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Summary 

This research is dedicated to develop a fully integrated system for heavy metals 

determination in water samples based on micro fluidic plasma atomizers. Several 

configurations of dielectric barrier discharge (DBD) atomizer are designed, 

fabricated and tested toward this target. Finally, a combination of annular and 

rectangular DBD atomizers has been utilized to develop a scheme for heavy metals 

determination. The present thesis has combined both theoretical and experimental 

investigations to fulfil the requirements. Several mathematical studies are 

implemented to explore the optimal design parameters for best system performance. 

On the other hand, expanded experimental explorations are conducted to assess the 

proposed operational approaches. The experiments were designed according to a 

central composite rotatable design; hence, an empirical model has been produced for 

each studied case. Moreover, several statistical approaches are adopted to analyse the 

system performance and to deduce the optimal operational parameters. The 

introduction of the examined analyte to the plasma atomizer has been achieved by 

applying chemical schemes, where the element in the sample has been derivitized by 

using different kinds of reducing agents to produce vapour species (e.g. hydrides) for 

a group of nine elements examined in this research individually and simultaneously. 

Moreover, other derivatization schemes based on photochemical vapour generation 

assisted by ultrasound irradiation are also investigated. Generally speaking, the 

detection limits achieved in this research for the examined set of elements (by 

applying hydroborate scheme) are found to be acceptable in accordance with the 

standard limits in drinking water. The results of copper compared with the data from 

other technologies in the literature, showed a competitive detection limit obtained 

from applying the developed scheme, with an advantage of conducting simultaneous, 

fully automated, insitu, online- real time analysis as well as a possibility of 

connecting the proposed device to control loops. 
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Foreword 

Most of heavy metals are very dangerous to humans since they can cause significant 

effects on the human body functions, leading to death in severe cases.  

Historically, well known catastrophic accidents occurred due to contamination by 

heavy metal compounds (e.g. methyl mercury) such as those happened in Japan 1956 

and Iraq 1971. The detection and determination of heavy metals is extensively 

researched for solid and liquid samples of different contamination levels. 

Nonetheless, the analysis in these researches was conducted inside laboratories by 

using bulky equipments, which requires pre-concentration procedures and expensive 

labour skills.   

This research is an attempt to design, fabricate and test a miniaturized integrated 

system based on dielectric barrier discharge plasma atomizers that can be utilized for 

online – real time determination of heavy metals in different samples of water.  

 

The present work has been described in nine chapters, summarized as follows: 

 

� Chapter one is a general introduction which summarizes the consequences of 

heavy metals on humans’ health, the detailed objectives of the current 

research and the research hypothesis.  

� In Chapter two, the conventional methods used for heavy metal 

determination are summarized. Reviews on the applications of DBD plasma 

and the chemical derivatization methods in the field of heavy metals 

determination are presented. Furthermore, the fundamental principles behind 

the proposed technology are discussed in detail. 

� In chapter three, the proposed technology is mathematically investigated; and 

several computational models are utilized with the aim of exploring the 

optimal design parameters required for the best system performance. 

� The first experimental investigations in this research are described in chapter 

four, which explore the performance of the core unit in the proposed 

technology, the dielectric barrier discharge (DBD) atomizer. An experimental 

plan and statistical analysis are presented to deduce the optimal operational 

and spectroscopic parameters for stable system performance. Plasma 

characteristics were assessed by using spectrometric analysis.   
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� In chapter five, the application of the proposed technology for mercury 

determination is described. Samples containing inorganic mercury were 

examined using two derivatization schemes. The mercury has been 

determined qualitatively and quantitatively, achieving reasonable accuracy. 

� Other heavy metals include hydride forming elements and transition elements 

are examined individually and simultaneously by applying the hydride 

generation scheme, as described in chapter six.  

� Another developed scheme promoted by the effect of physical factors is 

presented in chapter seven, in which a pre-treatment stage has been included 

in the proposed technique. 

� In chapter eight, the design of a full version of the integrated system is 

presented based on the outcomes of early investigations in chapters 3 to 7.  

� Chapter nine presents conclusions from the current research and 

recommendations for future work. 
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1.1 Preface 

Industrial waste water has been considered to be the most dangerous contaminant source 

of natural surface water. This is attributed to huge quantities of wastewater disposed 

into water bodies without any treatment or with poor treatment. The heavy metal 

content in this water is the most important reason for contamination. Such metals can be 

ingested by the aquatic animals, plants as well as crops on the land, and enters the 

human body through the food chain (Ying and Fang, 2006). Heavy metals are difficult 

to biodegrade and normally accumulate in some organs, causing many serious problems 

to the human body such as the catastrophic effect on the nervous system, brain, and the 

normal metabolic functions, even when present in small amounts. They also affect the 

biological structures of some organs leading to deformity or death (Manahan, 2005). 

The level of toxicity depends on three important parameters: the type of metal, it’s 

biological role, and the type of organisms that is exposed to it (OhioState-website). 

Therefore, determination of these metals with high accuracy becomes a challenging aim 

for researchers and legislation authorities. 

Heavy metals are most likely present in the wastewater disposal in a soluble form such 

as ions or unionized organometallic chelates or complexes. They also exist in colloidal, 

particulate and dissolved phases. Versatility of heavy metal forms leads to difficulties in 

analysis when adopting a general technique or method. For instance, chromium might 

be present in two different oxidation states, Cr (III) and Cr (VI), whilst the mercury is 

possibly present in both inorganic and organic (e.g. methyl mercury) forms. Other 

metals such as lead could be exist in a non-volatile ionic species or a volatile tetra alkyl 

lead (Mach et al., 1996).  

For the sake of controlling wastewater disposal, an online sample analysis is required to 

detect most of the heavy metals in their different forms with high accuracy 

(qualitatively and quantitatively). This kind of highly accurate analysis can be achieved 

by coupling two powerful techniques, the first technique achieves the separation of the 

various forms of the element of interest, whilst the second technique conducts the 

determination of the metal to low detection limits. For instance, the coupling of a high 

performance liquid chromatography (HPLC) technique with inductively coupled 

plasma-mass spectrometry has been widely used for mercury elemental speciation 

(Zoorob et al., 1998). 
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 Although the research centres are keen to develop new equipment in this field, a fully 

integrated system that can detects most of the toxic heavy metals in their multiple forms 

is still required. The integration of the whole system provides the advantage of 

analyzing an online water sample, which eventually leads to better control of the 

discharges. Thus, it becomes useful to conceive a system that can achieve highly 

accurate analysis in a small size and with low operational cost. Hence, the current 

research aims to design and fabricate an integrated system that can be utilized as a 

sensor for heavy metals determination in different samples of water.  

 

1.2 Heavy metals: definition, sources, standard limits and their 

consequences on humans health  

The term “heavy metals” covers an extremely disparate group of elements, and even 

more disparate group of compounds of these elements; hence, their biological and 

toxicological properties are not similar (Duffus, 2002). They include essential elements 

(e.g. iron) as well as toxic metals such as cadmium and mercury (Manahan, 2005). In 

general, over 50 of the elements in the periodic table have been classified to be heavy 

metals but only a quarter of them are considered to be toxic (OhioState-website). 

Historically, heavy metals are defined in the literature according to the following 

categories (Cornelis et al., 2003): 

• Definitions in terms of the physical and chemical properties such as: 

A metal having a density of 5.0 gm/cm3 or over; a metal of atomic weight 

greater than sodium (23);  any element with an atomic number greater than 20; 

metallic elements of high molecular weight. 

• Definitions without a clear basis other than the toxicity effects such as: 

Elements commonly used in the industry and generically toxic to animals and to 

aerobic and anaerobic processes, includes Hg, Cd, As, Sn, Cr, Cu, Pb, Ni, Se, 

and Zn. 

 

Practically, it is sensible to adopt the toxicity definition for the purpose of this study due 

to the well known effect of these metals on human life.  

Most of heavy metals are toxic in their chemically combined forms; nonetheless, some 

of them are toxic in their elemental form (such as mercury). The identified reasons for 
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the toxicity are attributed to a great affinity to combine with several groups, such as the 

sulphur groups in enzymes in addition to the protein carboxylic acid and amino groups, 

which consequently leads to disrupting the enzyme and protein functions.  Moreover, 

some of them (e.g. cadmium) bind to the cell membranes and eventually affect the 

transport processes through the cell wall (Manahan, 2005).  In addition to disposal from 

the industrial wastewater and the sewage treatment plants, other possible sources of 

heavy metals include pesticide run off from agriculture lands, releases from igneous and 

metamorphic rocks, decomposition of plant and the animal detritus, and acidic rain. 

Table (1-1) summarizes the possible industrial sources and common health problems. 

The data are extracted from (Manahan, 2005), (Cornelis et al., 2003), (Andrews, 2006), 

and (ATSDR-website). 

 

Table  1-1  common heavy metals sources and the most known health problems 

Element 
 

Class 
(*) 

 Sources 
 

Some of the effects on humans health 

Arsenic Metalloid 
(VHT) 

Mining by product, wastes 
of chemicals industry  

Lung cancer, bladder cancer, liver cancer, 
renal cancer, and skin cancer.  
Most toxic: As (III) 

Mercury 
 

Metal 
(MHT) 

Industrial wastes of mining 
& coal industries 
 

Primarily affects the central nervous system. 
In severe cases, specific anatomical areas of 
the brain affected, causing irreversible 
damage. Most toxic: mono methyl mercury 
(MMHg) 

Lead 
 

Metal 
(MHT) 

Industrial waste of mining 
industry  
 

Destruction of the nervous system 
characterized by the significant decrease of 
intelligence quotient. 
Most toxic: Tetra-alkyllead 

Cadmium 
 

Metal 
(MHT) 

Industrial wastes of battery, 
pigments, coating and 
plating  industries 

Bronchitis, Kidney damage, skeletal 
damage, carcinogenic, affects heart & liver 
 

Chromium 
 
 

Metal 
(MHT) 

Industrial wastes of metal 
plating and metal ceramics  

Allergic reaction, nose irritations and nose 
bleeds 
Most toxic: Cr (VI) 

Tin 
 

Metal 
(LT) 

Industrial wastes of can 
coating and steel container 
plating industries 

Depression, liver damage, malfunctioning of 
immune systems    
Most toxic: Tri butyl tin 

Zinc 
 

Metal 
(MHT) 

Industrial wastes of 
 iron galvanization & 
batteries industry  

Stomach cramps, skin irritations, vomiting, 
nausea and anaemia.  
 

Copper 
 

Metal 
(MHT) 

Industrial wastes of 
electrical equipment, 
construction and machinery 
industries 

Liver and kidney damage   

Nickel Metal 
(MHT) 

Industrial wastes of alloys, 
alloy steel, rechargeable 
batteries, catalysts and 
plating industries 

Lung cancer, nose cancer, larynx cancer and 
prostate cancer 
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Although a large number of heavy metals are categorized as toxic, some of them such as 

cobalt, copper, iron, manganese, molybdenum, vanadium, strontium, zinc and selenium 

are essential to many organisms (Andrews, 2006). They are required for the normal 

biochemical processes such as respiration, biosynthesis and metabolism. The shortage 

of supplying these metals to the human body can lead to a deficiency in the function of 

organs. For instance, low selenium status may be associated with an increased risk of 

cancer; however, higher dosages can lead to toxic responses.  

The standard limits of heavy metals in the drinking water are shown in Table (1-2). 

These limits have been recommended by the world health organization (WHO) as well 

as other authorities such as the European water quality directive (EC). The data are 

extracted from (Quevauviller and Thompson, 2006), (WHO, 2008), and (NCSU-

website). 

 

                 Table  1-2  the standard limits of heavy metals in drinking water 

Element Guideline value 
mg/lit  

Authority and remarks 
(**) 

Arsenic  0.01 (p)   WHO, (ECD), (N) 
Arsenic 0.05 NCU 

Cadmium  0.003    WHO, (ID) 
Chromium  0.05 (p)   WHO, Total, (N)   

Chromium (VI) 0.05 (ECD) 
Copper  2.0    WHO, (ECD), (PF) 
Lead  0.01    WHO, (ECD), (PF) 

Mercury  0.006  WHO, inorganic, (ID) 
Mercury 0.001 (ECD) 
Nickel  0.07   WHO, (PF) 
Nickel 0.01 (ECD)  
Zinc 0.005 NCU 

 

 

 

 

 

 

 

 

 

*: (VHT): very high toxic, (MHT): moderate to high toxic, (LT): low toxic, (VLT): very low 
toxic 
**: WHO: is the value according to the world health organization, 2008; (ECD) is the value 
according to European council directive 98/83/EC; NCU represents the value according to north 
Carolina university code; (p) is the provisional guideline value; (N) is a naturally occurring 
inorganic chemicals; (PF) refer to contaminants from pipes & fittings; (ID) refer to 
contaminants from industrial source & human dwellings 
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1.3 Research objectives 

Although substantial work has been done with a voluminous literature in the field of 

heavy metals detection and determination, an integrated system that can achieve full 

analysis on a miniature scale is still required. This study is devoted to develop an online 

– real time – fully automated system that could be utilized for conducting the  

simultaneous detection and quantification of heavy metals in an online sample of water 

taken from different sources. The proposed system is principally based on combining 

chemical derivatization procedures to produce volatile species in the form of hydrides or 

hydrido metal complexes to be dissociated and atomized through a dielectric barrier 

discharge (DBD) plasma atomizer, and then detected by using spectrometric analysis. 

This method has been selected for the sample introduction to the plasma section because 

of high efficiency (up to 100%) compared with the traditional desolvation/nebulisation 

technique. Other investigated techniques include integrating physical and chemical 

effects for better system performance. Nine elements are selected to be examined by the 

proposed system, include hydride forming elements and transition elements. Several 

chemical derivatization techniques are investigated for conducting qualitative and 

quantitative determination individually and simultaneously. The pre-treatment of the 

examined sample is also considered an important objective of this research since the 

real water sample possibly contains different types of contaminants. The proposed 

system is intended to form the basis for producing reliable portable equipment that 

could be adopted for in-situ analysis as part of the control of wastewater treatment 

plants. 

 

1.4 Research hypothesis 

It is hypothesized in this research that inducing multi physical effects from different 

resources on a water sample containing heavy metals will enhance the chemical 

reduction of the analyte and expedite the release of the generated species from the liquid 

phase; thereby the total efficiency of the process is improved. The general aim of this 

study is utilizing plasma generated in a dielectric barrier discharge atomizer to develop 

a miniaturized system for the simultaneous detection and quantification of heavy metals 

in a sample of water. The proposed hybrid system is principally based on utilizing 
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chemical derivatization procedures to produce volatile species of the analyte in the form 

of hydrides or organovolatiles, to be dissociated and atomized by DBD plasma 

atomizer, and then detected by applying spectrometric analysis. In addition to the 

traditional chemical reduction procedures, physical effects from ultrasonic irradiation 

and magnetic field are combined with UV radiation in a DBD atomizer to enhance the 

reduction efficiency. Online magnetization has been proposed as a preliminary 

treatment stage due to several advantages of a magnetic field. Ultrasound irradiation is 

also expected to induce considerable energy, which might enhance the reduction 

efficiency. UV radiation is well known to be an efficient source able to produce various 

radicals from the examined bulk, which would be effective on the whole process. 

Cryogenic separation with aid of liquid nitrogen cold trap is utilized to trap the volatile 

species before the atomization step for the purpose of species discrimination. The 

volatiles would be released sequentially by using programmed electrical heating. The 

challenging task of this study is believed to be the miniaturization of the whole process 

to be operated and controlled via PC software. The proposed system is aimed to form 

the basis for producing an integrated scheme for heavy metals determination in different 

forms.  
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2.         LITERATURE REVIEW 
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2.1     Preface 

The review is presented in four parts. The first part discusses various methods for heavy 

metals detection and determination, their features and shortcomings. In the second part, 

the working principle of the core unit in this research, the dielectric barrier discharge 

(DBD) plasma atomizer, is presented. The discussion also summarizes different design 

aspects of plasma DBD atomizers applied in the field of spectrochemistry analysis, as 

presented in the literature. The third part is devoted to discuss the working principles of 

different derivatization schemes applied in the field of heavy metals determination. The 

discussion presents some details on the derivatization procedures applied for several 

element determinations, individually and simultaneously, which has been adopted in the 

current research. The last part reviews some important principles related to the proposed 

technology; includes the hydride generation process and the atomization of the 

generated hydrides in a tubular atomizer, the spectrometric analysis, as well as some 

important plasma fundamentals. The fundamentals presented in this chapter are utilized 

in the mathematical investigations in chapter three, the DBD plasma characterization 

described in chapter four, as well as the experimental investigations and the 

spectrometric analysis presented in later chapters.   

 

2.2 Conventional methods for heavy metals determination   

Analytical methods for heavy metals determination are classified into two categories. In 

the first category, changes in the chemical properties of specific media are measured 

due to interactions from external heavy metal species. The second category is based on 

applying spectrometric analysis to monitor changes in species structure upon being 

subjected to a thermal radiation from different sources (e.g. quartz cell) or plasma 

effect. The working principles of these methods are summarized as follows:  

 

2.2.1  Methods based on monitoring the changes in the chemical properties of a 
specific media 

This category includes several methods, which can be illustrated in the following: 
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2.2.1.1  Catalytic kinetic spectroscopic techniques (photometry and fluorimetry) 

The working principle of the photometry catalytic kinetic technique relies on utilizing 

an oxidative coupling reaction as an indicator, in which a heavy metal ion yields a 

colour derivative as a result of catalytic oxidative coupling of two substrates (Kumar et 

al., 2003, Ohno et al., 1996, Gao et al., 2002). The absorbance of the resulting coloured 

coupled product (e.g. pink ) is measured at a selected wave length for a reagent blank, 

then a calibration graph is generated to infer the concentration of the analyte. The 

fluorimetric catalytic kinetic methods rely on the same principle as the photometric 

methods; i.e. the reaction rate is considered proportional to the concentration of the 

catalyst; however, fluorimetric techniques are rarely used for heavy metal determination 

because only few compounds are able to exhibit significant fluorescence. The major 

shortcoming of the kinetic methods is the poor selectivity (Safavi et al., 2001)
 as several 

transition metal ions that shows similar catalytic effects. 

2.2.1.2  The electrochemical techniques (anodic stripping voltammetry (ASV) and 

stripping chronopotentiometry (SCP)) 

The working procedure of the anodic stripping voltammetry technique is: (1) 

preconcentrating the target analyte onto a working electrode (e.g. a mercury electrode), 

(2) reducing the metal ion to form an amalgam on the electrode (deposition step), (3) 

distributing the metal inside the mercury, and finally, (4) re-oxidizing the metal during 

an anodic potential scan, where the current is recorded as a function of the applied 

potential (stripping step) (Brainina et al., 2004, Labuda et al., 1994, Manisankar et al., 

2006). The deposition step of stripping chronopotentiometry (SCP) technique is 

identical to that applied in the (ASV) technique, while re-oxidizing the analyte in the 

stripping step is usually achieved by the action of a chemical oxidant or by imposing a 

constant current. The electrochemical techniques (stripping analysis) satisfy most of the 

requirements for on-site detection of heavy metal ions because of low cost, low power 

requirements, high speed of analysis, high sensitivity and the instrument compatibility 

(Kadara and Tothill, 2004).  Nonetheless, the major drawback of these techniques is the 

ease of the electrode surface poisoning which has been considered a big limitation to the 

widespread use of the electrochemical monitoring (Brett, 2001).  
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2.2.1.3 Thin film techniques 

The chemical of interest is normally adsorbed onto a thin film of a chemically sensitive 

material; thereby inducing a change on the electrical characteristics of the material, 

which is consequently attributed to the concentration of the added chemical. Different 

types of thin film adsorption media are used such as conducting polymers, metal oxides 

(e.g. SnO2 or Ga2O3) and other materials like gold-thoilate nanoparticle clusters (Wilson 

et al., 2001). The changes in the electrical parameters are inferred by measuring the 

resistance (e.g. the chemiresistor sensors) (Cai and Zellers, 2002), or the phase change 

of a wave propagated across the sensor surface (e.g. the acoustic wave sensors) (Fang et 

al., 1999). The shortcoming of chemiresistor sensors is the noise produced due to the 

sensor miniaturization, whereas the operation of acoustic wave sensor requires higher 

frequencies when being miniaturized, which consequently result in complicating the 

electronics required  (Wilson et al., 2001).  

2.2.1.4    Surface plasmon resonance techniques 

Optical sensors based on surface plasmon resonance (e.g. electrochemical SPR sensors) 

and fibre optic biosensors which are based on localized surface Plasmon (LSPR) have 

been developed recently. Electrochemical surface plasmon resonance (SPR) is achieved 

by depositing mercury onto a surface of gold electrode with a subsequent stripping 

process using either anodic or cathodic current. During the stripping process, SPR is 

accomplished by reducing the intensity of the light reflected from the surface due to the 

effect of coupling evanescent wave with electrons in the sparse medium (Panta et al., 

2009) , which is eventually utilized to quantify the products of the electrochemical 

reaction. In optical biosensors, an active bio layer is immobilized onto a nano-particle 

layer of gold in order to detect the deposited analyte by utilizing LSPR. Localized 

surface Plasmon  resonance (LSPR) is defined to be the absorption of light that occurs if 

the optical frequency is resonant with the collective oscillation of conduction electrons 

(Lin and Chung, 2009). The uniqueness of the LSPR sensor is the ability to detect the 

analyte by using different kinds of detectors such as optical detectors. SPR and LSPR 

sensors are considered to be efficient devices that could provide very low detection 

limits, operates with low power consumption and low fabrication cost. However, the 
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major bottleneck of these sensors is the instability of the surface Plasmon absorbance 

band that follows immersion of the sensor in aqueous solutions (Gao et al., 2009).  

2.2.1.5    Combined integrated techniques 

The working principle of these systems relies on combining more than one technique to 

get the advantage of accurate discrimination of heavy metals ions. For instance, (Cai et 

al., 2009) combined the microelectrode array electrochemical technique (MEA) with the 

light-addressable potentiometric sensor (LAPS) to develop an electronic automated 

systems to detect a group of heavy metals (Zn(II), Cd(II), Pb(II), Cu(II), Fe(III) and 

Cr(VI)) in water samples. On the other hand, (Rudnitskaya et al., 2008)
 have used an 

array of potentiometric chemical sensors (11 sensors) with chalcogenide glass and 

plasticized PVC membranes for the simultaneous determination of copper, zinc, lead 

and cadmium ions in sea water. Although low detection limits are obtained from both 

systems, these devices require a long operation time for one measurement.  Moreover, 

the combination of multi techniques leads to an increase in the system complexity and 

consequently to higher costs. 

For comparison purposes, Figure (2-1) illustrates the copper detection limits, obtained 

with different technologies as well as the detection limits achieved in this research, 

presented in chapter six.  

 

Figure  2-1 the detection limits achieved for copper by using different determination 
methods; 
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DBD is the dielectric barrier discharge plasma atomizer adopted in this study in the 
range up to 100 µg/L , COCR is the catalysed oxidative coupling reaction when 
applying Cu(II) in the range 8 – 160 µg/L (Kumar et al., 2003), SV is the stripping 
voltametry technique applied for Cu(II) in the range 5 – 300 µg/L (Manisankar et al., 

2008), PM is the array of potentiometric chemical sensors when injecting 0.06 µg/L 
Cu(II) (Rudnitskaya et al., 2008), and finally AET is the automated electronic tongue 
which is applied for Cu(II) in the range 2-300 µg/L (Cai et al., 2009).  
 

 

2.2.2 Determination methods based on the atomic spectroscopy analysis   

Several analytical techniques based on spectrometry can be applied to detection of 

heavy metals in water samples, soils, and other matrices. The methods include: flame 

and graphite furnace atomic absorption spectrometry (FAAS & GFAAS) (Liu et al., 

2007, Naghmush et al., 1994), hydride generation- atomic absorption and fluorescence 

spectrometry (HG-AAS/AFS) (Leal et al., 2006, Frank et al., 2005), inductively 

coupled plasma optical emission spectrometry (ICP-OES) (Peña-Vázquez et al., 2005, 

Matusiewicz and Slachcinski, 2006), microwave induced plasma atomic emission 

spectrometry (MIP-AES) (Dietz et al., 1999), inductively coupled plasma mass 

spectrometry (ICP-MS) (Mester et al., 2000), ion chromatography (Beere and Jones, 

1994)
 and gas chromatography (Geerdink et al., 2007). In (FAAS & GFAAS) 

techniques, the analytes in the sample must undergo desolvation/nebulisation process 

then vaporization with aid of a high-temperature source such as a flame or graphite 

furnace to convert them into atoms in order to be determined by the atomic absorption 

spectroscopy technique. In general, the flame atomic absorption method can only 

analyze solutions, whereas the graphite furnace atomic absorption can be utilized for 

solutions, slurries, or solid samples.  

The (HG-AAS/AFS) technique has been applied for hydride forming elements (e.g. 

arsenic, selenium, bismuth, .., etc.) where the hydride of the analyte is usually generated 

chemically with aid of a reducing agent and then detected after atomization by a 

spectroscopy technique. Other techniques such as (ICP-OES), (MIP-AES) & (ICP-MS) 

utilizes the plasma to ionize and break down the chemicals into fragments, to be 

identified either by the charge to mass ratio (mass spectroscopy) or the wave length of 

the emission lines (emission spectroscopy). It is well known that the adoption of mass 
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spectra is more accurate and easier than the optical spectra. The reason is that each 

analyte has only one charge to mass ratio whereas it could have many emission lines. 

Therefore the detection limits of ICP-MS technique are reported to be in the range of 

few parts per trillion, while ICP-OES normally achieves detection limits in the range of 

parts per billion.  

Chromatographic techniques usually utilize an adsorption media in a column to retain 

the generated volatile species of the analyte and desorb them with time. The analyte’s 

identification is achieved by measuring the releasing time from the adsorption column. 

It is worth noting that all the above techniques achieves low detection limits (LODs) 

and have been widely applied inside laboratories. Figure (2-2) illustrates the typical 

detection limits achieved by using the spectrometric methods. 

 

 

Figure  2-2 the typical detection limit ranges for the major atomic spectroscopy 
techniques (Zhang, 2007)    
 

 

It is well known that the abovementioned techniques require skilled professional labour, 

high analytical cost, additional pre-concentration procedures and relatively long 

operation times. In practice, these techniques are found to be so expensive and not 

easily miniaturized because they require bulky instruments; hence, they are considered 

to be impractical for onsite screening or as a portable quantification decision tool 

(Kadara and Tothill, 2004).  
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2.3 Applications of the dielectric barrier discharge plasma atomizers in 

the field of heavy metals determination 

The non thermodynamic equilibrium plasma, which is classified to be low temperature 

or cold plasma, is normally formed in low or atmospheric pressure systems. The 

temperature of electrons in the cold plasma is much higher than the temperature of the 

heavy particles, the electrons can reach temperatures in the range 104 – 105 οK while the 

gas temperature is kept as low as in the range of room temperature. The common types 

of low-temperature plasma are: direct current, alternating current (AC, 50 – 60 Hz) 

audio frequency (AF, <100 kHz), radio frequency (RF, 13.56 MHz) and microwave 

(2.45GHz).  The atmospheric pressure plasma can be generated in a large scale such as 

plasma jet as well as the micro scale such as the resistive barrier discharge. Recent 

research has been to utilize a microplasma as it offers many advantages. One of the 

main advantages is the lower operating cost due to limited gas and low power 

consumption (Karanassios, 2004) . Other properties are: light weight, embedding with 

other components in proximity, and the possibility of using miniaturized power sources 

(Valdivia-Barrientos et al., 2009). The dielectric barrier discharge microplasma (DBD), 

also referred to as silent discharge, has been utilized in analytical chemistry research as 

it offers the ability of miniaturization on a chip. The general configuration of a DBD 

plasma atomizer assumes a small distance between the electrodes as well as coverage of 

one or both electrodes with a dielectric material, which prevents direct contact between 

the plasma gas and the electrodes, and consequently reduces electrode contamination. 

As soon as a potential is applied, a charge build up is formed on the dielectric surfaces 

leading to the plasma gas breakdown. The breakdown produces a filament with a high 

current density for few nanoseconds, which is called a microdischarge. After 100 nano-

seconds, the electric field reduces significantly, leading to a reduced charge density and 

current flow interruption. Hence, the microdischarges form at other positions due to the 

continuity of the applied field, whereas other microdischarges can only be generated at 

the former position when the voltage is reversed. As a result of the short discharge 

duration, no significant heat build up is expected along the DBD surface, which 

consequently results in cold plasma formation 
(Miclea et al., 2001). DBD plasma 

discharge provides sufficient energy for breakdown (1-10 eV), which is considered to 

be ideal for spectrochemical analytical applications. The energetic electrons collide with 
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the molecules in the ambient gas, forming various ions, atoms, molecular fragments and 

free radicals (Zhu et al., 2006a, He et al., 2007). DBD atomizers are usually powered by 

applying an AC source of 1-100 kV and a frequency range up to several megahertz. 

Practically, DBD microplasma is still in the research stage and it has not been extended 

yet for wider applications in the field of spectrochemical analytical devices. 

The last decade has experienced extensive applications of DBD microplasma in the 

fields of analytical chemistry. Table (2-1) summarizes the recent researches in this 

field. 

2.4   Applications of the chemical derivatization methods in the field of 

heavy metals determination 

Analyte derivatization is the process of the controlled conversion of species originally 

present in a sample into another form of improved separation coefficient, without 

changing the original chemical structure (Cornelis et al., 2003). Hence, the 

derivatization procedures are used to transform a chemical compound into product of 

similar chemical structure, called a derivative. The main objectives of the derivatization 

procedures are: increasing the compound volatility, decreasing the compound polarity, 

increasing the thermal stability of the compound, as well as increasing the detection 

efficiency by incorporating functional groups, which consequently improves the 

element separation efficiency and eventually leads to a higher signal intensity (Zhang, 

2007). 

The working principles of the derivatization methods rely on one or more of the 

following procedures:  

• Conversion of inorganic and small organometallic ions to volatile compounds 

(e.g.  hydrides or fully ethylated species) in aqueous media. 

• Conversion of large alkylmetal cations (RnPb(4-n)+) to saturated nonpolar species. 

• Conversion of ionic species to volatile chelates (e.g. dithiocarbamate) or other  

             compounds. 

 

The most common chemical derivatization techniques are cold vapour generation 

(CVG) and hydride generation (HG) for hydride forming elements; alkylation by using 

alkylborates and derivatization procedures by applying Grignard reagents.  
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Table  2-1 the applications of DBD microplasma in the analytical chemistry fields 

Used 
technique 

Detection of DBD geometry Electrodes Power  Ref. 

DBD - DLS  
 
(Argon or 
Hellium) 

Halogenated 
hydrocarbons  
 

A rectangular, two flat glass plates. The 
channel was formed by two glass spacers with 
the following dimensions: 60 mm length x 
1mm width. The distance between the 
electrodes including the dielectric layers is 1 
mm 

50 mm long x 0.8 mm width x 
0.1 mm thickness aluminium 
electrodes covered with 20 µm 
glass layer 

0.5 – 1 watts 
750 V AC 
5  - 20 kHz 
11.5  kHz modulation 
frequency 

(Miclea et al., 2001)     

HG - DBD -
AAS  
 
(Helium) 

As(III), As(V), 
MMA, DMA 
 

A rectangular, two flat glass plates 1 mm 
thick. The channel was formed by two glass 
spacers with the following dimensions: 70 mm 
length x 10 mm width, with an entrance 
channel in the midline of the cell. The distance 
of the two glass plates was 2 mm 

50 mm long x 10 mm width 
flat copper plates attached to 
the top and the bottom surface 
of the cell 

5 watt 
3700 V AC 
20.3 kHz 

(Zhu et al., 2006a)    

HG - DBD - 
AAS 
 
(Argon) 

Se, Sb, Sn A rectangular, two flat glass plates 1 mm 
thick. The channel was formed by two glass 
spacers with the following dimensions: 70 mm 
length x 8 mm width, with an entrance 
channel in the midline of the cell. The gap 
between the two glass plates was 3 mm 

50 mm long x 8 mm width flat 
copper plates attached to the 
top and the bottom surfaces of 
the cell 

5 watt 
3500 – 4000  V AC 
20.3 kHz 

(Zhu et al., 2006b)  
 

CVG - DBD -
AES  
 
(Argon or 
Hellium) 

Hg (II)  
 

A rectangular, two flat glass plates 190 µm 
thick. The channel was formed by two glass 
spacers, 1 mm thick, with the following 
dimensions: 15 mm length x 5 mm width, with 
an entrance port for the gas midline of the cell. 
The thickness of the plasma channel was 0.6 
mm 

10 mm long x 5 mm width 
copper electrodes attached to 
the top and bottom surface of 
the cell 

5 watt 
3700 V AC 
30 kHz 

 (Zhu et al., 2008a)    
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HG - DBD - 
AFS  
 
(Argon) 

As (III)  
 

A cylindrical, two concentric quartz tubes 
with inner tube diameter of 4 mm and 7 mm 
ID for outer tube. A 2 mm discharge gap is 
present between the quartz rod and the inner 
quartz tube. The effective discharge length 
was 20 mm.    

A copper wire embedded 
inside a quartz rod as a central 
electrode in addition to an 
outer aluminium foil wrapped 
around the outer surface of the 
inner tube as the second 
electrode 

13.5 watt 
4300 - 7000 V AC 
20 kHz 

(Zhu et al., 2008c)  
  

HG - DBD – 
AFS 
(Argon) 

Se, Pb & Sb  
 

 Same design of  (Zhu et al., 2008c) Same design of 
 (Zhu et al., 2008c)  

Same conditions of   
 (Zhu et al., 2008c)   

(Zhu et al., 2008b)    

CVG - DBD - 
OES   
 
(Argon) 

Hg (II)  
 

A rectangular, two quartz plates 50 mm length 
x 15 mm width x 1.2 mm thick were used for 
outer shell. 50 mm length x 5 mm width x 
1mm thick channel was formed between the 
outer shell by using two glass spacers  

Two aluminium foils 5 mm x 
30 mm were attached to the 
outside surfaces of the outer 
shell  

13.5 watt 
1200 - 1350 V AC 
35 kHz 

(Yu et al., 2008a)   
  

GC – DBD- 
CL 
 
(Nitrogen) 
 
 
 

Volatile 
chlorinated 
hydrocarbons 

A cylindrical, glass tube 1 mm ID x 40 mm 
length covered with a rubberized fabric  

Copper rod 0.45 mm OD x 30 
mm length along tube centre 
line as inner electrode plus  
copper wire 0.45 mm OD x 50 
mm length wrapped around 
the outside surface of the tube 
as the second electrode 

5 watt 
1400 - 2700 V AC 
 20 kHz 

(Li et al., 2008)   
  

HG - DBD – 
AFS 
 
(Argon) 

As(III) Lab on valve DBD atomizer, 4 quartz plates 
with 1.2 mm thickness formed an atomization 
chamber 50 mm length x 4 mm width x 3 mm 
depth 

Two aluminium foils 30 mm 
length x 4 mm width 

Neon power supply, 
discharge voltage = 60 
volt 

(Yu et al., 2008b)   
  

HG - DBD - 
AFS  
(Argon) 

Bi Programmable intermittent DBD reactor NA 2-22 watts (Xing et al., 2009)  
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Integrated 
chromatograp
-hic approach 
including 
capillary flow 
and DBD 
atomizer 
(Argon) 

Measurement of 
arsine and 
phosphine in 
hydrocarbons 
such as 
propylene 

A commercial dielectric barrier discharge 
detector operating in argon mode was used 

NA NA (Gras et al., 2010) 
  

HG – DBD -
AAS 

Inorganic 
mercury and 
methyl mercury 

A rectangular configuration consists of two 
glass plates, 1 mm thickness. The discharge 
channel dimension was 70mm length x 10mm 
width x 1mm depth 

Two aluminium foils 50mm 
length x 10 mm width 

5 watt (Zhu et al., 2010) 
  

VG-DBD- 
ICP-OES 
 
 

Inorganic 
mercury 

Concentric cylinders configuration, the outer 
cylinder is a quartz tube (5 mm ID, 7 mm OD, 
and 10 cm length) whereas the inner cylinder 
is a smaller diameter quartz tube 
 

1 mm copper wire inserted in 
the inner cylinder. 1 mm 
copper wire formed the outer 
electrode and wrapped on the 
outer cylinder 

High voltage power 
supply 
Input voltage = 20 volt 

(Wu et al., 2011) 

DBD - GC halo- 
hydrocarbons 

A cylindrical configuration, a small quartz 
tube (3.0 mm ID, 5.0 mm OD and 50 mm 
length) 

A copper wire electrodes, 
inner electrode diameter  (1.7 
mm) and outer electrode 
diameter (1.2 mm) 

High voltage power 
supply 
voltage = 4 kV, 20 kHz 

(Li et al., 2011) 

DBD – OES Inorganic 
mercury 

A rectangular configuration, plasma channel 
dimensions  (4 cm length, 1 cm width, and 1 
mm depth) 

Aluminium foils, 0.5 mm 
thickness, were used for 
electrodes 
 

High voltage power 
supply (up to 12 Kv) 

(Abdul-Majeed et al., 

2011, Abdul-Majeed and 

Zimmerman, 2012a) 
(the current research) 

 

 
DLS: diode laser spectrometry, HG: hydride generation technique, AAS: atomic absorption spectroscopy, CVG: cold vapour generation,  
AES: atomic emission spectroscopy, AFS: atomic fluorescence spectroscopy, OES: optical emission spectroscopy, GC: gas chromatography,  
CL: chemiluminescence, VG: vapour generation, ICP: inductively coupled plasma, MMA: monomethyl arsenic, DMA: dimethyl arsenic
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Other derivatization techniques utilize UV light and ultrasonic irradiations to produce 

radicals that are able to reduce the analyte and produce the volatile species (Wu et al., 

2010).  It is worth noting that the utilization of chemical derivatization methods in 

plasma spectrochemistry devices could ameliorate the analyte transport efficiency and 

their introduction to the plasma bulk by more than 90%  compared with the 

conventional pneumatic nebulisation method, which normally achieves no more than 

5% efficiency (Liu et al., 2011). Consequently, the limits of detection could be 

improved up to several orders of magnitude. It is also important to refer to the ability of 

coupling the chemical derivatization methods with various detection schemes, which 

eventually facilitate the determination procedures.  

    

2.4.1   Chemical derivatization techniques (CVG & HG)   

The working principle of the cold vapour generation (CVG) and hydride generation 

(HG) techniques is to reduce the element into a lower oxidation state by using a 

reducing agent. Applying the cold vapour generation process results in liberating the 

analyte elemental form at room temperature, which can be detected by spectroscopic 

analysis, while the hydride generation technique involves the reduction of the element 

from the higher oxidation state to its lowest state (usually  II or  III), which appears 

ultimately as the volatile hydride. The advantages of these techniques are: rapid reaction 

kinetics, high and reproducible reaction efficiency and a stable analyte species during 

transport. The generated volatile hydrides require an atomization step in order to be 

converted to the free atoms which can be detected by spectroscopic methods. The cold 

vapour generation technique is reported to be applicable for mercury species, in which 

inorganic mercury Hg (II) is converted to elemental mercury Hg (0). The formation of 

cadmium free atoms at room temperature has also been reported as possible (Cornelis et 

al., 2003, y Temprano et al., 1994). Mercury and cadmium are chemically reduced to 

the free atomic states Hg (0) and Cd (0) directly or indirectly through reaction with a 

strong reducing agent like sodium tetrahydroborate (NaBH4). The volatile-free atoms 

are then driven from the reaction chamber by a carrier gas to the absorption cell, to be 

detected by atomic absorption spectrometry. The detection limit of mercury using the 

cold vapour technique, is reported to be sub ppb with 100% release efficiency (Zhang, 
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2007). Other metals and metalloids classified to be hydride forming, include arsenic, 

antimony, bismuth, germanium, lead, selenium, tellurium and tin. The range has been 

extended recently to include the noble and transition metals, platinum, cobalt, silver, 

copper, rhodium, palladium, osmium, chromium, gold, nickel, indium, thallium, and 

manganese (Feng et al., 2001, Pohl and Prusisz, 2007). The metals react with a 

reducing agent (usually NaBH4) to produce volatile species (e.g. AsH3, SbH3, BiH3, 

GeH4, PbH4, SeH2, TeH2 and SnH4) (Dedina and Tsalev, 1995). In some cases 

reduction doesn't take place; for example inorganic As (III) remains in the same 

oxidation state passing from H3AsO3 to AsH3. The generated molecular species transfer 

from the aqueous phase to the gas phase at moderate to high efficiency, up to 95% for 

arsenic (Le et al., 1992), and partially dissociate through the atomizer. Hydrides 

generation could be conducted using either batch operation, continuous flow or flow 

injection, where the volatile hydrides are scavenged from the sample solution with aid 

of a carrier gas (usually argon) into the atomization cell. The cell is heated either 

electrically or by a flame in order to atomize the element.  Several reducing agents have 

been applied including Zn/HCl, SnCl2/HCl-KI, Mg/HCl-TiCl3 and tetrahydroboride 

(THB).  

Sodium tetrahydroborate (NaBH4) stabilized by NaOH or KOH is almost exclusively 

used as an efficient derivatizing agent due to exceptional reducing and hydride transfer 

properties. In this regard, several mechanisms proposed in the literature have 

contemplated the formation of the volatile hydrides (D'Ulivo et al., 2005, D'Ulivo et al., 

2007, Ramesh Kumar and Riyazuddin, 2005), summarized as follows: 

 

a) assuming the evolution of the nascent hydrogen from acidic hydrolysis of THB  
The mechanism of the hydride generation process is represented by the following 

reaction: 

����� + 3�	
 +���	
����	���
� + 	���� + 8�● 	

������ 	��� + �	 ↑               (2-1) 
 
Where;    
A: the analyte, m+: the oxidation state of the analyte, n: the coordination number of the 
hydride, H●: the nascent hydrogen 
 
The active specie in the reduction process is the atomic (nascent) hydrogen which forms 

during the acid hydrolysis of THB. The decomposition of THB in a pure aqueous 

solution is represented by the following mechanism: 
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BH4
¯
 + H2O + H

+ → H2O–BH3 + H2 

H2O–BH3 + H2O → H2O–BH2OH + H2 

H2O–BH2OH + H2O → H2O–BH(OH)2 + H2 

H2O–BH(OH)2 + H2O → B(OH)3 + H2 + H2O 

------------------------------------------------------------------- 

                                          BH4
¯
 + 3H2O + H

+
 → B(OH)3 + 4H2                         (2-2) 

 
 

b) assuming the formation of the hydride occurs due to the action of the hydrogen 
that directly links to the boron through the formation of some hydroboron  
intermediates 

The mechanism is illustrated in the following reactions: 
 
 

THB +  H3O
+
 + 2H2O → Intermediates →  H3BO3  + H2 

 

                       THB/Intermediates + Analyte → Hydride                            (2-3) 
                                                                                                                       

 
 
The oxidation state of the analyte imposes a pronounced effect on the generation of the 

hydride. In practice, producing the hydride from the analyte at low oxidation state is 

more effective for analytical purposes. For example, the reduction of Sb (III) into 

stibine (SbH3) is found to be faster, more reliable, and higher yielding in comparison 

with stibine produced by Sb (V) reduction. Thus, an element at a high oxidation state 

should be pre-reduced to the lower state before being reduced to the hydride form. The 

most common pre-reducing agents are: L-cysteine, ascorbic acid and thiourea. Some of 

these reagents enhance the analyte signal by eliminating the interferences produced 

from other compounds in the reaction bulk. L-cysteine (C3H7NO2S) is capable of 

speeding up the rate of hydroborate reaction, thereby increasing the sensitivity. The 

signal amelioration is attributed to an intermediate compound formed due to the 

reaction between NaBH4 and the SH group of L-cysteine, which is found to be more 

effective than NaBH4 alone.  

 

 
                                 BH4

¯
 + RSH

 → RS–BH3
¯
 + H2                             (2-4) 
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On the other hand, sample acidity and the concentration of the reducing agent are 

reported to have significant effects on hydride generation efficiency. Hydrogen ions in 

the reaction bulk also have an important role in the activation of the analyte to a suitable 

chemical form in addition to their role in THB hydrolysis. Generally speaking, a higher 

value of acid concentration results in better control of interferences from the transition 

metals; hydride generation for an analyte present at a higher oxidation state (e.g.  As 

(IV)) requires a very limited acidic range (PH = 0.3-0.5). Furthermore, the reductant 

concentration is also a sensitive parameter, depending on the hydride generation 

technique used. For instance, (0.1-0.2%, 0.2-1.0% and 1-3% m/v) NaBH4 

concentrations has been utilized for antimony reduction using flow injection, continuous 

and batch systems respectively (Dedina and Tsalev, 1995). 

 

2.4.2   The alkylborates and Grignard reagents 

The most commonly used alkylborate reagents are sodium tetraethylborate (NaBEt4), 

sodium tetraphenylborate (NaBPh4) and sodium tetrapropylborate (NaBPr4). Ethylation, 

using sodium tetraethyl borate can be applied in aqueous media, in which the reduction 

and the extraction procedures are conducted in the same step. Such ethylation is used 

for Sn, Se, Hg and Pb which enables the simultaneous reduction of organo (Sn, Hg and 

Pb) compounds (Cornelis et al., 2003). Moreover, ethylation by sodium tetraethylborate 

is reported applicable for cadmium (y Temprano et al., 1994, D'Ulivo and Chen, 1989). 

The application of ethylation in the aqueous phase is found to be unable to distinguish 

between the organic species (ethyl lead, ethyl mercury) and ionic inorganic mercury and 

lead. Alternatively, both (NaBPh4) and (NaBPr4) were found to be more stable 

compared with NaBEt4, which has provided the possibility to distinguish between ethyl- 

and inorganic mercury and lead derivatives. Grignard reagents (e.g. ethyl magnesium 

bromide) are efficient agents for mercury, organotin and organolead speciation. 

However, some shortcomings are reported when using Grignard reagents such as their 

atmospheric instability and their hydrolysis in the presence of water, leading to the 

formation of Mg (OH)2. Therefore the target species must be extracted into a non-polar 

solvent as a first stage and then dried prior to derivitized with Grignard reagent 

(Grinberg et al., 2003). 
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2.4.3   Application of chemical derivatization methods stimulated by UV light 
and ultrasound irradiation 

Photo-chemical reduction/oxidation reactions are utilized in various fields such as 

wastewater treatment and some industrial applications. In the analytical chemistry,  

photochemical derivatization procedures are used to conduct the photochemical pre-

reduction of    Se (VI) to Se (IV) (Fragueiro et al., 2006). In later studies, a 

photochemical vapour generation procedure was utilized for other elemental (e.g. Hg, 

As, …, etc.) reductions. 30 % of the elements in the periodic table could be converted 

into volatile species upon being subjected to sufficient UV radiation in presence of low 

molecular weight acids (Vieira et al., 2007, McSheehy et al., 2005, Guo et al., 2005). 

The concept of the photochemical vapour generation (PVG) process relies on utilizing 

the reducing radicals generated from inducing a UV radiation on low molecular weight 

organic compounds (e.g. carboxylic acids or alcohols). 

The photolytic cleavage of low molecular weight organic acids by the UV radiation is 

represented according to the following equations (Bendl et al., 2006).  

 

                                   ��

� + ℎ�	 → 	�∗ +	�

�∗                                  (2-5) 
 

Another pathway for the photolytic decomposition of aliphatic acids was suggested to 

be as in the following form (Guo et al., 2005): 

 

� − �

	 !"��	 �∗ +		�

�∗ 		→ �� +	�
					, (� = 	���	�&'	, ( = 0,1,2)    (2-6)   	 
 
 
For instance, the photo-dissociation of formic and acetic acids which promotes the 

generation of mercury vapour species is described as follows:  

 

 
��

� + ℎ�	 → 	��

�∗ 	→ 	�	
 + �
 

 
                       ����

� + ℎ�	 → 	����

�∗ 	→ 	�	
 + ��	�
              (2-7) 

 
      �-	(..) + 	/01234(-	5603405	(/�143��5) → �-(0)789 	→ 	�-	(0):;7	 
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Investigations into applying PVG schemes for arsenic show that As (III) acts as a 

scavenger leading to a recombination with hydrocarbon radicals and the formation of 

stable methylation products as follows: 

 

                       3��

� +	���5
� 							
!"��	 									3�
	 +	���5 + 3�	
             (2-8) 

� = 	���	�&'		 
 
Subjecting an aqueous phase to ultrasound irradiation leads to the formation of 

cavitation bubbles. Each cavitation bubble acts as a microreactor which consequently 

generates a collapse bulk with very high localized temperature and pressure (4000 oK 

and 200 Bar). The collapse of the bubble may occur in different ways which produces 

shock waves and consequently results in a turbulent flow at the bubble interface (in the 

case of symmetrical cavitations) or formation of micro jets in the case of asymmetric 

cavitations. When a water sample is affected by sufficient ultrasound irradiation, many 

radicals (e.g. H*and OH*) form at the gas-phase interface of the cavitation bubbles, and 

to a lesser extent, in the bulk solution. The generated radicals are responsible for the 

reduction properties of the ultrasound irradiation process.  Sonic decomposition of low 

molecular weight organic compounds (e.g. acetic or formic acid) results in the 

formation of reducing radicals which consequently reduces the analyte into a lower 

oxidation state. The formation of mercury vapour species due to ultrasonic irradiation in 

presence of formic acid (sono-chemical reduction) is by the following mechanism  (Gil 

et al., 2008). 

 
�	
	 → 	
�∗ +	�∗ 

 
��

� +	
�∗	(�∗) → 		 �

�∗ +	�	
	(�	) 

 
                                   2��

�	 → 	�
 +	�
	 +	�	
 +	�	                               (2-9) 
 
�-	(..) + 	/01234(-	5603405	(/�143��5, -�505) → �-(0)789 	→ 	�-	(0):;7	 
  
 
UV-induced photochemical vapour generation can be used for selenium determination, 

where different UV light sources were used and several mechanisms presented (Guo et 

al., 2003, Sun et al., 2006). Later studies investigated other elements such as mercury 

(Wu et al., 2011), arsenic, tin, cadmium , lead (Zheng et al., 2010a), and nickel (Zheng 
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et al., 2009). In all these studies, the detection limits are found to be quite competitive 

with the traditional HG technique.  

Ultrasonic irradiation has been utilized for sample pre-treatment for extracting different 

kinds of species from various samples (Bentlin et al., 2007, Marin et al., 2001). 

Ultrasonic chemical vapour generation is reported to be applicable to inorganic mercury 

and methyl mercury reduction (Gil et al., 2006, Gil et al., 2008, Ribeiro et al., 2007) 

where micro-sonic probes and a sonic water bath were used to induce different levels of 

ultrasonic irradiation. Although (Ribeiro et al., 2007) stated that the methodology could 

be extended to apply to other elements (As, Se, Cd, and Zn), ultrasonic cold vapour 

generation of mercury is found to be a restricted process (Capelo et al., 2000) because 

of the presence of chloride and amino acids (normally used for the sample digestion), 

which ultimately suppresses the signal of Hg (II) and Hg (0). 

It is worth noting that to the best of knowledge, no other elements have been 

investigated using this technique. However, (Ribeiro et al., 2007) suggested that UV 

radiation of aqueous solutions containing strong oxidants (e.g. O3 or H2O2) gives rise to 

the formation of lower residual oxidants which could be utilized for sample digestion 

without signal suppression. This envisages the possibility of integrating both UV and 

ultrasonic irradiations for sample pre-treatment and analyte reduction, which has been 

applied in the current research (Section (7-6)).  

In practice, a significant sonic effect could be imposed on the examined sample by 

using a suitable transducer (e.g. immersion) (Li et al., 2009, BPO-Website).  

 

2.5   The chemical derivatization procedures for the most common heavy 

metals  

In this section, the chemical derivatization procedures for the most common heavy 

metals are reviewed. The review covers nine elements, selected to be examined in this 

research, including hydride forming elements (Hg, As, Sn, Cd, Pb) and other transition 

elements (Cu, Ni, Zn, Cr). The reason for selecting these elements is to investigate a 

wider range of the derivatization conditions and different categories in the periodic 

table.  

In addition to the selected nine elements, other elements are also included for 

completeness. It can be observed in Figure (2-3) that the element responses to the 
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chemical derivatization procedures are widely different, in which several forms can be 

produced even from the same element. For instance, Hg (II) produces free atoms at 

room temperature whereas methyl mercury produces methyl mercury hydride. Other 

elements (e.g. As (V)) require to be pre-reduced to a lower oxidation state before 

conversion to the volatile species, whereas Pb (II) requires to be oxidized into higher 

oxidation state before producing the volatile species.  

 

 

Figure  2-3 summary of the derivatization procedures for the volatile species forming 
elements; 
PRE & RE indicate pre-reducing & reducing agents respectively, whereas OA denotes 
an oxidizing agent. The yellow arrow represents the derivatization procedure by 
applying the hydride generation technique while the blue arrow illustrates alternative 
derivatization procedure by applying the alkylborates reagents. 
 

 
 

As: arsenic, Sb: antimony, Bi: bismuth, Se: selenium, MMAA: monomethylarsonic acid, 
DMAA: dimethylarsenic acid, MMSA: monomethylated species of antimony, DMSA: 
dimethylated species of antimony, TAL: tetra alkyl lead compounds, MeSn: methylated tin, 
BuSn, butylated tin, PhSn: phynelated tin 
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2.5.1   Mercury 

The important chemical forms of mercury include: the elemental mercury Hg0, the 

inorganic mercuric Hg2+, monomethylmercury (CH3Hg+), dimethylmercury 

(CH3HgCH3) and mono ethyl mercury MEtHg (Mach et al., 1996, Leermakers et al., 

2005). The monomethylmercury compounds are relatively more toxic than elemental 

mercury and its inorganic salts. 

Derivatization of mercury species has been applied by using either the cold vapour 

generation technique (NaBH4 or SnCl2) or other procedures such as the aqueous phase 

ethylation with (NaBEt4) or Grignard reagents. In general, cold vapour atomic 

absorption spectrometry (CV-AAS) offers many advantages such as high sensitivity, 

absence of spectral interferences, simplicity, and low operational costs (Rio-Segade and 

Bendicho, 1999). Practically, using any of the aforementioned derivatization techniques 

produces volatile species of mercury such as elemental Hg0 and methyl mercury 

hydride, as illustrated by the following schemes: 

 

• Sodium tetrahydroborate   
 
              Hg

2+ 
+ 2NaBH4 + 6H2O → Hg

0
 + 7H2 + 2H3BO3 + 2Na

+ 

 

            MeHg
+ 

+ NaBH4 + 3H2O → MeHgH + 3H2 + H3BO3 + Na
+ 

               (2-10) 
                                                                                                                                           
 

 

The elemental mercury Hg0 can be determined at room temperature using the atomic 

absorption spectroscopy method; however, the total determination of mercury species 

requires a heat source (e.g. quartz tube furnace or plasma atomizer) for achieving the 

decomposition of MeHgH (Zhu et al., 2010). On the other hand, the direct reduction of 

MeHg+ to Hg0 was achieved under specific conditions (Rio-Segade and Bendicho, 

1999, Capelo et al., 2000). Concentration of sodium borohydride is mentioned to be a 

critical factor in the determination of mercury species via cold vapour generation; 

therefore, it is specified within (0.01- 0.1%, m/v) when processing inorganic mercury 

and (0.01- 0.75% m/v) in the case of methyl mercury. It is also reported that the reagent 

solution should be prepared by adding NaOH in order to stabilize the solution. 
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• Tin chloride (SnCl2 ) 

SnCl2 is usually used for the reduction of inorganic mercury; however, it can also be 

used for the reduction of organic mercury species into Hg0 by using the ultrasonic 

chemical vapour generation technique, where the organic mercury is converted to a 

hydride (e.g. the conversion of CH3Hg+ into CH3-HgH) (Capelo et al., 2000) . A 

procedure applied to differentiate between inorganic and organic mercury depends on 

the sonic source. For instance, if the sonic irradiation source is turned on, the signal 

indicates the total mercury; conversely if it is turned off, the signal refers to the 

inorganic mercury. Therefore, the organic mercury can be inferred from the difference 

between the two determinations.  

 

• Sodium tetraethylborate  
 

     Hg
2+

 + 2NaB (C2H5)4 → (C2H5)2 Hg + 2Na
+
 + 2B (C2H5)3 

 

               CH3Hg
+
 + NaB (C2H5)4 → CH3HgC2H5 + Na

+
 + B (C2H5)3             (2-11) 

                                                                                                                                    

The advantages of using an aqueous phase reducing agent such as (NaBEt) rely on 

conducting the whole derivatization process simultaneously, i.e. the analytes can be 

separated from the matrix, derivitized and extracted into an organic solvent in one-step 

(De Smaele et al., 1998). Nevertheless, sodium tetraethylborate cannot be used for the 

simultaneous discrimination of inorganic mercury and methyl mercury because it 

produces similar volatile species HgEt2 after ethylation. Alternatively, a phenylation 

technique by using sodium tetraphenylborate (Abrankó et al., 2005)
 and a propylation 

technique by using sodium tetrapropylborate (Grinberg et al., 2003)
  have been applied 

for the same purpose.  

 

2.5.2   Cadmium 

Cadmium is considered, together with mercury, to be the most toxic of the heavy metals 

group (y Temprano et al., 1994). Cadmium is derivitized into cadmium hydride (CdH2) 

by applying the hydride generation technique using either NaBH4 or KBH4 as a 

reducing agent. Both atomic and molecular cadmium species are probably generated 

when applying the reduction process. However, the efficiency of molecular cadmium 
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generation does not exceed 5% (Arbab-Zavar et al., 2006), which is attributed to the 

instability of the hydride at temperatures above the liquid nitrogen boiling point. 

