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Chapter 1. Introduction 

1.1 Epigenetics 

1.1.1 Interest and controversy 

In recent years, research in the field of Epigenetics, especially the branch of transgenerational epigenetic 

inheritance, has boomed. The idea that stress and its effects may be something that you inherit has really 

captured the public imagination. There is now even discussion in the media of ‘transgenerational justice’ for 

victims of decisions by ancestors, companies or governments that negatively affected their ‘epigenomes’ and 

potentially those of their descendants also (Rothstein et al., 2017, Kabasenche and Skinner, 2014).  

There has also been a great deal of interest in the development of therapeutics targeting epigenetic 

mechanisms. For example, inhibitors of histone acetyltransferases and histone deacetylases have shown 

promise as anti-cancer drugs.  

However, there is some controversy in the scientific community about how to accurately define Epigenetics, 

and when the use of the word may be inappropriate.  

1.1.2 Definition 

Literally meaning ‘on top of genetics’ the word epigenetics originated from Aristotle’s discussion of 

‘epigenesis’, a term he coined to describe differentiation of distinct parts from an undifferentiated egg. 

Some scientists feel the ‘on top of genetics’ understanding of epigenetics is too all-encompassing, it doesn’t 

exclude generic transcriptional regulatory mechanisms from those which truly constitute a mechanism of 

cellular memory (Henikoff and Greally, 2016). Cellular memory can be defined as the maintenance of an 

activity state of a gene once it is triggered, for example, an environmental cue such as extreme temperature 

inducing gene desilencing over multiple generations (Klosin et al., 2017).  

1.1.3 Mechanisms 

There are various biological mechanisms that could be considered vehicles for cellular memory. 

Transcription factors are attractive candidates for transmitting cellular memory because their sequence 

specificity provides a plausible link between particular genetic loci and epigenetic phenomena. However, 

while their presence is often necessary for cellular memory, it is not sufficient. For example, in the orange 

and black patches of calico cats, both the active and inactive X chromosome are exposed to the same 
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transcription factor concentration, but only one stays active (Henikoff and Greally, 2016). The memory 

mechanism actually involves a long non-coding RNA (Xist) which recruits the repressive PRC2 H3K27 

methyltransferase complex. 

DNA methylation is an obvious mechanism of cellular memory because covalent modifications remain on the 

DNA strands during replication and are thus conserved in the daughter chromatids. Moreover, in mammals, 

hemi-methylated (meCG/GC) dinucleotides are restored to symmetrically modified (meCG/GCme) by the 

Dnmt1 methyltransferase post-replication. In other model organisms, such as Drosophila, which lacks this 

maintenance activity, and C. elegans and S. cerevisiae, which lack DNA methylation entirely, there must be 

other mechanisms accounting for cellular memory.  

The final mechanism of cellular memory to discuss is the inheritance of histone modifications, but as this 

mechanism is the most pertaining to the thesis, it will be the topic of the next section. 

1.2 The Histone Code 

1.2.1 Overview 

Within the field of Epigenetics, a major area of study is the heritable modifications to the histone proteins 

that package DNA into chromatin, the so-called “histone code” (Strahl and Allis, 2000) (Jenuwein and Allis, 

2001). Histone modifications regulate gene expression by controlling the accessibility of genomic regions to 

the transcriptional machinery (Kornberg and Lorch, 1992), and by providing binding sites for chromatin 

remodelling proteins and/or transcription factors (Sanchez and Zhou, 2011, Clayton et al., 2000, Zippo et al., 

2009). Research in recent years has led to greater knowledge and understanding of the “writers”, “readers” 

and “erasers” responsible for the deposition, function and removal of histone modifications, and the ways in 

which these processes influence each other, termed, “cross-talk”.  

 

1.2.2 The nucleosome core particle 

 In chromatin, DNA is wound around histone protein cores in repeating structures called nucleosomes (Fig. 

1.1) (Richmond and Davey, 2003), which are arranged into higher order structures. The histone core particle 

comprises two of each of these four histone types; H2A, H2B, H3 and H4, each of which has a globular 

domain and an N-terminal tail (Kornberg, 1977). The globular domains aggregate to form the octameric core, 

combining one H3-H4 tetramer with two H2A-H2B dimers, while the N-terminal tails protrude out from the 

nucleosome. Residues targeted for post-translational modifications (PTMs) in these tails include positively 

charged lysine and arginine, for methylation (me) and acetylation (ac), and hydroxyl group-containing serine, 
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threonine and tyrosine, for phosphorylation (P) (Suganuma and Workman, 2011). There are other types of 

modifications, such as sumoylation or ubiquitination (Gill, 2004), but these go beyond the scope of this 

thesis. The focus will be acetylation and methylation of lysines on histone 3. 

 

                     

 

 

 

Figure 1.1 Structure of a nucleosome – DNA (black) winds around the octameric core of H2A, H2B, H3 and H4 
subunits. The N-terminal tails, in corresponding colours, are free to interact with the DNA. Part of the H3 
amino acid sequence is shown, to illustrate amino acids (K4, K9 and S10) which are targets for modification 
and relevant here. The grey shapes correspond to common types of chemical modification typically found on 
these residues. 

 

1.2.3 Nomenclature 

The nomenclature for histone PTMs, which will be referred to frequently throughout this thesis, follows the 

rules illustrated (Fig. 1.2). The standard abbreviation starts with the histone the post translational 

modification (PTM) is found on (e.g. H3 for histone 3), followed by the single amino acid code of the 

modified residue with its numerical position from the N-terminus (e.g. K9 for lysine 9) and the standard 

abbreviation for the chemical modification (e.g. me for methylation, ac for acetylation, P for 

phosphorylation) and where appropriate, the number of chemical moieties attached e.g. (me3 for three 

methyl groups). 
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Figure 1.2 The histone modification naming convention - Each individual component is colour-coded to: the 
histone protein in grey, the amino acid in blue, the modification in orange and the number of modifications 
(where there are multiple) in green. 

 

1.2.4 How histone modifications regulate gene expression 

1.2.4.1 Demarcating chromatin domains 

Support for the role of histone modifications in the regulation of gene expression comes firstly from their 

selective association with different chromatin domains (Gelato and Fischle, 2008). In the simplest 

classification, chromatin can be divided into euchromatin, which is characterised by low compaction and 

enrichment for actively expressed genes, and heterochromatin (Passarge, 1979), which is compacted and 

minimally transcriptionally active. The latter is further subdivided into constitutive or facultative 

heterochromatin (Metzler-Guillemain et al., 2008), depending on whether the compaction persists 

throughout cellular differentiation or is altered in responses to stimuli at cell cycle or developmental stages. 

A protein localisation study in Drosophila linked histone modification enrichment to five principal chromatin 

types (Filion et al., 2010). Of the three heterochromatin types, one was associated with Polycomb PcG 

proteins and enriched for H3K27me3, and another associated with HP1 protein and enriched for H3K9me2. 

The remaining type, accounting for 48% of genome coverage, was categorised rather by a lack of H3K4me2 

and H3K79me3, as detected by ChIP, and was the most repressive to transgenes. Of the euchromatin types, 

one was enriched for H3K36me3 and genes with a broad expression pattern over many embryonic stages 
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and tissues, described as “housekeeping genes”. The other type was characterised by a lack of H3K36me3 

and genes linked to more specific processes. Thus, histone modifications can provide an epigenetic signature 

for different functional chromatin subsets. 

1.2.4.2 Chromatin accessibility 

Histone modifications may impact chromatin structure by directly changing interactions within or between 

nucleosomes. For example, neutralising a positive charge on lysine or arginine with acetylation will reduce 

the attraction between an N-terminal tail and the underlying negatively charged DNA. On a large scale, this 

might lead to a looser and more accessible local chromatin structure (Winter and Fischle, 2010). Biochemical 

fractionation experiments have provided some evidence for this, by demonstrating the association of 

histone acetylation with active chromatin. Nuclei from hepatoma tissue culture (HTC) cells treated with 

sodium butyrate, to induce hyperacetylation of nucleosomal histones, showed a 2-3 fold increase in the 

initial rate of digestion by DNase I (Nelson et al., 1978). This indicates that the hyperacetylation of the 

histones made the associated DNA more accessible to the DNase enzyme. Moreover, a later study showed 

that acetylation may interfere with the formation of a higher order chromatin structure. Polynucleosomal 

chromatin fragments enriched for acetylated species of histones H2B, H2A.Z (a variant of H2A)  and H4 were 

found to be resistant to linker histone-induced precipitation in salt solution, compared to fragments from 

transcriptionally repressed chromatin (Ridsdale et al., 1990). 

1.2.4.3 Specific protein recruitment 

Another way that histone modifications may influence gene expression is by recognition by proteins that 

alter the structure and function of chromatin, or that recruit additional protein complexes that do. There are 

well-characterised protein binding domains known to interact with particular histone marks, for example 

chromo- and bromodomains, which bind methylated and acetylated lysines, respectively. Plant 

homeodomain (PHD) finger domains in different proteins have been shown to recognise both methylated 

and acetylated lysines, in particular H3K4me2/3, H3K9me3 and H3K14ac, but those that recognise 

methylated peptides are the largest group (Sanchez and Zhou, 2011) . 

1.2.5 Cross-talk 

The term ‘cross-talk’, in this context, refers to the interaction between different histone modifications. There 

is evidence for these interactions happening on different scales. For example, in the same N-terminal tail, 

histone modifications may influence the deposition of other modifications on neighbouring residues, usually 

by their action on the enzymatic activity of a “writer”.  A good example occurs in gene activation, where 
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H3S10P stimulates the histone acetyltransferase Gcn5 to acetylate nearby H3K9 and H3K14. These three 

modifications act synergistically to provide a more favourable binding site for 14-3-3 proteins than H3S10P 

would alone, while excluding heterochromatin HP1 proteins from binding to their target, H3K9me2/3. The 

14-3-3 proteins recruit chromatin remodelling complexes to promoter regions, enabling transcription 

(Clayton et al., 2000). This illustrates the way in which histone modification patterns may form cooperative 

binding sites for some protein factors, while excluding others. 

Cross-talk may also take place on a larger scale, between nucleosomes. This type of interaction is mediated 

by modification binding proteins, which, depending on the spacing of the binding domains, can be very long-

range. Brd4, for example, can simultaneously bind acetylated lysines on H3 and H4 via its two 

bromodomains. It is thought to play a mitotic marking function, since despite global hypoacetylation of 

mitotic chromatin, Brd4 remains bound throughout mitosis to genes that are immediately expressed 

afterwards (Zippo et al., 2009). 

1.2.6 Transgenerational epigenetic inheritance 

Transgenerational epigenetic inheritance is an umbrella term encompassing various examples of inheritance 

by means other than the genetic code. Despite a huge amount of public interest, it is very challenging to find 

true human examples because, firstly, it is only truly transgenerational epigenetic inheritance when the 

phenotype is inherited in the F3 generation. In a gestating mother, for example, it is possible for the F2 

gametes in developing foetus to have been exposed to the environmental stress which caused the 

phenotype. This is a key flaw in examples cited of transgenerational epigenetic inheritance in humans, such 

as the Dutch Hunger Winter. There is also the confounding factor in any study relating to diet, that parents 

also pass on behaviours surrounding food and exercise to their children (Heard and Martienssen, 2014).  

Nevertheless, in model organisms such as C. elegans, which are sufficiently short-lived to make the 

continued observation of a long series of generations experimentally feasible, there is a large body of 

evidence pointing to the existence of transgenerational epigenetic inheritance mechanisms. Some papers 

cite small RNA-based mechanisms (Guerin et al., 2014), but this subsequent section will discuss the 

inheritance of histone modifications as an important mechanism of transgenerational epigenetic inheritance.  

1.2.6.1 Inheritance of parental histones 

There is a convincing body of evidence supporting a model for the inheritance of parental histone marks by 

the direct incorporation of modified parental histones into the newly synthesised daughter chromatids 
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during DNA replication (Fig. 1.3). Such a model depends on the local and temporal coupling of the passage of 

the replication fork with nucleosome assembly.  

 

 

Figure 1.3 Inheritance of parental histones- passage of the replication fork liberates a pool of “parental” 
histones carrying modifications characteristic of the local chromatin environment. Parental and unmodified 
histones are randomly incorporated into the daughter chromosomes.  

 

Evidence for this coupling comes from the observation that manipulating the location of a replication fork 

stall results in local changes to histone modification patterns (Schiavone et al., 2014). During DNA 

replication, the formation of G4 quadruplex structures can halt the progress of DNA polymerase so that it 

becomes uncoupled from DNA helicase, resulting in gaps that are replicated after the passage of the 

replication fork, in the absence of the pool of parental histones. Changing the position of a G4 motif in 

relation to the transcription start site at the BU-1 locus altered the pattern of H3K4me3 and H3K9/14ac 

within the gene body, without producing any alteration in expression, suggesting that the altered 

modification pattern occurs as a result of the changed location of the replication fork stall (Schiavone et al., 

2014). 

Furthermore, in vivo experiments in C. elegans embryos are consistent with a model whereby modified 

histones are passed to product DNA strands in-cis and locally during DNA replication. Mutants in the mes-3 

gene, encoding an essential component of Polycomb Repressive Complex 2 (PRC2), lack H3K27me3. By 
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creating embryos with either a mes-3 oocyte and WT sperm (Fig. 1.4A), or a WT oocyte and mes-3 sperm 

(Fig. 1.4C), it was possible to ensure that all H3K27me3-marked chromosomes were exclusively paternally or 

maternally contributed. In both types of embryo, it was shown that H3K27me3 remained restricted to the 

‘gamete-of-origin’ chromosome set (Fig. 1.4B & D) until the de novo establishment of repressed chromatin 

domains during larval germline development (Gaydos et al., 2014). The paternally inherited H3K27me3 was 

only transmitted through four rounds of DNA replication, in the absence of a functional PRC2 H3K27 

methyltransferase.  However, embryos with maternally contributed H3K27me3 also inherited maternally 

supplied PRC2 with the oocyte, which maintained high H3K27me3 levels throughout embryonic 

development. This observation supports the idea that the dilution of histone marks with each round of DNA 

replication must be compensated. In this example, PRC2 could be perpetuating inherited patterns by binding 

pre-existing H3K27me3, which then stimulates its methyltransferase activity to locally methylate 

neighbouring unmethylated H3K27 residues. 

 

Figure 1.4 The restriction of H3K27me3 to the gamete-of-origin chromosome set. Figure 1.4A shows the 

formation of an embryo with H3K27me3 inherited solely from the sperm-derived chromosomes. The oocyte is 

mes-3 mutant and therefore has no active PRC2 and no H3K27me3. Figure 1.4B shows images of two 

pronuclei in the one-cell embryo (upper row) and a diploid nucleus in a two-cell embryo (lower row). Merge 

panels show DNA in red and H3K27me3 in green. In the diploid nucleus, the H3K27me3-marked, sperm-

derived chromosomes remain distinct. Figure 1.4C shows the formation of an embryo with H3K27me3 

inherited solely from oocyte-derived chromosomes. This time, the oocyte has PRC2 activity, but the sperm is 

mes-3 mutant. Figure 1.4D shows images of two pronuclei (upper row) and diploid nuclei (lower two rows) as 

in 1.4B. The arrows point to a III-X-IV fusion chromosome in the oocyte-derived chromosome set. As in 1.4B, 

the H3K27me3-marked, oocyte-derived chromosomes, remain distinct. Adapted from (Gaydos et al., 2014). 
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1.2.7 Methods and limitations of study 

One of the challenges levelled by those that dispute the existence of a histone code is the lack of evidence 

that histone modifications act combinatorially in influencing downstream developmental events (Henikoff 

and Greally, 2016). Moreover, across the different model organisms, evidence for universality in the histone 

code is lacking. It appears that histone modification cross-talk depends very much on context. In other 

words, it may vary from cell to cell, tissue to tissue, organism to organism (Winter and Fischle, 2010).  

Furthermore, how we “see” the histone code is powerfully influenced by the experimental method used to 

probe it. Chromatin immunoprecipitation (ChIP), for example, uses antibodies to target specific histone 

modifications, and pull-down DNA fragments in close proximity to these modifications that can then be 

mapped back to the genome. Thus, ChIP data will reveal genome-wide patterns of histone mark distribution. 

Separation and analysis of peptide fragments by mass spectrometry, on the other hand, will provide 

information about associations within a single N-terminal tail. The advantage of mass spectrometry is that it 

is more quantitative than any antibody-based approach. However, while it may quantify the different 

modified peptides in a sample accurately, it cannot tell you where those modifications came from. Thus, 

mass spectrometry and ChIP approaches are very complementary. As mass spectrometry is the major 

technique employed in obtaining the data presented in this thesis, the next section will explain the principles 

of the technique, and the specific method used in these experiments. 

1.3 Mass spectrometry technologies 

1.3.1 Principle of mass spectrometry  

The objective of mass spectrometry is to accurately determine masses of chemicals present in complex 

mixtures. This is achieved by a common sequence of processes (Fig. 1.5). Briefly, molecules in a sample need 

to be ionised in order for them to travel in an electric or magnetic field towards a detector. The speed at 

which ions are able to travel through the mass analyser is directly proportional to their charge and indirectly 

proportional to their mass. The data output is a mass to charge ratio (m/z) that is easily converted to mass 

by looking at isotope series. The m/z of the +1 ion will correspond to the mass of that ion. The +1 ion will be 

separated from the +2 ion by 0.5 m/z,  and from the +3 ion by 0.33 m/z (Yergey et al., 1983). So, to work out 

the mass from a +2 ion, it is necessary to add the mass of two protons and then divide by 2. 

Mass spectrometry can be used to quantify the amount of a substance by calculating the intensity of the 

ions it detects (Urban, 2016). In proteomic mass spectrometry, it is the intensity of peptide ions that is 

measured. 
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Figure 1.5 The universal processes of mass spectrometry - the various technologies listed in bullet points are 
colour coded to the stage they correspond to and will be described in detail later in this chapter. 

 

1.3.2 Ionisation methods 

The most popular methods of ionisation for proteomic mass spectrometry, electrospray ionisation (ESI) and 

matrix-assisted laser desorption ionisation (MALDI), both add charge to peptide ions and convert them to 

gaseous form. This enables them to travel in the mass analyser. In ESI, a sample must be acidified before 

being passed through a capillary needle with a high electric charge applied (Sarg et al., 2013). Protons from 

the acid bind to the peptides in the sample, which become gaseous. In MALDI, an analyte molecule is co-

crystallised with a matrix, usually 2,5-dihydroxybenzoic acid or α-Cyano-4-hydroxycinnamic acid. The 

aromatic structures within the matrix molecule enable absorption of laser energy at a particular wavelength, 

which induces a complex ion-molecule interaction resulting in proton transfer from the matrix to the analyte 

molecule (Schurenberg et al., 1999). This change is accompanied by a solid to gas phase transfer from the 

crystallised analyte-matrix mixture to a gaseous, charged analyte ion, which can travel into the mass 

analyser. One helpful feature of MALDI is that it results in predictably charged ions, usually +1. ESI produces 

a wider range of charges. MALDI has also facilitated the development of mass spectrometry imaging, which 

works by spraying matrix over a fixed tissue section and scanning with a laser, providing spatial information 

about the distribution of compounds (Aichler and Walch, 2015). 

1.3.3 Mass analysers and detectors 

The purpose of a mass analyser is to separate ions according to their m/z. They can be separated with 

magnetic fields or electric potentials. Quadrupoles, so called because they comprise four rods arranged 

around a beam axis, create an oscillating electric field which selectively stabilises or destabilises the motion 

of ions (Miller and Denton, 1986). The destabilised ions are lost, however, which limits sensitivity. Time-of-

flight (TOF) gives all ions the same energy at the source, but then separates them by the time they take to 

travel down the flight path to the detector, which is proportional to their m/z (Boesl, 2017). Fewer ions are 

lost with TOF than when using a quadrupole. However, the Orbitrap mass analyser has the best resolution 
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and mass accuracy. Orbitrap detectors trap ions in a cell, in which they oscillate along a central spindle 

electrode, which is held at a positive or negative potential. The frequency at which the ions oscillate is 

proportional to their m/z, and the higher that frequency, the faster the ions can escape the Orbitrap and be 

detected (Hu et al., 2005). Different mass spectrometers can use one or more of these three technologies. 

The Q-Exactive, on which all experiments discussed in this thesis were performed, uses two types of 

quadrupole to isolate different m/z windows, and an Orbitrap final detector. 

1.3.4 Tandem mass spectrometry 

Tandem mass spectrometry, often abbreviated MS/MS, involves a fragmentation step between two mass 

analysers (Fig. 1.6). Fragmentation is usually achieved by collision-induced dissociation (CID) with a 

background gas. The first mass analyser (MS1) selects ions of a particular m/z for fragmentation, and the 

second mass analyser (MS2) determines the m/z of the fragment ions. Because the fragment ions can be 

traced back to their parent ions during analysis, MS/MS can provide valuable structural information about a 

molecule. 

 

 

Figure 1.6 Comparing the process of standard MS vs MS/MS - Green steps indicate the common beginning 
and end; the blue trajectory is standard MS and the orange is MS/MS. 

 

For peptides, fragmentation usually occurs at amide bonds, producing a predictable range of ions (Fig. 1.7). 

Depending on whether the proton released by hydrolysis of the amide bond associates with the C- or N-

terminal end of the peptide, the ion is referred to as ‘b’ or ‘y’. The number of amino acids in the ion is 

suffixed in subscript after the letter, for example ‘b3’.  
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Figure 1.7 – Four of the ways the TKQTAR peptide might fragment in a collision chamber, at a variety of 
amide bonds. The first row shows y ions and the second, b ions, next to the unprotonated fragment that will 
not proceed to the mass analyser. 

 

1.3.5 The Q-Exactive mass spectrometer 

An overview of the workings of the Q-Exactive (Fig. 1.8) will help illustrate the use of some of the 

technologies discussed previously and is important background for later considerations. The Q-Exactive 

performs alternate MS1 and MS2 scans. Upon entering the instrument, ions are filtered and focused by an S-

lens, a type of focusing quadrupole that removes any molecules that were unsuccessfully ionised at the 

source. For an MS1 scan, the selective quadrupole is not engaged, and all ions pass into the C-trap (Perry et 

al., 2008), an ion guide with a curved central axis. The C-trap is required to ensure that ions’ kinetic energy is 

suitably matched to the voltage on the centre electrode of the Orbitrap. Too low and ions will be sucked into 

the centre electrode, but too high and they will collide with the outer electrode. Nitrogen within the C-trap 

facilitates collisional cooling of ions. Once cooled sufficiently, they are released and pass into the Orbitrap 

detector. Under these conditions, m/z from all intact ions are detected.  

For an MS2 scan, an electrostatic field is applied which allows only ions within a specified isolation window 

to enter the C-trap. Moreover, loss of energy in the C-trap can be controlled such that when ions are sent 

into the collision chamber to fragment, predictable bonds will break. Peptides, for example, break at amide 

bonds. The fragment ions are then also directed to the Orbitrap detector. 

Because the Q-Exactive can only perform either an MS1 or MS2 scan at one time, it is necessary to control 

the entry of the analytes from a complex sample into the instrument so that it is not overwhelmed. 

Normally, a HPLC column is linked to the mass spectrometer, to separate analytes according to their relative 

hydrophobicity/hydrophilicity. 
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Figure 1.8 – The components of the Thermo Scientific Q Exactive Benchtop LC-MS/MS. Briefly, ions enter 
the instrument at the ESI source, pass through the quadrupoles before reaching the C-trap, from where they 
proceed to the collision chamber (for an MS2 scan) and/or finally the Orbitrap detector. Adapted from 
tools.thermofisher.com. 

