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Abstract

The next generation of ultra-high density storage technology will be based on heat-assisted
magnetic recording that uses the highly anisotropic L10 phase of FePt. As the areal density
increases, the grain size decreases and finite-size effects are becoming crucial. The damping
mechanism controls the magnetisation dynamics and the writing speed of the information,
hence its behavior for small FePt grain sizes needs to be studied. Using atomistic spin dynam-
ics simulations, the variation of damping with temperature and system size is systematically
analysed by employing ferromagnetic resonance calculations. The damping of FePt grains
is enhanced with increased temperatures, but the linewidth of the system can decrease in
the presence of size distributions due to the transition of small grains to the paramagnetic
state. Switching is investigated within the heated dot limit, assuming the largest areal density
possible in recording media and shows that the numerical calculation involving a dynamical
switching of the media leads to larger bit-error rates due to thermal transitions over the energy
barrier and subsequent smaller areal densities.

Atomistic spin dynamics simulations assume a fixed lattice of atoms, however, as the
magnetic material is heated up, both magnetic and mechanical properties will be dynamically
affected. To include the lattice contribution during magnetic relaxation (magnon-phonon
interactions), a coupled spin-lattice dynamics model has been developed. The fundamental
properties of the SLD framework, with application to BCC Fe, have been analysed. The
existence of a direct channel of energy and angular momentum transfer between magnons
and phonons increases the damping via spin-lattice coupling, which is important for the study
of both magnetic insulators and metals. Finally, the magnetisation dynamics is studied under
the effect of THz phonon excitation, showing that it is possible to switch the magnetisation
via the direct excitation of various phonon modes.
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Introduction

1.1 Motivation

Magnetic materials maintained huge interests for technological applications such as magnetic
recording media (initially on magnetic tapes, now on nm-sized granular media). With the
increased necessity to store more and more data, it is important to constantly improve/renew
the current technologies or seek for other magnetic entities (such as domain walls, skyrmions)
to act as a bit of information. Novel research fields in magnetism such as spin-electronics
(spintronics), opto-magnetism, magnetism in 2D, neuromorphic and reservoir computing [1]
promise to bring more advanced technologies in our daily life, and the usage of magnetic
nano-particles in bio-medicine to even cure some types of cancer. In this thesis we tackle the
possibilities of improving recording media applications via simulations of nano-magnets.

The current recording media is based on Heat-Assisted Magnetic Recording (HAMR),
where nm-sized grains of L10 FePt are heated during the writing process. There are multiple
investigations of the temperature dependence of the magnetisation and anisotropy for HAMR
systems, however, also the temperature dependence of the damping that controls the writing
speed and magnetisation dynamics has been recently brought to the attention. Future
recording media technologies such as Heated Dot Recording Media require an understanding
and control of the bit error rate which can limit the maximum areal density possible to achieve.
With the discovery of ultrafast magnetisation dynamics and all-optical switching, the interplay
between electrons, phonons and spins is more and more studied fundamentally and from
applications point of views, since it can lead to non-dissipative switching technologies. To
improve the current recording media systems and develop novel applications, it is important to
have advanced modelling techniques able to deal with the diverse aspects in nanomagnetism.
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1.1.1 Beyond the magnetic trilemma

The design of new magnetic recording media devices needs to consider the fundamental limi-
tations given by the magnetic recording trilemma and quadrilemma - Fig. 1.1. The trilemma
[2] shows the interplay between the thermal stability, writability and the areal density in the
development of current technologies. In addition, the quadrilemma highlights the importance
of the thermal fluctuation for small system sizes which can lead to considerable bit error
rates that need to be minimised for optimum design of the recording media technology. In
order to increase the areal density two paths can be followed: a) keeping the number of
grains per bit as large as possible for good statistics and large signal to noise ratio (SNR) and
reduce the diameter of the grains or b) reduce the number of grains per bit until a single grain
corresponds to a single bit (Bit Patterned Media - BPM). Following path a), a decrease in the
grain size leads to a decrease in the energy barrier KV/kBT , which needs to be kept around
the value 60 [3] to preserve the thermal stability of the grains. Hence, in order to keep the
ratio KV/kBT = 60, materials with large anisotropy need to be used. Since the writing field
has typical values of 10kOe, this is not sufficient to reverse the bit due to its large coercivity.
Hence it is necessary to firstly reduce the coercivity of the system, either by heating up the
system such as in Heat Assisted Magnetic Recording (HAMR) or by the exchange spring
mechanism in Exchange Coupled Composite (ECC) media.

Fig. 1.1 Magnetic recording trilemma and quadrilemma. Adapted from Ref. [2] (trilemma)
and Ref. [4] (quadrilemma).

The ASTC Roadmap (currently ASRC) - Fig. 1.2 shows the current and future tech-
nologies: HAMR and BPM [5]. HAMR media promises high areal density (above 1Tb/in2)
by employing highly anisotropic materials such as FePt L10 [6]. HAMR recording uses a



1.1 Motivation 3

small laser diode attached to each writing head and the light from this laser is focused onto a
near field transducer (NFT) which heats the media and decreases its coercive field enough
to write data with the available field [7]. The performance of HAMR media is limited by a
number of factors, among those the noise due to the distribution of Curie temperature (TC)
that arises from the grain size dispersion [6]. Small grains with narrow size distribution and
high temperature dependence of the switching field is also critical for HAMR [8].

Fig. 1.2 Advanced storage technology consortium - ASTC (currently Advanced storage
research consortium - ASRC) Technology Roadmap [5].

Alternatives to the single magnetic layer technologies have been proposed to lower the
coercive field by the exchange coupling mechanism in multilayered systems. For example,
via the soft ferromagetic phase of the FeRh metamagnet, the coercive field can be lowered
in FePt/FeRh bilayer systems [9]. Another promising type of multilayered media is the
exchange coupled composite (ECC) [10–12] that uses low-high TC materials, for example
Fe/FePt to obtain lower switching fields than in the case of FePt systems. Bit-Patterned Media
- BPM and Heated Dot Recording Media (HDMR) is the next recording media technology
to follow, according to the ASTC Roadmap - Fig. 1.2. BPM consists of lithographically
defined magnetic grains, however fabrication of BPM with good magnetic properties and tight
fabrication tolerances is very challenging [13]. Heated Dot Magnetic Recording (HDMR)
represents the ultimate recording media, a combination between HAMR and BPM, that uses
single grains of high anisotropy materials for thermal stability and a laser pulse for writing.
This technology is limited by the bit error rate, as shown in the quadrilemma - Fig. 1.1, which
suggests that thermal fluctuations in the system can lead to write errors, which are significant
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with decreasing system size [4]. For equilibrium considerations, Evans et al. show that the
ratio µµ0H/kBT (µ = MSV ) needs to be kept large for small bit error rates, suggesting that
with decreasing system size (V ) the saturation magnetisation (MS) and writing field (H) need
to be kept as large as possible.

1.1.2 Magnetic relaxation and intrinsic damping

The timescale of magnetisation dynamics is governed by the damping mechanism which
has been introduced phenomenologically in the Landau-Lifshitz-Gilbert model to reflect
the energy dissipation channels in the system. In general, it is understood as the coupling
of the magnetic modes (primarily the electron spins) to the non-magnetic modes (lattice
vibrations) and electronic orbital moments in the magnetic system. The magnetic damping
parameter is important from both a fundamental and applications point of view, as it controls
the dynamic properties of the system, such as magnetic relaxation, spin waves, domain-wall
propagation, and magnetisation reversal processes. In information technologies, damping
plays a crucial role, as it can influence the operating parameters, such as the switching current
in spin-transfer torque magnetic random access memories (STT-MRAM) [14], the fluence
of the ultrafast laser pulse necessary for demagnetizing and switching of the sample [15]
or the domain-wall propagation velocity in nano-wires for racetrack memories application
[16]. Understanding various coupling mechanisms, including them in magnetic models
and quantifying their contributions to damping is crucial for the development of future
technologies.

Fig. 1.3 Energy flow in a ferromagnet which arises from the excitation of a uniform mode,
k = 0, by an electromagnetic field. Adapted from Ref. [17].
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Fig. 1.3 (adapted from Ref. [17]) shows the main mechanisms of damping. Generally,
the damping can be divided into two contributions: intrinsic and extrinsic. The intrinsic
damping originates primarily from the interaction of the spins with the electron orbits, and
includes generation of eddy currents and spin–orbit coupling. Another intrinsic contribution
to damping occurs through direct magnon–phonon scattering. Other contributions to damping
involve magnon-scattering events where the uniform precessional mode (k = 0) scatters into
a non-uniform precessional mode (k 6= 0) and this contributes to extrinsic Gilbert damping.
In most cases the energy is transferred finally to the lattice which results in the creation
of phonons and consequently heating. The spin-lattice relaxation can be either a direct
mechanism (magnons are destroyed and phonons created) or indirect, where energy is
transferred to the lattice through some other systems [17]. Besides magnon scattering, other
contribution to the extrinsic Gilbert damping is the spin pumping mechanism that enhances
the damping in Ferromagnetic/Non-magnetic/Ferromagnetic trilayer systems [18]. The
sample inhomogeneities, which lead to a distribution of local resonance fields across the
sample lead to a contribution to the FMR linewidth.

1.1.3 Modelling magnetic materials

Magnetism is a multiscale problem, as the spin is a quantum phenomenon and the mea-
sured quantities such as magnetisation are at a macroscopic level [1]. The properties of
the magnetic materials are influenced by both microscopic/atomic defects as well as their
macroscopic shape [1], with magnetic phenomena being present over time-scales ranging
from femtoseconds to years. In order to develop competitive magnetic nano-devices, ad-
vanced experimental and theoretical frameworks are needed, with the theoretical framework
treated as a multiscale problem. Atomistic simulations of magnetic materials can act as
a bridge between the ab initio (first principles) methods and the continuum approach of
micromagnetism, leading towards a multi-scale approach - Fig. 1.4. First principles methods
are generally computationally expensive and cannot model more than hundreds of atoms,
while micromagnetic modelling cannot deal with effects at the atomistic level.
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Fig. 1.4 Length and timescales specific to different magnetic modelling techniques together
with the fundamental mechanisms specific to each timescale. The exchange, spin-orbit and
precession figures are extracted from Ref. [19] and the schematics was adapted from Ref.
[20].

The Atomistic Spin Dynamics (ASD) model considers in general only the spin degrees
of freedom. A complete description of magnetic systems involves however the interaction
between several degrees of freedom, such as lattice, spins and electrons, modelled in a
self-consistent simulation framework. The characteristic relaxation timescales of electrons
are much smaller (fs) in comparison to spin and lattice (ps), hence magnetisation relaxation
processes can be described via coupled dynamics of spin and lattice, framework called
Spin-Lattice dynamics (SLD).

1.2 Outline of the thesis

The thesis focuses on the investigation of current and future recording media technologies
based on FePt. Although FePt or FePt-based materials have been used throughout the thesis,
most of the techniques presented here can be applied for any other ferromagnetic materials.
Complementary, the thesis tackles the lack of phonons in the general atomistic spin dynamics
simulations, hence a spin-lattice dynamics framework is developed here.

Chapter 2 introduces general concepts in magnetism and describes important spin
dynamics phenomena such as ferromagnetic resonance and switching, which motivates
the usage of the atomistic model. The theoretical basis of the Atomistic Spin Dynamics
model (ASD) is then presented in this Chapter, together with the Landau-Lifsitz-Gilbert
(LLG) equation, the inclusion of temperature effects via Langevin dynamics or the Monte-
Carlo method. The atomistic spin dynamics model is implemented in the software package
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VAMPIRE [21] developed at the University of York and has been used for the investigations
presented in Chapter 4 and Chapter 6.

Chapter 3 describes the theoretical background of the Spin-Lattice dynamics model.
SLD models can be crucial to disentangle the interplay between the lattice and spins, that
can lead to phenomena such as the Einstein-de-Haas effect or controlling magnetisation via
THz phonons. As the spin-lattice coupling term is introduced phenomenologically, we study
different forms of the coupling. The model reproduces well the properties of the phonons
and magnons observed in BCC Fe. The SLD model developed here has been used in Chapter
5 for the investigation of the influence of phonons onto the spin damping and switching.

Chapter 4 investigates the temperature dependence of the damping within the ASD
model. The magnetic damping parameter is important from both a fundamental and ap-
plications point of view. As current magnetic technologies are based on nanostructures of
smaller and smaller sizes, the finite size effects become more important and can signifi-
cantly influence the magnetic properties including the damping. We therefore investigate
the temperature dependence of damping and anisotropy in finite size systems of FePt, the
main candidate of HAMR. Since damping simulations are computationally expensive, new
methods to investigate the damping and anisotropy are developed such as the grid-search
method and a semi-analytical tool to investigate the inhomogeneous line broadening.

Chapter 5 analyses the influence of the phonons on the spin dynamics within the SLD
model. The effect of the dynamic lattice on the equilibrium magnetisation is systematically
studied for varying system sizes. The magnon-phonon damping is calculated as a function of
temperature and spin-lattice coupling strength, and a quadratic increase of the damping is
observed in both cases. The possibility of switching the magnetisation via THz phonons is
investigated in this Chapter. We observe that, by exciting the phonons at THz frequencies it
is possible to switch the magnetisation at ps time-scales via the development of an in-plane
field that appears due to the spin-lattice coupling.

Chapter 6 focuses on advanced recording media applications, such as heated dot mag-
netic recording (HDMR) or exchange spring systems of FePt/FeRh bilayers. In addition to
FePt, the permanent magnet NdFeB is studied for HDMR application, its large saturation
magnetisation leading to smaller bit error rates. The bit error rate in FePt will limit the
maximum areal density possible to obtain for HDMR. Numerical simulations have shown
that smaller areal densities are obtained for finite temperature pulse widths, in comparison
with thermal equilibrium analytical calculations from literature. We also investigate the
ultrafast switching in the FePt/FeRh bilayers and we observe that the coupling to FeRh leads
to better switching properties of FePt due to the reversal via the exchange spring mechanism.





2

Spin dynamics and the atomistic model approach

In this Chapter we introduce the concepts and techniques underlying the investigation
presented in this thesis. We start with the basic physics of magnetism and magnetic materials
and then go on describing some important spin dynamics phenomena including Ferromagnetic
resonance and magnetisation reversal (switching). This motivates the usage of the atomistic
model approach (atomistic spin and spin-lattice dynamics) which is central to the work
presented here and described in the following sections. The atomistic spin dynamics model
(ASD) is based on the Heisenberg Hamiltonian, with the spin dynamics being given by a
numerical integration of the stochastic Landau-Lifshitz-Gilbert equation. One advantage
of the atomistic model is the possibility of calculating the temperature dependence of the
magnetic properties (such as anisotropy, magnetisation etc.), which is illustrated in the
next sections. Various other investigations can be performed within this model, such as
ferromagnetic resonance, magnetisation switching and the interaction of a magnetic material
with optical pulses. Atomistic spin models have been reviewed in detail by Evans et al. [21]
and Skubic et al. [22].

2.1 The origin of the magnetic moments

The simplest understanding of magnetic moment involves the rotation of electrons around the
nucleus, leading to the appearance of a weak orbital moment. In the case of materials with
unpaired electrons, the intrinsic angular momentum (spin) of the electrons on the unoccupied
shells leads to the atomic magnetic moment of a system, referred in the atomistic model as
spin (S), which can be calculated from first principles methods. The term referred to as spin
in this work is hence not a quantum mechanical spin, but the expectation value along the spin
local quantisation axis, where the quantisation axis then rotates in time, much like a classical
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gyroscope. The magnetisation is given by the total magnetic moment per unit volume and
gives an insight into the magnetic ordering in the system.

Magnetic materials

The main classes of magnetic materials (according to the classification through the magnetic
susceptibility, c = M/H, which is the response of a material to a magnetic field) are diamag-
nets, paramagnets, ferromagnets, antiferromagnets and ferrimagnets, the last four classes
being schematically represented in Fig. 2.1. Diamagnets have a weak negative susceptibility,
while paramagnets have a weak positive susceptibility. In paramagnetic materials the mag-
netic moments are disordered and the total magnetisation is zero - Fig. 2.1, a). Ferromagnetic
materials show a large positive susceptibility. The magnetic moments in ferromagnets are
parallel, leading towards a large net magnetisation - Fig. 2.1, b). Antiferromagnets have a
weak positive susceptibility. The magnetic moments are antiparallel aligned so they cancel
each other, the net magnetisation being zero - Fig. 2.1, c). Ferrimagnets - Fig. 2.1, d) consist
of two antiparallel magnetic sublattices, having a non-zero total magnetisation, due to the
fact that the moments are not entirely compensated, leading to a macroscopic behaviour
similar to ferromagnets - large positive susceptibility.

Fig. 2.1 Types of magnetic materials: a) Paramagnet - disordered state, total magnetisation is
zero; b) Ferromagnet - ordered state, all spins are parallel; c) Antiferromagnet - ordered state,
all spins are antiparallel, total magnetisation is zero; d) Ferrimagnet - ordered state, all spins
are antiparallel, non-zero total magnetisation.

2.2 Exchange interaction

The exchange interaction, treated firstly by Heisenberg (1928) [23], is the strong force
responsible for the magnetic ordering. The exchange interaction is a quantum phenomenon
and arises from the competition between the Coulomb energy and the need to satisfy the
Pauli exclusion principle, which implies antiparallel spins of the electrons to occupy the
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same orbital, leading to an increase in the Coulomb repulsion which forces the electrons to
occupy excited one-electron states. The ordering from the exchange energy can be weakened
or even destroyed by thermal excitations, leading to a phase transition from an ordered state
to a completely disordered (paramagnetic) state. This critical point is characterised by the
Curie temperature, TC.

The exchange Hamiltonian can be written in terms of a general exchange tensor J
ab

i j :

Hexch =�1
2 Â

i 6= j
Sa

i J
ab

i j Sb
j , a,b = x,y,z (2.1)

The exchange tensor can be decomposed into three terms:

Ji j = Ji jI+J
S

i j +J
A

i j (2.2)

The term Ji j represents the isotropic part of the exchange tensor ( I represents the unit
tensor), J

S
i j the symmetric anisotropic exchange and J

A
i j is given by the antisymmetric

exchange. The isotropic, symmetric and antisymmetric exchange can be easily deduced from
the exchange tensor:

Ji j =
1
3

Tr(Ji j) , J
S

i j =
Ji j +J

t
i j

2
� Ji jI , J

A
i j =

Ji j �J
t
i j

2
, (2.3)

where J
t
i j is the transpose of the exchange tensor.

The isotropic exchange, also described as the Heisenberg exchange, was introduced to
explain the spin ordering at small temperatures. Giving the sign of the exchange, a ferromag-
netic ordering (for positive Ji j, parallel alignment of spins described in the Heisenberg theory
of ferromagnetism) or antiferromagnetic ordering (for negative Ji j, antiparallel alignment
of spins corresponding to Néel theory of antiferromagnetism) can be found. Due to its
electrostatic nature, the Heisenberg exchange is usually stronger relative to other types of
interactions.

Dzyaloshinskii-Moriya interaction
The Dzyaloshinskii-Moriya interaction (DMI - suggested by Dzyaloshinskii [24] in

1957 in an attempt to describe the weak ferromagnetism in a-Fe2O3 and derived later on
by Moriya in 1960 [25]) originates from the antisymmetric part of exchange interaction
under the consideration of a strong spin-orbit coupling (SOC) and an inversion-symmetric
environment. The energy corresponding to the antisymmetric exchange is given by:

HDM = Di j · (Si ⇥S j) (2.4)
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The Di j vector can be expressed from the antisymmetric part of the exchange tensor and
can be calculated from ab initio [26]. From the Moriya symmetry rules, the in-plane DMI
vector for a specific atomic layer k can also be expressed as Dk

i j = Dk · (z⇥ui j), where z and
ui j are the versors pointing along z direction and from site i and j respectively, and has been
used in simulations, for example, of CoPt [26]. The DMI plays an important role as it can
produce exotic magnetization textures such as skyrmions [27] that have the potential to be
used in magnetic memories.

Higher-order exchange interaction
The Heisenberg Hamiltonian presented above can be extended in order to include higher-

order exchange interactions, which have been pointed out by Herring in 1966 [28]. It has been
shown that higher-order exchange interactions can be derived from the half-filled Hubbard
model by the fourth-order perturbation of the hopping term, the first non-trivial term being
the four-spin interaction [29]. The four-spin exchange is given by four electron hopping
from one spin configuration to the spin flipped one and can appear between 2 atomic sites -
biquadratic exchange, Bi j(Si ·S j)2, three atomic sites - Li jk(Si ·S j)(S j ·Sk) or four atomic
sites - four-spin exchange, Di jkl(Si ·S j)(Sk ·Sl). The four-spin exchange has been used in
order to model the antiferromagnetic to ferromagnetic phase transition in specific materials
such as FeRh [30–32].

Magnetic anisotropy

The magnetocrystalline anisotropy gives rise to the preference of the spins to align on a
certain lattice direction, termed the easy axis. The anisotropy arises from the interaction
of the spin with the crystallographic lattice mediated by spin-orbit coupling. Most of the
materials present uniaxial anisotropy (Eq. 2.5) or cubic anisotropy (Eq. 2.6 - for cubic
lattices) and are described by the following Hamiltonians:

Hu = Â
i

ku(Si · e)2 (2.5)

Hcub =�Â
i
{k1(S2

xS2
y +S2

yS2
z +S2

xS2
z ) + k2(S2

xS2
yS2

z ) + ...} (2.6)

where ku represents the first order uniaxial anisotropy constant, Si the spin vector and e the
easy axis direction (here considered z). In the case of cubic anisotropy, the first two terms of
the expansion are presented in Eq. 2.6, Sx,Sy,Sz representing the components of the magnetic
moments.
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Zeeman interaction

The atomic moments can interact with an external magnetic field, this providing a magnetic
torque that can be used to switch the direction of the magnetisation, important for recording
media applications. The interaction with an external field is called the Zeeman energy and
has the following form:

HZeeman =�Â
i

Si ·Bext (2.7)

In order to minimize the energy, the atomic moments will align parallel to the magnetic field.

2.3 Ferromagnetic resonance

Ferromagnetic resonance techniques are generally used to study the magnetisation dynamics,
where a large DC magnetic field (⇠ 1T) is applied to the system together with a small
perturbative AC field (⇠ 0.01T) that leads to a precessional motion of the magnetisation
in the AC field direction. The investigation of ferromagnetic resonance spectra offers the
possibility to estimate many magnetic parameters, such as damping, anisotropy, saturation
magnetisation or the magnetic g-factor. The ferromagnetic resonance technique has been used
in Chapter 4 to investigate the damping and anisotropy parameters at elevated temperatures
via the atomistic model approach. The theory behind the resonance conditions has been
established by Kittel [33] and is based on the treatment of the magnetic system as a macrospin.

In this section we determine the FMR resonance conditions starting with the simplest
assumptions: a classical macrospin that can precess around an external magnetic field, with
the damping and anisotropy term neglected. We follow here the discussion from Ref. [33]
and [34]. The effective field will be given by the external out-of-plane static field B0 and the
demagnetisation field Bd . The in-plane oscillating field b(t) = bexp(iwt)(x̂,0,0) is small
in comparison to the static field, hence it will induce small deviations of the magnetisation
(dm) around the equilibrium position. The exchange field is also disregarded, since it does
not contribute to the total torque due to the coherent rotation of the spins. The magnetisation
can be expressed as following:

M(t) = MSẑ+dmexp(iwt), dm = dmxx̂+dmyŷ+dmzẑ (2.8)

Here it is considered that the oscillating field induces small deviation of the magnetisation
around the equilibrium position MS which is constrained. We next express the demagnetising
field in terms of the demagnetising tensor :
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Bd =�µ0

2

64
Nx 0 0
0 Ny 0
0 0 Nz

3

75

2

64
dmx

dmy

MS +dmz

3

75=�µ0

2

64
Nxdmx

Nydmy

Nz(MS +dmz)

3

75 (2.9)

The resonance frequency can be calculated by solving the precession equation:

dM
dt

=�gM⇥Be f f =�g(MS +dm)⇥ (B+Bd) (2.10)

Considering :

MS ⇥B = 0 (2.11)

dm⇥B = dmyBx̂�dmxBŷ (2.12)

MS ⇥Bd = (µ0NydmyMS)x̂� (µ0NxdmxMS)ŷ (2.13)

dm⇥Bd ⇡�(µ0NzdmyMS)x̂� (µ0NzdmxMS)ŷ (2.14)

this leads to the following equations:

dMx

dt
=�iwtdmx =�g(dmyB0 +µ0(Ny �Nz)dmyMS) (2.15)

dMy

dt
=�iwtdmy =�g(�dmxB0 +µ0(Nz �Nx)dmxMS) (2.16)

The resonance FMR conditions will be given by:

w0 = g
q
[B+µ0(Nx �Nz)MS][B+µ0(Ny �Nz)MS] (2.17)

For a sphere, where the diagonal components of the demagnetisation matrix are equal leads
to:

wsphere
0 = gB (2.18)

For a thin film system, with its surface normal parallel to the z axis, the resonance frequency
is:

w thin f ilm
0 = g(B�µ0MS) (2.19)

The anisotropy field can be included as well in a tensorial form Bk =�µ0K̃ ·M and leads
to a resonance frequency:

wanis
0 = g

q
[B+µ0[(Nx �Nz)+(Kx �Kz)]MS][B+µ0[(Ny �Nz)+(Ky �Kz)]MS] (2.20)
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For an uniaxial anisotropy, the anisotropy field can be written as Bk =
2K1
MS

ẑ, hence the z
only component of the anisotropy tensor is KZ =� 2K1

µ0M2
S

and the resonance frequency of a
sphere with uniaxial anisotropy becomes:

wuniaxial
0 = g(B+

2K1

MS
) (2.21)

This formula is also valid for systems where the demagnetisation field is negligible.

Spin-wave resonance
In the presence of pinning effects at the surface, spin waves can be excited within the

magnetic system [35], as shown in Fig. 2.2. The quantised spin-waves are called magnons.
To determine the magnon dispersion and spin-wave resonance frequencies, an exchange
contribution in the form Dk2 will be added into the resonance frequency calculations, where
D represents the spin-wave exchange constant:

w = g(B+
2K
Ms

)+D(np/d)2 (2.22)

In order to calculate the spin-wave resonance, the magnetic system cannot be treated
anymore as a macrospin. The natural step is hence to discretise the magnetic system to an
ensemble of local magnetic moments (or spins) which are associated to individual atoms,
a framework called atomistic spin dynamics. The development of atomistic spin dynamics
has led to the possibility of treating surface effects at the atomistic model and to include
thermal variation of the magnetic properties. The atomistic spin dynamics framework is
discussed later on in this Chapter and applied for the study of the magnetic properties at
elevated temperature, for nm-sized magnetic systems - Chapter 4.

Fig. 2.2 Ferromagnetic resonance for a one-dimensional system. (Left panel) The uniform
precession mode (k = 0); (Right panel) Non-uniform precessional mode (k 6= 0).
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2.4 Magnon dispersion

A ferromagnet is perfectly ordered at T = 0K, however at non-zero temperature the order
will be disturbed by spin-waves, quantised by magnons. The magnon dispersion relation can
be deduced following a semi-classical approach, where the magnetic system is discretised
in magnetic moments or spins associated to individual atoms. In this Section, the magnon
dispersion relation is derived for a ferromagnetic chain with Heisenberg nearest-neighbours
exchange interaction, following the approach presented in Blundell [36], Coey [37] and
Kittel [33]. The Hamiltonian of spin j can be written as:

H j =�J (S j ·S j+1 +S j ·S j�1 ) (2.23)

the effective field being given by:

h j = J (S j+1 +S j�1 ) (2.24)

In the classical approach, the spin angular momentum at site j will equal the torque
exerted by the field h j, the equation of motion being given by:

dS j

dt
= S j ⇥h j (2.25)

where represents the reduced Planck constant.
The following equations can be easily deduced:

dS j
x

dt
= Sy

jh
z
j �Sz

jh
y
j,

dS j
y

dt
= Sz

jh
x
j �Sx

jh
z
j,

dS j
z

dt
= Sx

jh
y
j �Sy

jh
x
j (2.26)

By considering the excitations at each site very small (Sx
j,S

y
j ⌧ Sz

j = S) an approximate
set of linear equations can be obtained:

8
>><

>>:

dS j
x

dt = JS(2Sy
j �Sy

j�1 �Sy
j+1)

dS j
y

dt =� JS(2Sx
j �Sx

j�1 �Sx
j+1)

dS j
z

dt = 0

(2.27)

By analogy with phonons, we next consider normal mode solutions, Sx
j = uei( jka�wt), Sy

j =

v ei( jka�wt), where (u,v) are constants, a is the lattice constant, i the imaginary number and j
the atomic site in the chain. In order to have a solution for (u,v), the determinant associated
to Eq. 2.27 is required to be zero, this leading to the following equation that needs to be
satisfied:



2.5 Magnetisation switching 17

w = 2JS(1� cos(ka)) (2.28)

For long wavelengths ka⌧ 1 the dispersion relation can be approximated by w = 2JSa2k2.
The coefficient of k2 is usually referred to as the spin-wave stiffness and can be determined
by neutron scattering experiments. Eq. 2.28 represents the magnon dispersion for one-
dimensional ferromagnet with isotropic Heisenberg exchange in the nearest-neighbours
approximation. Numerically, the spin-wave dispersion can be calculated from the spin-
correlation function as shown in Section 3.10.

