a widely accepted hypothesis that the
drag-reduction performance scales in wall units (Min and Kim, 2004; Busse and Sandham, 2012)
with very little dependence on the Reynolds number, at least for the range of Reτ considered
here. This fact endorses the idea of studying the half-disc drag reduction and its dependence on
the equivalent slip velocity, scaled in wall units. The disc diameters are also smaller than the
original experiment in terms of wall units. Larger values of D+ are presently beyond our available
computational resources: performing a simulation of a single half-disc at the experimental value
of D+ would require a grid size about 600 times that of HD2. In the channel-flow simulations,
the flow in the housing cavity is not simulated explicitly, but rather modelled through one of the
formulas (4.19), (4.20) that is pre-determined based on the assumed nature of the flow in the
cavity (i.e. assuming a cavity Reynolds number Reh). This means that the dependence of (4.47)
on dh is not natural but needs to be verified a posteriori by checking that the resulting Reh is
consistent with the assumption.

As explained in Section 4.3, the functional form of Th(W ) is determined by Reh, therefore the
choice of the cavity depth dh must be considered carefully. Cases HD2 and HD3 assume dh = 0.1,
which is the same value that is found in the experiments when scaling with the boundary-layer
thickness as d∗h/δ

0∗
99 , and make use of the linear Th model (4.19). Cases HD4 and HD5 also use

the linear Th model but consider deeper cavities of dh = 1 and 10, it is noted that the use of this
model is not realistic for these cases, however it is attempted in order to obtain a lower friction
torque and obtain a higher W . Finally, HD6 instead uses the Von-Kármán solution (4.20) for
Th. Since W and Reh are mutually dependent variables, the consistency of these assumptions
has to be verified a posteriori by measuring the actual Reh produced in the simulations. In the
experiments d∗h = 0.4mm, giving a value of Reh = 3 for the fastest rotating case and Reh = 1
for the slowest, compatible with a Couette flow in the cavity.
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Figure 4.19: Schematic of the arrangement of the numerical channel of cases HD2,4,5,6.

Cases HD2 through HD6 (Fig. 4.19) simulate a set of simplified boundary conditions that
does not explicitly simulate the sheltering structure that covers half of the disc. In these cases
the half discs are modelled by simply eliminating the left-hand half of the disc and applying a
fixed-wall condition. In cases HD2-6, the disc dynamical model is modified as follows: 1) Tf is
only calculated on the existing disc half and 2) Th is multiplied by a factor of 1.5 to account for
the friction under the hypothetical plate that would cover the sheltered half of the disc. This
operation implies that the flow under the plate is assumed to satisfy the same solution (i.e.
Couette, Von Kármán, or turbulent) that is found in the housing cavity.

This simplified set-up is studied because it can be more easily adapted to study the depen-
dence of the drag reduction on D (cases HD2 and HD3), the disc velocity (cases HD2 through
HD6), and to decide which model of Th is more realistic (cases HD5 and HD6).

Table 4.4: Numerical parameters of the passive half-disc flow simulations.

Case name Rep Lx Lz grid size D+ ND Th model

HD2,4,5 4200 4.53π 2.26π 256×129×256 605 8 Couette
HD3 4200 6.7π 3.33π 256×129×256 1210 2 Couette
HD6 4200 4.53π 2.26π 256×129×256 605 8 VK

x

z

D

E

S

Figure 4.20: Nomenclature of the wall regions analysed in the text: D) exposed disc half, E) exposed
wall region, S) sheltered wall region. Region D is a subset of Region E.
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4.5.4 Simulation results

The main results of the simulations are shown in Tab. 4.5. In order to facilitate the comparison
with the experiment, we compute the drag reduction RD on the exposed half of the disc defined
in (4.45), as well as the global drag reduction R.

The cases HD2 and HD3 return small drag reduction rates of around 2%, which becomes
almost 5% when RD is considered. Cases HD5 and HD6 are the best performing configurations

overall, they obtain the highest values of W
+

and achieve drag reductions of 20% and 14%,
respectively. The values of the mean slip velocity on the exposed half of the disc U+

s,D(0) are also
shown.

The disc-tip velocity is identical for both HD2 and HD3, regardless of the differing disc
diameters, that is the angular velocity decreases linearly with D. The equivalent slip velocity
on the exposed disc half exhibits values similar to those needed to obtain drag reduction in
the well-known slip-length modelling of hydrophobic surfaces (Min and Kim, 2004) and a direct
correlation between the slip velocity and the drag reduction is also found.

The values of Reh measured from the simulations remain well under 40 in HD2 and HD3,
indicating consistency with the laminar Couette model of the cavity torque. However, the higher
rotation velocity displayed by HD4 and HD5 means that the values of Reh become of the order of
103, which lie outside the Couette solution range and therefore are inconsistent with the model
of Th. Case HD6 instead achieves Reh = 45 that is consistent with the Von Kármán torque
model.

Table 4.5: Summary of the channel-flow simulation results.

Case name Reτ D+ W
+

U+
s,D R(%) RD(%)

HD2 180 605 0.98 0.42 2.1 4.9
HD3 180 1210 0.98 0.42 2.1 4.9
HD4 180 605 1.42 0.60 2.8 8.6
HD5 180 605 4.85 2.06 5.6 19.9
HD6 180 605 2.49 1.05 5.1 13.9

a. Comparison and discussion

In this section we compare the values of R and Us,D obtained in the experiment and the simu-
lations, considering their dependence on the parameters specified in (4.46)-(4.47).

First, as noted in Section 4.5.4, the simulation of cases HD2 and HD3 shows that, all other
parameters being equal, neither the disc velocity nor the drag reduction rate are influenced by the
disc size. Although two data points do not provide conclusive evidence, we henceforth consider
the dependence on D as negligible.

As the simulations are all carried out at a value of Reτ different from the experiments, it
is interesting to speculate on what would occur in the boundary-layer experiment if Reτ were
to match the lower value of the channel flow simulations. An estimate can be obtained as
follows: first, we perform linear regression on the experimental data for the angular frequency
as a function of the far-field velocity f∗(U∗∞), which is shown in KK13 to be linear. Secondly,
we extrapolate to smaller values of U∗∞, and finally we use the extrapolated pairs U∗∞, f

∗ in the
empirical formulas (4.43)-(4.42). For example, by substituting U∗∞ = 1m/s and f∗ = 0.67Hz in
the empirical formulas (4.42) and repeating the calculations illustrated in Sec. 4.5.1, we obtain
Reτ = 179, U+

s,D = 0.15 and RD = 1.4%. This estimation procedure can be carried out for
an arbitrary number of velocities, four of which are shown in Fig. 4.21, identified by the (∗)
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symbols. At the same Reτ = 179 of the simulations, the extrapolated experimental disc rotates
more slowly, producing lower values of U+

s,D.
Fig. 4.21 shows the correlation between the drag reduction and the equivalent slip velocity

in wall units. The simulations capture a wider range of slip velocities than the experiments. In
both the experiment and the simulations, drag reduction is positively correlated to U+

s,D. The
experiments show lower values than the channel flow in the same range. The channel-flow curve
seem to undergo a concavity change at low U+

s,D, however the two data points are not sufficient
to determine if a linear behaviour is also present in the channel-flow data. The latter are not
captured by the empirical procedure used to calculate the drag reduction in the experiment, but
can be very significant as shown in Fig. 4.22. At the same Reτ = 179 of the simulations, the
extrapolated values have a smaller RD show a convex shape at low U+

s,D.
The differences between simulations and experiments is due to either 1) Reynolds-number

effects or 2) different physics in the boundary-layer related to the non-homogeneous flow phe-
nomena.

The global drag reduction rate R is depicted in Fig. 4.21a by the (MMM) symbols. There is
very little increase in R for the two largest disc tip velocities. The inspection of the spatial
distribution of skin-friction on the wall is necessary to investigate the cause of this behaviour.
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5

10

15

20

U+
s,D

R
D
(%

)

KK13

extrapolated

cases HD2-HD6

R from HD2-HD6

Figure 4.21: Dependence of the drag reduction rate on the exposed disc half (region D) on the slip
velocity expressed in viscous units. Comparison between our simulations (HD2-HD6, Table 4.5) and the
half-disc boundary-layer experiments (KK13, Table 4.3). The grey curve in is the global drag-reduction
rate.

The maps of Rxz(x, z) on the wall are shown in Fig. 4.22b–c for the numerical cases HD5 and
HD6 and reveal a starkly non-homogeneous spatial distribution, along both the x and z directions.
In either case, the maximum drag reduction is encountered on the upstream rotating edge of the
disc, while the maximum drag increase occurs in the region near the centreline, upstream of
the disc centre. The latter appears to be an effect of the discontinuity that characterises the
simplified half-disc boundary conditions. Although the simulations achieve a good level of drag
reduction on region D, we do not find any region of persistent drag reduction downstream, as
claimed by the experiments. On the contrary, an area of increased drag is observed immediately
downstream of the disc, where the surface changes from a finite slip velocity to no-slip outside
the disc.

Fig. 4.22a reports the spatial distribution of the drag reduction for the best-performing
experiment of KK13. The drag-reduction distribution of the experiment is found in Fig. 4.22
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and is calculated as:

Rxz(x, z) = 100
τ0∗
w (x, z)− τ∗w(x, z)

τ∗w(x, z)
(4.48)

where the shear-stress distributions are calculated from the empirical formula (4.42). No stream-
wise non-homogeneous effect is captured by the experimental model, which simply reflects the
proportionality to the slip velocity, increasing linearly along z. As no experimental measurements
of the boundary-layer thickness are performed on the region of the disc near the wall or near the
covering structure, no relevant experimental data exist for the spatial structure of the flow. It is
also possible that the experimental finding on the constant boundary-layer thickness cannot be
extended straightforwardly to the entire half-disc surface outside of the three spanwise position
considered by the measurements.
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Figure 4.22: Spatial distribution of the drag reduction Rxz(x, z) on the wall, values in percent. A single,
period-averaged flow unit is depicted. (a) experiment from KK13 (fastest rotating case): the yellow
colour identifies the region where no data are available. (b) case HD6. (b) case HD5.

Fig. 4.23 provides a visualisation of the fine-scale vortical structures using the λ2 method
(Jeong and Hussain, 1995) for a single instant of time. Case HD5 generates a persistent reduction
in the size and number of the vortex cores along the streamwise direction above the spinning
region, in contrast with the no-slip part of the wall, which is also visible in HD5 although the
effect is less pronounced.
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Figure 4.23: Instantaneous iso-surfaces at λ+
2 = −0.009, coloured by the streamwise velocity component:

(a) case HD6, (b) case HD5.

The wall-normal turbulent shear-stress profiles on region S (Fig. 4.24a-c) are virtually in-
distinguishable from the no-slip case, while those shown in Fig. 4.24b-d undergo significant
weakening below y+ = 100, with a 30% reduction at y+ = 30. It can be noticed that, although
the profile in Fig. 4.24b has reduced turbulent stress, drag increase is observed at the same
position in Fig. 4.22. This suggests that the origin of the local drag increase is to be found
in a laminar effect associated with the deceleration of near-wall high-momentum fluid on the
no-slip region. The wall-normal profiles of the root-mean-square velocity also display a qualita-
tively analogous spatial dependence, being reduced on regions E and S and preserving the same
intensity as the reference case on region S.
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Figure 4.24: Wall-normal profiles of several flow statistics at four different positions on the wall: (a)-(d)
the period-averaged streamwise velocity u+

s , (e)-(h) the turbulent Reynolds stress [utvt]
+
s , (i)-(l) the

r.m.s. of the streamwise velocity. (m)-(p) the r.m.s. of the wall-normal velocity. (q)-(t) the r.m.s. of
the spanwise velocity. The positions are identified by blue dots in the sketches. The statistics of Case
HD5 ( ) are compared to the reference channel-flow ( ). The variables are scaled with the wall units of
the reference channel.
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4.5.5 Experiments and simulations

In this section we analyse further the limitations of the half-disc numerical simulations in relation
to experiments, focusing on the differences between TBL and channel flow, Reynolds numbers,
and the uncertainties related to the experimental realisation of the actuators.

a. Boundary Layer or Channel flow

The validity of the results obtained in channel flow would rely on i) a perfect Reτ similarity being
preserved and ii) the same native-scaled disc velocity W+ being maintained. The inhomogeneous
distribution of the wall-shear stress in a the boundary layer flow implies that these conditions
cannot be met exactly, irrespectively of the size or the position of the half-disc devices. In our
analysis of the experimental data, we consider the value of the Reynolds number taken at the disc
centreline as a reference. At the moderate values of Reτ considered in our study this approach
is sufficient to ensure close, given the difference between upstream and downstream Reτ is of
the order of a few units. At higher Reynolds numbers, as a consequence of the viscous length
contraction, it is possible that more extended portions of the walls are subjected to sub-optimal
slip velocities. A closer comparison to the experimental boundary-layer flow might be possible
in the simulation programme advanced in Section 4.7 that tries to eliminate the free variable at
the same Reynolds number of the channel flow. Furthermore, the interaction of a boundary-layer
flow with the physical structure of the disc device might differ from that occurring in channel
flow, thus introducing an additional source of uncertainty.

b. Effects of the Reynolds number on the disc rotation rate

In equations (4.46)-(4.47), the reference-case Reynolds number appears in the expression for both
R and Us. In this and the following section, we give an overview of the effect of its influence
on each one of the two variables and discuss how the combined effect affects the drag reducing
capability at high Reynolds numbers.

Assuming the disc size and the flow regime in the housing cavity remain the same, it is

expected that the disc angular velocity increases approximately as ∼ Re
3/4
p because, while Tf

declines as ∼ Re
−1/4
p (being proportional to Cf , see (1.25)), the housing frictional torque (4.6)

does so at the faster rate of ∼ Re−1
p . Since the wall-unit angular velocity uτ/δν also scales as

∼ Re
3/4
p , the Reynolds scaling of W ensures that the native-scaled disc velocity – and thus U+

s

– remains constant at any Rep.
In this respect, an additional factor of uncertainty is related to the flow regime change within

the cavity. Higher Rep implies higher W , meaning that the cavity Reynolds number Reh =
WdhRep soars at a faster rate than either one of its factors. While initially the laminar Couette-
like state described by model (1.2) is preserved, when the cavity Reynolds number Reh, undergoes
a transition first to a Von-Karman-like laminar state and the to turbulence. This ultimately
degrades the capability of the passive half-disc to produce an adequate value of U+

s and thus to
deliver drag reduction.

c. Effects of the Reynolds number on R
The dependence of the drag reduction R on the Reynolds number is connected to the underlying
mechanisms by which the actuators modify near-wall turbulence. Two known drag-reducing
effects are understood to arise from the rotation of the half-discs: a streamwise, positive slip
velocity at the wall and a spanwise periodic velocity pattern akin to spanwise velocity waves.
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In either case the drag reduction performance can be parametrised, in the asymptotic high-
Reynolds number limit, through the upward shift ∆B of the logarithmic velocity profile scaled
in native wall units (Gatti and Quadrio, 2016; Rastegari and Akhavan, 2019). ∆B is taken as
independent of the Reynolds number. In a constant-flow-rate turbulent channel, this approach
gives the following relation for R:

1−R =

(
1 +

(
1

2κ
log(1−R) + ∆B

)√
Cf,0(Rep)

2

)−2

(4.49)

where κ is the Von-Karman constant. This parametrisation allows the prediction of R at arbi-
trarily high Reynolds number. Due to the presence of Cf,0 in relation (4.49), R declines with
Rep for a given ∆B.