 

1.3.6 Data acquisition methods 

Whether to choose data dependent (DDA) or data-independent acquisition (DIA) is an important 

consideration before embarking on an MS/MS experiment.  DDA selects the most abundant ions in an MS1 

spectrum for fragmentation. The number of ions selected can be set by the user. This is often the method 

used when there is no prior knowledge about what is present in a sample. An advantage of DDA is that it 

tends to produce a very high quality MS2 spectrum. However, this approach risks missing low-abundance 

analytes that may be of interest.  

DIA, by contrast, selects all ions in a pre-specified isolation window (between 10 m/z and 50 m/z) for 

fragmentation, which is repeated over the full m/z range in the MS1 spectrum (Doerr, 2015). This approach 

produces a much more complex MS2 spectra, since more than one MS1 analyte is fragmented in each MS2 

scan, but the advantage is that no data is lost (Canterbury et al., 2014). Moreover, there are analysis 

techniques to help sort the relevant fragment ions from the noise in the MS2 spectra. DIA data analysis relies 

on spectral libraries made from DDA data. 

1.4 Histone Proteomics 

1.4.1 Proteomic approaches 

The field of proteomics is expansive and diverse in its methods, but the main approaches can be grouped 

into top-down, middle-down and bottom-up classifications (Table 1.1). 



29 

 

The top-down approach runs samples containing intact proteins, with extensive fragmentation once in the 

instrument. The advantage of this method is that sample preparation is very simple, but sensitivity is poor 

(Janssen et al., 2017). It can provide useful information about protein structure and is an especially helpful 

approach for the analysis of complex mixtures of proteins.  

The middle-down approach is helpful for researchers interested in the combinations of modifications found 

on a particular histone tail. Histones are minimally digested with proteinases such as Glu-C, so called 

because it preferentially cleaves at the C-terminal of glutamic acid residues, and Asp-N (N-terminal of 

aspartic acid). These enzymes typically cut infrequently enough that the entire histone N-terminal tail can be 

detected as one peptide. MS analysis of these peptides can provide useful information about the 

coexistence of modifications. For example, digestion with the enzyme Glu-C produced a 50 amino acid-long 

peptide containing lysines 4, 9, 23, 27 and 36 of histone 3. Analysis of these peptides revealed that H3K4me3 

is found in combination with K9me3, K23ac and K36me2 on the same peptide, but K27me3 never is, 

indicating bivalency of K4me3- and K27me3-marked domains (Sidoli et al., 2014). 

The experiments discussed here used bottom-up proteomics, so-called because the proteins are extensively 

digested prior to mass spectrometry, rather than fragmenting mostly in the instrument. A bottom-up 

approach was the one most likely to provide information specifically about H3K4me3, the focus of this study, 

as the TKQTAR peptide containing the K4 residue can be specifically targeted. It is a challenging modification 

to detect, owing in part to its low natural abundance. A prior study looking at changes in histone H3 marks 

during the C. elegans lifecycle, by middle-down proteomics, does not even mention H3K4me3, suggesting 

uncertainty regarding its detection (Sidoli et al., 2016). 
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Table 1.1 – Types of Proteomics; a comparison of top-down, middle-down and bottom-up approaches 

 

 

1.4.2 Preparation of histones for bottom-up MS 

1.4.2.1 Histone extraction 

Owing to their high content of positively charged lysine and arginine residues, histones are uniquely acid- 

and salt-soluble compared to other nuclear proteins. They are, therefore, straightforwardly extracted by first 

purifying nuclei from a cell/tissue sample, and then resuspending nuclei in acid or salt to solubilise the 

histones. Histones can then be precipitated out of solution, resolubilised in water and stored frozen. 

1.4.2.2 Proprionylation/trypsin digestion 

Before running histone extracts in an LC-MS/MS instrument, they must be digested into smaller peptides 

and stabilised. This is often achieved by a combination of proprionylation and trypsin digestion. Trypsin is a 

serine protease which preferentially cleaves at the C-terminus of lysine and arginine residues. 

In the first round of proprionylation, proprionic anhydride reacts with the amine group on the lysine 

sidechain, leaving a proprionyl moiety (Fig. 1.9). During subsequent trypsin digestion, these moieties provide 

steric inference around lysine residues, limiting trypsin cutting to only arginine residues. On H3, this yields 

peptides of between 6 and 14 amino acids, an appropriate size for running in the instrument (Fig. 1.10). A 

second round of proprionylation is performed to stabilise the N-terminal amines on each peptide. 
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Figure 1.9 – Proprionylation of a lysine. The green circle highlights the reactive group on proprionic 
anhydride which ends up attached to the amine group on the lysine sidechain. After a second round of 
proprionylation, the same chemical group will be attached to the free amine group at the N-terminus of each 
peptide generated by enzyme digestion, labelled ‘Round 2 target’. 

 

It is crucial that proprionylation is performed within a pH range of 7-9, because the proprionic acid waste 

product will lower the pH over the course of the reaction. At low pH, proprionic acid may auto-hydrolyse, 

reducing the amount of reagent available to react with amine groups of lysine residues or N-termini. Above 

pH 10, though, and unintended amino acids may become proprionylated, causing problems with 

downstream analysis (Janssen et al., 2017). 

Two rounds of proprionylation as described here (Garcia et al., 2007) has many advantages. As mentioned 

previously, it prevents cleavage by trypsin after every lysine residue, ensuring that peptides are a suitable 

size for detection by LC-MS/MS. It also helps ensure that peptides are consistent, since some lysine 

modifications could interfere with trypsin cleavage. Trimethylation (me3), for example, would prevent 

trypsin cleavage, whereas monomethylation(me1) would not. This is essential for identification because the 

mass increase conferred by all the modification states of a peptide needs to be predictable (Table 1.2). Note 

how the mass increase for me1 (70.09) is larger than that for me2 (28.05).  This is because monomethylated 

lysines are able to accept a proprionyl group in the first round of proprionylation, but dimethylated and 

trimethylated lysines are not. Moreover, the proprionylmethyl group ensures that me1-modified peptides 

elute later than their me2/me3-modified counterparts, by conferring additional hydrophobicity. This is 
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helpful because it spaces out the entry of similar sized peptides into the Q Exactive and thus allows for a 

more complete analysis. 

 

 

Figure 1.10 Peptide-generation from the H3 N-terminal tail. Blue shapes indicate the position of carbonyl 
moieties on lysine sidechains after the first round of proprionylation. Green shapes indicate the same but on 
N-terminal amines of all types of amino acid after the second round. Trypsin cleavage occurs at all arginine 
residues; thus all peptide sequences end in ‘R’. Peptide sizes range between 3 and 14 amino acids, but 
anything smaller than the TKQTAR peptide will not be detected. 

 

Table 1.2 – The increase in mass associated with proprionylation, methylation and acetylation 
modifications, in their common arrangements. Data analysis software uses these expected increases to 
search for histone peptides. 

Modification Increase in Mass 

Propionyl (Pr) 56.06 

Methylpropionyl (me1) 70.09 

Dimethyl (me2) 28.05 

Trimethyl (me3) 42.08 

Acetyl (ac) 42.03 

Double Propionyl (N-term lysine)  112.11 

Methylpropionyl Propionyl (N-term lysine) 126.11 

Dimethyl Propionyl (N-term lysine) 84.11 

Trimethyl Propionyl (N-term lysine) 98.14 

Acetyl Propionyl (N-term lysine) 98.1 
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The N-terminal proprionylation in the second round makes all peptides more hydrophobic and thus 

improves their retention on the HPLC column, as well as reducing the likelihood that they will be removed in 

a wash step. Nevertheless, one group has suggested further caution with respect to the most hydrophilic 

peptides, recommending that in the N-terminal modification step, proprionic anhydride is replaced with 

phenyl isocyanate, which confers even more hydrophobicity (Maile et al., 2015).  

1.4.2.3 Desalting and ion-pairing 

Desalting or ‘tip clean-up’ happens after proprionylation. It is done to remove salts and/or other 

contaminants which could interfere with downstream processes. Briefly, peptides are resuspended in 0.1% 

trifluoroacetic acid (TFA), the ‘binding solvent’. This solution is pipetted up and down within a special pipette 

tip packed with a graphite carbon-based material, known as a Hypercarb tip. The tip interior selectively binds 

highly polar compounds, so should in theory only bind the peptides. These can then be eluted in a different 

solvent comprising 90% acetonitrile (ACN) and 0.1% TFA.  

Before the purified peptide sample can be injected into the LC-MS/MS, the elute must be dried down to 

remove the ACN, and then resuspended in an appropriate anionic ion-pairing reagent, usually a 

perfluorinated acid. TFA has already been mentioned and is the most commonly used, however 

pentafluoroproprionic acid (PFPA) and heptafluorobutyric acid (HFBA) are more hydrophobic and may be a 

more suitable choice for hydrophilic peptides such as H3K4me3-modified TKQTAR (Shibue et al., 2005). 

Whichever acid is selected, the TFA-, PFPA- or HFBA- anions will interact with basic sidechains or N-terminal 

amines, neutralise their positive charge and reduce their hydrophilicity, thus increasing their affinity for the 

stationary phase of the HPLC column. 

1.4.3 Reverse-phase high-pressure liquid chromatography  

Reverse-phase high performance liquid chromatography (RP-HPLC) separates analytes according to their 

hydrophobicity and is the most common form of chromatography used in LC-MS/MS applications (Josic, 

Kovak 2010). It uses a column, packed with silica beads, to which alkyl chains are attached. These chains bind 

analytes when the solvent running though the column is aqueous, the so-called stationary phase. However, 

as more organic solvent is added, the analytes begin to elute, with the most hydrophilic eluting first. The 

column dimensions, particle size and length of the alkyl chains are all variables which can be adjusted for 

different experiments. For peptides, a particle size of 5µm is favoured, and a longer alkyl chain, usually 8-18 

carbons (C8-C18). The rationale for this is that while whole proteins are likely to have many hydrophobic 

moieties that will bind very short alkyl chains, peptides and small molecules need longer chain lengths to be 

captured. 
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HPLC machines need to be able to pump and mix two solvents, one aqueous and conventionally referred to 

as solvent A, the other organic, called solvent B. For LC-MS applications, both solvents normally contain 0.1% 

formic acid, to provide a source of protons at the ESI stage. Solvent A is mainly HPLC grade water, and 

solvent B is mainly a water-miscible organic solvent such as ACN or methanol. The solvent A used in these 

experiments contained 0.1% formic acid and 3% ACN, because a small amount of organic solvent prevents 

long C18 alkyl chains from matting down in a hydrophobic layer, and thus being ineffective at capturing 

peptides. 

In addition to the column, particle and solvent parameters discussed, it is also necessary to establish an 

effective gradient for the replacement of solvent A with solvent B. This controls the speed at which the 

analytes elute and needs to be optimised to allow enough of a time interval between elution peaks, but not 

so slow as to be experimentally impractical. In these experiments, a multi-step gradient was used to improve 

retention and separation of the more hydrophilic peptides (Sidoli et al., 2015). Solvent B was increased from 

3% to 8% over 5 mins, 8% to 25% over 55 mins and 25% to 60% over 26 mins. The 55 min step is when most 

peptides are expected to elute, which is why the gradient is reduced and, consequently, the elution slowed 

down. 

1.4.4 Data analysis 

1.4.4.1 Skyline 

Skyline is an open-access software for the processing of histone proteomic DIA data (MacLean et al., 2010). 

It allows the user to manually identify peptides, displayed in the software as peaks on a graph with retention 

time (the time at which the peptide leaves RP-HPLC column) on the x axis and intensity (of the peptide-

derived ions hitting the detector) on the y axis (Fig. 1.10).  
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Figure 1.11 – A screenshot from the histone proteomic DIA data software package Skyline, showing the 
representation of the MS1 and MS2 spectra. 

 

In the top panel (Fig 1.11), the MS1 spectrum, the different colours represent the different charge states of 

the ions. The blue peak represents the +1 ion, the purple peak the +2 ion and the red peak the +3 ion. The 

software compares the observed ratio of ‘+1: +2: +3’ with an expected ratio, based on the likelihood of each 

of these ions forming at the ionisation stage. The output of this comparison is an ‘idotp’ number. The closer 

to 1 the ‘idotp’ is, the more likely that the MS1 peaks correspond to the peptide of interest.  

In the bottom panel (Fig 1.11), the MS2 spectrum, the four different coloured peaks represent the four most 

abundant MS2 ions. A ‘dotp’ number compares the observed ratio of these ions with an expected ratio, 

determined from a spectral library, a predetermined reference spectrum of the fragmentation pattern of the 

peptide in question. It should also be close to 1.  
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Because the MS1 and MS2 peaks are lined up on the x axis i.e. have the same retention time, it is likely that 

the MS2 ions are derived from the MS1 ions. The lining up of the peaks, ‘idotp’ and ‘dotp’, similarity of 

retention times between replicates and a low ppm (measure of error), are all parameters that must be 

considered, to be sure of correct peptide identification. 

1.4.4.2 EpiProfile 

EpiProfile is a software run as code in MATLAB which ascertains retention times for each modified peptide of 

interest and their relative abundance (Yuan et al., 2015). The output can be helpful on its own or alongside 

the manual Skyline analysis, to cross-check retention times and later, relative abundances.  

1.4.4.3 Correction Factors 

Different ions behave differently in the MS/MS instrument. Not all ions that enter the instrument are 

detected and some are more likely to reach the detector than others. Some peptides have very similar 

masses and elution times and may mask one another. For this reason, correction factors are usually applied 

during the analysis to make the calculated relative abundances more accurately reflect the true relative 

abundances. In this analysis, two correction factors were applied, for ionisation efficiency and isotopic 

abundance (2.3.5.2), as published in (Lin et al., 2014). 

1.5 COMPASS 

1.5.1 The complex 

In this thesis, LC-MS/MS was used to investigate histone modification changes due to actions of the 

COMPASS complex. COMPASS is a contraction of Complex of Proteins Associated with Set1. It is a conserved 

eukaryotic histone methyltransferase, targeting H3K4 specifically. In yeast, it is the only H3K4 

methyltransferase. In C. elegans, there are two H3K4 KMTs, SET-2 and SET-16. Drosophila has two additional 

H3K4 methyltransferases, Trithorax (Trx) and Trithorax-related protein (Trr), which are related to the 

mammalian Mixed Lineage Leukaemia (MLL) group (Eissenberg and Shilatifard, 2010). Mammals have four 

MLL methyltransferase complexes (MLL 1-4) and two Set1 homologues, Set1A and Set1B (Lee and Skalnik, 

2005), which makes functional COMPASS study in mammalian systems challenging.  
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Figure 1.12– Conservation of COMPASS in eukaryotes. Worm, fly, yeast and human complexes are 
illustrated for comparison.  Protein names are written as summarised in (Ardehali et al., 2011). 

 

Yeast Set1p, C. elegans SET-2, Drosophila dSet1 and human Set1A/B all fall into the same subfamily of H3K4 

methyltransferases according to phylogenetic comparison (Ardehali et al., 2011). They share an RNA 

recognition motif that is missing in Trx/MLL-type proteins. The Set1 homologues and the proteins they 

associate with are highly conserved (Fig 1.12). The various functions of the individual subunits have been 

researched extensively, but this thesis will focus on SET-2 and CFP-1, the catalytic and targeting subunits, 

respectively. 
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1.5.2 Set1/SET-2 

1.5.2.1 Discovery 

Set1/SET-2 is the catalytic subunit of the COMPASS complex. Its catalytic activity is conferred by its SET 

domain, a conserved domain common, but not exclusive, to all histone lysine methyltransferases (KMTs). 

SET is a contraction of Su(var)3-9, Enhancer of zeste and Trithorax. 

The first Set1, and the associated H3K4 methylation machinery that made up COMPASS, was identified in S. 

cerevisiae (Miller et al., 2001). Homologues of Set1 were then identified in S. pombe (Roguev et al., 2003), 

humans (Lee and Skalnik, 2005), C. elegans (Simonet et al., 2007) and Drosophila (Ardehali et al., 2011).  

1.5.2.1.1 Lysine methyltransferase activity 

KMTs targeting other lysines had been previously characterised before the discovery of Set1. Su(var)3-9 

homologues, mammalian SUV39H1 and S. pombe Clr4, were the first to demonstrate in vitro KMT activity 

(Rea et al., 2000). Interestingly, in the same study, Trx tested negative in KMT assays. The authors proposed 

that this might be due to Trx lacking a Cysteine-rich preSET region, a similarity it shares with Set1. Because 

deletion of the preSET region in an SUV39H1 fusion protein abolished KMT activity, it was thought to be 

essential. Moreover, when Set1/COMPASS was first discovered it failed to show methyltransferase activity 

with free histones or nucleosomes (Miller et al., 2001). However, it was shown that same year by purifying 

COMPASS from Bre2p or Shg1p proteins, that it did show KMT activity specific to H3K4 (Roguev et al., 2001).  

The authors noted that purifying COMPASS by tagging Set1 had an inhibitory effect and could have been why 

previous studies failed to find KMT activity in the Trx/Set1 branch of SET domain proteins 

1.5.2.1.2 Lysine methylation dynamics 

After the discovery of SUV39H1, dozens more KMTs were identified through homology searches with the SET 

domain (Dillon et al., 2005). Characterisation of these revealed that KMTs are specific both for the lysine 

within the substrate, and the degree of methylation. KMT2A or MLL1, for example, preferentially 

dimethylates unmodified H3K4 (Nakamura et al., 2002), but can trimethylate when associated with its 

endogenous interacting proteins (Schneider et al., 2005). This is because trimethylation requires optimal 

enzymatic configuration to achieve. All known KMTs use S-adenosyl-methionine (SAM) as the methyl group 

donor (Fig. 1.13) (Bannister et al., 2002). 

Lysine demethylases (KDMs) were discovered later, first LSD1, a component of the C-terminal binding 

protein corepressor complex which catalyses the demethylation of H3K4me2 and H3K4me1 through its 
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flavin adenine dinucleotide (FAD)-dependent amine oxidase domain (Shi et al., 2004). Another KDM enzyme 

class was later discovered that use the Jumanji C (JmjC) domain to catalyse demethylation through the 

oxidation of methyl groups. They rely on α-ketoglutarate, molecular oxygen and Fe2+ cofactors (Shi and 

Whetstine, 2007).  

KMTs and KDMs rely on cofactors that are key intermediates from metabolic processes, suggesting that 

these enzymes may be responsive to metabolic states. S-adenosylhomocysteine (SAH) is a by-product of 

methylation reactions using SAM (Fig. 1.13) and can act as a competitive inhibitor of methyltransferases, 

potentially creating a negative feedback loop mechanism for regulation of methylation (Huang, 2002). 

 

Figure 1.13 The reaction mechanisms of KMTs and KDMS. Adapted from (Black et al., 2012). 

1.5.2.2 Discovery of the C. elegans homologue of yeast Set1, SET-2 

The first Set1 protein in C. elegans was identified in a RNAi  screen for enhancement of Mes sterility, where 

Mes stands for ‘maternal effect sterile’ i.e. progeny of Mes mutant mothers are sterile (Xu and Strome, 

2001). The Mes phenotype was thought to be due to the derepression of gene expression in the germline, 

supported by the observation that high copy transgenic arrays, that are normally silenced in the WT C. 

elegans germline, were shown to be desilenced in the germlines of sterile mes mutants (Kelly and Fire, 

1998). In repressing inappropriate gene expression, MES proteins in the C. elegans germline play a similar 

role to PcG proteins in the Drosophila soma. Indeed, MES-2 and MES-6 are the C. elegans orthologs of PcG 

proteins Enhancer of Zeste [E(Z)] and Extra Sex Combs (ESC). MES-3 is the remaining protein in the C. elegans 

Polycomb complex, responsible for H3K27 methylation. MES-4 is a SET-domain protein responsible for 

H3K36 methylation, a mark of actively expressed genes. 
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Progeny of homozygous mes mutant mothers are completely sterile but M+Z- mes mutants, homozygous 

zygotic mutants from a heterozygous mother, have a milder phenotype of reduced brood size, indicative of 

some germline defect and suitable to test for worsening with candidate enhancers. 

The RNAi screen found a novel enhancer of Mes sterility, which was selected as a candidate for the screen 

due to its sequence similarity to trithorax. It was named set-2 on account of the SET domain found at the C 

termini of its two isoforms. RNAi of set-2 induced sterility in M+Z-  mes-3 and mes-4 mutants (from 11-92% 

and 0-95% respectively in the F1 offspring of injected P0 mothers), but not mes-2 or mes-6 mutants, or WT 

worms (Xu and Strome, 2001). 

1.5.2.3 C. elegans set-2 gene structure 

The set-2 locus encodes two overlapping transcripts (Figure 1.14), one 6.5kb in length (set-2l) and one 3.4 kb 

in length (set-2s) (Xu and Strome, 2001). The three C-terminal exons of both transcripts encode the SET 

domain, but the RRM RNA binding domain is unique to the long transcript. The short transcript has a unique 

5’ exon within intron 9 of set-2l (Xu and Strome, 2001). 

 

 

Figure 1.14 The gene structure of C. elegans set-2, showing the long and short transcripts, the exons which 
contribute to the key RRM and SET domains, the position of the ok952 and bn129 deletion alleles, and the 
effect of these deletions on the long form of the SET-2 protein. The unique N-terminal exon is encircled in 
blue. Adapted from (Simonet et al., 2007) and (Xiao et al., 2011). 
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1.5.2.3.1 ok952 

The set-2(ok952) is a deletion allele, generated by Robert Barstead (strain name: RB1025) using UV/TMP 

mutagenesis (Barstead et al., 2012). It is a 1269bp deletion spanning 3 exons in set-2s, 2 in set-2l (Figure 1.14, 

Table 1.3). It is an out of frame deletion of SET-2S, resulting in a stop codon at amino acid 38. In SET-2L it 

removes 208 amino acids between the RRM and the SET domain (Simonet et al., 2007). Crucially, the SET 

domain in SET-2L is left intact, and potentially functional. Some functionality of the SET domain in SET-2L 

(ok952) is supported by the observation of no significant decrease in H3K4me3 (by quantitative western 

blot) in C. elegans embryos and L1s, and only a 20-40% reduction in L3s and L4s (Xiao et al., 2011). 

Therefore, it is thought to be a hypomorphic allele.  

1.5.2.3.2 bn129 

Also a deletion allele, set-2(bn129) was identified by the Strome laboratory in a PCR screen of a deletion 

library generated by the Koelle method (Xiao et al., 2011). It removes 745bp from exon 11 of set-2l, and from 

exon 3 of set-2s (Figure 1.14, Table 1.3). This results in a frameshift after 885 amino acids of SET-2L and after 

117 amino acids of SET-2s, leading to a premature stop codon four amino acids later in both proteins, before 

the SET domain can be translated. This effect is predictive of a null allele and is supported by observations of 

a more drastic reduction of H3K4me3 and H3K4me2 in set-2(bn129) mutants, 70-80% and 50-70%, 

respectively, at all stages of development (Xiao et al., 2011). 

 

Table 1.3 – Summary of the ok952 and bn129 alleles and their effects on the SET-2 protein. Information from 
(Simonet et al., 2007) and (Xiao et al., 2011). 
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1.5.3 Cfp1/CFP-1 

1.5.3.1 Discovery 

Cfp1/CFP-1 plays a targeting role in the COMPASS complex. The first cloning of Cfp-1 protein was achieved 

by a ligand screening approach, in which it was isolated as a human cDNA encoding a novel CpG (cytosine 

preceding guanine) binding protein, which was found to function as a transcriptional activator (Voo et al., 

2000). Human CFP1 contains two PHD domains, acidic and basic regions, a coiled-coil domain and a CXXC 

domain. The CXXC domain is common to a number of DNA binding proteins including DNA methyltransferase 

1, methyl-CpG binding domain protein 1, and human trithorax. An alanine-scanning study found that the two 

conserved cysteine residues in the CXXC motif are essential for DNA binding, as is the presence of Zn2+ (Lee 

et al., 2001). The consensus binding site is (A/C)CpG(A/C) and while mutation of the flanking residues to 

thymine does not abolish binding to the CXXC domain, it reduces the efficiency. CpG alone is necessary and 

sufficient for CFP1 binding. 