2.5 Magnetisation switching

For recording media applications, it is necessary to achieve fast and efficient switching of the
magnetisation in order to write the information onto the media.

Switching at T = 0K with an external field

The simplest way to reverse the dynamics of magnetisation is to apply a magnetic field
larger than the anisotropy field, antiparallel to the initial magnetisation orientation - Fig. 2.3,
left panel. The switching mechanism can be investigated by approximating the system to a
macrospin and solving the LLG equation in the absence of thermal effects.

Fig. 2.3 Illustration of magnetisation switching under the application of an antiparallel (left
panel) or perpendicular (right panel) external field. In the case of a perpendicular orientation
of the external field, a continuous application of the field will trigger a precession of the z
component of magnetisation, as shown by the brown line. The grey area shows the region
where the field is applied in order to lead to switching.
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In the simulations, at T = 0K, in the antiparallel orientation of the field and magnetisation
there will be no torque and hence no switching. Therefore, usually the magnetisation is
initialised with a small angle in order to have a finite torque. For finite temperature simulations
and in experiments, there will be always some torque due to the thermal fluctuations that will
start the switching.

A more complex way to switch the magnetisation is by applying a field perpendicular to
the initial orientation of the magnetisation - Fig. 2.3, right panel, this process being known as
precessional switching [38] since the in-plane field triggers a precession of the magnetisation.
If the field is applied only for a short time (grey region) in a way that the magnetisation is
negative when the field is removed, the system will evolve to a switched state due to the
uniaxial anisotropy. This type of switching is usually faster and the field needs to be applied
for a shorter time, however it needs a precise control of the pulse time [34]. If the applied
field is not stopped at the desired spin orientation, the magnetisation will return to its initial
state, in the case of uniaxial anisotropy.

Thermally assisted switching - HAMR

For materials with large anisotropy, such as L10 FePt, the field necessary for switching cannot
be accessible experimentally. In order to lower the anisotropy of the system and record the
information, the media is heated by a temperature pulse, technology called Heat Assisted
Magnetic Recording (HAMR). The heating process leads to a reduction in the magnetisation
and subsequently a reduction in the anisotropy.

Fig. 2.4 Schematics showing the writing process in HAMR media. Extracted from Ref. [39],
©2008 IEEE.
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Fig. 2.4 shows the writing process in HAMR media, that focuses on the variation of the
coercivity during the application of the heat pulse. The coercivity of a material is defined
based on the magnetic hysteresis as the field where the switching of the magnetisation
occurs and depends, in principle, on the anisotropy of the system, the field sweep rate and
temperature.

All-optical switching

The heating of a magnetic material can also be done by the application of femtosecond laser
pulses at ultrafast time-scales [40]. This allowed the observation of single pulse switching
without the necessity of an applied field in ferrimagnets such as GdFe[41]. Fig. 2.5 shows
the magnetisation of Gd and Fe sub-lattices during the switching. This switching mechanism
appears due to the different demagnetising rates and the antiferromagnetic coupling of
the two sub-lattices. Fe demagnetises faster than Gd, and afterwards is magnetised in
the Gd direction, leading to the ferromagnetic-like state (around 1.3 ps) [42]. The Fe
magnetisation then increases in the switched direction, while Gd is still demagnetising. Due
to the antiferromagnetic exchange of the two sub-lattices and the building magnetisation of
Fe, Gd reverses after the demagnetisation.

Fig. 2.5 All-optical switching in ferrimagnetic GdFe triggered by the application of a fem-
tosecond laser pulse, extracted from Ref. [41].

2.6 Atomistic spin dynamics

In the atomistic model, the magnetic system is treated as an ensemble of interacting spins,
where each spin is associated to a magnetic atom. The reduced magnetisation is used as an



20 Spin dynamics and the atomistic model approach

order parameter, for a single material being calculated as :

m =
M
MS

=
1
N

N

Â
i

Si (2.29)

where MS represents the saturation magnetisation, N represents the total number of spins
(atoms) and Si the spin vector associated with each atom. The spin vector represents a
normalised spin moment (dimensionless) and is given by Si = µi/µs, where µi represents
the magnetic moment associated with each atom and µs the saturation value of the moment
associated with each atom. The reduced magnetisation is equivalent to the ratio between the
magnetisation and the saturation magnetisation MS given by the sum of saturation magnetic
moments in the system in the ground state configuration (MSV = Nµs for same-type atoms).

The atomistic Hamiltonian considers only the spins degrees of freedom, and generally
can contain the following energy contributions:

H = Hexch +Hanis +HZeeman (2.30)

where Hexch represents the exchange energy, Hanis the anisotropy energy, usually given
by uniaxial anisotropy and HZeeman the Zeeman energy due to the interaction with an
external applied field. The energy contributions have been described in Section 2.2. The
spin-dynamics is given by solving the Landau-Lifshitz-Gilbert equation as described below.
The equilibrium magnetic properties such as magnetisation can also be calculated using a
Monte-Carlo approach as described in Section 2.7.

LLG equation

Under an external field H the magnetic moment µµµ will precess, the equation describing the
dynamics of the magnetic moment being given by:

dµµµ
dt

=�g µµµ ⇥ (µ0H) (2.31)

where g represents the gyromagnetic ratio for an electron spin (g = 1.76⇥1011 rad s�1T�1)
and µ0 = 4p ⇥10�7 Hm�1 is the permeability of free space.

In order to add dissipation processes, a damping term needs to be introduced. The damped
precession proposed by Landau and Lifshitz [43] has the following form:

∂M
∂ t

=�gM⇥ (H+a(M⇥H)) (2.32)
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where M = µµµ/V represents the magnetisation and a the damping constant. The LL equation
works only in the small damping regime. Gilbert [44] proposed a damping term similar to a
viscous force, h

MS
M⇥ ∂M

∂ t . The equation that describes the evolution of the magnetisation
becomes:

∂M
∂ t

=�gM⇥H+
h

MS
M⇥ ∂M

∂ t
(2.33)

The fact that the term ∂M
∂ t appears in both right and left hand side of the equation, makes it

difficult to solve. However, the Gilbert equation can be converted to a Landau-Lifshitz form,
an equation known as Landau-Lifshitz-Gilbert (LLG). In the case of atomistic spin dynamics,
the LLG equation can be written for each magnetic spin and has the following form:

∂Si

∂ t
=� g

(1+a2)
Si ⇥ (Hi +aSi ⇥Hi) (2.34)

where Si represents the magnetic spin, g the gyromagnetic ratio, a the phenomenological
damping constant and Hi the effective field acting on spin i. The first term of Eq. 2.34 gives
the precession of the magnetic spin around the equilibrium position, while the second term
gives the dissipation term, due to the coupling of the spin with the thermal bath. The effective
field is deduced from the first derivative of the spin Hamiltonian:

Hi =� 1
µiµ0

∂H

∂Si
(2.35)

Analytical solution of the LLG equation
The LLG equation can be solved analytically in the case when the anisotropy field can be

neglected and only an external field H is applied to the system. The solution is given by:

Sx(t) = sech
⇣ agH

1+a2 t +A
⌘

cos
⇣ gH

1+a2 t +B
⌘

(2.36)

Sy(t) = sech
⇣ agH

1+a2 t +A
⌘

sin
⇣ gH

1+a2 t +B
⌘

(2.37)

Sz(t) = tanh
⇣ agH

1+a2 t +A
⌘

(2.38)

where (A, B) are constants of integration and can be deduced from the initial conditions
[45]. The above equations can be used for extracting the effective damping for simulated or
experimental time-traces of magnetisation. In the case when anisotropy cannot be anymore
neglected, there is no universal solution to the LLG equation and obtaining the anisotropy
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and effective damping from the time-traces of magnetisation can be done via a grid-search
method as presented in Section 4.6.

Langevin dynamics

In order to include the thermal effects, we couple the spin system to a thermostat. There are
two key assumptions regarding the thermostat [46]. Firstly, the thermostat has many degrees
of freedom, hence the interaction with the spin will dissipate quickly. Also the thermostat
remains described by a thermal equilibrium distribution at constant temperature, no matter
how much energy and angular momentum is diffusing into the spin system. The second
assumption is that the thermostat has no memory.

Numerically the coupling to the thermostat is done by adding a stochastic field xi to the
effective field Hi, as suggested by Brown [47]:

Hi =� 1
µiµ0

∂H

∂Si
+xi (2.39)

The approach is known as Langevin Dynamics and assumes that the thermal fluctuations
on each site are given by a Gaussian white noise term, frequency independent, and can be
described by the following statistics:

hxia(t)i= 0 (2.40)

hxia(t)x jb (s)i= 2Dda,b di jd (t � s) (2.41)

where hi denotes an average taken over different realisation of the fluctuation field, i, j refer
to spin indices, a,b to Cartesian coordinates, t,s to time, di j represents the Kroneckers
symbol, D refers to the strength of the thermal fluctuations as determined from statistical
mechanics considerations. Eq. 2.41 refers to the fact that xi(t) are statistically independent.
Eq. 2.41 implies that the stochastic term is local in space and time. The strength of the
thermal fluctuations is given by:

D =
akBT
gµi

(2.42)

where kBT is the thermal energy and a represents the phenomenological damping.

Numerical integration
For the stochastic LLG equation, one of the simplest integration schemes that can be

applied is the Heun method. This is a predictor-corrector scheme, in which the first-step
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(predictor) uses an Euler method in order to estimate the initial result, and the next step
corresponds to the correction of the initial result.

After each integration step, the spin magnitude needs to be renormalised to unity, as the
numerical integration leads to an artificial drift in the magnitude of the spin vector. The
LLG equation is solved using the Heun integration scheme which is implemented in the
atomistic-spin dynamics software VAMPIRE [21].

Since the spins of individual atoms evolve onto a sphere, geometrical integration can be
used, as shown by Depondt-Martens [48]. Semi-implicit schemes such as the ones developed
by Mentink et al. [49] can allow the increase of the time-step by a factor of 10 compared to the
Heun scheme, especially for simple ferromagnetic systems at relatively small temperatures.

Illustration of precession and damping
Fig. 2.6 illustrates the precession of the magnetic moment around the effective field

that acts on the spin Si. The torque (Si ⇥Hi - blue arrow) induces a precessional motion
around the effective field - case a), while the damping term (Si ⇥ (Si ⇥Hi) - green arrow) is
perpendicular to the direction of precession and causes the relaxation of the spin towards the
equilibrium position given by the direction of the effective field - case b). Below it is plotted
the temporal evolution of magnetisation together with the analytical solution given by Eq.
2.36 corresponding to the parameters used in the simulation. In the case of finite temperature
simulations, Fig. 2.6, c), the random fluctuations can be observed in the trajectory of the spin
and deviation from the analytical solution can be observed.
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Fig. 2.6 Illustration of spin dynamics for the a) undamped case, b) damped case at T = 0K, c)
damped case at T > 0K. The black arrow illustrates the effective field Hi that acts on the spin
Si (purple arrows), together with the precession (blue arrows) and damping (green arrows)
energy terms. Below it is plotted the temporal evolution of magnetisation together with the
analytical solution given by Eq. 2.36 corresponding to the parameters used in the simulation.

2.7 Monte-Carlo methods

Temperature effects can also be incorporated into the atomistic model by using Monte-Carlo
methods. This method is efficient for equilibrium properties, for dynamic properties the
stochastic LLG equation needs to be used, since the Monte-Carlo method does not possess
an intrinsic time-scale.

Calculations of the properties of a system at thermal equilibrium is based on the calcu-
lation of the partition function Z = Ân eEn/kBT where En represents the energy value of a
n�th state. In practice, the partition function can be calculated only for small systems, as
the sum is over all possible states. In order to avoid this problem the equilibrium properties
are calculated using the Metropolis algorithm [50]. The Metropolis algorithm samples the
energy landscape by going from one state to another with a Boltzmann probability given by
the ratio between the difference in total energy between the two states (DE) and the thermal
contribution (kBT ):

P = e�DE/kBT (2.43)
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Instead of choosing the configurations randomly and weighting them by the Boltzmann
factor, the configuration can be chosen with a Boltzmann probability and weighted evenly.
After initialising the spin system, the Metropolis algorithm consists in selecting randomly
a spin Si. This spin is then randomly changed to S0

i and the energy difference between
the previous and current state of the same spin is calculated as DE = E(S0

i)�E(Si). If
DE < 0 (lower energy state), the new spin direction S0

i is accepted. If DE > 0, the Boltzmann
probability P is calculated via Eq. 2.43. A uniformly distributed random number r 2 [0,1] is
generated and the probability P is compared with this random number r; if the probability
P > r, the new spin direction S0

i is accepted, else the spin state returns to its initial value
Si. This process is repeated until all spins are evaluated. After this, the thermodynamic
quantities (e.g. magnetisation, susceptibility) can be calculated for this specific Monte-Carlo
step. A more computational efficient method is the one developed by Hinzke and Nowak
[51], where the trial move allows the spin to perform either a flip, a random movement within
a cone or within a sphere. In the atomistic spin dynamics package VAMPIRE [21], an adaptive
algorithm is used, where the cone’s width is modified in order to keep an acceptance rate
close to 50% [52].

2.8 Temperature dependence of magnetic parameters

The inclusion of the thermal fluctuations of the spins via the stochastic LLG equation at the
atomistic level allows the calculation of the temperature dependence of the effective magnetic
parameters.

Fig. 2.7 shows the temperature dependence of magnetisation M(T), anisotropy K(T) and
susceptibility c(T ) of the system. The magnetisation and anisotropy curves are calculated
via Monte-Carlo integration for a bulk system of FePt and fitted via M(0)(1�T/TC)b - grey
line with the extracted TC = 720K and b = 0.33.

At the Curie temperature TC the system undergoes a phase transition from the ferromag-
netic to the paramagnetic state (emphasized by the grey area). The phase transition is marked
by a peak in the magnetic susceptibility and no magnetisation or anisotropy. The simulation
box is finite, leading to a loss of the criticality associated to the phase transition and a
subsequent broadening of the susceptibility divergence. The remanent magnetisation above
the Curie temperature is due to the short range correlations that persist above the ordering
temperature. The anisotropy decreases faster than the magnetisation at higher temperatures
and this can be exploited in thermally assisted switching such as HAMR.



26 Spin dynamics and the atomistic model approach

Fig. 2.7 The temperature dependence of different magnetic quantities normalised by their
value at T = 0K. The temperature dependence of the magnetisation is calculated via Monte-
Carlo integration for a bulk system of FePt and fitted via M(0)(1� T/TC)b - grey line
with the extracted TC = 720K and b = 0.33. The scaling law of the anisotropy used for
this plot is K(T ) ⇠ M(T )3 , exponent corresponding to an uniaxial anisotropy [53]. The
susceptibility c(T ) is calculated during the simulation and shows a peak at T = TC. The grey
area emphasizes the region where the system becomes paramagnetic.

2.9 Conclusions

Different magnetic properties are detailed in this Chapter together with the atomistic-spin
dynamics framework. We also discuss here additional applications such as ferromagnetic
resonance and magnetisation switching which have been investigated via simulations.
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Atomistic spin-lattice dynamics model

3.1 Introduction

In order to develop competitive magnetic nano-devices, advanced experimental and theo-
retical frameworks are needed. A complete description of magnetic systems involves the
interaction between several degrees of freedom, such as lattice, spins and electrons, modelled
in a self-consistent simulation framework. Fig. 3.1 shows the characteristic relaxation and
interaction timescales of the degrees of freedom in a magnetic material. Electrons relax
very fast (⇡ 1 fs) in comparison with spins and phonons, hence the first assumption in a
spin-lattice dynamics framework is to consider the electronic degrees of freedom in equi-
librium. The fastest experiments in magnetism that probe the magnetisation dynamics via
ultrafast laser pulses also consider the electrons in equilibrium during the probe time. As the
relaxation time in spin and lattice can be in the same order of magnitude (ps), the two degrees
of freedom need to be treated in a self-consistent framework, called spin-lattice dynamics
(SLD) [54–61]. Although in Ref. [56] the timescale of spin-lattice coupling is in the order
of 100ps, recent experiments that show an ultrafast Einstein-de Haas effect [62] suggest a
much faster time-scale of the spin-lattice coupling of under a picosecond. An overview of
the current SLD framework is presented in Section 3.2.

With the emergent field of ultrafast magnetisation dynamics [40] the flow of energy and
angular momentum between electrons, spins and phonons under the excitation of the ultra-
short laser pulses is intensively studied [62–65]. SLD models can be crucial to disentangle
the interplay between these sub-systems, being successfully employed for the study of
phenomena such as the Einstein-de-Haas effect [66, 60, 67] that appears due to angular
momentum conservation. Phonons strongly pumped in the THz regime by laser excitation
can modulate the exchange field and manipulate the magnetisation as shown for the magnetic
insulator YIG [68] or in Gd [69]. The excitation of THz phonons leads to a magnetic response
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Fig. 3.1 Overview of characteristic timescales in the Spin-Lattice dynamics framework
(adapted from Ref. [56]). Recent experiments that show an ultrafast Einstein-de Haas effect
[62] suggest a much faster time-scale of the spin-lattice coupling of under a picosecond, in
contrast with the 100ps timescale in Ref. [56].

with the same frequency in Gd [69], proving the necessity of considering the dynamics of
both lattice and spins. Phonon excitations can modulate both anisotropy and exchange
which can successfully manipulate [70–72] or potentially switch the magnetisation [73, 74],
ultimately leading to the development of low-power memories. The control of magnetisation
via THz phonons has been discussed in detail in Section 5.3.

Magnetisation relaxation is governed by the damping mechanism. Conventional mod-
elling employs a phenomenological description of damping whereby the precession equation
of motion is augmented by a friction-like term (LLG equation), which represents the coupling
of the magnetic modes (given primarily by the atomic spin) with the non-magnetic modes
(phonons) or electron orbital moments, presented in Section 1.1.2. As current models of mag-
netisation dynamics such as atomistic spin dynamics considers a fixed lattice, the contribution
from the magnon-phonon interaction is not explicitly modelled. Via the employment of
Spin-Lattice Dynamics we can include magnon-phonon scattering events, which contribute
consistently to the effective damping, as shown in Section 5.2. The magnon-phonon damping
mechanism is particularly important for modelling magnetic insulators, such as YIG, where
it has been shown that magnon-phonon scattering leads to the damping mechanism [75].
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3.2 Overview of SLD models

Over the past few years, spin-lattice models have been increasingly used to study magnetic
phenomena. Initially the SLD model has been used by Ma et al. [57, 76, 58] for BCC Fe,
followed by Beaujouan et al. [56] who used the framework to model Cobalt nanowires.
The employment of SLD models would have not been possible without the development
of symplectic integration algorithms based on the Suzuki-Trotter decomposition [77] that
conserve the energy and norm of the spin. Further details regarding the integration scheme
for spin-lattice models is presented in Section 3.4.

Depending on what research problem is investigated via the SLD model, either a micro-
canonical ensemble (NVE) or canonical ensemble (NVT) has been used. The microcanonical
ensemble has been used by Assmann et al. [60] to investigate the angular momentum transfer
between spin and lattice. More precisely, they have used an SLD model to look at the ultrafast
Einstein-de-Haas effect that showed a rotation of the system associated with a change in the
total magnetisation of the sample, rotation that appears due to the conservation law of angular
momentum. To simulate the modelled systems at different temperatures it is necessary to
initially deposit different amounts of energy in the system which then will be transferred to
spin and lattice sub-systems until reaching thermal equilibrium.

The canonical ensembles (NVT) have been extensively used by Ma et al. [78, 57] to
investigate BCC Fe. Here two Langevin thermostats are assumed, each connected individually
to the lattice and spin degrees of freedom. After sufficient time interacting with a thermostat,
the system will reach thermal equilibrium. The dynamics of a degree of freedom cannot
affect the properties of the thermostat, which is not true for the SLD dynamics as spins can
modify the properties of the phonons that can act as a thermostat for the spin system. This
is problematic especially for insulators, where the only dissipation mechanism in the spin
system is through phonons. Hence, although the model presented in the current Chapter
can include two thermostats, for the above reasoning, we consider a single thermostat that
acts on the lattice degrees of freedom only, the spin system being thermalised by spin-lattice
coupling only.

One important aspect that differs between different SLD models presented in the literature
is the spin-lattice coupling term. The coupling of spins to the lattice and vice versa is assured
by the spatial dependence of the magnetic interactions. Some SLD models assume the
presence only of exchange interaction in the system [61], which due to its isotropic nature,
conserves the total angular momentum of the system as shown in Appendix A. Hence, an
additional coupling term is necessary for the transfer between the lattice and spin degrees of
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freedom so as to mimic the effect of spin-orbit coupling. For this, several coupling terms
have been proposed in the literature [54–56] as discussed in Section 3.6.

Although the SLD models have increased in popularity, there are certain aspects that
have not been entirely addressed. Damping due to spin-lattice interaction only, within the
canonical ensemble (NVT) has not been addressed, this step being of interest for example in
future modelling of magnetic insulators at finite temperature, a systematic investigation being
performed in Section 5.2. The magnon and phonon spectra together with the characteristics
of the induced spin noise are shown in Sections 3.9, 3.10, 3.11.

3.3 Equations of motion

The lattice and the magnetic system can directly interact with each other via the position and
spin dependent Hamiltonian. The total Hamiltonian of the system will consist of a lattice
Hlat and magnetic component Hmag:

Htot = Hlat +Hmag (3.1)

The lattice Hamiltonian includes the classical kinetic and potential energies:

Hlat = Â
i

p2
i

2mi
+Â

i< j
U(ri j) (3.2)

Our model includes a harmonic potential (HP) defined as :

U(ri j) =

8
<

:
V0(ri j � r0

i j)
2/a2

0 ri j < rc

0 ri j > rc
(3.3)

where V0 has been parameterised for BCC Fe in [60] and a0 = 1Å is a dimension scale factor.
To be more specific we consider the equilibrium distances r0

i j corresponding to a symmetric
BCC structure. The interaction cutoff is rc = 7.8Å. The harmonic potential has been used for
simplicity, however it can lead to a rather stiff lattice for a large interaction cutoff.

Another choice of the potential used in our model is a Morse potential (MP) parameterised
in [79] for BCC Fe and defined as:

U(ri j) =

8
<

:
D[e�2a(ri j�r0)�2e�a(ri j�r0)] ri j < rc

0 ri j > rc
(3.4)
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The harmonic and Morse potential have been used for simplicity, however other options
can be considered such as embedded atom potential [80, 81]. The properties of the phonons
given by the two choices of the potential are given in Section 3.9.

The magnetic Hamiltonian (Hmag) used in our simulations consists of exchange coupling
(Hexch) and spin-orbit coupling in the form of pseudo-dipolar coupling (Hc).

Hmag = Hexch +Hc (3.5)

Hexch =�Â
i, j

J(ri j)(Si ·S j) (3.6)

Hc =�Â
i, j

f (ri j)


(Si · r̂i j)(S j · r̂i j)�

1
3

Si ·S j

�
(3.7)

The form of exchange J(ri j) used in our simulations for BCC Fe was calculated from first
principle methods by Ma et al. [57] and it follows the dependence:

Ji j = J0

✓
1�

ri j

rc

◆3
Q(rc � ri j) (3.8)

where rc is the cutoff and Q(rc � ri j) is the Heaviside step function. The pseudo-dipolar
coupling term is very localised and, for simplicity, it is assumed proportional to the exchange
strength: f (ri j) =CJ0(a0/ri j)4 as presented in [60] with C the constant of proportionality
and a0 = 1Å a dimension scale factor. For testing reasons, other forms of spin-lattice coupling
terms have been considered and will be presented in Section 3.6.

The total Hamiltonian will depend on pi = mvi, ri and Si degrees of freedom. Hence in
order to obtain the dynamics of our coupled system, we need to solve the following equations
of motion (EOM):

∂ri

∂ t
= vi (3.9)

∂vi

∂ t
=

Fi

mi
, Fi =�∂Htot

∂ri
�hmivi +Gi (3.10)

∂Si

∂ t
=�gSi ⇥Hi, Hi =�∂Htot

∂Si
(3.11)

where Fi and Hi represent the effective force and field, Gi represent the fluctuation term
(thermal force) and h represents the friction term that controls the dissipation into the lattice.
The strength of the fluctuation term can be calculated by converting the dissipation equations
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Quantity Symbol Value Units
Exchange [57] J0 0.904 eV

rc 3.75 Å
Harmonic potential [60] V0 0.15 eV

rc 7.8 Å
Morse potential [79] D 0.4174 eV

a 1.3885 Å
r0 2.845 Å
rc 7.8 Å

Magnetic moment µs 2.22 µB
Coupling constant C 0.5

Mass m 55.845 u
Lattice constant a 2.87 Å
Lattice damping h 0.6 s�1

Table 3.1 Parameters used in the spin-lattice model to simulate BCC Fe.

into a Fokker-Planck equation and then calculating the stationary solution. The thermal force
will have the form of a Gaussian noise:

hGia(t)i= 0, hGia(t)G jb (t 0)i=
2hkBT

mi
da,b di jd (t � t 0) (3.12)

The integration scheme used to solve the EOM is described in Section 3.4. The parameters
used in the simulation to model BCC Fe are presented in Table 3.1.

3.4 Integration algorithm

The integration scheme needs to pass the test of the conservation of energy in the micro-
canonical ensemble, proven analytically in Appendix A and the conservation of angular
momentum, for exchange only magnetic systems. The Heun scheme employed in atomistic
spin dynamics fails to conserve the energy of the system due to the fact that the rotation
of the spin is approximated by a series of translations, which will result in an artificial
addition or subtraction of energy from the system. Hence a symplectic integrator based
on Suzuki-Trotter decomposition (STD) needs to be adopted [82] known for its numerical
accuracy and stability. The scheme allows it to deal with non-commuting operators, such as
in the case of spin-lattice models and conserves the energy and space-phase volume (hence
its symplectic nature). Considering the generalized coordinate X = {r,v,S} the equations of
motion can be rewritten using the Liouville operators:
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∂X
∂ t

= L̂X(t) = (L̂r + L̂v + L̂S)X(t) (3.13)

The solution for the Liouville equation is X(t +Dt) = eLDt X(t). Hence, following the
form of this solution and applying a Suzuki-Trotter decomposition as in Tsai’s work [83, 84],
we can write the solution as:

X(t +Dt) = eL̂s(Dt/2)eL̂v(Dt/2)eL̂r(Dt)eL̂v(Dt/2)eL̂s(Dt/2)X(Dt)+O(Dt3) (3.14)

where Ls,Lv,Lr are the Liouville operators for the spin, velocity and position. This update
can be abbreviated as (s, v, r, v, s) update. The velocity and position are updated using a first
order update, however the spin needs to be updated using a Cayley transform, due to the fact
that the norm of each individual spin needs to be conserved.

eL̂vDtvi = vi +
Dt
mi

Fi (3.15)

eL̂rDtri = ri +Dtvi (3.16)

eL̂SDtSi =
Si +DtHi ⇥Si +

Dt2

2 ((Hi ·Si)Hi � 1
2H2

i Si)

1+ 1
4Dt2H2

i
(3.17)

The spin equations of motion depend directly on the neighbouring spin orientations (through
the effective field) hence individual spins do not commute with each other. We need to further
decompose the spin system L̂s = Âi L̂si . The following decomposition will be applied for the
spin system:

eL̂s(Dt/2) = eL̂s1(Dt/4)...eL̂sN(Dt/2)...eL̂s1(Dt/4) +O(Dt3) (3.18)

The rotation of a single spin is analytically solvable hence no numerical dissipation of the
total energy is present, which leads to the symplecticity of the method [58]. The accuracy of
the integration is assured by testing the conservation laws for energy for the NVE setup for
different coupling terms, as shown in Section 3.6.
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3.5 Code development

The initial spin-lattice code was inherited from our collaborator, Dr. Matthew Ellis [85].
The code was initially written with GP-GPU acceleration, however the integrator used in
his approach was updating the spin simultaneously, this leading to an unstable integration
of the spin system for NVE conditions. The results presented by Dr. Matthew Ellis [85]
were not affected by this issue, as they were performed always with a Langevin thermostat
coupled to the spin sub-system, where total energy conservation was not necessary due to the
constant transfer of energy from the system to the thermostat. Since individual spins do not
commute with each other, a Suzuki-Trotter decomposition for the spin sub-system is needed.
Due to the Suzuki-Trotter algorithm, the integration of the spin system was done in serial
with parallelisation of the mechanical part via OpenMP.

