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Abstract 

Increasing instances of river pollution and sewer overflows, coupled with more stringent 

regulatory requirements for ecological status and flood risk management; demand a deeper 

understanding of mixing processes and natural solutions to reduce peak pollutant 

concentrations while minimising flow obstruction. 

This thesis presents an experimental study of flow surface velocity and transverse mixing 

processes in open channel shallow flows with partial vegetation. A technique that 

simultaneously measures mixing processes and surface velocity fields in shallow flows using low 

cost cameras and lighting is developed and validated. 

The technique is used here to record surface velocity fields and depth averaged 

concentrations of a solute in a rectangular laboratory flume over a recorded length of 4.48 m. 

Artificial vegetation is installed at different densities at one bank to simulate partial coverage of 

emergent vegetation under a range of shallow flow conditions. Using the experimental results, 

a semi-empirical model for transverse mixing based on the velocity gradients across the shear 

layer is developed to relate the mixing behaviour to the velocity distribution in vegetated shear 

layers. The proposed model is validated using surface velocity and depth-averaged 

concentration of a solute recorded during experiments with two vegetated banks with the same 

vegetation density and flow depth conditions as the previous experiments.  

This thesis provides a semi-empirical predictive model that estimates longitudinal 

surface velocity and variable transverse mixing coefficient in shallow flows with vegetated 

banks. The model only requires the vegetation parameters and free flow region data such as 

velocity and water depth, producing an approach without the requirement for extensive data 

collection or complex hydrodynamic numerical models. Initial scenario testing of the model 

suggests that vegetation induced mixing may significantly reduce the impacts of acute pollution 

events, although further work is required to validate these findings in field conditions. 
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1. Introduction 

Water is arguably the most valuable resource for human life (Oki and Kanae, 2006) and 

its use and correct management is indispensable for human activities from irrigation and 

industry use to supply for consumption. In many areas of the world, the growth of human 

population and the development and industrialization of nations are producing an increase of 

clean water demand, whilst an increase of sewage and polluted water discharge, resulting in a 

large stress on water resources (Vörösmarty et al., 2000). 

The safe preservation of natural resources is crucial for local ecosystem and habitat. 

Therefore, a full understanding of pollution dynamics in natural watercourses becomes crucial. 

Examples regarding water pollution and its negative impacts on water resources are the wash-

off nutrients such as phosphates and nitrogen components from farmland as well as sewage 

from cities, which produce the eutrophication of rivers; or the presence of pesticides, which can 

produce malformations and the death of species (Jasim et al., 2006). As a result, there is an 

increased need to understand pollutant transport and mixing processes within natural rivers, 

particularly the movement and spreading of pollution in rivers. 

Solute transport in natural rivers is a phenomenon on which several researchers have 

focused, especially due to its significance in modelling of the fate of contaminant discharge into 

a river and how its concentration changes across the width, length, depth and time (Rutherford, 

1994). The understanding of the mixing of pollutants becomes more relevant for outlet 

structures in sewage treatment plants or factories where it is necessary to comply with water 

quality criteria established in the EU Water Framework Directive 2000/60/EC (WFD) (Tsakiris 

and Alexakis, 2012).  

There is a large body of work regarding mixing processes in idealised open channel flows 

in which the complete mathematical description of transport and mixing processes can be 

simplified using semi-empirical models (Rutherford, 1994). However, complex and highly 

variable flow watercourses can differ from these idealised flows. One of the most influential 

parameters on mixing in rivers is the presence of vegetation. Riparian vegetation has been 

recognised as an important valuable resource due to several factors: 

 Dissipating flow energy: Vegetation increases the flow resistance, and thus reduces 

the local stream velocity, reducing the soil erosion (Nepf, 1999). However, this 

reduction of flow velocity produces an increase in the flow depth. 

 Sediment trapping: As velocity within vegetation is reduced, a decrease of 

suspended sediments in the flow is produced (Lopez and Garcia, 1998). As a result, 

there is a decrease of water turbidity and the enhancement of stream banks. 

 Providing wildlife habitats: the sediment trapping also results in the retention of 

nutrients, which improves habitability in rivers and oxygen production (Kadlec and 

Knight, 1996) 

 Increase in pollutant filtration: The deposition of sediments because of the velocity 

reduction improves the absorbance of pollutants by the deposited grains (Palmer et 

al., 2004). Moreover, the increase in oxygen improves the removal and degradation 

of pollutants by biochemical processes. 

Therefore, an understanding of the effects of vegetation in rivers is important. The 

presence of vegetation in a flow increases the flow resistance by adding extra drag. The increase 

of resistance slows the flow velocity, increasing the water depth relative to a non-vegetated 
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channel (Hoffman 2004; Shucksmith, 2008). Several previous studies (Stone and Shen, 2002; 

James et al, 2004; Lightbody and Nepf, 2006) have investigated the influence of both artificial 

and real vegetation in channel flows, showing the dependence of the resistance induced by the 

vegetation on parameters such as vegetation density, stem diameter, vegetation mass 

distribution, stem height or stem flexibility. All of these properties vary from one plant species 

to another, and change for the same species because of seasonal variation or canopy growth 

(Green, 2005). Therefore, most researchers have focused on the use of idealised stems, usually 

plastic rods or cylinders, to study the influence of vegetation in flows (Nepf, 1999; Stone and 

Shen, 2002; White and Nepf, 2008). 

Some previous laboratory studies have investigated the effects of velocity variation 

induced by vegetation in solute mixing processes. Most of these studies have focused on the 

study of mixing processes in flows with vegetation over the entire flow width. These researchers 

include both mixing processes within fully emergent vegetated flows over the entire flow width 

(Nepf et al. 1997; Serra et al., 2004; Shucksmith, 2008; Sonnenwald et al. 2017) and within 

submerged vegetated flows (Ghisalberti and Nepf, 2005). However, there are few publications 

about mixing processes in rivers with vegetated banks (Tabatabei et al., 2013; West, 2016; West 

et al., 2020) despite this vegetated configuration being present in most natural rivers (Haslam, 

1978) and having potential to improve mixing processes by the enhancing the large-scale 

turbulence structures (West, 2016).  

Mixing processes that affect the spreading of a solute can be divided into vertical, 

transversal and longitudinal mixing processes, depending on which direction the solute 

spreading is produced. For the majority of practical problems in open channel systems, the 

vertical mixing affects the region close to the solute injection, and the longitudinal mixing 

process is only important if the concentration varies significantly in time. This thesis is focused 

therefore on the study of the transverse mixing component, as it is arguably more important in 

terms of water quality management than the other two mixing processes. In reality, most 

pollutants enter the river from one side and hence the input can be considered as a point rather 

than a transversally well-mixed injection. Therefore, transverse mixing becomes an important 

term of water quality management when considering impacts in the locality of the injection 

(Rutherford, 1994). 

This thesis will investigate the effects of the vegetation located at the river banks on 

transverse mixing processes in open channel flows. This will lead to improved knowledge of the 

impacts produced by this type of vegetated configuration and its possible effect on the 

spreading of contaminant discharges. 

 

1.1 Aim of Thesis 

The aim of this study is to quantify the influence of vegetated banks on transverse mixing 

processes in open channel flows. 
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2. Literature Review 

The purpose of this section is to present a background of knowledge about flow, 

turbulence, mixing processes and the effects of vegetation on flow processes. The principles of 

these concepts are presented as well as results and findings of previous studies in order to define 

a knowledge framework from which to start the current study and identify the gaps in current 

understanding. 

 

2.1. Open Channel Flow 

Water movement along a sloping channel is subject to gravitational forces acting over the 

water body with a component acting downstream, and resistance forces produced by channel 

boundaries and any other obstacle in the channel, such as vegetation acting in the upstream 

direction. Flow can be classified as: 

- Unsteady non-uniform flow if the water depth is variable both in time and in space. 

- Steady non-uniform flow if the water depth is constant in time but not in space. 

- Steady uniform flow if the water depth is constant both in time and in space. 

Steady uniform flow is produced when the gravitational and resistance forces are in 

equilibrium (Chow, 1959). In a free flow with no vegetation or other elements, it is commonly 

understood that the resistance force comes solely from the frictional effects of the channel 

boundaries as shown in Figure 2.1. 

 

In 1769, Antoine de Chezy proposed an expression to obtain the mean longitudinal flow 

velocity for a uniform open channel flow. Chezy (1769) considered that the resistance force is 

proportional to the square of the mean longitudinal velocity, and the longitudinal component of 

gravity force that induced the movement of the water body downstream is equal to the flow 

resistance. 

𝐹 = 𝐾𝑈2                                                                  𝑒𝑞. 2.1 

𝜌𝑔𝐴𝐿𝑠𝑖𝑛𝜃 =  𝜏𝑜𝑃𝐿                                                         𝑒𝑞. 2.2 

Where 𝑈 is the mean longitudinal flow velocity, 𝐾 is a constant, 𝜌 is the water density, 

𝑔 is the acceleration due to gravity, 𝐴 is the cross sectional area, 𝐿 is the length considered, 𝜃 is 

the angle of the channel slope, 𝜏𝑜 is the boundary shear stress and 𝑃 is the wetted perimeter. 

 

Figure 2.1. Force diagram in uniform flow condition. 
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As channel slope in real rivers usually is quite small, 𝑠𝑖𝑛𝜃 ≈ 𝑡𝑎𝑛𝜃 ≈  𝑆𝑜, where 𝑆𝑜 is 

the bed slope. Thus, eq. 2.2 becomes. 

𝜏𝑜 =  𝜌𝑔𝑅𝐻𝑆𝑜                                                              𝑒𝑞. 2.3 

Where 𝑅𝐻 =  𝐴 𝑃⁄  is the hydraulic radius. Combining eq. 2.1 and eq. 2.3: 

𝑈 =  √
𝜌𝑔𝑅𝐻𝑆𝑜

𝐾
                                                            𝑒𝑞. 2.4 

Considering the Chezy coefficient as: 

𝐶𝑐 =  √
𝜌𝑔

𝐾
                                                                 𝑒𝑞. 2.5 

The mean longitudinal flow velocity can be obtained as: 

𝑈 =  𝐶𝑐√𝑅𝐻𝑆𝑜                                                             𝑒𝑞. 2.6 

The coefficient proposed by Chezy (𝐶𝑐  [m1/2 s⁄ ]) depends on both the bed roughness 

and the Reynolds number, which is the ratio between the inertia force and the viscous force 

acting on the flow. The Reynolds number is defined as: 

𝑅𝑒 =  
𝑈𝑙

𝜐
                                                                  𝑒𝑞. 2.7 

Where 𝑙 is the length scale, 𝜐 =  𝜇 𝜌⁄  is the kinematic viscosity and 𝜇 is the dynamic 

viscosity. For wide open flows the length scale can be considered equal to the flow depth (𝑙 =

ℎ). 

In 1889, Robert Manning proposed an expression to obtain the Chezy coefficient based 

on both experimental observations and previous Chezy coefficient expression (eq. 2.5). 

𝐶𝑐 =  
𝑅𝐻

1
6⁄

𝑛
                                                                 𝑒𝑞. 2.8 

Where 𝑛 is the Manning’s coefficient. This is an empirical coefficient related to the bed 

roughness. Substituting eq. 2.8 into eq. 2.6. 

𝑈 =  
𝑅𝐻

2
3⁄

𝑆𝑜

1
2⁄

𝑛
                                                             𝑒𝑞. 2.9 

This equation is frequently used as Manning’s coefficient is strongly linked with bed 

roughness. This equation only is valid for uniform flows with a constant flow depth, cross-

sectional area and cross-sectional mean velocity in which the resistance is primarily due to 

channel boundaries. 

Although these equations can be used to obtain average longitudinal flow velocity in 

open channel flows, the local velocity is not homogeneous within the full cross sectional area of 

the channel. Usually, in broad, rapid shallow channel flows or flows with a very smooth channel 

bed, maximum longitudinal velocity can be found at the free surface and in the centreline of the 

channel (Chow, 1959). As the flow resistance is produced by channel boundaries, the roughness 

of the channel bed produces a decrease of the longitudinal flow velocity in the area close to the 

boundary, resulting in a logarithmic profile of the longitudinal velocity over the water depth. 
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For fully developed open channel flows, the vertical profile of longitudinal velocity can 

be described with Prandtl’s logarithmic law modified by Nikuradse (1933). 

𝑈(𝑧)

𝑢∗
=  

1

𝜅
𝑙𝑛

𝑧

𝑘𝑠
                                                          𝑒𝑞. 2.10 

Where 𝑢∗ is the shear velocity defined as: 

𝑢∗ = √
𝜏𝑜

𝜌
=  √𝑔𝑅𝐻𝑆𝑜  ≈ √𝑔ℎ𝑆𝑜                                          𝑒𝑞. 2.11 

In addition, ℎ is the water depth from the channel bed, 𝜅 is the von Karman constant, 𝑧 

is the vertical coordinate and 𝑘𝑠 is the equivalent roughness height. Both von Karman constant 

and equivalent roughness have been studied experimentally (Bakhmeteff, 1936; Hinze, 1964; 

Middleton and Southard, 1978). The von Karman constant is usually approximated as 𝜅 = 0.41 

and the equivalent roughness height, defined as the mean height above the channel bed where 

the longitudinal velocity value predicted by eq. 2.10 is zero, depends on the bed roughness. An 

approximation of the relationship between 𝑘𝑠and mean sediment diameter was suggested by 

Robert (2003) for flows over granulated materials: 

𝑘𝑠 =  
𝐷𝑠𝑒𝑑

30.1
                                                              𝑒𝑞. 2.12 

Where 𝐷𝑠𝑒𝑑 is the average grain size. 

2.1.1. Types of Flow Regimes 

Osborne Reynolds (1883) was the first person to deeply investigate the existence of 

different flow regimes. He conducted several experiments with different flows through a glass 

tube while injecting a filament of dye. He observed that for low flow rates the dye produced a 

nominally straight line, but as the flow rate was increased some variability in space and time 

appeared as shown in Figure 2.2.  

 

He classified the pipe flows based on the Reynolds number introduced previously in eq. 

2.7 by considering the length scale equal to the pipe diameter as shown in Table 2.1.  

 

 

 

Figure 2.2. Scheme of Reynolds experiment (Reynolds, 1883). 
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𝑅𝑒 𝐹𝑙𝑜𝑤 𝑅𝑒𝑔𝑖𝑚𝑒 
𝑅𝑒 < 500 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 

500 < 𝑅𝑒 < 2000 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 
𝑅𝑒 > 2000 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 

 

Laminar flows can be described as a series of very thin layers of flow sliding over one 

another subject to the shearing action with the layer below. When the flow velocity increases, 

this pattern starts to break down and the different layers begin to mix at discrete points in space 

and time, this is known as the transitional regime. If the velocity increases further, the flow starts 

to enter into a turbulent behaviour where the different layers from laminar flow disappear and 

the motion of each fluid particle starts to be chaotic. This regime is dominated by turbulent 

eddies which increase mass and momentum transport within the flow. These eddies appear to 

occur randomly in space and time as irregular regions of velocity (Durbin and Petterson, 2001). 

Therefore, in a turbulent flow the velocity field can be considered as: 

𝑈̅ =  𝑈̅(𝑥, 𝑦, 𝑧, 𝑡)                                                         𝑒𝑞. 2.13 

Where 𝑈̅ is the time-averaged longitudinal velocity. However, if the time-averaged 

velocity of the turbulence regime remains constant with time, the flow can still be classified as 

steady. Figure 2.3 shows the longitudinal velocity signal of a flow in which, although the 

instantaneous velocity varies in time, the time-averaged longitudinal velocity remains constant. 

 

Thus, turbulent velocity at any point of the flow field can be decomposed into three 

velocity components: longitudinal velocity 𝑈 (following downstream flow), transversal velocity 

𝑉 (parallel to the channel bed but normal to the longitudinal component), and vertical 

𝑊 (normal to the bed surface). As shown in Figure 2.3, any of these velocity components will 

not be constant in time although the time-averaged velocity will be constant. Therefore, an 

instantaneous velocity component can be defined as: 

𝑈 =  𝑈̅ + 𝑢′                                                             𝑒𝑞. 2.14 

𝑉 =  𝑉̅ + 𝑣′                                                             𝑒𝑞. 2.15 

𝑊 =  𝑊̅ + 𝑤′                                                           𝑒𝑞. 2.16 

Where 𝑢′, 𝑣′ and 𝑤′ are instantaneous velocity deviations in 𝑥, 𝑦 and 𝑧 directions 

respectively. 𝑥 is the streamwise direction, 𝑦 is the spanwise direction and 𝑧 is the vertical 

Table 2.1. Flow regimes proposed by Reynolds for open channel flows. 

Figure 2.3. Example of longitudinal velocity measurement in turbulent flow. 
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direction. The average turbulence intensity for a specific spatial position of the flow field can be 

obtained by calculating the variability of the velocity deviation over time. 

𝑅𝑀𝑆𝑢 =  √𝑢′̅2                                                           𝑒𝑞. 2.17 

𝑅𝑀𝑆𝑣 =  √𝑣′̅2                                                           𝑒𝑞. 2.18 

𝑅𝑀𝑆𝑤 =  √𝑤′̅̅ ̅2                                                         𝑒𝑞. 2.19 

Turbulence can be classified into different categories (Durbin and Petterson, 2001). If 

statistical values of turbulence intensities are not a function of the spatial position, they are 

classified as homogeneous turbulence, and non-homogeneous turbulence if statistical values 

depend on the spatial position. In addition, if this homogeneity of values is conserved in time, 

turbulence is classified as stationary. Finally, if turbulence is equal in all coordinate directions, it 

is classified as isotropic. In the same way, if there is a directional preference, turbulence is 

classified as anisotropic. 

In addition, a second order matrix can be considered using the average of the products 

of the velocity deviation for each component. 

𝜏𝑅 =  [
𝑢′𝑢′̅̅ ̅̅ ̅ 𝑢′𝑣′̅̅ ̅̅ ̅ 𝑢′𝑤′̅̅ ̅̅ ̅̅

𝑣′𝑢′̅̅ ̅̅ ̅ 𝑣′𝑣′̅̅ ̅̅ ̅ 𝑣′𝑤′̅̅ ̅̅ ̅̅

𝑤′𝑢′̅̅ ̅̅ ̅̅ 𝑤′𝑣′̅̅ ̅̅ ̅̅ 𝑤′𝑤′̅̅ ̅̅ ̅̅
]                                                𝑒𝑞. 2.20 

Where 𝜏𝑅 is the Reynolds stress tensor. This is a symmetrical matrix (𝑢′𝑣′̅̅ ̅̅ ̅ =  𝑣′𝑢′̅̅ ̅̅ ̅) and 

the diagonal components (𝑢′2̅̅ ̅̅ =  𝑢′𝑢′̅̅ ̅̅ ̅, 𝑣′2̅̅ ̅̅ =  𝑣′𝑣′̅̅ ̅̅ ̅ and 𝑤′2̅̅ ̅̅̅ =  𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅) are the normal stresses 

while the off-diagonal components (𝑢′𝑣′̅̅ ̅̅ ̅, 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅ ) are the shear stresses (Pope, 2000). 

In the case of the vertical profile, assuming the longitudinal velocity follows the 

logarithmic law introduced in eq. 2.10 and by considering the maximum shear stress is produced 

at the bottom and the shear stress is zero on the surface, then: 

𝜏𝑡 =  −𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ =  𝜌𝜀
𝑑𝑈

𝑑𝑧
 ≈  𝜌𝑢∗2 (1 −

𝑧

ℎ
)                                   𝑒𝑞. 2.21 

Where 𝜀 is the eddy viscosity and 𝜏𝑡 is the total shear stress. 

 

2.2. Vegetated Flow 

A vegetated flow is one in which some portion of the flow contains vegetation such as 

reeds. In contrast to conventional open channel flows, in vegetated flows resistance is also 

produced by vegetation elements. Thus, vegetation reduces the overall channel flow capacity 

compared with non-vegetated flows and increases water depth for the same flow rate 

(Hoffman, 2004, Shucksmith, 2008). 

Newton’s third law is commonly used to account for this extra resistance. The force 

acting on the flow because of the presence of an immersed object is equal to the force on the 

object due to the flow. This force acting on the object that is moving through the flow is given 

by the drag equation, which can be described as (Pope, 2000). 
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𝐹𝑑 =  
1

2
𝐶𝐷𝜌𝑈2𝐴𝑖                                                        𝑒𝑞. 2.22 

Where 𝐹𝑑 is the drag force, 𝐶𝐷 is the drag coefficient of the immersed body and 𝐴𝑖  is its 

frontal area. The effect of this drag force has been shown to be significant even for a small 

amount of vegetation elements (Nepf, 1999). To define resistance from vegetation properties 

(eq. 2.22), the main characteristics that must be defined are the drag coefficient 𝐶𝐷, which has 

been shown to depend strongly on the vegetation morphology (James et al, 2004); and the 

frontal area 𝐴𝑖, which is commonly defined based on vegetation size and density. The vegetation 

density is defined as: 

∅ = 𝑁𝑑𝑑2
𝜋

4
                                                             𝑒𝑞. 2.23 

𝑎 = 𝑁𝑑𝑑                                                                𝑒𝑞. 2.24 

Where 𝑁𝑑 is the stem density, defined as the number of vegetation elements per unit 

area[stems m2⁄ ]; 𝑎 is the frontal area of vegetation per unit volume [stem m⁄ ]; ∅ is the solid 

volume fraction of vegetation [−] and 𝑑 is the stem diameter [m].   

Previous studies such as Järvela (2002) showed that one of the vegetated parameters 

that most affects drag resistance is the vegetation density. He ran different experiments using 

leafless willows with vegetation densities 𝑁𝑑 = 256 − 512 stems m2⁄ , obtaining a linear 

increase in resistance with planting density.  

In rivers and vegetated channels, total flow resistance is a combination of both boundary 

roughness and vegetation drag. However, the contribution of bed resistance has been found to 

become negligible when vegetation density is high enough (Temple, 1986). Stone and Shen 

(2002) ran experiments using dowels to represent stems and different vegetation densities with 

𝑁𝑑 = 173 − 696 stems m2⁄ . Their results showed that the bed contribution to flow resistance 

was less than 3 % of the total. James et al. (2004) performed experiments considering both 

natural and artificial vegetation and they concluded that once vegetation density achieved a 

certain value, resistance contribution from the channel bed could be dismissed. This vegetation 

density limit was defined as. 

0.25𝑁𝑑𝜋𝑑ℎ > 0.1                                                        𝑒𝑞. 2.25 

2.2.1. Vegetation Configuration 

Another factor that affects total vegetated flow resistance is the distribution of 

vegetation elements. Li and Shen (1973) reported that total resistance is higher if vegetation 

elements are in a staggered distribution rather than in rows. This is because if the elements are 

configured in a staggered distribution, there are no corridors between stems in which flow can 

accelerate. Experiments with artificial stems commonly use a staggered distribution to represent 

the randomness of real vegetation growth (Nepf, 1999, Stone and Shen, 2002). Kim and 

Stoesser (2011) performed numerical simulations to study drag coefficient under different test 

configurations. Their results suggested that there were no differences in flow resistance 

between staggered and random vegetation distributions. In Figure 2.4 a diagram is plotted to 

show row, staggered and random distributions considering a flow from left to right.  
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2.2.2. Stem Height 

An important characteristic is the ratio between water depth and stem height. This 

coefficient classifies vegetated flows into emergent vegetated flow conditions (stem height is 

greater than water depth) and submerged vegetated flow conditions (stem height is smaller 

than water depth). 

Previous researchers have shown the vertical profile of the longitudinal flow velocity 

within emergent and submerged vegetated flows does not follow the logarithmic law (eq. 2.10). 

Submerged vegetated flows are described in Section 2.3.1. In emergent vegetation Lightbody 

and Nepf (2006) showed how the vertical profile of longitudinal velocity changes with the 

morphology of the vegetation. Figure 2.5 shows a scheme of Lightbody and Nepf (2006) 

experiments where 𝐴1 and 𝐴2 are the transversal area distribution of the vegetation and 𝑢1 and 

𝑢2 are the mean longitudinal velocity in two differently vegetated layers of flow. Thus, 

longitudinal velocity proportionally decreased in those regions where there was more 

vegetation mass; and proportionally increased in those regions where the mass decreased. 

However, in experiments with artificial vegetation, stems are commonly represented as rigid 

circular cylinders with a uniform mass distribution along their height. Thus, for high enough 

vegetation densities (eq. 2.25), the vertical profile of longitudinal velocity is normally found to 

be uniform over the depth apart from a small zone close to the bed, which is affected by 

boundary roughness (Kouwen et al., 1969; Rowiński et al, 1998; Nepf and Vivoni, 2000). Stone 

and Shen (2002) showed that bed friction only affects the vertical profile in a small region very 

close to the channel boundary.  

 

Figure 2.4. Diagram of row, staggered and random stem distributions. 

Figure 2.5. Sample of vegetated resistance and longitudinal velocity distribution through a non-

uniform canopy height (Lightbody and Nepf, 2006). 
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2.2.3. Flow Resistance within Emergent Vegetated Flows 

Petryk and Bosmajian (1975) proposed a model to predict mean velocity within artificial 

rigid vegetation based on balancing gravitational forces and drag produced by both bed 

resistance and vegetation. In their model a new Manning coefficient (𝑛𝑣𝑒𝑔) was defined, which 

accounts for both bed resistance and drag produced by vegetation, with vegetated resistance 

based on the sum of the drag produced by each vegetation element (eq. 2.22). Later, Hoffman 

(2004) proposed a similar equation to obtain 𝑛𝑣𝑒𝑔, but neglecting the effect of bed resistance 

and assuming that the drag coefficient is a function of the mean flow velocity. 

However, the use of the Manning’s equation for vegetated channels has been criticised 

because Manning’s coefficient is applied to situations where resistance comes solely from the 

channel bed and not from drag exerted through the flow depth. In the later situation velocity is 

essentially uniform over the flow depth (Lindner, 1982) rather than being depth-dependent as 

in the former. The results of James et al. (2004) suggested a strong dependence between 

Manning’s 𝑛 used for vegetated channels and flow depth in contrast with the assumption that 

the resistance in vegetated flows is produced by stem drag rather than boundaries when density 

is high enough (eq. 2.25). Therefore, the velocity is independent of flow depth, showing the 

unsuitability of Manning’s coefficient.  

Several researchers suggested alternate expressions to obtain longitudinal velocity 

through vegetation (Stone and Shen, 2002; James et al., 2004), which are still fundamentally 

based on the drag equation but without linking it to the Manning’s coefficient. White and Nepf 

(2008) proposed an expression for this velocity based on the momentum balance between the 

drag coefficient and the bed gradient. They assumed a negligible resistance from the channel 

bed and a uniform distribution of vegetation mass over the depth, i.e. valid for artificial 

vegetation composed of vertical cylinders. 

𝑈𝑣𝑒𝑔 =  √
2𝑔𝑆𝑜

𝑎𝐶𝐷𝑒

                                                         𝑒𝑞. 2.26 

Where 𝐶𝐷𝑒
 is the effective drag coefficient of the full vegetation patch. This coefficient 

depends on both the configuration and characteristics of the vegetated patch and the flow 

regime as described by the stem scale Reynolds number: 

𝑅𝑒𝑠𝑡𝑒𝑚 =  
𝑈𝑑

𝜐
                                                           𝑒𝑞. 2.27 

If the stem scale Reynolds number increases, the flow regime changes from a laminar 

flow to a turbulent flow with a zone behind the obstacle with negative velocity and the 

formation of eddies. Several previous researchers have studied the drag coefficient for different 

artificial stems and its dependence on the stem scale Reynolds number (White, 1991; Pope, 

2000), showing a decrease of the drag coefficient for higher stem scale Reynolds number. 

 

2.3. Velocity Profiles in Vegetated Shear Layers 

A shear layer can be defined as a layer of the flow where there is a strong gradient of 

velocity. In flows with the presence of vegetation, a shear layer is produced when drag induced 

by stems only affects one area of the flow, but allowing free flow conditions in an adjacent area. 
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This condition can be achieved with submerged vegetation or with partially vegetated flows 

(emergent vegetation present over a portion of the width). Figure 2.6 shows a scheme of the 

time-averaged longitudinal velocity within the water depth for both emerged (a) and submerged 

vegetated flows (b). 

2.3.1. Submerged Vegetated Flows 

Several researchers have studied the vertical profile of longitudinal flow velocity above 

submerged vegetation (Stephan and Gutknecht, 2002; Järvela, 2004) by considering submerged 

vegetation height as an extension of the rough bed. Their studies were focused on the 

adaptation of Prandtl’s logarithmic law to describe vertical profiles of primary velocity above 

vegetation. Stephan and Gutknecht (2002) proposed an equivalent roughness height (eq. 2.10) 

using the zero plane displacement (water depth at which the log-law begins) for different 

discharges and plant types.  

 

The study by Raupach et al. (1996) was the first to argue that turbulence structures 

generated at the top of submerged vegetation is analogous to the flow in a mixing layer. The 

mixing layer is the region produced between two co-flowing streams with different flow 

velocities. Because of this velocity difference, a shear velocity is produced between both flows, 

inducing instability processes in the form of coherent eddies within this layer. This mixing layer 

is characterised by a strong inflection in the mean longitudinal velocity profile. In submerged 

artificial vegetated flows, for high enough vegetation densities (eq. 2.25), longitudinal velocity 

within the vegetation under the shear layer can be considered constant over the depth as in 

emergent vegetated flows. Thus, bed roughness only contributes to flow resistance in a small 

region close to the channel bed. Above the vegetation, a free open flow region can be 

considered and as a result, two different flows are generated and a shear layer is produced. 

Ikeda and Kanazawa (1996) studied experimental results of longitudinal and vertical 

velocity components over flexible submerged vegetation. Their results show that the time-

averaged longitudinal velocity has an inflection point just above the top of the vegetated 

elements. They also noticed an increase of both turbulence intensity and Reynolds stress in the 

mixing layer region, recording their maximum at the top of the vegetation layer. 

Figure 2.6. Vertical profiles of longitudinal velocity for both emergent vegetated and submerged 

vegetated flows (Kubrak et al., 2008). 
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In addition, Ghisalberti and Nepf (2002) observed the creation of coherent large-scale 

eddies within the shear layer, which dominate the momentum transfer between the vegetated 

and free flow regions. Poggi et al. (2004) argued that the presence of the inflection point in the 

vertical profile of longitudinal velocity is a necessary condition for the creation of these 

instabilities. In addition, the magnitude of the Reynolds stress produced at the inflection point 

is related with the intensity of these instabilities. The increase of vegetation density for a given 

flow rate will decrease the flow velocity within the vegetation, and thus the velocity over the 

submerged canopies will increase. As a result, the velocity gradient between two constant 

velocity flows increases, enhancing the creation of instabilities. For dense vegetation, these 

vortices can only penetrate a limited distance into the vegetated layer (Ghisalberti and Nepf, 

2009) as shown in Figure 2.7. This phenomenon allows the creation of two different regions 

within the submerged vegetation. The upper-zone is governed by large-scale eddies generated 

by the velocity gradient, and the lower-zone is governed by smaller stem-scale eddies. These 

stem-scale vortices are scaled to either stem diameter or mean stem spacing and produce a 

lower turbulence and solute transport compared with the upper-zone (Nepf, 2012).  

Huai et al. (2008) studied both longitudinal velocity and Reynolds stress over the water 

depth in submerged vegetation. Their experimental results showed that the maximum Reynolds 

stress is located at the interface between the vegetated layer and the free flow above it. This 

maximum Reynolds stress was shown to be dependent on the velocity gradient, which increases 

for denser vegetation. In addition, they showed a strong linear decay of Reynolds stress in both 

the vegetated and free flow regions.  

 

Stoesser at al. (2009) performed a large eddy simulation for a flow through an idealized 

submerged vegetation. Then, they proposed a scenario similar to the experiments performed 

by Liu et al. (2008) to validate their results, with a ratio between the water depth and the plant 

height of 1.5, a stem diameter of 6.35 mm and a vegetation density of 496 stems/m2. Their 

results showed that presence of the submerged vegetation produces an additional drag that 

strongly affects the mean longitudinal velocity averaged across the entire cross section, the 

turbulence and the Reynolds stress. In accordance with Huai et al. (2008), they noticed a 

retardation of the mean flow within the submerged layer and an acceleration of the mean flow 

above the canopy. This strong variation in the velocity causes the creation of large coherent 

eddies that affect the free flow up to the canopies until the free surface. In addition, their results 

showed that the inflection point of the mean flow is located at the boundary of the vegetated 

layer and that the maximum Reynolds stress is produced at the same location. This shear stress 

decays rapidly within the vegetation because of the drag force and in a linear way within the 

free flow. In addition, Stoesser at al. (2009) observed a recirculation of the flow at the top of 

Figure 2.7. Vertical profile schemes of longitudinal velocity for submerged vegetated flows for 

sufficient density condition. Red circles represent the generated large-scale eddies. 
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the vegetation between consecutive stems due to the difference of pressure between the region 

upstream and downstream of a cylinder. When the flow approaches a stem, it is forced out of 

the vegetation layer by the presence of the stems. Then, the flow separates at the free layer and 

re-joins at the top of the cylinder, producing a small recirculation. 

Battiato and Rubol (2014) proposed a two-domain approach to predict the longitudinal 

velocity profile in submerged vegetated flows. Although this model cannot predict the stem 

scale turbulence, it allows the quantification of the mean longitudinal flow velocity over the 

entire depth of a submerged vegetated flow, as well as the momentum transfer over the flow 

depth. They proposed a modified log – law, similar to those proposed in previous work (Stephan 

and Gutknecht, 2002; Järvela, 2004), but with the novelty of defining all the required 

parameters based on the permeability of the canopy layer. Then, they validated their model 

with experimental data recorded by Ghisalberti and Nepf (2004) and Nepf et al, (2007). This 

model only requires the water depth, the height of the stem vegetation, the channel slope and 

the permeability of the vegetated layer to estimate the rest of parameters, such as the length 

of the shear layer into the vegetated layer, the bulk velocity or the flow rate. Moreover, Rubol 

et al. (2018) used this approach to predict the mean longitudinal flow velocity in submerged 

vegetated flows and compared the results with those recorded by previous work using real 

vegetation (Shi et al., 1995; Nepf and Vivoni, 2000; Baptist, 2003; Wilson et al., 2003; Velasco 

et al., 2008; Righetti, 2008; Shucksmith et al., 2010; Siniscalchi et al., 2012 and Cassan et al., 

2015). Their results fitted with the experimental data and suggest that the most important 

parameters that affects the flow are the vegetation density and the flexibility of stems. 

Guo and Zhang (2016) also proposed an approach to estimate the mean longitudinal 

velocity in submerged vegetated flows using a hyperbolic sine law for the vegetation layer 

combined with a log function for the free flow region. The results were validated against the 

experimental results recorded by Nikora et al. (2013). The Guo and Zhang (2016) approach 

divides the vegetated layer into the near bed region and the canopy region. The first is governed 

by the shear stress produced by the channel bed and the second by the drag force produced by 

stems. For very sparse vegetation scenarios the near bed region is extended until the vegetation 

boundary, producing a variable longitudinal velocity within the stem height; and for very dense 

flows the near bed region becomes negligible and the canopy region is extended until the 

channel bed, producing a constant longitudinal velocity over most of the stem height. 

 Yan et al. (2017) presented a large eddy simulation to predict the flow velocity and the 

scalar transport within submerged vegetated flows. They observed from their results successive 

events of ejection and sweep along the vegetation boundary. This coherent motion was almost 

extended until the water surface in the free flow region, but it decayed rapidly into the 

vegetated region. These results were in accordance with the predicted Reynolds stress 

distribution, which decayed rapidly toward zero bellow the vegetation boundary. Moreover, 

their results showed the presence of important secondary currents in the vertical direction. 

These secondary circulations decreased with the increase of the ratio between the water depth 

and the stem height. Yan et al. (2017) suggested that the secondary currents interfere with the 

velocity at the top of the vegetated layer and enhance the vertical transport, particularly into 

the canopy.  

 Caroppi et al (2018) and Gualtieri et al. (2018) studied the influences of the vegetated 

submergence ratio on the longitudinal velocity distribution in submerged vegetated flows. 

Caroppi et al. (2018) carried out several physical experiments for a fixed solid volume fraction 

(∅ = 0.020) and four different aspect ratios (2.4, 2.8, 3.1 and 3.4). For all experimental results, 
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they observed the sharp decrease of the longitudinal velocity within the vegetation and the 

presence of a shear layer at the interface between this and the free flow region. Moreover, they 

recorded that the inflection point was located at the vegetated boundary, matching with the 

peak Reynolds stress distribution. Based on their results, Caroppi et al. (2018) conclude that the 

aspect ratio does not significantly affect the flow structure over the range tested, but the 

vegetation density seems to play the major role in the hydrodynamic structure. Gualtieri et al. 

(2018) studied the main flow structure of submerged vegetated flows for high aspect ratios 

(higher than 5). They used conventional flow resistance equations, such as Chezy and Manning 

equations, to predict different submerged vegetated flow scenarios recorded by previous 

research. They conclude that, although these equations are not usually suitable to predict the 

flow conditions, they can fit experimental data for high submergence ratios as the difference 

between a rough bed and a vegetated bed can be considered indistinguishable.  

2.3.2. Partially Vegetated Flows 

In a similar way to submerged vegetated flows, in partially vegetated flows, emergent 

vegetation only covers some areas of the channel. Vegetated banks are one form of partial 

vegetation, where vegetation covers the part of the channel close to the banks of the river, 

allowing free open flow conditions in the centre of the channel. This configuration creates a 

variation of flow resistance along the transverse direction that affects the distribution of the 

longitudinal flow velocity. Nezu and Onitsuka (2002) measured the longitudinal velocity and the 

turbulence in an open channel with half of its width covered by artificial vegetation. The 

transverse profile of longitudinal velocity showed a strong inflected region near the vegetation 

edge and two regions with different primary velocities on either sides (a lower velocity region 

within the vegetation and a higher one in the free open region). This inflection profile matched 

with an increase of the Reynolds stress profile. A well-defined peak was found at the vegetation 

edge, which increased for higher vegetation densities and for higher Froude numbers. Nezu and 

Onitsuka (2002) showed that, due to the shear instability produced by the flow resistance 

differences, horizontal vortices are created in the shear layer between the vegetated and non-

vegetated layers. These instabilities increase in strength for higher densities. In addition, their 

results recorded strong secondary currents in the shear layer, which also increased with Froude 

number.  

White and Nepf (2007) performed experiments with artificial vegetation to record 

velocity and turbulence data for shallow flows with an emergent vegetation patch located at 

one side of the flume. Figure 2.8 has been taken from their work and shows the recorded 

longitudinal velocity and the Reynolds stress within vegetated bank flow. Figure 2.8 (left) shows 

the longitudinal velocity profile normalised by the free open flow for different vegetation 

densities (∅ = 0.02, 0.045 and 0.10). Figure 2.8 (right) shows the Reynolds stress recorded for 

the same flow conditions normalised by the friction velocity. The measurements were taken at 

mid-depth using a Laser Doppler Velocimetry (LDV) and the transversal position of the 

vegetation boundary is referred to 𝑦 =  0 cm. The experimental results of White and Nepf 

(2007) plotted in Figure 2.8 show a low velocity region within the vegetation, a region in the free 

flow with higher primary velocity and a shear layer between both, similar to the velocity profiles 

recorded by Nezu and Onitsuka (2002). In addition, the Reynolds stress recorded shows a sharp 

increase within the shear layer and lower values within the vegetated and the free flow regions. 

Moreover, White and Nepf (2007) recorded an inflection point in the longitudinal velocity 

profiles close to the vegetation edge (𝑦 ≈  0 cm).  
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Based on their experimental results, White and Nepf (2007) defined two different 

lengths within the shear layer. The inner length is defined from the inflection point to the 

constant flow region within the vegetation and relates to the penetration of instabilities into the 

vegetated patch. The outer length goes from the inflection point to the constant free open flow 

and relates to the size of horizontal vortices generated in the shear layer. White and Nepf (2007) 

pointed out that these two lengths were different, showing an asymmetry of the shear layer. 

They related the length scale of the inner region to the vegetated resistance. 

𝛿𝐼𝑛𝑛𝑒𝑟  ≈  (𝐶𝐷𝑎)−1                                                       𝑒𝑞. 2.28 

Where 𝛿𝐼𝑛𝑛𝑒𝑟 is the length of the inner layer. However, the outer lengths obtained were 

found to be independent of vegetation density, suggesting the small influence of vegetation 

elements in the outer region. In addition, the outer length seemed to be dependent on the water 

depth and the bed roughness, although a clear relationship was not found. In addition, the 

position of the velocity inflection point matched with maximum Reynolds stress recorded for all 

experiments.  

White and Nepf (2008) proposed two expressions to define the transversal profile of 

longitudinal velocity in shear layers generated by partial vegetation. A scheme of this model is 

plotted in Figure 2.9. They ran several experiments using artificial stems to simulate vegetation 

with different vegetation densities and shallow water depths, recording longitudinal velocity 

and shear stress. This data was obtained by measuring instantaneous 2-D velocity components 

with a Laser-Doppler Velocimeter (LDV) at mid-depth.  

They considered four different layers along transversal direction with different 

longitudinal flow velocities. A constant velocity within the vegetation was considered as a 

momentum balance between gravity and the combination of drag and bed resistance (eq. 2.26). 

In addition, a constant longitudinal velocity was considered in the open flow region far from the 

vegetation. This velocity was obtained by a balance between bed resistance and gravity force 

(Manning’s and Chezy equations) introduced in Section 2.1. 

Within the interface between vegetation and the free open flow region, a high shear 

produces a sharp transition between the vegetated velocity and the faster velocity outside the 

vegetation. White and Nepf (2008) described this velocity profile in the inner region by a 

hyperbolic tangent shear profile. 

Figure 2.8. Normalised longitudinal velocity and Reynolds stress data along transversal direction for 

partially vegetated flow (White and Nepf, 2007). 
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𝑈𝐼𝑛𝑛𝑒𝑟 =  𝑈𝑉𝑒𝑔 + 𝑈𝑆 ∗ (1 + tanh (
𝑦 −  𝑦𝑜

𝛿𝐼𝑛𝑛𝑒𝑟
))                              𝑒𝑞. 2.29 

Where 𝑦𝑜 is the position of the inflection point and 𝑈𝑆 = 𝑈(𝑦𝑜) − 𝑈𝑉𝑒𝑔 is the slip 

velocity. They estimated values of 𝛿𝐼𝑛𝑛𝑒𝑟, 𝑦𝑜 and 𝑈𝑆 using a non-linear regression (using the 

Matlab function “NLINFIT.M”) based on their experimental values. The results of White and 

Nepf (2008) showed that the inflection point was located at the vegetation limit except for the 

sparse case (∅ = 0.02) where it was located at 𝑦𝑜  ≈ 2𝑑. In addition, their results suggested a 

dependence between  𝛿𝐼𝑛𝑛𝑒𝑟 and the length scale of vegetated drag, with a minimum inner 

length that penetrated at least into the first row of stems. Thus, they suggested the following 

empirical expression to obtain the length of the inner layer. 

𝛿𝐼𝑛𝑛𝑒𝑟 = max(𝑐1(𝐶𝐷𝑎)−1, 𝑐2𝑑)                                            𝑒𝑞. 2.30 

Where parameters 𝑐1 = 0.5 and 𝑐2 = 1.8 were obtained from experimental results. The 

outer layer was considered independent of the inner layer. The size of the shear layer outside 

the vegetation was obtained from the balance between the pressure gradient and the surface 

slope and considering a constant eddy viscosity (White and Nepf, 2007). Thus, the solution 

follows a quadratic function. 

𝑈𝑂𝑢𝑡𝑒𝑟 =  𝑈𝑚 +  (𝑈𝑓𝑟𝑒𝑒 −  𝑈𝑚) ∗ [
𝑦 − 𝑦𝑚

𝛿𝑂𝑢𝑡𝑒𝑟
−  

1

4
(

𝑦 − 𝑦𝑚

𝛿𝑂𝑢𝑡𝑒𝑟
)

2

]                  𝑒𝑞. 2.31 

 Where 𝛿𝑂𝑢𝑡𝑒𝑟 is the length of the outer layer, 𝑦𝑚 is the position at which inner and outer 

slopes match, and 𝑈𝑚 =  𝑈𝑂𝑢𝑡𝑒𝑟(𝑦𝑚). Using experimental data, an initial value for 𝑦𝑚 was 

considered and the value of 𝛿𝑂𝑢𝑡𝑒𝑟 was obtained using a quadratic regression. This process was 

repeated until the slopes of the inner and outer layers matched at 𝑦𝑚. A scheme with the 

different parameters introduced by White and Nepf (2008) is plotted in Figure 2.9. 

 

Later, Tang et al (2009) and Cheng et al (2010) proposed analytical solutions for partially 

vegetated compound channels. In both cases, authors considered effects from secondary 

currents whereby the transverse velocity gradient of secondary currents and the eddy viscosity 

should be known and introduced into their models. This assumption matched with previous 

results obtained in shear layers generated in compound channels (Huai et al., 2008). However, 

this assumption was not considered in White and Nepf (2007) work, where secondary currents 

were neglected to obtain the mean longitudinal velocity profile, for an experimental range of 

∅ = 0.02 − 0.1, ℎ = 0.055 − 0.139 m and 𝑈𝐹𝑟𝑒𝑒 = 0.0382 − 0.2397 m s⁄ . 

Figure 2.9. Scheme of model proposed by White and Nepf (2008). 
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More recently, Meftah and Mossa (2016a and 2016b) proposed a different approach to 

define the longitudinal velocity profile in partially vegetated flows. They ran several experiments 

in an open channel of 4 m width and installed a uniform patch of artificial cylinders in the centre 

of the channel with a length of 3 m, allowing a free flow region at each side between the channel 

wall and the patch. Different vegetated patch widths and water depths were established, and a 

solid volume fraction of  ∅ = 0.0028 was fixed. For each flow condition, the three velocity 

components were recorded for several transverse profiles using an ADV located at mid-depth.  