Although cadmium hydride is an unstable species, it is considered to form the major 

volatile product of cadmium. In practice, CdH2 could be produced by reacting Cd2+ 

solution with NaBH4 in a medium of surfactant-based organized assemblies such as 

didodecyldimethylammonium bromide (DDAB) vesicles or organic medium such as 

dimethylformamide (y Temprano et al., 1993). An important advantage of using the 

organized assemblies is the improvement of the spectral characteristics of the colored or 

fluorescent compounds (Sun et al., 2002). Generally speaking, producing the cadmium 

hydride is not a preferred route for cadmium detection by the spectroscopic methods 

due to the hydride instability at room temperature. The efficiency of cadmium vapour 

generation is improved by applying assisting chemicals such as pre-reducing agents 

(e.g. thiourea), surfactant reagent (DDB), halogenated compounds (e.g. NaBrO3 or 

NaIO3) which result in low detection limits in the range of  pg/ml  (Li et al., 2004).  In 

other studies, derivatization of cadmium is achieved by using alkyl borate agents, 

obtaining low detection limits in the range of sub-ng/ml (y Temprano et al., 1994). The 

alkyl borates technique is mentioned to be useful for eliminating the scattering problem 

and consequently achieves adequate sensitivity and precision, therefore, NaBEt4 is 

reported to be more relevant for cadmium derivatization compared with hydroborate 

scheme.  

 

2.5.3   Arsenic 

Arsenic may exist in either inorganic (e.g. As2O3) or organic forms. The commonly 

reported organic forms includes monomethyl arsonic acid (MMAA), diemethylarsenic 

acid (DMAA) and trimethylarsine oxide (TMAO) as well the organometallic species 

such as: MeAsO(OH)2, Me2AsO(OH) and Me3AsO (Weber, 1997). Furthermore, it may 

exist in bio-incorporated forms such as arsenobetaine (AB) and arsenocholine (AC) 

(Mach et al., 1996). The toxicity of arsenic is reported to be totally dependent on the 

species forms, i.e. inorganic arsenic is found to be more toxic than the organic forms 

whereas the inorganic form As (III) is shown to be more toxic than As (V). The 

hydroborate reagents (e.g. NaBH4) are reported capable of derivitizing inorganic 

arsenicals such as As (III) and As (V) to form arsine (AsH3). It is also found applicable 
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for organic arsenicals MenAsO(OH)3-n (n= 1-3 ) to form methylarsenic (III) hydrides 

and trimethylarsenic (III), as illustrated in the following reactions (Weber, 1997). 

 
                     MenAsO(OH)3-n + NaBH4 → MenAsH3-n  ,  (n = l-3) 

 

                                  Me3AsO + NaBH4 → Me3As                                                (2-12)                       
 

The total arsenic determination by using the chemical vapour generation technique 

requires a pre-reduction of As (V) into As (III) before reducing As (III) into the arsenic 

hydride (AsH3 ). This step is normally achieved by using pre-reducing agents such as L-

cysteine, thiourea, potassium iodide or thioglycolic acid. Most of the pre-reducing 

agents require specific reaction conditions (e.g. potassium iodide should be added 30 

minutes before the addition of the reducing agent). On the other hand, thiourea has been 

applied for pre-reducing the arsenic species but failed to derivitize the methylarsine 

MAs (V) (Musil and Matousek, 2008). Alternatively, L-cysteine is reported as an 

efficient pre-reducing agent; however, its reaction with some arsenic species was shown 

to be very slow at room temperature (1 hr) (Howard and Salou, 1998). Moreover, 

thioglycolic acid was demonstrated to be an efficient and fast pre-reducing agent and 

suitable for online reductions at room temperature (Musil and Matousek, 2008).  

 

2.5.4   Tin 

Inorganic tin is reported to have negligible toxicity effect, while the major toxicity 

hazards has been attributed to the organic tin compounds, especially tributyltin (TBT) 

which is found to be highly toxic (Cai et al., 1993). Tin compounds (stannane, 

methyltin and butyltin) are reported to occur naturally by unknown processes without a 

need of derivatizing agent (Weber, 1997). However, the hydride generation technique 

using NaBH4 was used for inorganic tin Sn (IV) derivatization, targeting SnH4 (named 

as Stannane) production, as well as organic compounds derivatization according to the 

following reaction (Nsengimana et al., 2009): 

 
         Bu3SnCl (aq.) + 2NaBH4 + HCl → Bu3SnH + 2BH3 + 2NaCl + H2           (2-13) 
 
It is also reported that applying the hydridization process to an aqueous sample with a 

high metals content, such as the industrial wastewater, may inhibit tin hydride 
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formation. For example, the derivatization of butyl-tin compounds in the wastewater by 

NaBH4 is prone to interferences due to presence of other metals. The metals would 

probably lead to several interferences through the formation of inorganic species (metal 

borides) which react with the organotin hydrides by attacking the Sn-H bonds.  

Other possible derivatizing agents for organotin compounds are either Grignard reagents 

(RMgX) in a suitable solvent or tetralkylborates.  The reaction mechanisms of both 

abovementioned reagents were shown to be as follows (Nsengimana et al., 2009): 

 
  Bu3SnCl + EtMgBr → Bu3SnEt + MgClBr            (Grignard reagents) 

 

 Bu3SnCl (aq) + NaEt4B → Bu3SnEt + Et3B + NaCl        (Alkyl borates)            (2-14) 
 
 

2.5.5   Lead 

Lead may present in two possible oxidation states, inorganic lead Pb2+ and metastable 

Pb4+; however, the organic forms of Lead are considered to be more harmful to the 

humans health than the inorganic lead (Mach et al., 1996). Tetra alkyl lead compounds 

which consist of tetramethyllead (CH3)4Pb, tetraethyllead (C2H5)4Pb or mixed tetra 

ethylmethyl lead, are the most anthropogenic Lead compounds, can be transferred to 

aquatic surfaces from the atmosphere. Other organoLead compounds are: trimethyllead 

(CH3)3Pb+, dimethyllead  (CH3)2Pb2
+, triethyllead (C2H5)3Pb+ and diethyllead  

(C2H5)2Pb2
+ (Heisterkamp and Adams, 1999). Lead hydride (PbH4, known as plumbane) 

is produced by the reduction of Pb(IV) using hydroborate agents. Since the hydride of 

Pb (IV) is the only stable form, Pb (II) is required to be oxidized into Pb (IV) before 

being reduced into the hydrides (Maleki et al., 1999). Commonly used oxidizing agents 

are: potassium dichromate, hydrogen peroxide, and ammonium peroxodisulfate which is 

proved to be the best oxidant for Pb (II) (Chen et al., 1995). In addition to these 

oxidizing agents, chelating agents such as peroxide potassium ferricyanide (K3 Fe (CN)6 

, 5% m/v) and Nitroso R salt solution (1.6% m/v) have been used to enhance the lead 

signal obtained from applying the hydride generation- atomic spectroscopy technique. 

The hydride generation technique is considered to be unsuitable for organolead 

speciation due to the instability of alkyl lead hydride molecule and the hydrogen-alkyl 

exchange (Rapsomanikis et al., 1986). The Tetraalkyl lead compounds (R4Pb) are 
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known to be dramatically degraded into inorganic lead according to the following 

scheme: 

 
                                   R4Pb → R3Pb

+
 → R2Pb

2+
 → Pb

2+                                     (2-15) 
 
Where; R = CH3 or C2H5, in a single or combined form  
 
OrganoLead species can be reduced by using either alkylation with appropriate 

Grignard reagent or through tetraalkylborates reagent. The ethylation reactions of Lead 

compounds are represented as follows (Rapsomanikis et al., 1986): 

 

                                         Pb
2+

  +  2NaBEt4 → Et2Pb
II
 

                                        2Et2Pb
II
 → Et4Pb

IV
 + Pb

o
  

                                        Me3Pb
+
 + NaBEt4 → Me3EtPb                                      (2-16) 

                                  Me2Pb
2+

 + NaBEt4  → Me2Et2Pb                                   

 

2.5.6   Copper 

Copper derivatization by using hydroborates is reported in several studies. For instance,  

(Sturgeon et al., 1996) applied NaBH4 for producing copper volatile species to be 

atomized and detected by ICP-ES. Presumably, CuH or CuH2 species could be 

determined; however, the exact identity of the volatile copper species has not been 

identified certainly. Nonetheless, they reported that the volatile species of copper are 

most likely molecular in nature rather than atomic.  

 

2.5.7   Nickel 

Nickel is investigated with a lot of concern as a result of its toxicological effects. Nickel 

vapour derivatives can be generated chemically by using either NaBH4–CO system or 

NaBH4–HCl system. Since nickel is a transition metal, it has the ability to form 

carbonyl derivative, named as nickel tetracarbonyl Ni (CO)4, through reaction with 

carbon monoxide under ambient conditions. The main principle relies on reducing the 

dissolved nickel ion by NaBH4 to produce free atoms which subsequently combines the 
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carbon monoxide to form gaseous Ni(CO)4. This has been utilized for analytical 

purposes. Since nickel carbonyl is extremely toxic, other researchers have tried to find 

alternative paths to achieve the reduction of nickel without using the poisonous gas. For 

example, (Guo et al., 2000) produced volatile nickel at room temperature without using 

carbon monoxide by applying potassium borohydride under appropriate conditions.  

 

2.5.8   Zinc 

Zinc derivatization has been reported in several studies by using hydroborates agents. 

For instance, (Sun et al., 2002) derivatized zinc in acidic aqueous solution by using 

KBH4 and detected the hydride after atomization by atomic fluorescence spectroscopy. 

They added a cationic surfactant (cetyltrimethylammonium bromide) to improve the 

analytical reaction and the performance of the analytical method. They reported that the  

presence of the surfactant agent improves the kinetics of the hydride generation process; 

however, increasing the level of the surfactants leads to foam formation, which is not 

permissible for the detection process.  

 

2.5.9   Chromium 

Chromium mainly exists in two oxidation states, Cr (III) and Cr (VI); nonetheless, Cr 

(VI) is considered to be highly toxic. In contrast, Cr (III) is essential to the normal 

carbohydrate and protein metabolism. According to the literature, chromium is detected 

by several analytical methods; most of them isolate the trivalent form from the 

hexavalent form in the first stage by using a specific separation process such as ion pair 

high performance liquid chromatography (Mach et al., 1996, Hagendorfer and 

Goessler, 2008, Chen et al., 2010). The eluent stream from the separation column is 

either subjected to atomization followed by spectroscopic analysis or injected with a 

chemiluminescence reagent (luminal) and detected by a special chemiluminescence 

detector. Although chromium is considered to be a transition metal, some researchers 

contemplated the possibility of generating vapour species for chromium by using 

hydroborate as a reducing agent (Pohl and Zyrnicki, 2001, Matoušek, 2007, Pohl and 

Prusisz, 2007). Nonetheless, the chemical vapour generation process for chromium and 
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other transition metals is reported to be strictly related to the efficiency of the gas – 

liquid separation stage and the stability of the metal hydrides or the hydrido metal 

complexes formed in the reaction.   

 

2.5.10   Multi elements determination   

There is a necessity for a simple, sensitive and accurate method for determining multi 

metal samples these metal samples down to the trace levels. Although several 

techniques are adopted in such studies, including HG-AAS, HG-AFS, ICP-AES, MIP-

AES, and heated quartz tube atomizer atomic absorption spectrometry (QTA-AAS), 

only a few studies investigated the simultaneous determination of multi elements in 

environmental samples. This is due to the difficulty of achieving this kind of analysis. 

Hence, a protocol for sample pre-treatment and analysis is required where several 

elements exist in one sample (Grotti et al., 2005). Grüter et al., (2000) investigated the 

simultaneous speciation of organic compounds of twelve elements using a coupled 

system of HG-GC-ICPMS, and determined 31 compounds of these elements in soil 

samples from municipal deposits. The volatile species of different compounds were 

dried and retained in a liquid nitrogen cryogenic trap, then released by sequential 

heating making use of the difference in boiling points of the retained compounds (a 

range of -88.5 and 250 o C with a difference of more than 14 o C between any two 

species). Their results indicated the possibility of analyzing metal/metalloid organic 

compounds (element hydrides, methylated species and compounds of lower organic 

groups) simultaneously in a few minutes, achieving low detection limits. In another 

study, the simultaneous determination of hydride forming elements was achieved by 

coupling the HG technique with cryogenic trapping followed by MIP-AES (Dietz et al., 

1999). Two important results were found; the reductant concentration (NaBH4) is a very 

sensitive factor in the reduction process and should be accurately controlled through the 

process and the acidic concentration is an important factor in the process. (Grotti et al., 

2005) studied the simultaneous determination of a group of hydride forming elements 

by coupling the chemical vapour generation process with ICP-OES. The effect of 

different parameters, NaBH4 and HCl concentrations as well as the argon gas flow rate, 

on the detection efficiency were deduced through a multi-variable second order model. 
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The model indicated that a limited effect on the derivatization efficiency could result 

from a change in HCl concentration. The model also demonstrated a significant role for 

the combined effect of reductant concentration and argon gas flow rate on increasing the 

intensity ratio. This result is attributed to the hydrogen produced in the system, which 

ultimately improved the excitation and ionization of the ICP source due to the existence 

of sufficient hydrogen radicals.  

The dielectric barrier discharge atomizer has been utilized recently in the determination 

of multi heavy metals in different samples. (Zhu et al., 2006b) derivitized a mixture of 

multi hydride forming elements using (NaBH4) and atomizing the volatile species 

through a rectangular channel DBD atomizer and detecting by atomic absorption 

spectrometry. Their results show that the plasma is only temporarily and spatially active 

and depends on several factors such as the discharge power, gas flow and gas 

composition. The study also demonstrated that a hydrogen concentration, which is 

normally generated from the hydroborate decomposition, is necessary to generate the 

hydrogen radicals. These radicals are required for hydride atomization; however, extra 

hydrogen leads to a dilution of the analyte and consequently results in analyte signal 

depression. In a later study, (Zhu et al., 2008b) coupled the DBD atomizer with AFS for 

the simultaneous determination of another group of hydride forming elements using 

KBH4 as a reducing agent. The results indicate that an increase in signal intensity occurs 

with an increase in KBH4 concentration up to 2%, and attributed this to the presence of 

hydrogen in the system. Further increase in the hydrogen concentration leads to a signal 

depression as mentioned previously.  

 
 
 

2.6   Fundamental principles  

This section is dedicated to review the principles of the applied detection strategy. The 

review has included the fundamentals of hydride generation, spectrometric analysis, and 

some plasma fundamentals. 
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2.6.1   The hydride generation (HG) process   

The determination of hydride forming elements and other elements by applying the 

hydride generation technique coupled with spectrometric analysis is normally conducted 

in three steps, as follows (Dedina and Tsalev, 1995): 

1- Generating the hydride, where the target analyte is reduced to the hydride in 

acidic aqueous media, and then released to the gaseous phase.  

2- Transporting the released hydride with aid of a carrying (purge) gas to a suitable 

atomization cell. 

3- Detecting the atomized species by applying spectrometric methods. 

The efficiency of the HG process is measured by the fraction of the analyte successfully 

transported in the form of hydride to the atomizer, as represented by the following 

formula: 

 

                                                         <: =	 =>?>	@A
                                                  (2-17) 

 
Where;  
No : the total number of analyte atoms supplied in the form of hydride to the atomizer 
co  : the analyte concentration in the sample 
Vs : volume of the sample 
 
Alternatively, the efficiency can be defined for each individual step as follows: 
 

                                                 <B =	=CDEDFADG?>	@A
                                                    (2-18) 

 
Er : hydride releasing efficiency  
Nreleased : the total number of analyte atoms released from the liquid sample in the form 
of hydride 
 

                                               	<H =	 =>
=CDEDFADG	

                                                    (2-19) 

 
Et : the hydride transporting efficiency, which represents the fraction of the released 
hydride that transported to the atomizer 
 
Thus, the efficiencies of the individual stages are correlated by the following formula: 
 

                                                 <: =	<H 	<B                                                       (2-20) 
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The purge gas strips the hydride out of the sample solution as well as transporting it to 

the atomizer. The most commonly used purge gas is argon; however, other gases such 

as nitrogen and helium have also been used.  

 
The general form of the hydride generation reaction is shown as follows: 
 
                                 �I& +	(J + ()�	 → ��� + 	J�&                                     (2-21)   
 
Where;  
A : the analyte 
m & n : the valence of the analyte in the sample solution and the hydride respectively 
 
The hydrogen which is required for the reduction of the analyte is obtained by the 

decomposition of several kinds of reagents such as hydroborate.  

The performance of the hydride generator is normally assessed according to the 

following parameters: 

• S (t): The hydride supply function which represents the number of the analyte 

atoms delivered to the atomizer in the form of hydride per unit time. 

• F (t): gas flow rate. 

• The generator outlet function which represents the relation between the amount 

of the injected hydroborate and the hydride releasing efficiency. 

If no significant changes in the acidity, volume, or temperature are assumed during the 

hydride generation reaction; the hydroborate consumption, cB, with time is considered to 

be a pseudo-first order reaction. Accordingly, the reduction reaction can be represented 

by the following formula: 

 

                                                        3K = L	exp	(−P'Q)                                     (2-22) 
 
Where; 
q : the mass of hydroborate added per unit of sample volume, k1 : pseudo-first order 
reaction rate (1/time), t :  time 
 
On the other hand, if the hydride release is considered to be a second order process with 

a rate constant k2 (1/conc./time), the analyte concentration in the reaction mixture, c, is 

expressed by the following formula: 

 

                                                     
R?
RH =	−P			3		3K                                            (2-23) 
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Solving equations (2-22) and (2-23) for c leads to the following formula which can be 

used to determine the analyte concentration in the reaction mixture: 

 

                                                      3 = 	3S	exp	(− T		UV	
U�
)                                    (2-24) 

 
Equation (2-24) is utilized to determine the amount of the hydroborate which is required 

for any targeted hydride releasing efficiency, expressed by: 

 

                                              <B = ?>W?
?>
= 1 − exp	(− T		UV	

U�
)                             (2-25)  

 
 
The complete hydride release is achieved when (L	 ≫ 	P	 P')⁄ ; therefore it becomes 

obvious that a complete hydride release is totally dependent on the ratio (P	 P')⁄ . 

As soon as the hydride enters the atomizer, the atomization process proceeds via 

thermal decomposition (Ramesh Kumar and Riyazuddin, 2005). 

 
                                                 AHn(g) → A(g) + n/2 H2(g)                                        (2-26) 
 

     
Other studies show that the species atomization occurs due to the presence of radicals in 

the atomizer. The amount of oxygen and hydrogen in a quartz cell atomizer has a great 

effect on the sensitivity of the analyte signal. Presence of hydrogen gas in the atomizer, 

produced from the acid decomposition of THB or added to the reaction mixture, leads to 

the formation of radicals, collisions of the analyte hydride with the hydrogen free 

radicals, and consequently to analyte atomization at 1000 oC.  The presence of oxygen 

gas can enhance the formation of hydrogen free radicals and supports the atomization 

process. In the absence of hydrogen, the atomization process is not be initiated until 

1700 oC. The atomization of volatile hydrides in a heated quartz cell was described by 

the following mechanism (Ramesh Kumar and Riyazuddin, 2005): 

 

 
AHx + H → AHx-1 + H2  

                                                                     

                                                   AH + H → A + H2                                               (2-27)     
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Hydrogen radicals would be generated according to the following: 
 
 
                                           H

●
 + O2 ↔ OH

●
 + O 

 
                                           O●

 + H2 ↔ OH
●
 + H

●                                                 (2-28) 
 
                                          OH

●
 + H2 ↔ H2O + H

●
         

 
 
The radical’s recombination is considered to be a slow process; therefore, the 

concentration of the free hydrogen radicals is usually maintained above the equilibrium 

concentration. Despite the fact that OH
● is produced with lower concentration compared 

with H●, it is speculated to act as an effective parameter in the decomposition reaction, 

taking the role of a catalyst.    

In order to find the distribution of free atoms inside the atomizer, the following 

assumptions are taken into consideration (Dedina and Tsalev, 1995): 

� The atomizer is assumed to be a tubular section with a T-shape configuration, 

Figure (2-4), represented by two cylindrical coordinates (r & l). The released 

hydrides from the reactor are removed with aid of purge gas and transported to 

the atomizer via the central tube. 

 

Figure  2-4  a configuration of the tubular atomizer 

 

 

� The atomization efficiency is 100%, which indicates the hydride is fully 

atomized at any point in the atomizer. 

� The free atoms are removed from the atomizer by the combined action of the 

forced convection and decay on the surface. This decay is considered to be a 

first order process (Dedina and Tsalev, 1995): 
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                                            Z(Q, �) = 	−P![H	((Q, �, / = �)                                (2-29) 
 

Where;  
J    : the decay flow of the atoms per unit volume 
khet : the rate constant of the heterogeneous reaction, which is considered to be 
constant over the whole surface  
n    : the free atom density 

             t    :  time 
     

� No gas temperature change occurs inside the atomizer; accordingly, the gas flow 
rate through the atomizer is corrected by the following formula: 
 

                                                   \] = ^	×	 F̀
�SS                                                        (2-30) 

 Where;  
 F: flow rate of the supplied gas to the atomizer, Ta: gas temperature in the atomizer 
(oK)  
 
The analyte atom distribution through the atomizer has been described by several 

models. The laminar flow model assumes a strictly laminar flow for the gas in the 

longitudinal direction, whilst the transport in the radial direction occurs by diffusion. 

The linear velocity of the free atoms in the atomizer is expressed by the following 

parabolic form (Dedina and Tsalev, 1995):   

 

                                           �(/) = ^]
abV 	 c

abVWaBV
abV d                                             (2-31)  

 

Ultimately, the distribution of the free analyte atoms in the cylindrical tube atomizer is 

represented by the following partial differential equation, assuming uniform diffusion 

coefficient (Dk) and non uniform atom density: 

 

                             
e�(9,B)
eH +	e�(9,B)"(B)e9 = fU e

eB c
'
B
e�(9,B)
eB d                                    (2-32) 

  
If the change of the hydride supply function is considered to be negligible with time, 

and the transfer of the free atoms only occurs in the longitudinal direction (l), then 

equation (2-32) can be reduced to the following form: 

 

                            �(/) e�(9,B)e9 −	fU 	 e	eB 	 c
'
B 	
e�(9,B)
eB d = 0                                      (2-33) 
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The boundary conditions are described as follows (Dedina and Tsalev, 1995):  
 
 

                                                     ((0, /) = 	 g(H)^]                                                           

 

                                                        
e�(9,S)
eB = 0                                                       (2-34)                                        

 

                              −fU c'B
e�(9,b)
eB d = h	![H		((�, �)                                        

 

 

The distribution of the free atoms is interpreted upon solving (eq. 2-33) numerically, as 

presented in Section (3.6.1). 

The hydride generation process is usually conducted in one of two basic modes; the 

collection mode and the direct mode. In the collection mode, the hydride is trapped in a 

collection section, which is actually a part of the generator. After collecting all evolved 

hydrides, they are released and transported to the atomizer in one step within a very 

short period. The most common method used for the hydride trapping is a cold trap and 

graphite furnace. In the direct transfer mode, the released hydride from the sample 

solution is directly transported to the atomizer using batch, flow injection (FI), or 

continuous flow (CF). 

 

� Batch mode 

In the batch generator, the reaction and the gas-liquid separation stages are happen in 

the same section. The acidified sample solution is placed inside the reaction section and 

the reducing agent is introduced by syringe or a pump. The purge gas is normally 

introduced below the liquid level to improve the stripping of the hydride out of the 

reaction mixture; however, it can be introduced into the head space above the sample 

solution. The released hydrides are transported to the atomizer to produce free atoms. If 

hydroborate is used as reducing agent, then the concentration of THB in the reaction 

mixture can be described by equation (2-35), assuming that the released hydrides in the 

head space are well mixed. Other assumptions are the existence of a homogeneous 

reacting media and negligible volume of tubing that connects the gas liquid separator 

with the atomizer. 
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R?i
RH =	−P'	3K	 +	

ji
@A

                                           (2-35)  

 
Where; 
cB: THB concentration in the reaction mixture, fB: THB mass flow rate, Vs: sample 
volume = volume of the reaction mixture, k1:  first order reaction rate (1/time) 
 
Solving equation (2-35) gives the predicted change of cB concentration through the 

batch time: 

 

                                               �K = kK l'Wmno 	
(WU�	H)

@A		U�
p                                           (2-36)  

 

 

� Continuous flow and flow injection modes: 

In the continuous flow generator, a constant mass flow rate of pure THB (fB), constant 

volume flow rates of the sample solution (fs) and the purge gas (Fo) are mixed in the 

reaction coil. The mixed stream is directed into a gas-liquid separator where the gaseous 

hydrides and the evolved hydrogen from the reaction travel to the atomizer, and the 

liquid residue is released out of the separator. The reaction mixture can be treated as an 

isolated segments passing through the generator, in which each segment has enough 

time to finish the reaction before reaching the gas-liquid separator. Therefore, the 

concentration of THB in a segment can be described by the following equation: 

 

                                                     L = 	 jijA                                                           (2-37) 

 

The analyte concentration in the liquid phase of a segment is described by equation (2-

24) 

3 = 	3S	exp	(− T		UV	
U�
)         

 

The hydride supply function S(t) represents the number of analyte atoms delivered to 

the atomizer in the form of hydride per unit time; therefore, it can be expressed by the 

following formula: 

 

                                                  q(Q) = 	<B	<H	k7 	3S                                             (2-38) 
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If a sufficient THB inflow is available, the releasing efficiency may approach unity; 

therefore: 

                                                        q(Q) = 	<H	k7 	3S                                              (2-39)  
 
 

The total gas flow rate is represented by the sum of the purge gas flow rate and the 

hydrogen flow rate liberated from THB decomposition. 

 
                                               \ =	\S +	kK		rstRB8:[�                                         (2-40) 
 

Where;  VHydrogen represents the hydrogen volume liberated per unit mass of THB rate 
(ml/g) 
 
The experimental arrangement of the flow injection mode is mostly similar to the 

continuous flow mode with a difference of using an acidic carrier stream at constant 

flow for the sample. Basically, the sample is injected and dispersed into the acidic 

carrier stream, and then the sample/acidic stream is mixed with a constant flow of THB 

solution and of the purge gas. The generated hydrides with the liberated hydrogen are 

separated from the liquid residuals in a gas liquid separator and travel to the atomizer.  

 

2.6.2    Fundamentals of spectrometric analysis 

2.6.2.1    Atomic spectra 

The atom has a number of discrete energy levels each of them represents an orbit that 

could be occupied by electrons if gaining sufficient energy to move from the ground 

state (Broekaert and Wiley, 2005). An unexcited atom has electrons in the lowest 

permitted energy level. If the atom is excited, the electrons become able to move from 

the low-energy orbital to an orbital with higher energy (an excited state, known as 

absorption). Because the excited state is unstable, the electron returns back to a lower-

energy state with the emission of a photon of energy (emission). Both absorption and 

emission processes occur at selected frequencies, wavelengths or energies (Dean, 2005).  

When a change in the orbit occurs, another energy level is reached and the excess 

energy is emitted in the form of electromagnetic radiation, which is related to the 

wavelength according to Planck’s law: 
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                                    Δ< = <' − <	 = ℎ	� = ℎ		 ?Ev                                         (2-41) 

 
Where;  
 E1 and E2: higher and lower energy states, (erg), h: Planck’s constant = 6.623 x 10-27  
(erg . sec), v: the wave number or frequency which is defined as the number of wave 
cycles that travel past a fixed point per unit time and is usually described by cycles per 
second or hertz (Hz), cl: speed of light = 3 x 1010 (cm / sec), λ: wavelength, which is 
defined to be the distance between two adjacent peaks of electromagnetic radiation  
(cm) 
 
The energy of radiation is directly proportional to the frequency and inversely 

proportional to the wavelength as shown in Figure (2-5):  

  

 

Figure  2-5  the electromagnetic radiation spectrum (Dean, 2005) 

 

Infrared (IR) radiations are associated with transitions within the molecule (vibrational 

and rotational sublevels), where the photons in the (IR) region acquire a limited energy 

that may only cause vibrations in the molecules, while the photons in the visible/UV 

regions are more energetic and may causes the electron to be ejected from the molecule, 

leading to molecule ionization. More possible ionization can occur with existence of 

higher energy such as UV radiation, while the microwave radiation cannot excite 

vibrations but can only cause molecules to rotate.  

Each electronic transition results in either emission or absorption of energy, which 

represents a narrow interval of wavelength in the spectrum.  

The population of free atoms may exists at various electronic energy levels; 

accordingly, the distribution of the free atoms in the energy levels has been described 
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according to Boltzmann distribution equation (Rouessac and Rouessac, 2007, Cantle, 

1982): 

 

                                 
=V	wx
y =	=�	wx	:�y		:V

	0z6 lWwxU	` p                                              (2-42) 

 
Where; 
N1 and N2 : the number of atoms in the ground and excited states respectively 
 -'	�(1	-	 : the statistical weights of the atoms in the ground and excited states 
respectively, - = 2Z + 1 , Z = the total electronic angular momentum quantum number 
(Hill, 2006), Δ< : the energy difference between the ground state and the excited state 
(joules), { : life time in the excited state,  k : Boltzmann constant = 1.38 x 10-23 (J/ oK) 
 T : absolute temperature in  oK   
 
In principle, the equilibrium between the atoms in two different energy states depends 

on the energy required to excite the atoms and the temperature of the system. For 

instance, if a high energy level exists then a small number of excited atoms are 

produced.  In contrast, high temperatures in the system result in an increased number of 

excited atoms.  

2.6.2.2     Analytical spectroscopic methods   

Spectrometric analysis can be utilized to identify an analyte qualitatively and 

quantitatively. The light emitted from an excited analyte, which is generated upon 

subjecting the sample to a highly energetic source (e.g. plasma), can be used for 

qualitative determination based on monitoring the intensity of the spectral line of 

interest. For quantitative determination a specific radiation, of similar wavelength to the 

examined analyte, is allowed to pass through the sample containing the analyte of 

interest, and the reduction in the imposed light intensity is proportional to the 

concentration of the analyte. Two types of spectroscopic methods are known; molecular 

and atomic.  In molecular spectroscopy, a low to moderate energy radiation (IR, visible, 

UV) is required to force the molecule to vibrate, rotate or to transit an outer electron 

(valence electron) from a lower to a higher energy state.  

The molecular energy is normally represented by the sum of three quantities: 

 

                     <H8H;9 =	<B8H;H|8� +	<"|}B;H|8� +	<[9[?HB8�|?                                 (2-43)  
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Molecular spectroscopy is applicable for determination of inorganic or organic 

molecules in solution in the UV–VIS region or in other forms such as solution, gas, or 

solid in the IR region. Higher energy levels are required in atomic spectroscopy to 

achieve the transition of inner electrons within the atom because the atom cannot rotate 

or vibrate in a similar way to a molecule (Zhang, 2007).  

In atomic spectroscopy, various types of high energy sources are applied including: high 

temperature flames, graphite furnace, plasma, and X-ray. They are utilized to identify 

and quantify a large number of elements in different media. In this regard, three types of 

spectroscopic techniques have been developed: Atomic absorption spectroscopy (AAS), 

atomic emission spectroscopy (AES) and atomic fluorescence spectroscopy (AFS), their 

principles illustrated in Figure (2-6).  

 

 

 

Figure  2-6  the energy transition in the atomic spectroscopy; 
Where: HS & LS are the higher and lower energy state respectively 

 
 
 
The absorption and emission steps for the analyte (M) are shown as follows: 
 
 
              M + hv → M

*       (atomic absorption spectrometry) 
 
               M

*
  →  M + hv       (atomic emission spectrometry)                               (2-44) 

 
 
 
For instance, if the analysis of CaCl2 solution is conducted in a flame atomizer, then the 

possible fragmentation paths can be illustrated in Figure (2-7): 
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Figure  2-7 the fragmentation of CaCl2 solution in a flame atomizer (Zhang, 2007) 

 

If (Ca) is analyzed by applying atomic absorption spectroscopy technique, the radiation 

absorbed by the gaseous atom (Ca0) is measured; in contrast, the emission from (CaO*) 

is measured in using the emission spectroscopy technique. The steps (1, 2, and 3) are 

desired pathways to the formation of gaseous atoms in the excited state, whilst other 

steps (4-8) are undesired and may produce interferences. 

 

a)   Atomic absorption spectroscopy (AAS) 

The AAS technique utilizes the amount of light absorbed by the examined analyte to 

infer its concentration. This technique is applicable for liquid and solid samples as well 

as gas samples, in which the analyte should be heated enough (at least to 2000 oC) to 

dissociate all the sample. The produced gas atoms are then subjected to radiation from a 

light source (185-1100 nm) to make the required transition into higher electronic energy 

levels. The concentration can be inferred by measuring the light absorbed by the 

vaporized ground state atoms in the absorption cell, which irradiates from the excited 

atoms of the element of interest. The relation between the absorbed light and the 

concentration of the analyte is described by Beer- Lambert’s law (Rouessac and 

Rouessac, 2007) which presumes a linear relationship between the concentration of the 

analyte and its  absorbance: 

 
                                                     � = 	~		�		�                                                   (2-45)  

 
Where;  
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 A:  absorbance, also called molar absorptivity (dimensionless), ~: the molar absorption 
coefficient (L/mol/cm) at a specific wavelength, at which the measurement is conducted 
 �:  the path through which the incident light pass (cm),  �:  the molar concentration 
(mol/L) 
 
In practice, the accuracy of absorption spectroscopy depends on the value used for the 

analyte molar absorption coefficient; where a value (~ ≥ 10000) is expected for the 

compounds of strong absorption, while (~ = 10 to 100) if the absorption is weak.  

The fraction of the original light that passes through the sample is called transmittance 

(T) which relates to the absorbance (A) by the following relation: 

 

                                         � = −��-'S	(�)                                                      (2-46)  
 

 
                                       �(%) = �

�>
	× 100%                                                   (2-47)  

 
Where;  
Io: intensity of the incident light, I:  intensity of the transmitted light 
Then; 
 

                                 � = −��-'S	(�) = 		 ��-'S 	l�>� 	p                                      (2-48)  

 
  

If the sample cell (e.g. an atomizer) has a reproducible path length (l), then Beer's law 

applies, subject to availability of a homogeneous analyte. Where a flame is used for 

atomization, the population of free atoms in the flame is far from homogeneous, 

therefore another description for the absorbance is presented by the following equation 

(Cantle, 1982): 

                                                    �� = a	[V
I		?E

	�	k                                                     (2-49)  

 
Where;  
lA : the total amount of the absorbed light, e : charge of the electron, m : mass of the 
electron, cl : speed of light , N : the total number of atoms in the light path 
f : the oscillator strength, which is an indication of how strongly each atom will absorb 
at that wavelength. For a given element the oscillator strength is highest for the 
transitions between the ground state and the first excited state; thus, this transition is the 
most sensitive analytically. 
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The atomic absorption spectroscopy technique is a combination of analyte atomizer, 

light source and detection devices. In general, hollow cathode lamps are used as a light 

source in which the metal of interest is used as a material for the cathode. On arrival at 

the cathode, the positively charged ions strike the cathode and stimulate the atoms of the 

cathode to be ejected (sputtered). The sputtered atoms are excited and consequently 

emit radiation equivalent to the cathode metal (White, 2011). If a mercury lamp is used 

as a light source and the measuring cell is loaded with a mercury sample, then a 

presence of mercury atoms in the optical path leads to absorb such amount of light 

depends on the concentration of mercury atoms; thereby attenuates the light intensity 

received by the detector.  

Absorption line widths are extremely narrow and can only be isolated using instruments 

with very high spectral resolution. It is difficult to isolate a natural line width (≈ 10-5 

nm) that is not exposed to any broadening effects. Practically, the natural line width is 

broadened as followings (Cantle, 1982, Yubero et al., 2006):  

 

� Doppler effect ∆��, caused by the motion of the absorbing atoms in their bulk. 

Due to this effect, the atoms absorb the radiation at slightly different 

wavelengths which consequently causes a broadening of the absorption line. 

� Van der Waal broadening ∆��, occurs when the emitting particle is perturbed by 

dipolar forces from other molecules in the bulk, which disrupts the spectral line. 

This effect occurs due to non-uniform distributions of positive and negative 

charges on various atoms, which results in different electro negativity and 

consequently disturbs the emitting particle over a very small distance.   

� Lorentz broadening, which is a consequence of collisions between the absorbing 

atoms and other species. The collisions may cause atom relaxation and 

consequently leads to a short lifetime (∆{) and increased energy (∆<), according 

to the following equation: 

 

                                                         ∆< =	 !
		a	∆y                                             (2-50) 

 
� Stark broadening,∆�g, occurs due to the fast movement of the electrons close to 

the atoms. This movement results in a strong varying electric field and leads to 

splitting the electron levels of the atoms. 
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� Zeeman broadening which occurs by variations of the magnetic field in the 

vicinity of the atoms. 

� Other broadening effects are attributed to optical instrumental error and referred 

to as the instrumental broadening (∆��). 
 

Spectral lines at pressures higher than 100 Torr have particular profiles; Gaussian 

profile ( Gλ∆ ) which combines the effects from Doppler and instrumental broadening, 

and the Lorentzian profile ( Lλ∆ ) which includes Stark and Van der Waals broadening, 

equation (2-51). The effects from other broadenings sources, can be neglected at 

pressures > 100 Torr (Calzada, 2005). 

 

                                                 

2 2 2
G D I

L s w

λ λ λ

λ λ λ

∆ = ∆ + ∆

∆ = ∆ + ∆                                      (2-51)    
 

                                                                                                      
 

The combined effects from multiple broadening sources has been described by the 

Voigt profile which represents the contribution from different broadenings (Lorentzian 

and Gaussian profiles). The Voigt profile has the following formula (Torres et al., 2003, 

Luque et al., 2005): 

 

                             

1 22
2

2 2
L L

voigt G

λ λ
λ λ

 ∆ ∆ 
∆ ≈ + ∆ +  

                              (2-52)                

 

 
 

The above reasons may lead to broadening the line width to a value of (≈ 10-3 nm) 

which is a considerable increase over the natural line width. Even so, the line width is 

still very narrow and so difficult to observe by conventional instruments. Therefore, it is 

essential that the light source emits at exactly the same wavelength as the sample atoms, 

which absorb only at their own characteristic wavelengths. Although the atomic 

absorption lines of each element are very narrow and easily distinguished, error can be 

produced from broadband (or background) absorption which is due to many reasons 

(e.g. presence of water molecules). Several methods are applied for background 

correction such as Zeeman background corrector. All rely on measuring the absorption 
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of the resonance line which represents the desired signal plus the background 

absorption. Then a second measurement due solely to the background is measured and 

the difference between the two measurements represents the true atomic absorption 

measurement. In the case of the Zeeman correction, the sample is exposed to an 

alternating magnetic field, where the sample atoms absorb at the resonance line when 

the magnetic field is turned off; and the background is measured when the magnetic 

field is turned on. From the combined data, the net atomic absorption is inferred. 

b)    Atomic emission spectroscopy (AES) 

In this technique, the sample is subjected to a very high energetic level which results in 

excitation and/or ionization of the sample atoms. When the excited species leave the 

high temperature region, energy is released in the form of visible and ultraviolet 

photons due to the transition of the excited atoms into lower energy levels or to the 

ground electronic state. The intensity of the light emitted at a wavelength specific to the 

element of interest is measured to infer the element identity. In the emission 

spectroscopy technique, the ability of atoms to emit radiation is identified by the 

oscillator strength ( f ) value, which relates to the transition probability of atoms 

between the energy levels according to the following equation (Cantle, 1982): 

 

                                                  �|� =	
�	aV	[V	j��
vV	I	?E

                                                     (2-53)  

 
Where; 
�|�: the transition probability between the energy levels i and j, k|� 	: the oscillator 

strength of the associated emission line at wavelength (�) which represents a measure of 
how closely an atom resembles a classical oscillator in its ability to emit radiation (i.e. 
higher k|� lead to greater emission intensity), e : charge of the electron, m : mass of the 

electron, cl : speed of light 

 
 
Spectral lines at short wavelengths require higher energy to be excited. The absolute 

intensity (Iqp) of a spontaneous emission line originated due to an electronic transition 

from a higher state (q) to lower state (p) is represented by the following equation (Hill, 

2006, Marcus et al., 2003): 
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                                             .T� = �T�	ℎ			�T�		(T                                             (2-54)   
 
Where;  
Iqp : absolute intensity, h: Planks’ constant, vqp: transition frequency,  nq: the number of 
the excited level species, Aqp : line transition probability 
 

nq can be related to the temperature (T) through the Boltzmann distribution, (eq. 2-42), 

which is used to describe the equilibrium between the population of various energy 

levels within the same ionization state, including both excited and ground states. 

Boltzmann distribution for a level (q) is described as follows: 

 

                                               
��
= =	

:�
�(`) 	0z6	 l−

x�
U	`p                                           (2-55)   

Where;  
 N :  the total number of analyte species (ion or atom),  -T:   is the statistical weight of 

the level (q), - = 2Z + 1,   Z = the total electronic angular momentum quantum number  
 Eq : is the excitation energy of the level (q), Z(T) : is the partition function (a function 
of temperature).  
 

                           � = 	-S + -' 0z6 l− x�
U	`p + ⋯+	-T 0z6 l−

x�
U	`p                      (2-56) 

 

In practice, (Z) represents the relation between the populations at the excited level and 

the total population of the atoms or ions. It is reported that in the range 3000-7000 oK, a 

limited effect of temperature on the partition function is observed, therefore it can be 

neglected (Hill, 2006). 

The intensity of the selected line can be related to the concentration of the emitting 

species. The intensity of the emission line is proportional to the following factors: 

� the energy difference between the upper (q) and the lower (k) transition levels 

� the electrons in the upper level, nq  

� the transition probability between the levels per unit time, (A) 

Therefore;  

                                               . ∝ �<T −	<U�	�	(T                                          (2-57)    
 
 
Since (Eq - Ek) = h v = ℎ		 ?v	, and (nq) could be related to the total population (N) 

through (eq. 2-55); hence, the intensity (I) could be described by the following equation: 
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                                         . = 	Φ	 l!	?		:�	�	=		v	� p 	0z6	 lW		x�U	` p                                 (2-58)  

 
 
Where; Φ represents the emission coefficient  
 

If a stable radiation source is applied at a constant temperature, then (Z) remains 

constant and the number of atoms (or ions) becomes proportional to the concentration of 

the analyte. Since the values of (-T, A, �, and <T)  are constant for a given line of 

element, the intensity (I) is proportional to the total number of analyte species, which 

enables quantitative analysis.  

The AES technique requires a high energy source like an inductively coupled plasma 

(ICP) to provide the analyte with the energy required for excitation. The emitted light 

from the plasma is viewed either radially or axially; however, (Zhang, 2007) has 

indicated that axial viewing from an ICP–OES source provides better detection limits.  

In practice, applying AES techniques offers the possibility of exciting and detecting all 

the analyte elements simultaneously; nonetheless, a considerable shortcoming of AES 

techniques (e.g. ICP-AES) is the production of a large number of emission lines and 

much potential for spectral interferences.   

 
c) Atomic fluorescence spectroscopy (AFS) 
 
In atomic fluorescence spectroscopy, a fluorophore, the functional group in a 

fluorescing molecule, absorbs energy at a specific wavelength and emits a longer 

wavelength at lower energy which is measured (Zhang, 2007). The AFS technique is 

illustrated in Figure (2-8).  

 
Figure  2-8 Jablonski diagram illustrate AFS steps (invitrogen-website); 
So represents the ground state, S1' is the excited electronic singlet state and S1 is the 
relaxed singlet excited state. 
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The energy hνEM of the emitted photon is, in principle, less than the energy of the 

excited photon hνEX; however, it has longer wave length. The difference in the energy 

(hνEX – hνEM) is called the Stokes shift which allows the emission photons to be 

detected separately from the excitation photons. In practice, applying (AFS) leads to 

highly accurate results because the wavelength and the energy of the fluorescence 

radiation is specific. The advantages of fluorescence measurements over the absorption 

measurements are a greater sensitivity and low interference levels.  

 

 

2.6.3   Plasma fundamentals 

Plasma is an electrically neutral, highly ionized gas that consists of several species 

(Dean, 2005). Plasmas are classified according to their energy level, electron density 

and temperature, which alter the properties of the plasma. These are governed by the 

source and the amount of the energy supplied.  Another classification is based on the 

local thermodynamic equilibrium in the plasma bulk (Bellan and Ebrary, 2006). 

Accordingly, two types are classified; localized thermal equilibrium (LTE) plasmas and 

non-localized thermal equilibrium (n-LTE) plasmas. In LTE plasma, the transitions and 

the chemical reactions are governed by collisional processes. LTE plasmas acquire the 

ability to balance all types of collisions (e.g. excitation/de-excitation, 

ionisation/recombination,...,etc.), therefore the electron temperature (Te) exists in 

equilibrium with the gas temperature (Tg). In contrast, the electron temperature in (n-

LTE) plasmas can reach temperatures of 1-10 (eV) while the gas temperature is kept as 

low as room temperature. Non-thermal plasmas are normally classified into several 

types:  

 

� DC glow discharge 

� AC discharges: frequency values up to 100 KHz applies within this category 

� Radio frequency (RF) discharges:  (100 kHz ≤ f ≤ 100 MHz)  

� Microwave discharges (MW):  f > 100 MHz  
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2.6.3.1     DC glow discharge 

Glow discharges can be sustained over a pressure range 10-2 mbar to atmospheric 

pressure, and can be formed by applying a DC field into the gap between two metal 

electrodes (Marcus et al., 2003, Avtaeva et al., 2010). DC glow discharge is utilized in 

many applications such as fluorescent light tubes, sputtering sources (e.g. magnetrons), 

as well in spectrochemistry (Dean, 2005). In a fluorescent tube, the pressure is kept 

around 0.3 atmospheres. When a voltage is applied between two electrodes at low 

pressure, a continuous current flow gives rise to the formation of glow discharge caused 

by the excited neutral atom and the excited species. Electrons, accelerated by the 

electric field, collide with the gas atoms leading to excitation. The excitation/collisions 

series is followed by de-excitation/emission of characteristic radiation. The ionisation 

collisions lead to the formation of new electrons and ions. Ions are directed toward the 

cathode due to the effect of the applied electric field, where new secondary electrons are 

generated. At the same time, the original electrons activate a new series of ionization 

collisions leading to a new generation of ions and electrons. This leads to a self 

sustaining glow discharge. The ionized atoms can be detected by mass spectrometry 

analysis while the excited atoms/ions emit photons, normally detected by emission 

spectroscopy.  

The direct current glow discharge do not resembles a radio frequency (Rf) plasma. 

However, it is worth noting that the difference between DC plasma and RF plasma is 

not significant at high pressure; therefore, both sources (AC and DC) are capable of 

producing high temperature plasmas (12000-20000 oK), (Mollah et al., 2000). The 

general characteristics (voltage – current) of DC glow discharge are shown in Figure 

(2-9). 

According to Paschen’s law, the value of (6 × 1), the applied pressure multiplied by the 

distance between the electrodes, is a limiting parameter controlling the characteristics of 

the glow discharge and its consistency. Hence, in order to generate the discharge under 

atmospheric pressure conditions, the gap between the electrodes must be reduced to 

optimal limit which ultimately results in a value (6' × 1') corresponding to the value of 

(6	 × 1	) in a vacuum. Typically, Paschen’s law applies at (6 × 1) values less than 

1000 (Torr cm) or gaps in the limit of 1.0 cm at 1.0 atm (Radmilovi -Radjenovi  et al., 
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2010). Furthermore, the (6 × 1) value can be utilized to estimate the required 

breakdown voltage in different gases as represented by Figure (2-10).   

 

 

Figure  2-9  the voltage – current diagram; 
which illustrates the characteristics of a self sustaining DC glow discharge (Marcus et 

al., 2003); Vb is the breakdown voltage, Vn is the normal operating voltage, whereas Vd 
represents the operating voltage of the arc disc 
 

 

Figure  2-10  the breakdown potential versus pd for a plane-parallel electrode; 

pd = is the multiplication of  pressure and inter-electrode distance, (Schutze et al., 1998) 
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2.6.3.2     Atmospheric pressure discharges 

Atmospheric non-thermal plasmas produced by various AC or DC discharge schemes 

possess certain common properties such as average electron temperature (2-5 eV), 

electron density (above 1012 cm-3) and a relatively low gas kinetic temperature (close to 

the room temperature) (Napartovich, 2001). This kind of discharge has been widely 

applied in the industrial applications. For instance, a non-equilibrium air plasma is 

applied to control air pollution and surface treatment. The general characteristics of 

some atmospheric discharges are shown in Table (2-2).  

 

Table  2-2 atmospheric discharges categories (Napartovich, 2001) 

Class (*) P,   W/cm3 Tmax , 
oK u   m/sec h ,   mm f ,  kHz 

Pulsed corona 1-50 room ≤ 50 ≤ 350 1-1000 
Pulsed glow discharge 10-500 ≤ 600 10-200 10-50 0.05-5 
Glow discharge 50-500 room 10-150 5-20 DC 
Micro-hollow cathode discharge ≤ 104 ≈ 2000 slow 1-2 DC,RF 
Plasma torch ≈ 104 ≈ 3000 100 20 DC 
DBD (I) 1-50 room slow 1-3 0.05-100 
DBD (II) 1-50 room slow 1-5 1-5 
RF discharge 3-30 ≤ 600 5-10 1-2 13560 
Microwave discharge   ≈ 10  2.45 x 106 
 

DC glow discharge and DBD regimes are the two techniques which are distinguished by 

their technical simplicity and attractive properties such as low gas temperature, low 

sensitivity to the gas composition and low power requirement. A DC glow discharge is 

able to excite the gas more extensively than a DBD regime, whereas DBD can be 

operated at lower power. The characteristic of a DBD configuration is a presence of at 

least one dielectric layer between the electrodes as illustrated in Figure (2-11). 

It is worth noting that DBDs configurations cannot be driven by DC voltage. The reason 

is the requirement for a capacitive coupling of the dielectric which requires alternating 

voltage to drive a displacement current (Nehra et al., 2008). In a DBD regime, several 

parameters, such as the composition of the gaseous mixture, the electrodes 

configuration, the applied voltage and frequency, determine whether the discharge is 

filamentary or homogeneous (also referred to as atmospheric pressure glow discharge, 

APGD). 

 
*: P: the power density, Tmax: the maximum value of gas temperature, u: the gas flow velocity, 
h: the discharge gap length, f : frequency  
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Figure  2-11  DBD plasma configuration (Tendero et al., 2006) 

 

 

It is reported that APGD is found in either Townsend discharge (e.g., APGD in N2) or 

glow discharge (e.g., APGD in noble gases). The difference between the two regimes is 

the DBD in the Townsend regime is characterized by the positive net charge, low 

densities of charged particles, and the absence of the quasi-neutral plasma (positive 

column); therefore the highest light intensity is localised near the anode. In contrast, a 

glow discharge regime is characterized by the formation of cathode sheath as well as the 

presence of a quasi-neutral plasma region. Therefore the structure of glow discharge 

shows three distinguished areas (a  positive column,  Faraday dark space, cathode and 

negative glow, which are not separated at atmospheric pressure); hence, the bright glow 

is near the cathode (Chiper et al., 2005, Golubovskii et al., 2004). Generally speaking, 

Townsend discharge is reported to be highly stable when an inert gas (e.g. Helium and 

neon) is applied; however, a transition could occur from a Townsend to filamentary 

discharge when an alteration in the frequency is applied. For instance, the molecular 

gases (e.g. Nitrogen) require frequency values in the range of some kilohertz which 

applies a change to the filamentary discharge. It is reported that glow discharge has not 

been observed with homogeneity due to instability relative to radial perturbations 

(Golubovskii et al., 2003). In practice, operation under high pressure in small gaps 

between the electrodes most likely resembles the streamer regime which is characterised 

by narrow discharge filaments. The discharge regime can only be elucidated with high 

certainty by producing the Lissajous figure, as presented in chapter four, Section (4-4). 

DBD plasma is usually operated under atmospheric pressure with an oscillating voltage 

(1-100 kV), which provides an operational sustainability at kilohertz frequencies. DBD 
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(I), Table (2-2), also called the silent discharge, is the common form of discharge which 

composes of several micro-discharges (streamers) with non uniform distribution along 

the electrode surface, while DBD (II) is the homogeneous distribution form of a DBD 

discharge. It is reported (Golubovskii et al., 2004) that a homogeneous glow discharge 

can be obtained when using a custom made dielectric layer (e.g. polymer, PET, in 

contact with a fine mesh of metal) while supplying a low frequency voltage (50 Hz). 

Thus it can be concluded that both the dielectric material and the applied frequency 

significantly affect the type of generated plasma. 

 

2.6.4   Plasma characteristics 

Conventional plasmas (e.g. industrial) are defined to be a quasi-neutral collection of 

mutually interacting species (Bellan and Ebrary, 2006). The plasma can be 

approximated by a multi-component fluid composed of two dominant species; electrons 

and ions in addition to other species. Plasma dynamics have been described by coupling 

species transport with the electric field and electron energy. The electron conservation 

equation combines the electron density continuity equation with the electron flux, as 

follows (Jayaraman et al., 2008): 
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Where: en is the electron density, eS represents the source of electron creation or 

destruction due to ionization, eΓ  is the electron flux, described by drift - diffusion 

approximation equation: 
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                                        (2-60)                                          

 

eµ  is the electron mobility, eD  is the electron diffusion coefficient, ϕ  represents the 

electrostatic potential. 
 
The electron energy conservation equation is expressed according to the following form 

(Farouk, 2009): 
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eeDn
2

5
=χ  is the thermal diffusivity, nk is the heavy particle density, while 

k
η

represents the rate coefficient for energy loss. The first term to the right hand side (P) 
represents the energy gain due to the electron joule heating, while the second term refers 
to the inelastic collision of electrons with species k. 
 
 
Energy transfer in plasma discharge is dominated by convection and thermal diffusion. 

Consequently, an increase in the internal energy of the species occurs and leads to an 

increase in the gas temperature. The general heat transfer equation in plasma discharge 

is of the following form (Lozano Parada, 2007): 

 

                        

2 2( . )
m p jE

T
c v T k T E S

t
ρ σ

∂ 
+ ∇ = ∇ + + ∂ 

                           (2-62) 

    

&m pcρ
  

refer to the heavy particles density and specific heat respectively, k is the 

thermal conductivity, E is the electric field, σ is the electrical conductivity, while 
jES

represents the heat source. The right hand side of the equation includes the thermal 
diffusivity and joule heating terms respectively whereas the left hand side combines the 
heat accumulation and the convection terms. 
 
Some important characteristics of plasmas are described as follows:   

2.6.4.1     Plasma temperatures 

All plasmas can be characterized by their electron and ion densities as well as their 

temperature; however, it is not possible to characterize a single temperature for a non 

thermal equilibrium plasma since it is not at thermodynamic equilibrium. Therefore 

characterizing a plasma is achieved by measuring four temperatures: excitation, 

ionization, electron and gas. The excitation temperature is the energy of the excited 

particles in the plasma, whilst the population density in such an ionization state is 

referred to as the ionization temperature which characterizes the energy of ionization. 

The electron and gas temperatures indicate the kinetic energy of the electrons and atoms 

respectively (Dean, 2005). The rotational temperature, Trot, indicates the vibrational – 

rotational excitation of the molecules. In practice, plasma temperatures cannot be 

measured by using common instrumentations for temperature measurement because it 
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exists out of the measuring range of these devices; therefore these temperatures are 

normally inferred using spectrometric methods. Two types of methods are applied, 

passive and active (Hill, 2006).  The passive method measures the line emission 

intensities without any interaction with the plasma (e.g. Boltzmann’s distribution), 

whereas inducing a perturbation such as laser scattering is applied in the active methods. 

Figure (2-12) illustrates the range of various temperatures measured by using ICP. 

 

 
Figure  2-12  the range of the various temperatures observed in the analytical ICP (Hill, 

2006) 

 
Although the excitation temperature can be deduced from equation (2-58), an alternative 

method based on the Boltzmann plot is easier due to several difficulties when measuring 

the absolute line intensity. The Boltzmann plot assumes the existence of localized 

thermal equilibrium in the plasma, thereby eliminating the need for estimating several 

temperatures of plasma. The method is based on using different spectral lines of a given 

element within the same ionization state. Consequently, the necessity to identify the 

values of the number density (N) and the partition function (Z) is eliminated since these 

values are constant for the same element, provided that the partition function is 

independent of temperature.  

Therefore the temperature can be deduced from a plot of:   �( l �	v:	�p   versus    Eexc   

The plot, in most cases, produces a straight line; thus, the excitation temperature can be 

inferred from the slope which equals the reciprocal of (k × T). In order to obtain an 

accurate excitation temperature, it is essential to use an expanded range of excitation 

energies (Eexc) with known values of transition probabilities (A). Thus, the excitation 
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temperature can be deduced from the slope of the line which equals to ( -0.625 / Texc ) if 

the values of Eexc are estimated in (cm-1) (Hill, 2006). 

The excitation temperature is usually determined using atoms of the discharge gas or 

atoms of the injected analyte as emitting species (Gielniak et al., 2011). In any case, it is 

recommended that the examined species should have close emission lines, thereby 

giving the ability for simultaneous measurement. There should be considerable 

differences in the excitation energy of the selected emission lines to achieve accurate 

measurements. In the case of argon plasma, a lot of emission lines are available for the 

spectrometric analysis. In the case of other plasmas (e.g. helium plasma), limited 

spectral lines are available which then requires the injection of another analyte (e.g. Fe). 

