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Abstract

The locally covariant approach to quantum field theory (LCQFT) is a manifestly covariant

functorial approach to quantum field theory (QFT) that applies to curved spacetimes and

which builds on the local algebraic approach. In this thesis we investigate applications of

LCQFT to topological aspects of QFT.

We analyse extensions of quantum field theories defined on contractible globally hy-

perbolic regions of spacetime, using Fredenhagen’s universal algebra construction. This

construction involves covering a spacetime by open contractible causally convex subre-

gions, and applying the functor that defines the theory to each of them to get a net of

local algebras. The universal algebra is then obtained by taking the colimit of this net.

Morphisms between universal algebras can be defined with the result that the mapping

between spacetimes and their corresponding universal algebras defines a functor. We

prove two main results about this universal construction, which both require considerable

geometric apparatus.

First we prove that for a broad class of theories modelled on the free scalar/Dirac

field, the functor assigning universal algebras satisfies the Einstein causality axiom. We

then restrict attention to Fermionic theories in this class, and analyse the universal the-

ories obtained from the subtheories that assign even subalgebras. We show that for each

spacetime M, the universal theory assigns an algebra which decomposes into a product

(in the categorical sense) of subalgebras, that are in bijective correspondence with the

set H1(M,Z2). The latter set counts the number of distinct spin structures the space-

time manifoldM permits. The universal algebra for a Fermionic theory therefore has the

geometric information encoded in it necessary to define half integer spin fields.
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Introduction

There are currently two main pillars of modern physics: general relativity, which describes

the universe on large scales and quantum field theory (abbreviated QFT from now on),

which describes the universe on small scales. These theories have been remarkably accurate

in their domains of application, however they are incompatible with each other. There

have been many attempts to find a theory of quantum gravity which can accommodate

the predictions of QFT and general relativity in their respective regimes. One of the main

issues is that the framework of QFT requires a causal structure, however causal structure

is given by the spacetime metric, which would be quantised in a quantum theory of gravity.

This means that for quantum states which are not eigenstates of the metric operator, there

isn’t a well defined causal structure.

Given this fact, it seems reasonable as a first approximation to a theory of quantum

gravity, to consider the behaviour of quantum fields propagating on a fixed background

spacetime. This allows for a concrete notion of causality which is an important ingredient

of QFT. In this approach (often referred to as QFT on curved spacetimes) the gravitational

back-reaction of the quantum fields is neglected, since it will generally have a negligible

effect in most regimes and adds unnecessary complexity. Two of the main achievements

of QFT in curved spacetimes, are the predictions of Hawking radiation [Haw74] and the

Unruh effect [Unr76], which yield insights into features of a full theory of quantum gravity,

for instance black hole entropy.

The usual framework for QFT is highly dependent on Poincaré covariance which is

unique to flat spacetime, therefore certain principles have to be discarded in order to

generalise to curved spacetime. For instance, the existence of a minimal energy state

known as the vacuum state will in general not be possible, since general curved spacetimes

will not have global time translation invariance. This means that in general, the notions of

particles and S-matrices which the standard formulation of QFT relies on are ill-defined.

We will be analysing QFT on curved spacetimes using a mathematically rigorous frame-

work which builds upon the local algebraic approach to QFT in flat spacetimes (abbrevi-

ated as AQFT) due to Haag and Kastler [HK64,Haa96]. In AQFT, the focus is shifted from

the Hilbert space to the algebra of operators that model observable quantities. For linear

theories these algebras will be canonical (anti-)commutation (abbreviated CCR/CAR) al-

gebras, which are obtained by canonical quantisation of a classical theory, which consists

of a symplectic vector space. The symplectic vector space models the phase space of the

theory and the symplectic form models the dynamics. When the symplectic vector space

is finite dimensional, there is a theorem due to Stone and Von Neumann which shows that

there is a unique (up to unitary equivalence) irreducible Hilbert space representation of the

corresponding CCR algebra. For infinite dimensional symplectic vector spaces, which are
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used to describe fields, there is no such result and the algebra has inequivalent irreducible

Hilbert space representations. In order to capture the full information of the theory, it is

then necessary to take the algebra of observables as the primary mathematical structure of

QFT, rather than a particular Hilbert space representation. This will be discussed further

in chapter 2.

The Locally Covariant approach to QFT (abbreviated as LCQFT), originally developed

in [BFV03], is a mathematical framework for describing QFT, which builds on AQFT.

The LCQFT framework is a more general framework that can be applied to to curved

spacetimes and has the advantage of placing all spacetimes on the same footing. In

LCQFT the principles of locality and covariance are manifest, since they are embedded in

the building blocks of the theory, which are local algebras. In LCQFT, a theory is specified

by a choice of functor that assigns an algebra to each object of a suitable background

category (more on categories and functors in the next chapter). Usually this background

structure consists of a spacetime equipped with some additional bundle structure. For two

background objects related by a morphism, the theory gives a morphism between their

associated algebras.

This thesis aims to investigate applications of LCQFT to topological aspects of QFT.

We consider the difficulty of defining QFTs on spacetimes which have non-trivial global

topology. Examples of this include Yang-Mills theories and theories with fields that trans-

form in a half-integer rep of the Lorentz group. It is therefore useful to consider how a

theory is defined on a topologically simple class of spacetimes, which intuitively corre-

spond to small regions of spacetime that are topologically trivial, and to then use this

information to extend the theory to a broader class of spacetimes. There is a known

method of extending theories defined on a subclass of spacetimes called universal algebra

construction, which was first introduced by Fredenhagen [Fre90] and was later realised

to be a categorical construction known as a left-Kan extension [Lan12]. This method of

extending theories is in some sense the simplest possible method1 of extending a theory

in a way that is consistent with how the theory acts on the subclass of spacetimes that

it is defined on. This method of extension has the advantage of being relatively simple

to describe, but notoriously difficult to do explicit calculations with. Even the question

of non-triviality of an extended theory when applied to certain spacetimes is difficult to

address; this problem was discussed in [Lan12] for instance.

We will examine this method of extension on a class of linear theories defined on

contractible spacetimes, which consist of Bosonic (commutation relations) and Fermionic

(anti-commutation relations) theories that can be considered generalisations of the theory

of the complex scalar field and the theory of the Dirac field respectively. We first investigate

whether the extended theories obtained by these methods satisfy the property of Einstein

causality (defined in detail in chapter 2), which implements the principle of causality by

asserting that quantum operators localised in spacelike separated regions of spacetime

commute with each other. Fermionic theories satisfy a graded form of Einstein causality;

field operators localised in spacelike separated regions of spacetime instead anti-commute

with each other. We therefore restrict to the even subtheories of Fermionic theories, whose

algebras are generated by pairs of Fermionic fields, since these theories do satisfy Einstein

1It is an example of a universal construction in category theory. More on this in chapter 1.
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causality. There is a comparable construction in the Bosonic case; in both cases the

assigned algebras are invariant under a Z2 transformation that flips the signs of the fields.

We find that the linear Bosonic and Fermionic theories, and their even subtheories, have

extensions which do indeed satisfy Einstein causality. In order to prove this result, we use

results in differential topology to develop geometrical tools which have applications to other

local-to-global constructions in QFT. We then further investigate the extensions of even

Fermionic theories, and find that the extended theories assign an algebra to each spacetime

M that encodes information about the set of all spin structures that the spacetime admits.

Each possible choice of spin structure corresponds to a choice of cohomology class in

H1(M,Z2), and the latter assigns a Z2 value to each loop in M. We find that the

universal even Fermionic theory assigns an algebra to each spacetimeM that decomposes

into a product of subalgebras, with each subalgebra corresponding to a cohomology class

in H1(M,Z2). This shows that global topological information is encoded in the structure

of local algebras and how they relate to each other, therefore indicating that knowledge

of local physics, which is the only type of physics that we can reliably probe, is enough to

infer global information about the topology of spacetime.

Thesis layout

In the first chapter we will review some of the mathematical concepts that will be used in

the rest of the thesis. In particular we will cover topology, differential topology, Lorentzian

geometry and category theory. In the second chapter we will outline the LCQFT frame-

work that we will be using in this thesis, together with some of the approaches to ax-

iomatising QFT that the LCQFT framework builds on. We finish the second chapter with

two example theories in the LCQFT framework, which form the basis of a larger class

of theories that we will study in chapters 3 and 4. In chapter 3 we introduce this larger

class of theories, together with the universal algebra construction which we use to extend

theories defined on contractible regions of spacetime. We develop geometrical tools which

are used to show that the extended theories obtained by these methods satisfy Einstein

causality, which is a key property for theories in the LCQFT framework. These geometric

tools also have wider applications, and are used in the subsequent chapter. In chapter

4 we restrict our attention to the even subtheories of Fermionic theories that are part of

the general class of theories introduced in the previous chapter. We show that when we

extend these even Fermionic theories from contractible regions of spacetime, the resulting

theory encodes topological information in the algebra that it assigns to a given spacetime.

In particular, information about the different possible choices of spin structure (defined in

chapter 2 when defining the theory of the Dirac field) is encoded in the algebra by means

of a decomposition into subalgebras. We finish with a chapter on conclusions that can be

drawn from the results of the thesis, and possible avenues of further research.
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Chapter 1

Mathematical preliminaries

In this chapter we will outline the mathematical techniques that will be used in the

rest of the thesis. The topics covered in this section are: topology, differential topology,

Lorentzian geometry and category theory.

1.1 Topology

A topology on a set is an additional structure that specifies which subsets are open, and

roughly speaking two points can be considered “nearby” if they are both contained in

many common open sets. This notion can then be used to give rigorous definitions to

concepts such as convergence, continuity and connectedness. We now give the definition

of a topology on a set [Kos80, Definitions 2.1 and 2.4].

Definition 1.1.1. A topology τ on a set X is a collection of subsets of X that satisfy the

following properties:

• Both the empty set ∅ and X are elements of τ .

• Any union of elements of τ is an element of τ .

• Any intersection of finitely many elements of τ is an element of τ .

The pair (X, τ) is referred to as a topological space, although we will often just refer to X

as the topological space and leave τ implicit. An element of τ is referred to as an open

subset of X, and the complement of an open set U , denoted as X\U , is referred to as a

closed set.

An important object of study in topology is an open cover of a topological space [Kos80,

Definitions 7.1, 7.2 and 7.3].

Definition 1.1.2. An open cover of a subset A of a topological space X is a collection

{Un |n ∈ I} of open sets Un indexed by a set I such that ∪n∈IUn ⊃ A. If I ′ ⊂ I, then

{Un |n ∈ I ′} is called a subcover of {Un |n ∈ I}, and is called a finite open subcover if I ′

is also finite.

Various intuitive properties of a space can be defined as properties of its underlying

topology, as we shall see in the following definitions ( [Kos80, Definition 9.1] and [Kos80,

Definition 7.4] respectively).
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1.1. TOPOLOGY

Definition 1.1.3. A topological space X is connected if the only subsets of X that are

both open and closed are X and ∅.

Definition 1.1.4. A subset A of a topological space X is compact if any open cover of A

has a finite open subcover.

A subset A of a topological space X can be equipped with a natural topology, which

we will now introduce [Kos80, Definition 4.1].

Definition 1.1.5. The subset topology of A ⊂ X has as its open sets the intersections of

A with open sets of X.

Various properties of a topological space are framed in terms of continuous maps on

them, so we now define what it means for a map to be continuous [Kos80, Definition 3.1].

Definition 1.1.6. A mapping f between topological spaces X and Y is continuous if for

any open subset U of Y , the set of elements of X that f maps to an element of U , which

we denote as f−1(U), is an open subset of X.

This notion of continuity coincides with the notion used in real analysis when the

real numbers R are equipped with the standard topology. We now introduce a notion of

equivalence for topological spaces [Kos80, Definition 3.6].

Definition 1.1.7. Two topological spaces X and Y are homeomorphic, if there exists a

continuous map f : X → Y which is bijective and has a continuous inverse. The map f

is referred to as a homeomorphism.

If two spaces are homeomorphic, then there is a bijection between the families of subsets

that form their topologies. This means that all the topological properties of a topological

space are preserved by homeomorphisms. Homeomorphisms are therefore the most natural

form of equivalence between topological spaces. We now introduce a weaker notion of

equivalence which will be useful for studying topological spaces [Kos80, Definitions 13.2

and 13.5].

Definition 1.1.8. Two continuous maps f, g : X → Y are homotopic if there exists a

continuous map H : [0, 1]×X → Y such that H(0, ·) = f(·) and H(1, ·) = g(·).
Two topological spaces X and Y are homotopic, if there exist continuous maps f :

X → Y and g : Y → X such that f ◦ g is homotopic to 1Y and g ◦ f is homotopic to 1X .

With this notion of equivalence, the following groups can be constructed [Kos80, pp.

133].

Definition 1.1.9. For topological space X and a base point p ∈ X, let C0([0, 1]n, X, p)

denote the set of continuous maps f : [0, 1]n → X which map the boundary of [0, 1]n to p.

The set πn(X, p) is defined to be the set of equivalence classes of maps in

C0([0, 1]n, X, p), where two maps are equivalent if there exists a homotopy H between them

such that H(t, ·) ∈ C0([0, 1]n, X, p) for all t ∈ [0, 1]. For n ≥ 1, the set πn(X, p) can be

equipped with a group structure given by

[f ] ◦ [g] = [f ∗ g]
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1.1. TOPOLOGY

where

(f ∗ g)(t1, . . . , tn) =

f(2t1, t2, . . . , tn) t1 ∈ [0, 1/2]

g(2t1 − 1, t2, . . . , tn) t1 ∈ [1/2, 1]
. (1.1)

The group π1(X, p) is commonly referred to as the fundamental group of X, and the

base-point is usually omitted in the notation since the groups resulting from different

choices of base-point are isomorphic if there is a path connecting the base-points [Kos80,

Theorem 15.4] (although there is no canonical choice of isomorphism).

These groups can be used to classify spaces, since two homotopic spaces have isomor-

phic homotopy groups [Kos80, Theorem 15.13], although the converse does not necessarily

hold. Various properties of a topological space can also be framed in terms of conditions

on its associated homotopy groups. Another useful set of groups for exploring the prop-

erties of a topological space is obtained by a choice of homology theory [Kos80, §29]. We

will only be concerned with singular homology in this thesis.

Definition 1.1.10. Let X be a topological space. An n-simplex is an ordered tuple

(v1, . . . , vn) of vectors in Rn, which are called vertices of the simplex, with an associ-

ated topological space σ ⊂ Rn which is the convex hull of the vertices. For each n ∈ N,

let Cn(X) denote the free group generated by continuous maps f : σ → X where σ is

the topological space associated to an n-simplex. For each n ∈ N, we define the map

∂n : Cn(X)→ Cn−1(X) by its action on generators f ∈ Cn(X) as follows

∂nf =
n∑
i=1

(−1)if |σi ,

where σi is the topological space associated to the simplex obtained by removing the ith

vertex from the n-simplex associated to σ. The collection of maps {∂n|n ∈ N} have the

property that imag(∂n+1) ⊂ ker(∂n).

For each n ∈ N, we define the nth homology group Hn(X) of X to be the quotient group

ker(∂n)/imag(∂n+1)

where imag(∂n+1) and ker(∂n) are subgroups of Cn(X). This quotient group is well defined

since imag(∂n+1) is a normal subgroup of ker(∂n).

The singular homology groups of two topological spaces are isomorphic if the spaces

are homotopic [Rot88, Corollary 4.24]. Given the singular homology of a topological space

X, we can also define its singular cohomology with coefficients in an abelian group A,

which yields another set of groups that can be used to classify the properties of X.

Definition 1.1.11. For an abelian group A, the singular cohomology of X with coefficients

in A is defined by the cochain complex formed by groups Cn(X;A) = Hom(Cn(X), A)

together with coboundary maps δn defined by their action on generators h ∈ Cn(X;A) as

follows

(δnh)(f) = h(∂nf) .

From this cochain complex we can form the cohomology groups of X with coefficients in A

19



1.1. TOPOLOGY

as follows

Hn(X;A) = ker(δn)/imag(δn−1) .

Just as was the case for singular homology, the singular cohomology groups of two

topological spaces are isomorphic if the spaces are homotopic [Rot88, Theorem 12.4].

There are various relations between the homotopy, homology, and cohomology groups of

a topological space X, but in order to describe the relations we first need to introduce the

following definition [Rot88, pp. 383].

Definition 1.1.12. Let A and B be Abelian groups, and 0 → R
i−→ F → A → 0 be an

exact sequence where R and F are free Abelian groups1. This induces an exact sequence

0→ Hom(A,B) −→ Hom(F,B)
i∗−→ Hom(R,B), and we define Ext(A,B) to be the cokernel2

of i∗ which is independent of the choice of the exact sequence (see comments below the

definition in [Rot88]).

We now state some results on the relations between homotopy, homology, and coho-

mology groups. Our interest will be in counting the elements of various of these groups,

hence the precise nature of the isomorphisms stated below will not be needed.

Theorem 1.1.13. For any topological space X and abelian group A, one has the following

isomorphism of groups: Hn(X;A) ∼= Hom (Hn(X), A)⊕ Ext (Hn−1(X), A).

Proof. See [Rot88, Theorem 12.11].

Theorem 1.1.14. For each path-connected topological space X, there exists a set of homo-

morphisms hn : πn(X, p) → Hn(X) known as the Hurewicz maps, such that h1 restricted

to the Abelianization3 of π1(X, p) is an isomorphism, and hn is an isomorphism for n ≥ 2

if the first n− 1 homotopy groups are trivial.

Proof. See [Spa82, pp. 387-400].

Corollary 1.1.15. For each path-connected topological space X, Hom(π1(X, p),Z2) ∼=
H1(X;Z2).

Proof. Since Z2 is Abelian, the group Hom(π1(X, p),Z2) is isomorphic to

Hom(π1(X, p)ab,Z2) where π1(X, p)ab is the Abelianization of π1(X, p). Combining this

with theorem 1.1.14, we find Hom(π1(X, p),Z2) ∼= Hom (H1(X),Z2). As H0(X) ∼= Z
[Rot88, Theorem 4.14], it follows that Ext(H0(X), G) is trivial for all AbelianG [Rot88, pp.

384]. Theorem 1.1.13 therefore yields

H1(X;Z2) ∼= Hom(H1(X),Z2)⊕ Ext(H0(X),Z2) ∼= Hom(π1(X, p),Z2) .

1A free Abelian group is an Abelian group with a basis i.e, a subset such that every element of the group
can be uniquely expressed as a linear combination of elements of the subset with integer coefficients.

2The cokernel of a map is the quotient of the target space by the image of the map.
3Obtained by quotienting out the subgroup generated by elements of the form g−1h−1gh.
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1.1. TOPOLOGY

We now switch our focus to topological spaces defined in terms of pairs of topological

spaces. For instance, the Cartesian product of sets can be generalised to topological spaces

by the following definition [Kos80, Definition 6.1].

Definition 1.1.16. Given topological spaces X and Y , the Cartesian product X×Y comes

with a natural topology: the coarsest topology (in the sense of being the smallest subset of

the powerset of X×Y ) such that the projection maps π1 : X×Y → X and π2 : X×Y → Y

are continuous.

The notion of product spaces is generalised by the definition of coordinate bundles

[Ste51, Definition 1.2.3], which we now give.

Definition 1.1.17. A coordinate bundle consists of a tuple (B, π, b, F,G, {Ui, ψi}) where

B, b and F are topological spaces referred to as the bundle space, the base space, and the

fibre space F respectively. The map π is a projection π : B → b from the bundle space to

the base space. The structure group G is a topological group which is an effective topological

transformation group of F meaning; there is a homeomorphism Tg for each g ∈ G such

that ∀f ∈ F TId ◦ f = f , (Tg1g2) ◦ f = Tg1 ◦ (Tg2 ◦ f) and Tg ◦ f = f ∀f ∈ F ⇒ g = Id.

The set {Ui, ψi} which we call local trivialisations, consists of open regions Ui that

cover b which we call coordinate regions, and homeomorphisms ψi : π−1(Ui) → Ui × F
which “preserve fibres” in the sense that the following diagram commutes

π−1(Ui) ⊂ B Ui × F

Ui ⊂ b

ψi

π pr1

.

For two overlapping coordinate regions Ui and Uj, there is a transition function tij :=

ψ−1
j ψi : Ui∩Uj×F → Ui∩Uj×F . These transition functions satisfy the cocycle condition

tij ◦ tjk = tik and each transition function factors through G ↪→ Aut(F ).

From this we can define fibre bundles [Ste51, Definition 1.2.4].

Definition 1.1.18. Two coordinate bundles (B, π, b, F,G, {Ui, ψi}) and

(B, π, b, F,G, {Vj , φj}) are considered equivalent if all the homeomorphisms φ−1
j ψi cor-

respond to the group action of the structure group G on the fibres. A Fibre bundle is

defined as an equivalence class of coordinate bundles with respect to the previously defined

equivalence relation, and we simply denote it by (B, π, b, F,G).

A section of a fibre bundle is a continuous map f : b→ B such that (f ◦ π)(p) = p for

all p ∈ b.

This definition has the advantage of being coordinate independent. As can be seen

from definition 1.1.17, the bundle space of a fibre bundle locally looks like a product space.

We now introduce a couple of types of fibre bundle that will be used in the thesis.

Definition 1.1.19. A fibre bundle where the fibre space is a vector space and the trivial-

isations are fibrewise linear, is called a vector bundle.
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1.2. DIFFERENTIAL TOPOLOGY

A fibre bundle where the fibre space is a group G, which is additionally equipped with a

continuous right action R : B×G→ B such that for any p1, p2 ∈ B, there is precisely one

g ∈ G such that p1 = R(p2, g), is referred to as a principal bundle, and we simply denote

it as (B, π, b,G).

Each fibre bundle has an associated principle bundle, which can be obtained from

knowledge of its transition functions [Ste51, Theorem 1.3.3].

1.2 Differential topology

Differential topology is a branch of topology concerned with a topological spaces equipped

with additional structure. We begin by defining this additional structure, together with

some additional conditions on topological spaces which we will then use to define the

central objects of study in differential topology. Most of the definitions in this section can

be found in chapter 1 of [Hir76].

Definition 1.2.1. An n dimensional chart on a topological space X is a pair (U,ψ) where

U ⊂ X is open and ψ is a homeomorphism ψ : U → Rn. Two charts (Ui, ψi) and (Uj , ψj)

are said to be Cr compatible if Ui ∩ Uj = ∅ or the map ψjψ
−1
i : ψi(Ui ∩ Uj) ⊂ Rn →

ψj(Ui ∩ Uj) ⊂ Rn is a homeomorphism which is r times continuously differentiable and

whose inverse is also r times continuously differentiable.

A Cr n dimensional atlas on X is a collection of Cr compatible n dimensional charts

{(Ui, ψi)} such that the coordinate regions {Ui} cover X. Two atlases are Cr compatible if

every chart of one atlas is Cr compatible with every chart of the other atlas. A maximal Cr

atlas is an atlas that contains every atlas that is Cr compatible with it, and the existence

of a maximal atlas is guaranteed by Zorn’s lemma4.

Definition 1.2.2. A topological space X is Hausdorff if any two distinct points of X can

be contained in disjoint open regions, and paracompact if every open cover of X has a

refinement5 which only has finitely many open sets that intersect any given point of X.

Definition 1.2.3. An n dimensional manifold is a Hausdorff paracompact topological

space X equipped with a maximal C∞ n dimensional atlas.

Differential topology is concerned with the global properties of manifolds, and uses

tools which leverage the known local structure of manifolds. There is an important bundle

associated to manifolds which we now define.

Definition 1.2.4. The tangent space TX of a manifold X is defined to be the set of

equivalence classes [p, i, v] where p ∈ X, i belongs to the index set listing the charts (Ui, ψi)

with p ∈ Ui of the atlas of X, v ∈ Rn, and equivalence is generated by the relation

(p, i, v) ∼ (q, j, u) if p = q and

∂(ψj ◦ ψ−1
i )

∂xµ

∣∣∣∣
ψi(p)

vµ = u

where xµ are coordinates in the chart ψi, v
µ is the xµ component of v, and we have used

the convention that a repeated Greek index is summed over. We refer to p as the base

4Zorn’s lemma requires the axiom of choice.
5The cover {Ui | i ∈ I} is a refinement of {Vj | j ∈ J} if ∀i ∈ I, ∃j ∈ J such that Ui ⊂ Vj .
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point of an element [p, i, v] ∈ TX, and the set of all elements of TX with base point p

is denoted by TpX. The elements of TpX are referred to as tangent vectors at p. For a

subset U ⊂ X, we define TU :=
⊔
p∈Ui TpX.

The topology of TX is generated by requiring that for each chart (Ui, ψi) of the atlas

of X, the map ψ̃i : TUi → Rn × Rn given by

ψ̃i([p, i, v]) = (ψi(p), v)

is continuous. The charts (TUi, ψ̃i) form a smooth atlas of TX, thus giving it the structure

of a smooth manifold.

We now define an important class of maps between manifolds.

Definition 1.2.5. Let X be an n dimensional manifold and Y a m dimensional manifold.

A Cr map is a map f : X → Y such that for any chart (U,ψ) of X and any chart (V, φ)

of Y such that f(U) ⊂ V , the map φ◦f ◦ψ−1 : ψ(U) ⊂ Rn → Rm is r times differentiable.

We use the notation Cr(X,Y ) to denote the set of Cr maps from X to Y .

A Cr diffeomorphism is a bijective Cr map with Cr inverse.

Unless stated otherwise, we will use the term diffeomorphism to mean a C∞ diffeo-

morphism. Given a Cr map with r ≥ 1, we can define an induced map between the

corresponding tangent bundles.

Definition 1.2.6. For a Cr map f : X → Y with r ≥ 1, we define df : TX → TY by its

action on a generic element (p, [i, v]) ∈ TX by

df(p, [i, v]) =

(
f(p),

[
j,
∂(φj ◦ f ◦ ψ−1

i )

∂xµ

∣∣∣∣
ψi(p)

vµ

])

where xµ are coordinates in the chart ψi, and vµ is the xµ component of v. This does not

depend on the choice of i and j, as can be seen by a simple application of the chain rule,

hence the map is well defined.

With tangent maps defined, we now introduce two important subsets of Cr(X,Y ).

Definition 1.2.7. A Cr map f : X → Y with r ≥ 1 is immersive at p ∈ X if dfp =

df |TpX : TpX → Tf(p)Y is injective. The map f is an immersion if it is immersive at

all p ∈ X, and it is an embedding if it is an immersion which is a homeomorphism onto

its image. We use Immr(X,Y ) and Embr(X,Y ) to denote the set of Cr immersions and

embeddings respectively.

Throughout this thesis we will be dealing with maps in Cr(X,Y ), and approximating

them by maps which have additional properties. In order to make this notion of approx-

imating maps precise, we must introduce a topology on the set Cr(X,Y ). We take the

following definition from [Hir76, §2.1].

Definition 1.2.8. Consider f ∈ Cr(X,Y ) together with charts (U,ψ) and (V, φ) of X and

Y respectively. For compact K ⊂ U and ε > 0, the set N(f ; (U,ψ), (V, φ),K, ε) denotes

the subset of Cr(X,Y ) consisting of maps f̃ such that f̃(U) ⊂ V and

‖Dn(φ ◦ f̃ ◦ ψ−1)(p)−Dn(φ ◦ f ◦ ψ−1)(p)‖ < ε ∀p ∈ ψ(K) ∀n ≤ r
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where Dn denotes the nth order derivative, and ‖ · ‖ denotes the usual Euclidean norm.

The weak topology on Cr(X,Y ) is generated by the N(f ; (U,ψ), (V, φ),K, ε) sets, meaning

any union or finite intersection of these sets defines an open subset of the topology.

There is another topology that can be defined on Cr(X,Y ) called the strong topology,

however we will be using approximation results in the case that X is compact (usually a

circle or closed line interval), and in this case the strong and weak topologies coincide (see

remarks after the definition of the strong topology in [Hir76, §2]).

We will be using the fact that various properties of functions are generic, which means

that a general function can be perturbed by an arbitrarily small amount to a function

which satisfies one or many of these properties. This concept is formalised by saying that

the subset of functions satisfying these properties is dense, where dense subsets are defined

as follows.

Definition 1.2.9. A subset A of a topological space X is dense if A has non-empty

intersection with every non-empty open subset of X.

We now introduce a couple more subsets of Cr(X,Y ) that have key properties which

we will make use of throughout the thesis (see definitions in [Hir76, §2.2] and [Kos93,

Definition 4.1.1] respectively).

Definition 1.2.10. Given a submanifold A of Y , the set trL (X,Y ;A) consists of Cr maps

f : X → Y that are transverse to A along a subset L ⊂ X i.e, if x ∈ L and f(x) = y ∈ A
then we have df(TxX)+TyA = TyY . When L = X we omit the subscript on trL (X,Y ;A).

Definition 1.2.11. For f, g ∈ C∞(X,Y ), f is transverse to g if f(p) = g(q) implies

dfp(TpX) + dgq(TqX) = Tf(p)Y . If f(p) = f(q) and p 6= q, we refer to the pair (p, q)

as double points of f . For L ⊂ X, let ST∞L (X,Y ) (when L = X we omit the subscript)

denote the set of functions h such that for p, q ∈ L with p 6= q and h(p) = h(q), dhp(TpX)+

dhq(TqX) = Th(p)Y . We say that the functions in ST∞L (X,Y ) are self-transverse on L.

Functions in trL (X,Y ;A) have the following nice property.

Lemma 1.2.12. f ∈trL(X,Y ;A) implies f−1(A) ∩ L is a submanifold of X and

dim(X)− dim
(
f−1(A) ∩ L

)
= dim(Y )− dim(A).

Proof. See [Hir76, Theorem 1.3.3].

We now state a definition which will allow us to then state a folklore theorem.

Definition 1.2.13. Let X and Y be manifolds and L ⊂ X. For f ∈ Cr(X,Y ), we

use Cr(X,Y )f |L to denote the subset of Cr(X,Y ) such that for each g ∈ Cr(X,Y )f |L,

g|L = f |L.

We also use Immr(X,Y )f |L and Embr(X,Y )f |L to denote Immr(X,Y ) ∩Cr(X,Y )f |L
and Embr(X,Y ) ∩ Cr(X,Y )f |L respectively.

