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Abstract

This thesis presents a series of planners and learning algorithms for real-world

manipulation in clutter. The focus is on interleaving real-world execution with

look-ahead planning in simulation as an effective way to address the uncertainty

arising from complex physics interactions and occlusions.

We introduce VisualRHP, a receding horizon planner in the image space

guided by a learned heuristic. VisualRHP generates, in closed-loop, prehen-

sile and non-prehensile manipulation actions to manipulate a desired object in

clutter while avoiding dropping obstacle objects off the edge of the manipula-

tion surface. To acquire the heuristic of VisualRHP, we develop deep imitation

learning and deep reinforcement learning algorithms specifically tailored for en-

vironments with complex dynamics and requiring long-term sequential decision

making. The learned heuristic ensures generalization over different environment

settings and transferability of manipulation skills to different desired objects in

the real world.

In the second part of this thesis, we integrate VisualRHP with a learn-

able object pose estimator to guide the search for an occluded desired object.

This hybrid approach harnesses neural networks with convolution and recurrent

structures to capture relevant information from the history of partial observa-

tion to guide VisualRHP future actions.

We run an ablation study over the different component of VisualRHP and

compare it with model-free and model-based alternatives. We run experiments

in different simulation environments and real-world settings. The results show

that by trading a small computation time for heuristic-guided look-ahead plan-

ning, VisualRHP delivers a more robust and efficient behaviour compared to

alternative state-of-the-art approaches while still operating in near real-time.
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Chapter 1

Introduction

“AI has by now succeeded in doing essentially everything that requires

‘thinking’ but has failed to do most of what people and animals do ‘without

thinking.”

- Donald Knuth

Autonomously manipulating every-day objects in cluttered environments

has long been a target milestone in robotics [1, 6]. The last 40 years of research

in this field have mostly focused on fetch-and-place applications that involve

little to no contact with obstacles in the environment [96]. In this approach,

the robot is expected to reach a desired object along a collision-free trajectory

and find a grasp pose that ensures a stable grasp. Once the object is grasped,

it is treated as an extension of the robot’s kinematics. Consequently, long-

term reasoning over the physics of the robot-environment interactions can be

avoided. Contacts with the environment, also referred to as ’collisions’, which

carries a more negative connotation, are often dealt with by making the robot

more compliant as a safety measure.

The 2015 and 2016 Amazon Picking Challenge (APC) were competitions

where robots were tasked with retrieving items from cluttered shelves. The

height of the shelves prevented robots from approaching objects from the top,

and they had to rely on getting into the shelf from the side. The competi-

tion showcased state-of-the-art approaches for motion and grasp planning. All

participants adopted collision-free based approaches to the problem [31, 24].

Despite impressive results, avoiding contacts inherently limited the scenarios

that the robots could deal with [42]. In the following years, the challenge was

redesigned to allow for top-down bin picking, a setup that is less sensitive to

sequential physics interactions [8]. Redesigning the environment to better suit

robotics application is one way of achieving autonomous object retrieval. How-

ever, as argued in [1, 71], future robots are envisioned to adapt to environments

designed for humans and not the other way around.
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Oil
bottle

Figure 1.1: Retrieving the oil bottle. Images are from a hand-
mounted camera.

Many real-world applications necessitate sequential reasoning over complex

physics interactions between multiple objects. Consider the example illustrated

in Fig. 1.1. The robot is tasked with retrieving the oil bottle from the kitchen

cabinet. The cabinet shelf is cluttered with jars, cereal boxes, and other bot-

tles. The oil bottle is not reachable due to occlusion and possibly the lack of

a collision-free trajectory. While decluttering the shelf one reachable object at

a time might be possible, time constraints and the possible lack of a tempo-

rary holding space eliminates this approach as a solution. The robot is left

with having to navigate its way through the clutter to search for the oil bottle,

and then reach it and pull it out without dropping any of the other objects off

the shelf. While the oil bottle is small enough to be grasped, other objects,

such as a large cereal box, might be best manipulated with non-prehensile ac-

tions. Accomplishing this task involves executing a sequence of prehensile and

non-prehensile actions that must adapt in real-time to unforeseeable real-world

physics-based interactions.

In this thesis, we investigate methods to solve manipulation tasks in clut-

tered real-world environments with occlusions. We develop heuristic-based plan-

ners that enable robots to physically interact with the environment. We focus

on using Imitation Learning (IL) and Reinforcement Learning (RL) to learn the

planners’ heuristics. Within this context, we address several key requirements

common to many physics-based manipulation tasks.

• Sequential decision making: Efficiently solving the manipulation task,

that is with minimal number of actions, requires the manipulation actions

to be performed in the right order. Accounting for the space that the robot

will be traversing and the location objects will be occupying in the future

is critical for avoiding unnecessary corrective actions or undesirable object

configurations.

• Reactive behaviour: Predicting the exact results of multiple objects in-

teracting over a long sequence of actions is a notoriously hard problem.

Instead, the robot must adapt its motions in closed-loop during execution

to unmodeled real-world dynamics.
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• Generalization and transferability: The robot is expected to acquire ma-

nipulation skills that apply to a wide variety of real-world environments

such as different environment settings and objects to manipulate. Al-

though generalization and transferability are often used interchangeably

in the robotics literature, in this thesis, we distinguish the nuances be-

tween them. By generalization, we refer to the robot’s ability to act in

environments with different number of objects, different object shapes,

and different initial objects and target layouts on the manipulation sur-

face. By transferability, we refer to the robot’s ability to target differ-

ent desired objects in different manipulations tasks. For example, from

a physics and geometry perspective manipulating an orange fruit is not

very different from manipulating an apple. The acquired manipulation

skills must be seamlessly transferable to a multitude of objects that the

robot is expected to interact with.

• Occlusion-aware behaviour: In many real-world shelf setups, objects can

be partially or totally hidden behind one another. The robot must account

for this fact and in turn reason over past observations to efficiently explore

and retrieve a desired object.

We investigate solutions that can simultaneously address all these key require-

ments. In this process, we explore novel planning frameworks and learning

algorithms which leads us to a number of new opportunities and challenges.

1.1 Main Themes

The research involved in this work evolves around several fundamental ideas in

the field of motion planning and policy learning. In this section, we introduce

the main themes explored in this thesis.

In the real world, object-to-object and object-to-robot physics interactions

can vary widely depending on a number of parameters such as mass, inertia, fric-

tion, geometry, etc. Yet, physics predictions remain fundamental for planning

sequential actions in clutter. Exactly predicting the outcome of an interac-

tion is not always necessary to solve a manipulation in clutter problem. Many

planning-based approaches embrace environment contacts by leveraging simple

physics models and a strategy that takes uncertainty into account. This could be

done for example by continuously re-planning or exploiting uncertainty reducing

actions [29]. Physics models, however, introduce two major drawbacks. They
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are computationally expensive to query and inaccurate over long-term predic-

tions. In this thesis, we look at overcoming these two drawbacks by combining

two paradigms. The first is on learning a direct mapping from state to actions

without explicitly relying on a physics model. The second is on using a physics

engine to run a short horizon look-ahead planner such that physics transition

queries are minimized and physics prediction errors are not compounded.

We investigate the use of a learned heuristic to accelerate the search of the

short horizon planner to run in near real-time time. In the context of plan-

ning, a heuristic is used to estimate the cost-to-go from the current state to the

goal. This estimate allows the heuristic to guide a search algorithm to explore,

using a forward model, promising directions to reach the goal. The closer the

heuristic estimates are to the optimal cost-to-go the shorter the solution would

be. In a large and continuous state space, such as the case for manipulation

in clutter, handcrafting efficient heuristics is not a straightforward task. In

addition to estimating the cost-to-go, a suitable heuristic should compute this

estimate relatively fast for the planner to run in near-real time. Further, the

heuristic should be applicable to different environment settings for the planner

to generalize. Instead handcrafting a heuristic for physics-based manipulation

in clutter, this thesis delve into learned heuristics modeled by deep neural net-

works. The focus will be on learning the optimal cost-to-go while satisfying the

real-time and generalizability requirements.

Another theme that we explore is related to the challenges posed by complex

physics environments and long action sequences to existing learning algorithms.

Learning-based approaches, particularly the ones based on deep learning, rely

on an iterative process which gradually improves the learned behaviour. The

convergence of the learning process is highly sensitive to changes in the ob-

served interactions with the environment. In a complex physics environment,

even a small change in how the robot interacts with the environment can lead

to drastically different observations, potentially derailing the convergence to

a useful behaviour. We re-examine some of the most common learning algo-

rithms applied to robotic manipulation and improve on them to better mitigate

premature convergence to sub-optimal solutions and unstable learning.

Further, we elaborate on the idea that a simple representation of the envi-

ronment that carries relevant information across different tasks is fundamental

for generalizability and transferability. A manipulation task can be represented

over different granularity levels to match the requirements of the decision maker.

High level abstract representations can cope with a wide range of tasks. At
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planning time, states and actions are modelled on a descriptive level with sym-

bolic preconditions and effects. Actions are assumed to have instantaneous and

measurable effects [35, 78]. For example, an “open door” action could have

preconditions such as “door is closed” and “robot hand is free”. If satisfied,

the action can be assumed feasible and the door state would be updated to

“door is open”. In contrast, physics-based manipulation in clutter requires a

substantial amount of low level reasoning over the physics [69]. A representa-

tion that, at the same time, captures low level state features, such as object

shapes and relative poses, and the high level task definition, such as the type of

the desired object and its target destination, would allow for a unified decision

making process to perform a variety of manipulation tasks. We explore the

use of an image-based representation that relies on colour labelling to describe

the manipulation task while also preserving the geometrical properties of the

environment.

Further, acting in an environment under occlusions would benefit from re-

taining information from past observations to plan future actions. Engineering

what information is relevant to retain, how to represent it, and how it could be

evolving due to physical interactions are not easy to answer. We investigate the

possibility of delegating these questions to the learning process, whereby, the

history of past observations is directly mapped to actions.

1.2 Contributions

This section outlines the contributions produced by this work.

• Closed-loop control scheme for near real-time physics and occlusion-aware

manipulation enabled by a learned heuristic. The control scheme steps are

to observe, represent, plan, execute the first action of the plan, and then

loop-back to the observation step. The developed control scheme forms

the main framework to interleave real-world execution with planning in

simulation.

• Abstract image-based representation of the real-world rendered from the

simulator state. The representation is able to capture an arbitrary num-

ber of objects and it uses colour-labelling for identifying the type of the

objects in the scene. These two features enable greater generalization and

transferability.

• Formulation of physics-based manipulation as a short horizon heuristic

search problem. We show how a heuristic can be used to shorten the
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planning horizon. Consequently, the planner can run in near real-time

and compounding modelling errors are reduced.

• Formulation of the planner’s heuristic as a learnable function. It enables

the planner to efficiently perform a local search and estimate the cost-to-

go of a state. Additionally, in a partially observable environment, we also

learn to predict the most likely poses of a hidden desired object.

• A novel formulation of IL and RL to acquire the planner’s heuristic. IL is

used to initialize the heuristic from sub-optimal demonstrations of how

to solve the manipulation task. The heuristic learns to replicate the

behaviour observed in these demonstrations. RL further optimizes the

heuristic to generate a more robust and efficient behaviour. Algorithms

were developed for learning in a discrete action space and in a continuous

action space.

• Implementation of the aforementioned approaches on a simulated and

real UR5 robot platform with a Robotiq gripper. The robot demonstrates

the ability to search and retrieve a desired object from a cluttered shelf

without dropping any of the other objects off the edges.

1.3 Thesis Outline

Chapter 2 presents the background theory behind our work. Chapter 3 lo-

cates our work with respect to the state-of-the-art. Chapter 4 introduces the

framework of the closed-loop control scheme for manipulation in environments

without occlusions. The heuristic learning algorithms and how the heuristic is

used to guide the planner is also laid out in this chapter. Chapter 5 presents our

approach to manipulation in environments with occlusions. Chapter 6 presents

a road-map for future work on how to extend the contributions of this thesis to

more complex 3D environments.

1.4 Publication Note

This thesis builds on the findings of two published conference papers [15, 10],

one journal paper that is accepted for publication [11], two published work-

shop papers [14, 13], and one conference paper that is currently under review

[9]. Most of the work in Chapter 4 on discrete action space appeared in our

conference papers [15, 10], while work on continuous action space appeared in
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our journal paper [11]. Most of the work in Chapter 5 is under review for the

conference paper [9].
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Chapter 2

Background

This chapter presents a background on the learning literature that this thesis

builds upon. The chapter starts by introducing Markov chains and follows the

literature up to state-of-the-art deep Reinforcement Learning (RL) algorithms.

Although this thesis presents several novel concepts related to planning, pro-

found background knowledge of the planning literature is not required to follow

this work. Where required, relevant planning concepts and algorithms will be

presented in subsequent chapters along with the corresponding contribution.

2.1 Markov Chains

A Markov Chain is a memory-less stochastic process for describing state tran-

sitions. A state, s ∈ S, is a known variable or set of variables describing the

environment. The state can also describe a partially observable environment

as in a Hidden Markov Model. A process is called Markovian if it satisfies the

Markov property: the probability distribution over the next state only depends

on the current state.

P (st+1|s0, s1, . . . , st) = P (st+1|st). (2.1)

2.2 Markov Decision Process (MDP) and the

Bellman Equations

An MDP is a mathematical framework for decision making in a Markov process

with discrete time step. Compared to a Markov Chain, an MDP introduces a

decision maker for selecting an action at ∈ A at a Markov state st and thus

influencing the distribution over the next state st+1, such that

T (st, at, st+1) = P a
ss′ = P (st+1 = s′|st = s, at = a), (2.2)
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with T being the probability transition function. At each time step, the decision

maker selects an action according to a policy π, where π is a mapping from states

to actions:

at ∼ π(.|st) (2.3)

In return, an immediate scalar reward is received:

rt+1 = r(st+1 = s′, st = s, at = a). (2.4)

The optimal MDP solution is a policy π∗ that maximises the discounted

sum of future rewards, also called the return R, at any instance t:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∑
k=t

γk−trk+1, (2.5)

where γ ∈ [0, 1) is the discount factor used to prioritize immediate rewards over

the reward signal from distant future actions.

The value of a state provides an estimate of the return if a policy π were to

be followed from the current state. It is described by the expectation over the

return given by the value function vπ. Similarly, it can also be described by the

action-value function qπ which is the expected return from the current state s

assuming action a was selected. The value function and action-value function

are given by:

vπ(s) = Eπ

[∑
k=t

γk−trk+1

∣∣∣∣st = s

]
(2.6)

and

qπ(s, a) = Eπ

[∑
k=t

γk−trk+1

∣∣∣∣st = s, at = a

]
. (2.7)

The value function can also be expressed in terms of the action-value function:

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a). (2.8)

A certain policy π1 is considered better than another policy π2 if policy π1 yields

higher return than π2, that is vπ1 > vπ2 ∀ s ∈ S. Hence, the optimal policy is

the policy that yields the highest return:

π∗ = arg max
π

vπ(s) ∀ s ∈ S. (2.9)
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The optimal value function v∗ corresponding to following the optimal policy π∗.

It can be written as:

v∗(s) = vπ
∗
(s) = q(s, π∗(.|s))

= max
a∈A

q∗(s, a) ∀ s ∈ S. (2.10)

Hence, the optimal policy can also be formulated in terms of the action-value

function:

π∗ = arg max
a∈A

q∗(s, a) ∀ s ∈ S. (2.11)

Dynamic programming can be used to solve the search for the optimal policy

in a discrete time-step MDP. It solve the problem by recursively updating the

expected return and storing it over for all the MDP states, a not so computa-

tionally efficient technique for large MDPs. We derive the Bellman equations

used in dynamic programming to compute the value function in a stochastic

processes:

v(s) = Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |st = s]

using Eq. 2.5

= Eπ[rt+1 +
∑
k=t+1

γk−trk+1|st = s]

= Eπ[rt+1 + γRt+1|st = s]

we rewrite it as conditional probability over the next state st+1 = s′

=
∑
s′∈S

P (s′|s)Eπ[rt+1 + γRt+1|s, s′]

we rewrite it as conditional probability over the action a at state s

=
∑
a∈A

P (a|s)
∑
s′∈S

P (s′|s, a)Eπ[rt+1 + γRt+1|s, s′, a]

The addition in an expectation can be separated such that

=
∑
a∈A

P (a|s)
∑
s′∈S

P (s′|s, a) [Eπ[rt+1|s, s′, a] + γEπ[Rt+1|s, s′, a]]

then using the Markov property and Eq. 2.4, we reformulate it as

=
∑
a∈A

P (a|s)
∑
s′∈S

P (s′|s, a) [rt+1 + γEπ[Rt+1|s′]]

(2.12)
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We can now express the value function using the transition model:

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

T (s′, s, a)[rt+1 + γvπ(s′)] (2.13)

Similarly, the the Bellman equation can also be expressed in terms of the action-

value function. Using Eq. 2.8, we get:

qπ(s, a) =
∑
s′∈S

T (s′, s, a)[rt+1 + γ
∑
a′∈A

π(a′|s′)qπ(s′, a′)] (2.14)

The Bellman equations are used to learn the value of a policy. By iteratively

updating the the value function and the policy, the optimal policy can be re-

trieved. Solving these equations requires a known a MDP, which is not the case

for most real-world problems.

2.3 Model-Free Reinforcement Learning

Model-free RL offers a framework for approximating the optimal policy of MDPs

with unknown structure from experience. The policy is either indirectly learned

with value iteration or directly with policy gradient approaches.

Monte-Carlo: Monte-Carlo (MC) RL learns the value of a state using the

experienced return from following the acting policy from that state. It mostly

applies to episodic MDP, where an episode is a sequence of state-action-reward

〈st, at, rt+1〉 ending at an MDP terminal state. At the end of an episode, the

values for each visited state are updated only based on the final return. That

is in contrast to updating it based on the neighbour states as in the Bellman

equations Eq. 2.13 and Eq. 2.14. In a discrete state space, if a state is visited

more than once in an episode, it can either be updated based on the return

from the first visit, or the return can be averaged over the multiple visits. In a

continuous state space, it is very unlikely to visit the same exact state twice in

an episode. The updated state value formula is:

vπ(st)← vπ(st) + α(Rt − vπ(st)), (2.15)

where α ∈ (0, 1] is the learning rate hyper-parameter, typically close to 0. A

drawback of MC methods is that they can only be updated after the episode has

terminated and they suffer from high variance, particularly in long time length

episodes. Hence, MC methods require a large number of samples compared to

alternative low variance approaches
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Temporal Difference: Temporal difference (TD) methods allow for value

update at every time step during execution in MDP with unknown transition

function. TD combines the return sampled from experience, as with MC meth-

ods, with the Bellman equations to bootstrap the estimate value updates. The

value estimate at the current state st is updated based on the immediate reward

received from the model and the value estimate at the next state st+1:

v(st)← v(st) + α(rt+1 + γv(st+1)− v(st)), (2.16)

where

rt+1 + γv(st+1) is the TD target value, (2.17)

rt+1 + γv(st+1)− v(st) is the TD error. (2.18)

Using the action-value function, we can rewrite 2.16 as:

q(st, at)← q(st, at) + α(rt+1 + γq(st+1, at+1)− q(st, at)). (2.19)

This update rule results in an on-policy method know as SARSA, which is short

for: 〈st, at, rt+1, st+1, at+1〉. The learned action-value function corresponds to the

acting policy controlling the agent.