The flowchart of the code is presented in 3.2 and shows the main features of the SLD
code. There are a couple of simulations that can be performed via the SLD software:

• Magneto-elastic calculations - stretch_lattice(). This program distorts the system into
a direction and calculates the anisotropy energy resulting from magneto-elastic effects.

• Damping calculations - calc_damping(). This program rotates coherently the spin
system with a certain angle. During the relaxation in a large applied field, the damping
can be calculated.

• Temperature pulse - temp_pulse(). This program applies a square temperature pulse
to the system between some user-input initial and final time with a maximum constant
temperature defined by Tmax

• THz pulse - thz_pulse(). This program applies to the system a square THz pulse
between some user-input initial and final time. The THz pulse is defined by a user-
input frequency.

• Correlations - correlations(). This program computes the auto-correlation function
for specific k points and outputs the magnon and phonon spectra.

For some of the calculations it is needed to start the system as close as possible to thermal
equilibrium in order to reduce the computational time, hence a preconditioning algorithm
needs to be applied to the system. In order for the system to relax faster to equilibrium, we
enable the usage of a spin damping equal to lmax = 0.01 and a maximum coupling value
of Cmax = 0.5 during the first step of preconditioning - Fig. 3.2. The spin damping and
coupling value allows the system to reach more quickly thermal equilibrium. The second
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Fig. 3.2 Flowchart of SLD code. The left column shows the main blocks of calculations for
an SLD simulation. The preconditioning, simulation and post-simulation blocks loop over a
defined number of integration steps. The right column is a representation of the integration
algorithm.

step of preconditioning involves integrating the system in the absence of spin damping and
for the desired value of the coupling term. In the case of the usage of different coupling
strength, this allows the system enough time to evolve in the presence of the new value of the
coupling field. After the preconditioning process, the properties of the system are written into
a configuration file. The preconditioning is performed only for some particular simulations,
for the setups evolved in the testing of the model, no preconditioning is performed. After
preconditioning, we start the simulation loop that performs the integration over a specified
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number of time-steps. As the dynamics in the presence of spin-lattice damping only is slow
due to the small magnon-phonon damping, we then integrate the system after the simulation
time in the presence of a large spin damping to make sure that the state reached during the
simulation loop is an equilibrium state.

The integration flowchart is presented in Fig. 3.2, right. Before updating the spin, position
and velocity, the magnetic fields and mechanical forces are calculated. At the end of the
integration, properties such as spin and lattice temperature, energy components and average
quantities are calculated and output to a file.

3.5.1 Parallelisation

The parallelisation of the code has been done via OpenMP for the mechanical degrees of
freedom. The magnetic degrees of freedom are treated in serial. The speedup is shown in
Fig. 3.3 for -O2 compilation flag for 2 system sizes. The enabling of -O2 offers a speedup of
almost a factor of 2 compared to -O0. Running on 2 and 4 threads the performance is not
very different from the ideal trend. However moving to 8 threads, the speedup is insignificant
compared to 4 threads.

Fig. 3.3 Speedup as function of number of threads for -O2 compilation

The Suzuki-Trotter decomposition implies a serial update of the magnetic degrees of
freedom. However, separating the spin system into non-interacting blocks, it is possible to
parallelise the algorithm [58]. For a 1D chain of 10 atoms, if we consider the interaction
range limited to second nearest neighbours, atom 1 interacts with 2 and 3, however does not
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interact with 4. The Suzuki-Trotter update for the spin sub-system can be written as following:
1, 2, 3, 4,... 9, 10, 9, ...4, 3, 2, 1. As atom 1 does not interact with atom 4 and 7, these
can be updated at the same time. Hence the update sequence can be split in non-interacting
blocks of atoms, where, inside each block, all the atoms are updated simultaneously. For the
system sizes modelled in this thesis, the parallelisation of the mechanical integration brings a
sufficient speedup to the calculations, however, to model large system sizes more efficiently,
parallelisation schemes such as the one presented by Ma et al. [58] are necessary.

3.6 Phenomenological spin-orbit coupling terms

First developments of the SLD models suffered from the fact they did not allow angular
momentum transfer between lattice and spin. In Appendix A we show that, for a system
where the magnetisation dynamics lacks the damping term, for symmetric exchange only
Hamiltonian, both energy and angular momentum are conserved. To enable transfer of
angular momentum an additional coupling term is necessary in order to mimic the effect of
spin-orbit coupling due to symmetry breaking of the local environment. The coupling term
needs to obey the physical tests such as conservation of total energy of the system, within the
NVE setup. However, several coupling terms suffer from the fact that they induce a collective
motion of the atoms in the saturated magnetic state, hence a constant drift in the total energy
of the system. This aspect, together with different forms of coupling has been investigated in
the next sections.

3.6.1 Simple coupling - Karakurt et al. [54]

Karakurt et al. [54] has proposed a very simple coupling that will mimic the spin-orbit
coupling form L ·S, where L is the orbital moment. The coupling has the following form:

Hi
anis =�CÂ

j
Si · r ji (3.19)

leading to the following dependence of the magnetic fields hi and mechanical forces fi:

hi
x =C/µi Â

j
xi j hi

y =C/µi Â
j

yi j hi
z =C/µi Â

j
zi j (3.20)

f i
x =CÂ

j
Sxi f i

y =CÂ
j

Syi f i
z =CÂ

j
Szi (3.21)
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At T = 0K, the magnetic system is saturated. Let’s assume the spin configuration is S =

(0,0,1), hence a constant force fz will act on the atoms as shown in Fig. 3.4(right). This
is in contrast with the exchange forces Fig. 3.5 (right) which do not present a net force
in a single direction. For the following simulations, the magnetisation is initialised out of
plane with Sz = 0.99 and small random in-plane components. This leads to an initial spin
temperature of about TS = 50K. The lattice is also initialised at a temperature of T = 300K.
The simulation is set up for an NVE calculation. The constant coupling force that appears
on z leads to an uniform translational motion on the z direction, which is non-physical.
Although the mechanical forces that appear due to magnetic contributions are usually small,
for long time-scale simulations, the uniform displacement will be significant and will lead to
a constant pump of energy in the system and a linear increase of the temperature, as shown
in Fig. 3.6.

Fig. 3.4 Components of the coupling field and force for a simple spin-lattice coupling
(Karakurt et al. [54]), C = 0.0001, Sz = 0.99.

In reality every system is attached to a substrate, which can prevent translational or
rotational movements of the system. It is also possible to fix the center of mass of the system
or subtract the averaged forces so as to cancel out the translation motion, however this makes
the simulation slower. Although these fixes can be added into the code in order to prevent
the collective motion of the atoms, we preferred employing a coupling term that does not
have any translational artefacts and obeys the physical test of conservation of energy.

3.6.2 Anisotropy coupling - Perera et al. [55]

Perera et al. [55] have proposed a form of local anisotropy to model the spin-orbit coupling
phenomenon due to symmetry breaking of the local environment. Their approach was
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Fig. 3.5 Components of exchange fields and forces for a simple spin-lattice coupling (Karakurt
et al. [54]), C = 0.0001, Sz = 0.99.

Fig. 3.6 Temperature and energy variation for a magnetic system coupled by a simple
spin-lattice coupling (Karakurt et al. [54]), C = 0.0001, Sz = 0.99.

successful in thermalising the subsystems in the absence of a spin thermostat. The coupling
energy used in their work is:

Hanis =�C1

N

Â
i=1

KiSi �C2

N

Â
i=1

ST
i LiSi (3.22)

where C1,C2 are in units of eV. We first analyse the first term of the coupling energy,
�C1 ÂN

i=1 KiSi with Ki defined as:
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Ki = Â
j, j 6=i

—rif = Â
j, j 6=i

—ri

⇥
(1� ri j/rc)

4 exp(1� ri j/rc)
⇤

(3.23)

The magnetic forces that act on the lattice are given by:

f =�∂Hanis

∂ri j
=�∂Hanis

∂ |ri j|
r̂i j (3.24)
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where:
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i = Â

j, j 6=i


� a

rcri j
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�
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For a particle i the forces given by one interaction with a particle j:

f a = Sx ∂Kx

∂a
+Sy ∂Ky

∂a
+Sz ∂Kz

∂a
, a = x,y,z (3.27)

where Ka is given by:

Ka =
∂f
∂a

=
∂ (1� ri j/rc)4 exp(1� ri j/rc)

∂a
,a = x,y,z (3.28)

The forces can be re-written in matrix form as:
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Considering the following substitutions:

1� ri j/rc = ra

erara2

r2
c

= A

(ra+6)(ra+2) = B
rc

ri j
ra(ra+4) =C

(x j � xi)/ri j = dx

(y j � yi)/ri j = dy

(z j � zi)/ri j = dz

(3.30)

Finally, the magnetic forces that act on the system are:

f x = SxA
⇥
Bdx2 �C(dy2 +dz2)

⇤
+SyAdxdy(B+C)+SzAdxdz(B+C)

f y = SxAdydx(B+C)+SyA
⇥
Bdy2 �C(dx2 +dz2)

⇤
+SzAdydz(B+C)

f z = SxAdzdx(B+C)+SyAdzdy(B+C)+SzA
⇥
Bdz2 �C(dx2 +dy2)

⇤
(3.31)

Similarly, the effective fields that act on the atoms can be written as:

hi =�∂Hs

∂Si
=C1Ki =C1 Â

j, j 6=i
—rif =C1 Â

j, j 6=i
—ri

⇣
(1� ri j/rc)

4 exp(1� ri j/rc)
⌘

(3.32)

Fig. 3.7 Components of the coupling field and force for a on-site spin-lattice coupling (Perera
et al. [55]), C1 = 0.05, Sz = 0.99.
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In a magnetic saturated state, for S = (0,0,1), a non-zero force appears on all three
components of the forces. Considering now a chain of atoms, displacing only in a single
direction, such as x direction, while y = z = 0, the only remaining force will be on the
saturation direction, z. The same happens considering a displacement only on y or z. Hence
we expect to have a net force in a magnetised state that will lead to a translation of the
system. This can also be observed by calculating for a magnetised system of Sz = 0.99 with
a small random in-plane magnetisation - Fig. 3.7. The non-zero force on z direction leads to
a translational motion of the system and a constant increase of the total energy of the system,
hence this form of the coupling term is also unsatisfactory.

3.6.3 Pseudo-dipolar coupling - Akhiezer [86]

In the SLD simulations presented in this work, the spin-lattice coupling used is the pseudo-
dipolar coupling:

Hc =�Â
i, j

f (ri j)


(Si · r̂i j)(S j · r̂i j)�

1
3

Si ·S j

�
(3.33)

The origin of the term still lies in spin-orbit interaction, appearing from the dynamical crystal
field that affects the electronic orbitals and spin states and it has been employed previously
in SLD simulations [56, 60]. It was initially proposed by Van Vleck [87] and Akhiezer [86],
having the same structure of a dipolar interaction, however having a proportionality function
f (ri j) = CJ0a0

4/r4
i j that falls off more rapidly with the distance, hence the name pseudo-

dipolar interaction. The exchange-like term �1
3SiS j is necessary in order to conserve the

Curie temperature of the system under different coupling strengths.
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The magnetic field components and forces have the following form:
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Fig. 3.8 Components of the coupling field and force for a pseudo-dipolar spin-lattice coupling
[86, 60], C = 0.5,Sz = 0.99.

Fig. 3.9 Temperature and energy variation for a magnetic system coupled by a pseudo-dipolar
spin-lattice coupling [86, 60], C = 0.5,Sz = 0.99.

In a magnetically saturated state, for S = (0,0,1), a non-zero force appears on all three
components of the forces. As the forces are linear in displacement, all three components of
the forces will have a non-zero value, hence no evident translation of the lattice. This can be
observed by looking at the coupling force plots in Fig. 3.8. No net force can be observed
created by this coupling term. The total energy is conserved within the machine precision as
shown in Fig. 3.9.
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3.6.4 Single site pseudo-dipolar coupling

A variation of the pseudo-dipolar coupling can be written in a single site form, similar to a a
Néel anisotropy:

Hc =�Â
i, j

f (ri j)


(Si · r̂i j)(Si · r̂i j)�

1
3

SiSi

�
(3.37)

Similarly to the pseudo-dipolar coupling presented in Section 3.6.3, in the magnetised state
the coupling force averages to zero for each component, hence no collective motion of the
atoms will be present. The total energy however shows some small variations in the order
of 10�5, however no drift in energy is observed in ps timescales - Fig. 3.10. The small
fluctuations in energy in the order of 10�5 can be associated to the precision of the calculation
and are similar to the values observed in [57].

Fig. 3.10 Temperature and energy variation for a magnetic system coupled by a single-site
pseudo-dipolar spin-lattice coupling, C = 0.5, Sz = 0.99.

3.7 Magneto-elastic simulations

In the absence of a spin thermostat, the thermalisation process of the spin system happens
via the spin-lattice coupling term that acts as a local anisotropy under thermal distortions.
As the thermal displacements in a system average to zero, no global effective anisotropy
is induced. To induce some effective anisotropy, the cubic symmetry of the lattice needs
to be broken. By stretching the system into a particular direction, the coupling term leads
to the appearance of a uniaxial anisotropy, which then can be calculated to parametrise the
pseudo-dipolar coupling constant C via magneto-elastic simulations.
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The magneto-elastic Hamiltonian can be written for a continuous magnetisation M and
elastic strain tensor e as [88][89]:

Hm�e =
B1

M2
s
Â

i
M2

i eii +
B2

M2
s
Â

i
MiMjei j (3.38)

where (i, j) are coefficients representing the (x,y,z) directions and (B1,B2) can be measured
experimentally [90]. Under strain effects, an effective anisotropy will arise due to the pseudo-
dipolar coupling. To calculate the magnetic anisotropy energy in our simulations, the BCC

lattice is strained along the z direction whilst fixed in the xy plane. The sample is then
uniformly rotated and the energy barrier can be calculated.

Fig. 3.11 Magnetic anisotropy energy as function of strain for different coupling strengths at
T = 0K.

Fig. 3.11 shows the magnetic anisotropy energy (MAE) for different strain values and
coupling strengths, with the magneto-elastic energy density constants B1 obtained from
the linear fit. For the coupling value of C = 0.5, the magneto-elastic coupling obtained
from the fit is B1 = �4.75⇥ 10�4A�3 which is larger than values obtained for BCC Fe
B1 = �3.43 MJ m�3 = �2.14⇥ 10�5 eV A�3[90] measured at T = 300K. Although the
magneto-elastic coupling we obtain for BCC Fe for C = 0.5 is larger than experimental
values, it is important to stress that the large coupling is needed in order to obtain a damping
value that compares to that of magnetic insulators where the contribution to the damping
appears from magnon-phonon scattering predominantly. In reality, in BCC Fe there is a
contribution to the effective damping from electronic sources, which if considered, can lead
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to the usage of smaller coupling strengths which are consistent in magnitude with magneto-
elastic parameters. Indeed, by calculating the magneto-elastic parameter for smaller coupling
strengths (C = 0.018), the experimental values observed in BCC Fe can be recovered.

3.8 Thermalisation of the spin and lattice sub-systems

To check if the two sub-systems have reached equilibrium, we need to calculate both the
lattice (TL - from the Equipartition Theorem) and spin temperatures (TS - from Ref. [91].
These are defined as:

TL =
2

3NkB
Â

i

p2
i

2m
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Âi(Si ⇥Hi)2

2kB Âi Si ·Hi
(3.39)

Fig. 3.12 NVE (left) and NVT (right) simulations for a 10⇥10⇥10 unit cell BCC Fe system
with a pseudo-dipolar coupling term of strength C = 0.5. The spin system is randomly
initialised with a temperature of 1900K, while the lattice velocities are initialised by a
Boltzmann distribution at T = 300K. In both cases we obtain equilibration of the two
subsystems on the ps timescale.

As an initial test of our model we check the thermalisation process of the magnetisation
performed using NVE (micro-canonical) and NVT (canonical) simulations for a periodic
BCC Fe system of 10⇥10⇥10 unit cells. In the case of the NVE simulations, the energy
is deposited into the lattice by randomly displacing the atoms from an equilibrium BCC

structure within a 0.01 Å radius sphere and by initialising their velocity with a Boltzmann
distribution at T = 300K. The spin system is initialised randomly in the x-y plane with a
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constant component of magnetisation of 0.5 in the out of plane direction. In the case of
NVT simulations, the lattice is connected to a thermostat at a temperature of T = 300K. The
parameters used in the simulations are presented in Table 3.1.

Fig. 3.12 shows the thermalisation process for the two types of simulation. In both cases
the spin system has an initial temperature of T = 1900K due to the random initialisation of the
spins. For the NVE simulations, the two subsystems are seen to equilibrate at a temperature
of T = 600K, this temperature being dependent on the energy we deposit initially into the
system. In the NVT simulations, the lattice is thermalised at 300K followed by the relaxation
of the spin towards the same temperature. In both cases we observe that the relaxation of the
spin system happens on a 100 ps timescale, corresponding to typical values for spin-orbit
relaxation.

3.9 Phonon dispersion

The magnon and phonon dispersion is calculated for the high symmetry path of a BCC crystal
structure. The high symmetry points of a BCC Brillouin zone are shown in Fig. 3.13, the
figure being extracted from Ref. [92].

Fig. 3.13 The Brillouin zone for a BCC lattice as extracted from [92], emphasizing the high
symmetry points.

The phonon spectrum is calculated from the velocity auto-correlation function defined in
the Fourier space as [93, 85]:

Ap(k,w) =
Z t f

0
hvp

k (t
0)vp

k (t)ie
�iwtdt (3.40)
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where p = x,y,z, t f is the total time and vp
k (t) is the spatial Fourier Transform calculated

numerically as a discrete Fourier Transform:

vp
k (t) = Â

i
vp

i e�ik·ri (3.41)

Fig. 3.14 Phonon spectrum calculated for a 32⇥ 32⇥ 32 unit cell system at T = 300K,
C = 0.5 for a Morse potential. Right figure includes the projection of the intensity of the
spectra onto the frequency space. Solid lines are the experimental data of Minkiewicz et
al. [94]. For the Minkiewicz et al. data there is only one datapoint for the N-G path for the
second transverse mode which does not show up on the line plots.

Fig.3.14 shows the phonon spectrum for a SLD simulations at T = 300K, C = 0.5 for
a Morse Potential calculated for the high symmetry path of a BCC system with respect
to both energy and frequency units. The phonon spectrum reproduces well the spectrum
observed experimentally [94] in agreement with the results from [85]. The projection of the
spectrum onto the frequency space is shown on the right panel and it is proportional to the
density of states (DOS). The projection of the intensity is plotted on a logscale to be able
to graphically represent the extreme values. The peak close to 10.5THz in the projection of
intensity appears due to the overlap of multiple phonon branches at that frequency. Moving
now to a harmonic potential, Fig. 3.15, considering the potential coefficient parameterised
by [60], we observe that some of the phonon branches overlap. Around G the slope of
the harmonic potential is larger, leading to a more stiff lattice. The projection of intensity
shows a peak at 8.6THz, due to a flat region in the phonon spectrum. The interaction
cutoff for both Morse and Harmonic potential is rc = 7.8Å. The large cutoff makes the
Harmonic potential more stiff, as all the interactions are defined by the same energy V0 and
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Fig. 3.15 Phonon spectrum calculated for a 32⇥ 32⇥ 32 unit cell system at T = 300K,
C = 0.5 for a Harmonic potential. Right figure includes the projection of the intensity of
the spectra onto the frequency space. Solid lines are the experimental data of Minkiewicz et
al. [94].

the difference with respect to the initial displacements of the atomic pairs. This leads to
large mechanical forces even near the interaction cutoff. The Morse potential however has an
exponential dependence on the difference between the interatomic relative distance and a
constant equilibrium parameter r0 which, for interactions close to the cutoff region results in
a lower mechanical force. Although the full symmetry of the BCC Fe phonon spectrum is not
reproduced by the harmonic potential parameterised in [60], the phonon energies/frequencies
are comparable to the values obtained by the Morse potential.

Better parameterisation of the harmonic potential is possible by decreasing the interaction
cutoff and calculating the harmonic potential coefficient from the second derivative of the
Morse potential. The Morse potential can be written as U(x) = D[e�2a(x�r0)�2e�a(x�r0)],
where x = ri j. The second order derivative of the potential is given by:

∂ 2U
∂x2 = 2Da2e�a(x�r0)(2e�a(x�r0)�1) (3.42)

which for the atoms placed at x = a, where a is the lattice constant results in:

∂ 2U
∂x2 = 1.416eV/A2 (3.43)
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Fig. 3.16 Phonon spectra calculated for a 20⇥20⇥20 unit cell system at T = 300K, C = 0.5
for a Harmonic potential parameterised from the Morse potential coefficients (V0 = 1.44eV).
The interaction cutoff is restricted to the nearest and next-nearest neighbours interactions -
rc = 2.875Å. Solid lines are the experimental data of Minkiewicz et al. [94].

Fig. 3.16 shows the phonon spectrum for a small cutoff distance (first and second nearest
neighbours, rc = 2.875A) and a value of the harmonic coefficient close to the analytical
calculations (V0 = 1.44eV). The calculated phonon spectrum gives much better agreement to
the experimental data of Minkiewicz et al. [94], the symmetry of the phonon branches being
recovered.

3.10 Magnon dispersion

The magnon spectra can be constructed by using the dynamical spin structure factor, which
is given by the space-time Fourier transform of the spin-spin correlation function defined as
Cab (r� r0, t) = hSa(r, t)Sb (r0,0)i [95]:

Sab (k,w) = Â
r,r0

eik·(r�r0)
Z t f

0
Cab (r� r0, t)e�iwtdt (3.44)
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Fig. 3.17 Magnon spectrum (x component) calculated for a 32⇥32⇥32 unit cell system at
T = 300K, C = 0.5 for a Morse potential. Right figure includes the projection of the intensity
of the spectra onto the frequency space. The blue line is given by the dispersion equation
Dq2(1�bq2), where the parameters D = 307meV, b = 0.32meVÅ2 have been extracted
from experimental measurements by Loong et al. [96]. The inset shows the behavior of the
dispersion for low-q values.

Fig. 3.17 shows the magnon spectrum (x component) obtained within the SLD for a
Morse potential, together with its projection onto the frequency space. The results agree
very well with previous calculations of magnon spectra [97, 61] and with the experimental
magnon dispersion measured by Loong et al. [96]. For the comparison against experiments,
we have used the analytical dispersion equation Dq2(1�bq2), where the parameters D,b
have been extracted from experimental measurements. The inset of Fig. 3.17 shows the
behavior of the dispersion for low-q values. For the harmonic potential the magnon spectrum
is found to be identical to that for the Morse potential with only very small changes regarding
the projection of intensity onto the frequency domain - Fig. 3.18. This is in line with our
discussion in the previous section where the choice of inter-atomic potential had little effect
on the Curie temperature, which is closely linked to the magnonic properties.
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Fig. 3.18 Magnon spectrum (x component) calculated for a 32⇥32⇥32 unit cell system at
T = 300K, C = 0.5 for a Harmonic potential parameterised in [60]. Right figure includes the
projection of the intensity of the spectra onto the frequency space.

Fig. 3.19 Magnon spectrum (x component) calculated for a 32⇥32⇥32 unit cell system at
different temperatures, C = 0.5 for a Harmonic potential parameterised in [60].

The temperature dependence of the magnon spectra is shown in Fig. 3.19. We observe
that with increasing temperature the magnon modes shift to smaller frequencies. This is
a typical situation known as a softening of low-frequency magnon modes, as shown in
Ref. [98].
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3.11 Temporal correlations of the coupling field

Another method to investigate the properties of the system involves calculating the temporal
Fourier transform of individual atoms datasets, and averaging the Fourier response over
multiple atoms of the system. This response represents a projection of the properties of the
system onto the frequency space. Hence the projection of intensities on the frequency space
presented in Section 3.10 has similar features as the spectrum presented in this section. For
the results presented in Fig. 3.20- 3.23, a system of 10⇥10⇥10 BCC unit cells have been
chosen. The system has been equilibrated for a total of 20ps and the Fast Fourier transform
(FFT) is computed for the following 100ps.

Fig. 3.20 The power density of the auto-correlation function in the frequency domain for
magnons, phonons, coupling field for a SLD simulations at T = 300K, C = 0.5.

The correlations of the magnon, phonons and coupling field are investigated within
the SLD model. This is done by calculating the Fast Fourier Transform (FFT) of the x
component of velocity vx, spin Sx and coupling field Hc

x of each atom and averaging over
1000 atom datasets. The FFT is calculated at T = 300K after an initial preconditioning at this
temperature. The amplitude of the FFT spectra of velocities and coupling fields is multiplied
by some scaling values to allow an easy comparison between these quantities. As shown in
Fig. 3.20, the coupling term presents both characteristics of magnons and phonons, coupling
efficiently the two sub-systems. The large phonon peak in Fig. 3.20 observed at a frequency
of 8.6THz appears as a consequence of a flat phonon spectrum for a Harmonic potential,
as observed in the phonon spectrum and its projection onto frequency space in Fig. 3.15.
Additionally, Fig. 3.20 can give us an insight on the induced spin noise within the SLD
framework. The background of the FFT of the coupling field is flat for the frequencies plotted
here, showing that the noise that acts on the spin is uncorrelated.
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Fig. 3.21 The power density of the auto-correlation function in the frequency domain for the
coupling field for a SLD simulation at C = 0.5 and different temperatures.

Fig. 3.22 The power density of the auto-correlation function in the frequency domain for the
coupling field for fixed lattice (ASD) and dynamic lattice.

Fig. 3.21 shows the characteristics of the pseudo-dipolar coupling field for different
temperatures. With increasing temperature, the peaks corresponding to magnons shift to
smaller frequencies due to the reduction of exchange in the system, as observed in Section
3.10. The peak corresponding to phonons remains at the same frequency of about 8.6THz, as
for this temperature range the phonon spectra is not largely affected.

The characteristics of the coupling term with respect to the coupling strength and for
a fixed lattice simulations (ASD) is presented in Fig. 3.22. For the ASD simulations, the
phonon peak is not present due to the lack of lattice vibrations. With increasing coupling, we
observe an increase in the width of the peaks, suggesting that the magnon-phonon damping
could be affected by the coupling strength. We investigate this aspect in detail in Section 5.2.
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Fig. 3.23 The large frequency domain of the power density of the auto-correlation function
in the frequency domain for the coupling field for fixed lattice (ASD) and dynamic lattice.

Moving towards larger frequency regimes, Fig. 3.23 we observe that the enabling of a large
coupling gives rise to a plateau in the spectra at around 150THz which is present as well
for the fixed-lattice simulations (ASD). The plateau is given by a weak antiferromagnetic
exchange that appears at large distances due to the competition between the ferromagnetic
exchange and the antiferromagnetic exchange-like term in the pseudo-dipolar coupling. As
this behaviour appears at very large frequencies and for large coupling strength, we expect
that the dynamics of the spin won’t be affected by this plateau zone.

