# New methods for the synthesis of $\mathbf{N}$-heteroaromatics and imines 



Kenji Philippe M. Kopf

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Sheffield
Faculty of Sciences
Department of chemistry

February 2021


#### Abstract

This thesis is divided into four chapters containing the work conducted at two universities, and it describes new methods for the synthesis of nitrogen-containing compounds.

The first chapter describes the project undertaken at The University of Sheffield. In this part, the scope of alkynylboronate cycloadditions with aromatic substrates was explored, to obtain highly functionalised heteroaromatic compounds. The aza-Diels-Alder cycloaddition reactions of 1,2,4triazines with alkynes offered a rapid synthesis of highly substituted pyridineboronic esters. With these substrates, the possibility of controlling axial chirality through chiral tethers favouring one atropisomer over the other was envisaged. The scope was explored to establish empirical selectivity data relating the importance of the interaction between the functional group ortho to the biaryl axis and the chiral boronic ester on the diastereomeric excess.

In the second chapter of this thesis, the work done at Stockholm University is described. In this project, an efficient method for the oxidative coupling of a diverse variety of benzylamines with other nucleophilic partners was developed. This process is catalysed by a transition-metal functionalized MOF (Metal-organic framework), namely PCN-222(Pd), under light irradiation. Importantly, a side reaction arising from the self-condensation of two identical molecules of benzyl amine was avoided. This increased the scope of the reaction, as well as the usefulness of the process. Catalytic conditions to achieve this goal were found, and the substrate scope was investigated.

The third part describes the work done during the industrial secondment at AstraZeneca. This was focused on a recently developed Ni-catalysed benzannulation method for the mild and selective synthesis of functionalised phenols. During the secondment, the optimisation of the formation of heterocyclic compounds resulting from the Ni-catalysed coupling of cyclobutenone with different substrates such aldehydes, imines and nitriles was explored.

Finally, the last chapter describes a new approach to an unusual class of pyrimidine derivatives. Pyrimidines are amongst the most widely represented class of heterocycles in the chemical sciences. Based on this, we explored the synthesis of pyrimidine boronates via the condensation of stable ynone trifluoroborates with various guanidines to have access to aryl-, heteroaryl-, and alkyl- substituted aminopyrimidines containing the valuable boron functional handle.


## Other documents based on this work

This thesis summarizes the work performed at the University of Sheffield, at Stockholm University and at AstraZeneca within the multi-partner Innovative Training Network (ITN) European Joint Doctorate (EJD) "Catalytic Methods for Sustainable Synthesis. A Merged Experimental and Computational Approach" (CATMEC). Within this program, I aim to obtain a double PhD degree, from the University of Sheffield and from Stockholm University. Therefore, the content of this thesis will also be part of a report for the thesis defence at Stockholm University.

## Acknowledgements

I would like to thank my thesis supervisors, Professor Joseph Harrity and Professor Belén MartínMatute for all the help they provided me with while writing this thesis and for letting me be a part of their team. Thank you for all for your advice and for teaching me everything that makes me a proud scientist. I would like to thank Dr. Werngard Czechtizky and Dr. Stefan Schiesser for supervising me during my time at AstraZeneca and make this secondment a real pleasure for me.

I would like to express my thanks to Professor Pher Andersson and to Aitor Bermejo-López for reading this thesis and providing valuable feedback.

I also wish to thank all the members of my research group for their collaboration but also for all the fun we have had at the lab and outside of work (the pub lunches, the pub evenings). Thank you for your advice and your help. Thank you for standing my singing in the lab, as well (Chris, I still dream of our amazing soprano duo). Larry and his théories du complot (conspiracy theories), I wish you the best. Marie, your swag and your hips that don't lie when saying "Putain !". I want to thank you, too. Matt, also known as the British agent, thank you for your help during this thesis and for having always been nice. Special thanks to you for your sense of humour after a pint! Keep going! Aitor, for your help, your kindness, your humour, your honesty, to your help for my thesis, during my time at SU and to always be happy to share a beer! I want to thank everyone else: Sophie, David, Samuel, Sergio and many more! You guys rock!

I would also thank my teacher who gave me the will and the desire to do a PhD. Dr. Marianne Wiaux, you are a great teacher and I hope you can inspire more students to continue! (Quote: De la régularité Kenji ©)
Now, on the other side of the Channel, thanks to all my family and friends from home. I will now turn to French:

Mes chers parents, je pars... Je vous aime, mais je pars... Non, mais ne vous inquiétez pas, je reviens! Merci à vous deux, car sans vous je ne serais pas là où j'en suis. Votre soutien depuis le début de mes études jusqu'à maintenant n'a pas de prix. Les vrais héros des temps modernes sont nos parents et $j$ 'en suis fier ! Je vous aime!
Ma sister, sista, sisi pour les intimes (non maman, pas l'impératrice... quoi que...), je suis sûr que nous sommes jumeaux mais j’ai juste profité du forfait «all inclusive » un peu plus longtemps. Nous sommes tellement pareils et différents par la même occasion. Juste merci, ma sœur, nos souvenirs sont de l'or, so is your heart!
Mes grands-parents chéris. Les souvenirs chaleureux de mon enfance jusqu'à maintenant. Vous faites partie intégrante de mon éducation. Je vous remercie de tous ces moments : des jeux de sociétés, des poulets-purée-compote, des balades en forêt. Tout est gravé dans la roche. Je vous aime!