Alternatively, “q-learning” is a TD algorithm in the discrete action space

that allows to directly learn an estimate of the optimal action-value function q∗

instead of qπ [114]:

q(st, at)← q(st, at) + α(rt+1 + γmax
a
q(st+1, a)− q(st, at)). (2.20)

The max operator in the TD target, rt+1+γmax
a
q(st+1, a), makes the q-learning

algorithm an off-policy algorithm. It makes possible to learn an estimate of

the optimal action-value function irrespective of the acting policy. A major

benefit of an off-policy approach is that 〈st, at, rt+1, st+1〉 transition samples

collected from previous experiences using an older version of the currently acting

policy can still be used to update the action-value function. Several exploration

strategies have been developed for q-learning. The most common and simple

strategy is ε-greedy. With probability ε a random action is selected and with

probability 1 − ε a greedy action is selected, i. e., a = arg max
a
q(s, a). At

convergence, the agent executes the greedy policy.

TD methods, which only use the first experienced reward in the update rule,

overcome the high variance in MC methods. The low variance comes at a cost
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of a high bias introduced by the leaned estimate the return a the next state. A

middle ground exists between MC and single-step TD. It is possible to construct

the update target based on the n-step rewards received from the model. The

TD target value becomes:

rt+1 + γrt+2 + γ2rt+2 + . . .+ γn−1rt+n + γnv(st+n), (2.21)

where n is a hyper-parameter that is task dependent. v(st+n) is replaced with

q(st+n, at+n) and max
a
q(st+n) for SARSA and q-learning, respectively.

Policy Gradient: Policy gradient methods present another paradigm for

approximating the optimal policy. Instead of first learning a value function then

retrieving the policy, policy gradient methods aim at modelling and optimizing

the policy directly. The policy must be parametrized by a differentiable func-

tion with respect to θ and is it learned in an on-policy fashion. Policy gradient

methods are better suited for continuous action spaces compared to value it-

eration method. Take for example q-learning. In a continuous action space, it

must scan the max operator over a continuous space, suffering from the curse

of dimensionality. In policy gradient, on the other hand, the policy model can

directly learn the parameters of Gaussian policy in the continuous action space.

The objective of policy gradient methods is to learn the policy that maxi-

mizes the expected return,

J(θ) = Eπθ [
∑
t=0

γtrt+1], (2.22)

by following the gradient of the expected return. The parameters of the policy

are updated according the following update rule:

θ ← θ + α∇J(θ). (2.23)

According to the policy gradient theorem [106], the gradient of Eq. 2.22 is:

∇θJ(θ) = Eπθ [Ψt∇θlogπθ(at|st)], (2.24)
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where Ψt can have different formats depending on the implementation. Some

of the most common are [100]:

Ψt =
∑
t

γtrt+1 return, (2.25)

Ψt = qπ(st, at) action-value ft., (2.26)

Ψt = Advπ(st, at) = qπ(st, at)− vπ(st) advantage ft., (2.27)

Ψt = Advπ(st, rt+1, st+1) = rt+1 + vπ(st+1)− vπ(st) adv. ft. with TD residual.

(2.28)

Following the gradient formulation in Eq. 2.24, the policy update will in-

crease or decrease the probability of experienced trajectories according to their

yielded return. Eq. 2.25 and Eq. 2.26 scale the probability of a trajectory

irrespective if the trajectory received much smaller or larger rewards than oth-

ers. Eq. 2.27 and Eq. 2.28 uses the advantage function where they subtract a

θ independent term, called baseline, such that changes in the probability of a

trajectory becomes relative to the average expected return. In other words, the

advantage function estimates how much better or worse was the action at that

the agent took at state st compared to the average return expected at st. In

practice, Eq. 2.28 is preferred over as Eq. 2.27 as only the value function needs

to be learned as opposed to learning the action-value function and the value

function. Approaches where the gradient is bootstrapped using a learnable vπ

are called “Actor-Critic” Algorithms. The Actor is the policy π(a|s) and the

Critic is the value function vπ.

2.4 Deep Reinforcement Learning

Deep RL refers to using a neural network (NN) as a non-linear, differentiable

function approximator to model the value function or the policy. A deep RL

cycle consists of (i) collecting transition samples by interacting with the envi-

ronment following a certain policy, then (ii) run stochastic gradient descent on

the NN parameters via back-propagation. NNs can generalize over large and

continuous state space by inherently learning relevant abstract features to esti-

mate the value function or for the policy to act on. However, compared to other

function approximators such as radial basis function or tile coding, NNs have

high sample complexity and require the data, i. e., the transition samples, to be

independent and identically distributed (i.i.d.). This is particularly challenging

in RL since the data is generated from a sequential process making it highly
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correlated and hence causing stability problems to the learning process. There

exist a plethora of algorithms and hacks to stabilize Deep RL. We present the

ones most relevant to this thesis.

Deep Q-Learning (DQN): The DQN algorithm, proposed in [80], is the

q-learning algorithm with additional features to stabilize the learning of an

action-value function modelled by a NN with parameters θ. As the generated

data in RL are highly correlated, the DQN algorithm proposes collecting and

storing transition samples in a large replay buffer Dreplay. In what is known as

“Experience Replay”, the NN is updated over batches of random samples from

the replay buffer. The benefit of the replay buffer is twofold. It decorrelates the

sequential experiences by random sampling. Also since the q-learning algorithm

is off-policy, the replay buffer makes learning more sample efficient. Data in

the replay buffer, even if collected with an older acting policy (inferred from

an older action-value function), can still be used to update the current action-

value function. Hence, the transition samples are used more than once. Another

feature of DQN is to freeze the action-value function parameters θfrozen in the

TD target and only updates it periodically. This features aims at reducing the

short-term oscillation in action-value function updates (avoid chasing a moving

target) such that:

Lq(θ) = E〈st,at,rt+1,st+1〉∼Dreplay [(rt+1 + γmax
a
qθfrozen(st+1, a)− qθ(st, at))2] (2.29)

Mnih et al. [80] demonstrate DQN over Atari games with images-based state

representation. They concatenate the last 4 frames of the game to have a

Markovian state and use the TD updates with n-step reward, as in Eq. 2.21.

Synchronous Advantage Actor-Critic (A2C): Asynchronous Advan-

tage Actor-Critic (A3C) is a variation of Actor-Critic algorithms with NN func-

tion approximators designed to parallelize data collection [79]. A3C uses mul-

tiple agents each with its own local policy parameters and running in its own

environment. The gradient computed from each agent is used to update a set of

global parameters asynchronously. After every certain number of interactions,

an agent updates its local parameters from the global parameters.

Synchronous A2C is a variation of A3C where all the agents use the same

parameters [87, 116]. A2C waits for a certain number of transition samples to be

collected from all the agent, then computes the gradient and update the global

parameters using all the collected transition samples. The global parameters

are then shared with the agents for a new round of data collection.
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Proximal Policy Optimisation PPO: In Actor-Critic methods, the pol-

icy and value function are updated based on the stream of transition samples

produced by the agent. This means that the stability of the learning process

is highly sensitive to changes in the policy and by consequence the generated

transition samples. A large update to the policy, far outside the range where

the transition samples were collected, can entail a new stream of bad transition

samples, i. e., transition samples with faint or no reward signal from the envi-

ronment. The estimate of the advantage function becomes less accurate which

further alters policy making it hard to recover. This phenomenon is sometimes

referred to as catastrophic forgetting, i. e., loosing all the previously acquired

knowledge [61].

A naive solution would be to lower the learning rate at the expense of an even

higher sample complexity. Several alternative solutions have been proposed to

tackle this issue, mostly focusing on having conservative policy updates [99].

PPO offers an intuitive first order optimisation method to limit the policy up-

dates by clipping the policy ratio, πθ
πθold

. PPO suggest reformulating the policy

loss function (Eq. 2.24) as follows:

LCLIP (θ) = Et
[
min

(
πθ(at|st)
πθold(at|st)

Advt, clip

(
πθ(at|st)
πθold(at|st)

, 1− ε, 1 + ε

)
Advt

)]
,

(2.30)

where ∇θlogπθ(a|s) = ∇θπθ(at|st)
πθold (at|st) . This formulation of the objective function

ensures that actions that had a better effect than the expected return (Adv > 0),

and are becoming more probable under πθ, their probability will increase but not

by much compared to the previous policy πθ, i. e., no more than πθ
πθold

> 1 + ε.

In the case where actions that had a worse effect than the expected return

(Adv < 0) and are becoming less probable under πθ, their probability will

decrease but not by much compared to the previous policy πθ, i. e., no less than
πθ
πθold

< 1− ε.

2.5 Partially Observable Markov Decision Pro-

cess (POMDP)

A generalization of a Markov Process is a Hidden Markov Model (HMM) where

the state is not fully observable. Acting in a HMM is modelled by a POMDP.

The agent has restricted information on the state via partial observations o ∈ O.

At each discrete time step, the state s is manifested by an observation o following

the observation probability distribution Ω(o|s).
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When a model is available, decision making takes place in belief space b [52],

that is, on a probability distribution over the state space b(s) = P (s). The belief

is updated after every interaction with the environment. Given the previous

belief b(s) and after executing action a and observing o′, the updated belief

becomes:

b(s′) =
1

PΩ

Ω(o′|s′)
∑
s∈S

T (s, a, s′)b(s), (2.31)

where PΩ normalizes the entries of the belief state:

PΩ =
∑
s′∈S

Ω(o′|s′)
∑
s∈S

T (s, a, s′)b(s). (2.32)

A POMDP solution is a policy π that maximizes the return by mapping a belief

b to an action a over the entire state space S. However, maintaining a belief

over a large state space requires a high computational and memory cost [84]. In-

stead, value iteration and policy gradient methods with function approximators

have been developed for computing the policy directly from observations [41].

Nevertheless, efficiently scaling POMDP solutions to large and continuous state

and action spaces remains an active field of research.
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Chapter 3

Related Work

“We choose to go to the Moon in this decade and do the other things, not

because they are easy, but because they are hard.”

- John F. Kennedy

3.1 Related Work in Environments without Oc-

clusions

3.1.1 Open-Loop Based Approaches

Manipulation in cluttered spaces has long been approached with planning-based

techniques. Planners, such as [39, 62, 60, 70, 12], adopt an approach of motion

planning followed by open-loop execution to solve the task. Kitaev et al. [62]

propose a trajectory optimization based approach for retrieving an object from

a cluttered shelf. By evaluating roll-outs in a physics simulator, they iteratively

optimize a trajectory which minimizes a weighted cost function. The cost func-

tion is designed such that the resulting trajectory is less likely to topple objects,

avoid objects falling over, and have obstructing objects moved orthogonally to

the grasping direction. A simplified geometric model of the robot made of

primitive shapes is used to speed up the physics roll-outs. After convergence,

the resulting trajectory is further refined with the complete mesh model of the

robot and executed in open-loop. Leidner et al. [70] motivate a physics-based

semantic planner for wiping cluttered surfaces. To reason about the effect of

a wiping motion, they use an abstract representation of particles distributed

on a surface. The physics of interactions between the particles and the wiping

tool is defined following the semantic goal of the task. In an skim task, for

example, the particles are pushed by the tool along the direction of motion.

In an absorb task, the particles are deleted when they come in contact with

the tool, simulating a sponge absorbing a liquid. Using this representation,

the planner generates Semantic Directed Graphs (SDG) in the Cartesian space
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that, when traced by the robot end-effector, produce the desired wiping effect

such as collect, skim, and absorb. SDGs are resolved into the robot joint mo-

tion and executed in the real world. When executed in open-loop, the plan

might fail to produce the desired effect due, for example, to unaccounted for

interactions. When faced with such situation, the planner is queried for another

solution as presented in [69]. Haustein et al. [39] use sampling-based planning

to solve manipulation in clutter problems. They propose reducing the search

space of Kino-dynamic Rapidly exploring Random Trees (RRT) by planning

over statically stable environment states while allowing for physical interaction

in-between these states. By considering a quasistatic model of the physics, ob-

ject velocity can be eliminated from the search space. Planning can then take

place in the configuration space and actions are projected to a constraint man-

ifold parallel to the manipulation surface. When operating at relatively low

velocities in a cluttered environment, it is safe to assume a quasistatic physics

model [53]. We develop a similar open-loop Kino-dynamic RRT planner to [39].

We use it to generate demonstrations on how to solve different instances of the

manipulation in clutter task.

There are open-loop planners which also take uncertainty into account before

the generation of the motion trajectory. Dogar et al. [27] introduce a framework

for planning with uncertainty reducing actions. The framework utilizes the

funnelling effect of pushing actions to reduce a large object pose uncertainty

into its actual pose. It works by moving the robot’s gripper towards, then past,

the object pose distribution while the fingers of the gripper are open. This

motion forces the object to slide against the fingers towards the centre of the

gripper. Mahayuddin et al. [83] extend a sampling-based Kino-dynamic planner

in multi-contact environments to account for physics-based uncertainty. They

propose evaluating a set of particle motions at every node propagation step in

a search tree. The particles are sampled from a probability density function

over the different sources of uncertainty. The most robust motion is chosen

and the uncertainty is propagated to the subsequent node in the tree. Koval

et al. [66] formulate manipulation planning under uncertainty as a selection

problem. Using a Kino-dynamic RRT planner, they generate multiple goal-

leading trajectories. To estimate the chances of a trajectory to reproduce the

desired outcome in the real world, each trajectory is evaluated multiple times

in simulation by forward propagating the control sequence through stochastic

dynamics. The trajectory that scores the highest estimated success probability

is selected for execution on the real robot. To minimize the total number of roll-

outs to evaluate, they also propose eliminating candidates that start to show
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a relatively low estimated success probability from being further evaluated.

These open-loop planners generate a provably conservative sequence of actions,

limiting the robot from exploiting the complete dynamics of the domain.

Alternatively, to avoid the uncertainty associated with multiple objects in-

teracting in a cluttered environment, planning approaches have been developed

to avoid contact with obstacles altogether. Finding a collision free trajectory

has been the common theme in many of the approaches presented at the Ama-

zon Picking Challenge [42, 82]. Kimmel et al. [59] motivate a two-step planning

approach, first in the task space and then in the robot joint configuration space,

to find a collision-free trajectory to a stable grasp pose and for retrieving the

desired object. In many cluttered environments, however, a collision-free tra-

jectory is not always available, and with that comes the necessity of a reactive

system.

3.1.2 One-Shot Top-Down Manipulation

The research on object retrieval is witnessing a growing interest in image-based

systems particularly for top-down bin picking. The work by Zeng et al. [122]

approaches object picking from a bin using a custom designed gripper capable

of push, grasp, and suction actions. Working with RGB-D images, they use

several Neural Networks (NNs), one per action primitive, to evaluate pixel-

wise affordances for the corresponding actions, then execute the action at the

location and orientation of the highest affordance. Once an object is retrieved,

an independent object identification module is engaged to detect the type of the

grasped object. Also using RGB-D images, Shome et al. [102] use a suction cap

end-effector to perform one of three manipulation primitives, namely toppling,

pulling, and pushing for bin packing tasks of cuboidal objects. Johns et al. [51]

address uncertainty in top-down picking tasks. They train a NN over synthetic

depth images to predict a grasp function over an object shape. The grasp

function is composed of discretized grasp candidates for every possible top-down

grasp pose. The NN learns to classify each grasp candidate by a discrete grasp

score. To account for inaccuracies from noisy sensors or inaccurate calibration,

a gripper’s pose uncertainty function is used to smooth grasp function. The

smoothing eliminates good grasp candidates that are surrounded by low score

candidates in favour of regions with high average grasp scores. Their approach is

applied to picking an isolated object. For grasping in a tightly packed cluster of

objects, Zeng et al. [121] learn synergetic push and grasp actions over pixel-wise

action-value heat map to disperse the clutter then grasp one of the objects in

the scene. These approaches, however, require specific high-level manipulation
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primitives to be defined. On-shot execution of a high-level primitive limits

the robotic manipulator from dynamically correcting its behaviour in response

to unexpected changes in the environment. Viereck et al. [111] addresses this

problem by using a controller that continuously updates the target grasp pose

during execution. The controller relies on a learned distance-to-grasp function

that is evaluated over depth information. These approaches, however, are object

agnostic, i. e., no specific object to be manipulated can be selected apriori and

it is left to the system to select an object that is feasible to grasp. In many real-

world scenarios, it is desirable to be able to specify the object to be grasped.

Moreover, in many real-world scenarios a top-down picking approach might not

be feasible due to space limitations.

3.1.3 Closed-Loop Pushing Tasks

Non-prehensile manipulation is mostly dominated by pushing based actions.

Pushing is an effective strategy for manipulating objects that are too large to

grasp or too heavy to lift. Further, manipulating small and light objects can

also benefit from pushing-based strategies as they also offer action efficient ma-

nipulation strategies. A pushing action is highly sensitive to the friction char-

acteristics which can vary significantly across the manipulation surface and the

surface of the object [119]. Analytical models have been developed to compute

fast prediction of an object’s behaviour under a push action [77, 27]. Hogan

et al. [45] apply a model-based feedback control scheme that can alternate be-

tween different interaction modes to control a tool pushing a slider on a planar

surface. As uncertainty on the physics interaction increase with higher pushing

velocities, Agboh et al. [4] argue for using a task-adaptive trajectory optimizer.

The control scheme modulates the pushing velocity to adapt the accuracy of the

trajectory to the task requirements. Pushing planners, however, require careful

calibration of the parameters of the underlying analytical model. They must

ensure that the assumption on the physics parameters in simulation accurately

conforms to that of the real world.

Data-driven approaches have been proven effective in overcoming the sim-

plifying assumptions that engineered analytical models tend to rely on. To

learn a robust behaviour for real-world applications, Kloss et al. [63] combine

an image-based learning approach with an analytical model of a pushing task.

They train a NN, on visual sensory input, to output the appropriate physical

parameters to the analytical model that is controlling the robot. Clavera et

al. [22] argue for a modular approach where sensing, policy, and controller are

designed separately to ease the skill transfer from simulation to the real world.
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The policy is trained with reinforcement learning in simulation over a hand-

crafted set of features and following an engineered reward function to improve

convergence. These approaches have proven capable in real-world manipulation.

However, they are designed for pushing a single object and their extension to

multi-object environments is yet to be explored.

3.1.4 Closed-loop Planar Manipulation in Clutter

Closed-loop planar manipulation, that is, approaching the manipulation surface

from a plane parallel to that surface, is regaining interest with the advent of

relatively fast physics simulators. Papallas et al. [90] propose closing the loop

with feedback from a human operator. Instead of solving a relatively long

sequential problem with the goal of reaching a desired object in clutter, the

human operator sets sub-goals that are intuitively easier to solve by an open-

loop planner. Sub-goals include which and where to move an obstructing object.

After the execution of a sub-task, the human operator reassesses the scene and

either sets a new sub-goal or the main task goal. To minimize the workload

on the human, Papallas et al. [89], propose a trajectory optimization strategy

which only queries the human for a sub-goal when failing to solve the current

task. With a human in the loop, a single operator can simultaneously assist

multiple robots to improve the success rate and execution time. Agboh et

al. [5] propose parallelizing trajectory optimization based algorithms to more

efficiently generate a sequence of optimal controls.

Learning policies that can generate actions for planar tasks without access to

an explicit physics model has proven to be substantially more difficult to train

compared to top-down bin picking or single object pushing. Albeit, closed-loop

policies remain an attractive option for reactive planar manipulation. By acting

in closed-loop, they can correct in real-time for uncertainty in the dynamics and

modelling errors.

Laskey et al. [67] uses an IL approach by relying on expert human demon-

strators and a NN to control a 2-DOF robot arm to reach a desired object on

a cluttered surface. The NN learns a policy from plans generated online us-

ing the Dataset Aggregation algorithm (DAgger). DAgger requires all states

that the robot visits during training to be labelled by an action from a demon-

strator. However, querying an expert demonstrator, whether a human or a

near-optimal planner, for every visited state is impractical. They propose to

alleviate the cost associated with this drawback using a hierarchy of supervisors

with different skill levels, ranging from simple motion planners to PhD students.
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In environments with sparse rewards and long horizon, RL based approaches

are challenged by high sample complexity and the balance between exploration

and exploitation [30, 58]. To address the exploration problem, Pinto et al. [92]

propose an informed strategy to sample initial states for RL training episodes.