The ionization temperature is normally estimated by utilizing the combination of Saha 

and Boltzmann equations under the assumption of localized thermal equilibrium 

condition, as expressed by equation (2-63). 

 

                
����
���
=	 		:

�	���	� 	v��	
�D	:�	���	v��

	l		a	ID		U	`! p
� 	� 	0z6 lW(x�

�Wx�&	x���W∆x���
U	` p                 (2-63) 

 
Where; 
q, p, j, i : indicates the upper and lower energy levels of ions and electrons respectively 
+ : indicates the values of the ions, I : the intensity of the observed line, A : indicates the 
transition probability for spontaneous emission, - : statistical weight of the level, ([: 
the electron number density, J[	: mass of the electron 
k, h, T : indicates Boltzmann and Planck constants as well as the temperature 
respectively, Eq and Ei : the excitation energies of the respective levels 
Eion  : the ionization potential of the element, ∆Eion:  a correction factor for Eion 
 
 
The plasma rotational temperature can be estimated by utilizing thermometric species 

(e.g. OH and N2), and most likely produces a result similar to the gas temperature. This 

is due to a rapid energy exchange between the rotational and translational levels and the 

low energy involved in the rotational processes. The rotational temperature is normally 

determined from the slope obtained from plotting the intensity versus the rotational 

quantum numbers. These quantum numbers are related to the upper and lower states for 

a number of rotational lines in the same vibrational band, as illustrated in chapter four.  
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2.6.4.2      Electron number density 

Estimation of the electron number density (ne) is normally achieved by measuring stark 

broadening of the emission lines. It is also achieved by applying Thomson scattering of 

laser light or using a current probe (Gielniak et al., 2011). Stark broadening, which 

originates by interactions of charged particles in the plasma, depends on electron 

density (ne) and temperature (Te). Therefore, ne can be deduced through analysis of 

atomic line broadening. In Stark broadening, the hydrogen (Hβ) emission line at 486.13 

(nm) is broadened due to the effect of the electric field, which is utilized to estimate the 

electron number density. This technique may require injecting hydrogen gas into the 

plasma which may lead to changes in plasma conditions. Moreover, the resolution of the 

spectrometer should be high enough to differentiate between the recorded bands.  

In order to obtain an accurate value of Stark broadening, the estimated value of the 

Doppler broadening and other effects should be subtracted from the measured value of 

the full width at half maximum (FWHM). Accordingly, the electron number density can 

be estimated from the following formula (Jovievi et al., 2000): 

 

                                           ([ =	10'� 	l �
�.����p

'.��
                                           (2-64)  

 
 
Where; W represents the corrected full width at half maximum of Hβ line, in angstroms  
 
It can also estimated by applying the following formula (Yubero et al., 2006): 
 
 

                                   Δ�7���� = 	4.8	nm	 l �D
'SV¢£¤¢p

S.��''�
                            (2-65)  

 
 
The Thompson scattering method is difficult to implement in small dimension plasmas 

and requires a powerful laser system, which makes the method expensive (Torres et al., 

2003). 
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2.6.4.3       Plasma reactions 

The most probable principal ionization mechanisms are summarized by the following 

reactions (Dean, 2005, Hill, 2006, Fridman, 2008, Nehra et al., 2008): 

 

       ¥	 + 	0	(k�5Q) 	→ 	¥& + 	0	(5��¦) 	+ 	0	(5��¦)    (electron impact)   

       ¥ +	�/I 	→ 	¥& + 	�/ + 0                            (Penning ionization)             (2-66) 

       ¥ +	�/& 	→ 	¥& + 	�/	                                    (charge exchange) 

 
Where; 
 M: represents the analyte atom, Ar

m: represents an excited (meta stable) state argon 
atom,   Ar

+: indicates argon ions,   ¥&  indicates the excited ionized atom 
 
The main excitation processes for the analyte atom are illustrated as follows (Hill, 

2006): 

 
       0 + ¥	 → 	¥∗ + 	0                    (electron impact excitation)   

       0 +	¥∗ 	→ ¥ + 20 + ℎ�          (de-excitation)                                              (2-67) 

      ¥& + 	0	 → 	¥&∗ + 	ℎ�              (ion-electron radiative recombination)  

 

In principle, ionization by electron impact is subdivided into direct and stepwise 

ionization. Direct ionization is found in non-thermal plasmas, in which the exerted 

electric field enhances the electron energy while keeping the excitation of the neutral 

species at a medium level. Stepwise ionization is where a high concentration of excited 

neutrals exist simultaneously with the availability of high energy levels, which imposes 

the highly excited neutrals to be ionised by step-wise collisions.   

 

Other ionization mechanisms are classified as follows: 

� Due to collision with heavy particles, that occurs when the total energy of the 

collision partner exceeds the potential required for ion-molecule or ion-atom 

collisions.  
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� Photon ionization, in which the collision takes place between neutral species and 

photons. Consequently, an electron-ion pair forms. 

� Surface ionization, which occurs due to collisions between highly energized 

particles (e.g. electrons, ions or photons) and the surface. These collisions may 

lead to the surface heating. 

 

Other significant plasma reactions are attributed to the presence of positive and negative 

ions in the plasma bulk. Although the activity of the ions is much lower than the 

electrons, their exothermic reactions with the neutrals can provide an important 

contribution to the whole reaction series.  

 
The positive ion reactions can be summarized as follows:   
 
 
       0 +	��& 	→ 	��∗ 	→ � +	�∗  (dissociative electron-ion recombination) 

       0 + 0 +	�& 	→ 	�∗ + 	0            (three body electron-ion recombination        (2-68) 

       0 +	�& 	→ 	�∗ 	→ � +	∆<        (radiative electron recombination) 

 

The negative ion reactions can be summarized as follows: 

 

       0 + 	��	 → (��W)∗ 	→ � +	�W   (dissociative electron attachment) 

       0 + � + �	 → 	�W + 	�                 (three body electron attachment)               (2-69)  

 

Other mechanisms are attributed to the destruction of the negative ions and 

recombination of negative-negative ions as follows: 

 

       �W + 	�	 → 	 (��W)∗ 	→ �� + 0      (associative detachment) 

       0 +	�W 	→ � + 0 + 0                      (electron impact detachment) 

       �W +	�∗ 	→ � + � + 0  (detachment in collisions with excited particles)     (2-70) 

       �W +	�& 	→ � +	�∗                            (binary collisions) 

       �W +	�& + 	¥	 → � + 	� +¥             (binary collisions) 



Chapter two                                                                                          Literature review 

 

67 
 

2.7   Summary  

 
In this chapter, many aspects related to the field of heavy metals detection and 

determination are presented. The review of the technologies applied in this field, other 

than those based on spectrochemistry, has shown reasonable accuracy can be obtained; 

however, different shortcomings and operational drawbacks are also addressed. 

Technologies based on plasma spectro-chemistry (e.g. ICP-OES) are shown to be highly 

accurate and more stable. However, these devices are impractical for miniaturization 

purposes. Hence, a configuration based on DBD plasma atomization is most appropriate 

for the research objective since high electron energy is available while the gas 

temperature is kept at room temperature. Moreover, the chemical derivatization 

procedures are shown to be the most efficient way (> 95%) for sample introduction to 

the plasma compared with the traditional desolvation procedures (< 5%).  

Accordingly, it is decided to adopt the chemical derivatization procedures coupled with 

DBD plasma atomization to produce a miniature portable device that could be utilized 

for in situ – online – real time analysis. On this basis, the fundamentals of the proposed 

technology were presented, and these will be utilized in mathematical and experimental 

investigations presented in later chapters. 
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3.    MATHEMATICAL INVESTIGATIONS  
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3.1     Preface 

This chapter is dedicated to applying mathematical simulation studies to explore the 

proposed technology with the aim of determining the optimal design parameters. The 

proposed detection method relies on applying a chemical derivatization procedure (HG 

technique) which is integrated with an atomization stage for detecting heavy metals with 

aid of spectrometric analysis. The HG derivatization technique is utilized to produce 

volatile hydrides from the examined analytes. The analyte hydride (in the gaseous form) 

is assumed to be generated in a helical tubular reactor, separated from the liquid residue 

in a gas liquid separator, and then transported with a carrier gas to the specified 

atomizer. Several mathematical investigations are conducted in the current work; the 

first study investigates the process of generating the analyte hydride according to well 

known hypotheses, while the second study explores the separation of the generated 

hydride through a helical tubular section and hydride separation efficiency. In the third 

study, a simulation of a nebulizer gas liquid separator is carried out to determine the 

optimal operating parameters for the best separation results, whereas hydride 

atomization in a quartz cell and dielectric barrier discharge atomizers are investigated in 

the fourth study to illustrate the formation and distribution of the free atoms along the 

atomizer. The outcomes of the studies reveal some important aspects that contribute to 

the design and operation of a fully integrated system for heavy metal detection in water 

samples.  

 

3.2     The working principles 

The working principle of the hydride generation technique involves the reduction of the 

element from the higher oxidation state to its lowest state (usually II or III), which 

ultimately appears as the volatile hydride. The generated hydrides transfer with aid of 

carrier gas to an atomization cell where the hydride molecules dissociate into analyte 

atoms in order to be detected by spectrometric analysis. As mentioned earlier, the 

mechanism of the hydride generation process has been studied thoroughly by different 

research groups (Dedina, 1986, Wang, 1986, Wang and Barnes, 1987) who proposed 

different hypotheses and perspectives. The first hypothesis presumes atomic hydrogen 

to be the active specie in the derivatization process. The atomic hydrogen, also referred 
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to as ”nascent hydrogen”, forms during the acidic hydrolysis of the hydroborate 

compound (e.g. NaBH4). The second hypothesis denies the need for intermediate 

reactive species and presumes the formation of the hydrides, in a pH range 4.7 to 12.7, 

occurs due to the action of borohydride compounds (BH4 or X-BH3 where X = Cl, Br, I) 

on the analyte.  On the other hand, another experimental study (D'Ulivo et al., 2005) 

demonstrated the formation of molecular hydrogen and hydroboron species during the 

hydrolysis of tetrahydroborate and claimed that the hydrogen atoms bonding to the 

boron species are released leading to molecular hydrogen formation. Although the 

second hypothesis and the experimental evidences presented solid arguments against the 

first one, the mechanism of nascent hydrogen formation is still valid and accepted as a 

model by several researchers (D'Ulivo et al., 2004, D’Ulivo et al., 2011). The most 

important link between the abovementioned hypotheses is: they agree that a hydrogen 

gas is generated as one of the final products of the hydride generation reaction due to 

decomposition of hydroborate (THB). The decomposition of THB is considered to be a 

second order reaction that might last for few microseconds (Dedina and Tsalev, 1995), 

whereas the generation and transfer of the hydrides from the liquid phase to the gaseous 

phase are a first order reaction (Van Wagenen et al., 1987). 

The atomization process of the hydride has also been studied by many researchers (Welz 

and Melcher, 1983, Welz and Schubert-Jacobs, 1986, Ramesh Kumar and Riyazuddin, 

2005, Dedina and Rubeka, 1980). The general opinion supports atomization by thermal 

decomposition such as in the case of electro-thermal atomization in a heated quartz 

tube. However, this theory is found difficult to apply as a general case due to variations 

in the atomization temperature which is strongly related to the type of equipment. For 

instance, arsenic atomization is reported to occur at approximately 800 oC in a heated 

quartz tube, whereas it is reported to atomize at 1700-1800 oC in a graphite tube 

furnace. In addition to the thermal decomposition theory, the atomization mechanism is 

attributed to the effect of the free hydrogen radicals and the assistance of oxygen 

radicals in the atomizer. Generally speaking, the hydrogen radicals are found to be the 

most effective factor on the atomization process. As mentioned in Section (2.6.1), 

oxygen radicals are also an important factor, in which the hydride decomposition occurs 

in presence of oxygen radicals alone; nevertheless, no atomization could be achieved at 

temperatures below 1700 oC (Ramesh Kumar and Riyazuddin, 2005). On the other hand, 

OH radicals are reported to play a powerful catalytic role on the hydride generation 
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process. In practice, the recombination of radicals is reported to be slower than the 

onward radical generation; therefore, the population of hydrogen radicals is always 

expected above the equilibrium value.  

 

3.3     Study of the hydride generation process in a tubular reactor 

3.3.1    Process description 

The hydride generation reaction is investigated in this study by assuming a sample of 

water contains 0.02 mg/L of arsenic,As(III), with the aim to be converted to arsenic 

hydride AsH3 upon being reacted with a reducing agent (NaBH4). The reactant streams 

are assumed to be injected into a tubular helical coil (2.4 mm diameter ) through a T- 

junction. The inlet streams are assumed to have the following specification on the basis 

that the feed rate of the reagents (THB and HCL) to the HG generator is normally 

applied in a ratio 1/1 (Pohl et al., 2007). 

 

Stream 1:  2 ml/min  �		
 aqueous solution contains (0.2 % m/v) sodium 

tetrahydroborate (THB) stabilized by using (0.1% m/v)  NaOH 

 

Stream 2:  2 ml/min  �		
 aqueous solution contains  0.02 mg/L As(III) and acidified by   

                   using 0.1 (M) HCl 

3.3.2    Chemical reaction mechanisms 

3.3.2.1    Assuming the evolution of nascent hydrogen from the acidic hydrolysis 

of  THB 

The mechanism of the hydride generation process is represented by the following 

reaction (Dedina and Tsalev, 1995): 

 

  ����� + 3�	
 +���	
����	���
� + 	���� + 8�● 	

������ 	��� + �	 ↑             (3-1) 
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Where;   
 A: the analyte, m+: the oxidation state of the analyte,  n: the coordination number of the 
hydride, H●: the nascent hydrogen 

 
The general form of the reaction which leads to the formation of the hydrides is 

described as follows: 

 

                                �I& +	(J + ()�	 → ��� + 	J�&                                      (3-2)     
 

The excess of the un-reacted atomic hydrogen is mentioned to form the molecular 

hydrogen, which is one of the final products of the acidic hydrolysis of 

tetrahydroborate, as follows (D'Ulivo et al., 2005): 

 

                                            � + �	 → �	                                                        (3-3) 
 

                                     � +	�	
	 → 	�	 + 	
�                                             (3-4) 
 
 
Another general form is proposed as follows (Ramesh Kumar and Riyazuddin, 2005, 

Laborda, 2002): 

 

�I& +	(J + ()8 ���W + 	3
(J + ()
8 �	
	 → 	��� +	

(J + ()
8 	���
� + 	7

(J − ()
8 	�&	 

 

                                                                                                                 (3-5) 

In this part of study, the generation of arsenic hydride is represented by the following 

equations according to the nascent hydrogen hypothesis (D’Ulivo et al., 2011), (1st 

mechanism in the current study), assuming m=3 and n=3 and the hydrogen gas is 

generated directly:  

                                         

                    ���W + 	3�	
 + �& 	
����	 ���
� + 		8�●                                 (3-6) 

    

                       �5(...) + 	6�● 	�V�� 	�5��(;T©[8©7) + 	1.5	�	 ↑                              (3-7) 
 

                                  �5��(;T©[8©7) 	
�¢�� �5��(:;7)	                                               (3-8) 
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Where;  
K1 : 2�R order decomposition rate constant = 1.22 ×10� L/mol/min = 
2033.3(m3/mol/sec) (Dedina and Tsalev, 1995). 
K2 :   the rate constant of  the arsenic hydride formation. According to  (Van Wagenen et 

al., 1987)  , the formation of arsenic hydride was found to be a first order reaction with 
a rate constant equal to 32 (sec-1).    
K3 :   17H   order rate constant of arsenic hydride release from the liquid phase, which 
was estimated equal to 3.5 (sec-1) (Van Wagenen et al., 1987) in a three neck round 
bottom flask hydride generator. 
 
It is assumed that the value and units of the rate constants mentioned above are 

applicable for the reactions described in the current case study, and that no changes in 

the rate constants will occur throughout the reaction series. Moreover, the concentration 

of (HCl) is considered to be equivalent to 10% of (NaBH4) concentration in the 

description of hydroborate decomposition rate (R1); this is to obtain the highest As 

signal to background ratio as demonstrated by (Pohl et al., 2007).  

Thus; the reaction rates, for the current case, are described as follows: 

 
�' = h' × 0.1	 × ��	  ;   �	 = h	 ×	�« × �K�  ;  �� = h� ×	�x 	 

The notations used for the species are shown below: 
 
A=THB( i.e. NaBH4) , B = H

●
 , C = As(III), D = H2 , E = AsH3 (aqueous) , F = AsH3 (gas) , 

 

The concentration gradients of the reactants and the products are described as shown in 

the following equations: 

 

                                           
R«¬
RH =	−	�'                                                  (3-9) 

 

                                              
R«i
RH =		�' −	�	                                                   (3-10)   

 

                                                  
R«
RH =	−	�	                                                          (3-11)             

 

                                                  
R«®
RH = 	1.5	�		                                                      (3-12) 

 

                                                 
R«¯
RH =		�	 −	��                                                    (3-13) 

 

                                                  
R«°
RH =		��                                                             (3-14) 
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In order to find the optimal reactor length, further ordinary differential equations are 

added to the described system, , which aims to simulate the velocity and the position 

required for the optimal conversions, as follows, (Zimmerman, 2006) : 

 

                                                    
R©
RH =		−�'	

©
«¬>

                                                   (3-15) 

 

                                                     
R±
RH = 		2                                                             (3-16) 

 
Where;  u = velocity  (m/sec),  x = position (m), and ��S = the initial concentration of 
hydroborate.  
 
The above system of eight ordinary differential equations has been analyzed using the 

ordinary differential equation solver (ode 23) in Matlab, Appendix 11.1, which is 

principally based on the explicit Runge-Kutta method. The initial conditions are applied 

as follows: 

 (CTHB = 1.347 mol/m3, CAs(III) = 2.66x10-4 mol/m3 , other species = 0 mol/m3 ).  

 

The computations have produced the gradients of species concentration shown in 

Figure (3-1), which represents a comparison between the results obtained from the 

analytical solutions of both hypotheses.  

3.3.2.2    Assuming the stepwise decomposition of hydroborate and formation of 

hydroboron intermediate species 

Other analytical evidence (D'Ulivo et al., 2004, Wang and Jolly, 1972, D’Ulivo et al., 

2011) supports the hypothesis of forming the hydroboron species with life time longer 

than the life time of the hydroborate (BH4
-). The borane complex [BH3Y]n , where Y 

represents a neutral or anionic ligand, is hydrolysed in the aqueous phase catalyzed by 

acid and eventually decomposes to give molecular hydrogen according to the following 

reaction path (D’Ulivo et al., 2011): 

 

                           ²���³´� +	�	
	
	⇔	²���³´�&' +	
�W	                                 (3-17) 

 

                                   ²���³´�&' 	→ 	 ²��	³´�&' +	�	                                       (3-18) 
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The overall hydrolysis rate constant KHyd of THB (second-order reaction) is estimated 

equal to 1.6 x106  (L/mol/sec) at 25 °C; where H+ applied in the range (0.2 M – 10 M) 

(D'Ulivo et al., 2004). 

The following reactions are adopted in the current case study to investigate the arsenic 

hydride generation according to the hydroboron intermediates theory, where the 

formation of arsenic hydride occurs due to the reaction of the analyte with the hydrogen 

atoms that are released from the intermediate species,²���³´� ,  

 

                      ���W + �& + 3�	
	
�¶·G���� 	4�	 +	²���³´�                                    (3-19) 

 

                   �5(...) + ²���³´� 	
���� 	�5��(;T©[8©7) + ²�	³´�&'	                           (3-20) 

 

                                 �5��(;T©[8©7) 	
�V�� 	�5��(:;7)                                            (3-21) 

 
 
Where;  
 KHyd = 1.6 x106  L/mol/sec = 1600  m3/mol/sec, ²�&´ = 1 M, and  K2 = 3.5  sec-1 

 
As mentioned in Section (3.3.2.1), the value of (K1 = 32 sec-1) has been utilized to 

describe the reaction rate by assuming that the value and units of K1 are applicable for 

the current case; moreover, ²�&´	is assumed equal to 10% of NaBH4 concentration; this 

is in order to envisage the case where a stable acidity undertaken throughout the 

reaction series. 

In light of the hydroboron intermediates hypothesis (2nd mechanism in the current 

study), the reaction rates that contribute to the arsenic hydride production can be 

approximated according to the following equations:  

 

�' = hstR ×	�K ×�& =	hstR ×	0.1	 × �K	 ;   �	 = h' ×	�« ×	��  ;  �� = h	 ×	�x 	 
 
The notations used for the species are shown below: 
 
B = BH4

-
 , C = ²���³´�, D = As(III) , E = AsH3 (aqueous) , F = AsH3 (gas) , G = H2 ,  J = 

²�	³´�&' ; 
 

The concentration gradients of the reactants and products are described as follows, 

where the last two equations are added to estimate the optimal reactor length: 
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                                                  	R«iRH =	−	�'	                                                                (3-22)  

 
                                                   

R«
RH =	�' −	�	                                                   (3-23) 

 
                                                  

R«®
RH =	−	�	                                                          (3-24) 

 
                                                  

R«¯
RH =	�	 −	��                                                    (3-25) 

 
                                                   

R«°
RH =		��                                                            (3-26) 

 
                                                  

R«¸
RH = 	4	�'                                                           (3-27)  

 

                                                   
R«¹
RH =	�	                                                             (3-28) 

 
                                                   

R©
RH =		−�'	

©
«¬>

                                                    (3-29) 

 
                                                   

R±
RH = 		2                                                               (3-30) 

 
 

 

The above system of nine ordinary differential equations has been analyzed by using the 

ordinary differential equation solver (ode 23) in Matlab, Appendix 11.1. The initial 

conditions are considered to be (CTHB = 1.347 mol/m3, CAs(III) = 2.66x10-4 mol/m3 , other 

species = 0 mol/m3 ).  

 
The results obtained from the analytical solution of the two hypotheses are shown in  

Figure (3-1), in which the plots to the left represent the gradients according to the 

nascent hydrogen hypothesis whereas the plots to the right refer to the gradients 

according to the hydroboron intermediates hypothesis. 
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(G) 

 
Figure  3-1  the gradients of species concentration with time according to the hypotheses 
of nascent hydrogen (left side plots) and the hydroboron intermediates (right side plots); 
(A,B,C,D) plots illustrate the decomposition of hydroborate, dissipation of the analyte 
As (III), and formation of the side products and the hydrogen gas respectively, (E,F) 
plots illustrate the formation of the intermediate arsenic hydride (in the aqueous phase) 
and its release to the gas phase (in logarithmic time scale) respectively, (G) plots 
illustrate the formation of the arsenic hydride in the gaseous phase (normal time scale). 
 
 
It can be observed in the plots shown in Figure (3-1) that a time slot of 2 seconds has 

been selected for the analysis. A general overview on the analytical solutions shows that 

the second mechanism has a faster decomposition by approximately two orders of 

magnitude (Figure (3-1/A)). Since the hydroborate decomposition in both mechanisms 

is considered to be a second order reaction; decomposition rates occur within 0.1 and 

0.005 seconds for the first and second mechanism respectively. The results of the 

second mechanism are found to be in agreement with the data in the literature (e.g.  

14x10-6 second for 0.2 M [H+]) (D'Ulivo et al., 2004). The results also show that the 

intermediate species, represented by the atomic hydrogen in the first mechanism and the 

intermediate complex ²���³´� in the second mechanism, saturates to a maximum and 

become stable within 1.0 second in the first mechanism, and within less than 0.01 

second in the second mechanism, as shown in Figure (3-1/B). Other differences 

between the examined mechanisms are found in the depletion of arsenic, the generated 

hydrogen, the formation of the intermediate arsenic hydride (in the aqueous phase), and 

their release to the gas phase, as presented in Figure (3-1/C – E). The arsenic 
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concentration totally depletes from the reaction bulk within 0.03 second in the first 

mechanism whereas it takes approximately 0.1 second according to the second 

mechanism. In contrast, the peak value of the generated hydrogen is reached after 0.03 

second in the first mechanism compared with 0.003 second in the second mechanism. 

Moreover, the second mechanism shows that a higher amount of hydrogen is generated 

due to the hydroborate decomposition by approximately 4 orders of magnitude and this 

is in agreement with the finding of (Pohl et al., 2007) who reported that a hydrogen gas 

value of 0.6 ml/min is generated from only 0.1 m/v NaBH4 decomposition. 

Furthermore, both mechanisms show that the aqueous arsenic hydride generates after 

0.001 second of the reaction start up and totally depletes within approximately 1 second. 

However, the first mechanism show that 0.03 second is required to reach the peak 

AsH3(aqueous) concentration, whereas the second mechanism required more time (about 

0.1 second). Both mechanisms exhibit arsenic hydride in the gaseous phase after 0.01 

seconds, increasing relatively with time, and reaching maximum values after 

approximately 1.8 second (Figure (3-1/F-G)). This result indicates that the first 5 cm of 

the reaction tube is required to achieve the full conversion of arsenic to arsenic hydride. 

The next portion of the reaction tube is where the gaseous phase separates from the 

liquid phase. In conclusion, the results of the second mechanism have shown greater 

agreement with the observations reported in literature; thus, the results from the second 

mechanism are adopted to study the separation of the gaseous hydrides in the helical 

tubular section.   

3.4   Release of the generated  arsenic hydride 

The second reaction mechanism presumes the arsenic hydride and other side products 

(H2, and ²�	³´�&') to be produced as final products. As mentioned earlier, the second 

part of the reaction tube, which begins after 5 cm, is where separation occurs. A helical 

tubular section has been adopted to utilize the beneficial effect of  the secondary  flow 

to enhance the releasing efficiency. The secondary motion (flow perpendicular to the 

main flow direction) is generated in the curved section of the tube due to the centripetal 

action which forces the liquid phase towards the tube wall. This phenomenon occurs 

due to a greater density and inertia of the liquid phase compared with the gaseous phase. 
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As a result, the attraction force between the two phases reduces and leads to the gaseous 

species separating.  

The effect of using two turns of a helical coil is studied by assuming the following 

conditions, taking into consideration the main products from the hydride reaction (AsH3 

and H2) and neglecting the side product (²�	³´�&') to simplify the computations: 

 

� 2 ml/min water stream contains 2.66 x10-4 (mol/m3) AsH3 and 5.38 (mol/m3) H2    

is introduced to the helical coil. These values refer to the species concentration  

after passing the first part of the reaction tube, [Figures (3-1)/D&G]. 

� Two turns of a helical coil (2.4 mm ID) with a top and bottom turn radius of 1 

cm, is applied. The total height of the spiral is 2 cm and the total length of the 

assembled tubular section is 12.56 cm. 

 

The coil configuration is shown in Figure (3-2). 
 
 
 

 
 

Figure  3-2  the geometry of the helical section 
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A geometry in three dimensions, representing the helical tube was built in Autocad 

software and exported to Comsol Multiphysics 3.5a software to conduct the 

computations. Two models were used in Comsol to investigate the separation process 

inside the helical section. The fluid flow is described by incompressible Navier-Stokes 

equations, in which a laminar flow regime and a constant fluid density describe the 

system in a steady state condition according to the following equations: 

 

                   −	∇. »(∇2 + (∇2)	`) + 	¼2. ∇2 +	∇6 = \                                        (3-31) 
 
                                                    ∇. 2 = 0                                                              (3-32) 
 
Where η denotes the dynamic viscosity (Ns/m2), u the velocity (m/s), ρ the density of 

the fluid (kg/m3), p the pressure (Pa), and F is a body force term (N/m3). 

The boundary conditions are taken as follows: at the inlet of the tubular section, the 

velocity vector is normal to the boundary, i.e.  u.n = u0 ; whereas the pressure at the 

outlet boundary is set (p = p0 = 0). Moreover, a flow is considered to be running down 

along the bottom half of the tubular section with a specific velocity, u, whereas the top 

half of the tubular section is considered at no-slip boundary (u = 0). 

The mass transfer process in the studied helical section is modeled as a convection-

diffusion equation: 

 
                                       		∇. (−D¾∇�| + �|2) = �|                                           (3-33) 

 
Where Ci and Di represents the concentration (mol/m3) of specie (i) and the diffusion 

coefficient (m2/s) respectively, whereas Ri denotes the reaction term (mol/m3/sec).  

At the inlet section of the tubular helical section, the boundary condition is assumed to 

be (Ci = Ci0), which equals the initial concentration. The outlet boundary conditions 

presume that no mass flux occurs due to diffusion, hence is dominated by convection, 

therefore the total flux is described by: 

 
                                             �|. ( = 	 3|2. (                                                       (3-34) 

 
Zero mass transfer is imposed at the interior surfaces due to the assumption of 

impermeable boundaries. The computations are conducted numerically by applying the 

finite element method treated by  (lagrange – P2 P1) elements for pressure stability.  
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The mesh is refined manually by changing the element size, which results in increasing 

accuracy. The accuracy of the solution is inferred by estimating a specific parameter 

(concentration of AsH3 ) at a specific point along the helical tube.  

A numerical error estimation study is conducted to infer the appropriate grid size for 

higher solution accuracy. Eventually, a very fine mesh of 84194 elements and 826978 

degrees of freedom was applied in the computations, which produced the lowest relative 

error (*% RE ≈ 2%). The computation results of the finest grid size (0.2175 mm) are 

adopted for discussion. Figure (3-3)  illustrates the simulation results represented by the 

velocity field distribution and the change of species concentration along (z) coordinate. 

The results show that a gradual increase in the velocity field along (z) coordinate 

occurs, which could be attributed to the effect of the secondary motion on the 

momentum transfer. Moreover, a concentration depletion occurs for all species through 

the helical section which indicates species transfer from the liquid phase to the gaseous 

phase as a result of high diffusion rate. The results also show that both AsH3 and H2 are 

completely depleted from the liquid phase within the tested length of the helical coil. 

However, the hydrogen gas is shown to be depleted faster than the arsenic hydride, and 

this is clearly attributed to a higher diffusion coefficient of hydrogen (1.32x10-7 

cm2/sec) compared with the arsenic hydride diffusion coefficient (3.45x10-10 cm2/sec), 

where the diffusion coefficients are estimated according to the details given in 

Appendix 11.2. The diffusion coefficients also result in big differences between the 

estimated Peclet numbers of the examined species at a specific point along the tubular 

section (1.5×108 for AsH3 and 4×105 for H2 estimated at x= 1.5675, y= 0.745, and z 

=0.0115), where Peclet number is defined as the ratio of the rate of advection of a 

physical quantity by the flow to the rate of diffusion of the same quantity driven by an 

appropriate gradient. 

 

                                                 	¿0À = �0À	. q3 = À	@
�                                             (3-35) 

 

Where; Re = Reynolds number  , Sc = Schmidt number, L = characteristic length, 

V= velocity, and  D = mass diffusion coefficient 

  

*% RE is the relative error percentage = [(the estimated conc. of the examined grid size – the 
estimated conc. of the finest grid size) / the estimated conc. of the examined grid size] × 100   
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(A) 

 
(B) 

 
Figure  3-3  the simulation results of the helical tubular section (three dimensions visual 
representation); 



Chapter three                                                                      Mathematical investigations 

 

85 
 

(A) the velocity fields distribution along the helical section, (B) the concentration 
distribution of the examined species, where the red arrows indicate the velocity fields. 
 
 

3.5   Simulation of a nebulizer-gas liquid separator 

A design for a nebulizer-gas liquid separator is presented in the current study to be 

utilized for the gas- liquid separation and gas dilution. Due to the effect of the hydrogen 

gas on DBD plasma consistency, discussed in Section (5-4), the aim of the current 

simulation is to estimate the optimal helium gas flow rate that is required to dilute the 

released hydrogen gas and the accompanying alkaline mist into acceptable limits in later 

DBD atomization stage. The details of the inlet streams are illustrated in Figure (3-4). 

Stream (1) represents the connection point with the end of the helical tubular section, 

described in Section (3-4). According to the assumptions made in Section (3-3), stream 

(1) is flowing at 4 (ml/min) and mainly consists of water as a liquid phase. Further 

assumption is that stream (1) contains 2.66×10-4 (mol/m3) AsH3 and 5.388 (mol/m3) H2 

in the gaseous phase. On the other hand, stream (2) is a helium gas (1000 mol/m3) 

flowing at 35 ml/min and 0.3 barg, which is applied to increase the velocity of injection 

and to fulfil the nebulisation effect at the tapered end of the central tube. Since the 

hydrogen is the lighter gas in the examined separator bulk (H2 density is approximately 

equal half of helium density at 20 oC), therefore there is a high probability for hydrogen 

transfer to the plasma atomizer before other gases exists. Moreover, streams (3) and (4), 

mainly consist of helium gas at 0.3 barg and 1000 (mol/m3), are assumed to be injected 

to the second domain of the separator to dilute the released hydrogen gas in the 

expanded section. As previously mentioned, the aim of this study is to find the optimal 

quantity of helium which could result in better hydrogen dilution and eventually lead to 

a stable plasma performance.  

The geometry shown in Figure (3-4) is simulated through Comsol Multiphysics 3.5a by 

applying two domains; the first domain has included the central tube (nebulizer), 

whereas the second domain has combined the sections around the central tube in 

addition to the expanded section. The expanded section has been separated into two 

phases, the top phase is assumed majorly dominated by a helium gas, while the bottom 

phase is assumed totally occupied by water residues. 
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Figure  3-4  a schematic diagram illustrates the working principles and the dimensions of 
nebulizer gas liquid separator; 
(not to scale – all coordinates are described in meter). An annular section (16 mm ID 
and 20 mm ID for the central and the bounded sections respectively) is connected with 
streams (3) and (4). A central tube (5 mm ID) with a tapered end is applied to introduce 
streams (1) and (2). All compartments are connected with an expanded section (20 mm 
ID). The inlet tube of stream (2) is 3 mm ID whereas 6 mm ID is adopted for streams (3 
and 4). 
 

A finite element method is applied in the computations; ultimately, a very fine mesh of 

31311 elements and 356231 degrees of freedom was applied to obtain the results with 

considerable accuracy. To simplify the computations, the central domain is assumed to 

be a single phase (water) which is injected with the helium gas through stream (2). The 

momentum transfer is treated in the central tube by applying (k-ε turbulence model), 

while incompressible-Navier stokes model applied in the second domain. The fluid flow 

in the second domain, which combines all sections except the central tube, is described 

by a laminar flow regime and a constant fluid density as shown previously by equations 

(3-31 and 3-32). The boundary condition assumes the velocity vector is normal to the 

boundary, i.e.  u.n = u0 at the inlet sections for streams (3 and 4), whereas zero pressure 

is adopted at the outlet boundaries from the expanded section (p = p0 = 0). Another inlet 

stream to the second domain is applied from the outlet of the central domain (at the 
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tapered end), in which the velocity is considered proportional to velocity of the central 

domain.   

The turbulent flow mode, which is applied in the central domain, assumes Newtonian 

incompressible flow which is theoretically guided by incompressible Navier-Stokes 

equations, represented by the following forms at a steady state condition:  

 

                         	¼(2. ∇)2 = 	∇. ²−6. + »(∇2 + (∇2)	`)´ + \                             (3-36) 
 

                                                       ∇. 2 = 0                                                           (3-37) 
 

Once the flow regime becomes turbulent, all quantities fluctuate in time and space, 

therefore the equations shown above should be converted to the form of Reynolds-

averaged Navier-Stokes (RANS) equations by inserting the averaged and the fluctuating 

parts (Comsol, 2008): 

 
            	¼	Á. ∇U	 +	∇. (¼2](×)	2]) = 	−∇p + ∇.»(∇Á + (∇Á)	`) + \               (3-38) 
 
 
                                                      ∇. Á = 0                                                           (3-39) 
 
 
Where;  
U is the averaged velocity field, (×) is the outer vector product, and 2′ indicates the 
velocity of the fluctuating part. 
 
A commonly used turbulence model is the (Ã − Ä) model; where Ã is the turbulent 

kinetic energy and  Ä is the dissipation rate of the turbulence energy. The turbulent 

viscosity is represented by: 

                                                   »` = 	¼	�Å 	 	Æ
V

Ç                                                  (3-40) 

 

Where;  �Å is a model constant = 0.09 
 
The transport equations for Ã and Ä	 in a steady state condition are shown as follows 

(Comsol, 2008): 

 

         −	∇. cl» + ÈÉ
ÊË
p∇Ãd + ¼	Á. ∇Ã = '

	 	»`		(∇2 + (∇2)	
`)		 − ¼Ä                     (3-41) 
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   −	∇. cl» + ÈÉ
ÊÌ
p∇Äd + ¼	Á. ∇Ä = '

	 	�Ç'
Ç
Æ 	»`(∇2 + (∇2)	

`)		 − ¼	�Ç	 	 	Ç
V

Æ            (3-42) 

 

ÍÆ = 1.0		, ÍÇ = 1.3		, �Ç' = 1.44		,			�Ç	 = 1.92 
 

The inlet boundary conditions are assumed similar to those described for incompressible 

Navier-Stokes, as shown in the case of laminar flow conditions. In addition, the values 

of the turbulent quantities are set to be (Ã = 0.005	J	5W		�(1	Ä = 0.005	J		5W�). The 

outlet boundaries are assumed similar to those described for incompressible Navier-

Stokes, where convective flux conditions are prescribed for the turbulence variables:  

 
                                                 (	.∇Ã = 0				,				(	.∇Ä = 0                                                (3-43) 

 
 

A slip boundary is assumed at the interior surface in which no viscous interaction 

between the wall and the fluid is expected. 

The concentration distribution of the species along the simulated nebulizer - GLS is 

estimated by coupling the mass and momentum transfer models. 

The mass transfer in the studied domains is described through a convection-diffusion 

process, where the mass balance equation of a steady state condition is shown by 

equation (3-33). Both domains are coupled in the computations of the mass transfer 

model by applying helium gas as the dominant component in the second domain and 

water in the central domain. At the inlet boundary, the concentration is assumed equal 

to the initial concentration of the examined species, and no mass flux occurs through 

diffusion at the outlet boundary, which means the mass flux is dominated by convective 

flux. Therefore the total flux is described according to equation (3-34). A trial and error 

procedure is adopted in the solution strategy to infer the optimal helium flow rate that is 

required for the best hydrogen dilution. In each run, a value of the helium flow rate 

(stream 3 + stream 4) is assumed and the velocity of streams (3 and 4) estimated and 

applied in the computational model.  The calculated velocity fields in both domains are 

combined in the picture shown in Figure (3-5).  
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Figure  3-5  the estimated velocity fields for two domains of a nebulizer-gas liquid 
separator;  
the picture has been produced by combining the results from both domains 
 
 
 
The computations show that a significant reduction in hydrogen gas concentration 

would be obtained when applying 216 (ml/min) of helium gas through streams 3 and 4. 

Applying the helium from the side streams at the abovementioned rate in addition to the 

helium injected in the central tube results in a dilution ratio (0.26 H2 / 250 He ≈ 1/1000) 

which would affect the system performance to a considerable level. The estimated 

concentration of the hydrogen gas along (x and y) coordinates is shown in Figure (3-6).  
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Figure  3-6  the distribution of H2 and AsH3 concentration along the nebulizer – gas 
liquid separator; 
(A)  H2 concentration along x-coordinate, (B) H2 concentration along y-coordinate, (C)  
AsH3 concentration along y-coordinate. The helium flow rate in streams (3 and 4) is 
assumed to be 216 (ml/min), while 35 (ml/min) helium is injected in the central domain. 
 
 
It can be observed in Figure (3-6/A) that hydrogen concentration reduces by seven 

orders of magnitudes in the central tube before being nebulised into the expanded 

section. This might indicate a low or negligible effect is induced from the helium 

injected through the supporting streams (3 and 4). Despite the achieved reduction in the 

hydrogen concentration along the x – coordinate, the effect of injecting extra helium 

through streams 3 and 4 is more obvious in the distribution estimated along the y-

coordinate. Hence, in Figure (3-6/B) the hydrogen concentration in the expanded 

section reduces gradually as a result of dilution by helium upon transferring from the 

centre to the top end of the expanded section. In contrast, the hydrogen concentration 

increases when moving toward the bottom end of the expanded section. This may 

indicate a portion of the hydrogen gas would be re-dissolved in the water and exit from 

the bottom end of the expanded section. The computations also show that a significant 
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reduction (by six orders of magnitude) occurs in the concentration of arsenic hydride 

upon dilution by helium. Practically, although the plasma may become more consistent 

and stable due to the hydrogen dilution in the system, the reduction in AsH3 

concentration may lead to a relative reduction in the arsenic signal, which is in contrast 

to the aim of the current study. To sum up, the computation results have shown some 

discrepancy (a reduction by seven orders of magnitudes has occurred in the 

concentration of H2 and AsH3 from applying only 35 ml/min helium in the central 

domain, whereas the application of higher quantities of helium in the second domain 

results in only limited effect). This result might be attributed to the assumption made for 

the flow regime in the central domain (presence of a single phase). Nonetheless, the 

proposed design might lead to stable system performance upon optimizing the real 

experimental conditions, which will be discussed in Section (5-5). 

 

3.6   The Study of the atomization of arsenic hydride and the distribution 

of the free analyte atoms in a heated quartz cell and DBD atomizers 

This part of study is devoted to investigate arsenic hydride atomization in two types of 

atomizers. The first one is a heated quartz cell working at 1000 oK, whereas the second 

is a dielectric barrier discharge atomizer. The aim of this analysis is to elucidate the 

processes of formation and subsequent distribution of the produced free arsenic species 

through the two atomizers. 

3.6.1    Atomization of the volatile hydride in a heated quartz cell 

The distribution of the free analyte atoms in the cylindrical tube atomizer is described 

by equation (2-32), assuming a uniform diffusion coefficient (Dk) and non uniform 

atomic density: 

 

                                          
e�(9,B)
eH +	e�(9,B)"(B)e9 = fU e

eB c
'
B
e�(9,B)
eB d                                   

 

If a negligible change in the free atoms velocity in the axial direction is assumed, the 

equation can be reduced to the following form: 
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                               f(H + �(9 − fU 	∇ ∙ (	'B 	∇() = 0                                (3-44)  

 

The values shown below are used in this work, assuming a length of 4 cm and 1 mm 

diameter for a tubular atomization channel is applied. The other assumption is that the 

diffusion coefficient of the transferred gases to the atomizer is equal to the hydrogen gas 

diffusion coefficient in a gas phase. 

D = 1 ,  v = 0.084  m/sec , Dk = 1.132x10-4  m2/sec  (for hydrogen – Appendix 11.2) 
 

The boundary conditions are described by equation (2-34), Section (2.6.1), as follows: 
 

                                                             ((0, /) = 	 g(H)^]                                                           

 

                                                                 
e�(9,S)
eB = 0                                                                                               

 

                                              −fU c'B
e�(9,b)
eB d = h	![H		((�, �)                                        

 

The distribution equation (2-32) shown above  is a single partial differential equation in 

two dimensions, which can be categorized as a parabolic equation with the following 

general form (Howard, 2005): 

 

                                        f	2H −	∇ ∙ (3	∇	2) + 	�2 = k			                                     (3-45)  
 
ut is the partial derivative of the variable (u) with time.  

 

In the axial (l) and radial (r) directions, the general form is written as follows 

considering the main variable is the free atoms concentration (n): 

 

 
              f(Q, �, /)(H −	∇. (3	(Q, �, /)∇	() + 	�(Q, �, /)( = k(Q, �, /)                      (3-46) 
 

The boundary conditions, shown above, are reformulated according to the following 

assumptions: 

1- Dirichlet boundary condition [n(t; l; r)]: 
 

                       ((Q, 0, /) = g(H)
^]  = 0.001                                                  (3-47) 
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\′ represents the total gas flow rate flowing within the atomizer optical tube, i.e. it is the 
total gas flow rate entering the atomizer corrected to the atomizer temperature. 
In the current case study the ratio of the analyte atoms (delivered to the atomizer in the 
form of hydride) to the total gas flow rate flowing within the atomizer optical tube is 
assumed equal to 1/1000. 
 

2- Neumann boundary conditions, according to the following equation: 
 

                      																				Ð∧ ∙ 3∇2 + 	L	2 = -                                                    (3-48) 
 

            where; Ð∧  represents a unit vector normal to the domain 
            
            at   r = 0 (at the tube centre) , 
   	
																																												(B] (Q, �, 0) = 0	 → L = 0	&	- = 0																																								(3-49) 
 
            at  r = R (at the tube inside wall surface) ,  

	
																																													(B] (Q, �, �) = 	− �ÓDÔ	

�Õ
∙ ((Q, �, /)																																												(3-50)  

The conversion of arsenic hydride into arsenic free atoms is found to be a fast reaction 

with a rate constant equal to 62 sec-1  (Van Wagenen et al., 1987). This value has been 

utilized in this study by assuming the value and units of (K) are applicable for (−h![H). 
Applying the above mentioned values, the term (K / Dk) is estimated equal to 5.47×105 

m-2;  

So that,	 
                                                              L = 0	&		- = 5.47x10Ö 

 
It should be noted that a value (c = 1) is applied in the general equation as well as the 

boundary conditions. Moreover, the initial atom density is assumed,  ((QS) =
0.001		�Q�J5/J�. The above conditions are applied to analyse the proposed atomizer, 

where the geometry has been set using the graphical user interface in Matlab software. 

The results of the free analyte density distribution in the adopted atomizer are shown in 

Figure (3-7). The distribution indicates that a maximum value in the order of 108 atom 

m-3 (≃ 10-15 mol m-3) is generated in the centre of the atomization cell, whereas it 

vanishes at the outlet end. This result is informative because it clearly indicates that the 

centre of the atomization cell is the appropriate position for spectrometric data 
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acquisition, which consequently denotes only radial data acquisition is possible in this 

case. 

 

 

Figure  3-7  the distribution of the free arsenic atoms in a tubular atomizer;  
the maximum concentration obtained in 3 seconds is in the order of 108 atoms. m-3  
 

 

Further investigations were conducted on a quartz cell atomizer at a steady state 

condition using CFD. One of the well known commonly used atomizers is the 

externally heated quartz tube atomizer (EHQTA) which applies an electrical resistance 

device or an acetylene-air flame to heat the optical tube to a temperature in the range 

(700 – 1100 oC) (Dedina, 2007). In the current case study, the atomizer is assumed to be 

a heated quartz tube atomizer (L-shape HQTA) employing an internal central electrical 

resistance device to heat the tube bulk up to 1000 oK. The reason for proposing this 

design is to envisage the effect of the internal heating on the atomization mechanism 

and the distribution of the examined species along the tubular atomizer. The geometry is 

shown in Figure (3-8), in which the gas channel internal diameter is assumed equal to 

(1 mm) and the arm tube that is utilized to supply the gases to the atomizer is connected 

from the left hand side.  
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Figure  3-8 a schematic diagram illustrates top view of the rectangular L- shape HQTA; 
The illustrated section (75 mm length) represents the atomization channel. The center 
section (40 mm length) represents the electrical resistance device. AsH3, helium gas and 
the accompanied hydrogen gas enters the atomizer from the arm tube that is connected 
to the atomization channel from beneath left hand side (not shown in the diagram). 
 
 
 (Dedina et al., 1998) divided the hydride atomization mechanism in a miniature 

diffusion flame quartz tube into physical processes and chemical reactions. The physical 

processes are attributed to macroscopic movements (e.g. convection, thermal expansion, 

and flow turbulances) and free atom diffusion. Chemical reactions are reported to occur 

with gaseous species transfers to the flame as well as the flame components itself. They 

concluded that the only feasible way for the hydride atomization is an interaction with a 

hydrogen radicals cloud which forms in the outer zone of the flame due to reactions 

between oxygen and hydrogen. (Dedina, 2007) reported that the cloud of hydrogen 

radicals that forms in the hot region of the heated quartz tubular  atomizer is responsible 

for hydride atomization. The cloud position is dependant on the temperature profile and 

the gas flow rate inside the atomizer. It is also reported that the hydrogen entering the 

EHQTA atomizer from the gas-liquid separator, where it is generated due to the 

hydroborate decomposition, is enough to produce the required hydrogen radicals inside 

the atomization channel. However, a specific amount of oxygen, based on the total gas 

flow rate supplied to the atomizer and on the inner diameter of the atomizer, is required 

to intiate the H2/O2 reaction (Dedina, 2007). 

Accordingly, it is assumed that enough hydrogen radicals are available in the 

investigated L-shape HQTA atomizer and the current case study can concentrate on the 

distribution of AsH3 species and the created free arsenic atoms along the atomizer.  

According to (Dedina, 2007), there are two reasons why free analyte atoms may be 

removed from the optical path of the atomizer; the first is the forced convection due to 

the gas flow inside the HQTA atomizer, while the second is the chemical reaction 

between the unstable free atoms outside the hydrogen radical cloud, which means the 

free atoms start to react after leaving the hydrogen radical cloud.        
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In practice, atomization is a simple first order removal of arsenic hydride from the gas 

phase and a later displacement of the arsenic atoms from the light path, represented by 

the following reaction pathway (Van Wagenen et al., 1987).  

 

�5��	(:) 	
	U�ÙÚ		�58 		 UV⇒	 

 
Where;  k 1= 3.3 sec-1  and  k2 = 62 sec-1  

 

The change of species concentration with time is represented as follows: 

 

                                                 
R«¬A¶¢(Ü)

RH =	−P'	��7s�(:)                                      (3-51) 

 

                                                
R«¬A� 	
RH =	P'	��7s�(:) − P	��7�                               (3-52) 

  

Three models are coupled simultaneously in Comsol 3.5a software to investigate the 

dissociation of the arsenic hydride into free arsenic atoms upon entering the atomization 

channel and being subjected to hydrogen radicals and thermal effects. The models 

included momentum, energy transfer (convection and conduction) and mass transfer 

(convection and diffusion).  In the initial conditions, an inlet stream to the atomizer 

consists of helium gas accompanied by 2.66x10-4 mol/m3 of arsenic hydride. Hydrogen 

from earlier stages is the source of the hydrogen radicals; however, it has not been 

included in the reaction mechanism to simplify the computations. The inlet stream 

velocity is assumed to be 0.084 m/sec. Hydride molecule dissociation into free atoms is 

an exothermic reaction (-189 kJ/mol) (Ramesh Kumar and Riyazuddin, 2005). This 

value is used in this study in order to consider the effect of the generated heat.  

 Fluid flow is described using the incompressible Navier-Stokes equations, in which a 

laminar flow regime and constant fluid density are used to describe the system in a 

steady state condition according to equations (3-31 and 3-32). The boundary conditions 

are represented as follows: at the inlet of the atomization channel, the velocity vector is 

normal to the boundary, i.e.  u.n = u0  ; whereas the pressure at the outlet boundary is 

set (p = p0 = 0). A no-slip boundary condition is selected at the interior surfaces of the 

atomization channel (u = 0).  

Mass transfer in the studied domain occurs through a convection-diffusion scheme. The 

mass balance equation in a steady state condition is described by equation (3-33). At the 
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inlet section of the atomization channel, the boundary condition is assumed (Ci = Ci0) 

which equals the initial concentration. The outlet boundary conditions assume no mass 

flux occurs due to diffusion, hence they are dominated by convection; therefore the total 

flux is described as shown in equation (3-34). Zero mass transfer is imposed at the 

interior surfaces due to an assumption of insulated boundaries. 

Heat transfer in the atomizer domain is considered through a convection-conduction 

scheme. The energy balance equation in a steady state condition is as follows: 

 

                                       ∇. (−k	∇T) + 	¼	��	2	. ∇T = Q                                       (3-53) 

 

Here, Cp denotes the specific heat capacity (J/kg/K), k is the thermal conductivity 

(W/m/K), and Q is a sink or source term (W/m3). At the inlet boundary, the temperature 

is assumed equal to ambient temperature (T = T0); whereas a continuity boundary 

condition is assigned for the interior surfaces in touch with the atomization channel to 

assure heat transfer to and from the channel through these areas. Furthermore, thermal 

insulation boundary conditions are assigned for the outer surfaces. At the outlet section, 

a convective flux condition is assumed across the boundary, in which all energy 

transport is conducted through the convective flux, which indicates no heat flux occurs 

due to conduction. This assumption results in the following description for the total heat 

flux: 

 
                                              L	. ( = 	¼	��T	u	. n                                                   (3-54) 

 
 
 
All the equations described above and the boundary conditions are discretized according 

to the Galerkin finite element method with Lagrange second order elements except the 

pressure which has been treated by the hybrid P2 – P1 scheme. A numerical error 

estimation study was conducted to infer the appropriate grid size for higher solution 

accuracy. Eventually, a fine mesh with 50936 elements and 557246 degrees of freedom 

was applied to computations which produced a relative error less than 0.5 % for the 

arsenic free atom concentration at the end of the atomization channel. The results of the 

finest grid size, shown in Figure (3-9), are adopted for discussion. 
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(A) 

 

 

 

 

(B) 
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(C) 

 

 
Figure  3-9 the simulation results of the internally heated quartz cell atomizer; 
(A)  the concentration distribution of AsH3 along the quartz cell at (y = 0.00125 mm), 
(B)  the concentration distribution of the arsenic free atoms Aso along the quartz cell at 

(y = 0.00125 mm), (C) the temperature distribution along the atomization tube 

 
 
The results show that the atomization process takes place within 0.4 sec in the first 

quarter of the atomization channel. A maximum of 1.5×10-5 mol/m3 of  arsenic free 

atoms is produced from 2.66×10-4 mol/m3 arsenic hydride entering the atomization cell 

and this dissipates in a very short time when subjected to thermal energy from a heat 

source at 1000 oK in addition to the presumed collisions with a cloud of hydrogen 

radicals. 

 Although different concentrations of free arsenic atoms are found in the analytical and 

simulation studies, both cases show that the free arsenic atoms generate and dissipate 

before reaching the far end of the atomization channel.   

These results are compatible with the findings of (Dedina, 2007) who reported that 

under typical conditions in a quartz tube atomizer, all free atoms disappear before 
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reaching the optical tube ends due to a series of recombination reactions outside the 

hydrogen radicals cloud. These results indicate that the centre of the atomization cell is 

the appropriate position for spectrometric data acquisition, which suggests that radial 

data acquisition will be reliable in the proposed design of HQTA. 

3.6.2    Atomization of the volatile hydride in a dielectric barrier discharge 
atomizer 

The application of 1000 oK in a quartz cell flame atomizer makes this equipment 

difficult to apply for miniaturization purposes. Alternatively, the DBD microplasma 

atomizer is reported to have low operating temperature and low power requirement. 

A simulation study is conducted in this section to investigate the atomization of arsenic 

hydride in a DBD atomizer adopting the design shown in Figure (3-10).  

 

 

 
Figure  3-10  a schematic diagram shows the geometry of the adopted DBD atomizer; 
The values on X-coordinate are in meter. p1, p2, and p3 represent three positions 
selected for the spectral data acquisition, where p1 is at the channel centre, p2 at 1 cm 
after plasma generation section (radial data acquisition) whereas p3 refers to the axial 
position. 
  
 
The central part (1mm thick) illustrates the rectangular gas channel which is bounded by 

two glass layers as dielectric barriers. The rectangular gas channel is connected with 0.5 

mm ID tubes from both sides, which are used to connect the inlet stream from the left 

hand side and the fibre optic from the right hand side (axial viewing, x- coordinate). 

Two aluminium foils (0.5 mm thickness) are attached to the top and bottom surfaces of 

the atomization channel to represent the electrodes. Electron impact, where a hydrogen 

molecule in the excited state (H2p) is considered to be generated due to collisions 

between the hydrogen molecule and electrons, is assumed for this scheme. Upon further 
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electrons collisions, the excited hydrogen molecules dissociate to form hydrogen atoms 

and excited hydrogen atoms. It is well known that hydrogen atoms in an excited state 

(H*) are very reactive species and possibly recombine with other species or quench at 

the channel wall before getting a chance to collide with other species, which means that 

collisions of hydrogen atoms with arsenic hydride molecules is possible. However, in 

this study it was assumed that there were equivalent probabilities for hydrogen atoms 

and excited hydrogen atoms to collide with arsenic hydride molecules. Hence, the 

following mechanism is proposed assuming the collision occurs between hydride 

molecules and hydrogen atoms in an excited state to form intermediate species, which 

eventually lead to arsenic free atom formation: 

 

                                             �	 + 	0	
����	�	6 + 0                                              (3-55) 

                                    

                                        �	6 + 	0	
�V��		�∗ + 	� + 0                                          (3-56) 

 

                                          �5�� + �∗
�V�� �5�	 +	�	                                           (3-57) 

 

                                    �5�	 + �∗
�V�� �5�	 +	�	                                             (3-58)  

 

                                         �5�	 + �∗
�V�� �58		 +	�	                                              (3-59)   

 

                                            �58	 + �58
�¢��	�5	                                                     (3-60) 

 

The first reaction, equation 3-55, represents the dissociation of the hydrogen molecule 

due to collision with electrons in helium which is reported to occur with a rate 

coefficient (K1= 4.54×10-11  cm3/molecule/sec) (Hagelaar et al., 2000) at approximately 

3 (eV) electron mean energy. The excited hydrogen atoms (H*) collide with the arsenic 

hydride molecule and their intermediates in a series of three reactions, equations 3-57 to 

3-59, which ultimately results in the formation of free arsenic atoms. The rate 

coefficients of these reactions are assumed equivalent to the rate coefficients of silicone 

hydride (SiH4) molecule dissociation upon collision with hydrogen radicals (K2 = 1×10-

10  cm3/molecule/sec) (Moravej et al., 2004). The reaction represented by equation 3-60 

has been included in order to demonstrate the effect of free arsenic atom recombination 
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on the total distribution of the atoms along the atomization channel. It is reported that 

recombination reactions of analyte free atoms play a fundamental role in depleting the 

free atom population in quartz tube atomizers. In the traditional quartz T-tube atomizer  

the hydrogen radical cloud is limited to a portion around the T-junction where the 

hydrogen gas and the hydride enter the atomizer. Outside the hydrogen radical cloud, 

the free atoms start to recombine causing: (1) curvature and rollover of calibration 

graphs (Matousek and Dedina, 2000), (2) interferences due to recombination of analyte 

atoms among themselves and with different atoms which leads to double peak 

formations (D’ulivo and Dedina, 1996, D’Ulivo and Dedina, 2002), and (3) re-

atomization of the analyte solid deposits on the quartz tube atomizer walls due to the 

effect of hydrogen radicals. In order to prevent free atom recombination, (Dedina et al., 

1996) utilized a multi flame quartz tube atomizer with the aim of filling the entire quartz 

tube with hydrogen radicals, thereby eliminating the free atom depletion. Since the 

DBD atomizer used in this work is homogeneously filled with hydrogen radicals due to 

continuous feeding of NaBH4, it is expected that the effect of the recombination reaction 

will be limited. The recombination of atoms is well known to be a third order occurring 

at very low rate constant for different kind of atomic species (e.g.  9.26 × 10-34  

cm3/molecule/sec for the case of oxygen atoms,  and  6.04 × 10-33 cm3/molecule/sec for 

the case of hydrogen atoms (Medodovic and Locke, 2009)), therefore the reaction shown 

in equation 3-60 is expected to imply a very limited effect on the simulation.  However, 

the rate constant for arsenic atom recombination (K3) in the current study was 

considered equivalent to that for oxygen atoms (i.e.  9.26 × 10-34 cm3/molecule/sec). 