Native human CFP-1 was shown to trans-activate promoters that contain CpG motifs, pointing to a role in 

modulating the expression of CpG island genes.  

1.5.3.2 CpG islands 

CpG, shorthand for cytosine preceding a guanine residue in DNA, is rare in vertebrate DNA. In humans, it 

occurs with a frequency almost 10 times less than would be expected from base composition. There appears 

to be an inverse relationship between the extent of methylation in the genome and CpG content, with 

vertebrates in the ‘heavy methylation’ category, echinoderms with partial methylation and insects with 

undetectable methylation (Bird, 1980). The reduction of CpG content in heavily methylated  genomes is 

thought to be due partly to the heightened mutability of 5-methylcytosine, which can be deaminated to give 

thymine, and thus over time converting C-G to A-T pairs (Tykocinski and Max, 1984).   

Non-methylated CpG is rarer still, accounting for 10-40% of total CpG. First described as ‘HpaII Tiny 

Fragments (HTF) islands’ on account of the methylation-sensitive restriction enzyme, HpaII, which first 

identified them (Cooper et al., 1983), non-methylated CpG sequences were thought to mark ‘housekeeping’ 

genes, that need to be constantly accessible to transcriptional machinery (Bird, 1986). 

CpG islands are usually but not always associated with the 5’ end of the coding region, often overlapping 

with annotated transcription start sites, which suggested potential involvement in promoter function. An 

early model proposed that CpG islands keep neighbouring genes available by binding proteins which 

sterically prevent methylase from accessing and methylating the underlying CpGs (Bird, 1986). More recent 
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research has supported this with, for example, the characterisation of highly-occupied-target (HOT) regions 

in C. elegans (Chen et al., 2014). These are CpG-rich promoters in C. elegans and human genomes, 

characterised by the binding of a large number of transcription factors and enriched for binding of CFP-

1/Cfp1 Therefore, non-methylated CpG sequence appears to be a conserved genomic signal, targeted for 

H3K4me3 by a CXXC1 orthologue, that promotes an open chromatin state. 

1.5.3.3 Function 

After its discovery in humans, homologues of CFP-1 were identified in other systems including D. 

melanogaster, C. elegans, S. cerevisiae and S. pombe. Sequence alignment revealed that the CXXC domain is 

not present in yeast or C. elegans, organisms which do not have cytosine methylation. Without the CXXC 

domain, can CFP-1 still be binding DNA in these organisms? Perhaps it is binding methylated and/or 

acetylated lysines with its PHD domain instead. Research is still needed to establish the role of CFP-1 in 

organisms which lack DNA methylation and if it has a conserved mechanism of action in all eukaryotes. 

In the S. cerevisiae study that first discovered COMPASS (Miller et al., 2001), the authors describe a protein 

of 40kDa with homology to mammalian CFP1, containing a conserved region found in human trithorax (MLL). 

They called it Cps40. Mutants for this protein showed the same phenotypes as Set1 mutants, slowed growth, 

defective telomere silencing and sensitivity to hydroxyurea, indicative of a role in DNA replication, 

transcription or chromatin remodelling. Importantly, the authors were unable to detect binding by purified 

S. cerevisiae COMPASS to the DNA sequence reported by (Voo et al., 2000)in their ligand screening study. 

This supports Cps40 and its mammalian homologue, Cfp1, having different sequence specificities for DNA 

binding. 

A study published that same year named this protein Spp1p, and found that it has a PHD finger domain 

(Roguev et al., 2001). PHD finger domains are able to recognise methylated and acetylated lysines and thus 

may serve as ‘readers’ of the histone code. The PHD domain in Spp1p is closely related to the same domain 

in S. pombe and human homologues, which would suggest a common and conserved function.  

Perhaps the PHD domain in mammalian Cfp1 was overlooked due to the more obvious role of the CXXC 

domain in non-methylated CpG binding. However, experimental evidence from mammalian systems 

suggests not all functionality of Cfp1 is linked to the CXXC domain. Severe phenotypic consequences of CFP1 

knockout in mammalian systems such as embryonic lethality (Carlone and Skalnik, 2001), cannot be 

accounted for by the reduction in cytosine methylation alone (Carlone et al., 2005). Inducing this artificially, 

for example by Dnmt1 knockout, does not produce as severe effects (Lei et al., 1996). 
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There is some evidence in the literature for CFP1 providing a restrictive role in the genomic distribution of 

H3K4me3. CXXC-/- mouse ES cells showed a 4-fold increase in H3K4me3 following the induction of 

differentiation with growth factor removal, whereas wild-type controls showed a slight decline (Lee and 

Skalnik, 2005). In a later study, Cfp1-deficient ES cells had ectopic H3K4me3 accumulation at sites enriched 

for CTCF and cohesin binding, purported chromatin loops. A DNA-binding domain deficient CFP1 could 

rescue the loss of H3K4me3 at promoters in these cells, but not the ectopic accumulation (Clouaire et al., 

2012). 

Taken together, these observations support an ancestral role for CFP-1, independent of cytosine methylation 

but perhaps regulating chromatin organisation by some other manner. 

1.5.3.4 CFP-1 in C. elegans 

The C. elegans CFP-1 protein was discovered in an RNAi screen for suppressors of hpl-1 and hpl-2 mutant 

phenotypes (Simonet et al., 2007). HPL-1 and HPL-2 are the C. elegans HP1 proteins, whose conserved 

function is to interact with methylated H3K9 to facilitate the formation of heterochromatin (Couteau et al., 

2002). H3K9 methylation is performed by the Su(var)3-9 histone methyltransferase, the first demonstrated 

to have histone methyltransferase activity (Rea et al., 2000). 

In C. elegans, HPL-1 and HPL-2 play partially redundant roles in post-embryonic development. Neither is 

essential, but hpl-2 mutants are defective in growth, somatic gonad development and germline function 

(Coustham et al., 2006), and the hpl-1; hpl-2 double mutant is larval lethal (Schott et al., 2006). 

Initially, RNAi inactivation of set-2, mes-2 and mes-4 was found to restore normal body size and growth in 

hpl-2 mutants (Simonet et al., 2007). Of these, mes-2 and mes-4 are involved in H3K27 and H3K36 

methylation, respectively. Little was known at the time about the role of H3K4 histone methyltransferase 

complexes in animal development, and thus set-2 was selected as the candidate for further study. 

Subsequent testing of C. elegans homologues of yeast and mammalian SET1/MLL complex subunits found 

that RNAi inactivation of the Spp1/CFP1 homologue, initially named cfpl-1, could also suppress hpl-2 growth 

defects and hpl-1;hpl-2 larval arrest like set-2 (Simonet et al., 2007). 

Interestingly, the study found RNAi inactivation of cfp-1, but not set-2, could suppress the Muv phenotype of 

hpl-1;hpl-2 mutants, suggesting that CFP-1 may antagonise the function of SynMuv genes in vulval cell fate 

determination by a SET-2/COMPASS-independent mechanism.  
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1.6 Thesis aims 

This thesis aims to better characterise the set-2(bn129) and cfp-1(tm6369) strains, using LC-MS/MS to assess 

the impact of these deletion mutations on the whole histone H3 modification landscape. Any differences 

between the results obtained for the two strains will be informative in the context of recent research 

suggesting novel roles for CFP-1 independent of the COMPASS complex (Pokhrel et al., 2019, Beurton et al., 

2019). 

This analysis will also confirm whether the set-2(bn129) allele truly is loss of function, as indicated previously 

by less quantitative antibody-based approaches (Xiao et al., 2011). This might help settle debate in the C. 

elegans COMPASS research community over whether ok952 or bn129 is the better allele to use in loss of 

function studies. 

Leading on from this, the thesis will explore the transgenerational epigenetic inheritance of extended 

longevity reported in WT descendants of set-2 mutants (Greer et al., 2011). If the findings from this study, 

using the set-2(ok952) (putative hypomorph) mutant, can be reproduced using the set-2(bn129) strain, it 

would give greater confidence in the earlier findings.  

Moreover, after establishing a successful LC-MS/MS pipeline for the quantification of histone PTMs in mixed 

embryo-derived histones, it will be possible to modify the protocol for the analysis of germline-derived 

histones. This will facilitate the comparison of long-lived WT descendants of set-2(bn129) mutants with 

homozygous set-2(bn129) offspring and WT controls, to identify any perturbations in histone modifications 

which coincide with the increased longevity and return to basal WT control levels when the phenotype 

ceases to be inherited. 
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Chapter 2. Materials and Methods 

Table 2.1 - Chemical list with suppliers 

Chemical Supplier 

Acetone  Thermo Fischer Scientific 

Acetonitrile (ACN) Thermo Fischer Scientific 

Acrylamide Thermo Fischer Scientific 

Ammonium bicarbonate (ABC) Sigma-Aldrich   

Ammonium hydroxide  Sigma-Aldrich   

Ammonium persulfate (APS) Sigma 

Arginine Sigma 

Arginine 10 CK Isotopes 

Blue pre-stained standard Broad range protein ladder  New England BioLabs 

Bovine serum albumin (BSA) Sigma-Aldrich 

Bradford reagent Thermo scientific 

Bromophenol blue Sigma-Aldrich   

Calf histone standard  Sigma-Aldrich.  

Chitinase lyophilised powder Sigma-Aldrich 

Colloidal Coomassie brilliant blue dye  Sigma-Aldrich   

CoverGrip coverslip sealant Biotium 

DAPI Thermo Fischer Scientific 

Dimethyl sulfoxide (DMSO) Sigma - Aldrich 

Dithiothreitol (DTT) Sigma-Aldrich   

Enhanced Chemiluminescent (ECL) detection reagent  Sigma-Aldrich   

Ethanol Thermo Fischer Scientific  

Ethidium Bromide  Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich 

Formic acid Sigma-Aldrich 

Glacial acetic acid  Thermo Fischer Scientific 

Glycerol  Sigma-Aldrich   

Glycine  Thermo Fischer Scientific 

HPLC grade water Thermo Fischer Scientific 

HT supplement  Thermo Fischer Scientific 

Iodoacetic acid (IAA) Sigma-Aldrich 

Isopropanol  Thermo Fischer Scientific 

L-Glutamine  Gibco, Life technology  

Lysine Sigma 

Magnesium chloride (MgCl2) Sigma-Aldrich   
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Methanol Sigma-Aldrich   

NP-40 Sigma-Aldrich   

Nuclease-free water Thermo Fischer Scientific 

Phosphate buffered saline (PBS) Sigma-Aldrich 

Phusion Hot Start II High-Fidelity DNA polymerase Thermo Fischer Scientific 

Pierce protease and phosphatase inhibitor mini tablets Thermo Fischer Scientific 

Porcine pancreas trypsin   Sigma-Aldrich 

Potassium chloride (KCl) Sigma-Aldrich   

Potassium phosphate (KPO4) Sigma-Aldrich 

ProlongGold anti-fade mounting medium Thermo Fischer Scientific 

Propionic anhydride  Sigma-Aldrich   

Puromycin  Life technologies 

Roche Complete EDTA free , Protease inhibitor Roche 

Sodium Butyrate (NaBu) Sigma 

Sodium chloride (NaCl) Thermo Fischer Scientific 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich   

Sodium dodecyl sulphate running buffer National Diagnostics 

Sodium phosphate dibasic Thermo Fischer Scientific  

Sodium phosphate monobasic Sigma 

Sucrose Sigma-Aldrich 

Sulphuric acid (H2SO4) Thermo Fischer Scientific 

TEMED Sigma 

Trichloroacetic acid (TCA) Thermo Fischer Scientific 

Trifluoroacetic acid (TFA) Thermo Fischer Scientific 

Tris–Cl pH 8.0,  Sigma-Aldrich   

Triton Thermo Fischer Scientific 

Tween-20  Sigma-Aldrich   

β-mercaptoethanol Sigma-Aldrich   

 

  



48 

 

2.1 C. elegans maintenance 

2.1.1 Standard growth conditions 

Unless stated otherwise, C. elegans strains used in these experiments were maintained at 20°C on 5 cm 

plates containing nematode growth medium (NGM) (Table 2.2). The plates were seeded with an overnight 

LB culture of OP50, a uracil-requiring E. coli strain suitable as a food source for C. elegans due to its limited 

growth on NGM, thereby allowing easy observation (Brenner, 1974). 

Table 2.2 – Buffer recipes 

Buffer Recipe 

Egg buffer HEPES pH 7.3 (5mM), NaCl (118mMM), KCl (48mM), CaCl2 (3mM), MgCl2 

(3mM) 

Freezing buffer KPO4 (50mM), NaCl (100mM), Glycerol (30%) 

Hypotonic lysis buffer 

(Buffer A) 

Tris. Cl (15mM), MgCl2 (2mM), Sucrose (0.34M) 

Liquid culture bleach Sodium hypochlorite (10%), NaOH (1M) 

M9 Na2HPO4 (33.7mM) KH2PO4 (22mM) NaCl (8.55mM) MgSO4 (1mM) 

Nematode growth medium 

(NGM) 

Agar (1.7% w/v), NaCl (50mM), Peptone (0.25% w/v), CaCl2 (1mM), 

Cholesterol (5µg/mL), KH2PO4 (25mM), MgSO4 (1mM) 

Proteinase K/worm lysis 

reaction buffer 

Proteinase K (20ng), 20µL 5x HF Phusion PCR buffer, 75µL autoclaved water  

(for 8x 10µL reactions) 

SDS-PAGE sample loading 

buffer 

Tris-Cl (62.5mM), SDS (2.5%), Bromophenol Blue (0.1%), glycerol (10%), 

DTT (10mM) 

Phusion Hot Start PCR 

master mix 

Phusion Hot Start II High-Fidelity DNA polymerase (0.2U/µL), 5X Phusion HF 

buffer (1X), dNTPs (200µM), forward primer (0.5µM), reverse primer 

(0.5µM) 
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Phosphate buffered saline 

with 0.1% Tween (PBST) 

NaCl (137mM), KCl (2.7mM), Na2HPO 4 (10mM), KH2PO 4 (1.8mM) and 

Tween-20 (0.1%) 

Tris buffered saline with 

0.1% Tween (TBST) 

Tris-HCl (20mM), NaCl (150mM) and Tween-20 (0.1%) 

 

2.1.2 Synchronization and/or decontamination of strains by bleaching 

A standard NGM/OP50 5cm plate with many gravid YAs was flushed with 1ml sterile water to facilitate the 

transfer of worms, via pipette, into a 1ml Eppendorf tube. Worms were resuspended in a 1:1 ratio of water 

to liquid culture bleach (Table 2.2) and vortexed continuously for at least 5 mins, until a colour change to 

yellow indicated that most embryos had been released. The bleach was then diluted out by two washes in 

sterile water and one in M9 (Table 2.2). Embryos were left to hatch in 7ml M9 overnight, being repeatedly 

tilted in a 15ml falcon tube. After hatching, L1s were centrifuged (2 mins at 2000 rpm) and resuspended in 1 

ml M9, before being pipetted into fresh NGM/OP50 plates. 

2.2 Single worm PCR genotyping 

Individual YA worms were picked into PCR tubes containing 10µL of Proteinase K/worm lysis reaction buffer 

(Table 2.2). Worms were lysed in a thermocycler, under the conditions specified (Table 2.3). The lysates were 

refrigerated until 2.5µL from each were added to 12.5µL Phusion Hot Start PCR master mix (Table 2.2). 

Thermocycling conditions for genotyping each strain (Table 2.4) and the primers used (Table 2.4) are 

specified below. 
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Table 2.3 – Cycling conditions used in PCR genotyping 

Protocol Cycling conditions 

Proteinase K/ worm lysis 50°C 90 mins 

98°C 15 mins 

4°C hold 

set-2(bn129) genotyping 98°C 5 mins 

98°C 10 seconds 

56°C 20 seconds 30x 

72°C 1 min 30 seconds                 

72°C 5 mins 

4°C hold 

cfp-1(tm6369) genotyping 98°C 5 mins 

98°C 10 seconds 

58°C 20 seconds 34x 

72°C 1 min 30 seconds                

72°C 5 mins 

4°C hold 
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Table 2.4 – Primers used in PCR genotyping 

Allele Forward Primer sequence (5’-

3’) 

Reverse Primer sequence (5’-

3’) 

Expected PCR product 

sizes 

set-2(bn129) AGAGCACCATCATCATGCGAA TTGGTTGGTGGTGGTTCATAAT WT 969 bp 

Mutant 220 bp 

cfp-

1(tm6369) 

AACACCAAGAGCACCATCATC 

 

CGTAGAAAGCATCTGGCAGTC 

 

WT 690 bp 

Mutant 440 bp 

 

2.3 Mass spectrometry 

2.3.1 Histone extraction 

2.3.1.1 Mixed embryos 

2.3.1.1.1 Stock Expansion 

A chunk of agar from a crowded 5 cm diameter plate (Fig. 2.1) was transferred to 3 x 9 cm diameter plates 

and the worms grown to adulthood. Young adults (YAs) from all 3 plates were collected in sterile water, 

centrifuged (2 mins at 2000 rpm) and resuspended in a 1:1 ratio of sterile water to liquid culture bleach 

(Table 2.2). Bleaching took place as described in 2.1.2, after which the hatched L1s were transferred in equal 

volumes to 6 x 15 cm diameter plates. L1s were left to grow to young adulthood (60 hours for N2 and 72 

hours for set-2 and cfp-1 mutant strains on account of their slower development). 
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Figure 2.1 - The expansion of C. elegans stock to yield sufficient embryos prior to extraction. The estimated 

numbers assume a yield of ~80% with each collection and bleaching. 

 

2.3.1.1.2 Final Embryo Collection 

YAs were collected in sterile water from the 15 cm plates, washed once in M9 + 0.1% Triton and bleached as 

described previously. The pack volume of YAs was recorded to give a rough measure of the size of each 

collection. Recording the pack volume of embryos was more challenging owing to their tendency to stick to 

the centrifuge tube walls, the cfp-1 mutant in particular. 

2.3.1.1.3 Sucrose Floating 

After the final M9 wash post-bleaching, embryos were resuspended in a 1:1 ratio of M9 to 60% sucrose and 

centrifuged at 1000 rpm for 5 mins. Live embryos were retrieved in 1 ml of M9 + 0.1% Triton by adding this 

gradually to the floating layer of embryos and then drawing it up again while gently swirling the pipette tip at 

the liquid interface. The retrieved embryos were washed twice in M9 + 0.1% Triton and once in M9. After 

the final wash, embryos were resuspended in 0.5 ml M9, of which 5 L were taken to fix in 1 ml methanol 

(for later embryo staging 2.3.1.1.9), and another 5 L were spotted to an unseeded 6 cm NGM plate to 

perform a hatching assay (2.3.1.1.8). 
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2.3.1.1.4 Chitinase Treatment  

Sucrose-floated embryos were resuspended in a 1:1 mixture of M9 with 1 unit/ml Chitinase (lyophilised 

powder resuspended in M9) and shaken at regular intervals over a period of 10 minutes, while checking for a 

change in embryo shape indicating the breakdown of the chitin shell. 

2.3.1.1.5 Nuclei Extraction 

Chitinase-treated embryos were washed twice in 10 ml of hypotonic lysis buffer (Tris-Cl 15mM, MgCl2 2mM, 

Sucrose 0.34M) with added protease and phosphatase inhibitors (Pierce mini tablets, Thermo Fisher), as 

described (Ooi et al., 2010). After the second wash, cells were left to swell on ice in 10 ml hypotonic lysis 

buffer, then pelleted in a refrigerated centrifuge (2000 g, 10 mins, 4˚C). The pellet was resuspended in 7 ml 

hypotonic lysis buffer containing 0.1% NP-40, a mild detergent. The suspension was ground in a chilled 15 ml 

glass douncer (Sigma-Aldrich) for 20 strokes, and then centrifuged (100 g, 5 mins, 4˚C) to pellet nuclear 

debris. The supernatant was transferred to a new centrifuge tube and centrifuged (3000 g, 10 mins, 4˚C) to 

pellet the nuclei. 

2.3.1.1.6 Histone Recovery by Acid Extraction 

Following the protocol provided by the Dickman Group, University of Sheffield, the pelleted nuclei were 

resuspended in 400 µL 0.2 M sulphuric acid, transferred to a lo-bind Eppendorf tube and placed horizontally 

on ice on a shaker for at least 4 hours (to solubilise the histones). The contents were centrifuged (16000 g, 

10 mins, 4˚C) to pellet any nuclear debris. The supernatant was transferred to a new tube and 142 µL of 

trichloroacetic acid (TCA) was added dropwise, with inversion to mix, before incubating overnight at 4˚C (to 

precipitate the histones). The following morning, histones were pelleted (17000 g, 20 mins, 4˚C). The pellet 

was washed twice in 1 ml acetone, then left to dry completely before resuspension in 100 µL nuclease-free 

water. The histones were then frozen and stored at -80˚C.  

2.3.1.1.7 SDS-PAGE quality check and concentration determination 

Premade SDS-PAGE gels (NuPage Bis-Tris 4-12%) were run to assess quality, purity and concentration of 

histone extracts (Fig. 2.2). A 10µL aliquot from each 100µL sample was transferred to a new Eppendorf tube, 

denatured for 5 mins at 100°C in SDS-PAGE sample loading buffer (Tris-Cl 62.5mM, SDS 2.5%, Bromophenol 

Blue 0.1%, glycerol 10%, DTT 10mM), and electrophoresed at 180 V in NuPage MES SDS running buffer for 

30-40 mins. Gels were stained with Coomassie brilliant blue stain (Coomassie R-250 0.1%, ethanol 40%, 

acetic acid 10%) for 1 hour and de-stained overnight in de-stain solution (ethanol 10%, acetic acid 7.5%). 
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Figure 2.2 –Coomassie stained SDS-PAGE gel showing bands for histones H3, H2A/H2B and H4 from two 

mixed-embryo-derived nuclear histone extracts. Absence of any other bands indicates purity of the sample. 

The strength of staining gives a rough indication of the concentration of histones in the sample, which is 

necessary to decide how large an aliquot to take forward to the proprionylation step. 

2.3.1.1.8 Hatching Assay 

After sucrose floating, a 5µL aliquot of embryos was spotted to an unseeded 6 cm diameter NGM plate and 

left overnight at 20˚C. The next day the proportion of eggs that had hatched was estimated. An acceptable 

rate was set at >90%. 