They, first, use an open-loop physics-based planner to generate solution plans

to planar manipulation tasks. Then, the visited state along the generated plans

are used to initiate RL training episodes.

The approaches stated so far for solving planar manipulation tasks have

proven robust to high clutter environment. However, they are oriented towards

tasks that can be solved with with non-prehensile action. They do not consider

prehensile actions which are sometimes necessary to efficiently manipulate the

desired object to a target destination.

Lee et al. [68] explore solving planar manipulation tasks with prehensile

actions. They put forth an algorithm for clearing the clutter using collision free

fetch-and-place actions. The algorithm recursively selects an obstacle object

to grasp and relocate. The process repeats until a collision-free trajectory to

the desired objects is found. The algorithm is shown to operate in near real-

time. Nevertheless, a potentially restrictive assumption is that an empty space

for relocating objects must be available. Simultaneously using prehensile and

non-prehensile manipulation action to reach and manipulate a desired object in

multi-contact environments remains underexplored.

3.1.5 State Representation and Domain Randomization

for Policy Learning

The state representation, that is, the features on which decisions are made, plays

a major role in shaping the learned behaviour. When deciding on the state

representation, the key design choice lies in balancing the trade-off between

having a representation that is expressive enough to capture the state, while

also providing a space that is efficiently searchable [20].

Feature engineering is commonly used to provide a concise representation

of the environment. However, feature engineering often entails that human

biases that are carried through the representation with possible performance

degradation [17]. Particularly, engineering a low dimensional representation for

a manipulation in clutter task is not trivial. Physics interactions are highly

dependent on the objects’ shape. For instance, consider a state representation

that omits modelling the objects’ shape while only capturing information on
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the Cartesian pose of the objects. A resulting policy acting on such a represen-

tation may yield a robust yet conservative behaviour that does not leverage the

geometry of the objects [15].

Raw sensory representations, such as realistic images, carry an abundant

amount of information, i. e., highly expressive, and do not require feature en-

gineering. Image-based representations can take advantage of the spatial gen-

eralization of Convolutional Neural Networks (CNN) to implicitly learn spatial

features that allow for greater task generalization. Domain randomization is

often used in conjunction with image-based representations to guide the learn-

ing process to capture relevant features that are regular across different tasks.

Tobin et al. [109] show that domain randomization is particularly useful for sim-

to-real transfer. They focus on object pose detection in clutter from a single

image. They study how different randomized elements such as clutter density,

object texture, object configuration, background colour, etc., affect the pose

detection accuracy. Their results show that the accuracy improves with higher

observed variation in the imaged-based state representation. James et al. [48]

demonstrate the robustness of a NN-controlled manipulator to bridge the sim-

to-real gap when only trained in simulation with highly randomize environment

characteristics. The NN learns from demonstrations how to drive a robot to

solve a long-horizon multi-stage task of reaching for a cube object, grasping

it, then transferring into a basket. Having been trained in the simulation en-

vironment over different background colours, cube and basket poses, camera

and light sources, distractor objects, etc., the image from the real world would

appear as just another variation that the NN would be able to handle. Peng et

al. [91] show that domain randomization of parameters that are not observed in

the state representation also helps in learning robust manipulation behaviour.

They train, in simulation, a robot to perform a pushing action while random-

izing the physics parameters such as mass, friction, time-step between actions,

etc. In this context, the randomization also helps in avoiding a behavior that

exploits the idiosyncrasies of the physics model in the simulation environment.

The learned skill is then used to push an object in the real world to a target

location. In our work, we use domain randomization to ensure generalization

over object shapes and configurations in the image space.

In many applications where the attributes of the desired object and environ-

ment conditions are known a prior, end-to-end systems have been successfully

deployed to map real-world images to actions [95]. However, the use of end-

to-end systems for multi-task manipulation remains limited. For instance, a

policy that is trained for gasping apples cannot be tasked to grasp an orange
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instead without necessitating further training or domain adaptation [32, 50]. In

this thesis, we overcome this limitation by using a common representation for

manipulation tasks with different objects types.

3.1.6 Closed-Loop with Look-Ahead Planning

In environments with sparse reward functions, remarkable results have been

achieved by combining RL based approaches with planning. Planning com-

pensates for the suboptimality of a policy with informed model-based conjec-

tures. This combination is dominated by tree search planners to guide RL

policy search [7, 103]. A large body of work rely on Monte Carlo Tree Search

(MCTS) to guide the RL search policy. The vast majority of MCTS implemen-

tations uses Upper Confidence Bounds (UCB) to balance between exploitation

of experienced rewards and exploration of un-visited states [56, 94]. Anthony

et al. [7] use MCTS to generate plans leading to the goal. They suggest making

the searches more efficient by biasing the search process with a NN-based value

function that is recursively trained on the previous iteration of the generated

plans.

Song et al. [105] apply this concept to physics-based manipulation domains

for solving rearrangement tasks that necessitate a long sequence of actions. Al-

beit the use of NNs that are recursively trained over previous iterations of the

generated plans to speed up MCTS [18, 64], the computation cost associated

with simulating the physics for state transitions remains prohibitively expen-

sive for this process to run in closed-loop and in real-time. This is because,

fundamentally, MCTS requires a large number of roll-outs up to the terminal

state for its estimates to become reliable.

A more viable alternative is the use of Model Predictive Control (MPC)

and Receding Horizon Planning (RHP) like approaches to perform look-ahead

planning in real-time. If the goal state is not within the horizon reach, a learned

value function is used as a terminal cost at the horizon state in order to solve a

finite-horizon approximation to a long or infinite horizon task. Kartal et al. [57]

extend an Actor-Critic RL algorithm to predict the temporal closeness to termi-

nal states. The temporal closeness is then used to enable limited-depth MCTS

roll-outs with around a 100 roll-outs per action selection. Despite significant

improvement over previous works, the number of performed roll-outs remains

far above real-time performance for physics simulation. In a physics simulator,

Tong et al. [110] propose training a policy network to generate a sequence of

actions up to a certain horizon. Then using another value function trained net-

work and an evolutionary algorithm, the sequence of actions is optimized and



3.2. Related Work in Environment with Occlusions 27

the first action of the optimized sequence is executed. Thananjeyan et al. [108]

implements deep MPC over learned dynamics in a constrained environment. To

ensure exploration without violating the constraints, generated trajectories are

conditioned to where a plan exists for navigating back to a safe set. Although

the approaches stated so far are showing promising results and have a reminis-

cence to our work, some of their underlying assumptions, such as having access

to a dense reward function or that the initial and goal state distributions form a

tight subset of the state space, are not applicable to physics-based manipulation

in clutter tasks.

3.2 Related Work in Environment with Occlu-

sions

3.2.1 POMDP Planners

In the presence of occlusions, manipulation in clutter is often associated with

interactive search, that is leveraging manipulation actions to simultaneously

gain visibility and accessibility [17]. Thanks to recent advances in model-based

online planners under uncertainty, like DESPOT [104] and PA-POMCP [118],

this field is gaining momentum towards achieving everyday real-world manipu-

lation tasks. Li et al. [73] address uncertainty on the type of a detected object

caused by partial occlusion. They propose exploiting spatial constraints to re-

duce the number of feasible actions to be explored for information gain. Using a

fixed-length horizon planner, decision making takes place online to select which

obstructing object to be moved to minimize occlusion. In addition to spatial

constraints, Wong et al. [115] use object semantics to focus the search in contain-

ers where observed objects are most similar to the desired object. Pajarinen

et al. [88] manage to solve long-horizon manipulation by combining particle

filtering and value estimates in an online POMDP solver. The environment

setting includes multiple objects spaced apart such that multi-object contacts

are avoided. The approaches stated so far have largely overcome the compu-

tational complexity associated with large state space and observation history

where explicit modelling of uncertainty is tractable.

In environments with multi-object contacts, however, the uncertainty can

quickly degenerate to multi-modal and non-smooth distributions [3]. Scaling

the belief update over occluded spaces and the belief planner to long action

sequences become impractical. Hence, model-based online POMDP planners

tend to avoid multi-object contacts by planning over collision-free single object
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actions, such as Lift(i), Move Out(i), Grasp(i), etc. where i is the object ID.

Reasoning over actions on this higher level of abstraction can have its benefits

on reducing planning time. But potentially, it can also limit the robot from

exploiting the physics-based interactions for a more efficient behaviour.

3.2.2 Model-Free Policies with Recurrent Units

The emergence of model-free approaches with function approximation as vi-

able methods for a reactive and generalizable behaviour have fostered interests

in their deployment in partially observable environments [38, 46]. Model-free

approaches are based on a direct mapping from observation history to manip-

ulation actions. NN function approximators, with appropriate inductive biases

in their structures, bypass the need for a closed-form representation of the belief

update and environment dynamics. Heess et al. [41] show that by using Long

Short-Term Memory (LSTM) cells as a tool to summarize a history of partial

observations, it is possible to train a policy for pushing an object to an initially

observed pose. Karkus et al. [55] propose a model-free approach that trains a

NN on expert demonstrations to approximate a Bayesian filter and a POMDP

planner. Garg et al. [34] trains a policy to grasp an object under uncertainty.

They show that by representing the policy with a NN with recurrent units, the

policy can integrate noisy observations to generate grasp actions. These ap-

proaches demonstrate the potential of model-free policies to scale to arbitrary

large state spaces and with long observation history. Nevertheless, they remain

focused on single object manipulation and do not ensure long-term reasoning

over the physics.

3.2.3 Searching in Clutter Through Manipulation

The goal of our work is most aligned with the objective of Danielczuk et al. [25].

They define it as “Mechanical Search”, a long sequence of actions for retrieving

a target object from a cluttered environment within a fixed task horizon while

minimizing time. They propose a data-driven framework for detecting then

performing either push, suction, or grasp actions until the target object is found.

They tackle top-down bin decluttering by removing obstructing objects until the

target is reachable. Such an approach requires a separate storage space to hold

obstructing objects. To address environments where a separate storage space

is not available, Gupta et al. [36] interleaves look-ahead planning with object

manipulation on a shelf. They propose moving objects to unoccupied spaces

within the same shelf to increase scene visibility from a fixed camera view angle.
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In a similar shelf setup, Dogar et al. [28] use a heuristic to plan pushing actions

until the target object is found. The approaches stated so far, perform the

search by manipulating one object at a time, avoiding sequential reasoning over

multi-contact physics. Avoiding all obstacles remains, however, impossible (and

often undesirable) in many partially observable and cluttered environments.

Most recently, Novkovic et al. [86] propose a closed-loop decision making

scheme for generating push actions in a multi-contact physics environment with

a top-mounted camera. Their approach relies on encoding the observation his-

tory in a discretized representation of the environment. The encoding is used

by an RL trained policy to generate the next push action for revealing hidden

spaces. We adopt a similar decision making scheme, but we avoid the limitations

of encoding the observation history in a discretized representation. Instead, we

rely on the NN’s recurrent units to capture the observation history.

3.3 Related Work Summary

The related work on manipulation in clutter reveals the advantages and draw-

backs of state-of-the-art approaches and the challenges that are yet to be solved.

Model-based approaches leverage available models to solve problems that re-

quire long-term sequential decision making. To deal with the physics uncer-

tainty that comes with the sim-to-real transfer, they avoid multi-contact physics

whenever possible while also exploiting uncertainty reducing actions. They are,

however, computationally expensive as simulating the physics remains the main

computational bottleneck for real-time applications.

Model-free approaches are gaining an increasing momentum in manipulation

applications. They offload many of the hard design decisions that the algorithm

designer has to make to the learning process. They offer a reactive and general-

izable behaviour best suited for time-critical applications. The training process

benefits from environments where actions have an immediate measurable effect

manifested by a dense reward function. They have been best deployed for single

object manipulations.

More recently, hybrid approaches that combine model-free approaches with

look-ahead planning are overcoming many of the challenges associated with

long-term sequential reasoning. Their deployment to manipulation in clutter,

however, remains limited. Overcoming the computational cost of simulating the

physics remains an open challenge. Further, the stability of the learning algo-

rithms that enables these hybrid approaches are also challenged by balancing
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exploration and exploitation to avoid premature convergence to a sub-optimal

behaviour.

Extending existing works to also account for occlusions adds to the com-

plexity of the problem. Approaches that rely on neural networks (NN) with

recurrent units are leading the way in applications that require acting under

uncertainty. We build on many recent breakthroughs to address the specificity

of acting under physics and occlusion uncertainty.
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Chapter 4

Learning to Act with Receding

Horizon Planning

4.1 Introduction

Many real-world manipulation tasks would benefit from robots that can oper-

ate in unstructured and cluttered spaces with uncertain dynamics. Examples

include retrieving an object from a warehouse shelf or rearranging an item in

a food display rack. To operate in such environments, a robot is expected to

react, and even leverage, multi-object physics interactions in real-time. By way

of illustration, consider the example shown in Fig. 4.1, where a robot is tasked

with manipulating, on a planar space, the orange fruit to the target region.

Accomplishing this task involves interpreting the task goal, representing the

environment, reasoning over the environment’s physics, and executing in real-

time a long sequence of prehensile and non-prehensile actions while satisfying

the constraint of not dropping any of the other objects. In this chapter, we

focus on building the theoretical foundation and experimental evaluation for

tackling physics-based manipulation in environments with no occlusions.

4.1.1 Planning and Closed-Loop Execution

The multi-step, sequential, and high dimensional nature of such tasks makes

planning-based approaches an attractive option for solving the problem. There

has been significant recent interest in sampling-based planning for manipulation

tasks in clutter, and impressive planners have been proposed [39, 62, 60]. Plans

are generated off-line in a physics simulator and then executed in open-loop.

Real-world execution, however, still poses great challenges. The real motion of

the objects can differ significantly from the motion predicted by the planners.

The main difficulty is due to the inevitable inaccuracy in the physics model

used by the planners. This inaccuracy is exacerbated particularly when multiple
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Figure 4.1: The robot is tasked with moving, whithin the sur-
face edges, the orange fruit to the target region using prehensile

and non-prehensile planar actions.

objects are in contact, which is common in the application domains mentioned

above.

The inaccuracies in modelling object-to-object, object-to-surface, and object-

to-robot interactions can be overcome with closed-loop decision making [69]. By

interleaving planning and execution, a plan is continuously updated to address

real-world observations. In this approach, a sequence of actions is planned,

but only the first action in this sequence is executed. Then, the current state

is updated by observing the environment, after which another sequence of ac-

tions is planned, and the routine is repeated. This idea is commonly used in

domains that involve uncertainty and underlies many similar methods with dif-

ferent names, among which: rolling horizon planning, receding horizon control,

and model predictive control.

Re-planning makes the computation cost of sampling-based planners im-

practical for real-time applications as they treat every new planning instance

independently of previous experiences and they also have to solve the problem

all the way to the goal. Instead, shortening the planning horizon can reduce the

computation cost and mitigate the uncertainty associated with manipulation in

clutter.
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Planning up to a short horizon requires (i) an efficient local search strategy,

(ii) and a cost-to-go function expressing the expected cost for the rest of the plan

beyond the horizon. Receding Horizon Planning (RHP) is a planning framework

aimed at continuous planning with a limited look-ahead [76]. We adopt this

paradigm, and propose a learning-based approach for a heuristic-guide RHP

to run in near real-time in a physics environment. RHP relies on its heuristic

to perform the local search using the forward model of a physics simulator,

and to evaluate the potential consequences of finite sequences of actions, before

executing the first action of a chosen sequence [57]. In physics-rich domains,

defining such a heuristic is a challenge on its own. In addition to enabling

informed decision making by RHP, the heuristic must ensure generalization

and transferability to different task and environment settings.

4.1.2 End-to-End Closed-Loop Execution

Another framework that is attracting momentous interest in real-world manip-

ulation is the use of model-free end-to-end systems [121, 109, 95, 49]. The

problem is formulated as learning a direct mapping function from the current

real-world sensory data, typically RGB images, to control actions. By using

images for state representation, this framework enables greater generalization

over the geometric features of the environment. It also relieves the algorithm

designer from manually having to define what features are relevant for the task

which might hinder the robot from leveraging the full dynamics of the environ-

ment.

The full potential of end-to-end systems is made possible by the use of

Neural Networks (NN) as function approximators. Deep Reinforcement Learn-

ing (RL) has been successfully used for end-to-end skill learning in large and

continuous state spaces. Training end-to-end systems requires a substantial

amount of exploration to cover the large variations observed in an unstructured

image-based representation of the state. Exploration in end-to-end systems par-

ticularly benefits from an articulated description of the solution, also known as

reward shaping. For example, by receiving intermediate rewards for aligning

the gripper with the desired object and target destination, or for reducing the

distance between the desired object and target destination. Inevitably, defining

a dense reward function for a manipulation in clutter task introduces human

biases on how to solve the problem, potentially limiting performance. Solutions

to the task are highly sensitive to the exact configuration of the clutter. In some

configurations, the best strategy might be to directly push the desired object
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through the clutter, whereas in a different configuration, it might be better to

clear the robot path from obstacles before reaching for the desired object.

Avoiding reward shaping, and instead opting for sparse and delayed rewards,

places a higher burden on the NN to reason over the sequential nature of the

problem. It is significantly more challenging, however, for the NN to capture

the complexity introduced by non-linear and non-continuous dynamics of the

physics environment whilst proposing actions with long-term consequences.

When a model is available, solving problems with sparse reward functions

can benefit enormously from incorporating look-ahead planning in the learn-

ing process and at execution time [7, 72, 69]. This has shown to compensate

for inaccuracies in the learned utility of state-action pairs [76]. At a slightly

higher computation cost, problems that require sequential decision making in a

relatively large and continuous space, can be approached in near real-time.

4.1.3 VisualRHP

In this chapter, we introduce VisualRHP, a novel approach that combines the

generalization advantages of image-based learning with the sequential reasoning

of RHP. We design a framework around VisualRHP to interleave real-world

execution with abstract image-based look-ahead planning in a physics simulator.

At execution time, the real-world state is abstracted to a compact colour-

labelled image representation rendered from the simulator state. In the simula-

tor, VisualRHP uses a learned image-based heuristic that acts on the abstract

state representation to efficiently solve a short horizon approximation to a multi-

step sequential decision making problem. The generated action is resolved to

the robot joint space and executed in the real world.

Two key features stand at the core of VisualRHP. First, is an abstract

image-based representation of the state. It uses colour labelling to specify the

functionality of the different items in the scene. Second, is an image-based

heuristic learned in simulation prior to the execution phase. We present a

discrete and a continuous action space version of the heuristic together with

their corresponding learning algorithms. We highlight in this chapter the novel

formulation we introduced to existing IL and RL algorithms to improve on the

stability of learning algorithms in an image space with sparse rewards.

The contributions of this chapter are (i) a near real-time framework which

integrates real-world execution with physics-based look-ahead planning in simu-

lation (Fig. 4.2 and Sec. 4.2), (ii) an abstract image-based representation which

uses colour-labelling to represent the state of the manipulation task (Sec. 4.4.1),

and (iii) the VisualRHP algorithm which uses an image-based heuristic to run
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RHP in discrete and continuous action spaces (Sec. 4.4.2). While our overall

framework is agnostic to the particular way the heuristic is learned, (iv) we

introduce a stable heuristic learning approach in Sec. 4.5.

These contributions culminate in VisualRHP acquiring prehensile and non-

prehensile manipulation skills that generalize to novel environments, for instance

with a different number of objects and shapes, and transfer to tasks with a

different desired object to manipulate in the real world. VisualRHP is also

capable of reasoning over complex physics interactions, such as avoiding objects

falling off the edge even in multi-contact environments.