Folklore theorem 1.2.14. Let X be a compact manifold with boundary ∂X, Y be a

manifold with boundary ∂Y such that dim(Y ) ≥ 2 dim(X), L be a closed subset of X that

contains ∂X, and f ∈ C0(X,Y ) a function such that
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• f is smooth and immersive at all points of L.

• f ∈ ST∞L (X,Y ).

• f |∂X ∈ ST∞(∂X, Y ).

• f ∈t∞L\∂X (X,Y, f(∂X)).

• f(∂X) ⊂ ∂Y if ∂Y 6= ∅.

Then the set of g ∈ Imm∞(X,Y )f |L such that g|int(X) is self-transverse and transverse to

g|∂X , is dense in C0(X,Y )f |L.

We were not able to obtain a proof for this theorem, however the theorem can be

split into three parts which are folk theorems within the differential topology literature.

The first part is that C∞(X,Y )f |L is dense in C0(X,Y )f |L , and this is stated to be true

in [Hir76, Exercise 2.2.4].

The second part is that Imm∞(X,Y )f |L is dense in C0(X,Y )f |L , and can be obtained

by the relative jet transversality result [Vok, Theorem 9.14] combined with the proof of

density of immersions using jet transversality in [Hir76, pp. 82]. The use of this result

requires the dim(Y ) ≥ 2 dim(X) condition. The condition that f(∂X) ⊂ ∂Y if ∂Y 6= ∅
is required so that f |X\L maps into the interior of Y , which allows for the use of jet

transversality results for f |X\L since these results don’t necessary hold if the target and

domain spaces both have boundary.

The third part is that the set of functions g such that g|int(X) is self-transverse and

transverse to g|∂X is dense in Imm∞(X,Y )f |L . This part has a sketch proof that can be

extracted from the proof of [Vok, Theorem 9.19]. Although [Vok, Theorem 9.19] proves

the stronger result that any neighbourhood of f in C∞(X,Y )f |L contains an injective

function, it also includes the stronger assumption that dim(Y ) ≥ 2 dim(X) + 1. Self-

transversality and injectivity are actually equivalent when dim(Y ) ≥ 2 dim(X) + 1, hence

the dimension assumption can be relaxed to dim(Y ) ≥ 2 dim(X) and the proof still holds

but proves relative approximation to self-transverse functions rather than injective func-

tions. The set of g such that g|int(X) is transverse to the closure of g|∂X is open and dense

in C∞(X,Y ) by [Hir76, Theorem 3.2.1 (b)], we can therefore modify g|int(X) to satisfy

this condition (without modifying g|L since f ∈t∞L\∂X (X,Y, f(∂X)) by supposition), and

further modification to g|int(X) so that it is self-transverse will preserve this condition.

This folklore theorem is important since self-transverse functions have the following

important property.

Proposition 1.2.15. Let X be a compact manifold with boundary ∂X, Y be a manifold

with boundary ∂Y , and f : X → Y be a smooth immersion such that f |int(X) and f |∂X
are both self-transverse and transverse to each other. Then the set of double points of f

is finite if dim(Y ) = 2 dim(X) and empty if dim(Y ) ≥ 2 dim(X) + 1.

Proof. For a general topological space T , let T (2) denote T ×T with the diagonal removed.

Let f × f : X(2) → Y × Y be given by (f × f)(p, q) = (f(p), f(q)). We wouldl like to use

lemma 1.2.12 to show that the double points form a submanifold, however if the boundaries

of X and Y are non-empty then there is the issue that X×X and Y ×Y may have corners,
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and therefore fail to be manifolds. We deal with this by splitting up the double points of

f into parts

D(X̃(2), Ỹ ) := (f × f)|−1

X̃(2)
(∆Ỹ ) ⊂ X(2)

where X̃(2) denotes one of the following subsets of X(2): int(X) × int(X), int(X) × ∂X,

∂X× int(X) or ∂X×∂X, and ∆Ỹ denotes the diagonal of Ỹ × Ỹ where Ỹ is either int(Y )

or ∂Y . By supposition f |int(X) and f |∂X are both self-transverse and transverse to each

other, hence f × f restricted to X̃(2) is transverse to ∆Ỹ . We can therefore use lemma

1.2.12 to show that D(X̃(2), Ỹ ) is a submanifold of X(2) of dimension

dim(X̃(2))− dim(Ỹ ) =



2dim(X)− dim(Y ) if X̃(2) = int(X)× int(X) and Ỹ = int(Y )

2dim(X)− dim(Y )− 1 if X̃(2) = int(X)× ∂X and Ỹ = int(Y )

2dim(X)− dim(Y )− 2 if X̃(2) = ∂X × ∂X and Ỹ = int(Y )

2dim(X)− dim(Y )− 1 if X̃(2) = int(X)× int(X) and Ỹ = ∂Y

2dim(X)− dim(Y )− 2 if X̃(2) = int(X)× ∂X and Ỹ = ∂Y

2dim(X)− dim(Y )− 3 if X̃(2) = ∂X × ∂X and Ỹ = ∂Y

.

The full set of double points is given by the union of the submanifolds D(X̃(2), Ỹ ) for each

of the different cases above, and we see that for each case the submanifold has dimension

≤ 0 if dim(Y ) = 2 dim(X) and dimension < 0 if dim(Y ) ≥ 2 dim(X) + 1. By supposition

X is compact, and since a 0 dimensional submanifold of a compact manifold has finitely

many points, this implies the set of double points is finite if dim(Y ) = 2 dim(X) and is

empty if dim(Y ) ≥ 2 dim(X) + 1.

From this we get a relative approximation to embedding result.

Corollary 1.2.16. Let X, Y , L and f satisfy the conditions of theorem 1.2.14 and the

additional condition that dim(Y ) ≥ 2 dim(X) + 1. Then Emb∞(X,Y )f |L is dense in

C0(X,Y )f |L.

Proof. Since f and L satisfy the conditions of theorem 1.2.14, any neighbourhood of f

in C0(X,Y )f |L contains a function g that satisfies the conditions of proposition 1.2.15.

This implies that the set of double points of g are empty since dim(Y ) ≥ 2 dim(X) + 1,

hence g is an injective immersion. An injective immersion on a compact domain space

is an embedding, hence g is an embedding and therefore Emb∞(X,Y )f |L is dense in

C0(X,Y )f |L .

1.3 Lorentzian geometry

In general relativity, the central object of study is spacetime which is modelled as a

Lorentzian manifold which we now define. Most of the definitions in this section can be

found in [Wal84, §8].

Definition 1.3.1. A metric tensor g on a manifoldM gives a map gp : TpM×TpM→ R
for each p ∈ M which is bilinear, symmetric, and non-degenerate. Moreover, given any
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pair of smooth vector fields X and Y , the map p 7→ gp(X(p), Y (p)) is smooth. The metric g

and its inverse metric g−1 are given in local coordinates {xµ} by gµνdx
µdxν and gµν ∂

∂xµ
∂
∂xν

respectively, such that the coefficients gµν and gµν satisfy gµνgνλ = δµλ where δ is the

Kronecker delta.

The signature of g is a pair (p, q) where p is the number of vectors in an psuedo-

orthogonal basis of TpM such that g(v, v) > 0 and q is the number such that g(v, v) < 0.

These numbers are independent of the choice of the point p ∈ M, and the choice of

orthogonal basis for TpM.

A Riemannian manifold consists of a manifold equipped with a metric tensor of signa-

ture (n, 0) called a Riemannian metric, and a Lorentzian manifold consists of a manifold

equipped with a metric tensor of signature (1, n− 1) called a Lorentzian metric.

It should be noted that not every manifold can be made Lorentzian, since the existence

of a Lorentzian metric imposes topological restrictions on the manifold. If M is not

compact then it will always admit a Lorentzian metric, however if M is compact then it

admits a Lorentzian metric if and only if its Euler characteristic6 also vanishes [O’N83,

Proposition 5.37]. This means for instance the 4-sphere S4 does not admit a Lorentzian

metric, due to its non-vanishing Euler characteristic. Lorentzian manifolds have causal

structure, which plays an important role in physics, and we introduce this structure in the

following definitions.

Definition 1.3.2. A timelike curve on a Lorentzian manifold (M, g), is a C1 map γ :

I → M where I is a connected subset of R, such that g(γ̇(t), γ̇(t)) > 0 for all t ∈ I. A

causal curve on (M, g) is a C1 map γ : I →M such that γ̇(t) 6= 0 and g(γ̇(t), γ̇(t)) ≥ 0

for all t ∈ I.

Definition 1.3.3. A time-orientation on (M, g) is a nowhere vanishing timelike covector

field τ , which means g−1
p (τ(p), τ(p)) > 0 at each point p ∈ M. Given a time-orientation

τ , a causal/timelike curve γ is future directed if τ(γ(t)) [ γ̇(t) ] > 0 for all t ∈ R and past

directed if τ(γ(t)) [ γ̇(t) ] < 0 for all t ∈ R.

Definition 1.3.4. The timelike future/past of a region O, denoted as I+(O) / I−(O)

respectively, consists of all points p that have a future/past directed timelike curve (defined

on a compact subset of R) starting at a point of O and ending at p.

The causal future/past of a region O, denoted as J+(O) / J−(O) respectively, consists

of all points p that have a future/past directed causal curve starting at a point of O and

ending at p. We will use the notation J(O) to denote the union J+(O) ∪ J−(O).

We now introduce a type of compactness property specific to Lorentzian manifolds.

Definition 1.3.5. A region O is time compact if for all p ∈M, J+(p)∩O and J−(p)∩O
are compact.

One of the central tenets of relativity is that given two events, which are modelled as

points in the Lorentzian manifold, the past event can only affect the future event if there

is a causal curve connecting them. From this emerges a useful concept in relativity known

as the domain of dependence, which we now define.

6The Euler characteristic is the alternating sum of the ranks of the homology groups [Rot88, pp. 145]
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Definition 1.3.6. A future directed curve γ has a future endpoint p ∈ M if for any

neighbourhood N 3 p, there exists t0 ∈ R such that γ(t) ∈ N for all t > t0. We can define

a past endpoint of γ similarly. The curve γ is inextendible if it has no past or future

endpoints.

Definition 1.3.7. The future domain of dependence D+(Σ) of an achronal7 hypersurface

Σ, is given by all points p such that any inextendible past-directed causal curve passing

through p must intersect Σ. We define the past domain of dependence D−(Σ) similarly.

We call the union D+(Σ)∪D−(Σ) the Cauchy development of Σ, and denote it as D(Σ).

Many fundamental physical theories are described by fields satisfying hyperbolic PDEs

with principal symbol given by the spacetime metric. This ensures that the fields satisfy

causality, which means that if a field configuration is specified on an achronal hypersurface

Σ, there is at most one solution to the field equations within the domain of dependence

D(Σ). We now introduce an important class of Lorentzian manifolds.

Definition 1.3.8. A Lorentzian manifold (M, g) is globally hyperbolic, if it has a Cauchy

surface, which is a closed achronal hypersurface Σ such that D(Σ) =M.

This implies that complete knowledge of the physical fields onM is given once Cauchy

data on a Cauchy surface Σ ⊂ M has been specified. It was proven in [BS05], that the

class of globally hyperbolic manifolds has the following property.

Theorem 1.3.9. A globally hyperbolic Lorentzian manifold (M, g) is diffeomorphic to

R× Σ where for each t ∈ R, {t} × Σ is a smooth spacelike Cauchy surface of M, and the

diffeomorphism ψ maps the metric g (via pullback) to a metric of the form

ψ∗(g) = β dT ⊗ dT − hΣ(T ) (1.2)

where β is a smooth positive function on R×Σ, and hΣ(T ) is a smooth 1-parameter family

of Riemannian metrics on Σ.

We now define an important class of functions on Lorentzian manifolds.

Definition 1.3.10. A Cauchy temporal function T : M → R is a smooth function with

timelike gradient everywhere, and Cauchy surfaces as level sets i.e, sets of the form T −1(t).

It is clear from theorem 1.3.9 that every globally hyperbolic manifold has an onto

Cauchy temporal function, given by the time coordinate T in equation (1.2).

Two metrics g and g̃ on a manifold M are said to be conformally related if there

exists some positive function f ∈ C∞(M) such that g̃ = fg. Metrics that are conformally

related have the property that they define the same causal structure. This is due to the

fact that causality is defined by causal curves, which are in turn defined by the condition

that g(v, v) ≥ 0 for each tangent vector v of the curve. We see that if g(v, v) ≥ 0 and

g̃ = fg for any positive function f ∈ C∞(M), then g̃(v, v) ≥ 0, hence curves that are

causal in a metric g are also causal in any conformally related metric g̃. We can use a

conformal transformation to define the instantaneous optical metric on Cauchy surfaces

as follows.
7No two points of the hypersurface can be connected by a timelike curve.
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Definition 1.3.11. For a globally hyperbolic manifold (M, g) where g is of the form in

equation (1.2) , we obtain a metric g̃ := g/β conformally related to g which is of the form

g̃ = dT ⊗ dT − kΣ(T ) , (1.3)

where T (p) = T (p)/
√
β(p) and kΣ(T ) is referred to as the instantaneous optical metric

on {t} × Σ.

Globally hyperbolic Lorentzian manifolds have the following useful properties.

Theorem 1.3.12. For a globally hyperbolic Lorentzian manifold (M, g), the following

statements are true

• J±(p) ∩ J∓(q) is compact for all p, q ∈M.

• J±(K) is closed for all compact K ⊂M.

• J±(p) ∩ Σ is compact for any Cauchy surface Σ and p ∈M.

Proof. See theorems 8.3.10, 8.3.11 and 8.3.12 in [Wal84].

The first of these properties can be used to characterise globally hyperbolic Lorentzian

manifolds in an alternative way.

Theorem 1.3.13. A Lorentzian manifold (M, g) is globally hyperbolic if and only if it

has no closed timelike curves and for each p, q ∈M, J+(p) ∩ J−(q) is compact.

Proof. See [BS07].

We now introduce an important type of subset of a Lorentzian manifold.

Definition 1.3.14. A subset O ∈ M is causally convex if any causal curve connecting

two points in O is entirely contained in O.

Using theorem 1.3.13, the following result can be proven.

Proposition 1.3.15. An open causally convex subset O of a globally hyperbolic Lorentzian

manifold (M, g) is itself a globally hyperbolic Lorentzian manifold in the relative topology

when equipped with the metric g|O.

Proof. Since O is an open subset of a manifold, it is a manifold in the relative topology.

To see that O is globally hyperbolic with the metric g|O, let p, q ∈ O and consider the

region J+
M(p)∩J−M(q). This region is compact sinceM is globally hyperbolic, and entirely

contained in O since O is causally convex. This implies that J+
O (p)∩J−O (q) is also compact.

Combining this with the fact that O has no closed timelike curves sinceM does not have

any, theorem 1.3.13 implies O is globally hyperbolic.

We now establish some standard results in Lorentzian geometry.

Lemma 1.3.16. For fixed O ⊂M, J±(p)∩O is compact for all p, if and only if J±(K)∩O
is compact for all compact K.
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Proof. The only if part simply follows from the fact that the single point set {p} is compact,

so we focus on the if part. We can cover K by finitely many sets of the form I±(pn) ∩K
with pn ∈ M, since these sets form an open cover of K due to the fact that I±(pn) is

open, and any open cover of K has a finite open subcover of K, since K is compact. We

therefore see that

J±(K) ∩ O =
⋃
n

J±
(
I±(pn) ∩K

)
∩ O =

⋃
n

J±(pn) ∩ O

which implies J±(K)∩O is compact since it is the union of finitely many compact regions.

Corollary 1.3.17. In a globally hyperbolic Lorentzian manifold (M, g), given any Cauchy

surface Σ of M and compact K, the region J±(K) ∩ Σ is compact.

Proof. Combine lemma 1.3.16 in the case O = Σ with the third property in theorem

1.3.12.

Lemma 1.3.18. In a globally hyperbolic Lorentzian manifold (M, g) and fixed O ⊂ M,

if J±(K) ∩ O is compact for all compact K, then J±(K) ∩ J∓(O) is also compact for all

compact K.

Proof. For any p ∈ M we have J±(p) ∩ J∓(O) ⊂ J±(p) ∩ J∓ (J±(p) ∩ O), since any

future/past directed causal curve starting at p and ending in J∓(O) can be extended so

that it ends in J±(p)∩O. We also have J±(p)∩J∓(O) ⊃ J±(p)∩J∓ (J±(p) ∩ O) because

O ⊃ J±(p) ∩ O, hence J±(p) ∩ J∓(O) = J±(p) ∩ J∓ (J±(p) ∩ O).

By supposition J±(K)∩O is compact for all compact K, hence J±(p)∩O is compact

for all p ∈ M. The first property of theorem 1.3.12 together with lemma 1.3.16 implies

J±(p)∩J∓(K) is compact for all compact K and ∀p ∈M, and since J±(K)∩O is compact

this implies J±(p)∩ J∓(O) is compact ∀p ∈M. We can then use 1.3.16 again to see that

J±(K) ∩ J∓(O) is compact for all compact K, thus proving the lemma.

Corollary 1.3.19. In a globally hyperbolic Lorentzian manifold (M, g), given any Cauchy

surface Σ of M and compact K, the region J±(K) ∩ J∓(Σ) is compact.

Proof. Combine corollary 1.3.17 together with lemma 1.3.18 in the case O = Σ.

Corollary 1.3.20. For a time compact region O and compact region K, J±(O)∩ J∓(K)

is compact.

Proof. Since O is time compact, J±(p) ∩ O is compact for all p ∈ M, which by lemma

1.3.16 implies J±(K) ∩ O is compact for all compact K. Combining this with lemma

1.3.18 proves the result.

1.4 Category theory

Category theory is a useful way of abstracting various constructions that often appear in

different branches of mathematics, and finding properties of these abstract constructions

which can then be applied in a much wider range of contexts. It is akin to “not reinventing

the wheel”, a result can be proven in category theory rather than having to prove the same
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result over and over again in different contexts. The basic objects of category theory are

categories, which we will now define. The first five definitions of this section can be found

in [Mac78, §1].

Definition 1.4.1. A category consists of a collection of objects, and a collection of mor-

phisms each with a domain and codomain which are objects of the category. These collec-

tions may or may not be sets in the set-theoretic sense. The morphisms have the following

structure:

• Any morphisms f and g, where the domain of f is the codomain of g, can be composed

to get a morphism f ◦g. These compositions must be associative, so that (f ◦g)◦h =

f ◦ (g ◦ h).

• Each object A has an identity morphism 1A. For any morphism f : A→ B we have

f ◦ 1A = 1B ◦ f .

Categories are often concrete8, which roughly means that they consist of objects which

are sets equipped with extra structure, and have morphisms which are maps between sets

that “preserve” that structure (what this means is context dependent). For instance,

the category of groups consists of sets equipped with a binary operation and an identity

element obeying certain conditions, and maps which preserve those structures.

Category theory formalises the notion of equivalence between mathematical structures,

which is usually given by a context dependent definition of isomorphism. In category

theory, the definition of an isomorphism between two objects depends on the category

that contains them.

Definition 1.4.2. Let C be a category with objects A and B. An isomorphism is a C-

morphism f : A→ B that has an inverse C-morphism g : B → A, which means g◦f = 1A

and f ◦ g = 1B.

Another key concept of category theory is that of subcategories, which formalises the

idea of one category being contained in another.

Definition 1.4.3. A subcategory S of a category C is a collection of some of the objects

of C and some of the morphisms of C such that; the domain and codomain in C of each

morphism of S are also objects of S, the identity morphism of each object in S is also a

morphism of S, and if S contains two morphisms of C it also contains their composition.

A full subcategory S of C is a subcategory such that for any objects O1, O2 of S, all of

the morphisms between O1 and O2 in C are also morphisms of S.

We now define mappings between categories.

Definition 1.4.4. A functor F : C → D between categories C and D is a mapping which

associates to each object X ∈ C an object F (X) ∈ D, and associates to each morphism f

of C a morphism F (f) of D such that F (1X) = 1F (X) and F (f ◦ g) = F (f) ◦ F (g),

A commutative diagram is a diagram where all compositions of morphisms that map

between any two fixed objects of the diagram are equal. Functors have the important

8A concrete category has a faithful functor to the category of sets.
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property that they map commutative diagrams to commutative diagrams, and map iso-

morphisms to isomorphisms. A functor therefore provides a useful means of relating

properties of objects in one category to those of another. For example, the assignment of

homotopy groups to their associated topological spaces defined in 1.1.9, can be extended

to a functor from the category Top∗ of topological spaces with base point which has con-

tinuous base-point preserving maps as morphisms, to the category Grp of groups with

homomorphisms as morphisms [Rot88, pp. 334]. Properties of the object of Top∗ can

be inferred from the properties of its associated object in Grp. We now define mappings

between functors.

Definition 1.4.5. A natural transformation N from the functor F : C → D to the functor

G : C → D is a mapping which associates to each object X ∈ C, a map NX : F (X) →
G(X) such that the following diagram commutes for any morphism f : X → Y of C

F (X) F (Y )

G(X) G(Y )

F (f)

G(f)

NX NY

.

A natural isomorphism is a natural transformation N such that each NX is an isomor-

phism.

An example of a natural transformation is the assignment to a topological space X

of its Hurewicz homomorphisms (see theorem 1.1.14) which relates the homotopy and

homology groups of X.

Another important concept in category theory is that of universal constructions, which

guarantee the existence of unique morphisms that make certain diagrams commute (what

types of diagram depends on the universal construction). The remaining definitions in

this section are taken from [Mac78, §3]. We first give a couple of examples of universal

constructions.

Definition 1.4.6. Given a pair of objects X and Y of a category C, the product of X

and Y (if it exists) is defined to be an object X × Y together with a pair of morphisms

πX : X × Y → X and πY : X × Y → Y such that for any pair of morphisms fX : Z → X

and fY : Z → Y , there exists a unique morphism 〈fX , fY 〉 : Z → X × Y which makes the

following diagram commute

X YX × Y

Z

πX πY

fX fY

〈fX , fY 〉

.
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The universal property shows that any two products are unique up to isomorphism,

hence the product is uniquely defined up to isomorphism. This is also true of the sub-

sequent universal constructions we will be defining, their definitions are unique up to

isomorphism. The product of topological spaces defined in definition 1.1.16 is an example

of this construction in the category Top. There is also a dual construction known as the

co-product which we now define.

Definition 1.4.7. Given a pair of objects X and Y of a category C, the coproduct of X

and Y (if it exists) is defined to be an object X
⊔
Y together with a pair of morphisms

ιX : X → X
⊔
Y and ιY : Y → X

⊔
Y such that for any pair of morphisms fX : X → Z

and fY : Y → Z, there exists a unique morphism fX
⊔
fY : X

⊔
Y → Z which makes the

following diagram commute

X YX
⊔
Y

Z

ιX ιY

fX fY

fX
⊔
fY

.

An example of a coproduct is the disjoint union of sets in the category of sets. In this

thesis we will be concerned with a particular universal construction called a colimit, which

generalises many other universal constructions in category theory.

Definition 1.4.8. Consider a functor F : I → C. A cocone over F is a pair (X,φ) where

X ∈ C and φ assigns to each i ∈ I a C morphism φi : F (i) → X, such that given any I

morphism f : i→ j we have φi = φj ◦ F (f).

The colimit of F (if it exists), is a cocone (X,φ) over F such that given any other

cocone (Y, θ) over F , there exists a unique C morphism U : X → Y such that the following

diagram commutes for all f : i→ j

F (i) F (j)

X

Y

F (f)

θi θj

φi φj

U

.

The coproduct of C-objects X and Y is a special case of this construction, as can be

seen by choosing the index category I to consist of two objects with no morphisms between

each other, and F to be the functor mapping these objects to X and Y respectively.
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Chapter 2

Axiomatic quantum field theory

Quantum field theory is the most stunningly accurate theory ever created, with predictions

in quantum electrodynamics verified up to two parts in a billion [DM04]. Despite this, the

theory still lacks precise mathematical underpinnings. This may not seem like a problem,

if one’s goal was only to make experimental predictions, since attempts at making QFT

mathematically rigorous haven’t produced any experimentally verifiable predictions that

haven’t already been made by the standard heuristic approach to QFT. The power of

the mathematical approach is rather in clearing up the foundations of QFT, building

up the theory from a small set of axioms. A clearer understanding of the conceptual

underpinnings of the theory and how the key properties relate to each other could possibly

lead to generalisations of the axioms which allow for a quantised theory of gravity.

One of the first attempts to place QFT on a solid mathematical basis were the

G̊arding–Wightman axioms [WG65]. In this framework, a theory is specified by a tu-

ple (H, U,A,D). The axioms of the framework in the case of a theory of a single scalar

field A on Minkowski spacetime are:

(1) H is separable1 Hilbert space and U : Pr → H is a strongly continuous2 representa-

tion of the restricted (orientation and time-orientation preserving) Poincaré group

Pr .

Stone’s theorem [RS81, Theorem 8.8] establishes a one-to-one correspondence between

self-adjoint operators and one-parameter families of unitary operators. The self-adjoint

operators corresponding to time translation and space translation implemented by U , are

energy P 0 and momentum P i respectively.

(2) The domain of Pµ is in D and the simultaneous spectrum of Pµ is contained in the

closed forward light cone, equivalently P 0 ≥ 0 and PµPµ ≥ 0.

(3) There exists a unique vector Ω ∈ D which is invariant under the unitary action of

spacetime translations implemented by U . This vector represents the vacuum state.

(4) The field A, is a map from Schwartz functions on Minkowski spacetime to unbounded

self-adjoint operators defined (together with their adjoints) on the dense subset D ⊂
1A seperable Hilbert space has a countable dense subset.
2For all ε > 0 and g1, g2 ∈ Pr, there exists δ > 0 such that: ‖g1v − g2v‖ < δ ∀v ∈ R4 implies

‖U(g1)ψ − U(g2)ψ‖ < ε ∀ψ ∈ H.
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H. These operators leave the domain D invariant and for fixed ψ ∈ D, the mapping

f 7→ A(f)ψ is linear.

(5) For any ψ1 and ψ2 in D, the map f 7→ 〈ψ1,A(f)ψ2〉 where 〈·, ·〉 is the inner product

on H, is a tempered distribution.

(6) The vacuum is cyclic i.e, the set of finite linear combinations of vectors of the form

A(f1) · · · A(fn)Ω is dense in H.

(7) The action of U on fields is given by U(a,Λ)−1A(f)U(a,Λ) = A(f̃) where f̃(x) =

f
(
Λ−1(x− a)

)
.

(8) For f1 and f2 with spacelike separated support, the corresponding operators A(f1)

and A(f2) commute.

These axioms place Hilbert space and fields as central concepts which the theory is built

upon. There is however reason to doubt that these concepts are best suited for describing

the mathematical content of QFT. This is because of the existence of inequivalent Hilbert

space representations of the canonical commutation relations.

For a theory obtained by quantising a classical system with a finite dimensional sym-

plectic vector space, as is the case for non-relativistic quantum mechanics, this does not

pose an issue. The Stone-von Neumann theorem states that up to isomorphism, there is

a unique irreducible representation of the finitely generated canonical commutation rela-

tions on a Hilbert space3. This theorem does not apply to infinite dimensional systems

however. An example of inequivalent representations for an infinite dimensional system is

the van Hove model [Hov52], which is the quantum theory obtained from the Lagrangian

L =
1

2
(∇µφ)∇µφ−

1

2
m2φ2 − ρ(x)φ

where ρ is a time-independent real valued function or distribution. When ρ ≡ 0 we get

free fields, in which case we can represent the fields as operators on the usual Bosonic

Fock space. The algebras defined by the CCRs for different potentials ρ(x) turn out to

be isomorphic, the fields are just the free fields shifted by a scalar multiple of the identity

(see section 3 in [FR19] for details). If however, ρ has δ-singularities or if either m = 0 or

ρ ≡ 1, there is no unitary transformation that maps the field operators to the free field

operators (for UV and IR reasons respectively) [FR19]. This means we have inequivalent

Hilbert space representations of the same CCR algebra.

Due to the existence of inequivalent representations it seems that emphasis should be

placed on the canonical commutation relations, or more generally the algebraic relations

between observables/fields, rather than placing a particular Hilbert space representation

front and centre as is done in the G̊arding–Wightman framework. This motivated the

algebraic approach to QFT, which instead emphasises algebras above their Hilbert space

representations.

The rest of the chapter is structured as follows: We give an introduction to algebraic

QFT in the first subsection. We then introduce the locally covariant framework for QFT

3Due to domain issues with unbounded operators, this uniqueness result actually applies to the Weyl
algebra which is a C∗-algebra.
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(abbreviated LCQFT) in the second subsection, and we end with a subsection outlining

two examples of theories of LCQFT.

2.1 Algebraic quantum field theory

Algebraic QFT, sometimes known as AQFT or local QFT, is based on the Haag-Kastler

axioms [HK64]. Before going through the axioms of AQFT, we begin by defining what an

algebra is, and the different types of algebras considered in AQFT.

Definition 2.1.1. An algebra A is a vector space over C equipped with an associative4

bilinear map ◦ : A ×A → A . A unital algebra has a distinguished element 1, such that

1 ◦A = A = A ◦ 1 for all A ∈ A .

A ∗-algebra is an algebra equipped with an anti-linear map ∗ : A → A , called the

involution map, which satisfies (A∗)∗ = A, (λA)∗ = λA∗ (where λ is the complex conjugate

of λ) and (A ◦B)∗ = B∗ ◦A∗ for all A,B ∈ A and λ ∈ C.

A C∗-algebra is a ∗-algebra equipped with a norm ‖ · ‖ such that the algebra is complete

with respect to ‖ · ‖, ‖A ◦A∗‖ = ‖A‖ ‖A∗‖ and ‖A ◦B‖ ≤ ‖A‖ ‖B‖ for all A,B ∈ A .

A C∗-algebra is equipped with a natural topology induced from its norm, and can

be represented as an algebra of bounded operators on a Hilbert space. The convention

adopted in this thesis is that unless otherwise explicitly stated, all ∗-algebras and C∗-

algebras will be unital. We now introduce categories of ∗ and C∗ algebras.