This theory has been applied in the literature to the prediction of high-Reynolds drag reduc-
tion for both spanwise velocity waves (Gatti and Quadrio, 2016) and slip-generating hydrophobic
surfaces (Rastegari and Akhavan, 2019).

Among the half-disc cases discussed above, the best-performing one (case HD5) generates
∆B = 0.62. Under the assumption that the ∆B measured at Reτ,0 = 180 is already independent
of the Reynolds number, Figure 4.25, following (4.49), shows that drag reduction at Reτ =
106 performance amounts to less than 40% of the low-Reynolds case. This however is a good
performance given that such a decline takes places over four decades.

The assumption made in (4.49) that ∆B is independent of the Reynolds number only holds
, as explained in the previous subsection. Since that is not likely to be the case at high enough
Rep, a further degradation of R is foreseen.
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Figure 4.25: Predicted drag reduction for the half-disc configuration HD5 at high Reynolds number.
The red curve is computed from (4.49) on the Reynolds number range 180 to 106.

since many questions raised by the Reynolds number strongly encourages further research,
and proposed in .

d. Device model uncertainty

A third aspect is related to the uncertainty inherent to the simplified device modelling necessary
for the simulations and its comparison to the experimental set up, although the aim of our work
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is not to replicate the experiments faithfully, but to provide a proof-of-concept of the mecha-
nism and gain a broad understanding of the flow physics involved. The single biggest source
of uncertainty in terms of actuator modelling are represented by the simplified housing with no
disc shelter. More concerns are on the actuator’s geometry and its constructive details, such as
the flush, friction in bearing, the presenc of nearby actuators, or additional sources of friction
that may have been neglected. In general, since we have no access to the data of the exact
components used in the original work, nor to the experiemntal uncertainties involved, a number
of assumption had to be made, except the housing geometry which was modelled as in the exper-
iments. We are nonetheless confident of the quality of the models; a more nuanced comparison
with the experiments is postponed after performing the simulations outlined in Section 4.7 that
are intended to reproduce more closely the experimental conditions. More information on how
the model compare with our experiment can be also found in Section 4.5.3.

4.6 Summary and conclusions

The key conclusions that can be drawn from the numerical study of passively rotating discs
presented above can be summarised in the following points:

(a) A dynamical model of the wall-mounted rigid disc has been developed based on a num-
ber of assumptions about its constructive and fluid-dynamical characteristics, grounded
in existing experimental work on analogous actuators and an hypothetical experimental
channel flow. The use of such model is necessary to simulate the real-time, two-way dy-
namic coupling between the turbulent flow and the disc and, consequently, the effect of
the disc motion on the near-wall turbulence. The resisting torques arising from the disc
bearing and from the motion of the fluid in the cavity underneath the disc are studied. In
particular, the cavity torque is subject to case-specific evaluation as it is dependent on the
flow regime that occurs in the cavity at different disc velocities. The disc model has been
implemented numerically and integrated into the DNS solver. The disc-fluid coupling is
realised by calculating, at each time-step, the torque Tf induced by the wall-shear stress
on the disc surface, solving the disc dynamics and updating the boundary conditions of
the fluid using the newly obtained angular velocity. The consistency of assumptions made
about the fluid flow in the disc housing is verified a posteriori from the simulations.

(b) The dynamics of rotating discs that oscillate passively under a turbulent channel flow has
been studied via numerical simulations of discs of increasing diameter. The main objects
of the analysis are the standard deviation of the fluid torque Tf and the standard deviation
of the disc velocity W . The first is found to increase with the disc diameter as D2.2 and
the second is found to decrease as D−0.5. The time-series and the spectra of both W and
Tf have also been analysed, and found to undergo a shape change and a redistribution
of the energy towards lower frequencies as as the diameter increases. The amplitude of
the disc velocity is small and no drag reduction can be measured. Motivated by the small
intensity of the velocity amplitudes, the disc dynamics in the limit of asymptotically small
oscillations (i.e. fixed with respect to the fluid) has also been studied and compared to the
coupled case. This allowed the inexpensive simulation of a larger number of disc sizes using
the fixed-wall channel flow data. We find that the disc velocity and the fluid torque depend
on the disc diameter, following similar trends to those of the coupled case and around 30%
smaller r.m.s. of both the torque and velocity oscillations. The qualitative behaviour of the
velocity and torque spectra is also found to match the coupled case. Since the turbulent
flow is uncoupled from the disc rotation, an exact spectral filter function can be derived
that encodes how the fluid shear-stress fluctuations on the surface of the disc are converted
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into the fluid torque fluctuations, thereby explaining the dependence of the r.m.s. Tf on
D. As the uncoupled dynamics of the disc is linear, it is also possible to derive an exact
response function for W that, given the fluid torque spectrum, explains i) the dependence
of W on the diameter both in the uncoupled case and for most coupled cases and ii) the
red shift observed in the disc velocity spectra.

(c) We have reviewed and analysed the experimental results of the passively rotating half-
discs of Koch and Kozulovic, 2013 in a turbulent boundary layer, conducted at seven
increasing far-field velocities. The experiments claim drag reduction rates of up to 17%
obtained through an estimation procedure based on the measurement of the BL thickness
on the surface of the disc. The drag reduction rate grows with the disc velocity, which
is proportional to the far-field velocity. The existence of a beneficial region on the fixed
portion of the wall downstream of the disc is also reported.

In order to investigate the half-disc paradigm, five numerical simulations are performed in
a channel flow fitted with half discs of two different sizes (by a factor of 2) and two different
models of the housing torque (Von-Kármán and Couette solutions). The simulations are
conducted at a lower value of the reference Re0

τ of the experiments. Rotational velocities
similar (in wall units) to the experimental ones are obtained for the least intense values of
the resisting torque produced in the disc housing. The drag-reduction rates on the exposed
disc half RD and on the entire wall R are evaluated. In the fastest rotating case, we find
values of up to 20% and above 5%, respectively. Both drag reduction rates are observed to
be positively correlated to the slip velocity that is introduced at the wall on the flow-facing
half of the disc. The streamwise mean wall-shear stress has a non-trivial inhomogeneous
distribution on the disc and a drag-increasing region downstream of the disc.

The simulation results make the case for passively rotating half-discs as a drag-reduction
technique and offer a promising outlook on its potential improvement. Further investigation
is necessary to clarify some crucial aspects, namely i) the added drag originating from the
secondary flow phenomena on the disc superstructure; ii) the dependence of the disc velocity
and the drag reduction on the friction Reynolds number, important for a closer comparison
with the experiments.

4.7 Future research on half-discs

We propose a numerical study of a turbulent channel flow equipped with passively rotating rigid
half-discs. The proposal is aimed at investigating the potential of the half-discs as a passive drag-
reduction technique and expand the understanding of their flow physics, based on the results of
Chapter 3 and the experiments of Koch and Kozulovic (2013) and Koch and Kozulovic (2014)
(in short KK13 and KK14).

Tab. 4.6 lists the estimated numerical parameters for a series of DNSs that match the same
values of the Re0

τ of the KK13 experiments as calculated in Tab. 4.3. The smallest domain
size of 2π×π is shown by Lozano-Durán and Jiménez (2014) to correctly reproduce the one-
point statistics on numerical grids with a similar resolution. Nonetheless, a convergence study
of the drag reduction with may be needed, as it is a known fact that using small domain sizes
leads to overestimating drag reduction by in-plane wall motions (Gatti and Quadrio, 2016).
The layout of the boundary conditions is identical to the one illustrated by Fig. 4.19 that uses a
simplified model of the discs of KK13 and KK14. The modelling of the disc housing, the frictional
torque Th and its numerical implementation is explained in Sec. 4.3. Alternatively, we suggest
the experimental correlation cited in KK14 to be studied and compared to the aforementioned
models.
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We propose the data analysis to follow what presented in Sec. 4.5, including i) the calculation
of the equivalent slip-length UD defined by (4.44) and the correlations UD(Reτ ) and R(U+

D ), ii)
the visualisation of the turbulent and disc-flow components and local statistics profiles, iii) the
study of the spatially distributed skin-friction budget and its dependence on UD and Reτ .

Table 4.6: Nuermical parameters of the planned channel-flow simulations with half discs. Lx is the
streamwise domain length, Lz the spanwise width, D the disc diameter, ND the number of discs and
β is the wall-normal grid stretching parameter of Incompact3D. The values marked by ? are estimates.
Re0

τ is the nominal friction Reynolds number of the no-slip case at the same Rep.

Case name Rep
?Re0

τ Lx Lz nx×ny×nz β D (?D+) ND

HD180 4200 180 4.5π 2.3π 256×129×256 0.25 3.38 (600) 4×2
HD280 6800 277 3π 1.5π 256×161×256 0.2 2.17 (600) 4×2
HD320 8100 320 2.5π 1.3π 256×161×256 0.18 1.88 (600) 4×2
HD365 9300 365 2.2π 1.1π 256×193×256 0.2 1.64 (600) 4×2
HD400 10500 405 2π π 256×225×256 0.19 1.51 (600) 4×2
HD450 11900 450 2.2π 1.3π 320×257×384 0.2 1.33 (600) 5×3
HD525 14100 525 2.2π 1.1π 320×321×384 0.21 1.14 (600) 6×3
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Appendix to Chapter 4

4.A Details of the reduced-order model from Sec. 4.4.4

Here we derive the expression of the spectral filter function Ψx
R. We start from the definition of

Ψx
R and solve the double integral as follows:

Ψx
R(κx, κz) =

1

4π2

∫∫

S
zeiκxxeiκzzdS (4.50)

=
1

4π2

∫ R

−R

∫ √R2−z2

−
√
R2−z2

zeiκxxeiκzzdxdz (4.51)

=
1

4π2

∫ R

−R
zeiκzz

(∫ √R2−z2

−
√
R2−z2

eiκxxdx

)
dz (4.52)

=
1

4π2

∫ R

−R
zeiκzz

(−i
κx

[
eiκx

√
R2−z2 − e−iκx

√
R2−z2

])
dz (4.53)

=
1

4π2

∫ R

−R
zeiκzz

(−i
κx

2i sin(κx
√
R2 − z2)

)
dz (4.54)

=
1

2π2κx

∫ R

−R
zeiκzz sin

(
κx
√
R2 − z2

)
dz. (4.55)

We are unable to find an exact solution to the last integral, which is therefore evaluated numer-
ically. The self-similar form (4.39) is obtained by considering the change of variable z = z′R.
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Chapter 5

Feedback control of rotating discs

5.1 Introduction

In this chapter, we propose a simple on-off feedback-control scheme for rotating discs, based
on the instantaneous angular velocity of the disc. The main purpose of introducing feedback
control is to investigate whether is possible to further improve the power efficiency of the base
paradigm. Feedback control schemes have been applied to drag reduction in DNS studies Bewley
et al. (2001); Choi et al. (1994); Kim and Choi (2017) in the context of the micro-actuators but
not for in-plane wall motions. One disadvantage of these and other more advanced feedback-
control schemes (e.g. optimal control)is that they require the measurement and processing of
large amounts of flow data in real time.

The power efficiency of the feedback-control scheme is maximised through the computational
optimisation of the control parameters. The optimisation is carried out using a powerful Bayesian
optimisation framework that is able to select and propose new parameter combinations based on
a surrogate model (i.e. a regression surface) of the objective function (Schonlau, 1997; Shahri-
ari et al., 2016). This technique is instrumental in reducing the number of computationally
intensive direct numerical simulations needed for the convergence to the optimum. Variants of
the Bayesian optimisation method have been long known in the engineering optimisation field,
however only recently this technique has found application to enable DNS-based automatic opti-
misation studies. Mahfoze et al. (2018) simulated a suction/blowing device in a boundary layer,
complete with an approximate model of the device’s frictional losses, and used a variant of the
Bayesian optimisation technique to study its drag-reduction performance.

This chapter layout is as follows: Section 5.2 gives an overview of the base flow case, the ac-
tuator design and the model used for their simulation. In Section 5.3 we introduce the feedback
control scheme, develop the metrics used to evaluate its power efficiency and formalise the opti-
misation of the control parameters. The computational optimisation methodology is explained
and motivated in Section 5.4. More technical information on Bayesian optimisation can be found
in Appendix 5.A, along with the validation of the numerical code used. Section 5.5 describes the
optimisation results and contains an extensive analysis of the simulation data, the main points
of which are summarised in Section 5.6.

5.2 Modelling and simulation of the actuators

The flow case considered for feedback-controlled discs is analogous to the ring set-up of Chapter
3. Rotating discs are flush mounted on the surfaces of both walls of the channel in a orthogonal
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array configuration, shown in Figure 5.1. Along the streamwise direction, the disc sense of
rotation changes from one row to the next, as in Ricco and Hahn, 2013, but the angular velocity
magnitude is dictated by the feedback-control mechanism introduced in Section 5.3. The disc
geometry and the disc housing design are identical to those for the freely rotating discs given in
4.3.1.

The coordinate system and the definitions of the non-dimensional units are not changed from
those defined in Chapter 3, Section 4.2 and 4.2. Non-dimensional quantities obtained by scaling in
outer units, i.e. by normalising with the channel half-height h∗, the density of the fluid ρ∗, and the
Poiseuille centreline velocity U∗p at the same mass flow rate, are not indicated by any symbol. All
simulations are conducted at a Reynolds number Rep=U

∗
ph
∗/ν∗=4200, where ν∗ is the kinematic

viscosity of the fluid. The non-dimensional wall-shear stress is τw=(dU(0)/dy)|y=0/Rep and the
bulk velocity is obtained by dividing the flow rate per unit wall area, Q, by the channel height
as Ub=Q/2h. The stationary-wall friction Reynolds number of the reference, no-slip case is
Re0

τ=u∗τh∗/ ν∗=180, where u∗τ=
√
τ∗w/ρ∗ is the wall-friction velocity. Quantities scaled in viscous

units are indicated with a + superscript.
The simulation parameters for the feedback-control cases are reported in Table 5.1, which is

also the numerical configuration of the reference no-slip channel flow. In the following, quanti-
ties scaled in wall units are with respect to the reference stationary-wall case, unless explicitly
indicated.

x

z

y

Lx

Lz

Ly

W

D

Figure 5.1: Schematic of the arrangement of the disc-fitted channel. Only the discs on the bottom
wall are shown. The sense of rotation of the discs is highlighted by the curved arrows, while the longer
arrow indicates the mean-flow direction. The sketch on the right illustrates the triangular-wave spanwise
velocity pattern created along the centreline of the discs by two adjacent counter-rotating discs.

Table 5.1: Simulation parameters for the feedback-control flow cases. The number of grid points are
along x, y, and z, respectively.