3.12 Conclusions

In this Chapter the spin-lattice dynamics framework is presented. We start with the theoretical
background of the model and the numerical scheme used for the integration of the equation
of motion and the parallelisation of the algorithm. By performing several physical tests
of the model (such as the conservation of energy for NVE simulations) we conclude that
one important aspect of the spin-lattice dynamics framework is the coupling term which
needs to be formulated in such a way that it does not induce an additional energy drift in the
system. We propose a method to calculate the spin-lattice coupling energy by performing
magneto-elastic simulation for different strains of the system. The magnon and phonon
dispersion curves are presented and compared against BCC Fe, as we have used the properties
of this system to parametrise our model. We conclude that the coupling field is responsible
for the thermalisation of the spin system and it is able to efficiently transfer both energy and
angular momentum between lattice and spin due to the presence of both magnon and phonon
modes in the power density spectra.





4

Damping and anisotropy calculations at elevated
temperatures

4.1 Introduction

The magnetic damping parameter is important from both a fundamental and applications point
of view as it controls the dynamic properties of the system such as magnetic relaxation, spin
waves, domain wall propagation and magnetic reversal processes. The damping mechanism
also plays a crucial role in magnetic systems as it controls the timescale of the magnetisation
dynamics and the coupling of the magnetic system to the energy reservoir. The damping can
control, for example, the switching current [14] necessary in spin-transfer torque magnetic
random access memories (STT-MRAM) or can influence the fluence of the laser pulse
necessary for demagnetising and switching of the sample in ultrafast experiments [15].
Spintronic devices such as race-track memories which are based on domain wall propagation
in magnetic nanowires are also influenced by damping [16]. As current magnetic technologies
are based on nanostructures of smaller and smaller sizes, finite size effects become more
important and can significantly influence the magnetic properties including the damping.
Heating the magnetic system can lead to better switching conditions and devices (such as in
the current Heat Assisted Magnetic Recording or ultrafast magnetic switching in ferrimagnets
- see Section 2.5), therefore understanding the dependence of damping on temperature in
finite size systems is a critical step in the development of magnetic nano-technologies.

One of the technologies that is strongly influenced by damping is magnetic recording,
where the damping constant of the storage medium controls the writing speeds and bit
error rates [99, 100]. The next generation of ultra-high density storage technology is likely
to be based on heat-assisted magnetic recording (HAMR) [8, 6, 101, 39] and the main
candidate for HAMR media is L10 ordered FePt [101, 102] due to its increased uniaxial
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anisotropy and relative low Curie temperature (⇡ 700K). Since HAMR uses small grains for
an increased areal density and the properties of the material need to be investigated over a
large temperature range (room temperature for the storage of the information and close to
the Curie temperature for the writing process), FePt is an ideal candidate for studying the
temperature and finite size effects on the damping.

We start the Chapter with a literature review of the first experimental and theoretical
investigation of damping in FePt. Then, multiple techniques to measure the damping in
magnetic systems are described and used, such as frequency swept ferromagnetic resonance,
thermal ferromagnetic resonance via optical pump-probe techniques and calculation of
damping via a grid-search method. Since we want to study the damping for small grain sizes,
we use atomistic spin dynamics simulation in order to model nanometer grains. Motivated by
recent experimental results ( Richardson et al. [103]) we investigate the damping at elevated
temperature via the above methods. This Chapter also presents an analytical model that
considers the presence of distribution of properties of grains which corresponds to more
realistic conditions of HAMR media and perspectives regarding the behaviour of damping
for exchange coupled composite media (ECC media).

4.2 First investigations of damping in FePt

First investigations of the Gilbert damping for FePt involved experimental measurements via
optical pump-probe techniques as will be described and used in Section 4.5. However, the
damping measured at room temperature varies widely from one study to another: Becker et
al. [104] reported an effective damping of 0.1, and an even larger value (0.21) was found by
Lee et al. [105], while the measurements of Mizukami et al. [106] gave a value of 0.055. It
is important to note that these values include both intrinsic and extrinsic contributions, the
purely intrinsic damping being even smaller than the reported values [106, 107].

Using theoretical models, Ostler et al. [108] have successfully calculated the temperature
dependence of damping in FePt bulk and thin-film systems based on the Landau-Lifshitz-
Bloch (LLB) equation [109], showing an increased damping for thin-film systems, in com-
parison with the bulk case. The LLB equation is derived for a bulk material. It is important
to note that a major contribution to damping, especially at elevated temperatures, arises from
magnon scattering. On the bulk scale these processes are reproduced by the LLB equation,
but with decreasing linear dimension, finite size and surface effects become important. Since
these are not accounted for by the LLB equation it is necessary to use atomistic spin dynamics
(ASD) simulations [21] for nanoscale grains, since ASD calculations can include magnon
scattering processes. Using atomistic spin dynamics, we are able to calculate the FMR
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spectra for small system sizes at elevated temperatures and compare against the analytical
LLB results, as shown in Section 4.4.

Recently, Richardson et al. [103] reported experimental measurements of damping at
elevated temperatures showing an unexpected decrease of damping with temperature. A
decrease in the effective damping can be crucial in HAMR, as this can increase the switching
time, affect the signal to noise ratio and negatively impact the performance of HAMR. In
Ref. [103], a proposed mechanism behind the decreasing of damping is via two-magnon
scattering, mechanism that should be present within the atomistic spin dynamics framework.
A theoretical study on how the damping varies at elevated temperatures and for finite sized
systems is therefore a critically important problem for HAMR and it is important to elucidate
the mechanism behind the decreased damping observed experimentally.

4.3 Ferromagnetic resonance

To calculate the damping using atomistic spin dynamics we apply an out-of-plane magnetic
field (B) to the sample with an additional in-plane oscillating field, Brf = B0 sin(2pnt), which
is the default setup for ferromagnetic resonance experiments - Fig. 4.1. The magnetic
Hamiltonian is given by:

H =�1
2 Â

i, j
Ji j (Si ·S j )� ku Â

i
(Si · e)2 �Â

i
µi [Si · (B+Brf)] (4.1)

The oscillating field will induce a coherent precession of the spins of the system which
will result in an oscillatory behaviour of the in-plane magnetisation. By sweeping the
frequency of the in-plane field, the amplitude of the oscillations of magnetisation will change,
with a maximum corresponding to the resonance frequency - Fig. 4.1, b). By Fourier
transformation of the in-plane magnetisation, the power spectrum as a function of frequency
is obtained. Fig. 4.2 shows the FMR spectrum for a single grain of FePt at 0K. The spectrum
can be fitted by a Lorentzian curve (Eq. 4.2) where w represents the width of the curve (the
FWHM - the full width at half maximum) and A its amplitude. By fitting to Eq. 4.2, the
effective Gilbert damping a and resonance frequency f0 can be extracted.
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Fig. 4.1 a) Illustration of the setup used for ferromagnetic resonance experiments. An out
of plane magnetic field (B) and an in-plane oscillating field, Brf = B0 sin(2pnt), is applied
to the sample; b) Temporal variation of the Mx component of magnetisation for different
frequencies of the oscillating field.

Fig. 4.2 Power spectrum of a single FePt grain at T = 0K, with an initial damping of 0.01.
The power spectrum is obtained by using the squared amplitude of the Fourier Transformation
of the in-plane magnetisation for varying frequencies. By fitting the power spectrum with Eq.
4.2, the input anisotropy and damping can be reproduced. The anisotropy is calculated using
the Kittel formula - Eq. 4.3.
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We note that there are multiple variations with respect to the fitting function of the
FMR spectrum. For example, Ostler et al. [108] uses for the power spectrum fit P(w) =

P0w2/[(waG)2 +(w �w0)2], with the P0, w0 and aG being the fitting parameters, the power
spectrum amplitude, the resonance frequency and damping respectively. Our tests confirmed
however that there is a negligible difference in the parameters obtained via different choices
of the fitting function.

At T = 0K, the damping we extract from the FMR spectrum should correspond to the
input coupling l as no thermal scattering effects are present, hence the effective damping of
the system is given by the Gilbert damping which is the coupling to the heat bath. For this
simulation, we have used an input heat bath constant of l = 0.01, which we then recover by
performing FMR calculations at T = 0K, method that serves as verification of our model.The
damping obtained agrees within 0.1% fitting error. The resonance peak should appear exactly
at the resonance frequency given by the Kittel formula - Eq. 4.3, depending on the applied
field strength (B) and on the perpendicular anisotropy of our system (HK = 2ku

µs
). For an

FePt system the resonance frequency we obtain is 520GHz (due to the exceptionally large
magnetic anisotropy of the system) within 1% fitting error.

Fig. 4.3 Power spectrum of a FePt grain for different temperatures.

With increasing temperature, the magnetic properties such as anisotropy, total magnetisa-
tion and damping vary and this leads to changes in the power spectrum. Fig. 4.3 illustrates
the effect of the temperature on the power spectrum. With increasing temperature the power
spectra shift to lower frequencies, due to the decreased anisotropy. The amplitude also
decreases, as the total magnetisation of the system is reduced for elevated temperatures. This
is in agreement with the spectra shown for FMR calculation using the LLB model [108]. In
the atomistic spin dynamics package software VAMPIRE [21], the calculated magnetisation
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components are divided by the system’s total magnetisation. By computing the power spectra
using the normalised value of the x component of the magnetisation, an increase in the
amplitude of the power spectra with increased temperature is obtained as a sign of increased
spin fluctuations with enhanced temperatures. A systematic investigation of the damping and
anisotropy for different temperatures and system sizes is presented in the next sections.

4.4 High-temperature FMR: damping and anisotropy cal-
culations for FePt

The model parameters for FePt are listed in Tab. 4.4. L10 FePt has a face-centred tetragonal
structure formed of alternating layers of Fe and Pt, which can be approximated to a body-
centered tetragonal structure with the central site occupied by Pt. The ab initio calculations by
Mryasov et al. [110] showed that the Pt spin moment is found to be linearly dependent on the
exchange field from the neighbouring Fe moments. This dependence allows the Hamiltonian
to be written only considering the Fe degrees of freedom. Under these assumptions, by
neglecting the explicit Pt atoms, the system can be modelled as a simple cubic tetragonal
structure with each atomic site corresponding to an effective Fe+Pt moment. The model
used for the FePt system is restricted only to nearest neighbour interactions to minimise
the computational cost of FMR calculations, in contrast with the full Hamiltonian given
by Mryasov et al. [110]. The nearest-neighbour exchange value is chosen to give a Curie
temperature of FePt of 720K, in agreement with reported values for nearest and long-
range exchange magnetic Hamiltonian [111]. The damping parameter has been chosen to
approximate the experimentally measured value in recording media provided by Advanced
Storage Research Consortium (ASRC).

The L10 phase of FePt has a very large uniaxial anisotropy, hence the increased thermal
stability of the grains. The uniaxial anisotropy used in the simulation gives an anisotropy field
of HK = 2ku/µs = 17.56T, slightly larger than the value used by Ostler et al. [108] (15.69T).
The FMR fields (0.05T) used in our simulations are generally larger than experimental FMR
fields to allow more accurate simulations with enhanced temperature. Our tests confirm that
no non-linear modes are excited during the FMR simulations for this value of the FMR field.

For initial calculations we model a granular FePt system as a cylinder of 10nm height and
5nm diameter. For comparison, the bulk FePt system is modelled via a system of 32⇥32⇥32
atoms with periodic boundary conditions. Close to TC, the thermal fluctuations become
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Quantity Symbol Value Units
Nearest-neighbors exchange Ji j 6.71⇥10�21 J

Anisotropy energy ku 2.63⇥10�22 J
Magnetic moment µS 3.23 µB

Thermal bath coupling l 0.05
DC perpendicular field B 1 T

RF in-plane field Br f 0.05 T
Table 4.1 Parameters used for the initial calculations of the damping constant of FePt.

increasingly large for non-periodic systems and can lead to large errors in the determination
of damping and anisotropy. For this reason, to reduce the statistical fluctuations, a system
of 15 non-interacting grains is modelled. This significantly reduces the fluctuations in
the magnetisation components and leads to statistically improved results. The in-plane
magnetisation time series is Fourier transformed, and the damping is extracted as presented
in Section 4.3.

Fig. 4.4 Damping as a function of normalised temperature for bulk and granular FePt system.
The granular system shows overall larger damping than the bulk system, due to additional
magnon scattering processes at the interface. (inset) Magnetisation curves for granular and
bulk FePt. The Curie temperatures for the two systems are: TC=690K (Grains), TC=720K
(Bulk).

Fig. 4.4 shows the damping as a function of temperature for bulk and granular systems.
For comparison the temperature is normalised to the Curie temperature of the systems, which
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differs due to finite size effects [112, 111]. The granular system will have a reduced Curie
temperature due to the cutoff in the exchange interactions at the surface. This is shown
as an inset in Fig. 4.4, where the magnetisation as a function of temperature is computed
for the two systems. The magnetisation of the two systems is calculated via Eq. 2.29 for
different temperatures via a Monte-Carlo algorithm implemented into the software package
VAMPIRE as described in Section 2.7. For each temperature the system has been equilibrated
for 100000 Monte Carlo steps, followed by an average over another 100000 Monte Carlo
steps. In the case of the granular system, a single grain is used, as the thermal fluctuations in
the magnetisation versus temperature curve are reduced by averaging over a large number of
Monte Carlo steps after the initial equilibration. In the case of the damping measurements,
since the damping is extracted from the Fourier transform of the instantaneous magnetisation,
a system of 15 identical non-interacting grains has been used to reduce the thermal noise
at high temperatures. The Curie temperatures for the two systems, determined from the
susceptibility peak, are: for the grains TC = 690K, and for the bulk TC = 720K. The input
Gilbert damping parameter is 0.05, this value being reproduced at T = 0K as expected due
to the quenching of magnon excitations.

With increasing temperature, for both bulk and granular systems, the effective damp-
ing increases. This can be understood as, with enhanced temperature, there is increasing
excitation of magnons which can suffer more complex non-linear scattering processes.

Fig. 4.5 shows the variation of the resonance frequency, from which the anisotropy field
can be extracted from the Kittel formula - Eq. 4.3 (plotted on the right axis of Fig. 4.5).
Finite size effects are present as well in the temperature dependence of the anisotropy, going
from a bulk to a granular system there is a decrease in the anisotropy of the system.
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Fig. 4.5 Resonance frequency (left axis) and anisotropy field (right axis) as a function of
normalised temperature for bulk and granular FePt.

Moving on to granular systems, the inclusion of surfaces will add extra magnon modes
into the system, leading to more scattering effects that will increase the effective damping.
In order to have a qualitative illustration of surface effects we use the damping calculated
from the Landau-Lifshitz-Bloch equation [109]. An analytical solution to the variation of
damping with temperature exists in the LLB description, as given by Garanin [109] and
Ostler et al. [108]. The effective damping as derived within the LLB description is given by:

a(T ) =
l

m(T )

✓
1� T

3TC

◆
, (4.4)

where l is the input coupling to the thermal bath used in atomistic spin dynamics simulations,
TC the Curie temperature of the system, m(T ) =M(T )/MsV the normalised magnetisation. In
principle Eq. 4.4 is strictly valid only for an infinite system. However, as a first approximation,
finite size effects can be introduced empirically using diameter dependent functions m(T,D)

and TC(D) calculated using the atomistic model. In the damping calculations considered
here, the grain surfaces have two effects. Firstly, the loss of coordination at the surfaces
drives a reduction in TC and loss of criticality of the phase transition. This effect can be
accounted for by using numerically calculated m(T,D) and TC(D) for a given diameter D.
The second effect is the increased magnon scattering at the surfaces which is a dynamic effect
and not included in the parameterization of the static properties. Thus it seems reasonable to
associate deviations from the parameterized version of Eq. 4.4 with scattering at the grain
surfaces.
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Fig. 4.6 Damping as a function of temperature for granular (5nm⇥5nm⇥10nm) (a) and bulk
(b) systems. The damping calculated via FMR method is compared against the effective
damping from parameterised the LLB formalism - Eq. 4.4, where m(T,D) and TC(D) are
computed numerically from the atomistic model.

Consequently, we compare our numerical results for a(T,D) with the parameterised
version of Eq. 4.4 - Fig. 4.6 , where m(T,D) is calculated numerically with the ASD model
(shown in Fig. 4.4, inset) and the Curie temperature TC(D) is calculated from the peak of
the susceptibility. For the bulk system, the numerical damping calculated from the FMR
curves with the atomistic model agrees well with the damping calculated with the analytical
formula given by Eq. 4.4. This is consistent with the first comparison of atomistic and LLB
models [113] which showed that the mean-field treatment of [109] agreed quantitatively well
with atomistic model calculations for the transverse and longitudinal damping. However, the
granular system gives a consistently increased damping compared to the analytical formula.
Following the earlier reasoning, this enhancement can be attributed to the scattering effects
at the grain surface.
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Fig. 4.7 Temperature dependence of the damping constant for cube diameters of 4nm, 5nm
and 6nm. Solid lines are calculations using the LLB damping expression. Divergence from
the LLB expression for small particle diameter is indicative of surface effects.

Fig. 4.8 (left) Layer resolved power spectra for a cube of size 4nm at T = 600K; (right) Layer
resolved power spectra normalised to the maximum amplitude per each mono-atomic layer.

To systematically study the effect of the scattering at the surface, we have calculated
the damping as a function of the system size. For simplicity, we consider cubic grains with
a volume varying from 4nm⇥4nm⇥4nm, 5nm⇥5nm⇥5nm and 6nm⇥6nm⇥6nm. Fig. 4.7
shows the damping as a function of the temperature for the different system sizes. With
decreasing grain size, the damping is enhanced, and systematically diverges further from
the LLB analytical damping. The separation of the effects of the finite size on the static and
dynamic properties through comparison with the parameterised version of Eq. 4.4 strongly
suggests that this is due to surface scattering of magnons. Clearly, the magnon contributions
to the damping give rise to an increase of the damping with increasing temperature, which is
inconsistent with the results of Richardson et al. [103].

The results by Richardson et al. [103] suggest that the decrease in the damping is
associated with two magnon scattering processes in very small grain sizes which become
predominant with enhanced temperatures. ASD simulations enable higher order magnon
processes which are more important with elevated temperatures. Interfacial magnon modes
could be responsible for magnon scattering. To understand if additional resonance modes
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are present at the interface we analyse next the FMR spectra of individual mono-atomic
layers of a cubic system of size 4nm - Fig. 4.8. Each layer corresponds to an xy plane of
atoms for varying z coordinate, the interfacial layer being numbered as Layer 1. In Fig. 4.8
(left), the power spectra shows a decreased amplitude for the interface, and by going further
away from the interface, the power spectra saturates at a constant amplitude. The decreased
amplitude at the interface (for Layer 1) appears as a consequence of a decreased value of
the magnetisation that is a result of a decreased coordination of the exchange interaction.
By normalising the power spectra by the maximum amplitude for each individual layer, we
observe that all power spectra collapse into a single curve - Fig. 4.8 (left), characterised by
the same damping and resonance frequency. This is an evidence that the system behaves as a
macrospin and the ferromagnetic mode k = 0 is excited throughout all the system, including
at the interface.

The ASD calculations show unequivocally that the damping value increases with increas-
ing temperature due to magnon processes in granular materials. The question remains: how
to resolve the apparent disagreement with the experiments. The experiments described in
Ref. [103] give the temperature dependence of the linewidth which likely has contributions
from inhomogeneous line broadening arising from dispersion of magnetic properties. In
Section 4.7 we develop a model accounting for the inhomogeneous line broadening which
gives good qualitative agreement with the experiments, showing that in terms of the linewidth
the increase of intrinsic damping is more than compensated for by the loss of inhomogeneous
line broadening at elevated temperatures. This is an important result since it is the intrinsic
damping rather than the linewidth per se that is important for HAMR dynamics.

4.5 Thermal FMR

The damping of magnetic systems can be also determined via optical pump-probe techniques.
As shown by Becker et al. [104] it is possible to calculate the damping from the magnetisation
dynamics triggered by the application of a laser pulse - Fig. 4.9. An external field is
applied with an angle of 45� which makes the equilibrium magnetisation to rotate to a new
equilibrium axis, as shown in the left panel bottom diagram (II) in Fig. 4.9. The laser
pulse is afterwards applied and demagnetises the sample as shown in the right panel of Fig.
4.9. During demagnetisation, the out-of-plane uniaxial anisotropy decreases as well as the
Zeeman energy term, both effects leading to a change in the effective magnetic field direction
and consequently triggering the precession of the magnetisation. Upon remagnetisation,
the oscillatory behaviour of the magnetisation can be fitted to a damped cosine function
and the damping and anisotropy of the system can be extracted. This method is similar to
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extracting the damping from relaxation curves in a magnetic field after a coherent rotation
of the magnetic system with an angle that has been used in Ref. [114] and in the damping
calculation from Section 5.2. However, we note the following differences. Firstly, the
dynamics of the magnetisation will include the effect of the laser pulse, such as heating
and induced local magnetisations due to the inverse Faraday effect. Secondly, there is also
an in-plane component of the field which makes the task of calculating the damping and
anisotropy field from these measurements more difficult, as we will see below.

Fig. 4.9 Experimental thermal FMR measurements extracted from [104]; (left panel) Reso-
nance frequency as a function of applied field; (right panel) Magnetisation dynamics after
the application of a laser pulse.

Thermal ferromagnetic resonance measurements have been performed for an atomistic
spin dynamics simulation for a bulk FePt system. An average over 10 random realisations has
been performed to reduce the effect of the thermal noise. The field is applied with an angle
of 45� as in the experiments in Ref. [104]. The two temperature model used for including the
effect of the laser pulse has been parameterised from John et al. [115] for FePt. The pulse
width used for the simulation is 100fs and the pulse fluence has been varied in the interval
1� 2mJ/cm2. The time-traces of the magnetisation relaxation after the application of the
laser pulse have been fitted to:

mx(t) = Aexp(�t/t)cos(2p f t +f) (4.5)

where t, f ,f , A are fitting parameters. From t the damping parameter can be extracted from
the relaxation time t and this fitting method has been used to extract the damping in granular
systems [116].

a = 1/(2pt f ) (4.6)
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Fig. 4.10 Magnetisation dynamics under the application of a laser pulse of fluence 1 mJ/cm2

for two magnitudes of the applied field. The gold line shows the fit with Eq. 4.5, the damping
being calculated from Eq. 4.6.

Fig.4.10 shows the magnetisation relaxation during the application of a laser pulse of
fluence 1 J/cm2 for two magnitudes of the applied field. The results are fitted just for the
decay region, where the amplitude of the magnetisation has a damped oscillation regime. We
observe that the damping calculated using Eq. 4.6 is influenced by the value of the applied
field. Becker et al. [104] provide a complete set of equations that describe the dependence of
the resonance frequency during the application of a field H at an angle qH for an equilibrium
magnetisation characterised by the angle qeq. The resonance frequency and damping are
given by the following set of coupled equations:

w
g
=
p

H1H2 (4.7)

H1 = H cos(qeq �qH)+HK cos2(qeq) (4.8)

H2 = H cos(qeq �qH)+HK cos(2qeq) (4.9)

2H sin(qeq �qH) = HK sin(2qeq) (4.10)

a =
2

tLg(H1 +H2)
(4.11)

The anisotropy field could be determined from the variation of the frequency as a function
of the applied field, in the condition when we could determine the equilibrium angle from
Eq. 4.10. For particular cases such as qH = 90�, the equations are reduced to a much simpler
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form, however an analytical general expression could not be found. The equilibrium angle
is also dependent on the applied field H, hence a simple fit of Eq. 4.7 as a function of
the equilibrium angle and the anisotropy field is not possible. Although we are not able to
determine the anisotropy field via a simple fit, the variation of the frequency as a function of
initial temperature should reflect the variation of the anisotropy within the system for various
temperatures. Fig. 4.11 shows the resonance frequency as a function of temperature for
two applied field strengths for a bulk system and a finite size cube of 5nm. With increasing
temperature, the resonance frequency decreases due to a reduction of the anisotropy field.
Nevertheless, the small system size presents a smaller anisotropy due to the finite size effect
associated to the magnetisation.

Fig. 4.11 Resonance frequencies for two values of the applied field and a a laser pulse of
fluence 1 J/cm2. The resonance frequencies have been obtained by fitting the magnetisation
with Eq. 4.5.

To determine the damping and anisotropy accurately from thermal FMR curves, a more
complex fitting approach is necessary. Additionally, the dynamics of the magnetization will
include the heating effect from the laser pulse, hence we next describe a more convenient
method to calculate the damping and anisotropy of the system. Instead of applying a laser
pulse, the system is taken out of equilibrium (by a coherent rotation of the spin system),
letting it relax in an applied field, and subsequently recording and fitting the time trace of the
magnetization. The calculation of damping and anisotropy is not based on a classical fitting
procedure, but rather on a grid search model that compares the time trace of the magnetisation
with pre-calculated relaxation curves.
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4.6 Grid-search method

The Gilbert damping can be calculated by fitting the time-traces of the magnetisation relax-
ation obtained via pump-probe experiments [104] as shown in the previous section, however
to avoid the contributions from heating, the damping can be calculated by taking the system
out of equilibrium, letting it relax and subsequently recording the time-trace of the magneti-
sation. Ellis et al. [117] have numerically studied the damping of rare-earth doped permalloy
using the transverse relaxation curves, by fitting them with the analytical solutions of the
LLG equations.

In the case of large anisotropy, exchange interaction and applied field, there is no simple
general solution to the LLG equation. Pai et al. [118] used an applied field much larger
than the anisotropy field so that the dynamics closely approximate that of the LLG equation
with no anisotropy. However, this approach is unsuitable for FePt due to the very large fields
required and also the influence of strong magnetic fields near the Curie temperature. Hence,
we adopt a computational grid search method where we pre-calculate single spin solutions
for the LLG equation, build a database using these solutions and then build an algorithm that
can identify the damping and anisotropy parameters from any transverse relaxation curve.
The method we chose simply involves sweeping through the parameter space, the solution
being given by minimising the sum of the squared residuals, a method known as grid-search.

Fig. 4.12 c2 map calculated using the grid-search method based on single-spin simulations at
T = 0.1K. (inset) The input and fitted magnetisation relaxation curves showing the validation
of the method.

The grid search method can be used to fit time-dependent m(t) curves in the case where
analytical solutions do not exist. The numerical curves that need to be fitted are compared
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with each of the pre-calculated numerical curves with the single spin system. The best match
will be given by the curve with lowest sum of squared residuals, the c2 parameter, where c2

is defined as:

c2 =
N

Â
i=1

h
m(ti)� f (ti,p)

i2
(4.12)

where mi(ti) is the value of the magnetisation at each moment in time ti, f (ti,p) are the
pre-calculated single-spin dependences of the magnetisation at each moment ti, p is the list
of parameters that have been varied (in our case p= (K, a) ). The minimum value of c2 from
all p parameters is the best-agreement numerical solution.

Figure 4.12 shows the calculated c2 as a function of the main parameters, specifically the
anisotropy and damping at T = 0.1K. In order to construct the single spin simulation data-
base, we chose a resolution of Dku = 0.015⇥10�22J for the anisotropy and Dastep = 0.001 for
the damping. It can be seen that the anisotropy is very well resolved: there is a sharp minimum
at ku = 2.625⇥10�22J, which is the closest value to the input anisotropy, ku = 2.63⇥10�22J
taking into account the resolution we use for the database. In the case of damping, the
minimum is wider, leading to an error of approximately 0.017 in determination of damping,
which is slightly larger than the resolution used in the construction of the database.

Fig. 4.13 c2 map at T = 550.1K (left panel) and the variation of c2 as a function of damping
for the corresponding anisotropy (right panel).

Because of the sharp minimum in the c2 map for the anisotropy parameter, the algorithm
to calculate the anisotropy and damping can be written more efficiently as follows. Firstly
the anisotropy parameter is found, by initially calculating c2 with a larger resolution of
Dku to find an initial interval where the solutions (k0,a) are found. Then the maximum
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resolution is used to calculate accurately the fitting parameters. Fig. 4.13 shows the c2 map
for a temperature of T = 550K, the increased resolution of points being present in the region
where the solution ku is found. Looking at the variation of c2 (Fig. 4.13 - right panel) for
the solution ku as a function of damping, we observe the flat region will be responsible for a
considerable error of approximately 0.017 in the determination of damping.