Other possible recombination reactions are collision of excited hydrogen atoms with 

intermediate products already generated from recombination reactions (e.g.  �5	 + 4�∗
	→ 	2�5�		 +	�	 ). These reactions could be faster than the reaction described in 

equation 3-60 but will not significantly affect the whole mechanism, therefore it has not 

been considered in the current study to simplify the computations.   

The DBD atomizer is simulated by using a finite element analysis in Comsol 

Multiphysics 3.5a software, in which a laminar flow model and three convection-

diffusion models are applied in the computations to infer the distribution of species 

concentration along DBD atomization channel. Another two models (heat transfer 

convection-conduction model and AC power electromagnetic model) are added to 

predict the temperature distribution and the electrical field distribution throughout the 
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DBD atomizer. The fluid flow is described by using the incompressible Navier-Stokes 

equations, in which a laminar flow regime and constant fluid density is assumed to 

describe the system in a steady state condition according to the equations 3-31 and 3-32. 

The boundary conditions are assumed as follows: at the inlet of the atomization channel, 

the velocity vector is normal to the boundary, i.e.  u.n = u0  ; whereas the pressure at the 

outlet boundary is set to be (p = p0 = 0). Moreover, a no-slip boundary condition is 

selected at the interior surfaces of the atomization channel (u = 0). The mass transfer in 

the studied domain is considered to occur through a convection-diffusion scheme. The 

mass balance equation in a stationary condition is described according to equation 3-33. 

At the inlet section of the atomization channel (at  x = -0.005), the boundary condition 

is assumed (Ci = Ci0) which equals the initial concentration. The outlet boundary 

conditions assume no mass flux occurs due to diffusion, hence dominated by 

convection; therefore the total flux is described according to equation 3-34. Moreover, 

zero mass transfer is imposed at the interior surfaces due to the assumption of 

impermeable boundaries. The heat transfer in the atomizer domain is considered to 

occur through a convection-conduction scheme. The energy balance equation in a 

steady state condition is described according to equation 3-53. At the inlet boundary, the 

temperature is assumed equal to ambient temperature (T = T0); whereas a continuity 

boundary condition is assigned for the interior surfaces in touch with the atomization 

channel to assure heat transfer to and from the channel through these areas. 

Furthermore, thermal insulation boundary conditions are assigned for the outer surfaces. 

At the outlet section, a convective flux condition is assumed across the boundary, in 

which all energy transport is conducted through the convective flux, which indicates no 

heat flux occurs due to conduction.  

The AC power model was applied in the simulation by assuming the atomization 

channel is subject to both electrical and magnetic effects, with a potential difference of 

3 kV across the atomization channel. Continuity boundary conditions were assigned for 

the interior surfaces in touch with the atomization channel, whereas all outer surfaces 

except the surfaces that represent the electrodes were assumed to be electrically 

insulated. 

The flowing gas in the atomizer was applied in the simulation at 300 oK (inlet 

temperature) and 0.084 m/sec (gas velocity); two gases, helium and argon, are applied 

in the simulation in separate case studies. The initial concentration of the examined 
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arsenic hydride was 2.66 × 10-4 mol/m3 whereas several concentrations of hydrogen gas 

that accompanying the arsenic hydride are adopted (3 × 10-6, 3 × 10-5, and 3 × 10-4 

mol/m3). It is worth noting that the generated hydrogen from the hydroborate 

decomposition is known to be higher than the examined values shown above. For 

instance, (Pohl et al., 2007) reported that 5.6 ± 0.3 ml/min hydrogen gas is generated 

from an aqueous stream flowing at 0.5 ml/min and contains 0.5 m/v NaBH4. 

Nevertheless, applying higher hydrogen values than those shown above by one order of 

magnitude led to a significant reduction in the predicted free arsenic atoms 

concentration. The solution strategy was based on coupling the momentum transfer 

model with mass transfer models to estimate the distribution of the reactants, 

intermediates, and product concentrations along the atomization channel. Three mass 

transfer (convection – diffusion) models were utilized for the computations, the first 

model was used to simulate the reactions related to the collisions of the electrons with 

the hydrogen molecules (equations 3-55 & 3-56) which eventually produces hydrogen 

atoms and active species. The second convection – diffusion model was applied to treat 

the reactions of the hydrogen excited atom with the arsenic hydride and the intermediate 

products that formed and dissociated within a limited period. Moreover, the 

recombination reaction (equation 3-60) has been treated in the third convection – 

diffusion model. Ultimately, the heat transfer model and AC power model were coupled 

in the final stage to determine the temperature and electric field distributions throughout 

the whole atomizer. The equations and the boundary conditions are discretized 

according to the Galerkin finite element method with Lagrange second order elements 

except the pressure which has been treated by the hybrid P2 – P1 scheme. A numerical 

error estimation study was conducted to determine the appropriate grid size for the 

higher solution accuracy. Eventually, a fine mesh with 35314 elements and 128241 

degrees of freedom was applied in the computations which produced less than 0.1 % 

relative error for the estimated free arsenic atom concentration at the end of the 

atomization channel. The simulation results are shown in Figures (3-11 to 3- 13). The 

computations were accomplished in six stages, through which the free arsenic atom 

concentration is predicted at two positions; before the electrode overlapping section 

(EOS) and at the end of the atomization channel. In the first stage, helium was applied 

as a plasma gas and 2.66 × 10-4 mol/m3 AsH3 and 3 × 10-6 mol/m3 hydrogen gas is to be 

entering the atomizer. In this stage, the recombination reaction (eq. 3-60) was not taken 
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into consideration; this is to deduce the difference in the prediction compared with stage 

2. The results are shown in Figures (3-11/A-E) where the computed average velocity of 

the gas stream is found equal to 0.06 m/s in the centre of the atomization channel and 

higher values (approximately 0.12 m/s) found at the inlet and outlet sections of the gas 

channel due to the channel contraction at these sections.  

 (A) 

 
 

(B) 
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(C) 

 
 
 
 
 

(D) 
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(E) 

 
Figure  3-11  the simulation results – species concentration gradients along the DBD 
atomization channel. 
 
From the computational model results, species concentration varies along the 

atomization channel in different ways. The electron concentrations builds up in the 

electrode overlapping section (EOS) which exists between the points 0.0175 and 0.0575 

in Figure (3-10), and this is attributed to the electrical field exerted in this specific area. 

Prior to EOS, it can be noticed, Figure (3-11/A), that the hydrogen gas concentration 

reduces sharply in the first section of the gas channel and becomes zero within the first 

part of the electrode overlapping section, which indicates the initiation of the reaction 

series before entering EOS.  This result is compatible with the current understanding of 

the atomization mechanism which is attributed by (Dedina et al., 1998) to the presence 

of hydrogen radicals in the diffusion flame outside the quartz tube. They reported that 

hydrogen selenide starts to atomize inside the tube (up to 4 mm inside) before reaching 

the flame due to the diffusion of hydrogen radicals. The velocity of the gases flowing in 

the DBD atomization channel is 0.06 (m/sec) then the total hydrogen gas consumption 

is expected to occur within 0.5 second. The results show a sharp increase is followed by 

a sharp decrease in the concentration of excited hydrogen molecules (H2p), Figure (3-

11/B), in the first section of the gas channel. Consequently, the concentration of (H2p) 

becomes negligible upon entering EOS within 0.5 second. The results also show that 

both the hydrogen gas atoms (H) and the excited species (H*) are generated in the first 
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part of the gas channel, Figure (3-11/B) and Figure (3-11/C), at a position before EOS, 

which is in agreement with (Dedina et al., 1998). These species build up very fast 

toward saturation within the first part of EOS. However, a higher concentration of 

atomic hydrogen (H) is predicted compared with (H*). Most importantly is the 

conversion of arsenic hydride into intermediate species and the ultimate production of 

the free arsenic atoms. The computations show that  total consumption of the arsenic 

hydride molecules occurs, approximately 0.16 second before entering EOS, probably 

due to the abundance of hydrogen radicals that collides with AsH3.  

A similar reaction scheme is deduced for the intermediate species (AsH2) and (AsH), in 

which both species are shown to be generated in the first section of the gas channel. The 

results show that a sharp increase followed by a sharp decrease occurs in their 

concentrations within 0.016 seconds and consequently leads to a full depletion of the 

intermediate species before reaching EOS, as illustrated in Figure (3-11/D). In 

consequence, the computations show that the arsenic free atoms (As
o) generates in the 

first section of the gas channel and saturate to a maximum (2.66 × 10-4 mol/m3) within 

0.014 second before reaching EOS. The computed time scale (14 milliseconds) actually 

represents the full time period for the whole reaction. This is in agreement with 

(Kogelschatz et al., 1997) who classify three time periods for the plasma reactions. 

Electrons collision reactions (excitation and dissociation) within 10 picoseconds. Free 

radicals reactions are in intermediate time scales (1 – 100 microseconds), whereas 

substantial displacement of species in convection and diffusion mechanisms in 

milliseconds. The computed concentration of (As
o) is found to be equivalent to the 

concentration assumed for the arsenic hydride, i.e. a 100% conversion. It can also be 

observed that (As
o) concentration has not been changed along the channel after reaching 

a maximum; this is due to the assumption made in the proposed mechanism (first stage) 

that no recombination reactions are expected to occur. A comparison between predicted 

free arsenic atom concentration from all the studied cases (stages 1-6) is shown in 

Figure (3-12).  

The computations in stage 2 were applied by including the recombination reaction 

described by (eq. 3-60) and considering the same operating conditions adopted in stage 

1, i.e. helium is applied as a plasma gas, 2.66 × 10-4 mol/m3 of AsH3 and 3 × 10-6 mol/m3 

of hydrogen gas is assumed to be transported to the atomizer. 
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Figure  3-12  the simulation results – comparison between the predicted arsenic free 
atoms concentration from different case studies.  

 
 
As expected, the inclusion of the recombination reaction results in slight differences in 

the predicted concentrations of all species. For instance, the free arsenic atom 

concentration at the atomization channel end is predicted to be 1.33×10-4 mol/m3 which 

means a reduction by a half compared with stage 1, whereas the recombined �5	 

molecules are predicted at very low concentration of  2.8×10-41 mol/m3  which denotes 

the limited effects of recombination reactions. Recombination reactions do not lead to 

any significant effects concerning the reaction rate, (Figure (3-12)).  

The computations in stage 3 were applied by considering argon as the plasma gas and 

applying the same concentrations of AsH3 and hydrogen; this to deduce the effects of 

changing the physical properties of the gas on the whole mechanism. The results from 

stage 3 are similar to those from stage 2, which indicates that no effects occur on 

changing the plasma gas.  

Computations in stages 4-6 were applied by using the same concentration of AsH3 while 

increasing the hydrogen concentration gradually by one order of magnitude to 

determine the effects on the whole mechanism. In stage 4, a hydrogen concentration of 

3 × 10-5 mol/m3 has been applied while using helium as a plasma gas. The results show 
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a concentration  of 1.06 × 10-4 mol/m3  As
o atoms is predicted at the atomizer end, which 

is lower than that predicted in stage 3 (by 20%), whereas �5	 concentration is estimated 

at 2.1×10-41 mol/m3. Most important is the increase in the free arsenic atoms generation 

rate. It can be observed in Figure (3-12) that the As
o creation on the abscissa is shifted 

back from 0.00375 m at the channel x- coordinate to the foremost point in the 

atomization channel, which indicates a significant increase in the reaction rate occurs 

due to an increase in the hydrogen concentration in the atomizer. This could be 

attributed to a higher hydrogen diffusion rate compared with other species. Hence, the 

formation of hydrogen radicals is proportional to the amount of hydrogen injected into 

the channel and consequently the speed of the whole reaction mechanism becomes 

dependent on the amount of hydrogen gas (Figure (3-13)).  

The computations in stage 5 were applied using the same concentrations as mentioned 

in stage 4 while using argon as a plasma gas. Again, no differences were observed from 

changing the gas. In the last case study (stage 6), the computations were applied using 

argon as a plasma gas while applying a concentration  3×10-4 mol/m3 of hydrogen. The 

free arsenic atom concentration at the atomizer end is estimated as 6.4× 10-5 mol/m3 

which is lower than the concentration predicted from stage 5 by approximately 40%. 

This result emphasizes that higher hydrogen concentrations result in lower 

concentrations of free arsenic atoms and other intermediate species, Figures (3-12 and 

3-13), as well as a faster reaction mechanism. 

One explanation for this result is related to the physical properties of hydrogen, where 

the hydrogen is known to have a high thermal conductivity and higher dissociation 

temperature compared to other gases (Zhu et al., 2006b). The hydrogen is also capable 

of altering the electron energy and the electron distribution function; thereby changing 

the population density of the reactive species in the discharge (Chaudhary et al., 2003). 

Thus, the presence of higher hydrogen concentrations in the DBD atomizer could result 

in the time required for the whole mechanism becomes shorter. The computations 

indicate the possibility of spectrometric data acquisition from any radial position along 

the channel section with the same efficiency. Since the computations show that all 

reactions are initiated in the section preceding EOS, which results in a constant free 

arsenic atom concentration along the atomization channel, it is possible to adopt a 

shorter atomization channel length eliminating any recombination reactions that may 

reduce the signal intensity of the analyte. 
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Figure  3-13  the simulation results - comparison between the predicted AsH2 
concentrations from different case studies; 
 The chosen segment represents the first part of the atomizer illustrated in Figure (3-10). 

 
 
Other computations were conducted by coupling the heat transfer model and the AC 

power model with the previous models (momentum and mass transfer) to interpret the 

temperature and the power distribution along the DBD atomizer. The results (Figures 3-

14 and 3-15), illustrate a maximum temperature (approximately 900 oK) at the outlet 

section of the DBD atomizer, with a temperature in the range 820-840 oK in the channel 

section between the electrodes. The estimated temperature is approximately equivalent 

to 0.07 eV, which is higher than the gaseous temperature and could be related to the 

temperature of excited species in plasma bulk. Figure (3-14) shows that the total energy 

density approaches a maximum in the centre of the atomization channel, which is due to 

the exerted electrical power. 
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Figure  3-14  the simulation results – the temperature and the total energy distribution 
along the DBD atomization channel 

 

 
 

Figure  3-15  the electrical field distribution in the whole geometry; 
The chosen segments represent the centre channel surrounded by glass barriers and two 
electrodes.  
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3.7 Summary of the findings from chapter three 

Several analytical studies were carried out to investigate the process of the arsenic 

hydride generation and their coupling with a DBD atomizer. The outcomes can be 

summarized as follows: 

1- Investigations of the reaction mechanisms based on two hypotheses indicate that the 

second hypothesis, hydroboron species formation, is more relevant for design purposes. 

The full reaction process is shown to occur within the first segment of the reaction coil 

which is approximately 5 cm length. 

2- The simulation results from the helical tubular section show that a full separation of 

the vapour species from the liquid phase is achieved within the half of the tested section 

length (≈ 6.25 cm), which demonstrates that a total length of 11.25 cm (5 cm + 6.25 cm) 

is sufficient for the reaction and separation.   

3- The simulation results of the nebulizer-gas liquid separator show that a significant 

reduction in hydrogen gas concentration is achieved upon injecting supporting streams 

of helium gas at 216 ml/min, which results in diluting the generated hydrogen by 7 

orders of magnitude before entering the DBD atomizer. However, the computations 

show that a significant reduction in the arsenic hydride concentration also occurs which 

might attenuate the signal intensity of the targeted analyte. Therefore, an optimized flow 

rate of helium is required in order to utilize this kind of separator. 

4- The analytical and simulation results of a quartz cell atomizer show high 

concentrations of free arsenic atoms form in the centre of the atomization cell and then 

dissipate totally at the walls of the cell. This result is attributed in the literature to the 

lack of hydrogen radicals in a flame type quartz cell atomizer. Accordingly, the best 

location for spectrometric data acquisition is the centre of the atomization cell giving 

that the heat source is centred in the atomization channel. 

5- Simulation results of a rectangular DBD atomizer show that free arsenic atoms form 

and approach maximum concentration before reaching the electrode overlapping section 

(EOS). The results also indicates that the formed arsenic atom does not dissipate due to 

abundance of hydrogen radicals along the atomization channel, which is considered an 

advantage over the traditionally used quartz cell atomizer. In principle, this result 

indicates the possibility of achieving spectrometric data acquisition radially from any 
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position along the DBD atomization channel that follows the entrance part. It is also 

concluded that extra length of the atomization channel might result in undesirable 

recombination reactions which may lead to reduced signal intensity; therefore, it was 

decided to design and fabricate another DBD chip with a shorter spectral path length, as 

presented in chapter six. 

The temperature distribution indicates that a value of 0.07 eV is reached at the atomizer 

centre and increases slightly at the outlet end of the gas channel. Actually, the estimated 

temperature is very close to the rotational temperature inside the plasma bulk 

determined experimentally, as shown in chapter four.  
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4.1  Preface 

 In this chapter, two designs for a DBD plasma atomizer are presented and tested for the 

purpose of selecting the optimum configuration. The tested models are fabricated from 

Perspex and glass materials and tungsten and aluminium alloys are used to form the 

electrodes. The optimum configuration is selected upon testing the models, taking into 

consideration that the highest signal intensity for the targeted species is the objective 

function. The optimal spectrometric parameters are inferred by conducting 

investigations based on a fixed experimental plan and optimization technique. The DBD 

plasma of the selected configuration has been characterized by applying spectrometric 

analysis and measuring other parameters.  

 

4.2 Design and fabrication of a rectangular configuration DBD atomizer 

As mentioned in the earlier sections, DBD discharge is generated in a discharge 

configuration with at least one insulation layer between the electrodes. In this sense, 

(Pal and et al., 2010) reported that several materials could be applied to form DBD 

dielectric layer such as glass and polymer coatings. Accordingly, poly methyl 

methacrylate (Perspex) and universal microscope glass slides are used in these 

experiments.  

4.2.1    A Perspex DBD micro atomizer 

A prototype DBD atomizer was designed and fabricated with minimum complexity as a 

first DBD model. A Perspex block (1.3 cm diameter × 3.5 cm length) micro reactor was 

made according to the following specifications: A centre channel (ID = 800 microns) is 

drilled to form the gas channel.  Another channel with the same diameter is drilled in 

both sides of the gas channel to be used for residing the electrodes. The gap between 

each electrode and the gas channel is kept in the range (200-250 microns) in order to 

maintain the breakdown voltage to a minimum level. Tungsten alloy wires (750 

microns) are used to form the electrodes, where the far end of each electrode is 

connected to the power source. The plasma is generated in the middle part of the 

channel which exists in the overlap between the electrodes (approximately 3 mm 
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length). Two cylindrical holes (ID = 3 mm) are drilled in the centre of the assembly, on 

the top and bottom of the generated plasma, and used for the optical sensor housing. 

Figure (4-1) shows a diagram and pictures for the Perspex DBD atomizer before and 

after operation. 

(A) 

 
 

(B) Before operation 

 

(C) After 6 minutes operation  

 
 

Figure  4-1  a Perspex DBD micro atomizer 

 
The Perspex DBD atomizer was tested by using argon gas, in which approximately 3 

kV AC at 30 kHz frequency was applied for few minutes. After approximately 6 

minutes, a sudden arcing occurred inside the atomizer as a result of the Perspex layer 

between the channel and the electrodes collapsing, which smashed the interior body of 

the atomizer. One possible reason for this result is the temperature increase inside the 

atomizer which results in melting the thin layer of Perspex that separates the gas 

channel from the electrode channel. The abovementioned test has been repeated by 

applying 2 kV at 30 kHz using same configuration Perspex chip, obtaining the same 

result after approximately 9 minutes. This finding clearly indicates the Perspex material 

is not suitable for fabricating a DBD atomizer.   
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4.2.2    DBD atomizer fabricated from a combination of glass slides 

A second atomizer based on glass was fabricated (Figure (4-2)). The chip is fabricated 

from commercial microscope glass slides (7.5 cm L x 2.5 cm W x 1 mm thick) which 

are aligned together using a Perspex chip holder to form a gas channel of 1 mm depth. 

7.5 cm was adopted as the length for the atomization channel, whereas three values 

were tested for the gas channel width. The electrodes are formed from aluminium foil 

(0.5 mm thick), where the electrode width has been selected to be compatible with the 

channel width, (three values of the electrode length). The overlap between the 

electrodes is varied according to the electrodes length; eventually, three values of the 

overlapping section area were tested (Table (4-1)). 

 

(A) 

 

(B) 

 
 

Figure  4-2   pictures for the fabricated glass DBD atomizer; 
(A) a rectangular DBD atomizer, (B) the DBD atomizer in operation  

 
 
Table  4-1   the details of the tested DBD configurations 

Gas channel 
dimensions 

Electrode dimensions Electrodes overlapping 
Section  

1 7.5 cm (L) × 0.5 cm (W) 
 × 1 mm (D) 

3 cm (L) × 0.5 cm (W) 2 cm (L) × 0.5 cm 
(W) = 1.0 cm2 

2 7.5 cm (L) × 0.6 cm (W) 
 × 1 mm (D) 

3.9 cm (L) × 0.6 cm 
(W) 

3.8 cm (L) × 0.6 cm 
(W) = 2.28 cm2 

3 7.5 cm (L) × 1.0 cm (W) 
 × 1 mm (D) 

4.0 cm (L) × 1.0 cm 
(W) 

4 cm (L) × 1.0 cm 
(W) = 4.0 cm2 
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The equivalent electrical circuit for the rectangular DBD chip is shown in Figure (4-3). 

  

 

Figure  4-3  the equivalent electrical circuit for the DBD chip 

 

The glass barriers form a dielectric barrier with capacitance Cb1 and Cb2, whereas the 

gas channel forms a capacitance Cg. The effects of the cables and the additional 

electrical circuit components are represented by the capacitance Cad which is in parallel 

to the DBD layers. The microdischarge impedance is denoted by Zm and the switch Sd is 

used to indicate the phenomenon of forming two discharges at a time interval during 

one complete cycle. The plasma discharge is interpreted by the current Idis which is 

represented by equation (4-1) (Pal and et al., 2010, Panousis et al., 2006). 
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4.3  The power source and the equipment used for the spectrometric and 

other data acquisition 

A custom made high voltage power source (Entwicklung Leistungselectronic – 

Germany) was used in this work. The power source has been designed to supply high 
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voltage (up to 12 kV) with a frequency range (20 to 40 kHz).The device is provided 

with a manual control of voltage, current and frequency. It is also provided with two 

digital LCD’s to monitor the voltage and current values. Due to a limited frequency 

range, no matching network was supplied with the device. 

A fibre optics sensor is applied for the spectral data acquisition processed via an Ocean 

Optics USB 2000 spectrometer and analysed by using Spectra Suite software (Ocean 

Optics). The spectrometer specifications are: 0.3-1.5 nm FWHM resolution, 600 lines 

grating density blazed at 300 nm, and 25µm slit width. The spectrometric parameters 

(integration time and boxcar width) are optimized in Section (4.4.2) to obtain the 

highest signal to noise ratio at reasonable spectral resolution. The temperature of the 

discharge gas from the DBD chip was recorded via k-type thermocouple with digital 

temperature reader. The voltage supplied at the load is measured using a high voltage 

probe (Testec, HVP-15HF) and digital oscilloscope (Pico, ADC-212), whereas the 

current is measured using a digital current clamp meter (UNI-T, UT 201). 

A high voltage capacitor (up to 10 kV and 200 µF) from (General Atomics electronic 

systems – USA) is integrated in the system to study the nature of the DBD discharge.  

 

4.4 Optimization of DBD system parameters 

4.4.1    DBD configuration 

Three prototypes, described in Table (4-1), were tested to select the best configuration 

of the proposed DBD atomizer. The stability and homogeneity of the generated plasma 

are considered to be the main target that would result in highly accurate spectral data. 

As mentioned in Section (2.6.3), the DBD discharge would be produced in either 

filamentary or homogeneous form. In order to implement the electrical characterization 

of the proposed DBD, the voltage – charge diagram (Lissajous figure) (Pal et al., 2010) 

gives an estimation of the energy consumed by the discharge per cycle of the applied 

voltage. In principle, the Lissajous figure illustrates the relation between the voltage and 

the charge waveform with respect to time. Since the capacitance of such a system 

measures the amount of electrical energy stored for a given electric potential, the 

voltage drop across a serial linked capacitor is actually the reason for the charge 
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delivered through the discharge cycle. On this basis, dissipation of the electrical energy 

in the discharge cycle is inferred by calculating the area of the characteristic shape 

produced via Lissajous figure. Hence, the mean dissipated power is deduced from the 

applied frequency and the estimated energy (P = f × E) (Kostov et al., 2009). 

The experimental setup in the current work, to produce the Lissajous figure is illustrated 

in Figure (4-4), where a high voltage capacitor (200 µF) is connected in series with the 

DBD atomizer (Massines et al., 1998). 

 

 
 

Figure  4-4  the circuit diagram used to generate Lissajous figure; 
the charge is calculated by multiplying the voltage developed across the capacitor (in 
Volts) by its capacitance (in Farads). 
 

The Lissajous figure produced for the DBD configuration (No.3) upon applying argon 

gas is shown in Figure (4-5). The characteristic shape in the Lissajous figure resembles 

a parallelogram, which indicates a filamentary discharge in the tested DBD 

configuration (Pal and et al., 2010, Massines et al., 1998). The energy consumed in the 

DBD atomizer each cycle is estimated by calculating the area of the voltage-charge 

diagram, using Origin 8 software, giving approximately 0.96 mJ. Accordingly, the mean 

power delivered to the atomizer in this experiment is estimated to be 36.5 Watt (= 0.96 

mJ × 38 kHz) (Takaki and Fujiwara, 2001). The estimated value through the Lissajous 

figure denotes the actual power dissipated in the atomizer, which is a clear indication of 

the level of power losses in the system.  
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Figure  4-5  the Lissajous figure generated for the DBD / configuration (no.3) for one 
cycle when using argon gas and applying 38 kHz 

 

It is worth noting that the produced characteristic shape in the current study is similar to 

that generated for a plane surface electrode as shown in the work of (Takaki and 

Fujiwara, 2001). Upon generating Lissajous figures for the DBD configurations (1 and 

2), similar parallelogram shapes are obtained, which indicate no effect of changing the 

area of the electrodes overlapping section. 

 Most importantly is the generated plasma in configuration (No.3) which is observed 

spectrometrically at relatively higher intensity compared with other configurations when 

applying the same power. Since similar frequency magnitudes are adopted for all tested 

configurations, increasing the area of the electrodes overlapping section in configuration 

(No.3) probably results in a slightly higher exerted power, compared with other 

configurations, which could not be detected on the power source LCDs. This increased 

power leads to the formation of more filaments in the discharge area, and consequently 

results in a higher glow discharge. It is believed that higher glow intensity is more 

advantageous for the spectrometric data analysis; thus, configuration (No.3) has been 

selected to conduct further studies in this research.  

Pictures for plasmas obtained upon testing three gases via the DBD atomizer 

(configuration no. 3) are shown in Figure (4-6).  

 



Chapter four           Design, optimization, and characterization of DBD Plasma atomizer 

124 
 

(a) Argon discharge (whitish blue-
violet),  MBV ≈  3.8 kV  

(b) Helium discharge (violet), 
 MBV ≈ 4.0 kV 

(c) Nitrogen discharge, (blue-
purple tendency), MBV ≈ 4.9 kV 

  
 

 

Figure  4-6  pictures for argon, helium and nitrogen DBD plasmas obtained upon 
applying (4 cm2) electrodes overlapping section; 
Where MBV represents the minimum breakdown voltage which has been obtained from 
the current - voltage characteristic diagram 
 
 

4.4.2    Optimization of the spectrometric system parameters 

The spectrometric parameters of the system are optimized by applying an experimental 

design plan according to the second order central composite rotatable design (Cochran 

and Cox, 1992). Some details of the central composite design are shown in Appendix 

11.3. Three parameters are treated in the optimization plan and tested in the following 

ranges: 

� the integration time of the system: 300 – 1100 (ms) 

� the boxcar width: 0 – 4 

� the applied power: 75 – 175 (Watt) at constant frequency ( ≈ 38 kHz) 

The values of the voltage and current displayed on the power source LCDs are 

calibrated using a high voltage probe and current clamp meter in order to be equivalent 

to the real values at the load (DBD atomizer). The tested power magnitudes are obtained 

by changing the voltage and current values making a priority to keep the current value 

at the load (DBD atomizer) within a defined range. The whole experiment is conducted 

at a constant gas flow rate (100 ml/min). Argon is selected to implement this study, in 

which the intensity of argon line at (314.64 nm) is recorded due to changes in the 

system parameters. The spectrometer software (SpectraSuite) is provided with a 

calibration criterion via the boxcar width function which acts as a tuner across multi 
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spectral data. For instance, a value of (boxcar width = 4.0) averages each data point 

with 4 points to its left and 4 points to its right; thus, a higher signal to noise ratio and 

smoother data is obtained when increasing the boxcar width. Hence, it was observed 

that the noise signal was reduced when the boxcar width increases to values more than 

zero, therefore it was decided to optimize the boxcar width value while considering the 

intensity of the selected emission line to be the objective function of the investigated 

system. The system has been tested according to the experimental plan shown in Table 

(4-2), in which the real variables are converted into coded values. A quadratic 

multivariable model, equation (4-2), has been produced for the investigated system 

combining the single effect of the variables in addition to the effects resulted from 

interactions of the variables, (details given in Appendix 11.3).  

 

³ = �SzS + �'z' + �	z	 + ��z� + �''z'	 	+ �		z		 	+ ���z�	 		+ �'	z'z	 + �'�z'z�+ �	�z	z� 

                                                                                                                (4-2) 

 

A multiple stepwise regression analysis is performed to estimate the polynomial 

coefficients, (Table (4-3)). The average absolute error of the model is estimated to be 

2.48 % (Appendix 11.3). 

The optimal conditions for the highest intensity were obtained by performing non-linear 

constrained optimization using Matlab software (Appendix 11.4). The estimated 

optimal values are shown in Table (4-4).  

The optimal values of the integration time and the boxcar width are adopted in later 

experimental investigations in this research, whilst the estimated power conditions (≈ 5 

kV × 25 mAmp ≈ 125 Watt) are applied in the assessment of the DBD plasma 

characteristics as presented in Section (4-5).    
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Table  4-2 the experimental conditions according to the 2nd order central composite 
rotatable design and the recorded intensities for 314.64 nm emission line 
Exp.    Integration time  Boxcar width    Power               Intensity (Y)  
No.           (ms)       (Watt)              (a.u.)  
 _____________  ___________  ___________   

Real Code  Real Code  Real Code     
 Value (x1)  Value (x2)  Value (x3)   

1 500 -1  1 -1  100 -1  823 
2 900 +1  1 -1  100 -1  1361 
3 500 -1  3 +1  100 -1  704  
4 900 +1  3 +1  100 -1  1152 
5 500 -1  1 -1  150 +1  703 
6 900 +1  1 -1  150 +1  1189 
7 500 -1  3 +1  150 +1  620 
8 900 +1  3 +1  150 +1  1024 
9 300 -1.682  2 0  125 0  526 
10 1100 +1.682  2 0  125 0  1527 
11 700 0  0 -1.682  125 0  1140 
12 700 0  4 +1.682  125 0  852 
13 700 0  2 0  75 -1.682  1050 
14 700 0  2 0  175 +1.682  717 
15 700 0  2 0  125 0  944 
16 700 0  2 0  125 0  939 
17 700 0  2 0  125 0  936 
18 700 0  2 0  125 0  941 
19 700 0  2 0  125 0  935 
20 700 0  2 0  125 0  932 

 
 

 

Table  4-3  the estimated polynomial coefficients 

 
B0  B1  B2  B3  B11  B22 

938.3643 260.6542 -77.6479  -77.9181  26.4792  15.6932 
 
B33  B12  B13  B23 

-24.0914  -21.50  -12.0  10.0  

 

 

 

 

Table  4-4  the estimated optimal parameters for argon system 

 
Integration time                Boxcar width                     Applied power 
      

x1            (ms)              x2        Real value             x3          (Watt) 
   

-0.0359          ≈700          0.1241  ≈2.0         -0.114        ≈120 
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4.4.3    Analysis of gases spectra 

The discussion presented in this section is related to the spectrum shown in Figure (4-

7). The spectrum shown in Figure (4-7/A) is obtained in the current system for a stream 

of pure argon injected at 100 (ml/min); however, it shows species other than argon. The 

spectrum shows obvious argon lines, Ar (I), with considerable signal intensities in the 

visible range (696.54 nm) and infra-red region (794.81 nm), whereas other possible 

lines appeared with lower intensities (e.g. 706.87 nm). According to (Bogaerts et al., 

1998), the emission lines near the infra-red region are the most dominant in the argon 

spectrum, therefore the argon emission lines with higher intensities are selected in this 

study for plasma characterization.  

Other peaks observed in the range (300 – 390 nm) and (390 – 480 nm) are attributed to 

the N2 second positive system and ionized nitrogen molecules respectively (Hong et al., 

2008). (Zhu et al., 2008a) reported that molecular N2 appears in the region 337-380 and 

ionized molecular N2
+ at 391.4 and 427 nm. They also mentioned that the peaks at 777 

and 844 nm are principally  related to the reactive species of atomic oxygen, whereas 

the bands between 280-285 and 302-317 nm are characterized to be OH molecular 

emission lines (Zhu et al., 2008a).  

Although pure argon was applied, the spectrum shown in Figure (4-7/A) shows that 

peaks other than argon are higher. This result directed the author to investigate the 

spectrum of other gases (Helium and Nitrogen). The recorded spectrum of pure nitrogen 

and helium, shown in Figure (4-7/ B and C), give emission lines in the region (300-450 

nm) that appear similar to the argon experiment. These lines denote possible 

interferences between the emission lines of pure nitrogen and other species. Practically, 

the appearance of similar lines in all the recorded spectrums is probably generated from 

air and other contaminant entrainment, as reported in the work of (Zhu et al., 2008a). 

Since the examined system in the current case is well fastened, no chance for leak is 

expected and therefore this possibility is low. The other possible reason is surface 

reactions that could occur inside the plasma bulk. Since simple microscope glass slides 

are used to construct the atomization channel, there is the possibility for the formation 

of species from surface reactions with glass in contact with the plasma. The reason is 

apparently related to changes in glass properties, where the glass could be made 

hydrophilic upon being subjected to plasma effects (Lim, 2004). It is mentioned in the 
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literature that a plasma effect leads to increasing the free radicals on the glass surface 

and the formation of polar compounds, which consequently causes considerable 

changes in the glass properties demonstrated by increases in the surface wettability. 

Other negative effects are also found on the dielectric properties of the glass laminate, 

whereas the surface resistivity increased (Lim, 2004).  

 

 (A) 

 
 
 

(B) 
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(C) 

 
Figure  4-7 spectrum of high purity gases examined at 100 ml/min in the DBD atomizer; 
(A) argon with dominant lines at 696.54 and 794.81 nm, (B) nitrogen with dominant 
lines at 337.4 and 379.29 nm, (C) helium with dominant lines at 587.56 and 706.57 nm 
 

The recorded spectrum of argon has been compared with the spectrum obtained from 

the work of (Panakamol Deeyai and Dangtip, 2010). Their argon spectrum shows only 

one peak on the left hand side which is attributed to OH species at 309 nm, whereas the 

peaks to the right hand side resemble the peaks shown in the spectrum in the current 

study. The comparison is also made with the argon and helium spectra obtained by (Zhu 

et al., 2008a), where similar left hand peaks with high intensity were observed in their 

argon spectrum, whereas obtained with low intensity in their helium plasma spectrum.  

Looking at the similarities between this work and the abovementioned studies, the DBD 

atomizer was constructed of glass plates in the work of (Zhu et al., 2008a) and our 

study; accordingly, the left hand side peaks are observed in both cases. The only 

difference is between the argon spectrum is the peaks of NO which appeared in the 

region (215 – 272 nm) in the work of (Zhu et al., 2008a) but not observed in the spectra 

in this work. In contrast, no clear indication of glass material is mentioned in the work 

of (Panakamol Deeyai and Dangtip, 2010) which probably leads to different peaks 

shown to the left hand side of their spectrum. 
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These findings emphasize that an unknown species might be formed as a result of 

surface reactions on the glass layer. In order to explore the possible changes on the glass 

layer properties upon being subjected to plasma effects, the contact angle of a 

demineralized water droplet has been measured by using a one angstrom tensiometer 

and applying the sessile drop technique. The measurement applied for two glass slides; 

before and after being subjected to the plasma for few hours (not continuously). The 

results show that the contact angle for demineralized water droplet increases from 56,3o 

to 103,35o as shown in Figure (4-8), which indicates significant alterations in the 

surface properties due to the plasma effect.  

 

(A) 

 

(B) 

 
 

Figure  4-8 pictures show the results of the contact angle measured for two glass slides; 
(A) 56,3o before being subjected to plasma effect, (B) 103,35o after affected by plasma 
  

 
It is also observed that the intensity of the peaks, to the left hand side of the spectrum, 

increases in accordance with the usage, i.e. higher intensity is proportional to the long 

use of the glass plates. This observation has been confirmed by replacing the glass 

slides with new ones; where the peaks of interest appear with a slightly lower intensity 

in the first use and increase with time; however, this interpretation should be supported 

with more investigations.   

Further investigations were made to explore the effects of tubing material on the 

recorded spectra. The experiments were conducted using three kinds of tubing (Silicone, 

tygon, and poly ethylene) for connection between the gas cylinders and the DBD 

atomizer. It is observed that similar spectra were obtained in all cases, which indicates 

no effects due to changes in tubing material. 
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Although most of the peaks to the left hand side of the spectrum are attributed in the 

literature to the molecular and ionized nitrogen, other references show that peaks at 305, 

336, 337, and 375 nm could be related to NH at an excited state upon several transitions 

(Haak and Stuhl, 1984). In practice, the formation of NH species in the DBD atomizer 

is possible provided that a hydrophilic layer forms on the surface, which results in 

attracting the traces of water molecules and their deposition on the surface. Once the 

water molecules are deposited on the surface, a probability for NH formation, 

fragmentation, and excitation strongly exists since hydrogen has affinity to nitrogen that 

could be found in the inlet gas stream.  

To sum up, it is difficult to elucidate a clear identification for the peaks shown to the 

left hand side of the spectra; however, the possibility for surface reactions and unknown 

species formation exists. 

 

4.5  Investigations of DBD plasma characteristics 

It is well known that the atmospheric DBD plasma consists of many separate 

microdischarges, also referred to as filaments, which result in transient plasma 

behaviour. The investigation of DBD plasma dynamics under atmospheric conditions 

requires spectral instruments with high resolution (Wagner et al., 2005). Plasmas 

identities are normally inferred by determining the excitation and electron temperatures 

which can give an insight to their characteristics. Since the atmospheric DBD plasma is 

collision dominated, the most conventional way for measuring the temperature, a 

Langmuir probe, is difficult to apply for two reasons. The first is the high probability for 

electron and neutrals to collide before collecting the electrons by the probe (Zhang et 

al., 2007). The second is the confined size of the plasma which makes the insertion of 

the probe into the plasma bulk difficult. An optical emission spectroscopy technique is 

used in this study for plasma characterization. The DBD configuration presumes a 

presence of an insulating layer between the two powered electrodes, which prevents the 

formation of a local thermodynamic equilibrium (LTE) (Nehra et al., 2008), and 

consequently results in large differences between plasma temperatures (Te > Texc > Tg). 

Principally, the non thermal equilibrium condition occurs in a DBD atomizer because 

the primary and secondary electrons lose their energy and dissipate in a very short 
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period; therefore no energetic equilibrium is expected between electrons and heavy 

particles. Nonetheless, a large portion of the energy accumulates in meta-stable atoms 

and gradually releases to the discharge volume, which consequently maintains the 

discharge (Stefecka et al., 2001) .  

The aforementioned details presume that there is no possibility for an LTE condition to 

hold within a DBD atomizer. Nevertheless, some researchers reported the existence of 

LTE conditions in a DBD plasma under special conditions.  

The LTE condition assumes the population density of the species in the excited state 

follows the Boltzmann distribution function (Gordillo-Vázquez et al., 2006). In this 

case, the collision rate of depopulation from the excited state would be at least ten times 

greater than the radiative depopulation rate (Faires et al., 1984). Practically, the LTE 

condition is reported possible given the availability of high electron density. (Alder et 

al., 1980) measured the electron density for atmospheric DBD argon and found it in the 

order of  l016 cm-3; accordingly, they report a probable LTE condition in their system. 

Further, (Wagner et al., 2005) measured the electron density for a N2/O2 mixture in a 

DBD plasma atomizer and found it to be in the order of 1020 m-3; hence, they considered 

their system satisfies an LTE condition. Most controversial is the finding of (Zhang et 

al., 2007) who reported the existence of an LTE condition in their DBD argon system, 

provided that a high electron density Ne is available, according to the criteria shown in 

equation (4-3). 

 

                                        �[	 ≥ 1.7 × 10	S	(P	�[)	'/			â�T� 	                                  (4-3) 
 

Where;  k represents Boltzmann’s constant, Te is the electron temperature and  âpq  is 
the energy level difference between upper state (q) and lower state (p). 
 

In summary, the studies agree that the probability of LTE existence is directly related to 

the electron number density (1020 – 1022 m-3) in a DBD plasma bulk, which has been 

adopted as a criterion to characterize the plasma generated in the current system.  

For the DBD system adopted in this research, the aim is to characterize the plasma 

generated in the chip by measuring the electron number density and plasma 

temperatures (Te , Texc ,Trot and Tg). As mentioned in Section (2-4-2), applying the stark 

broadening technique or Thomson laser scattered method for estimating the electron 
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number density requires special preparation which is not applicable to the current case; 

thus, the electron number density in the system is calculated as a first step by applying 

the following fundamental principles:   

 

                                                   ([ =	 ã[."G                                                     (4-4) 

 

Where; 
  ([ : the electron density (m-3)  ,  Z : Plasma current density  (Amp. m-2 ) , 
    0 : electron charge = 1.602×10-19  (Amp.sec) , �R = electron drift velocity (m. sec-1) 
 

The electron drift velocity is estimated from the electron mobility and the applied 

electric field as follows: 

 
                                                   �R = 	ä	 × <                                                       (4-5) 
 

The mobility of the electron in atmospheric pressure argon plasma is estimated to be 

0.01 m2 V-1 sec-1  at 5000 oK (Mili  et al., 1987). As mentioned in Section (4.4.2), a 

value of 5 (kV) is adopted as an optimum voltage which gives an electric field of 5×106 

(V.m-1) across 1 mm gap. Applying the estimated values of mobility and electrical field 

in equation (4-5) produces a drift velocity equal to 5×104 (m. sec-1). The plasma current 

has been measured by using validated digital current clamp meter (UNI-T, UT 201) in a 

position very near to the load and found to be 25 mAmp when applying 5 kV. This 

value approximated the value shown on the LCD of the power supply. Current density 

is determined by dividing the current value by the cross sectional area of the 

atomization channel (0.01×0.001 = 1×10-5 m2), which produces a value of 25×102 Amp. 

m-2. Applying the abovementioned values in equation (4-4) produces an electron 

number density equal to  3.1×1017 (m-3) which is in agreement with the range reported 

in the literature (Nehra et al., 2008). Since the estimated electron density is lower than 

the range (1020 – 1022 m-3) that is required for LTE condition, it is concluded that the 

examined DBD system follows non thermodynamic equilibrium conditions (nLTE). 

The spectral parameters of the peaks of the argon spectrum (Figure (4-7/A)), are 

obtained from the database of the national institute of standards and technology (NIST-

website, 2010) (Table 4-5).  
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Table  4-5 Argon emission lines parameters and their recorded intensities (*) 

   �åæ  Aij  Ei        çå		  Iij èé êëåæ�åæçåìåæí 
 nm  sec-1  cm-1    a.u.  

 
696.54  6.39× 106  93143.76     5.0  2081 -3.092  

 706.87  2.0  × 106  105617.27 5.0  171 -4.415 

 727.29  1.83× 106  93750.59  3.0  560 -2.601 

 750.38  4.45× 107  95399.82  3.0  1750 -4.621 

 794.81  1.86× 107  94553.66  1.0  564 -3.725 

 
 
Another important parameter discussed in the literature is the excitation temperature. 

This is found in most cases to be below 1 eV in a DBD plasma bulk. (Alder et al., 1980) 

reported an excitation temperature of 7000 oK in their atmospheric argon plasma 

system, while (Zhang et al., 2007) measured an excitation temperature in the range of 

4200 to 4950 oK. (Dong et al., 2005) measured the excitation temperature in an 

atmospheric pressure argon DBD plasma and found it in the range 0.1-0.5 eV.  

The conventional method to determine the excitation temperature is based on generating 

a Boltzmann plot by assuming an existence of LTE conditions, as illustrated in equation 

(4-6) (Gordillo-Vázquez et al., 2006). 

 

                                     ln ê���v��:����í = −	 x�U	 D̀ïð + 	�                                             (4-6) 

 
 �[±? is determined by applying the Fermi–Dirac distribution for the excited particles as 

described by (Zhang et al., 2007). 

 

                                    ln ê���v��:����í = − ln	(exp l	 x�WÅU	 D̀ïðp + 1) + 	�                          (4-7) 

Where; ä represents the chemical potential (cm-1)  

 

 

 
*:  .|� : the intensity of the emission line between the energy levels i and j,  �|� : wavelength,  

  -| : the statistical weight of the  emitting upper level i of the studied transition,	�|�: the 

transition probability for a spontaneous radiative emission from the level i to  the lower level j ,  
Ei : the excitation energy of level i.  
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Non linear curve fitting is conducted by applying a value (ä = 105000 cm-1) and 

utilizing the non linear model fit tool in Wolfram Mathematica 7.0,  to estimate the 

parameters in equation (4-7). This produced:   �[±?= 6398 oK  and  C = -3.4689 with a 

standard error of 0.633. The calculated �[±? is very near to the value estimated by (Alder 

et al., 1980) but slightly higher than those estimated by (Zhang et al., 2007, Dong et al., 

2005), where the differences could be attributed to a different range of spectral lines 

used in these studies.  

 

The electron temperature is calculated in a non thermodynamic equilibrium condition 

according to the following relation (Gordillo-Vázquez et al., 2006): 

 

                      ln ê���∑ 	�ò�		���!"��	���}� í = ln(�) = −	 x�U	 D̀	 + 	f                                     (4-8) 

 
Where;  f : constant, �[	: electron temperature, ℎ�|�: energy difference between levels i and j ó| =	<|; ×	¿|} ,  �	�(1	ó are the fitting parameters obtained from (Gordillo-Vázquez et 

al., 2006), (e.g. for line 750.38 nm ,  � = −5.849	�(1	ó = −5.045 ) 

¿| = ô <sõ − <| 
 <s : is the Rydberg constant (13.6 eV), õ and Ei are the ionization energy of argon 
species and the energy of the excited state i respectively.  
Applying the sorted data in equation (4-8) produces the modified Boltzmann plot shown 

in Figure (4-9). 

 

Figure  4-9  the modified Boltzmann plot 



Chapter four           Design, optimization, and characterization of DBD Plasma atomizer 

136 
 

The data has been fitted by using the linear regression analysis tool through Wolfram 

Mathematica 7.0 software, producing the formula shown in equation (4-9) which has 

been applied to estimate the electron temperature: 

 

              ln ê���∑ 	�ò�		���!"��	���}� í = ln(�) = − 	0.0000634	<| − 15.5832                       (4-9) 

 

The slope in equation (4-9) is equal to 
0.625

e
T

−
  and equivalent to (-0.0000634) which 

gives   Te = 9858 oK  = 0.849 eV 
 
For an extra check, the electron number density (ne) is re-estimated by applying the 

power balance criterion, shown in equation (4-10), assuming the plasma energy 

dissipates due to electron heating (Park et al., 2001, Moravej et al., 2004): 

 

               ¿|� 	≈ 	¿9877 ≈	([ l�	P�[ − �	 P��p 2 IDI¬CÜ�� 	�[�                               (4-10)      

 
Where;  
Pin : the applied power = 125 watt / 4 × 10-7 m3 = 3.125 × 108 (watt. m-3), me : mass of 
electron = 9.1×10-31  (kg), mArgon : mass of argon atom = 6.6 × 10-27 (kg), k : Boltzmann 
constant = 1.38 ×10-23 (J . oK-1) , ven : electron – neutral collision frequency ≈ 
5.3×109×p (Cook et al., 2010); for atmospheric pressure plasma, p = 760 Torr  →  ven = 
4.02×1012 (sec-1), Tn : gas temperature ≈ 359 oK, Te : electron temperature = 9858 oK 
 

Solving equation (4-10) for ne produces ne = 1.45×1018 (m-3). 

 

The calculated electron number density from equation (4-10) is higher than the value 

estimated experimentally from equation (4-4) by an order of magnitude; however, the 

difference is not large and could be attributed to the assumptions made in the criterion 

followed. Hence, the approximate values obtained from both applied methods indicate 

that the values of excitation and electron temperatures are estimated with reasonable 

accuracy. 

The last part of plasma characterization is to measure the rotational temperature in the 

DBD atomizer. It is reported that if the pressure of the plasma bulk is sufficiently high, 

there is a strong correlation between the rotational temperature and the gas temperature. 

However, the former is a description for an excited state while the latter is a measure of 

the mean kinetic energy of the gas particles (Ionascut-Nedelcescu et al., 2008). It is also 
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reported that the rotational temperature slightly exceeds the gas temperature. This 

observation is attributed to the species heating-up which occurs due to different types of 

collisions. Hence, the rotational temperature is normally estimated by utilising the N2
+ 

electronic band as shown in the work of (Ionascut-Nedelcescu et al., 2008) and (Motret 

et al., 2000). Accordingly, the rotational temperature has been estimated in this research 

by utilising the fine structure of N2
+ electronic band (the first negative system). The 

intensity of such rotational line (for a transition (J’ – J’’)) can be expressed as a function 

of the oscillator strength Sj according to the following equation (Hill, 2006): 

 

                    �( �
	(�öö&') = ¦ −	

K÷	!	?
U` (h]] + 1)(h]] + 2)                                  (4-11) 

 
Where; 
Sj  =  the oscillator strength = (h]] + 1)(h]] + 2), h]] = the quantum number (assigned 
for the lower state), h] = h]]-1, T = the rotational temperature (oK), c = speed of light = 
3×1010 (cm sec-1), h = Plank constant = 3.336×10-11 (sec cm-1), k = Boltzmann constant 
= 0.695  (cm-1 oK-1), Bv = the rotational constant belonging to the vibrational quantum 
number = 2.07, ¦ = constant 
 

The slope  	WK÷	!	?U`     in equation (4-11) equals  	W	.���		`   

 
The intensities of the N2

+ electronic band (R branch) are obtained from Figure (4-10), 

which represents the nitrogen spectrum, and plotted versus the oscillator strength as 

shown in Figure (4-11). The values of Sj proportional to the observed wavelengths are 

listed in Table (4-6). 

 
 

Figure  4-10  N2
+ band (R branch)  
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Figure  4-11  the estimation of the rotational temperature in the examined BDB atomizer 

 
 
Table  4-6  Oscillator strength values according to the observed intensities of (N2

+ band / 

R branch)  (Hill, 2006) 

 
Wavelength Intensity  Sj= (h]] + 1)(h]] + 2)   h]]  ø( �	(�′′&') 
(nm)  (a.u)  
390.49  1656.4   56   6  4.77 
390.4  1618.3   72   7  4.61 
390.29  1594.1   90   8  4.48 
390.19  1524.8   110   9  4.33 
390.08  1448.5   132   10  4.18 
389.97  1365.3   156   11  4.04 
389.85  1285.6   182   12  3.90 
389.73  1195.5   210   13  3.75  
389.33  935.64   306   16  3.31 
389.04  797.03   380   18  3.04 
388.74  686.14   462   20  2.79 
388.58  634.16   506   21  2.66 

 

 
A slope equal to (-4 × 10-3) is obtained from the graph, Figure (4-11), which indicates a 

rotational temperature of 745 oK (= 0.064 eV) is estimated in the current system.  

Since the aim of the current analysis is to characterize the DBD plasma for design 

purposes, local measurement of gas temperature is essential to indicate the highest 

temperature which would be reached during continuous operation of the chip. It is 

assumed in the current experiments that the measured value is equivalent to a temporal 

and spatial averaged gas temperature. The outlet gas temperatures for three investigated 

gases (argon, helium and nitrogen) were measured to study the limits of the chip heating 
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during the operation time. A thermocouple is placed in the outlet section of the gas 

channel, and the temperatures recorded manually with time. The temperature increase is 

found to be dependent on the gas flow rate, as illustrated in Figure (4-12). The highest 

outlet gas temperature (86.4 oC) is for nitrogen, which is recorded after 15 minutes 

operation at 290 ml/min. This observation is found to be a slightly higher than the range 

(44-70 oC) reported in the work of (Zhu et al., 2008c) at 850 ml/min gas flow rate. The 

difference could be attributed to a higher gas flow rate, which might result in a higher 

cooling rate in the gas channel. The temperature range observed in the current research 

is considered reasonable, which allows the possibility of operating the DBD atomizer in 

proximity to other compartments, and consequently supports the device miniaturization.  

In summary, the estimated electron temperature, excitation temperature, rotational 

temperature and the measured gas temperatures in the investigated system are 

demonstrated in the following order (Te > Texc > Trot >Tg) which indicates a non thermal 

plasma is generated in the DBD atomizer. The temperature (0.07 eV) predicted from the 

computations in chapter 3 is found to be higher than the measured gas temperature (Tg) 

but in the same range as the estimated rotational temperature (Trot). This shows that the 

computed temperature is related to the excited species in the bulk plasma.  

 

 

Figure  4-12  the variation of the outlet gases temperature with gas flow rate; 
the temperatures were recorded after getting stable value (approximately 5 minutes) of 
the experiment start up. Higher flow rates for helium and nitrogen were examined due 
to a stable performance compared with argon  
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The argon plasma was found to be slightly different from helium and nitrogen plasmas. 

Shooting pulses (similar to arcing) from the plasma channel toward the thermocouple 

sensor occurs due to the gas flow rate increases from 40 to 60 ml/min. This becomes 

more obvious when a higher argon flow rate used, and consequently leads to sensor 

heating and deviation in the recorded outlet gas temperature. Although a different 

sensor position was applied to overcome the arcing, only three values of argon flow rate 

could be applied. This phenomenon was not observed for helium and nitrogen. 

Nonetheless, increasing the helium flow rate from 90 to 130 ml/min led to a plasma tail 

formation. The aforementioned observations are illustrated in Figure (4-13). These 

different behaviours can be related to the gas first ionization potential, where argon gas 

has the lowest value (15.6 Volts) compared with nitrogen and helium (15.8 and 20.5 

Volts respectively) (Found, 1920). Other references show higher values for nitrogen and 

helium (16.3 and 24.5 Volts respectively).  

 
Argon / before arc formation Argon / with arcing 

  
Helium / tail formation Nitrogen / no effect 

 
  

 

Figure  4-13  the effect of increasing the gas flow rate on plasmas behaviour 

 
 

It is worth noting that the ionization potential refers to the voltage magnitude where a 

discontinuity in the linear dependency occurs in the ampere-voltage characteristic 

diagram caused by a rapid increase in current over voltage. The reason is the increase in 
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the positive ion density resulting from the applied potential that causes higher current to 

flow from the cathode to the anode. Therefore applying higher power is expected to 

increase the probability of gas breakdown and lead to a higher ionization rate for gases 

of low potential. Hence, the reason of arcing in the case of argon could be increased 

current in the bulk. It is also observed that the argon arcing becomes more intense at a 

higher gas flow rate. The nitrogen plasma is not affected even at maximum flow rate 

(290 ml/min) and appears more stable in the limits of the electrode overlapping section, 

whereas helium is found to be more sensitive to the flow increase and consequently a 

tail forms. The variation of signal intensity with a change in the argon flow rate is 

illustrated in Figure (4-14). 