Case Rep Re0
τ Lx Ly Lz grid size D+ ND

On-off control 4200 180 6.7π 2 3.33π 378×129×320 605 4×2
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5.2.1 Averaging operators

a. Averaging operators

The time-average of a variable f is indicated by f . Disc variables, such as the velocity W , are
also always averaged across all the discs i.e. f =

∑ND

i |f i|/ND where f i is the time-averaged
variable from the i-th disc, ND is the number of discs and the absolute value is used to correct
for opposite senses of rotation.

It is also useful to define, for the flow field variables u and p, the multi-disc or symmetry-
averaging operator that accounts for the spatially periodic symmetry that exists across two
adjoining counter-rotating rows of discs. The operator is defined identically to that detailed in
Section 3.2.2.

Using the definition of the symmetry-averaged flow field us=[u]s the following flow decom-
position can be introduced:

u = us + ut. (5.1)

The symmetry-averaged component can be further broken down into the spatially-averaged flow
U (the “velocity profile”) and the spatially inhomogeneous component ud as:

us = U + ud. (5.2)

The spatial average of a flow field 〈u〉 is obtained by integrating on x and z and dividing by
the wall area LxLz, thus obtaining wall-normal profile U(y). The sampling uncertainty on time
averaged or symmetry averaged variables is estimated via normal confidence intervals.

b. Performance metrics

The skin-friction coefficient is defined by normalising the mean wall-shear stress τw = Rep with
the bulk kinetic energy as Cf = 〈τw〉/(U2

b /2). The mean pumping power per unit wall-area
that is needed to sustain a constant flow rate Q through a channel is Pp = 2〈τw〉Q. Using the
definitions of the skin-friction coefficient and the bulk velocity, Pp can be rewritten as CfU

3
b .

The percentage skin-friction drag reduction R(%) is defined as:

R(%) = 100
Cf,0 − Cf
Cf,0

. (5.3)

In a constant-flow-rate flow, the drag-reduction rate and the pumping-power reduction rate:

∆Pp(%) = 100
Pp,0 − Pp
Pp,0

(5.4)

are equivalent.

5.2.2 Model and dynamics of the rotating discs

The same disc actuators described in Chapter 4 are used with no modification, except the
introduction of an electric motor as sketched in Fig. 5.2. The angular velocity of each disc at
time t is Ω(t) and the disc-edge velocity Ω(t) = W (t)R, where R is the disc radius. For each
disc, the disc tip velocity evolves according to the dynamical equation:

2I

D

dW

dt
= Tf + Th + Tmin + TM , (5.5)
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where the definitions and models adopted for the turbulent shear-stress torque Tf , the housing
torque Th and the minor frictional torques Tmin = Tb + Tgap are given in 4.3.1 and are used
here with no modification. The motor torque TM its the active forcing term and its modelling is
introduced in the next section.

Some remarks need to be made on the validity, in the on-off controlled disc case, of the
assumptions that are made in Section 4.3.3 to derive the models of Th. In all the on-off flow cases
considered below the value of cavity Reynolds number Reh remains always < 1 even considering
the worst case i.e. when the discs rotate at the upper velocity threshold. Therefore the flow is
always in the laminar Couette regime and Th is modelled by formula (4.19). The assumption
of quasi-steadiness is not verified for the case where a disc is accelerated from or decelerated to
the freely-rotating state by an external torque. In that case, it is necessary to quantify the rate
of change of the angular velocity and show that it is such that it produces a small value of an
acceleration parameter. The latter can be defined similarly to the frequency parameter, where
the frequency f is replaced by the reciprocal of the transient duration and the velocity amplitude
is replaced by the final value of the transient.

M

dh

D

Dh

Figure 5.2: Schematic of the disc housing. The axis of rotation of the disc is indicated by a dash-dotted
line.

5.2.3 Motor torque and active forcing

In general, the torque TM exerted by an electric motor on the disc shaft depends on the angular
velocity Ω and its precise functional form is a specific characteristic of the type and size of motor
adopted. To model the motor torque TM , we briefly review the procedure leading to the choice
of the motor. We consider the use of a brush-less DC motor, which has small size, excellent
controllability, low friction and low inertia. The motor inertia IM , and its frictional torque
TbM , are neglected. The torque delivered by brushless motors is a linear function of the angular
velocity Ω(t):

TM (Ω) = T0 − αΩ. (5.6)

A brushless motor can be easily controlled by proportionally increasing or decreasing the voltage
at the motor terminals. The slope constant α and the feasible range of stall torques T0 are
determined by the motor type and power supply. Therefore, the motor model is chosen based on
its capability to accommodate a range of expected loads, according to the motor-load matching
explained in the following paragraph.

The motor constants are selected based on the characteristic curve TM (Ω) matching the curve
of the resisting loads at the steady-state velocity Ωd. Since the resisting load of the spinning disc
is the sum of the three contributions from the fluid, the housing, and the bearing, the matching
equation reads:

TM (Ωd) = Tf (Ωd) + Th(Ωd) + Tmin(Ωd). (5.7)
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The terms Tmin and Th are simple linear functions of Ωd. Tf depends on the fully turbulent flow
over the rotating disc and has, in principle, to be computed from a simulation with steadily rotat-
ing discs for each velocity Ωd. Instead, we use a continuous approximation of Tf (Ωd), obtained by
quadratic interpolation of seven constant-velocity simulations performed at uniformly spaced val-
ues of Ω, thus avoiding a full-scale simulation each time a new Ωd is needed. The approximation
is justified because the power dissipated by the disc in the fluid can be reasonably well predicted
(at low Ωd) by the laminar solution for an infinitely extended disc (Ricco and Hahn, 2013). Using
this method, we can determine the highest and lowest loads required by our range of Ωd and
choose a suitable motor model from manufacturer’s catalogue that is able to support the associ-
ated range of loads. This fixes α, while T0 is the flexible control parameter that can be tuned to
match precisely each load without exceeding the range specified by the manufacturer. Since we
use the non-dimensional matching equation (5.7), the results are first dimensionalised using the
parameters of the water channel described in Section 4.3.5, and then compared to the dimensional
values given in real-world catalogues. In this way, we determine a realistic value of the slope
constant to be α = −0.03, which is used throughout this work, taken from the Faulhaber Series
1218 brushless DC servomotors (https://www.faulhaber.com/en/products/series/1218b/).

As a final note to this section, we note that this steady-state design methodology neglects the
transient dynamics that brings the system from the initial velocity to Ωd. During the transient,
the resisting loads can exceed the steady-state curve due to inertial effects. Additionally, the
motor itself can suffer performance losses due to transient electrodynamic phenomena. In a
more refined model, the start-up dynamics and the transient loads would be considered during
the motor selection process.

5.2.4 Dimensional reference

The dimensional water channel reference is identical to the one shown in Table 4.1.
An important effect of the choice of ρs = 2.7 for the on-off control is related to the time

scales of the transients. In this case, a larger angular deceleration allows switch-off transient
times one thousandth as long as those in an air channel. An unpowered disc decelerates from an
initial angular velocity Ω0 to rest in a time proportional to Ω0I/Tf . In a water channel, ρs is
around 1000 times smaller than it is in an air channel thanks to the much smaller fluid density.
This implies that the decelerating transients have a duration about 1000 times shorter in the
water-channel case. This allows much shorter simulation times and better statistical convergence
of the flow variables.

In the on-off control, the simulations show that the disc transient time scale and the flow
transient time scale are of a similar magnitude (Section 5.3.2). This is an advantage for the
purposes of this study because both transients can be studied and compared with no need to
perform longer and expensive simulations to resolve the slow disc transient.

5.3 On-off control

We propose an intermittent, or “on-off” forcing scheme as a basic form of feedback-based control
of the discs. The motors are operated according to the following activation function:

TM (t) =

{
T0 − αW (t) ti < t < tf

0 tf < t < ti
with W (ti) < Wm; W (tf ) > WM , (5.8)

that is enforced independently on each disc of the array. The sign of the motor torque TM
is determined by position of the disc in the array, complying with the wave-like pattern seen
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in Fig. 5.1b. Upper and lower thresholds on the disc-tip velocity are represented by Wm and
WM , respectively. The real-world implementation of (5.8) is relatively effortless, relying on the
easily accessible measurement of the instantaneous angular velocity. The on-off activation is
studied in order to determine whether it is a more efficient alternative to the steady rotation of
the discs. The best power-saving case from Ricco and Hahn (2013) is selected as the reference
steady-rotation case and then a computational optimisation technique is applied to search for
more efficient combinations of the on-off control parameters (WM ,Wm, T0).

The broad aim of this approach it to test whether it is possible to enhance the power efficiency
of the rotating-disc method of drag reduction by tuning the parameters of an heuristic control
law. The underlying control principle is identified as the same as the steady disc operation, i.e.
the generation of a sustained spanwise velocity wave.

It can be pointed out that the desired control objective, the skin-friction Cf , is never directly
measured, instead the controller is tasked with regulating the disc velocity W . This operation is
reasonable because the nature of the dependence of Cf on W is already known in the open-loop
regime. Systems where corrections are applied to the control signal rather than the output of
interest are typically classified as of the feedforward type. In feedforward systems, compliance to
the control objectives relies on open-loop models of the response of the system to the control signal
(Åström and Murray, 2008). This is distinct from feedback systems where the control objective
is directly measured and regulated based on the departure from a determined objective. The
system architecture is depicted in Figure 5.3a. The sub-system encircled by the dashed line can
be regarded to as a self-contained feedback control loop on the disc velocity, with an external
disturbance represented by the fluid torque.

The graphical representation of control law 5.8 given in Figure 5.3b highlights its hysteresis-
like behaviour, were the control signal depends not only from the current state W but also on
the past history – whether it belongs to an accellerating or decelerating transient. It can be also
noted that the powered activation is only taking place in the upper branch of the hysteresis loop,
wheareas the lower branch (at TM = 0) represents the natural dynamics of the disc dissipating
its energy into the fluid.

(a)

(b)

TM (W )

W

Wm WM
0

T0

Figure 5.3: On-off feedforward control of the rotating discs. (a) Block diagram of the controlled disc-fluid
system. (b) Response function of the on-off velocity controller (TM = T0 is assumed, neglecting the weak
linear dependence of TM on W ).

The rest of the section is organised as follows: Sec. 5.3.1 describes the power budget of the
on-off forcing and defines the efficiency metrics. Sec. 5.3.2 discusses the simulation of a controlled
switch-on and switch-off transient. Sec. 5.3.3 formally defines the main control design problem.
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5.3.1 Power-budget analysis

The analysis of the power-budget components is essential to understand and potentially improve
the power-saving performance of an active control scheme. We start by defining the terms of
the mean power budget, defined on a single flow unit i.e. the system comprising a single disc
and a fluid domain V of dimension D×D×h, centred on the disc. The power needed to drive the
controlled flow is supplied by two external sources. The first is the pumping power Pp(t) spent
to overcome the frictional drag and the other is the motor power PM (t) needed to move the
disc. The instantaneous total input power is given by the sum P (t) = Pp(t) +PM (t). The mean
power spent by the controlled flow can be calculated by averaging in time and across multiple
discs, denoted as P = [P (t)]s. The mean power spent by the disc-fluid system is expressed by
the following equations:

Pp = CfU
3
bD

2, (5.9)

PM = TMΩ (5.10)

The time-averaged (or averaged over multiple discs) net power Pnet ( saved by using the control
law (5.8) with respect to the steady activation is calculated as:

Pnet =
P − Pss
P0

=
Pp − Pss
P0︸ ︷︷ ︸

≡ −∆R

+
PM
P0︸︷︷︸

≡ ∆PM

, (5.11)

where Pss is the mean total power spent by the steadily-rotating discs case, and P0 is the mean
power spent to drive the stationary-wall flow. P0 is equivalent to the mean pumping power of
the stationary-wall flow i.e. P0 = C0

fU
3
bD

2. The critical aspect of using an on-off control scheme
is to determine whether it is a more efficient alternative to the steady operation of the disc array.
If that is the case, Pnet must be a negative quantity.

A very useful tool for analysing how the actuator model affects the power-saving performance
of the control scheme is to decompose the motor power into its components:

PM = Pf + Ph + Pmin + Ėd (5.12)

where Pf is the mean power exchanged with the fluid through the disc surface, Ph is the mean
power dissipated into the housing flow, Pmin are the minor losses into the bearing and the disc
gap, and Ėd is the mean change in the disc kinetic energy. The precise definitions and the
derivation of the disc power-budget terms from (5.12) are given in paragraph b. below. Using
definition (5.12), the net saved power can be decomposed into its budget contributions, becoming:

Pnet =
Pp − Pp,ss
P0︸ ︷︷ ︸

≡ −∆R

+
Pf − Pf,ss
P0︸ ︷︷ ︸

∆Pf

+
Ph − Ph,ss
P0︸ ︷︷ ︸

∆Ph

+
Pmin − Pmin,ss

P0︸ ︷︷ ︸
∆Pmin

+Ėd

︸ ︷︷ ︸
∆PM

. (5.13)

This identity will be used below to analyse the performance of the controlled flow.

a. Disc power budget

The motor power budget (5.10) is obtained by averaging in time the instantaneous power budget
of the disc, that is derived by multiplying the disc equation (5.5) by Ω/R and reorganising:

PM = Pf + Ph + Pmin + Ėd, (5.14)
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where:

PM (t) = Ω(t)TM (t) (5.15)

Ph(t) = Ω(t)Th(t), (5.16)

Pmin(t) = Ω(t)Tmin(t), (5.17)

Ėd(t) = IΩ(t)Ω̇(t), (5.18)

Pf (t) = Tf (t)Ω(t), (5.19)

where Ph is the power dissipated into the housing flow, Pmin are the minor losses into the bearing
and the disc gap, and Ėd is the change in the disc kinetic energy.

b. Fluid power budget

It is also interesting to model the power budget in the fluid, which can be derived by integrating
the mean kinetic energy equation of the fluid on the flow unit volume V and taking the time or
multi-disc average. It reads:

Pp + Pf = −Pε (5.20)

were the terms are defined as:

Pp = CfU
3
bD

2 (5.21)

Pf =
1

Rep

∫∫

S

(
w(x, 0, z)

∂w

∂y

∣∣∣∣
y=0

− u(x, 0, z)
∂u

∂y

∣∣∣∣
y=0

)
dxdz, (5.22)

Pε =
2

Rep

∫

V
s2dx, (5.23)

where S the disc surface and s is the symmetric part of the velocity-gradient tensor.
It can be noted that the term Pf is the coupling term, appearing in both the fluid budget

(5.20) and in the motor budget (5.12). Equation (5.22) can be obtained from (5.19) by recalling
that w=Ω(x − xC), and u=Ω(z − zC), where (xc, zc) is the disc centre and the definition of Tf
from 4.14 is used.