Fig. 4.14 Relative error in the determination of the anisotropy (left panel) and damping (right
panel) via the grid search method.

By splitting the database into two datasets, we can further investigate the accuracy to
which the damping and anisotropy is calculated via the grid search method. The first dataset
is considered the one that we would have access to experimentally (data we try to fit), and
the second one will be the database calculated from single spin simulations to which we will
fit our results. Fig. 4.14 shows the relative error of the anisotropy and damping. The error in
the anisotropy is small, except for the case of low values of anisotropy. For this regime, the
frequency of the in-plane oscillation is very small, hence the database and the experimental
curves will need to be extended to larger timescales for better fit. For the damping, the
errors are much larger, especially in the case of low damping/low anisotropy, where the
timescales need to be extended for better results. For FePt we are in the high ku regime at
small temperatures and looking at the right panel in Fig. 4.14 we observe that in this region
the error in the damping is reduced. With increased temperature, the anisotropy decreases,
however the damping increases (Fig. 4.4) which leads to approximately similar error values
as for the large anisotropy case.

Fig. 4.15 shows the comparison between the two methods of calculation of the damp-
ing (FMR and grid-search) as a function of temperature for a granular system of 15 non-
interacting grains of 5nm diameter and 10nm height. The variations of anisotropy with
temperature agree very well between the two methods, however the grid search method is far
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more computationally efficient. The enhanced computational efficiency comes from the fact
that instead of simulating multiple frequency points to obtain the FMR spectrum, a single
transverse relaxation simulation is needed to calculate the same parameters. The time-scales
for the two simulations are also different: the frequency dependent FMR spectrum requires
around 3 ns for each frequency point to perform the FFT analysis, while the transverse
relaxation method requires, depending on the material, less than 1 ns. Extracted damping
values agree reasonably well between the two methods, within the error bars. For the grid
search method, there will be a damping interval that gives a similar value of c2. For the FMR
experiment, the error bar is computed as the standard error of groups of 5 non-interacting
grains.

Fig. 4.15 Comparison of FMR and grid-search fitting; a) Damping; b) Anisotropy;

4.7 FMR Model including inhomogeneous line broadening

Realistic granular systems will present a distribution of properties which will affect the FMR
spectra of the system. In the presence of a distribution of local resonance fields across the
sample, inhomogeneous line broadening will appear in the sample. Fig. 4.16 (left panel)
shows the FMR spectra in the absence and presence of a normal distribution of anisotropy
fields. The anisotropy field controls the resonance frequency, hence if in the sample there
exists a distribution of anisotropy the FMR spectrum will broaden. With temperature, the
distribution of anisotropy fields in a granular system will change dynamically, and when a
cutoff in the distribution appears (towards TC), the FMR linewidth can decrease, as shown
in Fig. 4.16 (right panel), which can lead to an apparent decreased damping as shown in
Ref. [103]. The distribution of magnetic properties can arise from a distribution of the size
which can induce a distribution of TC, m and HK . At the Curie temperature of the system, the
small grains will be already in the superparamagnetic state hence they will not contribute
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anymore to the total resonance, leading to a cutoff in the distribution of the anisotropy
and consequently a decreased linewidth. In this section, we investigate the effect of the
distribution of magnetic properties on the linewidth. Since it is computationally expensive
to study a system of grains numerically within the ASD model we can, in the first instance,
model the effect of the distributions analytically.

Fig. 4.16 (left panel) Schematics of the inhomogeneous line broadening in the presence of a
normal distribution of anisotropy of sk = 0.1 centered around the value of FePt anisotropy;
(right panel) FMR spectra in the case when there is a cutoff in the distribution of anisotropy
towards the lower values.

The distribution of magnetic properties can arise from a grain size distribution, which
can induce a distribution of TC, m and HK . In the case of a distribution of grains of diameter
D, the power spectrum of the system is expressed by:

Psys( f ,T ) =
Z +•

0
P( f ,D,T )F(D)dD (4.13)

The distribution of size, F(D), is considered lognormal. The power spectrum of a grain
of diameter D can be expressed by [108]:

P( f ,B0,D,T ) =Cm̃D2 f 2gB2
0ã

(ã f̃0)2 +( f � f̃0)2 (4.14)

where m̃ = m(T,D), ã = a(T,D), f̃0 = f0(T,D) = g(B0 +Hk(T,D)),C = ph
16 . This allows

to model both frequency swept FMR (B0 =constant) and field swept FMR ( f =constant).
We note that a distribution of grain size leads to distributions of further properties, starting,

due to finite size effects, with the Curie temperature. Each of these is introduced into the
analytical model as follows. Hovorka et al. [111] have shown via finite size scaling analysis
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that the relation between the size of a grain and its Curie temperature is given by:

TC(D) = T •
C

⇣
1� (d0/D)1/n

⌘
, (4.15)

where d0 = 0.71nm and n = 0.79 [111] parameterised for nearest neighbours exchange
systems and T •

C = 720K. The variation in TC will introduce a variation in the magnetisation
curves given by:

m(T,D) =

✓
1� T

TC(D)

◆b
, b = 0.33. (4.16)

As a further consequence, the anisotropy will be dependent on the diameter. The uniaxial
anisotropy energy K has a temperature dependence in the form of K(T )⇠ m(T )g . For FePt
it was found that the exponent is equal to 2.1 by experimental measurements [119][120] in
agreement with later ab initio calculations [110] . The exponent 2.1 appears for fully ordered
L10 FePt, due to a dominant two-ion anisotropy term, as shown by Mryasov et al. [110], in
calculations considering a long-range exchange Hamiltonian parameterised from ab initio.
The granular films presented in [103] are relatively low anisotropy (around 4T coercive field
at room temperature) which suggests that the two-ion anisotropy is reduced, possibly because
of incomplete L10 ordering. Hence a scaling exponent of 3 of the uniaxial anisotropy energy
(K(T )⇠ m(T )3) describes better the films presented in [103]. The anisotropy field can be
expressed as:

HK(T,D) = H0
Km(T,D)2 (4.17)

Finally the size distribution will produce different variations of damping as a function of
grain size, since:

a(T,D) =
l

m(T,D)

✓
1� T

3TC(D)

◆
. (4.18)

The average magnetisation of distributed grains can be calculated as:

M(T ) =
R •

0 m(T,D)F(D)D2dD
R •

0 F(D)D2dD
(4.19)

and the anisotropy field is calculated as:

HK(T ) =
Z •

0
HK(T,D)F(D)dD. (4.20)

In the presence of distributions of properties, the variation of damping with temperature
can have a complex behaviour, especially close to TC where there is a strong variation of
magnetic properties with temperature and size. On reverting to a monodispersed system
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by setting the distributions to d -functions, the damping is given by Eq. 4.18 resulting in an
increase of linewidth with temperature consistent with the results shown in Fig. 4.7.

Richardson et al. [103] have shown that, in the case of a granular system of FePt, close
to TC a decrease in damping/linewidth is observed - Fig. 4.17. This effect was attributed to
the competition between two-magnon scattering and spin-flip magnon electron scattering.
We have shown via atomistic spin dynamics simulations that surface effects alone cannot
be responsible for a decrease in damping; scattering at the surface leading to increased
damping at high temperatures. In our case the distribution of size will lead to a distribution of
anisotropy which increases the linewidth. Close to the Curie temperature of the system, some
grains will become superparamagnetic and will not contribute further to the FMR spectrum,
hence it is possible that close to TC, the linewidth can decrease.

Fig. 4.17 Field swept FMR measurements for granular systems of FePt, extracted from
Richardson et al. [103] showing a decreased linewidth for elevated temperatures.

Fig. 4.18 presents a case where a decrease in linewidth appears within 30-40K of the Curie
temperature of the system, a similar temperature interval as spanned by the experimental
measurements [103]- Fig. 4.17. Fig. 4.18 a) and b) show the variation of the FMR field and
linewidth as functions of temperature. The FMR spectra are calculated at constant frequency
of f = 13.7GHz, consistent with the experimental value used in [103]. The decrease in
linewidth is associated with the fact that, close to the Curie temperature of the system, the
small grains become superparamagnetic and do not contribute to the power spectrum. The
loss of the signal from the small grains is especially pronounced due to the enhanced damping
of smaller grains.
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Fig. 4.18 Field swept FMR for a lognormal distribution of grains of average diameter D = 7
nm and sD = 0.17. Input damping l = 0.01, input H0

K = 6.6T, f = 13.7GHz. The anisotropy
is lower than for bulk FePt to allow resonance at a frequency of 13.7GHz corresponding to
experiment. The figure shows (a) the variation of the FMR field, (b) FMR linewidth (DH)
and (c) system magnetisation and anisotropy field as a function of temperature. Close to TC,
the linewidth shows a decrease which translates to a decrease in the damping of the system.
No magnetostatic or exchange interaction between grains is considered.

Fig. 4.19 Temperature dependence of the FMR linewidth for different system sizes; A
lognormal distribution of grains of sD = 0.17 has been used used with an input damping of
l = 0.01, input H0

K = 6.6T, f = 13.7GHz.

The decreased linewidth as a function of the system size is shown in Fig. 4.19. We
observe that even for average grain sizes of 10 nm there is a decreased linewidth, however
the effect is less pronounced that in the case of the smaller dimensions.

To summarize, we have developed a model taking into account inhomogeneous line
broadening arising from the size distribution of the grains which gives rise to concomitant
dispersions of TC, m and K. The model has been used to simulate swept field FMR as
used in the experiments. Calculations have shown that, under the effect of distribution of
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properties, the linewidth can exhibit a decrease towards large temperatures, in accordance
with the experiments of Ref. [103]. The decrease is predominantly due to a transition to
superparamagnetic behaviour of small grains with increasing temperature. This suggests
inhomogeneous line broadening (likely a significant factor in granular films) as an explanation
for the unusual decrease in linewidth measured by Richardson et al. [103]. The decrease in
the inhomogeneous line broadening does not necessary represent a decrease in the effective
Gilbert damping, the calculations in Section 4.4 showing an enhanced damping, an important
result since a large damping is necessary for good performance of HAMR and MRAM
devices.

4.8 FMR in ECC media

Heat-assisted magnetic recording (HAMR) is considered to be the most promising technology
for current hard-disk drives. The performance of HAMR media is limited by a number of
factors, among those the noise due to the distribution of TC that arises from the grain size
dispersion [6]. The heating of recording media in HAMR is necessary to overcome the
writing problem, however other technologies have been proposed to lower the coercive field,
these being based on exchange coupled multilayered systems. For example, via the soft
ferromagnetic phase of the FeRh metamagnet the coercive field can be lowered in FePt/FeRh
bilayer systems [9]. Another promising type of multilayered media is the exchange coupled
composite (ECC) [10–12] that uses low-high Tc materials, for example Fe/FePt that show
lower switching fields than in the case of FePt systems. The switching in the hard/soft
bilayer is via the exchange spring mechanism: firstly the soft layer switches and the exchange
coupling at the interface leads to the switching of the hard layer at smaller fields. Bilayered
systems are also interesting from a fundamental point of view, as the exchange coupling with
a soft layer can largely affect the magnetic properties of the hard layer.

One of the magnetic properties that would be interesting to investigate for ECC media
is the damping. Recent experimental studies by Richardson et al. [121] shows that the
damping in the soft layer is strongly influenced by the coupling at the interface and can
be tuned by two order of magnitudes. The temperature dependence of the damping of the
soft layer has a complex variation, it can be relatively constant for small interface coupling,
however it shows a decrease with increased temperature for large exchange couplings. The
discussions presented in Richardson et al. [121] are for the soft layer, however the effect of
the exchange coupling onto the hard layer damping is also an interesting problem to address.
As experimentally it is not possible to investigate the properties of the hard layer over both
small and large temperature range, due to necessity to access a large range of frequencies,
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employing theoretical models such as atomistic spin dynamics is crucial for the study of
damping in bilayer systems.

In the next part of this Section we provide preliminary results of the damping variation as a
function of the exchange coupling strength for a simplistic model of ECC media that consists
of two macrospins which approximate the soft and hard material in the granular structure.
The two macrospins will be coupled by an exchange interaction, which experimentally is
difficult to estimate, hence the coupling at the interface is a modelling parameter that is
varied. We start with the case corresponding to ECC media where one of the macrospin has
lower anisotropy (corresponding to the soft layer) than the macrospin corresponding to the
hard layer. The damping and resonance frequency is extracted from the FMR spectrum at
T = 0K.

a) Soft/Hard bilayers
The soft/hard bilayer system consists of a macrospin Shard having the magnetic parameters

corresponding to the FePt system modelled in Section 4.4: input damping - a = 0.05,
input uniaxial anisotropy constant - khard

u = 2.63⇥10�22J (HK = 17.56T). The resonance
frequency calculated from the Kittel formula (Eq. 4.3) for this value of the anisotropy is 520
GHz. The second macrospin Sso f t has a decreased anisotropy with one order of magnitude
(kso f t

u = 0.1khard
u = 2.63⇥10�23J, HK = 1.756T), with a corresponding resonance frequency

of 77GHz. The exchange coupling constant is expressed in percentage relative to the nearest-
neighbours exchange interaction corresponding to FePt (JFePt

i j = 6.71⇥10�21J).
An example of the FMR spectra of individual macrospins at T = 0K, for a coupling

strength of 5% is shown in Fig.4.20, the left and right panels corresponding to the FMR
spectra of the individual macrospins and the system respectively. The individual macrospins
and the system are excited at the same frequency (228 GHz) which is lower than the one
corresponding to the averaged resonance frequencies of individual uncoupled macrospins
(298.5 GHz). This can suggest that the magnetic field at the interface given by the exchange
coupling of the two macrospins can influence the resonance frequency of the system. By
fitting the FMR curves, the damping of the system can be extracted, which in this case gives
the same value of 0.05 as the individual damping of the macrospins.
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Fig. 4.20 FMR spectra for hard/soft bilayers with a coupling constant of C = 5%. The left
panel shows the FMR spectra of individual spins, while the right panel shows the FMR spectra
of the system. The input damping and anisotropy for the two macrospins are: Shard,ahard =
0.05, khard

u = 2.63⇥10�22J; Sso f t ,aso f t = ahard = 0.05, kso f t
u = 0.1khard

u = 2.63⇥10�23J.

Fig. 4.21 Damping and resonance frequency for a soft/hard system as a function of the
coupling strength for different choices of damping for the soft layer. The damping of the
system (left panel) is largely affected by the damping of the soft spin. The resonance
frequency (right panel) presents the same variation as a function of the coupling strength
independent of the soft macrospin input damping.

By modifying the damping of the soft layer, different behaviours of the damping as a
function of the exchange coupling can be observed - Fig. 4.21, left panel. For the soft
layer we choose three values of the input damping: equal to the damping of the hard layer
(aso f t

init = ahard
init = 0.05), smaller (aso f t

init = 0.5ahard
init = 0.025) or larger (aso f t

init = 2ahard
init = 0.1).

With increasing coupling the damping saturates to a value given by the average between the
damping of the soft and hard macrospin, this leading to either an increase or decrease of the
total damping value. Fig. 4.21 (right panel) shows that the resonance frequency increases
with increased coupling and saturates at a value given by the average resonance frequency of
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the two spins (298.5GHz). The coupling at the interface can hence affect the behaviour of
both the damping and resonance frequency.

b) Hard/Hard bilayers
We consider two macrospins of similar uniaxial anisotropy values and the same input

damping: the first spin S1 has magnetic parameters corresponding to FePt (a = 0.05,k1
u =

2.63⇥10�22J, HK = 17.56T), while the second spin S2 has a decreased anisotropy ( k2
u =

2⇥ 10�22J, HK = 14.68T). The two values of anisotropy used correspond to a resonance
frequency of 520GHz and 440GHz as calculated via the Kittel formula.

Fig. 4.22 FMR spectra for hard/hard bilayers with a coupling constant of C = 5%. The
left panel shows the FMR spectra of individual spins, while the right panel shows the
FMR spectra of the system. The input damping and anisotropy for the two macrospins are:
S1,a = 0.05,ku = 2.63⇥10�22J, S2,a = 0.05,ku = 2⇥10�22J.

Fig. 4.22 shows the FMR spectra for a weakly coupled system, together with the variation
of the damping and resonance frequency as a function of exchange coupling - Fig. 4.23. By
increasing the anisotropy of the second macrospin, the same behaviour of the damping with
changing coupling strength can be observed as in the case of the soft/hard bilayers, however
the rate of increasing/decreasing of the damping is modified for the hard/hard bilayers. The
variation in the resonance frequency - Fig. 4.23 (right panel) is smaller than in the case of
the hard/soft layer, due to the similar individual resonance frequencies. We also observe a
variation of the resonance frequency with respect to the input damping of the macrospin S2,
variation that is difficult to distinguish in Fig. 4.21 (left panel) due to the large range of the
resonance frequency.
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Fig. 4.23 Damping and resonance frequency for a hard/hard system as a function of the
coupling strength for different choices of the damping for one of the macrospins. The
continuous lines in the left panel show the damping variation for the soft/hard bilayers. The
damping of the hard/hard bilayers (linepoints) increases/decreases towards the average of
the two macrospins input dampings. The rate of increasing/decreasing of the damping is
enhanced for the hard/hard bilayers. The resonance frequency (right panel) presents the same
variation as a function of the coupling strength.

Via a simple two macrospin model, we have shown that the behaviour of the damping
and anisotropy in the case of coupled bilayers can be complex, depending on both the
exchange coupling at the interface, but as well on the damping of the soft layer. The
general trend observed is that, with increasing coupling strength, both the system’s damping
and resonance frequency goes towards the averaged value of the magnetic parameters of
individual macrospins, since for strong couplings, the system behaves as a single entity. The
rate in the damping variation can also be controlled by the uniaxial anisotropy of one of the
macrospins, being larger in the case of hard/hard bilayers. From the preliminary macrospin
investigation, it is difficult to correlate back to the experimental results by Richardson et
al. [121] since we don’t include the temperature effects yet. Hence FMR simulations on
more realistic ECC media at finite temperature could provide a quantitative description of
experimental results.

4.9 Conclusions

We have calculated the temperature dependence of damping and anisotropy for small FePt
grain sizes. These parameters were calculated within the ASD framework, via simulations of
swept frequency FMR processes and a fitting procedure based on the grid search method.
The grid search method offers a much faster determination of damping and anisotropy,
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parameters crucial for the development of future generation HAMR drives. The damping
calculations at large temperatures showed an increased damping for uncoupled granular
systems as expected due to increased magnon excitation at high temperature. Deviations
from the parameterised expression for the temperature dependence of damping from the
LLB equation with decreasing grain size suggest that scattering events at grain boundaries
enhance the damping mechanism. This increase in damping, however, is not consistent
with the experimental data of Richardson et al. [103] which show a decrease in linewidth
at elevated temperatures. By including the distribution of properties that will arise from a
distribution of grain sizes, we have shown via an analytical model that the behaviour of small
grains with increasing temperature can lead to a decrease in the linewidth in accordance with
the experiments. Preliminary investigation of ECC media indicates a complex behaviour of
the damping, which can be studied in detail in further work.
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Spin dynamics under phonon excitation

5.1 Equilibrium M(T)

To gain a better understanding of properties at thermal equilibrium within the spin-lattice
dynamics model, we have investigated the temperature dependence of the magnetic order
parameter between different frameworks that either enable or disable lattice dynamics,
specifically: SLD or ASD. Since reaching joint thermal equilibrium depends strongly on
the non-collinearity already present in the magnetic system this process is accelerated by
either starting the system from a perfectly magnetised state for T < 300K or from a reduced
magnetisation of M/MS = 0.9 for T > 300K. For the ASD simulation the dynamics is given
by integrating the LLG equation connected to a Langevin thermostat.

Fig. 5.1 shows the comparison of the equilibrium magnetisation using either the harmonic
potential (HP), Morse potential (MP) or fixed lattice (ASD) simulations. The magnetisation
is calculated by averaging for 200ps after an initial equilibration of 800ps (for SLD type
simulations) or 100ps (for ASD) simulations. We observe that even without a spin thermostat
(SLD model) the magnetisation achieves equilibrium via the thermal fluctuations of the
lattice, proving that both energy and angular momentum can be successfully transferred
between the spin and the lattice sub-systems. Additionally, both the SLD and ASD methods
tend towards the same equilibrium magnetisation over the temperature range considered.
This confirms that the equilibrium quantities are independent of the details of the thermostat
used, in agreement with the fact that both SLD and ASD obey the fluctuation-dissipation
theorem - Appendix B. Additionally, as the equilibrium magnetisation does not substantially
differ between the two choices of the potential, this suggests that the harmonic potential,
although simplistic, can reproduce the equilibrium properties of the system.

Since the strength of the exchange interaction depends on the relative separation between
the atoms, any thermal expansion of the lattice will potentially modify the Curie temperature.



88 Spin dynamics under phonon excitation

Fig. 5.1 Magnetisation versus temperature curves for the SLD model with different choices
of lattice potential: MP-Morse Potential, HP-Harmonic Potential and fixed lattice ASD.

However, as highlighted in the inset of Fig. 5.1, the same Curie temperature is observed in
each model. We attribute this to the fact that the thermal lattice expansion is small in the
temperature range considered here due to two reasons: i) the Curie temperature of the system
is well below the melting point of Fe (⇡ 1800K) and ii) we model a bulk, constant-volume
system that does not present strong lattice displacements due to surfaces. We note that
Evans et al. [122] found a reduction of TC in nanoparticles due to a change in structure
when removing the boundaries that consequently reduces the exchange interactions. Within
periodic systems we anticipate fluctuations in the exchange due to changes in interatomic
spacing to be relatively small.

We can approximate a total exchange coupling energy Jt
i j by dividing the average ex-

change field of the final spin configuration of the system by the temporal averaged system’s
magnetisation M. The exchange fields have been output with large temporal resolution (every
10ps) hence there are not enough points for a good temporal average as the one performed
for the magnetisation (every 0.01ps). For this reason, for a first approximation, we use the
instantaneous exchange fields calculated for the final configuration of the system, as defined
in Eq. 5.1 normalised by the saturation exchange coupling constant JS

i j calculated at T = 0K
for an equilibrium BCC structure.
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Fig. 5.2 Average exchange coupling versus temperature for the SLD model with different
choices of lattice potential: MP-Morse Potential, HP-Harmonic Potential and fixed lattice
ASD. The average exchange coupling is normalised to the value corresponding to the total
exchange coupling energy calculated for fixed lattice simulations (ASD) JS

i j = 2703.29meV.
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Fig. 5.2 shows the average exchange coupling energy normalised by its saturation value
as a function of temperature for a static lattice and dynamic lattice simulation. We observe
that the inclusion of the dynamic lattice leads to small variations of the effective exchange
energy up to 950K, which can motivate the similar Curie temperature observed between the
static and dynamic lattice simulations. For larger temperatures, there are strong variations
in the average exchange coupling due to the decreased magnetisation and strong thermal
effects. Hence an approximation of the exchange constant based on the system’s exchange
field is not valid anymore. Therefore we introduce a second method to calculate the total
exchange coupling energy via a direct summation of the exchange coupling strengths during
the simulation time:

Jt
i j =

1
N Â

i, j
J0
�
1� ri j/rc

�3 (5.2)

Fig. 5.3 shows the normalised effective exchange constant calculated during the simula-
tion time via Eq. 5.2. The normalisation has been done with respect to the total exchange
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Fig. 5.3 Effective exchange coupling energy calculated during the simulation time for a
10⇥10⇥10 BCC Fe unit cell periodic system. The average exchange coupling is normalised
to the value corresponding to the total exchange coupling energy calculated for fixed lattice
simulations (ASD) JS

i j =2703.29meV.

constant for a fixed lattice simulation ASD. We observe that the changes in the effective
exchange are small < 2% for periodic systems even at elevated temperature. An increase in
the effective exchange constant is observed with increasing temperature, which presumably
comes from the symmetric distribution of relative distances of atoms with varying width
(equivalent to different temperatures) leading to a small bias of the average exchange constant
towards larger values. To understand this, let’s assume that the relative distances between
the atoms follow a Gaussian distribution D(ri j) of width s around the equilibrium nearest
neighbours distance r0 = 2.4854Å:

D(ri j) =
1p

2ps
exp
✓
�1

2
(ri j � r0)2

s2

◆
(5.3)

The average exchange hJi will be given by the integral between the exchange function and
the distribution of relative distances:

hJi=
Z rc

0
J(ri j)D(ri j)dri j =

Z rc

0
J0
�
1� ri j/rc

�3 D(ri j)dri j (5.4)

where rc = 3.75Å is the exchange cutoff distance. Fig. 5.4 shows the variation of the
normalised average exchange hJi/J(T = 0K) as a function of the width s of the interatomic
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distances for the nearest neighbours interaction. The vertical lines are given by the distribution
width of nearest-neighbours interatomic distances calculated for different temperatures for a
Morse potential. At T = 0K, there is no distribution of distances, as all atoms are positioned
around an equilibrium BCC structure with a distance corresponding to the nearest neighbours
interaction of r0 = 2.4854Å. With increasing temperature, atoms start to oscillate around the
equilibrium position and this leads to the appearance of a distribution of relative distances,
which has a Gaussian form. The width of the distribution is proportional to the temperature
of the system and can be calculated from the relative distance of the atoms for different
temperatures - Fig. 5.5. For T = 800K and T = 1300K we observe a width of the Gaussian
equal to s = 0.0980 and s = 0.1211 respectively and an increased in the mean displacements
due to the small thermal expansion of the system. Moving now to the calculated average
exchange Eq. 5.4 we observe that between the widths corresponding to temperatures of
800K and 1300K, the increase of the exchange is 1%. This is in agreement to the exchange
energy as a function of temperature observed in Fig. 5.3 where an increase with 0.7% is
observed within this temperature range for a Morse potential. The very small difference can
be attributed to the fact that in the analytical calculation and numerical fit of the relative
distances we include only the distance corresponding to the nearest-neighbours interaction,
however the exchange interaction spreads over a larger cutoff.

Fig. 5.4 Normalised effective exchange coupling energy as a function of distribution width
s calculated analytically via Eq. 5.4. The vertical lines show the distribution widths
corresponding to T = 800K and T = 1300K calculated from the simulation with a Morse
potential for the nearest-neighbours interaction.
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Fig. 5.5 Gaussian distribution of relative distances for nearest-neighbours pairs of atoms for
two temperatures. The parameters of the Gaussian obtained by fitting are presented in the
key of the plot.

5.1.1 Thin film systems

Removing the periodicity of the system within one direction, the equilibrium magnetisation
differs substantially between a fixed and dynamic lattice. Fig. 5.6 shows the equilibrium
magnetisation as a function of temperature for a thin film system of 10⇥10⇥10 BCC unit
cells system size. Comparing the equilibrium magnetisation for two thin films system sizes
of 10 and 16 BCC unit cell size on z direction - Fig. 5.7 we observe that the finite size effects
are more pronounced for SLD models. For a fixed lattice simulation (ASD), the difference
in the equilibrium magnetisation between a thin film system and a periodic/bulk system
is attributed to the loss of coordination at the surface, which affects the exchange energy.
For the spin-lattice simulation, the loss of coordination leads as well to an expansion of the
surface layers, which further influences the position dependent exchange interaction.

The expansion of the surface layer is shown in the plots of the profile of the relative
distance for nearest neighbours interaction for a thin film system of z = 10 layers - Fig. 5.8.
The horizontal blue line shows the distance corresponding to T = 0K neighbor distance. The
relative distance ri j is plotted as a function of the z coordinate of the atom i. The profile
shows an increase in interatomic distance for the top and bottom layers due to the expansion
of the surface in the absence of periodic boundaries. With increased temperature, this effect
is more pronounced, as shown by the grey line which represents the averaged interatomic
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distance for different rz
i . Fig. 5.9 confirms that the top layer presents an increase in both the

mean value of interatomic distance and distribution width. In this plot the distributions of the
relative distances for the middle and top layer of the system are plotted for a temperature of
T = 800K. For this temperature there is an increase of the averaged distance of about 0.08Å
which can lead to a decreased exchange value and hence a smaller Curie temperature.