 

 

 
Figure  4-14  a contour diagram show the argon peaks intensity versus different argon 

flow rates   
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4.6 Summary of the findings from chapter four 

1-The poly methyl methacrylate (Perspex) material is affected by plasma discharge and 

found inappropriate for constructing a DBD atomizer, whereas microscope glass slides 

proved useful for this application. 

2-Three DBD configurations were tested; one of them with the largest electrode 

overlapping area, was selected to fabricate the final version of the DBD reactor due to a 

slightly higher observed intensity compared with other configurations. 

3-The spectrometric parameters of the system are optimized by performing a non-linear 

constrained optimization. The optimized parameters are adopted for later studies in this 

research. 

4-The performance of the DBD atomizer has been studied by applying three gases to 

explore the gas flow rate on the atomizer temperature. The maximum gas temperature, 

measured at the outlet end of the gas channel, is found to be 86 oC after 15 minutes 

operation. The temperature indicates the possibility of housing the DBD atomizer in 

proximity to other compartments for the purpose of miniaturization. The argon gas is 

observed to be more aggressive than helium and nitrogen gases. The gas flow rate is 

also shown to have a considerable effect on the recorded spectrum, in which the 

appearance of argon lines is significantly affected by higher gas flow rates. 

5-The argon plasma has been characterized by applying spectrometric analysis, where 

the measured plasma temperatures (Te > Texc > Trot >Tg) indicate that a non thermal 

plasma is generated in the examined DBD atomizer. The electron number density was 

measured experimentally and found to be in the order of 1017 m-3 which indicates a non 

thermal equilibrium in the examined system.   
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5.    APPLICATION OF THE PROPOSED 

TECHNOLOGY FOR MERCURY 

DETERMINATION  
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5.1 Preface 

This chapter is dedicated to study the application of the proposed technology for the 

detection and the quantitative determination of inorganic mercury in water samples. In 

the first section, the performance of the DBD atomizer is assessed when injecting a 

stream combining water vapour and argon gas. The later sections are extended to study 

the performance when applying an inlet stream containing vapour species generated 

from the reaction with reducing agents. Two derivatizing agents are examined; the first 

is tin chloride whereas sodium and potassium tetrahydroborate are applied in the later 

experiments. Three types of gas-liquid separator (GLS) are investigated to assess the 

efficiency of hydrogen dilution and separation on the recorded mercury signal. The 

experiments with tin chloride were planned and conducted according to a 2nd order 

central composite rotatable design, in which four parameters are examined in the 

experimental range, whereas the recorded mercury signal is the objective function.  The 

experimental data are fitted by applying multi variable regression analysis in order to 

obtain an empirical model describing the whole process. Furthermore, an optimization 

technique and two statistical approaches are utilized to analyse the data and to explore 

the individual and interaction effects of the variables on the objective function. The later 

section of this chapter is dedicated to the quantitative determination of mercury and 

achieving system automation. An automated version of the proposed analytical system 

is produced, thereby online – real time determination of inorganic mercury in a water 

sample is accomplished.  Further experimental investigations were conducted to study 

the possibility of improving analytical performance by applying a physical effect, 

namely magnetization. This is believed to assist the release of vapour species and may 

be an alternative to expensive chemicals (e.g. surfactants) which are normally used to 

facilitate the analyte derivatization processes.      

5.2 The effect of water vapour on DBD plasma consistency 

It is mentioned in previous studies (Motret et al., 2000, Zhu et al., 2008a) that a DBD 

plasma could be operated with an inlet gas stream saturated with water vapour. In this 

regard, (Zhu et al., 2008a) found an advantageous effect for the water vapour on DBD 

plasma stability in terms of lowering the emission background from other molecular 

species. The above evidence denotes the possibility of injecting the DBD atomizer with 
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an inlet gas stream saturated with vapour. Since the aim of the research is to couple the 

DBD atomizer with a pre-chemical derivatization process that produces vapour species, 

it is essential to verify the applicability of the design for this specific operating 

condition.   

Hence, a series of investigations were conducted applying two experimental sets; the 

first without removing the moisture content from the inlet stream to the examined DBD 

atomizer, whereas the moisture content has been reduced in the second by using a silica-

gel trap. Figure (5-1) illustrates the methodology used. 

 

 

Figure  5-1  the methodology used to investigate the effect of moisture content on the 
DBD plasma consistency 

 
 
A desiccant silica-gel (MH value = 9) has been used to reduce the moisture content from 

the inlet stream to the DBD atomizer. Approximately 2 grams of silica-gel balls are 

packed in a plastic tube (6mm ID and 4 cm length) to form the trap as illustrated in 

Figure (5-2). The function of the trap is aimed to remove 20% of the relative humidity 

of the stream that enters the trap at 100 ml/min.  

 

 

Figure  5-2  a picture illustrates the silica-gel trap connected with a commercial gas – 
liquid separator 
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The results from all cases examined show that a significant change in the recorded 

spectrum occurs on introducing the water stream into the bulk of the gas-liquid 

separator. The intensity of most emission lines increased significantly after two minutes 

of the water introduction as shown in Figure (5-3). (Motret et al., 2000) attributed this 

result to the collision of the argon excited species with OH radicals that form due to 

water molecule dissociation. The collisions lead to an efficient dissociative excitation of 

the water molecules, which consequently results in extra OH radicals as demonstrated 

by the increased intensity of OH emission lines (the band 302-317 nm). At the same 

time, the collision - radiative recombination of argon with energetic electrons results in 

forming argon atoms in various excited states, which is illustrated by the increased 

intensity of the argon emission line at 696.5 nm and other argon lines in the near IR 

region.  

The introduction of the examined stream through the silica-gel trap before being 

introduced to the DBD atomizer results in negative effects. For instance, the intensities 

of the emission lines near IR region are significantly reduced; therefore all experiments 

in the later sections are conducted without using a silica-gel trap. 

 

 

(A) 
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(B) 

 
Figure  5-3  the effect of introducing gas stream saturated with water residues on the 
intensity of the emission lines; 
(A) without using the silica-gel trap,  (B) when the silica-gel trap is applied 

 
 

5.3  Application of inorganic mercury cold vapour generation using 

SnCl2 as a reducing agent 

This section investigates the application of the DBD chip as a radiation source for the 

mercury vapour species generated from applying tin chloride (SnCl2) as a reducing 

agent.  

 

5.3.1     Experimental setup 

The schematic diagram of the reaction system is shown in Figure (5-4). Three single 

channel peristaltic pumps (Williamson pumps Ltd. – UK) were used for the water 

sample and other chemical feeding. One, fitted with 1.6 mm silicone tubing pumped the 

water sample at a rate of 2.8 ml/min, whereas 1.25 ml/min feeding rate pumps were 

used for HCl and SnCl2 solutions. The water sample and the acidic solution were 

directed into a (20 cm length, 2.0 mm ID silicone tube) acting as a helical mixing coil. 

The mixed solutions (from the mixing coil) and the reducing agent SnCl2 were directed 
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into a helical reaction coil (1 m length, 2.5 mm ID silicon tube). The reacted solutions 

are forwarded into a gas/liquid separator (GLS) where the influent stream is mixed with 

the carrier gas (4 mm ID plastic tube) through a tee junction placed ahead of the GLS 

entrance. The details of the traditional gas liquid separator (type A) used in this section 

are shown in Figure (5-15). An additional argon line (30 ml/min) is introduced in the 

middle of the GLS to assist carrying the released vapour species from the influent 

stream into the DBD atomizer. The liquid residues are evacuated out of the GLS by 

using (2.8 ml/min) DC peristaltic pump, while the released volatile species are 

transported by the gas into the DBD chip. The carrier gas flow rate is controlled 

manually using gas flow meters purchased from (BOC special products – UK) and 

(Cole Parmer –USA).  

 

 
Figure  5-4  a process flow diagram for the system applied for the mercury cold vapour 
generation; 
PP indicates peristaltic pump, GLS is a traditional self made gas liquid separator 
 

5.3.2     Reagents 

All chemicals used in this work were purchased from Sigma Aldrich (analytical reagent 

grades). A mercury atomic spectroscopy standard was applied to prepare 1 g/L stock 

solution.   Specific amounts of the stock solution were diluted using distilled water to 

prepare the required working standards. HCl solutions (1-5% v/v) were prepared by 

diluting HCl concentrate (37 %) in distilled water, whereas the reductant solutions of tin 
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chloride (2-5% m/v) were prepared by dissolving suitable amounts of SnCl2 in 1% v/v 

HCl. The background equivalent concentrations of mercury in the reagent solutions of 

Sncl2 and HCl, which resulted from the impurities within the chemical reagents, were 

determined by using ICP-OES and found to be in the range 0.02-0.3 µg/L. High purity 

gases (99.999 % argon, helium, and nitrogen), purchased from (BOC-UK), are used in 

the experiments. 

 

5.3.3     Optimization of the mercury cold vapour generation process 

According to the literature, (Zhu et al., 2008a, Yu et al., 2008a) mercury cold vapour 

generation is affected by several factors; therefore this part of the study is devoted to 

investigate the effect of each factor on the response function (intensity of the mercury 

emission line at 253.65 nm). According to the calibration data given by Ocean Optics 

for the spectrometer (USB 2000), the emission line 253.65 (nm) appeared with 0.071 

(nm) deviation, therefore the emission line at wavelength 253.58 (nm) has been adopted 

to monitor the mercury signal in all experiments; however it has been referred to as 

253.65 (nm) in some illustrations. Four variables are selected as process parameters: the 

concentration of HCl solution (1-5% v/v), the concentration of the reducing agent 

(SnCl2 2-5% m/v), argon gas flow rate (40-180 ml/min), and the exerted electrical 

power (75 – 175 Watt at approximately 38 kHz). The power magnitudes are controlled 

as illustrated in Section (4.4.2). The experiments are planned according to a 2nd order 

central composite rotatable design (Cochran and Cox, 1992), as illustrated in Table (5-

1). The experimental system is represented by a quadratic multivariable model 

combines the single effect of the variables in addition to the effects resulted from the 

interaction of the variables as shown in the following equation: 

 

³ = �SzS + �'z' + �	z	 + ��z� + ��z� + �''z'	 	+ �		z		 	+ ���z�	 		+ ���z�	+ �'	z'z	 	+ �'�z'z� + �'�z'z� + �	�z	z� + �	�z	z� +	���z�z� 

                                                                                               
                                                                                                                 (5-1)             
 
 
The definitions of the parameters in equation (5-1) are described in Appendix 11.3.  
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Table  5-1  the experimental plan according to the central composite rotatable design and 
the recorded intensities for a water sample contains 100 µg/L mercury  

 
Exp.    HCl  (% v/v) SnCl2  (% m/v) Argon (ml/min) Power (watt) Intensity (Y)  
No. ___________ ___________ ___________ ___________ (a.u.) 

Real Code Real Code Real Code Real Code  
 Value (x1) Value (x2) Value (x3) Value (x4) 

1 2 -1 2.75 -1 75 -1 100 -1 853 
2 4 +1 2.75 -1 75 -1 100 -1 872 
3 2 -1 4.25 +1 75 -1 100 -1 865  
4 4 +1 4.25 +1 75 -1 100 -1 888 
5 2 -1 2.75 -1 145 +1 100 -1 834 
6 4 +1 2.75 -1 145 +1 100 -1 855 
7 2 -1 4.25 +1 145 +1 100 -1 825 
8 4 +1 4.25 +1 145 +1 100 -1 876 
9 2 -1 2.75 -1 75 -1 150 +1 910 
10 4 +1 2.75 -1 75 -1 150 +1 923 
11 2 -1 4.25 +1 75 -1 150 +1 903 
12 4 +1 4.25 +1 75 -1 150 +1 940 
13 2 -1 2.75 -1 145 +1 150 +1 867 
14 4 +1 2.75 -1 145 +1 150 +1 874 
15 2 -1 4.25 +1 145 +1 150 +1 869 
16 4 +1 4.25 +1 145 +1 150 +1 872 
17 1 -2 3.5 0 110 0 125 0 854 
18 5 +2 3.5 0 110 0 125 0 863  
19 3 0 2 -2 110 0 125 0 876 
20 3 0 5 +2 110 0 125 0 885 
21 3 0 3.5 0 40 -2 125 0 874  
22 3 0 3.5 0 180 +2 125 0 677 
23 3 0 3.5 0 110 0 75 -2 798 
24 3 0 3.5 0 110 0 175 +2 814 
25 3 0 3.5 0 110 0 125 0 799  
26 3 0 3.5 0 110 0 125 0 802 
27 3 0 3.5 0 110 0 125 0 804 
28 3 0 3.5 0 110 0 125 0 795 
29 3 0 3.5 0 110 0 125 0 797 
30 3 0 3.5 0 110 0 125 0 801 
31 3 0 3.5 0 110 0 125 0 803 

 
 
A multiple stepwise regression analysis was performed using the algorithm shown in 

(Appendix 11.3) to estimate the polynomial coefficients which are shown in Table (5-

2).  

 

Table  5-2  the estimated polynomial coefficients 

 
B0  B1  B2  B3  B4  B11 

800.1627 8.0  2.8333  -28.1668  13.4167  22.3271 
 
B22  B33  B44  B12  B13  B14 

27.8271  1.5771  9.2021  3.375  -0.625  -3.375 
 
B23  B24  B34 

-1.625  -1.875  -6.625 



Chapter five          Application of the proposed technology for mercury determination 

151 
 

The standard error for the coefficients Bi , �||	�(1	�|� is estimated to be 1.64, 1.48 and 

2.01 respectively, whereas the average absolute error of the polynomial is 2.12%. The 

recorded peak for the mercury emission line is shown in Figure (5-5).  

 
(A) 

 

 
 

(B) 

 

 
 

Figure  5-5  the signal recorded during mercury experiment; 
(A)  the recorded spectrum,  (B) strip chart showing the signal versus time 
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Although the empirical model has 15 components which show various effects on the 

response function, not all of them are considered significant. The polynomial has been 

analysed statistically by applying the “Ridge technique” (Hoerl, 1959) to give an insight 

into the single effect of each variable on the objective function (intensity of 253.65 nm 

line) and to decide how stable the system is as well as to show the best compromise if 

unstable. The system of four variables has been derived as shown in (Appendix 11.5) 

and the following equations obtained and used for system analysis: 

 
             z'(2�'' − 2��� − �) + �'	z	 + �'�z� + �'�z� = −�'                  (5-2)                  

 

             �'	z' + z	(2�		 − 2��� − �) + �	�z� + �	�z� = −�	                  (5-3)                    

 

              �'�z' + �	�z	 + z�(2��� − 2��� − �) + ���z� = −��                 (5-4)               

 
                                   �'�z' + �	�z	 + ���z� − 	�z� = −��                              (5-5) 

 

Where; the eigenvalue (�) is defined to be: 
 
 

� = �� + �'�z' + �	�z	 + ���z�z�  

 

The system of linear equations (5-2 to 5-5) has an unique solution for any value of 

lambda except for the roots of the characteristic equation, but a choice outside this range 

leads to non-physical intensities. The choice of exactly the roots leads to an infinite 

number of solutions.  Lambda close to the top of the physical range, however, leads to 

higher intensities which are desirable for greater sensitivity. 

The solution strategy commences by determining the working limits of � in the 

examined range. It should be mentioned that the examined eigenvalue (�) is a value that 

makes the determinant equal to zero (Hoerl, 1962). Therefore the limits were 

determined in the current analysis by arranging the coefficients in a matrix form, then 

extracting the equation of the determinant and equalizing it to zero. Hence, the 

following characteristic equation is satisfied by lambda: 

 

           �� − 	48.25�� + 530.9�	 + 1224.59�	 − 20323.38 = 0                         (5-6) 
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Equation (5-6) has 3 or 1 positive real roots and 1 negative real root 

according to the rule of signs. Four roots are produced upon solving equation (5-6); two 

of them are real values (-4.412 and 34.32) and adopted to be the limits of eigenvalues 

range. Since the aim of the analysis is to find the best conditions for the highest 

intensity, therefore the eigenvalues around the highest limit (34.32) are used to calculate 

the ridges as shown in Table (5-3). 

 

Table  5-3  the calculated ridges corresponding to the assumed values of � 

 
 �    x1    x2  x3  x4  Rv 

 33.0  0.594  -0.799  0.5648  0.2778  1.1784 

 33.5  0.5289  -0.8466  0.5606  0.2837  1.179 

 34.32  0.424  -0.9591  0.5549  0.2945  1.2224 

 35.0  0.3314  -1.102  0.5517  0.306  1.313 

 35.5  0.2534  -1.256  0.5507  0.3174  1.4305 

 36.0  0.1584  -1.477  0.5514  0.3333  1.619 

 36.5  0.03042  -1.817  0.5552  0.3573  1.9342 

 36.66  -0.02244  -1.968  0.5575  0.3679  2.0787 

 36.675  -0.02781  -1.983  0.5577  0.369  2.0938 

 

 Several values of � around 34.32 are selected and substituted in the equations (5-2 to 5-

5); then the equations are solved to find the values of z' to z�. The ridges corresponding 

to the calculated values of  z' to z� are obtained from the following equation: 

 

                                �" = (z'	 + z		 + z�	 + z�	)	' 	�                                               (5-7) 
 

The ridge values are plotted versus the coded variables (z' to z�) in Figure (5-6) for the 

aim of demonstrating the effect of each variable on the response function. Figure (5-6) 

indicates that for improving the intensity, major gains could be obtained by increasing 

the applied power (z�)  and decreasing the concentration of both HCl (z') and SnCl2 

(z	) respectively, therefore (z', z		�(1	z�) are considered to be the key variables as 

they behave in a stable pattern. The values of (z�) have shown unstable trends (decrease 

– increase) which may indicate that the argon flow rate is the most critical variable from 

the process control stand point.  
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Figure  5-6  the calculated ridge values versus the coded values of the variables 

 

It is necessary to quantify the relative effect of the variables interaction on the objective 

function. Traditionally, this is the role of F-factor analysis which is performed to 

analyse the present four variables system. 

The calculations are achieved according to the analysis shown in Appendix (11.6), 

whereas the estimated F-factor values are shown in Table (5-4). 

 
 
Table  5-4  the estimated F-factor values for the individual and interaction effects 

 
 Evaluated parameters  the estimated F-factor 
 z'    1.1078E-06 
 z	    1.11441E-06 
 z�    1.12084E-06 
 z�    1.14373E-06 
 z'z	    -0.04414013 
 z'z�    -0.04336648 
 z'z�    -0.03931418 
 z	z�    -0.04336999 
 z	z�    -0.03931778 
 z�z�    -0.04049423 
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Generally speaking, since the parameter (x4 , the applied power) gained the highest F-

factor value compared with other individual effects (x1 , x2 , x3 ), it can be considered to 

be the most important factor during system operation. This result is compatible with the 

results of the ridge analysis technique which indicates x4 as a key factor. It can also 

interpreted that the interactions of HCl concentration/exerted electrical power (z'z�), 
SnCl2 concentration/exerted electrical power(z	z�), and gas flow rate/ exerted electrical 

power (z�z�) produce greater disturbances than other interactions. This indicates the 

significant role of z� on system stability. In conclusion, the abovementioned 

interactions are considered to be critical during system operation.   

The optimal conditions for the highest mercury intensity are obtained by performing a 

non-linear constrained optimization. The details are shown in (Appendix 11.4) and the 

estimated optimum values are shown in Table (5-5). 

 
 
Table  5-5  the optimization results for the mercury cold vapour generation process 

 
HCl concentration  SnCl2 concentration            Argon flow rate     Power 

x1 (%  v/v)  x2 (% m/v)   x3 (ml/min)  x4 (watt) 

0.352 ≈3.35  1.383 ≈4.53   -0.686 ≈86  0.14 ≈128 

 
 
 
Since the applied power is a key factor, which means that higher applied power results 

in higher intensity, a value of 150 Watt has been adopted in the later experiments. 

Further investigations were carried out to explore the individual effects of each 

parameter on the objective function; the results are shown in Figure (5-7). It can be 

seen that the trends are compatible with the results of the statistical approaches, in 

which the argon flow rate is a critical parameter affecting system performance. In 

contrast, other parameters show a stable effect on the system. 
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Figure  5-7  the effects of the individual parameters on the mercury signal intensity 

 

The analytical performance of the system has been evaluated by measuring the detection 

limits. Figure (5-8) illustrates a calibration plot for the response of the system (the 

intensity of mercury line) versus different concentrations of mercury.  

 

 

Figure  5-8  the recorded intensities versus several mercury concentrations; 
at: 4% (v/v) HCl , 4.25% (m/v) SnCl2 , 85 (ml/min) argon and 150 (watt) power 
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The analytical figures of merit are estimated according to Appendix 11.7. The limits of 

detection (LOD) are calculated by spiking a blank solution into the system and 

measuring the intensity. The blank experiments repeated eight times and the standard 

deviation (S) calculated for the experimental set. The calculated figures of merit (LOD 

= 2.8 µg/L and RSD = 3.5%) shows a reasonable precision is achieved, which supports 

the adoption of the reaction system and the tested DBD chip for analytical purposes. 

 

5.4 Implementing the mercury cold vapour generation process using 

hydroborates  

In this section, the cold vapour generation technique is applied for mercury detection by 

using sodium and potassium hydroborates. The aim is to investigate the performance of 

the technique and its compatibility with a DBD atomizer.  It is well known that the 

difference between applying SnCl2 and hydroborates for mercury derivatization is the 

huge quantity of hydrogen gas which accompanies the decomposition of hydroborates 

in water. Stoichiometrically, four moles of hydrogen gas is produced upon decomposing 

one mole of sodium tetrahydroborate (Agterdenbos and Bax, 1986): 

 

                                   ���W + 3�	
 +	�& →	���
� + 4�	                              (5-8) 
 

It is reported elsewhere that presence of hydrogen gas in a plasma reactor up affects the 

plasma reaction positively. (Zhu et al., 2008b) attributed this to the higher thermal 

conductivity of hydrogen compared to other gases (168 mW/m/oK for H2, 142.64 

mW/m/oK for He and 16.36 mW/m/oK for Ar at 0 oC and 1 atm) and a relatively higher 

dissociation temperature. It should be noted that the generated hydrogen gas gives rise 

to an aerosol in the gas liquid separator which can disturb system performance 

(Wickstrøm et al., 1996). Due to its lighter weight, the probability of hydrogen molecule 

transfer from the gas liquid separator to the atomizer is higher than for generated 

hydrides and other gases, which consequently leads to plasma instability. As mentioned 

in chapter 3, (Chaudhary et al., 2003) observed this behaviour in their atmospheric 

pressure cold plasma generator and reported that extra hydrogen leads to destabilization 

and completely extinguishes the plasma. A probable reason for the hydrogen effect on 

the plasma is the ability to alter the electron energy and the electron distribution 

function; thereby a significant change in the population density of the reactive species in 
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the discharge may occur. Moreover, (Pohl et al., 2007) observed a reduction in the 

excitation temperature (from 5800 to 5400 oK) and in the electron number density (from 

1.76 × 1014 to 1.37 × 1014 cm-3) of microwave argon plasma due to the hydrogen effect. 

A method to reduce hydrogen generation is to add sodium hydroxide to the hydroborate 

solution. This is to stabilize the solution and prevent the generation of excess hydrogen 

gas in the reaction coil; i.e. preserve the hydrogen content in the hydroborates. 

Therefore, the hydroborate solutions in all stages of this research were prepared using 

sodium hydroxide as a stabilizing agent.  

The experiments are conducted by using the setup described in Figure (5-4) and 

applying axial viewing; i.e. connecting the fibre optics to the DBD atomizer in the axial 

position. Sample acidification is by injecting the sample to meet the acidic stream 

through a tee joint. The acidified stream is directed into a second tee joint to meet the 

stream of hydroborates. The mixed stream is forwarded into a gas liquid separator 

(GLS) through a helical shape reaction coil. A stream of argon gas is added to the 

beginning of the reaction coil to facilitate separation of the two phases. The gas stream 

from GLS is directed into the DBD atomizer, whereas the liquid residues from the GLS 

dispense to drain. 

The first experiment was conducted by injecting only an acidified sample of water (with 

no mercury) in parallel with a stream containing 1% m/v NaBH4, at 2.8 ml/min for both 

streams.  The recorded spectra are shown in Figure (5-9 A/B), in which the base level 

of the spectrum between (200- 500 nm) is disturbed (magnified) significantly upon 

injecting the hydroborate in the system. The reason can clearly be attributed to hydrogen 

generated in the system due to hydroborate decomposition or the alkaline mist 

accompanying the generated hydrogen (most likely composed of NaBO2 and water 

vapour).  

Since a large amount of hydrogen generates in the system accompanied by alkaline mist 

and water vapour, the author was expecting to observe some peaks for hydrogen ions, 

atoms, or excited species (e.g. Hγ at 434.04 nm, Hβ at 486 nm or Hα at 656 nm). 

Nevertheless, none of these species appear in the spectrum except a very low signal for 

Hα at 656 nm when introducing a sample containing only water to the GLS, most likely 

from water vapour dissociation. 
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(A) (B) 

 

Figure  5-9  screen shots show the magnification effect of the hydrogen on the recorded 
spectrum; 
(A) the recorded spectrum for a system injected with a sample of water, (B) the 
recorded spectrum after injecting an acidified sample of water in parallel with a stream 
contains 1% m/v NaBH4. 

 
 
 
This peak has totally disappeared when the hydroborate solution is injected, which 

indicates unknown reactions which eliminate the appearance of these species. These 

reactions probably occur with species such as (O, O*, HO2, O2, H2O, OH, OH*, and H in 

the presence of the third body (M)), and produce unknown products which disturb the 

spectrum in the region 200 – 600 nm. The other reason for the magnification effect is 

hydrogen itself which is generated and transferred to the plasma. The application of 

higher concentration of NaBH4 results in more discrepancy in the recorded spectra.  

For further clarification, the spectra shown in Figure (5-10) were recorded for the 

plasma generated from an inlet stream composed of water vapour (steam from boiled 

water at low pressure) and argon gas. The application of this gas mixture aims to show 

the effect of generated hydrogen and accompanying residues on the spectral lines, 

specifically in the UV region. Since water vapour easily dissociates, it can be observed 

that a signal for OH with very high intensity appears for the band (302 – 317 nm) before 

introducing the NaBH4 solution. Afterwards, all peaks are significantly reduced due to 

the large amount of hydrogen generated in the system; eventually the DBD plasma 

nearly extinguishes and takes some time to recover after hydrogen is totally removed 

from the system.  
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Figure  5-10  the recorded spectrum when using a mixture of steam and argon;  
The signals recorded before and after injecting a (2 % m/v) NaBH4 stabilized by using  
 (0.5 % m/v) NaOH, whereas a gas stream (≈ 30 % water vapour + 70 % Ar) is 
introduced to the system. 

 
As disruption occurred to the recorded spectrum, it was necessary to rectify the recorded 

signal. Accordingly, each experiment was conducted twice, once without spiking the 

water sample with mercury, and once with the targeted concentration of Hg (II). The 

difference between the two readings is the intensity relative to the spiked Hg (II) 

amount, as shown in Figure (5-11). 

 
 

Figure  5-11  the signals recorded with and without 40 µg/L Hg (II); 
by applying 1% m/v NaBH4, 1 M HCl, 85 ml/min argon and 150 Watt   
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The dark red line in Figure (5-11) has been treated as a background signal; accordingly, 

the ratio of the signal obtained (due to the analyte effect) to the background signal 

(SBR) is adopted for later investigations in this case study.   

Thus a strategy has been adopted in order to reduce the effect of hydrogen, where the 

mercury experiments are conducted using lower concentrations of NaBH4 and KBH4 (in 

the range 0.2 – 0.6 % m/v, and stabilized by using 0.2 % m/v NaOH).  

The preliminary experiments were conducted by injecting 10 µg/L  Hg (II)  and 

applying different concentrations of NaBH4 to explore whether  the background signal 

deviates with an increase in NaBH4. The results are shown in Figure (5-12), which 

clearly indicates that the signal to background ratio (SBR) is affected by increasing 

NaBH4 concentration.  

 

 

Figure  5-12  the recorded signal to the background ratio for a water sample spiked with 
10 µg/L Hg (II) at 1M HCl, 85 ml/min argon flow, and 150 watt; 
SBR represents the ratio of the mercury signal to the signal due to the hydrogen effect. 
 
 

 
It can be observed that 0.4% m/v is the optimal NaBH4 concentration for mercury 

derivatization; thus, other experiments are conducted to explore SBR variation with 

different concentrations of Hg (II) as illustrated in Figure (5-13).  
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Figure  5-13  the recorded signal to the background ratio for a water sample spiked with 
different concentrations of Hg (II);    
at 0.4% m/v NaBH4 ,1M HCl, 85 ml/min argon flow, and 150 watt  
 

It is worth noting that applying the sodium hydroborate results in better signal intensity 

compared with potassium hydroborate, (Figure (5-14)). The recorded signals actually 

include the combined effects from both Hg (II) and the hydrogen. No signal is 

differentiated from the background when using 0.2 % m/v KBH4, whereas very clear 

signals are obtained when applying 0.2 – 0.6 % m/v NaBH4. Signal intensity drops 

when applying (0.5 % m/v NaBH4) and higher, which can be attributed to a larger 

quantity of hydrogen generated. 

 

Figure  5-14 the recorded intensities for a water sample contains 100 (µg/L) Hg (II) upon 
applying different concentrations of the hydroborates; 
at:  1M HCl, 85 (ml/min) argon and 150 (Watt) applied power. 
 

 

It can be deduced from the abovementioned observations that the presence of hydrogen 

gas in a DBD plasma bulk up to certain limits enhances the atomization processes; 
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however, greater amounts disturb the plasma and disrupts the appearance of the spectral 

lines, which clearly denotes hydrogen concentration as a critical parameter affecting the 

whole process. This is considered a barrier against the coupling of the hydride 

generation technique with a DBD plasma atomizer for analytical purposes. The 

concentration of hydrogen gas required to be reduced before entering the DBD atomizer 

can be achieved by using the lowest possible NaBH4 concentration. However, applying 

low concentrations of hydroborates is not a solution when the hydride generation 

process is required for multi analyte determination that may require higher 

concentrations of hydroborates. It has been reported that the generated hydrogen in a 

system applying 0.4% m/v NaBH4 at a flow rate of 0.5 ml/min is equal to 4.2 ± 0.2 

ml/min (Pohl et al., 2007). Since the stream flow rate in the current study is set to 2.8 

ml/min, the generated hydrogen in the system would be higher than the abovementioned 

value due to higher flow rate. In consequence, the plasma would be significantly 

affected and therefore it is required to dilute the generated hydrogen to an acceptable 

extent. An alternative method to reduce the hydrogen concentration is to dilute the 

gaseous bulk with an inert gas. This method has been applied in this research by 

inserting a second gas stream in a suitable position in the gas liquid separator. Three 

gas-liquid separators were tested to explore their performance; their details are shown in 

Figure (5-15). Two of the GLS’s were fabricated by the author, whereas the third GLS 

is a commercial separator. The separator shown in Figure (5-15/A) is a simple plastic 

container provided with a glass section used for injecting the combined gas-liquid 

stream and extracting the separated gases. The separated volatile species are transported 

to the DBD atomizer with aid of a carrier gas, whereas the water residues are disposed 

out of the separator by either a peristaltic pump or gravity. The separator shown in 

Figure (5-15/C) is a self made nebulizer-GLS separator, in which a combination of an 

ICP torch, central nebulisation tube and an expanded glass section are utilized to 

conduct the separation process. The proposed design of the nebulizer - GLS is simulated 

earlier in Section (3.5), where the simulation results indicate a significant reduction in 

hydrogen concentration obtained when introducing 216 (ml/min) helium gas from the 

supporting lines (3 and 4).  The experimental results obtained from testing the examined 

gas – liquid separators are shown in Figure (5-16).  
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Figure  5-15  three types of a gas liquid separator used for Hg (II) determination by 
applying NaBH4 scheme; 

(A) 500 ml container provided with a supporting carrier gas stream at 30 ml/min, (B) a 
commercial separator provided with a 30 ml/min supporting gas, (C) self made 
separator fabricated from a consumed ICP torch, the full details are provided in Figure 

(3-4) shown in chapter three. 

 

 

 
 

Figure  5-16  the recorded mercury signal intensities obtained upon testing three GLSs; 
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The signals (including the hydrogen magnification effect) are recorded for 100 (µg/L) 
Hg (II) spiked in the examined sample and reduced at 1M HCl , 0.3% (m/v) NaBH4 , 
150 (Watt) applied power, 105 (ml/min) argon for GLS (A) and (B) while 
approximately 250 (ml/min) helium is applied for GLS (C). 
 

 

The performance of GLS (A) is enhanced by controlling the flow of the supporting gas 

through a solenoid valve, where gas pulses are injected to the GLS instead of applying a 

continuous flow. The details of the proposed control techniques are described in Section 

(5.5). This methodology has improved the performance of GLS (A) even when using 

(0.5 % m/v NaBH4). The performance of GLS (A) becomes more reliable during the 

operation time. The reasons could be a spacious bulk for separation as well as the 

advantageous effect of applying a supporting gas stream and gas pulses which results in 

a dilution ratio ≈ 4.2 H2/105 Ar, assuming 4.2 ml/min hydrogen is generated in the 

system. The supporting gas stream attenuates the hydrogen and probably the mist 

concentration in the plasma; thereby producing a consistent discharge. However, the 

application of a higher carrier gas flow rate could lead to analyte signal attenuation; and 

should be estimated precisely. Although higher signal intensities are recorded when 

applying GLS (C) (dilution ratio ≈ 4.2 H2/ 250 He), the performance of GLS (C) is less 

stable compared with GLS (A). The fluctuations in signal intensity refer to an 

interaction effect most probably caused by turbulent flow in addition to attenuation in 

the mercury concentration which occurs due to higher gas flow rate. GLS (B) was the 

weakest performer. Thus, GLS (A) was used in later experimental investigations.  

In order to determine the reason behind the enhanced performance of GLS (A), the 

parameters that lead to disturbances in the separation bulk should be taken into 

consideration. Aerosol and foam formation is reported highly possible in different types 

of GLS, especially when a large amount of hydrogen releases into the GLS bulk. Some 

researchers consider foam formation to be detrimental to GLS performance; thus, they 

used anti-foam agents to reduce this tendency (Karadjova et al., 2005). In practice, the 

application of anti foam chemicals is impractical and could lead to signal interferences 

especially in the case of conducting simultaneous detection of multi metals. Another 

limiting parameter, is the possible generation of extra hydrogen from waste residues at 

the base of the GLS. In this regard,  (Sturgeon et al., 1996) reported that overall H2 

production from waste could be reduced by adopting a fast evacuation system or by 

adding a stream of NaOH (e.g. 1 M) to quench further liberation of H2. 
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A reason for the enhanced performance of GLS (A) could be a lower tendency of 

hydrogen release from the surface interface of liquid residues at the base of GLS. Extra 

hydrogen could be released to the bulk of the gas-liquid separator due to instability of 

the settled liquid residues. If a forced continuous stream of argon gas is injected toward 

the liquid surface at the base of the GLS, then the stripping of the hydrogen from the 

gas – liquid interface becomes easier. Hence, pulses of argon gas possibly result in a 

gentle argon flow as well as more stability inside the GLS, and consequently facilitates 

the transportation of the generated vapour species from the GLS to the DBD atomizer 

without further hydrogen generation.  

The calibration plot of mercury system when applying the hydride generation scheme is 

illustrated in Figure (5-17). Better precision and performance is obtained when using 

NaBH4 as a reducing agent compared to SnCl2 (LOD = 2.19 µg/L and RSD = 2.19%) 

but with operational difficulties. 

 

Figure  5-17  the recorded intensities (rectified from the hydrogen magnification effect) 
versus several mercury concentration values; 
at: 1M HCl , 0.4% (m/v) NaBH4 , 105 (ml/min) argon and 150 (watt) power. 
 
 

5.5  Quantitative determination of inorganic mercury by applying a fully 

automated cold vapour generation process 

The main objective of the current research is to determine metal concentrations with 

high accuracy. The most important stage that controls the performance of the whole 

process is the gas-liquid separator (GLS) especially when applying the hydride 

generation technique. The role of the GLS is to separate the gaseous phase from the 
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liquid matrix upon completion of the reduction reaction. The design of the GLS should 

provide optimal separation of the aerosol droplets, created by the bubbling action of the 

evolved gases, which might result in signal disruption in the case of poor separation. 

We have adopted GLS (A), shown in Figure (5-18), to implement the gas liquid 

separation process.  

 

 
 

Figure  5-18  a schematic diagram shows the automated system used for the quantitative 
determination of Hg (II); 
PP: peristaltic pump, FM: flow meter, SV: solenoid valve, LS: light source, PC: 
Computer, MC: microcontroller interface, the dotted line refers to the electronic signal 
transfer path 

 

 

The available volume (≈500 ml) is suitable to achieve aerosol separation and carry the 

generated vapour species out of the separator. According to the statistical analysis 

(Section 5.3.3) the gas flow rate should be controlled precisely in order to prevent 

signal disruption. It is believed that the release of the generated vapour species and their 

transfer to the DBD atomizer could be implemented with high efficiency when utilizing 

a gentle flow of the carrier gas rather than a forced flow, and this is clearly required to 

prevent carrying aerosol droplets in the vapour. It is also expected that the forced flow 

of any other supporting gases may lead to eddies and foam formation which is 

undesirable in the gas-liquid separator due to highly sensitive processes and critical 

vapour species. Practically, the limiting factor that controls the performance of the GLS 

is the necessity to work below or at the minimum gas velocity in the separator. Since 

many reasons might lead to disturb the GLS performance, the author selected the 
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minimum superficial gas velocity for onset of foaming (jm) to be the limiting factor. 

According to (Pilon and Viskanta, 2004),  jm is equal to 10 (mm/sec) for argon and a 

steady state foam thickness of about 2.5 (mm), which is considered applicable to this 

study. Thus, a mass balance has been applied to determine the required quantity of the 

injected argon gas (1). 

 

argon in stream (1) + argon in stream (2) = argon in stream (3) 
 
Where; 
argon in stream (2) = 35 (ml/min), a continuous feeding with the liquid phase. 
argon in stream (3) is calculated based on 10 (mm/sec) as a minimum superficial 
velocity and 1.5 (cm) diameter for the concentric outlet section from the separator 
which gives a flow rate equal to 105.6 (ml/min). Therefore, a flow rate of 70.6 (ml/min) 
is determined for stream (1) as a maximum, albeit better performance is expected to 
achieve when applying lower injection rate.  
 
The control strategy of the gas liquid separator utilizes a solenoid valve to control the 

injection of the supporting gas (stream 1) into GLS (A). The concept is to supply pulses 

of the supporting gas through stream (1) which prevents the build-up of a high pressure 

inside the separator and consequently limits the formation of disturbing factors and 

facilitates the release of the vapour species without disrupting the bulk. A solenoid 

valve (Takasago – Japan) with 2 (mm) bore size powered by 12 volt DC has been used 

to control the injection of the supporting gas pulses. The control strategy is 

accomplished using a microcontroller (Arduino – Mega) interface which is operated by 

PC software. The control strategy for the whole system is shown in Figure (5-18) and 

the code used to operate the microcontroller is written using Arduino microcontroller 

software language, which is similar to C++, (Appendix 11.8). In the adopted control 

strategy, pulses of the supporting argon gas at 70 (ml/min) are injected into GLS (A) in 

a sequence form. For instance, the supporting argon gas is injected for 4 seconds and 

then stopped for 3 seconds, to be re-injected again for 4 seconds and re-stopped for 3 

seconds and so on. Since an argon flow rate of (70/60 =1.16 ml/sec) is applied, a total 

quantity of 4.66 (ml) argon gas is injected to the separator through stream (1) in a 4 

seconds period, which assists transfer of the generated vapour species in a stabilized 

sequence. Accordingly, 15 pulses with 4.66 ml argon are actually supplied through 

stream (1) in 1 minute. These time slots are selected by applying an optimization study 

with the results shown in Figure (5-19).  
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Figure  5-19  the effect of changing the gas pulse length on the signal intensity; 
a 50 (µg/L) Hg (II) is spiked in the examined sample and reduced by applying 4% (v/v) 
HCl, 4.25% (m/v) SnCl2 and 150 (watt) applied power 

 

The peristaltic pumps are actually running for 3 minutes and 15 seconds which is the 

time required to inject 10 (ml) of both the acidified analyte solution and the reducing 

agent. After stopping the pumps, an extra period of 45 seconds is given to make sure 

that all vapour species entered the atomizer. As soon as 4 minutes of the full process 

time passes, the readings shown on the computer screen in (mol/L) are recorded for 15 

seconds. 2-3 different values appear on the screen and the average of these values is the 

measured concentration of the analyte. At 4:15 minutes, the solenoid valve at the 

bottom section of GLS (A) opens to dispose the liquid residues from the separator. 1 

minute is given to load argon gas into the separator bulk for purging purposes. This is 

necessary to make sure that the rest of the gas residuals release from the separator 

before starting a new analytical run; thereby reducing memory effect.  

The length of the tube sections of streams (1, 2, 3) inside GLS (A), (Figure (5-18)) is 

found to be another critical parameter affecting system performance. An optimization 

study was conducted to determine the optimum lengths of these sections. The results 

show that the most critical section length is stream (2), which led to considerable 

changes in the intensity of the collected signal. For instance, the signal intensity 

increased upon increasing the length of stream (2) tubing into a position near the liquid 

surface inside GLS (A). The reason could be related to a limited opportunity for 

carrying aerosols out of the separator as well as limited foam formation. A higher 

potential for foaming occurs inside the bulk of GLS due to higher possibility of contact 

between the content of stream (2) and the gas injected through stream (1). A lower 
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tendency for foam formation occurs when stream (2) releases at a point near the liquid 

surface and consequently leads to more stability in the whole process performance. In 

contrast, performance is reduced when shorter lengths of stream (2) are used. Figure (5-

20) shows the mercury signal intensity obtained upon applying different section lengths 

of stream 2 while applying tube lengths of 4 and 1 cm for streams (1) and (3) 

respectively.  

Further experimental investigations are conducted to explore the effect of changing the 

volume of the gas liquid separator. In addition to the aforementioned GLS (A) (500 ml), 

two gas liquid separators with the same design but with different volumes (350 ml and 

1000 ml) are adopted for this study. 

 

 

Figure  5-20  the effect of increasing the tube section length of stream (2) inside GLS 
(A); 
Hg (II) signals are recorded upon injecting 50 (µg/L) and applying 4% (v/v) HCl, 4.25% 
(m/v) SnCl2, 105 (ml/min) argon and 150 (watt) power and adopting a length of 4 (cm) 
and 1(cm) for streams (1) and (3) respectively. 
 

 

The mercury signal is recorded in accordance with changes in the GLS characteristic 

volume and the gas injection period (i.e. the gas pulse). The change in these parameters 

is represented by the Strouhal number, which is a dimensionless group that combines 

the measured characteristic length, considered to be the effective height of the container, 

Table (5-6), with the applied frequency (inverse of the pulse period).  
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Table  5-6  the details of GLS type (A) with different characteristic volumes 

 
Approximate volume  Inside diameter  Height  Real volume 
cm3    cm   cm  cm3 

 
350    5.7   14  357 
500    6.5   15  497.5 
1000    8.7   17  1010 

 
 
The Strouhal number is described as follows: 
 
 
 

                                                         qQ = 	 j	À@                                                          (5-9)       

 
Where; 
 

f : oscillation frequency (sec-1) =  
'�©97[	9[�:H!		(ùmú 	)   

 
V : characteristic velocity (cm/sec) =  

ÅûÀ  ,   ä is the gas dynamic viscosity, ¼ is the gas 

density, and L is the characteristic length (represent the effective height of the GLS type 
A). 
 
Substituting the characteristic velocity in equation (5-9) produces a description for 

Strouhal number as follows: 

 

                                                        qQ = 	 j	ÀVÅ û�                                                         (5-10) 

 
 
For argon gas at 20 oC and 1.35 bar, the density and viscosity are considered to be 

 2.12×10-3 g.cm-3 and 2.22×10-4 g.cm-1.s-1 respectively. 

 

A range of argon pulse lengths (2-7 seconds) was tested with the three gas-liquid 

separators. The intensity of the mercury signal relative to the estimated Strouhal number 

is shown in Figure (5-21). 
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Figure  5-21  the recorded mercury signal intensities relative to the change in Strouhal 
number for different characteristic volumes of GLS (A); 
The signals recorded upon injecting 50 (µg/L) and applying 4% (v/v) HCl , 4.25% (m/v) 
SnCl2 , 105 (ml/min) argon,150 (Watt) power, and adopting 4 cm and 1cm for the 
lengths of streams 1and 3 respectively, whereas the length of stream (2) inside GLS is 
kept approximately 1 cm over the liquid surface.  
 

 

It is observed that higher intensities are recorded for the smallest characteristic volume 

of GLS (350 cm3), which indicates that the characteristic volume of the gas liquid 

separator is an important parameter affecting the system performance. Hence, GLS (A) 

of 350 cm3 volume has been adopted in later experiments.  

In the quantitative determination of mercury an absorption spectrometric technique, 

using mercury hollow cathode light source (F-O-Lite, from World precision company – 

UK) was used. The fibre optics are placed for axial viewing at the ends of the gas 

channel. Two positions were chosen along the atomization channel to conduct radial 

data acquisition, as illustrated in Figure (5-22). The results show a 40% increase in the 

signal intensity occurs when applying axial, compared to radial, data acquisition. The 

signal intensity collected from positions (1 & 2) is found to be similar. This is probably 

due to the action of hydrogen radicals that present in abundance along the atomization 

channel on the analyte dimers, which consequently prevent their dissipation. This 

finding is considered logical based on knowledge on the quartz tube atomizer, where 

low concentrations of hydrogen radicals result in free atom recombination out of the 

hydrogen radical cloud leading to free atoms dissipation (Matousek and Dedina, 2000). 
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This observation is consistent with the findings from the simulation results, Section 

(3.6.2), that indicate the free atom concentration is not expected to change after passing 

the centre of the gas channel. 

 

 

Figure  5-22  the effect of applying different fibre optic positions on the mercury signal 
intensity; 
a 100 (µg/L) Hg (II) is determined by applying 4% (v/v) HCl , 4.25% (m/v) SnCl2 , 105 
(ml/min) argon and 150 (watt) power; position (1) at the centre of the atomization 
channel, position (2) 10 mm after passing the electrodes overlapping section, and 
position (3) the end of the gas channel (axial viewing). 
 
 
As mentioned in Section (2.6.2.2/a), the quantitative determination of analyte based on 

absorption spectroscopy is usually interpreted according to Lambert-Beers’ law, in 

which the amount of light emitted from a defined light source and absorbed due to the 

presence of the analyte is utilized to infer the concentration of the analyte. In this study, 

the author utilized SpectraSuite software which is compatible with the spectrometer 

(USB-2000) to conduct absorption measurements and to infer the concentrations 

according to equation (5-11), which is extracted from equation (2-45): 

 

                                                        � =	 	�ü		9                                                         (5-11) 

 
Where;  
  A:  The absorbance, also called molar absorptivity (dimensionless) 
  ~: the molar absorption coefficient ( L/mol/cm) at a specific wavelength  
  �:  optical path length of the absorption (cm) 
  �:  molar concentration (mol/L) 
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The absorbance (A) is evaluated through SpectraSuite software by applying the 

following formula (OceanOptics, 2010): 

 

                                            �v =	−��-'S 	lgýW	�ýbýW�ýp                                              (5-12) 

 
Where; 
S = Sample intensity at wavelength � 
D = Dark intensity at wavelength � 
R = Reference intensity at wavelength � 

 
 
The molar absorption coefficient for Hg(II) is estimated by utilizing the criteria of linear 

dependence of absorbance on species concentration as described in the work of 

(Deshpande and Zimmerman, 2005). Absorbance is measured for several injected 

mercury concentrations which results in linear dependency, as shown in Figure (5-23). 

The linear dependence indicates that the slope of the fitted line is equal to (~	�). 8 cm 

was adopted for the spectral path length taking into consideration the gas channel length 

(7.5 cm) and (0.25 cm) extension from both sides to place the fibre optics sensors. The 

slope in Figure (5-23), gives a molar absorption coefficient of 12.5 ×104 (L/mol/cm) 

for Hg (II) in the current system. 

 

 

Figure  5-23  the measured absorbance relative to the spiked Hg(II) concentrations; 
when applying 4% (v/v) HCl , 4.25% (m/v) SnCl2 , 105 (ml/min) argon and 150 (watt) 
power 
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L/mol/cm) reported in the work of 

mercury analyzer based on 

Quantitative determination 

KBH4 schemes and applying 

earlier in this section. In all 

after approximately 2 minutes 

increased gradually 

experiment start up.  

The recorded absorbance throughout the sample injection period 
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Figure  5-24  screen shots for the results of Hg (II) quantitative determination;
by applying 4% (v/v) HCl, 4.25% (m/v) Sn
applied power; (A) represents a strip chart for the absorbance measurement with time 
for a sample containing10 (µg/L)
the mercury sample, (C) a screen shot show
12.5×104 L/mol/cm (note that the concentration is updated with time according to the 
measured absorbance),  
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 (B) 

 
 
 
 

(C) 

 

screen shots for the results of Hg (II) quantitative determination; 
4% (v/v) HCl, 4.25% (m/v) SnCl2, 105 (ml/min) argon and 150 (

a strip chart for the absorbance measurement with time 
10 (µg/L), (B) the recorded intensities before and after injecting 
a screen shot showing the estimated concentration based on 

L/mol/cm (note that the concentration is updated with time according to the 

determination 

 

 

 
, 105 (ml/min) argon and 150 (Watt) 

a strip chart for the absorbance measurement with time 
) the recorded intensities before and after injecting 

the estimated concentration based on ~ = 
L/mol/cm (note that the concentration is updated with time according to the 
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Figure (5-25) shows calibration graphs for mercury relative to injected values.   

 

Figure  5-25  Calibration graphs show the measured Hg (II) corresponding to the real 
injected values; 
105 (ml/min) argon and 150 (watt) are applied in all experiments; the signals are 
recorded upon applying 4% (v/v) HCl and 4.25% (m/v) SnCl2, 1M HCl and 0.4% (m/v) 
of NaBH4 and KBH4.  
 
 
The injected samples are evaluated with an expected error of (± 5%) and this is 

attributed to the error due to sample preparation by applying stepwise dilution as well as 

the error due to mercury residues found in the chemicals. The average absolute error, 

determined according to Appendix 11.3, is found to be 9.73% , 9.13% , and 9.2% for  

SnCl2 , NaBH4 , and KBH4 schemes respectively, which indicates that all the tested 

systems act with similar efficiency. This error (≈ 10%) is considered reasonable. 

However, larger error values result for high mercury concentrations compared with low 

mercury concentrations. This indicates that better detection limits can be obtained when 

testing low mercury concentrations, which is the objective of the proposed system.  

 

5.6  The study of the impact of mercury sample magnetization prior to 

detection by emission spectroscopy 

The effect of the physical factors (e.g. periodic oscillation of external electric field, 

temperature fields, ultrasounds, UV radiation, and magnetization effect) has been 

studied and utilized in the environmental sectors since they can provide simple and 

economically justifiable performance with low ecological impact. Among those 
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physical factors, the magnetic treatment phenomenon has been applied recently in the 

water treatment sectors and the environmental fields. It is reported that water 

magnetization could lead to several effects such as lowering surface tension and 

viscosity as well as increasing permeability, which accounts for valuable effects. In this 

regard, researchers have reported beneficial results due to water magnetization such as 

saving in the quantity of water required for irrigation as well as enhancing the 

productivity of plants in the agriculture field (Maheshwari and Grewal, 2009). Good 

results were also reported in the fields of water and waste water treatment such as scale 

reduction in the hot water reservoirs (Smith et al., 2004), an increase in the efficiency of 

water clarification (Hattori et al., 2001), a COD reduction (by 35 %), a P-PO4 reduction 

(by 90 %), an N-NH4 reduction (by 50 %) and odour reduction (Krzemieniewski et al., 

2004). Moreover, recent studies reported an enhancement in the efficiency of heavy 

metals removal from water and waste water due to the magnetic field effects. Different 

kinds of supportive materials such as polymer resin and glass wool were mixed with 

magnetite (iron ferrite) as a seeding material to form an adsorbent matrix. The 

adsorption efficiencies for metal ions, metal colloids and nanoparticles are reported to 

increase when applying a suitable magnetic field (Navratil and Shing, 2003), leading to 

better separation. On the other hand, the magnetic nanoparticle based materials such as 

Fe3O4 coated with decanoic acid (Faraji et al., 2010), and Fe3O4 coated with silica and 

modified with trimethoxysilane (Huang and Hu, 2008) were recently used for heavy 

metals determination by ICP-MS and ICP-OES respectively. The nanoparticles were 

also used in the solid phase extraction as an adsorbent for metal species in the aqueous 

samples (e.g. cadmium, copper, mercury, nickel, lead, chromium and zinc). Those 

applications are based on the fact that the magnetic nanoparticles are able to adhere to 

the target elements and removed readily from the matrix by applying the magnetic field, 

without any agglomeration after the magnetic field removal.  

Hence, it is expected that the magnetic field is able to create advantageous effects on the 

sample pre-treatment before being analysed by any of the known techniques. The 

emergent environmental effect by magnetization could be utilized to assist analyte 

derivatization, and may act in a similar way to expensive chemicals that are normally 

injected in the analytical processes (e.g. surfactants).  

 The following work is to assess the impact of pre water sample magnetization on the 

results of mercury detection. Two experimental sets were conducted to analyse multi 

water samples, spiked with different mercury concentrations, without and with sample 
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pre magnetization respectively. The results are compared based on the recorded 

intensities. A custom-made tubular section (8 mm ID, 10 cm length) was used (Figure 

(5-26)), where 0.3 Tesla magnetic field was applied to magnetize the water fed through 

a closed loop cycle (3 L/min).  

 

(A) 

 

(B) 

 

 

Figure  5-26  the setup used to implement the sample magnetization; 
(A) a picture for the magnetization unit, the probe of measuring device is inserted 
temporarily to measure the magnetic field, (B) the magnetization system; B and v 
represents the magnetic field and velocity of charge respectively   
 
 
 

5.6.1      Effect of magnetization on the properties of tap water 

In the first experiment, the impact of magnetization on the change in water properties is 

studied. Several magnetization periods were applied and pH and electrical conductivity 

measured using an integrated device (Mettler Toledo). The water surface tension is 

determined by using a (First ten angstrom) tensiometer and applying the pendant drop 

hanging method. The magnetic field was measured by a (Hirst) gauss meter.  Closed 

cycle tap water magnetization is implemented continuously for 14 hours. During the 

magnetization period, samples of the treated water are collected while pH, conductivity, 

and the interfacial tension are recorded instantaneously and after six days at 21 oC to 

determine the consistency of magnetization effect. Results are shown in Figure (5-27), 

which indicates a permanent effect of magnetization on the tested samples.  
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(A) 

 
 

(B) 

 
 

(C) 

 
 

Figure  5-27  the effect of magnetization on tap water properties; 
(A) The impact on tap water electrical conductivity,  (B) The impact on tap water pH, 
(C) The impact on tap water interfacial tension; the applied pendant droplet volume = 
15 µL. all data in the figures are fitted exponentially.   
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The results show a 7% and 0.2% reduction in the values of pH and interfacial tension 

respectively, whereas electrical conductivity increased 8% after being magnetized for 

14 hours. Readings after six days show the same trend; however, the values for the 

electrical conductivity and the interfacial tension increased slightly after six days, which 

most likely occurred due to contact with atmosphere. Values of pH decreased slightly 

after six days which could be attributed to CO2 gas dissolving in the water causing an 

increase in water acidity due to H2CO3 formation. Although the difference between the 

values is small in the case of interfacial tension, the impact of magnetization could be 

increased by optimising parameters such as magnetic field strength and magnetization 

period. In contrast, the impact of magnetization on electrical conductivity is considered 

valuable and could affect in later processes positively. 

 

5.6.2       The impact of magnetization on mercury detection and determination   

Two experiments were conducted to verify the impact of magnetization on mercury 

detection and determination by using the proposed analytical method. In the first set of 

experiments, a mercury standard solution (1 g L-1) was prepared using normal distilled 

water, followed by stepwise dilution to prepare the target mercury solutions. In the 

second set, the mercury standard solution (1 g L-1) was prepared using distilled water 

treated by applying a magnetization cycle for 14 hours. HCl and SnCl2 solutions are 

prepared by using the specified water type accordingly. The results are shown in Figure 

(5-28), which shows a slight increase (3.5 – 7.5%) in the intensities of the samples 

treated by magnetization.  
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Figure  5-28  the effect of magnetization on Hg (II) detection; 
the mercury signals are recorded upon applying 4% (v/v) HCl , 4.25% (m/v) SnCl2 , 105 
(ml/min) argon and 150 (watt).  
 

 

A possible interpretation for the increase in signal intensity is the reduction in interfacial 

tension due to magnetization. The diminished interfacial tension facilitates the 

adsorption of paramagnetic particles of oxygen increasing the oxygen concentration in 

the water samples. This results in removing gases of high atomic weight such as 

mercury. Another reason could be a modification of water structure due to 

magnetization. Such a change simplifies the release of all gases proportionally, 

regardless their atomic weight. It is mentioned in the literature (Krzemieniewski et al., 

2004) that imposing a magnetic field on a flowing liquid might lead to changes in 

electrical potential. These changes integrate with an increase in electrical conductivity 

and causes a disturbed liquid surface. The disturbance would eventually facilitate the 

release of the species that exist in the boundary layer, and most likely include the 

mercury vapour species. On the other hand, (Moor et al., 2000) reported that increased 

acidity is advantageous for the reduction of the analyte and suppression of the signal 

from other metals. Therefore the reduction in pH due to magnetization might also 

contribute to improved signal intensity. 