The definitions are obtained by integrating the kinetic energy equation of the fluid on the
flow unit volume V. The evolution equation for the mean total kinetic energy of the fluid
E = [uiui]s /2 reads (Pope, 2000):

DE

Dt
+

∂

∂xi
Ti = −ε, (5.24)

where the repeated-index notation for sums is used and for a lighter notation, the multi-disc
symmetry average is not reported. The terms are defined as:

DE

Dt
= ui

∂E

∂xi
(material derivative) (5.25)

Ti = uip−
2

Rep
ujsij (spatial fluxes) (5.26)

ε =
2

Rep
sijsij (dissipation) (5.27)
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where sij = (∂jui + ∂iuj)/2 is the symmetric part of the velocity-gradient tensor. The term-by-
term integration of (5.24) on the unit volume V can be sketched as follows:

∫

V
ui
∂E

∂xi
dx = 0 (5.28)

∫

V
ui
∂p

∂xi
dx = PxUbD

2 = Pp, (5.29)

2

Rep

∫

V

∂

∂xi
ujsij dx =

1

Rep

∫

S

(
uj
∂ui
∂xj

+ uj
∂uj
∂xi

)
nidS = Pf , (5.30)

∫

V

2

Rep
sijsij dx = Pε, (5.31)

where S is the surface enclosing V and ni are the components of its normal vector. Exploiting the
symmetries of the mean flow over a disc, the integrals (5.29)-(5.31) can be simplified to return
the terms of (5.20).

5.3.2 Transient simulations

This section presents two preliminary simulations that address the dynamics of the switch-on
and switch-off transients in a controlled fashion. The simulations are aimed at obtaining data
on the disc velocity transient and the associated transient flow, focusing primarily the order of
magnitude of their duration. The numerical set-up of the present simulations is identical to that
illustrated in Sec. 5.2.

The first step is to assess the behaviour of a perfectly sharp transient i.e. such that the disc
velocity follows the step-function activation W (t) = Wss when ti < t < tf and W = 0 otherwise,
where Wss = 0.26 is the velocity of the best performing constant-speed case from Ricco and
Hahn, 2013. The switch-on and switch-off times are respectively t+i = 100 and t+f = 133. The
simulation begins at t = 0 from a fixed-wall turbulent flow snapshot. In this way, it is possible to
observe the behaviour a transients flow with no influence that happen in a disc velocity transients.
The second simulation encompasses the motorised disc transients, corresponding to applying the
control law (5.8) using the same fixed values of ti and tf of the step-function transient. The
motor stall torque, T0, is chosen such that T0 − αΩss = Tss, where Ωss = Wss/R and Tss is the
mean steady-state resisting torque. The value of Tss is derived from the steady-state simulation
by averaging the sum of the resisting torques Tf + Th + Tb over time and across all the discs.
In this way, the motor accelerates the discs to the steady-state velocity Wss following a natural
transient.

Figure 5.4 depicts the evolution of some fluid and disc parameters for the step-function
activation and the motorised activation of the discs. In the top graph of Fig. 5.4a the time
evolution of the edge velocity W (t) for each of the eight bottom-wall discs is compared to the
step-function activation. Three distinct time-scales are observed in the simulations: one for
the disc-tip velocity W , one for the skin-friction coefficient Cf , and a third one for the fluid

kinetic-energy transients Ėf 6= 0 that is calculated as the time derivative of the spatial integral
of the fluid kinetic energy Ef =

∫
V u · u/2dx. In this case, the disc velocity reaches the steady

state in about 700tν for the start-up transient and 400tν for the slow-down transients. The
transients of the skin-friction and the fluid kinetic energy are however much longer, of the order
of 1000tν . A lag is observed between the motorised activation of the disc and the modification of
the skin-friction coefficient, which is not present in the sharp activation. Further numerical data
(not shown) indicate that the two curves may present qualitative differences, however the order
of magnitude of the time-scale of the fluid transient do not change significantly from the sharp
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to the motorised activation. This is due to the fact that they always dominate because of the
comparatively shorter (at least for this parameter combination) disc-velocity transient duration.
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Figure 5.4: Flow statistics across an switch-on-switch-off transient activation of the discs. The shaded
region identifies active control i.e. TM 6= 0. Top: disc velocity, middle: skin-friction, bottom: total
kinetic energy.

The penetration depth δ is a critical flow variable for the transverse-motion drag reduction
paradigm, including the rotating discs or similar techniques (Chapter 2). It is therefore instruc-
tive to monitor its time evolution during the transients, implicitly assuming that the skin-friction
modification can be attributed to the the (quasi-) steady realisation of a cross-flow motion and
not to any transient effects. δ quantifies the thickness of the boundary layer created by the wall
motion. The penetration depth is defined as δ = −〈w(y = 0)/w′(y = 0)〉x,c, where 〈·〉x,c denotes
the spatial average along the streamwise symmetry plane of a disc and the prime symbolizes
derivative with respect to y.

Figure 5.5 shows δ(t) across the perfectly sharp transients, revealing that in general it builds
up and decays very rapidly, on a time scale close to that of W and much shorter than Cf and
Ef . The decay of δ during the deceleration of the disc is extremely rapid, of the same order of
the time resolution used in the plots.
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Figure 5.5: Time evolution of the perfectly sharp (a) switch-on and (b) switch-off transients, compared
to the temporal evolution of velocity and drag-reduction. The instantaneous value of the Stokes layer
thickness δ+, the skin-friction Cf and the disc-tip velocity W are normalised with their steady-state
value in order to compare their transient time-scales effectively.

5.3.3 Optimisation of the total spent power

The net saved power Pnet for the on-off controlled channel is a function of the following param-
eters:

Pnet = f (WM ,Wm, T0,disc, Rep) . (5.32)

The disc parameters are kept constant by assuming the dimensionless thickness b = 0.05, cavity
depth dh = 0.1, material density ρs = 2.7 and fixing the disc diameter as D = 5.07. The value of
D=5.07 is chosen as it is the optimal value for drag reduction found in Ricco and Hahn (2013).
The Reynolds number is also kept unchanged. A given design of the control scheme is thus
specified by the triplet D=(WM ,Wm, T0). Since Pss and P0 are fixed, Pnet also depends on the
same set of parameters of (5.32).

The best power-saving case from Ricco and Hahn (2013) provides the values of the steady-
state velocity Wss=0.26 and steady-state motor stall torque Tss. For the sake of clarity, it is
convenient to normalise the threshold velocities and the torque with Wss and Tss. For example,
the point Dss=(1, 1, 1) in the normalised parameter space corresponds to the initial design.

We set out to investigate the existence of a control design that is more efficient than the
steady activation. Formally, the optimal design Dopt of a control strategy is the solution to the
problem:

Dopt = arg min
Wm,WM ,TM

Pnet (5.33)

The parameter space is subjected to the constraints:

T0 > 1.05T0(WM ), (5.34)

WM > Wm. (5.35)

The problem (5.33)-(5.34)-(5.35) is referred to as “OPT1” in the following. The constraint (5.35)
simply encodes the definition of upper and lower velocity thresholds. Since it is an exact function
of the parameters WM and Wm, any unfeasible parameter combination can be readily discarded
without performing a simulation.

The constraint (5.34) excludes values of the motor torque smaller or equal to the torque
T0(WM ) needed to steadily move the disc at WM . This ensures that the disc can reach the
velocity WM in finite time, even considering instantaneous fluctuations of Tf as large as 5% of
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the steady state torque T0(WM ). The function T0(WM ) is obtained by quadratic interpolation of
7 constant-velocity simulations perfomed at uniformly spaced values of W . The torque constraint
(5.34) provides a one-sided bound on the parameter space, while both upper and lower bounds
must be chosen for both WM and Wm. These bounds were first set arbitrarily and then refined
as preliminary results become available. The final search domain is reported in Tab. 5.2 and a
three-dimensional visualization is also provided by Fig. 5.12.

Table 5.2: Absolute bounds on the search domain for the optimisation OPT1.

bound WM/Wss
Wm/Wss

T0/Tss

lower 0.1 0.05 T0(WM )
upper 1.50 0.95 5 · T0(WM )

5.4 Bayesian Optimization

Each evaluation of the objective function (5.32) requires a costly DNS simulation and is subject
to uncertainty. Furthermore, no information is available on the function’s gradient or Hessian.
Performing a systematic exploration of the three-dimensional parameter space would be ineffi-
cient in terms of the total computational cost and does not explicitly target the function’s global
minima. We instead adopt a Bayesian optimisation algorithm (Algorithm 3), that is well suited
for optimising expensive, ”black-box” functions (Shahriari et al., 2016; Jones et al., 1998) of a
few variables. In this section, the abstract notation used in the BO literature is used. At the end
of the section and in the result presentation we will clarify the correspondence of the theoretical
notation to the elements of the physical problem (5.33).

A Bayesian optimisation algorithm makes a prediction about the location of a function’s
global minimum based on a probabilistic regression model of the available data (Schonlau, 1997;
Jones et al., 1998; Shahriari et al., 2016). The data D is the set of the known values of the
true objective function f(x). The set of points where the function is known is indicated by
X={x1,x2, ...} and the data is the set D={X, f(X)}.

a. Probabilistic regression

The probabilistic model of the function f is denoted by f∗, and the test input set, i.e. the points
where the model is evaluated, is denoted by X∗ (Williams and Rasmussen, 2006). f is modelled
as one realisation of a Gaussian random process with mean µ(x) and covariance function k(x,x′).
This type of regression is thus called Gaussian Process (GP) regression. The mean and the type
of covariance function are parameters of the model and are discussed below. The model f∗

calculated at the test input X∗ given the data D consists of a normal probability distribution:

p(f∗|X∗,D) = N (f
∗
, V ar(f∗)), (5.36)

which represents the model prediction of the value of f at X∗ and is called the ”predictive
distribution”. The mean value f

∗
and the variance V ar(f∗) are defined as:

f
∗

= µ+K(X∗, X)K(X,X)−1(f − µ), (5.37)

V ar(f∗) = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) (5.38)

where µ is the expected value of the Gaussian process and K(X,X ′) is the covariance matrix.
The elements of the covariance matrix are defined as K(X,X ′)ij=k(xi,x

′
j) where k(x,x′) is the

covariance function of the Gaussian process.
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The expected value µ is typically a constant and can be chosen based on some information on
f or set arbitrarily to zero. The type of covariance function must also be chosen. In this study,
the Matérn 5/2 covariance function is used:

kMatern52(r) = θ2 exp(−
√

5r)(1 +
√

5r + 5r2/3) (5.39)

where r=|x′i − xi|. The choice of this kernel assumes f to be twice differentiable and is recom-
mended in the literature for models of physical processes (Williams and Rasmussen, 2006). The
parameters of the regression model (called ”hyperparameters” in the literature) are the corre-
lation length scales θi, one for each independent variable of the objective function. In practice,
the model is calculated from the data by marginalising f∗ over all possible values of the hyper-
parameters given the data. This operation incorporates in the model the uncertainty about the
hyperparameters. The predictive distribution is calculated as:

p(f∗|X∗,D) =

∫
p(f∗|X∗,D,θ)p(θ|D) dθ, (5.40)

where the distribution of the hyperparameters is defined according to Bayes’ rule:

p(θ|D) =
p(f(X)|X,θ)p(θ)

p(f(X)|X)
. (5.41)

This is called the ”posterior” distribution, as opposed to p(θ) which is the initial guess or ”prior”
distribution of the hyperparameters (typically an uniform distribution). The integral (5.40)
is solved numerically, sampling from p(f(X)|X,θ) (called the likelihood) using a Monte-Carlo
Markov Chain (MCMC) algorithm. At every iteration, or whenever new data become available,
the model is updated by re-calculating (5.40) using the new data.

b. Minimum prediction and evaluation

Once the model is determined for the given D, the next prediction of the minimum x∗n+1 is made
by maximising the Acquisition Function a(x) according to:

x∗n+1 = arg max
x∗∈X∗

a(x∗) (5.42)

The specific form of a(x) has to be chosen, with many options being available in the literature
for different problem requirements. The Expected Improvement (EI) acquisition function used
in this study is a common choice in Bayesian optimisation literature and is the standard for
engineering optimisation models (Shahriari et al., 2016). Given that fmin is the currently known
minimum value of f , the notion of improvement is formalised by defining the following utility
measure:

u(x) =

{
fmin − f(x) iff(x) < fmin,

0 otherwise.
(5.43)

The Expected Improvement is defined as the expected value of the above utility function i.e.
aEI(x) ≡ E[u(x)|D]. Maximising aEI(x) finds the point with the highest probability of finding a
lower estimate of the global minimum. The EI acquisition allows the algorithm to perform both
exploratory and exploitative evaluations of the objective function. An exploratory evaluation
at x∗min occurs when x∗min is chosen, primarily because f∗(x∗min) has high variance (i.e. high
uncertainty) and therefore can be considered as an exploration of a region of the search space
where f is little known. On the other hand, an exploitative evaluation occurs where the model
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uncertainty is very low (i.e. f is known well) but the model mean is also low and therefore likely
to be a better guess on the minimum. More exploratory evaluations are expected in the early
stages of the optimisation, while they tend to decline as the algorithm nears convergence to the
true minimum.

The function is then evaluated at x∗n+1 and the new data x∗n+1, f(x∗n+1) are used to construct
an updated instance of the regression model for the next iteration. As the optimisation progresses,
x∗n+1 is expected to converge towards the true minimum xmin. Exact convergence to the global
minimum has been proven using the EI acquisition for any function that is exactly a Gaussian
process (Bull, 2011). The pseudo-code in Algorithm 3 presents a convenient summary of the BO
algorithm steps described above in more detail. A more technical discussion of GP regression
and the acquisition function can be found in Appendix 5.A.

Algorithm 3 Outline of a Bayesian Optimisation algorithm, adapted from Shahriari et al.
(2016).

initial data: evaluate f at m randomly selected x and store in D
for n ≤ N do
1: read data D
2: fit the probabilistic model parameters to D
3: calculate the acquisition function aEI(x) on the model
4: determine x∗n+1 = arg max aEI(x)
5: perform new evaluation at x∗n+1

6: augment D with the new point {xn+1, f(xn+1)}
end for

c. Practical considerations

Before running the optimisation algorithm, the objective function is evaluated at a number of
locations Xini=x1, ...,xm in order to obtain an initial set of data D={Xini, f(Xini)}. These
simulations are run before the beginning of the actual optimisation and are thereof independent.
The initial locations are determined by a Latin Hypercube Sampling (LHS) algorithm that
produces m space-filling random combinations of the design parameters (McKay et al., 2000).
The initial data provide some initial information about the objective function in order to train
the first instance of the regression model. LHS produces a set of points that is more evenly
spaced than a purely random one, better representing the dependence of the unknown function
on the parameters. This is a desirable property for estimating efficiently the function variability
in high-dimensional spaces and for training surrogate models of the unknown function.

To clarify the abstract terminology used in this section, we remark that applied to (5.33) the
objective function f corresponds to Pnet and the independent variable corresponds to the design
parameters x = {WM ,Wm, T0}. The mean µ has been determined as the average Pnet obtained
from the initial random simulations. A useful visualisation of the probabilistic model is given in
Fig. 5.15a for a function of one variable, and Fig. 5.12 for a function of three variables. For more
interesting visualisations and in-depth discussion refer to Chapter 2 of Williams and Rasmussen
(2006).