Their experimental data show that, once the flow enters in the partially vegetated 

region, the flow within the arrays starts to decelerate due to the increase of drag and the flow 

velocity within the unobstructed region starts to increase. These effects continue until the flow 

reaches a point in which both the flow velocity within the obstructed region and within the free 

flow region no longer change in the lengthwise direction and the shear layer produced between 

the two constant layers is completely developed. Experimental results with the same flow depth 

and flow rate, but different contraction ratios (the ratio between the obstructed and the 

unobstructed widths) show that higher velocities were recorded in the free flow region for 

higher ratios, and thus narrower unobstructed widths. These results suggest that in real rivers 

an increase of the contraction ratio could increase the erosion of the riverbanks. Moreover, 

experimental results show that the peak of the Reynolds stress was shifted away from the 

vegetation boundary. This displacement of the maximum Reynolds stress is in accordance with 

that observed by White and Nepf (2008) for sparse vegetation densities. 

 Based on their experimental results, Meftah and Mossa (2016a and 2016b) proposed a 

modified log–law to describe the longitudinal velocity profiles within the fully shear layer in the 

outer region (between the free flow region and the inflection point) and a polynomial expression 

to define the shear layer within the inner region (between the inflection point and the vegetated 

velocity region). For these proposed expressions, different physical variables were defined using 

empirical relationships obtained from the experimental data. However, some of the proposed 

parameters were found to be constant, which may not be applicable to other scenarios, (i.e. 

with different vegetation densities).  

 

2.4. Mixing Processes 

Mixing processes are all mechanisms involved when a solute is introduced into a flow 

and it starts to spread out from of the source. The key processes that interact in the transporting 

and spreading of the solute include: 

Advection 

 “Advection is the bodily movement of a parcel of fluid resulting from an imposed 

current” Rutherford, 1994. For a given flow, a tracer injected into it will move downstream with 

a certain velocity, which depends on the velocity of the flow and the buoyancy of the tracer. In 

a scenario with pure advection without any boundary effect, the cloud of tracer would only 

move with the flow, without any mixing. 
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Molecular and Turbulent Diffusion 

If a tracer with no buoyancy is introduced into a stagnant water body far enough from 

any boundary, it will spread out slowly in all directions at the same rate due to random molecular 

motions. This process is called molecular diffusion and can be described by Fick’s first law. 

𝐽𝑥 =  −𝜂
𝜕𝑐

𝜕𝑥
                                                             𝑒𝑞. 2.32 

Where 𝐽𝑥 is the mass flux (in this case in the 𝑥 direction), 𝑐 is concentration and 𝜂 is the 

molecular diffusion coefficient. 

 However, in most rivers flow is characterised by high Reynolds number and is fully 

turbulent apart from a small area close to boundaries. When flow is turbulent, the velocity at 

each spatial point exhibits random fluctuations in time with respect to the time-averaged 

velocity. These fluctuations increase local concentration gradients by shearing the flow and 

hence increasing the molecular diffusion. This process is called turbulent diffusion and it can be 

defined as the accelerated process of molecular diffusion due to the shearing of flow in 

turbulence regimes. 

Shear Dispersion 

In a flow with no obstacles, transversal and vertical profiles of longitudinal velocity are 

not constant due to resistance from channel boundaries (Section 2.1). Thus, the tracer near the 

banks and bed will travel slower than the tracer in the centre of the channel. If an initial 

transversal line of tracer is considered as it is shown in Figure 2.10, this effect mentioned will 

cause the tracer to take a non-linear shape due to differences in longitudinal velocity. As a result, 

the transverse concentration gradient increases, promoting transverse mixing. Shear dispersion 

can be defined as the spreading of tracers due to velocity gradients on the flow velocity profiles 

(Rutherford, 1994). This effect is produced in both transversal and vertical directions, although 

in most open channel flows the transversal velocity shear is greater than the vertical shear as 

higher velocity gradients are produced (Fischer, 1967).  

 

In order to define a governing equation for mixing in open channels, a laminar flow 

condition is first considered. In this flow, there is no diffusion produced by turbulence so only 

molecular diffusion defined by Fick’s first law (eq. 2.32) and advection affect mixing. Considering 

a body of fluid moving with the flow and a solute passing through it, both molecular diffusion 

and advection processes can be combined by considering conservation of mass as: 

Figure 2.10. Plan view scheme of shear dispersion effect. 
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𝜕𝑐

𝜕𝑡
+ 

𝜕𝐽

𝜕𝑥
= 0                                                            𝑒𝑞. 2.33 

Combining this equation with Fick’s first law (eq. 2.32) 

𝜕𝑐

𝜕𝑡
−  

𝜕

𝜕𝑥
(𝜂

𝜕𝑐

𝜕𝑥
) = 0                                                      𝑒𝑞. 2.34 

Assuming that mixing is constant along the distance 𝑥 

𝜕𝑐

𝜕𝑡
 =  𝜂

𝜕2𝑐

𝜕𝑥2
                                                            𝑒𝑞. 2.35 

Eq. 2.35 is known as the diffusion equation and defines the transport of a solute by a 

Fickian diffusion process. This expression can be applied to an open channel flow element by 

considering a steady laminar flow and defining it for all three orthogonal directions. For each 

direction, the total flux can be defined as: 

𝐽𝑥 = 𝑢𝑐 − 𝜂
𝜕𝑐

𝜕𝑥
                                                         𝑒𝑞. 2.36 

𝐽𝑦 = 𝑣𝑐 − 𝜂
𝜕𝑐

𝜕𝑦
                                                         𝑒𝑞. 2.37 

𝐽𝑧 = 𝑤𝑐 − 𝜂
𝜕𝑐

𝜕𝑧
                                                         𝑒𝑞. 2.38 

Where the components 𝑢𝑐, 𝑣𝑐 and 𝑤𝑐 represent the advection process for each 

direction. In addition, the mass variation of solute can be defined as: 

𝜕𝑐

𝜕𝑡
∆𝑥∆𝑦∆𝑧                                                              𝑒𝑞. 2.39 

The total flux (𝑇𝐹) in each coordinate direction can be defined as. 

𝑇𝐹𝑥 =  (
𝜕𝐽𝑥

𝜕𝑥
∆𝑥) ∆𝑦∆𝑧                                                     𝑒𝑞. 2.40 

𝑇𝐹𝑦 =  (
𝜕𝐽𝑦

𝜕𝑦
∆𝑦) ∆𝑥∆𝑧                                                    𝑒𝑞. 2.41 

𝑇𝐹𝑧 =  (
𝜕𝐽𝑧

𝜕𝑧
∆𝑧) ∆𝑥∆𝑦                                                     𝑒𝑞. 2.42 

Considering that the total flux produced in all directions must be equal to the mass 

change of the solute within the fluid element. 

𝜕𝑐

𝜕𝑡
+ 

𝜕𝐽𝑥

𝜕𝑥
 +  

𝜕𝐽𝑦

𝜕𝑦
 +  

𝜕𝐽𝑧

𝜕𝑧
= 0                                              𝑒𝑞. 2.43 

If expressions in eq. 2.36, 2.37 and 2.38 are combined and molecular diffusion is 

considered uniform in all coordinates. 

𝜕𝑐

𝜕𝑡
+  𝑢

𝜕𝑐

𝜕𝑥
+  𝑣

𝜕𝑐

𝜕𝑦
+  𝑤

𝜕𝑐

𝜕𝑧
=  𝜂 (

𝜕2𝑐

𝜕𝑥2
+  

𝜕2𝑐

𝜕𝑦2
+  

𝜕2𝑐

𝜕𝑧2)                      𝑒𝑞. 2.44 
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Eq. 2.44 is the advection diffusion equation and predicts the concentration of a 

conservative solute within laminar flow conditions at any position if the molecular diffusion 

coefficient is known. 

However, most of flows in rivers and channels have a turbulence regime and hence 

turbulent diffusion must also be considered. Taylor (1921) analysed theoretically the spreading 

of a cloud of tracer particles in a stationary homogeneous turbulence field. In this analysis, a 

coordinate system in which the origin moves with the cloud was considered and the mixing 

process was studied.  This analysis shows that, after a time 𝑇𝑥 from the injection of the tracer, 

the variance of the cloud increases linearly with time and Fick’s law can be applied to turbulent 

flows. Thus, by analogy based on Taylor’s analysis the turbulent diffusive flux can be described 

as. 

𝐽𝑥 = 𝑢′𝑐′ = −𝑒𝑥

𝜕𝑐̅

𝜕𝑥
                                                     𝑒𝑞. 2.45 

𝐽𝑦 = 𝑣′𝑐′ = −𝑒𝑦

𝜕𝑐̅

𝜕𝑦
                                                     𝑒𝑞. 2.46 

𝐽𝑧 = 𝑤′𝑐′ = −𝑒𝑧

𝜕𝑐̅

𝜕𝑧
                                                     𝑒𝑞. 2.47 

Where 𝑒𝑥, 𝑒𝑦 and 𝑒𝑧 are the turbulent diffusion in each direction and 𝑐̅ denotes the 

temporally averaged concentration. Using the same steps as followed for the advection diffusion 

equation for laminar flows, the following equation can be obtained. 

𝜕𝑐̅

𝜕𝑡
+ 𝑢̅

𝜕𝑐̅

𝜕𝑥
+  𝑣̅

𝜕𝑐̅

𝜕𝑦
+  𝑤̅

𝜕𝑐̅

𝜕𝑧
=  (𝜂𝑥 + 𝑒𝑥)

𝜕2𝑐̅

𝜕𝑥2
+  (𝜂𝑦 + 𝑒𝑦)

𝜕2𝑐̅

𝜕𝑦2
+  (𝜂𝑧 + 𝑒𝑧)

𝜕2𝑐̅

𝜕𝑧2
  𝑒𝑞. 2.48 

In this equation both molecular diffusion and turbulent diffusion are described. 

However, in turbulent flow molecular diffusion is negligible compared with turbulent diffusion 

(turbulent diffusion is of the order of 10−3  m2 s⁄ , whereas the molecular diffusion is typically 

10−9  m2 s⁄ ). Thus, either if molecular diffusion is neglected or if it is considered into the 

turbulent diffusion term, eq. 2.48 becomes: 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+  𝑣

𝜕𝐶

𝜕𝑦
+  𝑤

𝜕𝐶

𝜕𝑧
=  

𝜕

𝜕𝑥
(𝐷𝑥

𝜕𝐶

𝜕𝑥
) +  

𝜕

𝜕𝑦
(𝐷𝑦

𝜕𝐶

𝜕𝑦
) + 

𝜕

𝜕𝑧
(𝐷𝑧

𝜕𝐶

𝜕𝑧
)       𝑒𝑞. 2.49 

Where 𝐶 =  𝑐̅ and 𝐷𝑥, 𝐷𝑦 and 𝐷𝑧 are the longitudinal, transversal and vertical mixing 

coefficients respectively. This is the general three-dimensional Advection – Diffusion Equation 

(ADE) conventionally used (Rutherford, 1994). However, this equation requires a lot of 

information about the velocity and mixing coefficients and in most practical cases, eq. 2.49 can 

be simplified depending on the scenario studied. 

In most real rivers, the channel width is greater than the water depth. With this 

consideration, three different zones can be defined. If an instantaneous point source is 

considered, the region just downstream is considered as the near field. In this region the tracer 

is mixed in all three directions and the full 3-D equation is required (Rutherford, 1994). As the 

water depth is smaller than the channel width, the concentration becomes well mixed first in 

the vertical direction. The mid field is the region where the concentration gradients in the 

vertical direction are negligible. Thus, the equation can be averaged over the depth, neglecting 

vertical components and becoming a 2D equation, where both transverse and longitudinal 

mixing components are studied.  
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Finally, in the far field the tracer becomes well mixed also transversally, and eq. 2.49 can 

be simplified into a 1D form where only the longitudinal components are studied. In addition, if 

the problem assumes a steady source rather than an instantaneous one, time dependant 

elements can be removed and hence longitudinal components can be neglected for each field 

explained previously. Therefore, after fully cross sectional mixing, concentration at each point 

in time and space becomes uniform. 

2.4.1. Vertical Mixing 

In rivers, the main mechanism that promotes vertical mixing is turbulence generated by 

velocity shear at the channel bed. In a wide open channel flow, where effects from walls are 

negligible, the vertical mixing coefficient depends on the turbulence generated by the channel 

bed. Reynolds analogy defines the vertical mixing as a function of the eddy viscosity (𝜀): 

𝐷𝑧 = 𝑆𝑐𝜀                                                                𝑒𝑞. 2.50 

Where 𝑆𝑐 is the Schmidt number. While a universal value for this parameter has not 

been found, it is commonly assumed that by analogy between momentum and mass transport 

(Prandtl analogy) 𝑆𝑐 = 1. However, Gualtieri et al. (2017) reviewed different values of Schmidt 

number obtained from previous work. They noticed that most of the discussed work proposed 

a 𝑆𝑐 value between 0.1 and 1 (Arnold et al., 1989; Lin and Shiono, 1995 and Simoes and Wang, 

1997), although results from sediment-laden open channel flows suggest a value of 𝑆𝑐 between 

1.4 and 2.1. Djordjevic (1993) presented a mathematical model for transport processes 

validated with his own experiments, obtaining a 𝑆𝑐 ≈ 1, same result as that obtained by Simoes 

and Wang (1997) for the vertical mixing. Finally, Gualtieri et al. (2017) obtained a value of 𝑆𝑐 =

1.3 to best predict the transverse mixing in a rectangular open channel flow.  

If a value of 𝑆𝑐 = 1 is taken for neutrally buoyant tracers (Rutherford, 1994) Shear stress 

(eq. 2.21) can be considered as  

𝜏𝑡 =  𝜌𝑢∗2 (1 −
𝑧

ℎ
) =  𝜌𝜀

𝑑𝑈

𝑑𝑧
                                             𝑒𝑞. 2.51 

Substituting eq. 2.50 into eq. 2.51. 

𝐷𝑧 =  
𝜌𝑢∗2 (1 −

𝑧
ℎ

)

𝜌
𝑑𝑈
𝑑𝑧

                                                      𝑒𝑞. 2.52 

Assuming the vertical profile of longitudinal velocity follows a logarithmic law (eq. 2.10). 

𝐷𝑧 =  𝜅𝑢∗𝑧 (1 −
𝑧

ℎ
)                                                       𝑒𝑞. 2.53 

Finally, Jobson and Sayre (1970) suggested that vertical concentration profiles are not 

sensitive to the vertical variation of 𝐷𝑧 and hence they defined the overall vertical mixing 

coefficient over the water depth as. 

𝐷𝑧 =
𝜅

6
ℎ𝑢∗ =  0.067ℎ𝑢∗                                                  𝑒𝑞. 2.54 

The distance needed for a tracer to become vertically well mixed depends on the water 

depth, the vertical mixing coefficient and the location of the source (Rutherford, 1994). 
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𝐿𝑧𝑀𝑖𝑑𝑑𝑙𝑒
= 0.134

𝑈ℎ2

𝐷𝑧
                                                    𝑒𝑞. 2.55 

𝐿𝑧𝑇𝑜𝑝
= 𝐿𝑧𝑆𝑢𝑟𝑓𝑎𝑐𝑒

= 0.536
𝑈ℎ2

𝐷𝑧
                                           𝑒𝑞. 2.56 

Where U is the depth-averaged longitudinal velocity, 𝐿𝑧𝑀𝑖𝑑𝑑𝑙𝑒
 is the distance needed for 

the solute to become vertically well mixed if the point source is located in the middle of the 

water depth, and 𝐿𝑧𝑇𝑜𝑝
  and 𝐿𝑧𝑆𝑢𝑟𝑓𝑎𝑐𝑒

 are the distance if the injection point is located at the 

bottom depth or at the surface respectively (Rutherford, 1994).  

2.4.2. Transverse Mixing 

For a steady-state injection (𝜕𝐶 𝜕𝑡⁄ = 0) of a homogeneous vertical line of solute, the 

vertical concentration gradient becomes negligible and thus the vertical mixing component can 

be neglected. Therefore, the ADE can be considered as a depth-averaged process. 

𝑢
𝜕ℎ𝐶

𝜕𝑥
+  𝑣

𝜕ℎ𝐶

𝜕𝑦
=  

𝜕

𝜕𝑥
(ℎ𝐷𝑥

𝜕𝐶

𝜕𝑥
) +  

𝜕

𝜕𝑦
(ℎ𝐷𝑦

𝜕𝐶

𝜕𝑦
)                           𝑒𝑞. 2.57 

If a straight channel is considered, transverse mean velocity is negligible compared with 

the longitudinal component. In addition, the steady-source injection produces a constant rate 

of solute injected into the flow and hence the longitudinal mixing component can be neglected 

(Rutherford, 1994). 

𝑢
𝜕ℎ𝐶

𝜕𝑥
=  

𝜕

𝜕𝑦
(ℎ𝐷𝑦

𝜕𝐶

𝜕𝑦
)                                                    𝑒𝑞. 2.58 

Under the assumption of all constant longitudinal velocity, water depth and transverse 

mixing coefficient along the spanwise direction, eq. 2.58 can be solved as: 

𝐶(𝑥, 𝑦) =  
𝑀

ℎ√4𝜋𝐷𝑦𝑈𝑥
𝑒𝑥𝑝 [−

𝑈(𝑦 − 𝑦𝐼𝑛𝑗)
2

4𝐷𝑦𝑥
]                               𝑒𝑞. 2.59 

Where 𝑦𝐼𝑛𝑗 is the transversal location of the injection and 𝑀 is the injection rate. Solute 

transversal profiles under eq. 2.59 exhibit a Gaussian shape. Transverse mixing becomes 

especially important in scenarios where the injection can be considered continuous and 

longitudinal processes can be neglected. In most wide channels, the velocity gradient is assumed 

to be zero in the centre of the channel and thus eq. 2.52 cannot be resolved. 

Different methods have been proposed to determinate the transverse mixing 

coefficients (Baek and Seo, 2016). A widely used method for the calculation of transverse mixing 

coefficient is the moment-based method. This method is based on the growth in the streamwise 

direction of the second moment (variance) of the concentration data. Sayre and Chang (1968) 

proposed an expression to calculate the transverse mixing coefficient under steady-state 

conditions by assuming a linear increase of variance with distance.  

𝐷𝑦 =  
𝑈

2

𝑑𝜎𝑦
2

𝑑𝑥
                                                            𝑒𝑞. 2.60 

Where 𝜎𝑦
2 is the variance of the transversal solute profile and therefore 𝑑𝜎𝑦

2 𝑑𝑥⁄  is the 

variation of variance along the channel length. This variance was obtained using the standard 

method of moments (Rutherford, 1994) for each transversal concentration profile. 
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𝑀0 =  ∫ 𝐶𝑖 𝑑𝑦

∞

1

                                                          𝑒𝑞. 2.61 

𝑀1 =  ∫ (𝐶𝑖 𝑑𝑦)𝑦𝑖

∞

1

                                                       𝑒𝑞. 2.62 

𝑀2 =  ∫ (𝐶𝑖 𝑑𝑦)𝑦𝑖
2

∞

1

                                                      𝑒𝑞. 2.63 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  𝜑 =  
𝑀1

𝑀0
                                                    𝑒𝑞. 2.64 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜎𝑦
2 =  

𝑀2

𝑀0
− 𝜑2                                             𝑒𝑞. 2.65 

Where 𝐶𝑖 is the concentration value at each spanwise position 𝑦𝑖. However, when this 

method is used, errors in the calculation of the transverse mixing coefficient are susceptible to 

be produced. These errors may be produced as the transverse mixing coefficient is obtained 

from evaluating the rate of change of the variance of the concentration profiles. This rate is quite 

sensible to the accurate identification of the end of the concentration profile tails, and thus the 

“cut off” considered to delimitate the experimental concentration levels from the 

instrumentation noise critically affects the variance evaluation (Shucksmith, 2008; Baek and 

Seo, 2016). 

The use of optimization procedures improves the accuracy obtaining of the mixing 

coefficients by eliminating the errors produced in the variance calculation. These procedures are 

based on the comparison of experimental concentration data with those predicted using any 

equation or set of equations that properly describe the behaviour of the pollutant plume under 

certain conditions (e.g. eq. 2.59). Boxall (2000) and Dennis (2000) suggested that using these 

optimization procedures the dependence of mixing coefficient results on the cut off level chosen 

becomes relatively insensitive. Moreover, Boxall (2000) argued that a cut off level up to a 10 % 

of the peak concentration value can still produce accurate mixing coefficients using these 

optimization procedures. More complex methods rely on fitting models of various complexity 

to data and calibrating the transverse mixing coefficient directly, such as the Computational 

Fluid Dynamics (CFD) models, which use numerical methods and algorithms to solve fluid 

dynamics problems (Sonnenwald et al., 2019, Ghani et al., 2019). These solutions require a high 

computational capacity and they typically require the use of experimental data for their 

validation.  

Webel and Schatzman (1984) ran several experiments in a straight channel to measure 

transverse mixing coefficients. The solute was injected in the centre of the channel and results 

showed that for a width-depth ratio large enough (𝑊𝑑 ℎ⁄  ≥ 5) to avoid any effect of the wall-

shear zone in the plume, the transverse mixing coefficient is independent of 𝑊𝑑 ℎ⁄ . In addition, 

for 𝑊𝑑 ℎ⁄  ≥ 5 their results suggested a constant dimensionless transverse mixing value of 

𝐷𝑦 ℎ𝑢∗ = 0.13⁄  in straight, uniform and rectangular channel flows. 
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Rutherford (1994) collected and compared several previous research data of transverse 

mixing in natural straight channels and concluded that the value seems to be around. 

0.15 <
𝐷𝑦

ℎ𝑢∗
< 0.3                                                        𝑒𝑞. 2.66 

However, this range of values is affected by variations in both geometry (meanders) and 

flow field (secondary currents). In meandering channels, experimental transverse mixing results 

collected by Rutherford (1994) seemed to fall in the range: 

0.3 <
𝐷𝑦

ℎ𝑢∗
< 0.9                                                         𝑒𝑞. 2.67 

Moreover, for strong curved channels transverse mixing coefficients found are higher. 

1.0 <
𝐷𝑦

ℎ𝑢∗
< 3.0                                                         𝑒𝑞. 2.68 

Chau (2000) ran several experiments in straight channels using different bed roughness 

and flow conditions and used a continuous injection of dye located in the centre of the channel 

width. Average dimensionless transverse mixing coefficient obtained for all conditions was 

𝐷𝑦 ℎ𝑢∗ = 0.18⁄ , with an error band of ±15 %. 

 Lau and Krishnappan (1977) studied transverse mixing in straight laboratory channels 

and they suggested that coefficients are affected by the ratio between water depth and width. 

However, Webel and Schatzmann (1984) argued that this assumption is only valid for small 

ratios and they concluded that the most important factor in straight channels is the turbulent 

diffusion. Shiono and Feng (2003) studied both rectangular and compound channels to study 

the effect of secondary currents. They suggested that for weak secondary currents found in 

rectangular channels (with secondary current vectors below 1 % of the main flow), turbulent 

diffusion is the main factor that affects transverse mixing processes. However, in compound 

channels, secondary currents become more important (with secondary current vectors around 

4 − 5 % of the main flow), and they strongly affect the transverse mixing processes. These 

secondary currents are also produced in channels with a high sinuosity, increasing the overall 

transverse mixing coefficient (eq. 2.68) and producing a displacement of the position of the 

concentration peaks and a skew in the concentration distribution (Shiono and Feng, 2003). 

 

2.5. Transverse Mixing within Emergent Vegetation 

As explained in Section 2.2, vegetation reduces velocity by increasing drag resistance. 

In the same way, the dominant turbulent length scale is also reduced from that produced in 

open channels (no vegetation) to the smaller of the stem diameter (𝑑) or the mean distance 

between stems (Tanino and Nepf, 2008b). 

Nepf et al. (1997) measured transversal mixing in vegetated flows using artificial 

emergent cylinders as vegetation. Their results showed that for 𝑅𝑒𝑠𝑡𝑒𝑚 > 200 diffusivity in 

vegetated flows increased compared with non-vegetated scenarios with the same flow velocity. 

Nepf (1999) described diffusion within vegetation as a combination of two processes: turbulent 

diffusion produced by stem-scale vortices created by vegetation and mechanical diffusion 

produced by tortuosity paths that the solute follows through between the stems. Her results 

showed a decrease of diffusivity within emergent vegetated flows compared with non-
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vegetated flows with the same water depth. Nepf (1999) argued this decrease is related to the 

decrease of eddy size produced by stems although the turbulence intensity may increase. This 

is in accordance with experimental results obtained by De Serio et al. (2018), who used artificial 

rigid emergent cylinders in a row distribution, and measured turbulent intensities and dispersion 

coefficients at different positions within the vegetation.  

  Tanino and Nepf (2008a) studied the relationship between transverse mixing and 

vegetation density by running several tests using random artificial arrays and different stem 

densities from ∅ = 0.01 − 0.35 for high stem-scale Reynolds numbers (𝑅𝑒𝑠𝑡𝑒𝑚 > 250). Their 

results are shown in Figure 2.11, where the experimental results are plotted in addition to the 

proposed expression for the net lateral dispersion and the corresponding dispersions produced 

by each phenomenon (turbulent diffusion and heterogeneous velocity). Tanino and Nepf 

(2008a) suggested a rapid increase of the dimensionless transverse mixing (𝐷𝑦 𝑈𝑉𝑒𝑔𝑑⁄ ) for 

densities between ∅ = 0 − 0.031. However, for denser vegetation the dimensionless 

transverse mixing decreases for values between ∅ = 0.031 − 0.2. Finally, for the densest cases 

(∅ = 0.2 − 0.35), the transverse mixing increases again, although this trend is more gradual 

than for sparse cases.  

 

Nepf (2012) argued that for densities smaller than ∅ < 0.1 turbulent diffusion is the 

dominant effect on transverse mixing, whilst for higher densities ∅ > 0.15 or for vegetated 

flows without turbulence (𝑅𝑒𝑠𝑡𝑒𝑚 < 100) mechanical diffusion is the main contributor. Two 

different expression were proposed, consistent with previous studies (Nepf et al., 1997, Nepf, 

2004, Tanino and Nepf, 2008a), to describe transverse mixing in emergent vegetated flows: 

𝐷𝑦 = 0.2𝑈𝑉𝑒𝑔𝑑                                            𝑖𝑓 ∅ < 0.1                                               𝑒𝑞. 2.69 

𝐷𝑦 = 𝑈𝑉𝑒𝑔𝑎𝑑2                                              𝑖𝑓 ∅ > 0.15 𝑜𝑟 𝑅𝑒𝑠𝑡𝑒𝑚 < 150           𝑒𝑞. 2.70 

However, previous studies suggested a large variability in transverse mixing results 

within emergent vegetation. One of the factors that results in this variability is produced by the 

random distribution of vegetation stems, which affects the creation of turbulence structures 

Figure 2.11. Dimensionless transverse mixing coefficients versus vegetation density (Tanino and Nepf, 

2008a). 



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 27 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

within the vegetated flow, and thus the mixing processes. Whilst the periodic distance between 

stems for staggered configurations generated periodic turbulence structures (Meftah and 

Mossa, 2013), in random vegetation the variation of space between stems produces a 

breakdown of these structures and thus affects the local transverse mixing. This effect is also 

noticed in the experimental results of Serio et al. (2018). Their results showed that different 

turbulent length scales and dispersion coefficients were obtained depending whether the data 

was measured between two consecutive stems in the flow direction or within the free corridors 

allowed between rows. Therefore, different transverse mixing may be expected between row, 

staggered and random vegetation distributions (Sonnenwald et al., 2017). This fact was also 

discussed by Sonnenwald et al. (2017), who compared different results from previous 

researchers (Nepf et al., 1997, Nepf, 1999, Serra et al, 2004 and Tanino and Nepf, 2008a) as 

well as results obtained from their own experiments. They discussed the variability of the 

dimensionless transverse mixing coefficient (𝐷𝑦 𝑈𝑉𝑒𝑔𝑑⁄ ), showing that although the model 

proposed by Nepf (2012) is the most accurate, significant variability is found between results 

from other experiments and those predicted by this model under the same flow and vegetation 

conditions. 

 

2.6. Mixing in Vegetated Shear Layers 

As explained in Section 2.3, shear layers are characterised by two co-flowing layers with 

different main flow velocities, creating a velocity gradient between both flow layers and thus a 

shear layer characterised by coherent eddy structures. Therefore, mixing coefficients cannot be 

considered constant within the shear layer. 

Ghisalberti and Nepf (2005) studied the vertical variation of vertical mixing along a 

shear layer produced by submerged artificial stems. They conducted repeated experiments with 

the same water depth but with different vegetation densities, producing an increasing shear 

layer velocity gradient with increasing stem density. They first applied a two-box model to study 

the exchange coefficient between vegetated and free open flow layers. Their results show that 

for a given mean flow, the exchange coefficient increases for higher stem densities due to the 

increase of eddy intensity, obtaining a vertically well-mixed profile more rapidly. They also 

applied a flux-gradient model to study vertical variability of vertical mixing coefficient along the 

full water depth. This model assumes that the mass of solute upstream of the control volume 

(𝐴) must be equal to the mass of solute downstream of the control volume (𝐵) plus the mass 

flux produced in the vertical direction in the control volume.  

𝐷𝑧(𝑧) =  
∆(∫ 𝑈𝐶𝑑𝑧

𝑧

0
)

∆𝑥〈𝜕𝐶
𝜕𝑧⁄ 〉𝑧

                                                    𝑒𝑞. 2.71 

Where 〈−〉 denotes a longitudinal average between 𝐴 and 𝐵 (〈𝜕𝐶 𝜕𝑧⁄ 〉 ≈ (𝜕𝐶 𝜕𝑧⁄ 𝐴 +

 𝜕𝐶 𝜕𝑧⁄ 𝐵)/2). Their results are shown in Figure 2.12, where data for each vegetation density 

shows a significant variability of vertical mixing coefficient along the shear layer, achieving a 

maximum value close to the top of vegetation (dash line) at the location of maximum Reynolds 

stress. These results were scaled by the velocity increase (∆𝑈) and the length of the shear layer 

(𝛿𝑉.𝑆.𝐿.), suggesting that transport within shear layers can be characterised by properties of the 

shear layer. In addition, Ghisalberti and Nepf (2005) stated two constrain criteria (𝐶𝑟1 and 𝐶𝑟2) 

to identify the regions of applicability of this model, described in eq. 2.72 and 2.73 respectively.  
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𝐶𝑟1 =  

𝜕𝐶
𝜕𝑧⁄

𝐵

𝜕𝐶
𝜕𝑧⁄

𝐴

 ≤ 3                                                      𝑒𝑞. 2.72 

𝐶𝑟2 =  

𝜕𝐶
𝜕𝑧⁄

𝐵

max (𝜕𝐶
𝜕𝑧⁄

𝐴
)

= 0.05                                             𝑒𝑞. 2.73 

 

Rubol et al. (2016) proposed a semi-empirical model to estimate the variable vertical 

mixing in submerged vegetated flows. The mean velocity was estimated using the model 

proposed by Battiato and Rubol (2014), which only requires the value of the permeability of the 

vegetation and the stem height. Based on their results, Battiato and Rubol (2014) suggested 

that the increase of the vegetation density, and thus the increase of the velocity shear, produces 

an increase of the asymmetry of the concentration profile. Moreover, they observed that an 

increase of the vegetation density enhances the vertical mixing, reducing the peak concentration 

of the plume. Battiato and Rubol (2014) concluded that the most important parameter that 

controls the solute mixing, its asymmetry and the decrease of the peak concentration is the 

permeability of the vegetated layer. In addition, Rubol et al. (2016) used the experimental 

results obtained by Ghisalberti and Nepf (2005) to validate their model. The vertical mixing 

coefficients were obtained by fitting the experimental concentration data to their proposed 

model. Their results suggest that a constant value of the vertical mixing coefficient may be 

accurate enough to reproduce the concentration profiles through and over submerged 

vegetated flows for dense vegetation. They obtained a constant vertical mixing coefficient of 

𝐷𝑧 = 1.9 cm2/s for the first concentration profile that increased for downstream profiles until 

reaching a constant value of 𝐷𝑧 = 4.5 cm2/s. These values agree with the overall vertical mixing 

obtained by Ghisalberti and Nepf (2005) and with those results obtained by Termini (2019), 

who obtained an overall vertical mixing of 𝐷𝑧 = 5 cm2/s for submerged vegetated flows with a 

vegetation density ∅ = 0.135. 

Figure 2.12. Dimensionless variable vertical mixing coefficient within shear layer in submerged 

vegetated flows (Ghisalberti and Nepf, 2005). 
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Variable mixing coefficients were also studied in shear layers generated in compound 

channels.  Zeng et al. (2008) studied eddy viscosity in a compound channel. They measured 

instantaneous longitudinal and transversal velocity component using a 2D Laser Doppler 

Anemometry (LDA) along the spanwise direction. From this data, turbulent velocity was 

obtained and eddy viscosity was calculated using the analogy between the Reynolds stress and 

the viscosity shear stress. 

𝜀𝑥𝑦 =  
𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑈
𝜕𝑦⁄

                                                           𝑒𝑞. 2.74 

The eddy viscosity results were averaged for each sub section (the main channel, the 

floodplain and the side slope between them). In addition, they injected Rhodamine WT 

constantly and ten transversal tracer profiles were measured by sample tubes connected to a 

fluorometer. Three different injection locations were considered along the spanwise direction 

to record tracer concentrations along each subsection, and a constant transverse mixing 

coefficient was obtained for each sub-section using eq. 2.59. Results suggested an increase of 

transverse mixing processes within the side slope between the two channel sub-sections. 

 From the same study, Guymer and Spence (2009) studied the longitudinal velocity and 

the variable transverse mixing coefficient in compound channels. Profiles of longitudinal velocity 

along the channel width presented a similar shape to those obtained in previous studies for 

partially vegetated flows (Knight and Shiono, 1996). The longitudinal velocity results showed a 

velocity shear layer between two constant velocity regions and an inflection point located at the 

edge between the floodplain and the side slope. The transverse mixing coefficients were 

obtained using the generalized change of moment method proposed by Holley et al. (1972), 

which relates the variation of the transverse mixing coefficient with the longitudinal rate of 

change of mass flux variance. The variation of the variance between consecutive transverse 

concentration profiles was studied by assuming three sections with different transverse mixing 

coefficient (the main channel, a region on the floodplain far from the slope and sloping the 

region between them). Results suggested an increase of the transverse mixing coefficient for 

the region located at the side slope, matching with the increase of the Reynolds stress. However, 

the generalised change of moment method accounts for the variance of narrow portions of the 

concentration profiles. This parameter is quite sensitive to the values of concentration at each 

position, and thus small errors or variations in the measurement of the concentration profile 

may produce high variations in the variance. Moreover, as it was discussed in Section 2.4.2, the 

variance obtained from the concentration profiles is quite sensible to the cut-off level applied 

to the profiles, and thus errors in the calculation are susceptible to be produced. 

 Besio et al. (2012) ran several experiments to measure variable transverse mixing 

coefficients in compound channels by injecting the solute in the main channel or in the 

floodplain. From these experiments, they calculated different constant transverse mixing 

coefficients for the main channel and the floodplains respectively. Their results suggest a 

dependence between constant transverse mixing coefficients and depth ratio between the main 

channel and the floodplain. Results showed high transverse mixing coefficients for higher depth 

ratios and a decrease of the coefficients when the depth ratio became close to 1. This trend 

suggests a dependence between the increase of the overall transverse mixing processes and the 

increase of the longitudinal flow velocity gradient between the main channel and the floodplain. 
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Tabatabei et al. (2013) measured constant values of transverse mixing coefficients in 

channels with dunes introduced into the bed. They ran different experiments with and without 

vegetation at the channel walls to study the variation of the overall transverse mixing with the 

presence of riparian vegetation. This riparian vegetation was located at each channel wall with 

a water depth range of 28 –  36 cm and a mean longitudinal velocity flow range of 24 −

24.87 cm/s. Instantaneous longitudinal, transversal and vertical velocity components were 

recorded for each test. Their results showed an increase of the overall transverse mixing 

coefficient if the riparian vegetation was installed at both sides of the channel.  

West (2016) studied variable transverse mixing coefficients in channels with vegetation 

at one bank using both artificial and real vegetation. The vegetated bank of artificial vegetation 

was designed using two different vegetation densities (∅ = 0.02 and ∅ = 0.005). In the same 

way, two different scenarios were studied using real vegetation. For these cases, Cattail reeds 

(typha) were cultivated in winter and summer seasons to study real vegetation at two different 

stages. Real vegetation presented a non-homogenous distribution over the vegetated bank with 

an average vegetation density of ∅ = 0.012 and ∅ = 0.037 for the winter and summer stages 

respectively. 

 The applicability of the flux gradient model proposed by Ghisalberti and Nepf (2005) 

(eq. 2.71) was studied considering the constraint criteria defined in eq. 2.72 and 2.73, and using 

new experimental data. Experimental data recorded for the lowest, artificial vegetation density 

(∅ = 0.005) was fitted for both upstream and downstream concentration profiles with a 3rd 

order Gaussian distribution. The constraint criteria were applied to the fitted concentration 

profiles within the shear layer and the regions where the flux gradient model cannot be applied 

were studied. First, two small violating regions close to the maximum concentration were 

observed. These two regions were attributed to differences in the sign of the concentration 

gradients. These regions produced a discontinuity between the regions where the criteria were 

not violated, resulting in a transverse mixing profile with a reduced physical meaning. In 

addition, two violating regions were observed at the tails of the concentration profiles, these 

regions being wider than those obtained at the peak of concentration profiles.  

Moreover, West (2016) noticed that the violating regions influenced the estimation of 

the transverse mixing coefficients within the non-violating regions, distorting the  𝐷𝑦(𝑦) profile. 

Furthermore, the flux gradient model cannot be used in those regions where there is a change 

in the concentration gradient sign from upstream to downstream concentration profiles, and 

thus the model produced unreliable values of 𝐷𝑦(𝑦) in the vicinity of the shear layer. As a result, 

the flux gradient model cannot be certified as an accurate method to quantify a variable 

transverse mixing coefficient profile in partially vegetated flows. Therefore, West (2016) 

proposed a Finite Difference Model (F.D.M.) to simplify the ADE for a steady-source and 

considering a vertically well-mixed concentration profile. 

𝑈(𝑦)ℎ(𝑦)
𝜕𝐶(𝑥, 𝑦)

𝜕𝑥
=  

𝜕

𝜕𝑦
[ℎ(𝑦)𝐷𝑦(𝑦)

𝜕𝐶(𝑥, 𝑦)

𝜕𝑦
]                             𝑒𝑞. 2.75 

Steps considered for the F.D.M. are further described in Section 2.6.1. An optimization 

routine was performed in order to obtain the variable transverse mixing profiles 𝐷𝑦(𝑦) that 

maximised the fit between the predicted concentration profiles and the experimental 

concentration profiles. However, in order to reduce computational demand and to give a 

physical meaning to the variable 𝐷𝑦(𝑦), West (2016) proposed some initial shapes of 𝐷𝑦(𝑦) 

based on results obtained by Ghisalberti and Nepf (2005), and Guymer and Spence (2009).  
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Three different shapes were proposed by West (2016) as shown in Figure 2.13, including 

two constant transverse mixing layers within the vegetation and in the free open flow 

respectively, a triangular transverse mixing profile and a Gaussian transverse mixing profile. For 

the last two types of profile, results obtained based on the optimization showed a peak of 𝐷𝑦 

within the shear layer. The length of variable transverse mixing region was fixed using the shear 

layer length (𝛿𝐼𝑛𝑛𝑒𝑟 +  𝛿𝑂𝑢𝑡𝑒𝑟).  

 

Results obtained by West (2016) by assuming two constant 𝐷𝑦 regions (Figure 2.13 a) 

showed a trend between the increase of the overall 𝐷𝑦𝐹𝑟𝑒𝑒
and the increase of the velocity 

difference (∆𝑈 =  𝑈𝐹𝑟𝑒𝑒 − 𝑈𝑉𝑒𝑔). These results agree with previous results obtained by 

Ghisalberti and Nepf (2005) for submerged vegetation and those obtained by Zeng et al. (2008), 

Guymer and Spence (2009) and Besio et al. (2012) in compound channels as explained 

previously in this section. 

For the results obtained by assuming the triangular and the Gaussian shapes, the 

optimization routine was designed to find the maximum transverse mixing value (𝐷𝑦𝑀𝑎𝑥
) and its 

position. The results for the variable 𝐷𝑦(𝑦) profile agreed with previous results, with better fits 

between predicted and experimental concentration profiles. For all different flow conditions, an 

increase of the transverse mixing coefficient was obtained within the shear layer, with a 

𝐷𝑦𝑀𝑎𝑥
>  𝐷𝑦𝐹𝑟𝑒𝑒

. This maximum value seems to increase for higher vegetation density and 

velocity differences for artificial vegetation cases, although a clear relationship was not found 

for all conditions tested. However, the maximum transverse mixing obtained for real vegetation 

tests laid within the range of those obtained for artificial vegetation, even when higher densities 

were considered for real vegetation experiments. In addition, although slightly higher maximum 

transverse mixing coefficients were obtained for the summer season compared with the winter 

season for triangle shapes, higher 𝐷𝑦𝑀𝑎𝑥
 values were obtained for winter seasons using the 

Gaussian shape. In addition, the position of 𝐷𝑦𝑀𝑎𝑥
 was expected to be found close to the 

vegetation edge, matching with the location of peak turbulence as found by Ghisalberti and 

Nepf (2005). This match was observed for results obtained by assuming the triangular shape, 

where position of 𝐷𝑦𝑀𝑎𝑥
 matched with the limit of the vegetated region for both artificial and 

Figure 2.13. Schemes of Dy(y) proposed by West (2016). 
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real vegetation tests. However, for results obtained by assuming the Gaussian shape, the 

position of 𝐷𝑦𝑀𝑎𝑥
 for sparse artificial vegetation density (∅ = 0.005) seemed to be moved 

0.121 m to 0.144 m further from the vegetation boundary, although no trend was found in this 

displacement. No displacement of the 𝐷𝑦𝑀𝑎𝑥
 value was observed for the dense artificial 

vegetation case. However, a different behaviour was observed for real vegetation cases, where 

a displacement of the 𝐷𝑦𝑀𝑎𝑥
 value was observed for both densities, being higher for denser 

scenarios (0.072 m for the winter season and 0.095 m for the summer season respectively). 

Finally, the best fit between predicted and experimental concentration profiles were 

obtained by assuming the Gaussian shape. A higher correlation was obtained for artificial 

vegetation (𝑅2 = 0.9118 and 𝑅2 = 0.9702 for high and low density respectively) than for those 

obtained for real vegetation, where a high correlation was obtained for the winter season (𝑅2 =

0.9603) but a low correlation was obtained for the summer season (𝑅2 = 0.1012). This poor 

correlation for summer real vegetation was attributed to the split of the peak concentration into 

two local peaks, which was translated across the length of the channel. West (2016) argued that 

the presence of local peaks in the concentration profiles were produced as a result of the 

heterogeneous stem distribution of the real vegetation. This heterogeneous distribution 

produces a poorly defined vegetation limit with the free flow region. Therefore a more complex 

longitudinal velocity profile within the shear layer is produced, which induces the presence of 

local concentration peaks. 

Later, West et al. (2020) studied the sensitivity of the results obtained by this model to 

possible numerical errors caused by the spatial discretization. In addition, they compared the 

results with those obtained by two analytical solutions proposed by Rutherford (1994) and Kay 

(1987) to test the model. Results show an independence of the grid scale and a successfully 

reproduction of 2D concentration distributions compared with those obtained by the analytical 

solutions. Moreover, West et al. (2020) proposed a skewed-Gaussian shape to describe the 

variable transverse mixing profile within the shear layer. They assumed that the maximum 

transverse mixing coefficient value (𝐷𝑦𝑀𝑎𝑥
) is achieved at the vegetation boundary and that two 

constant transverse mixing values are achieved within the vegetation and in the free flow region 

at large distances from the vegetation boundary. They used the same optimization routine and 

experimental results as West (2016). However, no trend was found in the variation of the 𝐷𝑦𝑀𝑎𝑥
 

with the vegetation density. 

2.6.1. Finite Difference Model Analysis 

A Finite Difference Model (F.D.M.) was proposed by West (2016) for those scenarios in 

which the longitudinal velocity and the transverse mixing coefficient should be considered 

variable in the spanwise direction (𝐷𝑦(𝑦), 𝑈(𝑦)). The governing equation used for the F.D.M. 

was obtained from the ADE equation by considering a steady source injection (𝜕𝐶
𝜕𝑡⁄ = 0, 𝐷𝑥 =

0) and vertically well-mixed concentration profiles (𝐷𝑧 = 0) along the length: 

ℎ(𝑦) 𝑈(𝑦) 
𝜕𝐶(𝑥, 𝑦)

𝜕𝑥
=  

𝜕

𝜕𝑦
 [ℎ(𝑦) 𝐷𝑦(𝑦) 

𝜕𝐶(𝑥, 𝑦)

𝜕𝑦
]                          𝑒𝑞. 2.76 
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For eq. 2.76, a finite difference solution was used considering the channel as a uniform 

rectangular grid with 𝑖 × 𝑗 nodes where ℎ(𝑦), 𝑈(𝑦) and 𝐷𝑦(𝑦) were available at each node. 

Then, the equation was discretised for each node. The transversal mixing part of the equation 

(right part) was discretised using a central approximation, and the longitudinal advection part 

(left part) was discretised using an upwind approximation.  

The central approximation is a tool used to solve a function 𝑓(𝑥) which can be computed 

but from which there is no information about how to solve 𝑓’(𝑥). Thus, 𝑓’(𝑥) is solved using 

small interval values 𝑥𝑠 at each side of a specific point 𝑥. 