There is a clear effect of sample magnetization on the time required for mercury signal 

to appear. The signals begin to appear after approximately 1.5 minutes compared to 2 

minutes for non-magnetized samples. 
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In conclusion, the physical effect of the magnetization process has proved useful for 

mercury detection and determination, and could be extended further for better results by 

optimizing the operating parameters such as the magnetic field strength and 

magnetization period. This effect would be more advantageous when the analyte is 

difficult to reduce and requires assisting chemicals (e.g. surfactants).   

 

 

5.7 Summary of the findings from chapter five 

1- The intensity of argon and other emissions lines increased significantly when a water 

stream was introduced into the bulk of the gas liquid separator. This result is attributed 

to: (1) the collision of the excited species with OH radicals, (2) the collision - radiative 

recombination of argon with the energetic electrons. These collisions generate extra OH 

and other radicals and consequently increase the intensity of the OH emission line and 

other argon lines in the near IR region. 

2- The removal of 20% moisture content from the stream entering the DBD atomizer 

affects the argon lines near IR region negatively, which supports the findings mentioned 

in 1. 

3- The experimental investigations and the statistical analysis for the mercury cold 

vapour generation process show that chemical concentration and power are key factors 

in enhancing the system performance. In contrast, the argon flow rate is found to be a 

critical factor and should be controlled accurately to keep a stable system performance. 

Other reasons for unstable system performance can be attributed to the interactions of 

parameters. 

4- The mercury derivatization process is conducted by applying three schemes: Sncl2, 

NaBH4 and KBH4. Results show that lower detection limits are found when using 

NaBH4.  

5- One problem addressed through the application of HG technique is the disturbance in 

the DBD plasma due to the presence of hydrogen. The hydrogen gas leads to a 

magnification on the recorded spectrum in the region 200 – 600 nm and ultimately 

misleads the interpretation of the recorded signals. The problem was solved by applying 

two experiments, with and without spiking mercury. The difference between the 

recorded signals is considered proportional to mercury. Even with the presence of 
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hydrogen in the DBD atomizer, no clear signals obtained for hydrogen excited species 

(Hɤ , Hβ or Hα) which may indicate a consumption of these radicals in unknown 

reactions.  

6- Three types of gas liquid separator were evaluated experimentally; two of them 

constructed by the author and a commercial separator. Best performance is obtained 

when using GLS (A) and injecting the supporting gas in pulses. The performance of the 

commercial separator is found the weakest compared to the custom made separators. 

7- The quantitative determination of mercury is similar when applying any of the three 

schemes. However, NaBH4 is slightly more effective based on the calculated average 

absolute error. 

8- The application of magnetization for sample pre-treatment proved advantageous for 

the determination of mercury. 

 
d)  
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6.    APPLICATION OF THE PROPOSED 

TECHNOLOGY FOR MULTI HEAVY 

METALS DETERMINATION 
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6.1 Preface 

The aim of this chapter is to investigate the applicability of the proposed analytical 

technique for heavy metals other than inorganic mercury.  Arsenic, Tin, Cadmium and 

Lead as well as other transition metals (Chromium, Copper, Nickel, and Zinc) were 

selected. Although cadmium is known to be a transition metal, most literature 

characterizes cadmium as a hydride forming element. According to the literature, the 

selected analytes show a variety of reduction conditions, which provides the opportunity 

to explore a wide range of derivatization conditions. The first experimental sets are 

devoted to analysis of the selected analytes individually by using the hydroborates 

scheme and other assisting oxidizing and pre-reducing agents. The second experimental 

set is to investigate the simultaneous determination of a mixture of analytes. 

Preliminary experiments were conducted for all the analytes to identify the wavelengths 

of the applied standards, shown in Table (6-1). It is also important to note that most of 

the wavelengths reported in literature and shown in Table (6-1) could not be detected 

because of limited resolution offered by the spectrometer used (USB 2000). 

 
Table  6-1  Summary of the detected wavelengths for the applied spectroscopic standards 

Examined Wavelengths reported        Observed wavelength   
element  in the literature         range integrated  
  (Grotti et al., 2005, Pohl and Zyrnicki, 2001)     through USB 2000 
  (Zhu et al., 2006b, y Temprano et al., 1993) 

  (Heisterkamp and Adams, 1999, Chen et al., 1995) 

As  188.98,  193.696, 228.812        228.65 - 229.03  

Sn  189.927, 283.998, 326.233, 286.3       326.03 - 326.40  

Cd  226.50, 214.44          226.38 - 226.76 

Pb  405.783, 261.418, 220.353, 217.0       220.31 - 220.69 

Cu  324.75           324.55 - 324.92 

Ni  231.60           231.30 – 231.68 

Zn  213.86           213.86 

Cr  267.72           267.49 – 267.87   

  
    
Atomic absorption spectroscopy standards (1 g/L), purchased from Sigma Aldrich, were 

used to prepare the standard solutions and then to prepare the working solutions by 

applying stepwise dilution with distilled water. In the process of wavelength 
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identification for the standards, a 2% m/v NaBH4 stabilized by using 0.5% m/v NaOH 

solution is used to implement the hydride generation reaction. The examined analyte 

(100 µg/L) was acidified with 0.8 (M) HCl solution. 

Operating concentrations are adopted from the work of (Grotti et al., 2005) who applied 

them for multi elements simultaneous determination. HCl concentrations higher than 2 

M are reported to be a critical condition may extinguish the plasma due to H2 load 

(Sturgeon et al., 1996). Therefore all experimental sets in this chapter and later 

experiments undertaken in this research were conducted by using HCl concentration 

lower than 2 M.  

A similar reaction system to that shown in Figure (5-18) was used. A traditional gas-

liquid separator GLS (A) with 350 ml volume utilized and controlled by the strategy as 

described in Section (5-5). Since higher concentrations of hydroborates (up to 2% m/v) 

are applied, an extra amount of hydrogen is released to the GLS (A) which puts a 

burden on the whole process.  

In order to reduce the tendency for extra hydrogen generation, plastic beads (with 

different sizes) are placed at the GLS base, acting as a filter. The liquid residues are 

disposed out of the separator through the beads filter; thereby hydrogen generation from 

liquid residues is prevented. The solenoid valve connected to the GLS base is left open 

during operation in order to release all the liquid residues on time. This operational 

technique is adopted for all the elements when a concentration higher than 0.5% m/v of 

NaBH4 is applied.  

 

6.2  Individual studies applied for qualitative determination 

6.2.1        Arsenic determination 

An optimization study is conducted to explore the best derivatization conditions for 

arsenic determination through the hydride generation scheme. As stated in chapter five, 

the key parameters that control analyte derivatization are the applied power, argon flow 

rate, sample acidity and the concentration of the reducing agent. The values of 105 

(ml/min) and 150 (watt) are adopted to be the optimum for argon flow rate and the 

applied power in all experiments undertaken from this stage of research. Therefore only 

two parameters (sample acidity and the reducing agent concentration) are investigated 



Chapter six      Application of the proposed technology for multi heavy metals determination  

188 
 

in the current optimization study. An experimental plan based on the second order 

central composite rotatable design (Cochran and Cox, 1992) was conducted by 

considering the concentration of HCl and hydroborates as the system variable 

parameters and the intensity of emission line in the range (228.65 – 229.03 nm) as the 

objective function, (Table (6-2)).  

 

Table  6-2 the arsenic experiments according to the 2nd order central composite rotatable 
design plan; 
The table shows the recorded intensities (rectified for hydrogen effect) for 100 (µg/L) 
arsenic observed in the range (228.65 – 229.03 nm) 
Exp.    HCl  (M)  NaBH4  (% m/v)  Intensity  KBH4  (% m/v) Intensity 
No. ___________               _____________                 ____________  

Real Code  Real Code (a.u.)  Real Code (a.u.) 
 Value (x1)  Value (x2)   Value (x2) 

1 0.75 -1  0.875 -1 323  0.875 -1 306  
2 1.25 +1  0.875 -1  349  0.875 -1 328 
3 0.75 -1  1.625 +1 364  1.625 +1 339  
4 1.25 +1  1.625 +1 373  1.625 +1 365 
5 0.5 -1.414  1.25 0 297  1.25 0 267 
6 1.5 +1.414  1.25 0 338  1.25 0 298 
7 1 0  0.5 -1.414 278  0.5 -1.414 257 
8 1 0  2.0 +1.414 305  2.0 +1.414 319 
9 1 0  1.25 0 316  1.25 0 323 
10 1 0  1.25 0 319  1.25 0 327 
11 1 0  1.25 0 308  1.25 0 319 
12 1 0  1.25 0 311  1.25 0 321 
13 1 0  1.25 0 312  1.25 0 325 

 

Table (6-2) illustrates the adopted plan and the recorded signal intensities upon 

injecting 100 (µg/L) arsenic samples and applying two reducing agents in two separate 

experimental sets. 10 ml of the acidified sample and the reducing agents are injected in 

all experiments in the set. The experiments repeated two times, with and without the 

examined analyte. The difference between the signals intensities is considered 

proportional to the concentration of the analyte.  

The experimental system is represented by a quadratic multivariable model combining 

the single effect of the variables and the effects resulting from interactions:  

 

        ³ = �SzS + �'z' + �	z	 + �''z'	 	+ �		z		 	+ �'	z'z	                            (6-1) 
 

A multiple stepwise regression analysis (Appendix 11.3) was performed to estimate the 

polynomial coefficients which are shown in Table (6-3). The average absolute error is 

estimated at 4.93% and 5.26% for NaBH4 and KBH4 respectively. 
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Table  6-3 the estimated polynomial coefficients for arsenic reduction by using 
hydroborates reducing agents 

     NaBH4 

 
B0  B1  B2  B11  B22  B12 

313.273  11.621  12.897  14.025  1.029  -4.25 

 

     KBH4 

 
B0  B1  B2  B11  B22  B12 

323.068  11.479  19.708  -7.993  -5.243  1.000 

 
 
Optimal conditions for the highest arsenic intensity are obtained by performing a non-

linear constrained optimization (Appendix 11.4) and the optimal values are shown in 

Table (6-4). 

 
 
Table  6-4  the optimal reduction conditions for the arsenic hydride generation 

    NaBH4            KBH4 

 HCl concentration  NaBH4 concentration                 HCl concentration            KBH4 concentration
             

   x1     M       x2        (% m/v)           x1            M          x2             (% m/v)
  

0.693   ≈1.4  -0.626         ≈1.5       -0.474       ≈1.2                   0.039            ≈1.6 

 

The application of the statistical optimization technique is useful for systems that 

consist of more than two variables. Since the current investigation has only two 

variables, the statistical optimization can be readily tested. Further experiments were 

carried out to check the optimization of conditions that were estimated statistically. 

Accordingly, the effect of changing the hydroborate and HCl concentrations on the 

signal intensity was studied and the results, rectified for the hydrogen effect, are shown 

in Figures (6-1) and (6-2).  

The results show that increasing the hydroborate concentration increases the signal up 

to a limit, after which the signal intensity reduces due to the increased hydrogen 

generation.  In a similar way to mercury cold vapour generation, NaBH4 gives a better 

arsenic signal intensity compared to KBH4, therefore it was decided to adopt NaBH4 in 

later hydroborate experiments. Increasing HCl concentration also increases signal 

intensity up to 1.3 M after which the signal intensity is reduced. Thus, the optimal HCl 

concentration of 1.3 M is applied in further experiments. 
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Figure  6-1  the recorded signals (rectified for hydrogen effect) for arsenic;   
The signals obtained upon spiking 100 (µg/L) and applying several hydroborates 
concentrations while keeping constant HCl concentration at (1.4 M). 
 
 

 
 

Figure  6-2  the arsenic signals (rectified for hydrogen effect); 

The signals obtained upon spiking 100 (µg/L) and applying several HCl concentrations 
while keeping constant hydroborates concentration at (1.5% m/v). 

 
The analytical figures of merit are estimated for the arsenic system by spiking a blank 

solution into the system and measuring the intensity. The blank experiments were 

repeated eight times and the standard deviation (S) calculated. The calibration graph of 

the arsenic signal intensities versus different concentrations of arsenic is shown in 

Figure (6-3). The figures show that 3.7 (µg/L) LOD and 1.82% RSD are achieved for 

arsenic by adopting the proposed system. As mentioned in Table (1-2), the acceptable 

limit of arsenic in drinking water is about 10 (µg/L), which indicates a reasonable 

precision could be obtained for arsenic detection by the proposed system.  
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Figure  6-3  a calibration graph generated for arsenic; 
The signals (rectified for hydrogen effect) recorded upon spiking several arsenic 
concentrations at 1.3 (M) HCl and 1.5% (m/v) NaBH4. 
 

 

It is reported in the literature that efficient hydride generation from arsenic species at 

relatively low HCl levels can be achieved by using a pre-derivatization step with 

compounds containing thiol groups such as L-cysteine, ascorbic acid, thiourea, or 

thiolglycolic acid (Tsalev et al., 1996, Howard and Salou, 1996, Musil and Matousek, 

2008). For instance, an intermediate compounds (e.g. an arsinothiol derivate) forms due 

to the reaction between NaBH4 and the SH group of L-cysteine, which is more effective 

than NaBH4, and consequently leads to enhanced signal intensity. 

It is also reported that not all of the abovementioned pre-reducing agents are suitable for 

online derivatization; for example, pre-reduction reaction with L-cysteine occurs within 

one hour and requires higher bulk temperature than room temperature (Matousek et al., 

2008). In contrast, a (1% m/v) concentration of thioglycolic acid TGA will accomplish a 

pre-reduction of arsenic within two minutes, which makes TGA a good agent for the 

online pre-reduction process. In order to investigate the effect of applying a pre-

reducing agent, an experimental set was conducted using several concentrations of 

TGA. A concentrate of TGA (98%) purchased from Sigma Aldrich was used to prepare 

dilutions with distilled water. 1 ml TGA was added directly to the examined sample and 

injected through the sampling pump (PP 1), shown in Figure (5-18). The recorded 

arsenic signals upon applying different concentrations of TGA are illustrated in Figure 

(6-4).  
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Figure  6-4  the recorded arsenic signals (rectified for hydrogen effect) corresponding to 
the added pre-reducing agent; 
Several concentrations of thioglycolic acid (TGA) added upon spiking 100 (µg/L), 
while applying concentrations of 1.3 (M) HCl and1.5% (m/v) NaBH4.  
 

The signal intensity increased in linear pattern when applying TGA up to 1% m/v. As 

similar intensities were obtained when using concentrations more than 1.25% m/v, a 

value of 1.25% m/v TGA was adopted as an optimal. The signal intensity achieved is 

shown in Figure (6-5).  

 

 

Figure  6-5  comparison between the arsenic signals recorded with and without adding 
TGA; 
The signals recorded upon applying several concentrations of arsenic before and after 
injecting (1.25% m/v) thioglycolic acid while using 1.3 (M) HCl and 1.5% (m/v) 
NaBH4. 
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The signal intensities increased by approximately 20% for all concentrations of arsenic. 

It was also observed that the signal of 10 (µg/L) could be differentiated from the 

background (i.e. the signal due to the hydrogen magnification effect) when TGA was 

added to the sample, which was not observed without TGA application. 

Further investigations explored the beneficial effect of magnetizing the sample before 

applying the derivatization stage, which is mentioned earlier in Section (5-6). Several 

arsenic samples are prepared using two types of distilled water; the first is the normal 

distilled water, the second distilled water subjected to a magnetization cycle for 14 

hours. Both sample sets were derivitized using NaBH4 as a reducing agent, followed by 

an atomization stage in the DBD atomizer. No clear differences were observed in the 

recorded arsenic signal when comparing the results from both categories; nevertheless, 

an increase in signal intensity up to 6% was observed for samples prepared from the 

magnetized distilled water and stimulated by injecting 1.25% m/v TGA, as shown in 

Figure (6-6). Hence, it is expected that better signal intensities could be obtained when 

applying optimized sample magnetization conditions.   

 

 

 
 

Figure  6-6  the effect of sample magnetization on the recorded arsenic signals; 
The signals (rectified for hydrogen effect) are recorded upon injecting several 
concentrations of arsenic with addition of (1.25% m/v) thioglycolic acid while using 1.3 
(M) HCl and1.5% (m/v) NaBH4.  
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6.2.2        Tin determination 

A study was conducted to explore the optimum derivatization conditions (NaBH4 and 

HCl concentrations) for Sn hydride generation using 105 ml/min argon and 150 Watt 

power in all experiments. Table (6-5) shows the experiments to conduct the 

optimization study according to a second order central composite rotatable design, in 

which 100 µg/L tin was in the examined sample. Concentrations are confined in the 

ranges 0.5-2% m/v for NaBH4 and 0.5-1.5 M for HCl. 10 ml of both the acidified 

sample and the reducing agent are injected in all experiments. The experimental system 

was represented by a quadratic multivariable model; hence, a multiple stepwise 

regression analysis was performed by using the algorithm shown in Appendix 11.3 to 

estimate the polynomial coefficients. The following empirical model is produced for the 

Tin system with an estimated average absolute error of 5.9 %: 

 
   ³ = 400.693zS + 19.54z' + 22.871z	 + 18.872z'	 	+ 6.125z		 − 7.25z'z	   

   
                                                                                                                 (6-2) 
 
 
Table  6-5  the tin experiments according to the 2nd order central composite rotatable 
design plan; 
The table shows the recorded intensities (rectified for hydrogen effect) for 100 (µg/L) 
tin observed in the range (326.03 – 326.4 nm) 
 

Exp.     HCl  (M)  NaBH4  (% m/v)    Intensity   
No.                ___________               _____________                  

Real Code  Real Code  (a.u.)   
  Value (x1)  Value (x2)    

1  0.75 -1  0.875 -1  410    
2  1.25 +1  0.875 -1   456   
3  0.75 -1  1.625 +1  487    
4  1.25 +1  1.625 +1  504   
5  0.5 -1.414  1.25 0  367   
6  1.5 +1.414  1.25 0  433   
7  1 0  0.5 -1.414  354   
8  1 0  2.0 +1.414  395   
9  1 0  1.25 0  402   
10  1 0  1.25 0  396   
11  1 0  1.25 0  407   
12  1 0  1.25 0  400   
13  1 0  1.25 0  398   
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The optimal conditions giving the highest Sn signal, obtained by performing a non-

linear constrained optimization (Appendix 11.4) are found to be (x1 = +0.669 & x2 = -

0.5285) 1.42 M HCl and 1.45% m/v NaBH4 respectively. 

The effect of changing the concentrations of NaBH4 and HCl on the signal intensity was 

studied individually for the examined ranges; the results are shown in Figures (6-7) and 

(6-8).  

 

Figure  6-7  tin signals recorded when applying different NaBH4 concentrations; 
The signals (rectified for hydrogen effect) are for 100 (µg/L) tin and constant HCl 
concentration (1.4 M). 
 

 
Figure  6-8 tin signals recorded when applying different HCl concentrations; 
The signals (rectified for hydrogen effect) are for 100 (µg/L) tin and constant NaBH4 
concentration (1.5% m/v). 
 
Increasing the concentration of NaBH4 above 1.6% m/v reduces the signal intensity, 

(attributed to the increase hydrogen generation). Increasing HCl concentration is also 

advantageous up to 1.3 M, after which there is a decrease in the signal. Accordingly, the 
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optimal derivatization conditions were corrected to 1.3 M HCl and 1.5% m/v NaBH4 

respectively. These optimized conditions resemble the derivatization conditions found 

for arsenic, which is advantageous for achieving simultaneous detection. 

The analytical figures of merit are estimated for the tin system by spiking a blank 

solution into the system and measuring the intensity. The blank experiments were 

repeated eight times and the standard deviation calculated. The calibration plot thus 

constructed is shown in Figure (6-9). 

 

 
Figure  6-9  a calibration graph generated for tin experimentation; 
The signals (rectified for hydrogen effect) recorded upon spiking several tin 
concentrations applying 1.3 (M) HCl and 1.5% (m/v) NaBH4. 
  

 

The estimated figures of merit show that 2.13 (µg/L) LOD and 1.29 % RSD are 

achieved by adopting the proposed analytical system. No clear standard limits shown in 

the literature for inorganic tin; however the main adverse effects of tin on humans 

occurs if the absorbed limit exceeds 150 mg/Kg (WHO, 2008). Thus the achieved 

detection limits are quite reasonable. As mentioned in chapter two, inorganic tin was 

derivitized in previous studies without a pre-reducing agent. Thioglycolic acid (TGA 

1.25% m/v) was investigated in this study as a pre-reducing agent to explore the effect 

on signal intensity. The results show 11%  higher signal intensities are obtained for tin 

when applying TGA (Figure (6-10)).  
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Figure  6-10  the recorded signals for tin with and without applying TGA (1.25% m/v); 
The signals (rectified for hydrogen effect) recorded upon spiking several concentrations 
of tin and applying 1.3 (M) HCl and1.5% (m/v) NaBH4. 
 
 
 

6.2.3        Cadmium determination 

As reported in Section (2.5.2), no certain mechanisms are given in the literature for the 

generation of cadmium volatile species. Most likely, the reaction of cadmium with 

hydroborates in acidic medium results in the formation of cadmium hydride (CdH2), 

which rapidly decomposes to a free cadmium atom (Cd0) at room temperature (Li et al., 

2004).  

Since cadmium derivatization by applying Sncl2 scheme failed, as reported elsewhere, 

NaBH4 was selected for Cd reduction in this research. It is worth noting that the 

literature shows various derivatization conditions for cadmium represented by higher 

hydroborate concentrations and lower concentrations of HCl compared with other 

analytes (e.g. 3.5% m/v hydroborates and 0.6 M HCl (Li et al., 2004), 4.0% m/v and 0.4 

M HCl (y Temprano et al., 1993)). 

In order to determine the optimal derivatization conditions, an optimization study based 

on a second order central composite rotatable design plan was conducted, through 

which the concentrations of NaBH4 and HCl are investigated while applying 105 

ml/min argon and 150 W power in all experiments. The experimental plan is shown in 

Table (6-6).  
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Table  6-6  the cadmium experiments according to the 2nd order central composite 
rotatable design plan; 
The table shows the recorded intensities (rectified for hydrogen effect) for 100 (µg/L) 
cadmium observed in the range (226.38 – 226.76 nm) 
Exp.     HCl  (M)  NaBH4  (% m/v)    Intensity   
No.                ___________               _____________                  

Real Code  Real Code  (a.u.)   
  Value (x1)  Value (x2)    

1  0.75 -1  0.875 -1  322    
2  1.25 +1  0.875 -1   309   
3  0.75 -1  1.625 +1  367    
4  1.25 +1  1.625 +1  353   
5  0.5 -1.414  1.25 0  358   
6  1.5 +1.414  1.25 0  341   
7  1 0  0.5 -1.414  276   
8  1 0  2.0 +1.414  317   
9  1 0  1.25 0  327   
10  1 0  1.25 0  331   
11  1 0  1.25 0  325   
12  1 0  1.25 0  330   
13  1 0  1.25 0  326   

 

The experimental system is represented by a multiple quadratic multivariable model and 

the following empirical model is generated for the examined cadmium system with an 

estimated average absolute error of 1.6%. 

 

³ = 327.878zS − 6.379z' + 18.371z	 + 14.47z'	 − 12.021z		 − 0.25z'z	      

 

                                                                                                                                                                        (6-3) 
 
 

The optimal conditions for cadmium derivatization are estimated by applying a non-

linear constrained optimization. The optimal values are found to be (x1 = -0.7751 & x2 = 

-0.5013) 1.2 M HCl and 1.44 % m/v NaBH4. 

Further investigations explored the effect of NaBH4 and HCl concentrations on the 

cadmium signal. An increase of NaBH4 concentration up to 1.6% m/v increases the 

signal intensity while higher concentrations (2%) of NaBH4 results in a decrease,  

(Figure (6-11)). In a similar pattern, increases in the value of HCl concentrations over 

1.2 M leads to a decrease in the signal intensity, (Figure (6-12)).  
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Figure  6-11 the recorded cadmium signals when applying different NaBH4 

concentrations; 
The signals (rectified for hydrogen effect) recorded upon spiking 100 (µg/L) cadmium 
at several NaBH4 concentrations while keeping constant HCl (1.2 M). 
 
 

 
 

Figure  6-12  the recorded cadmium signals when applying different HCl concentrations; 
The signals (rectified for hydrogen effect) recorded upon spiking 100 (µg/L) cadmium 
at several HCl concentrations while keeping constant NaBH4 (1.5 % m/v). 
 

 

The analytical figures of merit are estimated for the cadmium system by spiking a blank 

solution into the system and measuring the intensity. The blank experiments were 

repeated eight times and the standard deviation calculated. Figure (6-13) illustrates the 

calibration plot for different concentrations of cadmium. 
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Figure  6-13 a calibration graph generated for cadmium; 
The signals (rectified for hydrogen effect) recorded upon spiking several cadmium 
concentrations and applying 1.2 (M) HCl and 1.5% (m/v) NaBH4. 
 
 
The estimated figures of merit are 4.56 (µg/L) LOD and 1.37% RSD. The estimated 

LOD for cadmium is higher than the acceptable limit of cadmium in drinking water, (3 

µg/L) shown in Table (1-2); therefore an attempt was made to improve the detection 

limits by applying further assisting agents as described below. 

Practically, the kinetics of cadmium vapour species generation is developed by applying 

supporting agents such as organized surfactants (e.g. didodecyldimethylammonium 

bromide (DDAB) vesicles) which is reported capable of creating a special 

microenvironment for reactions at the molecular level and altering the chemical 

equilibrium, the reaction rates and other important chemical features (y Temprano et al., 

1993). Sodium iodate (NaIO3), applied in the work of (Li et al., 2004), enhanced the 

efficiency of cadmium vapour species generation. NaIO3 acts as a consumer for a part 

of the hydroborates present in the system, which results in lowering the hydrogen 

generation rate. Moreover, NaIO3 assists the reaction between the generated cadmium 

hydride CdH2 and ionic or atomic halogen to form stable and volatile multi halogen 

complexes of cadmium. 

Thus, another experimental set was conducted to examine the effect of adding NaIO3 to 

the cadmium sample. A solution of 5% m/v NaIO3 was prepared by dissolving suitable 

amount of sodium iodate in distilled water. The selected concentration is based on the 

work of (Li et al., 2004) who reported a massive enhancement in detection limits 
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because of  NaIO3. Figure (6-14) shows an increase (10.5 – 16.5%) in the cadmium 

signal intensity upon adding 1 ml NaIO3 to the sample. 

The LOD with NaIO3 is estimated to be 3.8 (µg/L), which is slightly higher than the 

accepted limit in drinking water; however, a lower detection limits is expected when 

using an optimized concentration of sodium iodate. 

Other experiments were conducted to explore the combined effect of thioglycolic acid 

and sodium iodate.  100 µg/L Cd was stimulated by the addition of 0.5 ml each of TGA 

(1.25% m/v) and NaIO3 (5% m/v). The increase in signal intensity is about 14%. This 

indicates that both agents react together without any side effects or interferences. This 

finding emphasizes the possibility of mixing two assisting agents which is essential for 

simultaneous detection of multi elements. 

 

 

Figure  6-14  the recorded signals of cadmium with and without applying NaIO3; 

The signals (rectified for hydrogen effect) recorded upon spiking several 
concentrations of cadmium while applying 1.2 (M) HCl and1.5% (m/v) NaBH4   
 
 

6.2.4        Lead determination 

It is reported that the Lead hydride PbH4 (Plumbane), is difficult to generate. Thus, 

Plumbane has been rarely studied due to the low yield and stability. PbH4 is known to 

be generated from the (IV) oxidation state (i.e. Pb (IV)), therefore Lead that exists in a 

lower oxidation state (e.g. Pb (II)) must be oxidized before applying the reduction stage 
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to form the hydride. Many researchers report that Pb (II) can be oxidized by several 

oxidizing agents; potassium ferricyanide (K3 Fe (CN)6) being the most efficient.  

The first step is to find the applicable wavelength for the standard solution. A Lead 

atomic absorption standard (1 g/L) was used to prepare the Lead standard and other 

working solutions using distilled water and stepwise dilution. The Lead emission lines 

are observed at 405.783 and 261.418 nm in the work of (Heisterkamp and Adams, 1999) 

and at 220.35 and 217.0 nm (Chen et al., 1995) and (Rapsomanikis et al., 1986) 

respectively.  

In this study, only one emission line, in the range 220.31- 220.69 nm was observed; 

however, with low intensity. Accordingly, 5% m/v (K3 Fe (CN)6) was applied as an 

oxidizing agent to enhance the signal intensity. No information could be found in the 

literature regarding the reaction rate, therefore the oxidizing agent was added to the 

sample 15 minutes before applying the derivatization reaction to give enough time. 

Using the oxidizing agent resulted in 20% increase in the Lead signal intensity as well 

as the appearance of another signal at 217 nm, but with low intensity, which was not 

taken into consideration for Lead identification in later experiments. Based on the above 

results, the emission line in the range (220.31- 220.69 nm) has been adopted to identify 

Lead in all related experiments in this research.   

An optimization study was conducted using an argon flow rate of 105 ml/min and 

applied power of 150 Watt throughout the experiments, while applying different NaBH4 

and HCl concentrations. The experimental plan is illustrated in Table (6-7), in which 10 

ml of acidified sample and reducing agent as well as 0.25 ml of the oxidizing agent (at 

5% m/v) are applied in all the experiments. 

The experimental system is represented by a multiple quadratic multivariable model and 

the following empirical model is generated to describe the Lead system with an 

estimated average absolute error of 0.88%. 

 ³ = 280.47zS + 5.246z' + 28.855z	 + 4.118z'	 + 9.86z		 + 3.25z'z	           
 
                                                                                                                 (6-4) 
 
 
The optimal conditions for Pb reduction are estimated by applying non-linear 

constrained optimization; the optimal coded values are found to be (x1 = -0.5886 and x2 

= -0.7793) 1.15 M HCl and 1.54 % m/v NaBH4 respectively. 
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In order to validate the estimated optimized values, a parallel study was conducted to 

investigate the effect of increasing NaBH4 and HCl concentrations on the Lead signal 

intensity. The results are shown in Figures (6-15) and (6-16) and indicate that both 

parameters act positively to enhance the Lead signal intensity.  

 

 

Table  6-7  the Lead experiments according to the 2nd order central composite rotatable 
design plan; 
The table shows the recorded intensities (rectified for hydrogen effect) for 100 (µg/L) 
Lead observed in the range (220.31 – 220.69 nm) 
Exp.     HCl  (M)  NaBH4  (% m/v)    Intensity   
No.                ___________               _____________                  

Real Code  Real Code  (a.u.)   
  Value (x1)  Value (x2)    

1  0.75 -1  0.875 -1  267    
2  1.25 +1  0.875 -1   273   
3  0.75 -1  1.625 +1  313    
4  1.25 +1  1.625 +1  332   
5  0.5 -1.414  1.25 0  281   
6  1.5 +1.414  1.25 0  293   
7  1 0  0.5 -1.414  254   
8  1 0  2.0 +1.414  243   
9  1 0  1.25 0  284   
10  1 0  1.25 0  282   
11  1 0  1.25 0  279   
12  1 0  1.25 0  277   
13  1 0  1.25 0  280   

 

 

 
 

Figure  6-15  the recorded Lead signals when applying different NaBH4 concentrations; 
The signals (rectified for hydrogen effect) recorded upon spiking 100 (µg/L) Lead at 
several NaBH4 concentrations while keeping constant HCl (1.15 M). 
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Figure  6-16  the recorded Lead signals when applying different HCl concentrations; 
The signals (rectified for hydrogen effect) recorded upon spiking 100 (µg/L) Lead at 
several HCl concentrations while keeping constant NaBH4 (1.54% m/v). 
 
The analytical figures of merit were estimated for the Lead system by spiking a blank 

solution into the system and measuring the intensity. The experiments were repeated 

eight times and the standard deviation calculated. The calibration plot for different 

concentrations of Lead is shown in Figure (6-17). The LOD and RSD for the Lead 

system are found to be 2.67 (µg/L) and 1.0 % respectively. In Table (1-2), the accepted 

limit of Lead in drinking water is 10 (µg/L), which indicates a reasonable precision for 

inorganic Lead detection is achieved by using the proposed technology. 

 
 

Figure  6-17  calibration graph generated for Lead; 
The signals (rectified for hydrogen effect) recorded upon spiking several Lead 
concentrations and applying 1.15 (M) HCl and 1.54 % (m/v) NaBH4 
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6.2.5        Determination of transition metals 

A transition metal is defined as an element having atoms with an incomplete D-sub-

shell.  It is well known that analysis using the hydride generation technique suffers 

interferences due to the presence of transition metals in the examined sample. This 

interference is either after the transition metals are reduced to metals or after being 

converted to metal borides (Sturgeon et al., 1996). In both cases this leads to scavenging 

of the analyte or effects on decomposition before phase separation. The effect from 

transition metals on suppressing the signal of the targeted analyte is more significant 

than that from other metals. For example, (Pohl and Zyrnicki, 2001) reported that a 

disturbance in the arsenic signal occurs due to cadmium interference if the Cd to As 

concentration ratio is higher than 100. The interferences can mislead spectrometric 

analysis especially when close spectral lines are used for discrimination (e.g. As (I) at 

228.812 nm and Cd (I) at 228.802 nm).   

This section is dedicated to the detection of some transition metals (Cr, Cu, Ni, and Zn) 

by applying the proposed system and using NaBH4 as a reducing agent.  

General derivatization conditions (0.8 M HCl, 2% m/v NaBH4, 105 ml/min argon and 

150 watt power) were applied to determine the emission lines applicable for the tested 

elements. Atomic absorption standards (1 g/L) of each (Cu, Ni, Zn, and Cr), purchased 

from Sigma Aldrich, were used to prepare standard solutions and working solutions 

using distilled water and stepwise dilution. The emission lines are shown in Table (6-1). 

All signals appeared without using assisting chemicals; i.e. oxidizing or pre-reducing 

agents.                

 Further individual optimization studies were conducted to explore the effect of varying 

the concentrations of NaBH4 and HCl on the signals. The parameters are examined in 

the ranges 0.5 to 1.5 M HCL and 0.5 to 2% m/v NaBH4. The experimental plans, Table 

(6-8), were designed according to a second order central composite rotatable design, in 

which a 100 (µg/L) of the examined analytes are spiked into acidified samples. 10 ml of 

both the acidified sample and the reducing agent were injected in all experiments. 
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Table  6-8  transition element experiments according to the 2nd order central composite 
rotatable design plan; 
The table shows the recorded intensities (rectified for hydrogen effect) upon spiking 100 
(µg/L) of each Cu, Ni, Zn, and Cr  
Exp.    HCl  (M)  NaBH4  (% m/v)    Recorded intensities (a.u.) for the exam. analytes 
No.  ___________               _____________   _______________________________________
                        

Real Code  Real Code  Cu  Ni  Zn  Cr  
 Value (x1)  Value (x2)       
 

1 0.75 -1  0.875 -1  385 314 304 319       
2 1.25 +1  0.875 -1   397 327 325 332  
3 0.75 -1  1.625 +1  427 364 372 394 
4 1.25 +1  1.625 +1  442 388 398 419 
5 0.5 -1.414  1.25 0  403 329 348 373 
6 1.5 +1.414  1.25 0  413 338 362 388 
7 1 0  0.5 -1.414  367 296 286 297 
8 1 0  2.0 +1.414  431 368 377 407 
9 1 0  1.25 0  422 319 325 348 
10 1 0  1.25 0  426 322 321 345 
11 1 0  1.25 0  421 326 318 352 
12 1 0  1.25 0  427 315 323 341 
13 1 0  1.25 0  423 320 320 343 

 

 

The experimental systems are represented by quadratic multivariable models. The 

following empirical models are generated for the examined systems (Cu, Ni, Zn, and Cr 

respectively). The average absolute errors of the models are estimated to be 0.89 %, 

1.73 %, 0.94 %, and 0.72 % for Cu, Ni, Zn, and Cr respectively. 

 ³ = 423.897zS + 5.142z' + 22.187z	 − 5.667z'	 − 10.166z		 + 0.75z'z	  

 

                                                                                                                 (6-5) 
 ³ = 320.480zS + 6.215z' + 26.601z	 + 10.359z'	 + 9.609z		 + 2.75z'z	     
 
                                                                                                                 (6-6) 
 ³ = 321.482zS + 8.349z' + 33.709z	 + 18.355z'	 + 6.609z		 + 1.25z'z	          
 
                                                                                                                 (6-7) 
 ³ = 345.888zS + 7.401z' + 39.692z	 + 17.213z'	 + 2.967z		 + 3.0z'z	          
 
                                                                                                                 (6-8) 
 

The optimal derivatization parameters of the examined systems were estimated 

statistically to be in the range 1.21 – 1.39 M HCl and 1.47 – 1.71% m/v NaBH4. Hence, 



Chapter six      Application of the proposed technology for multi heavy metals determination  

207 
 

1.25 M HCl and 1.625% m/v NaBH4 were selected to calculate the analytical figures of 

merit. The procedure was accomplished by spiking a blank solution into the system and 

measuring the intensity. The blank experiments were repeated eight times and the 

standard deviation calculated.  

The following equations are obtained for the calibration plots of the examined analytes 

(Cu, Ni, Zn, Cr) respectively: 

 

                          ³ = 2.642	z + 209.9, �	 = 0.937                                     (6-9) 
 

 
                                   ³ = 1.948	z + 190.9, �	 = 0.995                                   (6-10) 

 
 

                                  ³ = 2.052	z + 191.7, �	 = 0.994                                    (6-11) 
                         
 

                               ³ = 2.242	z + 195.5, �	 = 0.993                                   (6-12) 
 
 

The estimated coefficient of determination (R2) for copper is found to be slightly lower 

than the other transition metals. The reason could be a slight deviation from linearity 

after injecting 70 µg/L.   

The figures of merit are 3.03 µg/L LOD and 1.55% RSD for copper, 6.04 µg/L LOD 

and 2.19% RSD for nickel, 4.08 µg/L LOD and 1.54% RSD for zinc, as well as 6.02 

µg/L LOD and 2.52% RSD for chromium. According to the standard acceptable limits 

in drinking water, shown in Table (1-2), the estimated detection limits for all the 

examined transition metals indicate very reasonable precision is achieved by using the 

proposed technology. 

Figures (6-18) and (6-19) show the recorded signals with different concentrations of 

HCl and NaBH4. The results show that all transition metals are positively affected by 

increasing the reducing agent concentration up to 1.625% m/v. Further increases lead to 

a reduction in signal intensity, probably because of larger amounts of hydrogen 

generated in the system and the accompanying alkaline mist. On the other hand, signal 

intensities increased with increasing acidity of the sample even when using the top 

value in the range (1.5 M HCl). 
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Figure  6-18  the recorded signals for the examined transition metals when applying 
different NaBH4 concentrations; 
The signals (rectified for hydrogen effect) recorded upon spiking 100 (µg/L) of each of 
the examined elements at several NaBH4 concentrations while keeping constant HCl 
concentration (1.25 M). 
 

 
 

Figure  6-19 the recorded signals for transition metals when applying different HCl 

concentrations; 
The signals (rectified for hydrogen effect) recorded upon spiking 100 (µg/L) of each of 
the examined elements at several HCl concentrations while keeping constant NaBH4 
concentration (1.625% m/v). 
 
 
Further experimental investigations were conducted to explore interference effects of 

transition metals on other elements. Separate experiments were conducted for each of 



Chapter six      Application of the proposed technology for multi heavy metals determination  

209 
 

the examined analytes. A mixture of the transition metals (Cu, Ni, Zn, and Cr), (200 

µg/L of each), was spiked with 100 (µg/L) of each of the tested elements (Hg, As, Sn, 

Cd, and Pb). A solution was prepared by adding (1ml) of this mixture to (5 ml) acidified 

solution (1.25 M HCl) followed by the addition of extra distilled water to form a 10 (ml) 

solution. The prepared solutions were injected in individual experiments with 10 (ml) of 

reducing agent (1.625% m/v NaBH4) and the signals monitored.  

The results of all examined elements (Hg, As, Sn, Cd, and Pb), (Figure (6-20)), show 

no more than 5% signal suppression due to interferences from the transition metals. 

This indicates the possibility of conducting simultaneous detection without significant 

disturbances. 

 

 

Figure  6-20  the effect of interferences from transition metals on the recorded signals of 
the hydride forming elements; 
The signals are recorded upon spiking 100 (µg/L) of the examined element into the 
transition metal mixture and applying 1.625% m/v NaBH4 and 1.25 M HCl. 

 

6.3  The simultaneous detection of multi heavy metals 

This section is dedicated to investigate the simultaneous detection of the examined 

group of heavy metals. The aim is to find the optimal derivatization conditions for the 

highest signals intensities. Particularly, the efficiency of the chemical vapour generation 

(CVG) process is reported to be very sensitive to variations in experimental conditions. 

(Matoušek, 2007) reported a 1% change in experimental conditions could lead to a 10% 

change in signal intensity if the CVG efficiency does not exceed 10%. According to 
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this, the chemical vapour generation process for a mixture containing multi heavy 

metals is expected to be a non-uniform process, which requires a lot of care to decide 

the optimal conditions. Although the general derivatization conditions (0.8 M HCl and 

2.0% m/v NaBH4) produces signals for all the examined elements; the intensities vary.  

Hence, it is important to match optimal derivatization conditions to the individual 

studies for each examined element. Table (6-9) shows the optimal values for the 

reduction of the examined elements, at an argon flow rate at 105 ml/min and power of 

150 Watt. 

 

Table  6-9 summary of the optimal derivatization conditions – individual studies  

Examined element  Wavelength (nm) HCl (M) NaBH4(% m/v)  
Hg    253.58   0.12   0.4 

As    228.65-229.03  1.3   1.5 

Sn    326.03-326.40  1.3   1.5 

Cd    226.38-226.76  1.2   1.44 

Pb    220.31-220.69  1.15   1.54 

Cu    324.55-324.92  1.28   1.46  

Ni    231.30-231.68  1.39   1.54 

Zn    213.86   1.22   1.71 

Cr     267.49-267.87  1.25   1.63 

 
Preliminary experiments for detecting the elements simultaneously were conducted for a 

mixture of three elements (cadmium, copper, and tin), selected because of various 

derivatization conditions, Table (6-9), and to examine the possibility of detecting two 

hydride forming elements in presence of a transition element. The elements were 

examined at three levels (100, 50, 10 µg/L) using pre-reducing agents (0.25 ml TGA, 

and 0.25 ml NaIO3) and applying 1.2 M HCl and 1.5% m/v NaBH4. The recorded signal 

to background (i.e. the signal due to the hydrogen magnification) ratios are shown in 

Figure (6-21). 

Practically, the simultaneous detection of the full group of nine elements is not an easy 

task due to the difficulty of selecting the optimum derivatization conditions that covers 

the ranges (0.12 – 1.39 M HCl and 0.4 – 1.71% m/v NaBH4). Hence, another 

experimental plan was applied according to the details shown in Table (6-10). The 

examined samples in all experiments consisted of a mixture of nine analytes, (100 µg/L 

of each). The data set composed 13 experiments and for each the signal to the 



Chapter six      Application of the proposed technology for multi heavy metals determination  

211 
 

background (i.e. the signal due to the hydrogen effect) ratio (SBR) for all analytes was 

determined.  

 
 

Figure  6-21  the recorded signal to the background ratio for three analytes examined 
simultaneously; 
Different concentrations of the examined analytes (Cd, Cu, and Sn) were examined by 
applying 1.2 M HCl and 1.5% m/v NaBH4 
 

Although clear signals were recorded for all the examined analytes, no clear 

interpretation can be drawn due to large variations in the recorded intensities. Thus, a 

principal component analysis (PCA) technique, Appendix 11.9, was applied in order to 

classify the responses of the analytes with changes in the derivatization conditions.  

The results of the PCA analysis (Figure (6-22)) indicate two groups and an outlier (Hg). 

 

(A) 
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(B) 

 
 

Figure  6-22  the loading plots produced upon applying PCA analysis;  
(A) is the loading plot obtained upon applying the plan shown in Table (6-10), (B) is 
the loading plot obtained upon applying the plan shown in Table (6-11) 
 

 PCA1 (an eigenvector with highest eigenvalue) was selected to compare the results 

from this analysis because it represents more than 90% of the total variance.  It can be 

observed in Figure (6-22/A) that the responses of group 2 highly correlates to changes 

in the derivatizations conditions with respect to PCA1 values lower than zero. It is also 

clear that the analytes in group 1 are correlated with regard to PCA1 values greater than 

zero.  

Although sensible correlations and small differences between the scores of group 1 and 

2 are observed, the score of the outlier (Hg) is uncorrelated to the groups. Hence, the 

tested experimental ranges are concluded to be invalid to cover the examined elements 

for simultaneous detection.  

Better performance of the system can be achieved if the differences in the scores of all 

examined elements are lower. Therefore another experimental plan with compressed 

ranges, (1 – 1.4 M HCl and 1.2 – 1.7% m/v NaBH4), was performed.  The plan with the 

recorded SBR is illustrated in Table (6-11), while the loading plot is shown in Figure 

(6-22/B).  
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Table  6-10  the simultaneous detection of nine elements injected at 100 µg/L – the first optimization plan 

 
Exp.  HCl    NaBH4                       SBR 
No. _________________ ___________________ _____________________________________________________
 Real  Code  Real  Code   Hg As Sn Cd Pb Cu Ni Zn Cr  
 value  value  value  value    
 (M)  (x1)  (% m/v) (x2) 
 
1 0.44  -1  0.73  -1   3.956 1.810 2.378 1.745 1.854 2.081 1.697 1.643 1.724  
2 1.1  +1  0.73  -1   4.048 1.837 2.410 1.767 1.875 2.145 1.767 1.756 1.794 
3 0.44  -1  1.4  +1   3.632 1.875 2.454 1.789 1.897 2.308 1.967 2.010 2.129 
4 1.1  +1  1.4  +1   3.745 1.935 2.518 1.816 1.929 2.389 2.097 2.151 2.264 
5 0.12  -1.414  1.05  0   4.140 1.816 2.291 1.670 1.854 2.178 1.778 1.881 2.016 
6 1.39  +1.414    1.05  0   3.972 1.875 2.475 1.762 1.875 2.232 1.827 1.956 2.097 
7 0.75  0  0.4  -1.414   4.102 1.816 2.162 1.713 1.843 1.983 1.600 1.545 1.605  
8 0.75  0  1.71  +1.414   3.572 1.805 2.216 1.691 1.864 2.329 1.989 2.037 2.200 
9 0.75  0  1.05  0   4.010 1.827 2.270 1.751 1.875 2.281 1.724 1.756 1.881  
10 0.75  0  1.05  0   3.935 1.848 2.302 1.735 1.864 2.302 1.740 1.735 1.864 
11 0.75  0  1.05  0   3.989 1.859 2.259 1.756 1.875 2.275 1.762 1.718 1.902 
12 0.75  0  1.05  0   3.913 1.816 2.313 1.713 1.886 2.308 1.702 1.745 1.843 
13 0.75  0  1.05  0   3.951 1.827 2.281 1.745 1.864 2.286 1.729 1.729 1.854 
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Table  6-11  the simultaneous detection of nine elements injected at 100 µg/L – the second optimization plan 

 

Exp.  HCl    NaBH4                       SBR 
No. _________________ _________________ ________________________________________________________
 Real  Code  Real  Code   Hg As Sn Cd Pb Cu Ni Zn Cr  
 value  value  value  value    
 (M)  (x1)  (% m/v) (x2) 
 
1 1.1  -1  1.33  -1   2.661 2.171 2.640 1.930 2.005 2.122 1.917 1.939 1.931  
2 1.3  +1  1.33  -1   2.725 2.206 2.676 1.950 2.028 2.188 1.997 2.072 2.009 
3 1.1  -1  1.6  +1   2.445 2.253 2.724 1.979 2.050 2.354 2.223 2.372 2.385 
4 1.3  +1  1.6  +1   2.521 2.323 2.796 2.012 2.084 2.436 2.369 2.538 2.536 
5 1.0  -1.414  1.46  0   2.790 2.183 2.544 1.847 2.005 2.221 2.009 2.219 2.258 
6 1.4  +1.414     1.46  0   2.640 2.253 2.748 1.946 2.028 2.277 2.064 2.308 2.348 
7 1.2  0  1.2  -1.414   2.760 2.183 2.400 1.897 1.994 2.023 1.808 1.824 1.798  
8 1.2  0  1.71  +1.414   2.400 2.171 2.460 1.872 2.016 2.376 2.247 2.404 2.464 
9 1.2  0  1.46  0   2.700 2.195 2.520 1.938 2.028 2.326 1.948 2.072 2.106  
10 1.2  0  1.46  0   2.640 2.218 2.556 1.921 2.016 2.348 1.966 2.047 2.088 
11 1.2  0  1.46  0   2.680 2.230 2.508 1.946 2.028 2.321 1.991 2.028 2.131 
12 1.2  0  1.46  0   2.630 2.183 2.568 1.897 2.039 2.354 1.924 2.060 2.064 
13 1.2  0  1.46  0   2.661 2.195 2.532 1.930 2.016 2.332 1.954 2.040 2.076 
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The (Hg) score in the second optimization plan is 20% lower, whilst As and Sn 

increased by the same percentage (20%). Other analytes show lower responses to the 

modified optimization plan.  

In conclusion, the second optimization plan, conducted with compressed experimental 

ranges, resulted in higher SBR for all analytes except Hg; nonetheless, the system 

performance becomes better as a general outcome. 

When detecting nine elements simultaneously, the recorded SBR for some elements 

reduces to significant levels. This is obvious when applying low concentrations of the 

examined elements, and could be attributed to interferences leading to masking the 

signal from some elements. Figure (6-23) illustrates the recorded SBR for nine 

elements examined at three levels (100, 50, and 10 µg/L).  

 

 

Figure  6-23  the signal to background ratios (SBR) recorded for nine elements examined 
simultaneously; 
The elements examined at three concentration levels by applying (1.2 M HCl) and (1.46 
% m/v NaBH4)  

 

Figure (6-24) shows a strip chart of the nine elements detected simultaneously at 10 

(µg/L) with aid of oxidizing and pre-reducing agents (a mixture composed 0f 0.25 ml of 

K3Fe(CN)6 , 0.25 ml TGA, and 0.25 ml NaIO3).  

 



Chapter six      Application of the proposed technology for multi heavy metals determination           

216 
 

 
 

Figure  6-24  a strip chart for nine elements examined simultaneously;  
The elements were injected at 10 (µg/L) and reduced by applying (1.2 M HCl) and (1.46 
% m/v NaBH4); from the top: black, Sn; pink, Cu; blue, Cr; dark blue, Hg; red, As; 
olive, Ni; green, Cd; brown, Pb; grey, Zn; violet, reference line  
 

6.4 The quantitative determination of some heavy metals 

The aim of this section is to determine some of the examined metals quantitatively via 

the absorption spectrometry technique. A conclusion drawn from the simulation results 

(Section (3.6.2)) is that there is no necessity to apply the full spectral length (8 cm) 

especially when recombination reactions could occur and lead to a reduction in the 

signal intensity. Hence, a new miniaturized DBD atomizer, illustrated in Figure (6-25), 

was designed and fabricated with the same basis but with a 2 cm length for the electrode 

overlapping section and a shorter spectral path length (3.5 cm) to conduct quantitative 

determination of selected elements. In order to conduct multi element quantitative 

determination, the application of a general light source in the range of UV/Visible 

region is more practical for miniaturization purposes compared to using a hollow 

cathode light source for each element. As a first try, a deuterium light source (D2- 

World precision company) with a spectral range (185-400 nm) was tested in the new 

miniaturized DBD chip. 
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Figure  6-25  a picture shows the miniaturized DBD chip (spectral path length = 3.5 cm) 

 

Even with 3.5 cm spectral path length, the light source intensity was found to be 

insufficient. It was observed that reduction occurs especially in the UV region, as 

illustrated in Figure (6-26). This indicates that the D2 light source is not appropriate. A 

high power UV/visible light source (model number L10290, Hamamatsu photonics K. 

K. – Japan) with a spectral range 200 – 1600 nm was tested in the new chip. It can be 

observed in Figure (6-27) that the light intensity increased considerably in the region > 

300 nm when applying only 100 msec integration time. Although a lower intensity is 

observed in the region < 300 nm, it was concluded that the high power light source is 

suitable for the quantitative analysis since the integration time is set at 700 msec, as 

concluded in Section (4.4.2).  

 

(A) 

 

(B) 

 
 

Figure  6-26  the recorded spectrum of D2 light source before and after passing the 
atomization channel; 
(A) the spectrum recorded at zero path length with 310 msec integration time and zero 
Boxcar width, (B) the spectrum recorded at the end of the atomization channel (path 
length = 3.5 cm) with 5000 msec integration time and a value of 2 for the Boxcar width.  
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Figure  6-27  the spectrum recorded when applying a high power UV/visible light source 
through the spectral path in the new DBD atomizer; 
It should be noted that only the deuterium lamp is switched on and the applied 
integration time was 100 msec. 

 
Preliminary experiments, were conducted with the new DBD atomizer to characterize 

the recorded spectrum and to check whether the performance is similar to the previous 

DBD atomizer. Similar derivatization conditions (1.2 M HCl and 1.46 % m/v NaBH4) 

were adopted. The recorded signals are shown in Figure (6-28).  

 
 

Figure  6-28  a strip chart recorded for nine elements examined simultaneously in the 
miniaturized DBD chip with 3.5 cm spectral path length; 
The elements injected at 10 (µg/L) and examined by applying (1.2 M HCl) and (1.46 % 
m/v NaBH4); from the top: pink, Cu; black, Sn; dark blue, Hg; blue, Cr; grey, Zn; 
violet, reference; olive, Ni; red, As; green, Cd; brown, Pb  
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As can be observed in Figures (6-24) and (6-28), slight changes in the signal intensities 

are recorded for some elements in the new chip. The shorter atomization channel and 

spectral path length of the new chip probably eliminates or reduces the opportunity for 

recombination reactions; and the signals are produced with slight increases in intensity. 

This result is compatible with Section (3.6.2). 

The higher signal intensity may lead to better discrimination between signals when 

conducting quantitative analysis. Accordingly, all the experiments in this section and 

later experiments undertaken in this research were conducted using the new 

miniaturized DBD atomizer.  

The molecular absorption coefficient was re-assessed for the elements tested by the 

miniaturized new chip. The first experiment was conducted by injecting 100 (µg/L) Hg 

(II) through the hydroborate scheme. The absorbance is 0.588, as shown in Figure (6-

29).  

 

 

Figure  6-29  a strip chart shows the recorded absorbance for mercury sample; 
A water sample containing 100 (µg/L) Hg (II) is reduced by applying 0.12 M HCl, 0.4 
% m/v NaBH4 and examined using the miniaturized DBD atomizer/Hollow cathode 
mercury light source.  
 
 
The linear dependency obtained in Figure (6-30) enables the estimation of the molar 

absorption coefficient from the slope (~	 × �), and is found equal to 28.5×104 L/mol/cm. 
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Figure  6-30 measured absorbance corresponding to the injected Hg (II) concentrations;  
The samples were examined by using the miniaturized new DBD atomizer (3.5 cm 
spectral path length) and applying 0.12 M HCl, 0.4 % m/v NaBH4 for mercury 
reduction. 

 
The developed system was used to conduct quantitative determination of As, Sn, and Cu 

individually by applying HG scheme and utilizing the high power UV/visible light 

source. These elements were selected as they include hydride forming elements as well 

as a transition element. Due to the existence of a considerable amount of hydrogen and 

alkaline mist in the system as well as the nature of the light source, a negative 

absorbance was produced, which is found to be anomalous. The reason is the criteria 

applied through SpectraSuite software, represented by equation (5-12) - Section (5.5). 

As previously described, the hydrogen magnifies the signal into values larger than the 

reference. In consequence, a negative sign is produced for the estimated absorbance; 

however, if the negative sign in equation (5-12) is removed then a positive absorbance 

should be produced.  

Following the same procedures applied for the qualitative analysis, the absorbance for 

the examined analyte was determined in two steps. In the first step, an acidified water 

sample, spiked with the examined analyte is injected, whereas only acidified water (with 

no analyte) is injected in the second step, or vice versa. The aforementioned steps are 

conducted in parallel with injection of a NaBH4 stream. The difference between the 

recorded absorbance is proportional to the examined analyte. The recorded signals are 

stored as data files to conduct data analysis. The absorbance of 10 µg/L arsenic is 0.013 

as illustrated in Figure (6-31). 



Chapter six      Application of the proposed technology for multi heavy metals determination           

221 
 

 
 

Figure  6-31  a strip chart recorded for the arsenic absorbance signal; 
The signal recorded upon injecting 10 µg/L arsenic at 1.3 M HCl and 1.5% m/v NaBH4. 
The difference between the recorded signals (0.013) is proportional to the amount of 
analyte injected. 

 
Calibration graphs for the analytes are produced by conducting the same experimental 

procedures described earlier for mercury determination. The graphs are shown in 

Figure (6-32), and accordingly the molar absorption coefficients are estimated to be 5.9 

104, 18.9 104, and 9.8 104 (L/mol/cm) for As, Sn, and Cu respectively.  

The measured concentrations through the examined system are compared with the real 

injected values; hence, the average absolute error of the estimate is found to be 11.81%, 

9.51%, and 10.38 % for As, Sn, and Cu respectively. The estimated errors are in the 

same order as that determined for the Hg (II) system, and can be attributed to the 

accuracy of the step wise dilution procedures.   