2.3.1.1.9 Embryo Staging 

Embryos stored in the -20˚C freezer in methanol were washed once in M9, then resuspended in 1mL DAPI 

(1µg/mL) for 10 minutes. The stained embryos were washed in M9 and viewed under the microscope. Each 

embryo observed was assigned to one of six categories (Fig. 2.3): ‘4 cells and under’, ‘8-26 cells’, ‘26-200 

cells’, ‘200-500 cells’, ‘500 cells-bean stage’, ‘comma stage +’. Later, the ‘comma stage +’ category was 

subdivided to include the 1.5-fold, 2-fold and 3-fold stages, to better represent those collections with a 

greater proportion of later stage embryos. 
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Figure 2.3 – The stages of development of a C. elegans embryo, taken from wormatlas.org 

2.3.1.2 Germlines 

2.3.1.2.1 Transgenerational collection. 

Two weeks in advance of the planned F3 gonad collection, a set-2 YA hermaphrodite, of between 10 and 15 

generations post-outcrossing, was crossed with an N2 male (Fig. 2.4). A simultaneous cross between WT 

hermaphrodites and males was performed to prepare the control WT F3. Of the set-2 cross progeny, the F1, 

6-8 L4 hermaphrodites were picked to individual NGM plates, a process known as singling. They were 

allowed to lay eggs for 24 hours and genotyped by single-worm PCR (2.2). After the PCR results confirmed 

which individuals were heterozygous for set-2, one heterozygote was selected. Its progeny, the F2, were 

randomly singled to 16 plates (Fig. 2.4), allowed to lay eggs for 24 hours as with the F1, and genotyped. Of 

these 16, it was likely, according to Mendelian segregation, that 4 would be WT, 4 homozygous mutant and 

8 heterozygous. Even with the variation expected by chance, there should be enough F3 progeny from the 

WT and homozygous mutant plates for dissecting. Of the F3, 4 WT and 4 mutant L4s were picked to a new 

plate to lay the F4 and genotyped afterwards for extra verification. The same occurred for each generation 

thereafter. 
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Figure 2.4 – The crossing and genotyping procedure used to isolate WT and mutant descendants of set-2, 

used for the transgenerational lifespan and mass spectrometry studies 

 

2.3.1.2.2 Dissection 

YA hermaphrodites were picked from plates into a 5µL of Egg Buffer (Table 2.2). Cuts were made as 

illustrated (Fig. 2.5) using a needle, first at the head end of the worm to release the gonad from the main 

body, and second at the spermatheca to detach the germline completely. Intact germlines were retrieved 

using an eyelash picker and transferred to 100µL Buffer A (Tris-Cl 15mM, MgCl2 2mM, Sucrose 0.34M) + 0.1% 

NP-40 (Pierce protease and phosphatase inhibitor tablets were added just before use, 1 tablet per 10ml 

buffer) in the cap of an Eppendorf tube placed on ice. After retrieving between 30 and 50 germlines, the cap 

was closed and the germlines centrifuged down in the buffer, before freezing at -80 ˚C. When >100 

germlines had been obtained for each condition, over multiple dissection sessions, the collections were 

thawed, pooled together and briefly sonicated in a chilled water bath sonicator (30 second pulse, 60% 

amplitude) before resuspending in 400 µL 0.2 M H2SO4, and proceeding with histone extraction as described 

in 2.3.1.1.6. 
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Figure 2.5 – The cuts made to obtain an intact gonad for later histone extraction. Upper image. C. elegans 

YA, with a thick blue line labelled ‘Cut 1’ indicating where the first cut was made to release the gonad from 

the body. Lower image. C. elegans gonad, with a second blue line labelled ‘Cut 2’ indicating where a second 

cut is made, just before the spermatheca, to separate the germline from the body and enable its retrieval as 

an intact structure. 

 

2.3.2 Proprionylation of Histone Samples 

2.3.2.1 First round proprionylation of nuclear histone extracts 

As described by (Garcia et al., 2007), histone samples (containing 7-10 µg of histone protein) were diluted in 

a 1:1 ratio with 100mM ammonium bicarbonate (ABC) buffer (pH 8), vortexed, then treated with 4 µL 

ammonium hydroxide (NH4OH). 10 µL of proprionylation reagent (1:3 ratio proprionic anhydride to 

isopropanol) was added to each histone sample, and the pH checked using universal indicator paper. If too 

acidic, additional NH3(aq) was added to adjust the pH to 8 (see 1.3.2.2 for explanation of the importance of 

pH control in proprionylation). The reaction was incubated at 37˚C for 15 minutes, after which the sample 

was dried down to 5 µL in a SpeedVac concentrator at room temperature. This process was repeated a 

second time to ensure at least a 95% conversion of amino groups to proprionyl amides.  
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2.3.2.2 Trypsin Digest of Proprionylated Histone Samples 

20 mg Trypsin was reconstituted in 20 µL 0.1M HCl, vortexed and centrifuged down to mix. Dried, twice-

proprionylated histone samples were diluted in 40 µL of 100mM ABC and 1.5 µL of reconstituted Trypsin was 

added to each. The samples were then vortexed and centrifuged to mix and incubated at 37˚C overnight. 

The reaction was stopped by adding 4 µL of glacial acetic acid to each sample and leaving them on ice for 1 

hour. 

2.3.2.3 Proprionylation of Trypsin-digested Histone peptides 

After quenching of the trypsin digest, samples were dried in the SpeedVac before repeating the 

derivatisation with proprionic anhydride as described in 2.3.2.1. After two rounds of proprionylation, 

samples were dried in the Speed Vac and stored at -80˚C. 

2.3.3 Loading 

2.3.3.1 Purification of histone peptides/tip clean-up 

Proprionylated peptides were resuspended in 30 µL 0.1% TFA. C18 Hypercarb tips (Minshull et al., 2016) 

were primed for binding peptides by drawing up and expelling 5 x 20 µL elution solvent (90% ACN, 0.1% 

TFA), then 5 x 20 µL binding solvent (0.1% TFA). Resuspended peptides were continuously aspirated, with a 

volume of 20 µL, for 2 minutes (approx. 100 times), to absorb the peptides onto the Hypercarb tip. The tip 

was washed with 2 x 20 µL binding solvent, and then peptides were eluted into a fresh lo-bind tube, in 20 µL 

increments of elution solvent, aspirating 10 times before taking a new 20 µL of solvent, reaching a total 

volume of 200 µL. The ACN concentration was then reduced by adding 80 µL binding solvent, then drying in 

the Speed Vac. 

2.3.3.2 HPLC gradient 

Desalted/purified peptides were resuspended in 0.05% HFBA (see 1.3.2.3 for a discussion of why TFA was 

unsuitable) and injected onto an Ultimate 3000 online capillary liquid chromatography system with a 

PepMap300 C18 trapping column (Thermo Fischer), coupled to a 50 cm x 75 µm Easy-Spray PepMap C18 

analytical column. Flow rate was set at 300 nL/min and column temperature was maintained at 40 °C (see 

1.3.3). Following injection onto the trapping column, samples were washed with solvent A (3% ACN, 0.1% 

formic acid) for 1 minute. Peptides were eluted using a stepped gradient on the analytical column, with 

solvent B (80% ACN, 0.1% formic acid) rising from 3% to 8% in 5 mins, then from 8% to 25% over 55 mins, 

then 25% to 60% over 26 mins, then washed with 90% for 5 mins before resetting to 1%.  
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2.3.4 Data acquisition 

Data acquisition was performed on the Orbitrap Q Exactive HF (Thermo Fischer, 1.2.5), in data independent 

mode. MS1 scans had a range of 300-1100 m/z with 60,000 resolution, an automatic gain control (AGC) 

target of 3e6 (number of ions to be in the detector Orbitrap) and a maximum fill time of 55 milliseconds. An 

MS1 scan was performed every 10 MS2 scans. MS2 resolution was 30,000, with an AGC target of 1e6. 

Isolation windows spanned the range 300-900 m/z, using 20m/z quadrupole isolation windows (1.2.6).  

2.3.5 Raw data analysis 

2.3.5.1 Skyline 

Peptide identification and quantification was performed in Skyline (MacLean et al., 2010), with the aid of a 

spectral library (1.3.4.1) based on data-dependent (DDA) analysis of CHO histones, created by Eleanor 

Hanson of the Dickman group, University of Sheffield. Peptides derived from H3 were searched, using a list 

supplied to the Skyline software, provided by the Dickman group (Table 2.5). The peptides included are 

based on previous data from this group and the literature on common H3 modifications. 

Identification takes into account MS2 data (b and y ions), retention time consistency between samples, and 

distributions of different charge states (1.3.4.1). When all peptide identifications had been checked 

manually, the area under the MS1 peak was extracted using the MS stats package. 
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Table 2.5 – List of proteoforms searched for in data-independent analysis 

H3K4me0 H3K18ac0K23ac0  

H3K4me1  H3K18ac1K23ac0  

H3K4me2  H3K18me0k23me1 

H3K4me3 H3K18me1K23me0 
 

H3K18ac0K23ac1 

H3K9me0K14ac0 H3K18ac1K23ac1  

H3K9me1k14me0  

H3K9me2K14ac0  H3K27me0K36me0 

H3K9me3K14ac0 H3K27me0K36me1  

H3K9ac1K14ac0 H3K27me0K36me2 

H3K9me0K14ac1  H3K27me0K36me3  

H3K9me1K14ac1  H3K27me1K36me0  

H3K9me2K14ac1  H3K27me1K36me1  

H3K9me3K14ac1  H3K27me1K36me2 

H3K9ac1K14ac1  H3K27me1K36me3   
H3K27me2K36me0  

H3K56ac H3K27me2K36me1 

H3K56me0  H3K27me2K36me2  
 

H3K27me3K36me0  

H3K79me0  H3K27me3K36me1 

H3K79me1  H3K27me3K36me2  

H3K79me2  H3K27ac1K36me0  

 

2.3.5.2 Calculation of relative abundance 

MS1 peak areas (corresponding to peptide intensity) extracted by the MS Stats package were imported into 

Excel and divided by the appropriate correction factors (Table 2.6). The isotope correction factor corrects for 

the effects of isotope masking, when an isotopic peak of one peptide overlaps with the monoisotopic peak 

of another and could be misleadingly increasing its perceived amount (Lin et al., 2014). The relative 

abundance correction factor takes into account detection efficiencies of each peptide. 

Depending on how peptides have their intensity split, different combinations of charge states are summed 

to calculate relative abundance. For example, the KQLATKAAR peptide (containing K18 and K23) has over 

90% of its intensity found on one charge state, +2. Therefore, only +2 charge state intensities for each of the 

H3K18K23 proteoforms are taken into account in the relative abundance calculation, in which the intensity 

of each proteoform is divided by the sum of intensities of all proteoforms for the peptide. The TKQTAR 

peptide (containing K4) on the other hand, has its intensity split more evenly between the +1 and +2 charge 



61 

 

states. So, to calculate relative abundance of the different proteoforms for this peptide, the combined 

intensity of +1 and +2 for one proteoform is divided by the total intensity of all the +1 and +2 charge states 

for all proteoforms. See Table 2.7 for details of all the peptides. 
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Table 2.6 – Correction factors which peptides are divided by to correct for isotopic masking and detection 

efficiency. Published in (Lin et al., 2014). The numbers in square brackets next to the single letter amino acid 

residues refer to the mass increase added to that residue by proprionylation, methylation, acetylation or 

some combination of these. 

Proteoform Sequence 

Isotope 

correction 

factor 

Relative abundance 

correction factors  

H3K4me0 T[+56]K[+56]QTAR 1.14 0.0326 

H3K4me1 T[+56]K[+70]QTAR 1.15 0.178 

H3K4me2  T[+56]K[+28]QTAR 1.12 0.0018 

H3K4me3 T[+56]K[+42]QTAR 1.13 0.0019 

H3K9ac1K14ac0  K[+98]STGGK[+56]APR 1.25 0.378 

H3K9ac1K14ac1  K[+98]STGGK[+42]APR 1.27 0.276 

H3K9me0K14ac0 K[+112.1]STGGK[+56]APR 1.3 0.571 

H3K9me0K14ac1  K[+112.1]STGGK[+42]APR 1.25 0.378 

H3K9me1K14ac1 K[+126.1]STGGK[+42]APR 1.3 1.014 

H3K9me1k14me0  K[+126.1]STGGK[+56]APR 1.31 1.295 

H3K9me2K14ac0  K[+84.1]STGGK[+56]APR 1.28 0.303 

H3K9me2K14ac1 K[+84.1]STGGK[+42]APR 1.26 0.177 

H3K9me3K14ac0  K[+98.1]STGGK[+56]APR 1.23 0.252 

H3K9me3K14ac1 K[+98.1]STGGK[+42]APR 1.23 0.156 

H3K18ac0K23ac1  K[+112.1]QLATK[+42]AAR 1.3 1.43 

H3K18ac1K23ac0  K[+98]QLATK[+56]AAR 1.3 1.43 

H3K18ac1K23ac1  K[+98]QLATK[+42]AAR 1.33 1.711 

H3K18me0K23me K[+112.1]QLATK[+70]AAR 1.28 1.591 

H3K18me1K23ac0 K[+126.1]QLATK[+56]AAR 1.38 1.21 

H3K27ac1K36me0  K[+98]SAPATGGVK[+56]K[+56]PHR 1.84 2.305 

H3K27me0K36me0 K[+112.1]SAPATGGVK[+56]K[+56]PHR 1.86 1.885 

H3K27me0K36me1 K[+112.1]SAPATGGVK[+70]K[+56]PHR 1.83 1.87 

H3K27me0K36me2 K[+112.1]SAPATGGVK[+28]K[+56]PHR 1.79 1.678 

H3K27me0K36me3  K[+112.1]SAPATGGVK[+42]K[+56]PHR 1.81 1.762 

H3K27me1K36me0 K[+126.1]SAPATGGVK[+56]K[+56]PHR 1.88 2.081 

H3K27me1K36me1 K[+126.1]SAPATGGVK[+70]K[+56]PHR 1.79 1.377 

H3K27me1K36me2  K[+126.1]SAPATGGVK[+28]K[+56]PHR 1.75 1.377 

H3K27me1K36me3 K[+126.1]SAPATGGVK[+42]K[+56]PHR 1.88 1.67 

H3K27me2K36me0  K[+84.1]SAPATGGVK[+56]K[+56]PHR 1.84 3.201 

H3K27me2K36me1  K[+84.1]SAPATGGVK[+70]K[+56]PHR 1.71 2.288 

H3K27me2K36me2  K[+84.1]SAPATGGVK[+28]K[+56]PHR 1.77 1.619 

H3K27me3K36me0 K[+98.1]SAPATGGVK[+56]K[+56]PHR 1.79 3.176 

H3K27me3K36me1  K[+98.1]SAPATGGVK[+70]K[+56]PHR 1.77 2.84 

H3K56ac Y[+56]QK[+42]STELLIR 1.54 0.512 

H3K56me0  Y[+56]QK[+56]STELLIR 1.56 0.217 

H3K79me0 E[+56]IAQDFK[+56]TDLR 1.61 0.125 

H3K79me1 E[+56]IAQDFK[+70]TDLR 1.63 0.069 

H3K79me2 E[+56]IAQDFK[+28]TDLR 1.59 0.548 
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 Table 2.7 – Charge states factored into relative abundance calculations for each peptide 

Peptide sequence Proteoforms Charge states included 

TKQTAR H3K4me0 

H3K4me1 

H3K4me2  

H3K4me3 

+1, +2 

KSTGGKAPR H3K9ac1K14ac0  

H3K9ac1K14ac1  

H3K9me0K14ac0 

H3K9me0K14ac1  

H3K9me1K14ac1 

H3K9me1K14me0  

H3K9me2K14ac0  

H3K9me2K14ac1 

H3K9me3K14ac0  

H3K9me3K14ac1 

+2, +3 

KQLATKAAR H3K18ac0K23ac1  

H3K18ac1K23ac0  

H3K18ac1K23ac1  

H3K18me0K23me 

H3K18me1K23ac0 

+2 

KSAPASGGVKKPHR H3K27ac1K36me0  

H3K27me0K36me0 

H3K27me0K36me1 

H3K27me0K36me2 

H3K27me0K36me3  

H3K27me1K36me0 

H3K27me1K36me1 

H3K27me1K36me2  

H3K27me1K36me3 

H3K27me2K36me0  

H3K27me2K36me1  

H3K27me2K36me2  

H3K27me3K36me0 

H3K27me3K36me1 

+2, +3, +4 
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2.3.5.3 Statistical tests 

2.3.5.3.1 Mixed embryos 

Relative abundance data were imported into GraphPad/Prism, using the Grouped table format, which allows 

replicate data to be placed in side-by-side sub-columns. WT, set-2 and cfp-1 results were assigned as groups, 

the columns’ main titles. Each detected proteoform was defined as a family, with one family per row (Fig. 

2.6). 

 

Figure 2.6 - Example of how mixed embryo-derived relative abundance data was organised in Prism 

A 2-way repeated measures ANOVA (α=0.05), based on the generalised linear model, was selected as the 

most appropriate test. The data is balanced, which allows values in each sub-column to be matched for each 

replicate (e.g. A:4 to B:4 to C:4). Multiple comparisons, Tukey-corrected, were set up to compare cfp-1 vs 

set-2, cfp-1 vs WT and set-2 vs WT, for each family/proteoform. Each p-value reported is a multiplicity-

adjusted value.  

2.4 RNAi 

2.4.1 Experimental design 

2.4.1.1 RNAi feeding plate preparation 

RNAi clones (Table 2.8) were streaked onto plates containing ampicillin (50µg/ml) and tetracycline (10µg/ml) 

antibiotics. Plates were incubated at 37°C overnight, after which single colonies were inoculated in 2ml LB 

containing ampicillin (50µg/ml). The culture was placed in a shaking incubator at 37°C for 6h, then seeded 

onto NGM plates containing IPTG (1mM) and ampicillin (50µg/ml). After drying, plates were incubated at 

37°C for 24h, and stored at room temperature thereafter. 
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Table 2.8 – Details of clones used in RNAi experiments. All are from the Ahringer library. 

 

2.4.1.2 hda-3 and sin-3 

Ten late L4-stage hermaphrodites from unsynchronized mixed plates maintained at 20 °C were picked to 

RNAi plates and left for 24hrs at 25 °C to lay eggs. After 24hrs they were transferred to fresh RNAi plates to 

lay eggs for another 24hrs, then picked off. The eggs laid on both sets of plates, hereafter referred to as the 

’24 hour plates’ and ’48 hour plates’ respectively (Fig. 2.7), were left to hatch and grow to adulthood at 25 

°C. 

 

Figure 2.7 – Experimental design for hda-3 and sin-3 RNAi experiments. EV is an abbreviation for empty 

vector or negative control RNAi. 
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2.4.1.3 hda-1 

Synchronised plates of YA were bleached as described in 2.1.2 to release embryos, which were left to hatch 

in M9 overnight, then placed as approximately 100 L1s onto RNAi plates. They were left to grow to young 

adulthood for two days at 25°C. 

2.4.2 Slide preparation 

Molten agar was flattened on a microscope slide to form pads to protect YAs during viewing. 10 YAs were 

picked into a 5µL drop of M9 + 1mM levamisole on a coverslip, which was then placed on an agar pad. The 

immobilised YAs were then viewed on a fluorescence microscope. 

2.4.3 Scoring protocol 

Both gonad arms in a YA were scored independently for GFP expression, unless so occluded by the gut or 

other structures that it could not be clearly observed. Gonads were scored as either positive or negative for 

GFP expression, defined as either the presence or total absence of GFP fluorescence in the distal arm of the 

gonad, prior to the turn. The 24 hour plates were scored first, then the 48 hour plates at the same time the 

next day. 

2.4.4 Data analysis 

The data, first recorded manually as the number of positive and negative gonads (2 per worm), were 

imported into Prism in a contingency table format, the two outcomes being ‘GFP expressing’ and ‘Non-GFP 

expressing’. These raw numbers were converted into a ‘Fraction of Total’ table, representing the proportion 

of germlines in each category rather than an absolute number. 

2.4.5 Statistical testing 

Testing for significance was performed using a Chi-square test. The expected number/proportion of GFP-

expressing germlines was calculated using a formula (Fig. 2.8) that assumes the null hypothesis that the two 

genes do not interact to affect germline unc-119::GFP expression. Under the null hypothesis, the expected 

germline unc-119::GFP expression of RNAi knockdown in a mutant background is the product of germline 

unc-119::GFP expression of the mutant on control empty vector (EV) RNAi and the WT on RNAi, divided by 

that of the WT on EV. In practice, the calculation was performed using the non-GFP expressing fraction, in 

order to avoid dividing by zero. 
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Figure 2.8 - Formula for testing the null hypothesis that two genes will not interact in an RNAi experiment. 

2.5 Lifespan assays 

2.5.1 Set up 

Crosses between set-2(bn129) and WT worms were set up, and F3 homozygous WT and set-2(bn129) mutant 

descendants were obtained as described in 2.3.1.2.1 and illustrated in Figure 2.4. A simultaneous cross 

between WT hermaphrodites and males was set-up, and one F1 and one F2 singled, to prepare the control 

WT F3. After PCR genotyping, the lifespan assay was set up by picking 12 worms to 9 NGM/OP50 plates for 

each condition: control WT F3, WT descendant F3 (F3+/+) and set-2(bn129) descendant F3 (F3-/-). The 

rationale for this set-up was that 12 worms per plate would be easy to track and that 108 worms per 

condition would comfortably give an n of at least 90, the n reported in (Greer et al., 2011), allowing for the 

small fraction (1/6) of the worms expected to be excluded from the final death count as a result of early 

death by vulval extrusion or the ‘bag of worms’ phenotype, when eggs are not released and hatch inside the 

mother. 

2.5.2 Maintenance 

Day 0 was set as the day of hatching, and worms were checked at the same time each day on day 2,4,6 and 

all even numbers thereafter until all worms had died. Worms were transferred to fresh plates every two 

days while laying eggs in order to avoid confusion of experimental animals with their progeny, and every 

four days thereafter to maintain adequate nutrition and reduce the likelihood of contamination of plates.   

2.5.3 Exclusions 

Worms were excluded from the final n for the following reasons: early death due to vulval extrusion or ‘bag 

of worms’, suspected injury sustained during transfer and loss due to either crawling up the side of the plate 

and drying out or burrowing into the agar. The numbers and percentages excluded for these reasons are 

presented in Table 2.8.  
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Table 2.8 – Exclusions from lifespan assays for reasons of vulval extrusion, bag of worms, loss or accidental 

death by injury sustained during transfer. The final n is the number of true deaths that were inputted into the 

final survival analysis. 

 

2.5.4 Data analysis 

Deaths of non-excluded worms were treated as true deaths and included in the survival analysis in Prism, 

where each death is recorded as a ‘1’ next to the day on which the death was recorded. When all deaths 

have been recorded, Prism computes percent survival at each time point e.g. day 12 (post hatching), plots a 

Kaplan-Meier survival plot and compares survival using the log-rank and Gehan-Breslow-Wilcoxon (GBW) 

tests. The log-rank statistics were chosen to be presented in the main results because this test gives equal 

weight to deaths at all time points, whereas the GBW test gives more weight to deaths at earlier time points, 

which was not considered appropriate for this analysis. In addition, the log-rank test was used by the studies 

these experiments were modelled on (Greer et al., 2010, Greer et al., 2011). 

The WT F3 and WT F4 replicates were combined in the final survival analysis but the second WT F5 replicate 

was excluded due to its longer median lifespan (20 days) compared to the 18 day median lifespan of the 

other WT F3, F4 and F5 replicates. Moreover, the slightly larger initial and final n (104 and 94) of the second 

WT F5 replicate compared to the other WT controls led to suspicion that some F6 progeny were mistakenly 
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carried over during transfer and counted as F5s, thereby artificially extending the lifespan. Therefore, only 

the first replicate WT F5 data was carried forward to the final analysis. 

Pairwise log-rank comparisons were performed comparing each WT control with its generation-matched WT 

set-2 descendants e.g. WT F3 vs F3 +/+, WT F4 vs F4 +/+. 

2.6 Developmental progression assay 

Three 5cm NGM/OP50 plates with gravid YAs, one plate each for N2/WT, set-2(bn129) early (G3) and set-

2(bn129) late (G59), were simultaneously bleached as described in 2.1.2. Synchronised L1s were pipetted 

onto fresh NGM/OP50 plates and left to develop for 60 hours at 20°C. 

After 60 hours had passed, worms were washed off from each plate and resuspended in methanol to fix, 

then frozen at -20°C. Immediately prior to scoring, worms were thawed and washed in M9, then 

resuspended in 1ml DAPI (1µg/ml) for 10 mins at room temperature. Stained worms were washed in M9, 

pipetted onto slides and viewed under the microscope. 