𝑓′(𝑥) ≈  
𝑓(𝑥 + 𝑥𝑠) −  𝑓(𝑥 − 𝑥𝑠)

2𝑥𝑠
                                         𝑒𝑞. 2.77 

Meanwhile, the upwind approximation considers node values in the direction of 

propagation to solve it. Applying both discretization methods to eq. 2.76 for each node in which 

𝑖 and 𝑗 represent the node location in the 𝑥 and 𝑦 direction respectively, both left and right parts 

of the equation become: 

ℎ𝑗 𝑈𝑗 (𝐶𝑖,𝑗 −  𝐶𝑖−1,𝑗)

∆𝑥
                                                     𝑒𝑞. 2.78 

1

∆𝑦
[(

ℎ𝑗+1𝐷𝑦𝑗+1
+ ℎ𝑗𝐷𝑦𝑗

2
 
𝐶𝑖,𝑗+1 −  𝐶𝑖,𝑗

∆𝑦
) −  (

ℎ𝑗𝐷𝑦𝑗
+ ℎ𝑗−1𝐷𝑦𝑗−1

2
 
𝐶𝑖,𝑗 − 𝐶𝑖,𝑗−1

∆𝑦
)]      𝑒𝑞. 2.79 

Then, terms from eq. 2.78 and eq. 2.79 were grouped: 

𝛼𝑗−1𝐶𝑖,𝑗−1 +  𝛽𝑗𝐶𝑖,𝑗 +  𝛾𝑗+1𝐶𝑖,𝑗+1 =  𝛿𝑗                                      𝑒𝑞. 2.80 

Where: 

𝛼𝑗−1 =  
− (ℎ𝑗−1𝐷𝑦𝑗−1

+  ℎ𝑗𝐷𝑦𝑗
)

2 ∆𝑦2
                                          𝑒𝑞. 2.81 

𝛽𝑗 =  
ℎ𝑗 𝑈𝐽

∆𝑥
+  

ℎ𝑗+1𝐷𝑦𝑗+1
+ 2ℎ𝑗𝐷𝑦𝑗

+  ℎ𝑗−1𝐷𝑦𝑗−1

2 ∆𝑦2
                          𝑒𝑞. 2.82 

𝛾𝑗+1 =  
− (ℎ𝑗+1𝐷𝑦𝑗+1

+  ℎ𝑗𝐷𝑦𝑗
)

2 ∆𝑦2
                                          𝑒𝑞. 2.83 

𝛿𝑗 =  
ℎ𝑗𝑈𝑗

∆𝑥
𝐶𝑖−1,𝑗                                                         𝑒𝑞. 2.84 

Considering a grid with N nodes in the transversal direction and boundary conditions for 

𝑗 = 1 and 𝑗 = 𝑁, a system with 𝑁 − 2 equations was generated. This system was solved using 

the Thomas algorithm approach (Lee, 2011) to solve the tri-diagonal matrix generated. Then eq. 

2.80 for 𝑗 = 2 became: 

𝛼1𝐶1 + 𝛽2𝐶2 +  𝛾3𝐶3 =  𝛿2                                               𝑒𝑞. 2.85 
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As 𝐶1 was given by the transverse boundary condition, it was moved to the right part 

of equation: 

𝛽2𝐶2 + 𝛾3𝐶3 =  𝛿2 − 𝛼1𝐶1                                                𝑒𝑞. 2.86 

And this equation was re-written as: 

𝑝2𝐶2 +  𝑞3𝐶3 =  𝑟1                                                       𝑒𝑞. 2.87 

Then, eq. 2.80 for 𝑗 = 3 was: 

𝛼2𝐶2 + 𝛽3𝐶3 +  𝛾4𝐶4 =  𝛿3                                               𝑒𝑞. 2.88 

Then, substituting 𝐶2 using eq. 2.87: 

𝛼2

𝑟1 −  𝑞3𝐶3

𝑝2
+  𝛽3𝐶3 +  𝛾4𝐶4 =  𝛿3                                       𝑒𝑞. 2.89 

And, as 𝑟1 was known, it was moved to the right part of the equation and the rest of 

terms were substituted in the same way as eq. 2.87: 

𝑝3𝐶3 +  𝑞4𝐶4 =  𝑟2                                                       𝑒𝑞. 2.90 

Then, following the same process for 𝑗 = 4 and follows: 

𝑝4𝐶4 +  𝑞5𝐶5 =  𝑟3                                                       𝑒𝑞. 2.91 

In the same way, eq. 2.80 for 𝑗 = 𝑁 was re-written as: 

𝑝𝑁−1𝐶𝑁−1 +  𝑞𝑁𝐶𝑁 =  𝑟𝑁−2                                               𝑒𝑞. 2.92 

And, as 𝐶𝑁 was also given by transverse boundary conditions; 𝐶𝑁−1 was solved as: 

𝐶𝑁−1 =  
𝑟𝑛−2 −  𝑞𝑁𝐶𝑁

𝑝𝑁−1
                                                   𝑒𝑞. 2.93 

This process was applied for all different longitudinal profile locations 𝑖. 

2.6.1.1. Model Modification 

West (2016) proposed this modification to consider the lateral boundary condition 
𝑑𝐶

𝑑𝑦⁄ = 0. So, instead of considering the value 𝐶1, the value 𝑑𝐶
𝑑𝑦1

⁄  was specified. So, using 

eq. 2.80 for node 𝑗 = 1: 

𝛼0𝐶0 +  𝛽1𝐶1 +  𝛾2𝐶2 =  𝛿1                                               𝑒𝑞. 2.94 

Thus, the new boundary condition established 𝐶0 =  𝐶2: 

 𝛽1𝐶1 +  (𝛼0 + 𝛾2)𝐶2 =  𝛿1                                                𝑒𝑞. 2.95 

Then for the node 𝑗 = 2, the eq. 2.80 became: 

𝛼1𝐶1 + 𝛽2𝐶2 +  𝛾3𝐶3 =  𝛿2                                               𝑒𝑞. 2.96 

Replacing the value 𝐶1 from eq. 2.95: 

𝛼1

𝛿1 −  (𝛼0 + 𝛾2)𝐶2

𝛽1
+ 𝛽2𝐶2 + 𝛾3𝐶3 =  𝛿2                                𝑒𝑞. 2.97 
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Then: 

−𝛼1(𝛼0 + 𝛾2)𝐶2

𝛽1
+ 𝛽2𝐶2 + 𝛾3𝐶3 =  𝛿2 −  

𝛼1𝛿1

𝛽1
                            𝑒𝑞. 2.98 

Grouping terms, the following equation was obtained: 

𝑝2𝐶2 +  𝑞3𝐶3 =  𝑟1                                                       𝑒𝑞. 2.99 

Where: 

𝑝2= 

−𝛼1(𝛼0 + 𝛾2)

𝛽1
+ 𝛽2                                                𝑒𝑞. 2.100 

𝑞3 =  𝛾3                                                              𝑒𝑞. 2.101 

𝑟1 =  𝛿2 −  
𝛼1𝛿1

𝛽1
                                                      𝑒𝑞. 2.102 

The same modification was applied to the other boundary condition at 𝐶𝑁, where the 

new condition 𝑑𝐶
𝑑𝑦𝑁

⁄ = 0 was considered, resulting in 𝐶𝑁+1 =  𝐶𝑁−1 

𝑝𝑁−1𝐶𝑁−1 +  𝑞𝑁𝐶𝑁 =  𝑟𝑁−2                                             𝑒𝑞. 2.103 

𝑝𝑁𝐶𝑁 +  𝑞𝑁+1𝐶𝑁+1 =  𝑟𝑁−1                                             𝑒𝑞. 2.104 

Since 𝐶𝑁+1 =  𝐶𝑁−1 for the new boundary condition, 𝐶𝑁 was solved: 

𝑝𝑁−1 (𝑟𝑁−1 − 𝑝𝑁𝐶𝑁)

𝑞𝑁+1
+  𝑞𝑁𝐶𝑁 =  𝑟𝑁−2                                   𝑒𝑞. 2.105 

−
𝑝𝑁−1𝑝𝑁

𝑞𝑁+1
𝐶𝑁 +  𝑞𝑁𝐶𝑁 =  𝑟𝑁−2 − 

𝑝𝑁−1𝑟𝑁−1

𝑞𝑁+1
                             𝑒𝑞. 2.106 

𝐶𝑁 (−
𝑝𝑁−1𝑝𝑁

𝑞𝑁+1
+ 𝑞𝑁) =  𝑟𝑁−2 − 

𝑝𝑁−1𝑟𝑁−1

𝑞𝑁+1
                             𝑒𝑞. 2.107 

Solving for 𝐶𝑁: 

𝐶𝑁 =  
𝑞𝑁+1𝑟𝑁−2 −  𝑝𝑁−1𝑟𝑁−1

−𝑝𝑁−1𝑝𝑁 +  𝑞𝑁+1𝑞𝑁
                                          𝑒𝑞. 2.108 

For 𝐶𝑁−1: 

𝐶𝑁−1 =  
𝑟𝑁−2 −  𝑞𝑁𝐶𝑁

𝑝𝑁−1
                                                 𝑒𝑞. 2.109 

Iteratively all different concentration values were solved from node  𝑗 = 𝑁 − 2 to 𝑗 =

2. Finally, concentration value 𝐶1 was obtained from eq. 2.95: 

𝐶1 =  
𝛿1 −  (𝛼0 + 𝛾2)𝐶2

𝛽1
                                               𝑒𝑞. 2.110 

In addition, as 𝐶0 =  𝐶2, then 𝛼0 =  𝛼2, 𝛾0  =  𝛾2, ℎ0 =  ℎ2 and 𝐷𝑦0
=  𝐷𝑦2
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2.7. Previous Measurement Techniques 

As explained in Section 2.4, experimental studies are commonly used to study solute 

transport and quantify mixing processes in open channel flows under different complex 

hydraulic situations such as compound or sinuous channels, or vegetated flows (Seo et al., 1994; 

Boxall et al., 2003; Zeng et al., 2008). Turbulent diffusion is one of the most important processes 

that drives mixing, as well dispersion effects due to shear layers and secondary currents. 

Therefore, it is desirable to obtain simultaneous information of both mixing processes and 

velocity fields and coherent structures in complex flows.  

The most common method to quantify mixing processes is to inject a fluorescing dye or 

saline tracer into the flow and measure the concentration downstream, where the dye 

concentrations are measured by the florescence emitted under a constant light of a given 

wavelength and the saline concentration is measured by conductivity. These measurements are 

typically taken as point measurements by devices such as fluorometers (Pilechi et al., 2016; Seo 

et al., 2016) or conductance meters (Colombani et al., 2015). However, these techniques can 

be time-consuming and require of lots of individual measurement points, which also increases 

the experimental complexity and cost. Moreover, for those situations in which the tracer 

injected is both temporally and spatially variable, the use of these techniques can become 

particularly difficult as numerous measurements may be required to understand the spread of 

solute in time and space. Finally, these techniques generally preclude the measurement of 

velocity at the same time due to obstructions produced by tracer measurement devices. 

Other techniques are used to measured velocity and mixing processes at the same time 

without the use of intrusive devices, such as thermographic cameras (Cardenas et al., 2009; 

Andrews et al., 2011). However, this method is limited by the differential of temperature 

needed between the tracer and the main flow, which is usually around 50 degrees Celsius. 

Moreover, the temperature difference may produce convection effects, which can increase the 

flow complexities.  

In previous research, Laser Induced Fluorescence (LIF) technique has also been applied 

to study mixing processes in laboratory channels under different conditions such as partially 

vegetated channels (West, 2016), sinuous channels (Hilderman and Wilson, 2006) and 

vegetated flows (Nepf et al., 1997). This technique consists of the use of a laser directed at a 

section of the flow (usually a spanwise laser transversal to the main flow direction). When dye 

flows through the light sheet, a proportion of the light power is absorbed and re-emitted by the 

tracer, hence allowing the distribution of concentration over the width/depth to be quantified. 

A camera located below a glass panel under the bed records the resulting light intensity within 

the dye’s excitation wavelengths, relating the measured light intensity with the dye 

concentration via a calibration. These laser techniques can record very low concentration values 

(in the order of 10−3mg/L) and a positive linear relationship between light intensity and 

concentration values can be obtained. However, this technique requires the use of expensive 

lasers and associated equipment and only narrow regions of the flow can be studied. 

An additional method to study mixing processes in shallow water is by using 

conventional video cameras to observe the spreading of tracer over a large area. In contrast 

with laser-induced fluorescence techniques, where the recorded fluorescence intensity is 

produced by a laser, the direct measurement of dye concentration using cameras is based on 

the light absorption by the dye and hence an inverse relationship between light intensity and 

concentration is obtained. Using this technique higher dye concentrations are required and the 
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relationship between measured intensity and concentration is not linear, with the resulting 

measurement sensitive to both flow depth and lighting conditions, hence requiring more 

complex calibration steps. The first description of such techniques can be found in Ward (1973) 

who was the first to measure concentration of a dye in a laboratory channel using cameras. 

Then, Balachandar et al. (1999) and Balu et al. (2001) obtained instantaneous dye concentration 

measurements by using a video imaging technique in shallow water. Rummel et al. (2002) ran 

an experiment to analyse a depth-averaged mass concentration in shallow turbulent flow by a 

single camera recording an area of 1.4 × 1 m2. This experiment provided a new time/cost 

effective measuring technique called Planar Concentration Analysis (PCA) to measure depth-

averaged concentrations of a conservative tracer in shallow water conditions.  

Zhang and Chu (2003) and Chu and Zhang (2004) measured the spreading of mass of a 

shallow jet injected into a stagnant water body by a video imaging technique. They performed 

a spatially averaged calibration over the recorded area to quantify concentration levels of dye 

injected. Both Balachandar et al (1999) and Zhang et al (2003) applied a fitting to relate spatially 

averaged brightness values to know concentration values, while Balu et al (2001) applied a 

neural network approach to obtain dye concentration from red/green/blue (𝑅𝐺𝐵) image values. 

Carmer et al. (2009) designed a PCA experiment to study both mixing processes and the 

shape of the large-scale eddy structures around a large cylinder obstacle in a shallow water flow 

by injecting a conservative tracer. However, they measured separately the surface velocity using 

a PIV technique. Their experiment used a similar technique as Rummel et al. (2002) by using a 

single camera video at three different positions to record an area of 1.6 × 1.2 m2 for each 

position. 

To obtain measurement of velocity-fields, Particle Image Velocimetry (PIV) is a 

technique performed quite often, using lasers to illuminate a plane of neutrally buoyant 

particles in the flow to obtain velocity fields. With this technique, one or more cameras record 

the movement of tracer particles. Then, the technique tracks windows of particle patterns 

between two temporary consecutive frames and displacement is calculated from the spatial 

variation of the particle patterns. If particles over the water surface are recorded, a Surface 

Particle Image Velocimetry (SPIV) can be used (Weitbrecht et al., 2002, Muste et al., 2014, 

Novak et al., 2017). This surface technique is easier to implement than the conventional PIV 

technique as buoyant particles are used instead of neutrally buoyancy tracers. Moreover, the 

recorded area and scales can be greater and no complex laser or camera arrangements are 

required. This technique has been used previously to study processes associated with large 

stream areas (Juez et al., 2019).  The main disadvantage of the SPIV technique is that only 

surface velocities can be recorded, and thus only 2D measurements can be obtained and hence 

is generally used in shallow water flows. However, this technique allows the recording of larger 

experimental area compared with 3D PIV techniques. In addition, the SPIV technique is more 

efficient in terms of time, increasing the number of experiments and thus the amount of 

recorded data. 
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2.8. Literature Review Summary 

Previous literature discussed in this section shows that the presence of vegetation in an 

open channel flow produces a reduction in flow velocity due to an increased drag. The resistance 

added by vegetation depends on several parameters such as the vegetation density, the stem 

diameter, the canopy configuration and the stem height. All of these parameters vary from one 

plant species to another and thus artificial vegetation offers a repeatable approach to simulate 

vegetated flows.  

Further researchers have demonstrated the creation of shear layers in flows where 

vegetation partially covers the flow area, such as submerged vegetated flows or flows with a 

vegetated bank. These configurations produce two co-flows with different primary velocities 

and a shear layer that originates between these two regions. This shear layer is associated with 

the creation of large-scale coherent eddies, which increase the turbulence intensity along the 

shear layer. 

Some researchers have studied the influence of this shear layer in the mixing processes. 

The results of Ghisalberti and Nepf (2005) in submerged vegetated flows show that the creation 

of coherent turbulence structures enhance the mass transport, increasing the vertical mixing 

compared with non-vegetated flows. In addition, some researchers have studied the transverse 

mixing processes in shear layers produced by compound channels (Guymer and Spence, 2009; 

Besio et al., 2012), where a differential of primary velocity is produced between the main 

channel and the floodplain, generating a shear layer. Results suggest an overall increase of the 

transverse mixing coefficient is produced within the sloping region between the main channel 

and the floodplain, compared with those observed within the main channel and the floodplain. 

In addition, the increase of the transverse mixing coefficient seems to depend on the increase 

of the velocity gradient between the main channel and the floodplain. 

West (2016) studied the variable 𝐷𝑦(𝑦) profile within the shear layer produced by a 

vegetated bank flow and proposed different shapes to represent the variable 𝐷𝑦(𝑦) profile. His 

results showed that a Gaussian shape is a good approximation to represent the variation of 

𝐷𝑦(𝑦). Moreover, his results showed an increase of 𝐷𝑦𝑀𝑎𝑥
 for higher velocity gradients and a 

displacement of the position of 𝐷𝑦𝑀𝑎𝑥
 far from the vegetation boundary for sparser densities. 

However, a direct relationship between the transverse mixing coefficient and the variation of 

the vegetation density and resulting velocity gradient was not found for vegetated bank flows. 

Therefore, the shear layer produced in these flows requires experimental data to further study 

its effects on the transverse mixing processes. 

This thesis aims to use experimental data gathered from vegetated bank flows with 

different vegetation densities to study both transverse mixing processes and 2D velocity fields 

in shallow water flows. To obtain this experimental data, a PCA technique is applied to measure 

the concentration distribution of dye downstream of the injection, and a SPIV technique is 

applied to record the 2D velocity fields. These techniques are considered as: 

- They allow the characterization of spreading over the length and width of the flume, 

obtaining data over a large studied area. 

- They allow more experiments to be carried out, which allows sufficient data to perform 

predictive analytical relationships. 
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- Previous work suggest that in flows with vegetated banks the dominant processes occur 

over the width, and charactering the vertical processes is not that critical for 

understanding the mixing processes.   

The variation of the transverse mixing coefficient within the shear layer is obtained in a 

similar way as previous researchers. Then, the relationship between this variation and the 

velocity fields produced in this type of flow is studied to propose an easy-to-apply model to 

predict the effects of a vegetated bank on the transverse mixing processes. In addition, previous 

researchers have studied these effects only for one vegetated bank, but there is a current lack 

of knowledge regarding the influence of two vegetated banks and the potential overlapping of 

their associated shear layers on the longitudinal velocity and the mixing processes. Therefore, a 

set of experiments with two vegetated banks is analysed to provide a new understanding of the 

shear layer interaction and its effects on transverse mixing. In addition, analytical relationships 

provided from previous experiments are validated in this new configuration. 

Finally, most previous experimental studies obtained the tracer concentration profiles 

using laser techniques such as the Laser Induced Fluorescence (LIF) or direct sampling and 

measurement by fluorometers. However, these techniques limit the number of concentration 

profiles that can be recorded along the streamwise direction, increasing the demand of time and 

precluding the simultaneous measurement of velocity. Therefore, a new measurement 

technique is required to record the tracer concentration distribution along a large studied area. 

This technique would allow to increase the number of concentration profiles available for 

further analysis and to improve the understanding of processes happening under different flow 

conditions. 
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3. Objectives of Thesis Study 

The aim of this thesis introduced previously in Section 1.1 is to quantify the influence of 

vegetated banks on transverse mixing processes in open channel flows. To achieve this, and 

based on the knowledge gaps in previous research identified in Section 2, the objectives 

proposed during this study are the follows: 

1. Development of a new measurement technique to obtain rapid synchronous 

measurement of velocity and concentration at high resolution across the full 2D surface 

area of the flow. 

2. Using the output of objective 1, collect a rigorous and novel data set of time-averaged 

longitudinal velocity and depth-averaged concentration distributions of a neutral tracer 

in flows with a vegetated bank. 

3. Using the data set demanded by objective 2, develop a model to predict both time-

averaged longitudinal velocity and transversal mixing coefficients based on the 

experimental results obtained in the previous step. 

4. Using the output of objective 1, collect a novel first data set of time-averaged 

longitudinal velocity and depth-averaged concentration distribution of a neutral tracer 

in flows with two vegetated banks. 

5. Using the data obtained from objective 4, validate the proposed model obtained in 

objective 3. 

6. Using the proposed model from objective 3 in a hypothetical scenario, study whether 

the increase of mixing caused by a vegetated bank is of sufficient scale to have a notable 

and considerable impact on the mixing of a soluble material over and above that of a 

non-vegetated channel. 
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4. Experimental Design and Methodology 

In this section, the new measurement technique is explained in detail, including the set-

up used and calibrations required. Then, a detailed description and the purpose of the 

experimental set ups are described. Finally, measurements from a first set of experiments are 

compared against data obtained by conventional measurement techniques to validate results, 

as well as some improvements discussed in the last section. Several sections of this chapter have 

been published in Rojas-Arques et al. (2018). 

 

4.1. Measurement Strategy 

Based on previous work introduced in Section 2 and in order to achieve the objectives 

explained in Section 3, surface velocity fields and depth-averaged concentration distributions 

were obtained for different shallow flow conditions. The velocity study was focused on the 

measurement of 2-D velocity fields to study vertically-oriented coherent structures produced 

within the shear layer (White and Nepf, 2008; West, 2016). Depth-averaged concentration 

distributions were studied by injecting a tracer (Rhodamine WT), later explained in Section 4.2.3, 

into the flow. The variation of the distribution of tracer concentration downstream of the 

injection point provided information about transport and mixing processes for different flow 

conditions. 

The system explained below was designed to measure this velocity and mixing processes 

along the open channel. The velocity fields were obtained using a Large-Scale PIV technique and 

the concentration distribution using a PCA technique.  

The successful use of Large-Scale PIV measurements depends on the particles used and 

their distribution along the recorded area. These particles must produce a clear contrast against 

the channel bed and their size should be sufficient to allow their identification. Moreover, 

particles density should be lower than of water to avoid settlement, but not too low to avoid 

buoyancy effects. Based on Weitbrecht et al. (2002) work, 2 mm black polypropylene particles 

with a density of 0.9 g cm3 ⁄ are considered, which produce a sufficient contrast using the 

cameras setup described below (Section 4.2.2). In addition, particles should be uniformly 

distributed in the streamwise and spanwise directions, with a distribution dense enough to 

identify the particle patterns for each instantaneous frame. Weitbrecht et al. (2002) considered 

a minimum of 6 particles for each tracked window. In previous work, a homogenous particle 

distribution in uniform flows was achieved using a particle dispenser to release uniformly the 

particles upstream of the recorded area (Rojas-Arques et al., 2018). However, for tests with high 

velocity flow gradients along the spanwise direction, a homogeneous particle density was found 

to be difficult to control. Therefore, the particles were released manually upstream of the 

recorded area, avoiding any turbulence derived from this process, and raw recorded frames 

were further analysed to remove spurious high velocities and zero velocities obtaining from 

tracked windows with not a dense enough particle distribution. 
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These PIV and PCA techniques mostly require the use of cameras to record the 

movement of surface particles and the distribution of an injected tracer respectively along a 

continuous area. Therefore, experimental data along a continuous studied area can be recorded, 

providing more information for further analysis. In addition, these techniques provide an easy 

and quick way to record the information, reducing the time demand and increasing the number 

of tests that can be performed. 

 

4.2. Set-up Description 

4.2.1. Channel Set-up 

Experiments were conducted within the University of Sheffield hydraulics laboratory. All 

tests described used an open channel constructed of reinforced glass fibre panels. The channel 

had a constant width of 1.22 m, a maximum depth of 0.5 m and an experimental length 

of 14.5 m. The channel slope was 0.00123, which was verified by measuring the water depth of 

a stationary body of water along the channel length. 

To allow the installation of vegetation of different densities, a 1.5 mm thick stainless 

steel panel was installed over the channel bed, with a 100 mm layer of stryofoam beneath the 

steel panel to ensure the securely installation of stems. This steel panel was perforated by 6 mm 

holes in a hexagonal arrangement with a 9 mm pitch. This arrangement allows the installation 

of artificial stems in a staggered distribution, which is commonly used to represent the 

randomness of real vegetation growth (Nepf, 1999; Stone and Shen, 2002). In addition, this 

arrangement allows a maximum stem density of ∅ ≈ 0.15, which is higher than those used in 

previous work (White and Nepf, 2008 and West, 2016) and is in the range of real vegetation 

studied in rivers (Huang et al., 2008 and Sun et al., 2010). Finally, this homogeneous distribution 

of perforations provides a homogeneous bed roughness over the channel width and length. In 

addition, the smooth surface of installed walls decreases the effects of wall roughness in the 

overall channel. 

A constant-head tank controlled by a valve supplied a constant discharge into the flume. 

The constant-head tank was fed from the main laboratory sump by a pump. A scheme of the 

laboratory flume is plotted in Figure 4.1. A flow baffle was fitted at the upstream end of the 

channel to dissipate turbulent structures produced by flow injection and a tailgate weir was 

fitted downstream to control downstream boundary conditions. The flow rate was measured by 

an additional cistern downstream of the channel to which the full flow could be deflected by a 

manual gate. The measurement cistern could be blocked at outlet using a manual gate, and the 

rise in water level, and hence steady flow rate, could be monitored by a float level. For each test, 

10 different flow rate measurements were recorded and the mean flow rate value was 

calculated from these. 
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4.2.2. Cameras 

As shown Figure 4.1, four GoPro Hero 4 Black Edition cameras were installed above the 

channel to record video images during experiments for Particle Image Velocimetry (PIV) and 

Planar Concentration Analysis (PCA) techniques. Cameras were installed using a structure fixed 

to the channel with aluminium beams with a double T section called Rexroth Aluminium struts. 

 Cameras were set to record video frames with a frequency of 80 Hz and an image size 

of 1440 × 1920 pixels. Cameras were positioned above the centreline of the channel width at 

a height of 1.2 m above the stainless steel perforated sheet, obtaining an image resolution of 

approximately 1 × 1 mm. Each camera was located at 1.2 m intervals along the streamwise 

direction. However, the edges of each frame were strongly distorted due to lens distortion and 

hence the edges were overlapped and cropped. The cameras recorded the videos in 𝑅𝐺𝐵 

format, therefore from each frame three matrices were generated with the red, green and blue 

components of each pixel respectively. The intensity value of each matrix was in the range of 0 

– 255 (8 bit image), where a value of 0 means no representation of the colour and 255 means 

the highest possible concentration of the colour. A 𝑅𝐺𝐵 value of (0,0,0) would hence be black, 

and a value of (255,255,255) would be white. For PIV videos, all three colour components were 

considered. However, for PCA videos only the green matrix was used, hence measuring the 

absorbance of the injected dye as explained in the following section. 

4.2.3. Dye Injection 

The dye used for all tests was Rhodamine WT. This fluorescent component had an 

absorption/fluorescence spectrum as shown in Figure 4.2 obtained from Melton and Lipp 

(2003). Its absorption has a maximum at a wavelength of 555 nm and its maximum fluorescence 

is at 583 nm. Based on this, commercial green LEDs were used to illuminate the full recorded 

area. The green spectrum was around 520 nm to 560 nm, a range that was strongly absorbed 

by Rhodamine WT and it was away from the maximum Rhodamine WT fluorescence region. 

Therefore, the dye used in experiments absorbed green light along the recorded area, producing 

a lower green intensity where the dye is present. This intensity decrease was related with the 

local amount of Rhodamine WT present for each water depth (explained in more details in 

Section 4.4).  

Figure 4.1. Longitudinal scheme profile of the experimental model. 
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This fluorescent dye was found to have low background fluorescence, which allowed a 

higher sensitivity and lower concentrations to be recorded (Smart and Laidlaw, 1977; Trudgill, 

1987). However, it was found to be affected by water temperature and water pH, and also 

presented a decay due to sunlight. Due to these reasons, tap water was used for calibration to 

avoid any reaction with chemicals that could have been added into the water system, such as 

bleach; which could distort the calibration. Moreover, regular temperature recordings were 

taken to ensure a constant water temperature and Rhodamine WT was stored into an opaque 

bottle far from sunlight. Nevertheless, the decay of Rhodamine WT is not significant over the 

time-scale of a measurement. 

A constant head tank was installed at 4 m upstream the recorded area to supply the 

Rhodamine WT dye to a vertical pipe with an internal diameter of 4 mm. This pipe was 

perforated with 1 mm diameters holes separated a distance of 10 mm along the pipe height. 

For each test, holes along the water depth released several continuous injections into the stream 

along the water depth, promoting a uniform vertically well-mixed condition in the measurement 

area. In addition, holes above the water surface were covered to avoid a higher concentration 

at the top of the water depth. The injector was located at a distance of 4 m upstream of the 

recorded area to ensure vertically well-mixed conditions. This distance was obtained by 

considering the expression to obtain the distance for complete vertical mixing (Rutherford, 

1994). If a point source at mid-depth was considered, the expression to obtain the vertically 

well-mixed distance could be obtained as: 

𝐿𝑧𝑀𝑖𝑑𝑑𝑙𝑒
= 0.134

𝑈ℎ2

𝐷𝑧
                                                       𝑒𝑞. 4.1 

Where 𝐿𝑧𝑀𝑖𝑑𝑑𝑙𝑒
is the distance needed for a vertically well-mixed condition, ℎ is the 

water depth, 𝑈 the depth-averaged longitudinal velocity and 𝐷𝑧 =  0.067ℎ𝑢∗ is the vertical 

mixing coefficient, where  𝑢∗ the shear velocity. This shear velocity could be considered as     

𝑢∗ = √ℎ𝑆𝑜𝑔, where 𝑆𝑜 is the channel slope and 𝑔 is the acceleration due to gravity. If the 

deepest water depth ℎ = 0.09 m was considered (see Section 4.5.1) and its corresponding time-

averaged longitudinal velocity for non-vegetated flow conditions 𝑈 = 0.41 m/s (see Section 

6.1.1, Table 6.1), a minimum distance for a vertically well-mixed condition for a point source 

Figure 4.2. Absorbance and fluorescence spectra for Rhodamine WT from Melton and Lipp (2003) and 

green spectra (the wavelength emitted by LED lights). 
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located at mid-depth is 𝐿𝑧𝑀𝑖𝑑𝑑𝑙𝑒
= 2.24 m. This result suggests that the distance used in these 

tests (4 m) was enough to ensure a vertically well-mixed condition. 

4.2.4. PCA Illumination 

Commercial green LED lights were used to illuminate the flume. Light strips were 

installed along the channel at different positions to ensure an approximately homogeneous 

distribution of green intensity over the recorded area. An initial configuration schematised in 

Figure 4.3. was designed with two LED strips along the top of each channel wall and one strip 

located on the beam used to fix the cameras, facing the channel bed. 

                            

 

 

4.3. Image Calibration 

Camera set-up is described in Section 4.2.2. A procedure for spatial calibration, 

synchronization and stitching between cameras was conducted to obtain a full frame video of 

the entire measurement area. These procedures are described below. 

4.3.1. Spatial Calibration 

Each frame produced by the cameras was distorted due to the fisheye effect of the 

camera. This effect was corrected by using a chequerboard pattern placed on the channel bed 

under each camera. These chequerboards consisted of an 18 mm thick marine wood sheet and 

an area of 180 × 110 cm, with black and white rectangles of 10 × 10 cm applied via a precision 

vinyl decal sticker. The centre of the sheet was located in the centre of the recorded frame for 

each camera, so that the flume area recorded by each camera was covered by the 

chequerboard. In addition, the black and white pattern was placed a distance from the channel 

bed equal to each water depth planned for the tests. This was achieved using wood strips with 

a thickness of 18 mm as packing pieces. Once the chequerboard was placed correctly under the 

camera, a video of 2 s was recorded, obtaining the mean frame of the video. For each mean 

frame, the Matlab algorithm “detecCheckerboardPoints” detected the chequerboard pattern 

giving the 𝑥 and 𝑦 coordinates of each vertex as it was shown in Figure 4.4. 

Figure 4.3. First light configuration. 
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Once the coordinates of each vertex were identified, the real world positions of them 

without fisheye distortion were introduced with the same resolution as frame pixels (1 ×

1 mm), into Matlab program to relate the positions of vertex recorded with their real positions 

along the channel. Then, the Matlab function ”fitgeotrans” inferred a geometric transformation 

to convert the vertices located by the “detecCheckerboardPoints” algorithm (known as “Moving 

Points”) onto the real ones (known as “Fixed Points”). In this case, a 2D Piecewise Linear 

Transformation was applied, obtaining a spatial transformation as observed in Figure 4.5.  

 

 

Note that in Figure 4.5 the frame produced after spatial calibration was flipped 

horizontally. This change was considered later for PIV and PCA techniques. Once the mean frame 

was obtained without fisheye distortion, the image was cropped so that only the calibrated 

region where the chequerboard appeared was used finally. The final calibrated example frame 

is shown in Figure 4.6. 

Figure 4.4. Mean frame recorded by the first upstream camera of the chequerboard pattern with 

corners identified by “detecCheckerboardPoints” algorithm for a water depth of 54 mm. 

Figure 4.5. Mean frame of chequerboard before (a) and after (b) spatial calibration. 
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Figure 4.6 shows how the outer perimeter of squares includes some distortion as they 

are outside the area of detected vertices, therefore the spatial transformation is extrapolated 

in this region. This extrapolation can induce some spatial errors in analysed data. However, dye 

plume is not studied close to the channel walls (upper and lower outer perimeter regions) and 

left and right outer perimeter regions are neglected later during stiching process (see Section 

4.3.3). 

Next, the quality of the transformation was assessed. Once the spatial calibration was 

performed for each camera and water depth, coordinates of new corners were again obtained 

using the Matlab algorithm “detectCheckerboardPoints” and differences between these new 

points and the real corner positions were obtained. Results are shown in Table 4.1, where ∆𝐷 =

 √∆𝑥2 +  ∆𝑦2. Results suggest a good calibration with mean displacement errors smaller 

than 0.2 mm and maximum displacement errors smaller than 0.75 mm. 

 

Depth Camera Mean ∆x [mm] Mean ∆y [mm] Mean ∆D [mm] Max ∆x [mm] Max ∆y [mm] Max ∆D [mm] 

36 1 0.007 0.024 0.102 0.307 0.301 0.434 
 2 0.033 0.024 0.085 0.208 0.216 0.295 
 3 0.003 0.009 0.079 0.190 0.220 0.269 
 4 0.003 0.026 0.088 0.169 0.240 0.343 

54 1 0.008 0.075 0.088 0.196 0.126 0.623 
 2 0.029 0.002 0.088 0.178 0.228 0.280 
 3 0.020 0.013 0.105 0.232 0.141 0.469 
 4 0.035 0.033 0.087 0.169 0.184 0.284 

72 1 0.017 0.025 0.108 0.222 0.383 0.359 
 2 0.027 0.014 0.119 0.266 0.246 0.745 
 3 0.027 0.001 0.088 0.227 0.332 0.356 
 4 0.013 0.045 0.081 0.212 0.264 0.300 

90 1 0.007 0.008 0.089 0.211 0.202 0.298 
 2 0.030 0.009 0.088 0.231 0.160 0.327 
 3 0.026 0.013 0.085 0.133 0.383 0.320 
 4 0.010 0.086 0.098 0.281 0.341 0.397 

 

 

 

 

Figure 4.6. Mean frame of chequerboard after spatial calibration and edges cropped. 

Table 4.1. Differences between calibrated and real chequerboard corners. 
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4.3.2. Synchronization 

Once instantaneous frames recorded by each camera were calibrated spatially, a 

synchronization between cameras was needed in order to combine the frames from all cameras 

such that they aligned in time. For each test, cameras were controlled by a GoPro Wi-Fi Remote 

control. However, this trigger only could synchronize cameras to within 0.1 s, which in this case 

meant within 8 frames. In order to reduce this recorded time difference between cameras, a 

LED timer was used to provide an external absolute time for each camera. This timer consists on 

6 columns of 10 LEDs, so each column represents a different rate of time. From right to left, 

each column is set to switch at a rate ten times slower than the previous column. In this manner, 

each LED for first column represents 1 ms and each one of the last column measures 100 s. 

For each test and once 4 cameras started to record, the LED timer was switched on and 

placed in the field of view of each camera in turn, leaving it enough time under each camera to 

record the LEDs (approx. 2 s). Then, for each camera, one frame with the LED timer was 

analysed, obtaining the absolute time reference for that frame. The delayed between cameras 

was calculated considering the absolute time showed by the LED timer for each camera and the 

frame in which the timer was recorded (eq. 4.2). 

∆𝑡 =  
𝑡𝑐𝑎𝑚 𝐵𝐿𝐸𝐷𝑠

−  𝑡𝑐𝑎𝑚 𝐴𝐿𝐸𝐷𝑠
 

(𝐹𝑟𝑎𝑚𝑒𝑐𝑎𝑚 𝐵 −  𝐹𝑟𝑎𝑚𝑒𝑐𝑎𝑚 𝐴)
80

⁄
                                     𝑒𝑞. 4.2 

Where ∆𝑡 was the desynchronization between two cameras, 𝑡𝑐𝑎𝑚 𝐵𝐿𝐸𝐷𝑠
 was the time 

recorded by LEDs timer for camera B and 𝐹𝑟𝑎𝑚𝑒𝑐𝑎𝑚 𝐵 the frame number. Frame differences 

were divided by the frequency (80 Hz) to obtain time units. An example is visualised in Figure 

4.7. 

 

 

 

 

Figure 4.7. Example of frames recorded for camera synchronization. 
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4.3.3. Stitching 

Once the recorded frames were calibrated and synchronised, a junction between 

consecutive frames was needed to convert four 1440 × 1920 pixels frames into a full 

frame that covered the recorded area. For this, it was necessary to obtain the number of pixels 

overlapping between each adjacent pair of cameras (pixels for a single position which were 

recorded by two cameras). A 18 mm thick marine wood plank with a black and white rectangle 

pattern of 95 × 65 mm was placed on the channel bed between two consecutive cameras and 

it was recorded for 5 s as shown Figure 4.8. The plank was placed at the same level as the 

calibration chequerboards for each water depth using the 18 mm spacers. Then, the overlapped 

area was obtained from each mean frame recorded by each camera, using the pattern as help. 

As a result, four synchronised frames generated individually by each camera were 

merged to generate a final frame for the full recorded area with a dimension of 1.22 × 4.48 m 

(1220 × 4480 pixels). In addition, Figure 4.8 shows the resulting stitching of two consecutive 

cameras. Coins were used to identify better the overlapped area and to demonstrate that the 

stitching method worked appropriately. 

 

 

For each pair of frames recorded by two consecutive cameras, it was observed that 

approximately 70 cm were recorded by both cameras. In order to avoid the spatial distortions 

along the outer perimeter described in Section 4.3.1, the first and last 18 cm of each frame were 

neglected, as these sections were recorded reliably by the adjacent camera. As a result, an 

overlapped area of 34 cm length was finally considered. Pixel values inside this region were 

generated using a function that combined 𝑅𝐺𝐵 values for the same spatial pixel recorded by 

both cameras. This function created values based on a weighted average of the 𝑅𝐺𝐵 values of 

the two frames so there was a gradual transition from one camera to the next. The weighting 

Figure 4.8. Example of two frames recorded by consecutive cameras and the final frame as the 

combination of them. 
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value of one camera increased sinusoidally from 0 to 1, while the weighting value of the other 

camera decreased in the same way. A graphical example of this weighted function and a real 

case are illustrated in Figure 4.9. To more clearly illustrate the method, the example (Figure 4.9 

a) considers a hypothetical image pair where all intensity pixels for Camera 1 are equal to 1 and 

all intensity values for Camera 2 are equal to 2. As a result, a transition function is created 

between the values of the two cameras. Figure 4.9 b shows a real stitching between two arrays 

of two consecutive cameras. The same weighted function was applied and the result obtained 

was a transitional set of data between both cameras based on the recorded pixel values from 

each one. The black line (result) matches the blue line (Camera 1) on the left, and gradually 

transitions to matching the red line (Camera 2) on the right. 

 

 

In order to reduce the high computation demand induced by full concentration maps 

obtained after the stitching process (1220 × 4480 pixels), and to reduce errors produced by 

small light reflections, concentration map dimensions were reduced by calculating the average 

of 10 × 10 cells. Therefore, concentration frames recorded by each camera had a dimension of 

122 × 180 cells with a resolution of 10 × 10 mm.  

Figure 4.9. Sinusoidal weight function examples. (a) considering a hypothetical image pair and (b) two 

recorded  arrays of two consecutive cameras with a concentration pixel resolution of 10 × 10 mm. 
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4.4. Dye Calibration 

Rhodamine WT concentration for each single spatial position was related with light 

intensity recorded by each camera via a dye calibration. A length of the channel of 7.59 m, which 

contained the recorded channel area, was isolated using two vertical plywood panels sealed 

with silicone. Then the isolated flume section was filled with tap water from an external cistern 

by a submerged pump to reach each water depth selected for the tests described in Section 

4.5.1. For each water depth calibrated, cameras recorded eleven different Rhodamine WT 

concentrations (including the zero concentration case) with the illumination system described 

in Section 4.2.4 switched on and with camera settings as explained in Section 4.2.2. This number 

of calibration points is similar to that used in previous work using similar techniques (Rummel 

et al., 2002 and Carmer et al., 2009). Moreover, a similar number of calibrated points were used 

in previous works that used the LIF technique (West, 2016). For each concentration, a 10 s video 

was recorded once the water was still and well mixed with the dye. Then, a time-averaged frame 

was obtained, spatial calibration as described in Section 4.3 was applied and average intensity 

of each 10 × 10 cells was calculated as explained in Section 4.3.3. Thus, an intensity map of 

122 × 180 cells was obtained for each camera and concentration with a cell size of 10 ×

10 mm.  

 

Concentration [10−6 L/L] a0.00a a1.07a a2.13a a3.19a a4.25a 

Test number 1 2 3 4 5 
 

Concentration [10−6 L/L] a5.31a a6.36a a7.42a a8.47a a9.51a a10.56a 

Test number 6 7 8 9 10 11 
 

For each cell, an expression was used to relate green intensity with concentration 

values. The same form of expression was used for all different cells but with different 

coefficients. Different functions were considered to fit the relationship between concentration 

values and green intensity. Rummel et al. (2002) and Carmer et al. (2009) applied an exponential 

relationship to relate intensity decay with concentration increase. This relationship was used to 

describe the behaviour recorded for very high concentrations, where the recorded intensity 

exhibits a vertical asymptote for higher concentration values. For the current dye calibration, 

the asymptote region was avoided in contrast to the work of Rummel et al. (2002) and Carmer 

et al. (2009), and only the region where a more linear relationship between the green intensity 

and the dye concentration was calibrated. As a result, and in order to avoid errors in the 

calibration produced by the sensitivity of an exponential fitting due to extreme values, a third 

order polynomial function was proposed to fit the relationship between the green intensity 

decay and the concentration increase. This function agreed with an exponential shape far from 

the asymptote region and produced good relationships for the specific range of concentrations 

used during calibration as shown in Figure 4.10. The time-averaged intensities for a 

representative cell located at 𝑥 =  1.5 m downstream of the first measurement profile location 

and in the centre of the width (𝑦 =  0.61 m), for the range of water depths are plotted in Figure 

4.10 against their corresponding concentration values, along with the fitted functions. In 

addition, the fitted expressions and the Pearson correlation between the fitting and the 

experimental data are shown in the figure. The errorbars show the temporal standard deviation 

of the recorded green intensity for the total recorded range (10 s). 

Table 4.2. Concentration used for dye calibration. 
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Figure 4.10 shows relationships between the green intensity and recorded dye 

concentrations avoiding the constant green intensity asymptote for very high dye 

concentrations. The variation of the pixel values are produced by the residual movement of the 

water and the dye within it, producing some concentration variations for a fixed cell over time. 

This example highlights the importance of leaving enough time after the mixing of the dye so 

that the water is completely quiet and well-mixed before the calibration videos are captured, 

reducing the variability of pixel values. In addition, Figure 4.10 shows a strong gradient of the 

green intensity values for high concentration levels and deeper water depths (and hence lower 

measurement sensitivity). These gradients could induce errors that could later affect the 

recorded concentration maps. To avoid that, maximum concentration values recorded within 

the experimental campaign were kept below 5 10−6 L/L. It should be noted that after initial 

testing and refinement of the technique, the calibration was repeated and updated (see Section 

5.5.1).  

 

4.5. Experiments 

Several sets of tests were performed to achieve the objectives proposed in Section 3.  

4.5.1. No Vegetation Tests 

A first set of experiments with no vegetation was performed using laboratory set up 

explained in Section 4.2. The aim of this set of experiments was firstly to validate method 

developed for this study (Section 4.1 to Section 4.4), and then to obtain a first set of results that 

were used and compared later with results obtained in more complex vegetated experiments. 

Experiments were undertaken using 4 different uniform flow conditions (Table 4.3).  

 

 

Figure 4.10. Example of concentration calibration for 10 mm × 10 mm cell at x =  1.5 m and y =

 0.61 m. 
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I. D. ℎ  [m] 𝑊𝑑 ℎ⁄  [−] 𝑆0 [−] 
𝐷36 0.036 33.89 0.00123 
𝐷54 0.054 22.59 0.00123 
𝐷72 0.072 16.94 0.00123 
𝐷90 0.090 13.56 0.00123 

 

These water depths were selected in order to achieve a range of shallow flow conditions 

(𝑊𝑑 ℎ⁄  ≥ 10~20), usually found in low gradient, meandering alluvial channels with floodplain 

regions (Rosgen, 1994). For all the tests described in this thesis uniform flow conditions were 

achieved by controlling both the tailgate weir downstream and the valve for flow rate explained 

in Section 4.2.1 until a constant water depth was achieved for the full channel length. The water 

depth was measured by Vernier gauges located at a distance of 0.25 m upstream and 

downstream of the recorded area and with an accuracy of 0.1 mm. Before each test, the 

pointers were calibrated to zero by touching the channel bed and then they were fixed at the 

desired water depth. Then, the system was turned on and the valve and the tailgate weir were 

controlled until the flow was adjusted so that the point gauge made contact with the flow 

surface for approximately 50 % of the time.  

From this set of experiments, an injection located at the centre of the channel was 

released for each tested water depth/flow rate to ensure no effects on the plume from the 

channel walls. Then, time-averaged transversal profile of longitudinal flow velocity and 

transverse mixing were quantified. The description of analysis process and results are shown in 

Section 5 and Section 6.1.  

4.5.2. Single Vegetated Bank Tests 

Experiments were performed to study the influence of a partially vegetated channel on 

the hydrodynamic and mixing processes. These tests were configured in a similar way to those 

designed by White and Nepf (2008) and West (2016). This set of experiments allowed the 

recording of data along the full recorded area to obtain a general understanding of processes 

and the results that could be compared with those obtained in previous experiments. 