The optimisation is carried out through an ad-hoc Python framework that is able to au-
tonomously run, post-process and launch a sequence of DNS simulations at request of the
Bayesian optimizer, the only hard limitation being the maximum allowed running time of 48
hours on the Archer system. The total integration time of each simulation is fixed at 750h/Up.
The simulations are performed using 1152 parallel computational cores, resulting in a typical
computation time of ≈ 6 hours. The open-source Python toolkit EmuKit (Paleyes et al., 2019)
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provides the Bayesian optimizer and is easily coupled to the flow solver Incompact3D through the
Python framework. We also collaborated to the development of the code, under the supervision
of the EmuKit team. The code is freely available online at https://github.com/amzn/emukit.

5.4.1 Application to a closely related flow control problem

In this section, the Bayesian optimization framework is applied to the already available net-
saved-power data of Ricco and Hahn (2013). The aim of this procedure is to validate the use of
GP regression as a surrogate model for a problem as similar as possible to the net-saved-power
optimization of the disc intermittent control. While not being an exact validation, it rather
provides heuristic evidence in support of the applicability to the main research problem. The
dots in Fig. 5.6a represent the combinations of the parameters (W,D) considered originally in the
systematic study of Ricco and Hahn (2013). The colour maps instead visualise the mean and the
variance of the GP regression performed over the data and the expected improvement acquisition
function. The maximum expected improvement is very close to the current best estimate of the
minimum (red dot). Fig. 5.6b shows the GP regression resulting from down-sampling the exact
data from 49 to just 16. Both the structure and the location of the maximum EI do not depart
significantly from the full dataset case, in spite of the available information about the objective
function being just 30% of the full case.
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Figure 5.6: GP regression of Pnet(W,D) using the systematic data from Ricco and Hahn (2013). The
GP model uses the Matern52 kernel and full integration of the hyperparameter posterior.
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5.5 Results and data analysis

This section contains the results of the on-off control design problem OPT1, defined in Sec. 5.3.3.
Additionally, in Sec. 5.5.1, the on-off control is compared to an optimised version of the steady
forcing and Sec. 5.5.2 examines the performance of the scheme relative to the motor power.

a. General results

Table 5.3 lists the main parameters of both the exploratory and optimisation simulations. The
parameter-space exploration cases are letter-coded “E” and the optimisation cases “C”. The
steady case is the initial design where the discs are constrained to rotate at the constant velocity
Wss in the alternating row pattern of Fig. 5.1 and provides the values of Tss and Pss used in
normalising the parameters. The fluid torque on the disc surface is measured at each time step,
averaged and added to the exact housing torque (from (4.19)) to obtain Tss. Pss follows by
adding the steady-state motor power PM,ss=2TssWss/D (and the minor losses) to the steady-
state pumping power Pp,ss calculated from the skin friction. The initial 100h/Up time units of
each simulation are discarded in order get rid of the transient that initially steadily rotating discs
to the on-off activation. The table also reports the results for the original simulation of Ricco
and Hahn (2013) at the same diameter and velocity.

For each case, the Table 5.3 reports the parameter values, the total power difference Pnet and
the partial power differences for the motor power (∆PM ) and pumping power (∆Pp).

No control design is found that can outperform the steady case in terms of the total saved
power to a statistically significant level. Whenever a negative value of ∆Pp is encountered, it
is always balanced by a positive value of ∆PM and vice versa. Some of the designs (e.g. C05)
display instead an enhanced power consumption in both terms. Conversely, none of the observed
designs can achieve a simultaneous reduction of the motor and the pumping power. In all the
parameter combinations that can achieve good performance we observe that ∆PM<0 and ∆Pp>0
i.e. they save motor power but at the expense of a larger drag. This is expected as the on-off
control concept is based on saving motor power without overly compromising the drag reduction.
The two overall best control designs correspond to cases C12 and C13, which can be deemed to
be very close to the total power consumption of the steady case.

In the final phase of the search, from design C09 onwards, the upper and lower velocity
thresholds stabilise around 0.65Wss and 0.60Wss respectively. In this phase, the search reduces
to determining the optimal value of T0/Tss, with values oscillating between around 1 to around
2. Interestingly, the two best designs entail very similar velocity thresholds (and therefore mean
velocities) but a markedly different value of the motor torque parameter.

In the following paragraphs, the results are discussed with the help of more detailed statistics
and visualisations and special attention is paid to designs C12 and C13.

b. Qualitative behaviour of the controlled discs

The three graphs of Fig. 5.7a show the disc-velocity time histories resulting from three different
combinations of the control parameters. For each case, two W (t) time series are plotted, one
of a disc from the upper wall and one from the lower wall, in order to visualise the random
nature of the inception and duration of the transients. The three designs E09, C13 and E08 are
chosen because they are representative of the qualitative diversity of the outcomes. E09 has a
relatively low value of the torque parameter and its upper and lower velocity thresholds differ by
around 35% of Wss. This produces long switch-on transients and comparatively short switch-off
transients. Design C13 is instead characterised by the minimum possible (3% of Wss) separation
between upper and lower thresholds, and a relatively high torque ratio. This produces a series of
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Table 5.3: Simulation results for the parameter combinations of the space exploration (E) and the
optimisation OPT1 (C). The highlighted rows corresponds to the colour-coded cases discussed in the
text, in Fig. 5.11 and below.

Case WM/Wss Wm/Wss T0/Tss Pnet(%) ∆Pp(%) ∆PM (%) G W/Wss

steady 1.00 1.00 1.00 ±0.87 0 0 1.22 1.00
RH13 1.00 1.00 1.00 N/A N/A N/A 2.19 1.00

E01 1.08 0.15 2.71 1.27± 1.40 10.29 -8.92 1.31 0.52
E02 1.38 0.96 2.51 7.25± 1.83 -1.96 9.11 0.85 1.16
E03 1.28 0.60 1.73 3.02± 1.32 1.73 1.10 1.03 0.93
E04 1.33 0.33 2.32 1.80± 1.23 4.95 -3.14 1.13 0.76
E05 1.03 0.42 1.54 0.45± 1.45 5.68 -5.10 1.27 0.72
E06 1.18 0.51 1.34 2.10± 1.40 2.95 -1.00 1.10 0.87
E07 1.23 0.24 2.90 1.18± 1.31 7.35 -6.15 1.24 0.64
E08 1.48 0.87 1.93 7.75± 1.29 -2.11 9.63 0.84 1.16
E09 1.13 0.78 1.15 3.56± 1.66 0.43 3.04 1.00 0.99
E10 1.43 0.69 2.12 4.93± 1.19 -0.22 4.95 0.93 1.04
E11 0.90 0.45 3.00 0.20± 1.50 7.49 -7.29 1.39 0.65
E12 1.42 0.81 3.38 6.12± 1.66 -0.81 6.93 0.88 1.09
E13 1.27 0.19 4.68 2.06± 1.30 8.70 -6.64 1.15 0.61
E14 1.10 0.50 4.03 1.44± 1.73 5.29 -3.85 1.17 0.77

C01 1.21 0.38 4.27 1.27± 1.42 5.70 -4.43 1.19 0.73
C02 1.21 0.34 4.20 0.76± 1.45 5.80 -5.05 1.26 0.70
C03 0.10 0.07 1.05 3.56± 1.54 18.82 -15.26 0.14 0.09
C04 0.25 0.22 3.82 2.52± 1.21 16.71 -14.20 1.72 0.25
C05 1.50 0.53 5.00 3.63± 1.34 1.27 2.36 0.99 0.94
C06 0.63 0.60 1.05 0.14± 1.41 9.62 -9.47 1.55 0.56
C07 0.73 0.31 2.35 0.75± 1.25 10.91 -10.15 1.50 0.51
C08 0.74 0.03 5.00 2.20± 1.32 15.32 -13.12 1.52 0.28
C09 0.63 0.60 1.05 0.08± 1.49 9.52 -9.45 1.56 0.57
C10 0.64 0.61 1.05 -0.19± 1.69 9.06 -9.25 1.58 0.58
C11 0.67 0.64 1.87 0.14± 1.27 7.62 -7.49 1.41 0.65
C12 0.68 0.65 1.05 -0.22± 1.71 8.30 -8.52 1.53 0.61
C13 0.63 0.60 2.17 -0.04± 1.56 8.26 -8.30 1.48 0.62
C14 0.63 0.60 2.10 -0.27± 2.74 8.01 -8.29 1.52 0.62
C15 0.65 0.62 1.88 0.04± 1.51 8.03 -7.99 1.45 0.63
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high-frequency, low amplitude regular oscillations that closely resembles a steady control. The
design E08 has similar velocity thresholds to E09 but a much larger torque parameter, resulting
in faster switch-on transients whose duration is comparable to that of the switch-off phase.

There is also another qualitatively different class of behaviour that is encountered in designs
such as C03 or C12. These are characterised by the minimum value of the torque parameter
(5% above unity) and two very close velocity thresholds. The torque intensity is high enough to
sustain T0(WM ) but not enough to give rise to strong accelerations, producing an extremely long
switch-on transient. Therefore these designs result in a quasi-steady regime and do not reach
the upper velocity threshold within the entire simulation time.

Fig. 5.7b represents the time-dependent power budgets for E08 according to (5.12), nor-
malised with the reference channel pumping power P0. The motor power time-history is taken
from a single disc, while the pumping power is derived from the global average of Cf . It can be
observed that PM (t) is exactly zero during the switch-off phase and has a discontinuous switch-
on due to the disc velocity being non-zero when the motor starts up. The transient term Ėd has
a sharp peak at start-up due to high acceleration intensity, subsequently decaying to a nearly
constant value. This type of behaviour is observed in every simulation with clearly defined cycles,
with varying peak intensities and decay durations that depend on the specific characteristics of
the transient. The time-dependent power budgets of every case of OPT1 can be seen in Fig. 5.8
and Fig. 5.9.
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Figure 5.7: Disc-tip velocity and power budget time-series on an time interval of 100 viscous time units.
(a) time series of the instantaneous disc-tip velocity W (t) for three different control designs from Tab.
5.3. A disc from the lower and one from the upper wall are chosen to represent each case. (b) breakdown
of the instantaneous motor power budget for case E08.

c. Power-budget data

The bar chart plots of Fig. 5.10 depict the time-averaged power-budget breakdown of the total
power according to (5.12) for all the simulations of Tab. 5.3. The numerical values of the
power-budget terms are reported in Tab. 5.4. The values of both Pf and Pp resulting from the
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steady simulation are close to the values obtained in Ricco and Hahn (2013). The latter did
not entail any modelling of the housing and bearing losses, together accounting for an additional
4.5% power spent w.r.t. the reference channel. It can be noted that, as the optimiser nears
convergence (C09 to C15), the total power becomes almost constant and close to that of the
steady control. Moreover, they all present a similar make-up of the different terms, with less
than 90% of the power spent going into Pp, < 3% into Pf and 1% into Pmin. The only exception

is the transient power Ėd that can take values from around 3% to 0% due to C09, C10 and C12
belonging to the quasi-steady regime described above. The quasi-steady cases show little to no
transient power contributions from Ėd, which is however balanced by higher values of Pf yielding
a total power budget close to the on-off activated cases. It must be noticed that only cases E02,
E08 and E12 achieve a better drag reduction (smaller Pp) than the steady case, however they
use much more transient power which makes their total power budgets some of the largest of all
cases. On the other hand, all the cases except for the same E02, E08 and E12 spend less motor
power than the steady control.

The exploration-exploitation capability of the Bayesian optimiser is evident in Fig.5.10b. In
cases C01 through C08, significant variability of the parameters and highly inefficient designs
are recorded, indicating an explorative (i.e. uncertainty-dominated) strategy. From case C09
onwards, the algorithm becomes purely exploitative (i.e. mean-dominated), with a more careful
variation of the parameters needed to single out the best design in a narrower region of the search
space.

The optimisation was stopped at C15 after observing that the 16th iteration of the optimiser
did not entail any significant variation of the parameters with respect to cases C09 - C15 neither
‘decreasing’ values of the maximum expected improvement (Fig. 5.10c). The structure of the
regression model of the data (Fig. 5.12) also provides evidence of convergence towards a region
of the parameter space and is discussed below in more detail.
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Figure 5.10: Optimisation of the mean power budget. (a) exploratory simulations. (b) OPT1 simulations.
The power budget terms are indicated by different colors and hatching patterns and stacked on top of
each other to return the total spent power. The power values are normalised with the total power P0

adsorbed by the reference uncontrolled flow. The error bars represent the 95% confidence intervals on the
total power. In order to better visualise the minor budget terms, the y-axis starts at 75%. The numerical
values are given in Table 5.4. The blue horizontal line marks the steady case pumping power and the
grey horizontal line marks the total power budget of the steady case. (c) evolution of the maximum
Expected Improvement over the course of the optimisation.

d. Correlation structure of the power-budget terms

Parallel coordinates are a useful tool to visualise correlation across many variables in high-
dimensional data sets. The parallel coordinate plot of Fig. 5.11 has the three design parameters
on the three leftmost axes, while the motor, pumping and total power are represented by the
three central axes. The fourth axis report the values of the time-averaged disc velocity W .
A single control design is visualised by a discontinuous curve connecting each parameter value
across the parallel axes, allowing a visually intuitive comparison of many different combinations.
Although Fig. 5.11 shows all the designs from Tab. 5.3, we chose to highlight the best 10 cases
in terms of Pnet (the last axis) plus case E13 for reasons that are discussed below. Inspecting
the shape of the curves reveals that the following facts hold in general:

i) the crossing pattern of the respective curves identifies an inverse correlation between the
pumping power ∆Pp and the motor power ∆PM ,
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Table 5.4: Numerical values of the contributions to the mean power-budget of the cases in OPT1.