Approximately 100 worms were scored per condition. Appearance of the gonad was used to assign 

developmental stages (Figure 2.9). DAPI staining of the germline nuclei helped visualise this. At the L3 stage, 

the gonad is small and has not yet started to bend, but by mid-L4 there is a visible bend and by late L4 distal 

tip migration is complete and the gonad is completely extended. The presence of embryos indicates the YA 

stage has been reached. 
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Figure 2.9 – Germline development from L3 to young adult in the C. elegans hermaphrodite. The distal tip 

of the gonad migrates throughout the L4 stage and thus the appearance of the gonad is a useful indicator for 

developmental stage. Adapted from wormatlas.org. 

2.7 Immunofluorescence 

2.7.1 Worm preparation/selection 

Crosses between set-2(bn129) and WT worms were set up, and F3 homozygous WT and set-2(bn129) mutant 

descendants were obtained as described in 2.3.1.2.1 and illustrated in Figure 2.4. Worms were dissected for 

use in the immunofluorescence (IF) assays as YAs. 

2.7.2 Slide preparation 

Slides with three 14x14mm wells (Thermo Scientific 30-2066a-brown-ce24) were coated in 0.1% poly-l-

lysine. Approximately 20 young adult worms were transferred to a 7µL drop of M9 in the centre of a well 
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and dissected to release the gonad, as illustrated in Figure 2.5. Wells were then covered with 22 x 40 mm 

coverslips and snap-frozen by placing on a pre-chilled metal plate on dry ice. After 5 mins, coverslips were 

flicked off and the slides were placed in Coplin jars filled with room temperature methanol. After fixing in 

methanol for 20 mins, slides were washed twice in PBS + 0.1% Tween (PBST)(Table 2.2). 

2.7.3 Antibody staining 

Primary antibodies in combination were mixed in PBST and diluted to the working concentrations specified 

in Table 2.9, and 50 µL of antibody mix was pipetted into each well. Slides were transferred to a humid 

chamber and the primary incubation was left overnight at 4C. After two PBST washes, 50 µL of mixed anti-

mouse, anti-rabbit and anti-sheep secondary antibodies (concentrations in Table 2.9) was pipetted into the 

wells and incubated for one hour at 37C, followed by another two PBST washes. Slides were mounted in 7 

µL ProlongGold anti-fade mounting medium, covered with 22x22mm coverslips and sealed after 24 hours in 

Biotium CoverGrip coverslip sealant. Prior to imaging slides were kept in the dark at 4C. 

Table 2.9 - Antibodies used to detect histone modifications 

Antigen/Modification Manufacturer Manufacturer ID Concentration used 

H3 Abcam ab128012 1:1000 

H3K4me2 Diagenode C15200151 1:5000 

H3K4me3 Abcam ab8580 1:20,000 

H3K9me2 Wako MABI0317 1:500 

H3K9me3 Abcam ab176916 1:100,000 

anti-sheep Alexa Fluor 405 Abcam ab175676 1:2500 

anti-mouse Alexa Fluor 488 Abcam ab150117 1:2500 

anti-rabbit Alexa Fluor 594 Abcam ab150088 1:2500 
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2.7.4 Antibody validation by dot blot 

Peptides with one of each of the following modifications: 

H3K4me2, H3K4me3, H3K9me2, H3K9me3, H3K27me2, H3K27me3, H3K36me2, H3K36me3, H3K79me2, 

H3K79me3, H4K20me2 and H4K20me3  

were isolated from a peptide library, diluted in HEPES buffer (10mM HEPES, 0.5mM EDTA) and pipetted in 

5µL volumes onto nitrocellulose membrane in serial dilutions of 100pM, 25pM and 10pM. Four identical 

sections of membrane were prepared in this way to test each of the four primary antibodies. H3K4me2, 

H3K4me3, H3K9me2 and H3K9me3 antibodies listed above (Table 2.9) were diluted in 20ml TBST (Table 2.2) 

+ 5% skimmed milk powder to the working concentration used in the IF experiments (Table 2.9). Primary 

antibody incubations were left overnight, after which membranes were washed three times (5 mins each) in 

TBST and incubated with either anti-rabbit (for H3K4me3 and H3K9me3) or anti-mouse (for H3K4me2 or 

H3K9me2) HRP-conjugated secondary antibodies (50ml 1:10,000 dilution in TBST) for 1 hour at room 

temperature. Membranes were washed again in TBST and incubated with enhanced chemiluminescent (ECL) 

reagent for 1 min before exposing to X-ray film in a dark room to develop the signal. 

2.7.5 Confocal Imaging 

Imaging was performed on a Zeiss LSM880 + Airyscan Upright Microscope, using 16-bit depth with 512 x 512 

pixel dimension and line averaging of 4. 12 gonads were imaged for each experimental condition, that is, 

generation (F3, F4, F5), genotype (WT +/+ or set-2(bn129) mutant -/-) and antibody combination (2.6.3). 

2.7.6  Image analysis 

Imaging analysis was performed in FIJI software. The following code (Figure 2.10), written in the Macro 

language, was used to quantify fluorescence from a subset of manually selected nuclei in the pachytene 

zone of the gonad. Briefly, the code minimises background and measures fluorescence from the three 

channels imaged: channel 1 at 488nm (green), channel 2 at 405nm (blue) and channel 3 at 594nm (red).  
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Figure 2.10 – The Macro code used to quantify fluorescence in gonad imaging experiments 
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The data output from running the Macro code is illustrated in the screenshot below (Figure 2.11). It 

automatically comes in an Excel file and gives a mean and median value for the fluorescence measured in 

the area highlighted, for each of the three channels. These are arbitrary raw values without units, but the 

data is normalised by dividing the fluorescence signal of histone modifications (channel 1 and 3) by the 

fluorescence signal of the anti-H3 control (channel 2). The area measure was kept between 150 and 200 

square pixels for the pachytene zone, to improve consistency between the size of the area highlighted for 

each image. 

 

Figure 2.11 – The data output of the fluorescence quantifying code 

The median, rather than mean, values from the data output as illustrated above (Table 2.11) were taken 

forward to the main analysis, as these would be less influenced by outlying data points. After normalisation, 

these medians were then inputted to a Column table in GraphPad/Prism. Outliers were removed using the 

ROUT method (Q=10%). Data were plotted as scatter plots with the mean and standard deviation indicated. 

Statistical testing was performed using a 1-way ANOVA with Tukey’s multiple comparison. 
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Chapter 3. Developing an LC-MS/MS approach to 

characterise two C. elegans COMPASS mutants 

3.1 Abstract 

A liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was developed, to quantitatively 

determine and compare the global levels of a wide-range of histone post-translational modifications (PTMs) 

in C. elegans.  This study assessed the relative abundances of all histone modifications in nuclei isolated from 

mixed stage embryos of wild-type and two COMPASS mutant strains, set-2(bn129) and cfp-1(tm6369). In 

addition to the expected drop in abundance of H3K4me3-modified peptides in the mutants, there was also a 

notable increase in the relative abundance of H3-derived peptides with acetylated lysine residues. Lysine 

acetylation is a feature of actively expressed euchromatin, so this increase may underlie the inappropriate 

somatic reporter gene expression reported in germlines of COMPASS mutants (Robert et al., 2014).  

3.2 Introduction 

COMPASS is a conserved histone methyltransferase (HMT) complex, and the only H3K4 HMT to have been 

characterised in C. elegans. While there is another MLL-like SET-domain containing protein in C. elegans, 

SET-16, study of this has been challenging because the set-16 mutation is lethal and therefore mutant strains 

have to be maintained with a balancer (Fisher et al., 2010). In mammals and flies there are six COMPASS 

complexes and three H3K4 trimethylating complexes (Ardehali et al., 2011, Mohan et al., 2011), which 

complicate study with the potential for redundancy. Yeast, despite having one H3K4 HMT, is limited as a 

model because H3K4 methylation is exclusively associated with transcribing genes (Ng et al., 2003). In C. 

elegans, like in other metazoans, Set1/MLL activities can operate independently of transcription (Li and 

Kelly, 2011). This has allowed a diversification of H3K4me3 function, which is more likely to be conserved 

between C. elegans and other metazoans, especially given the conservation of the COMPASS complex 

composition and structure between different organisms. 

In the C. elegans COMPASS complex, SET-2 is the catalytic subunit whereas CFP-1 plays a role in targeting the 

complex to actively expressed promoters (Chen et al., 2014). Of the two genes, set-2 is the better 

characterised. Mutants with the null set-2(bn129) allele had smaller brood sizes compared to wild type and 

showed temperature-sensitive sterility, slow growth (Xiao et al., 2011) and somatic gene derepression in the 

germline (Robert et al., 2014). Notably the set-2(ok952) mutants, with a likely hypomorphic allele, did not 
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show any germline defects (Simonet et al., 2007, Robert et al., 2014). Some similar phenotypes were noted, 

including slow growth and temperature sensitive sterility, following RNAi against cfp-1 (Kamath et al., 2003). 

Other studies, however, have reported differences upon set-2 and cfp-1 function disruption. For example, in 

the suppressor screen in which the cfp-1 gene was first reported in C. elegans, RNAi inactivation of cfp-1 

suppressed the multivulval (Muv) phenotypes of hpl-1;hpl-2 double mutants, whereas set-2 RNAi did not 

(Simonet et al., 2007). Moreover, CFP-1 has been reported to play a role in other complexes besides 

COMPASS (Beurton et al., 2019). 

It would be informative, therefore, to compare the histone modification profiles of cfp-1 and set-2 loss-of-

function (LF) mutants and see whether H3K4me3 and other modifications are impacted similarly or 

differently. The main advantage of the LC-MS/MS approach is that it offers a means of appreciating the 

global impact of the set-2 and cfp-1 mutations on the histone modification landscape. Antibody-based 

studies of histone modifications, such as western blotting or immunostaining, require the experimenter to 

have some idea of what they expect to find, and there can be issues with binding specificity and epitope 

occlusion that may cast doubt on the meaning of the results, especially where quantification is needed.  

This particular bottom-up proteomic method is novel for C. elegans research. Other groups have used the 

middle-down method with success, discovering interesting combinatorial histone modification patterns 

(Sidoli et al., 2014) and even the novel H3K23me2 heterochromatic mark (Vandamme et al., 2015). However, 

the challenge of detecting H3K4 has limited study of this modification by mass spectrometry up until now. 

3.3 Experimental design 

Mixed stage embryos were selected as the tissue from which to isolate a nuclear histone extract. They are 

easy to isolate from the adult worm by bleaching, represent many different tissue types and have been used 

for numerous ChIP studies in C. elegans (Chen et al., 2014, Beurton et al., 2019).  

Prior to embryo collection, mixed populations of cfp-1, set-2 and WT strains were successively bleached and 

the hatched L1s transferred to larger plates in order to support an increasingly large, synchronised 

population. When a population of approximately 2000 synchronized young adults per plate was reached, 

bleaching was performed to retrieve the final collection of embryos, from which the live ones were isolated 

by sucrose floating. These embryos were treated with chitinase to destroy the protective shell around the 

embryos and make nuclei retrievable by douncing in hypotonic buffer. Nuclei were resuspended in acid to 

solubilise the histones within, which were then precipitated out of solution and resuspended in water. 
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Histone extracts were checked for purity and concentration by SDS-PAGE, to assess suitability for mass 

spectrometry. 

Before running the histone extracts in the LC-MS/MS instrument, they were digested into smaller peptides 

and stabilised. This was achieved by a combination of proprionylation and trypsin digestion, after which 

samples were desalted using C18 Hypercarb tips. The object of this step, known informally as ‘tip clean-up’, 

is to purify peptides from the original sample solution, that may still contain traces of reagents from the 

histone extraction procedure. It is essential that as pure a sample as possible is run in the instrument. A 

potential problem posed by this step is the selective loss of H3K4me2 and H3K4me3-modified peptides, 

these being very hydrophilic. Therefore, in this experiment, the loss was partly compensated for by careful 

choice of ion-pairing reagent. This is usually a perfluorinated acid whose dissociated anions neutralise 

positive charges on basic amino acid sidechains and N-terminal amines, increasing hydrophobicity of the 

peptides and thereby prolonging their retention on the stationary phase of the HPLC column. 

3.4 Results 

3.4.1 Use of heptafluorobutyric acid instead of conventional trifluoroacetic acid as ion-pairing 

reagent enables detection of H3K4me2- and H3K4me3-modified peptides 

Trifluoroacetic acid (TFA) is the most common perfluorinated acid used for ion-pairing in LC-MS/MS 

experiments, but there are others which confer greater hydrophobicity onto peptides and may therefore be 

a more suitable choice when very hydrophilic peptides need to be detected. TFA was the first ion-pairing 

reagent tried, but as suspected it did not confer sufficient hydrophobicity to enable the detection of very 

hydrophilic H3K4me2- and H3K4me3-modified peptides (Figure 3.1). Use of heptafluorobutyric acid (HFBA) 

allowed the detection of these di- and tri-methylated peptides, but not acetylated H3K4. This was acceptable 

because the methylated peptides were of greater interest in these experiments, and so thereafter HFBA was 

the ion-pairing reagent used for all LC-MS/MS experiments reported in this thesis. Nevertheless, in future it 

would be informative to try the phenyl-isocyanate approach (Maile et al., 2015) to see if that can improve 

the detection of H3K4ac and other very hydrophilic peptides.  
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Figure 3.1 – HFBA but not TFA allows detection of di- and tri-methylated H3K4-modified peptides.             

The height of the bars represents the mean of three experiments, the error bars represent the standard 

deviation. The y-axis has been split to improve the resolution of the bars representing the very low 

abundance H3K4me2- and H3K4me3-modified peptides, compared with the more abundant unmodified and 

H3K4me1-modified peptides. Relative abundance is the percentage intensity of each modified peptide (e.g. 

H3K4me3) detected, out of the total intensity detected for all TKQTAR peptides. This is uncorrected data, 

prior to application of correction factors (2.3.5.2). 

3.4.2 H3K4me3 levels are dramatically reduced in cfp-1 and set-2 mutants. 

As would be expected for these predicted loss-of-function mutants, relative abundance of H3K4me3 was 

reduced 16-fold in cfp-1 (mean 0.58), and 30-fold in set-2 mutants (mean 1.1) compared with WT (mean 

17.27) (Table 3.1, Figure 3.2). These means were highly significantly different between each of the mutants 

and WT (p<0.0001), but the difference in relative abundance of H3K4me3 between cfp-1 and set-2 was not 

significant. These results are consistent with set-2(bn129) and cfp-1(tm6369) being loss-of-function alleles. 

They suggest that the COMPASS complex is indeed responsible for the vast majority of H3K4me3 in C. 

elegans embryos. 
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Figure 3.2 – Relative abundances of H3K4-modified peptides. The height of the bars represents the mean of 

four experiments, the error bars represent the standard deviation. The graph shows the relative abundances 

of all proteoforms detected for the TKQTAR peptide, containing K4. 

 

Table 3.1 - Mean relative abundance and significance between means for H3K4-modified peptides. Means 

are the average of four replicates, they were statistically analysed by a 2-way ANOVA with Tukey’s multiple 

comparisons test. 

3.4.3 H3K4me2 levels are reduced by approximately half in cfp-1 and set-2 mutants. 

Relative abundance of H3K4me2 was reduced 1.7-fold in cfp-1 (mean 19.3), and 2-fold in set-2 mutants 

(mean 15.48) compared with WT (mean 31.91) (Table 3.1, Figure 3.2). This is a much less dramatic reduction 

than for H3K4me3 but is still very significant. These results suggest that COMPASS is a major but not the only 

HMT responsible for H3K4me2 deposition. Perhaps SET-16 is also involved. Moreover, there is a smaller but 

significant (p<0.05) reduction in H3K4me2 levels in set-2 compared to cfp-1. Correspondingly, set-2 mutants 
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have significantly (p<0.05) increased levels of the unmodified peptide, H3K4un. This suggests that lysine 

demethylases (KDMs) may be more active in the absence of COMPASS. H3K4me1 levels do not differ 

significantly between any of the strains. This mark has been previously shown to be enriched at enhancers 

and distal gene regulatory elements (Hon et al., 2009), and so it is surprising that in this experiment it 

appears so much less abundant (in the WT condition) than H3K4me3, which has a much more restricted 

distribution at transcription start sites (Barski et al., 2007). That H3K4me1 abundance does not change in the 

absence of COMPASS suggests that it is regulated by other enzymes, perhaps SET-16. 

3.4.4 H3K14ac and H3K27ac levels are significantly elevated in cfp-1 and set-2 mutants 

In addition to changes on the H3K4 lysine, the target of COMPASS, cfp-1 and set-2 mutants had significantly 

elevated acetylation modifications of H3K14 and H3K27, compared to WT. The mean relative abundance of 

the H3K9unK14ac-modified peptide was significantly higher in cfp-1 (29.3) and set-2 (29.79) compared to WT 

(23.48) (Table 3.2, Figure 3.3A). Correspondingly, the relative abundance of the unmodified H3K9unK14un 

peptide was reduced in the mutants compared to WT, significantly less for cfp-1 (p = 0.003) but not for set-2 

(p = 0.29).  

While there are no significant differences in relative abundance of other proteoforms of the H3K9/K14-

containing peptide, sequence KSTGGKAPR, there are slightly more reduced levels of H3K9me2K14un and 

H3K9me3K14un in the set-2 mutant compared with WT and cfp-1 (Figure 3.3A). The differences in the levels 

of peptides with unmodified K14 are all small and not significant statistically, and therefore may not be real 

or biologically meaningful, but may be indicative of differences between cfp-1 and set-2 mutants. Such a 

difference is not unexpected given the proteins’ different roles within the COMPASS complex, and potential 

differences in interaction partners outside COMPASS too.  

Table 3.2 - Mean relative abundance for H3K14 and K27 modifications that significantly differed between 

WT, cfp-1 and set-2. Means are the average of four replicates, they were statistically analysed by a 2-way 

ANOVA with Tukey’s multiple comparisons test. 

 

WT cfp-1 set-2 WT vs cfp-1 WT vs set-2 cfp-1  vs set-2

H3K9unK14un 44.6 39.36 42.3 **p = 0.003 ns p = 0.2948 ns p = 0.1389

H3K9unK14ac 23.48 29.3 29.79 ***p = 0.0009 ***p = 0.0003 ns p = 0.9445

H327me2K36un 58.36 52.76 49.41 ****p<0.0001 ****p<0.0001 *p = 0.0143

H3K27acK36un 12.06 17.85 17.11 ****p<0.0001 ***p = 0.0001 ns p = 0.8013

Modification
Mean relative abundance Significance
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Figure 3.3 – Relative abundances of H3K9-, K14-, K27- and K36-modified peptides. The height of the bars 

represents the mean of four experiments, the error bars represent the standard deviation. Graph A displays 

the relative abundances of all proteoforms detected for the KSTGGKAPR peptide (containing K9 and K14), 

while graph B displays all those detected for the KSAPASGGVKKPHR peptide (containing K27 and K36). 

It is notable that for the H3K27/K36-containing peptide, sequence KSAPASGGVKKPHR, the unmodified form 

of the peptide is not the most abundant, as it is with the other peptides (Figure 3.2, 3.3). H3K27me2K36un is 

the most abundant proteoform, but its relative abundance is significantly reduced in cfp-1 (52.76) and set-2 

(49.41) compared to WT (58.36) (Table 3.2, Figure 3.3B). The relative abundance of H3K27acK36un is 

significantly increased in cfp-1 (17.85) and set-2 (17.11) compared to WT (12.06). None of the other 

proteoforms differ significantly in relative abundance between strains (Figure 3.3B). This indicates a 

conversion of H3K27me2 to H3K27ac specifically in H3 with unmodified K36. H3K27me2 is an important 

repressive mark, whereas acetylation tends to be associated with actively expressed chromatin. Such a 

significant shift in balance of repressive/active marks on one lysine residue suggests an important 

consequence for the loss of COMPASS function on the regulation of gene expression by H3K27 modification. 

3.4.5 H3K23ac levels are significantly elevated in cfp-1 but not set-2 mutants 

While the relative abundance of H3K14ac and H3K27ac was elevated to a similar extent in cfp-1 and set-2 

mutants, H3K23ac, another acetylated lysine, is elevated significantly above WT (27.11) in cfp-1 (31.46) but 

not set-2 (29.01) mutants (Table 3.3, Figure 3.4). Correspondingly, the relative abundance of 

H3K18unK23me1 is reduced in cfp-1 mutants (15.32) compared to set-2 (20.52) and WT (18.99). For K23, 

then, unlike other modified lysines discussed so far, the impact of CFP-1 loss-of-function is not the same as 
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for that of SET-2. There are no significant differences in the relative abundances of K18-modified 

proteoforms. 

Table 3.3 - Mean relative abundance for H3K23 modifications that significantly differed between WT, cfp-1 

and set-2. 

 

 

Figure 3.4 – Relative abundances of H3K18- and K23-modified peptides. The height of the bars represents 

the mean of four experiments, the error bars represent the standard deviation. The graph displays the 

relative abundances of all proteoforms detected for the KQLATKAAR peptide (containing K18 and K23). 
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3.5 Discussion 

The similarity of the consequences for H3 modification in cfp-1 and set-2 mutants are striking, and suggest 

that SET-2 and CFP-1 proteins have near identical roles, at least in the context of their role in regulating the 

histone modification landscape. 

However, the recent discovery that CFP-1 interacts with the small histone deacetylase (HDAC) complex 

SIN3S, independently of SET-2/COMPASS (Beurton et al., 2019), challenges the idea that SET-2 and CFP-1 

play the same role in chromatin regulation. Moreover, this interaction provides a possible explanation for 

why cfp-1 mutants have elevated acetylation at K14, K23 and K27 residues if this is an effect of reduced 

functionality of SIN3S. Why set-2 mutants have elevated acetylation at two of the same lysine residues, K14 

and K27, is harder to explain. Perhaps COMPASS function is in some way a prerequisite for CFP-1’s role in 

SIN3S. CFP-1 plays a role in the recruitment of SIN3S to H3K4me3-enriched promoters. So, when H3K4me3 is 

absent, as in both the set-2 and cfp-1 mutants, that recruitment cannot happen, and thus the consequence 

for K14 and K27 acetylation is the same in both mutants. In short, WT H3K4me3 marking is essential for the 

normal functional interaction for CFP-1 with SIN3S. This explanation is supported by ChIP-seq data showing 

that the genomic distribution of H3K4me3 is similarly reduced in cfp-1 and set-2 mutant embryos (Beurton 

et al., 2019). 

The next chapter discusses the interaction between CFP-1 and the SIN3S complex subunits further, and how 

experiments that were intended primarily to probe this interaction led to the discovery of a 

transgenerational worsening of the cfp-1 mutant phenotype, at the normal growth temperature of 20°C. 
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Chapter 4. Somatic gene derepression in the cfp-1 

germline is enhanced by RNAi knockdown of 

hda-3, and possibly hda-1 and sin-3 

4.1 Abstract 

Using the unc-119::GFP reporter as a readout for somatic gene derepression, RNAi knockdown of the histone 

deacetylase (HDAC) subunits hda-1, and possibly hda-3 and sin-3, was found to enhance unc-119::GFP 

expression in the germline of cfp-1(tm6369) mutants. RNAi of hda-1 was not found to enhance unc-119::GFP 

expression in set-2(bn129) mutants. 