Fig. 5.6 Magnetisation versus temperature curves for a 10⇥10⇥10 BCC Fe unit cell thin
film for the ASD model and the SLD, with a Morse Potential.

Fig. 5.7 Magnetisation versus temperature curves for a fixed (ASD - left panel) and dynamic
lattice simulations (SLD, Morse Potential - right panel). The thin film is periodic in xy and
consists of a 10⇥10 BCC unit cells and consist of 10 respectively 16 unit cells in z.
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Fig. 5.8 Relative distance profile for nearest neighbours interaction for a thin film system
of z = 10 layers at two different temperatures; The horizontal blue line shows the distance
corresponding to T = 0K nearest neighbours interaction; The grey lines correspond to the
averaged distances for different rz

i displacements.

Fig. 5.9 Relative distance distributions for nearest neighbours interaction for the top and
middle layer of a thin film system of z = 10 layers at a temperature of T = 800K.

We next calculate the normalised effective exchange constant during the simulation time
via Eq. 5.2. Fig. 5.10 shows that with increased temperature there is a large decrease in
the effective exchange (10% for the 16 layers system and 13% for the 10 layers system at
1100K) which explains the pronounced difference in the Curie temperature of the systems
with respect to the bulk values. Nevertheless, we observe a change in trend close to the Curie
temperature, which can be attributed to a small change in the lattice properties when the
system becomes paramagnetic.
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Fig. 5.10 Effective exchange coupling energy calculated during the simulation time for a
thin film system. The thin film is periodic in xy and consists of a 10⇥10 BCC unit cells and
consist of 10 respectively 16 unit cells in z; The average exchange coupling is normalised
to the value corresponding to the total exchange coupling energy calculated for fixed lattice
simulations (ASD) JS

i j = 2703.29meV.

Finite size effects in granular systems have been intensively studied for recording media
applications using ASD models [111],[123]. Since the SLD model leads to more pronounced
finite size effects, a systematic investigation of the effect of the dynamic lattice on the
equilibrium parameters for small system size is an important problem to look at.

5.2 Magnon-phonon damping

Using our implementation of the SLD model, in this section we evaluate the magnon-phonon
damping for a periodic BCC system. The system is first equilibrated at a non-zero temperature
in an external field of µ0H = 50T applied on the z direction, then the magnetisation is rotated
coherently through an angle of 30�. The system then relaxes back to equilibrium [114]. The
z component of magnetisation is then fitted to mz(t) = tanh( agH

1+a2 t +d) where a represents
the damping, g the gyromagnetic ratio and d a constant related to the initial conditions. The
model system consists of 10⇥10⇥10 unit cells, the damping value being obtained from
fitting mz(t) over 10 different simulations. Each fit value for individual simulations is plotted,
the line showing the average over the damping obtained from the fit.
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Fig. 5.11 Temperature dependence of the damping parameter extracted from fitting the z
component of the magnetisation for two choices of atomic potential - Morse Potential (MP)
and Harmonic Potential (HP). The symbols correspond to individual calculations, whereas
lines indicate the average over 10 realisations.

Fig. 5.11 shows the temperature dependence of the damping parameter for two coupling
strengths and different choice of mechanical potential. With increasing coupling, the angular
momentum transfer is more efficient, hence the damping is enhanced. In our model, the spin
system is thermalised by the phonon thermostat, hence no electronic damping is present.

Neglecting the lattice contribution, the temperature dependence of the macroscopic
damping can be mapped onto the Landau-Lifshitz-Bloch formalism (LLB)[124, 125] and
micromagnetic [108] and ASD simulations [126] have shown it to vary inversely with the
equilibrium magnetisation. The LLB theory shows that the macroscopic damping is enhanced
for large temperatures due to thermal spin fluctuations. Using the equilibrium magnetisation
it is possible to approximate the variation of damping with temperature produced due to
thermal fluctuations within the LLB model, as shown in Section 4.4. From 100K to 400K
the damping calculated via the LLB model increases within the order of 10�5, which is
considerably smaller than the results obtained via the SLD model. This shows that within
the SLD model the temperature increase of the damping parameter is predominantly due
to magnon-phonon interaction, and not due to thermal magnon scattering, as this process
is predominant at larger temperatures. The small temperature damping obtained here (at
T = 50K, a = 4.9⇥10�5) is consistent with the damping observed in magnetic insulators
such as YIG (10�4 to 10�6 [127, 75] ) and for similar SLD simulations (3⇥10�5, [60]).

The results in Fig. 5.11 show that the damping is not greatly affected by the choice of
potential. This happens probably due to the fact that when performing damping simulations,
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only the spin modes around G are excited and for low k-vectors the inter-atomic distance
between neighbouring atoms will not vary significantly.

Fig. 5.12 Damping parameter extracted from fitting the z component of the magnetisation for
different coupling strength and two choices of atomic potential - Morse Potential (MP) and
Harmonic Potential (HP). The symbols correspond to individual calculations, whereas lines
indicate the average over 10 realisations.

The extracted magnon-phonon damping as a function of coupling strength is presented
in Fig. 5.12. In our simulations the temperature and coupling variation of the damping is
quadratic, and we assume that this is due to the form of the pseudodipolar coupling that
thermalises the spin system. Measurements of damping on magnetic insulators such as
YIG showed a linear increase in the damping with temperature [75] which agrees with the
relaxation rates calculated by Kasuya and LeCraw [128] and the relaxation rates calculated in
the NVE SLD simulations in [60]. However, Kasuya and LeCraw suggest that the relaxation
rate can vary as T n, where n = 1�2, the 2 exponent corresponding to larger temperature
regimes. Nevertheless, the difference between the quadratic temperature variation of the
damping observed in our simulations and the linear one observed in experiments can suggest
that the spin-orbit coupling in YIG should be described better by a linear phenomenological
coupling term, such as the one used in [55, 54]. Also, the addition of quantum statistics
[129, 130] for Spin Lattice Dynamics models may yield better agreement with experimental
data of the temperature dependence of the damping.

Changing the form of the pseudodipolar coupling to an on-site form such as Hc =

�Âi, j f (ri j)
�
(Si · r̂i j)2 � 1

3S2
i
�

- Néel like anisotropy, leads to a much smaller damping - Fig.
5.13 (T = 300K, a = 5.32⇥10�5, average over 10 seeds) making it difficult to calculate
accurately the temperature dependence of the damping, especially for large temperatures.
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The magnon-phonon damping can have complex behavior depending on the properties of
the system, hence no universal behaviour of damping as a function of temperature can be
deduced for spin-lattice models.

Fig. 5.13 Temperature variation of the damping for Néel-like on-site coupling, Hc =
�Âi, j f (ri j)((Si · r̂i j)2 � 1

3S2
i ). Damping is extracted from mz(t) fittings for 10 realisations.

To summarize, we have calculated the macroscopic damping, showing that it is not
greatly influenced by the choice of potential, however it is influenced by the form of the
coupling term. This enables the possibility of tailoring the form of the coupling term so it
can reproduce experimental dependencies of damping for different materials.



5.3 Magnetisation switching by THz phonons 99

5.3 Magnetisation switching by THz phonons

5.3.1 Introduction: Controlling magnetisation via laser excitation and
phonons

The interaction of magnetic materials with fs laser pulses has shown multiple fundamental
effects that culminate in the ability to switch the magnetisation by means of purely optical
excitation [41]. The current understanding of these processes employs a thermal description,
where the optical pulse is absorbed by the electron gas and creates a non-equilibrium
distribution that leads to a fast demagnetisation of the spin system and a further relaxation
with the lattice. This description can not be applied to dielectrics, as in these systems, there
is no free electron gas, hence the optical control of the magnetisation needs to be done by
other means. Additionally, thermomagnetic switching increases the temperature of potential
devices, hence non-thermal control of magnetisation that can be applied to a large range of
magnetic materials needs to be found.

There are several mechanisms that could lead to a magnetic response even in insulating
magnetic systems, such as inverse Faraday effect [131], photoinduced magnetic anisotropy
[132] and resonant THz pumping [133]. The inverse Faraday effect is based on impulsive
stimulated Raman scattering by magnons [131, 134] and represents a non-thermal excitation.
An effective magnetic field is generated using a non-resonant circularly polarised light
which can lead to switching in a manner similar to a precessional reversal [135] in an
applied magnetic field, but at much lower time-scales (100-200fs). Magnetocrystalline
anisotropy can be modified by optical induced redistribution of ions in garnets [132] and
can lead to changes of the magnetisation associated with a low heating of the material. In
antiferromagnets, where characteristic frequencies are much larger than in ferromagnetic
materials (in terahertz region), the magnetisation can be excited by terahertz electromagnetic
pulses either directly [133] or via phonons. Controlling spins by optical excitation of
phonons has been demonstrated in some materials either experimentally [71, 69, 72, 136] or
theoretically, showing even the possibility of switching the magnetic order parameter [74, 73].
Switching the magnetisation via phonons can be done non-thermally and can represent a
main phenomenon to drive the reversal in insulators.

There are two main mechanisms in which strongly pumped phonons in the THz regime
can modulate the magnetisation: via the exchange interaction and via the anisotropy, however
in reality there is a combination of both elements. The manipulation of the exchange fields
has been shown in the magnetic insulator YIG [68] or in Gd surface [69] - Fig. 5.14
and appears naturally when exciting the phonons in a magnetic system due to the distance
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dependence of exchange interaction. In YIG, the exchange between different sublattices
is modulated and enables a variation of the sublattice magnetisation, hence a transfer of
angular momentum between different sublattices of the material, with the constraint that the
total angular momentum of the system remains conserved. The excitation of THz phonons
at the surface of the sample at a 3THz frequency leads to a magnetic response with the
same frequency in Gd [69] via the exchange modulation phenomena. The similar frequency
observed in both magnetic and lattice system proves the necessity of considering the dynamics
of both phonons and spins as in the model developed in this thesis.

(a) YIG sublattices - extracted from [68]. (b) Gd(0001) surface - extracted from [69].

Fig. 5.14 Modulation of exchange under the application of a laser pulse between two sub-
lattices in YIG and between surface and sub-surface atoms in Gd.

Fig. 5.15 Schematics of light induced FMR and lattice-mediated oscillations of magnetic
anisotropy, extracted from [137].
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Another mechanism to control the magnetic response by phonon excitation is by modu-
lating the anisotropy via magnetoelastic coupling. Afanasiev et al. [137] has shown that in
FeBO3 which is an antiferromagnetic dielectric, under the excitation of a fs laser pulse, an
acoustic wave is generated into the system that leads to a modulation of anisotropy followed
by a magnetic response. Instead of coupling to the magnetic modes as in ferromagnetic
experiments, the laser couples to the phonons which will lead to a change in anisotropy, as
shown in Fig. 5.15. The modulation of anisotropy pushes the spin system into an anharmonic
regime which potentially can lead to switching.

Other scenarios to control magnetisation is by laser induced strain pulses that are ei-
ther injected into the magnetic system or created at one end of the sample, leading to the
propagation of surface acoustic waves (SAW), as illustrated in Fig. 5.16. The theoretical
investigations in Ref. [73, 74] show that it is possible to switch the magnetisation by means
of acoustic pulses.

(a) Extracted from [74] (b) extracted from [73]

Fig. 5.16 Generation of acoustic pulses that can potentially switch the magnetisation.

The examples presented above clearly suggest that there is a strong interaction between
the spins and phonons in the magnetic system, which if exploited correctly, can lead to
non-dissipative switching of magnetisation which can potentially solve the problem of large
energy consumption of data storage centers.

5.3.2 Switching via THz phonons

To model the effect of THz phonons, we apply a periodic external force to each atom in
the system (Eq. 5.5) for a finite time. For simplicity, the force is applied only on a single
direction a = (1,0,0). In contrast with ferromagnetic resonance experiments, where an
external periodic field is applied to lead the spin system into resonance, here the application
of an external force with no space-phase factor will only lead to a periodic translation of
the system and no excitation of phonons. Hence the introduction of a space-phase factor is
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needed, which has been chosen k = (p/a0,p/a0,p/a0), where a0 is the lattice spacing as
shown in Fig. 5.17. This phase factor corresponds to the P point of the Brillouin zone. The
periodic force is applied from the beginning of the simulation until a time tp, that represents
the pulse width, as suggested by the Heaviside step function Q(tp � t). We use an amplitude
of the THz force f x

0 = 0.05. This leads to oscillations of the atoms around their equilibrium
position smaller than 7% with respect to the lattice spacing depending on the frequency we
excite with, as suggested in Fig. 5.18. The potential used for the following simulations is the
Harmonic Potential and the system simulation size is 10⇥10⇥10 BCC unit cells.

Fa
T Hz(t,r) = f a

0 cos(2pnt +k · r)Q(tp � t) (5.5)

Fig. 5.17 Schematics of THz excitation. A periodic THz force given by Eq.5.5 is applied for
each atom. A phase factor of k = (p/a0,p/a0,p/a0) is used, where a0 is the lattice spacing.
This phase factor corresponds to the P point of the Brillouin zone.

Fig. 5.18 shows the normalised displacement of an atom in the system for two frequencies
(8.3THz and 8.4THz) together with the Fourier Transform of the signal that shows a peak
at the frequencies we excite the system with (green dotted lines). To avoid the initial mode
that appears at the beginning of the excitation of the system we perform the Fast Fourier
Transform (FFT) starting with 20ps. For these frequencies, 8.3THz and 8.4THz, we observe
that the response of the lattice is the largest and this correlates to the phonon spectrum of the
system. By analysing the phonon spectrum at low temperatures - Fig. 5.19 we observe two
aspects: firstly, the 8.3THz and 8.4THz frequencies intersect with the P point of the system,
which corresponds to the k vector we use for the THz force and secondly, there are multiple
phonon modes available in the system to couple to these frequencies. Because of the strong
coupling of the phonon modes with the THz excitation at these precise frequencies given by
the multiple k points at this frequency, the excitation of the lattice leads to a strong magnetic
response that can even switch the magnetisation as shown in Fig. 5.20. In the next part of
this Section we will systematically analyse the switching mechanism via THz phonon and
show the window of parameters where switching can be obtained with very small heating of
the system.
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Fig. 5.18 Temporal evolution and the Fourier Transform of the x coordinate of the atom at
position (0,0,0) normalised to the lattice constant (a) for a Harmonic potential: left panel -
for a frequency of 8.3THz and right panel - for a frequency of 8.4THz. The THz pulse is
applied continuously during the simulation. The dotted vertical line shows the frequency of
the THz pulse. From the peak of the FFT we observe that the lattice excitation corresponds
to the same frequency as the THz pulse.

Fig. 5.19 Phonon spectra of the x component of velocities at T = 10K for a Harmonic
potential; The horizontal green lines show the 8.3THz and 8.4THz frequencies where we
observe the largest magnetic response.

Fig. 5.20 shows the behaviour of the magnetisation for different pulse widths (5ps to
125ps) for two frequencies: 8.3THz (left plot) and 8.4THz (right plot). For small pulse
widths (< 25ps) the change in the magnetisation is very small. With increasing pulse width,
the magnetic system can take more energy from the lattice and switching can occur at 115ps
for a frequency of 8.3THz. For longer pulse widths, the magnetisation oscillates back to the
initial position, suggesting that the mechanism behind switching is similar to a precessional
switching where a small in-plane component of external field is applied to a magnetic system.
The magnetic response is observed only for frequencies in the range 8.3�8.5THz which
correlates to the phonon spectra - Fig. 5.19, where we observe multiple phonon modes
available at this frequency range, especially at the P point in the Brillouin zone, which
corresponds to the k point we excite the system with. When the application of the THz pulse
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Fig. 5.20 Magnetisation behaviour under the application of different THz pulse widths
ranging from 5ps to 125ps at T = 0K. For these calculations, a Harmonic potential and
a coupling strength of C = 0.5 is used. The largest magnetic response is observed for
frequencies in the range 8.3� 8.5THz correlated with the region where multiple phonon
modes are accessible.

has stopped (t > tp), there are very small changes in the magnetisation. This can be explained
by the fact that the dynamics of the magnetisation is very slow due to: i) the small magnon-
phonon damping, ii) there is no external applied field in the system, the only effective field
that can lead the magnetic system returning to +z direction is a small uniaxial anisotropy,
HK = 0.05T. Assuming that HK will play the role of an out-of-plane field that restores the +z
direction of magnetisation, in the presence of such a small field and low values of damping
(only due to magnon-phonon contribution), the relaxation of magnetisation from an in-plane
to an out-of-plane direction can be described analytically by mz(t)= tanh

�
agHt/(1.0+a2)

�

and happens at timescales much larger than the ones accessible via this code (> 30ns). Hence
the apparent constant magnetisation is in accordance with the small timescale presented here.
We have performed additional tests and showed that in the presence of larger anisotropy field
and larger damping (by the inclusion of intrinsic electronic contributions), the magnetisation
shows a recovery to the z direction at the timescale of a few nanoseconds.

We analyse now the switching results in the case of an applied THz pulse of frequency
8.3THz for a pulse width of tp = 115ps - Fig. 5.21 to Fig. 5.25. Fig. 5.21 shows the
magnetisation components during switching, together with the spin temperature of the system.
The system is initialised at T = 0K, with a z component of magnetisation Mz = 0.999 which
gives a spin temperature of 10�6K. During the switching, the change in the magnetisation
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length is less than 0.04%, suggesting that the mechanism behind switching is non-thermal.
Indeed, analysing the spin temperature during switching - Fig. 5.22, we observe that the
increase of temperature is in the mK range, proving the lack of heating during this process.
After the removal of the THz pulse (white region) the magnetisation remains in the switched
state.

Fig. 5.21 Magnetisation dynamics under the application of a THz pulse of frequency 8.3THz
for 115ps. The temporal region where the THz pulse is applied is emphasized by the grey
region. a) Magnetisation dynamics showing a switched state after the application of a THz
pulse; b) Spin temperature during and after the application of a THz pulse.

Under the application of a THz pulse, the lattice temperature does not have a physical
meaning anymore. The THz pulse pumps energy into the lattice and drags the system out of
equilibrium, hence no equilibrium Boltzmann distribution is established for the temperature
to be defined. To check if the lattice is not affected by the application of the THz pulse, we
calculate the average velocities and average displacements during and after the application of
the THz pulse. Fig. 5.22, a) shows that all average components of velocity are very small,
with a dominant x component in the direction where the THz pulse is applied. By calculating
the average displacements with respect to the equilibrium BCC structure Fig. 5.22, b) we
observe that these are very small (about 10�14Å), within machine precision, proving that the
lattice structure is not affected by the THz pulse.

Going now to the magnetic system, we can calculate the average forces produced by the
magnetic subsystem and the average effective fields during the switching process. Fig. 5.23
presents the average exchange and pseudo-dipolar coupling during the application of a THz
pulse and shows that the forces are centered around zero, hence no drift effects will be present
in the lattice due to the magnetic system. The histogram of magnetic forces is shown in Fig.
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5.24 and shows that the distribution is symmetric and centered around 0, which furthermore
proves that no drift in the lattice will occur due to the switching of the magnetisation.

Fig. 5.22 Average velocities (a) and displacements (b) during the application of a THz pulse
of frequency 8.3THz for 115ps (grey region).

Fig. 5.23 Average forces (exchange force - fexch and pseudo-dipolar force - fc) produced by
the magnetic system during the application of a THz pulse of frequency 8.3THz for 115ps
(grey region).



5.3 Magnetisation switching by THz phonons 107

Fig. 5.24 Histogram of average forces (plotted in Fig. 5.22, exchange force - fexch and
pseudo-dipolar force - fc) produced by the magnetic system during the application of a THz
pulse of frequency 8.3THz for 115ps.

Fig. 5.25 Average magnetic fields during the application of a THz pulse of frequency 8.3THz
for 115ps (grey region). The exchange fields are much larger in amplitude, hence they are
plotted on a different scale at the right side of the plot (green axis).

The average magnetic fields are plotted in Fig. 5.25. A different scale is used for the
exchange field (Hexch green lines, right axis) than for the pseudo-dipolar and anisotropy field
(HC, Ha - black lines, left axis) as the atomistic exchange is in general much larger than other
magnetic fields (2700T in equilibrium). Initially the coupling field HC shows a large out of
plane component, hz = 0.27T due to the fact that the initial state of the system is Sz = 0.999,
hence the exchange correction term that enters into the definition of the coupling field will
lead to an out of plane spin component. Under THz excitation, the lattice is distorted and this
can lead to the creation of local in-plane anisotropy, since the force is applied only on the
x direction, hence the coupling field increases to values of about 0.4T in the x component
which can trigger the switching. Variations in the Mz component of the magnetisation - Fig.
5.21 happen at about 40ps, and at this point in time, the in-plane components of the coupling
field reached a value of 0.05T which competes with the uniaxial out-of-plane anisotropy -
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Fig. 5.26. The Mz component of the magnetisation becomes negative at around 80ps and
this correlates to the point where the z component of the coupling field is zero, however the
in-plane components are very strong. The variations of the uniaxial anisotropy field and
exchange follow the form of the variation of the magnetisation. As the system goes in plane,
the uniaxial anisotropy field decreases from 0.05T to �0.05T.

Fig. 5.26 Average coupling and anisotropy fields during the application of a THz pulse of
frequency 8.3THz for 115ps (grey region). The transverse component of the coupling field
Ht

c =
p
(Hx

c )
2 +(Hy

c )2 is plotted together with the out-of-plane components of the coupling
field and anisotropy.

During the application of the THz pulse, not only the coupling term is modified, but
also the exchange field. As the variation in the exchange field overlaps with the variation
in the magnetisation, it is difficult to understand if the exchange modulation triggers the
change in the magnetisation or whether it is the other way around. A better description of
the dynamics of the magnetic system can be understood by looking at the effective coupling
constants, rather than the effective fields - Fig. 5.27. The effective constants are calculated as
an average over the pairs of exchange energies and coupling energies in the systems:

J =
1
N Â

i, j
J0
�
1� ri j/rc

�3 (5.6)

C =
1
N Â

i, j
C0J0/r4

i j (5.7)
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Fig. 5.27 Effective exchange (panel a) and pseudo-dipolar coupling (panel b) under the effect
of a THz pulse of frequency 8.3THz for 115ps (grey region) for a pseudo-dipolar coupling
constant C0 = 0.5. The effective couplings are calculated via Eq. 5.6 and 5.7. Both energy
contributions exhibit a variation during the application of the THz pulse.

Fig. 5.27 shows the variation of the effective exchange coupling (a) and effective pseudo-
dipolar coupling (b) during the application of a THz pulse. We observe that both effective
couplings exhibit a variation during the time of application of the THz pulse. To test which of
the coupling is responsible for the switching of the magnetisation, we consider the case where
the exchange coupling is constant and given by the equilibrium positions r0

i j corresponding to
a BCC structure. The same test cannot be applied to the coupling term as this is responsible
for the thermalisation of the spin system in the absence of a spin thermostat. We observe that
by considering a constant exchange corresponding to an equilibrium BCC structure we still
can obtain switching - as shown in Fig. 5.28. The switching appears at larger frequencies
8.5THz and longer pulse widths. The possibility of switching in the absence of a modulated
exchange energy proves that the pseudo-dipolar coupling is responsible for the switching via
THz phonons. We elucidate that the mechanism behind switching relies on the development
of a local in-plane anisotropy created via the pseudo-dipolar coupling field that triggers a
precessional switching of the system.
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Fig. 5.28 Magnetisation (a) and effective pseudo-dipolar coupling (b) under the effect of
a THz pulse of frequency 8.4THz for 125ps (grey region) for a pseudo-dipolar coupling
constant C0 = 0.5 and a position independent effective exchange interaction.

5.3.3 Switching phase diagram T � 0K

In this section, the switching phase diagram for different THz pulse widths and frequencies
is presented for two temperatures: T = 0K and T = 10K. The system size used in the
simulations is 10⇥10⇥10 BCC unit cells. The colorbar is given by the final value of the Mz

component of the magnetisation, taken at t = 300ps - Fig. 5.29. If the final magnetisation
after the THz pulse is negative, we can consider the system in a switched state, as if let long
enough to evolve, the system will go towards the negative value of saturation. Hence the
phase diagrams in terms of switched/not-switched state are presented in Fig. 5.30.

Fig. 5.29 Switching phase diagram at T = 0K for two coupling values: C = 0.3 and C = 0.5;
The color bar is given by the final value of the z component of the magnetisation.
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Fig. 5.30 Simplified switching phase diagram at T = 0K for two coupling values: C = 0.3
and C = 0.5; The switched state is given by the black colour which represent negative value
of final z component of magnetisation.

Fig. 5.29 shows the phase diagram at T = 0K for a coupling constant C = 0.5 and C = 0.3.
We observe that only frequencies in the range 8.3� 8.4 THz present variations in the Mz
component of the magnetisation and these frequencies relate directly to the accessible phonon
modes at the H point of the Brillouin zone for a Harmonic potential. We observe that for
longer pulse widths, there is an oscillatory behavior of the magnetisation which correlates to
the precessional nature of the switching. The simplified switching phase diagram is shown in
Fig. 5.30 for two values of the coupling constant. We observe that with decreasing coupling,
the initial switching region moves to longer pulse widths. This happens due to the fact that,
for decreasing value of the coupling, the spins are more weakly coupled to the lattice so it is
needed more time to transfer the energy from the phonons to the spins and for switching to
occur.

We next analyse the behaviour of the magnetic system for 8.4THz - Fig. 5.31 and 8.3THz
- Fig. 5.32 for a coupling strength of C = 0.5. The top graphs show the magnetisation
components for the final state of the system (blue points) as a function of pulse width tp,
during the tp = 295ps simulation (black line) and switching profile extracted from the phase
diagram (green line). The bottom graphs show the minimum, maximum and averaged
coupling fields developed during the simulation time of 300ps. The left panels show the
in-plane transverse components of both magnetisation and coupling field calculated as
Mt =

q
M2

x +M2
y , ht

c =
p

(hx
c)

2 +(hy
c)2. Each point is corresponding to a different realisation,

hence the variation of the magnetisation for arbitrary cutoffs of the THz pulse with respect
to the tp = 295ps corresponds to the usage of different random seed. In Fig. 5.31 (top),
the Mz component of the magnetisation clearly shows a transitory oscillation regime, with
switching appearing in the first 40ps of excitation and then oscillations towards the negative
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saturation. This suggests that after 40ps, the THz pulse does not excite the magnetic system
strongly enough, hence after switching the magnetisation oscillates around the new energy
minimum corresponding to the switched state. As the mechanism behind switching is given
by the pseudodipolar coupling that acts as a local in-plane anisotropy, we next analyse the
components of the developed coupling fields. At 40ps we observe the development of a
transverse component of the coupling field that has a maximum absolute value of 0.75T,
Fig. 5.31 (bottom), the development of this field being correlated to the region where we
observe the system being in a switched state. We also observe that the average coupling field
is non-zero both in plane and out-of-plane and this can be attributed to the non-linearity of
the coupling field: although the displacements are symmetric around the equilibrium position
(due to the form of the harmonic potential and the form of the THz force), the form of the
coupling field can lead to a non-zero average.

Fig. 5.31 Behaviour of magnetisation and coupling field for different pulse widths of fre-
quency 8.4THz. Top panel - magnetisation components for the final state of the system
(blue points), during the tp = 295ps simulation (black line) and switching profile extracted
from the phase diagram (green line). Bottom panel - minimum, maximum and average
coupling field components. The left panels show the in-plane (transverse) components of
both magnetisation and coupling field calculated as Mt =

q
M2

x +M2
y , ht

c =
p
(hx

c)
2 +(hy

c)2.

In Fig. 5.32 (top right panel), the Mz component of the magnetisation shows oscillations
between positive and negative saturation. The maximum in-plane coupling field in Fig. 5.32
(bottom left panel) is comparable with the z component and indicates a weaker excitation of
the phonon mode that leads to magnetisation switching.
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Fig. 5.32 Behaviour of magnetisation and coupling field for different pulse widths of fre-
quency 8.3THz. Top panel - magnetisation components for the final state of the system (blue
points), during the tp = 295ps simulation (black line) and switching profile extracted from the
phase diagram (green line). Bottom panel - minimum, maximum and average coupling field
components. The left panels show the in-plane transverse components of both magnetisation
and coupling field calculated as Mt =

q
M2

x +M2
y ,ht

c =
p
(hx

c)
2 +(hy

c)2.