Case WM

Wss

Wm

Wss

T0

Tss

P
PM

Pp Pf Ėd Ph Pmin
steady 1.00 1.00 1.00 81.16 9.98 - 5.25 0.20
RH13 1.00 1.00 1.00 81.20 8.60 - - -

E01 1.08 0.15 2.71 91.41 4.03 1.55 0.52 0.35
E02 1.38 0.96 2.51 79.19 14.38 6.27 2.60 1.38
E03 1.28 0.60 1.73 82.91 7.45 5.52 2.40 1.34
E04 1.33 0.33 2.32 86.14 7.16 3.20 1.18 0.69
E05 1.03 0.42 1.54 86.85 3.86 3.70 1.68 1.06
E06 1.18 0.51 1.34 84.17 4.32 5.74 2.73 1.61
E07 1.23 0.24 2.90 88.56 5.97 2.11 0.70 0.43
E08 1.48 0.87 1.93 79.05 12.40 7.81 3.33 1.74
E09 1.13 0.78 1.15 81.63 2.00 9.16 4.70 2.66
E10 1.43 0.69 2.12 80.95 11.07 5.81 2.33 1.27
E11 0.90 0.45 3.00 88.65 5.49 1.72 0.59 0.39
E12 1.42 0.81 3.38 80.35 16.17 4.09 1.38 0.74
E13 1.27 0.19 4.68 89.85 6.03 1.85 0.56 0.34
E14 1.10 0.50 4.03 86.45 8.65 2.00 0.60 0.36

C01 1.21 0.38 4.27 86.86 8.06 2.01 0.58 0.35
C02 1.21 0.34 4.20 86.96 7.58 1.92 0.55 0.34
C03 0.10 0.07 1.05 99.98 0.00 0.05 0.03 0.10
C04 0.25 0.22 3.82 97.87 0.50 0.35 0.16 0.23
C05 1.50 0.53 5.00 82.43 13.63 2.93 0.80 0.43
C06 0.63 0.60 1.05 90.78 -0.01 3.07 1.64 1.26
C07 0.73 0.31 2.35 92.06 2.90 1.41 0.55 0.42
C08 0.74 0.03 5.00 96.48 1.72 0.41 0.10 0.08
C09 0.63 0.60 1.05 90.68 -0.01 3.08 1.65 1.27
C10 0.64 0.61 1.05 90.22 -0.01 3.19 1.71 1.30
C11 0.67 0.64 1.87 88.78 3.08 2.61 1.32 0.94
C12 0.68 0.65 1.05 89.46 -0.01 3.59 1.92 1.41
C13 0.63 0.60 2.17 89.42 3.35 2.03 1.01 0.74
C14 0.63 0.60 2.10 89.17 3.22 2.10 1.05 0.77
C15 0.65 0.62 1.88 89.19 2.90 2.43 1.23 0.89
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ii) the mean disc-tip velocity W is inversely correlated to ∆PM and directly correlated to
∆Pp,

iii) consequently, a more complex correlation structure exists between W and the total power
Pnet.

iv) a certain degree of direct correlation is observed between Pf and Ph.

Restricting the analysis to the best cases (dark grey and colour), it can be concluded that they
share the following characteristics:

i) increased pumping power (drag) w.r.t. the steady case with 7%<∆Pp<10%,

ii) decreased motor power w.r.t. the steady case with -10%<∆PM<-7%,

iii) the values of the mean disc-tip velocity are closely clustered around W ≈ 0.6Wss,

No straightforward correlation is observed between the torque parameter and the power out-
comes. For example, it can be noted that the two cases C12 and C13 have analogous velocity
thresholds while their torque parameters and transient duration are markedly different. Specif-
ically, C12 has the minimum T0/Tss and the longest (quasi-steady) transients while C13 has a
twice as large torque parameter and the shortest transients of any combination. Design E13 is
noteworthy because its mean disc-tip velocity suggests it belongs to the best cases, while in fact
its power efficiency is much worse (by ≈ 2%) due essentially to a higher value of ∆PM . The
most significant difference between E13 and the best cases is its much higher T0. In a similar
way, design E07 is an outlier among the best cases because it is the only case with a relatively
large T0 which still returns a good Pnet. Following the above observations about E07 and E13 it
can be conjectured that, even though W is certainly the critical variable to the power efficiency,
a minor role is also played by T0.

We also computed the median duration of the switch-on and switch-off transients and estab-
lished that they are not correlated to any term of the power budget, with the exception a weak
correlation to Ėd.
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Figure 5.11: Parallel-coordinate visualisation of the results of OPT1. The numerical values are in Tab.5.3.
The highlighted designs (both in colour and in dark grey) are the 10 most power-efficient cases, with
the exception of E13 and E07. The other designs highlighted in colour correspond to cases C12 and C13
which are discussed in more detail in the text.
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Fig. 5.12 presents the three main components of the probabilistic model for the objective
function Pnet constructed by the Bayesian optimiser at the 15th iteration and therefore being
the most complete available. The predictive distribution of Pnet, obtained by Gaussian Process
regression of the DNS data of Tab. 5.3, is visualised in Fig. 5.12a-b through its mean and variance.
The expected value of P∗net shows a markedly anisotropic structure, the gradient component along
T0/Tss being much weaker than the gradient components along the two velocity thresholds.
This fact implies that optimising the torque parameter is a harder problem than optimising the
velocities, and explains why the algorithm converges more quickly to the optimal values of the
velocity thresholds. It can be concluded that having a low value of T0 is an advantage, however
not as much as having the velocity threshold around 0.6. The variance of P∗net shows as expected
small values in the region of space where the majority of the evaluations have taken place but
is overall quite uniform. Fig. 5.12c shows the expected improvement, demonstrating that the
minimum is most probably located in the region where the threshold velocities are ≈0.6 (red line)
and the torque parameter <2. This region also has low variance, hence the EI essentially reflects
the structure of the expected value as it would be expected from an exploitatively converged
optimisation.

0
0.5

1
1.5 0

0.5

1

1

2

3

4

5

WM/Wss Wm/Wss

T
0
/
T
s
s

(a)

0
0.5

1
1.5 0

0.5

1

1

2

3

4

5

WM/Wss Wm/Wss

T
0
/
T
s
s

(b)

0
0.5

1
1.5 0

0.5

1

1

2

3

4

5

WM/Wss Wm/Wss

T
0
/
T
s
s

(c)

Figure 5.12: Isosurface visualisation of the probabilistic model for Pnet in the three-dimensional param-
eter space. The isosurfaces are taken at three equally spaced levels, increasing from blue to cyan to
magenta. The diagonal plane represents the constraint WM > Wm. From left to right the graphs show:
(a) expected value, (b) 2σ(x) confidence interval and (c) expected improvement EI(x). Each black star
marker represent a simulation from Table 5.3. The red line indicates where the two velocity thresholds
assume a value of 0.6, corresponding to the approximate vicinity of the optimal cases from OPT1.
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e. Correlation of the power-budget terms to the mean disc velocity

Fig. 5.13a uses orthogonal axes to further inquire on how the mean velocity W correlates with
the power efficiency. It reveals that ∆Pp is in an almost perfect linear inverse correlation to W ,
with a slope coefficient of −21% estimated by least squares regression. Conversely, ∆PM shows
a non-linear positive correlation structure. Their sum Pnet exhibits a concave shape, with the
minimum W c located around 0.6Wss. At W c the extra pumping power requirement (∆Pp>0)
and the motor power saving (∆PM<0) balance out to give values close to zero. It can be noticed
that the data are more densely clustered in the vicinity of the minimum, where all the late,
exploitative evaluations are located as the optimiser nears convergence.

As previously highlighted, E07 and E13 are less efficient than the optimal cases even though
they produce optimal values of W . From Fig. 5.13a it can be concluded that the reason is that
they spend more motor power. A closer look at the budget contributions to PM in Fig. 5.10
reveals that the reason E07 and E13 underperform with respect to the optimal cases can be
tracked down to their much larger values of Ėd. The same conclusion can also be drawn from
Fig. 5.13b which also shows that individually the two components do not correlate well to the
mean disc-tip velocity.

We also point out that the dependence structure of Pp is completely explained by W , whereas
PM is well correlated to W , but the presence of outliers (such as E13 and E07) suggests that
some other variable must also play a role. In the next paragraphs we analyse more closely the
dependence of W , Pf and Ėd on the control parameters.
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Figure 5.13: Correlation of two spent power metrics to the mean disc velocity. (a) correlation of Pnet
and its two main components to the normalised mean disc velocity W/Wss. (b) correlation of Pf and
Ėd to the normalised mean disc velocity. The empty symbol identifies the steady control. The coloured
symbols identify the designs C12, C13, E07, and E13. The confidence intervals on W/Wss are not shown
because they are too small.

f. Modelling the power-budget dependence on the control parameters

In the first place we find that W is remarkably well linearly correlated to WM and Wm, and is
almost completely uncorrelated to the torque parameter. Fitting a simple linear regression model
to W (WM ,Wm, T ) gives W = 0.47WM + 0.58Wm with a determination coefficient r2 = 0.98.

As Pf and Ėd are non-trivial functions of the design parameters (Fig. 5.13b) and can’t be
explained through W only, we used another strategy to investigate their dependence structure.

In this case, we solve a simplified model of the disc dynamics where the fluid torque Tf acting
of the disc’s flow-facing surface, instead of being simulated through DNS is substituted by an
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exact model, either linear (i.e. Eq. (4.19)) or Von-Karman type Eq. (4.20). If a high degree
of correlation is observed between the DNS and the approximate model results, we can think of
studying the exact model in order to gain more insight about the underlying physics instead of
solely relying on regression analysis of the DNS data. A certain degree of noise is nonetheless
expected in the DNS data due to the randomness in the transient inceptions and ends. The
models are used to predict a switch-on and a switch-off transient for the same control parameter
combinations as from the data. The solution is obtained analytically in the linear case (Appendix
5.B) and numerically in the VK case. From the approximate solution, various mean quantities

can be calculated such as W and the mean Ėd across the transients. The analytical solution of
the linear model and the derivation of an exact parametric formula for the mean disc-tip velocity
can be found in Appendix 5.B.

Fig. 5.14 shows that the mean disc-tip velocity from both approximate models correlates
remarkably well with the DNS results. Analysis of the exact formula for W (5.71) reveals a weak
dependence on T compared to the threshold velocities. The formula also demonstrates that while
the simple linear regression of the data may provide an excellent fit, it does not reflect the actual

physics encoded by formula (5.71). The other two quantities of interest, i.e. Pf and Ėd also
correlate well with the DNS data, encouraging the use of the present approach.
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Figure 5.14: Comparison between the approximate models of the transients and the DNS simulations.
Top row: linear model of Tf Bottom row: Von-Karman type model of Tf .

5.5.1 Steady forcing and optimisation

Since the power efficiency of the on-off controlled discs has been shown to be strongly correlated
to the mean disc-tip velocity, it might be argued that an analogous trend exists for the constant-
velocity activation of the discs. In the present section we investigate whether it is possible
to improve the power efficiency of the steady forcing of the discs by reducing their rotational

148



Chapter 5 5.5. Results and data analysis

velocity. This encompasses a simpler, one-dimensional problem in the velocity W :

arg min
W

Pnet. (5.44)

The search domain is restricted to the interval 0.4 < W/Wss < 1.0. The steady optimisation is
realised using the EmuKit Bayesian optimiser through the same framework already described for
the on-off control. The DNS numerical set-up does not change from what described for the on-off
control, with the obvious exception that the disc velocity is kept constant. The results of the
simulations are listed in Tab. 5.5. First, a preliminary LHS exploration of the parameter space
(cases S01-S04) is performed, followed by the optimisation itself (S05-S08). A small number
of evaluations is already sufficient to conclude that the RH13 steady forcing design utilises a
suboptimal value of the disc-tip velocity. For W = 0.721Wss we obtain an almost 2% reduction
of the total spent power with respect to the original case (here called “steady” for consistency
with Tab. 5.3).

Table 5.5: Results of the DNSs for the parameter space exploration (S01-S04) and the optimisation
(S05-) of the steady case.

Case ID W/Wss Pnet(%) ∆Pp(%) ∆PM (%) G
steady 1.00 ±0.87 0 0 1.22
S01 0.925 -0.77± 1.64 1.71 -2.48 1.32
S02 0.625 -1.58± 1.65 7.95 -9.53 1.84
S03 0.475 -0.30± 1.21 11.73 -12.03 2.09
S04 0.775 -1.49± 1.66 4.87 -6.35 1.54

S05 0.400 0.64± 1.25 13.65 -13.01 2.14
S06 0.699 -1.23± 1.62 6.82 -8.05 1.64
S07 0.721 -1.84± 1.80 5.73 -7.58 1.67
S08 0.725 -1.81± 1.43 5.67 -7.48 1.66

The probabilistic model and the simulation data for ∆P are visualised in Fig. 5.15a. It can be
noticed that the objective function is not known exactly at the evaluation points because we fixed
a minimum level of variance based on the median uncertainty obtained from the post-processing
of the exploratory evaluations. This gives the model an enhanced capability of robustly managing
outliers such as design S06. The best guess on the optimal value of W based on the available
data corresponds to the maximum of the expected improvement function i.e. about 70% of the
original Wss.

Fig. 5.15b proves that the pumping power component of the power budget follows the same
dependence on W as the on-off control data. This supports the view that drag reduction depends
uniquely on the mean rotational velocity of the discs irrespectively of its time history, implying
that any difference in the power budgets of the constant-velocity and on-off forcing is to be found
in the motor power budget terms. In Fig. 5.15c the fluid torque and housing torque contribution
of the constant-velocity and on-off cases are compared, establishing that the on-off control always
reduces both Pf and Ph with respect to a constant-velocity activation. Since for the constant-

velocity forcing Ėd = 0, the reason of the reduced efficiency of the on-off forcing can be tracked
down to the transient power contribution.
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Figure 5.15: Results of the constant-velocity optimisation. (a) Visualisation of the probabilistic model
of ∆P for the steady optimisation. DNS evaluations ( ) from Tab. 5.5; expected value ( ) with 2σ
confidence intervals of the predictive distribution; Expected Improvement ( ). (b) correlation of the
pumping and motor power to the normalised mean disc velocity. The greyed out data are the on-off
control. (c) main budget contributions to ∆PM , correlated to the normalised mean disc velocity.

a. Comparison of the skin-friction budgets

Figure 5.16 presents a comparison of the effect of the on-off control on the skin-friction budget,
compared to the steadily-rotating disc forcing. The same procedure used for the rings in Chapter
3 is applied. First, the flow is considered steady and time- and symmetry-averaged flow fields
are calculated, averaging out the random on-off activation periods. This approach is justified
provided that a sufficient number of forcing periods are resolved within the simulation time in
order to achieve a reasonable level of confidence. Secondly, the FIK identity (3.38) is applied to
the time- and symmetry-averaged flow fields, obtaining the skin-friction budget terms.

Figure 5.16 compares the streamwise-averaged FIK budget terms of the steadily rotating case
S02 with that of the optimised on-off activated cases C12 and C13. For both cases the number of
on-off periods resolved within the simulation time justifies the steady approach described above.
The steady case S02 is chosen because its disc-tip velocity of W = 0.625Wss s very close to the
mean velocity obtained in C12 and C13, respectively W = 0.605Wss and W = 0.619Wss. No
meaningful difference in the spatial structure of the skin-friction can be evinced from this data
set.
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Figure 5.16: Budget of the skin-friction contributions for the on-off control. (a) steady activation. (b)
on-off control, case C12. (c) on-off control, case C13.

5.5.2 Power gain and power gain optimisation

Beside the net power efficiency, another important performance indicator of an active flow control
technique is the power gain, defined as G = (P0 − Pp)/PM (Quadrio, 2011). G provides a
measure of how efficient the control scheme is relative to the external power needed to operate
the actuators, which in this case is the disc motor power PM .

Some of the control designs evaluated during the total power efficiency optimisation display
values of G (Tab. 5.3) that improve up to 0.55 on the steady control. Moreover, the best cases in
term of total power efficiency can be consistently placed among the best in terms of G, surpassing
the steady control of more than 0.3.

The optimised constant-velocity cases of Tab. 5.5 also show higher power gain that the
original design. These observations are corroborated by the correlation of the power gain G to
W shown in Fig. 5.17a. It can be pointed out that lower values of W are positively correlated
to a better power gain, and this is true for both the steady and the on-off controlled cases. This
is explained by the fact that the steady forcing spends less motor power than an on-off control
at the same mean disc velocity (Fig. 5.15b). For particularly low values of W (i.e. C03) the
power gain drops dramatically due the the drag reduction being almost zero. It can be therefore
concluded that the improved power gain measured in some of the on-off control cases is an effect
of the reduced disc velocity and not an intrinsic advantage of the control method.