Definition 2.1.2. The categories Alg and C∗-Alg have ∗-algebras and C∗-algebras as

objects respectively, and injective unit preserving homomorphisms as morphisms. The

categories Alg(h) and C∗-Alg(h) are defined in the same way except the condition that the

morphisms be injective is relaxed.

The categories Alg(h) and C∗-Alg(h) are more appropriate for modelling quantum gauge

theories due to the presence of topological charges, see for instance [DL12, DHS14]. We

now list the axioms of AQFT on Minkowski spacetime:

• Local algebras: Each open bounded causally convex region O of Minkowski space-

time (which we denote as M ) is assigned a C∗-algebra A (O) (sometimes weakened

to the assignment of ∗-algebras instead).

• Isotony: If O1 ⊂ O2, there exists an injective unit preserving homomorphism

iO1O2 : A (O1)→ A (O2), moreover if O2 ⊂ O3 then iO2O3 ◦ iO1O2 = iO1O3 .

• Einstein causality: If O1 and O2 are causally disjoint, then for any O3 ⊃ O1∪O2,

we get the following relation in A (O3)

[iO1O3(A1), iO2O3(A2)] = 0 ∀A1 ∈ A (O1) , ∀A2 ∈ A (O2) .

• Poincaré covariance: For each g ∈ Pr and each O, there is an isomorphism

αg,O : A (O) → A (gO) such that αg1,g2O ◦ αg2,O = αg1g2,O for all g1, g2 ∈ Pr and

igO1,gO2 ◦ αg,O1 = αg,O2 ◦ iO1O2 .

4Sometimes the associative property is dropped in the definition of algebras.
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• Timeslice axiom: If O1 ⊂ O2 and O1 contains a Cauchy surface of O2, then the

map iO1O2 is an isomorphism.

The set of open bounded causally convex regions of Minkowski spacetime form an

upward directed set with respect to inclusion, which implies the collection of local algebras

is a net. Combining this with the isotony condition allows us to construct a global algebra,

called the quasi-local algebra A (M ), by taking the colimit of the net of local algebras

(known as the inductive limit since in this case the net is up-directed).

In order for the theory to be able to make predictions that can be compared with

experiment, we need states on the net of local algebras. A state is defined as follows.

Definition 2.1.3. A state on an algebra A , is a linear map ω : A → C such that ω(1) = 1

and ω(A∗A) ≥ 0 for all A ∈ A .

Given a state on a (C)*-algebra, we can obtain a Hilbert space representation of the

algebra. This is done by using the GNS construction, which takes a state ω and yields

a tuple (Hω, Dω,Ωω, πω) consisting of a Hilbert space Hω with a dense subspace Dω, a

cyclic vector Ωω and a representation πω : A (M )→ End(Dω) such that

ω(A) = 〈Ωω, πω(A)Ωω〉 .

Moreover, this tuple is unique in the sense that for any other tuple (H ′ω, D
′
ω,Ω

′
ω, π

′
ω) satis-

fying these conditions, there exists a unitary map Uω : Hω → H ′ω such that Uωπω(A)Ωω =

π′ω(A)Ω′ω for all A ∈ A (M ).

The vacuum state [Haa96, Definition 3.2.3] on the quasi-local algebra A (M ), is a state

such that ω(A∗A) = 0 implies A is of the form

A = B

∫
d4x f(x)αx(C)

where B,C ∈ A (M ), αx is the automorphism for translation by x and f has a Fourier

transform with support outside of the closed forward light cone. The integral results in an

algebra element corresponding to an operator that imparts an energy-momentum transfer

within the support of the Fourier transform of f . Since f has support outside the closed

forward light cone, A∗A imparts negative energy in some Lorentz frame and therefore

registers the presence of matter, thus ω(A∗A) = 0 implies ω is the vacuum state.

The representations induced by different states can be unitarily inequivalent, and some

states may yield Hilbert spaces which lack certain useful properties. It is therefore com-

mon to consider subsets of states satisfying certain conditions. For instance, the DHR

(Doplicher, Haag and Roberts) selection criterion requires the GNS representation of a

state satisfying the condition to be unitarily equivalent to the vacuum state represen-

tation outside of a sufficiently large diamond5. The field algebra and gauge group can

be reconstructed from the category of GNS representations of DHR states of the observ-

able algebra [DHR69a,DHR69b,DHR71,DHR74]. This suggests that the structure of the

category of representations is the really interesting theoretical content of AQFT.

Having briefly introduced AQFT, we are now ready to introduce locally covariant QFT.

5Cauchy development of a subset of a Cauchy surface.
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2.2 Locally covariant quantum field theory

The techniques of AQFT from the previous subsection can be generalised to curved space-

times, as was done in the seminal paper of Brunetti, Fredenhagen and Verch [BFV03]. To

see this, we begin by noting that the net of local algebras, the central object of AQFT,

defines a functor from the category of open bounded causally convex subsets of Minkowski

spacetime with inclusion maps as morphisms, to the category Alg of (C)*-algebras with

injective (due to the isotony condition) morphisms. It seems reasonable then to modify

the domain category of the functor, so that it assigns algebras to spacetimes in their own

right, rather than just certain subregions of Minkowski spacetime. For this purpose we

introduce the following category.

Definition 2.2.1. The category Loc has objects consisting of globally hyperbolic spacetimes

(M, g) which are connected, with orientation o and time-orientation τ . We will simply

use M to denote the object and suppress the additional structure in the notation. The

morphisms of Loc are smooth isometric open embeddings with causally convex image which

preserve orientation and time-orientation.

A theory in locally covariant QFT (LCQFT) is specified by a functor A from Loc

to Alg. Aspects of LCQFT can be studied by placing physical assumptions on A , such

as Einstein causality and the timeslice axiom which we define in this framework in the

following definitions. We note that the Einstein causality condition has other formulations,

such as the monoidal formulation [BFIR14] and the operadic formulation [BSW17].

Definition 2.2.2. A theory A : Loc → Alg satisfies Einstein causality if for any Loc

morphisms ψ1 and ψ2 with a common codomain and images which are causally disjoint in

that codomain, the images of A (ψ1) and A (ψ2) commute in their common codomain.

Definition 2.2.3. A theory A : Loc → Alg satisfies the timeslice axiom if for any Loc

morphism ψ with image containing a Cauchy surface of its codomain, the map A (ψ) is

an isomorphism.

This gives us a model-independent way of studying QFT in curved spacetimes. The

framework also has the advantage that it is manifestly covariant, since there is no particular

spacetime that plays a central role. A quantum field can be defined in this framework as

follows.

Definition 2.2.4. A quantum field in a theory A : Loc → Alg is defined as a natural

transformation Φ : D → F ◦A where F : Alg→ Set is the forgetful functor and D : Loc→
Set is a general functor.

In most cases the functor D assigns to each spacetimeM the set of sections we “smear”

our field against (in the sense of Wightman fields defined at the start). So for instance, if

Φ was the real scalar field then D(M) = C∞0 (M).

An important concept in LCQFT is relative Cauchy evolution (from now on referred to

as RCE). RCE compares the dynamics of a system, with those of the system subject to a

compact/time-compact perturbation to its spacetime metric. The functional derivative of

the RCE operator can be interpreted as the stress-energy tensor [FV15], which indicates
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that the RCE operator can be considered as a proxy for the action of the theory. This

shows that there is an action principle present in the framework. It also has applications

to describing what it means for physics to be the same on all spacetimes [FV12].

For a given spacetime M and metric perturbation supported in a compact/time-

compact region K, we define M+ to be M\J−(K) and M− to be M\J+(K). These

regions will contain Cauchy surfaces ofM and the perturbed spacetimeM′ [BFV03,FV12].

SinceM+ andM− are both contained inM andM′, there exist canonical inclusion maps,

as shown in the diagram below

M

M+

M′

M−

ι+ ι′+

ι− ι′ −

,

which define Cauchy morphisms. Hence by the timeslice axiom, when we apply our functor

to the morphisms in this diagram we will get algebra isomorphisms. This means the arrows

can be inverted and we get a diagram relating the algebras of M and M′

A (M)

A (M+)

A (M′)

A (M−)
A (ι−) A (ι′ −)−1

A (ι′+)A (ι+)−1

.

RCE is defined as the composition of the morphisms going clockwise around the diagram

above. In general, this is a non-trivial operation since the diagram is not necessarily

commutative.

2.3 Complex scalar field and the Dirac field in LCQFT

We end the chapter with a couple of examples of theories in the LCQFT framework. First

is the complex scalar field which we will define after we have defined advanced/retarded

Green operators for complex valued functions on M.

Definition 2.3.1. Let P be a linear differential operator on smooth functions C∞(M).

An advanced/retarded Green operator for P is a linear operator E∓ : C∞0 (M)→ C∞(M)

(where C∞0 (M) denotes compactly supported functions) which satisfies

• P ◦ E∓ = I, where I is the inclusion map from C∞0 (M) to C∞(M).

• E∓ ◦ P |C∞0 (M) = I.

• supp(E∓f) ⊂ J∓(suppf).

We use the notation E := E−−E+ for the advanced minus retarded Green operator of P

and use the notation (f, g) :=
∫
M dvolg f g and E(f, g) :=

∫
M dvolg f Eg. The operator

P is said to be Green hyperbolic if it admits advanced and retarded Green operators (in
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which case the Green operators are unique). We say that P is formally self-adjoint if

(f, Pg) = (Pf, g) for all f, g ∈ C∞(M) with compactly intersecting supports.

Definition 2.3.2. The theory of the complex scalar field is given by the functor A : Loc→
Alg which for a Loc object M, assigns the algebra A (M) with generators ΦM(f) indexed

by smooth compactly supported test functions f ∈ C∞0 (M) and an identity element 1 which

satisfy the following relations:

• The mapping f 7→ ΦM(f) is linear.

• ΦM(PMf) = 0 where PM = ∇µ∇µ +m2.

• [ΦM(f),ΦM(g)]− := ΦM(f)ΦM(g)−ΦM(g)ΦM(f) = 0.

• [ΦM(f),ΦM(g)∗]− = iEM(f, g)1 where EM is the advanced minus retarded Green

function for the operator PM.

For a Loc morphism ψ :M→ N , the theory maps this morphism to A (ψ) whose action

on generators is given by

A (ψ)ΦM(f) = ΦN (ψ∗f) (2.1)

where ψ∗ is given by

(ψ∗f)(p) =

f(ψ−1(p)) if p ∈ ψ(M)

0 otherwise
.

The morphism A (ψ) is defined on the whole of A (M) by extending it to a homomorphism,

which is possible since equation (2.1) is compatible with the relations. Two algebra elements

Φ(f) and Φ(f ′) are equal if and only if f − f ′ = PMg for some g ∈ C∞0 (M), and

ψ∗f−ψ∗f ′ = PN g
′ for some g′ ∈ C∞0 (N ) if and only if f−f ′ = PMg for some g ∈ C∞0 (M),

hence A (ψ) is injective and therefore a valid morphism of Alg.

This theory satisfies the standard axioms of LCQFT; namely Einstein causality and

the timeslice axiom. To see that Einstein causality is satisfied, we note that the advanced

minus retarded Green function EM has the property that EM(f, g) = 0 if the functions

f and g have spacelike separated support. This is due to the fact that E±M are Green

operators, so by definition supp(E±Mf) ⊂ J±(suppf). Therefore, the commutator for

spacelike separated fields vanishes, hence Einstein causality is satisfied. To see that the

timeslice axiom is satisfied we follow the proof outlined in [FV15, pp. 9-10]. Let O(Σ)

be any open causally convex neighbourhood of a Cauchy surface Σ, and let Σ+ and Σ−

be Cauchy surfaces to the future/past of Σ that are contained in O(Σ). Then let ρ be

a function which vanishes to the future of Σ+ and equals 1 to the past of Σ−. For any

f ∈ C∞0 (M), we can construct the following function using ρ

f̃ = PM ρ EMf

which has compact support in O(Σ) and can be shown to have the property that

f − f̃ ∈ PMC∞0 (M). This implies that for the inclusion map ψ : O(Σ) → M we have
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A (ψ)ΦO(Σ)(ψ
∗f̃) = ΦM(f̃) = ΦM(f), hence A (ψ) is surjective onto generators and hence

to the whole of A (M). Combining this with the fact that A (ψ) is injective (as noted in

definition 2.3.2) implies A (ψ) is an isomorphism, therefore the timeslice axiom is satisfied.

We now switch our focus to an exposition of the Dirac field. In order to describe the

quantum Dirac field, we must first describe classical spinor fields. For ease of exposition

we will describe how they are defined on four dimensional globally hyperbolic spacetimes,

however they can be defined on more general spacetimes. We use the following reference

material [Wal84, §13] [San10] [Ish78] [Dim82] for the following exposition.

Spinor fields on Minkowski spacetime are vector valued fields i.e, sections of a vector

bundle over Minkowski spacetime, which transform in the projective rep (0, 1/2)⊕ (1/2, 0)

of the restricted Lorentz group (denoted by SO+(1, 3)), this projective rep being a homo-

morphism ρ̃ : SO+(1, 3) → GL(4,C)/Z2. This rep can be viewed as an ordinary rep of

the double cover of SO+(1, 3) (denoted by Spin(1, 3)) i.e, there exists a homomorphism

ρ : Spin(1, 3)→ GL(4,C) such that q ◦ρ = ρ̃◦Λ where q : GL(4,C)→ GL(4,C)/Z2 is the

quotient map and Λ is the double covering homomorphism from Spin(1, 3) to SO+(1, 3).

There is an isomorphism from Spin(1, 3) to SL(2,C), so from now on we will simply refer

to Spin(1, 3) as SL(2,C). The rep ρ cannot be unitary since SL(2,C) is non-compact,

and therefore has no unitary finite dimensional reps. We can however define a sesquilinear

form 〈, 〉 on C4, such that 〈ρ(s)u1, ρ(s)u2〉 = 〈u1, u2〉 for all s ∈ SL(2,C) and u1, u2 ∈ C4,

the cost being that this sesquilinear form is not positive definite. The sesquilinear form

〈, 〉 can be used to define an antilinear isomorphism known as the Dirac adjoint from C4

to its dual space C4.

In a curved Lorentzian spacetime (M, g), Lorentz symmetry becomes a local symmetry.

Our theories should therefore be invariant under local Lorentz transformations, which

consist of a set of Lorentz transformations at each tangent space TpM such that the

assignment of Lorentz transformations to each point forms a smooth function. In order

to make this definition more precise, we can use the notion of fibre bundles introduced

in definition 1.1.18. From this perspective, local Lorentz transformations are understood

in terms of the frame bundle, which consists of the disjoint union of ordered orthonormal

bases of the tangent space at each point in the manifold. The frame bundle can be identified

with its associated principal bundle FM =
(
FM, πFM ,M, SO+(1, 3)

)
. A local Lorentz

transformation then consists of a vertical bundle automorphism i.e, a diffeomorphism

ψ : FM → FM such that for all p ∈ FM and g ∈ SO+(1, 3), ψ(p ◦ g) = ψ(p) ◦ g and

πFM = πFM ◦ ψ.

To define spinor fields on curved spacetimes, we must adapt the transformation prop-

erties of spinors with respect to global Lorentz transformations outlined above, to trans-

formation properties with respect to local Lorentz transformations. This requires us to

find a way of lifting the local Lorentz transformations to local SL(2,C) transformations.

In order to do this, we need to lift a vertical bundle automorphism of FM to a verti-

cal bundle automorphism of some principal bundle with structure group SL(2,C). This

requires a choice of spin structure which we will now define.

Definition 2.3.3. A spin structure consists of a principal SL(2,C) bundle

SM =
(
SM, πSM ,M, SL(2,C)

)
with right action R : SM×SL(2,C)→ SM and a smooth

mapping f : SM → FM , such that f(R(p, s)) = f(p)◦Λ(s) ∀s ∈ SL(2,C), p ∈ SM . The
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map “preserves fibres” in the sense that the following diagram commutes

SM FM

M

f

πSM πFM

.

Two spin structures (SM1, f1) and (SM2, f2) are considered equivalent if there exists a

diffeomorphism F : SM1 → SM2 such that F(p ◦ s) = F(p) ◦ s ∀s ∈ SL(2,C), p ∈ SM
and f1 = f2 ◦ F .

The existence of spin structures is not guaranteed however. For an orientable man-

ifold to admit a spin structure, the second Stiefel-Whitney class of the tangent bundle

w2(TM) ∈ H2(M;Z2) is required to be trivial [BH59, pp. 350]. This condition is needed

so that the transition functions of the frame bundle can be lifted to transition functions

with values in SL(2,C) in a way which preserves the cocycle condition tij ◦ tjk = tik, so

that the lift gives a well defined principal bundle. This condition is always met in globally

hyperbolic orientable four dimensional spacetimes [Ger70], so objects of Loc necessarily

admit spin structures. We are now in a position to define the background category for the

Dirac field.

Definition 2.3.4. The category SpinLoc is the category whose objects are spin structures

(SM, f) with the base space of SM being an object of Loc. A morphism between objects

(SM1, f1) and (SM2, f2) in this category is given by a map χ : SM1 → SM2 that satisfies

the following conditions:

• It covers a Loc morphism ψ :M1 →M2 between the base spaces of SM1 and SM2

i.e, π2 ◦ χ = ψ ◦ π1.

• It intertwines the right actions of SM1 and SM2 i.e, R2(χ(p), s) = χ(R1(p, s)).

• It satisfies f2 ◦ χ = ψ∗ ◦ f1 where ψ∗ is the induced map on FM arising from the

tangent map of ψ.

The set of inequivalent spin structures are in one to one correspondence with elements

of H1(M;Z2) [Mil63b]. The group H1(M;Z2) is in one to one correspondence with the

set of homomorphisms from the fundamental group π1(M) to Z2, as is proven in corollary

1.1.15. A more detailed overview of these ideas can be found in [Ish78,San10].

Given a choice of spin structure, we can define the spinor and cospinor bundles whose

sections define the Dirac field. The following construction is a special case of a more

general construction known as the associated bundle construction.

Definition 2.3.5. The spinor bundle is DM =
(
DM,πDM ,M,C4, ρ(SL(2,C))

)
where

ρ : Spin(1, 3) → GL(4,C) is the rep (0, 1/2) ⊕ (1/2, 0) we discussed earlier, and DM

consists of equivalence classes of pairs from SM and C4 satisfying the following equivalence

relation

(R(p, s), u) ∼ (p, ρ(s)u) .

43



2.3. COMPLEX SCALAR FIELD AND THE DIRAC FIELD IN LCQFT

Similarly the cospinor bundle is DM =
(
DM,πDM ,M,C4, ρ(SL(2,C))

)
where DM con-

sists of equivalence classes of pairs from SM and C4 such that

(R(p, s), v) ∼ (p, ρ(s)v)

where ρ(s) is the Dirac adjoint of ρ(s). The transition functions of these bundles are

inherited from the spin bundle, which is specified by the choice of spin structure. Given a

section u of DM and a section v of DM, there is a canonical pairing

v[u] =

∫
M
dvolg(x) v(x)[u(x)] .

We can define a covariant derivative on spinor and cospinor fields by pulling back the

Levi-Civita connection on FM to SM, which can then be used to define a connection on

DM and DM (a precise account can be found in [Dim82]). With all this in place, we can

now define the quantum Dirac field.

Definition 2.3.6. The theory of the Dirac field is given by the functor A : SpinLoc→ Alg

which for a SpinLoc object SM (using the spin bundle to denote the object and suppressing

the additional structure in the notation), A (SM) is the algebra with generators ΨSM(u)

ΨSM(v) indexed by smooth compactly supported test sections u ∈ C∞0 (M,DM) and v ∈
C∞0 (M,DM) respectively, and an identity element 1 which satisfy the following relations:

• The mappings u 7→ ΨSM(u) and v 7→ ΨSM(v) are linear.

• ΨSM(u)∗ = ΨSM(u).

• ΨSM(PSM u) = 0 where PSM = −ieµaγa∇µ + m where eµa are frame components6,

γa are a fixed set of gamma matrices satisfying the Clifford algebra relations, and

∇µ is the covariant derivative on spinor fields discussed above.

•
[
ΨSM(u1),ΨSM(u2)

]
+

:= ΨSM(u1)ΨSM(u2) + ΨSM(u2)ΨSM(u1) = 0.

•
[
ΨSM(u),ΨSM(v)

]
= iv[ESMu]1 where ESM is the advanced minus retarded Green

function for the operator PSM.

For a SpinLoc morphism χ : SM→ SN , the theory maps this morphism to A (χ) where

A (χ) ΨSM(u) = ΨSN (χ∗u)

A (χ) ΨSM(v) = ΨSN (χ∗v)

where the action of χ∗ on a spinor field u(p) = [S(p), U(p)]DM (the equivalence class is

defined in definition 2.3.5) is given by

(χ∗u)(p) =

[χ−1(S(p)) , U(p) ]DN if S(p) ∈ χ(SM)

0 otherwise

6Frame components eµa satisfy gµν =
∑
a,b η

abeµae
ν
b where ηab is the Minkowski metric.
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and the action of χ∗ on a cospinor field v(p) = [S(p), V (p)]DM is given by

(χ∗v)(p) =

[χ−1(S(p)) , V (p) ]DN if S(p) ∈ χ(SM)

0 otherwise
.
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Chapter 3

Einstein causality in universal algebras

In some situations a theory may only be defined on spacetimes with special properties, in

which case it is natural to ask if one can extend the theory to more general spacetimes. For

a given spacetime M, this can be done by considering all the subregions of M on which

the theory is defined. The theory assigns an algebra to each of these subregions and if one

subregion embeds inside another, the theory gives us a map between the corresponding

algebras. Using this set of algebras and the relations between them, which is called a

system of local algebras, we can construct a universal algebra [Fre90] (which we define in

definition 3.1.11) associated to M. Given an inclusion morphism ψ :M→ N , there is a

canonical way of assigning a morphism U (ψ) between the associated universal algebras

(to be defined in the next section). The mapping of spacetimes to their corresponding

universal algebras defines a functor, and thus defines an extension of the original theory

that was used to construct the nets of local algebras [Lan12]. A precise account of this

construction, which is known in category theory as a left Kan extension, will be given in

the next section.

In this chapter we shall consider a general class of theories modelled on the theory of the

free scalar/Dirac field. For a given theory A in this class, we define a restricted theory

A ′ by restricting A to contractible spacetime regions. The motivation for considering

contractible regions is that they comprise topologically simple regions of spacetime, which

model “small” regions of spacetime that are not sensitive to the global topology. We then

use the universal algebra techniques discussed above to get an extended theory U from

A ′. The main result of the chapter is that the resulting class of universal theories satisfy

Einstein causality, which is far from obvious given how U is defined. The motivation for

proving this result relates to another method for defining extended theories. In [BSW17],

the authors consider a framework for QFT which involves categories with an additional

orthogonal structure defined by causal disjointness. Theories in this framework are defined

as functors that preserve the orthogonal structure i.e, the induced commutator map for

a pair of orthogonal morphisms is the zero map. The pair formed by a category and its

orthogonal structure is called an orthogonal category, and to each orthogonal category

one can associate a colored operad. Given an embedding of one orthogonal category into

another, there exists an associated operad map that defines an adjunction between the

corresponding categories of algebras. This is called the operadic left Kan extension in the

literature. This adjunction can then be used to define extended theories in such a way

that Einstein causality is necessarily preserved. It is shown [BSW17, Proposition 5.1],
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that if the left Kan extension satisfies Einstein causality, then it will be equivalent to the

operad construction. This chapter therefore shows that the operad construction coincides

with the left Kan extension, when extending the class of theories we consider from globally

hyperbolic contractible spacetimes to globally hyperbolic connected spacetimes.

In order to prove Einstein causality for the class of extended theories we consider, we

introduce some geometrical techniques which also have further applications to analysing

universal algebras. We use these techniques to prove in addition to Einstein causality, the

following result: Let A be a theory of unobservable fields (see definition 3.1.5), then the

universal theory U built up from the restriction of A to contractible regions, is equivalent

to A . This is a useful result which implies that universal theories of this type will be

non-trivial and satisfy Einstein causality. This result is also a significant generalisation

of results obtained by Brunetti, Franceschini and Moretti [BFM09, Proposition B.0.8].

A similar result is also obtained by Lang for real p-form Klein-Gordon fields [Lan12,

Proposition 4.5.6.], although his result is obtained by a longer and more abstract argument.

The techniques used in the proof of the result are inspired by the techniques used by Lang

and Dappiaggi, in particular [DL12, Proposition 3.1], to investigate the quantisation of

electromagnetism in curved spacetime.

The geometrical techniques introduced here are a generalisation of the techniques intro-

duced by Lang in his thesis [Lan12, Lemma 1.1.6]. Although his techniques are sufficient

to prove our result for theories of unobservable fields, they are insufficient to prove Ein-

stein causality for the universal algebras of “even theories” (see definition 3.1.6). Our

techniques also have the advantage of being simpler and more widely applicable.

The results proven here also have applications to the next chapter, in which we inves-

tigate universal algebras formed from the even parts of algebras generated by Fermionic

fields. In that chapter we construct central elements in the universal algebra, which then

allow us to decompose our algebra into a product of subalgebras, one per element of

H1(M,Z2). This therefore links the universal algebra to the classification of spin struc-

tures on M. In order to prove these elements are central however, we need to show that

Einstein causality holds in the universal algebra, which we do in this chapter.

Our results apply to theories defined on globally hyperbolic spacetimes, and are heavily

reliant on results in Lorentzian geometry which apply to this class of spacetimes. For

technical reasons, outlined later and related to the geometric proofs, we restrict to theories

on spacetimes whose Cauchy surfaces are of dimension three or higher. We discuss possible

relaxations of these restrictions in the conclusions.

The outline of the remainder of this chapter is as follows: In Section 1 we outline the

class of theories we are interested in and describe the universal algebra construction in

more detail. In Section 2, we prove the geometrical results that will form the basis of the

techniques used in the rest of the chapter. In section 3 we prove that universal theories

of unobservable fields (see definition 3.1.5) are equivalent to the original theory they are

built from. In the final section we prove Einstein causality for the universal theories of

unobservable fields and “even theories” (see definition 3.1.6).
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3.1 Preliminaries

In this section we will introduce the class of linear theories with hyperbolic equation

of motion. We then take a general theory in this class and restrict it to contractible

spacetimes, forgetting the global structure of the theory. Next we define and give a concrete

characterisation of the universal algebra, and show how this can be used to extend the

theory defined on contractible regions. We end the section by introducing what Einstein

causality means in the context of the extended theories constructed in this section.

We consider a class of theories generalising the complex free scalar and Dirac fields

defined on globally hyperbolic spacetimes. A concise description is provided which com-

bines all such theories into a single theory on a category of bundles over globally hyper-

bolic spacetimes, equipped with Green hyperbolic operators. This strategy is adapted

from [BG11]. Real hermitian free field theories may be described in a similar way but

for simplicity of exposition we restrict to complex fields. We begin by introducing the

following category of vector bundles.

Definition 3.1.1. HVBundLoc is the category whose objects are given by: a Loc object

(M, g) together with a hermitian vector bundle over M, that is, a smooth vector bundle

with finite-dimensional complex vector spaces as fibres, equipped with a smooth, nondegen-

erate, but possibly indefinite, hermitian form that is antlinear in its first argument. The

fibre dimension is constant but arbitrary. Typically we denote an object of HVBundLoc by

the pair (M, E) of its base and total space, leaving the projection π : E → M, hermitian

form 〈, 〉 and other structures from the Loc object implicit.

The morphisms of HVBundLoc are vector bundle morphisms that are fibrewise isometric

isomorphisms that induce a Loc morphism on the base spaces. In particular, each Ψ :

(M1, E1) → (M2, E2) induces a smooth map ψ : M1 → M2, in the sense that π2 ◦ Ψ =

ψ ◦ π1, and the map ψ is required to be a Loc morphism.

Part of the data required for the background structure of our theory, is a choice of

linear differential operator acting on sections of a vector bundle. We now introduce some

definitions which will be needed to describe the conditions we impose on these operators.

Definition 3.1.2. A section f : M → E of a vector bundle (M, E) ∈ HVBundLoc has

spacelike compact support if there is some compact subset K of M, such that supp(f) ⊂
J(K). We use C∞0 (M, E) and C∞sc (M, E) to denote the set of sections with compact and

spacelike compact support respectively.

By integration using the volume form on M, C∞0 (M, E) and C∞sc (M, E) inherit a

hermitian pairing from E, denoted (f, g), defined when f and g have compactly intersecting

supports.

It is worth highlighting that the pairings 〈, 〉 and (, ) are between sections of the vector

bundle, rather than being between a section of the vector bundle and a section of the dual

vector bundle as in [BG11]. This is why our form is Hermitian rather than bilinear. We

now generalise definition 2.3.1 to operators acting on sections of objects of HVBundLoc.

Definition 3.1.3. Let P be a linear differential operator on sections of (M, E) ∈ HVBundLoc.

An advanced/retarded Green operator for P is a linear operator E∓ : C∞0 (M, E) →
C∞sc (M, E) which satisfies
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• P ◦ E∓ = I, where I is the inclusion map from C∞0 (M, E) to C∞sc (M, E).

• E∓ ◦ P |C∞0 (M,E) = I.

• supp(E∓f) ⊂ J∓(suppf).

We use the notation E := E− − E+ for the advanced minus retarded Green operator of

P and use the notation E(f, g) :=
∫
M dvolg 〈f,Eg〉. The operator P is said to be Green

hyperbolic if it admits advanced and retarded Green operators (in which case the Green

operators are unique). We say that P is formally self-adjoint if (f, Pg) = (Pf, g) for all

f, g ∈ C∞(M, E) with compactly intersecting supports.

We can now define the background category which we will use to define the Bosonic

and Fermionic linear theories.

Definition 3.1.4. An object of GlobHypGreen consists of an object (M, E) ∈ HVBundLoc

and a formally self-adjoint Green hyperbolic operator P : C∞(M, E) → C∞(M, E).

A morphism in this category consists of a HVBundLoc morphism Ψ : (M1, E1, P1) →
(M2, E2, P2) which satisfies

P1 ◦Ψ∗ = Ψ∗ ◦ P2 where Ψ∗f = Ψ−1 ◦ f ◦ ψ .