Merci à tous mes amis, ma belle-famille choisie. Timothée, ma moule, on se connait depuis nos deux ans et maintenant, regarde nous ... Au secours ! Non, je plaisante ! Merci, mon mollusque préféré. Tu es un véritable ami and I am so proud of you! The best doctor ever!
Merci à toi, Nath! On ne s'est plus vu pendant un moment, mais les retrouvailles étaient comme la suite d'un livre, amazing! Ou plutôt devrais-je dire une trilogie : TNK ou ENFP pour les intimes. Tellement merci de faire partie de mes amis.
J'enchaine maintenant avec Louise, ma miss préférée! Un cœur d'or dans une veste en jean! Home-made, of course! Tu es une amie comme on les rencontre rarement. La droiture artistique ou un modèle contemporain ou bien les deux? Merci, miss !
Mon cher guillaume, tu es un vrai rock! Base solide sur qui on peut compter et dont l'amitié ne change pas avec le temps. Sans toi, je ne saurais pas assumer complètement la folie de ma quatrième personnalité. Tu gères, merci, old friend! Bien sûr, je remercie également tous les autres qui font partie intégrante de ma vie et de mes souvenirs.

Alexandre, mon mister lova lova! L'amitié qui se déclenche à retardement mais, mon père, ce que tu me fais rire! Merci, mon grand brun des neiges !
Guy, mon bel estomac. Malcolm, mon faquin des bois. Pablo, mon faquin des champs. Pauline, girl you know it's true (chorégraphie à la Rihanna sans vomir). Gael et mimi, mes cousins d'aтттоиииии (c'est sexyyyyy).
But also, I cannot not mention you, Caffeine, always with me in the morning. Thanks for getting me through the day. Tea, much more British, but after three, you are my dream.
X. Anax, E. Fitose and S. T. IlNocte, thank you for all the time I was down during this thesis (nights together are always the best parties). P. Araceta and I. Buprofen, when the pain hit me in the face or when work was too much, you were always there for me. Thank you.
Bien sûr, the best for the end. I wish to thank my amazing man. Thank you for standing by me, for supporting and helping me. You are the ground of my life and the sky of my dreams. With you I feel so much better than ever have. My soul is finally complete. Thank you, my beautiful husband. Forever and after. I love you

This project has received funding from the European Union's Horizon 2020 research innovative programme under grand agreement No 721223

## Table of Contents

Abstract .....  1
Other documents based on this work ..... ii
Acknowledgements ..... iii
Table of Contents .....
Abbreviations ..... vi
List of publications ..... vii
Network Overview .....  1
General introduction ..... 1

1. Chapter I. Synthesis of heteroaromatic atropisomers ..... 3
1.1. Introduction .....  3
1.1.1. Pyridine in organic chemistry ..... 3
1.1.2. Diels-Alder cycloaddition ..... 5
1.1.3. Atropisomerism ..... 10
1.2. Aim of Chapter I ..... 12
1.3. Results and discussion ..... 13
1.3.1. Synthesis routes to cycloaddition ..... 13
1.3.2. Resolution of atropisomers ..... 17
1.4. Conclusion and outlook ..... 22
2. Chapter II. Synthesis of imines via MOF-catalysed oxidative condensation of amines ..... 23
2.1. Introduction ..... 23
2.1.1. Synthesis of imines ..... 23
2.1.2. Metal-organic frameworks for catalytic applications ..... 27
2.1.3. Synthesis of imines catalysed by MOFs ..... 30
2.2. Aim of this chapter ..... 32
2.3. Results and discussion ..... 32
2.4. Conclusion and outlook ..... 42
3. Chapter III. Synthesis of heterocyclic compounds via Ni-catalysed benzannulation. ..... 43
3.1. Introduction ..... 43
3.1.1. Base-mediated benzannulation ..... 43
3.1.2. Transition metal-mediated benzannulation ..... 44
3.2. Aim of this chapter ..... 45
3.3. Results and discussion ..... 46
3.4. Conclusion ..... 51
4. Chapter IV. Synthesis of Pyrimidin-6-yl Trifluoroborate Salts as Heterocyclic Boronic
Acid Derivatives ..... 52
4.1. Introduction. ..... 52
4.2. Aim of this chapter ..... 54
4.3. Results and discussion ..... 54
4.4. Conclusion ..... 58
5. Chapter V. Experimental part ..... 59
5.1. General consideration ..... 59
5.2. Chapter I ..... 60
5.3. Chapter II ..... 84
5.4. Chapter IV ..... 92
References ..... 99
Appendix ..... 97