Fig. 5.33 Simplified switching phase diagram at T = 10K for a single realisation and averaged
over 4 realisations for a coupling constant of C = 0.5.

At finite temperature, we expect the switching diagram to be affected by the thermal
fields. To reduce the thermal noise, the switching phase diagram is averaged over multiple
realisations. Fig. 5.33 presents the switching phase diagram for a finite temperature of
T = 10K for a single realisation and for an average over 4 realisations. We observe that
switching occurs in the same frequency range as for the T = 0K case (Fig. 5.29), however the
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initial pulse width necessary for switching decreases with approximately 10ps. The decrease
can be due to the fact that phase diagram is averaged only for 4 realisation, hence a small
change like this of the pulse width can still exhibit an effect of the thermal fluctuations.

5.3.4 Phase diagram for a Morse Potential

Up to this section we investigate the switching mechanism under the application of a THz
pulse for a spin-lattice model where the phonons were characterised by a Harmonic potential.
In this section we replaced the Harmonic potential by a Morse potential as parameterised in
Section 3.9. The switching phase diagram is presented in Fig. 5.34 for an initial temperature
T = 0K. We observe that the temporal regions that present switching are short in comparison
to the results obtained with a Harmonic potential - Fig. 5.30 and the excitation frequencies
are larger. The larger frequencies can be correlated to the fact that the Morse phonon
dispersion presents multiple modes accessible around the P point in this frequency range. For
frequencies larger than 10.3THz no excitations of the magnetic system can be observed in
the simulations, as in order to excite at this frequency we need to use a k-point corresponding
to this frequency range, such as H.

Fig. 5.34 Switching phase diagram at T = 0K for a Morse Potential.

Looking at the lattice displacement on the x direction under a continuous application of a
THz pulse for the atom situated at position (0,0,0) for the Morse potential - Fig. 5.35 (left) we
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observe that the behaviour is very different than in the case of the Harmonic potential. For the
Harmonic potential (Fig. 5.35 - left) after an initial transient regime, the atom oscillates with
a constant frequency around the equilibrium position due to the simplicity of the potential.
For the Morse potential (Fig. 5.35 - left), an initial transient regime (up to 10ps) is followed
by an oscillation regime with a constant frequency (up to 20ps) and then an non-linear regime.
The Fourier Transform (FFT) of the lattice displacement is presented below. While a single
mode is excited in the case of an Harmonic potential, at a frequency corresponding to the
THz excitation, for the Morse potential the initial mode (at 8.6THz, corresponding to the
frequency of the THz pulse) scatters into multiple lower frequency modes. This can explain
the more complicated switching phase diagram, where the switching regions are not anymore
so closely grouped for different cutoffs of the pulse widths. By extracting the main peaks
from the Fourier transform of the x component of the displacement we can correlate these
frequencies to the phonon dispersion curve (Fig. 5.35 - right). In this figure, the black
horizontal line is represented by the frequency of the THz excitation which corresponds
to the P point in the Brillouin zone that has the same k vectors corresponding to the THz
excitation. The green horizontal lines are given by the smaller peaks that appear in the Fourier
Transform and we observe that these correspond to phonon modes around the P�G0 path.

Fig. 5.35 (left panel) Temporal evolution and the Fourier Transform of the x coordinate
of the atom at position (0,0,0) normalised to the lattice constant for a Morse Potential for
a frequency of 8.6THz. (right panel) Phonon spectra of the x component of velocities at
T = 10K for a Morse potential together with horizontal lines that show the frequency of the
THz excitation (black line) and the frequencies where we observe a peak in the amplitude of
the Fourier Transform presented on the left panel (green lines).
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Fig. 5.36 Switching dynamics for a pulse width of 145ps and a frequency of 8.6THz for a
Morse potential. Top right panel (a) - magnetisation components, top left panel (b) - spin
temperature, bottom - field components during the application of the THz pulse.

In comparison with the Harmonic potential, there is a larger increase in the spin temper-
ature - (Fig. 5.36, top right) presumably due to the scattered phonon modes in the system.
The magnetisation also presents additional small peaks during switching proving the rich
dynamics of the phonons in this case (Fig. 5.36, top left). This can be further observed in
the bottom panel of Fig. 5.36 where the magnetic field components are presented, where
the coupling field presents additional high frequency modes with large amplitude. We also
observe a large variation in the magnetisation behaviour and coupling field for different
random seeds in comparison to tp = 285ps simulation - Fig. 5.37. This correlates to the
scattering of the excited phonon mode to lower frequency phonon modes which can give
different magnetisation dynamics for different random seeds. The region where switching is
observed is reduced by 40ps (145 to 185ps). We also observe for tp = 225ps the development
of a very large transverse field.



5.3 Magnetisation switching by THz phonons 117

Fig. 5.37 Behaviour of magnetisation and coupling field for a Morse Potential for different
pulse widths of frequency 8.6THz. Top panel - magnetisation components for the final state of
the system (blue points), during the tp = 285ps simulation (black line) and switching profile
extracted from the phase diagram (green line). Bottom panel - minimum, maximum and aver-
age coupling field components. The left panels show the in-plane transverse components of
both magnetisation and coupling field calculated as Mt =

q
M2

x +M2
y ,ht

c =
p
(hx

c)
2 +(hy

c)2.

Fig. 5.38 Lattice and spin dynamics for a continuous THz pulse of frequency of 10.6THz
for a Morse potential. Left panel - Temporal evolution and the Fourier Transform of the x
coordinate of the atom at position (0,0,0) normalised to the lattice constant; Right panel -
Magnetisation dynamics.

To access higher frequencies we can change the k vector of the THz force in accordance
with the phonon dispersion. The H point is located at a frequency of 10.65THz, hence by
changing the k vector to k = (2p/a0,0,0) we can access the phonon mode corresponding to
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this vector and frequency. The Fourier Transform of the x coordinate of the atom- Fig. 5.38,
left, shows a peak at the frequency of the THz force, proving that the THz excitation couples
to the phonon modes in the system. The low frequency phonon modes are still present, due
to some scattering of the phonon mode corresponding to the H point. On the right panel of
Fig. 5.38 we observe that the z component of the magnetisation becomes negative after about
80ps, and the region where we observe a switched state of the magnetisation is increased.
By computing the switching phase diagram it is possible to obtain the switching conditions
and characteristics for every k point from the phonon dispersion. Nevertheless, we show
that it is possible to study rich magnetisation dynamics under phonon excitation for different
parametrisation of the potential.

5.4 Conclusions

This chapter presents the equilibrium and dynamical properties of a magnetic material under
phonon coupling. Since BCC Fe has been intensively studied within literature for SLD
simulations, in the results presented here we use material parameters for bcc Fe with the
single exception that it is treated as a magnetic insulator, hence no electronic damping is
present. In the case of bulk systems, the equilibrium magnetisation does not depend on the
choice of the mechanical potential and the Curie temperature is not significantly affected
by a dynamic lattice. This is not the case for a thin film system, where a decreased Curie
temperature and stronger finite size effects are present by coupling the magnetic system to
a dynamic lattice. Since the magnetic damping presented in the framework is given only
by magnon-phonon interaction we calculated the magnon-phonon damping for different
temperatures and coupling strengths and we showed that the functional form of the damping
depends on the spin-lattice coupling term.

Since the switching of magnetic material with the smallest dissipative effect is crucial for
next-generation eco-friendly storage devices, we analysed the effect of phonon excitations
onto the switching of magnetic materials. The SLD models are crucial for the investigation
of the switching of the magnetic materials via THz phonons, as via the method developed
here, we are able to access the magnetisation dynamics corresponding to the excitation
of individual or collective phonon modes. Our results suggest that materials that present
a flat phonon spectra (such as in the case of the Harmonic potential) have more defined
switching diagrams, while for the case of the Morse potential, the excited phonon modes can
decay to lower frequency modes and affect the switching region of the material. The results
presented here are important in understanding which phonon modes need to be accessed
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experimentally in order to lead to the highest magnetic response and eventually switching of
the magnetization.





6

Advanced recording media applications

6.1 Heated dot magnetic recording media

Heated dot magnetic recording media (HDMR) represents the ultimate technology that can
allow ultrahigh density of stored information, as shown in the ASTC Roadmap- Fig. 1.2,
Chapter 1. Heated dot magnetic recording media is a combination between Bit Patterned
Media (one single grain used per one single bit) and the Heat Assisted Magnetic Recording
(highly anisotropic media heated up via a laser pulse during the writing process). One
important quantity that needs to be investigated in the case of HDMR is the bit error rate
(BER), which is given by the probability of bits that have not reached the desired orientation
of the magnetisation due to thermal fluctuations. Ultimately, as shown in the magnetic
quadrilemma - Fig. 1.1 the maximum areal density possible to obtain via HDMR technology
will be governed by the minimum BER that can possibly be achieved during reversal.

In this Section the switching probability and the subsequent bit error rate is explored for
the FePt system, which is already the main candidate for HAMR. A possible alternative to
FePt is NdFeB due to its large anisotropy. NdFeB is a permanent magnet used extensively
due to its wide range of applications in the automotive and electronic industry or even in
the medical sector [138], with the potential to target the global climate crisis by enabling its
utilisation in electric vehicles and low carbon methods of power generation. The employment
of NdFeB in HAMR applications is limited by the capacity of the mass-production of this
media. Experimental investigation on how NdFeB can be produced for HAMR applications
have been recently shown [139]. These studies suggest that NdFeB can be potentially used as
an alternative for FePt based HAMR. NdFeB is also a good candidate to tackle the magnetic
quadrilemma, since the BER is affected by the saturation magnetisation, which is larger for
NdFeB than FePt.
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6.1.1 Heated Dot Recording Media: FePt and NdFeB

To model the heated dot experiments we apply a temperature pulse that is Gaussian in time
and a negative out-of-plane magnetic field of B =�1T (Fig. 6.1, left panel). Under the effect
of thermal fluctuations, the system will be demagnetised (Fig. 6.1, centre panel), hence the
anisotropy field of the system will decrease. This will allow the magnetisation to reverse in a
smaller magnetic field, such as B =�1T. By repeating the experiment for an ensemble of 50
identical grains with different thermal field random seeds, we observe that there are grains
for which the magnetisation is not switched, even in a negative field of 1T (Fig. 6.1, right
panel). The grains that have not switched lead to a non-zero bit error rate.

Fig. 6.1 Example of heated dot magnetic simulations for a temperature pulse width of 200ps
and a maximum temperature of Tmax = 700K in an out-of-plane magnetic field of B =�1T
for two FePt cylindrical grain of 3nm⇥3nm⇥5nm; The left panel shows the temperature
profile during the simulation, followed by the total and the z component of the magnetisation.
For the same simulation conditions, with a different sequence of pseudo-random numbers,
either a switched or not-switched state can be obtained - right panel.

The switching mechanism at high temperatures can be understood by analysing the energy
barrier schematics in Fig. 6.2. In the absence of an applied field, for an uniaxial anisotropy
there are two equal energy minima, as shown in Fig. 6.2, left panel. In this case, under the
influence of large thermal excitation, the magnetisation can be in either positive or negative
orientation, as the thermal energy is sufficient for the system to cross from one energy
minimum to another. Under the application of a negative field, Fig. 6.2, right panel, the
energy barrier from the positive to the negative magnetisation is lowered hence the system’s
magnetisation can cross to the negative magnetisation energy minimum. This minimum
corresponding to the negative magnetisation has the lowest energy, hence the system’s
magnetisation will prefer to stay in this orientation. However for high temperature pulses,
the thermal energy can be sufficiently high for the system to make a crossing of the energy
barrier back to the positive magnetisation energy minimum, even if the energy difference
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from the negative to the positive orientation is larger than in the opposite direction. If the
system is then cooled sufficiently fast (as in the case corresponding to narrow temperature
pulse widths) the system will remain blocked in the energy minimum corresponding to the
positive orientation of the magnetisation, anti-parallel to the direction of the applied field;
this can lead to a non-zero bit error rate.

Fig. 6.2 Schematics of energy barrier without an applied field (left panel) and with an applied
field (right panel).

We next calculate via atomistic simulations of HDMR the switching probability (defined
as the ratio between how many grains have reversed against the total number of grains)
for different temperature pulses. By varying the maximum temperature of the pulse (Tmax)
we can obtain the switching probability curves for specific pulse widths. The systems we
model are represented by cylindrical grains of 5nm height and varying diameter (3 to 5nm).
The model used for FePt has been discussed in Chapter 4, the model parameters being
presented in Table 4.4. The FePt Hamiltonian includes just nearest neighbours exchange
interaction that lead to a Curie temperature of about 720K for a bulk system as shown in
inset Fig. 4.4. The atomistic model of NdFeB (the phase Nd2Fe14B) has been parameterised
by Dr. Richard Evans and similar model parameters have been used in Ref. [140], where
the temperature dependence of the magnetic properties has been investigated. Since NdFeB
has been thoroughly investigated in the group by Dr. Samuel Westmoreland, more details
regarding its modelling can also be found in Ref. [141, 142]. The magnetic Hamiltonian
used for NdFeB contains exchange interactions between the Fe-Fe and Fe-Nd sites, the B
atoms being considered non-magnetic and the interaction between Nd sites being negligible.
The very large anisotropy of NdFeB (⇡ 17T) comes mainly from the Nd sites [143] and
considers second and fourth order uniaxial anisotropy contributions, the Fe sites contributing
only weakly to the overall anisotropy. The saturation magnetisation of NdFeB is higher than
the one of FePt (MNdFeB

S = 1610 emu/cm3 compared to MFePt
S = 1043 emu/cm3). The Curie

temperature is lower in the case of NdFeB ⇡ 585K.
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Fig. 6.3 Switching probability calculations for FePt (black points) and NdFeB (green points)
for 50 cylindrical grains of 5nm height. The switching probability is calculated for varying
maximum temperature of the heat pulse Tmax normalised by the Curie temperature TC of
individual materials and system size. The temperature pulse width is 200ps.

Fig. 6.3 shows the switching probability for both FePt and NdFeB HDMR, calculated
for 50 non-interacting grains. The bit error rate can be calculated from the switching
probability plots. The dimensions of the grain varies from 3nm to 5nm in diameter. The
height of the grain is kept constant at 5nm size. Since NdFeB and FePt have different Curie
temperatures, to be able to compare the switching probabilities of the two materials, the
maximum temperature of the pulse width has been normalised by the Curie temperature TC

of individual materials and system size, shown in Table 6.1.1. The Curie temperature has
been extracted from the equilibrium susceptibility calculated numerically via Monte-Carlo
simulations with a temperature resolution of 10K. The susceptibility has been interpolated
via a quadratic function, that takes into account in total 9 points for the interpolation 1. The
interpolation increases the temperature resolution of the susceptibility, without the necessity
to compute numerically the intermediate temperature points. We observe in Fig. 6.3 that
in the case of FePt, the switching probability is always lower than 100% and its saturation
value decreases with decreasing diameters. However, NdFeB has an increased switching
probability even for small system sizes, suggesting that it could be more suitable for HDMR.

Figure 6.4 shows the variation of the Curie temperature as a function of the grain diameter
D extracted from the interpolation of the equilibrium magnetic susceptibility. The curves
have been fitted to the finite size scaling law TC(D) = T •

C

h
1� (d0/D)1/a

i
from Ref. [111],

where T •
C represents the Curie temperature that would be obtained for D ! • (in this case

a thin film system of thickness 5nm), d0 is related to the unit cell size and a represents the
critical scaling exponent. A more accurate determination of the finite size scaling exponents

1Discussion with PhD student Thanh Binh Nguyen (Tim) who investigates the finite size effects in FePt
media as part of his research project is gratefully acknowledged.
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would involve increasing the number of convergence steps for each simulated temperature
and as well the temperature resolution. For FePt, the scaling exponent a = 0.7 obtained from
the fit is comparable to Ref. [111] (a = 0.79), slightly lower in value presumably due to the
5nm thickness of the systems modelled here. Interestingly, we observe that in the case of
FePt the exponent a is larger than in the case of NdFeB, suggesting stronger finite size effects
in both the magnetisation and the BER.

D (nm) TC(K), FePt TC(K), NdFeB

3 647 504
4 667 535
5 675 545

Table 6.1 The Curie temperature of FePt and NdFeB for different grain diameters.

Fig. 6.4 Curie temperature as a function of grain diameter for FePt (left panel) and Nd-
FeB (right panel). The black line shows the fit to the finite size scaling law TC(D) =

T •
C

h
1� (d0/D)1/a

i
from Ref. [111]. The fitting parameters are T •

C = 696.5K, d0 = 0.46nm,
a = 0.7 for FePt and T •

C = 562.2K, d0 = 1.13nm, a = 0.43 for NdFeB.

To systematically analyse the BER, we can fit the switching probabilities plots to a
cumulative distribution function (CDF) defined as:

f (x) =
P0

2

✓
1+ erf

✓
x�µ
s
p

2

◆◆
(6.1)



126 Advanced recording media applications

erf(x) =
2
p

Z z

0
exp(�t2)dt (6.2)

where P0 is the maximum switching probability, s defines the width of the transition and µ the
mean transition temperature. In the ideal case, the maximum switching probability parameter
should be P0 = 1(100%) and the transition should be abrupt, hence s = 0K. In reality,
thermal and finite size effects lead to a relatively wide transition 15K-30K and switching
probability less than unity. An example of fitting the switching probability calculations via
the cumulative distribution function is shown in Fig. 6.5 (left panel). After the fit, the BER
can be then calculated as:

BER = 1�P0 (6.3)

Fig. 6.5 BER calculation for FePt and NdFeB; (left panel) Example of fitting of the switching
probability of FePt grains of dimension 3nm⇥3nm⇥5nm via the cumulative distribution
function in Eq. 6.1. (right panel) The variation of the bit error rate (BER) as function of the
system size for FePt and NdFeB systems.

Fig. 6.5 (right panel) shows the BER as function of the system diameter for both FePt
and NdFeB. The BER for NdFeB is considerably smaller than in the case of FePt suggesting
that NdFeB could be more successfully used in HDMR. Since NdFeB has higher saturation
magnetisation and lower Curie temperature than FePt, we can expect that these magnetic
properties might influence the switching.

6.1.2 Improved switching probability in FePt

Evans et al. [4] has suggested that the BER can be expressed in terms of the equilibrium
magnetisation BER = 0.5(1�me). Via the Master equation, the BER for a system with
perfectly aligned easy axis is given by:
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BER = exp
✓
�2

MSV µ0Hwr

kBT

◆
(6.4)

The equation is derived in thermal equilibrium, which is not the case of HDMR calcu-
lations, however in the first instance, can be used as an approximation to understand what
magnetic parameters control the BER. We observe that a decreased BER can be obtained
by either increasing the writing field Hwr or the magnetisation of the system µ = MSV . We
distinguish that an increase in the volume of the system leads to smaller BER, this being
confirmed by the numerical results in Fig. 6.3, right panel that describes the dependence of
BER on the diameter. For ultrahigh areal densities it is necessary to keep a reduced diameter
of the grains, hence a possibility to increase the volume is by an increased height of the
grains. The height is limited by the requirement that the grains need to act as mono-domains
for a coherent reversal of the grain. Thus in reality, there is not much space to alter the
volume of the grains. The writing field Hwr is also limited technological accessible values,
this suggesting that the BER could be controlled in the first instance more effectively via
the saturation magnetisation of the material. Since NdFeB showed a considerably improved
BER and its saturation magnetisation is higher than in the case of FePt, we next investigate
the effect of the saturation magnetisation on the BER.

Influence of MS on the BER
The saturation magnetisation of FePt has been varied by artificially changing the magnetic

moment of Fe atoms in the material. The magnetic moment used for FePt is µ = 3.23µB

which gives a saturation magnetisation of MS = 10.43⇥ 105A/m= 1043 emu/cm3. We
have calculated the switching probabilities and the BER for 2 more values of the saturation
magnetisation corresponding to MS = 5.21⇥105 A/m (for µ = 1.61µB) and MS = 20.86⇥
105 A/m (for µ = 1.61µB). Fig. 6.6 (left panel) shows that with increasing magnetic moment
there is an increase in the maximum switching probabilities, which leads to decreased values
of BER - Fig. 6.6 (right panel). The dependence of BER on the saturation magnetisation
can be explained by the improved switching of NdFeB grains. Hence one alternative for the
performance of HDMR is to find materials with increased MS.
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Fig. 6.6 (left panel) Example of switching probability of FePt grains calculated for tp = 200ps
and varying magnetic moment for a cylindrical grain size of 5nm⇥5nm⇥5nm; (right panel)
BER as function of grain diameter calculated for different values of the magnetic moment.

Influence of TC on the BER
Another difference between NdFeB and FePt is given by the Curie temperatures. NdFeB

has a lower Curie temperature than FePt (585K compared to 720K for bulk systems). A
decreased Curie temperature for the FePt system can be obtained by scaling the exchange
interaction to a value that will correspond to the Curie temperature of NdFeB (since the Curie
temperature varies linearly with the nearest-neighbours exchange interaction [21][144]). The
decreased Curie temperature in FePt leads to a small decrease in the values of BER, but not
sufficiently to favour the 3nm grains for their usage in HDMR; this suggests that MS is more
important.

Fig. 6.7 (left panel) Example of switching probability of FePt grains calculated for tp = 200ps
and varying Curie temperature for a cylindrical grain size of 5nm⇥5nm⇥5nm; (right panel)
BER as function of grain diameter calculated for varying Curie temperature.
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Influence of the magnetic damping and pulse width on the BER
The BER is calculated for a dynamic evolution of the magnetisation; since the magnetic

damping controls the speed of magnetisation dynamics, it is important to understand the effect
of the damping on the BER. Fig. 6.8 (left panel) shows that with increased damping, there is
a decrease in the BER, the same effect happening with increased pulse widths (right panel).
With increasing damping, the magnetisation can evolve more quickly towards equilibrium,
hence the probability of the particle to remain blocked in a positive magnetisation minimum
due to the fast cooling of the system is reduced. The same happens with increased pulse
widths, the magnetisation will have more time to evolve and follow the temporal evolution
of the temperature pulse width. This effect has also been shown in Ref. [145] where the
influence of the Gilbert damping on the signal-to-noise ratio has been analysed for HAMR.
The effect of increased magnetic damping and pulse widths will lead to a behaviour of
magnetisation closer to the thermal equilibrium and hence will reduce drastically the BER.

Fig. 6.8 BER as function of grain diameter calculated for varying damping (left panel) and
temperature pulse widths (right panel).

The influence of the magnetic field on BER is also investigated below - Fig. 6.9. Indeed,
with increasing applied field the BER is drastically reduced, as suggested by Eq. 6.4, however
such large values of applied magnetic field are not yet accessible experimentally for recording
media applications. The development of all-optical-switching technologies [41] and the
subsequent high internal magnetic fields developed during the process either by non-polarised
or circularly polarised light (as in the Inverse Faraday effect) might lead to materials that
exhibit low BER due to development of such large internal fields.

The systematic investigation performed above suggests that in order to obtain ultrahigh
areal densities via HDMR technologies for small grain sizes it is crucial to accurately control
the BER of the system. The control of BER can be achieved by searching for magnetic
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materials that are characterised by an increased saturation magnetisation and damping, in
addition to the high anisotropy which is necessary for the thermal stability of the grains. The
large BER appears in HDMR systems due to the magnetisation following a non-equilibrium
path that arises from the application of short high temperature pulses. Increasing the pulse
width leads to a decreased BER, however, from the technological point of view, also leads to
a much lower writing speed. The interplay between all these parameters that control the BER
needs to be taken into account while exploring the limits of areal densities of the recording
media technologies.

Fig. 6.9 (left panel) Example of switching probability of FePt grains calculated for tp = 200ps
and varying applied field for a cylindrical grain size of 5nm⇥5nm⇥5nm; (right panel) BER
as function of grain diameter calculated for different values of the applied field.

The ultimate limit of the areal density has been explored via analytical means in Ref. [4].
The numerical calculations developed in this section help us reassess the maximum areal
density that can be obtained in HDMR via the calculation of BER. This aspect is explored in
the following section.

6.1.3 Maximum areal densities for HDMR

Evans et al. [4] investigated via analytical means the thermal writability of the magnetic
grains, the maximum areal density that could be possibly be achieved via HDMR being
controlled by the BER. The calculations were done by assuming a thermal equilibrium, which
is not the case in HDMR, since a time-dependence of temperature pulse is used. The BER
calculations in the previous section can be used in reassessing the maximum areal density
via numerical calculation of BER for small system sizes.

The analytical areal density calculations (AD) in Ref. [4] are given by V�2/3e , where
e = 0.5 is the areal packing fraction and the volume is expressed from Eq. 6.4:
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AD =
⇣ 2MS(T )µ0Hwr

kBT ln[(BER)�1]

⌘2/3
e (6.5)

In Eq. 6.5, the writing temperature T is considered as being 10K lower than the Curie
temperature of the system, which is a rough approximation and can lead to higher areal
densities. A better description is given by the usage of the blocking temperature TB, which
is the temperature at which the transition towards the superparamagnetic state happens.
An initial estimation of the blocking temperature can be deduced from the Arhenius-Néel
relaxation equation, where TB = KV/(kB ln(t f0)), t being the relaxation time in a constant
temperature and f0 the attempt frequency ( f0 = 109 � 1012 s�1). For systems where the
temperature is not constant, such as in HAMR, the following rate dependent estimation of
the blocking temperature needs to be used, as suggested by Chantrell et al. [146]:

KV
kBTB

(1�H/HK)
2 = ln

h f0Ṫ�1(KV/kB)

( KV
kBTB

)2(1�H/HK)2

i
(6.6)

In Eq. 6.6, Ṫ�1 is the rate of temperature variation which we approximate as constant.
We can calculate numerically the blocking temperature from Eq. 6.6 using the temperature
variation of the anisotropy as K(T )⇠ m(T )3 for uniaxial anisotropy of FePt in the absence
of two-ion anisotropy. The temperature dependence of the magnetisation is considered

m(T ) =
⇣

1� T
TC(D)

⌘b
, b = 0.33 and a Curie temperature of TC(3nm) = 653K for a 3nm

size grain. Additionally we consider an attempt frequency of f0 = 1012 s�1 and a linear
cooling of the system from 750K to 300K in 0.3 ns in a field of H = 1T. The solution of
Eq. 6.6 will be given by the intersection between the temporal variation of the blocking
temperature calculated via Eq. 6.7, where the temperature T depends on the time - T (t) and
the anisotropy constant and field depend on the temperature of the system, with the temporal
variation of the temperature pulse TP. Fig. 6.10 shows that the blocking temperature of
the FePt granular system of 3nm diameter is TB = 550K. For diameters of 4nm and 5nm,
blocking temperatures of TB = 605K and TB = 640K were extracted.

TB =
KV (1�H/HK)2

kB ln
h

f0Ṫ�1(KV/kB)
( KV

kBT )
2(1�H/HK)2

i (6.7)
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Fig. 6.10 Blocking temperature (TB) calculations for FePt grains of 3 nm diameter; The
intersection with the temperature pulse variation (TP) shows that the blocking temperature of
the system is TB = 550K.

Fig. 6.11 Analytical and numerical areal density calculations for HDMR; The writing
temperature is given by the blocking temperature calculated via Eq. 6.7 for two diameters of
the grains (3 and 5 nm). Smaller areal densities are obtained numerically for the same values
of BER, due to the dynamic variation of the temperature and magnetic properties.

We note that, for realistic systems there is a distribution of blocking temperatures that
arises from the variation of anisotropy with temperature, and the value of blocking tempera-
ture we calculate in Fig. 6.10 is corresponding to the blocking temperature at the edge of the
distribution. Returning now to the areal density calculations, using the blocking temperature
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calculated above, we can compare the analytical variation of the areal density as function of
BER given by Eq. 6.5 to the BER values calculated numerically for different grain diameters.
Fig. 6.11 shows that the BER obtained via numerical calculations corresponds to AD about
50% lower than in the case of the analytical calculations, for temperature pulse widths of
tp = 200ps. This is due to the fact that, in the analytical calculations thermal equilibrium is
assumed, which is not the case of HDMR systems. The dynamic behaviour of the magnetic
properties will strongly influence the maximum areal density that can be achieved.