The category GlobHypGreen differs from the category of the same name defined in

[BG11], only in that the bundles in our category are complex vector bundles with hermitian

form rather than real vector bundles with bilinear form. Now that we have our background

category, we can define the theory (which defines a class of theories as will be explained

below) which will be studied for the rest of the chapter.

Definition 3.1.5. The linear Bosonic/Fermionic theory consists of a functor

A ∓ : GlobHypGreen → Alg which assigns to each object G = (M, E , P ) of GlobHypGreen,

the algebra generated by elements A(f)G with f ∈ C∞0 (M, E), and has the following

relations imposed:

• A(af + bg)G = aA(f)G + bA(g)G for all a, b ∈ C.

• A(Pf)G = 0.

• [A(f)G,A(g)G]∓ = 0 where [A,B]∓ = AB ∓BA.

• [A(g)∗G,A(f)G]∓ = iE(g, f)1.

The Alg morphism A ∓(Ψ) the theory associates to a GlobHypGreen morphism Ψ : G1 →
G2, is defined by its action on generators which is

A ∓(Ψ)A(f)G1 = A(Ψ∗f)G2

where Ψ∗ is the pushforward map which takes a section in C∞0 (M1, E1) to a section in

C∞0 (M2, E2) and is defined as

(Ψ∗f)(p) =

(Ψ ◦ f ◦ ψ−1)(p) p ∈ ψ(M1)

0 otherwise
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which is an extension by 0.

The theory A ∓ defined by definition 3.1.5 can be regarded as a class of theories, where

each theory of the class is obtained by restricting A ∓ to a subcategory of GlobHypGreen.

For instance, if we want to model the theory of the free Dirac field, we can do so by defining

a functor D : SpinLoc → GlobHypGreen (where SpinLoc is defined in definition 2.3.4) and

compose to get A + ◦ D as our theory. This functor takes an object (SM, f) ∈ SpinLoc

to (M,DM, PSM) ∈ GlobHypGreen where DM is the spinor bundle defined in definition

2.3.5, and PSM is the Dirac operator associated to (SM, f) defined in definition 2.3.6. The

functor D takes a SpinLoc morphism χ to the bundle morphism χ∗ defined in definition

2.3.6, which satisfies the conditions necessary to be regarded as a GlobHypGreen morphism.

We can see that A − satisfies Einstein causality, given the fourth bullet point condition

and the support properties of Ef given in definition 3.1.3, and similarly see that A +

satisfies graded Einstein causality, which means spacelike separated fields anti-commute.

We also note that A + assigns algebras to some objects of GlobHypGreen (in particular

those objects which do not also belong to the category GlobHypDef defined in [BG11])

which do not admit states, meaning some of the theories obtained from A + as outlined

above describe ghost fields.

We will also be interested in “even theories”, since these will be used in the next chapter

to reconstruct spin structure information from the universal algebra. We therefore give

the definition of the even subtheory of A ∓.

Definition 3.1.6. The even linear Bosonic/Fermionic theory A ∓E assigns to each object

G of GlobHypGreen, the even subalgebra of A ∓(G), which is the fixed point subalgebra with

respect to the automorphism defined by A(f)G 7→ −A(f)G. This subalgebra is generated

by pairs of the form A(f)GA(g)G or A(f)∗GA(g)G. The morphism A ∓E (Ψ) is defined by

its action on generators

A ∓E (Ψ) (A(f)GA(g)G) = A(Ψ∗f)GA(Ψ∗g)G

A ∓E (Ψ) (A(f)∗GA(g)G) = A(Ψ∗f)∗GA(Ψ∗g)G .

From now on to ease notation, we will drop the subscript on the algebra generators

indicating the GlobHypGreen object the algebra corresponds to, opting to leave it implicit

from context. For each of the theories in definitions 3.1.5 and 3.1.6, we would like to

build up a universal theory associated to them. To do this we first need to introduce the

following category.

Definition 3.1.7. Given M ∈ Loc, we define the category LocM whose objects are open

and causally convex subsets ofM equipped with the pulled back metric fromM. Morphisms

in this category are the inclusion maps which embed regions of M into each other.

We use LocMC to denote the full subcategory (see definition 1.4.3) of LocM consisting

of contractible spacetimes.

We now define what a net of local algebras is, which is needed to define universal

algebras.

Definition 3.1.8. A net of local algebras for a spacetime M is a functor T from a full

subcategory of LocM to Alg(h).
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We use Alg(h) in the definition of nets of local algebras in order to guarantee the

existence of the associated universal algebras (defined later). We will be considering nets

of local algebras from LocMC , noting that bundles over contractible bases trivialise. The

following family of functors will be useful for defining the nets of local algebras we will be

analysing.

Definition 3.1.9. Let G = (M, E , P ) be any object of GlobHypGreen, and let π be the

bundle projection π : E → M. The functor IG : LocM → GlobHypGreen is defined to be

the map which takes the object O ∈ LocM to the object
(
O, π−1(O), P |O

)
∈ GlobHypGreen,

where
(
O, π−1(O)

)
is the bundle obtained by restricting E to O. The functor IG takes the

LocM morphism ψij : Oi → Oj to the GlobHypGreen morphism Ψij : (Oi, π−1(Oi), P |Oi)→
(Oj , π−1(Oj), P |Oj ) which is the bundle inclusion map of π−1(Oi) into π−1(Oj).

We now define the nets of local algebras analysed in this chapter.

Definition 3.1.10. The net of local algebras AG is defined to be the composition of func-

tors F ◦A ◦ IG ◦ I, where I is the inclusion functor I : LocMC → LocM, A is a theory in

the sense of definitions 3.1.5 and 3.1.6, and F is the forgetful functor from Alg to Alg(h).

The net of local algebras AG in definition 3.1.10 is the net of local algebras of open con-

tractible causally convex subregions of the underlying spacetime of G, with fields equations

specified by the Green hyperbolic operator of G. Given a net of local algebras, a global

algebra can be obtained by the universal algebra construction of Fredenhagen [Fre90].

Definition 3.1.11. Let C be a full subcategory of LocM. A cocone over a net of local

algebras T : C → Alg(h) is a pair (A, h), where A ∈ Alg(h) and h assigns to each O ∈ C

an Alg(h) morphism hO : T (O)→ A, such that hOi = hOj ◦T (ψij) for every C morphism

ψij : Oi → Oj.
The universal algebra for this net (if it exists), is a cocone (U [T ], φ) satisfying the

following universal property: given any other cocone (A, h), there exists a unique Alg(h)

morphism H : U [T ]→ A such that the following diagram commutes for all ψij : Oi → Oj

T (Oi) T (Oj)

U [T ]

A

T (ψij)

hOi hOj

φOi φOj

H

.

In categorical terms the universal algebra is the colimit of the net of local algebras.

This colimit exists since the category Alg(h) is cocomplete [Lan12, Theorem 2.2.10]. This

is why we used the category Alg(h) in definition 3.1.8, it guarantees the existence of the

universal algebra U [T ] associated to T . The universal property implies that the universal

algebra is unique up to isomorphism. We now provide a concrete model for the universal

algebra which will be used for calculations in subsequent sections.
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Proposition 3.1.12. For a complex vector space V , let T (V ) denote the associative tensor

algebra of V . The algebra T (V ) has componentwise addition, componentwise multiplica-

tion with a scalar, componentwise antilinear involution ∗ and multiplication induced by

the algebraic tensor product.

A model for the universal algebra for the net of local algebras A ∓G is given by the algebra

T

 ⊕
O∈LocMC

U
(
A ∓G (O)

) /I (3.1)

where U is the forgetful functor from Alg(h) to the category of complex vector spaces, and

I is the two-sided ∗-ideal generated by elements of the form(
0,−(AB)(O), A(O) ⊗B(O), 0, . . .

)
∀A,B ∈ A ∓G (O),(

1,−1(O)
O , 0, . . .

)
where 1O is the unit element of A ∓G (O),(

0,
(
A ∓G (ψij)(A)

)(Oj) −A(Oi), 0, . . .
)
∀A ∈ A ∓G (Oi) and all LocMC morphisms ψij : Oi → Oj ,

where for a local algebra element A ∈ A ∓G (O), A(O) denotes the vector in
⊕
O∈LocMC

A ∓G (O)

which has A in the entry indexed by O and zero in all other entries.

The morphisms φO from the local algebras into the universal algebra that characterise

the colimit are given by

φO(A) =
(

0, A(O), 0, . . .
)
∀A ∈ A ∓G (O) .

Proof. See [DL12, Theorem 3.1].

We see from proposition 3.1.12 that the universal algebra U ∓(G) := U [A ∓G ] is gener-

ated by the identity element together with elements AO(f) := φO (A(f)), with O ∈ LocMC
and A(f) ∈ A ∓G (O). We also see from the ideal I in equation (3.1) that the follow-

ing facts hold: generators indexed by a fixed LocMC region O satisfy linearity and equa-

tion of motion relations, due to the first line of elements that generate I which im-

pose local algebra relations. Two generators indexed by the same section AO1(f) and

AO2(f) (with suppf ⊂ O1 ∩ O2) are equal if there is a LocMC morphism between the

sub-indices i.e, O1 ⊂ O2 or vice-versa, due to the third line of elements that generate

I. Commutation/anti-commutation relations can be applied if the sub-indices of the gen-

erators agree or can be embedded in a common LocMC region. However, this is not a

necessary condition for being able to apply commutation/anti-commutation relations; we

can for example use linearity to split generators up into pieces with sections supported in

smaller LocMC regions, resulting in a sum of commutators/anti-commutators which can be

evaluated in the usual way. This is the main strategy that we adopt in this chapter to

prove Einstein causality in universal algebras.

The universal algebra U ∓
E (G) := U [A ∓E G] for even algebras is given by the same

model as in proposition 3.1.12, except the net of local algebras A ∓G is replaced with A ∓EG.

Therefore, the elements A[O(f, g) := φO (A(f)A(g)) and A]O(f, g) := φO (A(f)∗A(g))

generate U ∓
E (G) (we omit the superscript ] or [ for equations valid for both types of
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generator). Again, commutation/anti-commutation relations can be applied in this algebra

if (but not only if) the sub-indices of the generators agree.

Given a GlobHypGreen morphism Ψ between G1 and G2, we get Alg(h) morphisms

U ∓(Ψ) : U ∓(G1)→ U ∓(G2) and U ∓
E (Ψ) : U ∓

E (G1)→ U ∓
E (G2) defined by their action

on generators

U ∓(Ψ)AO(f) = Aψ(O)(Ψ∗f) (3.2)

U ∓
E (Ψ)AO(f, g) = Aψ(O)(Ψ∗f,Ψ∗g) . (3.3)

This gives us functors U ∓,U ∓
E : GlobHypGreen→ Alg(h) which we regard as extensions of

A ∓|LocC and A ∓E |LocC . This construction is a special case of a more general construction

known in category theory as a left Kan extension; in this case of the functor A ◦I along the

functor I : GlobHypGreenC → GlobHypGreen, where GlobHypGreenC is the subcategory of

GlobHypGreen consisting of objects with contractible base spaceM, and I is the inclusion

functor. For more details on the left Kan extension, see section 2.2 of [Lan12].

The main aim of this chapter is to prove that U − and U ∓
E satisfy Einstein causality,

which means that for any G1,G2,G3 ∈ GlobHypGreen with morphisms Ψ13 : G1 → G3

and Ψ23 : G2 → G3, if the base spaces of G1 and G2 are causally disjoint when embedded

in the base space of G3, then the images of U (Ψ12) and U (Ψ23) in U (G3) commute.

3.2 Main geometric results

In the previous section we introduced the generators for the universal algebra and noted

that commutation/anti-commutation relations could only be applied directly if the sub-

indices of the generators agreed. Therefore the main impediment to proving Einstein

causality in the universal algebra arises from spacelike separated LocMC regions that cannot

be embedded in a common LocMC region. We therefore establish some results in Lorentzian

geometry which will allow us to circumvent this problem. We begin with a definition.

Definition 3.2.1. A Cauchy ball of a manifold Σ is an open subset B ⊂ Σ, such that there

exists a chart (U,ψ) of Σ with B ⊂ U and ψ(B) an open relatively compact ball centred

at the origin. If Σ is an acausal spacelike hypersurface, then we use the term Cauchy

diamond to denote the Cauchy development of a Cauchy ball.

Cauchy balls of acausal spacelike hypersurfaces have the useful property that their

corresponding Cauchy diamonds are objects of LocMC , and using the results of [BS06],

they can be extended to Cauchy surfaces of M.

Our main strategy for proving Einstein causality will involve using partitions of unity to

split up generators into parts which are each supported in Cauchy diamonds. We then need

a way of embedding disjoint Cauchy diamonds into a larger object of LocMC . Our method

for doing so roughly corresponds to connecting regions by thin tubes in such a way that

the combined region will remain contractible. The motivation for considering Cauchy balls

comes from the fact that in general it may not be possible to connect two general disjoint

contractible subsets of a manifold with a single contractible subset. We will however prove

that disjoint Cauchy balls can be connected by a Cauchy ball in proposition 3.2.7. We

make use of the fact that Cauchy balls come with coordinate systems, in order to control
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how a connecting tube enters each ball in such a way as to not spoil the contractibility of

the connected region. We first introduce a couple of definitions.

Definition 3.2.2. Let S be a submanifold of a Riemannian manifold X with metric g.

A normal vector to S at p, is a tangent vector n ∈ TpX such that gp(n, v) = 0 for all

v ∈ TpS ⊂ TpX. The set of all normal vectors to S at p is denoted by NpS. The normal

bundle of S as a set is then defined to be

NS =
⊔
p∈S

Np

which is a subset of TM and can therefore be given the relative topology inherited from

TM. The atlas {(Vi, φi)} of S defines an atlas {(NVi, φ̃i)} of NS where NVi =
⊔
p∈Vi Np

and φ̃i : NVi → Rn × Rn is given by

φ̃i([p, i, v]) = (φi(p), v) .

Definition 3.2.3. Let NS be the normal bundle of a submanifold S in a Riemannian

manifold (X, g). The normal exponential map exp⊥ : NS → X sends (p, v) ∈ NS to γ(1),

where γ is the (X, g) geodesic such that γ(0) = p and γ̇(0) = v. A tubular neighbourhood

of S is the diffeomorphic image under exp⊥ of a neighbourhood of the zero section in NS.

We now establish a couple of lemmas which will then be used to prove a proposition

which makes the notion of “connecting regions by thin tubes in such a way that the

combined region will remain contractible” more precise and shows that it is always possible.

Lemma 3.2.4. Let Σ be an n-manifold and γ : (0, 1) → Σ be a smooth embedded curve,

so that the image of γ is a contractible submanifold of Σ. Given tubular neighbourhoods Γ

of γ and Γ′ of γ restricted to a connected subset of (0, 1), such that Γ′ ⊂ Γ, there exists a

region B such that Γ′ ⊂ B ⊂ B ⊂ Γ and coordinates on Γ in which B is an open ball.

Proof. We may choose normal coordinates (x, x⊥) ∈ R × Rn−1 in which Γ is given by

(−1, 1) × Ball(1) where Ball(r) denotes a ball in Rn−1 of radius r centred on the origin.

By supposition Γ′ ⊂ Γ, hence we can find a, r < 1 such that Γ′ ⊂ (−a, a) × Ball(r). We

choose a∗ ∈ (a, 1) and r∗ ∈ (r, 1) and set

b =
r∗ tan(πa∗/2)√

r2
∗ − r2

and then define B to be the set

B =

{
(x, x⊥) ∈ R× Rn−1

∣∣∣ ‖x⊥‖2
r2
∗

+
tan2(πx/2)

b2
< 1

}
which is an open ball of radius r∗ in coordinates (x′, x⊥) where x′ = r∗

b tan(πx/2). We

now consider a point (x, x⊥) ∈ Γ′, which means |x| < a < 1 and ‖x⊥‖ < r, and we get

‖x⊥‖2

r2
∗

+
tan2(πx/2)

b2
<
r2

r2
∗

+
tan2(πa/2)

b2
= 1 +

r2 − r2
∗

r2
∗

+
r2
∗ − r2

r2
∗

tan2(πa/2)

tan2(πa∗/2)

= 1 +
r2
∗ − r2

r2
∗

(
−1 +

tan2(πa/2)

tan2(πa∗/2)

)
< 1
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where the final inequality is due to the fact that a < a∗ and r < r∗, making the second

term negative. This inequality defines points of B, hence Γ′ ⊂ B. We can also see that

any point in B must satisfy

‖x⊥‖2

r2
∗
≤ 1 and

tan2(πx/2)

b2
≤ 1

which implies ‖x⊥‖ ≤ r∗ < 1 and |x| < 1 since tan diverges at ±π/2. This implies B ⊂ Γ,

and therefore B satisfies the conditions of the lemma.

Lemma 3.2.5. Let Σ be a connected n dimensional manifold with n > 1. Let {Bn}Nn=1

be a finite collection of Cauchy balls of Σ with disjoint closures, then Σ\
⋃
n≤N Bn is a

connected manifold.

Proof. The region Σ\
⋃
n≤N Bn is open since

⋃
n≤N Bn is closed, so it inherits a manifold

structure from Σ. Since each Bn is a Cauchy ball, there exist Cauchy balls βn ⊃ Bn

because the closure of Bn is contained in the chart in which it is a ball. Moreover, we

can chose the βn to all be disjoint from each other, because Σ is a paracompact Hausdorff

space, and therefore disjoint closed subsets of Σ have disjoint open neighbourhoods.

The region β1 ∩ Σ\B1 = β1\B1 is homeomorphic to an n dimensional anulus, which is

connected when n > 1. We can therefore use the last part of the reduced Mayer-Vietoris

sequence

H̃0(β1\B1)→ H̃0(Σ\B1)⊕ H̃0(β1)→ H̃0(Σ)

which is exact, to argue that Σ\B1 is connected since H̃0(β1\B1) = H̃0(β1) = H̃0(Σ) = 1.

Since β2 is disjoint from B1, β2 ∩ Σ\(B1 ∪ B2) = β2\B2 is also homeomorphic to an

anulus. We can therefore repeat the above Mayer-Vietoris sequence argument with the

replacements β1 7→ β2, B1 7→ B2 and Σ 7→ Σ\B1, to show that Σ\(B1 ∪B2) is connected.

In this way we can inductively apply the Mayer-Vietoris sequence argument above to show

that Σ\
⋃
n≤N Bn is connected.

Proposition 3.2.6. Let Σ be a connected n dimensional manifold with n 6= 2. Let B1 and

B2 be Cauchy balls of Σ, and let d1 : [0, 1] → Σ and d2 : [0, 1] → Σ be smooth embedded

curves such that for i ∈ {1, 2}, imag(di) ⊂ Bi and di has end-points on the boundary of

Bi. For the n = 1 case, we additionally require that d1 and d2 have the same orientation.

Then there exists a smooth curve P : [0, 1]→ Σ such that

• P |(0,1) ∈ Σ\(B1 ∪B2).

• P (0) = d1(1), P (1) = d2(0), and d2 ∗ (P ∗ d1) (see definition 1.1.9 for path multipli-

cation) is a smooth embedded curve.

Proof. If n = 1, then Σ must be R or S1 since it is connected. It is then clear that such a

P exists, since we have required the orientations of d1 and d2 to match in the n = 1 case,

which ensures that we can choose P to have the same orientation as d1 and d2 so that

d2 ∗ P ∗ d1 is a smooth embedded curve.

We now focus on the n > 1 cases. We see from lemma 3.2.5 that Σ\(B1 ∪ B2) is

a connected manifold, hence it is path connected, and thus there is a continuous curve
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P : [0, 1]→ Σ such that: P (0) = d1(1), P (1) = d2(0) and P |(0,1) ∈ Σ\(B1∪B2). The path

γ := d2 ∗(P ∗d1) applied to [1/4, 1/2] yields the image of P . Let L denote [0, 1]\(1/4, 1/2).

Any map γ′ ∈ C0([0, 1],Σ)γ|L (see definition 1.2.13) can be expressed as d2 ∗ (P ′ ∗ d1) for

some P ′ : [0, 1]→ Σ.

Since Σ\(B1 ∪ B2) is open, there exists a neighbourhood N ⊂ C0([0, 1],Σ)γ|L of γ

such that for all γ′ ∈ N , γ′|(1/4,1/2) ⊂ Σ\(B1 ∪ B2). If γ′ ∈ N is a smooth embedding,

then its associated P ′ (see previous paragraph) satisfies the the bullet point conditions of

the proposition. The conditions of theorem 1.2.14 are met for the pair (γ, L), since γ|L
consists of the segments given by d1 and d2, which are both embeddings and therefore

self-transverse (see definition 1.2.11) immersions. If n > 2, dim(Σ) ≥ 2 dim([0, 1]) + 1

hence we can use corollary 1.2.16 to find such a smooth embedding γ′ ∈ N .

We believe the result in proposition 3.2.6 also holds in the case that the manifold Σ is

2-dimensional, and we provide the following sketch proof.

Sketch Proof. Since dim(Σ) = 2 by supposition, dim(Σ) ≥ 2 dim([0, 1]) so we instead apply

theorem 1.2.14 to find γ′ ∈ N such that γ′|(0,1) is a smooth self-transverse immersion, and

apply proposition 1.2.15 to conclude that γ′ has finitely many double points. This implies

that the map P ′ associated to γ′ has finitely many double points. We can therefore obtain

an injective map P ′′ which is a piecewise smooth immersion connecting d1 and d2, by

removing the segments from P ′ that form closed loops at its double points. We then need

to smooth out the kinks at the image of the former double points where the closed loops

were removed. This can be done by interpolating between the two segments that meet at

a kink using a bump function. Presumably, if the interpolations are done in sufficiently

small neighbourhoods of each kink, the resulting P ′′′ remains injective, although we have

not been able to obtain a formal proof of this fact. Assuming that this can be done,

d2 ∗ (P ′′′ ∗ d1) is an embedding, and therefore P ′′′ satisfies the conditions of proposition

3.2.6.

Proposition 3.2.7. Let Σ be a connected manifold, then any finite union of Cauchy balls

{Bn}Nn=1 in Σ with disjoint closures is contained in a Cauchy ball of Σ.

Proof. To prove the proposition we will show that B1 and B2 can be contained in a Cauchy

ball of Σ whose closure is disjoint from
⋃

2<n≤N Bn. It then follows by induction that all

of the Bn can be contained in a common Cauchy ball of Σ. We begin by constructing a

metric on Σ which “behaves well” near B1 and B2, so that the tubular neighbourhood

of a segment connecting B1 and B2 constructed from this metric enters B1 and B2 in a

controlled way.

The Cauchy balls B1 and B2 are balls in the charts (U1, ψ1) and (U2, ψ2) respectively.

By supposition, the closures of the B1 and B2 are disjoint, so U1 and U2 can be chosen

to be disjoint from each other since M is a paracompact Hausdorff space and therefore

normal. Throughout this proof we will use the convention that a sub-index denoted by

i belongs to the index set {1, 2}, and a sub-index denoted by n belongs to the index set

{1, . . . , N}. The definition of Cauchy ball requires Bn ⊂ Un, hence we can find slightly

larger Cauchy balls B′n and βn such that Bn ⊂ B′n and B′n ⊂ βn ⊂ Un.
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We consider the open manifold Σ̃ := Σ\
(
β1 ∪ β2

)
and find an open cover U of Σ̃ by

charts {(Vm, φm)}. Since Σ̃ is an open subset of Σ, U ∪ {U1, U2} is an open cover of Σ.

We now use a partition of unity {ρα} subordinate to this cover to construct a Riemannian

metric g for Σ

g =
∑
α

ρα δij dx
i
α ⊗ dxjα

where xα are the coordinates in the chart with index α, which could be one of the (Ui, ψi)

or (Vm, φm) charts. Paracompactness ensures that there are only finitely many nonzero

terms in this sum for each point of Σ. Inside β1 ∪ β2, the sum over α for g collapses to

a single term, since Ui is the only set in the cover that contains points of βi due to the

fact that βi ∩ Vm = ∅ and U1 ∩ U2 = ∅. This implies that ψi is an isometry between the

metric spaces (βi, Dg) and (ψi(βi), DE), where Dg is the distance function associated to g

and DE is the usual Euclidean metric. We use Ri and ri to denote the radii of ψi(βi) and

ψi(B
′
i) in the DE metric.

We now consider a pair of smooth paths di : [0, 1] → βi which trace out diameters of

the Cauchy balls so that ψi ◦di is a diameter of ψi(βi). The manifold Σ′ := Σ\
⋃

2<n≤N Bn

is connected by lemma 3.2.5, hence we can apply proposition 3.2.6 to this manifold to

show that there exists a smooth embedded curve P in Σ′ that connects d1 and d2 i.e,

P (0) = d1(1), P (1) = d2(0), and P |(0,1) ⊂ Σ′

such that γ := d2 ∗ (P ∗ d1) which connects the diameters of the Cauchy balls is a smooth

embedded curve.

Since imag(γ)∩Σ′ and B′1 ∪B′2 are compact, Dg applied to (imag(γ)∩Σ′)× (B′1 ∪B′2)

has a minimum. Since imag(γ)∩Σ′ and B′1 ∪B′2 are disjoint, the distance between them,

denoted by δ1, must be strictly greater than zero, hence the minimum distance between

them must also be greater than zero. Similarly, the minimum distance between imag(γ)

and
⋃

2<n≤N βn, denoted by δ2, is greater than zero since they are both compact and

disjoint.

Since γ is an embedding, its image is a submanifold [Hir76, Theorem 1.3.1], so we

can use the normal exponential map exp⊥ (see definition 3.2.3) defined by the metric g

to find a tubular neighbourhood of γ|(0,1) [Hir76, Theorem 4.5.2]. By applying exp⊥ to a

sufficiently small neighbourhood of the zero section of the normal bundle of γ, we get a

tubular neighbourhood Γ for γ|(0,1) with fibres of length less than δ1 and δ2. Having fibres

of length less than δ1 ensures that fibres of points of γ outside βi cannot enter B′i, and

having fibres of length less than δ2 ensures none of the fibres of Γ enter
⋃

2<n≤N βn.

We now show that the points of γ whose fibres intersect B′i are precisely those in γ∩B′i.
Working in the chart (Ui, ψi), the fibres of points of γ in βi have an initial segment which

is a straight line perpendicular to diameter of ψi(βi) traced out by ψi ◦ di, since ψi is an

isometry between (βi, Dg) and (ψi(βi), DE). Therefore, in order for a fibre of βi\B′i to

intersect B′i, it cannot be entirely contained in βi, it must have a segment which extends

from the boundary of βi to the boundary of B′i, and this segment will have a length of at

least Ri− ri. The situation is shown in figure 3.1. The tubular neighbourhood Γ̃ ⊂ Γ with

fibres of length less that ε < min{δ1, δ2, R1 − r1, R2 − r2}, therefore has the property that
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Figure 3.1: Fibre of a point p ∈ βi\B′i entering B′i.

only points of γ inside each B′i can have fibres which intersect B′i. Having fibres of length

less than δ2 ensures that the closure of Γ̃ is disjoint from
⋃

2<n≤N βn.

The region Γ̂ := Γ̃∪B′1 ∪B′2 is the image of exp⊥ applied to N := exp−1
⊥ (Γ̃∪B′1 ∪B′2).

In the (Ui, ψi) coordinates, the geodesics between points in βi are just straight lines, and

γ traverses the diameter of βi. Therefore, the restriction of exp⊥ to Ñ := exp−1
⊥ (B′1 ∪B′2)

is a smooth immersion which is also injective, since every point in a sphere is uniquely

specified by a position on its diameter and a vector orthogonal to the diameter. Moreover,

Ñ is compact since B′i is compact and Σ is Hausdorff, which implies exp⊥ |Ñ has smooth

inverse since it is a smooth immersion on a compact domain. We also see that exp⊥ is

injective on the whole of N , since we have arranged Γ̃ so that only points in γ∩B′i can have

fibres which can intersect B′i. We therefore see that exp⊥ |N is a smooth injective map with

smooth inverse, and is therefore a diffeomorphism, hence Γ̂ is a tubular neighbourhood of

γ|(0,1). This tubular neighbourhood still retains the property that its closure is disjoint

from
⋃

2<n≤N βn, since B′1 and B′2 are disjoint from
⋃

2<n≤N βn.

We will use γ′ to denote the segment of γ that has the initial segment connecting B1

to β1, and the final segment connecting B2 to β2 removed. This ensures the closure of

imag(γ′) is contained in Γ̂. We obtain a tubular neighbourhood Γ′ of γ′|(0,1), by applying

exp⊥ to the subset N ′ ⊂ N that only contains fibres of γ′, and these fibres differ from

those in N by a constant scale factor λ, where supi∈{1,2}(r̃i/ri) < λ < 1 and r̃i is the

radius of ψi(Bi) in the DE metric. The lower bound on λ implies B1 ∪ B2 ⊂ Γ′ and the

upper bound implies Γ′ ⊂ Γ̂.

We can then use lemma 3.2.4 to find a region B such that Γ′ ⊂ B ⊂ B ⊂ Γ̂ and a chart

(Γ̂, ψ̂) such that B is a ball in this chart. We therefore have a Cauchy ball B of Σ which

contains B1 and B2, and has closure which is disjoint from
⋃

2<n≤N βn ⊃
⋃

2<n≤N Bn. We

can therefore continue by induction to find a Cauchy ball of Σ that contains all of the Bn.

Using proposition 3.2.7, we can establish the following useful result.
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Lemma 3.2.8. Given a connected manifold Σ and a compact subset ΣK ⊂ Σ, there exists

a finite cover of ΣK by Cauchy balls {Bi} of Σ such that any two of the Cauchy balls in

the cover can be contained in a larger Cauchy ball.

Proof. The manifold Σ can be equipped with a Riemannian metric to give it the structure

of a Riemannian manifold. Every point in a Riemannian manifold has a geodesically convex

neighbourhood with respect to this metric [Mil63a, lemma 10.3], so we can cover ΣK by

a set of geodesically convex Cauchy balls {Bri(σi)} of radius ri centred at σi. As ΣK is

compact, there exists a Lebesgue number δ > 0 for this cover, which means for all σ ∈ ΣK

there exists some j such that Bδ(σ) ⊂ Brj (σj). Since Brj (σj) is geodesically convex, any

two points in it are connected by a unique geodesic, this implies the exponential map

expσ : Bδ(0) ⊂ TσΣ→ Bδ(σ) is injective for all σ ∈ ΣK . Therefore, every point of ΣK has

an injectivity radius greater than δ > 0, which in turn implies Bε(σ) is a Cauchy ball of

Σ for all σ ∈ ΣK and ε ∈ (0, δ).