Fig. 5.17c visually demonstrates that, for any desired value of R, it is always convenient
to prefer the more power-efficient steady forcing over the on-off activation. Conversely, given a
certain ∆P, it is possible to find an on-off control that performs better than a steady one (this
happens when the on-off case has an higher W ). However, the steady forcing still returns better
combinations of R and ∆P that are not dominated by any on-off case with respect to neither
performance metric.

The same conclusion remains true if we require to choose an optimal combination of R and
G, as it is clearly seen in Fig. 5.17b where the constant-velocity cases dominate the others for
any value of either variable.

151



Chapter 5 5.5. Results and data analysis

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

W/Wss

G
(a)

0 5 10 15 20 25
0

1

2

3

R(%)

G

(b)

OPT1

OPTS

OPTG

5 10 15 20 25

0

5

10

R(%)

P n
e
t
(%

)

(c)

Figure 5.17: Power gain statistics of the on-off control. (a) Correlation of the power gain to the normalised
mean disc velocity. The empty circle identifies the steady control. The coloured symbols are as in Fig.
5.13. (b) Correlation between the disc motor power and the drag reduction. A dashed line marks the
steady forcing value of G = 1.22.

In order to investigate whether it is possible to improve power gain of the on-off forcing,
we carried out another optimisation setting G as the objective to maximise. The power gain
optimization problem (OPTG) is defined by:

arg max
Wm,WM ,TM

G (5.45)

and is subject to the constraints:

T0 > T0(WM ), (5.46)

|1− P/Pss| < 0.01, (5.47)

WM/Wss > 1, (5.48)

Wm/Wss < 1. (5.49)

The constraint on the torque minimum value remains unchanged from OPT1. The second
constraint guarantees that the total spent power does not depart more than 1% from the steady
reference forcing. Additionally, we enforced an upper-bound constraint on the total spent power
in order to prevent the optimiser to look for solutions which spend more than 1% more power
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than the steady control. The constraint value is not known a priori from the control parameters
and therefore needs to be evaluated from the simulations and incorporated into the acquisition
function. The optimisation is carried out using the same BO framework as OPT1, with the
exception that, in order to handle the unknown constraint, a modified acquisition function and
the use of two probabilistic models (one for P and one for G) is necessary. More details on BO
with unknown constraints can be found in Appendix 5.A. In this case, no randomised exploration
of the parameter space is performed because all the simulations from OPT1 are incorporated
into the the first iteration of the GP regression model for OPTG.

The results of the power-gain optimisation (OPTG) are listed in Tab. 5.6. Although a few
cases yield a good power gain (C02, C03), they have poor power efficiency because of their very
low disc velocity that leads to a larger drag.

Table 5.6: Results of the simulations for the power-gain optimisation OPT-G.

Case ID WM/Wss
Wm/Wss

T0/Tss Pnet(%) ∆Pp(%) ∆PM (%) G W/Wss

G01 1.50 0.03 1.05 113.61 78.02 35.59 0.62 1.38
G02 0.31 0.28 4.98 98.51 96.66 1.85 1.81 0.31
G03 0.40 0.37 4.26 98.04 95.15 2.89 1.68 0.39
G04 1.11 0.31 3.77 97.70 88.69 9.01 1.26 0.65
G05 1.05 0.29 4.06 97.20 89.33 7.87 1.36 0.61
G06 1.08 0.30 3.85 97.24 88.94 8.29 1.33 0.63
G07 1.14 0.34 3.70 97.88 88.11 9.77 1.22 0.68

5.6 Summary and conclusions

This study has investigated a simple proportional feedback control for wall-mounted rotating
discs in channel flow at low friction Reynolds number. The scheme consists in switching on
and off the motor when a certain upper or lower threshold of the velocity is reached, realising
acceleration and deceleration transients of the disc velocity. Models for the electric motor that
powers the discs and the frictional losses in a realistic housing were implemented in the numerical
model. The same models were also tested to replicate the steady open-loop control of Ricco and
Hahn (2013), and compare its performance to the original study and to the closed-loop control.
A Bayesian Optimisation framework has been implemented to perform an autonomous search
of the optimal values of the control parameters of the control schemes with respect to the total
power efficiency, with the goal to improve over the reference steady open-loop control of Ricco
and Hahn (2013). For the closed-loop control, and optimisation of the power gain has also been
run. The key conclusions can be summarised in the following points:

i) the Bayesian optimisation method has been successfully applied to the optimisation of the
total power efficiency of the controlled flow, that consists in searching the three-dimensional
parameter space of the two velocity thresholds and the torque magnitude. A fully para-
metric study would have required at least over a hundred evaluations instead of the around
30 simulations needed for the main optimisation to converge to a minimum with reason-
able confidence. For the open-loop control, an optimal value of the disc-tip velocity could
be located after performing 8 simulations , although a very narrow search domain was
used. Only partial success has been achieved in case of the power-gain optimisation, likely
because of the higher complexity of the optimisation in presence of constraints.

ii) no on-off control design is found that is more power-efficient than the reference steady
forcing. The best guesses on the minimum correspond to values of the total spent power
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that are indistinguishable from the steady forcing case, and the power budget of the more
efficient cases is always characterised by higher (about +8%) skin-friction contributions
and lower (about −8%) motor-power contributions compared to the steady forcing. In the
more efficient parameter combinations, the control resembles closely a steady forcing, with
high-frequency on-off cycles that results in small-amplitude fluctuations of the disc rotation
velocity around a mean of around 60% of the reference steady forcing.

iii) a more efficient constant-velocity activation of the discs than the reference was also found
by the Bayesian optimiser. The optimal case corresponds to reducing the disc-tip velocity
to around 70% of the reference steady forcing, a value closer to the optimal mean disc-
tip velocity observed in the on-off forcing. The smaller efficiency of the on-off control is
explained by the power needed to accelerate the discs that is then dissipated in the fluid
during the deceleration transients.

iv) the steady forcing and the on-off control are equivalent in terms of how well they reduce
the skin friction (i.e. the pumping power). The drag reduction was shown to be perfectly
correlated to the mean disc-tip velocity, regardless of whether the activation is the on-off
or the steady type.

v) the power gain G i.e. the ratio of the drag reduction to the motor power needed to operate
the discs the performance of the on-off control has also been assessed. The best cases display
values of G more than 30% larger than the steady activation while also maintaining a similar
power efficiency. However, a better power gain can always be achieved by operating the
discs at constant speed.

vi) the disc power budget terms are shown to be reasonably well predicted by simple exact
models, derived from simple dynamical models of the disc velocity transient. These models
might be useful to unfold the physical meaning of the dependence of the disc power budgets
on the control parameters and construct an approximate predictive model of the on-off
control performance.

vii) the motor and actuator models were constructed from a number of assumptions about the
constructive and fluid dynamical characteristic of the disc and its housing and grounded
in existing experimental work on analogous actuators. The use of models for the motor
and actuator inherently introduces additional model uncertainty, however the precise mod-
elling of active actuators is crucial in evaluating the power efficiency of such active forcing
techniques because the variation of the non-ideal power losses in the actuator can be of
a similar magnitude to the variation of the flow pumping power and can thus decide the
viability of certain parameter combinations. For the reference steady forcing, a net power
saving of around 3% can be achieved with respect to the no-slip channel flow with the
realistic actuator model.

a. Sensitiveness of the power performance to the choice actuator model

It might be argued (Mahfoze et al., 2018) that the power efficiency of controlled flow is sensitive
to the choice of the actuator model, and the absence thereof, or the choice of a different model,
would lead to convergence to a different control-design optimum. In the closed-loop steady
forcing case, we performed a simulation with the ideal actuator (open-loop, no frictional losses)
at the new optimal rotation velocity 0.7Wss of found by OPTS, finding a larger net power saving
than the original reference case of Ricco and Hahn (2013). This is expected as both Pp and
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Pf i.e. the only non-zero power-budget terms when using ideal actuators, are monotonic and
perfectly correlated functions of the mean disc velocity.

For the feedback-controlled flow, an counterfactual in the ideal case is somewhat harder
to obtain, because the disc-velocity time history depends on the parameters of the actuator
model. For example, an optimisation could be performed using a prescribed velocity transient
(for example a linear or a sharp transient with only Wm and WM as control parameters) without
the use of the disc dynamical model. The outcome of such optimisation could be compared to
the fully modelled results.
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Appendix to Chapter 5

5.A Bayesian Optimization

This appendix contains more technical details on some aspects of the Bayesian Optimisation
algorithm. The first paragraph clarifies the Gaussian Process (GP) regression model and its
properties. The second paragraph discusses in more detail the Expected Improvement and the
third one discusses how Bayesian Optimisation is adapted to allow the use of constraints that
are computationally expensive functions of the parameters.

a. Gaussian process regression

This section expands on the Gaussian Process regression modelling. We give here more precise
definition of a Gaussian Process model and briefly illustrate the derivation of the predictive
distribution following Williams and Rasmussen, 2006. A Gaussian process u(x) is a stochastic
process for which the joint pdf of any finite sample is a normal distribution. Let us consider
d variables, representing the values of the process sampled at d locations i.e. {ui = u(xi)}di=1.
Their joint normal distribution is defined as:

p(u1, u2, ..., ud) =
1√

(2π)d|K|
exp

(
−1

2
(u−m)K−1(u−m)

)
≡ N (m,K), (5.50)

where m is the mean vector and K is the covariance matrix:

K =




σ2
11 cov12 . .

cov12 σ2
22 . .

. .

. .


 . (5.51)

The distribution 5.50 is therefore characterised by its mean vector and its covariance matrix. The
entries of the covariance matrix can be thought of as the values of a function cov(ui, uj) that
given any couple of variables as input returns their covariance covij . For a stochastic process
u(x), the covariance function is specified as a function of the underlying index variable x such
that:

cov(u(xi), u(xj)) = k(xi,xj). (5.52)

Consequently, a Gaussian process is completely characterised by its mean vector m(x) and its
covariance function k(xi,xj).

In a GP regression problem, we are interested in the joint distribution of the training input
vector f(X) and test inputs vector f∗(X∗), respectively defined as:

f(X) ≡ {f(x1), f(x2), ...} (5.53)

f∗(X∗) ≡ {f∗(x∗1), f∗(x∗2), ...}. (5.54)

According to the definition 5.50, their joint distribution reads:

p(f(X), f∗(X∗)) = N
(

m,

(
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

))
, (5.55)

where the correlation (sub)matrices are defined using the definition of correlation function. For
example:

K(X,X∗) =




k(x1,x
∗
1) k(x1,x

∗
2) . .

k(x1,x
∗
2) k(x2,x

∗
2) . .

. .

. .


 . (5.56)
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The regression problem consists in calculating the probability distribution of f∗ at the test inputs
X∗, the so-called predictive distribution. Given the joint distribution, the predictive distribution
is found by conditioning the joint distribution on the training inputs and the desired test input.
For example, the predictive distribution at the single test input x∗ is p(f∗|x∗, f(X), X). Since
the joint distribution is normal, it is possible to calculate the analytical solution shown in Eq.
5.38.

b. Acquisition function

In this section we give a more detailed background on the acquisition function, focusing on its
useful properties in the context of optimisation under uncertainty. We recall the definition of the
utility function:

u(x) =

{
fmin − f(x) iff(x) < fmin

0 otherwise
(5.57)

The Expected Improvement is defined as the expected value of the above utility function as:

aEI(x) ≡ E[u(x)|D] =

∫ fmin

−∞
(fmin − f)p(f∗|x∗,D) df (5.58)

The point xn+1 = arg max aEI(x) has the highest probability of finding a lower estimate of
the global minimum and is therefore selected for the next evaluation. Substituting the closed-
form expression of the predictive distribution (5.38) into (5.58), the EI acquisition takes the
exact form:

aEI(x) = (fmin − f
∗
(x))Φ(fmin, σ

∗(x∗))︸ ︷︷ ︸
a1

+σ∗(x∗)N (fmin, σ
∗(x∗))︸ ︷︷ ︸

a2

, (5.59)

where Φ is the normal cumulative probability distribution. The term a1 in (5.59) is the exploita-
tive term, being proportional to the distance between the model mean and the minimum from
the data. a2 is the exploratory term, being proportional to the model variance. Optimising
the exact acquisition function (5.59) is computationally inexpensive and can be done through
efficient gradient-based algorithms such as L-BFGS.

c. Optimisation with unknown constraints

The situation addressed in this section arises when an optimisation problem is subjected to a
constraint which is not known for any parameter combination but has to be evaluated similarly
to the objective function. We do not know with certainty which regions of the parameter space
contain infeasible designs (and can thus be avoided) before evaluating an expensive function.
An unknown constraint can be defined in general by the inequality C(x) < 0, where C(x) is a
function that requires an expensive evaluation at x. Unknown constraints can be handled through
a modified Expected Improvement acquisition following Gelbart et al., 2014. If the constraint
and the objective are assumed to be independent, then we may define the Constrained Expected
Improvement as:

aCEI(x) = aEI(x)Pr[C(x) < 0], (5.60)

where aEI(x) is the Expected Improvement on the objective and Pr[C(x) < 0] is the probability
of feasibility (PoF) i.e. the probability of satisfying the constraint. The PoF is computed by
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building a second probabilistic model for C (another GP regression) and evaluating the following
integral:

Pr[C(x) < 0|DC ] =

∫ 0

−∞
p(C∗|x∗,DC) dC. (5.61)

where DC are the data on C(x).

d. Constrained optimization of a test function

This section illustrates an example where EmuKit’s Bayesian optimization is applied to finding
the global minimum of a multivariate test function with an unknown constraint, as done in
Gelbart et al. (2014). The goal is to validate EmuKit and our optimisation framework using an
exact function that is inexpensive to compute. The only difference with the research problem
above is that the channel-flow DNS takes the place of the test function. The Branin-Hoo (BH)
test function function is considered, that is defined as:

BH(x, y) = a(y − bx2 + cx− r) + s(1− t) cosx+ s (5.62)

with a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10 and t = 1/(8π). This function has three global
minima, one of which is marked by hearts in Fig. 5.18. Convergence to at least one of these
minima will be considered a successful outcome of the optimization procedure. We also add a
disc constraint function in the form:

C(x, y) =

{
−1 if (x− 2.5)2 + (y − 7.5)2 ≤ 49

0 otherwise.
(5.63)

The constraint function is unknown to the optimizer and has to be evaluated at each iteration
together with the objective function, as explained in previous section. Fig. 5.18 shows the results
of a test optimization. The algorithm is run for 25 iterations, starting from an initial set of 8
space-filling (Latin design) evaluations.
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Figure 5.18: Constrained Optimization of the Branin-Hoo test function using EmuKit’s Bayesian opti-
misation tools.