## Abbreviations

| BINOL <br> br | 1,1'-bi-2,2'-naphthol broad |
| :---: | :---: |
| calcd | calculated |
| cat. | catalytic |
| Cp | Cyclopentadiene |
| CPME | cyclopentyl methyl ether |
| $\delta$ | chemical shift |
| d | doublet |
| DCM | dichloromethane |
| DG | directing group |
| DMF | dimethylformamide |
| DMSO | dimethyl sulfoxide |
| Dppb | 1,4-Bis(diphenylphosphino)butane |
| DppBz | 1,2-Bis(diphenylphosphanyl)benzene |
| Dppe | 1,2-Bis(diphenylphosphino)ethane |
| $\mathrm{E}^{+}$ | electrophile |
| eq | equivalent |
| FTIR | Fourier transform infrared |
| HAP | Hydroxyapatite |
| HOMO | highest occupied molecular orbital |
| HTs | Hydrotalcites |
| h | hour |
| LCCT | Ligand-to-cluster charge transfer |
| $\begin{aligned} & \text { LUMO } \\ & \mathrm{m} \end{aligned}$ | Lowest unoccupied molecular orbital multiplet |
| Me | Methyl |
| MOF | Metal organic framework |
| NMR | nuclear magnetic resonance |
| Nu | nucleophile |
| O.N | over night |
| $\mathrm{PCy}_{3}$ | Tricyclohexylphosphine |
| Ph | phenyl |
| py | pyridine |
| q | quadruplet (NMR) |
| rt | room temperature |
| s | singlet (NMR), strong (FTIR) |
| sat. | saturated |
| SDAs | structure directing agents |
| SM | starting material |
| t | triplet |
| TBAF | tetra- $n$-butylammonium fluoride |
| TCPP | tetrakis(4-carboxyphenyl)porphyrin |
| THF | tetrahydrofurane |
| TMDA | $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-Tetramethyl ethylenediamine |
| Tol | toluene |
| $\mathrm{t}_{\mathrm{R}}$ | retention time |

## List of publications

## List of publications

This report is based on the following publications/manuscripts:

PAPER I:<br>Development of a thermodynamic dynamic thermodynamic resolution of atropisomeric boronic ester<br>K. P. M. Kopf, S. Bachollet, L. Valdez-Perez, N. Orlov, J.P.A. Harrity. Manuscript in preparation

## PAPER II:

Photoinduced selective synthesis of imines via amine condensation catalyzed by Pd@PCN-222
A. Bermejo-López, K. P. M. Kopf, S. Carrasco, A. Sanz-Marco, M.S Hvid, B. Martín-Matute. Manuscript in preparation

PAPER III:
Novel Pyrimidin-6-yl Trifluoroborate Salts as Highly Air- and Moisture-stable Heterocyclic Boronic Acid Derivatives.
D. L. Cousins, K. P. M. Kopf, P. Fricero, E. J. McColl, W. Czechtizky, Y. H. Lim, J. P. A. Harrity Manuscript accepted

## Author contribution:

## PAPER I:

-The synthesis of highly substituted N -heteroaromatic compounds under mild conditions via substrate directed aza-Diels-Alder cycloaddition reactions.

- Using a chiral resolving agent such (R)-BINOL to control the product axial chirality, favouring one atropisomer over the other via dynamic processes.
- Engaging chiral atropisomeric boronic esters in further catalytic cross-coupling processes.
- Establishing empirical stereoselectivity data relating the importance of the interaction between the functional group on the alkyne and the chiral boronic ester


## PAPER II:

- Developing the optimization of the reaction after the initial findings.
- Expanding the scope using the best conditions found.


## PAPER III:

- Developing the optimization of the condensation after the initial findings.
- Expanding the scope of the synthesis of pyrimidine using the best conditions found.
- Investigate the potential of these compounds for further organic synthesis


## Network Overview

The work presented in this report has been performed within the multi-partner Innovative Training Network (ITN) European Joint Doctorate (EJD) "Catalytic Methods for Sustainable Synthesis. A Merged Experimental and Computational Approach" (CATMEC). This ITN network aimed to offer state-of-the-art training to early stage researchers (ESRs) in sustainable chemical synthesis, catalysis, computational chemistry and bioactive molecule synthesis design on both traditional and non-traditional (e.g. flow) platforms. The network comprised three full academic partners and three industrial partners. This thesis presents the research undertaken towards a European Joint doctorate between the University of Sheffield (group of Prof. J. P. Harrity, home university) and Stockholm University (group of B. Martin-Matute, host university). The aim of this project was the synthesis of nitrogen containing compounds and comprised four distinct parts, which describe the work performed at the home university and at the host university.