4.2 Introduction 

Both set-2 and cfp-1 mutants were found to have elevated lysine acetylation by LC-MS/MS (chapter 3), 

raising the possibility that COMPASS interacts with a histone acetyltransferase (HAT) or histone deacetylase 

(HDAC). Previous RNAi enhancer screens for further reduction of the already low brood size observed in set-

2 and cfp-1 mutants, found no effect of RNAi knockdown (KD) of major HAT genes mys-4 and hat-1 (Pokhrel 

et al., 2019). However, RNAi KD of hda-1 and hda-3, orthologs of mammalian class I HDACs (Shi and Mello, 

1998), and of sin-3, a component of the Sin3 HDAC complex,  significantly reduced brood size in cfp-1 

mutants, but not in set-2 mutants (Pokhrel et al., 2019). Low brood size can be symptomatic of germline 

gene misregulation, as shown previously using the unc-119::GFP reporter (Robert et al., 2014). The same 

reporter was used in these experiments to confirm the genetic interactions indicated by the brood size assay 

results, and to assess the impact of HDAC RNAi KD on set-2 and cfp-1 germline gene regulation. 

4.2.1 HDAC complexes in C. elegans 

HDAC proteins are highly conserved in eukaryotes. All three classes, I, II and IV are found in all sequenced 

free-living eukaryotes (except fungi) and even eubacteria, thus predating the evolution of histones 

(Gregoretti et al., 2004). Evidence that HDACs act on non-histone substrates, including tubulin (Hubbert et 

al., 2002) and tumour suppressor p53 (Ito et al., 2002), raises the intriguing prospect that their primary 

activity may not be directed against histone substrates, but that this is a secondary function they gained 

later in their evolution. 
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HDAC genes have undergone extensive gene duplication and subsequent functional differentiation. 

Therefore, further subclassifications are necessary to define the functional subgroups. HDAC subclasses are 

named according to the human proteins contained within them, for example, the HDAC1/2 subclass contains 

the proteins HsHDAC1 and HsHDAC2. Phylogenetic analysis indicates that the common metazoan ancestor 

would have contained one HDAC1/2 protein, but that this was duplicated, independently, in both the C. 

elegans and human evolutionary lineages (Gregoretti et al., 2004). Strong sequence constraint between 

HsHDAC1 and HsHDAC2 suggests little functional divergence, as does their existence in the same complexes, 

Sin3, NuRD and CoREST. 

The Sin3 and CoREST HDAC complexes derive their names from their major subunit. NuRD, an abbreviation 

of nucleosome remodelling and histone deacetylase complex, contains an Mi2 ATPase as the major subunit. 

The roles of the NuRD complex in C. elegans include embryonic patterning (Solari et al., 1999) and 

antagonising the Ras pathway in vulval development (Solari and Ahringer, 2000). The Sin3 complex differs 

from NuRD in that it does not appear to be active in embryos. A deletion mutation in the sin-3 gene did not 

produce any embryonic abnormalities but caused defects at larval stages, in male sensory ray patterning and 

hermaphrodite vulval morphogenesis (Choy et al., 2007). C. elegans SIN-3 is the only Sin3-like protein in 

nematodes, and has a paired amphipathic helix (PAH) and histone deacetylase interaction domain (HID) like 

its vertebrate counterparts (Laherty et al., 1997). The name CoREST comes from the interaction between this 

human protein and the REST tumour suppressor (Andres et al., 1999). The C. elegans orthologue of human 

CoREST is spr-1, which, like the NuRD and Sin3 complex components, also plays a role in regulating vulval 

morphogenesis (Bender et al., 2007). 

Three genes in C. elegans, named hda-1, hda-2 and hda-3, were found to share significant homology with 

mammalian HDAC1 (Shi and Mello, 1998). The encoded proteins each contain the conserved histidine 

residues, H150, H151 and H188, which have been shown to be important for HDAC activity (Kadosh and 

Struhl, 1997). Of the three, HDA-1 shares the highest homology with HDAC1, and was found to interact 

functionally with the HAT CBP-1 in the regulation of endoderm differentiation (Shi and Mello, 1998). hda-1 

was also shown to inhibit vulval development via the SynMuv A and B pathways, which hda-2 and hda-3 did 

not (Solari and Ahringer, 2000). It seems, therefore, that while all three HDAs are capable of HDAC activity, 

they may have diverged functionally and form different complexes. 

4.2.2 The unc-119::GFP reporter 

The unc-119::GFP reporter provides a readout for neuronal gene expression. It was utilised in a study 

investigating the impact of conserved translational regulators, MEX-3 and GLD-1, on the maintenance of 
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totipotency in the C. elegans germline (Ciosk et al., 2006), confirming that the abnormal cells observed in the 

central gonad of mex-3;gld-1 double mutants were indeed differentiated neuronal cells. The authors noted 

that those cells expressing this reporter had ‘extensive processes’ like those seen in normal C. elegans 

neuronal cells. 

A later study (Robert et al., 2014) used the same reporter to assess somatic conversion of germ cells in set-2 

mutants, at the non-permissive temperature of 25°C. They found that sterility and unc-119::GFP expression 

concomitantly increased with each generation after the temperature shift in set-2(bn129) mutants, with 

complete sterility reached by the F4 generation. Notably, the set-2(ok952) mutant did not show the same 

trend, nor the mortal germline (Mrt) phenotype associated with set-2(bn129) and other COMPASS subunit 

loss-of-function mutants. The authors observed ‘axodendritic projections’ in unc-119::GFP-expressing cells in 

set-2(bn129) germlines, similar to those noted in other studies (Ciosk et al., 2006, Updike et al., 2014). 

However, Updike et al. found that unc-119::GFP positive germ cells lack the nuclear granules that are 

observed in differentiated neurons, indicating that while the germ cells are reprogrammed to a different 

fate, they cannot terminally differentiate. 

Therefore, due to its prior successful use in characterizing the set-2(bn129) mutant, the unc-119::GFP 

reporter was used here to address the question of whether HDAC inactivation might worsen the gene 

derepression in the set-2 and cfp-1 germline. As mentioned previously, hda-1, hda-3 and sin-3 RNAi reduced 

brood size in cfp-1 mutants (Pokhrel et al., 2019), but these unc-119::GFP reporter experiments would 

address whether the reduction in fertility might be due to the impact of hda-1 and hda-3 inactivation on 

gene derepression in the germline. 

4.3 Experimental Design 

For the hda-3 and sin-3 RNAi, cfp-1 mutant L4 hermaphrodites previously maintained at 20°C were picked to 

RNAi feeding plates and shifted to the non-permissive temperature of 25°C. At this temperature, unc-

119::GFP expression was expected to be induced in the germline of the F1 at a frequency of 7.5% as 

observed in set-2(bn129) mutants (Robert et al., 2014). Their progeny, the F1, were divided into those laid in 

the first 24 hours after RNAi feeding began, and those laid in the next 24 hours. Reporter expression in the 

‘0-24h’ and ’24-48h’ cohort was assessed on the first day of young adulthood. Cohorts were compared to 

confirm the replication of the trend, and to assess if the exposure of the later cohort to the non-permissive 

temperature and RNAi feeding from earlier stages of gametogenesis would produce a more pronounced 

effect. 
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RNAi knockdown of hda-1 results in embryonic lethality, and therefore this experiment had to be performed 

differently. Instead, synchronised cfp-1, set-2 and WT L1s were directly picked onto the RNAi plates, grown 

to adulthood at 25°C, and assessed for reporter expression (Fig. 4.1) on the first day of young adulthood. 

An empty vector (EV) RNAi negative control was performed with each experiment, for both the WT and 

mutant. The results from two independent replicates are presented here in tables. It was inappropriate to 

pool the data from each replicate because the manner in which the statistical testing was conducted (2.4.5) 

required that each experiment be considered individually. 

4.4 Results 

The aim of this experiment was to determine whether RNAi of the HDAC1 orthologues hda-1 and hda-3, and 

the Sin3 HDAC corepressor complex scaffold encoding sin-3, could enhance gene derepression in the 

germline of cfp-1 mutants. This would shed further light on the mechanism behind a previous finding that 

hda-1, hda-3 and sin-3 RNAi further reduced the brood size of cfp-1, but not set-2 mutants (Pokhrel et al., 

2019). 

 

Figure 4.1 - unc-119::GFP-expression in a dissected gonad. The panel on the left shows the DIC image and 

the right panel shows GFP expression. The DIC image shows a section the worm’s body on the left and a 

section of the dissected gonad next to it. Clusters of GFP-expressing cells can be seen in the gonad. This is a 

cfp-1 negative RNAi control. 
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4.4.1 hda-3 RNAi significantly enhanced cfp-1 germline gene derepression 

In all experiments, hda-3 RNAi significantly enhanced unc-119::GFP expression in cfp-1 mutant germlines 

(Table 4.1). There was no unc-119::GFP expression in WT worms subjected to hda-3 RNAi, which gives 

confidence that the inactivation of HDA-3 cannot induce germline gene derepression independently of CFP-

1. In the second replicates, which tended to have a higher n due to improved speed and efficiency with 

scoring, the enhancing effect is more significant. Significance is reduced in the 24-48 hr dataset compared 

with the 0-24 hr dataset, probably because the cfp-1 worms on the EV control plates had unc-119::GFP 

expression in a greater proportion of their germlines (0.51 vs 0.33 average, Table 4.1). When the 0-24 hr and 

24-48 hr data are pooled the enhancing effect is most significant. 
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Table 4.1 – unc119::GFP expression scoring data for hda-3 RNAi in cfp-1 and WT germlines. The table 

displays the raw number of germlines scored for each condition and the calculated proportion of unc-

119::GFP-expressing (+ve) germlines. The reported p value for each experiment refers to the likelihood of 

observing this result assuming the null hypothesis of no interaction between the cfp-1 and hda-3 genes (see 

2.4.5 for details of how this was calculated). 
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4.4.2 sin-3 RNAi may enhance cfp-1 germline gene derepression. 

Compared to hda-3 RNAi, the trend of sin-3 RNAi enhancing unc-119::GFP expression is less significant and 

consistent across experiments (Table 4.2). For the first replicate, there was a significant enhancement of unc-

119::GFP expression both in the 0-24h (p=0.0025) and 24-48h (p=0.049) datasets. For the second replicate, 

only the 24-48h data were significant (p=0.048). This may be partly due to the small (6.25%) proportion of 

WT germlines expressing unc-119::GFP following sin-3 RNAi in the second replicate 0-24h data, whereas 

none did in the first replicate. In the 24-48h data, the proportion of WT germlines expressing unc-119::GFP is 

similar between replicates (6.45 vs 6.78%). As with the hda-3 RNAi data, the pooled 0-48h data gives the 

most significant enhancement trend. 
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Table 4.2 – unc119::GFP expression scoring data for sin-3 RNAi in cfp-1 and WT germlines. The table 

displays the raw number of germlines scored for each condition and the calculated proportion of unc-

119::GFP-expressing (+ve) germlines. The reported p value for each experiment refers to the likelihood of 

observing this result assuming the null hypothesis of no interaction between the cfp-1 and sin-3 genes (see 

2.4.5 for details of how this was calculated). 
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4.4.3 hda-1 RNAi may enhance unc-119::GFP expression in cfp-1 but not set-2 mutants 

As discussed in section 4.3 above, hda-1 RNAi causes embryonic lethality and therefore feeding had to begin 

at the L1 stage, with the same worms scored on the first day of young adulthood. Thus, it was not possible to 

obtain a 24-48h dataset in these experiments; the effect measured would be influenced by the age of the 

worms being scored as well as duration of exposure to RNAi.  

In cfp-1 mutants, enhancement of unc-119::GFP expression by hda-1 RNAi was statistically significant in the 

first replicate (p=0.0042) but not in the second (p=0.07) (Table 4.3). It is worth noting, however, that this is 

very close to the p=0.05 cut-off for significance. 

In set-2 mutants, by contrast, hda-1 RNAi does not induce any more unc-119::GFP expression than in the WT 

controls (Table 4.3). This is consistent with the brood size assay results described in (Pokhrel et al., 2019). 
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Table 4.3 – unc119::GFP expression scoring data for hda-1 RNAi in cfp-1, set-2 and WT germlines. The table 

displays the raw number of germlines scored for each condition and the calculated proportion of unc-

119::GFP-expressing (+ve) germlines. The reported p value for each experiment refers to the likelihood of 

observing this result assuming the null hypothesis of no interaction between the cfp-1/set-2 and hda-1 genes 

(see 2.4.5 for details of how this was calculated). 

 

4.4.4 The proportion of unc-119::GFP-expressing germlines increases over generations in cfp-1 

mutants 

Over the course of performing the RNAi experiments, it was noted that the proportion of unc-119::GFP-

expressing germlines in the cfp-1 empty vector (EV) controls was increased in older-generation worms (Table 

4.4) (Figure 4.2A). In other words, those cfp-1 mutants that had been maintained for many generations since 

outcrossing, compared to those more recently outcrossed, had greater unc-119::GFP expression. For 

example, in cfp-1 empty vector (EV) controls at generation number 22 since outcrossing, 23.4% of germlines 

expressed unc-119::GFP in the 0-24h cohort. By generation 41 this had increased to 42.5%, and by 

generation 53 it was 73.3%.  
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Table 4.4 - unc-119::GFP expression increases over generations in cfp-1 mutants on EV negative control 

RNAi plates. The table displays the raw number of germlines scored for each condition and the calculated 

proportion of unc-119::GFP-expressing (+ve) germlines. No 24-48h data is available for G41 and G53 because 

these were controls for the hda-1 RNAi experiments in which this data was not collected. 

 

To rule out that this trend could be due to changes in experimental technique or plate quality, early (G5) 

versus later (G60) generation worms were compared using the same experimental design as the RNAi 

experiments (L4 mothers picked to new plates and shifted to 25°C, F1 progeny scored as YAs), except that 

the worms were grown on standard fresh NGM plates. The same trend was observed (Figure 4.2B)(Table 

4.5). In both the 0-24h and 24-48h datasets the proportion of unc-119::GFP-expressing germlines was 

significantly greater in cfp-1 mutants 56 generations post-outcrossing (G56) than those 5 generations post-

outcrossing (G5) (p=0.0046 and p=0.0024 respectively). As seen for the sin-3 and hda-3 RNAi experiments, 

the pooled 0-48h data gives the most significant result. 
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Table 4.5 - unc-119::GFP expression is significantly increased in late vs early generation cfp-1 mutants 

grown on NGM plates. The table displays the raw number of germlines scored for each condition and the 

calculated proportion of unc-119::GFP-expressing (+ve) germlines. The p values reported were calculated 

using Fisher’s exact test. 

 

Figure 4.2 - unc-119::GFP expression increases over generations in cfp-1 mutants. The left panel, A, presents 

the percentage of unc-119::GFP expressing germlines observed in cfp-1(tm6369) young adults in the 0-24h 

cohort grown at 25°C on EV control RNAi plates over the course of experiments reported in this chapter. The 

right panel, B, shows the percentage of unc-119::GFP expressing germlines observed in the pooled 0-48h cfp-

1(tm6369) young adults grown at 25°C on NGM plates. In both graphs, error bars represent 95% confidence 

intervals. 
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4.5 Discussion 

RNAi KD of hda-3 significantly enhanced unc-119::GFP expression, and thus gene misregulation, in cfp-1 

mutants. The effect was similar but less significant for hda-1 and sin-3 RNAi in cfp-1 mutants. Only hda-1 

RNAi was tested in set-2 mutants, but it induced unc-119::GFP expression only to the same extent as the WT 

control. 

Comparing the 24-48h to the 0-24h cohorts across experiments suggests that the induction of unc-119::GFP 

expression is increased with time in the cfp-1 EV controls, which is most likely an effect of the longer 

exposure to the non-permissive temperature. The same effect was reported in set-2 mutants (Robert et al., 

2014), with the authors speculating that higher temperatures may increase the frequency of stochastic 

events at the single cell level that lead to acquisition of somatic cell fate. The induction of unc-119::GFP 

expression in set-2 EV controls (7.7% average, Table 4.3), measured in the hda-1 RNAi experiment, is similar 

to the 7.5% reported by (Robert et al., 2014) however the impact of temperature was not tested on set-2 

mutants here. It is noted that unc-119::GFP expression in cfp-1 EV controls from the same experiment was 

even higher (31%, Table 4.3), indicating that cfp-1 mutants are more sensitive to the impact of high 

temperature on germline transdifferentiation. 

The WT control results reveal that while hda-3 RNAi does not induce any unc-119::GFP expression in the WT 

background, sin-3 RNAi did in approximately 7% of germlines scored (except in the 0-24h data of the first 

replicate). RNAi of hda-1 did so to an even greater extent, with 22% of WT germlines expressing unc-

119::GFP. Therefore, it appears that knockdown of hda-1 and sin-3 causes a strong loss of gene repression in 

the germline, independent of the cfp-1 mutation.  

The increase in unc-119::GFP expression over generations in cfp-1 mutants was an interesting discovery 

which may explain why the second replicate data for the sin-3 and hda-1 RNAi experiments was less 

significant, as the cfp-1 mutants used for EV controls had been maintained (under standard growth 

conditions) for an additional few weeks, and thus were at a later generation by the time the experiments 

were carried out. With the control unc-119::GFP expression already so high in the second replicate data, 

maybe it masked the enhancing effect of HDAC RNAi. This observation highlights the need for controlling for 

the generation number of cfp-1 and probably other COMPASS mutants in future experiments. 
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Chapter 5. Wild-type descendants of COMPASS 

mutants inherit the mutant long-lived 

phenotype, and this is associated with a loss of 

H3K4me2 and gain of H3K9me3 in the long-lived 

descendants 

5.1 Abstract 

Following on from experiments reporting that WT descendants of set-2(ok952) mutants could inherit the 

extended longevity phenotype of their mutant ancestors (Greer et al., 2011), the reproducibility of this result 

was tested in the set-2(bn129) mutant background. Not only finding that WT descendants of set-2(bn129) 

mutants could, too, inherit the extended longevity phenotype, these experiments also showed that the 

strength and duration of the phenotype is increased when the long-lived WTs are descended from a late 

generation (maintained by self-fertilisation 60 generations post outcrossing, G60) set-2(bn129) mutant as 

compared to descendants from a G10 set-2(bn129) mutant. LC-MS/MS analysis of germline derived histones 

found that H3K4me2 levels are reduced in F3 and F4 WT descendants of set-2(bn129) mutants, and that 

H3K9me3 levels are increased, compared to WT controls. 

5.2 Introduction 

The previous chapter discussed the germline gene misregulation in cfp-1(tm6369) and set-2(bn129) mutants, 

manifest by unc-119::GFP reporter expression, which appears to worsen over generations.  

This chapter will focus on another phenotype of COMPASS mutants, increased longevity (Greer et al., 2010), 

which is inherited by their wild-type descendants (Greer et al., 2011). This might be considered a different 

form of transgenerational epigenetic inheritance to the transgenerational worsening of gene expression 

control discussed previously, but potentially involving similar mechanisms.  

A previous C. elegans study reported that RNAi-mediated knockdown of key components of the COMPASS 

complex, namely ash-2, wdr-5 and set-2, extended lifespan (Greer et al., 2010). Greer et al. also 
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demonstrated that this lifespan extension required the presence of an intact adult germline and the 

continuous production of mature oocytes (Greer et al., 2010). The following year, Greer et al. reported that 

genetically wild-type descendants from long-lived wdr-5 and set-2 mutant ‘grandparents’ display a longevity 

phenotype, that persists for two further generations of the genetically wild-type descendants and then 

ceases to be inherited (Figure 5.1) (Greer et al., 2011). 

 

Figure 5.1 - Lifespan extension of set-2(ok952) descendants. Panel a illustrates the crosses that were set up 

and how the lineages were isolated to obtain the homozygous WT and homozygous set-2(ok952) mutant F3, 

F4 and F5. Panels b,c and d illustrate how the lifespan of the wild-type descendants (red line) is comparable 

to their mutant ‘cousins’ (green line) for the F3 and F4, but by the F5 the wild-type descendants’ lifespan is 

comparable with wild-type controls (blue line). P values are derived from log-rank comparisons of wild-type 

(blue line) controls with wild-type descendants (red line). Figure from (Greer et al., 2011). 

More recently, C. elegans gene expression from an integrated heterochromatic multicopy array was found to 

be elevated, transgenerationally, by high temperature heat-shock (25˚C) (Klosin et al., 2017). The elevated 

expression took 14 generations, after the growth temperature was reduced back to 20˚C, to return to basal 

levels. In this example, the elevated expression was associated with heritable loss of the heterochromatin 

mark H3K9me3 in the vicinity of the transgene. 
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The different experiments discussed here report different numbers of generations over which 

transgenerational epigenetic inheritance can persist, but nevertheless there is always a limit, a generation by 

which the phenotype returns to the wild type. A sensible model to explain these observations might be that 

it takes multiple generations for wild-type levels of chromatin modifications to be restored after, for 

example, the return of enzymatic function or the removal of environmental stress. 

This model is supported by the heat shock experiments in C. elegans (Klosin et al., 2017), which found that 

inactivating the H3K9 trimethylase set-25 removed the temperature sensitivity of array expression and 

prevented transmission of variation in transgene expression. These observations led the authors to propose 

a model whereby the temperature-sensitive SET-25’s activity is rapidly restored after a return to low 

temperature, but the re-establishment of repression via deposition of H3K9me3 takes many generations due 

to mechanisms present which maintain epigenetic states across life-cycles. 

This model of gradual recovery (of H3K9me3) following restoration of H3K9 histone methyltransferase 

(HMT) function may not be applicable to COMPASS/H3K4me3. Immunocytochemistry data shows wild-type 

levels of H3K4me3 in the genetically wild-type long-lived descendants of wdr-5 mutants (Greer et al., 2011), 

apparently ruling out the explanation that the phenotype persisted while H3K4me3 levels were recovering. 

The preferred explanation of Greer et al. was that the altered gene regulation in the long-lived wild-type 

descendants might be associated with heritable changes in H3K4me3 only at certain loci. Nevertheless, with 

the limitations of immunocytochemistry in providing robust quantitative data, the recovery model in the set-

2(bn129) background was tested using LC-MS/MS. 

5.3 Experimental design 

A lifespan assay was pursued as described in (Greer et al. 2011) but using set-2(bn129) instead of set-

2(ok952) to establish whether the results for the set-2 mutant could be replicated. As discussed in 1.4.2.3, 

these deletion alleles have different predicted outcomes on SET-2 function; set-2(ok952) homozygotes, 

unlike set-2(bn129), may not be entirely loss-of-function mutants. 

In these experiments, the lifespan of ~90 worms per condition was monitored and recorded over an up to 40 

day period, however long the lifespan of the most long-lived individual. To set up the first experiment, a 

cross was set up between set-2(bn129) hermaphrodites maintained for 10 generations post-outcrossing 

(G10), and WT males (Fig. 5.2). An F1 heterozygote was isolated from the cross progeny and then mutant 

and WT lineages were established from their F2 progeny, as described in 2.3.1.2.1. A simultaneous cross 

between WT hermaphrodites and males was set-up, and one F1 and one F2 singled, to prepare the control 

WT F3 (as illustrated in Figure 5.1A). Lifespan assays were conducted simultaneously for experimental and 
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control populations. As such, the assay was set up by picking 12 worms to 9 NGM/OP50 plates for each 

condition: control WT F3, WT descendant F3 (F3+/+) and set-2(bn129) descendant F3 (F3-/-). They had 

hatched on the same day, which was set as day 0, and they were checked on alternate days (2,4,6 etc. post-

hatching) when any deaths and/or exclusions (see 2.5.3) were recorded. The F4 and F5 experiments were set 

up in the same way, four days after the preceding generation. When setting up the F3 lifespan assay, four 

worms each from the control WT F3, WT descendant F3 (F3+/+) and set-2(bn129) descendant F3 (F3-/-) 

populations were picked to separate NGM/OP50 plates to lay the F4s. The same procedure was carried out 

when setting up the F4 lifespan assay, four worms each from the control WT F4, WT descendant F4 (F4+/+) 

and set-2(bn129) descendant F4 (F4-/-) populations were picked to separate NGM/OP50 plates to lay the 

F5s. 

 

Figure 5.2 - The crossing and genotyping procedure used to isolate WT and mutant descendants of set-2. 