We now consider the cover {Bδ/2(σ̃i)} of ΣK by Cauchy balls of radius δ/2. If any

two members of this cover intersect, we can pick some σ̃ij ⊂ Bδ/2(σ̃i) ∩ Bδ/2(σ̃j) and

see that Bδ(σ̃ij) (which as argued in the previous paragraph is a Cauchy ball) contains

Bδ/2(σ̃i)∪Bδ/2(σ̃j), since the geodesic distance between a point of Bδ/2(σ̃i) and σ̃ij is less

than δ. If they do not intersect, we use proposition 3.2.7 to find a Cauchy ball containing

them, so in either case there is a larger Cauchy ball that contains any two members of the

cover.

We finish this section with a couple of results in Lorentzian geometry which will be

used in the subsequent sections.

Lemma 3.2.9. Given a Cauchy surface Σ and a cover of an open subset Σ′ ⊆ Σ by Cauchy

balls {Bn}, the union OΣ′ :=
⋃
nD(Bn) is a relatively time compact (see definition 1.3.5)

LocM region.

Proof. For any p ∈ M, J±(p) will only intersect finitely many of the {Bn} since the

intersection of J±(p) with Σ is compact. Therefore J±(p) will only intersect finitely many

of the Cauchy diamonds D(Bn), each of which are relatively compact, and hence the

intersection of OΣ′ with J±(p) is relatively compact. This proves that OΣ′ is relatively

time compact.

Consider a causal curve γ with end-points in OΣ′ , these past and future end-points

must be in Cauchy diamonds D(Bi) and D(Bj) respectively, for some i and j in the index

set for the cover. Any inextendible extension of this causal curve must intersect Bi and

Bj (definition of Cauchy development). Let us assume that these intersections occur at

different points. Since Bi and Bj are subregions of Σ, this would mean the causal curve

intersects Σ twice, but this contradicts the fact that Σ is a spacelike Cauchy surface.

This therefore implies that any inextendible extension of γ intersects Bi and Bj at the

same point in Σ. The causal curve γ is therefore the union of the segments which lie

to the future/past of this intersection point. The past segment of γ has end-points in

D(Bi) which is causally convex, hence the past segment is entirely contained in D(Bi),

and similarly the future segment is entirely contained in D(Bj). The curve as a whole is

therefore contained in D(Bi)∪D(Bj). This establishes the causal convexity of OΣ′ , which

is also open since each of the Cauchy diamonds D(Bn) is open, hence OΣ′ ∈ LocM.
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Proposition 3.2.10. Given any O1,O2 ∈ LocMC and causally disjoint compact sets K1 ⊂
O1 and K2 ⊂ O2, there exists a Cauchy surface Σ such that J(K1)∩Σ and J(K2)∩Σ are

disjoint and contained in O1 and O2 respectively.

Proof. We begin by finding open neighbourhoods U1 ⊃ K1 and U2 ⊃ K2 such that U1 ⊂ O1

and U2 ⊂ O2 are also causally disjoint. To do this we equipM with a Riemannian metric

gR with corresponding distance function d :M×M→ R, which by [O’N83, Proposition

5.18] will generate the topology of M. Each point p ∈ Ki is a finite distance δp > 0 (as

measured by d) from J(K2), since K1 and J(K2) are disjoint (by supposition K1 and K2

are causally disjoint) and closed (J(K2) is closed due to theorem 1.3.12). The open ball

Bεp(p) of radius εp < δp centred at p will therefore be disjoint from J(K2), and the set

{Bεp(p) ∩ O1} over all p ∈ K1 defines an open cover K1 contained in O1. Since K1 is

compact, this cover can be refined to a finite open subcover. Let U1 be the union of all the

balls in the finite subcover of K1, then K1 ⊃ U1 ⊂ O1, and U1 has compact closure which

is causally disjoint from K2, since the closure of a finite number of relatively compact balls

is compact, and εp < δp ensures disjointness from J(K2). We then repeat this procedure

to get U2 which is causally disjoint from U1 (which is possible since U1 is compact) and

therefore U1 and U2 are causally disjoint.

The regions Ũ1 := J+(U1) ∩ J−(U1) and Ũ2 := J+(U2) ∩ J−(U2) are open (since

the causal past/future of an open set in a globally hyperbolic spacetime is open, see for

example [FV12, Lemma A.8]) causally convex subsets of M, and due to theorem 1.3.15

they are globally hyperbolic and therefore admit Cauchy surfaces Σ1 and Σ2 respectively.

We also have Ũ1 ⊂ O1 and Ũ2 ⊂ O2 since the causal convex hull of a subset of a causally

convex region will remain a subset. Since J(K1)∩Σ1 ⊂ Ũ1, this implies J(K1)∩Σ1 ⊂ O1

(and similarly J(K2) ∩ Σ2 ⊂ O2). The regions Ũ1 and Ũ2 are causally disjoint due to the

fact that any future-directed causal curve from Ũ1 to Ũ2 has past endpoint in J+(U1) and

future endpoint in J−(U2), and therefore extends to a causal curve from U1 to U2. This

therefore implies that J(K1) ∩ Σ1 and J(K2) ∩ Σ2 are disjoint.

We now use the smooth Urysohn’s lemma [AMR88, proposition 5.5.8] to construct a

smooth function χ1 : Σ1 → R which satisfies χ1 = 1 on J(K1) ∩ Σ1 and χ1 = 0 outside

of an open neighbourhood of J(K1) ∩ Σ1. By Sard’s theorem, the set of regular values of

χ1 is dense in R, hence we can find y ∈ (0, 1) which is a regular value of χ1. This implies

Σ̃1 := χ−1
1 ([y,∞)) ⊃ J(K1) ∩ Σ1 is closed, since the preimage of a continuous function

on a closed set is closed. The closure of Ũ1 is compact (see [HM19, Proposition 2.3]),

and a closed subset of a compact set in a Hausdorff space is also compact, which implies

Σ̃1 is compact. The region Σ̃1 is also a submanifold with boundary, since the boundary

of [y,∞) is a regular value, and the preimage of a smooth function on a regular value

is a submanifold [Hir76, Theorem 1.3.2]. We then repeat this procedure on Ũ2 to get a

compact submanifold with boundary Σ̃2 ⊂ Σ2, which contains J(K2) ∩ Σ2. We can now

use [BS06, Theorem 1.1] to find a Cauchy surface Σ of M which contains Σ̃1 and Σ̃2,

which implies J(K1) ∩ Σ = J(K1) ∩ Σ1 and J(K2) ∩ Σ = J(K2) ∩ Σ2, and therefore Σ

satisfies the requirements of the proposition.
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3.3 Universal field algebras

Before proving the main result of the chapter, we will show another application of these

geometrical techniques. The aim of this section is to analyse the universal theory U ∓

(which as mentioned in section 3.1 can be viewed as a class of theories) and show that it

is equivalent to the original theory A ∓. This result establishes the non-triviality of the

universal algebra constructed from A ∓, a result which is far from obvious and for general

theories is not guaranteed. We begin by establishing the following result, which will be

used in this section and the next section.

Lemma 3.3.1. For any G = (M, E , P ) ∈ GlobHypGreen, relatively time compact LocM

region O, and f ∈ C∞0 (M, E) such that J(suppf) ⊂ J(O), there exists f̃ with support in

O such that f̃ = f + Pg with g ∈ C∞0 (M, E).

Proof. The collection {J+(O) , J−(O) ,M\J(suppf)} forms an open cover of M, since

by supposition J(suppf) ⊂ J(O). We use the partition of unity {χ+, χ−, χ⊥} subordinate

to this cover to construct the following section

f̃ = f − Pχ+E−f − Pχ−E+f . (3.4)

When restricting to J(suppf)\J−(O) we get χ− = χ⊥ = 0 and therefore f̃ = f −
PE−f = 0 when restricted to J(suppf)\J−(O), similarly we get f̃ = 0 when restricted

to J(suppf)\J+(O). Since supp(E±f) ⊂ J±(suppf), we also see that f̃ = 0 outside of

J(suppf). It follows that supp(f̃) ⊂ J+(O)∩J−(O) and therefore supp(f̃) ⊂ O since O is

a causally convex subregion ofM. Since O is relatively time compact, J±(O)∩J∓(suppf)

is relatively compact by lemma 1.3.20. Since supp(Pχ±E∓f) ⊂ J±(O)∩J∓(suppf) which

is relatively compact, the latter two terms in equation (3.4) sum to a single term of the

form Pg with g ∈ C∞0 (M, E).

To prove the equivalence between A ∓ and U ∓, we will establish a natural transfor-

mation from A ∓ to U ∓. To do this we define a collection of homomorphisms in the

following proposition and show that they satisfy a certain property. This property will

then be used to show these homomorphisms are isomorphisms. We then also show that

the homomorphisms form the components of a natural transformation.

Proposition 3.3.2. For G = (M, E , P ) ∈ GlobHypGreen, there is an Alg(h) morphism

HG : A ∓(G)→ U ∓(G) such that for any O ∈ LocMC , we have HG ◦ [A ∓ ◦ IG](iO) = φO

where iO is the inclusion map iO : O →M and φO : A ∓G (O)→ U ∓(G) are the morphisms

from definition 3.1.11.

Proof. We consider the following elements of U ∓(G)

AU (f) :=
∑
i

AOi(i∗Oi [χif ]) (3.5)

where f ∈ C∞0 (M, E), and {χi} is a partition of unity subordinate to a cover {Oi} of M,

with Oi ∈ LocMC . This definition is independent of which partition of unity is chosen. To

see this we consider another partition of unity {ρj} subordinate to {O′j}, and let I
(ij)
i and
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I
(ij)
j be the inclusion maps from Oi ∩ O′j into Oi and O′j respectively. We then perform

the following calculation

AU (f) :=
∑
i

AOi(i∗Oi [χif ]) =
∑
i,j

AOi(i∗Oi [ρjχif ]) =
∑
i,j

AOi∩O′j (I
(ij) ∗
i i∗Oi [ρj

χif ])

=
∑
i,j

AO′j (I
(ij)
j ∗ I

(ij) ∗
i i∗Oi [ρj

χif ]) =
∑
i,j

AO′j (i
∗
O′j

[ρjχif ]) =
∑
j

AO′j (i
∗
O′j

[ρjf ])) .

The universal algebra U ∓(G) is generated by elements of the form AO(i∗Of)) with f ∈
C∞0 (O, π−1(O)) (and the identity), and we can see that by picking a trivial partition of

unity we get AU (f) = AO(i∗Of). We therefore see that U ∓(G) is generated by the AU (f)

elements (and the identity), and therefore investigate their properties. It is easy to see

from equation (3.5) that the generators are linear i.e,

AU (af + bg) = aAU (f) + bAU (g) (3.6)

and consequently the field equations are satisfied

AU (Pf) = AU (P
[∑

i

χi
]
f) =

∑
i

AU (Pχif) =
∑
i

AOi(i∗Oi [Pχif ])

=
∑
i

AOi(POii∗Oi [χif ]) = 0 (3.7)

where we have used the fact that P is a linear operator that does not increase support.

We can also prove that these generators satisfy the same commutation relations as the

generators of the original theory. To see this we consider generators AU (f) and AU (g).

We then consider a Cauchy surface Σ of M and note that Σ ∩ J(supp f ∪ supp g) is

compact by corollary 1.3.17, so we can use lemma 3.2.8 to get a finite cover {Bi} of

Σ ∩ J(supp f ∪ supp g) by Cauchy balls such that any two members of the cover can be

contained in a larger Cauchy ball. We then consider the region OΣ :=
⋃
iD(Bi), which by

lemma 3.2.9 is a relatively time compact LocM region. Combining this with the fact that

the generators AU (f) satisfy linearity and equation of motion relations, we can use lemma

3.3.1 to find sections f̃ and g̃ supported in OΣ such that AU (f) = AU (f̃), AU (g) = AU (g̃)

and 〈g̃, Ef̃〉 = 〈g,Ef〉. We can then use a partition of unity {ρi} subordinate to {D(Bi)}
to get

[AU (g)∗,AU (f)]∓ = [AU (g̃)∗,AU (f̃)]∓ =
∑
i,j

[AU (ρj g̃)∗,AU (ρif̃)]∓

=
∑
i,j

[AD(Bij)(i
∗
D(Bij)

[ρj g̃])∗,AD(Bij)(i
∗
D(Bij)

[ρif̃ ])]∓

=
∑
i,j

iE(ρj g̃, ρif̃)1 = iE(g̃, f̃)1 = iE(g, f)1 (3.8)

where Bij is a Cauchy ball which contains Bi and Bj (which exists due to our choice of

cover). These generators can also be seen to satisfy

[AU (f),AU (g)]∓ = 0 (3.9)
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by using the same techniques as in the previous case. We define a map HG : A ∓(G) →
U ∓(G) by its action on generators: HG

(
A(f)

)
= AU (f) and HG(1) = 1. From equations

(3.6)-(3.9) it follows that HO is a well-defined Alg(h) morphism. We can also see that for

all O ∈ LocMC and A(f) ∈ A ∓G (O)

(
HG ◦ [A ∓ ◦ IG](iO)

)(
A(f)

)
= HG

(
A(iO ∗f)

)
= AU (iO ∗f) = AO(f) := φO

(
A(f)

)

We also establish the following useful property of the morphisms A ∓(iO).

Lemma 3.3.3. The morphisms A ∓(iO) are jointly-epic i.e, α ◦ A ∓(iO) = β ◦ A ∓(iO)

for all O ∈ LocMC implies α = β.

Proof. Let D : HVBundLoc→ Vec be the functor which takes an object of HVBundLoc to

its vector space of test sections, and let A be the generating field of A ∓ which is a natural

transformation D → F ◦ A ∓, where F : Alg → Vec is the forgetful functor. Suppose

α, β : A ∓(M)→ A are Alg morphisms such that α ◦A ∓(iO) = β ◦A ∓(iO). Then

F(α) ◦ AM ◦D(iO) = F(α ◦A ∓(iO)) ◦ AO = F(β ◦A ∓(iO)) ◦ AO = F(β) ◦ AM ◦D(iO)

by naturality and the supposition. We then use the fact that the morphisms D(iO) are

jointly epic (as can be seen by splitting f into parts supported in each Oi with a partition

of unity) to get F(α) ◦ AM = F(β) ◦ AM .

Now let T (M) be the free unital *-algebra over D(M), with canonical map Ψ :

D(M) → F(T (M)) [in Vec], and q : T (M) → A ∓(M) [in Alg] the quotient, so that

AM = F(q) ◦ΨM. Then F(α) ◦AM = F(β) ◦AM implies F(α ◦ q) ◦ΨM = F(β ◦ q) ◦ΨM

and the universal property of the free unital *-algebra construction entails that α◦q = β◦q.
Since q is an epimorphism, we get α = β.

The algebra A ∓(G) together with the inclusion morphisms from its local algebras form

a cocone over the net of local algebras. The universal property of U ∓(G) implies there

must exist a unique Alg(h) morphism H̃G : U ∓(G)→ A ∓(G) such that H̃G ◦φO = [A ∓ ◦
IG](iO). The collection of morphisms {H̃G} defines a canonical natural transformation

H̃ : A ∓ → U ∓. We are now in a position to prove the main result of this section.

Theorem 3.3.4. The canonical natural transformation H̃ : A ∓ → U ∓ is a natural

isomorphism.

Proof. We use the map HG from proposition 3.3.2 to get the following pair of commutative
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triangles

A ∓G (O) U ∓(G)

U ∓(G)

φO

HG ◦ H̃G
IdU ∓(G)HG ◦ H̃G ◦ φO

.

The inner triangle commutes by definition, the outer triangle commutes due to the fact that

HG ◦ [A ∓ ◦ IG](iO) = φO (by proposition 3.3.2) combined with H̃G ◦φO = [A ∓ ◦ IG](iO).

The universal algebra together with the morphisms HG ◦ H̃G ◦φO also form a cocone over

the net of local algebras, therefore the universal property of U ∓(G) implies HG ◦ H̃G =

IdU ∓(G). We also get H̃G ◦HG ◦ [A ∓ ◦ IG](iO) = [A ∓ ◦ IG](iO), which by the joint-epic

property of the [A ∓ ◦ IG](iO) morphisms (see lemma 3.3.3) implies H̃G ◦HG = IdA ∓(G).

Therefore HG is an isomorphism.

Given a GlobHypGreen morphism Ψ : G1 → G2, we perform the following calculations

(leaving the algebra that each generator belongs to implicit)

(
U ∓(Ψ) ◦HG1

)
A(f) = U ∓(Ψ)AU (f) = U ∓(Ψ)

∑
i

AOi(i∗Oi [χif ])

=
∑
i

AOi(Ψ∗i∗Oi [χif ]) = AU (Ψ∗f)

and

(
HG2 ◦A ∓(Ψ)

)
A(f) = HG2A(Ψ∗f) = AU (Ψ∗f)

from which it follows that

(
U ∓(Ψ) ◦HG1

)
A(f) =

(
HG2 ◦A ∓(Ψ)

)
A(f) ,

and therefore we see that the collection HG over all G ∈ GlobHypGreen defines a natural

isomorphism between A ∓ and U ∓.

3.4 Einstein causality for universal even algebras

We shall first prove the following result for generators of U ∓
E (G).

Proposition 3.4.1. Let G ∈ GlobHypGreen and O1 and O2 be objects of LocMC and

let AO1(u, v) and AO2(f, g) be algebra elements of U ∓
E (G) of the form specified below

definition 3.1.11. If supp(u) ∪ supp(v) and supp(f) ∪ supp(g) are causally disjoint, the

following relation holds in U ∓
E (G)

[AO1(u, v),AO2(f, g)]− = 0 .

Proof. The idea of the proof here is similar to the computation of the commutation/anti-
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commuatation relations in proposition 3.3.2, where we used lemma 3.3.1 to get generators

with sections supported in a convenient neighbourhood. This allowed us to split the

algebra generators as sums over generators labelled by smaller LocMC regions that could be

embedded, pairwise, in common LocMC regions. We could then evaluate each commutator

separately using the relations from the local algebras and sum the results. Summing the

results was possible because each local commutator resulted in something proportional to

the identity, so there were no issues with combining the terms. In the even algebra case,

the local commutator

[AO′(u′, v′),AO′(f ′, g′)]−

can result in something that has field content, which would make summing the end re-

sults an issue, because the linearity relation for fields can only be applied if they can be

embedded in a common LocMC region. The local commutator will only result in something

proportional to the identity if supp(u′) ∪ supp(v′) and supp(f ′) ∪ supp(g′) are causally

disjoint. We therefore need to ensure that when we use lemma 3.3.1, the resulting sections

remain causally disjoint from each other.

Let K1 = supp(u)∪supp(v) and K2 = supp(f)∪supp(g). Since K1 and K2 are causally

disjoint we can use proposition 3.2.10 to find a Cauchy surface Σ ofM such that J(K1)∩Σ

and J(K2) ∩ Σ are disjoint and contained in O1 and O2 respectively. Since J(K1) ∩ Σ

and J(K2)∩Σ are compact by corollary 1.3.17, we can use lemma 3.2.8 to construct open

covers {B(1)
n } and {B(2)

n } of J(K1) ∩Σ and J(K2) ∩Σ respectively (superscripts are used

to denote which cover a given Cauchy ball belongs to), with the property that any two

members of a given cover can be contained in a larger Cauchy ball. The covers {B(1)
n } and

{B(2)
n } can be made disjoint from each other and contained in O1 and O2 respectively,

by sufficiently shrinking the Cauchy balls, and this does not change the properties of the

covers.

Let Σ1 and Σ2 be Cauchy surfaces of O1 and O2 respectively. Every inextendible causal

curve that intersects B
(1)
n must intersect Σ1 since B

(1)
n ⊂ O1, and therefore D(B

(1)
n ) ⊂

D(Σ1). This implies that Õ1 :=
⋃
nD(B

(1)
n ) and Õ2 :=

⋃
nD(B

(2)
n ) are contained in the

LocM regions D(Σ1) and D(Σ2) respectively. The regions Õ1 and Õ2 are also causally

disjoint because the hypersurfaces
⋃
nB

(1)
n and

⋃
nB

(2)
n are disjoint regions of a single

Cauchy surface Σ. By construction J(K1) ⊂ J(Õ1), and by lemma 3.2.9 Õ1 is a relatively

time compact LocM region, so we can use lemma 3.3.1 to find sections ũ and ṽ supported

in Õ1 such that AD(Σ1)(u, v) = AD(Σ1)(ũ, ṽ). Similarly we can find sections f̃ and g̃

supported in Õ2 such that AD(Σ2)(f, g) = AD(Σ2)(f̃ , g̃).

We then construct partitions of unity {ρn} and {φn} subordinate to the covers {D(B
(1)
n )}

and {D(B
(2)
n )} of Õ1 and Õ2. Given Cauchy balls B

(1)
i , B

(1)
j , B

(2)
k and B

(2)
l (superscript

denoting the cover which the Cauchy ball comes from) from these covers, we would like

to find a single Cauchy ball that contains all of them. There is a larger Cauchy ball

Bij ⊂
⋃
nB

(1)
n that contains B

(1)
i and B

(1)
j (this follows from the properties of the cover

that we’ve used), and we similarly find Bkl ⊂
⋃
nB

(2)
n that contains B

(2)
k and B

(2)
l . The

Cauchy balls Bij and Bkl are disjoint, since
⋃
nB

(1)
n and

⋃
nB

(2)
n are disjoint, so we can

therefore use proposition 3.2.7 to find a Cauchy ball Bijkl that contains Bij and Bkl. We
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can now prove the proposition by using our partitions of unity as follows

[AO1(u, v),AO2(f, g)]− = [AD(Σ1)(u, v),AD(Σ2)(f, g)]− = [AD(Σ1)(ũ, ṽ),AD(Σ2)(f̃ , g̃)]−

=
∑
i,j,k,l

[AD(Σ1)(ρiũ, ρj ṽ),AD(Σ2)(φkf̃ , φlg̃)]−

=
∑
i,j,k,l

[AD(Bijkl)(ρiũ, ρj ṽ),AD(Bijkl)(φkf̃ , φlg̃)]− = 0

where the second equality follows from the fact that O1 ⊂ D(Σ1) and O2 ⊂ D(Σ2). The

final equality is a consequence of using the commutation relations from the local algebras

(yielding 0 because Õ1 and Õ2 are causally disjoint), which can be applied in this context

because the sub-indices of the generators agree for each term in the sum.

We are now in a position to prove the main result of the chapter.

Theorem 3.4.2. Einstein causality holds in the theories U − and U ∓
E , and graded Ein-

stein causality holds in U +.

Proof. Since A − and U − are isomorphic by theorem 3.3.4, and Einstein causality holds

in A −, it automatically follows that Einstein causality also holds in U −. Similarly U +

satisfies graded Einstein causality since A + does (see comments below definition 3.1.5).

The result for U ∓
E follows from the fact that the result holds for generators, as proven in

proposition 3.4.1.
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Chapter 4

Spin structures and Fermionic quantisation

In this chapter we shall consider the class of linear Fermionic QFTs defined in the previous

chapter. The aim of this chapter is to show how topological information, in particular the

number of inequivalent spin structures a given spacetime admits, can be extracted from a

given linear Fermionic theory.

We obtain spin information from the theory A , by considering extensions of subtheories

of A . From A we define an even subtheory AE , which associates to M the subalgebra

of A (M) generated by pairs of quantum fields (see definition 3.1.6). Starting from AE ,

we then define a restricted theory A ′E , by restricting the subtheory AE to contractible

causally convex spacetime regions. We can then obtain an extended theory from A ′E ,

which we will call the universal even theory associated to A . This extension technique

relies on the universal algebra construction [Fre90] (see definition 3.1.11), which is known

in category theory as a left Kan extension (see section 1 of chapter 3 for details).

For each linear Fermionic theory in the class of theories defined in definition 3.1.5, there

is a corresponding universal theory. The main result of this chapter is that each of the

resulting universal even theories maps a spacetimeM, to an algebra that decomposes into

a product of subalgebras. Moreover, these subalgebras are indexed by the set H1(M,Z2).

This cohomology set counts the number of distinct spin structures the spacetime manifold

M permits, assuming its second Stiefel-Whitney class is trivial. A spin structure (see

definition 2.3.3) encodes information about how the spin bundle covers the frame bundle,

and is required to define fields that transform in half-integer spin representations of the

Lorentz group.

The idea of using the universal algebra to analyse topological aspects of quantum field

theories has also been explored by Lang in his PhD thesis [Lan12]. In this thesis Lang

uses categorical techniques to prove the existence of twisted variants of a quantum field

theory, and to classify them. The analysis is restricted to analysing twisted variants of

theories defined on locally constant bundles, which have constant transition functions.

We do not impose such a constraint in this analysis. Another analysis using the universal

algebra construction has been conducted for the source-free Maxwell field by Dappiaggi

and Lang [DL12]. Their analysis has a similar flavour; they find that the centre of their

universal algebra corresponds to topological invariants of the theory. Specifically, they

find that each element of the second De Rham cohomology group has a corresponding

central element in the universal algebra.

The chapter is organised as follows: In section 1 we introduce a class of elements in the
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universal algebra, denoted by Y, which will eventually be shown to be central elements and

will be used to define projection operators to decompose the universal algebra. We show

that each element of Y can be defined solely in terms of four LocMC regions (J+, J−, I1, I2)

satisfying I1 ∪ I2 ⊂ J+ ∩ J−, which we call a quadruple (see definition 4.1.2). In section

2 we then show how we can relate the elements of Y to the topology of the spacetime

the universal algebra was built from. This is done by defining an equivalence relation

on the set of quadruples, which ensures that equivalent quadruples correspond to equal

elements of Y, and then defining a map L from equivalence classes of quadruples to the set

π̃1(M) which is closely related to the fundamental group of the background spacetime (see

definition 4.2.3). In section 3 we develop some geometrical techniques that are then used

in section 4 to prove that the map L is a bijection. In section 5 we define a semi-group

structure on Y, and use the results from previous section to show that the resulting semi-

group is isomorphic to π1(M, p)/π1(M, p)2 (and is therefore a group). In section 6 we use

the results from the preceding section to prove additional properties of the elements of Y,

in particular that they are central. From these properties, it follows that the elements of

Y can be used to define projections that are mutually orthogonal, which then allows us

to decompose the universal algebra into a product of subalgebras. The homomorphism

established in the previous section then shows that these subalgebras are in one to one

correspondence with the elements of H1(M,Z2). We then finish with some concluding

remarks, outlining further work that could build on these results.

4.1 Distinguished elements of the universal algebra

Throughout this chapter we will be analysing the theory A +
E : GlobHypGreen → Alg

defined in definition 3.1.6. As was noted in section 3.1, this single theory encompasses

a whole class of theories, and in particular it contains the even subtheory of the Dirac

field, which is obtained by restricting A +
E to the image of SpinLoc in GlobHypGreen (see

comments below definition 3.1.5). We will be focusing on U +
E (G) for a general object

G = (M, E , P ) in GlobHypGreen. In this section we will define certain elements of U +
E (G)

which will help us find topological invariants of M. To do this, we first consider algebra

elements of the local algebra A +
EG(O) of the form

b(f, g) =
(
A(f) +A(f)∗

)(
A(g) +A(g)∗

)
(4.1)

where f and g are compactly supported sections of E , and are chosen to be normalised

as E(f, f) = E(g, g) = −i (see definition 3.1.3 for E(·, ·)). This is mostly done for

convenience, but also to exclude sections that cannot be normalised which would make

the above product collapse to zero. It can be seen from the anti-commutation relations in

definition 3.1.5 that

b(f, f) =
(
A(f) +A(f)∗

)2
= A(f)2 +A(f)A(f)∗ +A(f)A(f)∗ +A(f)∗ 2 = 1 .
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Using this result we see these elements also satisfy another useful relation (h also denotes

a compactly supported section of E)

b(f, h)b(h, g) =
(
A(f) +A(f)∗

)(
A(h) +A(h)∗

)(
A(h) +A(h)∗

)(
A(g) +A(g)∗

)
=
(
A(f) +A(f)∗

)
b(h, h)

(
A(g) +A(g)∗

)
= b(f, g) .

If E(f, g) = 0, we can also use the anti-commutation relations to get the following relation

b(f, g) =
(
A(f) +A(f)∗

)(
A(g) +A(g)∗

)
= −

(
A(g) +A(g)∗

)(
A(f) +A(f)∗

)
= −b(g, f) .

It is also easy to see that b(f, g)∗ = b(g, f), for convenience we will summarise these

relations here:

i) b(f, f) = 1.

ii) b(f, h)b(h, g) = b(f, g).

iii) b(f, g)∗ = b(g, f).

iv) b(f, g) = −b(g, f) if E(f, g) = 0.

These local algebra elements also satisfy another useful property.

Lemma 4.1.1. The elements b(f, g) generate A +
EG(O).

Proof. We first prove that normalised generators A(f)A(g) and A(f)A(g)∗ (meaning

E(f, f) = E(g, g) = −i) of A +
EG(O) can be obtained from the b(f, g) elements. To

do this we expand out the following elements

b(f, g) = A(f)A(g) +A(f)A(g)∗ +A(f)∗A(g) +A(f)∗A(g)∗

ib(if, g) = −A(f)A(g)−A(f)A(g)∗ +A(f)∗A(g) +A(f)∗A(g)∗

ib(f, ig) = −A(f)A(g) +A(f)A(g)∗ −A(f)∗A(g) +A(f)∗A(g)∗

b(if, ig) = −A(f)A(g) +A(f)A(g)∗ +A(f)∗A(g)−A(f)∗A(g)∗

and then take linear combinations to get

A(f)A(g)∗ =
1

4
[b(f, g)− ib(if, g) + ib(f, ig) + b(if, ig)]

A(f)A(g) =
1

4
[b(f, g)− ib(if, g)− ib(f, ig)− b(if, ig)] .