## General introduction

Nitrogen-containing compounds are common building blocks for the synthesis of organic compounds. Whether the nitrogen atom is located in a heterocycle or as part of an amine functional group, its derivatives are ubiquitous in agrochemicals and pharmaceuticals and they play a role in the constitution of biologically active compounds. This thesis will cover different routes for the synthesis of nitrogen-containing compounds. In the first project we investigated the development of a new and efficient strategy for the stereoselective synthesis of highly functionalised heteroaromatic compounds. This method comprises two different steps, as shown in Scheme 1. First, an aza Diels-Alder cycloaddition leading to a difluoroboron intermediate. The substituents on the aryl groups provide atropisomerism, and at this stage it is possible to resolve the atropisomers by reacting this intermediate with a chiral ligand.


Scheme 1. Key reactions involved in Chapter I.

The second part of this thesis, Chapter II, was conducted at Stockholm University. The goal of this project was to study the photocatalytic oxidative coupling of two different amines catalyzed by the MOF PCN-222(M) [M = Co, Ni, Cu, $\mathrm{Zn}, \mathrm{Pd}]$ (Scheme 2). In particular, we wanted to identify which metal (M) on the PCN-222 would give the best performance, with a view to developing a protocol that gives high selectivity (cross-condensation vs self-condensation). This would dramatically increase the scope of the reaction, as well as the utility of the process. We also wanted to identify the advantages of using the current method compared to those described in the literature.


Scheme 2. Photocatalytic oxidative coupling of two different amines (Chapter II).

Chapter III described the work done during the industrial secondment at AstraZeneca. Our group have developed a Ni-catalysed benzannulation method for the mild and selective synthesis of functionalised phenols. ${ }^{1}$ This chemistry offers an effective way to generate benzene-based target molecules from simple starting materials. However, it is currently limited with regard to the synthesis of heterocyclic compounds, such as lactones. During the secondment, optimal conditions have been investigated for the formation of heterocyclic compounds resulting from the Nicatalysed coupling of cyclobutenone with different substrates such aldehydes, imines and nitriles. Finally, the last chapter describes a new approach to an unusual class of pyrimidine derivatives. Pyrimidines are amongst the most widely represented class of heterocycles in the chemical sciences. A significant proportion of marketed pyrimidines contain a 2 -amino group, and so we investigated the scope of an ynone (potassium (3-oxo-3-phenylprop-1-yn-1-yl)trifluoroborate) condensation with various $N$-substituted guanidines. In particular, we explored the potential of this method to allow access to aryl-, heteroaryl-, and alkyl- substituted aminopyrimidines.

## 1. Chapter I. Synthesis of heteroaromatic atropisomers

### 1.1.Introduction

### 1.1.1. Pyridine in organic chemistry

Pyridines are an important class of molecules which continue to attract attention as they play a role in the preparation of biologically active compounds. ${ }^{2}$ Pharmaceuticals containing pyridines appeared in the 1930s with the recognition of niacin's activity in the prevention of dermatitis and dementia. Nicotinic acid and its derivatives exhibit the biological activity of nicotinamide, which acts as an electron acceptor in many biological redox reactions. ${ }^{3}$


Figure 1. Structure of niacinamide (nicotinamide).

Over subsequent decades, many examples were shown to have applications in medicinal chemistry. Some of these organic compounds have anticancer properties, as well as activity against Plasmodium falciparum, a parasite responsible for many diseases in humans, such as malaria (Figure 2). ${ }^{4}$



Figure 2. Thiosemicarbazones derived from quinoline (left) and pyridine (right) as anticancer drugs.

The heterocyclic structure based on pyridine was found useful in coordination chemistry as ligand in complexes of Ru and Os. For example, as fluorescence probes for DNA analysis and researching for mutations. ${ }^{5}$

From a structural point of view, pyridine is a 6 membered ring with six $\pi$-electrons that are delocalized over the ring (Figure 3). The molecule is planar and satisfies the Hückel rule for an aromatic system. Pyridine is a reasonable nucleophile for carbonyl groups and is often used
as a nucleophilic catalyst in acylation reactions. The nucleophilicity arises from the lone pair on the nitrogen atom which cannot interact in the aromaticity of the ring because the $\mathrm{sp}^{2}$ orbital is orthogonal to the conjugated $\pi$-system. ${ }^{6}$


Figure 3. Orbital description of pyridine.

Pyridine is a poor substrate for electrophilic aromatic substitution since the nitrogen atom destabilizes potential Wheland intermediates and lowers the energy of the orbitals of pyridine's $\pi$ system means that electrophilic attack on the ring is difficult. The carbons on the ring are unreactive, and the electrophilic reagents attack the nitrogen atom leading to a stable pyridinium cation, making the ring even less reactive. Thus, electrophilic aromatic substitution reactions such as nitration become very slow. ${ }^{5}$ On the other hand, pyridine is more prone to undergo nucleophilic aromatic substitution than benzene. The intermediate anion generated by attack at the 2- and 4-positions is stabilized by the electronegative nitrogen atom and by delocalization inside the ring. Nucleophiles like thiolates or amines work well for this kind of reaction. Such reactions have been used for the synthesis of medicinal compounds such as the analgesic Flupirtine (Scheme 3). ${ }^{7}$


Scheme 3. Nucleophilic substitution on a chloropyridine in the nine-step synthesis of Flupirtine.