 
 

Figure  6-32  the calibration graphs of As, Sn, and Cu generated upon applying 1.3 M 

HCl and 1.5% m/v NaBH4. 
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6.5 Summary of the findings from chapter six 

1- Individual studies were conducted to examine eight elements using the hydride 

generation scheme, in which a second order central composite rotatable design plan 

composed of 13 experiments was accomplished for each of the examined analytes. 

Empirical models were produced for the examined systems and the coefficients 

estimated by applying a multiple regression analysis. Optimal derivatization conditions 

(concentrations of NaBH4 and HCl) were determined by applying constrained 

optimization technique. 

2- As stated in chapter five, hydrogen generation in the system results in disruption of 

the recorded signals. Therefore extra work was applied to rectify the signals for the 

hydrogen magnification effect.  

3- Nine elements could be detected simultaneously with the highest signal intensities 

obtained by applying an extended optimization plan based on a principal component 

analysis (PCA). The results of PCA analysis identify the best derivatization conditions 

that apply for all the examined elements. 

4- In order to overcome the recombination reactions that may occur in a DBD atomizer, 

a miniaturized chip with a shorter atomization channel and spectral path length (3.5 cm) 

was tested. Consequently, a quantitative determination of three elements was 

accomplished with an average error of 10%. 
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7.    A FULLY INTEGRATED SYSTEM 

BASED ON MULTI DBD STAGES 
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7.1 Preface 

In this chapter, a miniaturized fully integrated system is designed and tested for heavy 

metals detection and determination based on applying several DBD atomization stages. 

The proposed system aims to implement the full analysis procedures, starting from the 

sample pre-treatment in the first DBD atomization stage and ending with spectrometric 

analysis in the last DBD atomizer. Other stages based on plasma effects (e.g. UV 

radiation) or other effects such as subjecting the sample to ultrasound irradiation or a 

combination of these effects are utilized. The aim is to facilitate the fragmentation of the 

examined compounds and release their vapour species especially when the sample 

contains complex forms (e.g. biological). Considerable work has been accomplished to 

study the pre-treatment of samples containing biological and organic species. Finally, 

real samples of mineralized natural water and digested sludge taken from a wastewater 

treatment plant are examined to assess the system performance.  

 

7.2  Analytical system based on multi DBD atomization stages 

It is well known that electron kinetic energy can be effectively converted to an 

ultraviolet irradiation in a DBD cell, which can be utilized to achieve analyte reduction 

through a photochemical vapour generation (PVG) process. In principle, the mechanism 

of PVG assumes that analyte ions convert to their volatile species with the aid of strong 

reducing radicals (e.g. H* or CO*). These radicals, considered to be very reactive 

species, could be generated from the photochemical-decomposition of low molecular 

weight (LMW) organic compounds (e.g. formic or acetic acid). The unique features of 

DBD plasma has been recently utilized in the field of analyte photochemical reduction, 

as reported by (Wu et al., 2011, Liu et al., 2011) who generated the vapour species of 

inorganic and organic mercury by applying LMW organic acids and recently (Wu et al., 

2012) who determine thiomersal in vaccines. Photo-chemical vapour generation is also 

applicable to other hydride forming elements and transition elements by applying 

different UV light sources (Bendl et al., 2006, Zheng et al., 2010a, Zheng et al., 2009). 

Practically, PVG retains most advantages of traditional cold vapour generation 

techniques as well as extra features such as lower cost, simpler reaction mechanisms 

and greener method with non-toxic disposals. Generally speaking, the efficiency of the 
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PVG technique is found to be lower than other techniques (e.g. Hydride generation) 

(Zheng et al., 2010a); nonetheless, some elements (e.g. Pb, Cd) were critically reduced 

with better results when applying PVG compared with the traditional HG.  The 

responses of different examined analytes to PVG reduction are found to be widely 

dependent on parameters such as the type and concentration of the organic acid as well 

as the irradiation period. Basically, the reduction of the elemental ions into their 

corresponding volatile species occurs when radicals are created in the reaction bulk. 

Hence, a sufficient concentration of organic acid leads to sufficient radical formation; 

however, excessive organic acid might reduce efficiency, probably, due to radical 

recombination reactions which consequently lead to the formation of new organic 

compounds.   

The main objective of this part of the research is to produce a customized version of a 

fully integrated system based on utilizing the DBD plasma effect in multiple stages for 

pre-treating the sample as well as conducting spectrometric analysis. Other objectives 

are to examine the photo-chemical reduction promoted with ultrasound irradiation as an 

alternative to the hydroborate scheme. 

In principle, it is reported that at least three steps are involved in the mechanism of the 

PVG process: (1) a reduction of the examined analyte into a lower oxidation state, 

which occurs with simultaneous generation of and attack by organic radicals, (2) 

formation of volatile compounds, (3) subsequent decomposition into various forms 

(Zheng et al., 2010a, Zheng et al., 2010c). 

A hypothesis is proposed in this research to show that the PVG mechanism may involve 

an initial decomposition of water or organic compounds to form reducing radicals in the 

examined sample solution with aid of both DBD discharge thermal and chemical effects 

as well as the effect from UV irradiation. The radicals react with the complex species in 

the sample to generate species with less complexity (molecules or atoms), which are 

dissociated in a later atomization stage to produce free atoms of the examined analyte. 

In the proposed technique, a water sample taken from a high level contamination source 

containing different complex species (inorganic and organic) is forwarded to the first 

atomization stages, where the complex species are dissociated into fragments. The 

stream from the first atomizer is forwarded into a gas liquid separator, in which the 

gaseous species are separated and transported into another atomizer with aid of a carrier 

gas (e.g. Argon). The gaseous molecule dissociates and atomizes in a second stage DBD 

atomizer to produce free atoms that can be detected by atomic spectroscopy.  The 
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geometry of the first stage DBD atomizers consist of an annular section formed between 

two glass cylinders kept in concentric configuration. The annular space between the two 

cylinders is utilized as a channel for the aqueous sample flow with spontaneous plasma 

generation. The interior cylinder is the inner dielectric barrier, which holds the inner 

electrode. The outer cylinder is the second dielectric layer, where the second electrode 

(ground) covers the outer surface. The second DBD atomizer is a rectangular 

configuration (3.5 cm spectral path length) which is already described and used in 

previous sections. 

7.3  Design of a cascade annular DBD atomizer   

A cascade annular DBD atomizer has been designed as illustrated in Figure (7-1).  

 

 

(A) 
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(B) 

 

(C) 

 
 

Figure  7-1  the details of a cascade annular DBD atomizer; 
(A) a schematic diagram illustrate the atomizer details,  (B) a picture for the streamers 
formed before introducing the liquid sample, (C) a picture shows the plasma formed in 
presence of the liquid sample (notice the reduction in the glow intensity) 

 

The main concept of this design is to utilize two atomization stages combined in series 

and separated by an interface in the centre, which is used to insert supporting gas. The 

application of the interface between the two atomization stages aims to avoid 

temperature increase which is an unfavourable effect, especially after long operation 

times (Zheng et al., 2010c). The temperature increase in the atomizer may lead to 

elevated water vapour pressure and consequently results in poor separation of the 

analyte vapour species from the accompanying water residues in the gas-liquid 

separator. The outer shell cylinder (10 mm ID, 12 mm OD) has been made of quartz 

glass to enable the spectrometric data acquisition in the UV region, whereas the inner 

cylinder is a simple glass test tube (6 mm ID, 7 mm OD).  It is worth noting that the 

inner glass tube, which houses the live electrode, has been wrapped with a metal strip 

(very fine diameter) to form a corrugated screw shape on the outer surface. The aim is 

to generate a thin film of the falling liquid along the electrode, which would result in 

several advantageous effects such as a rapid release of any generated species and 

efficient contact between the falling film and the UV irradiation; thereby minimizing the 

residence time required inside the atomizer and enhancing the separation of the 

generated vapour species. The outlet stream from the annular atomizer is connected to a 
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gas/liquid separator; from which the separated vapour species is transported with aid of 

a carrier gas into a rectangular DBD atomizer (with a 3.5 cm spectral path length ), 

illustrated in Figure (6-25), to achieve species atomization and their spectrometric data 

acquisition. 

Preliminary experiments were conducted to produce the current-voltage characteristic 

diagram of the examined annular DBD atomizer described in Figure (7-1). Steam 

plasma in which the voltage is increased gradually and the corresponding increase in 

current is recorded, generating the characteristic diagram shown in Figure (7-2). A 

sharp increase in voltage occurs in the first region (a) accompanied by a limited increase 

in the current, which resembles a Townsend regime that occurs prior to spark ignition. 

In the second region (b), a transition regime produced where a decrease in voltage is 

accompanied by a limited increase in current similar to the regime described in Figure 

(2-9). The parallel increase in the current and voltage in the third region (c) indicates 

disappearance of the normal glow discharge region and the direct appearance of 

abnormal glow discharge which has ended at the point (≈ 17 mA and 4kV). Further 

increase in the voltage might lead to arc formation; therefore it has been discontinued at 

the aforementioned value. It can be deduced that a minimum breakdown voltage of 3.5 

kV is required for steam plasma, which is lower than the MBV required for argon (3.8 

kV) in a rectangular configuration.  

 
 

Figure  7-2 the current voltage characteristics diagram of steam plasma generated in 
annular DBD atomizer. 
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7.4  Application of the annular cascade atomizers for the sample pre-

treatment 

Since the main objective of the whole system is to analyse real samples collected from 

different water sources, it is essential to pre-treat the sample to remove any possible 

biological or other contaminants. In this section, the feasibility of utilizing DBD plasma 

for sample pre-treatment through the cascade annular atomizers prior detection by 

atomic spectroscopy is investigated. The aim is to explore the pre-treatment efficiency 

for two possible contaminants, biological and organic. Accordingly, two types of 

artificial water samples were prepared individually by spiking specific concentrations of 

E.coli bacteria as a biological contaminant and acetic acid, phenol, and isopropyl 

alcohol as organic contaminants in distilled water. The details of preparing the 

examined samples are described in Appendix 11.10. Two experimental sets were 

conducted, the first applying one cascade atomizer whereas two cascade atomizers 

linked in series are adopted in the second experimental set to attain longer irradiation 

times for the sample (Figure (7-3)). A peristaltic pump with a feed rate (2.8 ml/min) 

was used to inject the liquid sample into a tee junction (3 mm ID). A supporting gas 

(dried air at 20 ml/min) is also injected through the T-junction in order to generate 

air/water plasma in the top section of the cascade atomizer, which gives rise to active 

species and radical formation in the system. In other experiments, argon (35 ml/min) is 

also injected into the system from the centre interface in addition to the main air stream. 

The resulting liquid/gas mixture is directed from the T-junction through Tygon tubing 

(3 mm ID, 30 cm length) into the first cascade atomizer, in which there is approximately 

5 seconds for the sample irradiation. In the case of two cascade atomizers, the outlet 

stream from the first atomizer is directed into the top section of the second atomizer, 

and the total irradiation period in both atomizers is estimated to be approximately 15 

seconds. Some experiments were conducted by re-circulating the sample through a 

single and two DBD atomization stages for different periods; this is to deduce the 

enhancement in treatment efficiency. The air and argon gas flow rates are controlled 

manually by using gas flow meters purchased from (BOC special products – UK). A 

high voltage power source from (Entwicklung Leistungselectronic – Germany) and 

USB 2000 spectrometer integrated with Spectra Suite software from Ocean Optics are 

were used. 
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Figure  7-3  a process flow diagram illustrates three DBD atomization stages utilized for 
the sample treatment and the analyte species vapour generation 

 

7.4.1         Treatment of biological samples - Ecoli 

The effect of the treatment strategy on the biological components of the wastewater is 

tested by subjecting pure cultures of E. coli grown in nutrient-rich medium, Luria broth, 

to viability tests after the treatment process. A semi-quantitative approach to viability 

testing based on batch growth curves, is undertaken in this study. As outlined in 

Appendix 11.10, the relative number of viable cells in the treated samples is defined by 

the length of the lag phase in a typical batch growth curve of E. coli , which means the 

length of the lag phase increases proportionally with the decrease in the concentration of 

viable cells. As a proof of concept, different starting concentrations of E. coli are 

subjected to batch growth. The results, Figure (7-4/A), demonstrate the increase in the 

lag phase with a decrease in the initial concentration, represented by the number of 

viable cells of E. coli. The effect of treatment time on the reduction in the number of 

viable cells is then determined. E.coli diluted to a starting concentration of 0.5 OD595 is 
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treated for different time intervals then subjected to batch growth. The increase in the 

length of the lag phase in the treated samples when compared to the untreated control 

(UTC) suggests a reduction in the viability of the cells after treatment; Figure (7-4/B). 

 

(A) 

 

(B) 

 

 

Figure  7-4 growth curves generated for E. coli grown in LB media; 
(A) several concentrations of E. coli (1, 0.5, 0.1, 0.01, and 0.001 OD595) grown at 
normal conditions (37 oC for 24 hours), (B) UTC (two samples) indicates untreated E. 

coli samples (at 0.5 OD595 concentration) grown at normal conditions, while T5, T10, 
and T20 refers to a 0.5 OD595 E. coli samples treated for 5, 10, and 20 minutes 
respectively and then grown at normal conditions   
 
 
The results shown in Figure (7-4/B) suggest that the efficiency of the treatment, 

demonstrated by the reduction of viable cells number, increases in a time dependent 

manner with 20 minutes resulting in the greatest reduction of viable cells. Two separate 

replicates from different starting cultures (biological replicates) were setup for the UTC 

to determine the magnitude of biological variation in the batch growth of E. coli. 

Although the viability of E. coli reduces significantly after plasma treatment, it was 

questionable whether the reduction occurs due to the effects on the live cells or nutrient 

deterioration (e.g. Peptone in the culture medium).  In this sense, two separate 

experiments were conducted, in which the effect of treatment conditions on the nutrients 

in the culture medium was investigated by monitoring the growth of E. coli in LB 

subject to different treatment times, the results are shown in Figure (7-5).  
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(A) (B) 

 
(C) 

 

 
 
Figure  7-5  growth curves 0.5 OD595 E. coli inoculated in untreated and treated LB 
medias; 
(A) 5 minutes, (B) 10 minutes, and (C) 20 minutes 
 
 
The progressive reduction in the ability of E. coli to grow in LB medium treated for 

increasing periods of time suggest that the treatment indeed targeted the nutrients in the 

culture medium. Therefore, the effect of the treatment conditions on the viability of E. 

coli was further investigated by using a viable plate count assay.  As outlined in 

Appendix 11.10, a 0.5OD595 suspension of E. coli in sterile distilled water is subjected 

to treatment for different periods. Viable plate counts were made of the treated samples 

and compared to that of the untreated control. The results show that the treatment is 

effective against E. coli and significantly reduces the number of viable cells, from 

approximately 5 × 107 cells in the untreated control to approximately 5 × 104 cells (3 

orders of magnitude) after only 5 minutes of treatment, as shown in Figure (7-6).  
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Figure  7-6  the number of viable cells counted before and after treatment for samples 

contain (0.5 OD595) E.coli 

 

The treated samples are visualised under a light microscope, where an extensive lysis of 

cells was seen (irregular shapes) with no change in the structure of the intact cells, 

Figure (7-7). 

 
 

Figure  7-7 a picture shows E. coli after treatment for 25 minutes; 
the unaffected cells appears either circular or cylindrical, while the lysed cells form 
irregular shapes  
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It can be observed that a further reduction in the number of viable cells occurs after 10 

minutes but not below the order of 104, obtaining approximately same results for other 

treatment periods (15, 20, and 25 minutes). Hence, 10 minutes has been selected as an 

optimal time period for treating real water samples, as described in Section (7.7).  

Taken together, the results of the above experiments demonstrate the efficiency of the 

DBD plasma treatment not only in reducing the number of viable E. coli in the samples 

but also in the treatment of organic components in the nutrient medium. Generally 

speaking, applying streamer discharges in the liquid phase results in several effects such 

as inducing highly energetic electrons and producing chemically active species as well 

as UV radiation and shock waves. These effects are able to decompose practically any 

kind of compound and result in water disinfection.  Plasma discharge may cause direct 

effects from electron collisions or other effects caused by molecular, ionic or radical 

species such as the pyrolysis and photolysis reactions. On the other hand, the 

mechanism of biological cell degradation due to application of an electrical field is 

attributed to the phenomenon called electromechanical compression. Applying a 

sufficient electrical field could result in creation of pores in the membrane, which 

consequently causes a disruption of its biological structure. If the ratio of the total pores 

to the total membrane area becomes significant, the membrane will not be able to repair 

the disruption and such effects (e.g. electroporation or electrofusion) might be formed. 

Other studies report that an electrical field could result in either local action due to the 

chemical reactions in plasma bulk or non local action due to the UV radiation and shock 

waves (Locke et al., 2006). It is worth noting that UV radiation in the range of (200-400 

nm) may induce organism mutation (i.e. mutagenic effects), whereas the shock waves in 

the range (5 – 20 kBar) could lead to deform the structure of the cell. The shock waves 

could be formed due to the effect of electrohydraulic discharge when a plasma channel 

is rapidly expanded leading to different radical reactions. In this regard, two kinds of 

radical reactions are distinguished in the literature and attributed to the electrohydraulic 

cavitations phenomenon; namely pyrolytic reactions and indirect free radicals reactions. 

The interaction between the aforementioned effects consequently leads to deactivate the 

microorganisms and dissociate the organic compounds in the contaminated sample of 

water. Thus, the reduction in bacteria activity could be attributed to well known 

treatment mechanisms such as live cell destruction which occurs due to the electrical 

field (electroporation), the species produced in the plasma bulk (e.g. O3, H2O2, OH
*
 , 

H
*), the thermal effects as well as UV radiation.  



Chapter seven                               A fully integrated system based on multi DBD stages 

235 
 

The temperature of the re-circulated solution through the DBD atomizer is measured 

outside the plasma bulk and found to be about 40 oC after 20 minutes circulation, which 

indicates limited thermal effects.     

OH species are clearly observed in the spectrum collected from the annular DBD 

atomizer, (Figure (7-8)), especially in the band (302 to 317 nm) which is characterized 

as OH molecular emission lines (Zhu et al., 2008a).  

 

 
Figure  7-8  the recorded signals for OH species (302 to 317 nm) in the first cascade 
annular atomizer when applying water plasma, (water + air) plasma and (water + air + 
argon) plasma;  

The OH signal becomes more intense when argon gas is injected with water and air; 
moreover, molecular H2 at 588 nm is also observed when combining water, air and 
argon. 
 

The signal at 309 nm has been attributed to OH in the relaxation state (A		 ∑ 	�	 (v = 0) →
	x	Π	(v = 0) (Shih and Locke, 2010), whereas the signal at 317 nm is related to OH in 

the excited state. The OH species could result from: 1) a dissociative recombination of 
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hydronium ions (H3O
+) with electrons in plasma bulk to form OH. The hydronium ion 

is normally formed when an abundance of hydrogen is available in the bulk of water, 2) 

another perspective postulates that a high voltage electrical discharge in the gas phase 

above the water surface or in the water itself, also known as electrohydraulic discharge, 

is able to produce many species such as molecular oxygen and hydrogen, hydrogen 

peroxide, hydroperoxyl, hydroxyl, and other radicals (Locke et al., 2006). In presence of 

air or oxygen, ozone could be produced in the bulk of water that subjected to high 

voltage discharge; however, we could not detect any ozone species in the current 

system.  

A mechanism is postulated for the plasma reactions in the annular DBD atomizer, 

shown as follows (Fridman, 2008, Aleksandrov et al., 2007, Avtaeva et al., 2010): 
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7.4.2         Treatment of artificial organic samples 

The mechanism for organic contaminant degradation in wastewater is attributed to 

hydroxyl radical attack on the organic molecules which results in fragmenting the 

double bond long chain molecules, forming single bond molecules or even dissociating 

the molecules. Some investigations on phenol degradation by electrohydraulic discharge 

show that the mechanism to be hydroxyl radical and ozone under oxygen or argon 

environments. It is reported that phenol degradation by hydroxyl radicals produces 

primary products (e.g. catechol and hydroquinone) which react with other hydroxyl 

radicals to form high molecular weight organic acids (e.g. fumuric acid). The organic 

acids are then oxidized in the same reaction series to form lower molecular weight 

organic acids (e.g. formic acid).  

A general illustration for the degradation of organics in presence of electrohydraulic 

discharge is described as follows (Locke et al., 2006): 

� Radical formation:  H2O → H + OH 
 

� Radical – molecule reaction: OH + organic → products 
 

� Photochemical reactions:  O2 + organic → products 
 
� Electron – molecule:  eaq

-
 + H2O2 → OH + OH

- 
 

� Fenton’s reaction:   Fe
2+

 + H2O2 → OH + OH
-
 + Fe

3+ 
 

� Ozone – molecule:  O3 + organic → products 
 

� Aqueous electron reactions:  eaq
-
 + organic → products 

 

The experimental investigations on organic fragmentation, using annular cascade DBD 

atomizers were for samples of phenol and isopropyl alcohol whose absorbance was 

measured at 283 nm and 204 nm. The wavelengths are selected based on a wave scan 

method, where the wavelength with highest intensity is adopted for the examined 

sample. The treatment of the solutions results in great differences in the measured 

absorbance before and after treatment; for instance the measured absorbance reduced 

from 0.038 to 0.003 for a solution composed of 1.0 portion of alcohol / 11.0 portion of 

water after 10 minutes treatment. The concentration/absorbance calibration graph could 

not be produced for the examined chemicals due to non-sensible changes in the 

measured absorbance. Therefore the results related for those chemicals (phenol and 



Chapter seven                               A fully integrated system based on multi DBD stages 

238 
 

isopropyl alcohol) are excluded from the discussion. As an alternative samples with 

different concentrations of acetic acid have been used. The samples are treated by 

applying one and two annular cascade DBD atomizers. The samples before and after 

treatment are assessed using three methods: 1) titration with 0.1 M NaOH, 2) interfacial 

tension measurement, and 3) absorbance measuremed at 241.0 nm. The results are 

shown in Figure (7-9) which shows a proportional reduction in the quantity of NaOH 

equivalent volume from that required for titration, in accordance with treatment time. 

The result in Figure (7-9/A) shows a 50% reduction in acetic acid concentration (for a 

sample contains 0.57 acetic acid / 1.0 water) after 10 minutes treatment. Other proof of 

acetic acid dissociation is the increase in the interfacial tension, up to 14%, which 

occurs after treating the sample containing 1.2 acetic acid / 1.0 water, (Figure (7-9/B)). 

Only one result, considered anomalous, is related to the increase of sample absorbance 

after treatment, (Figure (7-9/C)). This result could be attributed to the formation of 

other species due to acetic acid dissociation, which has increased by up to 14% for a 

sample containing 0.57 acetic acid / 1.0 water.  

 

 

(A) 
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(B) 

 
 

(C) 

 
 
Figure  7-9  treatment of different concentrations of acetic acid by using one cascade 
DBD atomizer; 
(A) the titration results by using 0.1 M NaOH, (B) the measured interfacial tension 
before and after treatment, (C) the measured absorbance at 241 nm before and after 
treatment 
 

An increase in the absorbance after treatment by DBD plasma was observed by (Chen et 

al. 2009) and (Ognier et al. 2009), who attributed this to an increase in the derivative 

concentration that formed due to the dissociation of compound bonds (organic dye and 

enzymatic assay respectively).   

In the current research the efficiency of treatment increases with an increase in the 

applied power and treating period. Increased efficiency is proportional to an increase in 

the sample absorbance; therefore sample absorbance has been used for comparison 

between the examined cases (Figure (7-10)). The absorbance in case number 5 slightly 
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increased over the absorbance measured when treating the sample for 10 minutes in one 

atomizer, (Figure (7-9/C)). The results show that power and irradiation time are key 

factors for better acetic acid determination through the cascade atomizers. Comparing 

the increase in absorbance, obtained from cases 5 and 6 in Figure (7-10), it can be seen 

that two cascade atomizers result in better treatment efficiency even than when applying 

a higher power rate with a single atomizer. Although the treatment scheme has 

combined many factors, it could be interpreted that longer contact time with UV 

radiation is more effective than other parameters.  

The decomposition in case number 2 is in agreement with the results of (Ognier et al. 

2009) who achieved 5% acetic acid decomposition by applying higher energy density 

(5.6×106 J/L) in a falling film gas – liquid DBD reactor. The removal efficiencies 

reported were in the order (1-heptanol > ethanol > phenol > acetic acid). 

 
 

Figure  7-10  the measured absorbance before and after treatment by applying one and 
two cascade DBD atomizers for samples contain (0.57 acetic acid / 1.0 water); 
Case number and description, the value given (%) refers to the decomposition occurred 
in the acetic acid: 
(1) before treatment  
(2) passing through one atomizer at 150 Watt (30 mA × 5 kV)  →  input energy density 
in one pass (power/sample flow rate) = 3.2×106  J/L  which led to 4.1%. 
(3) passing through two atomizers at 150 Watt which led to 8.0%. 
(4) circulation for 5 minutes through one atomizer at 150 Watt which led to 11.5%.  
(5) circulation for 5 minutes through two atomizers at 150 Watt which led to 17.8%.  
(6) circulation for 5 minutes through one atomizer at 175 Watt (35 mA × 5 kV)  →  
input energy density in one pass = 3.8×106  J/L  which led to 14.8%. 
(7) circulation for 5 minutes through two atomizers at 175 Watt which led to 20.6%. 
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7.5  Application of the annular cascade atomizers for analyte photo-

chemical reduction 

This section is devoted to the performance of annular cascade DBD atomizers for 

carrying out photo chemical reduction as alternative to traditional derivatization 

techniques used in previous chapters.  Two analytical grade organic acids, acetic acid 

(CH3COOH, 99.8% - from BDH) and formic acid (HCOOH, 88% - from Fisher 

Biotech) were used to prepare several concentrations (10%, 20%, 30%, 40% and 50% 

v/v) of acidic solution using distilled water. Preliminary experiments were conducted 

for mercury photo-chemical vapour generation, in which a range of Hg (II) (10 – 100 

µg/L) was tested using both acid solutions and applying one and two cascade 

atomization stages. The annular atomizers are integrated with a rectangular DBD 

atomizer, Figure (6-25), for species atomization and spectrometric data acquisition. The 

quantitative determination of mercury is conducted according to the same procedures 

described earlier, using a mercury hollow cathode light source (F-O-Lite) and a gas-

liquid separator (GLS-A) of 350 ml volume. The results are shown in Figure (7-11).  

 

 

Figure  7-11  the effect of increasing the acidic concentration on the recorded signal to 
background ratio at 150 watt applied power. 
 

No significant signals for mercury were obtained when using 10% of either organic acid 

and 20% of acetic acid, whereas clear signals were observed when using 30% of either 

organic acid. An increase to 40% does not show any increase in the recorded mercury 

signal, whereas a reduction in signal intensity was observed when using 50% 
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concentration of either organic acid. This reduction in the intensity could be attributed 

to a re-oxidation of mercury species, which consequently results in reduced generation 

efficiency (Zheng et al., 2010b).  

It is concluded that 30% of either organic acid is the optimal concentration. Formic acid 

results in better signal intensity. This result has also been reported in the work of (Wu et 

al., 2011) and is attributed to a decrease in the dissociation efficiency of the organic 

compound, in DBD plasma bulk, with increase in the length of the carbon chain.  

A concentration of acetic acid over 30% v/v results in a disruption in the recorded 

spectrum as shown in Figure (7-12), whereas spectral stability is observed for all 

examined concentrations of formic acid.  

 

(A) (B) 

(C) 

 

 

Figure  7-12  strip charts illustrate the effect of acetic acid on the recorded spectrums 
without applying light source; 
(A) the recorded spectrum upon injecting a sample of water, (B) the recorded spectrum 
upon injecting a sample of water spiked with 50% v/v acetic acid, (C) a strip chart 
recorded for 253.58 nm line (no mercury injected) illustrates the signal depression due 
to the effect of 50% v/v acetic acid. 
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The disturbance occurring due to acetic acid does not resemble the disturbance observed 

due to the hydrogen and alkaline mist effects in the case of HG scheme. It can be 

observed, in Figure (7-12/ B-C), that all peaks were significantly disturbed and some 

peaks totally disappeared. This effect could result from an unknown species generated 

due to the degradation of acetic acid. The unknown species depressed the signal of 

nitrogen and other species in the spectral range (280-400 nm) and affected the signal 

intensity in the NIR spectral region. Consequently, the sensitivity study directed the 

author to apply PVG for As, Sn, and Cu by using only formic acid. 

The molar absorption coefficient of mercury in this experimental set is re-assessed 

taking into consideration a shorter spectral path length, 3.5 cm. The linear dependency 

of the recorded absorbance on the mercury concentration, Figure (7-13), justified the 

estimation of the molar absorption coefficient from the slope (~	 × �), which is found 

equal to 23.8×104 L/mol/cm. 

 

Figure  7-13  the measured absorbance relative to the injected concentration of mercury 
when applying PVG;  
A photo-chemical reduction of inorganic mercury conducted in a single annular cascade 
DBD atomizer by applying 30% formic acid and utilizing DBD atomizer with 3.5 cm 
spectral path length. 
   
Another PVG experimental set was conducted to investigate As, Sn, and Cu while  

applying several concentrations of formic acid (20 – 50 % v/v). The results are shown in 

Figure (7-14) which indicates 40% v/v is the optimal concentration. In comparison to 

the signals recorded previously from the HG scheme, the As signal has a lower 

intensity, whereas Sn signals are higher. No trusted signal was observed for Cu even 

when applying 50 % v/v formic acid. 
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Figure  7-14  the effect of applying different concentrations of formic acid on the analyte 
absorbance recorded upon injecting100 µg/L of the examined elements at 150 watt 
power, 105 ml/min argon flow rate and two cascade DBD atomizers. 

 

The signal recorded when injecting 100 µg/L of tin impregnated with 40 % v/v of 

formic acid is shown in Figure (7-15).  

(A) 

 

(B) 

 

 
Figure  7-15  the photo-chemical reduction for a sample contains 100 µg/L tin; 
The sample has been impregnated with 40% v/v formic acid and injected through two 
cascade DBD atomizers at 150 watt power; (A) a strip chart illustrates the recorded 
signal (B) the estimated concentration by applying 18.9 × 104 (L/mol/cm) molecular 
absorption coefficient. 



Chapter seven                               A fully integrated system based on multi DBD stages 

245 
 

It can be observed in Figure (7-15) that the estimated concentration based on applying 

the molecular absorption coefficient related to HG scheme results in a 20% error, which 

clearly indicates that a correction is required. The corrected molecular absorption 

coefficients for tin and arsenic are 21.5 × 104 and 6.3 × 104 (L/mol/cm) respectively.  

According to the data, the estimated analytical figures of merit 3.6 (µg/L) LOD and 

3.72% RSD for mercury, 5.73 (µg/L) LOD and 1.87% RSD for arsenic, as well as 3.27 

(µg/L) LOD and 2.47% RSD for tin. The achieved detection limits are higher than those 

obtained from the HG technique but within the accepted limits in drinking water, shown 

in Table (1-2). 

 
 

7.6  Application of photo-chemical derivatization technique promoted 

with ultrasonic irradiation 

As mentioned in Section (2.4.3), it is hypothesized that UV radiation could be coupled 

with the ultrasonic irradiation for an integrated effect, which could be utilized to 

conduct both sample pre-treatment and analyte reduction.  This section is devoted to test 

this hypothesis and to explore whether the proposed technique is applicable for 

derivatization of several elements. A sonic water bath (VWR ultrasonic cleaner, 45 kHz 

and 80 watt) was utilized to induce ultrasonic irradiation. The sample is injected 

through a peristaltic pump (2.8 ml/min) to the cascade annular DBD atomizer and to the 

later stages as described in Section (7-5). A water sample containing (50 µg/L) Hg (II) 

was examined in the first instance, where the ultrasonic irradiation has been induced in 

parallel with injecting the sample to the DBD atomizer. The measured absorbance of the 

sample increased 22% upon being subjected to the coupled effects compared with effect 

from only UV radiation, (Figure (7-16)). 

No enhancement was observed on the signals of 100 µg/L tin, arsenic, and copper upon 

coupling the aforementioned techniques. A clear amelioration on the absorbance signals 

of arsenic (by 2%) and tin (by 4.5%) was found when applying sonic irradiation for 15 

minutes, whereas no signal is observed for copper even when applying longer periods. 
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Figure  7-16  a strip chart illustrates two derivatization schemes for a water sample 
contains 50 µg/L Hg (II); 
The first three peaks shows the signal recorded when applying the photo-chemical 
reduction of mercury through one annular cascade DBD atomizer at 150 Watt. The 
fourth peak shows the signal recorded upon emerging the sonic effect on the examined 
sample, which consequently magnifies the measured absorbance from 0.296 to 0.361. 
 
 
The results could not be considered valuable for adoption in the final version of the 

integrated system. It is believed that, to induce considerable effects, the sonic effect 

must be inserted directly inside the sample. Practically, an online sonic effect could be 

implemented by utilizing miniaturized sonic probes inserted along the sample flow path 

before reaching the DBD atomizer.  

 

 

7.7 Application of the proposed technology for the analysis of real water 

samples  

A sample of drinking water (bottled natural mineral water – UK) has been tested to 

verify the measurements through the proposed techniques. Table (7-1) illustrates the 

values injected and recovered when applying SnCl2, HG, and PVG schemes. 
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Table  7-1  the analytical results of a drinking water sample by applying three 
derivatization schemes (SnCl2 , HG and PVG – two stages) 

Analyte Amount Added  Found          Recovery 
  detected µg/L  µg/L               % 
   µg/L   SnCl2 HG PVG  SnCl2 HG PVG   
 
Hg (II)  NIL  10 9.1 9.3 8.8  91 93 88 
 
As   NIL  10 -- 8.6 8.3  -- 86 83 
 
Sn  NIL  10 -- 9.1 8.7  -- 91 87 
 
Cu  >100  -- -- >100 --  -- -- -- 
 
 
It can be observed in Table (7.1) that the estimated copper concentration in the 

examined sample exceeds the limits of the workable range in the current study (100 

µg/L). The reason can be attributed to interferences with unknown species which 

consequently lead to considerable fluctuations in the recorded spectrum, (Figure (7-

17)). The determination of copper was repeated three times; one run showed a 

concentration of 66 µg/L (Absorbance = 0.265), whereas two runs showed copper 

concentrations exceeding 100 µg/L (Absorbance = 0.532, 0.57).  In order to validate the 

measurements, the mineralized water sample has been analyzed via ICP-MS (Kroto 

research institute – The University of Sheffield). The results showed that traces of Hg 

(0.1 µg/L), As (0.4 µg/L), Sn (2.04 µg/L), and Cu (1.8 µg/L) are detected which are 

found below the detection limits of the proposed DBD system in this study. The results 

also show high concentrations of Ca (19392.8 µg/L), Mg (4291 µg/L), Fe (48.1 µg/L), 

Ba (40.3 µg/L), Sr (99.8 µg/L) and traces of other metals. The existence of other 

elements in the water sample results in interferences with the copper signal, (324.55 - 

324.92 nm). Although Mg is known to be less active for chemical vapour generation 

procedures (Matousek, 2007), the interferences most likely resulted from Mg (IV & VI), 

which is normally detected at spectral lines (324.253, 324.655, and 324.79 nm). 

Further experiments were conducted by spiking the mineralized water sample with 100 

µg/L copper and measuring the concentration via three techniques. Upon applying the 

HG technique in the DBD system, an absorbance of 0.653 is detected. The increased 

absorbance of copper indicates that the selected wavelength for copper determination is 

applicable for the test but interferes with other species in the sample, i.e. Mg. 
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(A) 

 

(B) 

 

 

 

 

Figure  7-17  copper determination in the mineralized natural water sample; 
a molecular absorption coefficient equal to 9.5 × 104 (L/mol/cm) has been applied  
 
 
 
A similar result is obtained when testing the spiked sample through ICP-MS, where a 

concentration of 121µg/L is determined.  Further determination of the spiked sample via 

ICP-OES (Chemistry department – The University of Sheffield) shows 17.2 µg/L Cu 

(measured at 324.75 nm) is detected in the sample. Lower concentrations are 

determined at other wavelengths (e.g. 7.7 µg/L at 219.2 nm). 

To sum up, the selection of appropriate wavelength for the examined analyte is crucial 

for the sensitivity of spectrometric analysis. 

Other experiments were conducted to analyse a real waste water sample (digested 

sludge). The pre- treatment scheme was applied by utilizing one cascade atomizer and 

circulating the sample for 10 minutes. The biological oxygen demand (BOD5) and the 

chemical oxygen demand (COD) were measured before and after treatment using 

reagents purchased from (Hach Lange - UK) and applying the protocol specified by the 

company, (Appendix 11.10). The results show a reduction of 30% and more than 70% 

in the values of COD and BOD5 respectively after plasma treatment. Figure (7-18) 

shows a picture taken for the samples before and after treatment. The colour of the 

treated sample changed from dark brown to whitish, which emphasizes the extensive 

treatment action achieved.    
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Figure  7-18  picture shows the digested sludge sample before treatment (UT) and after 
treatment (T); 
The measured parameters before and after treatment are 3.11 and 2.2 g/L for COD and 
550 mg/L and 150 mg/L for BOD5. 
 

 
The digested sludge sample has been analysed for mercury by applying the developed 

DBD system. No mercury signals were obtained from either untreated or treated 

samples. Hence, untreated samples were prepared by spiking 50 and 10µg/L Hg (II).  

These samples were examined with the SnCl2 scheme and the measured values were 44 

and 4.7 µg/L respectively. The absorbance was not stable, as shown in Figure (7-19). 

The fluctuation in the signal could have resulted from other species in the examined 

sludge sample, which might scavenge the mercury.  

 
 
Figure  7-19  a strip chart for a mercury signal recorded upon injecting 10 µg/L Hg (II) in 
a digested sludge sample (before treatment); 
According to the measured absorbance, 2.38×10-8 mol/L is estimated for the mercury 
concentration which is equivalent to 4.7 µg/L. 
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A similar experiment was conducted with a sample of treated digested sludge. The 

sample was been spiked with 50 µg/L Hg (II) and examined through the SnCl2 scheme. 

The signal was more stable with lower fluctuation, which indicates the treatment results 

in more stable performance.   

 

7.8 Summary of the findings from chapter seven 

1- A cascade annular DBD atomizer has been utilized for sample pre-treatment and 

photo chemical reduction of the analytes. 

2- Samples containing 0.5 OD595 E.coli grown in LB nutrient media and treated by 

circulating through the annular cascade DBD atomizer resulted in a reduction in viable 

cell number by three orders of magnitudes after only 5 minutes treatment.  

3- The treatment scheme is found to be very effective on artificial samples spiked with 

various organic compounds. A 50% reduction in acetic acid occurs after 10 minutes 

treatment. It is also observed that the UV radiation inside the bulk of DBD atomizer is 

more effective compared with the effects produced from other factors such as increasing 

the power exerted on the atomizer.  

4- The treatment scheme was also tested for the treatment of real wastewater (digested 

sludge); the results show a significant reduction in BOD5 and COD, by more than 70% 

and 30% respectively, occurs after treating the sample for 10 minutes.  

5- The application of several DBD atomizers for heavy metals determination was 

accomplished by coupling the annular DBD cascade atomizers with a final atomization 

stage based on a rectangular atomizer. The first stage atomizers were used for analyte 

photo chemical reduction, after which the generated vapour species were separated and 

carried to the final atomization stage for spectrometric analysis. Three out of four 

elements were measured by applying the aforementioned scheme with good accuracy. 

Efficiency was further increased by coupling online sonic irradiation. Since indirect and 

limited sonic irradiation is applied from a water bath, the enhancement in signal 

intensity is found to be valuable only in the case of mercury. Better results are obtained 

upon subjecting the sample to a longer irradiation period before introducing the sample 

to the cascade annular DBD atomizer. 

6- The application of the proposed scheme for mercury determination in real waste 

water samples proved to be useful, obtaining good determination. Nonetheless, 
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considerable fluctuations are observed in the recorded signal, attributed to interferences 

from other species in the untreated digested sludge sample. Lower fluctuations in the 

signal are observed after treating the sample, indicating that treatment ameliorates the 

system performance.     
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8.    A PROTOTYPE SYSTEM FOR HEAVY 

METALS DETERMINATION 
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8.1 Preface 

This part of work is to assess a prototype system for heavy metals determination. The 

description of the proposed integrated design is presented in two main sections. In the 

first section, a design for a separation stage coupled with cryogenic trapping is 

discussed. By applying the cryogenic separation coupled with the controlled heating, 

better separation is induced in the system. The second section is devoted to utilize a 

combination of magnetization and ultrasonic irradiation, which are imposed on the 

sample flowing through a channel toward the cascade DBD atomizers. Finally, a custom 

design model for a portable device is presented based on the suggested stages.   

 

8.2  Design, fabrication and test of the integrated cryogenic separation 

stage 

It is mentioned earlier (Section (2.5.10)) that cryogenic trapping with liquid nitrogen 

has been applied in several studies and aimed at separating different species based on 

their boiling points. An integrated separation process based on two stages; where a 

miniaturized gas liquid separator of type (A) is coupled with a second separation stage 

based on the concept of cryogenic trapping was designed. The separated vapour species 

with a carrier or other gases generated in the system (e.g. hydrogen), are transferred 

from the gas separator into another separation media surrounded by an extreme cooling 

agent (liquid nitrogen). The separation space in the cryogenic stage is occupied by an 

adsorbing media (Chromosorb G/AW-DMCS 45-60 mesh, purchased from Sigma 

Aldrich) used to capture the vapour species and the gases having a boiling point higher 

than liquid nitrogen (-196˚C). The captured species are released by gradual heating via a 

Tungsten coil inserted inside the adsorbing media. The heat is supplied by applying 

electrical pulses for selected periods. The Tungsten coil is connected to the power 

supply operated through a microcontroller (Arduino – Mega) and PC software. The 

gradual heating method was adopted in order to overcome thermal effects in the 

adsorbing media.  

Preliminary experiments were conducted using a custom made liquid nitrogen cold trap 

(3 litre), in which the examined stream is injected through a borosilicate glass U-tube 

(60 cm length and 6 mm ID) filled with the adsorbing media. The U-tube was immersed 
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in a Styrofoam container filled with liquid nitrogen and provided with a secure PTFE lid 

(Abdul-Majeed et al., 2012). The heat was induced sequentially by electrical pulses 

through an electric rope heater wrapped on the U-tube and controlled by the 

microcontroller. The experiments investigate the use of helium gas as a carrier for the 

released species when applying the sequential heating. Since helium boiling point (-

268.9˚C) is lower than that of liquid nitrogen, it passes through the U-tube directly 

without being trapped inside the bulk, provided that it is supplied with sufficient 

pressure. This step has been checked by recording the spectrum of helium plasma 

generated in a DBD atomizer. The results have shown that no change in the spectrum is 

observed before and after passing the cryogenic trap.  

Further experiments were conducted for a mixture of helium-water vapour directed 

from a gas liquid separator toward the cold trap. The helium plasma was not affected 

due to the presence of water vapour in the inlet stream, which means the water vapour 

has been detained inside the cold trap.  

Cryogenic trapping becomes more effective when hydrogen gas exists in the examined 

stream. Since the hydrogen boiling point (-252.87 °C) is lower than the liquid nitrogen, 

hydrogen is expected to pass through the U-tube while the accompanying vapour 

species is detained by the adsorbing media. After the hydrogen totally releases from the 

system, helium gas is injected into the cold trap while applying sequential heating in the 

same time; thereby the helium is carrying the released species gradually toward the 

plasma stage, based on their boiling points. Since the HG scheme is the most reliable 

scheme, integrated separation coupled with cryogenic trapping is believed to be the best 

way to overcome the hydrogen effect on the recorded spectrum mentioned in previous 

chapters. Moreover, the species of interest are distinguished based on their release time. 

Consequently, this technique offers the ability to discriminate between species of 

similar wavelengths.     

Further experiments were applied to explore the feasibility of cryogenic separation for a 

system working in accordance with HG scheme. These experiments generate the 

hydrogen by catalytic decomposition of NaBH4 using a cobalt catalyst in a small scale 

packed bed reaction column; (see Appendix 11.11). The generated hydrogen, with the 

accompanying residues of water vapour and alkaline mist, is forwarded to the U-tube 

liquid nitrogen cold trap. Hydrogen concentration is measured, before and after the cold 

trap. Although traces of water residues are found in the stream, utilization of the cold 
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trap leads to a reduction in water vapour and alkaline mist, and a consequent increase in  

hydrogen in the outlet stream. The encouraging results directed the author to design a 

prototype device based on coupling a gas-liquid separation stage with a cryogenic 

trapping (GLS-LNCT), as shown in Figure (8-1). The full details of the design are 

presented in Appendix 11.12. 

 

Figure  8-1  a picture shows the gas liquid separation stage coupled with cryogenic 
trapping, in one device, given a name (GLS-LNCT). 

 
In the pre-commissioning test, the cryogenic section was filled with 200 ml liquid 

nitrogen times and subjected to continuous heating through the Tungsten coil; it was 

observed that the liquid nitrogen run out in 8 – 10 minutes. Although this is enough time 

to implement at least one full test, it is still essential to increase the insulation efficiency 

to keep the liquid nitrogen for more time, especially when using the device for in-situ 

and online monitoring.  

In the first instance, the GLS-LNCT was tested after loading the Chromosorb material 

in order to optimize the gas stream pressure required to pass through a 6 cm packed 

layer. The first test was with helium without loading the liquid nitrogen or heating. The 

results show a gauge pressure of 1.2 bar is required to pass through the Chromosorb 

layer; this is checked by forwarding the helium toward the DBD atomizer and igniting 

the helium plasma. Upon loading the liquid nitrogen, the intensity of helium decreases 

significantly as a result of a tiny amount of helium released from the trap. Accordingly, 

the inlet pressure of helium was increased to 1.5 bar which gives a stable performance 

of the GLS-LNCT. The other observation is that the plasma was extinguished due to the 

effect of cooling; hence, higher power is required to break down the cooled helium 
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stream released from the GLS-LNCT. One possible cause for extinguishing the plasma 

stems from traces of nitrogen vapour escaping from the liquid nitrogen reservoir and 

mixing with the helium gas in the separator, which consequently leads to an increased 

power requirement for the breakdown. Some changes are observed in the helium 

spectrum recorded after loading the liquid nitrogen, represented by the appearance of 

several peaks (e.g. 215.38, 226.76, 236.98, 246.8, 258.1, 266.36, 270.87, 284.73 nm) as 

shown in Figure (8-2) which were not observed before. These peaks are attributed to 

the γ band of NOx at 220-280 nm (Hong et al., 2008, Zhu et al., 2008a). The formation 

of NOx is possible at high energy levels such as a plasma and is expedited by increasing 

the power and the humidity (Iskenderova et al., 2001).  

 

 

Figure  8-2  a comparison between the helium spectrums obtained before (bottom 
spectrum) and after loading the liquid nitrogen (top spectrum) to the GLS-LNCT. 
 

 

The vaporized nitrogen from the liquid nitrogen reservoirs transfers to the centre 

reservoir, shown in Figure (11-6) – (Appendix 11.12), because of leakage from the top 

insulation layer. This indicates that the constructed top section of the GLS-LNCT is not 
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secure, and requires some modifications. However, the appearance of the 

abovementioned peaks, which occurs due to the nitrogen, supports the interpretation 

given in chapter four (Section (4.4.3)) regarding the spectra shown in Figure (4-7). 

Hence, a conclusion is drawn the peaks to the left hand side of the spectra could be 

related to pure nitrogen or unknown species generated from surface reactions.  

The GLS-LNCT, loaded with liquid nitrogen, was tested for inorganic mercury 

determination. The recorded spectra are shown in Figure (8-3).  

 

(A) 

 
 

(B) 
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(C) 

 
 

(D) 

 
 

(E) 
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(F) 

 
 
Figure  8-3  the recorded spectrums for a mercury vapour generation process coupled 
with GLS-LNCT; 
The experiments conducted by injecting water solution contain 50µg/L Hg (II) acidified 
with (1 M HCL) and applying hydride generation scheme by using (1.5 % m/v NaBH4). 
(A) the spectrum recorded when only argon and helium gases entered through the GLS-
LNCT in presence of liquid nitrogen, (B) the spectrum recorded upon injecting the 
mercury sample and NaBH4 streams to the system, (C) a strip chart for mercury signal 
at 253.58 nm recorded when applying 10 seconds heating pulses, (D) a strip chart for 
mercury signal recorded when applying 25 seconds heating pulses, (E) the recorded 
spectrum when applying 25 seconds heating pulses show the significant increase in the 
peaks’ intensity to the left hand side, (F) the recorded spectrum after the liquid nitrogen 
escaped from the system, the case represented by the increased signal intensities of the 
peaks to the right hand side and diminished peaks to the left hand side 
 

Figure (8-3/A) shows the spectrum recorded for a system running in presence of argon 

and helium before introducing NaBH4 to the system. Clear signals of argon and other 

species (probably oxygen) at low intensities are observed in the spectrum, which means 

the applied cooling rate is not enough to retain these species inside the cold trap (The 

boiling points of oxygen and argon are -183 and -186 oC respectively). The introduction 

of NaBH4 to the system results in hydrogen generation, which is represented by the 

magnification effect on the peaks below 400 nm, as shown in Figure (8-3/B). The later 

stage is related to the mercury species release from the adsorbing agent with aid of 

heating pulses. Since extreme cooling is expected to occur inside the trap, mercury 

vapour condensation on the adsorbing agent is highly possible. Mercury species release 

commences after evacuating most of the hydrogen from the cold trap, aided by purging 

by helium, which is estimated to take place within 30 – 60 seconds after stopping the 

sample injection to the system. The heat supply to the trap was applied in a sequential 
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form in order not to affect the adsorbing media. Two schemes of heating strategy were 

tried. The first adopted 10 seconds for the heat pulse with a 3 second gap between 

pulses. The second scheme applied a 25 second heating pulse with a 5 second gap 

between pulses. Results are shown in Figure (8-3/C-D), where longer heating pulses 

result in higher signal intensities for mercury. The heating pulses affect all the peaks in 

the spectrum; however, more effect is observed for peaks to the left hand side as shown 

in Figure (8-3/E). Peak intensity increases when heat is supplied to the trap, while the 

signal decreases in the period between the pulses, which consequently produces a 

sinusoidal shape for the recorded signal, as shown in Figure (8-3/C-D). There are three 

stages. The intensity decreases in the first stage as a result of the hydrogen effect. The 

second stage begins after hydrogen is totally released from the system, where the 

mercury intensity increases with the heating pulse length and then starts to decrease and 

increase again in a sinusoidal form due to the applied heat. The third stage is a 

continuous decrease in signal intensity, which indicates that all mercury has been 

released out of the trap. In this final stage, the intensity of the peaks to the right hand 

side of the spectrum increase while the peaks to the left hand side decrease as a result of 

the liquid nitrogen running out from the system, (Figure (8-3/F)).  

Further experiments targeted the simultaneous determination of mercury and tin. The 

recorded strip chart (Figure (8-4)) shows three stages as described above.  

 

Figure  8-4  a strip chart show the signals of mercury and tin that determined 
simultaneously by applying the hydride generation scheme coupled with GLS-LNCT; 
The examined stream contains 50µg/L of both Hg (II) and Sn, acidified with (1 M HCL) 
and applying (1.5 % m/v NaBH4) as a reducing agent. 
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According to (Grüter et al., 2000), the boiling point of tin hydride (SnH4) and mercury 

species is -55 oC and 80 oC respectively. Since there is a considerable difference 

between the boiling points, it is expected to observe a clear signal for tin hydride. 

However, the increase in the signal intensity is limited even when increasing the heating 

pulse length to 30 seconds. Most importantly the increase in the signal intensity of 

mercury which is very limited compared with the result obtained when only mercury is 

applied in the system, (Figure (8-3/D)).  

This result could be attributed to a limited efficiency when applying heating and cooling 

inside the cold trap, or to the instability of the spectrum demonstrated by the peaks 

appearing to the left hand side.  

This result indicates that the design of the interior section of GLS-LNCT requires two 

modifications: the first is to enhance the insulation between the interior section and the 

outside environment. The second is to the container of the adsorbing media. It is 

believed that a miniaturized U-tube wrapped with a Tungsten wire or rope heater, 

(Appendix 11.11), will be efficient for the cryogenic separation. The U-tube is loaded 

with the adsorbing agent (Chromosorb) and inserted directly in the liquid nitrogen. The 

gaseous stream from the GLS will pass through the U-tube and reach the DBD 

atomizer. By applying this methodology, the generated hydrogen and helium are 

expected to leave the U-tube directly whereas hydrides are retained inside the trap. The 

captured species could be released through a gradual heating as mentioned earlier. This 

modification is planned for future work. 

 

8.3  A novel approach to heavy metals detection and determination based 

on photo chemical reduction promoted with physical effects   

The aim of the current work is to integrate all techniques studied in this research to 

produce a fully integrated system for heavy metals determination. According to the 

results of the previous sections, the hydride generation scheme is the most reliable 

technique for the metals, studied even with practical limitations due to the generated 

hydrogen and the alkaline mist in the system. Although a solution to the hydrogen 

problem has been attempted through GLS-LNCT, the continuous consumption of liquid 

nitrogen is still a barrier, therefore further work is required to produce a system with 

sufficient thermal insulation.  An alternative technique to the HG scheme is to apply 
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photo chemical reduction of the elements which is promoted with ultrasonic irradiation. 

This technique may enhanced by applying sample magnetization.  

An integrated system based on the proposed stages is shown in Figure (8-5), where the 

examined sample is injected through a channel subjected to the effects of a strong 

magnetic field and ultrasonic irradiation. In order to induce these effects, a channel with 

sufficient length is required; therefore a corrugated rectangular or circular channel is 

proposed. An aluminium alloy block might be the best option, in which a strong 

magnetic field through a coil wrapped along the corrugated channel could be imposed. 

If other alternatives such as lined ferrous alloys resistant to corrosion from aqueous 

acidic media are used, then permanent magnetic poles could be attached around the 

channel to induce the required magnetic field.  

 

 

Figure  8-5  a proposed design for a chemical photo reduction stage preceded by physical 
effects induced by magnetization and ultrasonic irradiation stages. 
 

 

Practically, the electromagnetic field is more preferable for sample magnetization 

compared with the permanent field because the field strength and the exposure time can 

be controlled through changing the applied power via the microcontroller used earlier in 

this research. Since advantageous effects are observed in Section (5.6) and Section 

(6.2.1) upon subjecting the sample to 0.3 Tesla magnetic fields for 14 hours, therefore it 

is speculated that the required field strength should not be less than 1.0 Tesla, which 

could be generated through a coil wrapped along the channel of interest.  
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Ultrasonic irradiation is planned through specific miniaturized probes available 

commercially. In order to introduce extreme irradiation in direct contact with the 

aqueous bulk, it is preferable to use immersion-type ultrasonic transducers. The 

advantage of this type is uniform performance and sensitivity as well as high speed 

response.  

The transducers must be able to induce at least 200 kHz which is expected to be highly 

effective since the probe will be in direct contact with water sample. The expected 

performance is folds higher than the indirect ultrasonic irradiation applied in previous 

experiments (45 kHz). 

An acidified sample (by applying 30 – 40 % v/v formic or acetic acid) should be 

injected to the DBD system, the photo chemical reduction of the analytes then occurs 

through the consecutive stages of DBD cascade atomizers shown in the last part of the 

suggested design. In addition to PVR, an extra treatment of biological and organic 

contaminants is achieved in the DBD atomizers; eventually, producing fragmented 

species. The fragments dissociate in the final rectangular DBD atomizer for 

spectrometric analysis. 

 

 

8.4 Summary of the findings from chapter eight 

1- Two approaches are presented to enhance the performance of the technology. In the 

first approach, the coupling of a gas liquid separation stage with cryogenic trapping is 

investigated. In the second approach, a novel design, based on coupling the photo-

chemical vapour generation with two physical effects is described and utilized for 

producing a fully integrated system rather than the traditional hydride generation 

scheme. 

2- A considerable discrepancy was observed upon testing the developed GLS-LNCT, 

attributed to deficiencies in the constructed prototype as well as the design itself. 

Nitrogen escaping from the reservoirs mixes with the applied gases (helium and argon), 

which consequently extinguishes the DBD plasma as well forming NO species, 

represented by the peaks appeared to the left hand side of the spectrum. 
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3- Although the disruption occurs, the developed GLS-LNCT proves useful when used 

for mercury determination by the hydride generation scheme. In this regard, the system 

performs as expected and the generated hydrogen is released from the trap, while the 

mercury species are retained by the adsorbing agent. In a later stage, the mercury 

species are released from the system by applying sequential heating.  

4- Nonetheless, the performance of the GLS-LNCT is found to be very poor for the 

simultaneous determination of mercury and tin. The signals are produced with lower 

intensities even when applying longer heating pulses. The results indicate that some 

modifications to the prototype are essential for better system performance. 

5- Two changes are proposed, the first is the use of an efficient insulation material for 

the interior section, the second is a glass U-tube wrapped with a heating coil to achieve 

the cryogenic trapping and release. 
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9.1  General conclusions 

Several techniques and different strategies are described in the literature for heavy metal 

determination in different solid and liquid samples, achieving low detection limits. In 

practice, most of these techniques have many operational problems such as limited 

speed of detection and non stable performance, which makes them impractical to use for 

continuous online – real time analysis of wastewater from industrial applications. 