5.B Exact model of the transients

In order to derive an exact solution for the switch-on and the switch-off transients, we assume
that the fluid stresses on the flow-facing surface of the disc follow the same linear Couette solution
that holds inside the cavity.

a. Switch-on transient

The assumption leads to the linear disc dynamics during the switch-on transient being described
by the following problem: {

dWon

dt = − 2Ch

I W (t) + D
2ITM

Won(0) = Wm

(5.64)

whose solution reads:

Won(t) =

(
Wm −

TMD

4Ch

)
exp

(
−2Ch

I
t

)
+
TMD

4Ch
(5.65)
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The switch-off time is found from the condition Won(toff ) = WM which gives:

toff = − I

2Ch
log

(
WM − TMD/4Ch
Wm − TMD/4Ch

)
. (5.66)

b. Switch-off transient

Using the same set of assumptions, we can model the switch-off transient dynamics as:

{
dWoff

dt = − 2Ch

I W (t)

Woff (0) = WM

(5.67)

The switch-on time is found from the switch-off condition Woff (ton) = Wm and it reads:

ton = − I

2Ch
log

(
Wm

WM

)
(5.68)

c. Mean disc-tip velocity

From the solutions Won(t) and Woff (t) the exact mean velocity W can be calculated by averaging
over the union of the two transients:

W =
(W ontoff +W off ton)

toff + ton
, (5.69)

where:

W on =
1

toff

∫ toff

0

Won(t) dt and W off =
1

ton

∫ ton

0

Woff (t) dt (5.70)

Proceeding from the above and substituting (5.65),(5.68),(5.66) it can be shown that:

W = γTM log

(
WM − γTM
Wm − γTM

)
log

(
Wm

WM

WM − γTM
Wm − γTM

)−1

, (5.71)

where γ = D/4Ch. In a similar way, the mean value of any other quantity f over the exact
period can be calculated as:

f =
(fontoff + foff ton)

toff + ton
. (5.72)
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Conclusions and future directions

In this chapter we summarise the main outcomes of the dissertation and we recommend a few
directions along which the work could be extended in the future, building on the findings reported
in the previous Chapters.

6.1 General conclusions

This work represents a contribution to the study of rotating actuators as a practical device for
skin-friction reduction in turbulent wall-bounded flow. On a fundamental level, we emphasised
that rotating actuators are a practical and energy-efficient method to deliver two distinct drag-
reduction paradigms: first, the generation of spanwise velocity waves by steadily rotating full
discs or rings; second, the generation of streamwise slip through half discs. Our results endorse
the idea that rotating rings or discs are an excellent practical way of generating a working stand-
ing wave of spanwise velocity, although with the side effect of generating detrimental secondary
flow structures. The relative simplicity of the rotating disc and its scalability renders it supe-
rior in many aspects to other wave-generating techniques. The evidence collected in this work
upholds the viability of rotating actuators for drag reduction either under active open-loop con-
trol, passive control or closed-loop feedforward control strategies. The suitability of open-loop,
steadily rotating rings to be combined with other wall-based control methods was demonstrated
in Chapter 3, resulting in methods that, albeit more complex, partially offset the shortcomings
of each individual method and thus are not only better performing but also hold the potential
to be more reliable in realistic applications.

The research that forms the second part of the dissertation, Chapters 4 and 5, was undertaken
in the broad scope of addressing the energy efficiency of rotating devices. Realistic modelling
of an entire reasonable rotating-disc apparatus, complete with a motor model and mechanical
losses, was carefully performed for the first time and found to lead to encouraging results in terms
of the energy efficiency of the steadily rotating case. Numerical experiments into passively and
closed-loop controlled disc in Chapters 4 and 5 were performed to test more efficient activating
strategies of rotating discs. Our most promising contribution to the passive skin-friction control
is the half-disc array concept, that, inspired by already available experimental data, was proven
to be an effective strategy that deserves deeper investigation. Regarding closed-loop control, a
simple, pulsed regulation of the disc velocity was studied, with the characteristics of the on-off
cycle being optimised to achieve the best energy efficiency. Although ultimately lacking optimal
characteristics of efficiency compared to the steady activation, the work constitutes a first step
for further developments in the feedback control of rotating discs and in the study of the transient
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physics than may be leveraged for later developments.

6.2 Future outlook

In light of the findings reported in this dissertation, a number of directions can be envisioned
for the future development of wall-mounted rotating discs, some of which are proposed in the
following sections, tentatively listed from the more incremental to the more speculative.

a. Better understanding of the flow physics

A deeper understanding of the physics of steadily rotating discs under turbulent flow remains
a critical objective. More insight would be beneficial into the mean-flow structures described
in Chapter 3, such as rolls and ejections, and their dependence on the disc size, velocity and
from the Reynolds number. Such developments would be important for obtaining more accurate
drag-reduction performance predictions, especially at higher Reynolds number, and for exploring
the application of the disc-based control to different flow scenarios, such as the separated flow
described below.

Another topic worthy of further investigation is the physics of freely rotating discs. It can be
speculated that using lighter discs and suitable numerical methods, stronger interactions with
near-wall turbulence would occur. The usefulness of such passive devices to act as sensors – for
e.g. shear-stresses – is also worth addressing.

b. Passive control

Even though small-scale, fast, sophisticated active actuators are technologically feasible (Keefe,
1997; Kasagi et al., 2009), a general trend in the field of skin-friction reduction research is,
wherever possible, to gravitate towards passive forms of flow control, owing to their lower degree
of operational complexity and cost effectiveness.

In this context, we believe that the research undertaken in Chapter 4 on passive half-discs
deserves special attention for future development, especially due to its capability to generate both
streamwise slip and a spanwise velocity pattern simulataneously. This may prove a precious
upside, because the wall-wave forcing, which has limited flexibility due to the fixed actuator
diameter, is complemented by the slip velocity generation that instead is able to adjust to off-
nominal conditions. This can prove very helpful in adapting to changing flow regimes.

An outline of a series of numerical experiments at increasing velocities is given in Section 4.7,
which would be important to paint a clearer picture of the efficacy of the method. Furthermore,
an example of a possible alternative design is to use a staggered array configuration such as
that depicted in Fig. 6.1B could be used in place of the regular array. The goal is to create an
appropriate alternate spanwise motion near the wall and therefore combine the slip-length-like
motion of the discs with the spanwise-velocity-wave paradigm through a purely passive technique.
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Figure 6.1: Disc mount arrangements type A (regular) and B (staggered).

c. Adaptive control

As it has been remarked in Chapter 3, perhaps the most promising direction is to imagine rotating
discs as integrated into an adaptive flow-control framework, either in combination with other
drag-reduction techniques – such as in Chapter 3 – or where the actuators can be leveraged to
control other flow phenomena beyond pure skin-friction. It could also be interesting to elaborate
on a closed-loop scheme where part of the devices are used for sensing and part is being used for
actuation. The behaviour of passive half-discs could also be deemed as adaptive if one considers
that it combines two effect, a spanwise motion and a streamwise slip, whose response to an
increasing mean shear is different and could potentially result in an enhanced robustness of the
scheme.

d. Separation control

Rotating discs may also prove a great tool to manipulate flow phenomena other than flat-plate
skin-friction. An interesting perspective is to inquire whether the induced vortical motions can
be applied to separation control, turning what is a drawback in wall-turbulence control into a
convenient feature. The generation of streamwise-aligned, persistent vortices near the separation
region of a stalling airfoil is a proven method to delay the onset of stall at high angles of attack
(Lin et al., 1994). Such vortices promote the transport of streamwise momentum to the vicinity
of the wall, flattening the mean velocity profile and thereby mitigating the effect of the adverse
pressure gradient that occurs on the suction side of a stalling airfoil.

Both passive (Godard and Stanislas, 2006a) and active vortex generators have been investi-
gated. Active VGs, typically in the form of skewed and pitched (Godard and Stanislas, 2006b) or
swirling synthetic jets (Munday and Taira, 2018), have the additional advantages that they can
be turned off with no parasitic drag and they can be controlled actively, adapting to a changing
flow regime.

Given that rotating discs are wall-normal vorticity-generating devices, one may want to assess
i) whether they are capable of generating appropriate streamwise-aligned vortices in the first
place; ii) their attractiveness as an alternative to more conventional active devices such as jets.

Previous research has established – e.g. Section 3.3.1, Figure 3.3, and Wise and Ricco (2014)
– that the interaction between the disc rotation and the mean flow results in the generation
of streamwise vortex-like structures. Interestingly, the vortices’ location and scale appear to
be approximately matching those detected in experimental PIV measurements (Godard and
Stanislas, 2006a) relative to the boundary-layer thickness, and they also display some degree of
downstream persistence.
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Based on these observations, Figure 6.2 sketches a minimal arrangement consisting of pair-
wise counter-rotating discs, leading to the establishment of counter-rotating vortex pairs. The
dependence on the disc size and velocity of quantities crucial to successful separation control,
such as vortex intensity, downstream persistence and wall-normal penetration, is currently an
open issue.

Discs share the same upsides of other active VGs, while also offering the capability of being
operated as drag-reduction control devices in the fully attached BL regime. The performance
and the efficiency of disc VGs relative to conventional jets are, at present, a speculative subject.

U

Figure 6.2: Hypothetical arrangement of wall-mounted rotating discs for counter-rotating vortex pair
generation. The blue and red arrows represent the sign and the approximate location of the resulting
vortex cores.

e. Closed-loop control

Hypothetically, more energy-efficient ways of delivering the same paradigms could be elaborated.
While a rough attempt at this is represented by the on-off control from Chapter 5, more elaborate
alternatives exist that are succinctly reviewed below.

The on-off control used in Chapter 5 is a basic form of active control that attempts to
enhance the energy efficiency the simple open-loop forcing. Other possibilities exist in terms
of control algorithms, mostly methods from linear control theory that are known to have been
successfully applied to the reduction of skin-friction in turbulent flow (Brunton and Noack,
2015). Two possible general directions can be advanced for closed-loop control of rotating discs:
first, maintaining a feedworward approach and implementing more advanced control algorithms;
second, in a broader scope, pursuing a full feedback approach with respect to the skin-friction
or some surrogate variable.

Proportional-Integral-Derivative (PID) control is a feedback algorithm where the control sig-
nal is a linear combination of the control objective, its finite-time integral and its derivative. PID
controllers (usually free from the derivative term) are the most common control algorithms in
industrial applications by an overwhelming margin (Åström and Murray, 2008). Proportional-
integral control has also been successfully applied to wall-turbulence control via suction and
blowing (Kim and Choi, 2017). PID control is a attractive alternative for feedforward skin-
friction control via regulation of the disc velocity and represents an attractive evolution on the
vanilla on-off control proposed in Chapter 5. To this purpose, a formulation of PID control for
the disc velocity would entail a constraint on the mean velocity and parameter tuning would
evolve according to the same energy efficiency optimisation criteria used in Chapter 5.

A Linear Quadratic Regulator (LQR) is the optimal controller for a linear system with respect
to a cost functional that is defined as the integral of a quadratic function of the system’s and the
controller’s state over a certain time horizon. In practical applications, a Kalman filter is used
to approximate the full system state from a finite number of sensors. LQR has been applied to
drag reduction via suction/blowing coupled with reduced-order modelling (Lee et al., 2001).
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State-based control in general deals with systems driven by linear (or linearised) governing
equations. Concerning a feedforward approach on the disc rotational dynamics, the disc govern-
ing equation, which is non-linear because the fluid torque depends on the disc velocity, would
require linearisation. In this respect, the data discussed in Section f. are encouraging in that
they show that the fully coupled non-linear transients are typically well correlated with the linear
prediction. If full feedback control from the wall-shear stresses is desired, the flow equations need
to be linearised and a suitable low-order representation identified to avoid intractable calcula-
tions. Many powerful tools can be drawn from the rich literature on reduced-order modelling of
fluid flow, comprising analytical and data-driven techniques (Lee et al., 1997; Taira et al., 2017;
Brunton and Kutz, 2019).

On a somewhat speculative note, an attractive property of state-based control is that it
would open up the possibility of discovering new control principles for the rotating-disc array,
analogously to what has been achieved for wall-normal suction/blowing (Kim, 2003). This is
conditional on the existence of a control paradigm based on the wall-normal vorticity in the first
place. This approach would see the application of feedback control to the entire actuator array,
as opposed to Chapter 5’s approach of using independent actuators. The idea of using part of
the discs as sensors could also be integrated into this approach.
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Kühnen, J., Song, B., Scarselli, D., Budanur, N. B., Riedl, M., Willis, A. P., Avila, M., and Hof,
B. (2018). Destabilizing turbulence in pipe flow. Nat. Phys., 14(4):386–390.

Laizet, S. and Lamballais, E. (2009). High-order compact schemes for incompressible flows: A
simple and efficient method with quasi-spectral accuracy. J. Comp. Phys., 228:5989–6015.

Laizet, S. and Li, N. (2010). 2DECOMP&FFT – a highly scalable 2D decomposition library and
FFT interface. In Cray User Group 2010 conference, Edinburgh.

Laizet, S. and Li, N. (2011). Incompact3d: A powerful tool to tackle turbulence problems with
up to O(105) computational cores. Int. J. Numer. Meth. Fluids, 67(11):1735–1757.

Larsson, L. and Raven, H. C. (2010). Ship resistance and Flow. The Principles of Naval Archi-
tecture Series. Society of Naval Architects and Marine Engineers.

Lauga, E. and Stone, H. (2003). Effective slip in pressure-driven Stokes flow. J. Fluid Mech.,
489:55–77.

Launder, B., Poncet, S., and Serre, E. (2010). Laminar, transitional, and turbulent flows in
rotor-stator cavities. Annu. Rev. Fluid Mech., 42(1):229–248.

Lee, C., Kim, J., Babcock, D., and Goodman, R. (1997). Application of neural networks to
turbulence control for drag reduction. Phys. Fluids, 9(6):1740–1747.

Lee, K. H., Cortelezzi, L., Kim, J., and Speyer, J. (2001). Application of reduced-order controller
to turbulent flows for drag reduction. Phys. Fluids, 13(5):1321–1330.

Lee, M. and Moser, R. D. (2015). Direct numerical simulation of turbulent channel flow up to
Reτ ≈ 5200. J. Fluid Mech., 774:395–415.

Lele, S. (1992). Compact finite difference schemes with spectral-like resolution. J. Comp. Phys.,
103:16–42.

Leschziner, M. A., Choi, H., and Choi, K.-S. (2011). Flow-control approaches to drag reduction
in aerodynamics: progress and prospects. Philos. Trans. Royal Soc. A, 369(1940):1349–1351.

Lin, J. C., Robinson, S. K., McGhee, R. J., and Valarezo, W. O. (1994). Separation control on
high-lift airfoils via micro-vortex generators. J Aircraft, 31(6):1317–1323.

170



Chapter 6 Bibliography

Ling, H., Katz, J., Fu, M., and Hultmark, M. (2017). Effect of Reynolds number and saturation
level on gas diffusion in and out of a superhydrophobic surface. Phys. Rev. Fluids, 2(12):124005.

Lloyd, C. J., Peakall, J., Burns, A., Keevil, G., Dorrell, R., Wignall, P., and Fletcher, T. (2021).
Hydrodynamic efficiency in sharks: the combined role of riblets and denticles. Bioinspiration
& Biomimetics.
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