From these normalised generators we can generate A +
EG(O), hence the elements b(f, g)

generate A +
EG(O).

This implies that the elements bO(f, g) := φO(b(f, g)) with f and g normalised generate

U +
E (G). With these elements and their relations now established, we introduce a definition

which will be used to define the elements of the universal algebra we want to study.
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Definition 4.1.2. A quadruple consists of an ordered set of four LocMC regions (J+, J−, I1, I2)

satisfying the condition (which is depicted in figure 4.1)

I1 ∪ I2 ⊂ J+ ∩ J− (4.2)

Figure 4.1: Constraint on the regions used to define a quadruple (note that I1 and I2 need
not be disjoint and can belong to the same path-component of J+ ∩ J−).

We are now in a position to introduce the algebra elements that we will be analysing

for the rest of the chapter.

Definition 4.1.3. Given a quadruple (J+, J−, I1, I2) and a pair of compactly supported

normalised sections f and g of E with supports in I1 and I2 respectively, we can construct

the following algebra elements of U +
E (G)

Y(J+,J−,I1,I2)(f, g) = bJ+(f, g)bJ−(g, f) . (4.3)

We will use Y ⊂ U +
E (G) to denote the set of all elements of the form (4.3).

We will now explore some of the properties of the elements of Y.

Lemma 4.1.4. Y(J+,J−,I1,I2)(f, g)∗ = Y(J−,J+,I1,I2)(f, g) for any normalised sections f and

g compactly supported in I1 and I2 respectively.

Proof. Using relation iii) we get

Y(J+,J−,I1,I2)(f, g)∗ =
(
bJ+(f, g)bJ−(g, f)

)∗
= bJ−(g, f)∗bJ+(f, g)∗ = bJ−(f, g)bJ+(g, f)

= Y(J−,J+,I1,I2)(f, g) .

Lemma 4.1.5. Y(J+,J−,I1,I2)(f, g) = Y(J+,J−,I1,I2)(f, g
′) for any normalised sections g, g′

compactly supported in I2 and any normalised section f compactly supported in I1.

Proof. Using the relations i), ii) and the cocone property of the universal algebra we get

Y(J+,J−,I1,I2)(f, g) = bJ+(f, g)bJ−(g, f)
i)+ii)

= bJ+(f, g)bI2(g, g′)bI2(g′, g)bJ−(g, f)

= bJ+(f, g)bJ+(g, g′)bJ−(g′, g)bJ−(g, f)
i)
= bJ+(f, g′)bJ−(g′, f) = Y(J+,J−,I1,I2)(f, g

′) .
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Note that to get from the first line to the second line we have used the fact that I2 embeds

into J+ and into J− (this is part of the definition of a quadruple).

Proposition 4.1.6. Y(J+,J−,I1,I2)(f, g) = Y(J+,J−,I1,I2)(f
′, g′) for any normalised sections

f, f ′ compactly supported in I1 and g, g′ compactly supported in I2.

Proof. Let g1, g2, g3 be linearly independent normalised sections with compact support in

I2, using these we construct the following sections

g12 = E(f, g1)g2 − E(f, g2)g1 and g23 = E(f, g2)g3 − E(f, g3)g2

which we then use to construct the following section

g′′ = E(f ′, g12)g23 − E(f ′, g23)g12

which has the property that E(f, g′′) = 0 = E(f ′, g′′) (which still holds after normalising

g′′). Relation iv) implies Y(J+,J−,I1,I2)(f, g) = Y(J+,J−,I2,I1)(g, f) if E(f, g) = 0, so we can

use this and the fact that E(f, g′′) = 0 = E(f ′, g′′) in the following calculation

Y(J+,J−,I1,I2)(f, g) = Y(J+,J−,I1,I2)(f, g
′′) = Y(J+,J−,I2,I1)(g

′′, f)

= Y(J+,J−,I2,I1)(g
′′, f ′) = Y(J+,J−,I1,I2)(f

′, g′′) = Y(J+,J−,I1,I2)(f
′, g′)

where we have used lemma 4.1.5 to change g to g′′ in the first equality, to change f to f ′

in the first equality on the second line, and to change g′′ to g′ in the final equality.

Corollary 4.1.7. Y(J+,J−,I1,I2)(f, g) = Y(J+,J−,I2,I1)(g
′, f ′) for any normalised sections

f, f ′ and g, g′ compactly supported in I1 and I2 respectively.

Proof. As was shown in the proof of proposition 4.1.6, there exists a section g′′ such that

Y(J+,J−,I1,I2)(f, g) = Y(J+,J−,I1,I2)(f, g
′′) = Y(J+,J−,I2,I1)(g

′′, f) .

We can then apply proposition 4.1.6 to the RHS of this equation to change g′′ to g′ and

f to f ′, thus proving the result.

Lemma 4.1.8. For LocMC regions J, J+, J−, I1 and I2 such that I1 ∪ I2 ⊂ J ∩ J+ ∩ J−,

the following equality holds

Y(J+,J,I1,I2)(f, g) Y(J,J−,I1,I2)(f
′, g′) = Y(J+,J−,I1,I2)(f

′′, g′′) ,

for all normalised sections f, f ′, f ′′ and g, g′, g′′ compactly supported in I1 and I2 respec-

tively.

Proof. Using proposition 4.1.6 we get

Y(J+,J,I1,I2)(f, g) Y(J,J−,I1,I2)(f
′, g′) = Y(J+,J,I1,I2)(f

′′, g′′) Y(J,J−,I1,I2)(f
′′, g′′)

= bJ+(f ′′, g′′)bJ(g′′, f ′′)bJ(f ′′, g′′)bJ−(g′′, f ′′) = bJ+(f ′′, g′′)bJ−(g′′, f ′′)

= Y(J+,J−,I1,I2)(f
′′, g′′) .
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We have now established the properties we will need of the elements of Y to allow us

to decompose U +
E (G). It is worth noting at this point that the decomposition will be

trivial if the elements of Y only include the identity. This is because, as we will show

later, the elements of Y define projection operators onto subalgebras. The reason that we

are trying to extend A +
E rather than A +, is to avoid the elements of Y being trivial. To

see why this is, we introduce the map F (f) = A(f) +A(f)∗ that takes sections of π−1(O)

(where π is the bundle projection π : E → M) to elements of A +
G (O). The map F has

the property that F (f) admits an inverse F (f)−1. We then note that the elements b(f, g)

take the form

b(f, g) = F (f)F (g)−1 .

If we were to analyse the elements of Y in U +(G) instead of U +
E (G), we would see that

they would all collapse to the identity, since we could use the cocone property of the

universal algebra as follows

Y(J+,J−,I1,I2)(f, g) = φJ+(b(f, g))φJ−(b(g, f)) = φJ+(F (f)F (g)−1)φJ−(F (g)F (f)−1)

= φJ+(F (f))φJ+(F (g))−1φJ−(F (g))φJ−(F (f))−1

= φI1(F (f))φI2(F (g))−1φI2(F (g))φI1(F (f))−1 = 1 .

Such a manipulation cannot be done in U +
E (G) since the equality going from the first line

to the second would not be possible: the element F (f) does not belong to the local even

algebra A +
EG(J+). With this clarified, we will now begin to establish a relation between

the elements of Y and the spacetime topology.

4.2 Relating the universal algebra to the spacetime topology

By virtue of proposition 4.1.6, the elements of the set Y from definition 4.1.3 only depend

on the quadruple used to define them. We can therefore define a map from quadruples to

elements of Y. The aim of this section is to relate the universal algebra to the topology

of M by studying the quadruples associated to elements of Y. We begin by defining a

notion of equivalence on the set of quadruples.

Definition 4.2.1. We define an equivalence relation on the set of quadruples, generated

by the following relations

i) j+ ⊂ J+, j− ⊂ J−, i1 ⊂ I1, i2 ⊂ I2 ⇒ (j+, j−, i1, i2) ∼ (J+, J−, I1, I2).

ii) (J+, J−, I1, I2) ∼ (J+, J−, I2, I1).

Thus, two quadruples are considered equivalent if they can be linked by a sequence of

quadruples related by one of the above conditions. We use Q to denote the set of all

equivalence classes of quadruples.

We now define a map from equivalence classes of quadruples into the subset Y of the

universal algebra U +
E (G).

Definition 4.2.2. We define the map q : Q → Y as

q([Q]) = Y(J+,J−,I1,I2)(f, g)
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where (J+, J−, I1, I2) ∈ [Q], and f and g are normalised sections compactly supported in

I1 and I2 respectively.

This map is well defined because as mentioned above, elements of Y only depend on

the quadruple used to define them, and also the notion of equivalence in definition 4.2.1

has the property that equivalent quadruples are mapped by q to the same element of Y.

To see this we note that quadruples related by i) give the same algebra element, due to

the cocone property of the universal algebra, and quadruples related by ii) give the same

algebra element due to corollary 4.1.7. The map q : Q → Y is also surjective, by virtue of

definition 4.1.3.

We now switch our attention from Y to Q, and will establish a relation between Q
and the topology of M. In order to do this we first note that each quadruple resembles

a loop; there are two segments represented by J+ and J−, and they are stitched together

at I1 and I2 (see figure 4.1). Before we can make this association of loops to quadruples

precise, we need to make a choice of equivalence classes of loops that we will associate to

each quadruple. These equivalence classes of loops should be chosen so that quadruples

in the same equivalence class in Q, map to the same equivalence class of loops. For this

purpose we introduce the following set.

Definition 4.2.3. Let π̃1(M) denote the set of equivalence classes of continuous functions

γ : S1 → M where equivalence is given by a combination of free homotopy equivalence

(need not preserve base-point) and identifying loops with opposite orientations.

Our choice of notation for π̃1(M) stems from the fact that it is closely related to

the fundamental group π1(M), although we have not placed a group structure on π̃1(M)

yet. As we shall see, two quadruples related by ii) in definition 4.2.1 will have the same

loop associated to them but with opposite orientations. We therefore identify loops with

opposite orientations so that equivalent quadruples are associated to equivalent loops (see

lemma 4.2.7). We now define a set of curves associated to a given quadruple, and then

prove the set is non-empty and defines a unique homotopy class.

Definition 4.2.4. A (J+, J−, I1, I2)-curve is a continuous map γ : S1 →M such that γ

can be decomposed as

γ = p5 ∗ p4 ∗ p3 ∗ p2 ∗ p1 with

imag(p1) ⊂ I1 imag(p2) ⊂ J+ imag(p3) ⊂ I2 imag(p4) ⊂ J− imag(p5) ⊂ I1

and we refer to the above decomposition as a (J+, J−, I1, I2)-decomposition of γ.

Proposition 4.2.5. For any quadruple (J+, J−, I1, I2), there exists a curve γ which is a

(J+, J−, I1, I2)-curve, and any two (J+, J−, I1, I2)-curves are homotopic.

Proof. The existence of (J+, J−, I1, I2)-curves follows from the fact that each quadruple

region is path-connected, which combined with the fact that I1 ∪ I2 ⊂ J+ ∩ J− ensures

that any point in I1 or I2 can be connected by a continuous path to any point in J+ or

J−.
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Now consider two (J+, J−, I1, I2) curves f and g with the following (J+, J−, I1, I2)-

decompositions:

f = p5 ∗ p4 ∗ p3 ∗ p2 ∗ p1

g = q5 ∗ q4 ∗ q3 ∗ q2 ∗ q1 .

Let δ1 be a path from p1(0) to q1(0) with image in I1, δ2 be a path from p3(0) to q3(0)

with image in I2 and δ3 be a path from p5(0) to q5(0) with image in I1. These δ paths

exist because each region of the quadruple is path-connected. As multiplication of paths

is associative up to homotopy, we may suppress the notation concerning the grouping of

multiplication. First we consider the following path

δ1 ∗ q1 ∗ q2 ∗ δ2 ∗ p2 ∗ p1

where the bar notation refers to a path being reversed i.e, p(t) = p(1− t). The above path

is a closed loop contained in I1 ∪ J+ = J+. Since J+ is contractible, this loop must be

contractible to a point. This implies

p2 ∗ p1 ∼rel{0,1} δ2 ∗ q2 ∗ q1 ∗ δ1

where ∼rel{0,1} means there is an end point fixing homotopy between the two paths. We

can then repeat this argument to find

p4 ∗ p3 ∼rel{0,1} δ3 ∗ q4 ∗ q3 ∗ δ2

p5 ∼rel{0,1} δ1 ∗ q5 ∗ δ3

since these paths are confined to the contractible sets J− and I1 respectively. We can now

use the fact that given paths a1, a2, b1 and b2 such that a1 ∼rel{0,1} b1 and a2 ∼rel{0,1} b2

this implies a1 ∗ a2 ∼rel{0,1} b1 ∗ b2. Using this we find

f ∼ p5 ∗ (p4 ∗ p3) ∗ (p2 ∗ p1) ∼ (δ1 ∗ q5 ∗ δ3) ∗ (δ3 ∗ q4 ∗ q3 ∗ δ2) ∗ (δ2 ∗ q2 ∗ q1 ∗ δ1)

∼ δ1 ∗ g ∗ δ1 ∼ g

where the final homotopy is a non base-point preserving homotopy. We have therefore

shown that any two (J+, J−, I1, I2) curves are homotopic.

We now define a map fromQ to π̃1(M) which we prove is well-defined in the subsequent

lemma.

Definition 4.2.6. The map L : Q → π̃1(M) maps each equivalence class [Q] ∈ Q to the

equivalence class [g] ∈ π̃1(M) where g is a Q-curve.

Lemma 4.2.7. The map L : Q → π̃1(M) is well defined.

Proof. Let q and Q be quadruples related by i) in definition 4.2.1, so that the regions

of q are contained in the regions of Q. Then clearly any q-curve will also be a Q-curve,

and since any two Q-curves are homotopic by proposition 4.2.5, this implies q-curves and

Q-curves belong to the same equivalence class in π̃1(M).
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Let Q and Q be quadruples related by ii) in definition 4.2.1, and let g be a Q-curve

and f be a Q curve. This implies f will also be a Q-curve, which by proposition 4.2.5

implies f is homotopic to g, and therefore f and g belong to the same equivalence class

in π̃1(M).

We now have the following pair of maps

Y q←−−−− Q L−−−−→ π̃1(M) .

Our strategy for relating the spacetime topology to U +
E (G) will be to show that L is a

bijection, and use its inverse to obtain a map from π̃1(M) to Y. In order to do this we

will need to introduce some geometrical techniques.

4.3 Lorentzian geometry techniques for relating quadruples

The geometrical techniques introduced in this section will be used to prove injectivity of

the map L in the next section. To prove injectivity of L, we need to prove L([Q]) =

L([q]) ⇒ [Q] = [q]. This is done by finding a sequence of equivalent quadruples linking

Q ∈ [Q] and q ∈ [q]. Since we are free to pick any representatives of [Q] and [q] for our

map L, we should choose convenient ones. In this section we show that every equivalence

class [Q] has a representative whose regions are Cauchy developments of subregions of an

arbitrary Cauchy surface. This allows us to compare [Q] and [q] using such representatives

based on a common Cauchy surface, thereby ensuring each region of the intermediate

representatives is causally convex (a condition necessary for them to be LocMC regions).

One of the main techniques we will use in this section is to expand Cauchy balls

(see definition 3.2.1) so that their Cauchy development (see definition 1.3.7) contains the

original Cauchy ball translated in time, which will be used to transport quadruples towards

a Cauchy surface. We first define how we will expand Cauchy balls and then prove a result

about this expansion.

Definition 4.3.1. Given a Cauchy ball B of Σ, we define the open ball Ball(B, δ) con-

taining B to be the set {σ ∈ Σ | inf σ̃∈B dk(σ, σ̃) < δ}, where dk is the instantaneous optical

metric on Σ (see definition 1.3.11).

Lemma 4.3.2. Given a Cauchy ball B of Σ, there exists δ > 0 such that Ball(B, δ) is

contained in a Cauchy ball B′ of Σ.

Proof. Let (U,ψ) be the chart which makes B a Euclidean ball so that ψ(B) = {x ∈
Rn : dE(0, x) < r} where 0 is the origin of the ball and dE is the Euclidean met-

ric. Since the closure of B is contained in U , there exists some ε > 0 such that B′ :=

ψ−1 ({x ∈ Rn : dE(0, x) < r + ε}) ⊂ U . The topology of Σ is equivalent to the topol-

ogy induced by the instantaneous optical metric dk [Lee03, Theorem 13.29], hence ψ

can also be regarded as a continuous function between the metric spaces (B′, dk) and(
ψ(B′), dE

)
. Since B′ is compact (U is relatively compact) we can use the Heine-Cantor

theorem1 [Rud86, Theorem 4.19] to further assert that ψ, as a mapping between metric

spaces is uniformly continuous. Therefore given ε as above we can find δ > 0 such that

1A continuous function between two metric spaces with compact domain space is uniformly continuous.
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the open δ-ball (in the dk metric) about any point x ∈ B gets mapped inside the ε-ball

(in the dE metric) about ψ(x). This implies Ball(B, δ) ⊂ B′ which proves the lemma.

Quadruples can be related by a chain of embeddings, which is defined as follows.

Definition 4.3.3. A chain of embeddings is a sequence of LocMC regions such that for each

pair of regions next to each other in the sequence, one is a subset of the other.

We can now establish a lemma which we subsequently use to prove a result which will

allow us to find chains of embeddings relating regions that differ in their time coordinate.

Lemma 4.3.4. Let Σ̃ be a relatively compact subset of a Cauchy surface Σ. Then there

exists δ > 0 such that Ball(Σ̃, δ) is relatively compact.

Proof. The radius of the largest ball B about the origin in TpΣ such that the exponential

map restricted to B is a diffeomorphism is called the injectivity radius at p. The minimum

of the injectivity radii over all points in Σ̃, which we denote by 2δ, is positive since Σ̃ is

relatively compact [Kli11, Proposition 2.1.10]. By compactness of Σ̃, we can cover Σ̃ by

a finite set {B(pn, δ)|n ≤ N} where pn ∈ Σ̃ and B(pn, δ) is the image of the exponential

map applied to a ball in TpnΣ̃ centered on the origin of radius δ. We then see that

{B(pn, 2δ)|n ≤ N} forms a finite cover of Ball(Σ̃, δ) by relatively compact sets, since any

point in Ball(Σ̃, δ) is within a distance of 2δ from at least one of the points of {pn|n ≤ N}.
A union of finitely many relatively compact sets is compact, hence Ball(Σ̃, δ) is relatively

compact.

Lemma 4.3.5. Let M be a globally hyperbolic spacetime in standard form with manifold

R × Σ, with relatively compact Σ̃ ⊂ Σ. Then for any compact subset S ⊂ R and δ > 0

such that Ball(Σ̃, δ) is compact (such a δ exists by lemma 4.3.4), there exists ε > 0 such

that

t ∈ S, t′ ∈ R and |t− t′| ≤ ε ⇒ {t} × Σ̃ ⊂ D
(
{t′} × Ball(Σ̃, δ)

)
. (4.4)

Proof. We will use a slight generalisation of the proof of [Few15, Lemma 2.5], which proves

the above result in the special case where S consists of a single point, and requires the

additional constraint on δ that Ball(Σ̃, δ) is relatively compact and has non-empty exterior.

The assumption of a non-empty exterior is needed for a subsequent result in [Few15,

Lemma 2.5], but is unnecessary for our purposes.

Since we are concerned with Cauchy developments which depend only on the causal

structure of (M, g), it will be convenient to replace g with the conformally related metric

g̃ in definition 1.3.11 which is of the form

g̃ = dT ⊗ dT − kΣ(T ) . (4.5)

This means that g̃ restricted to each Cauchy surface T −1(τ) yields a family of metrics

kτ = −i∗τ g|T −1(τ) on Σ, where iτ is the inclusion map iτ : Σ→ R×Σ such that i(σ) = (τ, σ)

for σ ∈ Σ.
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Let T̂(δ)Σ̃ denote the subset of the tangent bundle TΣ consisting of unit vectors (in

the k0 metric) in the tangent spaces of points in the closure of Ball(Σ̃, δ). By supposition,

δ has been chosen so that Ball(Σ̃, δ) is relatively compact, hence T̂(δ)Σ̃ is compact. Using

the fact that a continuous function defined on a compact domain has image contained in

a compact set, which is therefore bounded, there exists a constant C > 1 such that

kt(v, v)

kτ (v, v)
=
kt(v̂, v̂)

kτ (v̂, v̂)
≤ C ∀ (t, τ, v̂) ∈ S × Sε × T̂(δ)Σ̃ (4.6)

where v̂ = v/
√
k0(v, v) and Sε consists of all points with a distance ≤ ε from S. To show

that {t}× Σ̃ ⊂ D
(
{t′}×Ball(Σ̃, δ)

)
, we must show that any inextendible causal curve that

intersects {t} × Σ̃ necessarily intersects {t′} × Ball(Σ̃, δ). We therefore consider a generic

causal curve γ which we parameterise, in the coordinates used to express the metric in

equation (4.5), as γ(τ) = (τ, σ(τ)) ∈ R×Σ where σ(τ) is a path traced out in Σ. In these

coordinates, the causality of γ with respect to the metric g̃ (which ensures causality with

respect to g) implies

kτ (σ̇(τ), σ̇(τ)) ≤ 1 .

We further require σ(t) ∈ Σ̃ so that γ intersects {t} × Σ̃. Without loss of generality we

assume t′ > t, and let t̃ be the first point after t such that σ leaves Ball(Σ̃, δ), which implies

σ(t̃) is in the closure of Ball(Σ̃, δ). We can then apply the bound obtained in equation

(4.6) to get

dkt(σ(t), σ( t̃ )) ≤
∫ t̃

t
dτ
√
kt(σ̇(τ), σ̇(τ)) ≤

∫ t̃

t
dτ
√
C
√
kτ (σ̇(τ), σ̇(τ)) ≤

√
C|t− t̃|

where the first inequality becomes an equality if σ is a geodesic, and the third inequality

is obtained from the causality of γ.

We now choose ε such that ε < δ/
√
C. If t̃ ≤ t′, this implies dkt(σ(t), σ( t̃ )) ≤

√
Cε <

δ, hence σ(t̃) ∈ Ball(Σ̃, δ) which is a contradiction, therefore t̃ > t′. This means that

σ(t′) ∈ Ball(Σ̃, δ), and therefore ε < δ/
√
C satisfies the conditions of the lemma.

We want to find a chain of embeddings through LocMC regions relating a causally convex

neighbourhood of a subset of one Cauchy surface to a causally convex neighbourhood of a

subset of another Cauchy surface. We therefore need to find a Cauchy temporal function

(see definition 1.3.10) which has both Cauchy surfaces as level sets, since then the region

just needs to be translated along the time coordinate given by the temporal function. We

therefore prove the following lemma.

Lemma 4.3.6. Given two Cauchy surfaces Σ and Σ̃ ⊂ I−(Σ) with disjoint neighbour-

hoods, there exists a Cauchy temporal function T such that T −1(0) = Σ̃ and T −1(1) = Σ.

This result is a modification of the result [BS06, Theorem 1.2], which states that for

any given Cauchy surface, one can find a Cauchy temporal function such that the given

Cauchy surface appears as a level set of the function. In [BW15], the authors state (on

page 21) that “A minor modification of the proof also shows that one can prescribe two

disjoint Cauchy hypersurfaces as level sets”, referring to the proof of [BS06, Theorem 1.2].
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Rather than just stating the above lemma is true, we will give an outline of a proof using

the tools developed in [BS06].

Sketch Proof. The regions I+(Σ), I−(Σ), I+(Σ̃) and I−(Σ̃) are all globally hyperbolic, and

hence have onto Cauchy temporal functions (meaning the range of each function is the

whole real line) T+
Σ , T

−
Σ , T

+

Σ̃
and T−

Σ̃
respectively. With these we can construct the following

time function

T (p) =



1 + exp
(
T+

Σ (p)
)

p ∈ I+(Σ)

1 p ∈ Σ(
1 + exp

(
−T−Σ (p)− T+

Σ̃
(p)
))−1

p ∈ I−(Σ) ∩ I+(Σ̃)

0 p ∈ Σ̃

− exp
(
−T+

Σ (p)
)

p ∈ I−(Σ̃)

which is inspired by the choice of time function in [BS06, Proposition 5.17], and can be

seen to be continuous by using the methods in [BS06, Proposition 5.17]. The above time

function is almost a Cauchy temporal function, except for the fact that it might not be

smooth at Σ and Σ̃. This can be dealt with by smoothing out T in disjoint neighbourhoods

of Σ and Σ̃ (see proof of [BS06, Theorem 5.15]) and then further modifying it within disjoint

neighbourhoods of Σ and Σ̃ to a function T̃ that is a Cauchy temporal function (see proof

of [BS06, Proposition 6.20]), all whilst maintaining the property that T̃ −1(0) = Σ̃ and

T̃ −1(1) = Σ. The function T̃ therefore satisfies the requirements of the lemma.

We say that a quadruple is localised about a Cauchy surface Σ, if each of the regions

of the quadruple are Cauchy developments of Cauchy balls of Σ. We now have the tools

in place to prove one of the main results of this section, which can be used to relate a

quadruple localised about one Cauchy surface to a quadruple localised about any other

Cauchy surface.

Proposition 4.3.7. Consider a LocMC region O with a Cauchy surface ΣO that is a Cauchy

ball of some acausal spacelike hypersurface Σ. Given any Cauchy surface Σ̃, there exists a

chain of embeddings of LocMC regions between O and the Cauchy development of a Cauchy

ball of Σ̃.

Proof. First we assume that Σ and Σ̃ are disjoint, and without loss of generality further

assume that ΣO ⊂ I−(Σ̃). The closure of ΣO is a compact acausal spacelike hypersurface

with boundary, since ΣO is a Cauchy ball of Σ. This means we can use [BS06, Theorem

1.1] to find a Cauchy surface Σ′ which contains ΣO. We then use lemma 4.3.6 to find

a Cauchy temporal function T such that T −1(0) = Σ′ and T −1(1) = Σ̃. We will use

T -foliation coordinates for our spacetime so that we can regard it as R× Σ.

We then use lemma 4.3.2 to find some δ > 0 such that Ball(ΣO, δ) is contained in a

Cauchy ball B of Σ′. We define Ot := D
(
{t} × ΣO

)
and Õt := D

(
{t} × B

)
. Given δ, we

use lemma 4.3.5 find an ε > 0 such that Ot ⊂ Õt+ε for all t ∈ [0, 1], and choose an integer

N > 1/ε. This gives us the following chain of embeddings of LocMC regions

O = O0 ⊂ Õ1/N ⊃ O1/N ⊂ . . . ⊃ O(N−1)/N ⊂ Õ1 ⊃ O1
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with O1 = D
(
{1} × ΣO

)
⊂ T −1(1) = Σ̃. Moreover, the Cauchy surface {1} × ΣO of O1

is a Cauchy ball, since it is the time translation of a Cauchy ball and time translation

defines a diffeomorphism between Cauchy surfaces. We have therefore proved the lemma

in the case that Σ and Σ̃ are disjoint.

If Σ and Σ̃ aren’t disjoint, we can use an argument adapted from [BW15, Corollary

18]. We consider I+(Σ′)∩ I+(Σ̃), which is globally hyperbolic and therefore has a Cauchy

surface Σ̃′. Since Σ̃′ is disjoint from Σ′ and Σ̃, we can repeat the above steps to get a

chain of embeddings from O to D(B′) with B′ ⊂ Σ̃′ and another chain of embeddings

from D(B′) to D(B′′) with B′′ ⊂ Σ̃. Combining these two chains gives a single chain of

embeddings and completes the proof of the proposition.

We note that by choosing N large enough in the above proof, we can apply the same

strategy to construct chains of embeddings simultaneously for finitely many Cauchy balls.

This therefore gives us the means of relating a quadruple localised about one Cauchy

surface to a quadruple localised about any other Cauchy surface. We therefore need to

prove that for every quadruple Q, there exists a Cauchy surface Σ such that Q can be

related to a quadruple which is localised about Σ. We now prove this for a subset of

quadruples, and will later prove that all quadruples can be related to a quadruple in this

subset.

Proposition 4.3.8. Consider a quadruple (J+, J−, I1, I2) where J+ and J− have Cauchy

surfaces Σ+ and Σ− which are Cauchy balls of Σ0 and Σ1 respectively, I1 = D(ΣI1) and

I2 = D(ΣI2) with ΣI1 ∪ΣI2 ⊂ Σ+∩Σ−. This quadruple is in the same equivalence class as

(J̃+, J−, I1, I2) where J̃+ and J− are Cauchy developments of Cauchy balls of a common

Cauchy surface.

Proof. The structure of the proof is as follows: we will define a function that deforms

subsets of Σ0 to Σ1, but leaves points in Σ+ ∩ Σ− invariant. This function will then

be used to gradually lift Σ+ to a Cauchy ball of Σ1, which is done in sufficiently small

steps so that the Cauchy developments of the intermediate Cauchy balls form a chain of

embeddings. Since the function leaves Σ+∩Σ− invariant, the intersection of J− with each

of the intermediate LocMC regions representing the shift of J+ will contain I1 ∪ I2. We

therefore get a chain of equivalent quadruples relating our original quadruple to one whose

regions are all Cauchy developments of Cauchy balls of Σ1.

We begin by using [BS06, Theorem 1.2] to find Cauchy temporal functions T0 and T1

such that T −1
0 (0) = Σ0 and T −1

1 (0) = Σ1. These Cauchy temporal functions have future-

directed timelike tangents, and are therefore strictly increasing along future-directed time-

like curves. We then consider the convex combination

Tλ = λT1 + (1− λ)T0

with λ ∈ [0, 1]. We define Σλ = T −1
λ (0) and note that the Cauchy surfaces defined by

λ = 0 and 1 are equivalent to the original Σ0 and Σ1 we started with. We also note that

λ 7→ Σλ is not intended to be a foliation, but rather gives a set of Cauchy surfaces that

interpolate between Σ0 and Σ1. Each Σλ is a smooth embedded submanifold since level

sets of smooth submersions are smooth embedded submanifolds [Hir76, Theorem 1.3.2].
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We also see that every inextendible timelike curve intersects Σλ exactly once. This is

because any inextendible timelike curve γ crosses both Σ0 and Σ1 exactly once. This

means that sufficiently to the past along γ, T0 and T1 are both negative while sufficiently

to the future, they are both positive. The same is therefore true of Tλ, and by continuity

this implies that the timelike curve crosses Σλ, and it also crosses exactly once because a

convex combination of monotonic functions is monotonic. We therefore see that Σλ is a

smooth Cauchy surface of M.