Because of its general utility, a wide range of syntheses have been reported to provide substituted pyridines, such as the Hantzsch reaction, which gives dihydropyridine derivatives by condensation of an aldehyde with two equivalents of a ketoester with ammonia (Scheme 4). An oxidation of the dihydropyridine can next lead to a substituted pyridine.


Scheme 4. General synthesis of Hantzsch ester.
The Bohlmann-Rahtz pyridine synthesis allows the generation of simply substituted pyridines by condensation of enamines with ethynylketones, which then undergo a cyclodehydration (Scheme 5). ${ }^{8}$


Scheme 5. General Bohlmann-Rahtz pyridine synthesis.

At this point, many researchers attempted the development of mild and efficient methods for the synthesis of highly substituted pyridines. Many syntheses are based on condensation reactions, ${ }^{9}$ metal-catalysed cycloaddition reactions ${ }^{10}$ or by thermal electrocyclizations ${ }^{11}$ (Scheme 6).

b)

c)


Scheme 6. A) Single-step synthesis of pyridine derivatives by condensation of nucleophiles with amides. B) Ruthenium-catalyzed cycloisomerization- $6 \pi$-cyclization. C) Cascade reaction comprising thermal electrocyclization.

### 1.1.2. Diels-Alder cycloaddition

Cycloadditions are an important class of reactions which can provide complex cyclic compounds in a one-step process. The Diels-Alder reaction is a cycloaddition where a conjugated diene reacts with a dienophile. ${ }^{12}$ This reaction is classified as a [4+2] cycloaddition where the 4 and 2 represent the number of atoms involved in the ring forming process.

Two species are involved in this reaction (a diene and a dienophile) and the substituents in these two species can influence the cycloaddition rate. ${ }^{13}$ In the case of a normal electrondemand Diels-Alder reaction, an electron rich substituted diene (HOMO raised in energy) accelerates the reaction with electron-withdrawing substituted dienophiles (LUMO lowered in energy). In another case, an electron-withdrawing groups on the diene (LUMO lowered in energy) accelerate the cycloaddition with dienophiles having electron-donating groups (HOMO raised in energy). For this last one, the reaction is called an inverse electron-demand Diels-Alder process (Figure 4). ${ }^{14,15}$


Figure 4. Frontier orbital interactions in Diels-Alder reactions.

This reaction is atom economical and a very powerful method to synthesize six-membered rings. There are many examples in organic chemistry using this reaction, like the synthesis of steroids by Woodward in $1952^{16}$ or the synthesis of Morphine by Gates and Schudi ${ }^{17}$ in 1952 and represent a powerful tool for biomedical applications as drug delivery systems. ${ }^{18}$

Because of its broad utility, the Diels-Alder reaction has been used to prepare heterocyclic compounds. Many reports highlight the use of 1 -azadienes in hetero Diels-Alder reactions, such as in Behforouz and Ahmadian's work in $2000{ }^{19}$ or Mahajan and co-workers in 2002 (Scheme 7). ${ }^{20}$
a)

b)


Scheme 7. Diels-Alder reaction using electron deficient A) or electron rich B) 1-azadienes.

Depending on the substituent on the nitrogen atom, the reaction occurs via a normal electron demand (electron-rich 1-azadienes) or inverse electron demand (electron-deficient 1-azadiene) process. ${ }^{21}$
A particularly popular heterocycle forming variant of the Diels-Alder reaction uses substituted 1,2,4-triazines with enamines. ${ }^{22}$ This represents the most thoroughly investigated heteroaromatic azadiene system capable of $4 \pi$ diene participation. ${ }^{23,}{ }^{24}$ An example of this application was based on the synthesis of Streptonigrin by Weinreb and co-workers in a 34step route in $1980 .{ }^{25}$ A few years after, Boger et al. reported the potential utility of the inverse electron demand Diels-Alder reaction of 1,2,4-triazines with an enamine for the construction of the Streptonigrin biaryl C ring. ${ }^{26}$


Figure 5. Inverse electron Diels-Alder for the construction of ring C of Streptonigrin.

Based on preceding studies for a cycloaddition route to substituted pyridines, they analysed the potential of an enamine in an inverse electron demand Diels-Alder process (Figure 6). ${ }^{27}$


$\mathrm{CHCl}_{3}, 45^{\circ} \mathrm{C}, 20 \mathrm{~h}$



Figure 6. Example of an aza Diels-Alder of 1,2,4 triazine with an enamine.