Briefly, the cross is set up, a sample of the F1 is genotyped to identify and isolate a heterozygote. The 

heterozygote is left to self-fertilise and the F2 progeny are isolated, in sufficient number to be sure of 

isolating sufficient homozygotes. Finally, the F2 are genotyped, the genotype of their F3 progeny is inferred 

from this. 
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Figure 5.3 – Example genotyping results for the F2 progeny. The sizes of the DNA ladder bands are shown on 

the left, and those from the genotyping experiment on the right. See Table 2.4 for details of the primers. 

Lanes 1 and 3 show a heterozygous sample, lane 2 a homozygous WT, and lanes 4 and 5 a homozygous 

mutant. 

The second experiment was set up just the same as the first except that set-2(bn129) hermaphrodites 

maintained for 60 generations post-outcrossing (G60), were used in the initial cross.  

5.4 Results 

5.4.1 WT descendants of set-2(bn129) also have increased longevity in the F3 and F4 generations 

WT F3 and F4 descendants of set-2(bn129) G10 hermaphrodites had significantly (p=0.0005, p<0.0001, 

respectively) increased lifespan compared to WT controls of the corresponding generation (Table 5.1, Figure 

5.2A). The median lifespan of the WT F3, WT F4 and WT F5 controls was consistent at 18 days, whereas for 

the F3 +/+ and F4 +/+ (G10 descendants) this was 20 days. The WT lifespans are similar to those reported in 

Greer et al., which were 18, 17 and 17 days for WT F3, F4 and F5, respectively. However, the F3 +/+ and F4 

+/+ lifespans reported by Greer et al. were longer, at 24 and 23 days, respectively. So, while the trend is 

replicated, the extent of lifespan extension reported by Greer et al. was greater.  
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5.4.2 WT descendants of set-2(bn129) are not quite back to WT lifespan by the F5 generation 

The F5 +/+ lifespan reported by Greer et al. is 17 days, the same as for their WT controls, indicating a 

complete recovery of the WT lifespan phenotype by the F5 generation.  In this experiment, the lifespan of 

the F5 +/+ (G10 descendants) was 20 days (Table 5.1). Looking at the graph (Figure 5.2A), the F5 +/+ curve 

does appear shifted to the left, away from the F3 +/+ and F4 +/+ curves and closer to the WT control lines. 

The difference between WT F5 and F5 +/+ median lifespans is not significant (p=0.0982) but large enough to 

doubt that they could be considered the same. Taken together these observations suggest an incomplete 

transition back to WT longevity in the F5 +/+. 
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Table 5.1 – Median lifespan and statistical significance of the WT descendant’s longevity increase as 

compared to WT controls. P values are from pairwise comparison of each WT control with its generation-

matched WT set-2 descendants e.g. WT F3 vs F3 +/+, WT F4 vs F4 +/+. 

 

5.4.3 The extent of the longevity extension of WT descendants of set-2(bn129) mutants depends 

on the generation of the mutant ancestor 

The longevity of genotypically wild-type descendants of set-2(bn129) mutants was now examined as before 

but with consideration to generation number since outcrossing. In other words, the longevity of descendants 

of generation 10 (G10) set-2(bn129) hermaphrodites was compared with descendants of later generation 60 

(G60) hermaphrodites. Considering the transgenerational worsening of COMPASS phenotypes discussed in 

chapter 4, it was expected that the increased longevity of WT descendants from later generation set-

2(bn129) mutants may be more pronounced compared to descendants from an earlier generation. This 

expectation was found to be correct. F3 +/+ descendants of a G60 set-2(bn129) hermaphrodite (F3 +/+ G60) 

had a median lifespan of 22 days, compared to 20 days for F3 +/+ G10, that was more significantly different 

(p<0.0001) from the 18 days of the WT F3 control (Table 5.1). The F4 +/+ G60 and F4 +/+ G10 median 

lifespans were both 20 days, but this just reflects the poor resolution of medians in this assay and qualitative 

comparison of the survival curves (Figure 5.4a & b) reveals a greater shift from the WT control for F4 +/+ 

G60. Moreover, while F5 +/+ G10 is not significantly different to WT F5, F5 +/+ G60 is still highly significantly 

more long-lived than WT F5. This observation suggests that not only does a later generation genetically wild-

type set-2(bn129) ancestor have a more pronounced increase in lifespan, but the number of generations 

over which increased longevity can be inherited in WT descendants is increased.  

WT F3 18

F3 +/+ G10 20 p = 0.0005

F3 +/+ G60 22 p < 0.0001

WT F4 18

F4 +/+ G10 20 p < 0.0001

F4 +/+ G60 20 p < 0.0001

WT F5 18

F5 +/+ G10 20 p = 0.0982

F5 +/+ G60 22 p = 0.0004

Generation 

and genotype

Median 

lifespan (days)

Log-rank test 

significance
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Figure 5.4 - Lifespan extension of WT descendants of set-2(bn129) mutants depends on the generation of 

the mutant ancestor. Survival data are presented as Kaplan-Meier plots, generated in GraphPad/Prism. 

Colour of the line differentiates between WT control and WT descendant, whereas style of the line 

differentiates the generation number post-cross. 

5.4.4 Later generation set-2(bn129) mutants develop slowly compared to an earlier generation 

Given that WT descendants of early and late generation set-2(bn129) mutants show phenotypic differences, 

then it seemed likely the set-2(bn129) mutants themselves would too. Increasing unc-119::GFP expression 

over generations in set-2(bn129) mutants has been reported previously (Robert et al., 2014). However, 

comparing the developmental progression of early versus late generation set-2(bn129) mutants revealed 

that the latter develop more slowly (Fig. 5.5). Given 60 hours to develop from the L1 stage, 84% of the wild 

type and 7% of the set-2 G4 population had reached the young adult stage, but none of the set-2 G60 

population had (Table 5.2). The G60 population had 19% still in L3 or mid-L4 stages compared to 5% for the 

G10 population. 
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Table 5.2 – Developmental stages reached by WT, set-2 generation 4 and generation 60 mutants after 60 

hours at 20°C. The table displays the raw counts and calculated percentages. Developmental stage was 

ascertained by viewing gonad structure (2.6). 

 

 

 

 

 

 

 

 

 

Figure 5.5 – Later generation (G60) set-2(bn129) mutants develop more slowly than an earlier generation 

(G4). The different coloured fractions of the bars represent the percentage of each developmental stage 

recorded after newly hatched wild-type and set-2 (bn129) larval stage 1 (L1) worms were allowed to develop 

for 60 hours at 20C.  

5.4.5 Increased longevity in F3 and F4 WT descendants of set-2(bn129) mutants is accompanied by 

a decrease in H3K4me2 and an increase in H3K9me3 

To clarify whether the longevity of WT descendants of set-2 mutants is linked to delayed recovery of 

H3K4me3, germline-derived histones from F3, F4, F5 and F10 descendants were analysed by LC-MS/MS to 

compare histone PTM levels and identify H3K4 and H3K9 modifications that might be altered in the long-
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lived F3 and F4 compared with WT. Unexpectedly, it was not H3K4me3 levels that were reduced but 

H3K4me2 levels (Figure 5.6A). H3K4me2 levels were reduced by approximately 30% in F3 +/+ and F4 +/+ set-

2(bn129) descendants but recovered to the WT control level in the F5 +/+ and remained at that level in the 

F10 +/+ (Figure 5.6A). H3K4me3 levels appear to increase slightly in the F3 and F4 descendants, which could 

be due to increased conversion of H3K4me2 to H3K4me3 after restoration of COMPASS function (Figure 

5.6A). 

H3K9me3 levels, by contrast, are elevated in F3 and F4 +/+ set-2(bn129) descendants and fall to WT levels in 

the F5 and F10 (Figure 5.6B). H3K9me3 is a heterochromatic mark implicated in several C. elegans 

transgenerational epigenetic inheritance studies (Klosin et al., 2017, Woodhouse et al., 2018, Kalinava et al., 

2018).  

 

Figure 5.6 - LC-MS/MS profiling of H3 PTMs in germlines of WT descendants of set-2(bn129). The data 

presented corresponds to the best dataset (see discussion) of three replicates. The height of the bars, or 

relative abundance, represents the percentage intensity of each modified peptide (e.g. H3K4me3, 

H3K9me3K14un) detected, out of the total intensity detected for all proteoforms of the peptide (displayed as 

labels on the x-axis). 

5.5 Discussion 

Taken together, these results confirm that WT descendants of set-2(bn129) mutants inherit an extended 

longevity phenotype, as reported for the descendants of set-2(ok952) mutants (Greer et al., 2011). H3K4me2 

and H3K9me3 levels in wild-type descendants of the set-2(bn129) mutants show a recovery pattern 

consistent with the 5-generation timeline proposed in that same study. These experiments further 
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demonstrate that inheritance of increased longevity in descendants of set-2(bn129) mutants is more 

pronounced when these mutants have been without COMPASS function for a prolonged series of 

generations. Therefore, not only does loss of COMPASS function lead to worsened phenotypes in 

homozygous mutants over generations of self-fertilisation, but the inheritance of worsened phenotypes 

even in genetically WT descendants. 
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Chapter 6. Assessing the recovery of histone 

modifications in the germlines of wild-type 

descendants of COMPASS mutants using 

immunofluorescence microscopy 

6.1 Abstract  

Here, an immunofluorescence (IF) microscopy approach was employed to attempt to reproduce the LC-

MS/MS finding that H3K4me2 levels are reduced in F3 and F4 WT descendants of set-2(bn129) mutants, and 

that H3K9me3 levels are increased, compared to WT controls. Overall, the IF results did not consistently 

support the mass spectrometry data for H3K4me2 but reaffirmed the H3K9me3 trend.  

6.2 Introduction 

With the mass spectrometry results showing such a striking change in H3K4me2 and H3K9me3 levels in F3 

and F4 WT descendants of set-2(bn129) hermaphrodites (Chapter 5), it was important to attempt to 

reproduce these findings using an independent technique. Immunofluorescence microscopy (IF) uses 

fluorophore-conjugated antibodies to visualise the location and/or approximate amount of a substance 

present in a biological tissue. The technique is widely used in C. elegans and has been successfully used to 

compare levels of histone modifications in the germline (Greer et al., 2011, Woodhouse et al., 2018). 

Therefore, IF was used to visualise and compare levels of specific histone modifications: H3K4me2, 

H3K4me3, H3K9me2 and H3K9me3, in C. elegans adult germlines from WT (+/+) and mutant (-/-) 

descendants of set-2(bn129) mutants, and WT controls. 

6.3 Experimental design 

Like for the lifespan assays discussed in chapter 5, crosses were set up with a late (G70) set-2(bn129) mutant 

and an early (G10) set-2(bn129) mutant, in order to see whether phenotype severity was increased in the 

later generation mutant’s descendants. A control cross was set up between a WT hermaphrodite and a WT 

male to provide the WT F3, F4 and F5 controls. Germlines from the F3, F4 and F5 WT (+/+) and mutant (-/-) 
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descendants of set-2(bn129) mutants, as well as from the WT F3, F4 and F5 controls, were dissected, 

immunostained and imaged. 

Immunostaining was performed using the freeze-crack method as described previously (Strome and Wood, 

1983). Briefly, YAs were dissected with a needle in 7µL M9 to release intact gonads on a poly-lysine coated 

slide (Figure 6.1). Each slide has three equal sized square wells, but only the left hand side (LHS) and right 

hand side (RHS) wells were used for dissection/staining/imaging, leaving the middle well empty, to use for 

labelling. The LHS/RHS distinction is important because worms were consistently dissected on the LHS first, 

then the RHS, to minimise the risk of smudging. The extra few seconds that the LHS sample spent at room 

temperature before snap freezing compared to the RHS, may have affected the results, as discussed later in 

the chapter. 

The poly-lysine coating encourages sticking of the gonad to the slide, which is achieved by pressing lightly 

with a coverslip. Then the slide was transferred to a pre-chilled metal plate on dry ice to snap freeze the 

tissue to allow reagent penetration, before fixing in methanol and applying antibodies.  

 

Figure 6.1 – Slides as prepared for imaging. Prior to dissection they were labelled by etching into the brown 

outer coating in the places illustrated. After coverslip sealing the glass in the middle well was labelled with 

details of the antibodies used. Only the outer wells were used for the experiment, which are labelled as left 

hand side (LHS) and right hand side (RHS) because this is how they appear in relation to the orientation of the 

labelling on the slide. LHS and RHS is how they will be referred to in the main text. The dissected gonads are 

represented in grey. 

Primary antibodies for each histone modification were tested in WT YA C. elegans germlines at different 

concentrations to determine an optimal working concentration for the experiments. The antibody specificity 

was tested by dot blot (2.7.4). However, this only worked for the H3K4me3 and H3K9me3 antibodies, which 

were shown to be specific for H3K4me3- and H3K9me3-modified peptides, with no cross-reactivity with the 

me2-modified peptide, or any of the other trimethylated lysines assayed. Validation information for the 
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specificity of the H3K4me2 (C15200151 Diagenode) and H3K9me2 (Wako MABI0317) antibodies from the 

manufacturer had to be relied upon. These antibodies did still work in the concentration optimisation tests 

so were active. 

By using secondary antibodies labelled with Alexa Fluor dyes whose excitation and emission wavelengths 

overlap minimally (Fig. 6.2), it was possible to image an anti-H3 control (anti-sheep Alexa Fluor 405) and two 

histone modifications (anti-mouse Alexa Fluor 488 and anti-rabbit Alexa Fluor 594) simultaneously.  

 

Figure 6.2 – A comparison of the excitation and emission wavelengths (dotted line and filled curves, 

respectively) of the Alexa Fluor 405, 488 and 594 dyes. Plotted using the Thermofisher ‘SpectraViewer’ tool. 

The following three primary antibody combinations were used in each experiment:  

1. Anti-H3K4me2 (mouse); anti-H3K4me3 (rabbit); anti-H3 (sheep) 

2. Anti-H3K4me2 (mouse); anti-H3K9me3 (rabbit); anti-H3 (sheep) 

3. Anti-H3K9me2 (mouse); anti-H3K9me3 (rabbit); anti-H3 (sheep) 

In discussion of the results hereafter, these antibody combinations will be referred to as ‘antibody 

combination 1’, ‘antibody combination 2’, ‘antibody combination 3’. The LHS and RHS well of each slide was 

stained with the same antibody combination, and thus provides a technical replicate for each assay. 6 

gonads were imaged from the LHS and 6 from the RHS, giving 12 gonads in total for each experimental 

condition, that is, generation (F3, F4, F5), genotype (WT, +/+ or set-2(bn129) mutant -/-) and antibody 

combination. Imaging was performed on a Zeiss LSM880 + Airyscan Upright Microscope, using confocal 

microscopy with laser excitation of the three fluorophores. Fluorescent signal intensity was quantified from 

a subset of manually selected nuclei (Fig. 6.4) in the pachytene zone of the gonad (Fig. 6.3) using FIJI 

software (2.6.7). All fluorescence intensities from the histone modifications were divided by the 

fluorescence intensity from the anti-H3 control antibody (Alexa Fluor 405), to normalise the data. 
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Figure 6.3 – The organisation of the hermaphrodite C. elegans gonad. The mitotic zone, at the distal tip, 

contains a stem cell population. Nuclei (stained here with DAPI) progress through the transition zone, where 

they begin to undergo meiosis I, in to the pachytene zone, where they continue to progress through the 

stages meiosis as described in the orange text. The ‘bowl of spaghetti’ morphology of nuclei approaching the 

loop is due to homologous chromosomes aligning side by side. Adapted from wormatlas.org.  

 

Figure 6.4 Selection of nuclei for fluorescence quantification – The yellow ring illustrates positioning (in the 

pachytene zone, just before the loop when the nuclei acquire the ‘bowl of spaghetti morphology) and the 

approximate size of area selected in FIJI. The green and red fluorescence signal is divided by the blue to 

normalise for size and number of nuclei in the area selected. 

 

 



112 

 

6.4 Results 

In evaluating these data there were three main questions to address: 

1. Do the data agree with the mass spectrometry results showing H3K4me2 levels reduced and 

H3K9me3 levels increased in the F3 +/+ and F4 +/+ descendants of set-2(bn129) mutants? It should 

be noted that the mass spectrometry data was only derived from histones extracted from the 

germlines of early-generation descendants, so it is only appropriate to compare the early generation 

IF results with the mass spectrometry findings. 

2. Is there agreement in the data between different experimental conditions? E.g., do H3K4me2 levels 

appear consistent in the IF whether co-imaged with H3K4me3 or H3K9me3? 

3. Is there agreement between results for the early generation and late generation experiments? 

The following considers each of these questions for each histone modification tested. 

6.4.1 H3K4me2 

6.4.1.1 Agreement with mass spectrometry results 

There are four independent sets of results for H3K4me2 for each of the three generations, F3, F4, F5 (Table 

6.1). There are separate results for antibody combinations 1 and 2, for both the descendants of early and 

late-generation set-2(bn129) mutants. 

In all these sets of results, whether for early or late generations of set-2(bn129) mutants, there is no 

statistically significant difference in mean fluorescence signal for H3K4me2 between WT F3 and F3 +/+, or 

WT F4 and F4 +/+ (Table 6.1) (Figure 6.5 A, B, D, E, G, H, J, K). Indeed, the F3 +/+ mean appears lower than 

the WT F3 mean in only one of the four sets of results (early descendants, antibody combination 1) (Figure 

6.5A). These data, therefore, do not support the mass spectrometry results which suggested that the 

H3K4me2 levels are reduced in the germlines of F3 +/+ and F4 +/+ descendants of set-2(bn129) mutants as 

compared to WT controls (chapter 5, supplementary figure 8.1). According to the IF, the wild type 

descendants of set-2(bn129) mutants appear to exhibit the wild type levels of H3K4me2. 

6.4.1.2 Agreement between antibody combinations 

In the early generation set, there is good agreement between antibody combination 1 and 2 data with 

regard to the significantly lower mean fluorescence of the mutant (-/-) descendants as compared to the 

corresponding WT controls (Figure 6.5 A,B,C,D,E,F). This is consistent with the reduction in H3K4me2 seen in 
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set-2(bn129) mixed embryos (chapter 1) and germlines (Supplementary Figure 8.1A and 8.2A) and lends 

confidence to the reliability of these results for the set-2(bn129) early generation. 

With regard to the difference between the mean anti-H3K4me2 fluorescence of WT descendants compared 

to the WT control, however, antibody combination 1 gave a small reduction in signal for F3 +/+ and F4 +/+ 

gonads (Figure 6.5 A&B) compared to WT controls, whereas with antibody combination 2 the mean 

fluorescence signals are very similar (Figure 6.5 D&E). The F5 +/+ mean fluorescent signal is above WT F5 for 

both antibody combinations, significantly so for antibody combination 1 (Figure 6.5 C). This increase, in F5 

+/+ levels of H3K4me2 compared to WT, was not seen in the mass spectrometry data (chapter 5, 

supplementary figure 8.1A & 8.2A ).  

6.4.1.3 Agreement between early and late generation experiments 

In the late generation data the reduction in mean fluorescence in mutants compared to WT is much less 

consistent than in the early generation data, only appearing for combination 1 F4 (Figure 6.5 H) and 

combination 2 F3 (Figure 6.5 J). The significant increase in F4 -/- compared to WT F4 (Figure 6.5 K) looks 

anomalous given the wide distribution of the data points and the disagreement with the general trend.  

Overall, the trends in the late generation data appear less consistent than in the early generation data for 

H3K4me2.  There is more agreement between combination 1 and 2 in the early data than between early and 

late in the combination 1, or 2 data.  

6.4.1.4 Agreement between LHS and RHS  

In two of the graphs (Figure 6.5B & K) the data points for F4 -/- appear to form two separate clusters, 

suggesting potential variation between the LHS and RHS. Indeed, calculation of the individual means for each 

side reveals that in the combination 1 early F4 -/- data (Figure 6.3B) the LHS mean is 0.57 and the RHS mean 

0.26. In the combination 2 late F4 -/- data (Figure 6.5K) the LHS mean is 0.816 and the RHS mean is 1.14. The 

difference could be due to one side of the slide not having properly set mounting medium, or not being 

completely sealed and drying out prior to imaging, consequently exaggerating the signal. As discussed in the 

experimental design (6.3), there was a consistent difference in the way the LHS and RHS were prepared 

because worms were always dissected on the LHS first, then the RHS, to minimise the risk of smudging. 

Consequently, the dissected gonads on the LHS spent an additional few seconds at room temperature, 

compared to the RHS, before snap freezing. Here, though, whether the RHS or LHS is affected appears to be 

random, because in the first of these examples the LHS mean is higher, while in the second example the RHS 

mean is higher. 
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It is impossible to be certain which side to accept as the truer mean. Given the overall trend of H3K4me2 

fluorescence being lower in set-2(bn129) mutants than WT controls across experiments, it seems likely that 

the lower mean is the more acceptable in these examples. 
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Table 6.1 – Summary of results for all IF experiments for H3K4me2. The ‘combination’ column refers to 

whether H3K4me2 was co-stained and co-imaged with H3K4me3 (combination 1) or with H3K9me3 

(combination 2). The p-values presented in the ‘significance’ column refer to the results of a one-way ANOVA 

with Tukey’s multiple comparison, comparing the WT control mean with either the WT descendant (+/+) or 

mutant descendant (-/-) mean. The abbreviation ‘ns’ means the p-value is non-significant, * means p<0.05, 

** means p<0.01, *** means p<0.001 and **** means p<0.0001 (at this level of significance the exact p-

value is not reported by GraphPad/Prism, in which the statistical testing was performed). 
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Figure 6.5 – Anti-H3K4me2 immunofluorescence intensity in the germline of descendants of early and late generation 

set-2(bn129) mutants. Each circle represents a single fluorescence intensity value for each individual gonad imaged. 

Here, fluorescence intensities for the LHS and RHS of each slide have been combined, giving an n of 12 for each 

condition. The middle horizontal line represents the mean of the 12 data points, and the shorter horizontal lines show 

the standard deviation. All fluorescence intensities have been normalized to the H3 control. There is variation in 

fluorescence intensities between graphs, but each graph represents a separate experiment (i.e. slides prepared and 

imaged on different days) and thus comparisons are only appropriate within graphs rather than between them. 
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6.4.2 H3K4me3  

H3K4me3 was stained and imaged with only antibody combination 1. Therefore, there are just single 

datasets to compare, for early and late generations of set-2(bn129) mutants (Table 6.2). 

6.4.2.1 Agreement with mass spectrometry results 

The H3K4me3 early F3 results show a reduction in mean fluorescence intensity for F3 +/+ and F3 -/- 

compared to WT F3 (Figure 6.6A), which differs to the LC-MS/MS results in which F3 +/+ and F3 -/- H3K4me3 

relative abundance is slightly elevated above WT control levels (supplementary figure 8.1B). Therefore, the 

agreement between the different techniques is poor for the F3 data. 

Agreement is better for the F4 and F5 generations. F4 -/- and F5 -/- H3K4me3 levels are lower compared to 

WT controls in both IF and LC-MS/MS data, albeit only slightly in the IF results. However, the increase in F5 

+/+ H3K4me3 levels compared to WT controls (Figure 6.6C) in the IF data is not seen in the MS data 

(supplementary figure 8.1B).  

6.4.2.2 Agreement between early and late generation experiments 

 Largely there is consistency between the two datasets suggesting little change in H3K4me3 levels arising 

from the length of maintenance of the set-2(bn129) genotype through successive generations. Indeed, there 

is little difference in the levels of H3K4me3 between WT controls, and the wild type and mutant descendants 

of set-2(bn129) mutants apparent in any of these IF data. 