From now on we will use T0-foliation coordinates for M so that we can regard M as

R × Σ0, and we replace the metric g on M with the conformally related metric g̃ given

by replacing T with T0 in equation (4.5). The metric g̃ induces a family of instantaneous

optical metrics kτ on Σ0 (as described below equation (4.5)). We also define the map

πΣ0 :M→ Σ0 as the projection of M = R× Σ0 on to the second component.

We now define a function α : [0, 1]×Σ0 → R×Σ0 such that α(λ, ·) drags points in Σ0

to Σλ, and will be used to deform the Cauchy ball Σ+ of Σ0 to a Cauchy ball of Σ1. This

is done by solving the following implicit equation for t : R× Σ0 → R

F
(
λ, σ, t(λ, σ)

)
:= Tλ

(
t(λ, σ), σ

)
= 0 (4.7)

and then defining α in terms of the function t as follows

α(λ, σ) = (t(λ, σ), σ) , (4.8)

noting that α(λ, σ) ∈ Σλ by virtue of equation (4.7). For any (λ∗, σ∗) ∈ [0, 1]×Σ0, we can

use the implicit function theorem to find a unique smooth solution t(λ, σ) for equation

(4.7) in a neighbourhood of (λ∗, σ∗), since ∂F/∂t is non-zero everywhere (Tλ is a temporal

function). Any two solutions must agree on the overlap of their domains, otherwise there

would be two points in Σλ which only differ in the time coordinate, and would therefore be

connected by a timelike curve, violating the achronality of Σλ. Since the unique smooth

local solutions to equation (4.7) must agree on their overlap, we get a unique smooth

global solution defined on [0, 1]× Σ0.

We use the smooth global solution for t to define α : Σ0 → R × Σ0 using equation

(4.8), which for fixed λ is a smooth map between Σ0 and Σλ that is an injective immersion

because πΣ0 ◦α(λ, ·) is the identity map on Σ0. We see that α is constant with respect to

λ on [0, 1] × πΣ0(Σ+ ∩ Σ−), because Σ+ ∩ Σ− ⊂ Σ0 ∩ Σ1 and T0 and T1 both vanish on

Σ0 ∩ Σ1, meaning the implicit equation for t in equation (4.7) is satisfied by t(λ, σ) = 0

for all (λ, σ) ∈ [0, 1]× πΣ0(Σ+ ∩ Σ−). This means as we deform Σ0 into Σ1 by varying λ,

the points in ΣI1 ∪ ΣI2 ⊂ Σ+ ∩ Σ− are left invariant.

We now use lemma 4.3.2 to find a Cauchy ball Σ̃+ ⊃ Ball(Σ+, δ) of Σ0 for some δ > 0.

We define Σ+
λ = α(λ, πΣ0(Σ+)) and Σ̃+

λ = α(λ, πΣ0(Σ̃+)) which are subsets of Σλ, and

note that Σ+ = Σ+
0 . Since α(λ, ·) is an injective immersion, it is a diffeomorphism onto

its image and therefore preserves the property of being a Cauchy ball, hence Σ+
λ and Σ̃+

λ

are Cauchy balls for all λ ∈ [0, 1].

We now want to relate J+ = D(Σ+
0 ) to D(Σ+

1 ) by a chain of embeddings of LocMC
regions by working in steps, finding sufficiently small ∆λ such that D(Σ+

λ ) ⊂ D(Σ̃+
λ+∆λ)

for all λ ∈ [0, 1 − ∆λ]. We do this by finding bounds that quantify how much Σ+
λ can
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expand as we vary λ. For this purpose we consider the region where the dragging of points

from Σ̃+ to Σ1 occurs, which is given by

M̃ :=
⋃

λ∈[0,1]

Σ̃+
λ ⊂

(
J+
(
Σ̃+
)
∩ J−(Σ1)

)
∪
(
J−
(
Σ̃+
)
∩ J+(Σ1)

)
.

The set on the right-hand side is compact by virtue of corollary 1.3.19, hence M̃ is rela-

tively compact. This implies that the projection of M̃ to Σ0 given by Σ′0 := πΣ0(M̃) is also

relatively compact. Given a point σ ∈ Σ0 and tangent vector v ∈ TσΣ0, the pushforward

of v to Tα(λ,σ)M̃ by α(λ, ·) is given by

vλ := dα(λ, ·)v = (∇vt)(λ, σ)
∂

∂T0
+ v

where ∇vt is the derivative of the scalar function t along v. The first term arises due

to the fact that the T0 component of α(λ, σ) is given by t(λ, σ). We see that vλ must be

spacelike, since it is a tangent vector to the Cauchy surface Σλ. This gives us the following

inequality

g̃(vλ, vλ) = (∇vt)(λ, σ)2 − kt(λ,σ)(v, v) < 0 ⇒√
kt(λ,σ)(v, v) > |(∇vt)(λ, σ)| (4.9)

where the inequality is strict, since otherwise vλ would be null. Using the fact that a

continuous function defined on a relatively compact domain has image contained in a

compact set, which is therefore bounded, there exists a constant C1 > 1 such that

|(∇vt)(λ, σ)|√
kt(λ,σ)(v, v)

=
|(∇v̂t)(λ, σ)|√
kt(λ,σ)(v̂, v̂)

≤ C1 ∀ (λ, σ) ∈ [0, 1]× Σ′0, v ∈ TσΣ′0 (4.10)

where v̂ = v/
√
k0(v, v). Equation (4.9) implies that C1 may be chosen to be < 1. Similarly

there exists a constant C2 such that√
kτ (v, v)√
kτ ′(v, v)

≤ C2 ∀ (τ, τ ′) ∈
[

inf
p∈M̃
T0(p), sup

q∈M̃
T0(q)

]
, v ∈ TσΣ′0 . (4.11)

To show that D(Σ+
λ ) ⊂ D(Σ̃+

λ+∆λ) for a given ∆λ, we must show that any inextendible

causal curve from Σ+
λ intersects Σ̃+

λ+∆λ. We fix ∆λ > 0 and let γ be some arbitrary

inextendible causal curve that intersects Σ+
λ . We can parametrise γ within M̃ so that

γ(µ) = α(µ, σ(µ)) for µ ∈ [λ, λ + ∆λ], where σ(µ) is a curve in Σ0. The fact that

γ intersects Σ+
λ implies σ(λ) ∈ πΣ0(Σ+). Proving γ intersects Σ̃+

λ+∆λ is equivalent to

proving σ(λ+ ∆λ) ∈ πΣ0(Σ̃+). The causality of γ implies√
kt(µ,σ(µ))

(
σ̇(µ), σ̇(µ)

)
≤ dT0(γ̇(µ)) =

∂t

∂λ
(µ, σ(µ)) + (∇σ̇(µ)t)(µ, σ(µ))
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and this can be combined with the bound we have in equation (4.10) to get√
kt(µ,σ(µ))

(
σ̇(µ), σ̇(µ)

)
≤ ∂t

∂λ
(µ, σ(µ)) + C1

√
kt(µ,σ(µ))

(
σ̇(µ), σ̇(µ)

)
⇒√

kt(µ,σ(µ))

(
σ̇(µ), σ̇(µ)

)
≤ 1

1− C1

∂t

∂λ
(µ, σ(µ)) ≤ C3

1− C1

where C3 is the supremum of ∂t/∂λ over [0, 1] × Σ′0, which exists since Σ′0 is relatively

compact. In order to prove σ(λ + ∆λ) ∈ πΣ0(Σ̃+) (which proves D(Σ+
λ ) ⊂ D(Σ̃+

λ+∆λ) as

mentioned above), it is sufficient to show that the distance defined by the instantaneous

optical metric k0 on Σ0 between σ(λ+∆λ) and σ(λ) is less than δ, since Σ̃+ ⊃ Ball(Σ+, δ).

This can be done as follows

dk0
(
σ(λ), σ(λ+ ∆λ)

)
≤
∫ λ+∆λ

λ
dµ
√
k0

(
σ̇(µ), σ̇(µ)

)
≤ ∆λ sup

µ∈[λ,λ+∆λ]

√
k0

(
σ̇(µ), σ̇(µ)

)
≤ ∆λ C2 sup

µ∈[λ,λ+∆λ]

√
kt(µ,σ(µ))

(
σ̇(µ), σ̇(µ)

)
≤ ∆λ

C2C3

1− C1

and we therefore find that

∆λ <
1− C1

C2C3
δ ⇒ D(Σ+

λ ) ⊂ D(Σ̃+
λ+∆λ) ∀λ ∈ [0, 1−∆λ]

and since C1 < 1, we find a positive integer N large enough so that N > C2C3
1−C1

/δ. With

this choice of N we get D(Σ+
n/N ) ⊂ D(Σ̃+

(n+1)/N ). As mentioned earlier in the proof, α(λ, ·)
leaves ΣI1 ∪ ΣI2 ⊂ Σ+ ∩ Σ− invariant, so ΣI1 ∪ ΣI2 ⊂ Σ+

λ ∩ Σ− for all λ ∈ [0, 1]. This

means that

I1 ∪ I2 = D(ΣI1 ∪ ΣI2) ⊂ D(Σ+
λ ∩ Σ−) = D(Σ+

λ ) ∩ J− ⊂ D(Σ̃+
λ ) ∩ J−

for all λ ∈ [0, 1]. This implies (D(Σ+
λ ), J−, I1, I2) and (D(Σ̃+

λ ), J−, I1, I2) are valid quadru-

ples. We therefore get the following chain of equivalences

(J+, J−, I1, I2) ∼ (D(Σ+
0 ), J−, I1, I2) ∼ (D(Σ̃+

1/N ), J−, I1, I2)

∼ (D(Σ+
1/N ), J−, I1, I2) ∼ . . . ∼ (D(Σ+

(N−1)/N ), J−, I1, I2) ∼ (D(Σ̃+
1 ), J−, I1, I2)

and this final quadruple has regions which are all Cauchy developments of subregions of

Σ1. We can therefore see that J̃+ = D(Σ̃+
1 ) satisfies the conditions of the proposition.

We can now prove the main result of this section, which will be used for the proof of

injectivity of L in the next section.

Theorem 4.3.9. Given any Cauchy surface Σ ofM, and any equivalence class of quadru-

ples [Q], there exists a representative (J̃+, J̃−, Ĩ1, Ĩ2) ∈ [Q] such that each of its LocMC
regions are Cauchy developments of subregions of Σ.

Proof. We start with some arbitrary representative (J+, J−, I1, I2) ∈ [Q] and construct

a chain of equivalences to the desired (J̃+, J̃−, Ĩ1, Ĩ2) in four main steps as follows (with

proofs below):
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1) (J+, J−, I1, I2) ∼ (J+, J−, I ′1, I
′
2) where I ′1 and I ′2 are Cauchy developments of dis-

joint Cauchy balls of a common Cauchy surface Σ+− of J+ ∩ J−.

2) (J+, J−, I ′1, I
′
2) ∼ (J ′+, J ′ −, I ′1, I

′
2) where J ′+ and J ′ − are Cauchy developments of

Cauchy balls of Cauchy surfaces Σ0 and Σ1 of M respectively.

3) (J ′+, J ′ −, I ′1, I
′
2) ∼ (J ′′+, J ′ −, I ′1, I

′
2) where J ′′+ and J ′ − are Cauchy developments

of Cauchy balls of Σ1.

4) (J ′′+, J ′ −, I ′1, I
′
2) ∼ (J̃+, J̃−, Ĩ1, Ĩ2) with the regions of the latter quadruple all being

Cauchy developments of subregions of the Cauchy surface Σ.

Proof for 1) The intersection of J+ and J− is a causally convex subset of a globally

hyperbolic spacetime, hence J+∩J− is globally hyperbolic. This means there is a Cauchy

surface Σ+− of J+ ∩ J−. Let ΣI1 be a Cauchy surface of I1, then (J+, J−, I1, I2) ∼
(J+, J−, D(B1), I2) where B1 is a Cauchy ball of ΣI1 . We can then use proposition 4.3.7 to

get a chain of embeddings of LocMC regions within J+∩J−, and hence a chain of equivalent

quadruples which relates (J+, J−, D(B1), I2) to (J+, J−, I ′1, I2) where I ′1 = D(B′1) and B′1
is a Cauchy ball of Σ+−. We then repeat this procedure for I2 to get I ′2 = D(B′2) where

B′2 is a Cauchy ball of Σ+−. If B′1 and B′2 are not disjoint, we shrink them about distinct

points until they are disjoint.

Proof for 2) Since B′1 and B′2 are disjoint Cauchy balls of a common acausal spacelike

hypersurface, we can use [BS06, Theorem 1.1] to find Cauchy surfaces ΣJ+ and ΣJ− of

J+ and J− respectively that contain B′1 and B′2. We can use proposition 3.2.7 which we

established in the previous chapter using the techniques of differential topology, to find

Cauchy balls Σ+ and Σ− of ΣJ+ and ΣJ− respectively, each containing B′1 ∪ B′2. We

can further shrink B′1 and B′2 if necessary to ensure B′1 ∪ B′2 ⊂ Σ+ ∩ Σ−. We then get

J ′+ = D(Σ+) and J ′ − = D(Σ−), and we can use [BS06, Theorem 1.1] to find Cauchy

surfaces Σ0 and Σ1 of M containing Σ+ and Σ− respectively.

Proof for 3) See proposition 4.3.8.

Proof for 4) We can use proposition 4.3.7 to find a chain of embeddings which links

each LocMC region in (J ′′+, J ′ −, I ′1, I
′
2) to a LocMC region which is a Cauchy development

of a subregion of Σ. Since these Cauchy surfaces of these regions all belong to Σ1, these

chains can be constructed in tandem, as mention below proposition 4.3.7, so that at each

step the regions from the four chains give a well defined quadruple.

4.4 Proving bijectivity of the map L : Q → π̃1(M)

The difficult part of proving bijectivity of L is proving injectivity, since surjectivity just

requires us to prove that we can construct a quadruple associated to any homotopy class

of loops. The latter can be done by proving each homotopy class has an element which is

an embedding (see definition 1.2.7) with image in a Cauchy surface Σ, because given such

a curve we can construct tubular neighbourhoods in Σ and take Cauchy developments

of these tubes to get LocMC regions that form a quadruple (a detailed account of this

construction is provided by lemma 4.4.2 below).

To prove injectivity of L, we must be able to relate any two quadruples q and Q such

that each q-curve is homotopic to each Q-curve (see definition 4.2.4). We can use theorem
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4.3.9 from the last section to translate q and Q to a common Cauchy surface Σ, so that the

q-curve and Q-curve both have image in Σ and the homotopy between them is also confined

to Σ. We would then like to apply the construction sketched in the previous paragraph

to the intermediate loops in Σ defined by the homotopy to get intermediate quadruples

relating q and Q, thereby proving injectivity. The issue is that the above construction

seems to require the loops to be embedded, since this is required for the construction of

tubular neighbourhoods, and in general it is not possible to arrange the homotopy so that

each of its intermediate loops are embedded. This issue can be circumvented by noting

that the construction does not actually require the entire loop to be embedded, it only

requires the individual segments defining the LocMC components of the quadruple to be

embedded. The intermediate loops can therefore have self-intersections, so long as they

occur between segments defining different components of the quadruple. We will therefore

use results from differential topology to prove that in dimension ≥ 3, any homotopy can

be modified such that each of its intermediate loops has finitely many self-intersections.

This will ensure that we can always shift the segments of the intermediate loops about,

so that the self-intersections occur between segments defining different components of its

associated quadruple.

We begin by defining a parameterisation of S1 and a notion of quadruples on S1, and

then prove a lemma that defines a construction of quadruples associated to embedded

loops in Cauchy surfaces.

Definition 4.4.1. We model S1 as R/Z with quotient map mod1 : R → R/Z, which

takes an element of R to its equivalence class modulo 1. Contractible open subsets of S1

are of the form mod1 ((c− d/2, c+ d/2)) with 0 < d ≤ 1 and without loss of generality

0 < c ≤ 1, and we refer to c as the centre of the subset and d as the width of the subset.

Any contractible open subset of S1 is uniquely specified by its centre and width, so we use

bc, dc to denote the open subset of S1 with centre c and width d.

A quadruple of S1 consist of four open contractible regions (j+, j−, i1, i2) of S1, such

that i1 ∪ i2 ⊂ j+ ∩ j−. We define an equivalence relation on quadruples of S1 exactly as

we did for quadruples of LocMC regions in definition 4.2.1. We will refer to

QCS1 :=
(
b1/4, 3/4c, b3/4, 3/4c, b0, 1/4c, b1/2, 1/4c

)
(4.12)

as the canonical quadruple of S1.

Lemma 4.4.2. Let γ be an embedding of S1 into a Cauchy surface Σ of M, and QS1 be

a quadruple of S1. There exists [Q] ∈ Q and a subset SM(γ,QS1) ⊂ [Q] such that for

each q ∈ SM(γ,QS1) the components of q are Cauchy developments of subsets of Σ, γ is a

q-curve (see definition 4.2.4) and the components of QS1 are equal to the pre-image under

γ of the corresponding components of q.

Proof. The image of an embedding is a submanifold, so we can use [Hir76, Theorem 4.5.2]

to guarantee the existence of tubular neighbourhoods (see definition 3.2.3) of γ in Σ.

Using γ and QS1 , we construct a set SΣ(γ,QS1) whose objects each consist of: tubular

neighbourhoods in Σ of γ restricted to each component of QS1 = (j+, j−, i1, i2), with the

requirement that the tubular neighbourhoods of γ|i1 and γ|i2 are both contained in the
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intersection of the tubular neighbourhoods of γ|j+ and γ|j− . These tubular neighbour-

hoods are contractible, since a bundle over a contractible base is just a product of the

base and fibre spaces, which in this case are both contractible so the bundle as a whole is

contractible.

We can then form another set SM(γ,QS1) by taking each object of SΣ(γ,QS1) and

taking Cauchy developments of its tubular neighbourhoods, which define components

of a quadruple q (since Cauchy developments preserve contractibility and are causally

convex) which we take to be the corresponding object of SM(γ,QS1). Each quadruple

q ∈ SM(γ,QS1) has the property that γ is a q-curve and the components of QS1 are equal

to the pre-image under γ of the corresponding components of q.

For any q1, q2 ∈ SM(γ,QS1) there exists q3 ∈ SM(γ,QS1) such that q3 ⊂ q1 and

q3 ⊂ q2 (meaning each component of the first quadruple is a subset of the corresponding

component of the second quadruple). This is because we can always arrange the tubular

neighbourhoods used to construct the components of q3 to have sufficiently small radii to

be contained in those of q1 and q2. Therefore all quadruples in SM(γ,QS1) belong to the

same equivalence class in Q.

Definition 4.4.3. Let γ be an embedding of S1 into a Cauchy surface Σ of M, and QS1

be a quadruple of S1. Let SM(γ,QS1) denote the set of quadruples of M constructed from

γ and QS1 in lemma 4.4.2.

With these preliminaries, we can now establish surjectivity of the map L.

Proposition 4.4.4. The map L : Q → π̃1(M) is surjective if dim(M) ≥ 4.

Proof. Our spacetime is globally hyperbolic so M ∼= R × Σ which implies that for any

[γ] ∈ π̃1(M) ∼= π̃1(Σ), there exists a representative [γ] 3 γ̂ : S1 → Σ0 := {0} × Σ. We

can find a smooth embedding γ̃ contained in an arbitrarily small neighbourhood of γ̂ (in

the sense of the topology defined in definition 1.2.8), since C∞(S1,Σ0) is open and dense

in C0(S1,Σ0) [Hir76, Theorem 2.2.6] and dim(Σ0) ≥ 3 = 2 dim(S1) + 1 by supposition so

Emb∞(S1,Σ0) is dense in C∞(S1,Σ0) [Hir76, Theorem 2.2.13].

To construct a homotopy between γ̃ and γ̂, we embed Σ0 as a submanifold of RN

where N = 2 dim(Σ0) + 1 using the Whitney embedding theorem [Hir76, Theorem 2.2.14],

and use [Hir76, Theorem 4.5.2] to guarantee the existence of a tubular neighbourhood T

of Σ0 in RN . We can arrange for γ̂ and γ̃ to be as close to each other as we like since

Emb∞(S1,Σ0) is dense in C0(S1,Σ0), so the homotopy H : S1 × [0, 1]→ RN given by

H(s, t) = tγ̂(s) + (1− t)γ̃(s)

has image contained in the tubular neighbourhood T . We get a homotopy between γ̂

and γ̃ by composing H with the retraction of T onto Σ0. We then pick an element in

Q ∈ SM(γ̃, QCS1) and see that L([Q]) = [γ] since γ̃ ∈ [γ] is a Q-curve.

We now prove that for any pair of equivalent quadruples of S1, the construction in

definition 4.4.3 yields two sets of quadruples that belong to the same equivalence class in

Q, and then classify the equivalence classes of quadruples of S1. These results will be used

in the part of the strategy outlined at the start of the section where we shift segments

about to avoid self-intersections.
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Lemma 4.4.5. If qS1 is equivalent to QS1, then SM(γ, qS1) and SM(γ,QS1) are both

subsets of the same equivalence class in Q.

Proof. If qS1 ⊂ QS1 , then the tubular neighbourhoods used to construct a quadruple

of SM(γ, qS1) can be arranged to be contained in those of a quadruple of SM(γ,QS1),

hence the quadruples are equivalent meaning all quadruples in both sets must be equiva-

lent. Similarly if qS1 and QS1 are related by swapping their last two component regions,

then every element of SM(γ, qS1) has an equivalent element in SM(γ,QS1) obtained by

swapping the last two component regions.

Lemma 4.4.6. All quadruples of S1 are either equivalent to the trivial quadruple (I, I, I, I)

where I is S1 with the point [0] removed, or the canonical quadruple QCS1 (see equation

(4.12)).

Proof. Let (j+, j−, i1, i2) be a quadruple of S1. We first consider the case where i1

and i2 belong to the same connected component j of j+ ∩ j−. In this case we we get

(j+, j−, i1, i2) ∼ (j, j, j, j) since j± ⊃ j and i1 ∪ i2 ⊂ j, and (j, j, j, j) is related to the

trivial quadruple by using the following chain of embeddings

j = bc, dc ⊂ bc, 1c ⊃ j̃ ⊂ I

where j̃ is a connected component of bc, 1c ∩ I.

Now we consider the case where i1 and i2 belong to different connected components

of j+ ∩ j−. This implies that at least one of j+ and j− must have width > 1/2, since

otherwise their intersection would only have one connected component. We can therefore

without loss of generality assume that j+ has width > 1/2.

Each segment bc, dc of S1 can be related to its translation by ε < (1 − d)/2 by the

following chain of embeddings bc, dc ⊂ bc+ ε, d+ 2εc ⊃ bc+ ε, dc. This gives us a means of

relating two quadruples of S1 differing (in their component regions) by a translation, suc-

cessively relating quadruples differing by a translation by an amount ≤ ε by expanding and

shrinking the component regions as outlined above. We can therefore relate (j+, j−, i1, i2)

to a quadruple ( b1/4, d+c, bc−, d−c, bc1, d1c, bc2, d2c ), so that the first component has the

same centre as the first component of QCS1 .

As mentioned above, the intersection of b1/4, d+c with bc−, d−c has two connected

components and we can assume without loss of generality that d+ > 1/2, which implies

c− ∈ (1/2, 1). The region b1/4, 1c ∩ bc−, 1c consists of both arcs of S1 that connect the

antipodal points of [1/4] and c−. Since c− ∈ (1/2, 1), one of these arcs must contain [0]

and the other must contain [1/2], and we refer to these arcs as U1 and U2 respectively (see

figure 4.2). We construct neighbourhoods N1 and N2 of [0] and [1/2] respectively such

that N1 ⊂ b0, 1/4c ∩ U1 and N2 ⊂ b1/2, 1/4c ∩ U2 (again see figure 4.2).

We now construct a chain of equivalences as follows

(j+, j−, i1, i2) ∼
(
b1/4, d+c, bc−, d−c, bc1, d1c, bc2, d2c

)
∼
(
b1/4, 1c, bc−, 1c, bc1, d1c, bc2, d2c

)
∼
(
b1/4, 1c, bc−, 1c, U1, U2

)
,

where the first equivalence was shown above, and the last equivalence is due to the fact

that bc1, d1c must be a subset of either U1 or U2, so we use the freedom to swap the third
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Figure 4.2: Connected components of b1/4, 1c ∩ bc−, 1c, together with N1 and N2.

and fourth components of the quadruple if bc1, d1c ⊂ U2. Since N1 ⊂ U1 and N2 ⊂ U2, we

get

∼
(
b1/4, 1c, bc−, 1c, N1, N2

)
∼
(
b1/4, 1c, j̃−, N1, N2

)
∼
(
b1/4, 1c, b3/4, 1c, N1, N2

)
,

where j̃− is the component of of b3/4, 1c ∩ bc−, 1c containing [0] and [1/2] (see figure

4.3). For the last two equivalences, we use the inclusions j̃− ⊂ bc−, 1c and j̃− ⊂ b3/4, 1c
respectively. The fact that b1/4, 1c ∩ j̃− ⊃ N1 ∪N2 ensures that the middle quadruple is

a valid quadruple.

Figure 4.3: Visualising j̃−.

We then use N1 ⊂ b0, 1/4c and N2 ⊂ b1/2, 1/4c to get

∼
(
b1/4, 1c, b3/4, 1c, b0, 1/4c, b1/2, 1/4c

)
∼
(
b1/4, 3/4c, b3/4, 3/4c, b0, 1/4c, b1/2, 1/4c

)
= QCS1 .

We have therefore shown that in the case where i1 and i2 belong to different connected

components of j+ ∩ j−, the quadruple is equivalent to QCS1 . Therefore in both cases the

quadruple is equivalent to either (I, I, I, I) or QCS1 .

We now introduce a definition that formalises the idea of self-intersections of interme-

diate curves in a homotopy between two curves. We then prove that a homotopy between

two embedded curves can always be approximated by one in which only finitely many of

the intermediate curves have self-intersections2.

Definition 4.4.7. A pair of level double points of a map H : S1 × [0, 1] → Σ consists of

2I would like to thank Charles Livingston for a helpful private communication.
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a pair (s1, t), (s2, t) ∈ S1 × [0, 1] such that H(s1, t) = H(s2, t), in which case we say the

level double point occurs at level t.

Proposition 4.4.8. Given a homotopy H between two smooth embedded loops in a mani-

fold Σ with dim(Σ) ≥ 3, there exists another homotopy H̃ in an ε neighbourhood of H (in

the C0 topology defined in definition 1.2.8), such that H̃ matches H at the boundary and

has finitely many level double points.

Proof. For notational convenience we will use C to denote S1×[0, 1]. We consider the map

F = 〈H,pr2〉 : C → Σ× [0, 1] where pr2 is the projection map onto the second component,

so the action of F is given by F (s, t) =
(
H(s, t), t

)
. We want to apply theorem 1.2.14

to approximate F to a smooth immersion F ′ that matches F at the boundary, such that

F ′|int(C) and F ′|∂C are both self-transverse and transverse to each other, but we must check

that the assumptions of the theorem are satisfied. We are applying the theorem to the case

L = ∂C, and indeed we see that the pair (F,L) satisfy the bullet point conditions of the

theorem: The first three are satisfied because H is a smooth self-transverse (see definition

1.2.11) immersion at the boundary, since H is a homotopy between smooth embeddings,

the fourth because L\∂C = ∅, and the fifth because the component of F that maps to

[0, 1] is the projection map pr2. By supposition dim(Σ) ≥ 3 so 2 dim(C) ≤ dim(Σ× [0, 1]),

hence all the conditions of theorem 1.2.14 are satisfied and we can use it to approximate

F by a smooth immersion F ′ that matches F at the boundary, such that F ′|int(C) and

F ′|∂C are both self-transverse and transverse to each other.

Any function into a product space can be written in terms of component functions

that map into the components of the target space, hence we can write F ′ = 〈H ′,pr′2〉 with

H ′ and pr′2 belonging to neighbourhoods of H and pr2 respectively. Let G = 〈pr1, pr′2〉
be a map from C to itself. Since we can arrange our perturbations to be as small as we

like, we can make pr′2 arbitrarily close to pr2, and hence make G arbitrarily close to the

identity. The set of diffeomorphisms form an open subset of the set of maps that map

the boundary of the domain space to the boundary of the target space (see comments

below theorem 2.1.7 in [Hir76]), and because F ′ matches F at the boundary this implies

G must be the identity on the boundary, hence we can arrange the approximations to be

sufficiently small so that G is a diffeomorphism on C.

We now define F̃ = F ′ ◦ G−1 = 〈H̃, pr2〉, where H̃ = H ′ ◦ G−1 is well defined and

smooth since G is a diffeomorphism. Diffeomorphisms on C preserve self-transversality

and transversality between functions defined on C, hence F̃ |int(C) and F̃ |∂C are both self-

transverse and transverse to each other. This implies that F̃ has finitely many double

points by proposition 1.2.15, and since double points of F̃ are level double points of H̃,

we have shown that H̃ has finitely many level double points. Since H ′ matches H at

the boundary and G is the identity on the boundary, we see that H̃ matches H at the

boundary, hence H̃ has the required properties for the proposition.

We now prove injectivity.

Proposition 4.4.9. The map L : Q → π̃1(M) is injective if dim(M) ≥ 4.

Proof. We consider equivalence classes [q] and [Q] such that L([q]) = L([Q]), and fix a

choice of Cauchy surface Σ. We then use theorem 4.3.9 to find representatives q ∈ [q]
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and Q ∈ [Q], whose components are Cauchy developments of Cauchy balls of Σ. To

prove injectivity, we must find a sequence of equivalent quadruples relating q and Q. We

consider two embedded curves γ0 and γ1 in Σ, such that γ0 is a q-curve and γ1 is a Q-curve.