We have recently become interested in this kind of reaction for the mild and regiocontrolled synthesis of heteroaromatic compounds by directed cycloadditions. In this strategy we used an alkyne bearing a Lewis acid that would promote pre-association with a diene bearing a complementary Lewis base (Figure 7). ${ }^{28}$


Figure 7. Directed cycloaddition via Lewis acid-base coordination.

Several examples of this type of reaction have been studied in our group, highlighting clear advantages of this strategy for the synthesis of aromatic and heteroaromatic compounds. For example, tetrazines, 2-pyrones and sydnones have all been found to undergo cycloadditions under mild conditions using this concept. ${ }^{29}$ After this, our research group focused on establishing the reactivity of non-activated triazines with alkynes. A comparative study showed that the reaction of an alkynylboronic ester required harsh conditions and provided the corresponding product in low yield. In contrast, the use of an alkyne bearing a Lewis acid offered better conversion in only 20 min at moderate temperature with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a fluoride scavenger (Figure 8).


Figure 8. Inverse Diels-Alder cycloaddition of triazine. The insertion of a Lewis acid promoter generates the activate species in situ.

During a study on the reaction scope it was noted that when unsubstituted triazines were used, the corresponding products were obtained with a moderate yield. The reason was found to be a direct acetylide addition to the heteroaromatic ring leading to a minor side product. In the case where both C5 and C6 were unsubstituted, a double addition product was obtained leading to a lower yield of the desired product (Scheme 8).


Scheme 8. Directed cycloaddition with $1,2,4$ triazines.

### 1.1.3. Atropisomerism

Atropisomerism results from restricted rotation about a single bond due to steric effects, where the energy barrier is high enough to isolate the different isomeric species. ${ }^{30,31}$ Based on this, we can classify three different types of atropisomerism. Class one concerns molecules which do not have atropisomeric properties because they show very fast axial rotation (Figure 9). Class three encompasses classical atropisomers: molecules which are kinetically inert meaning that no interconversion or racemisation is expected. Between these classes is the second class: with an interconversion energy of between 20 and $30 \mathrm{kcal} / \mathrm{mol}$, these molecules have the potential to form atropisomers but the stereochemical integrity can be compromised over time.
a)
b)


Torsion Rotation Energy Barrier (kcal/mol)
c)
$\mathrm{E}_{\text {rotation }}$ barrier
rotation $t_{1 / 2}$

14.2
0.002 s

25.1

75 h


30
$>10$ years

Figure 9. A) Interconversion of atropisomers. B) Atropisomers divided into different classes on the basis of the interconversion energy barrier. C) Example of different compounds from class 1,2 and 3 represented with their energy of axial rotation barrier and their half-life time. ${ }^{30}$

Atropisomerism is not just an academic phenomenon, we can find this property in natural products, pharmaceuticals and agrochemicals. Several examples have been reported such as Stenagacin, a natural product which possesses significant activity against cells derived from human carcinoma of the nasopharynx, or Streptonigrin, used for treatment of cancer (Figure 10). ${ }^{32}$ Some pharmaceutically important products have been synthesised in industry such as the Bcl-2 ligand by UCB celltech ${ }^{33}$ for the regulation of cell death, or a CCR5 inhibitor by GSK as treatment for HIV infection. ${ }^{34}$





Figure 10. Examples of atropisomeric natural products and pharmaceutical compounds.

### 1.2.Aim of Chapter I

In this project, we plan to devise an efficient method for the stereoselective synthesis of functionalised atropisomers. This method will comprise three important steps, as shown in Scheme 9. First, an aza Diels-Alder cycloaddition produces a difluoroboron intermediate. The substituents on the molecule provide atropisomerism and at this stage it is possible to resolve the atropisomers by adding a chiral ligand to the molecule. The role of the boron is not only to act as Lewis acid promoting the association of the alkyne with the triazine, it also provides a site for the addition of the chiral ligand and also as a handle to further elaborate the products.






Functionalization



Scheme 9. The key reactions involved in this project.

### 1.3.Results and discussion

### 1.3.1. Synthesis routes to cycloaddition

This project started with the synthesis of the required dienes for the cycloaddition step. The condensation between an amidrazone with a 1,2-dicarbonyl derivative is a well-established way to synthesise triazines. ${ }^{35,36}$ This pathway has been explored by our group and allows analogues bearing quinoline or pyridine fragments to be easily prepared (Scheme 10). ${ }^{37}$ Accordingly, the synthesis of these substrates was performed. This procedure began with the reaction of a cyanoquinoline derivative and hydrazine to obtain the corresponding amidrazone. The condensation was then performed with different 1,2-dicarbonyl structures.
a)




Scheme 10. a) Starting material used for the synthesis of 1,2,4-triazine. b) Formation of the amidrazone by reaction with hydrazine and condensation with 1,2-dicarbonyl compounds to form the corresponding triazine.

The formation of the quinoline and pyridine amidrazones $\mathbf{2 a}$ and $\mathbf{2 c}$ proceeded in quantitative yield and produced solid products that could be easily isolated by filtration. A similar outcome was observed during the condensation reaction with the 1,2 -dicarbonyl compounds, and these processes took place in very good yields (Scheme 10).