Plasma spectrochemistry devices (e.g. ICP-OES) have shown better performance and 

proved to be robust for long term operations inside laboratories. The working principal 

of these equipments utilizes spectrometric analysis that totally depends on the atomic 

structure rather than monitoring changes in the chemical properties of the examined 

species. This feature led to the wide spread use of plasma analytical devices in recent 

years. Nevertheless, plasma spectrochemistry devices are still expensive bulky 

instruments that require skilled labour, high analytical costs, additional pre-

concentration procedures, and long operational times. Such instruments are found to be 

impractical for online and in situ analysis.  

Alternatively, we attempted in this research to utilize dielectric barrier discharge plasma 

atomizers for heavy metal determination in water samples. Several reasons are behind 

the selection of this type such as high electron energy and low operating temperature, 

which suggests the possibility of embedding the atomizer with other components in 

proximity. Eventually, a DBD atomizer could be utilized as a basis for producing a 

portable device.  

The production of a miniaturized portable system, based on plasma spectral analysis, 

requires an efficient sample introduction technique. The chemical vapour generation 

(CVG) technique was selected for the current research as an alternative to the 

desolvation/nebulisation processes which is normally applied in traditional 

spectrochemistry devices. The CVG technique could achieve efficient sample 

introduction as well as having other advantages such as limited consumables and space 

requirements.  

Since the proposed technology combines multiple stages and starts with chemical 

derivatization procedures to be finalized with species atomization in the DBD atomizer, 

it was essential to deduce the optimal design and operational parameters required for 
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best system performance. Accordingly, several mathematical investigations were 

conducted in this research exploring the chemical reaction mechanism, the gas liquid 

separation stage and the atomization stage. The results show that a reaction mechanism 

based on the hydroboron intermediate species formation is the best for design integrity; 

the calculation shows that a 5 cm length of reaction coil is required to achieve full 

conversion of the analyte into the vapour hydride. Further mathematical investigations 

are dedicated to examine the performance of a custom design nebulizer-gas liquid 

separator and the atomization processes in two kinds of atomizers. The computations 

show that a 200 ml/min gas flow rate is appropriate to dilute the hydrogen gas before 

entering the DBD atomizer. The simulation of the atomization process in a DBD 

atomizer shows that arsenic hydride is totally dissociated into free arsenic atoms before 

reaching the electrode section of the DBD atomization channel. Another informative 

result is related to the free analyte concentration distribution along the atomization 

channel, which shows that the concentration of free arsenic atoms saturates to a 

maximum in the first section of the atomizer and does not change in the following parts 

of the channel. This result conceives the ability to apply spectral data acquisition 

radially from any position along the atomizer, which has been verified in later 

experimental investigations. The results show that similar signal intensities were 

obtained from two different positions along the channel, whereas a higher signal 

intensity (by 40%) is obtained from an axial position at the end of the atomization 

channel. Hence, the axial position was adopted for the experimental investigations in 

this research.      

The proposed design for a rectangular DBD atomizer is shown to be efficient for 

analytical purposes; this is deduced by estimating the operational parameters and 

plasma characteristics. The estimated electron temperature (Te = 0.849 eV) is found to 

be higher than the excitation temperature (Texc = 0.55 eV) and the rotational temperature 

(Trot = 0.064 eV), which indicates a non-thermal plasma is generated in the proposed 

chip. The estimated electron number density (3.1×1017 m-3) shows good agreement with 

the range reported in literature, which denotes a bulk of high dissociation energy. The 

generated characteristic diagram, the Lissajous figure, demonstrates that filamentary 

discharges are produced in the examined system; this has been interpreted by the 

parallelogram shape produced in the charge/voltage characteristic diagram.  
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Operational parameters such as gas flow rate and applied power are found to be key 

factors affecting the appearance and consistency of the spectral lines of interest. An 

optimization study and statistical analysis shows that the gas flow rate is a critical factor 

needed to be controlled accurately during the course of the analytical run, whereas the 

applied power is found to be a key factor for best system performance.  

The rectangular DBD atomizer has been coupled with the reaction scheme and used for 

mercury determination in water samples by applying tin chloride (SnCl2) and sodium 

hydroborate (NaBH4). Both schemes act efficiently for inorganic mercury determination 

and accordingly reasonable detection limits obtained from both schemes in accordance 

with the standard limits of mercury in drinking water. Nevertheless, the NaBH4 scheme 

found lower detection limits of 2.19 µg/L compared with 2.8 µg/L from applying SnCl2 

scheme.  

The NaBH4 scheme has also been shown to have a major problem related to hydrogen 

generated in the system. The hydrogen affects the recorded spectrum and misleads the 

interpretation. The problem is solved by using two experiments for each studied case. In 

the first experiment, only acidified water is injected in parallel with NaBH4 solution to 

the reaction coil and the signal intensity recorded due to the hydrogen magnification 

effect. In the second experiment, the analyte was spiked in the acidified water and the 

recorded signal has included the effects from the examined analyte as well as the 

hydrogen effect. The difference between the two signals is attributed to the injected 

analyte. The quantitative determination of mercury has also been conducted by applying 

the abovementioned schemes and adopting an absorption spectroscopy technique. The 

results are obtained with a 10% error. 

Other investigations are conducted for a group of hydride forming elements and 

transition elements by applying the hydroborate scheme, achieving acceptable detection 

limits except for cadmium which is slightly high. The hydrogen magnification error has 

been treated by applying the same technique used for mercury. The quantitative 

determination of three selected elements is conducted using the same scheme, achieving 

reasonable determination accuracies. The estimated figures of merit for the examined 

group are illustrated in Table (9-1).  
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Table  9-1  the figures of merit estimated for the examined group of elements by applying 
NaBH4 scheme; 
(LOD is the achieved limit of detections, RSD% is the relative standard deviation, and 
QD-AAEE% represents the average absolute error of estimate for the elements 
determined quantitatively) 

Examined element LOD (µg/L)  RSD%  QD-AAEE% Std. limits 
(µg/L)                                                                                                                    in drinking water 
Hg   2.19   2.19  9.13  6 (WHO) 

As   3.7   1.82  11.8  10 (WHO) 

Sn   2.13   1.29  9.51  <150 mg/kg  

Cd   3.8   1.37    3 (WHO) 

Pb   2.67   1.0    10 (WHO) 

Cu   3.03   1.55  10.38  1000 (ECD) 

Ni   6.04   2.19    10 (ECD) 

Zn   4.08   1.54    5 (NCU) 

Cr    6.02   2.52    50 (ECD) 

 

In order to assess the developed system, the achieved detection limits of copper in the 

current research are compared with data extracted from literature for other technologies. 

The results are shown in Figure (2-1) - chapter two, which certainly indicate a 

competitive accuracy achieved from the developed technique. The privilege of the 

developed system is the ability to apply for in-situ or online analysis, as well as a 

possibility for connecting the device with control loops. 

Conducting simultaneous determination for the examined elements is found to be a 

difficult task due to a variety in the derivatization conditions. Accordingly, an expanded 

experimental plan is conducted and the optimum values of the chemicals (1.46% m/v 

NaBH4 and 1.2 M HCl) are deduced with aid of principal component analysis. The 

application of the concluded optimal values facilitates the qualitative determination of 

nine elements simultaneously, achieving reasonable accuracy. The achieved figures of 

merit denotes that the hydroborate scheme as a unique technique for heavy metals 

determination; however, extra work has been required to refine the results from the 

hydrogen magnification problem.  

Practically, the adoption of HG scheme for the targeted portable device requires an 

efficient technique through which the hydrogen should be separated from the hydride 

before entering the DBD plasma atomizer. We applied a design for an integrated gas-
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liquid separation stage coupled with a cryogenic trapping stage. The aim is to retain the 

hydrides on an adsorbing agent occupied in a bulk subjected to extreme cooling with aid 

of liquid nitrogen. While the hydrides trapped on the adsorbing agent surface, the 

hydrogen releases since its boiling point is lower than the liquid nitrogen. After 

releasing all hydrogen from the system, the hydrides released based on their boiling 

points with aid of sequential heating. The system has been tried in the first instance for 

inorganic mercury determination, where the results show that the system performs as 

expected. This conclusion is interpreted by monitoring the mercury signal during the 

experiment time, in which the effect of hydrogen on the mercury signals has been 

elucidated by a sharp reduction in the signal intensity. The intensity has increased in the 

later step, in a sinusoidal form, due to the sequential heating applied in the bulk, and 

finally the signal reduced sharply when the analyte has totally released from the trap. 

Nonetheless, the performance of the proposed separation technique is found not 

efficient when two elements examined simultaneously. The weakness in performance is 

attributed to shortages in both cooling and heating strategies applied in the system as 

well as some fabrication deficiencies. According to the obtained results, an alternative 

design for the interior section is proposed which is expected to implement higher 

separation efficiency.  

Another technique is investigated based on applying the photo-chemical vapour (PVG) 

generation for the examined analyte by utilizing UV radiation generated inside the 

plasma reactor. Hence, a design for an annular cascade DBD atomizer has been 

proposed, fabricated, and explored as an alternative for the hydroborate scheme. The 

aim is to overcome the disruption occurs due to the hydrogen effect. The proposed PVG 

technique has been applied for mercury, two hydride forming elements (arsenic and tin) 

and one transition element (copper) determination. The application of the proposed 

scheme achieves competitive reduction efficiency compared with HG scheme in the 

case of mercury, whereas better reduction results obtained for tin. The reduction of 

arsenic by PVR technique results in lower reduction efficiency compared with HG 

scheme, while PVR scheme failed to achieve the expected results when applied for 

copper.  

Further investigations applied to enhance the performance of the technique. In this 

sense, PVR scheme has been stimulated by the effect of ultrasonic irradiation generated 

from ultrasonic water bath. The application of PVR promoted with ultrasonic irradiation 
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proves useful for mercury determination, where the ultrasonic irradiation is induced in 

parallel with the sample injection. The results have shown the mercury signal enhanced 

by 22% due to the ultrasonic effect. Further experiments conducted in this sense to 

examine the arsenic and tin determination. The coupled PVR-ultrasonic scheme failed 

to achieve enhancement for arsenic and tin online reduction, whereas an increase in the 

signal intensity by 4.5% has been observed for tin upon subjecting the sample into local 

ultrasonic irradiation for 15 minutes before introducing the sample to the annular DBD 

atomizer. This result indicates that applying an optimized ultrasonic irradiation in direct 

contact with the sample might produce valuable effects rather than using only local 

irradiation effect from a sonic bath.  

Other physical effects, gained from magnetizing the examined sample, are investigated. 

The results of magnetizing tap water sample for 14 hours via 0.3 Tesla magnetic fields 

have shown considerable permanent changes in the water physical properties. The 

electrical conductivity increases by 8% whereas a reduction in the interfacial tension 

and pH has also been observed. The reduction of interfacial tension lead to considerable 

increase in the mercury signal intensity by 7.5%, whereas 8% increase in the signal 

intensity observed for arsenic reduction aided with a pre-reducing agent. Increasing the 

magnetic field strength and the magnetization period is expected to induce further 

effects on the sample derivatization efficiency. Hence, an optimized magnetization 

conditions might act beneficially as an alternative for expensive chemicals normally 

used to enhance the reduction processes (e.g. surfactants). 

It is believed that coupling optimized physical effects from sample magnetization and 

ultrasonic irradiation with further effects of UV radiation could be a unique combination 

for an effective reduction scheme. Hence, a design is proposed on that basis aiming to 

introduce all these effects while the sample being transferred through an introduction 

channel connected with the annular DBD atomizer. The application of this combination 

has been planned for future work. 

The pre-treatment of the examined sample is investigated since a presence of several 

compounds may lead to significant interferences on the recorded spectral signals. The 

proposed pre-treatment scheme has been tested for treating artificial samples prepared 

by spiking organic and biological contaminants. A significant reduction observed in the 

concentration of acetic acid (by 50%) and the live cells of E.coli by 3 orders of 

magnitude upon circulating the sample through the DBD atomizer for 10 minutes.  
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The proposed system has been examined for determination of heavy metals in real water 

samples taken from two sources. The examination of bottled natural mineral water 

sample shows that no mercury, arsenic or tin detected in the sample, whereas more than 

100 (µg/L) copper has been determined by applying HG scheme. Alternatively, 10 

(µg/L) of mercury, arsenic, and tin are spiked in separate samples and determined 

quantitatively by applying several schemes. Higher recovered values are obtained 

relatively when applying the HG scheme compared with other schemes; however, more 

effort has been required to refine the results from the hydrogen effects. The analysis of 

the mineralized water sample is conducted through ICP-MS for analysis verification. 

The ICP-MS analysis show that only traces of (Hg, Sn, As, and Cu) are detected in the 

sample. The shift in the predicted copper concentration, via HG scheme, is attributed to 

interferences (e.g. with Mg). 

Another real sample, a digested sludge collected from a wastewater treatment plant, has 

been examined by applying the developed system. The pre-treatment stage leads to a 

reduction in the values of BOD5 and COD by more than 70% and 30% respectively. On 

the other hand, no mercury could be determined in the examined sample. Alternatively, 

the real samples spiked with inorganic mercury and examined by using Sncl2 scheme 

without treatment. Lower determination accuracy achieved for the samples spiked with 

low mercury concentration (10 µg/L), which has been attributed to the interferences 

occurs due to the existence of unknown species in the sample. This result has been 

confirmed by repeating the determination for a sample treated by plasma effect. The 

recorded signals have shown more stability and less fluctuation obtained in the signal. 

Therefore it becomes certain that sample pre-treatment enhances the determination 

accuracy. 

 

9.2  Directions for future work 

It is required to apply more experimental investigations to explore the performance of 

the developed system after applying the modifications in the design of GLS-LNCT, as 

suggested in Section (8-2), as well as testing the novel approach described in Section 

(8-3). Further investigations could be devoted to explore the effect of coupling the 

hydride generation scheme with PVG scheme promoted by the aforementioned physical 
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effects. Moreover, other derivatization schemes by applying other reducing agents such 

as ethylation and propylation agents is also required to be examined especially for 

samples include organic species.  

It is also important to develop a power supply that can fit in a portable device. Many 

attempts are shown elsewhere in the literature which describes the production of 

miniaturized power supply (Valdivia-Barrientos et al., 2009); however, the ambition is 

to produce a robust power source for long term operations.  
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11.1     Matlab code for solving the systems of ODE 

The systems of ordinary differential equations are analyzed by using the ordinary 

differential equation solver (ode 23) in Matlab (Mathworks-Website, 2011). The 

following two codes are generated to treat two sets of ordinary differential equations 

according to nascent hydrogen and hydroboron intermediates hypotheses, described in 

Section (3.3.2). 

 

Matlab code for mechanism 1: 

 

1-M.file//  hgode44bb.m 
 
function dy = hgode44bb(t,y) 

k1=2033;ca0=1.347;k2=32; 

k3=3.5; 

dy=zeros(8,1); 

dy(1)=-k1*0.1*y(1)^2; 

dy(2)=k1*0.1*y(1)^2-

k2*y(2)^6*y(3); 

dy(3)=-k2*y(2)^6*y(3); 

dy(4)=1.5*k2*y(2)^6*y(3); 

dy(5)=k2*y(2)^6*y(3)-k3*y(5); 

dy(6)=k3*y(5); 

dy(7)=-k1*0.1*y(1)^2*y(7)/ca0; 

dy(8)=y(7); 

 
 
2-Matlab code//  

 
tspan = [0:0.01:2]; 

ynot = [1.347;0;2.66e-4;0;0;0;0.074;0]; 

[t,y] = ode23(@hgode44,tspan,ynot); 

fprintf('%f\n',t) 

fprintf('%f\n',y) 

 

Matlab code for mechanism 2: 

 

1-M.file//  hgode45bbbb.m 
 
function dy = hgode45bbbb(t,y) 

kHyd=1.6e3;k1=32;k2=3.5; 

ca0=1.347; 

dy=zeros(9,1); 

dy(1)=-kHyd*0.1*y(1)^2; 

dy(2)=kHyd*0.1*y(1)^2-

k1*y(2)*y(3); 

dy(3)=-k1*y(2)*y(3); 

dy(4)=k1*y(3)*y(2)-k2*y(4); 

dy(5)=k2*y(4); 

dy(6)=4*kHyd*0.1*y(1)^2; 

dy(7)= k1*y(2)*y(3); 

dy(8)=-kHyd*0.1*y(1)^2*y(8)/ca0; 

dy(9)=y(8); 

 

2-Matlab code// 

 
tspan = [0:0.00001:2]; 

ynot = [1.347;0;2.66e-4;0;0;0;0;0.074;0]; 

[t,y] = ode23(@hgode45bbbb,tspan,ynot); 

fprintf(‘%f\n’,t) 

fprintf(‘%f\n’,y) 
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11.2     Diffusion coefficients estimation 

1- In the liquid phase (water): 

According to (Wilke and Chang, 1955), the diffusion coefficients of solutes in dilute 

solutions can be estimated from the following equation : 

 

                                   f = 7.4z10W� 	(	?	�)	>.�`È@>.�                                                  (11-1) 

 

Where;  
D = Diffusion coefficient  (cm2/sec) 
c = association parameter = 2.6 (for water) 
M = Molecular weight of solvent, (gm/gmole) 
T = Temperature , (oK) » = viscosity of solution , (centipoise) 
V = Molal volume of solute at normal boiling point, (cm3/gmol) 

 
An approximation made that this formula is applicable for a gas diffuses in water, 

therefore applying the values of arsenic hydride (2.66x10-4 mol/m3) in a water solution 

at 303 oK ,  gives the value of 3.45x10-10  cm2/sec. For a value 5.388 mol/m3 of 

hydrogen, the diffusion coefficient has been estimated equal to (1.32x10-7 cm2/sec). 

 
 

2- In the gas phase (Helium) 

Based on the kinetic theory of gases, the following formula has been applied to 

calculate the diffusion coefficient of a spherical molecule in a mixture of gases (Wilke, 

1950, Chung and Dalgarno, 2002, Kumarana, 2011) : 

 

                                      f'	 = �
�	�	R�VV 	[U`(I�&	IV)		a	I�IV ]	S.Ö                                        (11-2) 

 
 
Where; f'	 = Diffusion coefficient  
d12 = molecular diameter = (d1 + d2 )/2 
m1  & m2 = component masses 
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n = number of gas molecules per unit volumes  
k = 1.3087x10-23  (J/ oK) 
T = Tempearture  (oK)  

 
The diffusion coeffient of small molecules diameter (1.372x10-10 m) such as hydrogen 

and helium at room temperature is reported equal to (1.132x10-4  m2/sec) (Kumarana, 

2011), whereas the diffusion coefficient of the large molecules (≈3.7x10-10 m diameter) 

such as nitrogen and oxygen is found to be ten times less than the diffusion coefficient 

of small molecules. The arsenic hydride molecule shape is reported to be a trigonal 

pyramidal (AISBL, 2011); however, it is approximated in this study with a sphere 

geometry having a diameter (3.5x10-10 m) which is in the range of large molecules 

diameter. Thus , the diffusion coefficient of the arsenic hydride has been assumed equal 

to (1.81x10-5 m2/sec) which is the same value of nitrogen and oxygen. On the other 

hand, a value of  (1.132x10-4  m2/sec) has been considered applicable for the hydrogen 

gas diffusion in a bulk of helium gas.  
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11.3     Principles of the central composite rotatable design 

In practice, the experimental planning and the data modelling has been done with a lot 

of success in several kinds of researches, shown in literature, based on the central 

composite design. The concept is to code the parameters (factors) that dominate the 

system performance, and it is always necessary to select sensible physical values for 

each of the effective factors. First important assumption is that the central point for each 

factor is equal to zero and the design is symmetric around the central point. The 

following figure illustrates the components of central composite design for a system 

composed of three factors. 

 

 
 

Figure  11-1  Elements of three factors central composite design (Brereton, 2003)  

 

 
 
The simplest design for a system composed of three factors is based on a fractional 

factorial, in which four experiments are required to conceive the three linear terms and 

the intercept; however, no estimations for the interactions or the squared terms could be 

provided. Extending the number of experiments into eight converts the design into a full 

factorial and provides estimation for all interaction terms. In the full factorial design, the 

intended experiments are placed on the corners of the cube that represents the response 

space. In order to fit the system data quite well, a star design is required to plan the 

experiments, in which three levels at least are required for each factor, often denoted by 

+1, 0 and –1, with level (0) placed in the centre. The star design is relevant to estimate 

the squared terms; and consists of a centre point in addition to six points each of them is 

located in the centre of the cube faces. Further replicates (typically five) are required to 
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estimate the experimental error. These replicates are performed in the centre of the 

response surface, assuming that same error is repeated throughout the response surface. 

In the central composite design, the total number of experiments (N) in the set is 

estimated by adding (2k) factorial points (often represented by the corners of the cube) 

to (2k + 1) star points (often represented by the axial points on or above the faces of the 

cube plus one in the centre) as well as the specified number of replicate points; where 

(k) represents the number of factors. 

For a system of three variables, the central composite design plan is conducted by 

performing a full factorial design (8 experiments), a star design (7 experiments) and five 

replicates, which results in 20 experiments as a total.  

The full experimental system could be represented by a quadratic multivariable model 

combines the single effect of the variables in addition to the effects resulted from the 

interactions of the variables, as shown in the following equation: 

 

³ = �SzS + �'z' + �	z	 + ��z� + �''z'	 	+ �		z		 	+ ���z�	 		+ �'	z'z	 + �'�z'z�
+ �	�z	z� 

                                                                                                                (11-3) 

 

Where; Y is the objective function, �S represents the level of response at the origin of 

the response space,  zS is a dummy variable which has the value +1 for every 

observation in the set,  �|   represents the linear terms coefficients	�t
�±�

 , whereas 

�||	�(1	�|�  represent the coefficients of the quadratic terms 
�	Vt

�±�
V  and the cross product 

terms 
�	Vt

�±�±�
	 that refers to the interaction effects. 

 

The quadratic terms are important to obtain a maximum or minimum for the response 

space whereas the interaction terms shows whether the influence of two factors on the 

response is dependent or not. 

Practically, the total number of terms in the resulted polynomial is estimated as follows: 

 

��. �k	Q0/J5 = 	
(P + 1)(P + 2)

2
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Another important parameter in the central composite design is the level adopted for 

each factor. As mentioned previously, -1, 0 and +1 are usually adopted to represent the 

levels of each factor. Nonetheless, another criterion is adopted in this research which is 

known as rotatability. The rotatable design implies a similar standard error for all points 

that are at the same distance from the centre of the region; which is so useful for a kind 

of exploratory work with non advanced knowledge. In order to make the design 

rotatable, a value of  2k/4  should be adopted for the levels of each factor. Therefore the 

levels of each examined factor becomes (-1.414, 0, and +1.414) in a rotatable central 

composite design. It is well known that increasing the levels of the factor in the 

examined system would result in a higher fitting accuracy and low error of estimate 

from the produced model, which is essential for statistical analysis. Therefore the author 

adopted five levels to implement the rotatable design throughout this research. Hence, 

the rotatable plans are generated as shown in the following table: 

 

Table  11-1  Plans according to the central composite rotatable design 

No. of 
variables 

No. of 
experiments 

Level 1 Level 2 Level 3 Level 4 Level 5 

2 13 -1.414 -1 0 +1 +1.414 

3 20 -1.682 -1 0 +1 +1.682 

4 31 -2 -1 0 +1 +2 

 

The estimation of the generated model coefficients has been achieved through a multi 

variable regression analysis. The algorithms shown below were applied to conduct a 

multi variable regression analysis for systems composed of two, three and four variables 

(Cochran and Cox, 1992). 

 

� System of two variables 

�S = 0.2(0³) − 0.1�(44³) 

 
                                                        �| = 0.125(4³)                                              (11-4) 
 

�|| = 0.125(44³) + 0.01875�(44³) − 0.1(0³) 

 
�|� = 0.25(4Ð³) 
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� System of three variables 

�S = 0.166338(0³) − 0.056791�(44³) 

 
                                                         �| = 0.073224(4³)                                      (11-5) 
 

�|| = 0.0625(44³) + 0.006889�(44³) − 0.056791(0³) 

 
�|� = 0.125(4Ð³) 

 

 
 

� System of four variables 
 

�S = 0.142857(0³) − 0.035714�(44³) 

 
                                                      �| = 0.041667(4³)                                         (11-6) 
 

�|| = 0.031250(44³) + 0.003720�(44³) − 0.035714(0³) 

 
�|� = 0.0625(4Ð³) 

 
 
 
The standard error of the coefficients for a system of four variables is calculated as 

follows: 

 

qQ�(1�/1	0//�/	�k	(�|) = 0.204	(q<q) 

                                     qQ�(1�/1	0//�/	�k(�||) = 0.185	(q<q)                       (11-7) 

qQ�(1�/1	0//�/	�k��|�	� = 0.250	(q<q) 

Where;  

q<q = Standard error of the experimental set 

 

                                                                       q<q = 	 g√=                                       (11-8)                          
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S = Standard deviation  

N = number of experiments = 13, 20, and 31 for systems composed of two, three, and     

four variables respectively 

 
The average absolute error of the empirical model is estimated from the following 

formula: 

 

          ��0/�-0	�ó5��2Q0	0//�/	(��<) = 	
∑�Kg		

(	�
A¤	ðFEð)	ï	�>>		�
A
=

                         (11-9) 
 
 

On the other hand, the coefficient of determination (R2) which is used to assess the 

accuracy of the linear regression equation has been estimated as follows: 

 

                                                         �	 = 1 −	 ggx
gg··

                                               (11-10) 

 
SSyy measures the deviations of the observations from their mean, whereas SSE 

measures the deviations of the observations from their predicted value: 

 

q2J	�k	5L2�/05	�k	Qℎ0	J�10� = 	 qqtt =	� (�| −	��)	
|

 

  

q2J	�k	5L2�/05	�k	Qℎ0	0//�/ = 	qq< = 	� (�| −	�|)	
|

 

 
 

As a general guideline, the higher the R2 is, the more useful the model. 
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11.4    Constrained optimization algorithm 

In order to maximize the objective function (Y), a minimization of the objective 

function (-Y) is performed. The resulting point where the minimum of (-Y) occurs is 

also representing the point where the maximum of (Y) occurs. The general description 

of the constrained optimization problem is shown as follows: 

 

Maximize f(x)  

Subject to:  gi (x) = ci  (for i = 1 to n)  Equality constraints 

                   hj (x) ≤ di  (for j = 1 to m)  Inequality constraints 

Where; x is a vector residing in a n-dimensional space; f(x) is the objective function 

The bound limits of the variables are shown as follows: 

• System of two variables :   (z'	Q�	z	)   were applied between -1.414 and +1.414   

• System of three variables:  (z'	Q�	z�)  were applied between -1.682 and +1.682 

• System of four variables:  (z'	Q�	z�)  were applied between -2 and +2. 

 

The algorithm is applied in Matlab as shown by the following code (e.g. for a system of 

two variables): 

M. files: 
function f = objfun11(x) 

f=B0+B1*x(1)+B2*x(2)+B11*x(1)^2+B22*x(2)^2-B12*x(1)*x(2); 

function[c,ceq]=confun11(x) 

% Nonlinear inequality constraints 

c=(x(1)^2+x(2)^2)^0.5; 

% Nonlinear equality constraints 

ceq=[]; 

 

Matlab code: 
x0=[-1.414  -1.414]; 

options=optimset('LargeScale','off','Display','iter'); 

[x,fval,exitflag,output]=fmincon(@objfun11,x0,[],[],[],[],[

],[],@confun11,options); 

 

Solution: 
x (press enter to see x values) 

fval (press enter to see the calculated objective function 

for the optimized (x) values) 
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11.5    Ridge analysis technique 

Principally, the ridge analysis technique is based on calculating the distance from the 

centre of the response space, defined to be the ridge value (Rv), which can give an 

insight on the variables response in the tested system. The method defines a series of 

paths outward from the origin (x1, x2, ...., xn) = (0,0,....,0) of the factor space (Draper 

and Pukelsheim, 2000). Let’s adopt the following format for the second order fitted 

equation for a system consists of four variables: 

 ³ = �SzS + �'z' + �	z	 + ��z� + ��z� + �''z'	 	+ �		z		 	+ ���z�	 		+ ���z�	
+ �'	z'z	 	+ �'�z'z� + �'�z'z� + �	�z	z� + �	�z	z� +	���z�z� 

                                                                                               
                                                                                                                 (5-1)             
 
The outward paths could be represented by a sphere around the origin,  x = (0,0,0,0) of 

radius  �"	  . The points of the maximum and minimum responses could be found in the 

sphere by adopting the following definition for the ridge value for a system of four 

variables and one response function: 

 

                                         �"	 = z'	 + z		 + z�	 + z�	                                          (11-11) 
  

Then,     
 

                                     z� = ∓�			�"	 −	z'	 −	z		 −	z�	                                      (11-12) 
 

Substitute eq. (11-12) in eq. (5-1), differentiate with respect to  z'	  , z		  and z�	   , equalize 

the derivatives to zero, then back substitution of  z�	 in the resulted derivatives ( 
Rt

R±�
,  

Rt

R±V
 , 
Rt

R±¢
 ) produces the following formulas: 

 

z' 	�– (�� +	�'�	z' + �	�	z	 +	���z�)z� + 2�'' − 2���� + �'�z� + �'	z	 + �'�z� = −�' 

 
                                                                                                                      (11-13) 
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z	 	�– (�� +	�'�	z' + �	�	z	 +	���z�)z� + 2�		 − 2���� + �	�z� + �'	z	 + �	�z� = −�	 

 
                                                                                                                                (11-14) 
 
 

z� 	�– (�� +	�'�	z' + �	�	z	 +	���z�)z� + 2��� − 2���� + ���z� + �'�z' + �	�z	 = −�� 

 
                                                                                                                      (11-15) 

 

Assume                          
	(B4+	B14	x1+B24	x2+	B34x3)

x4
=�                                 (11-16)    

 

Substitute � in equations (11-13) to (11-15) then re-arrange, produces the following 

forms: 

 

             z'(2�'' − 2��� − �) + �'	z	 + �'�z� + �'�z� = −�'                   (5-2)                  

 

             �'	z' + z	(2�		 − 2��� − �) + �	�z� + �	�z� = −�	                  (5-3)                    

 

              �'�z' + �	�z	 + z�(2��� − 2��� − �) + ���z� = −��                 (5-4)               

 

Re-arrange eq. (11-16) gives the following form:   
 
                                   �'�z' + �	�z	 + ���z� − 	�z� = −��                              (5-5) 

 

In the solution strategy, the set of equations, (5-2) to (5-5), is solved for a specific value 

of  � to determine the values of z'	to z� , and then calculating the ridge value from 

equation (11-11). The first step in the solution should be devoted to identify the working 

range of λ in the examined system. 
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11.6     Determination of (F - factor) 

The value of (F-factor) is utilised to elucidate the interaction effect of two variables on 

the objective function in a system of multi-variables. As a general, F-factor has been 

defined for each individual and interaction coefficients according to the following 

formula (Lin et al., 1986):  

 

                                              \ − k�3Q�/ = Ig
g[                                                   (11-17) 

 

Where;    
 
                                                            Jq = g  

jB[[R8I 
                                                          (11-18) 

 

S  = Variance, can be represented by the following general description: 
 

                     q = ∑ $�| −  ��,	�
|�' = ∑ �|

	 − '

�
∑ �|

	�
|�'

�
|�'  = ∑ �|

	 − �k�
|�'          (11-19)               

 

�| = the response value of such experiment 
(  = number of experiments in the examined set 
Cf  = correction factor 

 

q[ = q` − $q±' +  q±	 +  q±� +  q±� +  q±'.±	 + q±'.±�+q±'.±� + q±	.±�+q±	.±�+q±�.±�, 

 
                                                                                                                      (11-20) 

q` = r�/4�(30 �k Qℎ0 Q�Q�� 0z60/4J0(Q�� 50Q =  ��|
	 − �k

�

|�'

   , ( = 31 

 
                                                                                                                      (11-21) 

 

The variance of the individual and interaction coefficients, q±| �(1 q±|.±� , are estimated 

from the following relations:  
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� Individual parameter, the variable (1) is taken as an example: 
 
 

q±' = � + � + � + f + < − �k 
 
 

Where; 

�±' =  �$∑�$W	, , 	

1
� 

 

�±' =  ��∑�$W	, � 	 + $∑�$W', , 	

1 + 8
� 

 

�±' =  ��∑�$W	, � 	 + �∑�$W', � 	 + $∑�$S, , 	

1 + 8 + 13
� 

 

f±' =  ��∑�$W	, � 	 + �∑�$W', � 	 + �∑�$S, � 	 + $∑�$&', , 	

1 + 8 + 13 + 8
� 

 

<±' =  ��∑�$W	, � 	 + �∑�$W', � 	 + �∑ �$S, � 	 + $∑�$&', , 	�∑�$&	, � 	

1 + 8 + 13 + 8 + 1
� 

 
 

The values shown in the subscript parentheses of the numerator (terms A to E) indicate 

the treatment levels while the numbers shown in the denominator determines the 

number of the experiments at that level.                           

 

� Interaction parameters 
 

q±'.±	 = �� + �� + �� − �k 

 

 

�� =  ��∑ �$W', � $";B|;}9[',
	  × �∑ �$W', � $";B|;}9[	,

	

8
� 
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�� =  ��∑ �$W', � $".',
	  × �∑ �$W', � $".	,

	 + �∑ �$S, � $".',
	  × �∑ �$S, � $".	,

	

8 + 13
� 

 

 

�� =  ��∑�$W', � $".',
	  × �∑ �$W', � $".	,

	 + �∑�$S, � $".',
	  × �∑�$S, � $".	,

	 + �∑�$&', � $".',
	  × �∑ �$&', � $".	,

	

8 + 13 + 8
� 

 

 

The degrees of freedom represent the number of coordinates required to describe the 

system (e.g. specify the position on the response space); hence, for individual and 

interaction parameters, the degrees of freedom are shown as follows: 

 

k/001�J = 2 , for individual variable effect 

                 = 4 , for interaction effect of two variables 
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11.7     The analytical figures of merit 

 

The experimental data quality indicators can be summarized by the following factors: 
 
 

a) Precision 

The precision is defined as “the degree of mutual agreement among individual 

measurements as the result of repeated applications under the same condition” (Zhang, 

2007). Precision is normally expressed by either the standard deviation or the relative 

standard deviation. 

 

For a finite set of data (n < 30), the standard deviation is defined as: 

 

                                            q =  �∑  $±�W ±F, V

�W'
                                                     (11-22)  

 
 

Where;     z; = arithmetic mean =  
∑ ±�

�
 

 

The relative standard deviation is defined as follows: 

 

                                          RSD =  g

±F
 × 100                                                     (11-23)  

 
 

b) Standard calibration plot 

 

The calibration plot illustrates the relation between the instrumental response and the 

concentration of the examined analyte. It is normally obtained by preparing at least five 

solutions of known chemical concentrations, injecting them into the tested system and 

recording the measurements. If a linear dependency present in the system, then a linear 

regression equation of the form (y = a x + b) can be used to describe the curve. 
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 Where;  y: response, x: concentration, a: slope (the reciprocal of the calibration 

sensitivity), and b: intercept (represents the instrument response at x = 0). 

 

 

c)  The limits of detection (LOD) and the practical quantification limit (PQL) 

 

LOD is defined as “the minimum concentration that can be measured and reported with 

99% confidence that the analyte concentration is greater than zero” (Zhang, 2007). 

Formally, the procedure of LOD determination consists of spiking an analyte free 

matrix with the concentration of the target analyte equals (3-5) times the estimated 

LOD. The sample is then measured at a minimum of seven times. The standard 

deviation (S) is calculated from these measurements and the LOD is calculated 

according to the following formula (Zhu et al., 2008a, Li et al., 2011, Wu et al., 2011): 

 

                                                   ø
f = 3 g

I
                                                      (11-24)                      

 

Where; m = the slope of the calibration plot 

 
 
PQL is defined as “the lowest concentration that can be reliably achieved within 

specified limits of precision and accuracy during routine operating condition” and is 

normally selected to be (2 to 10) times LOD value. Thus, PQL value in reality 

represents the lowest point in the calibration plot. 
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11.8     Operational code for the microcontroller (Arduino-Mega) 

The following code has been uploaded to the microcontroller to control the equipments 

(pumps and solenoid valves) when running the automated mode for the quantitative 

determination of inorganic mercury. The language used is a writing – based language 

similar to C++ with some simplifications and modifications according to the operational 

software requirements.  

The timing shown in the code shows the optimal value, which is applicable for most of 

the examined elements. 

 
 

int solenoid1 = 1; 
int pump1 = 2; 
int solenoid2 = 3; 
int light = 4; 
void setup() {                            
  pinMode(solenoid1, 
OUTPUT); 
  pinMode(pump1, 
OUTPUT); 
  pinMode(solenoid2, 
OUTPUT); 
  pinMode(light, 
OUTPUT); 
} 
void loop() {  
   analogWrite(1,255);  
   delay(4000); 
   analogWrite(1, 0); 
  delay(3000); 
// repeat on/off for 3 times 
  analogWrite(1,255); 
   analogWrite(2,255);  
   delay(4000); 
   analogWrite(1, 0); 
  delay(3000); 
  analogWrite(1,255); 
  delay(4000); 
   analogWrite(1, 0); 
  delay(3000); 
// repeat on/off for 17 times 
 

   analogWrite(2,0); 
   analogWrite(4,255); 
  analogWrite(1,255);  
   delay(4000); 
   analogWrite(1, 0); 
  delay(3000); 
  analogWrite(1,255); 
   delay(4000); 
   analogWrite(1, 0); 
  delay(3000); 
  analogWrite(4, 0); 
   analogWrite(3,255); 
   analogWrite(1,255); 
  delay(4000); 
   analogWrite(1, 0); 
  delay(3000);  
// repeat on/off for 9 times 
  analogWrite(3, 0); 
 while(1) { }// stopping the 
pump completely 
} 
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11.9     Principal component analysis (PCA) technique 

PCA is a multivariate data analysis technique which is applied abundantly in different 

types of analysis in order to extract the required information from the data set. In 

practice, PCA can identify patterns in data and express the similarities and differences 

in such a data set. By applying the technique, the data set can be reduced into lower 

dimension which reveal a simple structure and a clear way to obtain the required 

interpretations (Brereton, 2003). Practically, PCA analysis is based on calculating the 

covariance matrix of a data set, then estimating the eigenvalues and the eigenvectors of 

the covariance matrix. In conclusion from these calculations, the estimated eigenvector 

with the highest eigenvalue is considered to be the principal component of the data set 

(Smith, 2002).  The procedures of PCA analysis can be summarized for two dimensions 

(x,y) data set as follows: 

• Subtract the mean from each of the data dimensions in order to produce a data 

set with a mean equal zero. 

• Calculate the covariance matrix; for a two dimensions data set, the covariance 

matrix  is 2×2 as shown below: 

� =   3��$z, z,    3�� $z,�,
3��$�, z,     3��$�,�,  

            
!         

 
Where;  
 

                                   3��$z, �, =  
∑ $±�W ±�,$t�W t�,�

�"�

$�W',
                            (11-25) 

 
 
zI ,�I : represents the mean of the data dimension 
( : represents the number of points in the data set 
 

• Calculate the eigenvectors and the eigenvalues of the covariance matrix, where 

the  vector ( x) is an eigenvector of the matrix (C) with an eigen value (λ) 

provided that  the following relation applies: 

 

                                                            �	z = 	�	z                                                  (11-26) 



Appendix 11.9 

310 
 

For a two dimension data set, the result could be represented in Figure (11-2) in which 

two diagonal lines perpendicular to each other provides the information about the 

patterns in the data and characterize the data. The solid line represents an eigenvector 

goes through the middle of the points and indicates how the data set is related along the 

line whereas the dotted line represents the second eigenvector which shows less 

important pattern in the data. Practically, the solid line is considered to be the principal 

component which gains the highest eigenvalue compared with the other eigenvector 

(dotted line).  

 

Figure  11-2  a plot shows the mean subtracted data (+) as well as two diagonal lines 
represent the calculated eigenvectors for a two dimension covariance matrix (Smith, 

2002) 

 

In order to achieve the full PCA analysis, the significance of the components in the 

covariance matrix is normally identified according to the values of eigenvalues that 

estimated for each of the eigenvectors. For instance, if the original data set contains (n) 

dimensions, then (n) eigenvectors and eigenvalues could be estimated for the set. Some 

of the components could be neglected because of less importance, and then the final 

data set will be converted into (p) dimensions which represent the most significant 

components in the set.    

 

• The final step of PCA analysis is to form the feature vector and then deriving the 

new data set.  



Appendix 11.9 

311 
 

Practically, the feature vector could be formed by adopting some components in the set 

or using only the first component as the most important in the set. Upon deciding the 

required feature vector, the transpose is taken for it and multiplied by the transpose of 

the mean subtracted original data (+) to get the final new version of the data set. The 

new data set become in terms of the two selected eigenvectors instead of the (x,y) form. 

In the final result of the analysis, the data are transformed into a form showing the 

pattern between them; i.e. the values of the data points exactly identifies where the data 

from the trend line. 

In this research, PCA analysis has been utilized to characterize each of the examined 

analytes from the applied derivatization conditions, and accordingly the optimal 

experimentation conditions that applied for all analytes are decided. 

The calculations are conducted by using the Matlab software, in which the distribution 

of the analytes according to the significant component is produced in a graph form. On 

the other hand, the percentage variance of the components is calculated to identify the 

significance of each principal component. 

The following code is applied in Matlab for PCA analysis, in which (D) represents the 

data matrix: 

 

load D 

 stdr = std(D); 

sr = D./repmat(stdr,9,1); 

[coefs,scores,variances,t2] = princomp(sr); 

c3 = coefs(:,1:2) 

I = c3'*c3 

plot(scores(:,1),scores(:,2),'+') 

xlabel('1st Principal Component') 

ylabel('2nd Principal Component') 

grid on 

axis([-4 10 -0.7 0.7]) 

gname 

variances 

percent_explained= 

100*variances/sum(variances) 

pareto(percent_explained) 

xlabel('Principal Component') 

ylabel('Variance Explained (%)') 

[st2, index] = sort(t2,'descend'); % Sort in 

descending order. 

extreme = index(1) 

biplot(coefs(:,1:2), 'scores',scores(:,1:2),...  

'varlabels',categories); 

axis([-.26 1 -.51 .51]); 

grid on 
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11.10  Protocols for artificial samples preparation and COD/BOD5 

evaluation in real wastewater sample 

a) Preparation of organic and biological water samples  

Two kinds of samples, biological and organic are prepared and treated by using the 

DBD plasma treatment scheme described in chapter seven. It should be mentioned that 

the E. coli experiments were assisted by a group member of the Engineering and 

Physical Sciences Research Council (EPSRC). The biological samples are prepared 

from (bacteria – E. coli) while three organic compounds (isopropyl-alcohol, phenol and 

acetic acid) are used for organic samples preparation, as follows: 

 

� E. coli  samples  

All safety issues were taken into consideration when applying the full set of 

experiments in this part of work. The effect of the treatment on the viability of E. coli is 

assessed in this study using two methods, 1) by monitoring the lag in the batch growth 

curve during culturing treated cells in rich medium (Luria broth)  and 2) by viable plate 

count technique.   

 

1) Monitoring the growth of E. coli:  

Escherichia coli K-12 MG1655 has been used in these experiments. E. coli was grown 

on LB agar medium (BPE1425, Fisher Scientific, UK; tryptone 10 g/L, yeast extract 5 

g/L, sodium chloride 10 g/L, agar 15 g/L) from glycerol stocks (20% glycerol) stored in  

-80°C. The cells were transferred from LB agar to 5 ml LB broth (BPE1426, Fisher 

Scientific, UK; tryptone 10 g/L, yeast extract 5 g/L, sodium chloride  10 g/L) and were 

grown for 16 hours at 37°C with aeration (orbital shaking at 200 rpm) for use as starter 

culture. The cells are diluted in fresh LB broth to the required concentrations measured 

as optical density at 595 nm (OD595). The diluted cell suspensions are treated for 

different times in the annular DBD atomizer. The treated cells are incubated at 37°C and 

the increase in the optical density is measured at 595 nm every 30 minutes for 24 hours 

using a Tecan multi-well plate reader (Genios, UK). The growth curve is obtained as a 

plot of OD595 against time. Un-inoculated LB broth and untreated LB broth containing 

E. coli were set up as controls in the experiment. The results are reported as an average 

and standard deviation of OD595 of cultures setup in 8 separate wells in a 96-well plate 
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(TKT-180-070U, Fisher Scientific, UK) after a single round of treatment. The viability 

of cells after treatment is interpreted as being inversely proportional to the length of the 

lag phase in the growth curve of treated cells when compared to that of the untreated 

controls. 

 

2) Viable plate counts:  

Starter cultures of E. coli were grown in 5 ml of LB medium for 16 hours at 37°C. After 

incubation, the cells are harvested by centrifugation at 5000 xg for 10 minutes. The 

supernatant containing spent culture medium was discarded and the cells were washed 

and re-suspended in 5 ml sterile distilled water. The OD595 of the cell suspension is 

measured and the starter culture is diluted to 0.5 OD595. The diluted cell suspensions 

were treated for different times in the annular DBD atomizer. An untreated control was 

setup in the experiment. The controls and the samples were serially diluted (dilution 

factor of untreated control 106; dilution factor of treated samples 104) and plated on LB 

agar plates. The dilution factors differed between the untreated control and the treated 

samples to account for the potential reduction in the number of viable cells in the 

sample. The agar plates were incubated overnight at 37°C. The resulting colonies were 

counted and adjusted with the appropriate dilution factors to obtain the number of viable 

cells in the samples and the untreated control.   

 

� organic samples 

Three organic compounds were used to prepare artificial samples through a dilution 

with distilled water: acetic acid concentrate (CH3COOH, 99.8% - from BDH), liquefied 

Phenol  (≥89.0% from Sigma Aldrich), and isopropyl alcohol (HPLC grade (CH3)2 

CHOH from Fisher scientific). The applied concentrations were kept in the miscibility 

range for the case of phenol (8.3 gm per 100 ml water) whereas higher ranges used for 

isopropyl alcohol and acetic acid as they are miscible with water.  

 
 

b) COD and BOD5 evaluation 

The determination of the chemical oxygen demand (COD) and the five days biological 

oxygen demands (BOD5) was applied by using reagents from (Hach Lange united for 

water quality - UK). The concept behind the COD determination is that the oxidizable 

substances react with sulphuric acid – potassium dichromate solution in the presence of 
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silver sulphate as a catalyst. The chloride is masked by mercury sulphate whereas the 

colour of Cr3+ is evaluated (appeared to be dark orange). In the COD determination 

procedures, a total of two cuvettes of the reagent (LCK 014, range 1 – 10 g/L) used; one 

cuvette for the sample before and after plasma treatment. A 0.5 ml of well mixed 

digested sludge samples before and after treatment (CS1 and CS2) were added to the 

sample cuvettes and mixed, then the cuvettes were put in a thermostat heater set at 148 
oC for 2 hours and left to cool to the room temperature. The spectrometry device (DR 

2800, Hach Lange) was used for measurement, in which the sample cuvettes were put in 

the device and the COD determined according to the measured absorbance and appeared 

on the device LCD in g/L. It is worth noting that the device automatically identifies the 

type of the measurement required according to the cuvette bar code. 

The BOD5 test measures the dissolved oxygen which is analysed in an alkaline solution 

with a pyrocatechol derivative in the presence of Fe2+, under which conditions a dark 

red dye is formed. In the BOD5 determination, three cuvettes of the reagent (LCK 555, 

range 100 – 1650 mg/L) used, in which two sample cuvettes applied for the sample 

before and after plasma treatment whereas the third one filled with distilled water and 

used as a reference for the device calibration. A 0.4 ml of the sample (well mixed 

digested sludge), before and after plasma treatment was diluted by using 2.8 ml distilled 

water to prepare the diluted samples (DB1 and DB2). A 0.5 ml of DB1 and DB2 was 

put in the sample cuvette which was then filled to the brim with distilled water in order 

to release all air bubbles. The prepared samples closed and checked to ensure no air 

bubbles left inside, then kept for five days in darkness at 20 oC. After five days, tablets 

of the reagent (Dosi Cap Zip, supplied with each sample cuvette) added through a 

suitable funnel to the cuvette and mixed with the liquid contents for three minutes by 

shaking the cuvette. Afterwards, the BOD5 evaluated through the spectrometry device 

(DR 2800) which appears on the device LCD in mg/L.  
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11.11 Application of liquid nitrogen cold trap for hydrogen stream 

purification 

The full details of this work are described in (Abdul-Majeed et al., 2012). A part of this 

work has been undertaken in collaboration with other committee, (Serdaroglu, 2011),  

to investigate the feasibility of using a liquid nitrogen cold trap (LNCT) for the removal 

of water vapour and other possible residues, which accompanying the generation of 

hydrogen gas from the catalytic decomposition of sodium borohydride (NaBH4). The 

target application is mobile fuel cells based on the hydrogen production from storage in 

chemical hydrides.  

It is hypothesized in this work that a liquid nitrogen cold trap is able to increase the 

potential of the hydroborate system for fuel cell applications. The LNCT is aimed to be 

used as a one step purification method with less cost and space requirements instead of 

applying the conventional multiple stages purification technique (e.g. chilled water heat 

exchanger – two stage gas liquid separation – dryer – filter). This approach could 

eliminate the requirements for additional equipments and hence space; it is also capable 

of increasing the overall system efficiency by decreasing the total energy consumption 

and cost. 

A simple hydrogen generation system from NaBH4 solution hydrolysis on a catalyst in a 

packed bed column was to meet the targets of the project. It is planned to produce the 

hydrogen in controlled amounts. Therefore, apparatus choice and design are based on a 

small-scaled study as a first try. 

The experimental setup used for the undertaken study is illustrated in Figure (11-3).  

A glass tube (28 mm length and 10 mm ID) used to reside the catalyst in order to act as 

a packed adsorption bed. A peristaltic pump with a calibrated feed rate of 1.15 ml/min 

(Williamson Manufacturing Company – UK) has been used to feed NaBH4 solution 

from the fuel container. The generated hydrogen and the accompanying water vapour 

and other residues are then directed into a gas-liquid separator made of 50 ml glass 

bottle provided with a plastic lid and two glass tubes served as an inlet and outlet. The 

separated hydrogen and other vapour species are forwarded into a U-tube liquid 

nitrogen cold trap which is used to capture the water vapour as well as other residues 
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through an adsorbing media (Chromosorb G/AW-DMCS 45-60 mesh, purchased from 

Sigma Aldrich).  

 

 

Figure  11-3  a schematic diagram illustrates the system used to test the feasibility of 
LNCT for hydrogen stream purification 

 

A borosilicate U-tube (60 cm length and 6 mm ID) passed through a lid made of PTFE 

is immersed in a Styrofoam container (3 L volume) and used to reside the liquid 

nitrogen. The evaporated nitrogen has been released from LNCT through a tube open to 

the atmosphere; nonetheless, the lid is also provided with a pressure safety valve set at 

0.5 barg and a pressure gauge for safety reasons. The U-tube is wrapped with an electric 

rope heater which is applied to heat the tube in order to release the condensed residues.  

The whole system was designed, fabricated and operated through (Arduino-mega) 

microcontroller run by a PC software. The idea is to control the rope heater and the 

three way valve, shown in Figure (11-3), in order to keep a free path for passing the 

hydrogen out of the cold trap. Accordingly, the electric rope is supplied with pulses of 

230 V AC in a sequence form according to the requirements.    

As soon as the cold trap is being clogged with the condensed/solidified residues (this 

should be indicated by a differential pressure transducer), the electric field should be 



Appendix 11.11 

317 
 

supplied to the rope heater. At the same moment, the three way valve should close the 

path to the hydrogen container and release the stream coming from the cold trap into the 

atmosphere. The targeted fuel cell is planned to supply from the hydrogen container 

attached to it during the regeneration step.    

Two catalysts (cobalt pieces and cobalt boride powder) are investigated for the 

production of hydrogen from the aqueous solution of NaBH4 in a small scale packed 

bed reaction column. The results have shown a concentration of 10 wt % NaBH4 

stabilized with 1 wt % NaOH is proper to produce 17.7 and 0.69 (ml H2/min/g catalyst) 

upon using cobalt boride and cobalt pieces, achieving conversion ratios of 98.48% and 

15.06% respectively. The results also show that a high activity and fast exhaustion 

period recorded for the cobalt boride compared with cobalt pieces whereas a stable 

performance, better durability and easy recovery are observed for the cobalt pieces. 

Although low quantity of water vapour has accompanied the hydrogen generated from 

the current reaction system, the application of LNCT for H2 purification has proved 

useful and leads to a reduction in the content of water vapour and consequently 

increased the concentration of hydrogen in the outlet stream up to 99.71%, as shown in 

Figure (11-4). 

 

 

Figure  11-4  a GC chromatogram for a sample collected after passing the LNCT. 

 
Because of limited water vapour generated in the system, the performance of the cold 

trap could not be evaluated accurately. Therefore an acidic decomposition of NaBH4 is 

conducted by using the reaction system described in Figure (11-5), in which higher 

elaboration of water vapour and alkaline mist is expected. In these experiments, an HCl 
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solution (1.5 M) and NaBH4 solution (2% m/v stabilized by using 0.5% m/v NaOH) are 

used. 

 

Figure  11-5 a schematic diagram illustrates the reaction system used for the acidic 
decomposition of NaBH4. 

 
 
The mixed solutions through a tee junction are directed into a helical reaction coil (1 m 

length, 2.5 mm ID silicon tube) and then into a gas/liquid separator (GLS). The 

hydrogen gas stream, accompanied by traces of water vapour and alkaline mist has been 

carried with aid of carrier gas (helium) into LNCT through a (20 cm length, 2.5 mm ID 

silicon tube). The GC analysis conducted for the stream after LNCT have shown a 

reduction in the water content by more than 5% as illustrated in Table (11-2), which 

emphasizes the advantageous effect of LNCT.  

 
Table  11-2 comparison between the contents of the samples collected before and after 
LNCT from the acidic decomposition of NaBH4. 

 

 
    Before LNCT   After LNCT 

 

Hydrogen   93.12 %    98.76 % 
 
Water vapour   6.88 %    1.24 % 
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11.12 Design details of the GLS-LNCT  

The details of the separation stage integrated with a cryogenic trapping (GLS-LNCT) 

are shown in the following detailed drawings. The two stages are fabricated in one piece 

of equipment shown in Figure (11-6).  

 
(A) 

 
 

(B) 
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(C) 

 
 

(D) 

 

 
 

Figure  11-6  the detailed drawings show the separation stage integrated with cryogenic 
trapping (not to scale); 
(A) top view, (B) section A-A, (C) section B-B, (D) section C-C  
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The walls of the gas-liquid separator were constructed from a plastic sheet, 6 mm 

thickness, through which many holes and threads were used to connect to outside tubes. 

The cryogenic trapping stage has been totally constructed inside high quality insulation 

material (polyurethane of low thermal conductivity < 0.4 W/m/oC). The polyurethane 

foam has been injected inside a rectangular mould, where a block was produced after 

drying. The polyurethane block was machined by using CNC drilling device to produce 

the reservoirs and the channels, while plastic sheets, 10 mm thickness, were used to 

form the outside covers. The full combination was fastened by using screws.  

The liquid nitrogen is loaded to the cryogenic section through a special funnel from one 

opening, while the other opening is left open to release the air and vapours. The release 

of the evaporated nitrogen is conducted through a pressure safety valve, set at 0.5 barg, 

connected to the cryogenic section. It should be mentioned that a tiny mesh steel 

membrane has been put at the base of the cryogenic section. The membrane allows only 

the gases to pass out from the beneath section through (≈0.02 mm) holes to the riser 

section, as illustrated in Figure (11-6/B&C).   

  

A picture illustrates the interior parts of GLS-LNCT is shown in Figure (11-7). 

 

 

Figure  11-7  a picture shows the interior sections of the fabricated integrated separation 

stage with cryogenic trapping, named as (GLS-LNCT)  
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11.13    Other achievements 

a) Publications: 

The author published four journal articles, cited in the references section, and a 

conference paper entitled “Application of cascade dielectric barrier discharge plasma 

atomizers for wastewater” in the proceedings of the 6th International Conference on 

Environmental Science and Technology (25th – 29th June, 2012 / Houston –USA). 

Moreover, the author has submitted a journal article entitled “Computational modelling 

of the volatile hydride fragmentation in a dielectric barrier discharge atomizer” which is 

currently under consideration. Furthermore, the author has collaborated as co-author in 

a work entitled “Hydrogen production from water vapour plasmolysis using DBD-

corona hybrid reactor” which is currently under consideration. 

b) Conferences: 

1. European winter conference on plasma spectrochemistry, Zaragoza, Spain 2011  

Poster presentation title: Application of a miniaturized DBD plasma chip for mercury 

detection in water samples. 

2. Spectroscopy – Detective in Science, Rostock, Germany 2011 

Oral presentation title: Study the atomization of the generated hydride species in a 

dielectric barrier discharge atomizer. (The author won a conference scholarship prize 

valued Euros 400) 

3. The 6th International Conference on Environmental Science and Technology (25 

– 29 June) 2012 / Houston –USA 

Oral presentation title: Application of cascade dielectric barrier discharge plasma 

atomizers for wastewater. 

c) Other activities 

� Served as a referee for a scientific article upon invitation from the Journal of 

Plasma Science and Technology (November 2011). 

� Served as a research mentor for the following research projects (master 

dissertations): 

1)   Water quality sensor development: online, continuous heavy metals detection, 2010. 

2)  Study the hydrogen generation from sodium borohydride system using a liquid 

nitrogen cold trap as a separation step, 2011. 
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