4.2 Framework

The framework presented in this chapter is composed of two phases: first, the

heuristic learning phase which takes place in simulation, then the execution

phase in which VisualRHP interleaves the real-world actions with the physics

simulator at run time. We will begin by describing the execution phase (Sec. 4.4)

assuming learning has already taken place, and then characterize the learning

phase that makes it possible (Sec. 4.5).

The execution phase consists of a closed-loop control scheme (Fig. 4.2-

Bottom). It dynamically maps the state of the real world to the simulator,

where an action is selected and then executed by the real robot. The control

scheme cycle starts by processing sensory data from the real world to produce a

corresponding state in the physics simulator (Sec. 4.4.1). Then, in the simulator,

VisualRHP performs a local look-ahead search by simulating multiple physics-

based roll-outs up to a certain horizon. Each roll-out is evaluated by computing

its expected return. In this process, a heuristic is required for (i) guiding the

local search towards parts of the state space with high expected returns, (ii)

and for estimating the expected return beyond the horizon state (Sec. 4.4.2).

VisualRHP returns the first action of the best roll-out. Lastly, the selected

action is resolved to the joint motion of the real robot (Sec. 4.4.3).

The learning phase consists of training a NN to be used as the Visual-

RHP heuristic (Fig. 4.2-Top). The NN in the discrete action space is trained

to approximate the optimal action-value function, whereas the NN in the con-

tinuous action space is trained to approximate the optimal policy as well as

the value function of the learned policy. For both the discrete and continuous

action space implementations, we use deep IL (Sec. 4.5.2) followed by deep RL

(Sec. 4.5.3) to train the NN.
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Figure 4.2: Framework overview. Example with the orange
fruit as the desired object.

4.3 Problem Formulation

We formalize the problem as an MDP, represented as a tuple M = 〈S,A, T, r, γ〉
where S is the set of the environment variables such that a state s ∈ S at time

t is given by st = [Rob,Objdes, . . . , Objm, edges, tarReg], where:

• Rob is the Cartesian pose, gripper state (open or closed), and shape of

the robot end-effector.

• Obji: is the Cartesian pose, shape, and type (e. g., apple, cup, etc.) of

object i. We refer to the desired object by Objdes, and the environment

can include up to a total of m objects.

• edges represents the set of coordinates defining the edges of the manipu-

lation surface.

• tarReg is the location (x, y)tarReg and radius radtarReg of the circular target

region with (x, y)tarReg being within the surface edges.

Further, A is the set of actions that the robot can execute for moving over a

planar surface and for closing and opening the gripper. A can be either defined
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over a discrete or a continuous space; T : S × A× S → [0, 1] is the transition

probability function (Eq. 2.2), r : S × A × S → R is the reward function (Eq.

2.4); γ ∈ [0, 1) is the discount factor.

We denote as Sval, the set of valid states where all the of objects lie within

the surface edges. The set of invalid states, Sinval, consists of the states where

any of the objects are located outside of the surface edges. The goal states,

Sg ⊂ Sval, is identified by the arrangement where the desired object is in the

target region, satisfying:

||(x, y)des − (x, y)tarReg|| 6 radtarReg.

Intuitively, it is expected from the robot to manipulate the desired object to

the target region with the least number of actions without violating the surface

edge constraints. We avoid shaping the reward function in order not to skew

the robot’s behaviour towards any preconceived human intuition which might

artificially limit the return. Instead, we opt for a constant negative reward per

action casting the problem as a shortest path. When an object trespasses a

surface edge, the task is terminated and an additional large negative reward is

received. The robot’s goal is to maximise the expected return by manipulating

the objects in the environment along a sequence of states 〈st〉Lt=0 s.t. st ∈ Sval

for t in [0, L], where L + 1 is the number of traversed states, from s0 ∈ Sval to

sL ∈ Sg.
As presented in Chap. 2, the optimal policy can be approximated either

indirectly with value iteration methods or directly with policy iteration meth-

ods. In the discrete action space, we use value iteration to approximate the

optimal action-value function. A NN parametrized by a vector ψ, qψ(s, a), is

trained with off-policy value iteration to approximate the q∗(s, a) over a con-

tinuous state space:

q∗(s, a) =

∫
s′∈S

T (s, a, s′)[r(s, a, s′) + γmax
a′

q∗(s′, a′)]ds′, (4.1)

In the continuous action space, the parameters of the policy can be

directly learned with an Actor-Critic method. It uses value and policy iter-

ations until it converges to the optimal policy π∗(a|s). The performance of

a θ-parametrized stochastic policy πθ(a|s), i. e., the Actor, is iteratively im-

proved by evaluating its performance with respect to a φ-parametrized value

function vφ(s), i. e., the Critic (see Eq. 2.24 and Eq. 2.28). πθ(a|s) models a

multi-dimensional Gaussian distribution N (µθ, σθ) from which actions can be

sampled.
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It is common, in applications where the visual input is significant, for the

value function and the policy to share some of their parameters, i. e., φ and

θ, mostly the convolutional part of the NN. The motivation behind shared

parameters is that the low level features useful for estimating the value function

could also be useful for modelling the policy and vice versa. Furthermore,

optimizing the parameters of the value function and policy together acts as a

regularizing element which leads to greater stability in the learning process [79,

101]. In the rest of this chapter, we will refer with θ to the parameters of the

Actor-Critic NN.

Instead of acting greedily on the learned action-value function and policy,

using them as heuristics for RHP mitigates inaccuracies in their learned approxi-

mations of the optimal behaviour. The horizon can mitigate these inaccuracies,

by ranging from infinity, with the robot planning all the way to the goal, to

zero, with the robot acting greedily on the learned behaviour. With an infi-

nite horizon, the action-value and value function are ignored in the discrete

and continuous actions spaces, respectively. While with zero depth horizon,

the behaviour depends entirely on the learned approximations. In practice, a

short but non-zero horizon takes advantage of both the planner and the learned

approximations without relying on either one entirely.

In this chapter, we assume (i) a quasi-static physics model with limits on

the velocity of the robot motion. (ii) Further, since this chapter does not

consider occlusions, we assume that all objects in the scene to be visible at any

point in time. Although some information on the underlying state is lost in the

image-based representation, we treat the environment in this chapter as fully

observable as the information contained in the image-based representation is

sufficient to solve the manipulation task. We also assume (iii) discrete time

steps and (iv) that the actions are parallel to the manipulation surface in the

planar Cartesian space of the gripper. (v) We do not consider access to a

separate storage space.

4.4 Execution Phase

In this section, we present a closed-loop control scheme (Fig. 4.2-Bottom) that

balances real-time execution with long-term goal-oriented actions. First, we

explain the mapping from the real world to the simulator and the colour-labelled

abstract image used for state representation (Sec. 4.4.1), and then we explain

how VisualRHP uses a heuristic acting on the abstract state representation to
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Figure 4.3: Mapping the real-world state to a colour-labelled
abstract image-based state representation for a task where the

orange fruit is the desired object.

suggest actions (Sec. 4.4.2). Once an action is chosen, it is resolved back to the

robot joint space and executed by the real robot (Sec. 4.4.3).

4.4.1 Mapping the Real World to an Abstract Represen-

tation

Our mapping captures the state of the real world while leaving out information

that is not relevant for the task, such as object texture, background colour,

lighting sources, etc. As illustrated in Fig. 4.3-Middle, we apply instance seg-

mentation on real-world images to detect the real-world state. This operation

is performed using Mask R-CNN [40] which also identifies the type of each de-

tected object. The object type is used to identify the desired object and the

obstacle objects. We detect the target region tarReg using simple template

matching. We localize with forwards kinematics the end-effector pose over the

planar Cartesian space and the gripper state. The simulator uses this informa-

tion to create objects with the same contour shapes as in the real world. In this

thesis, the shape of the end-effector and the surface edges are pre-loaded into

the physics model as they are kept unchanged from one task to another1.

The input to the NN is in the form of an image rendered from the state of the

physics simulator. The objects in the simulator are colour labelled based on their

functionality. As in the example of Fig. 4.3-Right, the desired object is always

of the same colour (light green), all other objects are of another common colour

(red). The same applies to the end-effector (blue), the surface edges (black), the

1If required, the detection of the shape of the end-effector and the surface edges can also
be automated.
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target region (dark green), and the scene background colour (white) across all

task instances. The advantage of using colour labelling is that it allows for the

seamless transfer of manipulation skills to different desired objects. Different

task settings can be mapped to the same representation space where VisualRHP

is performed. For example, any real-world object can be assigned the colour of

the desired object and the NN will treat it as such.

Furthermore, the abstract images are robot centric, i. e., the image tracks

the robot from a top-view perspective (Fig. 4.3-right). The robot centric view

reduces the amount of data required by the learning algorithm due to the sym-

metry of the scene when compared to a fixed view.

An equally important advantage of using this abstract representation is in

reference to the size of the NN architecture need to operate on it. For real-

time operation, it is essential to have a small network to ensure fast inference

time. The abstract representation allows for a much smaller convolutional part

of the NN to capture relevant features when compared to the convolutional

architectures designed to handle real-world or realistically rendered images [16].

Consider, for example, a heuristic-based planner that queries the NN 10 times

per action selection. The inference time for a NN designed to operate on the

compact representation is around 0.003 seconds (subject to the available CPU

and GPU power), whereas it is around 1 second for a NN operating on high

fidelity images [23, 16]. This entails that, per action selection, the planner

using a small architecture would spend 0.03 seconds in neural computation

time compared to 10 seconds for using a large architecture.

4.4.2 VisualRHP

VisualRHP can be seen as a combination of two processes. The first process

consists of performing a local search starting from the current state of the

simulator up to a certain horizon depth. However, an exhaustive search would

scale badly with a horizon depth h and the size of the action set A, O(|A|h) in

the discrete case, and it would be inapplicable in the continuous case. Instead,

as illustrated in an example in Fig. 4.4, we run a small number of n roll-outs

up to a short horizon of depth h while using the heuristic as a stochastic policy

to orient the roll-outs’ expansion towards directions with high return. The

stochastic policy for the discrete action space is the soft-max of the action-

value function:

π(a|s) =
exp(qψ(s, a)/τ)

Σai∈Aexp(qψ(s, ai)/τ)
, (4.2)
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Figure 4.4: VisualRHP example of n = 2 roll-outs with h = 3
horizon depth in continuous action space.

where τ is the temperature parameter, while it is represented explicitly in the

continuous action space with a ∼ N (µθ, σθ). The stochastic policy would

favour exploring actions that are more likely to lead to higher return.

The second process consists of computing the expected h-step return of a

roll-out, using the first h rewards generated by the model and the expected

return beyond the horizon state sh. In discrete action space, the value of a

horizon state sh is computed as v(sh) = maxa qψ(sh, a), whereas in the contin-

uous action space it is the output of the value head of the NN: v(sh) = vθ(sh).

The return of a roll-out is therefore computed as:

Rt:h = r1 + γr2 + . . .+ γh−1rh + γhv(sh). (4.3)

The VisualRHP algorithm, detailed in Alg. 1, returns the first action of the roll-

out that obtained the highest return Rt:h. In this algorithm, the heuristic plays

two roles: it informs the search through sampling, and as an approximation of

the rewards that are not sampled from the model.

4.4.3 From the Simulator to the Real World

Although VisualRHP can be extended to arbitrary dimensions of the action

space, we limit our implementation to actions parallel to the manipulation sur-

face in the planar Cartesian space of the gripper. It is safe to assume that a

sequence of actions performed over a small planar Cartesian space can be re-

solved to the joint motion of a redundant manipulator. Kinematic singularities

can be avoided using an inverse kinematics solver based on non-linear optimiza-

tion [65]. Therefore, the action returned by VisualRHP is resolved to the robot
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Algorithm 1: VisualRHP(scur, n, h)

Input: Current state scur, number of roll-outs n, horizon depth h
Output: action a

RolloutsReturn← [ ]; FirstAction← [ ]
for i = 1,2, . . . , n do

s← setSimulatorTo(scur)
R← 0
for j = 1,2, . . . , h do

a ∼ π(.|s)
if j is 1 then

FirstAction.append(a)

s, r ← simulatePhysics(s, a)
R← R + γj−1r
if isTerminal(s) then

break

if not isTerminal(s) then
R← R + γhv(s)

RolloutsReturn.append(R)

return FirstAction[argmax(RolloutsReturn)]

joint motion and executed in the real world. In case a pose is not reachable,

the action is not executed and VisualRHP is queried for another action.

4.5 Learning Phase

As described in Sec. 4.4, the performance of VisualRHP is dictated by the qual-

ity of its heuristic. We are interested in approximating the optimal heuristic for

VisualRHP, whether in the form of the optimal action-value function or in the

form of the optimal policy and value function for the discrete and continuous ac-

tions space, respectively. We formulate the heuristic learning as an RL problem

where the robot is trained in simulation to maximize the return (Eq. 2.5).

Training a randomly seeded RL algorithm in a cluttered environment under

edge constraints is unlikely to converge to a good solution as transition samples

leading to the goal will not be observed enough times. For this reason, we

use a probabilistically complete sampling-based planner as a starting point for

the search. The NN is jump-started with IL from demonstrations generated

by this planner. With enough knowledge captured from demonstration, RL

would have better chances at convergence and it would require a relatively small

number of transition samples to refine the robot’s behaviour. Therefore, we

divided the heuristic learning process into three sequential steps: (i) generating



4.5. Learning Phase 43

demonstrations, (ii) IL, and (iii) RL. We detail each of these steps in discrete

and continuous action spaces.

4.5.1 Generating Demonstrations

Sampling-based planners provide a probabilistically complete tool to solve com-

plex planning problems in high dimensional state and action spaces without

requiring a hand-crafted or domain-dependent heuristic. In particular, Kino-

dynamic planners are one family of the sampling-based Rapidly exploring Ran-

dom Trees planners (Kino-dynamic RRT), specific for solving planning problems

that involve dynamic interactions. We implement a discrete and a continuous

version of the state-of-the-art Kino-dynamic planner [39] used for solving plan-

ning problems on physics-based manipulation in clutter. In the discrete action

space, RRT can expand a node in the tree along a one of the discrete actions.

A node is considered fully explored once it has been expanded along all the dis-

crete actions. In continuous action space, a node is expanded along a sampled

action from the continuous action space. We set a limit to how many branches

can be expanded from a node before considering that node fully explored.

We generate P task instances. Each task instance is initialized with random

environment setups. This includes the location of the target region, the initial

robot pose and objects’ arrangement, and the shape and number of objects.

Then, for each task instance p, we run the Kino-dynamic planner to generate a

demonstration of the form 〈ap0, . . . , apL−1〉 with state sequence 〈sp0, . . . , spL〉.

4.5.2 Imitation Learning

In this section, we show how to use the generated demonstrations to train the

NN to reproduce the behaviour of the Kino-dynamic RRT.

In the discrete action space, the goal is to learn the action-value function

from the transition samples observed in the demonstrations. We train the NN

to predict the value of the actions selected by the Kino-dynamic planner at the

visited states by minimizing the mean squared error w. r. t. the Monte-Carlo

target:

qtar(spl , a
p
l ) =

L−l−1∑
k=0

γkrl+k+1, (4.4)

where p stands for the index of the demonstration and l for the index of the

state-action pair in that demonstration.

While the NN, trained as above, learns to predict the action-values for the

actions selected along the visited states, the values predicted by the NN for
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actions that have not been selected by the Kino-dynamic planner along the

visited states can be arbitrary. As a result of function approximation, these

actions must have a value even though they do not appear in the training set.

The value can converge to an arbitrary number determined by the effect of the

target action value of the traversed state-action transitions. A possible unde-

sirable effect is that the values of the actions not selected by the Kino-dynamic

planner can be higher than the selected one. This can later cause an action

that was not favoured by the Kino-dynamic planner to look more favourable to

VisualRHP that uses the action-value function as a heuristic (Eq. 4.2).

To counteract this phenomenon, we use for the unselected actions a target

value that is lower than the value of the selected actions. The minimum allowed

difference between the value of the selected action and the other actions is

referred to as the value margin function (λ) [43, 93]. We propose a definition of

λ driven by the observation that, in the domain of planar manipulation tasks, a

mistake is in most cases not irreparable, but can be overcome through a number

of η additional actions of fixed cost rcost > 0, such that,

λ =

η∑
k=1

γL−l−1+krcost. (4.5)

This definition scales λ down the further away sl is from the final state in a

demonstration.

Hence, we also minimize the mean squared error between the predicted

action-value of the unselected actions and the λ penalized action-value target

at visited state:

qtar(spl ,a
p
u) =

qtar(s
p
l , a

p
l )− λ, if qψ(spl , a

p
u) ≥ qtar(spl , a

p
l )− λ

qψ(spl , a
p
u), otherwise,

(4.6)

where au ∈ A \ {al} is an unselected action. If the value that the NN converges

to does not favour an unselected action then we leave it unchanged. Lastly, we

add an L2 regularization term to avoid over-fitting on the demonstrations.

In continuous Action space, the value head of the θ-parameterized NN

is trained to estimate the future sum of discounted rewards that are expected to

be collected if RRT were to be engaged at the current state. The update target

is similar to Eq. 4.4 but it is computed over a state instead of a state-action

pair:

vtar(spl ) =
L−l−1∑
k=0

γkrl+k+1. (4.7)
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Furthermore, we train the policy head of the θ-parameterized NN to estimate

the action distribution over states visited in the demonstrations while penalizing

high entropy distributions. One way this can be achieved is by minimizing the

loss function that combines the policy and the value function:

Lil(θ) = Espl ,apl [− Ψlogπθ(a
p
l |spl )

+ c1 (vtar(spl )− vθ(spl ))2

+ c2 H(πθ(.|spl ))], (4.8)

where c1 and c2 are hyper-parameters. Ψ is a positive constant indicating a

positive advantage of action apl at state spl . The first term on the right of

Eq. 4.8 increases the likelihood of the actions selected by the planner at the

visited states. The second term updates the value estimate w. r. t. the Monte-

Carlo target, and the last term is an entropy penalty added to reduce the

probability of unselected actions at visited states2.

We experimented with NNs of different sizes and expressive power in both

the discrete and continuous action cases, but none could reliably represent the

behaviour of the planner over a large number of task instances. As a conse-

quence, we show in the next section how the information compiled in the NN

can be further optimized to play a valuable role when used as the VisualRHP

heuristic.

4.5.3 Reinforcement Learning

So far, the knowledge encapsulated in the NN has two shortcomings: first,

the plans generated by the Kino-dynamic planner are, in general, sub-optimal;

and second, some information is lost in the approximation by the NN, with

consequent performance degradation with respect to the Kino-dynamic planner.

To overcome these problems, we use RL to (i) improve the NN to better estimate

the return of the optimal policy and/or to better estimate the optimal policy

and to (ii) learn the value of the not experienced state-action transitions.

ε-VisualRHP as the RL Policy in Discrete Action Space: Operating

in the discrete action space allows for a straightforward implementation of an

off-policy RL algorithm. Off-policy makes it possible to leverage RHP in the

exploration policy of the RL algorithm to exploit actions that are more likely to

2It is also possible to penalize low entropy instead. A resulting policy with high entropy
from IL will be less consistent in replicating the behaviour observed in the demonstrations,
but it will ensure that RL starts with higher exploration.
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lead to the goal. We implement the DQN with VisualRHP-based exploration

policy.