6.2 Ultrafast dynamics in FePt/FeRh structures

FePt/FeRh has been proposed for use in heat-assisted magnetic recording (HAMR) in order
to lower the coercivity of highly anisotropic FePt via the exchange spring mechanism [9].
FeRh is a metamagnet that shows a first order phase transition from antiferromagnetic
to ferromagnetic phase at about 350K. It has been shown by Barker and Chantrell [30]
that the phase transition appears due to different temperature scalings of the bilinear and
four-spin exchange interaction in this material. The FeRh model has been implemented in
the atomistic spin dynamics package VAMPIRE and has been used in spin-wave resonance
experiments to look at the exchange energies of the system during the mixed-phase region,
showing a decreased exchange stiffness due to the effect of the antiferromagnetic phase on
the ferromagnetic regions [32]. In this section, the model presented in [32, 31] is used in the
investigation of recording media technologies based on these structures.

The recording media technologies based on FePt/FeRh bilayers [9] works as follows:
in the antiferromagnetic phase of FeRh, the stability of the stored data is assured by the
large anisotropy of FePt and the coupling to the anti-ferromagnetic phase of FeRh does
not influence the stored information. By heating up the system, FeRh will undergo a phase
transition and will become ferromagnetic. The anisotropy of FeRh is low and hence the
magnetisation of FeRh will reverse at lower fields and this will lead to a switching in FePt via
the exchange-spring mechanism. The first order phase transition of FeRh will act as an on/off
switch to the exchange spring mechanism that potentially could drive the magnetisation
reversal. Zhou et al. [147] proposed a trilayer of FePt/FeRh/FeCo for HAMR, where the high
moment of FeCo leads to three times lower switching fields. At room temperature FePt and
FeCo are isolated due to the antiferromagnetic layer of FeRh, however in the ferromagnetic
phase, FeRh will couple FePt and FeCo and will act as an exchange switch.

It has been shown experimentally that the ferromagnetic phase of FeRh can be generated
at ultrafast timescales by the application of a laser pulse [148], an effect observed as well
in the atomistic model of FeRh [30, 31]. This opens the possibility of the usage of FeRh in
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optical recording media, where the magnetisation is controlled by femtosecond laser pulses.
However, the ultrafast dynamics of exchange spring systems such as FePt/FeRh bilayers has
not been investigated, this being interesting from both a fundamental and application point
of view. The next section presents the equilibrium magnetic properties of FePt/FeRh bilayers
followed by the investigation of the ultrafast magnetisation dynamics in these structures.

6.2.1 Model of FePt/FeRh structures

The structure of FeRh is body-centered cubic (BCC), with the central site occupied by the Rh
atoms. In the antiferromagnetic phase, no magnetic moment is associated to Rh, however a
small magnetic moment of 1µB appears on the Rh site in the ferromagnetic phase. It has been
suggested that the Rh moment is induced by the Fe sites [149], hence in the first instance,
FeRh can be modelled only in terms of Fe degrees of freedom and a further approximation
of a simple cubic lattice. The induced moment of Rh will be however incorporated in the
higher-order exchange terms. A four-spin exchange term needs to be considered in order
to drive the antiferromagnetic to ferromagnetic phase transition. By modelling only the Fe
atoms, FePt has also a simple cubic symmetry. Since both materials have the same crystal
structure, the bilayers can be modeled by a simple cubic structure of Fe sites with different
properties, corresponding to FePt and FeRh. The Hamiltonian of FeRh consists of bilinear
exchange Ji j, four-spin exchange Di jkl and a small uniaxial anisotropy ku as shown below:

H =�1
2 Â

i j
Ji j (Si ·S j )�

1
3 Â

i jkl
Di jkl(Si ·S j)(Sk ·Sl)� ku Â

i
(Si · e)2 (6.8)

The coupling between FeRh and FePt is assumed ferromagnetic and limited to nearest-
neighbours interaction. The coupling is expressed in terms of the Fe-Fe exchange interactions
in FePt. The system modelled is approximately 7nm⇥7nm⇥14nm, non-periodic in all three
directions, corresponding to 24 layers of FePt and 24 layers of FeRh. The model parameters
are shown in Table 6.2. The equilibrium magnetisation as a function of temperature - Fig.
6.12 (left panel) shows that there is an increased magnetisation with increased coupling. The
ferromagnetic coupling between the two materials leads to a frustrated spin state, in the
region of temperatures where FeRh is antiferromagnetic, as shown in the left inset, yellow
squares of Fig. 6.12 (left panel). With increasing coupling strength, a canted spin state
appears at the interface with FePt in order to decrease the spin frustration and minimise the
energy, as shown in Fig. 6.12 (right panel), thus increasing the total magnetisation of the
system. The antiferromagnetic to ferromagnetic phase transition temperature shows a small
decrease with increased coupling, since more ferromagnetism appears at the system due to
the large coupling.



6.2 Ultrafast dynamics in FePt/FeRh structures 135

Quantity Symbol Value Units
FeRh NN exchange J1

FeRh 4⇥10�22 J
FeRh NNN exchange J2

FeRh 2.75⇥10�21 J
FeRh fourspin Di jkl

FeRh �0.23⇥10�21 J
FeRh anisotropy KFeRh 1.404�23 J
FeRh moment µFeRh 3.15 µB

Electron-heat capacity Ce0 3.5⇥10�3 J mol�1 K�2

Phonon specific heat Cp 4.54⇥101 J mol�1 K�1

Electron-phonon coupling Gep 1.05⇥1012 J mol�1 K�1 s�1

Damping a 0.05
Laser power fluence F 1.7 mJ cm�2

Laser pulse time t 100 fs
Table 6.2 Parameters used for the FePt/FeRh simulations, extracted from Ref. [30].

Fig. 6.12 Equilibrium magnetisation (left panel) and spin configuration at T = 10K (right
panel) for different coupling strengths between FePt and FeRh bilayers. With increasing
coupling, there is an increased ferromagnetic ordering, due to the spin canting of the an-
tiferromagnetic phase of FeRh that appears due to the ferromagnetic coupling with FePt.

6.2.2 The two-temperature model

Since the discovery of utrafast demagnetisation [56], the excitation of the magnetic systems
via optical means has gained a huge interest, both fundamentally and from the applica-
tion point of view, since it can lead to the switching of magnetisation in the absence of
applied fields [41]. In ultrafast experiments, the laser pulse interacts with the conduction
electrons in the system, creating some highly non-equilibrium states which then equilibrate
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thermodynamically with the phonons and the spin system, as illustrated in Fig. 6.13 (left
panel).

Fig. 6.13 (left panel) Diagram of energy flow in the two temperature model; The laser pulse
excites the electrons in the system, which will then thermalise with the spins (via the atomistic
spin dynamics model) and lattice (via the two-temperature model). Schematics adapted from
Ref. [150]. (right panel) Example of evolution of the electron and phonon temperatures. The
laser pulse is applied at t = 10ps.

The spin system is treated within the atomistic spin dynamics, while the electron and
phonon heat bath are described phenomenologically by the two-temperature model (2TM)
[151] in the form of the following coupled equations:

Ce0Te
dTe

dt
=�Gep(Te �Tp)+P(t) (6.9)

Cp
dTp

dt
= Gep(Te �Tp)�ke(Tp �Troom)/t (6.10)

where Ce0, Cp are the electron and phonon heat capacity, Gep represents the electron-
phonon coupling factor, Tp, Te the phonon and electron temperatures and P(t) is the
time dependent laser pulse power. The laser power density is treated as a Gaussian form
P(t) = [2F0/(d tp

p
p/ ln2)]exp[(�4ln2)( t

tp
)2] where F0 is the laser fluence (in units of en-

ergy density), tp the pulse temporal width and d the optical penetration depth, assumed
to be d = 10 nm. The term ke represents the diffusion coefficient (heat dissipation to the
environment) which usually has large timescales and hence is neglected. The evolution of the
electronic and phonon temperature given by the 2TM is illustrated in Fig. 6.13, (right panel).

The electronic system represents the thermostat for the spins and hence the temperature
that enters into the LLG equation. As illustrated in Fig. 6.13, there is no coupling between
the spin and lattice, since the system is considered fixed. By enabling the diffusion term
ke(Tp �Troom)/t , the energy deposited into the system by the laser pulse can dissipate to
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the environment via the lattice. The two temperature model can be extended into the three
temperature model (3TM), that adds another differential equation for the spin system. The
3TM model is not used for ASD simulations as it has been previously shown that the spin
system is not necessarily in equilibrium for the ps timescales presented here [152], the
spin temperature being directly calculated from the magnetisation dynamics under the laser
excitation via Eq. 3.39.

6.2.3 Switching in FePt/FeRh bilayers

We move now to the investigation of the effect of the laser pulse on the magnetisation
dynamics of FePt/FeRh bilayers. The laser pulse is modelled via the two temperature model
presented in Section 6.2.2 and the specific parameters are given in Table 6.2. We note that
the same parameters of the 2TM are used for both FePt and FeRh, hence the development of
2TM models that can deal with multiple materials might significantly change the switching
conditions of the bilayer. The system size is approximately 7nm⇥7nm⇥14nm and is non-
periodic in all three directions. The FePt/FeRh coupling is 50% of the Fe-Fe interaction and
an applied field of Hz =�4T is applied to the system in order to drive the switching.

Fig. 6.14 Example of ultrafast switching in FePt/FeRh bilayers; The FePt/FeRh coupling is
50% of the Fe-Fe interaction. An applied field of Hz =�4T is applied to the system. Left
panel shows the dynamics of the total z component of the magnetisation of the system on the
left axis and the evolution of electronic and phononic temperature. The grey area emphasises
the region where the electronic and phononic temperature are not equilibrated. Right panel
shows the dynamics of the z component of magnetisation for the system, FePt and the two
magnetic sublattices of FeRh.
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Fig. 6.14 shows the temporal evolution of FePt/FeRh bilayers during the ultrafast switch-
ing. The left panel shows the temporal evolution of electronic and phononic temperatures
on the right axis, together with the evolution of the total magnetisation of the system, left
axis. The right panel shows the dynamics of the z component of magnetisation of FePt and
the two magnetic sublattices of FeRh, S1 and S2 defined for the type-II antiferromagnetic
configuration of FeRh. A representation of the type-II antiferromagnetic configuration is
illustrated in Fig. 2.1, c), where the S1 and S2 sub-lattices of Fe in FeRh are given by the
red and blue spins. The initial temperature of the system is 200K, which corresponds to the
region where the FeRh system is in an antiferromagnetic state. This can be confirmed by
looking at the z component of the two antiferromagnetic sub-lattices of FeRh, S1 and S2 -
Fig. 6.14, right panel. The laser pulse is applied at t = 10ps, the grey area emphasizing the
region where the electronic and phononic temperature are out-of-equilibrium. During the
application of the laser pulse, the electronic temperature rises up to about 1000K leading to
a demagnetisation of the system, as shown by the total magnetisation of the system. The
temperature is sufficient to induce the transition to the ferromagnetic phase in FeRh, as
we observe that after 13ps the magnetisations of the two sub-lattices become equal, in the
region emphasized by the grey area. During this region, the z component of FePt (green
line) shows an initial increase, due to the recovery of its ferromagnetic order after the laser
pulse. However, the initial increase is followed by a decrease, at about 16ps, presumably
due to the exchange spring mechanism, as in this region FeRh is ferromagnetic and has a
negative magnetisation. After the grey area, the electronic and phononic temperatures have
reached 240K, and in this region, FeRh is in the antiferromagnetic state, confirmed by the
magnetisation plots of the two sub-lattices. After 20ps, we observe that the system is in a
switched state and the system’s magnetisation slowly relaxing towards a negative value.

The laser pulse triggers complex antiferromagnetic dynamics in FeRh as shown in Fig.
6.14, right panel, close to THz frequencies. By interfacing FeRh with a non-magnet, such as
Pt, this complex dynamics can be used for the generation of spin currents and subsequent
charge currents via the inverse spin-hall effect [153], which produces THz radiation that
can be used in technological applications [154, 155]. Future work involves calculating the
spin current induced in FePt due to ultrafast spin-pumping and understand if it additionally
contributes to the switching.
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Fig. 6.15 Switching probability of FePt as function of coupling strength calculated for 20
grains of FePt/FeRh of approximately 7nm ⇥ 7nm ⇥ 14nm.

The switching probability of FePt is calculated for varying applied fields, in the uncoupled
and strongly coupled case with the FeRh system - Fig. 6.15, for two laser fluences. In the
uncoupled case, for a fluence of F = 1.7mJ/cm2, no switching is observed in the region of
fields showed here. This suggests that the large anisotropy of FePt has not decreased enough
under the influence of the laser pulse to lead to the switching of the system. By increasing
the laser fluence, some switching for the uncoupled systems can be obtained, since more
energy is deposited in the system. By coupling the FePt system with the FeRh metamagnet,
the switching probability is drastically improved. Even for the higher fluence - Fig. 6.15,
right panel, where switching of FePt occurs in the absence of coupling, the coupling of the
system with FeRh leads to 100% switching at lower fields. Interestingly, the strength of the
coupling to FeRh seems to not strongly influence the switching curve, which is promising
since the coupling at the interface is probably difficult to accurately control experimentally.
This investigation shows that it is possible to obtain improved switching in FePt by coupling
to the FeRh metamagnet, the switching window moving to lower fields and lower fluences
than in the uncoupled case.

6.3 Conclusions

The ultimate limit of the areal density has been explored both analytically and numerically.
Via numerical calculations of switching probabilities for heated dot magnetic recording, the
bit error rate can be assessed, the results showing a decreased areal density due to dynamic
evolution of the temperature and magnetic parameters. We have shown that NdFeB presents a
lower bit error rate than FePt, hence potentially could be used in recording media applications.
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A systematic investigation has shown that it is possible to obtain better switching probabilities
in FePt by increasing the saturation magnetisation or the magnetic damping. Increasing the
temperature pulse width brings the bit error rates to lower values, since it will bring the
magnetic system closer to the equilibrium case.

We have shown that the switching in FePt is enhanced by the coupling with the FeRh
metamagnet. Since FePt/FeRh structures have been proposed for HAMR application to lower
the switching field via the exchange spring mechanism, we have shown that the exchange
spring mechanism can happen at ultrafast time-scales. This results in the switching of FePt
at much lower field, proving that FePt/FeRh bilayers could be employed in optical recording
media.
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Conclusions

In this final chapter, the main conclusions are emphasized with respect to the different aspects
presented in this thesis. The chapter ends with possible paths to follow starting with the
research presented in this thesis.

Damping and anisotropy calculations at elevated temperatures
The damping calculations from ferromagnetic resonance simulations at large tempera-

tures showed an increased damping for uncoupled granular films. With decreasing grain
size, this effect is more pronounced, and comparison with the analytical LLB equations
suggests that scattering events at grain boundaries enhance the damping parameter. Inter-
estingly, a reduction in the linewidth is observed at high temperatures in systems where
there exists a distribution of properties that arises from a distribution of grain size. This
result is in agreement with experimental investigation shown in Ref. [103] and proposes the
inhomogeneous line broadening mechanism to explain the experimental results. This is an
important finding since it suggests that the damping constant itself, relevant for dynamical
properties and switching, increases with temperature due to magnon scattering. The fitting
procedure based on the grid search method can offer a much faster determination of damping
and anisotropy, parameters which are crucial for future generations of HAMR drives. The
simple simulations of ferromagnetic resonance in two spin-systems coupled via exchange
interaction show that the damping and resonance frequency can have complex behaviour
depending on the exchange coupling and the properties of the two systems.

Spin-lattice dynamics and magnetisation switching by THz phonons
The development of spin-lattice simulations allows the explicit inclusion of phonons for

spin dynamics calculations. The coupling term, that needs to be formulated in this way to not
induce an additional energy drift in the system, mediates the energy and angular momentum
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transfer between the phonons and magnons and is responsible for the thermalisation of the
spin system in the absence of a phenomenological spin damping term. Within this model,
both equilibrium and dynamical properties of the spin system are investigated for two choices
of potentials. In the case of bulk systems, the equilibrium magnetisation does not depend on
the choice of the mechanical potential and the Curie temperature is not significantly affected
by the dynamic lattice. However, this is not the case for a thin film system, where a decreased
Curie temperature is present due to the inclusion of surface effects and the dynamic lattice
leads to stronger finite size effects. The magnon-phonon damping is calculated for different
temperatures and coupling strengths and shows a functional form similar to the spin-lattice
coupling term.

By exciting phonons at THz frequencies, it is shown that it is possible to access the mag-
netisation dynamics corresponding to various phonon modes. The phonon excitation leads to
the development of an in-plane magnetic field that can trigger a precessional switching with
a very low increase in the spin temperature. One important conclusion is that materials that
present a flat phonon spectrum (such as in the case of the Harmonic potential) have more
defined switching diagrams, while for the case of the Morse potential, the excited phonon
modes can decay to lower frequency modes and affect the switching phase diagram (leading
to shorter temporal regions of switching).

Heated dot magnetic recording media
The switching probability and the bit error rate are calculated for FePt systems and

NdFeB systems. NdFeB presents a lower bit error rate than FePt, hence potentially could
be used in recording media applications. The bit error rate in FePt can be improved by
increasing the saturation magnetisation, the magnetic damping or the temperature pulse
width, which leads the system to a behaviour closer to the equilibrium case. The calculations
of the ultimate limit of recording media addressed by the quadrilemma can be updated by the
numerical calculations, which showed a smaller areal density due to the dynamic processes
associated with the temperature pulse.

Ultrafast dynamics in FePt/FeRh bilayers
The usage of FeRh has been proposed for recording media applications, where its soft

ferromagnetic phase can lead to smaller coercive fields in FePt/FeRh bilayers. Since the phase
transition in FeRh can be triggered by an ultrafast laser pulse, we investigate the switching in
the FePt/FeRh under the effect of the laser excitation. The numerical simulations showed
that the exchange spring mechanism appears at ultrafast time-scales and FePt can switch at
lower fields due to this mechanism.
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7.1 Further work

Further developments can be included to the research presented in this thesis. These are
listed below and discussed in the following section:

1. Further damping calculations for realistic exchange coupled composite (ECC) media;

2. Micromagnetic modelling of linewidth and damping at elevated temperatures for
distribution of grain sizes;

3. Development of improved potentials for spin-lattice dynamics simulations;

4. Parametrisation of magnetic insulators for spin-lattice dynamics;

5. Further investigations of NdFeB permanent magnet for heated dot recording media;

6. Two-temperature model for FePt/FeRh bilayer;

1) The ECC system has been treated as a two macrospin approximation, which is rather
simplistic. Ferromagnetic resonance simulations on realistic granular systems at elevated
temperatures would be interesting to perform since the damping has been shown to have a
complex behaviour for the simple two macrospin approximation. The investigation of the
damping for large driving fields is also of interest from the reversal perspective, since during
the switching process, large spin excitations are present.

2) The semi-analytical investigation of the linewidth in the presence of distribution
of magnetic properties that appears due to the variation of the grain size showed that the
linewidth can decrease with increasing temperature due to the transition of small grains to
the superparamagnetic state. Ferromagnetic resonance calculations at finite temperature
for a system of grains via atomistic modelling is computationally expensive, hence for this
investigation micromagnetic modelling based on the LLB equation can be performed for
HAMR systems. A software package capable of dealing with granular systems at finite
temperature for recording media applications (acronym MARS) is currently being developed
by Ewan Rannala at The University of York.

3) The spin-lattice model uses a long-range pair-wise potential, either a Harmonic or
Morse expression. This is a simplistic approximation, however it can reproduce the phonon
spectra of BCC Fe (in the case of Morse potential and with improved parameterisation of
the Harmonic potential). Since the magnon properties were not influenced by the choice of
potential, the simple pair-wise implementation represents a reasonable first approximation.
However, there are many improved mechanical potentials based on many-body formulations
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(such as the Embedded Atom Potential) that can predict better the elastic properties hence the
implementation of such potential is the next step to be followed. Ultimately, one of the main
challenges of the spin-lattice framework would be to develop many-body spin dependent
potential from first principles methods [156].

4) The spin-lattice model developed in this work is crucial for the study of magnetic
insulators. Further work includes parameterising the model for such a magnetic system,
which can include multiple magnetic sub-lattices and complex magnon and phonon dispersion
curves. Investigating the switching of the magnetisation via THz phonons within these
systems is interesting, since there are experimental results [157] suggesting that switching
occurs via a mechanism similar to what is presented in Chapter 5.

5) It has been shown in this work that NdFeB can exhibit lower bit error rates for
heated dot recording media applications presumably due to the high saturation magnetisation.
Interestingly, the Curie temperature showed a different finite-size scaling exponent than in
the case of FePt, which might contribute to the improved behaviour of the BER for different
system sizes for NdFeB. Further calculations of the finite-size scaling exponents for the Curie
temperature needs to be performed with increased resolution and number of integration steps
for more accurate determination of the scaling exponents. It is also interesting to further
explore if it exists a correlation between the BER and the critical exponents of the materials
proposed for HDMR.

6) For the investigation of ultrafast switching in FePt/FeRh bilayers, the same set of
parameters for the two-temperature model has been used for both FePt and FeRh. Further
work involves developing and implementing a two-temperature model that ideally could deal
with multiple types of materials in layered structures.
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Conservation properties of the precessional
equation

In the absence of a damping term, the total energy of a magnetic system is conserved,
the magnetic moments following a conservative dynamics, described by the precessional
equation:

∂Si

∂ t
=�gSi ⇥Hi (A.1)

To analyse the conservative properties of the precessional equation of motion, we start
from a simple magnetic Hamiltonian that contains only exchange interaction. The exchange
constant depends on the atomic positions which, within SLD dynamics, are dynamically
treated. The total energy of the system will vary as [76]:
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Ji j (r1(t), ..,rN(t))Si(t) ·S j(t) (A.2)

Now considering the time derivative of the energy:

dE(t)
dt

= Â
k

mkvk
dvk

dt
+Â

l

∂U
∂rl

drl

dt
�Â

i, j
Â

l

∂Ji j

∂rl

drl

dt
Si(t) ·S j(t)�Â

i, j
Ji j

d
dt
⇥
Si(t) ·S j(t)

⇤

(A.3)
In the absence of a lattice thermostat and no dissipation terms, the EOM of motion become:
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∂rk

∂ t
= vk (A.4)

mk∂vk

∂ t
=�∂U

∂rk
+

∂
∂rk

Â
i, j

Ji j (r1(t), ..,rN(t))Si(t) ·S j(t) (A.5)

(A.6)

The first three terms will cancel in the time derivative of the energy. The last term can be
expressed by considering dSi

dt =�gSi ⇥Hi =�gSi ⇥Âl JilSl and Jil = Jli:

dE(t)
dt

=�Â
i, j

Ji j
d
dt
⇥
Si(t) ·S j(t)

⇤
(A.7)
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= g

"

Â
i, j

Ji j Â
l

Jli(Si ⇥Sl) ·S j +Â
i, j

Ji j Â
l

JliS j · (Si ⇥Sl)

#
(A.10)
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"
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j
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(A.11)

= 2g (Si ⇥Hi) ·Hi = 0 (A.12)

(A.13)

Hence, the total energy of the system remains constant, even if, the lattice and spin energies
can vary as function of time. Similarly, the time derivative of total angular momentum can
be expressed as:

dS
dt

= Â
i

dSi

dt
=�g Â

i,l
JliSi ⇥Sl =�g Â

i,l
JilSl ⇥Si = g Â

i,l
JilSi ⇥Sl = g Â

i,l
JliSi ⇥Sl = 0

(A.14)
or

dS
dt

= Â
i

dSi

dt
=�g Â

i,l
JliSi ⇥Sl =�g Â

i<l
(JilSl ⇥Si + JliSi ⇥Sl) = 0 (A.15)

Hence the total spin angular momentum is conserved. The conservation laws can prevent
the spin system from approaching thermodynamical equilibrium, such as in the results by
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[61], where the spin and lattice temperature do not equilibrate to the same value due to the
conservation of angular momentum in the presence of only exchange energy. The lattice
subsystem can exchange only energy with the thermal reservoir, however, the spin can
exchange both energy and angular momentum with the lattice or its thermal reservoir. To
allow transfer of angular momentum between the lattice and spin system an additional energy
term is necessary. Considering the simplest case of an uniaxial anisotropy energy with an
easy axis ei, Eu =�ku Âi(Si · ei)2:

dS
dt

= Â
i

dSi

dt
=�gku Â

i
Si ⇥ [2(Si · ei)ei] =�2gku Â

i
(Si ⇥ ei)(Si · ei) 6= 0 (A.16)

Energy terms like a magneto-crystalline anisotropy will allow angular momentum transfer
between spin and lattice, the mechanism responsible for this being the spin-orbit coupling.





B

Fluctuation dissipation theorem

To obtain the correct equilibrium distributions of magnetic parameters, the SLD model needs
to obey the fluctuation-dissipation theorem. Following the protocol described in [158], we
are able to prove that the SLD model employed in this thesis obeys the fluctuation-dissipation
theorem. The derivation is firstly for the LLG equation, and then is extended for the SLD
model.

The linear response Langevin equation of motion is written in the form:

dxi

dt
=�Â

j
gi jXj + fi (B.1)

where gi j are the kinetic coefficients and Xj are variables thermodynamically conjugated to
x j, Xj =

S
x j

, where S is the entropy of the system. For a closed system in an external medium:

Xj =
1

kBT
∂E
∂x j

(B.2)

For a magnetic system the total energy can be written as:

E =ViMs Â
i
(�~Mi · ~Hi) (B.3)

Close to equilibrium, the LLG equation can be linearised using small deviations ~mi =
~Mi � ~M0

i ,~hi = (~Hi � ~H0
i )/Ms

Thus, the LLG equation should be re-written as:

dmi

dt
=

M2
s Vi

kBT

3

Â
j

Ngi jh j (B.4)

Now we expand the LLG equation in its components:
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d ~Mi

dt
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By substituting ~Mi = ~mi + ~M0
i , ~Hi =~hiMs + ~H0

i into the components of the LLG equation
we can calculate the gi j components. For example, to calculate the gxx

i j component, we expand

the coefficient in dMx
i

dt corresponding to Hx
i :

Hx
i
�
(My
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2 +(Mz
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(B.9)
Since ~mi, ~hi are small deviations of the magnetisation and effective field around the

equilibrium position, their squared value
�
(my

i )
2,(mz

i )
2� and the product between the two

(2my
i hx

i Ms, 2mz
i h

x
i Ms) can be approximated to zero. Similarly the time derivative of the

equilibrium magnetisation Mx,0
i is zero. This leads to the coefficient of hx

i having the
following expression:

dmx
i

dt
= · · ·+ahx

i Ms[(M
0,y
i )2 +(M0,z

i )2]+ . . . (B.10)

From Eq. B.4, we can show that gxx
i j has the following expression [158]:

gxx
i j =

akBT
MsVi

[(M0,y
i )2 +(M0,z

i )2]∂i j (B.11)

Similarly, for the rest of the coefficients can be expressed:

gxy
i j =

kBT
MsVi

[(�M0,z
i )+aM0,x

i M0,y
i ]∂i j (B.12)
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gyx
i j =
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MsVi
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i M0,y
i ]∂i j (B.13)

gyy
i j =
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MsVi
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i )2 +(M0,z
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The thermal field coefficients from the Onsager principle [158] are given by:

µxx
i j = gxx

i j + gxx
ji (B.15)

µxx
i j =

2akBT
MSVi

[(M0,y
i )2 +(M0,z

i )2]∂i j (B.16)

µxy
i j =

2akBT
MSVi

M0,x
i M0,y

i ∂i j (B.17)

In equilibrium, M0,x
i = 0, M0,y

i = 0, M0,z
i = 1, hence we obtain the result for the stationary

solution:

µxx
i j = µyy

i j =
2akBT
MsVi

∂i j,µzz
i j = 0 (B.18)

In the absence of a damping term, we need to linearise d ~Mi
dt = �g(~Mi ⇥ ~Hi). As mag-

netisation and field are variables thermodynamically conjugated, the fluctuation dissipation
theorem does not need to be written anymore. Hence we need to look at the lattice equations:
v̇i = Fi/mi, which obey the fluctuation dissipation theorem.
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