Vegetation was simulated using plastic artificial emergent arrays similar to those used 

in previous experiments (James et al, 2004; Tanino and Nepf, 2008b) with a stem diameter 𝑑 =

0.005 m disposed in a staggered distribution, similar to those found in previous work 

(Hirschowitz and James, 2008). White and Nepf (2008) conducted similar experiments to study 

longitudinal flow velocity profiles along partially vegetated channels, using a vegetation density 

of ∅ = 0.02, 0.045 and 0.1, where ∅ is the solid volume fraction introduced in Section 2.2. West 

(2016) also studied an emergent partially vegetated layer in ponds, using a density of ∅ =

0.005 and 0.02. Huang et al (2008) and Sun et al. (2010) observed different densities for 

different real vegetation species. Based on these previous studies, three different vegetation 

densities were considered for these experiments:  

 

 

 

Table 4.3. Water depth test conditions. 
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I. D. ∅ [−] 
𝑉𝑒𝑔1 0.0015 
𝑉𝑒𝑔2 0.006 
𝑉𝑒𝑔3 0.025 

  

Vegetation densities shown in Table 4.4 were chosen to be similar to those used in 

previous works by White and Nepf (2008) and West (2016), so results could be compared. In 

addition, these densities were in the range of those observed by Hung et al. (2008) and Sun et 

al. (2010) in real vegetated rivers. In addition, Figure 4.11 shows a scheme of the stem 

distribution for each vegetation density. 

 

 

Where 𝑥𝑆𝑡𝑒𝑚 and 𝑦𝑆𝑡𝑒𝑚 are the distances between stem centres in the streamwise and 

spanwise direction respectively. The corresponding values for each vegetation density are 

𝑥𝑆𝑡𝑒𝑚 = 0.21 m, 0.1050 m and 0.0525 m and 𝑦𝑆𝑡𝑒𝑚 = 0.12 m, 0.06 m and 0.03 m for ∅ =

0.0015, 0.006 and 0.025 respectively. 

A constant vegetated bank width (𝑊𝑣𝑒𝑔) was installed along the flume for each density. 

This vegetated width was designed in order to ensure the creation of a fully developed shear 

layer for all different water depth and density conditions. 

In order to achieve this, data from previous experiments performed by White and Nepf 

(2008) and West (2016) were considered. The minimum vegetated bank width should allow the 

full development of the inner layer. White and Nepf (2007) proposed that this length depends 

on the stem drag properties (𝛿𝐼𝑛𝑛𝑒𝑟  ≈  (𝐶𝐷𝑎)−1) and White and Nepf (2008) obtained a 

maximum inner length of 0.062 m corresponding to ∅ = 0.02, ℎ = 0.068 m and 𝑈𝑓𝑟𝑒𝑒 =

0.1768 m s⁄ . They used artificial cylinders to simulate vegetation with a stem diameter 𝑑 =

0.0065 m and a vegetated bank of width 𝑊𝑣𝑒𝑔 = 0.4 m. Later West (2016) also used artificial 

vegetation with a stem diameter of 𝑑 = 0.004 m, obtaining a maximum inner length 𝛿𝐼𝑛𝑛𝑒𝑟 =

0.28 m for ∅ = 0.005, ℎ = 0.15 𝑚 and 𝑈𝑓𝑟𝑒𝑒 = 0.1 m s⁄ . 

 

Table 4.4. Vegetation density test conditions. 

Figure 4.11. Scheme of stem configuration. 
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In the same way, the maximum vegetated bank width should allow full development of 

the outer layer, allowing a region with a constant free open flow velocity with no wall effects. 

White and Nepf (2008) obtained a maximum outer length 𝛿𝑂𝑢𝑡𝑒𝑟 = 0.22 m and West (2016) 

of 𝛿𝑂𝑢𝑡𝑒𝑟 = 0.31 m. 

Based on these results, a vegetated bank width 𝑊𝑉𝑒𝑔 =  0.42 m was designed. This 

width represented 1
3⁄  of the total channel width. This width was designed to allow full 

development of both the inner and outer layer, and would leave enough space in the free open 

region to achieve a constant longitudinal free open flow with no wall effects. In addition, 10 

different injection positions were used to each water depth and vegetation density, shown in 

Figure 4.12 as red dots. The first injection was located at y = 0.48 m from the right wall and at 

0.06 m from the limit of the vegetated bank. Then the injector was moved 0.04 m each time to 

record the depth-averaged concentration distribution for different injections along the shear 

layer, and therefore, to obtain a better understanding of the mixing processes within this layer. 

The scheme of test configurations is shown in Figure 4.12 and the results from these test 

conditions are presented in Section 6.2. 

              

 

 

 

 

 

 

 

 

Figure 4.12. Scheme of one side vegetation configuration. 
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4.5.3. Two Vegetated Banks Tests 

A set of experiments was designed with vegetation at both sides of the channel width. 

The purpose of these tests was to study the behaviour and interaction of two velocity shear 

layers produced by vegetated banks. The width of free flow region (𝑊𝐹𝑟𝑒𝑒) was considered 

based on results from previous experiments shown in Section 6.2. The initial free width region 

was first designed to allow the full development of both shear layers generated by each 

vegetated bank with no overlap. Then, in subsequent experiments the free flow region was 

narrowed gradually to force an interaction between both shear layers. The width of vegetated 

patches was fixed for all experiments as 𝑊𝑉𝑒𝑔 = 0.21 m. This width of each patch was half of 

those used in previous experiments such that the total amount of vegetation remained constant 

compared with previous experiments. Therefore, the same amount of stems were used to cover 

both vegetated banks to keep a constant relationship between water depth and flow resistance 

and thus remain a quasi-constant flow rate for tests at each flow depth irrespective of vegetation 

arrangement (i.e. single or double bank). 

Rhodamine WT was injected in the centre of the channel for all different water depths 

shown in Table 4.4 (represented in Figure 4.13 as a red dot), vegetation densities and values of 

 𝑊𝐹𝑟𝑒𝑒. When  𝑊𝐹𝑟𝑒𝑒 became narrower, the injected dye entered further into the vegetated 

patches. This phenomenon affects to the recorded concentration videos as stems created visual 

barriers and concentration could not be recorded properly within the vegetated region. This 

effect also became more prominent for higher densities. Therefore, four “windows” were 

designed to solve this problem. These windows were transversal gaps in the vegetated patch 

that allowed cameras to record the full transverse profile of dye injections. These gaps were 

located just below each camera to optimise the quality of recorded concentration profiles, with 

a longitudinal distance between gaps of 1.2 m as shown Figure 4.13. Results from these test 

conditions are presented in Section 6.3. 

 

 

Figure 4.13. Scheme of both sides vegetation configuration. Black rectangles represent camera 

positions. 
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In order to achieve  𝑊𝐹𝑟𝑒𝑒 values (and given a constant 𝑊𝑉𝑒𝑔), a free flow region was 

created at both channel edges between vegetated patches and channel walls as shown in Figure 

4.13. In order to isolate the central studied region of the channel and to avoid any interactions 

with free flow regions created at each side; thin plastic walls were installed just outside the 

vegetated patches. These wall sections had an “L” shape, with a height of 0.1 m to avoid 

overflow, and a length of 0.92 m, so several of these wall sections were installed to cover the 

entire length of the channel. The base was perforated with holes following the same pattern as 

stem arrays and attached with four stems along their lengths as shown in Figure 4.14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Scheme of walls used to isolate central region. 
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5. Data Analysis and Validation of Methodology 

In this section, the processes taken to analyse the experimental data obtained by the 

methodology explained in Section 4 are described. In the first part of this section the processes 

used with PIV velocity data are explained and in the second part a brief description of those used 

to analyse PCA data are discussed. In addition, measurements of longitudinal flow velocity, 

concentration profiles and transverse mixing behaviour were obtained using different methods 

to validate the new methodology explained in Section 4. Finally, some improvements are 

discussed and further details of the techniques applied to analyse PCA data are explained. 

 

5.1. Velocity Data Analysis 

For each video recorded using the Large-Scale PIV technique, individual frames were 

dewarped to correct lens distortions and rotation produced by each camera using the spatial 

calibration described in Section 4.3.1. Then, videos were converted into black and white using 

Matlab function rgb2gray, and a mean frame for each camera was obtained by averaging over 

the 10 seconds recorded, obtaining a “background” frame over the analysed time. This frame 

was subtracted for each individual frame to delate the pattern of the metal grid used in the 

channel to fix cylinders, which otherwise could produce erroneous data during the PIV analysis. 

After this process, the main background of the channel was black and tracers were white, 

enhancing the particle identification. Finally, a single wide frame was generated for each 

instantaneous time by combining the frames for each camera considering synchronization 

explained in Section 4.3.2 and Section 4.3.3. An example of this process is shown in Figure 5.1, 

where in Figure 5.1 (a) an instantaneous black and white image from PIV videos is shown with a 

physical size of 1.22 × 1.80 m and a pixel resolution of 1 × 1 mm.  Then, in Figure 5.1 (b), the 

time-averaged frame over 10 s is shown and in Figure 5.1 (c) the resulting image from removing 

the background image (Figure 5.1 (b)) from the instantaneous frame (Figure 5.1 (a)), obtaining 

a particle density of around 9 particles cm2⁄ .  

 

 

5.1.1. Length of Videos 

For each test configuration, enough frames must be analysed to ensure all cameras 
recorded enough tracers travelling along the recorded area, and thus the time-averaged primary 
velocities obtained are representative of the flow conditions. Therefore, for each test 
configuration, a PIV video with a length of 90 s was recorded and a longitudinal velocity map 
was obtained for each couple of instantaneous frames. Then, the accumulative longitudinal 
mean velocity over time was calculated for different spatial points: 

Figure 5.1. Example of background removal for PIV. a) Instantaneous black and white frame; b) mean 

black and white background over 10 seconds and c) same instantaneous frame without background. 
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Where 𝑈𝑥  was the longitudinal flow velocity for a specific spatial position and time and 
𝑗 was the number of time samples used. For this temporal analysis, experimental configurations 
with the deepest water depth (ℎ = 0.090 m) and the densest vegetation density (∅ = 0.025) 
were considered for each test configuration. These experiments were selected because highest 
eddies should be produced in these conditions (White and Nepf, 2007) due to the highest 
velocity gradient and hence, more time would be recorded to achieve a real time-averaged 
longitudinal velocity. 

Results for accumulative time-averaged velocities for different test configurations are 
plotted in Figure 5.2. Values are normalised by the time-averaged longitudinal velocity 
considering the full video length. For no vegetation tests, the spatial point considered in Figure 
5.2 was located at 𝑥 = 1.5 m and 𝑦 = 0.61 m for ℎ = 0.090 m experiment. The point for one 
vegetated bank test was located at 𝑥 = 1.5 m and 𝑦 = 0.70 m for ℎ = 0.090 m −  ∅ = 0.025 
experiment and the point for both vegetated banks experiments was located at 𝑥 = 1.5 m and 
𝑦 = 0.90 m for ℎ = 0.090 m −  ∅ = 0.025 − 𝑊𝑓𝑟𝑒𝑒 = 0.7 m. These transverse locations were 

chosen because this is where large eddy structures were expected to be created (e.g. for one 
and two vegetated bank flows) and therefore where more variation of the instantaneous 
primary velocity was expected. 

 

 

Figure 5.2 shows how when the recorded time used to obtain the time-averaged 
longitudinal velocity increases, the mean value obtained converges to a constant time-averaged 
value, which is representative of the real time-averaged velocity of the flow. The figure shows 
an increase of time required to achieve a quasi-constant accumulative mean velocity for one 
vegetated and two vegetated banks flow respectively, suggesting an increase of the large eddy 
structures generated for each flow condition. Based on this, for each test configuration, time 
length was selected for analysis of the PIV videos are shown Table 5.1.  

 

 

Figure 5.2. Accumulative time-averaged longitudinal velocities normalised by total time-averaged 

longitudinal velocity for different test configurations and spatial points. 
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Test Configuration Video Length Analysed 
No Vegetation Tests 10 s 

One Side Vegetation Tests 40 s 
Both Sides Vegetation Tests 60 s 

 

PIV videos were supplied to the commercial PIV software Dynamic Studio, by 
DantecDynamics Ltd. In this program, all selected frames for a single test were loaded and 
dimensions of pixel frames and video frequency were introduced. The steps taken to process 
image files and obtain final velocity maps are described below. 

5.1.2. Adaptive Correlation 

Once instantaneous frames were loaded to the program, a first step was taken to obtain 
instantaneous velocity vectors based on the identification of the PIV tracer positions and their 
spatial movement between consecutive frames. A final interrogation area 𝑀 × 𝑁 was selected 
from different available options. In addition, a factor 𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 was introduced to define the 

first interrogation area (𝑀 𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟) × (𝑁 𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟). The program divided each frame using 

this grid size, identifying particles movement between each consecutive pair of frames and 
obtaining a single velocity vector for each grid cell. After this first iteration, velocity vectors 
obtained for each cell were used as the starting point to calculate velocity vector in the next 

iteration with a new interrogation area with dimensions: (𝑀 (𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 −  1)) ×

(𝑁 (𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 −  1)). This process was performed until final interrogation area defined was 

reached.  

Different final interrogation areas with the same 𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 = 3 were studied and time-

averaged longitudinal flow velocity for three fixed point were calculated as shown Figure 5.3. 
These points were located in the centre on the channel length (𝑥 = 2.2 m) and at three different 
positions along the channel width (𝑃𝑜𝑖𝑛𝑡 𝐴 was located at 𝑦 = 0.61 m, 𝑃𝑜𝑖𝑛𝑡 𝐵 at 𝑦 = 0.3 m 
and 𝑃𝑜𝑖𝑛𝑡 𝐶 at 𝑦 = 0.05 m). In addition, same interrogation area size (16 × 8) was studied 
considering two different factors (𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 = 3 and 5 ) for the same fixed points.  

 

 

Figure 5.3 shows for both 𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑦 = 0.61 m) and 𝑃𝑜𝑖𝑛𝑡 𝐵 (𝑦 = 0.30 m) that there 
was not a significant change in longitudinal flow velocity as the interrogation area size was 
varied, but nevertheless an increase of longitudinal velocity close to the wall (𝑦 = 0.05 m) was 

Table 5.1. Video lengths analysed for each test configuration. 

Figure 5.3. Time-averaged longitudinal velocity for fixed points located in the middle of the channel 

length (x = 2 m) and at different transversal positions. Crosses represent same Interrogation Area but 

with a Factor = 5. Data were obtained for test h = 0.090 m without vegetation. 



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 61 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

produced when the interrogation area was increased. This increase was produced because of a 
loss of precision in regions where a rapid velocity variation was expected. The same results were 
found for the same interrogation area size but with different 𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 values, represented in 

Figure 5.3 as crosses. In order to not to lose information in areas with high velocity gradients, 
an interrogation area of 16 × 8 was introduced for all tests. The 𝑀 dimension, corresponding to 
the channel length, was longer to ensure that particles do not move out of the interrogation 
window between the two frames. In addition, the default factor 𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 = 3 was selected as 

not significant differences were found when 𝐹𝐴𝑑𝑎𝑝𝐶𝑜𝑟𝑟 was changed. 

In addition, the minimum size of the interrogation area is defined by the particle density 
inside the interrogation area.  Particle density should be sufficient such that enough particles 
are present in each interrogation area for two consecutive frames to ensure a good particle 
detection. A minimum specified density of 6 particles for each interrogation area was considered 
in previous works (Weitbrecht et al., 2002). However, a homogeneous particle density was 
found to be difficult to control for tests with high velocity flow gradients. Thus, further analysis 
explained below was applied to ensure the velocity vectors recorded over the analysed area 
were representative of the flow. 

5.1.3. Range Validation 

After the Adaptive Correlation process, a single velocity vector map with a dimension of 
274 × 559 pixels and a pixel resolution of 4.45 × 8.01 mm was generated for each pair of 
frames. Then, a Range Validation process was performed to validate the generated vectors and 
remove spurious high velocities and zero velocities obtaining from interrogation areas with no 
PIV tracers recorded. Each single vector was validated against a defined expected range of 
velocity values, deleting all vectors outside this range.  

As different test configurations were ran, the variation of Range Validation was studied 
for no vegetated flows and for one vegetated bank flows by testing different validation ranges 
in order to find the appropriate values. The four parameters introduced in the Range Validation 
were maximum and minimum longitudinal and transversal velocity components (𝑈𝑥𝑚𝑎𝑥

 𝑈𝑥𝑚𝑖𝑛
 

and ± 𝑈𝑦𝑚𝑎𝑥
). For all different options studied, same positive and negative values were 

considered for transversal velocity components.  

Three different scenarios were studied in which two of the primary velocity components 
were fixed and the other was changed. For all iterations, time-averaged and standard deviation 
of longitudinal velocity were obtained and data from same spatial points as in Figure 5.3 were 
plotted in Figure 5.4 (left axis). In addition, for all iterations, the percentage of vectors rejected 
was obtained as shown Figure 5.4 (right axis) to ensure that fewer than 5 % of vectors were 
rejected (Adrian, 1991; Martins et al. 2018). 

Figure 5.4 (a) shows the variation of primary velocity when 𝑈𝑥𝑚𝑎𝑥
 changes. The results 

show how for smaller 𝑈𝑥𝑚𝑎𝑥
 values the primary velocity is smaller and, when 𝑈𝑥𝑚𝑎𝑥

 increases, 

the longitudinal velocity flow obtained for each position increases. This behaviour is explained 
as for lower values of 𝑈𝑥𝑚𝑎𝑥

 values, range validation deletes both spurious and valid velocity 

vectors, obtaining smaller time-averaged velocity values. In addition, once 𝑈𝑥𝑚𝑎𝑥
 is increased, 

small variations in time-averaged longitudinal velocity are observed, showing a quasi-constant 
velocity value for higher 𝑈𝑥𝑚𝑎𝑥

. This quasi-constant behaviour for higher values suggests that 

most of high velocity vector values are included in the range, and therefore the value of 𝑈𝑥𝑚𝑎𝑥
 

defined for the range validation is broad enough to include most of valid velocity vectors. 

 Figure 5.4 (b) shows time-averaged primary velocity values for same spatial positions 
for different 𝑈𝑥𝑚𝑖𝑛

. The results show that values remain quasi-constant for lower 𝑈𝑥𝑚𝑖𝑛
 values. 
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However, if 𝑈𝑥𝑚𝑖𝑛
 is too high, velocity results start to increase, with a stronger variation for the 

point closest to the wall (𝑦 = 0.05 m). This trend agrees with the behaviour described previously 
for 𝑈𝑥𝑚𝑎𝑥

 and suggests that for values of high 𝑈𝑥𝑚𝑖𝑛
, some valid velocity vectors are deleted, 

increasing the overall time-averaged velocity. Figure 5.4 (c) shows time-averaged longitudinal 
velocity obtained for different ± 𝑈𝑦𝑚𝑎𝑥

. The results show a quasi-constant trend for all different 

± 𝑈𝑦𝑚𝑎𝑥
 values, suggesting that there is not a strong transverse velocity component. 

 

Figure 5.4. Left axis) Time-averaged primary velocity results using different range validation values for 

three different spatial positions for test h = 0.090 m without vegetation. Right axis) Percentage of 

vectors rejected for different velocity component combinations for same flow conditions. 
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 Figure 5.4 (right axis) shows the percentage of vectors rejected for same range 
validation component combinations as in Figure 5.4 (left axis). Each graph represents the 
variation of one of the components whilst fixing the other two.  The results plotted in Figure 5.4 
show the highest variability in time-averaged primary velocity was obtained by changing the 
𝑈𝑥𝑚𝑎𝑥

, suggesting that this component is the most sensitive in order to obtain suitable results. 

In addition, percentages of rejected vectors in 𝑈𝑥𝑚𝑖𝑛
 and ± 𝑈𝑦𝑚𝑎𝑥

 components only were higher 

than 5 % when they started to reach values of 0.15 m s⁄  for the case of 𝑈𝑥𝑚𝑖𝑛
 and close to 

0.1 m s⁄  for the ± 𝑈𝑦𝑚𝑎𝑥
 component respectively. 

The range values were also studied for longitudinal velocity for one side vegetated bank 
flows. For this case, different  𝑈𝑥𝑚𝑖𝑛

 were used and 𝑈𝑥𝑚𝑎𝑥
 and ± 𝑈𝑦𝑚𝑎𝑥

 values were fixed. Then, 

longitudinal velocity values within the vegetated banks were compared to study how variation 
of 𝑈𝑥𝑚𝑖𝑛

 could affect velocity results. As in the range comparison for no vegetated flows, three 

different spatial point were selected for each vegetation density and water depth. These three 
points were located at the same streamwise position as those considered previously (𝑥 =
 2.2 m) and at three different spanwise positions (𝑃𝑜𝑖𝑛𝑡 𝐴 was located at 𝑦 = 0.2 m, 𝑃𝑜𝑖𝑛𝑡 𝐵 
at 𝑦 = 0.42 m and 𝑃𝑜𝑖𝑛𝑡 𝐶 at 𝑦 = 0.52 m). Therefore, 𝑃𝑜𝑖𝑛𝑡 𝐴 was located within the 
vegetated bank, 𝑃𝑜𝑖𝑛𝑡 𝐵 was located in vegetated limit and 𝑃𝑜𝑖𝑛𝑡 𝐶 was located within the 
shear layer. For each point, 𝑈𝑥𝑚𝑖𝑛

 was changed from 0 m s⁄  to 0.25 m s⁄  in increments 

of 0.05 m s⁄ . Time-average longitudinal velocity results for ℎ =  0.090 m for each vegetation 
density were plotted in Figure 5.5.   
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In Figure 5.5, the 𝑈𝑥𝑚𝑖𝑛
 values within the vegetated patch (𝑦 = 0.2 m) show an 

increased for tests ∅ = 0.0015  and ∅ = 0.006 , shown in Figure 5.5 (a) and Figure 5.5 (b) 

respectively; when the limit values increase until they reach a limit value from which 𝑈𝑥𝑚𝑖𝑛
 

values start to decrease. Similar behaviour was observed for the point located at the vegetated 

boundary (𝑦 = 0.42 m) for the same vegetation densities. This behaviour is produced because 

of the elimination of small velocities within the vegetation as the validation limit is raised. The 

decrease observed for the higher 𝑈𝑥𝑚𝑖𝑛
 values is produced as most of valid velocity vectors are 

out of the defined range, and therefore they are neglected.  

Results from ∅ = 0.025  (Figure 5.5 (c)) only shows same behaviour for the 

𝑃𝑜𝑖𝑛𝑡 𝐵 (𝑦 = 0.42 m), but 𝑃𝑜𝑖𝑛𝑡 𝐴 (𝑦 = 0.2 m) only presents a decrease of velocity values 

when 𝑈𝑥𝑚𝑖𝑛
 increases. This behaviour is produced as very low velocities are recorded within the 

vegetation for this density, and therefore even small increases of 𝑈𝑥𝑚𝑖𝑛
 produce that most of 

recorded velocity vectors are out of the valid range. In addition, the 𝑈𝑥𝑚𝑖𝑛
 values for the point 

Figure 5.5. Time-averaged primary velocity results using different range validation values for 

three different spatial positions for test h =  0.090 m with one vegetated bank. 
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located within the shear layer (𝑦 = 0.52 m) do not decrease for the higher values for any 

vegetation density, as some higher velocity vectors are still included in the range. Results plotted 

in Figure 5.5 show a strong dependence on the 𝑈𝑥𝑚𝑖𝑛
 limit of the time-averaged velocity results. 

In addition, they suggest that a 𝑈𝑥𝑚𝑖𝑛
 value of 0 m/s in the range validation was required to not 

to lose valid velocity information within the vegetated patch. 

Based on previous discussed results, a different 𝑈𝑥𝑚𝑎𝑥
 was defined for each water 

depth. This value was chosen as the lower in the quasi-constant region discussed in Figure 5.4 
(a), which percentage of rejected values was smaller than 5 % as shown in Figure 5.5 (a). In 
addition, same 𝑈𝑥𝑚𝑎𝑥

 was defined for those test configurations with the same water depth but 

with different vegetation configurations (non-vegetated flow, one vegetated bank flow and two 
vegetated banks flow), as similar time-averaged free longitudinal flow velocity were expected 
to obtain. The setting for different 𝑈𝑥𝑚𝑎𝑥

 for each water depth shown in Table 5.2 was based on 

the different maximum longitudinal flow velocities expected for each flow condition. Hence, the 
selected 𝑈𝑥𝑚𝑎𝑥

 should be large enough to allow all real instantaneous velocities recorded by 

cameras, but not so large that any erroneous high velocity values will be included. 

The same 𝑈𝑚𝑖𝑛 was set as 0 m/s for all test configurations. This value was chosen so as 
to not eliminate information within the low velocity areas, such as the vegetated banks or close 
the channel wall as shown Figure 5.5. 

Finally, the transversal velocity component was defined as  𝑈𝑦𝑚𝑎𝑥
= ± 0.35 m/s for all 

test configurations. The variation of this value did not affect to the time-averaged longitudinal 
velocity as shown Figure 5.4 (c) and allowed the correct identification of all valid vectors within 
the shear layer for the vegetated flows. Parameters are shown in Table 5.2. 

 

Depth [m] 𝑈𝑥𝑚𝑎𝑥
−  𝑈𝑥𝑚𝑖𝑛

 [m/s] ± 𝑈𝑦𝑚𝑎𝑥
 [m/s] 

0.036 0.50 –  0 ± 0.35 
0.054 0.55 –  0  ± 0.35 
0.072 0.60 –  0  ± 0.35 
0.090 0.65 –  0  ± 0.35 

 

5.1.4. Moving Average Validation 

Finally, velocity vector maps produced were validated using the Moving Average 
Validation. This step was taken to detect any vector that its value was into the previous defined 
range but it was deviated from their neighbourhood values. These vectors can be or low velocity 
vectors recorded along the free flow region or rapid velocity vectors recorded along the 
vegetated bank. These vectors are produced during the Adaptive Correlation and they are not 
discarded during the Range Validation, but do not represent the real behaviour of the flow. 

Each velocity vector was compared with values in the neighbourhood of a defined size 
area of 𝑀 × 𝑁. If vector was deviated more than the Acceptance Factor (𝐹𝑀𝑜𝑣𝐴𝑣), it was 
substituted by a new value generated by a local interpolation of 𝑛𝑖𝑡𝑒𝑟 iterations. Program allows 
to choose between three different size areas (𝑀 = 𝑁 = 3, 5 or 7). These three different options 
were studied considering the default values of Acceptance Factor 𝐹𝑀𝑜𝑣𝐴𝑣 = 0.1 and 𝑛𝑖𝑡𝑒𝑟 = 3 
as shown Figure 5.6. Different size areas were considered and time-averaged longitudinal flow 
velocity was obtained for three fixed cells located at different transversal positions (𝑃𝑜𝑖𝑛𝑡 𝐴 at 

Table 5.2. Range validation parameters used during velocity analysis for all different vegetated and 

non-vegetated tests. 
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𝑦 = 0.61 m, 𝑃𝑜𝑖𝑛𝑡 𝐵 at 𝑦 = 0.3 m and 𝑃𝑜𝑖𝑛𝑡 𝐶 at 𝑦 = 0.05 m) and fixed in the centre of the 
channel length (𝑥 =  2.2 m). 

 

Figure 5.6 shows longitudinal velocity results from same points represented in Figure 
5.3 and Figure 5.4. In the graph, different window sizes were selected using the rest of 
parameters as the default values. Results suggested that changes in size did not affect final 
results. Thus, a size area of 𝑀 = 𝑁 = 3 was selected, and rest of values were defined as 
𝐹𝑀𝑜𝑣𝐴𝑣 = 0.1 and 𝑛𝑖𝑡𝑒𝑟 = 3. 

5.1.5. Temporal Analysis 

Instantaneous velocity vector maps generated after these steps (Sections 5.1.2, 5.1.3 
and 5.1.4) were exported to Matlab, producing a matrix of longitudinal velocity data and another 
matrix of transversal velocity data. Then, a time series analysis was applied to obtain the 
temporal mean velocity field and temporal standard deviation values for longitudinal velocity to 
identify and remove any extreme outlying velocity value.  

For any single spatial position, the distribution of velocity data over time can be 
represented as a histogram as shown Figure 5.7. Figure 5.7 (a) shows the histogram related to 
a spatial point located at a streamwise position 𝑥 =  1.75 m and in the centre of the spanwise 
(𝑦 =  0.61 m) for the water depth ℎ = 0.090 m with no vegetation. In addition, Figure 5.7 (c) 
and Figure 5.7 (e) show the histograms for two different spatial points located at the same 
streamwise position for the water depth ℎ = 0.090 m with the densest vegetated bank (∅ =
0.025). Figure 5.7 (c) is located within the vegetated bank (𝑦 =  0.2 m) and Figure 5.7 (e) is 
located within the shear layer (𝑦 =  0.5 m). In addition, Figure 5.7 (b), Figure 5.7 (d) and Figure 
5.7 (f) show the longitudinal velocity signal over time for each spatial point respectively. 

The histogram plotted in Figure 5.7 (a) shows that the resulting distribution for those 
points located in the free open flow region was unimodal and roughly symmetrical. This 
distribution presents most of the velocity values (80 %) within a narrow velocity range 
(0.35 –  0.45 m/s). Some low velocity values were recorded, represented in Figure 5.7 (b) as 
spurious velocity values in blue. These velocities may be produced as not enough PIV tracers 

Figure 5.6. Time-averaged longitudinal velocity for fixed points located in the middle of the channel 

length (x =  2.2 m) for test h = 0.090 m without vegetation for different Moving Average size area. 
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were recorded for this specific time and position, and they were not properly removed by 
previous analysis steps (Sections 5.1.3 and 5.1.4). However, these values represent a very low 
portion (< 5 %) of all instantaneous values recorded, suggesting the suitability of the technique 
and the analysis applied. 

 Moreover, the histogram distribution of longitudinal velocity within the vegetation in 
Figure 5.7 (c) presented half of a unimodal distribution, with its maximum close to zero. This 
behaviour is produced as within the vegetation very low velocity values were observed. 
Moreover, the plot shows the velocity for the densest scenario, so very low velocity values are 
expected to be recorded. Similar to previous case, Figure 5.7 (d) shows in blue that the discarded 
values represent high spurious velocities recorded in some instantaneous frames. These 
instantaneous velocities could be recorded as a results of a very low concentration of PIV tracers. 
In addition, these values could also been produced for an accumulation of PIV tracers within the 
stems, producing some velocity errors. However, both Figure 5.7 (c) and Figure 5.7 (d) show 
that these spurious values represent a very low portion (< 5 %) of the full time series data. 

 Finally, for the point located within the shear layer a bimodal distribution is shown in 
Figure 5.7 (e). This bimodal distribution agrees with the histogram obtained from the ADV mid-
depth longitudinal velocity signal recorded by Dupuis et al. (2017), where the shear layer 
generated within a compound channel with vegetation along the floodplain was studied and the 
longitudinal velocity signal at the edge of the floodplain was recorded. The histogram in Figure 
5.7 (e) shows a wide range of velocity values. This is also plotted in Figure 5.7 (f) and suggests 
an increase of the turbulence within the shear layer compared with that recorded in the free 
flow region. Similar to previous cases, some very low or very high spurious velocity values seem 
to be recorded, representing a very low portion of the full time series data and suggesting the 
suitability of the technique and the analysis applied. 

 For each pixel, mean velocity value and standard deviation in time were obtained and 
values outside the region 𝑈̅𝑥,𝑦  ± 3 ∗ 𝑠𝑡𝑑(𝑈𝑥,𝑦) were discarded. The allowed region represents 

99.7 % of the total values inside a normal distribution.  



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 68 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

 

 

The mean velocity value is represented in Figure 5.7 (b), Figure 5.7 (d) and Figure 5.7 (f) 

as the black line, and boundaries of the defined region 𝑈̅𝑥,𝑦  ± 3 ∗ 𝑠𝑡𝑑(𝑈𝑥,𝑦) are represented in 

all figures as black dots. In addition, blue longitudinal velocity signals plotted in Figure 5.7 (b), 

Figure 5.7 (d) and Figure 5.7 (f) show the velocity signal for each spatial point before time series 

analysis was applied; and red signals show those values of the signals which are inside the 

defined region. As Figure 5.7 shows, this temporal analysis properly discards all extreme values 

over time for each spatial point. Once values outside the acceptable region were discarded, a 

time-averaged velocity value for each pixel was obtained. 

5.1.6. Overlapping Regions 

Time-averaged results presented a decrease of velocity values around the area where 

frames were overlapped. This decrease was produced during frame analysis due to missing and 

appearance of PIV particles between consecutive interrogation areas in the region between two 

cameras. The Matlab code ndnanfilter.m (Vargas, 2016) was used to smooth these junctions.  

Figure 5.8 (a) and Figure 5.8 (b) show the time-averaged longitudinal velocity values 

along a streamwise profile located in the centre of the spanwise (𝑦 =  0.61 m) for each water 

depth of no-vegetated flow experiments before and after the code ndnanfilter.m was applied 

respectively. In addition, Figure 5.8 (c) and Figure 5.8 (d) show the time-averaged longitudinal 

velocity map for water depth ℎ = 0.054 m before and after the code was applied respectively. 

Figure 5.7. (Left) Histogram of velocity values along time for a single pixel. Dots represent  U̅x,y  ± 3 ∗

std(Ux,y) region and (right) time series data for the same pixel. 
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Figure 5.8 (a) shows three regions with a width of approximately 0.2 m (20 values) with 
an attenuation of velocity values for different tests, in agreement with the overlapping regions 
between two consecutive cameras. These areas were converted into NaN values and 
ndnanfilter.m was applied with the option 𝑊𝑁𝐴𝑁 = 2 and a window size of 20 +  𝑛𝑣𝑎𝑙𝑢𝑒𝑠, with 
𝑛𝑣𝑎𝑙𝑢𝑒𝑠 = 4. This option configured the program to work as a NaN-interpolant/GAP-filling, so 
NaN values were substituted by new ones generated running a weighted mean using 
information from 𝑛𝑣𝑎𝑙𝑢𝑒𝑠 considered, giving more weight to those values closer to the 
substituted NaN values. 

5.1.7. Two-dimensional Median Filter 

Finally, a 3rd-order two-dimensional median filter was applied to time-averaged velocity 

maps to delete any spikes produced during the process explained previously. For this filter, an 

area was considered using the neighbourhood given around each single pixel (3 × 3 pixels) and 

producing an ouput pixel with the median value of the selected area. Figure 5.9 (a) shows the 

time-average longitudinal velocity map for water depth ℎ = 0.054 m and no-vegetated flow 

condition before the filter was applied; and Figure 5.9 (b) shows the same map after the median 

filter was applied. In addition, Figure 5.9 (c) shows the resulting averaged transverse profile for 

both velocity maps. In addition, in Figure 5.9 (c) maximum and minimum longitudinal values 

over the streamwise direction were plotted for each transverse position.  

Figure 5.8 a) Time-averaged longitudinal velocity in the centre of the channel along the channel length. 

b) shows the same velocity after ndnanfilter.m filter. 
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Both time-averaged longitudinal velocity maps (Figure 5.9 (a) and (b)) show a sharp 

decrease of velocity close the channel walls. In addition, some areas with a lower longitudinal 

velocity than that recorded in the rest of the main channel were recorded on the lower right 

zone. This decrease of velocity may be produced as not enough PIV tracers were recorded at 

certain instantaneous frames, generating lower instantaneous velocity values that later would 

affect the time-averaged ones. However, these lower areas do not affect the averaged 

transverse profiles plotted in Figure 5.9 (c). 

Moreover, transverse profiles shown in Figure 5.9 (c) indicate how median filter applied 

to the velocity did not change the mean value but decreased the variation of data along the 

channel length smoothing some spurious values. In addition, Figure 5.9 (c) shows that the 

highest spurious values before the filter was applied were obtained at the channel boundaries. 

These spurious velocities were present there as this is the region where it is more difficult to 

record a sufficient amount of PIV tracers. In addition, due the presence of the channel walls, 

there could be some accumulations of PIV tracers that would affect the recorded velocities. 

These spurious instantaneous velocities, although do not represent real velocities, may have 

values within the Range Validation defined in Section 5.1.3. However, as Figure 5.9 (c) shows, 

the amount of these false velocities that have been considered as valid values is negligible and 

they have no effect on the mean longitudinal velocity profile. 

Three different points (𝑃𝑜𝑖𝑛𝑡 𝐴, 𝑃𝑜𝑖𝑛𝑡 𝐵 and 𝑃𝑜𝑖𝑛𝑡 𝐶) were selected along the time-

averaged mean longitudinal velocity profiles for tests with no vegetation to show differences. 

As in previous comparisons, these points were located at 𝑦𝐴 = 0.61 m, 𝑦𝐵 = 0.3 m and 𝑦𝐶 =

0.05 m. For each spatial position, time-averaged mean longitudinal velocity values and their 

corresponding coefficient of variation (𝐶. 𝑉.) were obtained from transversal profiles before and 

after median filter was applied. The 𝐶. 𝑉. was calculated to quantify the variability of velocity 

data around the mean value along the streamwise direction. Results are shown in Table 5.3. 

 

Figure 5.9. Longitudinal flow maps and mean transversal flow with maximum and minimum (dots) 

velocity with and without filters for h =  0.054 m. 
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Point A 𝑈𝑥  before Median 𝑈𝑥  after Median 𝐶. 𝑉. before Median 𝐶. 𝑉. after Median 
ℎ = 0.036 𝑚 0.242 0.243 2.24 % 1.66 % 
ℎ = 0.054 𝑚 0.369 0.369 1.50 % 1.02 % 
ℎ = 0.072 𝑚 0.399 0.401 1.84 % 0.90 % 
ℎ = 0.090 𝑚 0.416 0.418 2.26 % 1.11 % 

 

Point B 𝑈𝑥  before Median 𝑈𝑥  after Median 𝐶. 𝑉. before Median 𝐶. 𝑉. after Median 
ℎ = 0.036 𝑚 0.250 0.251 2.37 % 1.57% 
ℎ = 0.054 𝑚 0.353 0.355 1.86 % 1.74% 
ℎ = 0.072 𝑚 0.360 0.362 2.70 % 2.09% 
ℎ = 0.090 𝑚 0.396 0.399 3.15 % 1.75% 

 

Point C 𝑈𝑥  before Median 𝑈𝑥  after Median 𝐶. 𝑉. before Median 𝐶. 𝑉. after Median 
ℎ = 0.036 𝑚 0.218 0.223 7.88 % 6.49 % 
ℎ = 0.054 𝑚 0.246 0.261 7.59 % 3.56 % 
ℎ = 0.072 𝑚 0.261 0.274 9.16 % 5.30 % 
ℎ = 0.090 𝑚 0.290 0.307 8.40 % 3.82 % 

 

Results in Table 5.3 show mean longitudinal velocity was not affected by median filter 

applied to time-averaged longitudinal velocity maps. Only 𝑃𝑜𝑖𝑛𝑡 𝐶 presented some increases, 

with relative differences around 5 %. These differences suggested that main erroneous data 

could be produced close to the wall. In addition, coefficient of variation results show low 

variations for most of transversal points, suggesting a quasi-constant longitudinal velocity 

obtained along the channel length. In addition, the variation decreases when median filter was 

applied, suggesting a decreased of highest and lowest erroneous velocity data. Highest 

variations were observed for point closer to wall, where it seems most of erroneous velocity 

data were produced. 

 

5.2. PIV Validation 

Time-averaged longitudinal flow velocity was obtained for tests with no vegetation 

described in Section 4.5.1 for each water depth. Cameras recorded instantaneous PIV tracers 

and frames were analysed as described in Section 5.1.  

Another two methods were used to validate the PIV velocity results. Firstly, longitudinal 

flow velocity for each water depth was measured manually by recording the travel time of small 

patches of floating tracers over 6 m of the channel length. Measurements were made at three 

spanwise positions situated at 150 mm, 250 mm and 610 mm from the channel wall. Each 

measurement was repeated three times by two different researchers to quantify errors in 

results, as shown in Table 5.4.  

 

 

Table 5.3. Time-averaged mean longitudinal velocity results with and without filter and their 

coefficient of variation for non-vegetated tests. 
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ℎ = 0.036 m 𝑦 = 0.61 m 𝑦 = 0.25 m 𝑦 = 0.15 m 
𝑈𝑥 1 [m s⁄ ] 0.321 0.316 0.300 
𝑈𝑥 2 [m s⁄ ] 0.328 0.326 0.308 
𝑈𝑥 3 [m s⁄ ] 0.330 0.326 0.316 
𝑈𝑥 4 [m s⁄ ] 0.331 0.328 0.314 
𝑈𝑥 5 [m s⁄ ] 0.330 0.317 0.314 
𝑈𝑥 6 [m s⁄ ] 0.324 0.323 0.311 

 

ℎ = 0.054 m 𝑦 = 0.61 m 𝑦 = 0.25 m 𝑦 = 0.15 m 
𝑈𝑥 1 [m s⁄ ] 0.438 0.420 0.405 
𝑈𝑥 2 [m s⁄ ] 0.444 0.411 0.392 
𝑈𝑥 3 [m s⁄ ] 0.444 0.435 0.400 
𝑈𝑥 4 [m s⁄ ] 0.441 0.422 0.403 
𝑈𝑥 5 [m s⁄ ] 0.441 0.417 0.373 
𝑈𝑥 6 [m s⁄ ] 0.448 0.414 0.380 

 

ℎ = 0.072 m 𝑦 = 0.61 m 𝑦 = 0.25 m 𝑦 = 0.15 m 
𝑈𝑥 1 [m s⁄ ] 0.526 0.504 0.484 
𝑈𝑥 2 [m s⁄ ] 0.545 0.496 0.472 
𝑈𝑥 3 [m s⁄ ] 0.504 0.488 0.476 
𝑈𝑥 4 [m s⁄ ] 0.540 0.496 0.480 
𝑈𝑥 5 [m s⁄ ] 0.540 0.500 0.476 
𝑈𝑥 6 [m s⁄ ] 0.522 0.492 0.488 

 

ℎ = 0.090 m 𝑦 = 0.61 m 𝑦 = 0.25 m 𝑦 = 0.15 m 
𝑈𝑥 1 [m s⁄ ] 0.561 0.522 0.492 
𝑈𝑥 2 [m s⁄ ] 0.536 0.522 0.513 
𝑈𝑥 3 [m s⁄ ] 0.571 0.504 0.522 
𝑈𝑥 4 [m s⁄ ] 0.522 0.509 0.484 
𝑈𝑥 5 [m s⁄ ] 0.545 0.504 0.504 
𝑈𝑥 6 [m s⁄ ] 0.556 0.513 0.496 

 

For further validation, time-averaged longitudinal flow velocity was obtained using an 

Acoustic Doppler Velocimetry (ADV) probe situated in the centre of the recorded area at 𝑥 =

2 m from the first recorded spanwise profile. Velocity data was recorded at three different 

spanwise positions situated at 150 mm, 300 mm and 610 mm from the channel wall. For each 

spanwise position, between 6 to 13 different vertical positions were recorded (depending on 

the water level) from close to the channel bed to near the water surface. For each location, 

instantaneous flow velocity was measured in the three main directions (𝑥, 𝑦 and 𝑧) during a 

recorded time of 60 s with a sampling rate of 160 Hz. Signals collected from longitudinal flow 

velocity were filtered using a despiking ADV process (Botev et al. 2010; Islam and Zhu, 2013).  

 

 

 

 

Table 5.4. Manual longitudinal velocity measurements. 
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ℎ = 0.036 m ℎ = 0.054 m ℎ = 0.072 m ℎ = 0.090 m 
0.003 m 0.003 m 0.003 m 0.003 m 
0.005 m 0.005 m 0.005 m 0.005 m 
0.010 m 0.010 m 0.010 m 0.010 m 
0.015 m 0.015 m 0.015 m 0.015 m 
0.020 m 0.020 m 0.020 m 0.020 m 
0.025 m 0.025 m 0.025 m 0.030 m 

− 0.030 m 0.030 m 0.040 m 
− 0.035 m 0.035 m 0.050 m 
− 0.040 m 0.040 m 0.055 m 
− 0.045 m 0.045 m 0.060 m 
− − 0.050 m 0.065 m 
− − 0.055 m 0.070 m 
− − 0.060 m 0.075 m 

 

For each ADV test position, the accumulative longitudinal mean velocity was studied to 

ensure recorded time was long enough to represent mean real primary velocities. Two examples 

regarding to test ℎ = 0.090 m − 𝑧 = 0.003 m and 0.075 m are plotted in Figure 5.10. It was 

found that for recorded time larger than 60 s, variations in mean primary velocities are smaller 

than 0.2 %. 

 

In addition, the power spectral density (PSD) was obtained for each signal and plotted 

in Figure 5.11. This plot identifies the dominant frequency range in the recorded signals, and 

thus it helps to identify the minimum frequency required to record properly the instantaneous 

velocity deviations produced by the turbulence in the flow. Figure 5.11 shows the PSD results 

for the same tests as in Figure 5.10 using a log scale for each axis. 

Table 5.5. Location of recorded ADV points from channel bed. 

Figure 5.10. Accumulative time-averaged longitudinal velocities normalised by total time-averaged 

longitudinal velocity for different water depth positions. 



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 74 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

 

 

Results plotted in Fig 5.11 show that the bulk of the dynamic content is below a 

frequency of 30 Hz (represented as the red lines), showing that the recorded values for higher 

frequencies are two to three orders of magnitude smaller and confirming that a frequency of 

160 Hz is more than enough to record all fluctuations produced in test flows. For each signal 

sample recorded at each water depth position, the time-averaged longitudinal velocity value 

was obtained and velocity data over each water depth was fitted using the expression 

introduced in Section 2.1: 

𝑈(𝑧)

𝑢∗
=  

1

𝜅
𝑙𝑛

𝑧

𝑘𝑠

                                                      𝑒𝑞. 5.2 

Where 𝑢∗ =  √𝑔 ℎ 𝑆𝑜. Each vertical profile of longitudinal velocity data was fitted by eq. 

5.2, obtaining a value of 𝜅 and 𝑘𝑠 for each test. Each vertical profile showed a good fitting with 

logarithmic profile with a mean correlation 𝑅 = 0.975 and a fixed equivalent roughness height 

of 0.3 mm. Two examples of recorded ADV longitudinal velocity data and their fittings are 

plotted in Figure 5.12. Tests shown correspond to 𝑦 = 0.61 m for ℎ = 0.072 m and ℎ =

0.090 m water depths. 

 

 

Figure 5.11. Discrete Fourier transformation for ADV signals for different water depth positions. 