We initialize the NN with the IL trained ψ parameters. We also initialize

a large buffer Dreplay with the demonstration transition samples. Further, we

formulate a novel exploration policy, that we call ε-VisualRHP, which selects a

random action with probability ε and with probability 1− ε the policy queries

VisualRHP for an action. Compared to ε-Greedy where with probability 1− ε
a greedy action is selected based on the action-values of the current state, i. e.,

a = arg max
a∈A

q(s, a), we found that focusing the search towards the goal by aug-

menting the RL policy with VisualRHP reduces the chances of the action-value

function from diverging which is a common problem in RL when used in con-

junction with NNs as function approximators. The robot uses ε-VisualRHP to

collect transition samples over task instances initialized with random environ-

ment setups. Throughout the data collection process, the robot stores the newly

collected transition samples in the buffer Dreplay. The old samples in the buffer

get gradually replaced by new ones that are collected with ε-VisualRHP. When

enough new transition samples are collected, the NN is updated by running a

batch optimization over randomly sampled transitions from Dreplay. The loss

function over a batch B = {〈si, ai, ri, s′i〉Mi=1} of M transition samples is defined

as:

Lq(ψ) =
1

M

M∑
i=1

(ri + γmax
a′

qψ(s′i, a
′)− qψ(si, ai))

2. (4.9)

An L2 regularization loss is also added on the network parameters.

As mentioned in Sec. 2.4, Dreplay helps in counteracting the high correlation

in the transition samples and in using the transition samples more efficiently.

Additionally, in transitioning from IL to RL, using the Dreplay leads to a smooth

change in the action-value function, and consequently in the robot behaviour,

as it shifts from estimating the return based on the average behaviour observed

in the Kino-dynamic demonstrations to estimating the optimal action-value

function.

Critic Correction Conditioned Policy Optimization (C3PO) exten-

sion for A2C in Continuous Action Space: In the continuous action space,

we propose reformulating the loss function for A2C style on-policy algorithms.

The motivation is to improve on the stability of existing algorithms that use

NNs with shared parameters and are highly sensitive to changes in the policy,

more specifically to help avoid catastrophic forgetting.

One way of implementing A2C with shared parameters is by (i) running
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multiple simulation environments in parallel, each with random task parame-

terization and with the same copy of the NN. In each environment, the robot is

controlled by πθ. (ii) Once all the transition samples in Dreplay are replaced with

the ones collected with πθ, the parameters θ of the NN are stored as θold. (iii)

Then, the policy and the value function are updated together by minimizing in

batches B = {〈si, ai, ri, s′i〉Mi=1} the loss function w. r. t. θ:

Lactor-critic(θ) =
1

M

M∑
i=1

− Adv(si, ri, s
′
i)
πθ(ai|si)
πθold(ai|si)

+ c3 (ri + γvθold(s
′
i)− vθ(si))2

− c4 H(πθ(.|si)), (4.10)

where c3 and c4 are hyper-parameters. We recall the Adv as the advantage

function estimate:

Adv(si, ri, s
′
i) = ri + γvθold(s

′
i)− vθold(si), (4.11)

computed w. r. t. the learned baseline, namely the value function vθold (see Eq.

2.28). H is the entropy term added to encourage exploration by limiting the

premature convergence to a sub-optimal policy [79].

The problem with this formulation of the loss function is that, in the policy

update component of Eq. 4.10, Adv is using a baseline vθold that has not yet

been updated to capture the value of the policy πθold used to collect the samples

in Dreplay. This means that the baseline for updating the policy is always one

step behind the policy used to collect the data. Put differently, whilst the critic

has not yet been updated over the latest round of collected data, it is being

used as a baseline for updating the actor that generated the data. This often

goes unnoticed as the policy updates are usually bounded to small changes in

policy gradient based algorithms. For example, PPO uses the clip function on

the ratio πθ
πθold

(see Eq. 2.30) [101], whereas TRPO imposes a constraint on the

KL-divergence between the new policy and the old policy [99]. However, in

environments with non-linear and non-continuous dynamics, such as the case

in cluttered environments, even a very small change in the policy can possi-

bly entail a drastic change in the value function cascading into catastrophic

forgetting.

To overcome this problem, we propose updating vθold prior to the optimiza-

tion step of Eq. 4.10, i. e., before using vθold as a critic in Adv. The baseline is

updated to improve the estimate of the value of the policy used to collect the
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Algorithm 2: Condition Critic Correction Policy Optimization
(C3PO) extended A2C

Dreplay ← [ ]
for iteration = 1,2, . . . do

while |Dreplay| < M do
for actor = 1,2, . . . , N do

Generate random task instance
Run episode with policy πθ
Dreplay.append( 〈si, ai, ri, s′i〉L−1

i=0 )

θold ← θ
Optimize Lbaseline w. r. t. θ (Eq. 4.12)
θold ← θ
Optimize Lactor-critic w. r. t. θ (Eq. 4.10)
Dreplay ← [ ]

latest round of data, while also refraining from causing a change to the action

distribution of this policy. This is achieved by first doing an update of the value

function w. r. t. θ:

Lbaseline(θ) =
1

M

M∑
i=1

c5 (ri + γvθold(s
′
i)− vθ(si))2

+ DKL( πθold(.|si) || πθ(.|si) ), (4.12)

where c5 is a hyper-parameter. The first term on the right updates the value

function of the policy used to collect the transition samples. Since the policy and

the value function share the same body of the NN and updating one perturbs

the other, the second term on the right penalizes the KL-divergence between

the action distribution of the policy used to collect the data πθold and any

resulting change in the action distribution of πθ that might be induced by the

update of the value function vθ. This procedure, which we call Critic Correction

Conditioned Policy Optimization (C3PO), is outlined in Algorithm 2. This

algorithm follows the same structure of A2C algorithms with the addition of

the Lbaseline optimization step. Hence, C3PO can be used as an extension to

state-of-the-art A2C algorithms with shared neural network parameters.

Learning a policy and value function to act as a heuristic for VisualRHP

is also possible with off-policy RL algorithms, such as TD3 [33] and SAC [37].

However, since sample efficiency is not a key factor, as the NN is first optimized

with IL, we use C3PO in combination with PPO as PPO is a relatively stable

algorithm and does not require extensive hyper-parameter tuning.
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Figure 4.5: C.RHPdas training process and execution phase.

4.6 Preliminary Experiments and Evaluation

We conducted a preliminary round of experiments to evaluate the validity of

combining RHP with learned heuristics in simulation and for real-world appli-

cations. The initial experiments were performed over a more basic and slightly

different version of the problem that was presented in Sec. 4.3. (i) We removed

the robot’s access to prehensile actions (gripper cannot be closed) and limited

the action space to discrete actions. (ii) The number of objects was fixed to

m = 3 (one desired and two obstacles) of 6× 6 cm square shape. (iii) We used

a feature vector instead of images to represent the state. The feature vector

was defined by the Cartesian poses of the objects in the robot frame. (iv) We

dropped the edge constraint and replaced it with a condition that the obstacle

objects must not be moved far away from their initial pose.

We call the approach used to solve this problem CartesianRHPdas, or

C.RHPdas for short. It was trained following a similar learning procedure to

the one presented in Sec. 4.5 for the discrete action space. The learning proce-

dure is illustrated in Fig. 4.5. The number and shapes of the objects was fixed

throughout the learning process.

The manipulation scenario is inspired by manipulation tasks where it is

desired not to significantly reshuffle obstacle objects. An illustrative example is

shown in Fig. 4.6. The robot, shown in blue, has to push the green square into

the target region of radius 6 cm, while having the rest of the objects placed by

the end of the task as close as possible to their initial pose. The target regions

are depicted by light colored circles corresponding to their designated objects.

The goal of the experiments is to evaluate the following:

• First, we measure the effect of the number of demonstrations (that is,

demonstrations generated by the Kino-dynamic planner) on the quality

of the action-value function. We show that after a certain number of
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Figure 4.6: The initial configuration (left) and the final con-
figuration (right) of an example scenario.

demonstrations from the planner, the performance of the induced policy

hits a plateau.

• Second, we compare the performance of C.RHPdas to different baseline

approaches.

• Lastly, we demonstrate running C.RHPdas in real-world scenarios.

In our simulation experiments, we modeled the world in the Box2D physics

simulator [19]. The robot motion is generated by applying momentary forces to

its end-effector, and waiting until the robot and objects came to a stop due to

frictional damping forces. We tuned the amount of time the force is applied to

the robot such that each translational action moves the gripper by a distance

of around 5 cm, and each rotational action moves the gripper for around 30o.

The robot has access to 6 actions, 4 to apply a force in each of the cardinal

directions, and 2 to rotate the gripper clockwise and counterclockwise in the

task space.

We used the TensorFlow [2] library to build and train a feed-forward NN

model consisting of 5 fully connected layers. The first 4 layers have 330, 180,

80, and 64 neurons, respectively, with ReLU activation function. The output

layer consists of 6 neurons, one per action, with linear activation functions. The

training and experiments were conducted on an Intel Xeon E5-2665 computer

equipped with NVIDIA Quadro K4000 GPU card.

The Kino-dynamic planner typically needs 20 to 30 actions to solve a task.

Therefore, we set 50 actions as the limit for the number of actions per task. At

the end of a run, we call it a failure if the desired object is not in the target

region or if any of the other objects was moved outside of its corresponding

region. Otherwise, we consider it a success.
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Figure 4.7: Example solution of a demonstration generated by
the Kino-dynamic planner.

4.6.1 The Effect of the Number of Demonstrations on

the Performance

We generated multiple task instances by randomly sampling non-colliding initial

object poses and also randomly sampling a target region for the desired object.

We then ran the Kino-dynamic planner to generate a demonstration for each

of the task instances. An example of such solution is shown in Fig. 4.7. We

parametrized the IL procedure by a value margin λ with η = 3 and rcost = 1.

We use a learning rate of 0.0001 for the training process, a discount factor of

γ = 0.995, and a batch size of M = 2000. We use a replay buffer Dreplay that

can fit 500000 transition samples. The reward function is set to r = −1 per

action.

To test the action-value function encoded by the network, we generated 300

random task instances, and ran a greedy policy on them, that is executing the

action with the highest value estimate. The horizontal axis in Fig. 4.8 shows

the number of demonstrations P generated by the Kino-dynamic planner, and

the vertical axis shows the average success rate of the policy trained with that

many demonstrations.

As expected, the graph shows an increasing trend w. r. t. the number of

available demonstrations. After reaching a P of 8000 demonstrations, we see

that it starts to plateau before it hits 50% success rate. This result demonstrates

that the NN alone could not encode a behavior as good as the planner which

we show in the next section achieves a success rate of 98%.
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Figure 4.8: Performance of the greedy policy induced by the
action-value function trained over a different number of demon-

strations.

4.6.2 Performance Evaluation

Next, the network that encoded the best action-value function, as measured

by the performance in the number of demonstrations experiment, was further

trained with RL where the exploration policy is ε-RHP3. ε is set to 0.2. Each

RHP query runs n = 6 roll-outs of h = 6 horizon depth each. We decreased the

learning rate to 0.00001.

To evaluate the effectiveness of every step in the learning process, we com-

pared two groups of RHP based policies:

• In the first group, the action-value function is solely learned from the

demonstrations of the Kino-dynamic planner. We categorize them under

IL in Table 4.1.

• In the second group, the action-value function is further updated with the

ε-RHP guided RL. We categorize them under IL + RL in Table 4.1.

We evaluated each of these groups by using the trained action-value function in

three different ways: Greedy policy, RHP with n = 3, h = 3 (C.RHP 3×3
das ), and

RHP with n = 6, h = 6 (C.RHP 6×6
das ). We also include the open-loop execution

based on the Kino-dynamic planner (k.RRT ) as a baseline.

When we evaluated a certain policy, we injected different levels of noise

on the physics model as a way of gauging how a policy copes with dynamics

3ε-RHP is similar to ε-VisualRHP but with the NN acting on the Cartesian state repre-
sentation instead of abstract images
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Table 4.1: The performance results of the different policies
under different noise levels

Planner IL IL + RL

noise k.RRT Greedy C.RHP 3×3
das C.RHP 6×6

das Greedy C.RHP 3×3
das C.RHP 6×6

das

No
suc. rate [%] 98.0 ± 2 48.0 ± 0 78.0 ± 1 88.0 ± 1 51.5 ± 5 88.8 ± 1 94.4 ± 2
avg. time [s] 49.4 ± 14 0.7 ± 0 5.8 ± 1 17.7 ± 2 0.6 ± 0 7.9 ± 0 21.2 ± 2

Low
suc. rate [%] 24.5 ± 17 48.2 ± 7 77.2 ± 4 86.2 ± 3 48.6 ± 6 88.2 ± 2 94.0 ± 2
avg. time [s] 41.1 ± 11 0.7 ± 0 6.4 ± 0 18.6 ± 1 0.6 ± 0 8.0 ± 1 22.7 ± 5

Med.
suc. rate[%] 28.5 ± 25 42.2 ± 12 73.4 ± 4 85.8 ± 8 47.3 ± 9 88.0 ± 2 91.2 ± 4
avg. time [s] 42.5 ± 9 0.6 ± 0 7.3 ± 1 19.7 ± 3 0.6 ± 0 8.1 ± 1 18.4 ± 5

High
suc. rate[%] 15.7 ± 15 44.7 ± 29 71.5 ± 7 82.8 ± 8 45.6 ± 10 87.3 ± 5 90.1 ± 2
avg. time [s] 37.6 ± 8 0.7 ± 0 7.1 ± 1 14.5 ± 2 0.7 ± 0 8.5 ± 2 17.3 ± 2

and object geometries that are different then the one it was trained on. The

performance under such artificial noise is a way of estimating the robustness of

each policy, and approximating how a policy would perform under real-world

uncertainty. The rows in Table 4.1 correspond to these noise levels.

To inject noise into the model, we considered physics parameters: shape,

friction, and density of the objects. During evaluation, the noise is sampled

from a Gaussian distribution centered around the value of the parameters used

in the training (and planning in the Kino-dynamic planner case)4.

In each cell, Table 4.1 shows the success rate and the average computation

time per successful run. The latter includes planning time, whether Kino-

dynamic planning or RHP, and the time required to compute the physics inter-

actions in Box2D. Also, a computation time limit of 3 minutes was imposed on

all trials. The results presented are averaged over 300 random task instances

with 95% confidence interval.

The Kino-dynamic planner with no noise shows a high success rate. The

few cases where it failed are due to the imposed time limit. Nevertheless, the

decreasing performance with noise and the relatively high computation time

confirms the limitation of using open-loop planning in execution. The left image

in Fig. 4.9 shows how a pre-computed plan can fail during execution when the

geometry of an object is slightly different than the one used at planning time.

At planning time, only square objects were used. When the plan is executed in

open-loop but with slightly different object geometry, i. e., a rectangular shape

for the green object instead of the square shape used during planning, the green

object slides outside of the robot trajectory. In general, this indicates that this

4Mean values of the objects’ physics parameters are as follows: shape: 6× 6 cm, density:
1 kg/m2, friction coefficient: 0.3.
Standard deviation on the objects’ physics parameters: Low = 0.05 × mean, Medium =
0.15×mean, High = 0.25×mean.
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Kinodynamic Planner RHP

Figure 4.9: Evaluation at execution time with different shapes.

type of planning is favorable when a high-fidelity model and high-processing

power for re-planning are available.

We also notice that when RHP is engaged there is a notable increase in

performance. The longer the horizon and number of roll-outs the higher is the

success rate and the more robust it is against noise. The performance increase

comes at a cost of an increased computation time. However, it is still within

reasonable limits for real-world applications. In contrast to using an open-loop

control scheme, the right image in Fig. 4.9 illustrates how the robot can adapt

to unexpected physics interactions.

Looking at the overall performance between the two groups of policies, we

see that further optimizing the action-value function with RL contributed to a

higher success rate and robustness to uncertainty. A common trend in the re-

sults also shows that the average computation time per successful run increases

slightly when RL is used. This increase is justified by the fact that with higher

success rate the RL-optimized policies are successfully solving more challenging

settings, which would require more actions to solve.

Further, C.RHP 6×6
das outperformed all of the others w. r. t. the success rate

while still offering a reasonable planning and execution time for real-time ap-

plications. We used this policy successfully to command a robot in the real

world.

4.6.3 Real-robot Execution

We performed experiments on a UR5 robot5. We created the three task in-

stances shown in Fig. 4.10, Fig. 4.11, and Fig. 4.12. In each task, we tested the

5https://www.universal-robots.com/products/ur5-robot/
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trained C.RHP 6×6
das policy (bottom row in figures) and compared it to the open-

loop execution of the Kino-dynamic planner (top row). During the execution,

closed-loop feedback on object poses was supplied using an OptiTrack system

for RHP to run the roll-outs on the model. As expected, the reactive capability

of RHP made its reaction robust to the dynamics of the real world and succeed

in these three tasks. In two out of three tasks, the open-loop execution failed.

A video of these experiments is available on https://youtu.be/xwa0fTTuQ1g.

The preliminary experiments on this basic version of the problem show

promising results to combining real-world execution with physics-based look-

ahead planning.
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Figure 4.10: Top: robot failing to push the green object to
the target region by following a pre-computed plan using Kino-
dynamic planning. Bottom: robot successfully executing the

task using closed-loop C.RHP 6×6
das execution.
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Figure 4.11: Top: robot failing to keep the red object close
to its initial position by following a pre-computed plan using
Kino-dynamic planning. Bottom: robot successfully executing

the task goal using C.RHP 6×6
das .
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Figure 4.12: Top: robot successfully executing the task
goal by following pre-computed plan using Kino-dynamic plan-
ning. Bottom: robot successfully executing the task goal using

C.RHP 6×6
das .
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4.7 Experimental Setup and Implementations

In the preliminary experiments, we only used discrete and non-prehensile actions

in a Cartesian state space with a fixed and small number of objects. In the

next round of experiments, we evaluated the performance of VisualRHP over

a variable number of object shapes in an image-based state representation and

using prehensile and non-prehensile actions.

We ran a series of experiments conducted in simulation and on the real

robot to evaluate and validate VisualRHP. The focus of the experiments are:

(i) to evaluate the performance contribution of each of the main elements of

VisualRHP in discrete and continuous action spaces with respect to state-of-

the-art alternatives (Sec. 4.8.1), (ii) to assess the algorithms’ robustness to un-

modelled dynamics for real-world applications compared to open-loop execution

(Sec. 4.8.2), (iii) to evaluate if the acquired behaviour learned transferable skills

to different real-world manipulation environments (Sec. 4.9).

During the experiments, we varied the environment parameters introduced

in Sec. 4.3. The environment consists of the target region, the end-effector of

the robot arm, one desired object, and m − 1 obstacles6. We trained the NN

on task instances with different clutter densities, ranging from m = 1 object,

i. e., only the desired object, to m = 7 objects. The shape of an object is

randomly selected from a pool of polygons with a random number of vertices

centred around the polygon centre of mass. Some of the objects are too large

to fit within the gripper fingers to be grasped, whereas others are small enough

to be grasped with force closure from any approach angle, and some others

are directionally graspable. The location of the target region is sampled from

a uniform distribution over the manipulation surface. With the aim of only

describing the task objective, the reward function is set to r = −1 per action

and r = −50 if an object is dropped outside of the surface edges.

4.7.1 Action Spaces

In our simulation environment, we modelled the world in the Box2D physics

simulator. The robot motion is driven by a proportional controller, where an

action represents a target velocity vector to be maintained for a fixed amount

of time.

6The surface edge dimensions are 50 × 50 cm, the target region has a radius of 7 cm,
and the objects and robot density is 1 kg/m2 with 0.3 as the friction coefficient. The robot
dimensions are modeled after the Robotiq 2F-85 gripper.
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Discrete action space (das): We define 8 actions: four along cardinal di-

rections that achieve a 5 cm translation in any of these directions, two 30o

rotational actions (CW and CCW), and the last two are for closing and open-

ing the gripper.

Continuous action space (cas): The action distribution is modelled by a 4-

dimensional Gaussian distribution with a diagonal covariance matrix. The first

three correspond to the longitudinal, lateral, and rotational directions along the

robot end-effector. A hyperbolic tangent activation function at the output of

the NN is used to bound the means of the Gaussian distribution such that the

induced translation and rotational step falls within −10 cm and 10 cm, and

−50o and 50o, respectively. The fourth dimension corresponds to closing and

opening the gripper.