Notably, the isoquinoline substituted amidrazone 2b required a longer reaction time and it was not possible to isolate the product from 1b. However, the crude was used directly for the next step to afford the compounds $\mathbf{4 b a}$ and $\mathbf{4 b b}$.

The synthesis of the alkynyltrifluoroborate salts was carried out next so that the cycloaddition reactions could be studied with the available 1,2,4-triazines. Iodobenzene compounds were chosen as precursors because of their commercial availability and their high reactivity in alkyne cross-coupling reactions.


5a $\mathrm{R}=\mathrm{OCH}_{3}$
5b $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$
$7 \mathrm{aR}=\mathrm{OCH}_{3}(68 \%)$
$8 \mathrm{aR}=\mathrm{OCH}_{3}(80 \%)$
9a $\mathrm{R}=\mathrm{OCH}_{3}(20-40 \%)$
9b $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}(20-50 \%)$
Scheme 11. Synthesis routes toward the alkynyltrifluoroborate salts

The synthesis commenced with a Sonogashira coupling with ethynyltrimethylsilane followed by removal of the trimethylsilyl group leading to the ethynylbenzene precursors $\mathbf{8 a}$ and $\mathbf{8 b}$ (Scheme 11). An increase in catalyst loading led to a better yield of the reaction (Table 1, entry $2 \& 5$ ). When triethylamine was also used as solvent, no effect on the reaction yield was observed (Table 1, entry 3).
Table 1. Optimisation of the Sonogashira coupling ${ }^{\text {a }}$


| Entry | $\mathbf{m o l}$ <br> $(\mathbf{m m o l})$ | $\mathbf{5}$ | $[\mathbf{P d}]$ <br> $(\mathbf{m o l} \%)$ | $[\mathbf{C u}]$ <br> $(\mathbf{m o l} \mathbf{0})$ | Solvent | $\mathbf{7 ( \% )}{ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 17.2 | $\mathbf{5 b}$ | 2 | 4 | THF | 50 |
| 2 | 21.4 | $\mathbf{5 b}$ | 4 | 8 | THF | 70 |
| $3^{\mathrm{c}}$ | 14.2 | $\mathbf{5 b}$ | 4 | 8 | -- | 65 |
| 4 | 14.1 | $\mathbf{5 a}$ | 2 | 4 | THF | 55 |
| 5 | 21.4 | $\mathbf{5 a}$ | 4 | 8 | THF | 68 |

a) Reaction conditions: 6 (2 equiv.), $\mathrm{NEt}_{3}\left(6\right.$ equiv.), THF, $6 \mathrm{~h}, 50^{\circ} \mathrm{C} . \mathrm{b}$ ) Yield c) Triethylamine used as solvent.

We next attempted to obtain the trifluoroborate salts by first deprotonating the alkyne ( $\mathbf{8 a}, \mathbf{8 b}$ ) with $n$-butyllithium and adding an excess of trimethylboronate. An excess of $\mathrm{KHF}_{2}$ dissolved in water, led to the product $(\mathbf{9 a}, \mathbf{9 b})$ in moderate yields.

The synthesis of both coupling partners was followed by the first cycloaddition with the triazine $\mathbf{4 a a}$ with the alkynylboronate salts $\mathbf{9 a}$. This reaction was successful and so we continued this study by using different triazines (Scheme 12).



10aa : $\mathrm{R}=\mathrm{OCH}_{3}(77 \%)$
10ab: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}(67 \%)$


10ba: $R=\mathrm{OCH}_{3}(50 \%)$
10bb : $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}(46 \%)$


10ca : $R=\mathrm{OCH}_{3}(70 \%)$
10cb: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}(40 \%)$


10da : $R=\mathrm{OCH}_{3}(60 \%)$
10db : $R=\mathrm{CH}_{2} \mathrm{CH}_{3}(46 \%)$


10ea : $\mathrm{R}=\mathrm{OCH}_{3}(40 \%)$

Scheme 12. Cycloaddition of the triazine 4 with the alkynylboronate salts 9 . Reaction conditions: 1) trifluoroborate salt 9 (3 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (3 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Different purification protocols were generally required across the examples shown in Scheme 12, and these are summarised in Table 2. The product 10ab and 10aa were purified by column chromatography over silica gel to afford a good yield (Table 2, entry 1-2). The isoquinoline 10ca and 10cb required the use of florisil column to afford a respectable yield of $40 \%$ and $70 \%$, respectively (Table 2 , entry 5-6).