Figure 5.12. Examples of longitudinal ADV velocity data and their logarithmic fitting for y = 0.61 m 

and water depths h = 0.072 m and h = 0.090 m. 
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From each logarithmic fitting result, the longitudinal surface velocity was obtained. In 

addition, for each measured vertical position, the longitudinal velocity predicted by the 

logarithmic law was calculated and the absolute differences between these values and those 

recorded by the ADV were obtained. Finally, the mean errors were obtained by averaging the 

calculated differences over the vertical profile. 

Finally, results obtained by both methods (manual tracer and ADV profile) were 

compared with time-averaged longitudinal surface velocity obtained by the PIV technique. PIV 

outputs were averaged in time, and the variability in space was plotted as a range from minimum 

to maximum in Figure 5.13. Surface velocity estimated from ADV data is also plotted. The error 

bars show the average variation between ADV data and logarithmic fit across the vertical range.  

 

Figure 5.13 shows that the overall velocities obtained by manual and ADV technique are 

within the PIV range. Some variances are observed between each measurement technique 

(± 5.17 % between PIV and manual technique and ± 4.26 % between PIV and ADV results) that 

could be produced by effect of some light reflections not effectively removed from raw frames, 

which could affect PIV analysis. However, Figure 5.13 confirms that results obtained by PIV 

technique are suitable to estimate time-averaged surface flow velocity. 

In addition, the flow rate measured for each flow condition as described in Section 4.2.1. 

was compared against the flow rate obtained by integrating the recorded PIV velocities plotted 

in Figure 5.13 over the channel width. The different flow rates and the relative differences for 

each water depth are shown in Table 5.6. 

 

 

Figure 5.13. Comparison of time-averaged longitudinal velocity profiles between PIV results, manual 

and ADV measurement a) h = 0.036 m, b) h = 0.054 m, c) h = 0.072 m and d) h = 0.090 m. 
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𝐷𝑒𝑝𝑡ℎ [m] 𝑄 [L/s] 𝑄𝑃𝐼𝑉  [L/s] 𝑅 𝐷 𝑄  [%] 

0.036 12.1749 13.7961 11.75 
0.054 21.6586 24.3154 10.93 
0.072 35.0996 38.6930 9.29 
0.090 52.2124 56.4218 7.46 

 

Where 𝑄 is the flow rate measured for each flow condition, 𝑄𝑃𝐼𝑉 is the flow rate 

obtained by integrating the PIV velocity over the width and 𝑅 𝐷 𝑄 is the relative difference 

between both data, obtained as: 

𝑅 𝐷 𝑄 =  
𝑄𝑃𝐼𝑉 −  𝑄

𝑄𝑃𝐼𝑉
                                                        𝑒𝑞. 5.3 

Table 5.6 shows that different flow rates are obtained by integrating the PIV velocity as 

those recorded for each flow condition, with relative differences  between 7.5 and 11.6 %. 

Higher flow rates are estimated when using the PIV data for each flow depth, which is expected 

as PIV technique measured surface velocity, rather than mid depth or depth averaged velocity.   

It should be noted that previous work considering flow structures in vegetated flows has 

obtained experimental longitudinal flow velocity using different techniques, recording velocity 

data at different vertical positions along the flow depth. Nezu and Onitsuke (2002) used a argon-

ion laser system to measure the velocity at 65 mm above the bed in a flow with a water depth 

of 70 mm, whilst White and Nepf (2007) recorded velocity using a laser-Doppler velocimetry 

system at the mid-depth in flows with a water depth range of 53 –  139 mm and Besio et al. 

(2012) recorded surface velocity using a PIV technique. Therefore, the differences between the 

recorded surface longitudinal velocity data and those expected at the mid-depth of an open 

channel flow without vegetation were estimated. The logarithmic fitting of vertical profiles of 

longitudinal velocity obtained previously (Section 5.2) were used to calculated the expected 

longitudinal velocity at the mid-depth and the differences between this velocity and that 

recorded at the surface by the PIV system were calculated for each water depth condition. 

𝑅 𝐷 𝑈 =  
𝑈𝑆𝑢𝑟𝑓𝑎𝑐𝑒 −  𝑈𝑀𝑖𝑑−𝑑𝑒𝑝𝑡ℎ

𝑈𝑆𝑢𝑟𝑓𝑎𝑐𝑒
                                            𝑒𝑞. 5.4 

Where 𝑈𝑆𝑢𝑟𝑓𝑎𝑐𝑒 is the longitudinal surface velocity and 𝑈𝑀𝑖𝑑−𝑑𝑒𝑝𝑡ℎ is the longitudinal 

velocity at the mid-depth. Results are shown in Table 5.7. 

 

Depth [m] 𝑈𝑆𝑢𝑟𝑓𝑎𝑐𝑒 – 𝑈𝑀𝑖𝑑−𝑑𝑒𝑝𝑡ℎ [m/s] 𝑅 𝐷 𝑈 [%] 

0.036 m 0.042 m/s 12.78 % 
0.054 m 0.041 m/s 10.71 % 
0.072 m 0.039 m/s 8.71 % 
0.090 m 0.029 m/s 5.70 % 

 

Table 5.6. Differences between the measured flow rate and that obtained by integrating the PIV 

velocity data. 

Table 5.7. Estimated differences between surface and mid-depth longitudinal velocity within 

experimental facility for each depth. 
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Results in Table 5.7 show a decrease of the difference between the surface and the mid-

depth longitudinal velocity for deeper flows. This decrease may be produce as the bed effect 

becomes more important for shallower flow conditions. Moreover, if the calculated mid-depth 

longitudinal velocities are considered to obtain the flow rate for each water depth, the 

differences observed in Table 5.6 are almost eliminated, with relative differences of 𝑅 𝐷 𝑄 =

6.02 %, 5.79 %, 3.23 % and 2.03 %  for h =  0.036 m, 0.054 m, 0.072 m and 0.090 m 

respectively. The differences between surface longitudinal velocity and mid-depth longitudinal 

velocity within the vegetated regions may be expected to be insignificant as velocity is 

approximately uniform over the depth when using stems of a constant diameter (Kouwen et al., 

1969, Rowiński et al, 1998, Nepf and Vivoni, 2000). However, these differences between 

surface longitudinal velocity and mid-depth longitudinal velocity should be considered when 

considering measurements in the free flow region. 

 

5.3. Concentration Data Analysis 

In this section, a brief description of the different steps taken to convert raw light 

intensity data from cameras into spatial concentration data is introduced. In addition, steps 

applied to analyse and validate the measurement technique using the first light configuration 

(as described in Section 4.2.4) are explained in the Section below. However, a more detailed 

description of steps used to analyse raw data is explained later in Section 5.6 with the revised 

light configuration explained in Section 5.5, and the corresponding concentration results. 

For each test explained in Section 4.5, a video for each dye injection was recorded during 

180 s and a time-averaged frame was produced taken central 60 s. In addition, a video with no 

injection was recorded for each flow condition with a length of 30 s to obtain the concentration 

level with no injections, or background concentration. Then, a mean value taken 10 × 10 pixels 

were obtained, creating new images of 122 × 180 pixels and a resolution of 10 × 10 mm. Both 

spatial and dye calibration explained in Section 4.3.1 and Section 4.4 were applied, obtaining a 

time-averaged concentration map with a resolution of 10 × 10 mm over a recorded area of 

1.22 × 1.80 m for each camera. Then, measured background levels from concentration frames 

were removed for each pixel.  

Once background concentration levels were removed from the time-averaged 

concentration map recorded by each camera, a concentration map over the full analysis length 

was obtain. Therefore, concentration maps of each camera required to be merged as explained 

in Section 4.3.3. Thus, first and last 18 pixels for each concentration map recorded by each 

camera were neglected, then the last and the first 35 pixels (0.35 m) for each pair of 

consecutive cameras were taken respectively and a sinusoidal weight function was applied to 

create a transition function between both cameras. 

Then, remaining noise from concentration map was eliminated. This noise is mostly 

produced by reflections of green light on the water surface, which produces some erroneous 

values when compared with those values recorded in their local neighbourhood. For this first 

light configuration, a 6th-order one-dimensional median filter was applied and a threshold value 

of 3 % was fixed, defined as a percentage of the maximum concentration value recorded for 

each concentration profile. For a generic median filter, neighbourhood values around each 

single pixel are considered. In the case of an “nth-one-dimensional median filter”, only the “n” 

neighbourhood values at each side in the spanwise direction are considered; and in the case of 
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an “nth-two-dimensional median filter”, neighbourhood values in an area of “n × n” around the 

single pixels are considered. Once the neighbourhood values are defined, an output pixel value 

is produce with the median value of the selected area for the single pixel. For the filtering 

techniques introduced here, a 6th-order one-dimensional median filter considers the values of 

6 pixels at each side of the filtered pixel in the spanwise direction. In addition, the threshold 

filtering technique was applied to delimitate the boundaries of the transverse concentration 

profiles from the residual background level. This cut off technique identifies the maximum 

concentration value for each profile and delete all values lower than the “𝑛 %” of this maximum 

value. As it was discussed in Section 2.4.2, Boxall (2000) and Dennis (2000) argued that when 

an optimization process is applied to obtain mixing coefficients, accurate mixing coefficients can 

be obtained even when the cut off applied to delimitate the concentration profiles is up to the 

10 % of the peak concentration value. Thus, a 3 % of the maximum concentration value were 

applied to the different proposed filtering techniques. 

Post filtering, to ensure mass conservation a mass balance was applied along all profiles. The 

mass over each transversal profile was obtained and the corresponding mean profile of mass for 

each injection was calculated as the mean of all lateral mass profiles. Then, a correction factor 

between the mass of each profile and the mean mass was obtained for each concentration 

profile. Finally, each single pixel value for a specific profile was divided by the factor obtained 

for this profile, obtaining the same mass for each lateral concentration profile 

 

5.4. PCA Validation 

The PCA technique was validated by comparing concentration fields recorded by 

cameras with concentration levels recorded by Cyclops-7FTM submersible sensors for a 

continuous injection of Rhodamine WT. Due to obstruction effects produced by sensors and 

differences between the sensitivity of each instrument, PCA and Cyclops measurements could 

not be taken at the same time. Instead, separate tests were run with injections with different 

dye injection concentrations. Then, results were compared using variance and ADE transverse 

mixing coefficients obtained from each test, such that the mixing rates of the solute quantified 

using each measurement technique were compared. For each test, the same flow conditions 

were established with a constant water depth of ℎ = 0.09 m and with no vegetation. 

The Cyclops probe was calibrated using 11 concentrations, including zero concentration; 

in a container of 5 L as shown in Figure 5.14 to produce a linear function relating concentration 

to probe output. 

 

 
Figure 5.14. Cyclops calibration. 
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Four concentration profiles were recorded with the Cyclops sensor, situated at 

5, 6, 7 and 8 m downstream of the injection point and within the PCA recorded area. For each 

recorded profile, 20 different points along the spanwise direction were recorded, where 16 

points were taken in increments of 20 mm to record the dye plume and the other 4 

measurements were taken far from the dye plume to establish background levels. From these 4 

measurements, the lowest value recorded considering the four concentration profiles was 

considered as the background level and it was subtracted from the rest of measurements as   

explained below. 

To ensure reliable recorded data, each point was recorded for the same time as the 

video recordings (60 s, see Section 5.3) and a time-averaged value was obtained. Then, a 

process similar to that applied to PCA data was used: the background level was removed from 

concentration profiles and values lower than 3 % of maximum peak concentrations were also 

eliminated to remove instrument noise effects. After this filtering process, a mass balance factor 

was applied to profiles located at 6, 7 and 8 m downstream of the injection point. Mass balance 

factors obtained showed a variation of ± 2.2 % over the recorded concentration profiles, 

indicating a good level of mass conservation. 

PCA raw concentration maps were obtained as explained in Section 4.3 and Section 4.4. 

Then, concentration maps were analysed using the processed explained in Section 5.3, with the 

filtering technique explained in Section 5.3: background levels were removed from the 

concentration map, a 6th-order one-dimensional median filter was applied to eliminate noise 

and all values smaller than 3 % of the peak concentration were removed. Post-filtering, a mass 

balance was applied to ensure mass concentration obtaining a variation of 5 %, indicating good 

mass conservation. Figure 5.15 shows a comparison between non-dimensional concentration 

profiles obtained using both Cyclops sensors and the PCA technique. Profiles were located at 

5, 6, 7 and 8 m from the injection point. All values were normalised by the maximum 

concentration value of the first profile.  

Error bars for Cyclops data were calculated as the standard deviation of the signal 

recorded for each measured point. In addition, during the calibration process (Section 4.4), 

absolute differences between concentration predicted by the 3rd polynomial order function and 

calibrated concentrations were calculated for each concentration value. Then, the average error 

value for all 11 calibrated points was calculated for each map position. This estimated mean 

error was then used to show PCA variation plots in Figure 5.15.  
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Concentration profiles shown in Figure 5.15 suggest an overall good match between 

both measurement techniques. A small but consistent variation was observed in the centre of 

each profile where the PCA concentration data were lower than the Cyclops values. These 

differences were likely produced by direct light reflections produced over the water surface and 

recorded by the cameras. These reflections may also affect the left part of the plume (𝑦 =

 0.3 m), where the concentrations recorded by the PCA technique were smaller than those 

obtained with the Cyclops. This miss-recording produces that the concentration profiles 

recorded using the PCA do not spread in a similar manner on the left and right side of the flume, 

producing a significant difference between the PCA and the Cyclops measurements. These 

differences observed between both techniques suggest that some further refinements of light 

configurations could be applied to improve the technique. In addition, the Pearson correlation 

between PCA concentration profiles and data recorded by Cyclops was calculated. 

𝑅 =  
𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ∑ 𝐶𝑒𝐶𝑐 − (∑ 𝐶𝑒  ∑ 𝐶𝑐)

√[𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ∑ 𝐶𝑒
2 −  (∑ 𝐶𝑒)2][𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ∑ 𝐶𝑐

2 −  (∑ 𝐶𝑐)2]

                   𝑒𝑞. 5.5 

Where 𝑛𝑣𝑎𝑙𝑢𝑒𝑠 is the number of values and 𝐶𝑒 and 𝐶𝑐 are the concentration values 

recorded by the PCA technique and by Cyclops respectively. Only PCA concentration values were 

considered for those spanwise positions where Cyclops concentration data were available. The 

Pearson correlation results show, a good correlation between each pair of concentration 

profiles: 𝑅5𝑚 = 0.97, 𝑅6𝑚 = 0.98, 𝑅7𝑚 = 0.95 and 𝑅8𝑚 = 0.93. 

In addition, the spatial variance of the transverse concentration profiles was obtained 

and a linear fitting was applied to calculate the variance slope along the streamwise direction 

using the expression proposed by Sayre and Chang (1968) introduced in Section 2.4.2.  

𝐷𝑦 =  
𝑈

2

𝑑𝜎𝑦
2

𝑑𝑥
                                                               𝑒𝑞. 5.6 

 

Figure 5.15. Comparison between PCA and Cyclops non-dimensional concentration profiles (case a =

5 m, case b = 6 m, case c = 7 m and case d = 8 m). 
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The variance of each transversal concentration profile was calculated using the 

discretised solutions of eq. 2.61, 2.62 and 2.63. 

𝑀0 =  ∑ 𝐶(𝑦)

𝑦=1.22

𝑦=1

                                                          𝑒𝑞. 5.7 

𝑀1 =  ∑ 𝐶(𝑦)𝑦

𝑦=1.22

𝑦=1

                                                         𝑒𝑞. 5.8 

𝑀2 =  ∑ 𝐶(𝑦)𝑦2

𝑦=1.22

𝑦=1

                                                       𝑒𝑞. 5.9 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  𝜑 =  
𝑀1

𝑀0
                                                      𝑒𝑞. 5.10 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜎𝑦
2 =  

𝑀2

𝑀0
− 𝜑2                                              𝑒𝑞. 5.11 

Where 𝐶(𝑦) is the concentration value recorded at each cell located at the transversal 

position 𝑦. Figure 5.16 shows the variation (increase) in spatial variance of each profile over the 

experimental length obtained using both measurement techniques and linear fitting applied to 

each case using the expression 𝑎𝜎2𝑥 + 𝑏, where 𝑎𝜎2 is the variance slope and 𝑏 is the 

independent term. As results from the two measurement techniques are taken from separate 

experiments, results are plotted in terms of variation in variance from a reference point taken 

at 𝑥 =  5 m (position of the first cyclops profile from the injection point). The variance slope 

obtained for each case was 𝑎𝑃𝐶𝐴 = 14.5 and 𝑎𝐶𝑦𝑐𝑙𝑜𝑝𝑠 = 13.9, with a Pearson correlation of 𝑅 =

0.94 for the PCA measurements and 𝑅 = 0.97 for the Cyclops measurements respectively. 

These results indicate a similar mixing process recorded by each technique, as similar variance 

slopes were obtained (eq. 5.6).  

 

Results plotted in Figure 5.16 suggest that the increase of variance for both 

measurement techniques follow the same trend. However, a diminution of variance is observed 

for the PCA concentration profiles after 7.5 m. This decay may be produced because of the lower 

Figure 5.16. Comparison between PCA and Cyclops variance. 
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concentration values recorded at the edges of the PCA concentration profiles as shown in Figure 

5.15 (around 0.3 –  0.4 m from the wall). This decay was likely produced when the concentration 

profiles fell into the areas significantly affected by the light reflections produced along the 

channel (as seen in Fig 5.15 (d)). 

5.4.1. Analytical Solution 

In addition, the ADE transverse mixing coefficient (𝐷𝑦) was obtained from concentration 

measurements obtained with both PCA and Cyclops measurement techniques. 

In this set of experiments with a straight open channel with no vegetation, the 

transverse mixing coefficient 𝐷𝑦(𝑦) was considered constant along the channel width. Thus, the 

analytical solution introduced in Section 2.4.2 was considered for the unbounded flow condition 

and considering no flux of concentration at the channel walls: 

𝐶(𝑥, 𝑦) =  
𝑀

ℎ√4𝜋𝐷𝑦𝑈𝑥
 𝑒𝑥𝑝 [−

𝑈(𝑦 − 𝑦𝐼𝑛𝑗)2

4𝐷𝑦𝑥
]                               𝑒𝑞. 5.12 

Where 𝑀 is the total mass inflow rate and  𝑦𝐼𝑛𝑗 is the transversal position of tracer 

injection. This simplification considers both the longitudinal flow velocity and the water depth 

to be constant along both the transversal and longitudinal direction. The mean velocity value 

used in the equation was obtained from the time-averaged longitudinal PIV velocity obtained in 

Section 5.2. Values at the three different spanwise positions considered to validate PIV results 

were considered (𝑦 =  0.61, 0.25 and 0.15 m), and the mean value between them was 

calculated. 

A simple optimization routine was developed to find the optimised 𝐷𝑦 value that 

provided predicted concentrations that fitted best with experimental concentration data. The 

routine was developed using the Matlab optimization function fmincon, which finds the 

minimum solution for a given function. The value being minimised was – 𝑅, where 𝑅 was the 

Pearson correlation between the experimental concentration data and the concentration data 

generated by the eq. 5.12 considering all profiles recorded over the analysis area (eq. 5.5). 

The first concentration profile was introduced as an input along with the water depth 

value and the longitudinal flow velocity. Thus, the routine started with a given initial transverse 

mixing coefficient 𝐷𝑦0
and concentration profiles downstream were predicted using input data 

into eq. 5.12. The correlation 𝑅 between the ADE concentration map and the experimental data 

was calculated and the objective value –  𝑅 was obtained. The function repeated this process 

changing the variable 𝐷𝑦 until the solution –  𝑅 was minimised. In addition, for each iteration, 

the allowed 𝐷𝑦values were constrained within the range 0 –  1. The optimised results obtained 

from each technique were shown in Table 5.8. In addition, non-dimensional transverse mixing 

coefficients (𝐷𝑦 ℎ𝑢∗⁄ ) and Pearson correlations were shown.  

 

Test 𝐷𝑦 [m2 s⁄ ] 𝐷𝑦 ℎ𝑢∗⁄  [−] 𝑅 

ℎ = 0.090 m (PCA) 0.000365 0.142 0.983 
ℎ = 0.090 m (Cyclops) 0.000381 0.143 0.994 

 

Table 5.8 Transverse mixing coefficients from PCA and Cyclops measurement techniques and 

correlations between data and ADE optimization. 
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The results in Table 5.8 show a very similar optimised transverse mixing coefficient for 

data from both PCA and Cyclops techniques. These results are in agreement with slopes of 

transverse profiles variances obtained previously and suggested a similar mixing process 

recorded by each measurement technique. In addition, these transverse mixing coefficients are 

in the line with expected values for straight channels 0.15 < 𝐷𝑦 ℎ𝑢∗⁄ < 0.3 (Rutherford, 1994). 

 

5.5. Light Configuration Improvement 

As discussed in Section 5.2 and Section 5.4, reflections from the water surface created 

by the LEDs were found to produce some errors in measurements at specific locations due to 

direct reflections. Therefore, different light configurations were tested to obtain the most 

uniform green intensity distribution over the recorded area and minimise the occurrence of 

direct reflections. Reflective and dispersive materials were used in order to avoid direct light 

reflections over the water surface and to distribute better the LED light. The material chosen 

was Reflex Diamond Reflective Sheeting. 

For the first new light configuration tested, LEDs at both sides of channel walls were left 

but the strip on the top was substituted by four strips with two on either side of the beam. This 

new distribution avoided direct light reflection over the recorded area. Finally, a rigid structure 

covered by the reflective/dispersive sheeting was installed on the top of the channel to reflect 

light downwards. It was situated 8 cm above the beams on the top of the channel and covered 

them with two sheets with a length of 27cm and with an angle of 45º. This configuration is 

schematised in Figure 5.17.  

                

 
Figure 5.17. Scheme of first light improvement configuration. 
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For the second light configuration, lights at both sides of the wall channel were moved 

to a height just over the beams where cameras were installed. In addition, reflective material 

was used to cover completely the recorded area as illustrated in Figure 5.18. 

                          

 

This configuration increased the reflective area and smoothed the light reflection of the 

top LEDs over the material, distributing more homogeneously the light over the full-recorded 

area. In order to study the green intensity distribution of each configuration, the recorded area 

was isolated and filled with tap water as described in Section 4.4. A video of 10 s was recorded 

for each case for the same water depths used previously and a time-averaged map of the green 

component was obtained from each camera. Finally, frames from different cameras were 

merged as explained in Section 4.3.3. Green intensity maps obtained from different water 

depths and light configurations are plotted in Figure 5.19, Figure 5.20 and Figure 5.21 for the 

first light configuration and both new configurations explained in this section respectively.  

Figure 5.18. Scheme of second light improvement configuration. 
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Figure 5.19. Time-averaged green intensity maps for previous light configuration. 

Figure 5.20. Time-averaged green intensity maps for first new light configuration. 
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 Figure 5.19, Figure 5.20 and Figure 5.21 shows time-averaged green intensity maps for 

the previous light configuration and the new ones proposed in this section respectively. In 

addition, Figure 5.22 represents green intensity over a transversal section of the recorded area 

situated at 1.5 m from the first recorded spanwise profile for different water depths and light 

configurations. 

The figures show three strips with higher intensity for the first light configuration. These 

lines corresponded to light reflections over the water surface, and they could potentially 

produce some errors in PCA and PIV data as was discussed in Section 5.2 and 5.4. The first new 

configuration increased the overall green intensity but produced a wide reflection strip along 

the centre of the channel. This increase was mostly produced by reflection of lights installed 

over the channel. The second new configuration produced a more homogeneous increase of 

green intensity over the full-recorded area without lines with significant peaks of intensity 

produced by reflections. Figure 5.22 also agrees with this.  

Figure 5.19, Figure 5.20, Figure 5.21 and Figure 5.22 indicate that the second new light 

configuration produced an improvement of light conditions over the recorded area increasing 

the green intensity homogeneously and without generating regions with high light reflections. 

Based on that, the second new light configuration was chosen to run all experiments described 

in Section 4.5.  

Figure 5.21. Time-averaged green intensity maps for second new light configuration. 
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5.5.1. Final Dye Calibration 

 As the lighting configuration was changed, a new camera calibration was required. It 

was performed in the same way as explained in Section 4.4, applying the same spatial and dye 

calibration processes. For dye calibration, thirteen different concentration values were recorded 

(including zero concentration) as shown Table 5.9.  

 

Concentration [10−6L/L] a0.00a a0.30a a0.74a a1.24a a1.74a a2.49a 
Test number 1 2 3 4 5 6 

 

Concentration [10−6L/L] a2.99a a3.99a a4.99a a6.99a a7.99a a9.49a a12.03a 
Test number 7 8 9 10 11 12 13 
 

Frames recorded by cameras had a pixel dimension of 1 × 1 mm. The same spatial 

average was performed for dye calibration, using the average value of each 10 × 10 pixels and 

obtaining a frame dimension of 10 × 10 mm. The same third order polynomial function was 

used to relate concentration values with corresponding green intensity for each cells. Figure 

5.23 shows the time-averaged intensities for the same representative cell showed in Figure 4.10, 

located at 𝑥 =  1.5 m downstream of the first recorded profile and in the centre of the 

width (𝑦 =  0.61 m), for the range of water depths against their corresponding concentration 

values, along with the fitted functions. The errorbars show the temporal standard deviation of 

the recorded green intensity durng the total recorded range (10 s). 

Figure 5.22. Time-averaged green intensity profiles for different water depths and light configurations. 

Table 5.9. Concentration used for dye calibration for new light configuration. 
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 A comparison between the previous and new dye calibrations is shown in Figure 5.24. 

In this figure, the example pixel was located at the mid length of the recorded area (𝑥 =  1.5 m) 

and at 𝑦 =  0.25 m from the left wall. Visual comparison shows the new light configuration 

produced a dye calibration with the same trend as the previous one, but with higher values of 

green intensity for the same concentration amount. These differences seem to be higher for 

deeper water depths. In addition, the slope of the dye calibration for the higher concentration 

values seem to be smoother, producing a trend closer to a linear variation and therefore 

reducing the minor errors produced for the higher concentration values. 

 

 

Figure 5.23. Example of dye calibration for new light configuration for a cell at x =  1.5 m and y =

 0.61 m. 

Figure 5.24. Comparison between new and previous dye calibration for a cell at x =  1.5 m and y =

 0.25 m. 
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5.6. Concentration Data Analysis with New Light Configuration 

Steps taken to analyze raw light intensity data obtained with the new light configuration 

explained in Section 5.5 are explained below. In addition, a comparison between new 

experimental data and that obtained using the first light configuration is conducted. 

5.6.1. Background Concentration Removal 

As it was introduced in Section 5.3, a time-averaged frame over the central 60 s was 

produced for each dye injection video. Then, a mean value taken 10 × 10 pixels were obtained, 

creating new images of 122 × 180 pixels and a resolution of 10 × 10 mm. In a similar way, a 

time-averaged frame over 30 s was taken for each no injection video and the same spatial 

averaged was applied. Both spatial and dye calibration explained in Section 4.3.1 and Section 

5.5.1 were applied, obtaining a time-averaged concentration map with a resolution of 10 ×

10 mm over a recorded area of 1.22 × 1.80 m for each camera. Figure 5.25 (a) shows the time-

averaged concentration map for the no-vegetated flow condition and water depth ℎ = 0.036 m 

and Figure 5.25 (b) shows the corresponding background concentration map. Then, measured 

background levels from concentration frames were removed for each pixel as shown Figure 5.25 

(c).  

 

 

In addition, in Figure 5.26 a concentration profile over the spanwise direction is shown 

for the same flow condition, located at 𝑥 =  2 m. Figure 5.26 shows both transversal dye 

concentration profile and the concentration level recorded for no injection conditions. In 

addition, the black profile shows the same concentration profile with the background 

concentration level removed. 

 

 

Figure 5.25. Time-averaged concentration profiles from camera 2 for: a) before background removal; 

b) background map; c) map with background removed. 

Figure 5.26. Concentration profiles located in the middle of camera 2 with and without background. 
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5.6.2. Concentration Maps Stitching 

The same process as  explained in Section 5.3 was applied to stich the time-averaged 

concentration maps with the background removed, obtaining a concentration map over the full 

analysis length. Figure 5.27 shows the time-averaged concentration map used from each camera 

and the full concentration map resulting after the stitching step for the no-vegetated flow 

condition and the water flow depth ℎ = 0.036 m. 

 

 

In addition, Figure 5.28 shows three different longitudinal profiles from the concentration 

maps plotted in Figure 5.27 to improve the visualization of the merger of the different time-

averaged concentration maps from the different cameras, merged using the weighted sinusoidal 

function explained in Section 4.3.3. The first longitudinal concentration profiles correspond to 

the centre of the channel width (𝑦 =  0.61 m). Then, the second profile is located between the 

maximum concentration and the end of the concentration tail (𝑦 =  0.50 m); and the last 

profile is located close to one tail of the plume (𝑦 =  0.45 m).  

Figure 5.27. Concentration map for each camera and full concentration map. 
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5.6.3. Filtering Techniques 

Same filtering technique as that described in Section 5.3 was applied to full time-averaged 

concentration maps. In addition, other four different filtering techniques were applied to 

eliminate to study the possible variations in final concentration maps resulting from each 

different process and the effects that these variations can produce in the results discussed in 

Section 6.1. For each filtering technique, a different median or mean filter was applied to the 

full concentration map. In addition, a threshold value was fixed to delimitate the plume from 

the remaining background noise. The different filtering techniques considered are the follows: 

 Filter 1: 6th-order one-dimensional median filter and a threshold of 3 %. 

 Filter 2: 6th-order one-dimensional median filter and a threshold of 5 %. 

 Filter 3: 3rd-order two-dimensional median filter and a threshold of 3 %. 

 Filter 4: 6th-order two-dimensional median filter and a threshold of 3 %. 

 Filter 5: 6th-order two-dimensional mean filter and a threshold of 3 %. 

The generic operation of the median filter was explained in Section 5.3. Moreover, the mean 

filter works in the same way, but using the mean value instead of the median one. In addition, 

two different thresholds were considered to delimitate the boundaries of the transverse 

concentration profiles. As it was explained in Section 5.3, both percentages were defined lower 

than 10 % of the maximum concentration value (Boxall, 2000 and Dennis, 2000). 

An example is shown in Figure 5.29. In Figure 5.29 (a), the same concentration profile as 

shown in Figure 5.18 (b) is plotted. Then, in Figure 5.29 (b) the same profile is plotted after a 

6th-order one-dimensional median filter was applied and in Figure 5.29 (c) a threshold of 3 % of 

the maximum concentration is applied, removing all values bellow this threshold. 

Figure 5.28. Longitudinal profiles for each camera and full concentration map. 
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As Figure 5.29 shows, the filtering technique attenuated the low concentration value 

recorded in the centre of the concentration profile, but the shape of the full profile was not 

modified. In addition, all low concentration values far from the tracer plume remained were 

effectively removed. 

5.6.4. Mass Balance Factor 

Finally, a mass balance was applied to concentration maps obtained by each filtering 

technique to ensure mass conservation. The mass over each transversal profile was obtained 

and the corresponding mean profile of mass was calculated for each injection. Then, the 

correction factor was obtained for each transverse profile and each single pixel for a specific 

profile was divided by its corresponding factor. The mean mass balance factors applied for the 

no vegetation tests for each filtering technique are shown in Figure 5.30. 

 

 

Results in Figure 5.30 show the relative variation in mass of the concentration profiles within 

the lengthwise for the different water depths and filters. Results show that the variation for the 

same water depth is quite similar for the different filters, suggesting that the different filtering 

techniques did not affect the overall concentration profiles but only removed extreme values 

along them. In addition, results show a decrease of the maximum mass variation for deeper flow 

conditions, with a maximum mass variation of 20 %, 15 %, 12 % and 10 % for the water depths 

Figure 5.29. Concentration profiles located in the middle of camera 2: a) before applied filter 1; b) 

after applied 6th-order one-dimensional median filter; c) after applied 3 % threshold. 

Figure 5.30. Mass balance factor applied for each filtering technique and water depth. Black lines 

indicate the mean mass and a deviation of ± 10 %. 
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ℎ =  0.036 m, ℎ =  0.054 m, ℎ =  0.072 m and ℎ =  0.090 m respectively. The mass 

variation recorded for ℎ =  0.036 m may be produced as a consequence of some reflections 

produced within the recorded area, which could produce a miss-recording of some parts of the 

plume downstream, decreasing the total mass amount recording within the transverse 

concentration profiles.  

5.6.5. Filtering Techniques Comparison 

The experimental data from first set of experiments described in Section 4.5.1 were 

analysed by using each filter process and the post filtering mass balance described in this section. 

Final concentration distribution maps and spanwise concentration profiles at two different 

longitudinal positions regarding to ℎ = 0.090 m are shown in Figure 5.31 and Figure 5.32 

respectively, as well as the time-averaged concentration map and the concentration profiles 

without any filtering process (i.e. with only the background levels subtracted).  

 

 

Figure 5.31. Final concentration maps without vegetation and h = 0.090 m test: a) without filter; b) 

using Filter 1; c) using Filter 2; d) using Filter 3; e) using Filter 4; f) using Filter 5. 
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Figure 5.31 shows time-averaged concentration maps using the different filters for the 

test ℎ =  0.090 m. Also Figure 5.32 represents two different concentration profiles at different 

positions (𝑥 =  1.5 m and 𝑥 =  3.0 m downstream of the first recorded area) obtained using 

different filters. In addition, in both figures the concentration data without any filtering 

technique applied was plotted. Correlations between raw data and profiles with different 

filtering techniques were calculated to quantify the differences between different processes as 

shown Table 5.10.  

 

Corr R Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 
ℎ = 0.036 m 0.982 0.981 0.981 0.982 0.967 
ℎ = 0.054 m 0.991 0.990 0.991 0.990 0.983 
ℎ = 0.072 m 0.993 0.993 0.993 0.993 0.989 
ℎ = 0.090 m 0.987 0.987 0.987 0.988 0.985 

 

For all cases shown in Table 5.10, results from no filtering technique were used as 

reference and all values were obtained comparing results from rest of filters with the raw data. 

The results plotted in Figure 5.31 and Figure 5.32 show all different filters produced the same 

overall concentration tracer distribution. Moreover, results show that concentration profiles 

obtained from different filters are similar to those recorded directly from videos. These results 

agree with those obtained in Table 5.10 and confirm that the different filtering techniques 

proposed do not change the main shape of the concentration maps, but eliminate any spurious 

value that could be recorded. In addition, results show the differences between filter processes 

were found around the location of maximum concentration values. Concentration distributions 

plot in Figure 5.31 show that for some of filter processes local increases of maximum 

Figure 5.32. Comparison between experimental concentration profiles obtained using different filter 

for test h = 0.090 m. 

Table 5.10. Correlation values between different filtering techniques results with raw data. 
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concentration values are produced along the streamwise direction, instead of a constant decay 

as shown (for example) in results from Filter 5. This behaviour could be produced due to some 

spurious concentration values recorded due to light reflections that are not properly removed 

during filter process. In the following section, the experimental concentration distributions for 

no vegetated flows obtained from each different filtering techniques were analysed in order to 

discuss the accuracy of each filtering technique. 

5.6.6. PCA Results Comparison 

The results obtained with this new light configuration and using the filtering technique 

discussed in Section 5.6 were compared against those results obtained with both the previous 

light configuration and the Cyclops results shown in Section 5.4 for the same water depth and 

flow conditions and by applying the same filtering technique (Filter 1).  

Mass balance factors along the streamwise direction obtained in Section 5.6.4 were 

compared against the mass balance factors obtained from previous light configuration 

experiments as shown Figure 5.33. 

 

 

 Figure 5.33 shows that the concentration maps recorded with the new light 

configuration present a lower variation in mass along the streamwise direction compared with 

those recorded with the previous light configuration. These differences suggest that the errors 

produced by light reflections discussed in Section 5.4 are improved with the new light 

configuration, resulting in a better conservation of mass along the streamwise direction.  

In addition, a comparison of the filtered concentration results was performed to analyse 

the improvement of this new light configuration in the data. As the light reflections reported 

previously only affected to the edge of the dye plume, a visual comparison between individual 

profiles does not reflect the overall change between both light configurations. In contrast, the 

study of the spatial variances along the streamwise direction shows a general view of the 

concentration distribution. In addition, as the variance is quite sensitive to small changes in the 

edges of the concentration profile, the comparison of the variances obtained by using both light 

Figure 5.33. Mass Balance factors applied for each light configuration and water depth. Black lines 

indicate the mean mass and a deviation of ± 10 %. 
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configurations is a good approach to study any possible improvement in the obtaining of the 

concentration maps. 

The spatial variance was obtained for each profile obtained with the new light 

configuration along the streamwise direction in the same way as variances from previous light 

configuration and Cyclops results were calculated in Section 5.4 (i.e. increases in variance 

relative to the measurements at 𝑥 =  5 m). In addition, the same linear fitting was applied to 

each case using the same expression as previously ( 𝑎𝜎2𝑥 + 𝑏). Figure 5.34 shows the spatial 

variance obtained from each measurement technique and their corresponding linear fit. 

 

 
In Figure 5.34, spatial variance of all recorded concentration profiles obtained by each 

measurement technique are plotted. The important point to note is the expected increase in 

variance for the PCA concentration profiles after 7.5 m when using the new light configuration. 

The variances obtained with the new light configuration for these last profiles show a trend more 

consistent with the overall increase of variance. In addition, a linear fitting was applied to each 

case as in Section 5.4. The variance slope obtained for the PCA profiles with the previous light 

configuration and for the Cyclops data were 𝑎𝑃𝐶𝐴 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 14.5 and 𝑎𝐶𝑦𝑐𝑙𝑜𝑝𝑠 = 13.9 

respectively, with a Pearson correlation of 𝑅 =  0.94 for the PCA technique and 𝑅 =  0.97 for 

the Cyclops respectively. For the new light configuration, the variance slope obtained was 

𝑎𝑃𝐶𝐴 𝑁𝑒𝑤 = 14.3 and the Pearson correlation was 𝑅 =  0.96. 

 The higher similarity between the Cyclops and the new light configuration slopes and 

the increase of the Pearson correlation compared with those results obtained with the previous 

configuration (Figure 5.16) show that the new light system improves the results compared with 

the previous configuration. In addition, a similar mixing process was recorded by each 

measurement technique, concluding the suitability of this technique for quantifying mixing 

processes along the experimental length. 

 

 

Figure 5.34. Comparison between PCA with each light configuration and Cyclops variance. 
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6. Results 

In this section, the analysis processes described previously are applied to the 

experimental data for each set of experiments to obtain time-averaged longitudinal velocity 

profiles and concentration distributions of Rhodamine WT downstream of injections. In 

addition, experimental relationships are proposed to relate the longitudinal velocity flow 

distributions and the transverse mixing processes in one vegetated bank flows. Finally, the 

proposed new models are applied to predict the longitudinal velocity and the tracer 

concentration profiles in flow with two vegetated banks. The results are compared with 

experimental data to show the accuracy of the proposed models. 

 

6.1. No Vegetation Tests Results 

The initial set of experiments were carried out in a channel without any vegetation as 

explained in Section 4.5.1. The results obtained from these tests were used to provide baseline 

results. For each water depth, videos were recorded to obtain PIV data, concentration 

background levels and concentration maps of the injections released in the centre of the 

channel; and were analysed following the steps described in Section 5.1 and Section 5.6 

respectively. From 2-D surface velocity experimental data, only longitudinal velocity were used 

in further analysis as is the main component which affects the transverse mixing processes for a 

continuous release (eq. 2.58) and it was the component analysed in previous work about 

transverse mixing in vegetated bank flows (West, 2016). 

Figure 6.1 shows time-averaged longitudinal velocity maps for non-vegetation tests 

after steps described in Section 5.1 were applied. In Figure 6.1, each water depth used for 

experiments are shown as 𝐷36 = 0.036 m, 𝐷54 = 0.054 m, 𝐷72 = 0.072 m and 𝐷90 =

0.090 m respectively. 

 

In addition, Figure 6.2 shows the time-average longitudinal velocity profile along the 

stremwise direction at 𝑦 =  0.61 m. Results show an approximate constant longitudinal velocity 

profiles over the length of the analysis area, confirming the presence of uniform flow. 

Figure 6.1 Time-averaged longitudinal velocity maps for non-vegetation tests. 
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For each time-averaged longitudinal velocity map obtained, Figure 6.3 shows resulting 

averaged transverse profiles of primary longitudinal velocity for the four no vegetation tests. 

The mean values were obtained from the time-averaged velocity maps (e.g. see Figure 6.1). For 

each transverse position, the mean and standard deviation of primary velocity values over the 

streamwise direction were calculated.  

 

 

The results plotted in Figure 6.3 show a quasi-uniform longitudinal velocity distribution 

over the centre portion of the channel for the two shallower water depths. However, the 

longitudinal velocity distributions regarding to ℎ = 0.072 m and ℎ = 0.090 m show some 

variations along the spanwise direction with higher standard deviations. These variations could 

be produced as these flows were those with highest Reynolds number and thus they are the 

most turbulent flows. This turbulent behaviour could produce the increase of reflections over 

Figure 6.2. Time-averaged longitudinal velocity along the streamwise direction at y =  0.61 m. 

Figure 6.3. Mean transverse velocity profiles for non-vegetation tests. 
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the water surface by the LED lights, affecting the instantaneous frames and thus producing some 

variations in the results or because of minor irregularities in the flume. In addition, the highest 

standard deviations were found close the walls. This increase could be produced due to the lack 

of particles close the walls as these sections were on the boundaries of the recorded frames. 

The concentration data was obtained from videos recorded and using five different filter 

processes (by using different mean and median filters with different windows) as it was 

explained in Section 5.6.3. The transverse mixing coefficients from each concentration map and 

filtering technique were obtained and the results compared to examine the effects of using 

different filters.  

The transverse mixing coefficients 𝐷𝑦 were obtained for each different filter result using 

the Advection-Diffusion Equation (ADE). The ADE introduced in Section 2.4.2 was simplified as 

dye was released using a vertically well-mixed and continuous injection as explained in Section 

4.2.3. Therefore, the simplified governing equation for the Advection-Diffusion Equation for 

tests with a steady vertical line source is: 

ℎ(𝑦) 𝑈(𝑦) 
𝜕𝐶(𝑥, 𝑦)

𝜕𝑥
=  

𝜕

𝜕𝑦
 [ℎ(𝑦) 𝐷𝑦(𝑦) 

𝜕𝐶(𝑥, 𝑦)

𝜕𝑦
]                            𝑒𝑞. 6.1 

 Where 𝐶(𝑥, 𝑦) was the concentration for a specific spatial position 𝑥, 𝑦; being 𝑥 and 𝑦 

longitudinal and transversal spatial coordinates respectively. ℎ(𝑦) was the water depth, 𝑈(𝑦) 

the longitudinal flow velocity and 𝐷𝑦(𝑦) the transverse mixing coefficient. 

6.1.1. Analytical Solution 

In this set of experiments with a straight open channel with no vegetation, the 

transverse mixing coefficient 𝐷𝑦(𝑦) was considered constant along the channel width. In 

addition, for all experiments carried out in this thesis, the water depth was fixed for a given flow 

rate (ℎ(𝑦) = 𝑐𝑡𝑒). Therefore, the same procedure as explained in Section 5.4.1 was 

implemented, where the analytical solution for eq.6.1 was considered for the unbounded flow 

condition and considering no flux of concentration at the channel walls: 

𝐶(𝑥, 𝑦) =  
𝑀

ℎ√4𝜋𝐷𝑦𝑈𝑥
 𝑒𝑥𝑝 [−

𝑈(𝑦 − 𝑦𝐼𝑛𝑗)2

4𝐷𝑦𝑥
]                                            𝑒𝑞. 6.2 

Where both the longitudinal flow velocity and the water depth were considered 

constant along both the transversal and longitudinal direction. Then, the same simple 

optimization routine as that explained in Section 5.4.1 was developed to find the optimised 𝐷𝑦 

value that provided predicted concentrations that fitted best with experimental concentration 

data. The routine was developed using the Matlab optimization function fmincon, which finds 

the minimum solution for a given function. The value being minimised was – 𝑅, where 𝑅 was the 

Pearson correlation between the 2D experimental concentration data and the concentration 

data generated by the eq. 6.2 considering all profiles recorded over the analysis area. 

𝑅 =  
𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ∑ 𝐶𝑒𝐶𝑝 − (∑ 𝐶𝑒  ∑ 𝐶𝑝)

√[𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ∑ 𝐶𝑒
2 −  (∑ 𝐶𝑒)2] [𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ∑ 𝐶𝑝

2 −  (∑ 𝐶𝑝)
2

]

                  𝑒𝑞. 6.3 

Where 𝑛𝑣𝑎𝑙𝑢𝑒𝑠 is the number of values and 𝐶𝑒 and 𝐶𝑝 are the experimental and the 

generated concentration dataset respectively. The first concentration profile for each water 

depth was introduced as an input along with the water depth value and the longitudinal flow 
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velocity. Thus, the routine started with a given initial transverse mixing coefficient 𝐷𝑦0
and the 

concentration profiles downstream were predicted using input data into eq. 6.2. The correlation 

𝑅 between the ADE concentration map and the experimental data was calculated and the 

objective value –  𝑅 was obtained. The function repeated this process changing the variable 𝐷𝑦 

until the solution –  𝑅 was minimised. In addition, for each iteration, the allowed 𝐷𝑦values were 

constrained within the range 0 –  1 to avoid unreliable results. 

The mean velocity value used in the equation was obtained from the transversal flow 

velocity profiles by not considering the velocity close to the walls, avoiding wall effects. The 

regions affected by the wall were identified by studying the longitudinal velocity gradient of 

transversal profiles. The regions affected by walls were considered as those where the velocity 

gradient was greater than the 5 % of the maximum value. Longitudinal velocity gradients for 

each water depth were plotted in Figure 6.4 with the threshold used for each water depth. This 

threshold was selected as it was the mean value obtained in the centre of the channel between 

𝑦 =  0.31 m and 𝑦 =  0.91 m, were the longitudinal flow was considered constant. The results 

obtained were 0.11 m, 0.13 m, 0.13 m and 0.14 m for tests ℎ = 0.036 m, ℎ = 0.054 m, ℎ =

0.072 m and ℎ = 0.090 m respectively.  
 

 

Therefore, the mean longitudinal value used in the eq. 6.2 for each water depth are 

shown in Table 6.1.  

 

𝐼. 𝐷. Water Depth [m] Mean 𝑈 [m/s] 
𝐷36 0.036 0.251 
𝐷54 0.054 0.364 
𝐷72 0.072 0.385 
𝐷90 0.090 0.410 

 

 

Figure 6.4. Longitudinal velocity gradients across the flume width obtained from the mean longitudinal 

velocity profiles. 