4.7.2 Network Architecture

It is important to design a NN architecture with an inference time small enough

to be queried multiple times per action selection and still return an action in

near real-time. We built similar NN architectures for the discrete and continu-

ous action spaces, using the TensorFlow library, with the main difference being

the output heads.

Discrete action space: The NN modelling the action-value function is

composed of a CNN part connected to dense layers. The input to the CNN is

a 64 × 64 × 3 image. The CNN consists of 3 sequences of: 2 coordConv ap-

pended channels7, 2D convolution, normalization, and max-pooling layers. We

use 3× 3 kernel sizes and 8, 8, 16 filters for the convolution layers, respectively.

The output of the CNN is flattened into a vector of 256 features. The input to

the dense layers is a feature vector that concatenates the flattened output of the

CNN and a binary value corresponding to the gripper state. The dense layers

are composed of 3 fully connected layers. The first 2 layers have 128 neurons

each. We use leaky ReLU as activation function all throughout the network.

The output layer consists of 8 neurons, one per action, with linear activation

functions.

Continuous action space: The architecture of the CNN and the input

vector to the dense layers are the same as in the network for the discrete action

space. The CNN is followed by two shared fully connected dense layers of 256

7The coordConv helps in capturing geometric information that are translation dependent
[75].
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and 128 neurons. The value head has a fully connected layer of 64 neurons with

leaky ReLU activation function. It is followed by a single neuron output layer

for the value function with a linear activation function. The Policy head has a

fully connected layer of 128 neurons with leaky ReLU activation function. The

output layer is a fully connected layer with 8 neurons modelling the mean and

standard deviation parameters of a 4-dimensional Gaussian that is representing

the policy. The 4 outputs corresponding to the means have a hyperbolic tangent

(tanh) as activation function, and the other 4 outputs corresponding to standard

deviations have a sigmoid activation function8.

The training and experiments were conducted on an Intel Xeon E5-26650

computer equipped with an NVIDIA Quadro P6000 GPU card.

4.7.3 Evaluation Metrics

Data for each experiment is collected over 300 runs. Unless otherwise specified,

the performance is evaluated in simulation with respect to three metrics:

• Success rate represents the percentage of the successfully completed

tasks. We consider a task to be successfully completed when the desired

object is moved to the target region in under 50 actions without having

any of the objects falling off an edge.

• Action efficiency is a relative measure in view of the scene complexity

represented by the clutter density. It is calculated as:

number of objects in the scene

number of actions until completion
.

The higher the ratio of an approach, the more efficient it is.

• Average execution time per run is computed as the number of actions

times the average time required for selecting an action, which can change

for different planners, and the time required to roll the physics in the

simulator.

8It is common in the continuous action space literature to use a linear activation function to
model the standard deviations, however, we found that a sigmoid function makes it more likely
for the RL algorithm to converge without having any noticeable downside on the exploration.
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4.7.4 Training Procedure

We collected, for each of the discrete and continuous action space approaches,

up to P = 14000 demonstrations over random task instances using the Kino-

dynamic RRT planner. We trained the NNs over these demonstrations as de-

tailed in Sec. 4.5.2 on IL. For the discrete action space, the value margin

parameters are η = 3 and rcost = 1. For the continuous action space, the

hyper-parameters are set to c1 = 0.7, c2 = 0.01, and Ψ = 0.5. We use a learning

rate of 0.0001 for the training process in both action spaces, a discount factor

of γ = 0.995, and a batch size of M = 2000.

To ensure that enough demonstrations were collected for IL, we show in

Fig. 4.13 how the success rate changes when increasing the number of available

demonstrations. The plots show the average success rate. As expected, the

graph shows an increasing trend w. r. t. the number of available demonstrations.

After reaching a P of around 8000, the success rate starts to plateau at around

60% and 70% for the discrete and continuous action spaces, respectively. We

also report a remarkably low action efficiency of 0.15 and 0.20 for the discrete

and continuous action spaces, respectively.
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Figure 4.13: The effect of the available number of demonstra-
tions on the performance of the learned behaviour.

Next, the NNs of both action spaces were further trained with RL. We kept

the same batch size of M = 2000 and the discount factor of γ = 0.995. We

decreased the learning rate to 0.00001. In the discrete action space, we use

ε-VisualRHP with ε = 0.2, n = 3, and h = 3. We use a replay buffer Dreplay

that can fit 500000 transition samples. The transition samples are collected by

10 agents running in parallel. We run 3 optimization epochs after every 2000
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newly collected transition samples. In the continuous action space, we use

C3PO in conjunction with PPO. We set the PPO clip value to 0.075 and the

hyper-parameters to c3 = 0.7, c4 = 0.1, and c5 = 0.35. We set the size of the

replay buffer Dreplay to 10000 transition samples. We also run 10 environments

in parallel. For the optimization step, we run 20 epochs over Lbaseline and 15

epochs over Lactor−critic.

4.7.5 VisualRHP and Baselines

We conducted an ablation study to assess how each element in our proposed

approach affects the final performance. We looked at the effect of the image-

based abstract representation, the use of a learned heuristic in image space, and

the integration of the physics-based look-ahead planning in the control strategy.

Accordingly, in addition to VisualRHP, we composed four corresponding base-

line methods. We use n × h in the superscript of a method’s name to denote

the VisualRHP parameters (e. g., VisualRHP3×3). All baseline methods were

trained with the same procedure as ours unless otherwise specified:

VisualRHP: We experimented with four VisualRHP formats. Two in the dis-

crete action space and two in the continuous action space. For each of the action

spaces, there is one version that uses n = 3 roll-outs of h = 3 horizon depth,

and another one that uses n = 6 and h = 6.

Cartesian Pose Baseline (CartesianRHP): Instead of using abstract im-

ages for the state representation, CartesianRHP uses the relative Cartesian

poses of the objects and the target region with respect to the end-effector, and

the absolute Cartesian pose of the end-effector and a binary gripper state. The

discrete and continuous action space versions of CartesianRHP use the same

NN architectures. We ran CartesianRHP in conjunction with RHP parameters

of n = 3 and h = 3. The NN architecture used by CartesianRHP has an in-

herent limitation. It can only be trained on a specific number of objects and

can not generalize to arbitrary clutter densities. Adding or removing objects,

i. e., changing the size of the input layer, requires the use of a different NN

architecture. Hence, CartesianRHP requires the training of multiple NNs, each

designed to operate on a specific number of objects. This baseline is inspired

by the one used in the preliminary experiments.

Handcrafted Heuristic Baseline (CraftedHeuristicRHP): We ask the

question of whether the problem can still be solved in closed-loop with a hand-

crafted heuristic to estimate the cost-to-go from a horizon state to the goal,

rather than the learned one. Hence, CraftedHeuristicRHP implements RHP

with a handcrafted heuristic. We found that CraftedHeuristicRHP performs
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best with n = 8 random roll-outs of depth h = 4 by sampling random actions

from the discrete or continuous action spaces. The cost-to-go function, pre-

sented in Eq. 4.13, is a weighted sum of the Euclidean distance (d1) and the

angular displacement (d2) between the robot and the desired object, the Eu-

clidean distance between the target region and the desired object (d3). It also

includes a term that encourages the alignment between robot, desired object,

and target region, with increasing emphasis on the robot facing the target region

once it is positioned behind the desired object (d5). A penalty term is added

to dropping any of the objects outside the surface edges (dout). The weights,

balancing these different components, were empirically optimized to favour a

behaviour where the robot would first approach the desired object from the

back, then pushes it towards the target region.

cost to go = 0.4 d1 + 0.8 d3 + 0.7 d2 + 1.4 d4 + dout 3
d1 = dis(Rob,Objdes),

d2 = ang(Rob),

d3 = dis(tarReg,Objdes),

d4 =


0.6(d1 − dis(Rob, tarReg)) + 2 ang(tarReg,Rob,Objdes)

if ang(Rob,Objdes, tarReg) > 0.5π

0.8 (d1 − dis(Rob, tarReg)) + π, otherwise

dout =

100, if any object is outside the surface edges

0, otherwise

(4.13)

where

dis(a, b) : Euclidean distance between a and b

ang(a, b) : Angular displacement of b in the frame of a

ang(a, b, c) : Angular displacement formed by âbc

(4.14)

The use of a handcrafted cost function for manipulation in clutter is reminiscent

to trajectory optimization-based approaches such as in [5, 90].

Greedy Baseline (Greedy): Almost ubiquitously, an RL trained robot for

manipulation tasks would act greedily at execution time on the learned policy

without running look-ahead planning [121, 95, 122]. In this thesis, we argued
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that it is hard for a greedy policy to accurately anticipate how the environment

will unfold under complex interaction dynamics, especially in an environment

rich with physics contacts. Greedy challenges this claim by running a greedy

policy on the trained NN in the image space. Action selection is based solely

on the current state as observed in the abstract image representation. In the

discrete action space, the action with the highest value estimate is selected.

In the continuous actions space, the action vector is set to the mean vector of

the policy distribution as outputted by the policy head of the NN. Therefore,

the simulator at execution time is only used to render the abstract images on

which the greedy policy acts. The most similar state-of-the-art approach to this

baseline is [120].

Kino-dynamic RRT Baseline (K.RRT): All the previous baseline control

strategies run in closed-loop. As an alternative, we used an open-loop sampling-

based planner, namely the Kino-dynamic RRT introduced in Sec. 4.5.1. A

computation time limit of 3 minutes was imposed on K.RRT before declaring

a failure. In the discrete action space, the planner has access to the 8 discrete

actions per state. In the continuous actions space, the planner can sample up

to 8 random actions per state.

We report that we omitted the following two baselines from the results, as

even after extensive systematic hyper-parameter tuning, we did not succeed in

getting them to converge to a satisfactory behaviour:

• NN parameters were randomly initialized and then solely trained with RL

(i. e., without IL). This was repeated for several initialization trials. The

policy often converged to a behaviour that drives the robot to shove the

objects by the side of the gripper towards the target region without much

consideration to the surface edges constraints, often causing objects to

drop outside of it.

• A baseline wherein the RL part of our training procedure, in the contin-

uous action space, uses PPO without the additional C3PO optimization

step of Lbaseline. The original version of PPO resulted in the NN diverging

causing the loss of the acquired knowledge from the IL part. Fig. 4.14

shows a comparison of the success rate over the RL training process be-

tween PPO and C3PO with PPO. After every 10000 newly collected tran-

sition samples, 20 optimization epochs are performed. Each data point

is averaged over 5 RL trials with 95% confidence interval. Both learning

algorithms are evaluated with the greedy policy.
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Figure 4.14: The effect of the C3PO optimization step on the
learning stability.

4.8 Simulation Results and Discussion

In this section we present the results and discuss the implications of the simu-

lation experiments.

4.8.1 Performance in Different Environment Setups

The first group of simulated experiments looks at the success rate, the action

efficiency, and the average execution time per run in environments of different

levels of difficulty. We consider the effect of changing clutter densities, ranging

from 1 object, i. e., only the desired object without clutter, to 7 objects on

the surface. We also examined the performance in environments with random

number of objects (up to 7) but of different average sizes (small, mixed, and

large) relative to the dimensions of the gripper. It is expected that the shape

of small objects is less significant to the manipulation task compared to large

objects.

The success rate results are reported in Fig. 4.15 and in Fig. 4.16. The plots

show that VisualRHP and CartesianRHP outperform the other two baselines,

with a slight advantage for performing a higher number of deeper roll-outs. For

a low clutter density, all approaches show high success rate. Not surprisingly,

increasing the clutter density causes a drop in the success rate across all base-

lines as it becomes much more likely for objects to fall off the edges or for the

robot not to find its way through the clutter. Greedy suffers from the sharpest

drop with respect to the number of objects. We also observe in Fig. 4.16 that

large objects seem to be slightly more difficult to manipulate as reflected in a

decrease in the success rate. VisualRHP, on the other hand, is more robust

to the increase in object sizes. This result can be attributed to the fact that



4.8. Simulation Results and Discussion 65

1 2 3 4 5 6 7
20

40

60

80

100

Number of objects

S
u
cc
es
s
R
at
e
%

VisualRHP6×6
das VisualRHP6×6

cas

VisualRHP3×3
das VisualRHP3×3

cas

Cart.RHP3×3
das Cart.RHP3×3

cas

Greedydas Greedycas

Cra.Heu.RHP8×4
das Cra.Heu.RHP8×4

cas

Figure 4.15: Success rate w. r. t. clutter density.
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Figure 4.16: Success rate w. r. t. to objects sizes.

with higher clutter density and/or objects sizes, more physical interactions are

involved. The decision making process must account for these interactions over

the short and the long term to avoid irreparable arrangements. In this sense,

VisualRHP compensates for the NN deficiency to anticipate how the environ-

ment will unfold under a sequence of actions. Operating in continuous versus

discrete action space has no significant effect on the success rate.

Looking at the action efficiency results in Fig. 4.17 and in Fig. 4.18 reveals

more insight on the difference between operating in continuous and discrete

actions spaces. There is a clear advantage of operating in the continuous action

space. It consistently scores higher across all baselines. This is because the

policy has finer control over the positioning of the robot.

We note that RL caused a significant increase in the action efficiency com-

pared to the IL action efficiency. In the mixed object experiment, the action

efficiency of the greedy policies increased from 0.15 to 0.22 and from 0.20 to

0.35 in the discrete and continuous action spaces, respectively.

Furthermore, using higher number and deeper roll-outs (VisualRHP6×6) does

not have a noticeable action efficiency advantage over using less (VisualRHP3×3)
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Figure 4.17: Action efficiency w. r. t. clutter density.
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Figure 4.18: Action efficiency w. r. t. object sizes.

or no roll-outs (Greedy). The action efficiency results also show that although

CartesianRHP3×3’s success rate is on par with VisualRHP3×3, CartesianRHP3×3

slightly but consistently scores lower on the action efficiency compared to all

the approaches that rely on the abstract image-based representation. This

results confirms our intuition on the use of engineered features for the state

representation. CartesianRHP3×3 always converged to a behaviour where the

robot would approach the desired object from the back and pushes it towards

the target region. Although robust to the variation in shape of the objects, each

NN of CartesianRHP3×3, trained over a specific number of objects, resulted in

a behaviour that requires more actions for solving the task when compared to

a behaviour where the robot can actually leverage the shape of the objects in

order, for instance, to grasp the desired object and move it to the target region.

The importance of the action efficiency metric is reflected in the average

execution time per task as presented in Fig. 4.19. We see that the average

execution time per task is always lower in the continuous action space. This
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Figure 4.19: Average planning and execution time.

can be explained as a direct consequence of the action efficiency9. In addition,

the average execution time is also affected by the number and depth of the

roll-outs. For instance, VisualRHP6×6 and CraftedHeuristicRHP8×4 simulate

6 × 6 and 8 × 4 actions before returning an answer. This places them at the

slowest end of the spectrum. In contrast, Greedy does not need to perform any

roll-out and exhibit the fastest execution time, albeit with a trade-off on the

success rate. We also included in this figure the results for Kino-dynamic RRT.

It stands in the middle of the rank, but as we will see in the next section, it

might not be the best suited for these application domains.

9The difference in the inference time between different NN architectures is minimal and
has no measurable effect on the average execution time.
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Figure 4.20: Performance w. r. t. clutter density in cas for dif-
ferent noise level on the physics and geometry parameters.

Following the results of the first group of simulated experiments, we identify

that VisualRHP3×3
cas , CartesianRHP3×3

cas , Greedycas, and K.RRT cas are poten-

tially suitable for near real-time applications in the real world. They offer a

reasonable balance between computation time and success rate.

As a way of gauging how these approaches cope with dynamics that are

different than the one they were trained for, we ran a second group of simu-

lated experiments where we compared them against different levels of artificially

injected noise on the physics and geometric parameters at evaluation time (sim-

ilarly to the preliminary experiments in Sec. 4.6). The results are presented

in Fig. 4.20. The different line styles correspond to the different noise levels.

Each data point corresponds to 300 runs initialized with random target location,

arrangement, and objects shapes.

The K.RRT results reiterates our finding in the preliminary experiments.

Open-loop execution performs well under low noise conditions and suffers from

a sharp drop in in the success rate with increased noise. Greedycas preforms

remarkably well even with high noise but only for when there is one object in the

scene. This can explain the wide spread use in literature of the greedy policies

for manipulating a single object in the real world. It has real-time reactive

behaviour but it fails to cope with high clutter environment with unknown

dynamics.

When looking at CartesianRHP3×3
cas in high noise environments, we see that

its success rate surpasses the VisualRHP3×3
cas . A possible explanation is the

conservative policy learned by CartesianRHP3×3
cas makes it more robust against

noise on the shape of the objects. Because of the engineered feature vector of

the state representation, the shape of the objects are unknowable to the policy.

Hence, each of the NNs in CartesianRHP3×3
cas , one for every specific number
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of objects, has converged to a behaviour that increases the chances of success

irrespective of the shapes but at the expense of a lower action efficiency. In

contrast, VisualRHP3×3
cas tailors the behavior to the exact shape of the objects

making it more action efficient and generalizable, but also slightly more suscep-

tible to high noise. We expect that a decently parameterized physics simulator

would be good enough for VisualRHP3×3
cas to achieve high success rate.

4.9 Real-World Experiments and Discussion

We built on the simulation results to compare the approaches evaluated in the

previous section in real-world experiments that require transferable manipula-

tion skills over different task setups. We used a Robotiq 2F-85 two finger grip-

per10 mounted on a 6-DOF UR5 robot. The robot operates over a 50× 50 cm

surface and target region of 7 cm in radius. The manipulation objects in-

clude bottles, apples, oranges, and cups. Using a top mounted RGB camera,

instance segmentation is performed using a Mask R-CNN [40] vision system

trained on the COCO Dataset [74]. A video of these experiments is available

on https://youtu.be/raKHTnJLikQ.

Starting from a similar initial environment setup, Fig. 4.21 and Fig. 4.22

shows K.RRT (top), Greedycas (middle), and VisualRHP3×3
cas (bottom) tasked

with manipulating the orange fruit to the target region in low and high clutter

environments, respectively. K.RRT succeeds in solving the task in a low clutter

environment. This is because problems associated with the physics discrep-

ancy between the simulator model and the real world are mitigated by minimal

physical interactions in a low clutter environment. However, in a high clutter

environment, small discrepancies between the physics model of the simulator

and the real world, e. g., gripper-orange-bottle interactions, are compounded

causing task failure as shown by the red apple falling outside the surface edge.

Further, Greedycas also performs well in a low clutter environment. Although

it does not foresee how the environment will unfold under a certain action, it

can react fast to a dynamic environment. We see the robot chasing the orange

after it was unintentionally knocked to the side of the table. The high clutter

environment shows that Greedycas is prone to getting trapped in some parts

of the state space (cyclic or oscillatory behaviour [112]), only escaping it after

executing several ineffective actions. Also, by acting solely based on the current

observation the robot fails to anticipate the upcoming states as exemplified by

the red apple being pushed, via the bottle, outside the surface edge. On the

10https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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Figure 4.21: Comparing Kino-dynamic RRT (top), Greedy
(middle), and VisualRHP (bottom) policies running in contin-
uous action space in low clutter environment. The “orange” is

the desired object.

other hand, VisualRHP3×3
cas evaluates the potential consequences of an action be-

fore being executed in the real world. At a slightly higher computation cost, the

policy selects informed actions based on the predicted environment dynamics.

In Fig. 4.23 and with the bottle being the desired object, we observe two

distinct strategies that CartesianRHP3×3
cas and VisualRHP3×3

cas converges to. In

the top row, CartesianRHP3×3
cas drives the robot around the apple obstacle.