Since we assume that L([q]) = L([Q]), it follows that (by reversing the orientation of γ0

if necessary) there is a homotopy between γ0 and γ1. We then use proposition 4.4.8 to

approximate this homotopy by a smooth homotopy H which has finitely many level double

points, which occur at the levels {t1, . . . tN}. This means that H(·, t) is an embedded loop

unless t ∈ {t1, . . . tN}, in which case it is a loop with finitely many crossings.

If [q] is trivial, in the sense that it has a representative of the form (I, I, I, I) for some

LocMC region I, we choose q to be a representative of this form. Then the q-curve γ0 has

a tubular neighbourhood contained in I, hence for any quadruple qS1 of S1 there is a

quadruple Q0 ∈ SM(γ0, qS1) such that Q0 ⊂ q. For convenience we choose qS1 to be the

canonical quadruple QCS1 of S1. If [q] is non-trivial, let qS1 be the quadruple of S1 whose

components are given by the pre-image under γ0 of the corresponding components of q.

Since [q] is non-trivial, the resulting quadruple qS1 of S1 must be non-trivial, and therefore

by lemma 4.4.6 qS1 is equivalent to QCS1 . There is a quadruple Q0 ∈ SM(γ0, qS1) such that

Q0 ⊂ q, since we can choose the radii of the tubular neighbourhoods used to construct

the component regions of Q0 to be arbitrarily small. We therefore see that in both cases,

we can construct an element Q0 ∈ SM(γ0, qS1) such that Q0 ⊂ q for some quadruple qS1

of S1 which is equivalent to QCS1 . We can similarly construct Q1 ∈ SM(γ1, QS1) such that

Q1 ⊂ Q for some quadruple QS1 of S1 which is equivalent to QCS1 .

Figure 4.4: Resolving double points at tn.

For sufficiently small ε1 > 0, there exists SM(γ0, qS1) 3 Q̃0 ⊃ Q0 such that H(S1, ε1)

is an embedding whose image is contained in Q̃0. The quadruple Q̃0 also contains an

element Qε1 ∈ SM(H(·, ε1), qS1). Similarly, there exists ε2 > 0 sufficiently small such that

SM(γε1 , qS1) 3 Q̃ε1 ⊃ Qε1 is a quadruple that contains the embedding H(S1, ε1 + ε2). We

can repeat this process to get a chain of quadruples

q ⊃ Q0 ⊂ Q̃0 ⊃ Qε1 ⊂ Q̃ε1 ⊃ Qε1+ε2 ⊂ . . . ⊂ Q̃t1−δ ⊃ Qt1−δ (4.13)

where δ > 0 is arbitrarily small. This procedure must be modified to relate Qt1−δ to a
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quadruple containing loops H(S1, t) with t > t1, since H is no longer an embedding of

S1 at t1. We therefore need to resolve the crossing points at t1 which we do as follows:

Let (s1, t1) and (s2, t1) be a pair of double points of H(·, t1) and q̃S1 = (j+, j−, i1, i2) be a

quadruple of S1 such that j+ is neighbourhood of s1 which is disjoint from all the other

double points of H(·, t1) (which is possible since there are only finitely many). We can also

arrange for q̃S1 to be equivalent to qS1 , since only the first component of q̃S1 is constrained

so we can arrange its other three regions to make it equivalent to the canonical quadruple

QCS1 of S1. We then pick a quadruple Q↓t1 = (J+
↓ , J

−, I1, I2) ∈ SM(H(·, t1 − δ), q̃S1) and

let J+
↑ be the Cauchy development of a tubular neighbourhood of H(·, t1 +δ)|j+ (see figure

4.4).

We can choose δ sufficiently small so that the Cauchy surfaces of J+
↓ and J+

↑ are

contained in a common contractible subregion of Σ (the t derivatives of H are bounded),

whose Cauchy development is therefore a LocMC region J+
l containing J+

↓ and J+
↑ (see

bottom diagram in figure 4.4). By lemma 4.4.5, we can relate Qt1−δ to Q↓t1 since they are

both constructed from the same embedded curve H(·, t1 − δ) using equivalent quadruples

of S1. Let Q↑t1 = (J+
↑ , J

−, I1, I2) and Q
l
t1

= (J+
l , J

−, I1, I2). We illustrate the quadruples

Q↓t1 , Q↑t1 and Q
l
t1

at a neighbourhood of the double point in figure 4.4. Since J+
↓ , J

+
↑ ⊂ J

+
l ,

we get the following equivalences of quadruples

Qt1−δ ∼ Q↓t1 ∼ Q
l
t1
∼ Q↑t1 .

We continue this procedure until we get a quadruple Qt1 that has resolved all the crossing

points ofH(S1, t1). The quadruple Qt1 therefore contains a loop that is homotopic through

embeddings to H(S1, t1+δ), so we can repeat the procedure outlined above equation (4.13)

to show that Qt1 is equivalent to some Qt1+δ ∈ SM(H(·, t1 + δ), qS1). We then continue

as before to relate quadruples containing H(S1, t) to q for increasing values of t, resolving

crossing points as they occur with the procedure above, until we have related q to a

quadruple Q1 ∈ SM(H(·, 1), qS1) = SM(γ1, qS1). Since qS1 and QS1 are equivalent to

QCS1 , we can use lemma 4.4.5 to get Q1 ∼ Q and we therefore have

q ∼ Q0 ∼ . . . ∼ Q1 ∼ Q

which proves that [q] = [Q], and therefore the map L : Q → π̃1(M) is injective.

4.5 Defining groups and establishing an isomorphism

In this section we first define a group related to π̃1(M), we then define a group structure

on Y and use the fact that L is bijective to construct a map m between these groups which

we then prove is an isomorphism.

Definition 4.5.1. We define the group π̂1(M, p) as

π1(M, p)/π1(M, p)2 (4.14)

where π1(M, p)2 denotes the subgroup of π1(M, p) generated by squares of elements in

π1(M, p).
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We note that π̂1(M, p) depends on a choice of base-point, but becauseM is assumed to

be connected, π̂1(M, p) ∼= π̂1(M, q) for all p, q ∈ M. The quotient that defines π̂1(M, p)

is well defined because π1(M, p)2 is a normal subgroup of π1(M, p)

∀g ∈ π1(M, p) and ∀h2 ∈ π1(M, p)2 : gh2g−1 = (ghg−1)2 ⇒ gh2g−1 ∈ π1(M, p)2 .

The group π̂1(M, p) is also Abelian, which can be seen from the following calculation

g1g2 = g−1
1 g−1

2 = (g2g1)−1 = g2g1

where we have used the fact that every element is equal to its inverse in π̂1(M, p). The

cosets that form the elements of π̂1(M, p) can instead be regarded as equivalence classes

consisting of all elements of all equivalences classes in a given coset. We now introduce

notation to distinguish between equivalence classes in π̂1(M, p) and π̃1(M).

Definition 4.5.2. We use [·]∧ to denote the equivalence class that defines elements of

π̂1(M, p) and use [·]∼ to denote the equivalence class that defines elements of π̃1(M).

We now define a semi-group structure on Y as follows.

Definition 4.5.3. Let F be the forgetful functor from Alg to SemiGroup, such that the

semi-group operation is algebra multiplication. The semi-group YG is the sub semi-group

of F
(
U +
E (G)

)
generated by the elements of Y.

We will see later that this semi-group structure is in fact a group structure. We now

want to define a map from π̂1(M, p) to YG using the maps q (see definition 4.2.2) and L.

The issue is that L is defined on π̃1(M) whose equivalence classes will differ from those of

π̂1(M, p), since for any γ ∈ C0(S1,M) the loop γ∗γ∗γ belongs to [γ∗γ∗γ]∧ = [γ]3∧ = [γ]∧

but does not necessarily belong to [γ]∼. We therefore prove the following fact before

defining a map from π̂1(M, p) to YG.

Proposition 4.5.4. If dim(M) ≥ 4, then for all γ1, γ2 ∈ C0(S1,M)

(q ◦ L−1)([γ1]∼) (q ◦ L−1)([γ2]∼) = (q ◦ L−1)([γ1 ∗ γ2]∼) . (4.15)

Proof. We first show that there is a LocMC region J , such that for any [γ]∼ ∈ π̃1(M), there

is a quadruple associated to it whose first or second component is J . This will be used

when we evaluate the product on the left-hand side of equation (4.15), since it will allow

us to use lemma 4.1.8 to simplify the expression.

Let Σ be a Cauchy surface ofM, then for any fixed choice of smooth embedded curve

P : [0, 1]→ Σ and any [γ]∼ ∈ π̃1(M), there is a representative [γ]∼ 3 γ̂ : [0, 1]→ Σ which

we use to define γ′ := (P ∗ γ̂) ∗ P ∈ [γ]∼. Given how we have grouped the multiplications

(see definition 1.1.9), we see that γ′ applied to mod1 ([0, 1/2]) yields the submanifold given

by the image of P. Let j = mod1 ((0, 1/2)), j̃ = mod1 ((3/5, 4/5)), and i1 and i2 be subsets

of distinct components of j ∩ j̃. We then use qS1 and qS1 to denote the quadruples of S1

given by (j̃, j, i1, i2) and (j, j̃, i1, i2) respectively.

Since P is a smooth embedding, γ′ restricted to j is a smooth self-transverse immersion.

By supposition we also have dim(Σ) ≥ 2 dim(S1) + 1, hence we can use corollary 1.2.16
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to find γ̃ ∈ Emb∞(S1,Σ)γ′|j (see definition 1.2.13) which is arbitrarily close to γ′. This

implies γ̃ is homotopic to γ′, and therefore γ̃ ∈ [γ]∼. Since γ̃|j matches P, we have

γ̃ = h ∗ P where h : [0, 1] → Σ is a smooth embedding. Therefore, ∀ γ1, γ2 ∈ C0(S1,M),

there exist embeddings h1, h2 : [0, 1]→ Σ such that h1 ∗ P is homotopic to γ1 and h2 ∗ P
is homotopic to γ2. This implies that for any tubular neighbourhood J of P, we can

find (J+, J, I1, I2) ∈ SM(h1 ∗ P, qS1) ⊂ L([γ1]∼) and (J, J−, I1, I2) ∈ SM(h2 ∗ P, qS1) ⊂
L([γ2]∼).

We can now use lemma 4.1.8 to simplify the multiplication of the elements of YG
corresponding to these equivalence classes of quadruples

(q ◦ L−1)([γ1]∼) (q ◦ L−1)([γ2]∼) = q
(
[(J+, J, I1, I2)]

)
q
(
[(J, J−, I1, I2)]

)
= q

(
[(J+, J−, I1, I2)]

)
.

Since h1 ∗ P is homotopic to γ1 and h2 ∗ P is homotopic to γ2, we find that h1 ∗ h2 ∈
[γ1 ∗ γ2]∼. We therefore find that q ([(J+, J−, I1, I2)]) = (q ◦ L−1)([γ1 ∗ γ2]∼), because

h1 ∗ h2 is a (J+, J−, I1, I2)-curve, and plugging this back into the above equation proves

the proposition.

With this result we are now in a position to define the map from π̂1(M, p) to YG which

we will go on to show is an isomorphism.

Definition 4.5.5. Let m : π̂1(M, p) → YG be the map whose action on a representative

γ ∈ [γ]∧ ∈ π̂1(M, p) is given by (q ◦ L−1)([γ]∼).

Proposition 4.5.6. The map m is well-defined and is a homomorphism.

Proof. For any two representatives γ1, γ2 ∈ [γ]∧, the product [γ1]∧[γ2]−1
∧ = [γ1 ∗ γ2]∧ =

1. Given how π̂1(M, p) is defined, it follows that γ1 ∗ γ2 must be an element of some

equivalence class in π1(M, p)2. Therefore there exists some γ3 ∈ C0(S1,M) with base-

point p such that γ1 ∗ γ2 is homotopic to γ3 ∗ γ3, hence [γ1 ∗ γ2]∼ = [γ3 ∗ γ3]∼. We can

then use proposition 4.5.4 to perform the following calculation

(q ◦ L−1)([γ1 ∗ γ2]∼) = (q ◦ L−1)([γ3 ∗ γ3]∼)

= (q ◦ L−1)([γ3]∼) (q ◦ L−1)([γ3]∼) = (q ◦ L−1)([γ3]∼) (q ◦ L−1)([γ3]∼)

= (q ◦ L−1)([γ3 ∗ γ3]∼) = 1

where the last equality follows from the fact that q ◦ L−1 applied to a contractible loop

yields the identity. We therefore find

(q ◦ L−1)([γ1]∼) = (q ◦ L−1)([γ1 ∗ (γ2 ∗ γ2)]∼)

= (q ◦ L−1)([γ1 ∗ γ2]∼) (q ◦ L−1)([γ2]∼) = (q ◦ L−1)([γ2]∼) ,

thus we see that m applied to any two representatives of an element of π̂1(M, p) yields the

same result, hence m is well-defined. The fact that m is a homomorphism clearly follows

from proposition 4.5.4.

Proposition 4.5.7. The map m : π̂1(M, p)→ YG is an isomorphism.
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Proof. To show thatm is surjective we must first show that all elements of YG are contained

in Y, since then surjectivity of m follows from the fact that q is surjective (as remarked

below definition 4.2.2) and L is bijective. For all Y1, Y2 ∈ Y there exists [γ1]∼, [γ2]∼ ∈
π̃1(M) such that Yi = (q◦L−1)([γi]∼ for i ∈ {1, 2}. We can therefore use proposition 4.5.4

to see that the product of Y1 with Y2 belongs to the image of q ◦ L−1 and is therefore an

element of Y. Therefore all elements of YG are contained in Y thus m is surjective.

Since m is a homomorphism, to prove it is injective it is sufficient to prove that its

kernel is trivial. If m([γ]∧) = 1 and L−1([γ]∼) = [(J+, J−, I1, I2)] we get

m([γ]∧) = bJ+(f, g)bJ−(g, f) = 1 ⇒ bJ+(f, g) = bJ−(f, g) .

We see from the relations imposed on our model for U +
E (G) in proposition 3.1.12 that

for the latter equality to hold we must have J+ = J− or the local algebra elements

b(i∗±f, i
∗
±g) = 1J± where i± : J± → M are inclusion morphisms and 1J± is the iden-

tity element of A +
EG(J±), which implies i∗±f = i∗±g hence I1 = I2. Therefore either

J+ = J− or I1 = I2, and in either case all (J+, J−, I1, I2)-curves are contractible, hence

L([(J+, J−, I1, I2)]) is the identity element of π̂1(M, p). We therefore see that m has triv-

ial kernel and is therefore injective. Thus we have shown m is an injective and surjective

homomorphism, and therefore is is an isomorphism.

4.6 Decomposing the universal algebra

Now that we have established an isomorphism between π̂1(M, p) and YG, we will explore

some further useful properties of the algebra elements of Y.

Lemma 4.6.1. For all g ∈ π̂1(M, p), the elements Yg := m(g) ∈ Y are self-adjoint and

square to the identity.

Proof. A simple calculation shows

Y 2
g = m(g)2 = m(g2) = m(g) = 1 .

Using lemma 4.1.4, we see that taking the adjoint has the effect of swapping the first and

second component regions of the associated quadruple. This means the loop associated to

the adjoint is the same as before just with the orientation reversed, we therefore get

Y ∗g = m(g−1) = m(g) = Yg .

Next we prove that the elements of Y are central, which means they commute with

everything in U +
E (G). In this proof we use the Einstein causality result for universal

algebras proven in the previous chapter, showing one of many possible applications of that

result.

Proposition 4.6.2. Every element of Y belongs to the centre of U +
E (G) if G has a base

space of dimension ≥ 4.
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Proof. We consider a generic generator φO(A(f)A(h)) (where f and h have compact

support in O, recalling that φO maps elements of the local algebra of O ∈ LocMC into the

universal algebra) of U +
E (G) and show that it commutes with any Yg ∈ Y. To do this

we fix a choice of Cauchy surface Σ, and find a representative γ ∈ [γ̃] = g with image

contained in Σ that passes through Σ̃ := Σ\
(
J(supp f ∪ supph)∩Σ

)
. We see that Σ̃ is an

open subset of Σ because it is the complement of a closed subset of Σ (J(supp f ∪ supph)

is closed by virtue of 1.3.12).

By supposition, the dimension of Σ is ≥ 3, so we can use [Hir76, Theorem 2.2.13] (if

necessary) to perform an arbitrarily small perturbation to γ such that it is an embedded

curve. Moreover, since Σ̃ is an open subset of Σ, this perturbation can be made sufficiently

small so that γ still passes through Σ̃. Let qS1 = (j+, j−, i1, i2) where j+ is a connected

component of γ−1(Σ̃), j− is the complement of a connected closed subset of j+, and i1 and

i2 are open connected subsets of the components of j+ ∩ j−. Since γ|i1 is contained in Σ̃

which is open, it has a tubular neighbourhood contained in Σ̃ (and similarly for γ|i2). We

can therefore pick a quadruple (J+, J−, I1, I2) ∈ SM(γ, qS1) such that I1 and I2 are Cauchy

developments of subsets of Σ̃, and therefore are causally disjoint from supp f ∪ supph.

We thus see that Yg is equivalent to the element of Y constructed from the quadruple

(J+, J−, I1, I2) (see definition 4.1.3), which is composed of generators which are spacelike

separated from φO(A(f)A(h)). We can therefore apply the Einstein causality result for

universal algebras, theorem 3.4.2 which we proved in the previous chapter, to show that

Yg commutes with φO(A(f)A(h)).

We now have all the results we need to decompose U +
E (G). For each Yg ∈ Y we can

define the following algebra element

P±g =
1

2
(1± Yg) . (4.16)

This is algebra element is central and idempotent, hence elements of P±g U +
E (G) form a

closed subspace under addition and multiplication. The fact that Yg is also self-adjoint

means P±g U +
E (G) is also closed under taking adjoints, hence P±g defines a projection (by

left multiplication) onto a subalgebra.

To decompose the universal algebra, we take a minimal set of generators of π̂1(M, p)

given by the set {gi}i∈I where I is an index set. This means any g ∈ π̂1(M, p) can be

written in terms of these generators. The choice of {gi}i∈I is of course not unique. For

each element in {gi}i∈I , we assign a value ci = ±1 and denote the collection {ci}i∈I as cI .

If the indext set I is finite (which is the case if M has finite first Betti number), we can

construct the following algebra elements

P (cI) =
∏
i∈I

P
ci

gi
. (4.17)

Proposition 4.6.3. The algebra elements P (cI) (assuming |I| < ∞ so that they can

constructed) have the following properties

i) P (cI)P (c̃I) = δcI c̃IP (cI) where cI , c̃I ∈ Z|I|2 .

ii)
∑

cI
P (cI) = 1.
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iii) For any c ∈ {1,−1} and any g ∈ π̂1(M, p), either P (cI)P
c

g
= P (cI) or P (cI)P

c

g
= 0.

Proof. Clearly P (cI)
2 = P (cI) since each of its factors is central and idempotent. If cI

and c̃I are distinct, then there exists j such that cj 6= c̃j . We know that P
cj

gj
P
c̃j

gj
is a factor

of P (cI)P (c̃I) and that it must vanish since

cj 6= c̃j ⇒ cj + c̃j = 0 cj c̃j = −1 ,

and therefore

P
cj

gj
P
c̃j

gj
=

1

4
(1 + cjYgj + c̃jYgj + cj c̃jY

2
gj ) =

1

4
(1− 1) = 0 ,

hence P (cI)P (c̃I) must also vanish. The sum over all possible choices of signs cI can be

rewritten using centrality of the factors of each P (cI) to obtain∑
cI

P (cI) =
∑
cI

∏
i∈I

P
ci

gi
=
∏
i∈I

(P
+

gi
+ P

−

gi
) =

∏
i∈I

1 = 1 .

Finally given any c ∈ {1,−1} and any g ∈ π̂1(M, p) we can decompose g in terms of the

generators as g = gi(1) · · · gi(n) so that we get

P
c

g
Yg =

1

2
(Yg + c1) = c1P

c

g
⇒

P (cI)P
c

g
= P (cI)

1

2
(1+ cYg) = P (cI)

1

2
(1 + cYgi(1) · · ·Ygi(n))

= P (cI)
1

2
(1+ c ci(1) · · · ci(n)1)

and c ci(1) · · · ci(n) = ±1. Hence we get property iii).

We now use these algebra elements to obtain the main result of this chapter.

Theorem 4.6.4. Consider G = (M, E , P ) ∈ GlobHypGreen such that dim(M) ≥ 4 and

M has finite first Betti number so that π1(M) is finitely generated. The universal algebra

U +
E (G) decomposes into a product of subalgebras

U +
E (G) ∼= A s1

E (M)× · · · ×A sn
E (M) (4.18)

where each si corresponds to a distinct choice of the signs cI for the algebra elements in

equation (4.17). Moreover, the number of subalgebras in this decomposition is given by

H1(M;Z2) which counts the number of spin structures that M admits.

Proof. Each P (cI) is composed of endomorphisms and hence also defines an endomorphism

of the algebra. Properties i) and ii) of proposition 4.6.3 therefore show that the algebra

decomposes as a product of subalgebras. Property iii) of proposition 4.6.3 shows that any

other projection defined by (4.16) must project down to one of these subalgebras, hence

these are all the subalgebras we get from elements of Y.

A choice of signs for these projections can be thought of as a choice of a homomorphism

from π̂1(M, p) to Z2, since a homomorphism is defined by its action on generators. Any

element of π1(M, p) in the subgroup π1(M, p)2 will belong to the kernel of any homomor-

phism from π1(M, p) to Z2. This means there is a one to one correspondence between
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Hom(π̂1(M, p),Z2) and Hom(π1(M, p),Z2). The latter corresponds to the number of el-

ements in H1(M;Z2) (see corollary 1.1.15). This means each choice of signs, and hence

each of the subalgebras in (4.18), corresponds to an element of H1(M;Z2). Thus we have

proven that U +
E (G) decomposes into subalgebras which are in one to one correspondence

with the elements of H1(M;Z2).

We have therefore shown that the universal algebra constructed from “even” Fermionic

theories restricted to contractible regions of spacetime contains information about the spin

structures that the spacetime admits.
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Conclusions

In this thesis have used LCQFT to investigate topological aspects of QFT, and in particular

we have focused on local to global constructions in QFT. The local to global construction

we investigate in this thesis is the universal algebra construction due to Fredenhagen

[Fre90], which can be used to extend a theory defined on a special subclass of spacetimes

to a larger class of spacetimes. We have investigated the extended theories, which we

call universal theories, obtained by the universal algebra construction for a class of linear

theories modelled on the free scalar/Dirac field defined on contractible regions of spacetime.

In chapter 3 we proved the universal theories for the full field algebras (see definition 3.1.5)

are equivalent to their original theories, and that regardless of whether or not we consider

the even subtheory that assigns even algebras (see definition 3.1.6), each of these universal

theories satisfies Einstein causality.

In order to prove these results, geometric constructions involving Cauchy balls con-

nected via tubes were introduced. A similar result for connecting disjoint contractible re-

gions of a Cauchy surface within a single contractible region, was proven by Lang [Lan12,

Lemma 1.1.6]. However Lang’s result does not apply to arbitrary disjoint contractible

regions, instead the regions must be part of a good cover. The contractible region that

connects the two disjoint contractible regions is not necessarily part of the good cover,

hence only two contractible regions can be connected using Lang’s techniques. With the

techniques introduced in this thesis, we can connect any finite number of Cauchy balls

within a larger Cauchy ball. This has applications to other local-to-global QFT con-

structions, where relations that hold in local algebras need to be extended to the global

algebra.

Further work could be done to see if these universal theories also satisfy the time

slice axiom. This would prove that these theories satisfy the two main axioms that a

theory of LCQFT should satisfy. There is a transformation on sections which takes a

section to another one localised near a given Cauchy surface, such that they both index

the same algebra element (see lemma 3.3.1). The difficulty in proving timeslice comes

from the fact that this transformation increases the support of the section it’s applied

to. This means that the transformed sections that are localised near a given Cauchy

surface may have support which is no longer contained in a contractible region. This is

problematic because relations in the universal algebra can only be implemented by means

of embedding generators into common local algebras, hence we cannot directly relate

algebra elements to their corresponding elements localised near a given Cauchy surface if

there is no contractible region of spacetime whose corresponding algebra contains both of

them.

It may be possible to circumvent this issue by transforming the section that indexes a
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given algebra element in steps, between Cauchy surfaces that each differ by a small time

step ∆t, as in proposition 4.3.7 for example, and at each time step using linearity to break

up the sections into parts with smaller support so that their support does not get too large

to be contained in a contractible region. We could then implement local algebra relations

at each time step to get a chain of relations relating a generator to its corresponding

localisation near a given Cauchy surface. The potential problem with this method is that

in the even algebra case the algebra elements are indexed by pairs of sections, so the

algebra elements cannot be localised to arbitrarily small regions of spacetime. The even

algebra elements can however be localised to arbitrarily thin tubular regions which connect

the supports of the pair of sections; perhaps this would be enough to ensure that at each

time step there is a local algebra containing a the supports of a section localised near the

Cauchy surface at t and its transformation to a section localised near the Cauchy surface

at t+ ∆t. One possible issue with this method would be if the tubes connecting pairs of

sections got closer and closer to forming a closed loop, so that at some time step it would

no longer be possible to get from the Cauchy surface at t to the Cauchy surface at t+ ∆t

without expanding the tube in such a way that it formed a closed loop, thus making it a

non-contractible region.

In chapter 4 we then focused on the universal theories corresponding to linear “even”

Fermionic theories. We proved that the corresponding universal theory assigns a universal

algebra to each spacetime M which decomposes into a product of subalgebras, and that

these subalgebras were in one to one correspondence with H1(M,Z2), which counts the

number of distinct spin structures that M admits. We did this by constructing a set of

elements Y of the universal algebra that were eventually used to decompose the universal

algebra. These elements were constructed using generators b(f, g) of the local algebras

satisfying some relations, among them being the relation

b(f, g)b(g, h) = b(f, h) .

This then allowed us to relate the elements of Y to equivalence classes of quadruples

(see definitions 4.1.2 and 4.2.1), which we were then able to show were in bijective cor-

respondence to the set of loops identified up to orientation and free homotopy (see def-

inition 4.2.3). This required us to establish further geometrical tools, including results

in Lorentzian geometry and differential topology. This equivalence then allowed us to

establish some further properties of the elements of Y, in particular that they are central

and square to the identity, which we could then use to construct projection operators to

subalgebras.

The above equation seems to resemble a form of cocycle condition in a cohomology

theory. This is interesting because it was also noted at the end of section 4.1 that in

the case of a universal algebra built from local field algebras, the corresponding central

elements of the universal algebra all collapse to the identity. This was because the local

algebra generators b(f, g) were of the form

b(f, g) = F (f)F (g)−1 .

This seems to indicate that to construct non-trivial central elements in the universal alge-
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bra, it is sufficient that there be elements b(f, g) in each local algebra that belong to some

sort of non-trivial cohomology class. The only way to obtain a non-trivial decomposition

of the universal algebra is to have non-trivial central elements, so it is the existence of

a non-trivial cohomology class in the even subalgebras which allowed us to obtain spin

structure information from the universal algebra. This suggests that this analysis could

be generalised to other types of theory, if it can be demonstrated that the theory in ques-

tion assigns local algebras which have a non-trivial cohomology class in the above sense.

It may also be possible to construct higher non-trivial cohomology classes for the alge-

bras assigned by linear even Fermionic theories, and therefore encode further topological

information in the universal algebra.

This may be related the the net cohomology construction outlined in [BR09]. In this

framework, given a poset one can construct a cohomology associated to it, and from

this products of 1-cycles can be defined to give a notion of paths, which then leads to a

definition of a fundamental group associated to any poset. For a poset given by a basis

of arcwise simply-connected subsets of a manifold M, the associated fundamental group

coincides with the fundamental group of M. Similarly, a cohomology with coefficients

that are unitary operators in a Hilbert space can be defined on a poset. Given a net

of C∗ algebras over a poset K, a unitary net representation (see the paper for details

on the definition) of this net defines a 1-cocycle in the cohomology associated to K.

Moreover, [BR09, Lemma 2.1] shows that any two unitarily equivalent net representations

define equivalent 1-cocycles. For the net of local C∗ algebras associated to the poset

of Cauchy diamonds of a fixed spacetime M, each unitary net representation of this

net corresponds to a unitary representation of the fundamental group of M in a fixed

Hilbert space. This gives a useful means of analysing the topological content of unitary

net representations. The key difference between this net cohomology and the algebra

cohomology outlined in the previous paragraph is that the former pertains to the unitary

transformations that relate the associated Hilbert space representations of C∗ algebras

associated to different poset elements, while the latter is inherent to the structure of the

local algebras and independent of the mappings between them.

Another direction for future work will be in analysing the subalgebras that the uni-

versal algebra decomposes into. We conjecture that the subalgebra corresponding to the

homomorphism that assigns +1 to each loop, is isomorphic to the global even subalgebra

whose net of local algebras was used to construct the universal algebra. This subalgebra

corresponds to the subalgebra where all the elements of Y get projected to the identity

element, which means that algebra elements that differ only by which local algebra they

are mapped into the universal algebra from, will be equivalent. One must still show that

given two generators of the universal algebra, one can (by splitting into pieces if neces-

sary) show that the commutation relations are equivalent to those in the original even

subalgebra.

We also conjecture that for the Dirac field (or any other theory defined over spin

bundles), each factor will be isomorphic to the even subalgebra equipped with a different

spin structure. In particular, the signs that specify each factor in (4.18) will also specify

the spin structure of the even subalgebra that the factor is isomorphic to. Recall that the

signs that specify a subalgebra determine whether the projection of Yg to that subalgebra
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is plus or minus the identity for each loop g. Loops for which Yg = −1 will also be

loops where the spin structures of the original global algebra and the spin structure of the

subalgebra disagree, in the sense that Fermions that undergo parallel transport around

the loop g will differ by a sign. It is interesting to note that we have not assumed that the

second Stiefel-Whitney class w2(TM) ∈ H2(M,Z2) is trivial for the spacetimes that we

consider, hence the results proven in this thesis hold even without this assumption. This

condition is required for M to admit a spin structures.
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