 

Table 6.1. Mean longitudinal free flow velocity without considering near-wall velocities. 
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6.1.2. Finite Difference Model Grid Scale Dependence 

Before the Finite Difference Model was applied to optimize the transverse mixing 

coefficient for the different tests, a simple example was proposed to check the grid scale 

dependence of the model. Numerical models are usually affected by some numerical diffusion 

produced as a result of the discretization of the continuous differential equations and it must be 

considered before their application (Piasecki and Katopodes, 1999). For the study, two Gaussian 

distributions upstream and downstream were defined to represent the two concentration 

profiles located at 𝑥 =  0 m  and 𝑥 =  0.25 m in a channel with a width of 1 m. The point of 

this is to represent a simple scenario of a continuous injection with no wall effects, similar to 

that studied in this section. In addition, the same flow conditions as those used in the 

experimental tests within this thesis were considered, with a uniform water depth of ℎ =

 0.054 m, a mean longitudinal velocity profile of 𝑈 =  0.364 m/s and a channel slope of 𝑆𝑜  =

 0.00123. Then, different transverse cell dimensions were considered for the same scenario 

(40 mm, 20 mm, 13.33 mm, 10 mm, 4 mm, 2 mm, 1.33 mm  and 1 mm) as shown Figure 6.5 

(blue). As a first step, the analytical model was applied to optimize the transverse mixing 

coefficient for the different transversal resolutions, obtaining the optimised transverse profiles 

plotted in Figure 6.5 (red) and the non-dimensional transverse mixing coefficients (𝐷𝑦 ℎ𝑢∗⁄ ) 

plotted in Figure 6.6. In addition, the same process was carried out but using the Finite 

Difference Model instead of the analytical method. In the same way, the optimised profiles 

plotted in Figure 6.5 (black) and the non-dimensional transverse mixing coefficients plotted in 

Figure 6.6 were obtained for each pixel resolution. 

 

 

Figure 6.5. Optimised profiles for different pixel resolutions using both the analytical model and the 

F.D.M. 
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The results plotted in Figure 6.6 show a variation in the non-dimensional results for the 

lowest pixel resolution obtained with the analytical model, with values of 𝐷𝑦 ℎ𝑢∗ = 0.2137⁄  and 

𝐷𝑦 ℎ𝑢∗⁄ = 0.1593 respectively. Moreover, higher values were also obtained for the two lowest 

resolution using the F.D.M., with values of 𝐷𝑦 ℎ𝑢∗ = 0.2565⁄  and 𝐷𝑦 ℎ𝑢∗⁄ = 0.1783 

respectively. For higher resolutions, both models converge to a constant value of 𝐷𝑦 ℎ𝑢∗⁄ =

0.1570 for the analytical model and 𝐷𝑦 ℎ𝑢∗⁄ = 0.1625 for the F.D.M. respectively. This 

convergence seems to start for a pixel resolution of 20 mm for the analytical model and 

13.3 mm for the F.D.M., higher than the 10 × 10 mm pixel resolution of the experimental data. 

Therefore, results suggest that once the grid scale is small enough (13.3 × 13.3 mm) there is 

no variation in results for different resolution sizes and thus no grid dependence is appreciated 

for these scales. Moreover, the results also suggest that the pixel resolution considered in this 

thesis (10 × 10 mm) is appropriate to describe the transverse concentration profiles and thus 

to obtain suitable transverse mixing results. 

6.1.3. Finite Difference Model Analysis 

The use of eq.6.2 is limited to those tests in which longitudinal flow velocity water, 

depth and transversal mixing coefficient can be considered constant along the width. The Finite 

Difference Model (F.D.M.) proposed by West (2016) and explained in Section 2.6.1 was 

therefore required to identify 𝐷𝑦 values in those cases where this assumption was not valid. An 

initial test was conducted in which results obtained using the F.D.M. and analytical solutions 

were compared in the non-vegetated case. 

6.1.3.1. F.D.M. Solution for Different Filtering Techniques 

The routine developed was the same as described in Section 6.1.1, considering 1 − 𝑅 as 

the objective function, 𝑅 being the correlation between experimental data and data generated 

by the F.D.M. solution. In the same way as in Section 6.1.1, the allowed 𝐷𝑦 values during the 

iterations were constrained between 0 and 1. For the no vegetation tests, the F.D.M. was 

Figure 6.6. Optimised non-dimensional transverse mixing coefficients for different pixel resolution 

using both the analytical model and the F.D.M. 
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simplified by considering a constant flow velocity and transverse mixing coefficient along the 

channel width 𝑈(𝑦) = 𝑐𝑡𝑒, 𝐷𝑦(𝑦) = 𝑐𝑡𝑒. This method was used to obtain transverse mixing 

coefficients for different filters and their corresponding correlations as shown Table 6.2 and 

Table 6.3 respectively. The transverse mixing results were normalised by ℎ𝑢∗, where 𝑢∗ =

 √ℎ𝑔𝑆0 is the shear velocity: 

 

𝐷𝑦 ℎ𝑢∗⁄  Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 

ℎ = 0.036 m −  F. D. M. Solution 0.146 0.145 0.163 0.218 0.141 
ℎ = 0.054 m −  F. D. M. Solution 0.128 0.144 0.194 0.251 0.128 
ℎ = 0.072 m −  F. D. M. Solution 0.153 0.169 0.195 0.249 0.158 
ℎ = 0.090 m −  F. D. M. Solution 0.136 0.139 0.174 0.233 0.137 

 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑅 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 
ℎ = 0.036 m − F. D. M. Solution 0.994 0.994 0.993 0.988 0.999 
ℎ = 0.054 m − F. D. M. Solution 0.995 0.995 0.994 0.991 0.999 
ℎ = 0.072 m − F. D. M. Solution 0.996 0.996 0.995 0.990 0.999 
ℎ = 0.090 m − F. D. M. Solution 0.997 0.997 0.994 0.987 0.999 

 

The results from Table 6.2 show a variation in the optimised transverse mixing 

coefficient depending on the filtering technique applied. Transverse mixing results for Filter 1, 

Filter 2 and Filter 5 are those that produce closer results while Filter 3 and Filter 4 produce higher 

transverse mixing results for all water depths. In addition, correlation results between 

experimental data and results in Table 6.3 show that lower correlations are obtained for Filter 

3 and Filter 4 than for the rest of results. Moreover, the best correlations are obtained for Filter 

5 for all water depths. Based on this results, Filter 5 was considered as the most accurate filtering 

technique and hence was used later to analyse the rest of experiments. 

6.1.3.2. Comparison between F.D.M. and Analytical Model Solutions 

 Finally, constant transverse mixing results obtained from the F.D.M. optimization 

routine were compared with those produced by the analytical method described in Section 

6.1.1. For both methods, experimental data using filtering technique Filter 5 were used as 

discussed in Section 6.1.2.1 and same mean velocity value was considered for each water depth. 

Results for both normalised transverse mixing coefficients and their corresponding correlations 

are shown Table 6.4 and Table 6.5 respectively. 

 

𝐷𝑦 ℎ𝑢∗⁄  ℎ = 0.036 m ℎ = 0.054 m ℎ = 0.072 m ℎ = 0.090 m 

F. D. M. solution 0.141 0.128 0.158 0.137 
Analytical solution 0.133 0.130 0.131 0.108 

 

Table 6.2. Normalised transverse mixing coefficient results from different filtering techniques and 

using F.D.M. model.  

Table 6.3. 2D correlation between experimental data and results from different filtering techniques 

and using F.D.M. model.  

Table 6.4. Normalised transverse mixing coefficient results using filtering technique Filter 5 and using 

both F.D.M. and analytical model.  
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𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑅 ℎ = 0.036 m ℎ = 0.054 m ℎ = 0.072 m ℎ = 0.090 m 
F. D. M. solution 0.999 0.999 0.999 0.999 

Analytical solution 0.992 0.994 0.997 0.997 
 

Results show in Table 6.4 suggest that both optimization models produced accurate 

results to reproduce mixing processes for each water depth. Mean transverse mixing results 

present a similar value to this proposed by Webel and Schatzman (1984) for straight laboratory 

flumes (𝐷𝑦 ℎ𝑢∗ = 0.13⁄ ). 

In addition, differences between different solutions for the same water depth are 

appreciated, being higher for the deeper water depths. These differences obtained between 

each model may be produced as the F.D.M. used a mathematical approximation to solve eq. 6.1 

and therefore, it does not produce identical value as the analytical solution. In Figure 6.7 the 

optimised concentration profiles located at x =  1.5 m and 𝑥 =  3.0 m downstream of the first 

recorded profile obtained by each model are plotted as well as the experimental concentration 

profiles to visualise the differences in results. 

 

 

 

Table 6.5. 2D correlation between experimental data and results using filtering technique Filter 5 and 

using both F.D.M. and analytical model.  
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Figure 6.7 shows the significant similarity of the optimised concentration profiles 

generated by each model. In addition, both models produced similar concentration profiles to 

those obtained experimentally. Therefore, this visual comparison and the high Pearson 

correlation values provided in Table 6.5 suggest that the F.D.M. method is a suitable approach 

to analyse the more complex flow conditions described later in this section. 

 

 

 

 

 

Figure 6.7. Comparison between experimental profiles and optimised concentration profiles obtained 

by each model. 
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6.2. Single Vegetated Bank Tests Results 

For the second set of tests, artificial vegetation was installed along one bank of the 

channel as explained in Section 4.5.2. Three different vegetation densities were considered 

( 𝑉𝑒𝑔1 − ∅ = 0.0015; 𝑉𝑒𝑔2 − ∅ =  0.006; 𝑉𝑒𝑔3 − ∅ =  0.025) with a patch width of 

0.42 m and a stem diameter of 0.005 m. The same four water depths as used in previous tests 

(ℎ = 0.036, 0.054, 0.072, 0.090 m) were considered. Both longitudinal velocity and 

concentration distribution were recorded using the same techniques described previously and 

data was analysed as described in Sections 5.1 and Section 5.6. 

6.2.1. Velocity Results 

Flow velocity videos were analysed in the same way as data in Section 5.1, using the 

same parameters during both the DantecDynamics Ltd and Matlab processes. Then, time-

averaged longitudinal velocity maps were obtained for each water depth and vegetation density 

as shown Figure 6.8. In this figure, the vegetation edge is represented as white dots. In addition, 

for each spanwise cell position, time-averaged mean longitudinal velocity and standard 

deviation values were obtained by considering all the time-averaged values along the 

streamwise direction as shown Figure 6.9. 
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Figure 6.8. Time-averaged longitudinal flow velocity maps for different one vegetated bank 

conditions. 
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Figure 6.9. Lengthwise average longitudinal velocity distributions along channel width for each 

vegetation configuration and water depth. Error bars show their temporal standard deviation. 
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Figure 6.9 shows a strong diminution of flow velocity produced within the vegetated 

patch and a shear layer developed between the vegetated and the non-vegetated regions. For 

all configurations, the highest variabilities over the analysed length were found for the deepest 

test (ℎ = 0.090 m). These variabilities could be produced due to higher turbulences produced 

for the deepest configurations. In addition, high variabilities of the mean longitudinal velocity 

values were also recorded close to the right wall. As note before, these variabilities were 

produced as it may be harder to get enough particles in these region to obtain proper 

instantaneous velocity values for each frame. Moreover, Figure 6.9 shows a decrease of the 

longitudinal velocity within the vegetation close to the wall. This decrease may be produced as 

not enough PIV tracers were recorded during experiments in that region, resulting in both high 

spurious instantaneous velocities and instantaneous velocities closer to 0, which did not 

correspond to the real velocity. High spurious velocities could be removed using the steps 

described in Section 5.1, but the lower velocities were considered as valid values, producing a 

decrease of the time-averaged longitudinal velocity in that region. Moreover, mean longitudinal 

velocity plotted in Figure 6.9 for ∅ = 0.006 and ℎ = 0.090 m shows a high standard deviation 

close the right boundary. This high variation can be also appreciated in Figure 6.8, where a 

variation of the longitudinal velocity in the free flow region along the length is observed for the 

deepest flow conditions. This variation may be produced as a homogeneous distribution of PIV 

tracers may not have been fully achieved for these tests. Therefore, more spurious 

instantaneous velocities were produced, some of which entered the range defined in Section 

5.1.3 and were hence considered as valid vectors; producing a variation in the time-averaged 

longitudinal velocity map. Moreover, these variations are more visible for deeper flow 

conditions because higher longitudinal velocities and turbulence intensities were produced, 

producing that PIV tracers flow faster within the recorded area, and thus increasing the 

sensitivity of results to a homogeneous PIV tracer distribution. These figures highlight the 

importance of a homogeneous PIV tracer distribution and a proper definition of the range 

validation to avoid erroneous values that could affect time-averaged velocity results. 

From all tests, mean longitudinal velocity within the vegetated bank and free flow region 

were obtained as the mean value inside the area from where velocity gradients were considered 

negligible (this threshold was considered when the velocity gradient was smaller than 5 % of 

the maximum velocity gradient as discussed in Section 6.1.1) as shown in Table 6.6. In addition, 

Figure 6.10 (a) shows the mean longitudinal velocity within the vegetated bank for each water 

depth, as well as the velocity differences (∆𝑈 =  𝑈𝑓𝑟𝑒𝑒 − 𝑈𝑣𝑒𝑔) between the mean longitudinal 

velocity within the vegetation and in the free flow region are shown in Figure 6.10 (b). 

 

a [stems m⁄ ] h [m] Q [l s⁄ ] 𝑈𝑓𝑟𝑒𝑒  [m s⁄ ] 𝑈𝑣𝑒𝑔  [m s⁄ ] 

0.397 0.036 8.302 0.241 0.129 
0.397 0.054 16.018 0.351 0.156 

0.397 0.072 24.529 0.391 0.166 

0.397 0.090 34.816 0.427 0.180 

1.587 0.036 7.070 0.261 0.038 

1.587 0.054 13.910 0.377 0.048 

1.587 0.072 21.658 0.438 0.051 

1.587 0.090 30.621 0.482 0.064 

6.349 0.036 7.140 0.322 0.016 

6.349 0.054 13.756 0.412 0.017 

6.349 0.072 20.683 0.500 0.017 

6.349 0.090 29.218 0.529 0.020 

Table 6.6. Mean longitudinal flows recorded along the vegetated patch and the free flow regions. 
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Figure 6.10 (a) shows the mean longitudinal velocity flows recorded within the 

vegetated patch for each test. Results show a decrease of 𝑈𝑣𝑒𝑔 when the vegetation density 

increased as expected due to increased resistance. As a result, a higher velocity difference of 

mean longitudinal velocity between the vegetated and non-vegetated regions was produced for 

higher density patches as shown Figure 6.10 (b). These results agree with past work (e.g. White 

and Nepf, 2007 and West, 2016). 

However, as discussed in Section 5.2, the velocity data recorded in this thesis represents 

the surface flow velocity whilst the experimental data recorded by White and Nepf (2007) to 

develop the model explained below were recorded at the mid-depth. Therefore, the differences 

expected by assuming the surface velocity equivalent to that at mid-depth must be discussed. 

Regarding the longitudinal velocity within the vegetation, insignificant differences between 

surface and mid-depth velocity may be expected, as the vertical profile of longitudinal velocity 

remains constant along most of the water depth for emergent vegetated flows (Kouwen et al., 

1969, Rowiński et al, 1998, Nepf and Vivoni, 2000).  

However, the vertical profile of the longitudinal velocity follows a logarithmic law in free 

open flows, and therefore some differences may be expected between the surface and the mid-

depth velocity. In Section 5.2, the fitted logarithmic law for each free condition was obtained 

based on experimental longitudinal velocities recorded along the water depth, and the 

differences between the surface longitudinal velocity and the mid-depth longitudinal velocity 

were calculated as shown Table 5.6. These differences were used below in this section to analyse 

how sensitive the proposed relationships introduced later are to the value of 𝑈𝑓𝑟𝑒𝑒  varying in 

the range identified. 

 

Figure 6.10. a) Mean longitudinal velocities recorded along vegetated patch for each water depth. b) 

Velocity differences between vegetated and non-vegetated velocities for each water depth. 
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All time-averaged mean longitudinal velocity profiles were fitted with the expression 

proposed by White and Nepf (2008) and both experimental data and fitted results are plotted 

in Figure 6.11. Their experimental results showed there are two main structures across a shear 

layer: a strong velocity variation inside the vegetation and a more gradual one in the outer 

region. In the inner region, White and Nepf (2008) proposed a hyperbolic expression to describe 

the strong velocity transition: 

𝑈𝐼𝑛𝑛𝑒𝑟 =  𝑈𝑣𝑒𝑔 +  𝑈𝑠 (1 + tanh (
𝑦 − 𝑦0

𝛿𝐼𝑛𝑛𝑒𝑟
))                                   𝑒𝑞. 6.4 

Where 𝑈𝑠 = 𝑈(𝑦0) − 𝑈𝑣𝑒𝑔, 𝑦0 is the inflection point, 𝛿𝐼𝑛𝑛𝑒𝑟 is the length of the shear 

layer inside the vegetation patch and 𝑈𝑣𝑒𝑔 and 𝑈𝐼𝑛𝑛𝑒𝑟 are the longitudinal flow velocities inside 

the vegetation and within the inner length respectively. 

For the outer region of the shear layer, White and Nepf (2008) proposed a parabolic 

flow distribution: 

𝑈𝑂𝑢𝑡𝑒𝑟 =  𝑈𝑚 + (𝑈𝑓𝑟𝑒𝑒 −  𝑈𝑚) [
𝑦 −  𝑦𝑚

𝛿𝑂𝑢𝑡𝑒𝑟
−  

1

4
(

𝑦 − 𝑦𝑚

𝛿𝑂𝑢𝑡𝑒𝑟
)

2

]                      𝑒𝑞. 6.5 

Where 𝑈𝑚 = 𝑈(𝑦𝑚) is the velocity of the point where the slopes of both inner and outer 

layers match (𝑦𝑚); 𝛿𝑂𝑢𝑡𝑒𝑟 is the length of the outer layer and 𝑈𝑓𝑟𝑒𝑒 and 𝑈𝑂𝑢𝑡𝑒𝑟 are the 

longitudinal flow velocity in the free open channel region and along the outer layer respectively. 

The inner layer was fitted using a nonlinear least-squares regression in Matlab (nlinfit) 
using eq. 6.4 and obtaining 𝛿𝐼𝑛𝑛𝑒𝑟, 𝑦0 and 𝑈𝑠 for each velocity profile. To fit the outer layer, an 
initial 𝑦𝑚 was estimated as (𝑦𝑚𝑔𝑢𝑒𝑠𝑠

=  𝑦0) and 𝛿𝑂𝑢𝑡𝑒𝑟 was obtained using the same regression 

function but using eq. 6.5. Then values of each function were compared at 𝑦𝑚. The procedure 
was repeated until minimum differences between 𝑈𝐼𝑛𝑛𝑒𝑟 and 𝑈𝑂𝑢𝑡𝑒𝑟 were obtained at 𝑦𝑚. 
Results obtained from the experimental data are shown in Table 6.7 and a visual comparison is 
plotted in Figure 6.11. 

 

 
 

𝑄[l s⁄ ] 𝑎 [stem m⁄ ] ℎ [m] 𝑈𝑓𝑟𝑒𝑒  [m s⁄ ] 𝑈𝑣𝑒𝑔  [m s⁄ ] ∆𝑈 [m s⁄ ] 𝛿𝐼𝑛𝑛𝑒𝑟  [m] 𝛿𝑂𝑢𝑡𝑒𝑟  [m] 𝑦0 [m] 

8.30 0.397 0.036 0.241 0.129 0.112 0.010 0.281 0.046 
16.02 0.397 0.054 0.351 0.156 0.195 0.042 0.280 0.108 
24.53 0.397 0.072 0.391 0.166 0.225 0.045 0.264 0.126 
34.82 0.397 0.090 0.427 0.180 0.247 0.061 0.316 0.098 
7.07 1.587 0.036 0.260 0.038 0.222 0.076 0.295 0.016 

13.91 1.587 0.054 0.377 0.048 0.328 0.098 0.365 0.027 
21.66 1.587 0.072 0.438 0.051 0.387 0.141 0.400 0.053 
30.62 1.587 0.090 0.482 0.063 0.418 0.136 0.346 0.023 
7.14 6.349 0.036 0.322 0.016 0.306 0.066 0.389 0.008 

13.76 6.349 0.054 0.411 0.017 0.394 0.074 0.272 −0.007 
20.68 6.349 0.072 0.500 0.017 0.483 0.081 0.354 −0.002 
29.22 6.349 0.090 0.528 0.020 0.508 0.083 0.334 −0.003 

 

Table 6.7. Flow velocity parameters obtained from White and Nepf (2008) approximation. 
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Figure 6.11. Fitted experimental data using White and Nepf (2008) approximation. 
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Figure 6.11 shows both experimental time-averaged mean longitudinal velocity profiles 

and the velocity profiles obtained by using White and Nepf (2008) proposed fitting. The 

goodness of White and Nepf (2008) fitting was obtained for each test condition by calculating 

the Pearson correlation and the mean absolute relative differences between fitted and 

experimental results as shown Figure 6.12. 

 

Figure 6.11 and Figure 6.12 show a high level of agreement obtained between 

experimental data and those obtained by the White and Nepf (2008) methodology. Therefore, 

this indicates that the length of the outer and the inner layer (𝛿𝑂𝑢𝑡𝑒𝑟 and 𝛿𝐼𝑛𝑛𝑒𝑟 respectively) 

and the position of inflection point (𝑦0) for each test condition can be determined from the fitted 

equation. 

Figure 6.13 shows the inflection point positions from the vegetation edge (𝑦0) obtained 

from fitting eq. 6.4 to the experimentally obtained velocity profiles (red points) and those 

obtained previously by White and Nepf (2008) by fitting their experimental data to the same 

equation (black points). The results suggest a horizontal asymptote to 0 when vegetation density 

becomes high (𝑎 ≈ 6 stems m⁄ ), which means the inflection point is located at the vegetation 

edge in these conditions. When vegetation density decreases (𝑎 < 6 stems m⁄ ), the inflection 

point moves further from the vegetation boundary. This behaviour was previously described by 

White and Nepf (2008), who noticed that for a vegetation density of ∅ > 0.02 (or 𝑎 > 3.91) the 

inflection point could be considered on the vegetation edge, but for sparse tests (∅ = 0.02) the 

inflection point was moved a distance of 2𝑑 away from the vegetation edge. This trend agrees 

with the results obtained here. 

Figure 6.12. Pearson correlation and mean absolute relative differences between longitudinal velocity 

profiles obtained by White and Nepf (2008) approximation and experimental data. 
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Based on the results shown in Figure 6.13, a new relationship was proposed to obtain 

the displacement of the inflection point from the vegetation boundary: 

𝑦0 =  
1

26.35 𝑎
                                                              𝑒𝑞. 6.6 

Where 𝑦0 was the position of the inflection point from the vegetation edge and 26.35 

was a coefficient obtained empirically from the results shown in Figure 6.13. The Pearson 

correlation obtained between the proposed relationship and the data was 𝑅 =  0.913. The new 

proposed relationship is also plotted in Figure 6.13 (blue dots), showing a high level of 

agreement with experimental data.  

 

 

Following the same procedure, shear layer lengths (𝛿𝑂𝑢𝑡𝑒𝑟 and 𝛿𝐼𝑛𝑛𝑒𝑟) obtained from 

the fitted equation (eq. 6.4 and eq. 6.5) and experimental longitudinal velocity differences 

(∆𝑈 =  𝑈𝑓𝑟𝑒𝑒 − 𝑈𝑣𝑒𝑔) were studied together with those obtained by White and Nepf (2008) 

and West (2016). The ratio between velocity differences normalised by the velocity within the 

vegetation (∆𝑈
𝑈𝑣𝑒𝑔

⁄ ) and the lengths of different shear layer regions were obtained from each 

case and related to the vegetation density (𝑎). Figure 6.14 shows a scheme with each variable 

labelled. 

 

 

Figure 6.13. Relationship between vegetation density (a) and the position of inflection point from 

vegetation edge (𝑦0). 

Figure 6.14. Scheme with all different dimensions used for proposed model. 
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Figure 6.15 shows the relationship between velocity ratios and the vegetation density 

considering the length of the outer region (a); and the total length of the shear layer (b) for all 

sets of experimental data. Results suggests a linear relationship with vegetation density: 

∆𝑈
𝑈𝑉𝑒𝑔

⁄

𝛿𝑂𝑢𝑡𝑒𝑟
=  11.19 𝑎                                                        𝑒𝑞. 6.7 

∆𝑈
𝑈𝑉𝑒𝑔

⁄

𝛿𝑂𝑢𝑡𝑒𝑟 + 𝛿𝐼𝑛𝑛𝑒𝑟
=  10.08 𝑎                                                 𝑒𝑞. 6.8 

Where 11.19 and 10.08 were obtained empirically. The Pearson correlation between 

the data and the proposed relationships were obtained, being 𝑅 =  0.981 and 𝑅 =  0.977 for 

eq. 6.7 and eq. 6.8 respectively.  

 

With the relationships obtained in eq. 6.6, eq. 6.7 and eq. 6.8; an empirical model can 

be proposed to predict longitudinal flow velocity profile within partially vegetated flows given 

only the vegetation density and both velocities within the vegetation and free open flow layer. 

For a given condition, both 𝑈𝑣𝑒𝑔 and 𝑈𝑓𝑟𝑒𝑒 are divided by 𝑈𝑣𝑒𝑔. The length of the outer region 

(𝛿𝑂𝑢𝑡𝑒𝑟) and total shear layer (𝛿𝑂𝑢𝑡𝑒𝑟 +  𝛿𝐼𝑛𝑛𝑒𝑟) can be calculated using both eq. 6.7 and eq. 6.8. 

and a linear increase can be defined between 
𝑈𝑣𝑒𝑔

𝑈𝑣𝑒𝑔
⁄  and 

𝑈𝑓𝑟𝑒𝑒
𝑈𝑣𝑒𝑔

⁄ , obtaining the 

dimensionless parameter 𝑈𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑡𝑒𝑝 connecting these two constant ratios. Then, from eq. 6.6 

the position of the inflection point can be obtained and an assumption of 
𝑈(𝑦0 )

𝑈𝑣𝑒𝑔
⁄ =

 𝑈𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑡𝑒𝑝(𝑦0 ) can be made.  

Figure 6.15. Relationship between ratio of velocity increment normalised by vegetated velocity and 

shear layer length and vegetation density a) outer region length; b) total shear layer length. 
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The longitudinal flow velocity within the inner layer can then be obtained by fitting the 

structure generated using a hyperbolic tangent function and velocity along the outer layer is 

obtained by solving a parabolic function.  

𝑈(𝑦)

𝑈𝑣𝑒𝑔
= 1                                                                                                            0 ≤ 𝑦 ≤  𝑦𝐼𝑛𝑛𝑒𝑟   𝑒𝑞. 6.9 

𝑈(𝑦)

𝑈𝑣𝑒𝑔
= 𝑈(𝑦0) +  

𝑈𝑚𝑎𝑥 − 1

2
 tanh [(

𝛼

2𝛿𝐼𝑛𝑛𝑒𝑟
𝑦) − (

𝛼

2𝛿𝐼𝑛𝑛𝑒𝑟
𝑦0)]      𝑦𝐼𝑛𝑛𝑒𝑟  ≤ 𝑦 ≤  𝑦0  𝑒𝑞. 6.10 

𝑈(𝑦)

𝑈𝑣𝑒𝑔
= 𝐶1𝑦2 + 𝐶2𝑦 + 𝐶3                                                                              𝑦0  ≤ 𝑦 ≤  𝑦𝑂𝑢𝑡𝑒𝑟 𝑒𝑞. 6.11 

𝑈(𝑦)

𝑈𝑣𝑒𝑔
=  

𝑈𝑓𝑟𝑒𝑒

𝑈𝑣𝑒𝑔
                                                                                                  𝑦 ≥  𝑦𝑂𝑢𝑡𝑒𝑟            𝑒𝑞. 6.12 

Where 𝑦𝑖𝑛𝑛𝑒𝑟 is the position inside the vegetation where the inner layer started and 

𝑦𝑂𝑢𝑡𝑒𝑟 is the point where the outer layer ends and velocity becomes equal to 𝑈𝑓𝑟𝑒𝑒. Eq. 6.10 is 

solved using the same nonlinear least-squares regression used previously to fit the inner velocity 

profile. In this case, 𝑈𝑚𝑎𝑥 and 𝛼 were obtained from this regression. Then, coefficients from eq. 

6.11 are solved given the known values 𝑦0 and 𝑦𝑜𝑢𝑡𝑒𝑟: 

𝑈(𝑦0)

𝑈𝑣𝑒𝑔
= 𝑈𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑡𝑒𝑝(𝑦0 )                                                𝑒𝑞. 6.13 

𝑈(𝑦𝑂𝑢𝑡𝑒𝑟)

𝑈𝑣𝑒𝑔
=

𝑈𝑓𝑟𝑒𝑒

𝑈𝑣𝑒𝑔
                                                        𝑒𝑞. 6.14 

(
𝑈(𝑦𝑂𝑢𝑡𝑒𝑟)

𝑈𝑣𝑒𝑔
)

′

= 0                                                        𝑒𝑞. 6.15 

And coefficients from eq. 6.11 are solved as: 

𝐶1 =  

(
𝑈𝑓𝑟𝑒𝑒

𝑈𝑣𝑒𝑔
⁄ −  𝑈𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑡𝑒𝑝(𝑦0 )) 

𝑦𝑂𝑢𝑡𝑒𝑟
2 +  𝑦0

2 − 2𝑦0𝑦𝑂𝑢𝑡𝑒𝑟

                                     𝑒𝑞. 6.16 

𝐶2 =  −2𝑦𝑂𝑢𝑡𝑒𝑟𝐶1                                                        𝑒𝑞. 6.17 

𝐶3 =  
𝑈𝑓𝑟𝑒𝑒

𝑈𝑣𝑒𝑔
− 𝐶1𝑦𝑂𝑢𝑡𝑒𝑟

2 −  𝐶2𝑦𝑂𝑢𝑡𝑒𝑟                                        𝑒𝑞. 6.18 

For all tests conducted, transverse profiles of longitudinal velocity were obtained using 

the procedure described above and compared with experimental values and velocity fitted by 

the White and Nepf (2008) expressions as shown Figure 6.17. For this procedure, the normalised 

longitudinal velocity at the inflection point was assumed to be 
𝑈(𝑦0 )

𝑈𝑣𝑒𝑔
⁄ =  𝑈𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑡𝑒𝑝(𝑦0 ) 

as it was discussed previously. In order to study the accuracy of this assumption, the differences 

of velocity between predicted and experimental data at 𝑦0 were obtained and results are 

presented in Figure 6.16. The maximum difference of 0.08 m s⁄  was obtained, suggesting the 

assumption 
𝑈(𝑦0 )

𝑈𝑣𝑒𝑔
⁄ =  𝑈𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑡𝑒𝑝(𝑦0 ) is appropriate. 
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As it was discussed previously at the beginning of this section, the sensitivity of the 

relationships proposed in eq. 6.7 and eq. 6.8 were studied. In the same way as in Figure 6.15, 

the relationships between the vegetation density and the velocity ratios (
(∆𝑈 𝑈𝑉𝑒𝑔⁄ )

𝛿𝑂𝑢𝑡𝑒𝑟
⁄  and  

(∆𝑈 𝑈𝑉𝑒𝑔⁄ )
(𝛿𝑂𝑢𝑡𝑒𝑟 + 𝛿𝐼𝑛𝑛𝑒𝑟)

⁄  ) were studied, but in this case the velocity increment was calculated 

by considering the expected longitudinal velocity at the mid-depth (∆𝑈 =  𝑈𝑀𝑖𝑑−𝑑𝑒𝑝𝑡ℎ −

 𝑈𝑣𝑒𝑔). The mid-depth longitudinal velocity was calculated using the surface velocity for each 

water depth and vegetation density, and the absolute differences obtained in Table 5.6 for each 

water depth. The new empirical coefficients obtained were 11.12 to relate the vegetation 

density and the velocity ratio considering the length of the outer region (
(∆𝑈 𝑈𝑉𝑒𝑔⁄ )

𝛿𝑂𝑢𝑡𝑒𝑟
⁄ ) and 

10.02 to relate the vegetation density and the velocity ratio considering the total length of the 

shear layer (
(∆𝑈 𝑈𝑉𝑒𝑔⁄ )

(𝛿𝑂𝑢𝑡𝑒𝑟 + 𝛿𝐼𝑛𝑛𝑒𝑟)
⁄ ). These coefficients are very similar to those obtained in 

eq. 6.7 and eq. 6.8 as shown Table 6.8, where 𝐶𝑜𝑒𝑓𝑓 are the empirical coefficients obtained by 

considering the surface longitudinal velocity data (called as Original Coefficients) and those 

obtained by considering the expected mid-depth longitudinal velocity (called as 

Adjusted Coefficients). 

 

Empirical Coefficients Original Coefficients Adjusted Coefficients 
∆𝑈

𝑈𝑉𝑒𝑔
⁄

𝛿𝑂𝑢𝑡𝑒𝑟
=  𝑎 𝐶𝑜𝑒𝑓𝑓  

11.19 11.12 

∆𝑈
𝑈𝑉𝑒𝑔

⁄

𝛿𝑂𝑢𝑡𝑒𝑟 + 𝛿𝐼𝑛𝑛𝑒𝑟
=  𝑎 𝐶𝑜𝑒𝑓𝑓 

10.08 10.02 

 

 

 

 

Figure 6.16. Absolute differences of longitudinal velocity at the predicted inflection point between 

experimental data and empirical model (eq. 6.9 – 6.10). 

Table 6.8. Empirical coefficients obtained by considering both surface and mid-depth longitudinal 

velocity. 
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In addition, absolute differences between predicted shear layer lengths were calculated 

by assuming each empirical coefficient (11.19 or 11.12 to obtain the length of the outer region 

and 10.08 or 10.02 to obtain the total length of the shear layer). The absolute differences 

obtained are no longer than 0.05 m for the obtaining of the length of the outer region, and no 

longer than 0.06 m for the obtaining of the total shear layer length. In Figure 6.17 the predicted 

profiles obtained by using the proposed model with the original coefficients and the surface 

velocity data are compared with those profiles obtained by using the same proposed model but 

with the adjusted coefficients and the expected mid-depth longitudinal velocity data. 

 

 

Figure 6.17 shows a low variability in the length of the predicted shear layers and only 

a difference between the surface and the mid-depth velocity is observed in the free flow region, 

in agreement with those differences obtained in Section 5.2. The similarities in results suggest 

the suitability of the proposed relationships. 

6.2.1.1. Comparison of Proposed Model against Experimental Data 

Figure 6.18 shows relationships proposed using the White and Nepf (2008) model and 

the velocity profiles from the model proposed by using the original coefficients obtained in eq. 

6.7 and eq. 6.8 in this section along with experimental results. Plots suggest a good fit of the 

proposed expressions to experimental data. Pearson correlations between experimental data 

and both results were obtained along the shear layer (constant velocity regions were not 

considered). 

Figure 6.15. Comparison between predicted profiles by using the original coefficients and the 

surface velocity data and those predicted with the adjusted coefficients and the expected mid-depth 

velocity. 
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Figure 6.18. Fitted experimental data using White and Nepf (2008) approximation and model 

proposed. 
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Table 6.9 shows Pearson correlation values between the experimental data and both 

models. Values for the model proposed here are similar to values using the White and Nepf 

(2008) relationship, which suggests that this new approach is a suitable model to predict 

transverse profiles of longitudinal flow velocity in partially vegetated layers. This proposed 

model only requires the vegetation density and both longitudinal velocity within vegetation and 

free flow velocity, in contrast with expression proposed by White and Nepf (2008) where 

experimental data from inner and outer shear layer and both the velocity slip and the velocity 

at the inflection point (𝑈𝑚 and 𝑈𝑠) are required. In addition, free flow velocity can be 

approximated by Manning’s equation and longitudinal velocity within vegetation can be 

calcualted from a force balance type equation introduced in Section 2.2.3 if data is not available. 

 

Correlation 
𝑅 

∅ = 0.0015  
White & Nepf 

∅ = 0.0015 
Model 

∅ = 0.006 
White & Nepf 

∅ = 0.006 
Model 

∅ = 0.025 
White & Nepf 

∅ = 0.025 
Model 

ℎ = 0.036 m 0.974 0.938 0.989 0.944 0.993 0.981 
ℎ = 0.054 m 0.995 0.999 0.996 0.993 0.994 0.971 
ℎ = 0.072 m 0.996 0.996 0.999 0.996 0.996 0.981 
ℎ = 0.090 m 0.996 0.992 0.999 0.994 0.999 0.993 

 

For experiments presented in this thesis, surface 2-D velocity data was recorded and the 

current model was proposed based on this data. Therefore, based on findings discussed in this 

section, the proposed model is presented to predict longitudinal surface velocity in shallow 

water flows, where flow structures is previously considered as a 2-D flow field and minimal 

differences are expected. Note that these relationships were obtained from flows with artificial, 

idealized cylinders to represent vegetation. Although the use of these type of stems has been 

widely used in previous researchers (Nepf, 1999, Stone and Shen, 2002, De Serio et al., 2018) 

to simplify the complexities of real vegetation, it is important to highlight that some differences 

may be expected for results obtained from real vegetation. This model represents a simple 

approach to a complex problem, and thus future researches may compare the results estimated 

by this model with velocity distributions recorded in real partly vegetated flows.  

6.2.2. Solute Transport Results 

In these tests, vegetation installed along one bank produced a velocity gradient in the 

longitudinal velocity component over the transverse direction (illustrated in Section 6.2.1). This 

velocity variation has shown in previous researches to induce a variability of mixing processes 

along the transverse direction (Besio et al., 2012; West, 2016; West et al., 2020); and therefore 

transverse mixing coefficient could not be considered constant as it was assumed non-vegetated 

conditions described in Section 6.1. (Zeng, Y. et al, 2008; Sonnenwald, F. et al., 2019). 

To examine mixing processes under these conditions, ten continuous injections were 

recorded with the injector fixed at different positions (𝑦𝐼𝑛𝑗) along the channel width to record 

mixing behaviour in different areas (see Section 4.5.2). Concentration maps were obtained in 

the same way as tests with no vegetation explained in Section 5.6 and final concentration maps 

were obtained using Filter 5 as it was concluded in Section 6.1.2.3. Figure 6.19 and Figure 6.20 

present data from three different injection positions for water depths ℎ = 0.036 m and ℎ =

0.072 m; and for the three different vegetation densities. In addition, the edge of the vegetated 

region is represented using white dots.  

Table 6.9. Correlation values between experimental data and both White and Nepf (2008) 

approximation and new model proposed along the shear layer region. 
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Concentration maps recorded for ∅ = 0.025 tests show an increase of mixing processes 

in the region close to vegetation. This effect looks more significant for higher flow depths. When 

vegetation density decreases, mixing close to vegetation also visibly decreases. All these 

considerations suggest a region close to the vegetation where an increase of transverse mixing 

is produced.  

For these tests, the Finite Difference Model presented in Section 6.1.2 was used to 

obtain variable transverse mixing coefficients over the width for each test. Previously the model 

was used considering a constant velocity and transverse mixing coefficient along the width. 

Now, variable longitudinal velocity and transverse mixing coefficient profiles were considered 

to represent processes in these tests. The longitudinal velocity profile predicted by the model 

introduced in Section 6.2.1 were introduced into the Finite Difference Model as the velocity 

Figure 6.19. Concentration maps with vegetation at one side for water depth h=0.036 m. 

Figure 6.20. Concentration maps with vegetation at one side for water depth h=0.072 m. 
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input. Potentially, by considering the resolution of the experimental data, different mixing 

coefficients over the width could be determined by the model (corresponding to each single 

velocity cell).  However, solving the F.D.M. equation at this resolution would mean a significant 

and unfeasible processing time. 

 Based on previous research discussed in Section 2.6, a fixed shape for the variable 

transverse mixing coefficient profile was considered. Therefore, only parameters that defined 

the transverse mixing coefficient shapes were optimised, reducing the number of optimised 

variables needed. A similar skewed Gaussian shaped as obtained in Sonnenwald et al. (2019) 

and in West et al. (2020) was proposed to optimised transverse mixing coefficients (eq. 6.19 

and eq. 6.20). This Gaussian connected two constant mixing values produced within the 

vegetation (𝐷𝑦𝑣𝑒𝑔
) and in the free open channel flow region (𝐷𝑦𝑓𝑟𝑒𝑒

). As shown in Figure 6.21, 

only 6 variables, including constant transverse mixing values within vegetation (𝐷𝑦𝑣𝑒𝑔
) and in 

the open free flow (𝐷𝑦𝑓𝑟𝑒𝑒
), were needed to define the proposed variable mixing profile, where 

𝐷𝑦𝑚𝑎𝑥
 is the maximum transverse mixing coefficient value and 𝑦𝑚𝑎𝑥 its position; and 𝜎1

2and 𝜎2
2 

are the variance of both parts of the function. 

𝐷𝑦(𝑦) =  𝐷𝑦𝑚𝑎𝑥
 exp (

−(𝑦 − 𝑌𝑚𝑎𝑥)2

2𝜎1
2 )      𝑓𝑜𝑟     𝑦 ≤  𝑦𝑚𝑎𝑥                       𝑒𝑞. 6.19 

𝐷𝑦(𝑦) =  𝐷𝑦𝑚𝑎𝑥
 exp (

−(𝑦 − 𝑌𝑚𝑎𝑥)2

2𝜎2
2 )      𝑓𝑜𝑟     𝑦 ≥  𝑦𝑚𝑎𝑥                       𝑒𝑞. 6.20 

 

 
Experimental data obtained by White and Nepf (2008) were analysed to study how the 

longitudinal velocity gradient and the Reynold stress distribution are related. Velocity gradients 

were obtained from experimental longitudinal velocity profiles obtained by White and Nepf 

(2008) and are represented in Figure 6.22 as blue dots. In addition, Reynolds stress distributions 

recorded by them under the same flow conditions were plotted as red dots. Both profiles were 

normalised by their corresponding maximum value to match both scales. 

Figure 6.21. Scheme of skewed Gaussian function of transverse mixing coefficient. 
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Results from White and Nepf (2008) plotted in Figure 6.22 show that the position of the 

peak in Reynolds stress closely matches with the inflection point of longitudinal velocity profiles. 

In addition, both Reynolds stress distribution and longitudinal velocity gradient are elevated 

within the same region of the channel. Therefore, if the position where the maximum transverse 

mixing coefficient is produced (𝑌𝑚𝑎𝑥) matches with the position of maximum Reynolds stress 

(Ghisalberti and Nepf, 2005), hence it can be assumed that this position also matches with the 

position of the inflection point (𝑦0) of the longitudinal velocity profile. In addition, if the increase 

of transverse mixing is related with the increase of the Reynolds stress (Guymer and Spence, 

2009), it can be assumed that the region with a variable transverse mixing coefficient matches 

with the shear layer region. This assumption was also previously proposed by West (2016) for 

partially vegetated flows.  

Based on these previous results, some assumptions were made to reduce the number 

of unknown variables: 

I. Constant mixing coefficients obtained in Section 6.1 using F.D.M. were considered 

in these tests as 𝐷𝑦𝑓𝑟𝑒𝑒
 to describe mixing coefficients in the free flow region. 

II. Constant mixing coefficient within vegetation layer was obtained using Nepf (2012) 

proposed expression 𝐷𝑦𝑣𝑒𝑔
(𝑈𝑑)−1 = 0.2 when ∅ < 0.1. Whilst previous research 

showed variability of transverse mixing coefficient predictions within vegetated 

flows (Sonnenwald, F et al., 2017; Tanino and Nepf, 2008a; Serra et al, 2004; Nepf 

et al, 1997). The model prediction proposed in this section is focused on the shear 

layer region outside vegetation and it is therefore expected that concentration 

profiles will be reasonably insensitive to this value for the test reported here. 

III. The region with a variable transverse mixing coefficient was considered to match 

with the shear layer region. This shear layer was defined based on the relationships 

and assumptions discussed in eq. 6.7 and eq. 6.8. 

 

Figure 6.22. Gradients in longitudinal velocity over the channel width (ΔU/Δy) and Reynolds stress 

distribution from White and Nepf (2008). 
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IV. The position of maximum transverse mixing coefficient was assumed to correspond 

with the inflection point of longitudinal flow velocity profile, where maximum 

Reynolds stress is produced. This inflection point was estimated using the proposed 

relationship in eq. 6.6. 

With assumptions III and IV both variances can be obtained for a given 𝐷𝑦𝑚𝑎𝑥
: 

𝜎1 =  
√

−(𝑦𝐼𝑛𝑛𝑒𝑟 −  𝑦0)2

2 ln (
𝐷𝑦𝑣𝑒𝑔

𝐷𝑦𝑚𝑎𝑥

⁄ )

                                               𝑒𝑞. 6.21 

𝜎2 =  
√

−(𝑦𝑂𝑢𝑡𝑒𝑟 −  𝑦0)2

2 ln (
𝐷𝑦𝑓𝑟𝑒𝑒

𝐷𝑦𝑚𝑎𝑥

⁄ )

                                              𝑒𝑞. 6.22 

Where 𝑦𝐼𝑛𝑛𝑒𝑟 and 𝑦𝑂𝑢𝑡𝑒𝑟 are the position where longitudinal velocity become constant 

within vegetation patch and in the free open flow region respectively. These points were 

calculated based on the position of the inflection point (eq. 6.6), and the length of each part of 

the shear layer (eq. 6.7 and eq. 6.8). With these assumptions, the problem can be simplified into 

a one variable optimization (𝐷𝑦𝑚𝑎𝑥
). 

The same optimization routine as described in Section 6.1.2 was applied to obtain the 

variable transverse mixing coefficient profiles that best reproduced experimental concentration 

data. As a first step, an optimization was performed for each vegetation density, water depth 

and injection position. For each case, a 𝐷𝑦𝑚𝑎𝑥
 was optimised: the transverse mixing coefficient 

profile was obtained by applying eq. 6.19 to eq. 6.20 for a given 𝐷𝑦𝑚𝑎𝑥
 and longitudinal velocity 

profile, the concentration map was generated using F.D.M. solution. Then, the objective 

function 1 − 𝑅 resulting from the F.D.M. solution and the observed concentration map was 

obtained by considering the data recorded over the analysis area (i.e. 2D correlation). This 

process was performed until the objective function 1 − 𝑅 was minimised. Similar to Section 

6.1.1. and 6.1.2., the allowed 𝐷𝑦𝑚𝑎𝑥
 values during the iterations were constrained between 

𝐷𝑦𝑓𝑟𝑒𝑒
 – 1 for each flow condition to avoid any problem with the proposed expressions. As a 

result, an optimised 𝐷𝑦𝑚𝑎𝑥
, and its corresponding transversal mixing coefficient profiles was 

obtained for each vegetation density, water depth and injector position (so ten different results 

were obtained for the same flow condition). 