Unaware of the actual geometry of the bottle, the robot barely manages to

push the bottle to the target region. In the bottom row, the robot behaviour,

controlled by VisualRHP3×3
cas , exhibits awareness of the geometries of the objects

by approaching the bottle from a graspable angle and manoeuvring it to the

target region.

Additionally, Fig. 4.24 shows the robot being tasked with manipulating a

small apple in the top row and a large apple in the bottom row using Visual-

RHP3×3
cas . When the geometry of the desired object is relatively small, i. e., it

fits within the fingers of the gripper, the robot manoeuvres its way through the

clutter, grasps of the apple, and pulls it to the target region. Whereas, when the

geometry of the desired object is relatively large, the robot resorts to pushing

it towards the target region.

Fig. 4.25 compares the robot behavior in discrete (top) and continuous (bot-

tom) action spaces. In this experiment the robot is tasked with manipulating
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Figure 4.22: Comparing Kino-dynamic RRT (top), Greedy
(middle), and VisualRHP (bottom) policies running in continu-
ous action space in high clutter environment. The “orange” is

the desired object.

Figure 4.23: Comparing CartesianRHP (top) and VisualRHP
(bottom) policies running in continuous action space. The “bot-

tle” is the desired object.
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Figure 4.24: Comparing VisualRHP, running in continuous
action space, in manipulating small (top) and large (bottom)

desired object. The “apple” is the desired object.

Figure 4.25: Comparing VisualRHP in discrete (top) and
continuous (bottom) action spaces. The “bottle” is the desired

object.

Figure 4.26: Manipulation examples with VisualRHP in chal-
lenging environment setups. The “bottle” is the desired ob-

ject.
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the bottle to the target region. Having only access to discrete actions, the robot

performs several actions, particularly when the robot is positioned under the

bottle, before the robot is able to get the bottle within the gripper fingers and

then pushes it to the target region. In the continuous action space, the robot

performs fewer actions to position itself directly under the bottle such that it

can be grasped, rotated, then pushed towards the target region.

Lastly, we show VisualRHP3×3
cas operating in challenging environment setups

where the desired object is surrounded by obstacles with little room to manoeu-

vre. In Fig. 4.26, with the bottle being the desired object, the robot leverages

the obstacles by pushing the larger apple which in turn is pushing against the

desired object and driving it to the target region. In Fig. 4.1, with the orange

being the desired object, VisualRHP3×3
cas does not only use its control over the

opening and closing of the gripper for prehensile actions, but also as a tool for

the robot to squeeze its way through the clutter and then opening the gripper

for clearing the robot’s path to the desired object.

4.10 Conclusions

The conducted ablation study provides strong evidence for the necessity of the

different components of VisualRHP. (i) The abstract image-based represen-

tation provides the basis for transferable and generalizable manipulation skills.

The robot performed in environments with different clutter densities and object

shapes while also handling a variety of desired objects. (ii) The two learning

algorithms were capable of learning robust heuristics to un-modelled dynamics.

A learned heuristic with IL and RL drives VisualRHP to achieve high success

rate and action efficiency compared to a handcrafted heuristic or open-loop ex-

ecution. When using the continuous action space heuristic, the robot benefits

from finer control over its actions resulting in higher action efficiency relative to

operating in a discrete action space. (iii) The closed-loop control scheme that

alternates between real-world execution and VisualRHP in a physics simulator

ensures a balance between real-time execution and informed action generation

for solving sequential decision making problems.

The success of the experiments relies on the full observability assumption of

the environment. However, the full observability assumption may not always

hold true when operating in a tight work-space. In the next chapter, we explore

the adaptation of VisualRHP to partially observable environments.
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Chapter 5

Occlusion-Aware Manipulation

under State and Physics

Uncertainties

“Yet while the darkness might be frightening, it is also an invitation to those

bearing torches”

- Invicta YouTube Channel:

How Carthage Explored the World in Antiquity

5.1 Introduction

Robots are envisioned to seamlessly adapt to human-centric environments with

minimal to no changes to the environment to match the robots’ capabilities [71].

The first step, however, is to find the item the robot is looking for [44]. Whether

for retrieving an oil bottle from a cluttered pantry or a specific item from a

supermarket shelf, installing overhead cameras over every manipulation space

defeats the concept of robots adapting to human-centric environments. In this

chapter, we propose a manipulation approach for robots with a hand-mounted

camera to search and retrieve a desired object from a cluttered environment

with occlusions.

A sequence of prehensile and non-prehensile actions in a partially observable

and contact-rich environment requires reasoning over occlusions and physics-

based uncertainty. Even when high-accuracy object detection systems are avail-

able, occlusion remains an inherent source of uncertainty challenging the search

for a desired object [53]. The robot has to reason over a history of partial obser-

vations to efficiently explore where the desired object might be. In addition, it

is notoriously hard to predict the outcome of an action in multi-contact physics

environments [97, 21, 69]. Modelling error on the physics parameters such as
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friction, inertia, and objects shapes impede open-loop execution of long action

sequences.

Under the assumption of a fully observable environment, we have shown

in the previous chapter how VisualRHP can be used with a heuristic to guide

physics-based roll-outs and to estimate the cost-to-go from the horizon to the

goal. VisualRHP provides a reliable solution to balance the advantages of

model-based sequential reasoning with a model-free scalable heuristic. How-

ever, in a partially observable environment, the desired object is not always

detected and hence cannot be simulated by VisualRHP. In this chapter, we

explore learning to predict the location of the desired object.

We propose (i) a data-driven approach for maintaining a distribution over

the desired object pose from a stream of partial observations (ii) and an occlusion-

aware heuristic to run VisualRHP under partial observability. These two key

ideas form what we call the hybrid planner. The hybrid planner uses the distri-

bution to suggest potential poses of the desired object for VisualRHP to explore.

We also present the learning algorithm for simultaneously learning a generative

model for the pose distribution of the desired object and an occlusion-aware

heuristic in a continuous action space. We evaluate the proposed approach

in different simulation environments with varying clutter densities and artifi-

cially injected noise. We also validate the proposed approach in a real-world

environment.

5.2 Problem Definition

(a) 3D realistic world: the robot perceives
the world from a simulated camera attached

to its end-effector
(see Fig. 5.7 for snapshots from the camera).

(b) Real-world: the robot is shown using
a phone camera mounted on its end-effector
(see Fig. 5.8 for snapshots from the camera).

Figure 5.1: Execution environment setup.
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The robot’s task is to retrieve a desired object from a shelf following a

sequence of prehensile and non-prehensile actions without dropping any of the

other objects off the shelf. The robot carries a hand-mounted camera. A typical

execution environment setup is shown in Fig. 5.1. We treat the search, reach,

grasp, and pull-out of the desired object as a single optimization problem with

the objective of minimizing the total number of actions for retrieving the desired

object.

In contrast to the previous chapter, the goal configuration in this chapter

consists of having the desired object grasped and removed from the manipula-

tion surface while all the other objects remain on the shelf.

5.2.1 Formalism

We model the problem as a POMDP 〈S,A,O, T,Ω, r, γ〉, where S is the set of

states where a state s at time t is given by st = [Rob,ObjdesObj, . . . , Objm, shelf ],

with shelf representing the set of coordinate defining the shelf walls and its

edges. A, T , r, and γ are the set of actions, transition probability function,

reward function, and discount factor, respectively (similar to Sec. 4.3)1. Ω :

S × O → [0, 1] the observation model. O the set of possible observations,

such that an observation o ∈ O contains a subset of the state variables (e. g.,

the visible objects), and the geometry of occluded spaces: the shadowed areas

behind objects and areas outside the camera’s FOV.

Since the state is not always accessible because of occlusions, decision making

relies on maintaining a belief b : S → [0, 1] as a distribution over possible

states. The belief is continuously updated from the stream of observations with

bt+1 = b(st+1|bt, at, ot) (Eq. 2.31). The POMDP policy π maps a belief bt to

an action at. The value of that policy is also computed based on the belief bt:

vπ = Ea∼π,st∼bt [
∑

k=t γ
k−trk+1]. In a model-free approach, it is possible to bypass

the explicit modelling of the belief by computing the policy and value function

directly from the observation history ō, such that a ∼ π(.|ō) and vπ = v(ō).

5.2.2 Chapter Overview

We build on the framework laid out in the previous chapter and extend it to

partially observable environments. The updated framework of the closed-loop

control scheme is shown in Fig. 5.2. It is interpreted as follows:

1We do not consider discrete actions in this chapter as the experiments from Sec. 4.7 have
proven that operating in a continuous action space converges to a more efficient behaviour.
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Figure 5.2: Approach overview.

• Observe : The poses and types of visible objects in the execution envi-

ronment, as detected by the hand-mounted camera, and task priors are

used to recreate, in the simulation environment, a state with only the

currently detected objects. The current observation, a top-down view of

the scene, is rendered from the simulation environment (Sec. 5.3.1). But

since the location of the desired object is not always known, it cannot be

placed in the observation.

• Plan : The hybrid planner uses the observation history, including the

current observation, to update a distribution over the likely poses of the

desired object. The estimated desired object poses are used to hypothesize

root states, each with a desired object (if the predicted desired object pose

is in an occluded area, it would still be hidden in the observation). Visu-

alRHP uses an occlusion-aware heuristic to explore and evaluate physics

roll-outs from each of the root states. VisualRHP returns the best action

to execute at each root state and its corresponding estimated return (Sec.

5.3.2).

• Execute : The returns are weighted by the likelihood of their root states,

and the action with the highest weighted return is executed in the execu-

tion environment (Sec. 5.3.2). After a single step of execution, the system

goes back to the observation step, for a closed-loop execution.

At the core of the hybrid planner is a Neural Network (NN) with recurrent

units that maps an observation history into: (i) a distribution over the pose of

the desired object ŷ(ō) with ō being the observation history, (ii) a stochastic

policy π(.|ō), (iii) and its corresponding value function vπ(ō), (Sec. 5.4). The
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NN is trained in the physics simulation environment with Imitation Learning

(IL) and curriculum-based Reinforcement Learning (RL) (Sec. 5.4).

5.2.3 Assumptions

In this chapter, we adopt the same assumptions as in the previous chapter,

but we drop the assumption on full observability. We also add the following

assumptions. (i) A library of object type-shape pairs is given. (ii) Objects are

small enough to be graspable from at least one approach angle.

5.3 Decision Making Under Occlusion

5.3.1 Observation Space

It is essential to have an expressive representation of the observation yet com-

pact enough to keep the NN size relatively small as it will be queried multiple

times per action selection. Even though in the execution environment the cam-

era is hand-mounted, before we feed the observation into the NN, we render it

in a top-down view, as shown in the top-left of Fig. 5.2, making the spatial re-

lationships between objects and the geometry of occluded and observable areas

more explicit.

We built on the abstract image-based representation of a fully observable

environment. In addition to colour labelling objects based on their functionality

(e. g., desired object in green and clutter objects in red), we represent occluded

and observable spaces by white and grey coloured areas, respectively. The

geometry of the occluded areas is computed by illuminating the scene from the

robot’s camera perspective. We use a black line to represent the shelf edge and

brown for the shelf walls. The top-down view enables data from the execution

environment and task priors to be combined.

• Object detection on the execution environment identifies the poses and

types of visible objects in the camera FOV. The objects’ poses and types

allow the simulation environment to place the correct object shape and

colour in the abstract image-based representation of the observation.

• The task priors consist of observation-invariant information: the type of

the desired object, the shape corresponding to every object type, the shape

of the shelf (walls and edge), the geometry of the gripper, and the camera

FOV. By including task priors in the representation, the learner does not

need to remember them from the observation stream.



80
Chapter 5. Occlusion-Aware Manipulation under State and Physics

Uncertainties

Current observation + 
Target pose distribution

VisualRHP root 1 𝑣𝑣(�̅�𝑜𝑖𝑖)

𝑣𝑣(�̅�𝑜𝑖𝑖)

…
VisualRHP root 2

Figure 5.3: Hybrid planner running 2 VisualRHP queries, one
for each peak represented by the contour lines (left). VisualRHP

is shown executing 2 roll-outs of depth 3 for each root state.

All abstract images are made robot centric before being fed into the NN to

reduce the observation space by exploiting symmetries.

5.3.2 Hybrid Planner

The hybrid planner algorithm, presented in Alg. 3 and illustrated in Fig. 5.3,

is detailed as follows:

State Generation (Alg. 3, line 2): Having information from previous observa-

tions captured in the NN recurrent units, the NN uses the current observation

to generate a distribution over the pose of the desired object. For each peak

in the distribution, the hybrid planner creates a state with the desired object

at the peak location, while the poses of the obstacles remain the same as in

the current observation. The weight of a root state is computed as the relative

likelihood of its corresponding peak. It measures how likely it is for the desired

object to be found at the predicted location compared to the other potential

sites. VisualRHP is then called over each of the root states (Alg. 3, line 4)

Occlusion-aware VisualRHP (Alg. 4): VisualRHP performs n stochastic

roll-outs from root state sr up to a fixed horizon depth h in the physics simu-

lator. Each roll-out is executed by following the stochastic policy π(ō) acting

on the observation history. The return Rr:h of a roll-out is computed as the

sum of the discounted rewards generated by the model and the expected return

beyond the horizon estimated by the value function v(ōh):

Rr:h = r1 + γr2 + . . .+ γh−1rh + γhv(ōh). (5.1)
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VisualRHP returns the first action ar and Rr:h of the roll-out that obtained the

highest return.

Action Selection (Alg. 3, line 7): The return of a VisualRHP query is scaled

by the weight of its root state (Alg. 3, line 6). Therefore, the hybrid planner

picks the action that maximizes the return with respect to both the probability

of the roll-out, and the probability of the location of the desired object.

Algorithm 3: Hybrid planner (NN, ō, n, h)

Input: observation history ō, number of roll-outs n, horizon depth h
Output: action ar

1 rootActions ← [ ], weightedReturns ← [ ]
2 rootStates, rootWeights ← generateStates(NN, ō)
3 for so, w in [rootStates, rootWeights] do
4 ar, Rr:h ← VisualRHP(NN, sr, ō, n, h)
5 rootActions.append(ar)
6 weightedReturns.append(w ×Rr:h)

7 return rootActions[argmax(weightedReturns)]

Algorithm 4: VisualRHP (NN, sr, ō, n, h) with an occlusion-aware
heuristic

Input: root state sr, obs. history ō, number of roll-outs n, depth h
Output: action ar, return R
RolloutsReturn← [ ], FirstAction← [ ]
for i = 1,2, . . . , n do

R← 0, ōi ← ō
s, o← setSimulatorTo(sr)
ōi.append(o)
for j = 1,2, . . . , h do

a ∼ π(.|ōi)
if j is 1 then

FirstAction.append(a)

s, o, r ← simulatePhysics(s, a)
R← R + γj−1r
ōi.append(o)
if isTerminal(s) then

break

if not isTerminal(s) then
R← R + γhv(ōi)

RolloutsReturn.append(R)

return FirstAction[argmax(RolloutsReturn)],
max(RolloutsReturn)
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5.4 Model-Free Learning

Prior to using the NN in the closed-loop control scheme, the NN is trained

in a physics simulation environment (the same environment that will be used

by the hybrid planner). The NN must (i) generalize over a variable number

of objects and shapes in the observations, (ii) and maintain a belief from the

observation stream in order to predict the distribution over the desired object

pose and to generate an informed search and retrieve policy and value function

for VisualRHP to use them as a heuristic. The NN architecture that satisfies

these conditions is illustrated in Fig. 5.4. The first two components are a

Convolutional Neural Network (CNN) connected to Long Short-Term Memory

(LSTM) units. The CNN takes advantage of having an abstract image-based

representation of the observation to ensure generalization over object shapes

and numbers. The output of the LSTM layer, b̂, summarizes the stream of

CNN embeddings into a latent belief vector. b̂ is then passed through a feed-

forward Deep Neural Network (DNN) that models the policy, another DNN for

the value function, and a generative head for estimating the pose distribution

of the desired object. The generative head outputs a heat-map, ŷ, of size equal

to the input image, where higher pixel values indicate higher chances that the

desired object is at that location. While the policy and value function share

some of the NN parameters, we also found that having the generative head

sharing the CNN and LSTM components of the NN with the policy and value

function acts as a regularizing element.

Training a randomly seeded θ-parametrized NN with recurrent units over

images in a partially observable environment with complex physics and in a con-

tinuous actions space is particularly challenging [81]. To increase the likelihood

of convergence, we follow a similar training procedure to the one introduced in

Sec. 4.5 with an additional curriculum for the RL training [85].

Imitation Learning: In the first learning phase, we collect P demon-

strations, in the form of state-action sequences 〈s0, y0, a0, . . . , sL−1, yL−1, aL−1〉p.
The demonstrations are generated by solving random task instances using the

observation
CNN  +  LSTM DNN policy head

 𝑏
𝑉

𝜋

Target object 

pose distribution

Figure 5.4: NN architecture.
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Kino-dynamic RRT planner over a fully observable version of the problem, that

is, with o ≡ s. y is the heat-map showing the ground truth pose of the desired

object as given by the simulator. The NN is trained over the fully observ-

able and sub-optimal demonstrations. We formulate a similar loss function to

Eq. 4.8, but the policy and value function are computed over the observation

history and not just the current state. An additional term is also added for

training the generative head to estimate y:

Lil(θ) = Eōpl ,ypl ,apl [− Ψlogπθ(a
p
l |ōpl )

+ c1 (vtar(ōpl )− vθ(ōpl ))2

+ c2 H(πθ(.|ōpl ))

− c3
1

jk

∑
j,k

(yp,jkl logŷjkθ (ōpl ) + (1− yp,jkl )log(1− ŷjkθ (ōpl ))],

(5.2)

where j and k are the heat-map pixel indices. This learning phase is not enough

to solve the problem particularly under partial observability. Nevertheless, it

offers RL a better starting point than a randomly seeded NN.

Curriculum-based Reinforcement Learning: Next, the NN is trained

under partial observability with curriculum-based RL. The curriculum is con-

structed over three task parameterizations to gradually increase the clutter den-

sity and, by consequence, the occlusion in the environment. The first parame-

terization consists of environments with a random number of objects between

1 and 4. The initial poses of the desired and clutter objects are sampled from

a uniform distribution over the shelf. The next task parameterization uses be-

tween 5 and 10 objects. The final task parameterization limits the minimum

number of objects to 7 and the pose of the desired object is sampled from a

uniform distribution covering only the back half of the shelf. Throughout the

training, we use random polygon-shaped objects for the NN to learn generaliz-

able features.

The policy and the value function are trained with an A2C algorithm. The

generative head is trained in the same supervised fashion as in the previous

learning phase. The combined loss function over batchesB = {〈si, yi, ai, ri, s′i〉Mi=1}
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is therefore:

L(θ) =
1

M

M∑
i=1

− Adv(ōi, ri, ō
′
i)
πθ(ai|ōi)
πθold(ai|ō)

+ c1 (ri + γvθold(ō
′
i)− vθ(ōi))2

− c2 H(πθ(.|ōi))

− c3
1

jk

∑
j,k

(yjki logŷjkθ (ōi) + (1− yjki )log(1− ŷjkθ (ōi)), (5.3)

where the advantage function is computed over the observation history:

Adv(ōi, ri, ō
′
i) = ri + γvθold(ō

′
i)− vθold(ōi).

5.5 Simulation Experiments

We ran a number of experiments in different physics environments. The goals of

the experiments are two-fold: (i) to evaluate the performance of the proposed

approach in dealing with occlusion and physics uncertainties, (ii) to verify the

approach’s transferability to environments with different physics parameters. A

video of these experiments is available on https://youtu.be/khweZ4FXWfo.

5.5.1 Evaluation Metrics

We select evaluation metrics that allow us to quantitatively measure the afore-

mentioned goals.