The mean anti H3K4me3 fluorescence signal for F3 +/+ is slightly reduced compared to that for WT F3 in 

both early and late set-2(bn129) generations (Figure 6.6 A&D). The elevation of the signal for F5 +/+ above 

WT F5 is also seen in both datasets, but the early generation mean fluorescence signal is similar between WT 

F5 and F5-/- (Figure 6.6 C) while the late generation signal for F5 -/- is significantly increased above that for 

WT F5 (Figure 6.6 F). Given the wide range and distribution in data points in the late generation F5 -/- data, 

this distinction is not convincing. Indeed, comparison of the LHS (1.40) and RHS (0.72) means for the late 

generation dataset suggests that one side is skewing the mean. It’s not possible to be certain that the LHS or 

RHS is the erroneous one, but because the -/- signal is equal to or lower than the WT control signal in all 

other experiments, it seems more likely that the LHS is artificially skewing the mean fluorescence signal 

higher than it should be, rather than the RHS skewing the mean lower.  
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Table 6.2 - Summary of results for all IF experiments for H3K4me3. The p-values presented in the ‘significance’ column 

refer to the results of a one-way ANOVA with Tukey’s multiple comparison, comparing the WT control mean with either 

the WT descendant (+/+) or mutant descendant (-/-) mean. Combination 1 refers to the use of anti-H3K4me2 antibodies 

in combination with anti-H3K4me3 antibodies. The abbreviation ‘ns’ means the p-value is non-significant, * means 

p<0.05, ** means p<0.01, *** means p<0.001 and **** means p<0.0001 (at this level of significance the exact p-value is 

not reported by GraphPad/Prism, in which the statistical testing was performed). 

 

Figure 6.6 – Anti-H3K4me3 immunofluorescence intensity in the germline of descendants of early and late generation 

set-2(bn129) mutants. Each circle represents a single fluorescence intensity value for each individual gonad imaged. 

Here, fluorescence intensities for the LHS and RHS of each slide have been combined, giving an n of 12 for each 

condition. The middle horizontal line represents the mean of the 12 data points, and the shorter horizontal lines show 

the standard deviation. All fluorescence intensities have been normalized to the H3 control. There is variation in 

fluorescence intensities between graphs, but each graph represents a separate experiment (i.e. slides prepared and 

imaged on different days) and thus comparisons are only appropriate within graphs rather than between them. 
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6.4.3 H3K9me2 

As with the H3K4me3 data, H3K9me2 was stained and imaged only with antibody combination 3 and so 

there are just single early and late generation datasets to compare (Table 6.3).  

6.4.3.1 Agreement with mass spectrometry results 

Overall, the agreement between the LC-MS/MS and early generation IF data for H3K9me2 is good. For F3 

descendants, there is little difference between WT, +/+ and -/- H3K9me2 fluorescence intensity (Figure 6.7A) 

or relative abundance (Supplementary Figure 8.1C). The same similarity is seen for WT F4 and F4 +/+ (Figure 

6.7B) in the IF and LC-MS/MS data. However, while H3K9me2 relative abundance appears elevated 

compared to WT in the LC-MS/MS data, in the IF results it is reduced (Figure 6.7B), the opposite trend. 

F5 +/+ fluorescence intensity and relative abundance is elevated slightly above WT (Figure 6.7C, 

Supplementary Figure 8.1C). In the IF data, unlike the similar relative abundance seen in the LC-MS/MS 

results (Supplementary Figure 8.1C), F5 -/- fluorescence intensity is significantly higher than WT F5. 

However, the F5 -/- data is very broadly distributed, and inspection of the LHS (0.51) and RHS (0.77) F5 -/- 

means reveals the latter may be skewing the mean higher than it should be, just as with the H3K4me3 late 

F5 data discussed previously. Therefore, this may not be a biologically valid result. 

6.4.3.2 Agreement between early and late generation experiments 

The concurrence between the early and late datasets is poor, as in the latter there is a significant increase in 

F3 +/+, F3 -/-, F4 +/+ and F4 -/- H3K9me2 levels above their respective WT controls (Figure 6.7 D & E), which 

is not seen in the former (Figure 6.7 A & B). However, the consistency of the trends in the late F3 and F4 data 

suggest that this might be a biologically meaningful result and a true consequence of the length of 

maintenance of the set-2(bn129) genotype through successive generations. 
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Table 6.3 - Summary of results for all IF experiments for H3K9me2. The p-values presented in the ‘significance’ column 

refer to the results of a one-way ANOVA with Tukey’s multiple comparison, comparing the WT control mean with either 

the WT descendant (+/+) or mutant descendant (-/-) mean. Combination 3 refers to the use of anti-H3K9me2 antibodies 

in combination with anti-H3K9me3 antibodies. The abbreviation ‘ns’ means the p-value is non-significant, * means 

p<0.05, ** means p<0.01, *** means p<0.001 and **** means p<0.0001 (at this level of significance the exact p-value is 

not reported by GraphPad/Prism, in which the statistical testing was performed). 

 

 

Figure 6.7  – Anti H3K9me2 immunofluorescence intensity in the germline of descendants of early and late generation 

set-2(bn129) mutants. Each circle represents a single fluorescence intensity value for each individual gonad imaged. 

Here, fluorescence intensities for the LHS and RHS of each slide have been combined, giving an n of 12 for each 

condition. The middle horizontal line represents the mean of the 12 data points, and the shorter horizontal lines show 

the standard deviation. All fluorescence intensities have been normalized to the H3 control. There is variation in 

fluorescence intensities between graphs, but each graph represents a separate experiment (i.e. slides prepared and 

imaged on different days) and thus comparisons are only appropriate within graphs rather than between them. 
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6.4.4 H3K9me3 

As for H3K4me2, H3K9me3 was stained and imaged with two antibody combinations (2 and 3), once with 

early generation descendants and once with late generation descendants for each, so there are four 

independent datasets to compare.  

6.4.4.1 Agreement with mass spectrometry results 

Unlike the H3K4me2 results, there is better agreement between the IF and LC-MS/MS results for H3K9me3. 

The LC-MS/MS results revealed increased relative abundance of H3K9me3 in F3 +/+, F3 -/- and F4 +/+ 

compared to WT (Supplementary Figure 8.1). In the early (Figure 6.8A) antibody combination 2 data, F3 +/+ 

has a significantly higher mean anti-H3K9me3 immunofluorescence signal than WT F3. However, in the early 

generation antibody combination 3 data the F4 +/+ mean is significantly higher than the WT F4 (Figure 6.8E), 

despite this not being the case for the early generation antibody combination 3 F3 data (Figure 6.8D). 

6.4.4.2 Agreement between antibody combinations 

In the early generation data, the agreement between antibody combinations 2 and 3 is poor for the F3 

results. With antibody combination 3, the F3 fluorescence intensity means are very similar (Figure 6.8D) 

whereas with antibody combination 2, the F3 +/+ and -/- fluorescence intensity means are significantly 

higher than for the WT control (Figure 6.8A). In the F4 data, the slight elevation of the F4 -/- fluorescence 

intensity mean above that for the WT F4 control is consistent between the two antibody combinations 

(Figure 6.8B & E), but F4 +/+ has a significantly higher fluorescence intensity mean than the WT F4 control 

only in the antibody combination 3 data. The nonsignificant difference between the WT F5 control and F5 

+/+ fluorescence intensity means is consistent across both antibody combinations, but the F5 -/- 

fluorescence intensity mean is elevated significantly above that for the WT F5 control only in the antibody 

combination 3 data (Figure 6.8F). Comparison of the LHS (0.13) and RHS (0.2) fluorescence intensity means 

for these early generation antibody combination 3 data suggests that, as with the H3K9me2 data, which 

came from the same slide, the RHS data is skewing the overall mean upwards. Therefore, the LHS 

fluorescence intensity mean (0.13) may better reflect the biology. When this LHS fluorescence intensity 

mean is compared against the WT F5 control (0.119, Table 6.4), the difference is non-significant (p=0.2422). 

In the late generation data, agreement between antibody combinations 2 and 3 is good for the WT control 

versus the +/+ data, with an increase in the fluorescence signal intensity for +/+ compared to WT for F3 and 

F4 (Figure 6.8 G, H, J, K), and a reduction in the F5 (Figure 6.8 I & L) for both antibody combinations. The 

relationship between WT control and -/- mutants is consistent but more variable in strength, with -/- 
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fluorescence intensity means elevated above WT in the F3 and F4 generations to different extents: slightly 

for antibody combination 2 F3 (Figure 6.8 G), significantly for antibody combination 3 F3 and F4 (Figure 6.8 J 

& K) and highly significantly for antibody combination 2 F4 (Figure 6.8 H). In the F5 late generation data, 

antibody combinations 2 and 3 agree with regard to the significantly lower mean fluorescence intensity in F5 

+/+ compared to WT F5 (Figure 6.8 I & L). However, the F5 -/- vs WT trend is opposite between the two 

antibody combinations, being lower in combination 2 (Figure 6.8 I) but similar in combination 3 (Figure 6.8 

L). 

Table 6.4 - Summary of results for all IF experiments for H3K9me3. The p-values presented in the ‘significance’ column 

refer to the results of a one-way ANOVA with Tukey’s multiple comparison, comparing the WT control mean with either 

the WT descendant (+/+) or mutant descendant (-/-) mean. Combination 3 refers to the use of anti-H3K9me2 antibodies 

in combination with anti-H3K9me3 antibodies. The abbreviation ‘ns’ means the p-value is non-significant, * means 

p<0.05, ** means p<0.01, *** means p<0.001 and **** means p<0.0001 (at this level of significance the exact p-value is 

not reported by GraphPad/Prism, in which the statistical testing was performed). 
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Figure 6.8 – Anti-H3K9me3 immunofluorescence intensity in germline of descendants of early and late generation set-

2(bn129) mutants. Each circle represents a single fluorescence intensity value for each individual gonad imaged. Here, 

fluorescence intensities for the LHS and RHS of each slide have been combined, giving an n of 12 for each condition. The 

middle horizontal line represents the mean of the 12 data points, and the shorter horizontal lines show the standard 

deviation. All fluorescence intensities have been normalized to the H3 control. There is variation in fluorescence 

intensities between graphs, but each graph represents a separate experiment (i.e. slides prepared and imaged on 

different days) and thus comparisons are only appropriate within graphs rather than between them. 
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6.5 Discussion 

There is a great deal of variability in these data. To be confident in asserting any biological conclusions 

requires repeating of experiments and more extensive validation of the antibodies. Several different primary 

antibodies against the same histone modification could be assessed.  

It is striking how similar the trends for some modifications in the same antibody combination appear. For 

example, antibody combination 3 for late generation H3K9me3 and H3K9me2 (Figure 6.5 D, E ,F, Figure 6.6 J, 

K, L), or antibody combination 1 for early generation H3K4me2 and H3K4me3 in the F3 data (Figure 6.4 A, 

Figure 6.3 A). This might lead to concern about the antibodies and potential cross-reaction between them. 

However, the antibody combination 3 early generation H3K9me3 and early generation H3K9me2 data look 

less similar, especially for the F4s. Likewise for antibody combination 1, the early F4 and F5 and late data 

across all generations show different patterns for H3K4me2 and H3K4me3. This would suggest that the 

antibodies are not interacting and any similarity between results for different modifications is coincidental 

and a biologically valid result.  

Moreover, the 2D imaging and analysis performed here may be too simplistic to accurately compare the 

quantity of histone modifications in a nucleus. Perhaps a 3D approach, taking Z-stacks through nuclei as 

reported in (Mutlu et al., 2018), would provide a more accurate and more reproducible assessment of the 

biology. 

Nevertheless, the reproducibility of the H3K9me3 increase in F3 +/+ germlines is an encouraging result, 

especially since it agrees with the LC-MS/MS results reported for this modification in chapter 5. Changes in 

H3K9me3 levels have been reported in multiple studies of transgenerational epigenetic inheritance 

(Woodhouse et al., 2018, Kalinava et al., 2018, Ni et al., 2016), so to link this to COMPASS/H4K4me3 by two 

different experimental methods helps build a fuller picture of histone modification cross-talk in this active 

area of research. 
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Chapter 7. Discussion 

7.1 Summary of results 

The LC-MS/MS study of mixed embryo-derived histones described in Chapter 3 revealed a reduction in 

H3K4me3 to negligible amounts in set-2(bn129) and cfp-1(tm6369) mutants, compared to WT mixed 

embryos. This result suggests that set-2(bn129) and cfp-1(tm6369) are indeed loss-of-function alleles, whose 

effect is to render the COMPASS complex incapable of depositing H3K4me3, globally. This agrees with ChIP-

seq data showing that the genomic distribution of H3K4me3 is similarly reduced in cfp-1 and set-2 mutants, 

implying that CFP-1 is needed for SET-2 activity at promoters (Beurton et al., 2019). 

There was also a significant reduction in H3K4me2, albeit not to the same extent as H3K4me3, suggesting 

that there are other H3K4 KMTs active in set-2 and cfp-1 mutant embryos. These are not so well 

characterised as the COMPASS complex owing to the challenges of experimenting with the set-16 mutant 

(Fisher et al., 2010). However, recent immunoprecipitation experiments have found that WDR-5.1 is a 

member of the SET-16/MLL complex, as well as COMPASS (Beurton et al., 2019). 

An incidental finding of the LC-MS/MS study was that H3K14ac and H3K27ac levels are significantly elevated 

in cfp-1 and set-2 mutants and to very similar extents. The similarity of this result for both mutants, 

combined with the drastic reduction of H3K4me3 observed, indicates that the increase in these acetylation 

modifications, K14ac and K27ac, is a direct consequence of the lack of COMPASS function and loss of 

H3K4me3 (Figure 7.1). 

 

Figure 7.1 – In the absence of COMPASS function, H3K4me3 levels fall and H3K14ac and H3K27ac levels 

rise. The illustration presents two conditions, an H3 N-terminal tail with an active COMPASS complex, and 
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one without. Levels of three key histone modifications from chapter 3, H3K4me3, H3K14ac and H3K27ac, are 

represented by the relative size (between conditions) of the coloured shapes attached to the H3 N-terminal 

tail.  

How this increase in acetylation happens, mechanistically, is unknown. The full extent of ‘cross-talk’ between 

different histone modifiers is still being elucidated. Recently, CFP-1 was shown to physically  interact with 

the SIN-3 HDAC complex comprising SIN-3 and HDA-1 (Beurton et al., 2019). Moreover, a potential genetic 

interaction between cfp-1 and sin-3 was reported in Chapter 4, which describes experiments in which cfp-1 

mutants were subjected to RNAi knockdown of HDAC subunits hda-3, hda-1 and sin-3. Expression of the unc-

119::GFP reporter in the germlines of cfp-1 mutants and WT controls was recorded, as a readout for gene 

derepression. The proportion of unc-119::GFP expressing germlines was significantly increased in germlines 

of cfp-1 mutants subjected to hda-3 RNAi, as compared to negative control RNAi, consistently across all 

experiments. For sin-3 and hda-1 RNAi, the effect on cfp-1 mutants was the same but not consistently 

significant, in the second replicate. Overall, the experiments support a genetic interaction between cfp-1 and 

the tested HDAC subunits, RNAi knockdown of which is able to enhance the germline gene derepression 

observed in cfp-1 mutants.  

Notably, hda-1 RNAi did not enhance unc-119::GFP expression in set-2(bn129) mutants here, suggesting that 

CFP-1 is interacting with HDA-1, and possibly SIN-3 and HDA-3, independently of COMPASS. This is supported 

by the LC-MS/MS data showing that cfp-1 mixed embryo-derived histones have H3K23ac levels elevated, 

albeit less significantly than K14 and K27ac, whereas set-2 mutants do not. Testing of set-2 mutants with sin-

3 and hda-3 RNAi, and of both cfp-1 and set-2 mutants with RNAi of other HDAC genes, is needed to confirm 

these interactions and/or lack of them.  

The larger P-values obtained for the probability of a genetic interaction between cfp-1 and sin-3/hda-1 in the 

second replicate, and consequent non-significant results, may be partly explained by the increased unc-

119::GFP expression observed in the germlines of cfp-1 negative control RNAi worms as the experiment 

progressed. When the generation number since outcrossing of the cfp-1 controls was taken into account, a 

clear trend of increased unc-119::GFP expression with increased generation number was shown. Such a 

trend may be thought of as a ‘transgenerational worsening’, and fits with a model proposed previously, in 

which the acquisition of somatic cell fate, as indicated by germline unc-119::GFP expression, may require a 

threshold effect of chromatin changes accumulated over time, whose frequency may increase over 

generations (Robert et al., 2014).  
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Not just for unc-119::GFP expression was this transgenerational phenotypic worsening observed, but also 

with the slower developmental progression of late vs early generation set-2(bn129) mutants, as discussed in 

chapter 5. Abnormal development has also been observed as an effect of the loss of H3K4me3 in 

mammalian systems (Siklenka et al., 2015). 

Moreover, this chapter demonstrated a heritable component to this transgenerational worsening. WT 

descendants of late-generation set-2(bn129) mutants inherited a more pronounced and longer lasting (over 

more generations) longevity phenotype compared to the WT descendants of early generation set-2(bn129) 

mutants. The same effect has been observed in wdr-5 mutants of the COMPASS complex (Dr Teresa Lee, 

Katz lab, personal communication). 

7.1.1 Model 

Taken together, these results can be summarized in the following model (Figure 7.2). Acquired chromatin 

changes accumulate in C. elegans set-2 mutants over generations of self-fertilisation. This accumulation 

manifests itself in worsening mutant phenotypes, similar to the Mrt phenotype noted among many 

chromatin modifier mutants, the more generations that have passed since outcrossing. These phenotypes, 

for example germline gene derepression (Robert et al., 2014), slow development, increased longevity (Greer 

et al., 2010), are observed in early generation set-2 mutants, but are more penetrant at later generations. In 

the case of germline derepression, this effect was also observed for cfp-1 mutants, but speed of 

development and longevity were not tested in cfp-1 mutants. Therefore, the model is primarily based on set-

2 mutants but is likely to apply to other COMPASS mutants, given the essential roles of other subunits of the 

complex (Li and Kelly, 2011, Xiao et al., 2011) and should be tested in them. 
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Figure 7.2 – A model for the heritability of transgenerationally accumulated chromatin changes. WT worms are 

represented in pink, set-2 mutants in blue. Both colours are combined in the heterozygote, which has a pink interior and 

a blue outline. Accumulating chromatin changes are represented by darkening blue, which happens over generations, as 

illustrated by the arrow. The shade of blue is also employed to illustrate how after crossing a set-2 hermaphrodite with a 

WT male, the extent of accumulated chromatin changes in the set-2 parent determines how long these changes persist 

in the WT descendants, contributing to the transgenerational epigenetic inheritance of the parental mutant phenotype. 

The second part of the model is based solely on experiments assessing the longevity of WT descendants of 

set-2(bn129) mutants, and none of the other phenotypes mentioned above. In this part of the model, the 

accumulated chromatin changes are heritable, which in WT descendants manifests as a persistence of the 

parental mutant phenotype, in this case increased longevity. The more generations the mutant parent has 

been maintained by self-fertilisation, the more pronounced the mutant phenotype in WT descendants, and 

the more generations of WT descendants the mutant phenotype persists for. 
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7.1.2 The role of histone modifications in the model 

A major histone modification change noted in cfp-1 and set-2 mutants, besides the loss of H3K4me3, was a 

gain in acetylation of lysines 14 and 27. Further LC-MS/MS and/or antibody-based approaches could be 

employed to test whether acetylation, on these lysines and possibly others, accumulates over generations 

(Figure 7.3). More acetylation modifications contribute to a more open chromatin structure, as discussed in 

1.1.4.2, which could explain, at least in part, why gene derepression is worsened in the germlines of later 

generation cfp-1 and set-2 mutants (Robert et al., 2014).  

Figure 7.3 – The role of histone modifications in the model for heritability of transgenerationally 

accumulated chromatin changes. The accumulating chromatin changes and the set-2 mutant/WT distinction 

are represented identically to Figure 7.2, but the putative increase and decrease of different histone 

modifications over generations is represented by expanding or shrinking bars. 

 

However, when germline-derived histones from WT descendants of set-2(bn129) mutants were compared 

with WT controls, lysine acetylation was not notably different, refuting the suggestion that lysine acetylation 

could be the accumulating chromatin change responsible for the inheritance of extended longevity in F3 and 

F4 WT descendants. Histone modifications that were altered in these descendants compared with WT 

controls were H3K4me2, which was reduced in F3 and F4 descendants, and H3K9me3, which was increased 

(Figure 7.3). The H3K9me3 result was exciting because this modification appears to be necessary for the 
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inheritance of gene expression memory (Klosin et al., 2017) and plays a role in TEI via small RNAs (Guerin et 

al., 2014).  

Owing to the difficulty of obtaining sufficient germlines by manual dissection to provide enough histones for 

LC-MS/MS, reproducing these results was challenging. An alternative method, immunofluorescence (IF) 

microscopy, was used to quantify H3K4me2 and H3K9me3 levels in WT and mutant descendants of set-

2(bn129) mutants. The data obtained was very variable and the experiment would need repeating to be 

confident in making any conclusions, but overall the IF data supported the LC-MS/MS results for H3K9me3, 

in that it did appear elevated in F3 and F4 WT descendants. No reduction in H3K4me2 in F3 and F4 WT 

descendants was observed by IF microscopy, however. To be convinced of this trend, both LC-MS/MS and IF 

microscopy experiments would need to be repeated. 

7.2 Further work 

This thesis has highlighted the need for future experiments with mutants of the COMPASS complex, and 

indeed other chromatin modifiers, to control for generation number of the mutants post-outcrossing with 

WT. As shown in chapters 4 and 5, generation number impacts severity of cfp-1 and set-2 mutant 

phenotypes, which may confound results when not controlled for.  

Practically, controlling for generation number could be achieved by freezing C. elegans stocks at set intervals 

post-outcrossing, enabling the building of a ‘generational library’ of different mutant strains, to be thawed 

for use in experiments when required. 

Chapter 3 demonstrated the utility and success of LC-MS/MS with C. elegans mixed embryo-derived 

histones. The method could be used again with other histone-modifier mutants, to confirm whether 

particular deletion alleles do indeed completely inactivate the complex. 

LC-MS/MS experiments with germline-derived histones, however, highlighted the need for an alternative 

method for obtaining germline nuclei. Only in one of three replicates did manual dissection provide 

sufficient histones for complete detection of all major proteoforms of the TKQTAR (H3K4-containing) and 

KSTGGKAPR (H3K9 & K14-containing) peptides, which is needed for confidence in assigning relative 

abundances. Absence of one proteoform will skew relative abundances of those detected.  

One potential way of obtaining more germline nuclei would be to break up YA worms with two strokes in a 

metal wheaton tissue grinder, which would be enough force to rupture the gonad and release primarily 

pachytene nuclei, without much somatic nuclei contamination (Prof. Enrique Martinez-Perez, personal 
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communication). Nuclei could then be collected from the supernatant after centrifuging the ground sample, 

as described in 2.3.1.1.5. The drawback of this method compared to manual dissection and collection would 

be the greater probability of contamination, but the enhanced retrieval of histones might be an acceptable 

trade-off. It would be informative to repeat the germline LC-MS/MS experiments using this method, to see if 

the H3K4me2 reduction and H3K9me3 increase in F3 and F4 WT descendants could be reproduced. 
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Chapter 8. Supplementary data 

8.1 Germline mass spectrometry data for set-2(bn129) descendants 

 

Figure 8.1 – Relative abundance of di- and trimethylated H3K4 and H3K9 in WT and mutant descendants of 

set-2(bn129), and WT controls. The data presented corresponds to the fullest dataset out of three replicates 

performed, in which all modified proteoforms were detected. The height of the bars, or relative abundance, 

represents the percentage intensity of the modified peptide in question out of the total intensity detected for 

all proteoforms of the peptide.  
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