Figure 6.23 shows a scheme of this optimization routine, where for a given  𝐷𝑦𝑚𝑎𝑥
 value 

(called as “𝐷𝑦𝑚𝑎𝑥
 𝐺𝑢𝑒𝑠𝑠” in the scheme) generates a concentration map (called as 

“𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑐 𝑀𝑎𝑝”). This predicted concentration map is compared against the observed 

one (“𝐸𝑥𝑝 𝐶𝑜𝑛𝑐 𝑀𝑎𝑝”) and the objective function 1 − 𝑅 is obtained. This process is performed 

until the objective function is minimised, obtaining an optimised 𝐷𝑦𝑚𝑎𝑥
 value and the 

corresponding predicted concentration map generated by the optimised 𝐷𝑦𝑚𝑎𝑥
 (“𝐷𝑦𝑚𝑎𝑥

 𝑂𝑝𝑡” 

and “𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑 𝐶𝑜𝑛𝑐 𝑀𝑎𝑝” respectively) for each injection. Figure 6.25 shows the variation in 

optimised 𝐷𝑦𝑚𝑎𝑥
 results for the same test configuration but different injection positions (blue 

dots), for the vegetation density ∅ = 0.025 and each water depth. This variability is produced 

because for each case the mixing characteristics for the full channel width cannot be obtained 

as the dye only spreads over a section of the channel. Hence, a general visualization of global 
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transverse mixing processes cannot be obtained using individual concentration maps produced 

from each test. 

In order to reduce variability and to obtain a unique 𝐷𝑦𝑚𝑎𝑥
 value for each water depth 

and vegetation density, all different injections for the same test configuration were analysed 

and introduced into the model to obtain one single transverse mixing profile as shown Figure 

6.24. In this case, a unique 𝐷𝑦𝑚𝑎𝑥
 value generates the predicted concentration maps for each 

injection for a given water depth and vegetation density, obtaining 10 predicted concentration 

maps with a dimension of 122 × 448 pixels. Then, all predicted concentration maps are merged 

into one matrix, with a dimension of 1220 × 448 pixels. In addition, the corresponding 10 

observed concentration maps are merged in the same way, obtaining an observed concentration 

matrix of 1220 × 448 pixels. Then, the objective function 1 –  𝑅 is calculated, but now 𝑅 is the 

Pearson correlation obtained between these two combined matrices. This process is performed 

until the objective function 1 –  𝑅 is minimised. Resulting from this optimization routine, a 

unique optimised 𝐷𝑦𝑚𝑎𝑥
 value is obtained for each water depth and vegetation density, which 

represents a general transverse mixing process behaviour affecting all different injection cases 

(represented in Figure 6.25 as the black line). 

 

 

Figure 6.23. Scheme of optimization routine using each concentration map individually. 
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The correlations between each concentration map and those produced by the 

optimization routine, which optimised all injection tests together (i.e. producing a single 𝐷𝑦𝑚𝑎𝑥
 

for each condition), are plotted in Figure 6.26 (circles). In addition, the correlation between all 

experimental and optimised concentration maps that was used as objective function during the 

Figure 6.24. Scheme of optimization routine using all concentration maps together. 

Figure 6.25. Comparison of Dymax
 using individual concentration maps for ∅ = 0.025. 
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optimization routine (1 − 𝑅) are plotted for each water depth and vegetation density 

(diamonds). Figure 6.26 shows high correlations obtained for each pair of concentration maps, 

being higher for the lowest water depths. However, lower correlations were obtained for those 

injections close to the vegetated boundary, this decrease is more appreciated for denser 

vegetation. 

In addition, Figure 6.27, Figure 6.28 and Figure 6.29 show comparisons between 

experimental concentration profiles and those obtained by the optimization routine for same 

water depth and vegetation density (ℎ = 0.054 m –  ∅ = 0.006) but for different injection 

positions. These optimised profiles were obtained by using the routine explained in Figure 6.24. 

 

Figure 6.26. 2D correlations between experimental concentration maps and those obtained by the 

optimization routine based on a single 𝐷𝑦𝑚𝑎𝑥
 for each flow and vegetation condition. 
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Figure 6.27. Comparison between experimental and optimised concentration profiles for tests h =

0.054 m –  ∅ = 0.006 from injection yInj = 0.48 m to injection yInj = 0.56 m . 

Figure 6.28. Comparison between experimental and optimised concentration profiles for tests h =

0.054 m –  ∅ = 0.006 from injection yInj = 0.60 m  to injection yInj = 0.68 m. 
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Figure 6.27, Figure 6.28 and Figure 6.29 show a comparison between concentration 

profiles of both experimental and optimised results for same water depth and vegetation 

density but different injection positions. These optimised profiles were obtained by using the 

optimization routine that analyses all concentration maps together for a given flow condition 

(Figure 6.24). Results suggest an overall close match between experimental and optimised 

concentration profiles for all different injections within the spanwise position. Some 

mismatching is found for those injections located close the vegetated boundary. For these cases, 

the mean concentration mass of experimental data looks to be displaced to the vegetated 

boundary and the optimization fails to predict this behaviour. This agrees with the diminution 

of the correlations plotted in Figure 6.26. However, both correlations and visual comparison 

between experimental and optimised concentration results suggest a good fit. 

Optimal transverse mixing coefficient profiles generated by the F.D.M. considering at 

the same time all different injection positions for each test configuration were plotted in Figure 

6.30 and optimised 𝐷𝑦𝑚𝑎𝑥
 values are shown in Table 6.10. 

Figure 6.29. Comparison between experimental and optimised concentration profiles for tests h =

0.054 m –  ∅ = 0.006 from injection yInj = 0.72 m  to injection yInj = 0.80 m . 
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Figure 6.30. Variable transverse mixing coefficients resulting from optimization. 
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𝑎 [1 m⁄ ] ℎ[m] 𝑈𝑓𝑟𝑒𝑒  [m s⁄ ] 𝑈𝑣𝑒𝑔 [m s⁄ ] ∆𝑈 [m s⁄ ] 𝐷𝑦𝑓𝑟𝑒𝑒
 [m2 s⁄ ] 𝐷𝑦𝑣𝑒𝑔  [m2 s⁄ ] 𝐷𝑦𝑚𝑎𝑥

 [m2 s⁄ ] 

0.397 0.036 0.241 0.129 0.112 1.056 10−4 1.290 10−4 1.506 10−4 
0.3967 0.054 0.351 0.156 0.195 1.771 10−4 1.560 10−4 2.163 10−4 
0.396 0.072 0.391 0.166 0.225 3.361 10−4 1.662 10−4 3.361 10−4 

0.3967 0.090 0.427 0.180 0.247 4.049 10−4 1.797 10−4 5.931 10−4 
1.587 0.036 0.261 0.038 0.223 1.056 10−4 3.841 10−5 2.243 10−4 
1.587 0.054 0.377 0.048 0.329 1.771 10−4 4.844 10−5 3.691 10−4 
1.587 0.072 0.438 0.051 0.387 3.361 10−4 5.089 10−5 6.359 10−4 
1.587 0.090 0.482 0.064 0.418 4.049 10−4 6.354 10−5 8.894 10−4 
6.349 0.036 0.322 0.016 0.306 1.056 10−4 1.595 10−5 2.945 10−4 
6.349 0.054 0.412 0.017 0.395 1.771 10−4 1.698 10−5 4.538 10−4 
6.349 0.072 0.500 0.017 0.483 3.361 10−4 1.700 10−5 7.005 10−4 
6.349 0.090 0.529 0.020 0.509 4.049 10−4 2.020 10−5 1.150 10−3 

 

Figure 6.30 shows an increase of maximum transverse mixing coefficient when water 

depth increases for the same vegetation density. In addition, a consistent dependence between 

𝐷𝑦𝑚𝑎𝑥
 and longitudinal velocity difference ∆𝑈 is observed in Figure 6.31. This relationship agrees 

with results obtained by Ghisalberti and Nepf (2005), whose experimental results suggest the 

relationship 𝐷𝑧𝑚𝑎𝑥
 ≈ 0.3 ∆𝑈𝛿𝑉.𝑆.𝐿.  

 

Based on the previous relationship proposed by Ghisalberti and Nepf (2005), the 

relationship between the maximum transverse mixing coefficient 𝐷𝑦𝑚𝑎𝑥
 and the product of the 

longitudinal velocity difference ∆𝑈 and the total length of the shear layer (𝛿𝑂𝑢𝑡𝑒𝑟 +  𝛿𝐼𝑛𝑛𝑒𝑟) was 

studied as shown Figure 6.32 (right). In addition, Figure 6.32 (left) shows the relationship 

between 𝐷𝑦𝑚𝑎𝑥
 and the product of ∆𝑈 and the vegetation density 𝑎. 

 

Table 6.10. Maximum transverse mixing coefficient solutions. 

Figure 6.31. Relationship between maximum transverse mixing coefficient and longitudinal velocity 

difference. 
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A relationship of 𝐷𝑦𝑚𝑎𝑥
=  0.038 ∆𝑈(𝛿𝑂𝑢𝑡𝑒𝑟 +  𝛿𝐼𝑛𝑛𝑒𝑟)  was found for the data shown 

in Figure 6.32 (right). However, a low Pearson correlation was obtained for this relationship 

(𝑅 =  0.81). Moreover, a lack of any clear relationship was found for data plotted in Figure 6.32 

(left). In addition, an empirical relationship between maximum transverse mixing coefficient and 

velocity difference (∆𝑈) and water depth was also studied. This approach is similar to that 

proposed previously by Ghisalberti and Nepf (2005) for vertical mixing within vertical aligned 

shear layers in submerged vegetated flows. A linear relationship was proposed with these two 

parameters and the water depth as Figure 6.33 shows, obtaining a higher Pearson 

correlation (𝑅 = 0.9810). 

𝐷𝑦𝑚𝑎𝑥
=  0.02329 (∆𝑈 ℎ)                                                 𝑒𝑞. 6.23 

 

 

Finally, the relationship proposed in eq. 6.23 and expression introduced in Section 6.2.1 

were applied to predict concentration profiles based on the F.D.M. with 𝐷𝑦𝑚𝑎𝑥
 given by eq. 6.23 

and the variables defined in the equations listed in the chapter (eq. 6.19 and eq. 6.20), with the 

assumptions proposed in eq. 6.21 and eq. 6.22. Results were compared with experimental data 

and plotted in Figure 6.34 and Figure 6.35. 

Figure 6.32. Relationship between maximum transverse mixing coefficient and the product of velocity 

difference and the shear layer length (right), and the product of velocity difference and vegetation 

density (left). 

Figure 6.33. Relationship between maximum transverse mixing coefficient and the product of velocity 

difference and water depth. 
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Figure 6.34. Comparison between experimental concentration profiles and predictions for h =

0.036 m. 
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Figure 6.35. Comparison between experimental concentration profiles and predictions for  h = 0.072 

m. 
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Figure 6.34 and Figure 6.35 show concentration profiles from experimental and 

predicted data by the relationships proposed in Section 6.2.1 and Section 6.2.2. Most of plots 

suggest a good fit between experimental data and predictions but ∅ = 0.025 profiles show a 

movement of the main body of profiles of 𝑦𝐼𝑛𝑗 = 0.52 m to the vegetation that the model 

cannot predict. This displacement is probably produced by secondary currents along the water 

depth generated by the velocity gradient. This transversal component would produce a 

translation of the concentration mass to vegetation boundary. Comparison between different 

densities suggests that this movement of mass mostly affected the test with the densest 

vegetation (∅ = 0.025) and is reduced when vegetation density decreases. In addition, a higher 

effect is appreciated for higher depths, suggesting that this effect is dependent of velocity 

difference between vegetated patch and free open layer (∆𝑈). 

Correlations between experimental data and predicted profiles were obtained 

considering only the region of the channel where there were concentration values present (i.e. 

in the region the dye was present). In addition, considering profiles were quasi-unimodal; 

absolute relative differences were calculated considering two regions defined as 𝐶𝑥̅,𝑦  ± 1 ∗

𝑠𝑡𝑑(𝐶𝑥,𝑦) and 𝐶𝑥̅,𝑦  ± 2 ∗ 𝑠𝑡𝑑(𝐶𝑥,𝑦). These regions represents the 66 % and the 95 % of total 

values for a normal distribution, so in these tests would represent differences within the central 

profile section and within most of the profile respectively.  

 

∅ = 0.0015 𝑅 Rel. Diff. [𝐶𝑥̅,𝑦  ± 1 ∗ 𝑠𝑡𝑑(𝐶𝑥,𝑦)] Rel. Diff. [𝐶𝑥̅,𝑦  ± 2 ∗ 𝑠𝑡𝑑(𝐶𝑥,𝑦)] 

ℎ = 0.036 m 0.987 11.79% 12.77% 
ℎ = 0.054 m 0.991 8.91% 13.11% 
ℎ = 0.072 m 0.982 14.19% 15.70% 
ℎ = 0.090 m 0.962 20.18% 20.24% 

 

∅ = 0.006 𝑅 Rel. Diff. [𝐶𝑥̅,𝑦  ± 1 ∗ 𝑠𝑡𝑑(𝐶𝑥,𝑦)] Rel. Diff. [𝐶𝑥̅,𝑦  ± 2 ∗ 𝑠𝑡𝑑(𝐶𝑥,𝑦)] 

ℎ = 0.036 m 0.979 14.23% 17.31% 
ℎ = 0.054 m 0.983 12.94% 14.15% 
ℎ = 0.072 m 0.982 12.49% 14.33% 
ℎ = 0.090 m 0.970 15.81% 18.13% 

 

∅ = 0.025 𝑅 Rel. Diff. [𝐶𝑥̅,𝑦  ± 1 ∗ 𝑠𝑡𝑑(𝐶𝑥,𝑦)] Rel. Diff. [𝐶𝑥̅,𝑦  ± 2 ∗ 𝑠𝑡𝑑(𝐶𝑥,𝑦)] 

ℎ = 0.036 m 0.974 13.87% 18.45% 
ℎ = 0.054 m 0.959 18.40% 21.77% 
ℎ = 0.072 m 0.971 14.81% 18.80% 
ℎ = 0.090 m 0.963 15.47% 21.07% 

 

Results present in Table 6.11 suggest a good fit between experimental concentration 

data and predicted profiles. In addition, results show a slightly increase of differences for ∅ =

0.025 tests, which agrees with the extra displacement recorded for injections close vegetated 

bank discussed in Figure 6.34 and Figure 6.35. 

 

 

Table 6.11. Correlations and mean absolute relative differences between experimental data and 

predicted concentration profiles. 
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6.3. Two Vegetated Banks Tests Results 

Once the prediction of the longitudinal velocity shear layer produced by a vegetated 

bank was proposed in Section 6.2, as well as its effects on the variable transverse mixing profile, 

a last set of experiments were designed to compare the experimental data against those 

predictions obtained by the relationships proposed in Section 6.2.1 and Section 6.2.2. For each 

test, both time-averaged concentration maps and longitudinal velocity data were obtained in 

the same way as previous experiments. 

Tests described in Section 4.5.3 were analysed using same techniques as described in 

Section 5.1 and Section 5.6 for velocity and concentration data respectively. In these tests, a 

vegetated bank was installed at each side of the channel and the free flow width between 

vegetated banks was changed to reproduce an overlapping shear layers resulting from the 

resistant from each bank. 

First, the width of the vegetated banks was designed based on the inner layer lengths 

(𝛿𝐼𝑛𝑛𝑒𝑟) obtained in Section 6.2.1 by designing a vegetated bank wide enough to allow the 

development of the inner layer. For one vegetated bank tests, a maximum 𝛿𝐼𝑛𝑛𝑒𝑟 = 0.14 m was 

obtained (see Table 6.7). Based on these results, a vegetated bank width of 0.21 m was installed 

at each side for each water depth and vegetation density. Moreover, this width represents half 

of the width used in the previous set of experiments. Therefore, the same amount of vegetation 

as in previous Section was used, keeping a constant relationship between the water depth and 

the flow resistance as it was discussed in Section 4.5.3. In the same way, the designed width of 

the free layer between the vegetated banks was designed based on the lengths of outer layer 

(𝛿𝑂𝑢𝑡𝑒𝑟) obtained in Section 6.2.1. These tests were designed to reproduce an overlapping of 

both shear layers produced by each vegetated bank, thus a first free open flow width between 

both banks was designed as the double of the expected outer length. With this configuration, 

two full developed shear layers should be produced. Maximum outer layer lengths obtained in 

previous tests were 𝛿𝑂𝑢𝑡𝑒𝑟 =  0.38, 0.36, 0.39 and 0.34 m for ℎ = 0.036, 0.054, 0.072 and 

0.090 m respectively (see Table 6.6). Based on these results, a first free open width between 

vegetated banks of 𝑊𝐹𝑟𝑒𝑒 = 0.7 m was considered. 

For the following tests, the free open width between vegetated banks was reduced to 

reproduce overlapping between both shear layers. These experiments were designed to present 

a first approach to a scenario where the presence of vegetation at each side of the channel 

affects the development of the shear layer and its effect of the transverse mixing. Therefore, 

Table 6.12 presented free open flow between vegetated banks used for experiments:  

 

𝑇𝑒𝑠𝑡 𝑊𝐹𝑟𝑒𝑒 
𝑊𝐹𝑟𝑒𝑒 1 0.7 m 
𝑊𝐹𝑟𝑒𝑒 2 0.6 m 
𝑊𝐹𝑟𝑒𝑒 3 0.5 m 
𝑊𝐹𝑟𝑒𝑒 4 0.4 m 
𝑊𝐹𝑟𝑒𝑒 5 0.3 m 

 

 

 

Table 6.12. Designed free open flow widths. 
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6.3.1. Flow Resistance Validation 

As explained in Section 4.5.3, vegetated bank widths remained constant for all different 

tests to not to significantly increase channel resistance. Therefore, plastic walls were installed 

just behind each vegetated bank to isolate central studied region as explained in Section 4.5.3. 

For each test, flow rate was measured as explained in Section 4.2.1 and results were compared 

against flow rates obtained for the one vegetated bank tests as shown in Figure 6.36. 

 

 

The results plotted in Figure 6.36 show that flow rates recorded for two vegetated bank 

tests are lower than those recorded for one vegetated bank tests, although same amount of 

vegetation was used. This decrease is more appreciable for higher flow depths. These 

differences may be produced because, although the same vegetated width is installed, for tests 

with two vegetated banks two shear layers are generated instead of one as in previous 

Figure 6.36. Measured flow rates for different 𝑊𝐹𝑟𝑒𝑒  and those measured for one vegetated bank tests. 
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experiments. Therefore, for tests with 𝑊𝐹𝑟𝑒𝑒 = 0.7 m, two shear layer zones are produced with 

similar lengths than those produced in previous experiments. As a result, a wider overall shear 

layer zone is obtained in these new tests, producing a lower overall longitudinal velocity and 

thus a lower flow rate. In addition, Figure 6.36 shows a variation of flow rates for tests with the 

same vegetation density and water depth, but different 𝑊𝐹𝑟𝑒𝑒, although these differences are 

lower than those appreciated between the one and two vegetated banks tests. These variations 

may be due to the interaction between the shear layers generated by each bank, producing a 

reconfiguration of the longitudinal velocity profiles. 

6.3.2. Velocity Results 

Time-averaged longitudinal velocity maps were obtained using the method explained in 

Section 5.1. Results regarding to ∅ = 0.025 were plotted in Figure 6.37 with vegetation edge 

also represented white dots and the area outside walls showed as a white region.  

 

Figure 6.37 (a). Time-averaged longitudinal flow velocity maps for different both sides vegetation 

conditions for density ∅ = 0.025 with vegetation edge as white dots. 
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Figure 6.37 (b). Time-averaged longitudinal flow velocity maps for different both sides vegetation 

conditions for density ∅ = 0.025 with vegetation edge as white dots. 
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Figure 6.37 suggests a decrease of longitudinal velocity within the non-vegetated region 

when the distance between vegetated banks decreases. This effect is produced because of the 

overlapping of both shear layers created by each vegetated region. In addition, Figure 6.37 

shows some flow conditions in which a variation of the longitudinal velocity in free flow region 

along the length is observed. This variation was also discussed for longitudinal velocities shown 

in Fig 6.8 and Fig 6.9, and it may be produced because a non-homogeneous PIV tracer 

distribution was recorded for these tests, producing a variation in the time-averaged 

longitudinal velocity along the flume length. The lengthwise spatial and time-averaged 

longitudinal velocity profiles were obtained in the same way as in Section 6.2.1 and they are 

shown in Figure 6.38.  

 

 

Time-averaged streamwise-mean longitudinal velocity profiles shown in Figure 6.38 

suggest a change in the development of the shear layers produced by both vegetated banks. In 

addition, the absolute velocity gradient of the longitudinal velocity profiles was calculate for 

each test. This absolute velocity gradients were obtained as |𝜕𝑈
𝜕𝑦⁄ | = 𝑎𝑏𝑠(∆𝑈

∆𝑌⁄ ). Figure 

6.39 shows the absolute velocity gradients for test configurations ∅ = 0.006 − ℎ = 0.090 m. 

Figure 6.38. Lengthwise and time-averaged longitudinal flow profiles for all free open flow widths. 
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 In Figure 6.38 it is appreciated that for maximum free open flow width (𝑊𝐹𝑟𝑒𝑒 = 0.7 m) 

full shear layers and a quasi-constant free velocity region between both are shown. This 

behaviour can be observed in Figure 6.39, where a quasi-zero region of absolute velocity 

gradients for the widest free open flow widths (𝑊𝐹𝑟𝑒𝑒 = 0.7 and 0.6 m) is shown. 

However, for the other two cases no zero gradient region is observed in the centre of 

the studied region but both absolute velocity gradients converge in the centre of the studied 

region. This change in the transverse profile of longitudinal velocity suggests an overlapping of 

both shear layers when free flow region between vegetated banks becomes narrow enough. 

Only for test ∅ = 0.0015 − ℎ = 0.036 m a quasi-constant free open flow region is appreciated 

for all different 𝑊𝐹𝑟𝑒𝑒 values in Figure 6.38. This behaviour can be explained because this 

combination of water depth and vegetation density produces the smaller velocity gradient and 

thus there is enough space for both full developed shear layers even for the narrowest 𝑊𝐹𝑟𝑒𝑒. 

In addition, the maximum velocity recorded in the centre of the free flow region shown 

in Figure 6.38 was obtained (𝑈𝑚𝑎𝑥), as well as the longitudinal velocity within each vegetated 

bank and the flow rate from profiles. Figure 6.40 presents both maximum longitudinal free flow 

velocity recorded in the centre of the free flow region (𝑈𝑚𝑎𝑥) (left) and longitudinal velocity 

within vegetation (right) for each 𝑊𝑓𝑟𝑒𝑒  value and vegetation density. Note that the 𝑈𝑣𝑒𝑔 

represented in Figure 6.40 (right) is the mean longitudinal velocity within vegetation considering 

the mean value of both banks. Another effect derived from the overlapping of shear layers is a 

decrease in the maximum longitudinal velocity observed in the centre of the free open flow 

region. Figure 6.40 (left) shows a clear increase of maximum longitudinal free flow velocity with 

water depth for 𝑊𝐹𝑟𝑒𝑒 = 0.7 m. However, for the narrowest cases (𝑊𝐹𝑟𝑒𝑒 = 0.3 m), all velocity 

profiles converge to the same values, except for ∅ = 0.0015 − ℎ = 0.036 m.  

Figure 6.39. Absolute velocity gradients from time-averaged mean longitudinal velocity profiles for 

test configurations ∅ = 0.006 − h = 0.090 m. 
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For each vegetation density, a decrease of maximum longitudinal velocity is produced 

for narrower scenarios, obtaining similar velocity values for all different water depths for 

𝑊𝐹𝑟𝑒𝑒 = 0.3 m. This suggests that there is insufficient distance between both vegetated banks 

to achieve the same maximum free longitudinal velocity obtained for  𝑊𝐹𝑟𝑒𝑒 = 0.7 m. The right 

plot of Figure 6.40 shows mean longitudinal velocity within vegetation (𝑈𝑉𝑒𝑔) for each test 

configuration, where no significant trend is observed between these results and 𝑊𝐹𝑟𝑒𝑒 values. 

Therefore, for further analysis explained below in this section, a mean longitudinal velocity value 

within vegetation was obtained for each water depth and vegetation density by considering all 

values shown in Figure 6.40 for the different values of 𝑊𝐹𝑟𝑒𝑒   and the same vegetation density 

and water depth. Results are shown in Table 6.13.  

 

𝑀𝑒𝑎𝑛 𝑈𝑉𝑒𝑔 [m/s] ℎ = 0.036 m ℎ = 0.054 m ℎ = 0.072 m ℎ = 0.090 m 

∅ = 0.0015 0.108 0.137 0.141 0.160 
∅ = 0.006 0.038 0.043 0.046 0.052 
∅ = 0.025 0.017 0.018 0.018 0.020 

 

Based on Figure 6.40, a relationship to described the variation of 𝑈𝑚𝑎𝑥 based on 𝑊𝐹𝑟𝑒𝑒 

is proposed. To quantify this variation, a ratio between the maximum longitudinal velocity 

recorded (𝑈𝑚𝑎𝑥) and the theoretical free longitudinal velocity value expected for an open 

channel without vegetation (𝑈𝐹𝑟𝑒𝑒) was obtained. This  𝑈𝐹𝑟𝑒𝑒  was considered as the mean 

Figure 6.40. Maximum free longitudinal velocity (right) and longitudinal velocity within vegetation 

(left) for all different test configurations. 

Table 6.13. Mean longitudinal velocity within vegetation by considering values for all WFree for each 

water depth and vegetation density. 
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longitudinal velocity obtained in tests with no vegetation (Section 6.1). In addition, the ratio 

between the free flow width (𝑊𝐹𝑟𝑒𝑒) and the width needed for a full development of both shear 

layers (2 𝛿𝑂𝑢𝑡𝑒𝑟) was defined. The outer length 𝛿𝑂𝑢𝑡𝑒𝑟 was obtained using the longitudinal 

velocity model proposed in Section 6.2.1. Therefore, the relationship between 𝑈𝑚𝑎𝑥 and 𝑊𝐹𝑟𝑒𝑒 

was expressed as: 

𝑊𝐹𝑟𝑒𝑒

2 𝛿𝑂𝑢𝑡𝑒𝑟
=  𝑓 (

𝑈𝑚𝑎𝑥

𝑈𝐹𝑟𝑒𝑒
)                                                     𝑒𝑞. 6.24 

If right term of eq. 6.24 is higher than 1 (𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ > 1), this means that the free 

open flow region between both vegetated banks is width enough to allow the full-development 

of both shear layers. Otherwise, if 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ < 1, an overlapping between both shear 

layers is produced. In addition, if left term of eq. 6.24 is smaller than 1 (𝑈𝑚𝑎𝑥 𝑈𝐹𝑟𝑒𝑒⁄ < 1), a 

decrease of theoretical free longitudinal velocity is produced due to the overlapping of the shear 

layers. For each vegetation density, the relationship between these calculated ratios is 

represented in Figure 6.41. 
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Figure 6.41 shows a reduction of velocity ratio (𝑈𝑚𝑎𝑥 𝑈𝐹𝑟𝑒𝑒⁄ ) when 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄  

decreases. This velocity reduction is more significant in ∅ = 0.025 and ∅ = 0.006 than in ∅ =

0.0015 tests, which suggests that this relationship could also depend on vegetation density. 

Based on this, a new relationship between both velocity and width ratios is proposed by 

including a parameter based on vegetation density: 

1 − 
𝑈𝑚𝑎𝑥

𝑈𝐹𝑟𝑒𝑒
= 𝐴ø exp [(1 −

𝑊𝐹𝑟𝑒𝑒

2 𝛿𝑂𝑢𝑡𝑒𝑟
)

2

] −  𝐴ø                              𝑒𝑞. 6.25 

Where 𝐴ø is an empirical coefficient: 

𝐴ø =  
52.14

100
 (1 −  ø)−52.14                                                𝑒𝑞. 6.26 

Where ∅ is the solid volume fraction and 52.14 is a coefficient obtained empirically from 

the fitting the equation to the experimental results shown in Figure 6.41. The relationship 

proposed in eq. 6.25 was defined based on the assumption that there should be a horizontal 

asymptote for 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ > 1 as these scenarios allow the development of the full shear 

layer, and therefore a velocity 𝑈𝑚𝑎𝑥 =  𝑈𝐹𝑟𝑒𝑒  is achieved. Then, final expressions were obtained 

by fitting experimental data. In Figure 6.42 is showed both experimental ratios plotted 

previously in Figure 6.41 with relationship proposed in eq. 6.25 and eq. 6.26. 

 

Figure 6.41. Relationship between free region width ratio and maximum longitudinal velocity ratio. 
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The Pearson correlation 𝑅 between experimental data and results obtained with eq. 

6.25 and eq. 6.26 as well as absolute relative differences between 𝑈𝑚𝑎𝑥 predicted by equations 

eq. 6.25 and eq. 6.26, and experimental velocities are presented in Table 6.14. 

 

Density Correlation 𝑅 [−] Mean Rel. Diff. [%] 
∅ = 0.025 0.94 4.70 % 
∅ = 0.006 0.90 5.56 % 

∅ = 0.0015 0.73 5.06 % 
 

Once a relationship to obtain maximum longitudinal free velocity is defined, the 

proposed velocity model introduced in Section 6.2.1 can be modified by adding eq. 6.25 and eq. 

6.26 to predict time-averaged mean longitudinal velocity profiles with two vegetated banks. 

 

Figure 6.42. Relationship between free region width ratio and maximum longitudinal velocity ratio 

and proposed predicted relationship (eq. 6.25). 

Table 6.14. Pearson correlation and mean absolute relative differences between maximum 

experimental longitudinal velocities and results obtained with proposed relationships. 
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First, the length of outer layer (𝛿𝑂𝑢𝑡𝑒𝑟) was obtained by considering the free longitudinal 

velocity as the mean longitudinal velocity obtained for no-vegetated tests in Section 6.1 (see 

Table 6.1) and the longitudinal velocity within vegetation as the one showed in Table 6.13. As a 

result, a first outer length approximation is obtained for each water depth and vegetation 

density by using the relationship proposed in Section 6.2.1 (eq. 6.7). 

Then, ratio between the free flow region for each test (𝑊𝐹𝑟𝑒𝑒) and the double of the 

outer length previously obtained was calculated, obtaining 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ . Two different 

scenarios were considered depending on the ratio obtained. 

If 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ ≥ 1, the free flow region between vegetated banks is wide enough 

to allow the full-development of both shear layers. Therefore, equations proposed in Section 

6.2.1 are applied and longitudinal free velocity considered is equal to that obtained in no-

vegetated tests in Section 6.1 (𝑈𝑚𝑎𝑥 =  𝑈𝐹𝑟𝑒𝑒). 

Otherwise, if 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ < 1, the free flow region between vegetated banks is not 

wide enough to allow the full-development of both shear layers and an overlapping between 

both shear layers is produced. Therefore, the maximum longitudinal free velocity in the centre 

of the channel was predicted by using eq. 6.25 and eq. 6.26. In order to predict velocity profiles 

when both outer layers overlapped, a parabolic expression was proposed to connect both outer 

layer velocity profiles. This proposed parabolic profile has a maximum velocity value in the 

centre of the channel that is equal to 𝑈𝑚𝑎𝑥 and the profile is matched with both inner layers 

(𝛿𝐼𝑛𝑛𝑒𝑟) generated at each vegetated bank, which are obtained by using the relationship 

proposed in Section 6.2.1. Thus, longitudinal velocity profile within outer region for 

𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ < 1 is expressed as: 

𝑈𝑂𝑢𝑡𝑒𝑟 =  𝐶1𝑏𝑦2 +  𝐶2𝑏𝑦 +  𝐶3𝑏                                           𝑒𝑞. 6.27 

Where: 

𝐶1𝑏 =  
𝑈(𝑦0) −  𝑈𝑚𝑎𝑥

(𝑦0 −  𝑦𝐶𝑒𝑛𝑡𝑟𝑒)2
                                                  𝑒𝑞. 6.28 

𝐶2𝑏 =  −2𝐶1𝑏𝑦𝐶𝑒𝑛𝑡𝑟𝑒                                                     𝑒𝑞. 6.29 

𝐶3𝑏 =  𝑈𝑚𝑎𝑥 +  𝐶1𝑏𝑦𝐶𝑒𝑛𝑡𝑟𝑒
2                                                𝑒𝑞. 6.30 

Where 𝑦𝐶𝑒𝑛𝑡𝑟𝑒 is the position of the centre of the channel; 𝑈𝑚𝑎𝑥 is the maximum free 

longitudinal velocity considered for each configuration and 𝑦0 is the position of the inflection 

point. Figure 6.43 shows predicted time-averaged mean longitudinal velocity profiles and their 

corresponding experimental data for water depth ℎ = 0.054 m. 
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 Figure 6.43 shows a generally good fit between experimental and predicted data as in 

shown below in Figure 6.44 and Figure 6.45. Results for ∅ = 0.025 test conditions show a very 

close agreement between predicted and experimental data. Differences obtained in the centre 

of the free flow region for 𝑊𝐹𝑟𝑒𝑒 = 0.5 m are possibly due to differences in the prediction of 

𝑈𝑚𝑎𝑥, and differences in 𝑊𝐹𝑟𝑒𝑒 = 0.7 m are due to a mismatch with the velocity within 

vegetation. An increased of differences between predicted and experimental longitudinal 

velocity profiles seems to be produced when vegetation density decreases. These differences 

can be produced as an accumulation of small errors produced in the prediction of 𝛿𝑂𝑢𝑡𝑒𝑟 and 

𝑈𝑚𝑎𝑥, which produce some mismatching in the prediction 

The largest differences are found for tests ∅ = 0.0015, in which most of experimental 

data show a constant free velocity region even when predicted ratio 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ ≪ 1  . This 

effect can be produced because of an internal re-adjustment of the longitudinal velocity profile 

due to the low density considered. This re-adjustment would produce a constant slope with an 

inflection point closer to vegetation edge, producing a mismatch between the predicted results 

and the experimental data. 

The Pearson correlation 𝑅 was calculated for each test condition between predicted and 

experimental velocity profile. First, the correlation was obtained by considering the full velocity 

profile. In addition, another Pearson correlation was calculated by considering only the free 

open flow region between both vegetated banks. This second correlation was calculated to 

neglect constant velocity within vegetation that could increase the correlation even though a 

bad fitting of free longitudinal velocity was obtained. Both correlation results are shown in 

Figure 6.44.  

Figure 6.43. Experimental and predicted time-averaged mean longitudinal velocity profiles for h =

0.054 m tests. 
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 Figure 6.44 shows Pearson correlation 𝑅 obtained between experimental and predicted 

data considering both regions. Results suggest a good fit of predicted data for most cases. 

However, plots suggest a decrease of correlation for sparser vegetation densities. Moreover, 

some low results are obtained for ∅ = 0.0015 tests, where correlations around 0.8 are obtained 

for ℎ = 0.036 m. These differences would be produced because the re-adjustment of 

longitudinal velocity profiles for this specific density described previously.  

 

 

 

Figure 6.44. Pearson correlation between predicted and experimental velocity profiles. 
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Finally, mean absolute relative differences between experimental and predicted data 

considering same two regions as considered for Pearson correlation plotted in Figure 6.45. 

 

 

Figure 6.45 shows mean absolute relative differences between experimental and 

predicted data considering the same profile regions as during correlation study. Results suggest 

smaller differences between profiles around the free region than differences obtained for the 

full profile. In addition, these results agree with correlation data and suggest a reasonably good 

fit of proposed model to observed velocity profiles. 

 

 

Figure 6.45. Relative differences between predicted and experimental velocity profiles. 
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6.3.3. Solute Transport Results 

A vertical well-mixed injection was released in the centre of the free flow region for each 

𝑊𝐹𝑟𝑒𝑒 as described in Section 4.5.3. As it was explained previously, for these tests four free 

vegetated transversal sections located just under each camera were designed to record full 

concentration profiles for tests with the narrowest free regions. These profiles were analysed 

using same filtering technique as proposed in Section 5.6. Finally, a mean concentration profile 

was obtained for each free vegetated gap, obtaining four different concentration profiles along 

the length of the recorded area for each test configuration as shown Figure 6.46 and Figure 6.47. 

Figure 6.46 shows experimental concentration profiles for test configuration ℎ = 0.036 m − ∅ =

0.0015 for all 𝑊𝐹𝑟𝑒𝑒 values and Figure 6.47 shows experimental concentration profiles for test 

configuration ℎ = 0.036 m − ∅ = 0.025. 

 

 

Figure 6.46. Experimental concentration profiles obtained for h = 0.036 m −  ∅ = 0.0015 test 

configuration for a) 𝑊𝐹𝑟𝑒𝑒 = 0.7 m, b) 𝑊𝐹𝑟𝑒𝑒 = 0.6 m, c) 𝑊𝐹𝑟𝑒𝑒 = 0.5 m, d) 𝑊𝐹𝑟𝑒𝑒 = 0.4 m and e) 

𝑊𝐹𝑟𝑒𝑒 = 0.3 m. 
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As shown Figure 6.46 and Figure 6.47, an increase of tracer spreading is observed when 

𝑊𝐹𝑟𝑒𝑒 decreases for same water depth and vegetation density. This behaviour can be explained 

by the reduction of free flow region (𝑊𝐹𝑟𝑒𝑒) between both vegetated banks and the consequent 

encroachment of shear layers. In addition, an increase in mixing is also appreciated for same 

𝑊𝐹𝑟𝑒𝑒 value but denser vegetation. Figure 6.46 and Figure 6.47 show that for higher vegetation 

density there is an increase of mixing. This increase is produced because of the increase of 

velocity gradient produced by vegetated patch (the increase of vegetation density produces a 

decrease of flow velocity within the vegetated bank, increasing the velocity gradient between 

the vegetated banks and the free flow region in the centre).  

The experimental concentration data obtained for this set of experiments was 

compared with concentration profiles calculated by proposed empirical model explained in 

Section 6.2 for same flow conditions (vegetation density, water depth and 𝑊𝐹𝑟𝑒𝑒). 

Transversal profiles of transverse mixing coefficients were obtained by applying the 

transverse mixing model proposed in Section 6.2.2 (eq. 6.19 to eq. 6.22). For each test condition, 

𝑈𝑚𝑎𝑥  and 𝑈𝑉𝑒𝑔 predicted by the velocity model in Section 6.3.2 (eq. 6.25 and eq. 6.26) were 

used to predict 𝐷𝑦𝑚𝑎𝑥
  using eq. 6.23. The lengths of variable transverse mixing profiles were 

obtained by matching them with the length of the shear layers of predicted longitudinal velocity 

profiles (eq. 6.9 to eq. 6.18 or eq. 6.27 to eq. 6.30), and position of 𝐷𝑦𝑚𝑎𝑥
 was considered equal 

to the position of the inflection point 𝑦𝑜 using eq. 6.6. For those tests in which 𝑊𝐹𝑟𝑒𝑒 was wide 

enough to allow a constant free open flow region in the centre of the channel, 𝐷𝑦𝑓𝑟𝑒𝑒
 was 

Figure 6.47. Experimental concentration profiles obtained for h = 0.036 m −  ∅ = 0.025 test 

configuration for a) 𝑊𝐹𝑟𝑒𝑒 = 0.7 m, b) 𝑊𝐹𝑟𝑒𝑒 = 0.6 m, c) 𝑊𝐹𝑟𝑒𝑒 = 0.5 m, d) 𝑊𝐹𝑟𝑒𝑒 = 0.4 m and e) 

𝑊𝐹𝑟𝑒𝑒 = 0.3 m. 
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considered equal to the one considered in Section 6.2.2. Finally, 𝐷𝑦𝑉𝑒𝑔
 was obtained by using 

expression proposed by Nepf (2012). 

As a result, a transversal profile of transverse mixing coefficient was predicted for each 

test condition. The transverse profile of longitudinal velocity, the value and position of 𝐷𝑦𝑚𝑎𝑥
 

and the length of region with a variable 𝐷𝑦(𝑦) and the resulting profile of mixing coefficient 

depend on the vegetation density, the water depth and the width of free flow region 𝑊𝐹𝑟𝑒𝑒. In 

Figure 6.48 transverse mixing coefficient profiles for 𝑊𝐹𝑟𝑒𝑒 = 0.7 and 0.3 m for each vegetation 

density are plotted.  

 

 Figure 6.48 shows the predicted variable transverse mixing coefficient profiles for two 

different free region widths (𝑊𝐹𝑟𝑒𝑒 = 0.7 and 0.3 m) for all different vegetation densities. The 

prediction shows a decrease of 𝐷𝑦𝑚𝑎𝑥
 for narrower 𝑊𝐹𝑟𝑒𝑒. This decrease is produced as the 

value of 𝑈𝑚𝑎𝑥 predicted in the centre of the free flow region decreases as it was shown in 

Section 6.3.2. A variation in the variable region of 𝐷𝑦(𝑦) is also observed because of the 

variation of the shear layer length for each test condition. For those test configurations in which 

𝑊𝐹𝑟𝑒𝑒 is narrow enough to produce an overlapping of both shear layers, no constant 

𝐷𝑦𝑓𝑟𝑒𝑒
 region is produced.  

In Figure 6.48 it is also observed that for test condition ∅ = 0.0015 −  𝑊𝐹𝑟𝑒𝑒 = 0.3 m 

predicted transverse mixing coefficient values in the central free region are smaller than the 

coefficients predicted within vegetation. In this sparse scenario, the longitudinal velocity within 

the vegetation is higher than those obtained for denser tests and it is closer the non-vegetated 

Figure 6.48. Predicted transverse mixing coefficient profiles for vegetation at both sides with a free 

distance of 0.7 m and 0.3 m. 
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velocity. Therefore, the 𝐷𝑦𝑣𝑒𝑔
 value predicted by Nepf (2012) expression is higher than in denser 

scenarios. In addition, the expression proposed by Nepf (2012) produce a large variability for 

the prediction of transverse mixing within vegetation (Sonnenwald et al., 2017). As a result, the 

resulting transverse mixing profile shows an unrealistic scenario in which the mixing is higher 

within the vegetation than in the non-vegetated region. 

For each test configuration, a prediction of the downstream transversal concentration 

profiles was obtained using the F.D.M. methodology described in Section 6.2.2. The recorded 

upstream concentration profile was introduced into the F.D.M. as well as the predicted 𝐷𝑦(𝑦) 

and the longitudinal velocity profile obtained in Section 6.3.2 for each test configuration. The 

predicted transversal concentration profiles were compared with corresponding experimentally 

observed values at 𝑥 =  3.9 m (Figure 6.49, Figure 6.50 and Figure 6.51 for each vegetation 

density respectively). 
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Figure 6.49. Predicted and experimental transversal concentration profiles for both sides vegetation 

tests for ∅ = 0.025. 

. 
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Figures 6.49 shows two measured experimental concentration profiles located at 𝑥 =

 0.54 m and 𝑥 =  3.9 m respectively, and the predicted profile for each vegetation density at 

𝑥 =  3.9 m using the proposed model. In addition, this figure is related to experimental and 

estimated concentration data for each water depth and the vegetation density ∅ = 0.025. The 

predicted concentration profiles show a similar behaviour to the experimental ones. This 

similarity is more observable for the narrower tests (𝑊𝐹𝑟𝑒𝑒 =  0.5 m and 𝑊𝐹𝑟𝑒𝑒  =  0.3 m). In 

addition, experimental results show that the concentration profiles recorded at 𝑥 =  3.9 m are 

almost fully-mixed over the transverse direction. This behaviour is appreciated even for the tests 

with the widest free flow region (𝑊𝐹𝑟𝑒𝑒  =  0.7 m) and suggests that the presence of the two 

vegetated banks enhances the transverse mixing processes compared with those obtained for 

one vegetated bank. Moreover, it is important to note that, for the narrowest free flow gap 

(𝑊𝐹𝑟𝑒𝑒  =  0.3 m), the differences between the upstream and the downstream concentration 

profiles are noticeably small in all cases. This similarity suggests that the increase of the 

turbulence generated in the centre of the free flow region, coupled with the narrow width 

allowed for these scenarios; produces that the concentration profiles are almost fully-mixed in 

a short length. However, predicted profiles for ℎ = 0.036 m –  0.7 m and ℎ = 0.054 m –  0.7 m 

present a lower mixing rate than that observed in the experimental profiles. In addition, for all 

water depth tests regarding to 𝑊𝐹𝑟𝑒𝑒  =  0.7 m, a peak of concentration close the vegetation 

edge is observed in the downstream experimental profile, being more significant for deeper 

scenarios. This increment of concentration suggests a displacement of the concentration mass 

due to secondary currents; in agreement with the translation of mass to the vegetation 

boundary described previously in Section 6.2.2. This displacement seems to decrease for 

narrower 𝑊𝐹𝑟𝑒𝑒, suggesting that the decrease of the size of the non-vegetated region can cause 

a reduction of this effect. 
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Figure 6.50. Predicted and experimental transversal concentration profiles for both sides vegetation 

tests for ∅ = 0.006. 

. 
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Figure 6.50 shows the experimental and predicted concentration profiles for the same 

free flow gaps and water depths than Fig 6.49, but for the vegetation density ∅ = 0.006. In this 

figure, similar mixing rates are observed between the experimental concentration profiles and 

those predicted by the proposed model. Moreover, the differences in mixing observed in ∅ =

0.025 −  𝑊𝐹𝑟𝑒𝑒 = 0.7 m are reduced in ∅ = 0.006. However, an over predicted -mixing rate is 

observed for ℎ = 0.036 m –  0.7 m. In addition, the displacement of mass close to the 

vegetation edge discussed for ∅ = 0.025 is reduced, suggesting a diminution of secondary 

effects, probably as a result of the decrease of the vegetation density. 