• The first metric is success rate. A task is considered successful if the

desired object is retrieved in under 50 actions, the total task planning and

execution time is under 2 minutes, and none of the objects are dropped

off the shelf.

• As we also target real-time applications, the second metric is the average

planning and execution time per task.

• The average number of actions per task is the third metric as the

learning objective is to solve the problem with the minimum number of

actions.

Each data point in the experiment results is averaged over 300 task instances.

The experiments were conducted on an Intel Xeon E5-26650 computer equipped

with an NVIDIA Quadro P6000 GPU.
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5.5.2 The hybrid Planner and Baseline Methods

In addition to the hybrid planner, we present three reference baseline ap-

proaches.

Hybrid planner: The NN is trained as in Sec. 5.4. It takes a 64 × 64 × 3

input image. The CNN is composed of three consecutive layers of convolution,

batch normalization, and maxpooling. We use 8, 8, 16 filters of size 3× 3 and

strides 2 × 2. The CNN is followed by a single LSTM layer of 128 units. The

policy head is composed of two dense layers with 128 neurons each. The policy

output layer has 8 neurons corresponding to the means and standard devia-

tions of the horizontal, lateral, rotational, and gripper actions. We use tanh

activation function for the means and sigmoid for the standard deviations. The

value head has two dense layers with 128 and 64 neurons respectively, and a

single neuron for the output with linear activation function. The generative

head follows a sequence of three upsampling and convolution layers. The fil-

ter sizes are 8, 8, 16 and 3 × 3. The final layer is a 64 × 64 × 1 convolution

layer with linear activation function followed by a sigmoid function to decode

the heat-map. Except for the output layers, we use a leaky ReLU activation

throughout the network. The NN is updated using the RMSProp optimizer in

TensorFlow [2]. We use the PPO formulation to clip the policy loss. We use

the following learning parameters: P = 10000, Ψ = 0.5, an IL learning rate of

0.0001, an RL learning rate of 0.00005 and a Dreplay size of 10000 transition

samples. We set c1 = 0.5, c2 = 0.01, c3=1.0, γ=0.995, and M = 1500. We

use 10 parallel environments each with its own agent. We run 15 epochs at the

optimization step. We compare three versions of the hybrid planner with n and

h VisualRHP parameters of 2× 2, 4× 4, and 6× 6.

Hybrid planner limited: Instead of performing weighted evaluations of mul-

tiple VisualRHP queries, this baseline only evaluates the most likely desired

object pose and executes the predicted root action for that pose. We imple-

ment it with n = 4 and h = 4.

Greedy: This policy presents a deterministic model-free approach. The NN is

trained similarly to our approach excluding the generative head from the archi-

tecture. The robot is directly controlled by the policy head of the NN (without

VisualRHP). Actions are defined by the mean of the action distribution out-

putted by the policy head over the continuous actions space. It is inspired

by [86].

Stochastic: This policy is a stochastic version of the greedy policy. Actions

are sampled from the policy output. As shown in [47], RL trained stochastic

policies provide higher return than deterministic ones in a POMDP.
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Hierarchical planner: This approach offers a model-based baseline. The low

level plans are generated either with the Kino-dynamic RRT planner or follow-

ing a hand-crafted heuristic. The low level plans are executed in open-loop.

The high level planner has access to the following actions:

• Search( ): positioned outside the shelf, the robot moves from the far left to

the far right of the shelf while pointing the camera inwards. Throughout

this motion, information is collected on the pose and type of detected

objects.

• Rearrange(Obji): move a certain object to a free-space in the back of the

shelf by planning with Kinodynamic RRT on collected information from

the previous Search action.

• Move out( ): rotates the robot to face the inside of the shelf, then moves

the robot out following a straight line heuristic.

• Retrieve(Objdes): plan with Kinodynamic RRT on available information

to reach, grasp, and pull-out the desired object.

The high level planner is outlined in Alg. 5. This baseline is an adaptation of

[28].

Algorithm 5: Hierarchical planner

while desired object not retrieved do
Search( )
if desired object not located then

Rearrange(closest object to robot)
Move out( )

else Retrieve(Objdes) ;

5.5.3 2D Simulation Experiments’ Setup

Setup: We use two Box2D physics simulators, one acting as the execution

environment and the other as the simulation environment where planning is

performed. The reward function for this task is r = −1 per action and r = −50

for dropping an object of the shelf. The experiments evaluate the performance

w. r. t. increased clutter density and increased noise level on the shape and

physics parameters in the execution environment. The increase in clutter den-

sity is aimed at challenging the robot with higher occlusion ratios and more

complex multi-object interactions. The increase in the noise level addresses
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e f g h

Figure 5.5: Snippets of the current observation with noise
level=0.15. Task solved with Hybrid4×4.

modelling errors between the execution environment and the simulation envi-

ronment. The noise is added on the shape and physics parameters of an object

before the execution of an action as in Sec. 4.8.2. We experimented with noise

levels ranging from 0.0 to 0.25 standard deviation around the mean, and with

a random number of obstacles up to 10. An experiment with noise level = 0.15

using Hybrid4×4 is shown in Fig. 5.5. The width and depth of the shelf are

W:50×D:35 cm. The dimensions of the gripper are modelled after a Robotiq

2F-85 gripper mounted on a UR5 robot.

5.5.4 Simulation Results and Analysis

The results are shown in Fig. 5.6. In terms of success rate (Fig. 5.6-left), we

observe a decreasing trend w. r. t. clutter density and higher noise levels. This

is expected as the task becomes more challenging with higher occlusion ratio

and changing dynamics. The hybrid planner outperforms the other baselines.

Its success rate improves with higher number of roll-outs and horizon depth.

Performing a weighted evaluation over the predicted poses achieves a slightly

higher success rate than just evaluating the most likely one. Furthermore, the

stochastic policy outperforms the greedy policy. This improvement may be

the result of the additional information gained from a stochastic motion. The

stochastic and greedy policies exhibit similar success rates with higher noise

levels. This is because the changes in physics and object shapes introduce

enough randomness in the system for the greedy policy to act in a similar

fashion to the stochastic policy. The hierarchicalh planner suffers from the
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Figure 5.6: Performance w. r. t. different clutter densities and
noise levels.

sharpest drop in success rate in both experiments. The open-loop execution

often fails to produce the intended results.

The average time per task results (Fig. 5.6-middle) show a clear advantage

for the model-free approaches. Actions are generated almost instantaneously.

The Hybrid planner time degrades with more exhaustive VisualRHP searches.

The difference between Hybrid4×4 and Hybrid4×4
lim is not significant despite the

latter achieving lower time per task. This result indicates that the hybrid plan-

ner does not often generate a large number of potential positions for the desired

object which would have otherwise resulted in a bigger time difference. The

hierarchical planner average time is on par with the Hybrid6×6 planner. These

results indicate that simulating the physics during planning is the computation

bottleneck in a contact-rich environment.

Except for the hierarchical planner, all of the approaches perform a similar

number of actions per task (Fig. 5.6-right). Evidently, the stochastic policy per-

forms slightly worse than the hybrid planner, while the greedy policy is the most

efficient. The hybrid planner, despite relying on stochastic roll-outs, executes

fewer actions than the stochastic policy as decision making is better informed

with VisualRHP. The scale of the number of actions for the hierarchical planer

is highly dependent on the parameters of the underlying low level planners.

Nevertheless, with a high noise level and clutter density, the high level planner

increasingly calls the low level planner for re-planning.
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Figure 5.7: Snapshots of using Hybrid4×4 to retrieve the green
object.

5.5.5 Realistic Experiments

The simulation results showed that the hybrid planner can be reliably used in

environments with different physics parameters. To further validate this finding,

we tested our approach in a realistic setup. We use the 3D MuJoCo physics

engine with the Deepmind Control Suite [107] as the execution environment,

and Box2D as the simulation environment for the hybrid planner.

To replicate a conservative performance of real-world object detection tools

from a single image in clutter (e. g., AR-markers, PoseCNN [117], DenseFusion

[113], etc.), the execution environment (having access to the ground truth)

would only report to the simulation environment the poses and types of objects

whose more than 50% of their body is visible within the current camera view.

We conducted 30 trials with random number of obstacles, up to 10. The

VisualRHP parameters are set to n = 4 and h = 4 as they offer a reasonable

balance between success rate and execution time. The shelf dimensions are

W:50×D:35×H:30 cm. We also experimented with the stochastic policy as it

showed the second best success rate in the previous experiments.

The hybrid planner and the stochastic policy achieved a success rate of 88%

and 79%, respectively. These results are similar to the previous experiment with

high noise levels. Examples of tasks solved with the hybrid planner are shown

in Fig. 5.7, and in the experiments’ video. The hybrid planner demonstrates

that when the target object is not visible, the robot performs information-

gathering actions by advancing into the shelf and manipulating obstacles to
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Vinegar
bottle

Horseradish
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Figure 5.8: Snapshots of using Hybrid4×4 to retrieve the dif-
ferent desired objects in the real-world.

increase visibility. When the robot loses sight of a previously detected target

object, due for example to an obstacle blocking the camera view, the robot

focuses its search on the area where the target object was last seen.

5.6 Real-World Experiments

To validate the results of the previous experiments, we conducted a number

of real-world experiments with Hybrid4×4 for retrieving a variety of everyday

objects from a cluttered shelf.

We mounted an RGB camera on the end-effector of a UR5 with a Robotiq

2F-85 gripper. We used the Alvar AR tag tracking library for object poses and

types detection [98]2. We used Box2D as the simulation environment to run the

hybrid planner. The shelf dimensions are W:50×D:35×H:40 cm.

Snapshots from these expreiments are shown in Fig. 1.1 and Fig. 5.8. A

video of these experiments is also available on https://youtu.be/4iSsogfCkMc.

The robot behaviour in the real world is reminiscent to what we observed in

the realistic experiment.

In the experiment where the robot is tasked with retrieving the oil bottle,

the robot first approaches the middle of the shelf and searches the area behind

the clutter. Once the oil bottle is spotted, the robot goes around the cereal

box, losing sight of the oil bottle, then reaches again for the oil bottle from a

less cluttered direction and retrieves it from the shelf. In the second experiment

where the robot is tasked with retrieving the marierose jar, the robot pushes

2A more natural setting would avoid fiducial markers, similar to our Chapter 4 implemen-
tation. Due to the additional depth dimension and partial occlusions in this chapter, another
set of computer vision tools would be required. We leave a fiducial-free implementation for
future work.
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obstructing objects to clear an approach for grasping and retrieving the jar. In

the experiment where the robot is tasked with retrieving the vinegar bottle, we

observe the importance of a reactive behaviour when the bottle slips from the

robot grasp. The robot is able to recover from this situation by reopening the

gripper, approaching the bottle, and then re-grasping it and pulling it out of

the shelf.

5.7 Preliminary Work on Adaptive VisualRHP

In this work, VisualRHP uses fixed values for the number of roll-outs and the

horizon depth parameters. To save on planning and execution time, VisualRHP

would benefit from dynamically adjusting its parameters after every execution

step. Two concepts have to be considered in setting the values of these param-

eters.

The first concept is related to the difficulty of solving the task from the

current state. States from which it is easier to reach the goal require fewer and

shallower roll-outs, and vice versa. Quantifying the difficulty in view of the

robot skill level is not straight forward. Some of the factors that we suspect

affect the difficulty include: how close objects are to the surface edges, how

spread out or clustered the objects are, how many obstacles are in between

the robot and the desired object, etc. One potential approach is to handcraft

a difficulty function. However, such a function doesn’t take into account the

performance of the current policy. For instance, a certain policy might be

good at navigating tightly packed objects while another might be better at

handling situations where objects are close to the surface edges. Alternatively,

it might be possible to train a model-free oracle to predict the probability of

success from the current state. The oracle would be trained on labelled states or

observation histories generated by the current policy. A label would simply be

{0, 1} identifying if a state or an observation history belongs to an episode that

resulted in success or failure. The idea of training an oracle is left for future

work.

The second concept is related to the confidence of the policy in generating

the best action for the current state. Sates with high confidence score would

requires fewer roll-outs and shorter depth, and vice versa. We hypothesise that

the policy’s entropy can be interpreted as a proxy for the inverse of the confi-

dence. In other words, a high entropy at a certain state reflects that the policy is

not committed to a specific action and hence must further leverage VisualRHP.

We ran an experiment to test this hypothesis. We discretized the entropy into
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Table 5.1: Comparing the hybrid planner with fixed and adap-
tive VisualRHP parameters

Hybrid4×4 HybridAdaptive

With
occlusions

suc. rate [%] 93 89
avg. time [s] 23 14

Without
occlusions

suc. rate [%] 94 92
avg. time [s] 31 19

6 levels ranging from Hmin to Hmax which are the minimum and maximum en-

tropy values observed in our previous experiments. We set n = h = Hi where Hi

is the corresponding entropy level of H(π(.|s)) and H(π(.|ō)) in environments

with and without occlusions, respectively. We compared in simulation two hy-

brid planners, one running with adaptive VisualRHP parameters and the other

using VisualRHP with n = and h = 4. We ran 300 random task instances with

up to 7 objects. The results are shown in Table 5.1. The adaptive parameters

show promising results. The average time per task drops by around 40% when

using the adaptive parameters in both experiments. The difference in success

rate is not significant despite a small advantage to the fixed parameters.

However, using the entropy as a proxy for the inverse of the confidence is

not always a valid assumption. In some states, a wide range of actions could

have similar expected return, and thus they are equally good (or bad). The

approximation of the optimal policy at these states would have high entropy

but it would be wrong to interpret it as low confidence. A better definition

and quantification of confidence would further reduce the average time per task

and possibly improve the success rate by performing more and deeper roll-outs

where needed.

5.8 Conclusion

The experiments have shown the robustness and transferability of the hybrid

planner in challenging environments. They provide evidence for the effectiveness

of combining a model-free pose estimator with model-based look-ahead plan-

ning. The robot’s behaviour validates that the NN stores relevant information

from past observation to guide future actions. The robot exhibited an informed

search behaviour by executing actions that increase visibility of previously un-

observed spaces and by manipulating objects to reveal occluded areas behind

them. In comparison to the other baseline approaches, the hybrid planner can
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react in near real-time while also accounting for complex physics interactions

under occlusion.
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Chapter 6

Future Work and Conclusion

“Inventions reached their limit long ago, and I see no hope for further development.”

- Julius Frontinus (Highly respected engineer in Rome, 1st century A.D.)

6.1 Results Summary

We have shown the strength and weaknesses of different manipulation in clutter

approaches. Choosing which approach to use is highly application dependent.

All approaches we experimented with presented a reliable behaviour in environ-

ments with low clutter density. In environments with higher clutter densities,

model-free approaches proved to be the best option for time-critical applica-

tions, but less so if the cost of failure is high. The model-based approaches can

be reliably used where it is more likely to find a collision-free trajectory, e. g.,

decluttering objects from the front of the shelf. They are best suited for appli-

cations where high-fidelity physics-simulator and object models are available.

Occlusions and physics uncertainty, however, makes it hard to determine the

environment’s characteristics a priori. Under different environment uncertain-

ties, the hybrid planner provided the most robust behaviour for near real-time

applications. Nevertheless, the hybrid planner still has room for improvements.

6.2 Optimizing the Learning Process

In this work, we focused on the convergence of the learning algorithm to a good

heuristic irrespective of the computation cost. The learning time was treated

as a sunken cost since it does not affect the performance at execution time.

However, for various reasons (energy cost, limited computation resources, etc.)

it is also desirable to minimize the computation cost of the learning process.

In what was presented, we generated a large number of demonstrations for the

Imitation Learning (IL) algorithm to extract as much knowledge as possible
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from the transition samples. Reinforcement Learning (RL) was then used to

further refine the knowledge capture by IL. Alternatively, it is possible to reduce

the amount of time spent on data collection for IL in favour of RL . A fair

study of the proposed learning process would require investigating the trade-off

between data collection for IL and data collection for RL. Such study would

shed light on how the computation cost and the performance of the heuristic

are affected by the source of the collected data.

6.3 From 2D to 3D Environments

Despite the many applications that acting in a 2D plane can tackle, they remain

a small subset of the overall manipulation tasks that a robot is expected solve.

We advocate extending the hybrid planner to reasoning over 3D geometries.

Leveraging the framework presented in this thesis, we propose investigating the

use of an abstract colour-labelled 3D voxelized representation of the space. The

voxelized representation would carry information on the current observation.

Similarly to our abstract image representation, voxels that are not within the

camera FOV would be coloured in a certain colour while free-space would have

another colour. The same colour-labelling concept would also apply to the de-

sired object, obstacles, robot geometry, shelf walls, and surface edges. Such

extension would have to overcome 3 main challenges:

• The first is to accurately estimate the 6D objects poses from a single image

in clutter. For everyday applications, the use of AR markers would not

be practical. Despite the continuous improvement in state-of-art 6D pose

estimators from RGB and RGB-D images, having a camera, and possibly

a depth sensor, close to the objects still poses a challenge to the detection

algorithms.

• 3D physics simulators are continuously being improved for accuracy and

computation efficiency. Albeit, simulating 3D contacts remains a chal-

lenge. Compared to the 2D physics simulator used in this work, 3D

simulators are substantially slower and less stable. Our experience with

MuJoCo proved that much work is still needed to accurately model multi-

object contacts. In the video showing the realistic experiments, one can

notice how the body of the gripper sometimes penetrates the inside an

object’s geometry. We have also faced stability problems when using the

3D simulator OpenRave with the Open Dynamics Engine physics engine
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[26]. Further, simulating contacts between 3D meshes (compared to prim-

itive object shapes such as boxes and cylinders) proved to be even more

of a challenge. Nevertheless, promising advances in this field such as the

physics engine PhysX 4.0 by NVIDIA might mitigate some of the stabil-

ity, accuracy, and computation efficiency challenges. A quantitative study

comparing the available 3D simulators and physics engines would surely

accelerate the researcher in this field.

• In a 3D environment, the stability of the learning process would be chal-

lenged by a larger parameter, state, and action spaces compared to the

2D environment used in this work. The NN architecture could have a

similar structure to the one we used, with the difference being the use

of 3D CNN instead of the currently used 2D CNN. The increase in the

dimensions of the input space would necessitate more exploration before

convergence. The increase in the action space would mean that the pol-

icy will have to learn how to achieve stable grasps in 3D and implicitly

learn how 3D objects interact, although the latter can be mitigated to

some extent by a look-ahead planner. We suggest investigating the use of

state-of-art off-policy RL algorithms in continuous action space such as

SAC [37]. An off-policy algorithm would allow the acting RL policy to

exploit VisualRHP for exploration. Such an approach would be particu-

larly useful if implemented with adaptive VisualRHP: at the early stages

of the training, the acting policy would rely extensively on long roll-outs

to collect goal leading samples. Then, as the policy starts to improve,

VisualRHP parameters will be reduced, decreasing the dependency on

the model in favour of the learned policy. In other words, slow model-

based planning will gradually shift to fast model-free decision making.

This training strategy is inspired to us by the book “Thinking, Fast and

Slow” [54].

6.4 Conclusions

This thesis provided a stepping stone towards applications such as object re-

trieval from fridges and supermarket shelves with limited height. The bulk of

this work focused on developing stable learning algorithms and real-time plan-

ners that guide a robot in complex physics environments. We conclude with

the following:
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• Simplified representations that carry enough geometric and task rele-

vant information can be tremendously leveraged to ensure generalization,

transferability, and real-time decision making.

• Simulation-based physics predictions, when interleaved with real-world

execution, play a major role in reducing occlusions and physics uncer-

tainty.

• Coupling model-free and model-based approaches opens-up opportunities

to scalable solutions for simultaneously reasoning over the observation

history and future actions.

We believe the findings of this thesis form a solid foundation for future research

to achieve the ultimate goal of ubiquitous manipulation skills.
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