For the experimental concentration profiles recorded at 𝑥 =  3.9 m, a maximum 

concentration peak is appreciated for the free flow gap 𝑊𝐹𝑟𝑒𝑒  =  0.7 m, in opposition to the 

concentration profiles show in Figure 6.49, where the downstream concentration profiles seems 

almost fully mixed within the free gap. This peak is also recorded for the free flow gap 𝑊𝐹𝑟𝑒𝑒  =

 0.5 m, although is less appreciated for deeper flow conditions. The presence of this maximum 

concentration value in the centre of the free flow suggests a decrease of the overall transverse 

mixing compared with the densest scenario. Moreover, results plotted in Figure 6.50 suggests 

that narrower free flow gaps and deeper flow conditions increase the overall transverse mixing. 

In addition, downstream concentration profiles for the narrowest free flow gap (𝑊𝐹𝑟𝑒𝑒  =

 0.3 m) show almost full-mixed concentration profiles. 

Results plotted in Figure 6.50 agree with the previous one shown for denser vegetated 

banks, and suggest an increase of the overall transverse mixing compared with those results 

obtained for one vegetated bank flow tests. In addition, a comparison between these 

concentration profiles and those plotted in Figure 6.49 suggests that a decrease of the 

vegetation density or the water depth produced a decrease of the overall transverse mixing. 

Moreover, the reduction of the free flow gap allowed between banks enhances the transverse 

mixing. Finally, results suggest a decrease of the secondary currents that may produce the 

movement of the main concentration mass. 



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 158 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

 

 

Figure 6.51. Predicted and experimental transversal concentration profiles for both sides vegetation 

tests for ∅ = 0.0015. 

. 
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Finally, Figure 6.51 shows the same experimental and predicted concentration profiles 

than previous figures, but for the vegetation density ∅ = 0.0015. In this figure, a general over-

mixing estimation is observed. For all different free flow gaps and water depths, the results 

obtained from the proposed model present a higher transverse mixing than that observed from 

experimental data. This difference may be related with the behaviour of the longitudinal velocity 

profiles recorded for this vegetation density and discussed in Figure 6.38. For these velocity 

profiles, a constant longitudinal velocity region was observed within the free flow gap even for 

narrower cases (𝑊𝐹𝑟𝑒𝑒  =  0.5 m), in which an overlapping of the shear layers could be 

expected, and thus a parabolic shape similar to those recorded for denser scenarios. This flat 

region suggests narrower shear layers for this vegetation density, which would be related with 

a decrease of the turbulence achieved within the free flow gap and thus a lower transverse 

mixing process as shown in Figure 6.51. However, the scenario with the narrowest free flow gap 

(𝑊𝐹𝑟𝑒𝑒  =  0.3 m) shows that both predicted and experimental concentration profiles present 

the same mixing rate. These results suggest that for this scenario, the overlapping of the shear 

layers predicted by the model is similar to that produced in the experiments. This agrees with 

velocity profiles show in Figure 6.38, where an overlapping of the shear layers is appreciated for 

the two narrowest free flow gaps (𝑊𝐹𝑟𝑒𝑒  =  0.4 m and 𝑊𝐹𝑟𝑒𝑒  =  0.3 m).  

Finally, experimental results plotted in Figure 6.51 show a decrease of the overall 

transverse mixing compared with those results plotted in Figure 6.49 and Figure 6.50, and agree 

with the idea that a decrease of the vegetation density produce a decrease of the transverse 

mixing in this type of flows. 

In addition, the Pearson correlation between the predicted and experimental data was 

obtained in order to visualize the quality of the prediction. Pearson correlation results are 

plotted in Figure 6.52.  



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 160 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

 

Pearson correlations shown in Figure 6.52 suggest a general good prediction of 

concentration profiles for all different configurations. Highest differences are observed for a 

𝑊𝐹𝑟𝑒𝑒 of 0.7 m and 0.6 m, especially for ∅ = 0.025. These higher differences are produced by 

the displacement of mass concentration discussed in previous paragraph produced by the 

presence of secondary currents. In addition, lower correlations were obtained for wider 

scenarios (𝑊𝐹𝑟𝑒𝑒 = 0.7 m and 0.6 m) for the vegetation density ∅ = 0.0015. These results 

agree with previous visual comparisons and are produced due to the over-mixing estimation of 

these scenarios. However, an increase of the Pearson correlation is observed for narrower flows 

in agreement with the increase of fitting between the estimated and experimental 

concentration profiles observed in Figure 6.51. 

Moreover, relative differences between predicted and experimental concentration 

profiles using same regions as considered in Section 6.2.2 and results are shown in Figure 6.53 

and Figure 6.54.  

Figure 6.52. Pearson correlation between predicted concentration profiles and experimental one. 
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Figure 6.53. Mean absolute relative differences between predicted and experimental concentration 

profiles considering a region of μ ± 1 std. 
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Results shown in Figure 6.53 and Figure 6.54 show higher absolute relative differences 

for ∅ = 0.025 − 0.7 m and 0.6 m tests. In addition, results suggest a decrease of differences 

when free gap between vegetated banks 𝑊𝐹𝑟𝑒𝑒 decrease, in agreement with correlation results.  

 

 

 

 

 

 

Figure 6.54. Mean absolute relative differences between predicted and experimental concentration 

profiles considering a region of μ ± 2 std. 
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6.4. Results Summary 

In this chapter, the new cost-effective measurement technique developed in Section 4 

and validated in Section 5 is used to record time-averaged surface velocity fields and time-

average vertically well mixed continuous injections to analyse the effects of artificial vegetated 

banks on longitudinal velocity shear layers and the variation of transverse mixing. 

Results from experimental data recorded for one artificial vegetated bank tests, and 

those obtained from previous works (White and Nepf, 2008 and West, 2016); are used to 

propose a new model to predict time-averaged longitudinal velocity profiles and variable 

transverse mixing profiles within a transversally orientated shear layer.  

The length of the different parts of the shear layer and the position of the inflection 

point are predicted based on the vegetation density and the velocity difference between the 

vegetated and non-vegetated regions. Longitudinal velocity profiles predicted by the proposed 

model give good results, with Pearson correlations between them and experimental data no 

lower than 0.938 for ∅ = 0.0015, 0.944 for ∅ = 0.006 and 0.981 for ∅ = 0.025 respectively. 

Moreover, the new model predicted the variable transverse mixing coefficient profile 

within the shear layer, in which a skewed Gaussian shape is proposed and the maximum 

transverse mixing coefficient is predicted based on the velocity differences between the 

vegetated and non-vegetated regions and the water depth. The rest of parameters needed to 

define this profile are obtained based on the shear layer profile. Predicted concentration profiles 

are compared against experimental data, obtaining a Pearson correlation no lower than 0.962 

for ∅ = 0.0015, 0.970 for ∅ = 0.006 and 0.958 for ∅ = 0.025 respectively. In addition, 

absolute relative differences obtained from this comparison are around 15 %. However, the 

model cannot predict some mass displacements into the vegetation boundary for densest 

scenarios recorded in experimental data. This displacement may be produced by secondary 

currents, which seem to depend on the velocity difference between the vegetated and non-

vegetated regions as higher effects are observed in densest and deeper tests. Nevertheless, the 

results show an accurate prediction of concentration profiles along the shear layer produced by 

an artificial vegetated bank. 

The results obtained in Section 6.2 show the differential velocity created by the 

presence of a vegetated bank produces an increase in the transverse mixing within the shear 

layer, producing a variable transverse mixing profile along the channel width. In addition, results 

suggest that a skewed Gaussian is a good approximation to define this variable profile. This 

increase of mixing seems to be related directly with the shape of the shear layer, and with the 

velocity difference between the vegetated and non-vegetated region and the water depth.  

Then, experimental time-averaged longitudinal velocity and concentration profiles are 

recorded from tests in which two artificial vegetated banks are considered, reducing the non-

vegetation region between them in Section 6.3. These experiments present a first approach to 

understand how the shear layers created by each vegetated bank interact when the distance 

between vegetation boundaries decreases. In addition, the proposed model explained in Section 

6.2 is validated against this new dataset. 

The newly proposed model produces a good prediction of longitudinal velocity profiles 

compared with experimental data for those scenarios where the non-vegetation region between 

both banks is wide enough to allow a full development of both shear layers. For narrower non-

vegetation regions, experimental results show a decrease of maximum longitudinal velocity 



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 164 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

achieved in the centre of the non-vegetated region, which depends on the vegetation density 

and the width ratio 𝑊𝐹𝑟𝑒𝑒 2 𝛿𝑂𝑢𝑡𝑒𝑟⁄ . In addition, the shape of velocity profiles approaches to a 

parable. 

In addition, the variable transverse mixing coefficient profiles are predicted and 

concentration profiles generated by them are compared against experimental data. Predicted 

transverse mixing profiles suggest that the decrease of the non-vegetated width, and thus the 

overlapping of both shear layers, produces a decrease of the maximum transverse mixing 

coefficient achieved, but an overall increase of the mixing rate within this region compared with 

one artificial vegetated bank scenarios. Predicted concentration profiles are compared against 

experimental data. Results from ∅ = 0.025 show the same displacement of concentration mass 

to the vegetation boundaries as that observed for one vegetated bank. This effect is more 

significant for the widest non-vegetation region and deepest flow, and decreases once the 

vegetated banks become closer. Therefore, Pearson correlation for these tests show values 

around 0.91 and relative differences around 20 to 35 % for those scenarios where this 

displacement is observed. However, once the vegetated banks become closer and these 

secondary currents seem to be reduced, Pearson correlations no lower than 0.97 and absolute 

relative differences around 10 to 20 % are achieved. 

For ∅ = 0.006 concentration profiles, this displacement is minimal and Pearson 

correlation no lower than 0.96 are achieved for all scenarios. In addition, absolute relative 

differences obtained are around 5 to 20 %, confirming an accurate prediction of concentration 

profiles by the proposed model. Finally, ∅ = 0.0015 results comparison show a high goodness 

in the prediction, although a general over-mixing of predicted concentration profiles is 

observed. 

Therefore, a new model is proposed to predict both longitudinal velocity and variable 

transverse mixing coefficient profiles within the shear layer produced by artificial vegetated 

banks, based on simple analytical expressions and for a range of vegetation density of ∅ =

0.0015 − 0.025. The model only requires information about the mean longitudinal velocity 

within the vegetated and non-vegetated regions, the vegetation density and the water depth. 

Predicted results show a good accuracy compared with experimental data, although 

mismatching is observed for the densest scenarios, where some secondary currents produce a 

displacement of the mass concentration to the vegetated boundary. 
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7. Application of the Model 

In this section, proposed predictions of mixing processes in channels with vegetated 

banks introduced in Section 6.2 and Section 6.3 are applied to a hypothetical scenario. The aim 

of this section is to study if the increased mixing caused by vegetated banks is of sufficient scale 

to have a notable and considerable impact on the mixing of a soluble material over and above 

that of a non-vegetated channel. In that case, such a vegetated system might have a role to play 

in mitigating river impacts from events such as CSO spills. 

 

7.1. River Conditions 

The scenario to be tested is based on the river characteristics of the Upper Narew River 

in the northeast of Poland. This river was chosen because its characteristics were well-defined 

by Rowiński et al., (2008) and it represents a good example of a natural river with a relatively 

small slope, similar to the laboratory experiments reported in this thesis. In addition, this river 

presents shallow flow conditions (𝑊𝑑 ℎ⁄  ≥ 10 − 20), which agrees with flow conditions used 

during tests described previously in this thesis. Based on the real river characteristics (Rowiński 

i et al., 2008), a straight channel is assumed with a constant rectangular section along the 

studied length. In addition, a basin non-dimensional constant transverse mixing coefficient is 

assumed for a non-vegetated flow based on results obtained in Section 6.1.2. The channel is 

defined with the following parameters: 

 Flow rate      𝑄 = 0.75 m3 s⁄  

 Channel slope      𝑆𝑜 = 0.002 

 Channel width      𝑊𝑑 = 6 m 

 Manning’s coefficient     𝑛 = 0.02 

 Non-dimensional transverse mixing coefficient  𝐷𝑦 ℎ𝑢∗⁄ = 0.13 

An initial analysis is conducted assuming no vegetation is present. Based on the measured 

characteristics above, a uniform water depth and constant longitudinal flow velocity are 

obtained by Manning’s equation introduced in Section 2.1 (eq. 2.9.), obtaining ℎ = 0.18 m 

(𝑊 ℎ⁄ = 33.33) and 𝑈 = 0.69 m/s. In addition, a constant spill of a non-reactive pollutant is 

introduced into the system and its evolution is studied downstream of the injection source 

(Figure 7.1 and Figure 7.2). The pollutant is represented as a Gaussian shape in the cross section, 

assumed steady in time and vertically well-mixed, so only transversal mixing processes are 

considered. 

The water depth, the longitudinal velocity and the transverse mixing coefficient are 

considered constant along the spanwise direction. A steady state, vertically well-mixed injection 

located in the centre of the spanwise (𝑦𝐶𝑒𝑛𝑡𝑟𝑒 = 3 m) was considered. The F.D.M. proposed in 

Section 6.1.2 is applied to predict pollutant concentration downstream over 100 m of the 

injection point as shown in Figure 7.2 



A Study on Transverse Mixing in Shallow Flows within Partially Vegetated Channels 
 

 

- 166 - 
Santiago Rojas Arques 

Department of Civil and Structural Engineering 

 

 

 

The decrease of the maximum concentration value along the downstream direction is 

considered as the studied parameter for all scenarios proposed in this section to analyse the 

effects on the watercourse by the pollutant spill. Figure 7.3 shows the decrease of maximum 

concentration value (𝐶𝑀𝑎𝑥) along the channel length, normalised by the maximum 

concentration at the injection point (𝐶𝑀𝑎𝑥−𝑆𝑝𝑖𝑙𝑙). 

The parameter 𝐿50 is obtained as the length downstream from the injection point needed 

to decrease the maximum concentration value by 50 %. This parameter is 𝐿50 = 37.7 m for the 

injection located at 𝑦𝐶𝑒𝑛𝑡𝑟𝑒 with no vegetation. 

Figure 7.1. Upstream boundary condition of injected pollutant. 

Figure 7.2. Prediction of concentration along 100 m downstream of the injection point for a spill 

located at y =  3 m. 
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7.2. Single Vegetated Bank Condition 

In this section, a single vegetated bank is introduced into the channel and the predicted 

effects on mixing processes and water depth (linked to flood potential) are compared with the 

previous non-vegetated scenario. Vegetated characteristics are based on common reeds 

(Phagmites Australis). This species is usually found in the U.K. and Europe and is observed in 

river banks with channel slopes between 𝑆𝑜 = 0.01 − 0.001 (Haslam, 1934). Several 

researchers have studied flow resistance in laboratory channels using this type of vegetation 

instead of artificial vegetation (James et al., 2004, Jordanova et al., 2006, Shucksmith et al., 

2010), with typical mean stem diameters of approximately 𝑑 = 0.007 m. 

Jordanova et al. (2006) applied the simulation model proposed by James et al (2004) to 

study drag coefficient produced by this type of vegetation for stem scale Reynolds number 

𝑅𝑒𝑠𝑡𝑒𝑚 = 246 − 5838. They proposed a relationship to obtain the effective drag coefficient 

(𝐶𝐷𝑒
) as a function of the stem scale Reynolds number. 

𝐶𝐷𝑒
=  𝛼𝐶𝐷

𝑅𝑒𝑠𝑡𝑒𝑚

𝛽𝐶𝐷                                                           𝑒𝑞. 7.1 

Where 𝛼𝐶𝐷
 and 𝛽𝐶𝐷

 are empirical coefficients that depend on the foliage of the vegetation 

as shown Table 7.1.  

 

Description 𝛼𝐶𝐷
 𝛽𝐶𝐷

 

Stem only 30.3 −0.38 
3 − 6 leaves 999.58 −0.80 
Full foliage 209.9 −0.58 
Upper limit 1241.2 −0.79 
Lower limit 10.35 −0.28 

Average 114.79 −0.62 

Figure 7.3. Normalised maximum concentration values for predicted concentration profiles along the 

channel length. 

Table 7.1 Values proposed by Jordanova et al. (2006) for parameters αCD
 and βCD

. 
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Based on these results, a vegetated bank is now considered with a constant vegetated width 

𝑊𝑉𝑒𝑔 = 2 m along the full channel length. The same flow rate and channel parameters as in the 

non-vegetated scenario are considered and different vegetation densities are analysed in the 

range of  ∅ = 0.001 − 0.15. A mean stem diameter 𝑑 = 0.007 m is considered based on stem 

diameters recorded by previous researchers (James et al., 2004, Jordanova et al., 2006, 

Shucksmith et al., 2010). 

Water depth and longitudinal velocity profile along the spanwise direction for each 

vegetation density are calculated. A simple optimization routine is developed using Matlab 

function fmincon to find an optimum water depth ℎ that produces a flow rate equal to 𝑄 =

0.75 m3 s⁄  following the procedure: 

 For a given water depth ℎ𝑖, an initial flow velocity within vegetation is considered 

𝑈𝑣𝑒𝑔0. 

 Based on this vegetated velocity, the average value of stem scale Reynolds number 

and drag coefficient are obtained within the vegetated bank using the expression 

and coefficients proposed by Jordanova et al (2006) (eq. 7.1 and Table 7.1). 

 Longitudinal velocity within the vegetation is now obtained using the expression 

introduced in Section 2.2.3 (White and Nepf, 2008) in eq. 2.26. 

 This procedure is performed for different 𝑈𝑣𝑒𝑔0 values until eq. 7.2 is satisfied, 

obtaining 𝑈𝑉𝑒𝑔. 

𝑎𝑏𝑠(𝑈𝑣𝑒𝑔0 − 𝑈𝑉𝑒𝑔 𝑅𝑒𝑠𝑢𝑙𝑡)

𝑈𝑉𝑒𝑔 𝑅𝑒𝑠𝑢𝑙𝑡
< 0.1 %                                          𝑒𝑞. 7.2 

 Longitudinal free flow velocity (𝑈𝑓𝑟𝑒𝑒) is obtained using Manning’s equation for the 

given ℎ𝑖. 

 Longitudinal velocity profile along the spanwise direction is obtained using the 

proposed method introduced in Section 6.2.1 (eq. 6.9 to eq. 6.12) by using the free 

flow velocity (𝑈𝑓𝑟𝑒𝑒) and the longitudinal velocity within the vegetation (𝑈𝑉𝑒𝑔 𝑅𝑒𝑠𝑢𝑙𝑡) 

obtained in previous steps. The flow rate is calculated (𝑄𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) by integrating the 

longitudinal velocity over the width. 

The full procedure described is run until the objective function 𝑎𝑏𝑠(𝑄𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑄) is 

minimised, where 𝑄 is set at 0.75 m3 s⁄ , obtaining a water depth and a longitudinal velocity 

profile along the spanwise direction for each vegetation density. However, in Table 7.1 it is 

shown that vegetated parameters proposed by Jordanova et al. (2006) depend on plant state 

(i.e. the amount of foliage and its distribution). Thus, for each vegetation density (represented 

with the solid volume fraction 𝑆. 𝑉. 𝐹. =  ∅) three different water depths and velocity profiles 

are calculated by considering average, upper and lower limit values proposed in Table 7.1. The 

water depth results are plotted in Figure 7.4 and example transversal profiles of longitudinal 

velocity flow are plotted in Figure 7.5. 
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Figure 7.4 shows the increase of water depth related with the increase of vegetation 

density for a fixed vegetated bank width. In addition, Figure 7.5 shows some examples of 

predicted transversal profiles of longitudinal velocity for selected vegetation densities. The 

results plotted in each figure are obtained by considering the average, upper and lower limit 

values for parameters shown in Table 7.1. Results show a wide variability in results, suggesting 

a strong dependence on drag coefficient. In addition, results in Figure 7.4 show a different 

behaviour of the upper parameters results from the rest. This difference may be produced by 

the prediction of the drag coefficient, which affects the resulting 𝑈𝑉𝑒𝑔 and therefore the full 

longitudinal velocity profile. This effect is higher for sparser vegetation density as can be 

observed in Figure 7.5 for ∅ =  0.006, where the predicted 𝑈𝑉𝑒𝑔 for the upper parameters is 

lower compared with the other two cases, resulting in a different shape for the longitudinal 

Figure 7.4. Variation of water depth for different vegetation densities. 

Figure 7.5. Prediction of transversal profiles of longitudinal velocity for different vegetation densities. 
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velocity profile. Therefore, the drag coefficient seems to be a key parameter that must be 

accurately defined. Results plotted in Figure 7.4 suggest that the increase of water depth is 

highly affected by the presence of a vegetated bank, with a maximum increase of 42 % above 

non-vegetated conditions. However, as the vegetation density increases above ∅ =  0.04 the 

water depth is not significantly increased further.   

Predicted longitudinal velocity profiles are then used to predict transverse mixing 

coefficient profiles along the spanwise direction for each density using the procedure explained 

in Section 6.2.2. Example profiles are plotted in Figure 7.6 

 

 

Non-dimensional mixing coefficient 𝐷𝑦 ℎ𝑢∗⁄  is assumed to remain constant over the 

width in the free flow region away from the vegetated bank as the main channel characteristics 

remain constant. Figure 7.6 shows a high variability between foliage characteristics in the value 

of predicted 𝐷𝑦𝑚𝑎𝑥
 and the length of the variable transverse mixing profile. This variability 

suggests that the effect of vegetated banks are sensitive to the type and characteristics of the 

vegetation.  

Finally, predicted values of longitudinal velocity, transverse mixing coefficient and water 

depth obtained for each vegetation density scenario are introduced into the F.D.M. and 

concentration profiles are predicted 100 m downstream of the initial concentration profile 

(Figure 7.7). For each vegetation density, three different spill locations are considered along the 

spanwise direction. As in the non-vegetated flow prediction, a first injection is considered at 

𝑦𝐶𝑒𝑛𝑡𝑟𝑒 = 3 m. Then, one injection position is considered within the shear layer at 𝑦𝑆ℎ𝑒𝑎𝑟 =

2.5 m and a last one within the vegetated bank at 𝑦𝐵𝑎𝑛𝑘 = 1 m. Each predicted concentration 

distribution is obtained considering both the average, upper and lower foliage parameters 

obtained previously. 

 

Figure 7.6. Prediction of transversal profiles of transverse mixing coefficients for different vegetation 

densities and foliage characteristics. 
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Figure 7.7 shows concentration map distributions predicted for each injection position 

for a vegetation density ∅ = 0.056. The vegetated edge is represented by white dots. 
  

  

 

Results plotted in Figure 7.7 show differences between concentration distributions for 

the same injection position but different input parameters (upper, average or lower parameters 

obtained by considering different 𝛼𝐶𝐷
 and 𝛽𝐶𝐷

 values). These differences are higher for the 

injection within the vegetated bank. In addition, concentration maps show the spreading of the 

plume is lower for the injection located within the vegetated bank, and similar results for 

different foliage parameters are obtained for those injections located in the centre of the 

channel and within the shear layer. 

The decrease of predicted maximum concentration normalised by the maximum 

concentration at the source along the channel length is plotted in Figure 7.8 for the same 

vegetation density ∅ = 0.056. 

 

Figure 7.7. Predicted concentration maps for an injection located at the centreline of the channel 

(left), within the shear layer (centre) and inside vegetated bank (right) for a ∅ = 0.056. 
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In Figure 7.8, the decrease of normalised maximum concentration values is plotted for 

each spill position for the same vegetation density. The results are obtained by considering 

average, upper and lower limit foliage parameters from previous steps. In addition, the results 

obtained for an injection in the centre of the channel with no vegetation are plotted.  

Results suggest a higher decrease of maximum concentration value for those injections 

located at 𝑦𝐶𝑒𝑛𝑡𝑟𝑒 and 𝑦𝑆ℎ𝑒𝑎𝑟. However, a high variability between foliage characteristics is also 

obtained for these results, which seems to increase for those injections closer to the vegetated 

bank. In addition, a lower decrease of maximum concentration values is observed for the 

injection within vegetation compared with the non-vegetated scenario. Results suggest that the 

presence of a vegetated bank increases the decay of maximum concentration value if the spill is 

not produced within vegetation. However, the results seem to be quite sensitive to the drag 

coefficient considered in the first step, and thus, to the type and state vegetation considered. 

In addition, Figure 7.9 shows the decrease of predicted maximum concentration 

normalised by the maximum concentration at the source along the channel length for different 

vegetation densities and with the injector located at 𝑦𝑆ℎ𝑒𝑎𝑟. In this figure it is observed that, 

although there is a high variability in results for different foliage parameters, results do not 

change significantly for an increase of vegetation density. 

 

Figure 7.8. Decrease of normalised maximum concentration values along the channel length for 

different injection points and a fixed vegetation density. 
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Finally, for the 𝑦𝐶𝑒𝑛𝑡𝑟𝑒 and the 𝑦𝑆ℎ𝑒𝑎𝑟 scenario, the lengths needed to achieve a 

maximum concentration value smaller than the 50 % (𝐿50) are obtained for each vegetation 

density (Figure 7.10). The results obtained for non-vegetated conditions are also presented for 

comparison. 

 

 

Figure 7.9. Decrease of normalised maximum concentration values along the channel length for a fixed 

injection point and different vegetation densities. 

Figure 7.10. Predicted L50 for a spill located in the centre of the channel (up) and within the shear 

layer (down) for different vegetation densities. 
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Figure 7.10 shows the lengths needed to achieve a maximum concentration value 

smaller than the 50 % (𝐿50) for the injection positions at the centre of the channel and within 

the shear layer plotted in Figure 7.8 for different vegetation densities. Continuous, dots and 

dashed lines represent the results by considering average, upper and lower values for drag 

coefficient values showed in Table 7.1 respectively. In addition, the blue circle plotted at ∅ = 0 

represents the 𝐿50 value for no vegetation conditions obtained in Section 7.1. 

Results suggest that, for a given river under some assumptions (straight channel and 

constant transversal section and slope), the presence of a vegetated bank seems to increase 

transverse mixing processes. Figure 7.10 suggests that, once a high enough density is achieved 

(∅ =  0.031), there is not a significant further increase of solute spreading for denser 

vegetation. In addition, Figure 7.10 shows a sudden increase of the value 𝐿50 for the injection 

point 𝑦𝑆ℎ𝑒𝑎𝑟 at ∅ =  0.001. This increase is only observed for this specific case, and may be 

produced because of the prediction of the 𝑈𝑉𝑒𝑔 for this sparse case, which could produce a 

sudden decrease of variable 𝐷𝑦𝑉𝑒𝑔
, affecting the result. In addition, the prediction of the drag 

coefficient seems to play a key role in the prediction of mixing processes, demonstrating the 

importance of the type and state of vegetation considered.  

 

7.3. Summary 

A scenario based on a real river is tested under the assumption of one constant 

vegetated bank along the channel length. The proposed model introduced in Section 6 is applied 

to predict transverse profiles of both longitudinal flow velocity and variable transverse mixing 

coefficients. Finally, the decay of maximum concentration along 100 m downstream for 

different injection positions is studied. 

Results show that the presence of one vegetated bank induced an increase of transverse 

mixing for an injection located around the shear layer compared with the no vegetation 

condition, reducing the maximum concentration values and the ecological impact of a pollutant 

spill. However, the spreading of the solute injected within the vegetated bank decreased 

compared with the non-vegetated condition as the longitudinal velocity and the transverse 

mixing coefficient is reduced within the vegetated bank. In addition, results suggest that this 

increase of spreading does not depend on vegetation density once it achieved a certain value 

(∅ =  0.031); for denser vegetated banks an increase of the spreading is not observed. In 

addition, results seem to depend strongly on the drag coefficient considered at the first step, 

and hence on the type of plant present on the river. Results obtained show that the distance 𝐿50 

can be reduced (by between 22 to 68 %) due to the presence of a vegetated bank, suggesting 

that this configuration could be useful to mitigate impacts from CSO spills. 
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8. Discussion 

A critical evaluation of the cost-effective method and the proposed model is discussed in 

this section. Moreover, the limitations and uncertainties that determine the applicability and 

the reliability of the results are discussed, as well as the implications that these relationships 

may have in future research. 

This thesis has presented the development of a new measurement technique, which allows 

the recording of 2D surface velocity fields and depth-averaged concentration distributions in 

shallow water flows. The main goal of this technique is to provide a cost-effective method to 

study the coupled hydrodynamic and mixing processes in this work and future research using a 

combination of PIV and PCA techniques. 

The PIV technique is based on the identification of tracers flowing within a fixed 

recorded area in consecutive frames to obtain an instantaneous velocity vector that represents 

the flow at number of small areas. This technique has been used in previous work (Weitbrecht 

et al., 2002; Muste et al., 2004; Novak et al., 2017; Beg et al., 2020) and it allows the 

characterisation of the surface flow in large recorded areas, requiring less time than other 

techniques such as those that use ADV probes. However, this technique only allows the 

obtaining of surface velocity, and thus no information of the velocity in the vertical direction or 

the lateral velocity below the surface can be obtained. Moreover, the resolution of the results 

depends on the resolution of the cameras. In addition, objects in the flow can produce some 

blind spots in which the cameras cannot record the tracers. This effect is more pronounced when 

the objects are not located just below the cameras, but on the edges of the recorded frames. 

This effect can be produced in very dense vegetated areas on the banks. To solve this effect, it 

would be required the installation of parallel arrays of cameras over the cross-section, or by 

using transparent vegetation. The technique has been used in this thesis to obtain the mean 

longitudinal velocity for different vegetated scenarios, providing suitable results to study the 

influence of vegetated banks on the flow in the central, non-vegetated section. In addition, 

further investigations can be carried out in order to study the instantaneous velocity (rather 

than time-averaging as in this thesis) in both directions to improve the understanding of these 

scenarios. These deeper works may be accompanied with a study of how the different steps 

taken in the analysis of recorded frames (see Section 5.1) could affect the instantaneous velocity 

results. 

The PCA technique is based on the absorbance of a specific range of the light spectrum 

by a tracer released in the flow. In this thesis, the tracer used is Rhodamine WT, but the 

technique allows the use of other substances with similar properties, which increases the 

versatility of the system. Note that the light system used depends on the type of tracer 

discharged, and thus the dye calibration may vary from one substance to another. The PCA 

technique allows the recording of steady-state injections and pulse injections, increasing the 

type of research that can be carried out. Moreover, the technique presents a rapid way to obtain 

the concentration data compared with other methods such as fluorometer devices (Pilechi et 

al., 2016; Seo et al., 2016) or conductance meters (Colombani et al., 2015). In addition, larger 

areas can be recorded than those methods that require the use of lasers (Nepf et al., 1997; 

Hilderman an Wilson, 2006). This thesis shows that one of the most important factors to record 

accurate concentration data is the light system, which should provide a homogenous intensity 

distribution avoiding the presence of strong reflections. These reflections are produced on the 

surface of the flow, and may be increased by the presence of strong turbulences in the flow. 
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Therefore, future works should be carried out to study if the increase of turbulence, and hence 

the increase of flow irregularities on the water surface, may have a significant impact on the 

quality of recorded data. Moreover, the PCA technique assumes a depth-averaged 

concentration distribution, and thus it is suitable for shallow water flows. However, the 

technique may be not suitable for those scenarios in which a strong concentration gradient 

within the water depth is produced. Moreover, same problem as the PIV technique may be 

produced with blind spots, requiring the use of parallel arrays of cameras or transparent 

vegetation. 

This measurement technique has been validated against measurements recorded using 

different methods, confirming the suitability of the technique to obtain velocity and 

concentration distribution information in shallow water flows. This technique provides new 

tools to study the hydrodynamic and mixing processes in different scenarios for future 

researchers. Moreover, this technique presents a reduction in the hardware cost compared with 

other comparable PIV measurement techniques. The proposed measurement system only 

requires the installation of standard cameras, in this case GoPro cameras; some LEDs light arrays 

and a reflective and dispersive material to improve the light intensity distribution. For the 

analysis of PIV frames, the commercial software Dynamic Studio was used. However, other 

cheaper options are available in the market such as PIVlab from Matlab (Thielicke and Stamhuis, 

2014). 

The novel measurement technique is used to obtain the mean longitudinal velocity and 

the concentration distribution of steady state injections in flows with vegetated banks. Empirical 

relationships are obtained from the relationships between experimental data and the designed 

flow conditions (i.e. water depth, vegetation density and velocity increment). Based on these 

relationships, an analytical model is proposed and validated to predict longitudinal velocity and 

concentration distributions in rivers for different vegetated conditions. Moreover, the effects of 

a vegetated bank on the enhancing of transverse mixing processes have been studying 

considering a hypothetical scenario. 

The model proposed in this thesis provides a method to estimate the mean longitudinal 

flow velocity in rivers with vegetated banks, which also allows the estimation of the vegetated 

effects on the flow compared with a non-vegetated flow. These effects include the increase of 

the water depth and the velocity increment between the vegetation and the free open flow 

region. Previous work has proposed different models to predict the flows under these scenarios. 

However, these models usually demand the obtaining of empirical coefficients defined 

experimentally such as the slip position between the inner and the outer layer and its velocity 

(𝑦𝑚 and 𝑈𝑚 respectively) defined by White and Nepf (2007); and which are not usually 

extrapolated to other scenarios. In this thesis, empirical relationships are proposed to estimate 

the lengths of the shear layer and the position of the inflection point using own experimental 

data and those recorded in previous work (White and Nepf, 2007 and West, 2016), and thus 

allowing the use of these relationships in different scenarios. These relationships only require 

the estimation of the vegetation density and the mean longitudinal velocity within the vegetated 

bank and in the free flow region, which can be obtained using expressions proposed in previous 

work. Then, a proposed expression similar to the broadly used expression proposed by White 

and Nepf (2008) is defined to predict the longitudinal velocity profile in flows with a vegetated 

bank. This expression is based on the estimated lengths of the shear layer and the position of 

the inflection point, and provides similar results as those using the White and Nepf (2008) 

expression. 
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In addition, the effects induced by the vegetated bank on the transverse mixing 

processes are studied. For each flow condition, different steady-state injections are released 

within the shear layer and the variable transverse mixing profile is optimised for each flow 

condition. Experimental results show an overall increase of the transverse mixing compared with 

the non-vegetated flows. In addition, this increase seems to be higher for denser and deeper 

flow conditions. This trend agrees with previous work (Ghisalberti and Nepf, 2005; Rubol et al., 

2016; West, 2016; West et al., 2020) and suggests that the presence of the vegetated bank and 

the corresponding shear layer increase the turbulence intensity and the Reynolds stress within 

the shear layer and this increase of turbulence enhance the transverse mixing processes. In 

addition, results suggest that this increase depends on the vegetation density and the water 

depth, and thus it may depend on the velocity difference produced between the vegetated and 

the free flow layers. 

A skewed-Gaussian shape is proposed to parameterise the transverse mixing profile. 

This shape is similar to those proposed in previous works (West, 2016; Sonnenwald et al, 2017; 

West et al., 2020) and it is related with the longitudinal velocity profile obtained for each flow 

condition. Thus, the length of the variable transverse mixing profile is assumed to fit with the 

length of the shear layer and the position of its maximum value with the position of the inflection 

point, where the maximum Reynolds stress is expected. In addition, the constant transverse 

mixing coefficient within the free flow region is assumed to be equal to that obtained for non-

vegetated flow scenarios, and the transverse mixing coefficient within the vegetation is 

estimated using previous expressions proposed by Nepf (2012). Therefore, only the maximum 

transverse mixing value needs to be optimised for each flow condition. Optimization results 

agree with experimental data and suggest an increase of the transverse mixing for denser and 

deeper flow scenarios. A new relationship is found between the optimised maximum transverse 

mixing coefficient, and the product of the velocity difference between the two co-flowing 

streams and the water depth. This relationship shows that, for a higher vegetation density or a 

higher water flow, a higher velocity difference between the vegetated and the free flow regions 

is produced. This velocity difference increases the turbulent intensity within the shear layer, 

which enhances the transverse mixing. This new relationship and the proposed expressions to 

predict the longitudinal velocity profiles are used to estimate the concentration profiles for each 

test condition. Results are compared against experimental concentration profiles, showing a 

generally good fit. Largest deviations are observed in cases where there is a lateral movement 

of the main mass of concentration profiles (i.e. for injections close the vegetation boundary for 

the denser vegetation tests). This behaviour suggests the presence of a secondary current 

producing a translation of the solute mass toward the vegetation. In addition, this movement 

seems to increase with vegetation density and with water depth, suggesting the dependence of 

this effect on the velocity difference between the vegetated and non-vegetated regions. 

In addition, this thesis presents new dataset concerning the hydraulic interaction of two 

vegetated banks, specifically how the overlapping of the developed shear layers affects the 

mean longitudinal velocity and the transverse mixing processes. This type of vegetated flow can 

be found in narrow rivers with vegetation at each side, but no previous work has been found 

regarding these scenarios. Experimental longitudinal velocity results show that, for wide enough 

free flow gaps, the two shear layers regarding each vegetated bank can be developed, and a 

constant free flow velocity is achieved in the centre of the channel. However, for narrower 

scenarios, an overlapping of the shear layer is produced. This overlapping produces a decrease 

of the maximum longitudinal velocity in the centre of the channel, which seems to depend on 

the free flow gap between banks and on the vegetation density. In addition, the velocity profile 
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no longer exhibit a constant free flow velocity region in the centre, but a parabolic shape is 

recorded. Moreover, this overlapping effect seems to increase the overall transverse mixing 

processes within the free flow gap. By taking into account this reduction of the free flow velocity, 

the proposed model seems to reproduce the mean longitudinal velocity profile and the 

concentration distribution as the comparison against experimental data suggests. However, 

further investigations may be carried out to improve the understanding of this type of vegetated 

flow, including the study of secondary currents and the characterization of the turbulent 

structures.  

Finally, a study of a hypothetical scenario discussed in Section 7 suggests that the 

presence of a vegetated bank can meaningfully increases the transverse mixing for those plumes 

discharged within the shear layer. This increase of transverse mixing seems to be independent 

on the vegetation density, and the effect of the vegetated bank remains quasi-constant for an 

increase of the density once it achieves a certain value. Therefore, this model provides a useful 

making-decision tool for the management of watercourses. The goal of this model is to provide 

accurate results without the requirement of collections of experimental data or the use of time-

demanding models. The model only needs information regarding the vegetated bank, the 

channel size and the flow rate or the water depth, as those proposed models for submerged 

vegetated flows (Battiato and Rubol, 2014; Rubol et al., 2016). For future research, the 

estimations produced by the model may be compared against experimental data recorded from 

real river scenarios to study the sensitivity and accuracy of the results. 

However, due to its simplicity, this model only considers the mean longitudinal velocity 

component of the flow. Therefore, for those scenarios in where important secondary currents 

or sinuous meanderings are present, further investigations are needed to quantify the effects of 

the transverse velocity components. Moreover, the empirical relationships are based on 

experimental results recorded from flows with artificial vegetation. These cylinders, widely used 

in previous work to simulate the vegetation (Nepf, 1999; Stone and Shen, 2002), represents an 

idealized vegetated flow scenario, and thus further investigations are needed to compared 

model results against flow and concentration data recorded in flow with real vegetation. In 

addition, the model is designed to estimate the dispersion of a steady-state injection, and 

therefore further investigation must be carried out to see how pulses may be affected by 

vegetated banks. 
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9. Conclusion 

The main aim of this thesis is to study the influence of vegetated banks on transverse 

mixing processes to mitigate the impact of pollutant discharges on natural rivers. 

Previous researchers have studied the flow influence of a vegetated bank, showing an 

increase of instabilities in the shear layer generated due to the velocity gradient produced 

between the vegetation and the free open region. In addition, West (2016) showed that these 

instabilities enhance the transverse mixing within the shear layer. In this thesis, a new approach 

is developed based on experimental results to relate the variation of transverse mixing within 

the shear layer and the longitudinal velocity profiles with the main characteristics of the 

vegetated bank. 

A new cost-effective measurement technique was developed to measure both surface 

2-D velocity fields and depth-averaged concentration distributions of a solute downstream of an 

injection point in shallow flows. This new method was validated against traditional point probes 

(ADV for velocity data and Cyclops for concentration data), showing a good agreement between 

the new technique and traditional techniques data. This new technique provides both surface 

velocity and concentration distribution data along a full studied area of 4.48 × 1.22 m2, using a 

non-intrusive, easy to operate technique which allows the simultaneous measurement of both 

types of data. This enables an increase in the amount of concentration profiles recorded as 

opposed to previous techniques. Most existing methods are based on lasers, and only obtain 

concentration information for a limited number of spanwise profiles. In addition, this technique 

decreases the measurement time, allowing an increase in the number of experiments that can 

be conducted in a given time frame. 

 With this new technique, time-averaged longitudinal velocity data and depth-averaged 

solute concentration distributions downstream of a continuous injection were obtained from 

flows with a vegetated bank. Based on experimental results and those obtained previously by 

other studies, a relationship between the shear layer length with the velocity gradient (∆𝑈) and 

the vegetation bank density (𝑎) was proposed. The proposed relationship was used to generate 

longitudinal velocity profiles within a vegetated bank flow with same conditions as previous 

experiments. In addition, experimental data were fitted using similar expressions to those 

proposed by White and Nepf (2008). Results from both expressions were compared against 

experimental data, showing very similar results for both proposed models. Pearson correlations 

obtained were 𝑅 ≥ 0.97 for results fitted with the White and Nepf (2008) expression and 𝑅 ≥

0.94 for results obtained from the proposed new relationship. 

In addition, variable transverse mixing coefficients were obtained using an optimization 

routine, fitting the predictive concentration profiles with those recorded experimentally. Results 

suggest that the skewed Gaussian distribution of transverse mixing coefficient can represent the 

behaviour of the transverse mixing processes within the vegetated shear layer. In addition, the 

optimised transverse mixing coefficient profiles reproduced the mixing processes recorded for 

each test condition. Based on these results, a new relationship between the maximum 

transverse mixing coefficient (𝐷𝑦𝑀𝑎𝑥
) and the product of the velocity difference and the water 

depth (∆𝑈ℎ) was proposed, with the rest of parameters needed to define the transverse mixing 

coefficient profiles being given by the shear layer parameters. This relationship was used to 

reproduce concentration distributions and the results were compared with experimental data. 

Pearson correlations were obtained, with values 𝑅 ≥ 0.95 in all cases. In addition, absolute 

mean relative differences between predicted and experimental concentration distributions 
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were calculated, obtaining differences smaller than 21 %. These results and a visual comparison 

between concentration profiles show a good fit between experimental concentration 

distributions and those obtained with the proposed relationship. However, the experimental 

concentration profiles recorded close to the vegetation boundary exhibit a movement of the 

main mass for the densest vegetation tests, probably produced by the presence of secondary 

currents. 

Both relationships were combined to generate a new model that predicted the 

transverse longitudinal velocity profile and the solute concentration distribution downstream of 

a continuous injection for a twin vegetated bank flow condition. This model was used to predict 

results for two vegetated flow conditions with different free gaps (𝑊𝐹𝑟𝑒𝑒) between both 

vegetated banks and results were validated against experimental data recorded for same flow 

conditions. Results show a good correlation between experimental and predicted longitudinal 

velocity profiles for the denser and medium vegetation density (∅ = 0.025 and 0.006 

respectively), with 𝑅 ≥ 0.95. However, some mismatches were obtained for less dense flow 

conditions (∅ = 0.0015), with 𝑅 ≈ 0.82 for the shallower flow condition. These differences 

could be produced because the re-adjustment of the longitudinal velocity profile for the sparsest 

density, which produces a mixing rate lower than that predicted by the model. However, the 

Pearson correlations and the absolute mean relative differences obtained for the overall set of 

data suggest a good fit of proposed model to observed velocity profiles. In addition, this section 

provides a novel dataset describing interacting shear layers between two vegetated banks, 

which represents a first approach for further works to understand this process and how it affects 

velocity and mixing. 

Concentration profiles were also predicted by the model and results were compared 

with experimental data in the same way as longitudinal velocity profiles. Pearson correlations 

obtained between predicted and experimental concentration profiles 𝑅 ≥ 0.96 for the sparse 

and medium vegetation density and 𝑅 ≥ 0.91 for the dense vegetation density respectively, 

suggesting a general good prediction of concentration profiles for all different flow conditions.  

In addition, mean, absolute and relative differences were obtained between 

experimental and predicted concentration profiles. Comparisons show similar mixing behaviour 

between predicted and experimental concentration profiles. The same mass concentration 

displacement to the vegetation boundary (as in the one vegetated bank tests) is observed for 

denser vegetated flows, which is reduced when the vegetation and the water depth decrease. 

This effect reinforces the hypothesis that some secondary currents were generated for the 

denser vegetation. However, the results suggest a tolerably good prediction of both longitudinal 

velocity profiles and concentration distributions predicted by the proposed model. Results show 

the proposed model can predict longitudinal velocity and transverse mixing coefficient profiles 

within vegetated shear layers using relatively simple analytical expressions. This model only 

requires information about the vegetation density, the water depth and the longitudinal velocity 

within the non-vegetated and vegetated regions, which can be approximated by Manning’s 

equation and from a force balance type equation respectively. 

Once the proposed model was validated against experimental data, a scenario based on 

a real river was tested to study whether the effects of vegetated banks on transverse mixing are 

notable enough to mitigate pollutant discharge impacts. The drag coefficient induced by the 

vegetation was obtained by applying the relationship proposed by Jordanova et al. (2006) for 

common reeds. Both the longitudinal velocity and the variable transverse mixing coefficient 

profiles were predicted for different vegetation densities. Results show that the presence of the 
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vegetated bank enhances the transverse mixing compared with the non-vegetated condition for 

those injections located in the free flow region close to the shear layer. This increase seems to 

be higher if the injection moves far from the vegetation boundary. However, results show that 

once the vegetation density achieved a certain value, the increase of mixing started to stop and 

the rate of decay of the maximum concentration value became constant for higher vegetation 

densities. In addition, results suggest a strong dependence on the drag coefficient, and hence 

on the type of vegetation and its state of growth. 

The last section shows the presence of a vegetated bank induced an increase of 

transverse mixing for a continuous release located within the vegetated shear layer compared 

with a non-vegetated flow condition. This increase seems to be independent of the vegetation 

density once it achieved a certain value (∅ =  0.031). However, results show a strong 

dependence of this increase on the type of plant and its state of growth. In addition, the 

enhancing of mixing rate looks to be higher if the injection point is located close the shear layer 

but far from the vegetation boundary. Finally, results suggest a mass concentration 

displacement produced by secondary currents that the model did not predict. Therefore, further 

studies are required to determine the effect of secondary current on transverse mixing for this 

type of flow. 
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