Table 2. Purification method


| Entry | Compound | Yield <br> $(\mathbf{\%})$ | Purification method |
| :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1 0 a b}$ | 67 | Silica gel column (DCM: EtOAc) $-(8: 2)$ |
| 2 | $\mathbf{1 0 a a}$ | 77 | Silica gel column (Hex: EtOAc) $-(6: 4)$ |
| 3 | $\mathbf{1 0 b b}$ | 46 | Slow crystallisation in DCM |
| 4 | $\mathbf{1 0 b a}$ | 15 | Slow crystallisation in DCM |
| 5 | $\mathbf{1 0 c b}$ | 40 | Florisil column (Hex: EtOAc) $-(8: 2)$ |
| 6 | $\mathbf{1 0 c a}$ | 70 | Florisil column (Gradient Cyclohexane, ending DCM) |

During this study, we noted that product 10ba was obtained in very low yield (Table 2, entry 4). In order to improve the yield, we varied reaction conditions and purification procedures (Table 3). Finally, a recrystallization of the akynylboronate ${ }^{38} \mathbf{9 a}$ was found to deliver the product in acceptable yield (Table 3). This result highlighted the importance of using pure alkyne substrate for optimal product yields.

Table 3. Optimisation of cycloaddition reaction ${ }^{\text {a }}$

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | 9a (equiv.) | $\begin{gathered} \mathbf{B F}_{3} \cdot \mathbf{O E t}_{2} \\ \text { (equiv.) } \end{gathered}$ | Solvent | T ( ${ }^{\circ} \mathrm{C}$ ) | Yield (\%) ${ }^{\text {b }}$ |
| 1 | 2.5 | 2.5 | DCM | 45 | 13 |
| 2 | 2.5 | 5 | $\mathrm{CHCl}_{3}$ | 60 | 15 |
| 3 | 2.5 | 5 | Toluene | 85 | Trace |
| 4 | 2.5 | 5 | THF | 45 | Trace |
| $5^{\text {c }}$ | 3 | 3 | DCM | 45 | 50 |

a) Reaction conditions: $\mathbf{9 a}$ (2.5 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$ at $45^{\circ} \mathrm{C}$. b) Isolated yield .c) Recrystallisation of 9 a in hot acetone.

### 1.3.2. Resolution of atropisomers

The last part of this chapter concerns the resolution of the atropisomeric pyridines synthesised by cycloaddition. As described in the introduction, these molecules possess chirality that results from a hindrance of rotation about the biaryl bond. Indeed, evidence for atropisomerism was apparent from the ${ }^{19} \mathrm{~F}$ NMR spectra of all the cycloadducts; two AB doublets could be discerned which was indicative of diastereotopic F -atoms. We then envisaged that the substitution of the fluorides for a chiral ligand could provide separable diastereoisomers. For this part, the boron played another major role because it provided a convenient handle to introduce chiral groups.
$(R)$-Binol was used as the chiral ligand of choice for the resolution step. The binol ester was generated from the corresponding boronic acid, which was in turn formed by addition of sodium hydroxide to the $\mathrm{BF}_{2}$-cycloadducts (Scheme 13).

 $(R)$-BINOL, B) ${ }^{19} \mathrm{~F}$ NMR spectra of the cycloadducts $\mathbf{1 2 a b}$ and $\mathbf{1 2}$ ea showing two AB doublets. Reaction conditions: 1) trifluoroborate salt (3 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (3 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $40^{\circ} \mathrm{C}, 30 \mathrm{~min}$; 2) NaOH (5 equiv.), THF, reflux, $16 \mathrm{~h} ; 3$ ) ( $R$ )-BINOL (1 equiv.), toluene, reflux, $1 \mathrm{~h} . \mathrm{a}$ ) Isolated yield.

Although the chiral boronic esters were formed in low yield, the stereochemical outcomes were surprisingly different. Specifically, 12ab was formed as a mixture of two diastereoisomers in equal ratios, as expected. In contrast, compound 12ea generated a measurable excess (1:4) of one diastereoisomer. A rationale for this latter result could be (i) the reaction proceeded to $<100 \%$ conversion and that a kinetic resolution took place; (ii) the reaction proceeded with high conversion and that a dynamic thermodynamic resolution (or DTR) has taken place (albeit with a low yield of product).

With the work described in this chapter, we believe that a DTR takes place whereby the methoxy group can coordinate to boron to form a planar intermediate around the biaryl bond.

This mechanism provides a route to equilibration of the two diastereoisomers, and the one with the lower energy will be the major one (Figure 11).


Figure 11. Lost atropisomerism. Coordination of the boron to the heteroatom, leading to a planar intermediate.

After this initial result, we analysed the change in diastereomer ratio of 10aa in the reaction mixture over time. After formation of the corresponding boronic acid 11aa under the same conditions as before, we used $(R)$-BINOL to form both stereoisomers. NMR analysis was used to monitor the variation of the diastereomer ratio over time (Scheme 14a). No change of the ratio was observed but after letting the mixture cool down, we observed precipitation in a ratio of 1:20 of the major diastereoisomer, which was confirmed by proton NMR. We decided to dissolve the solid in hot toluene and left the reaction for 16 h . Another NMR analysis showed that the diastereomeric ratio had returned to 1:4, suggesting that there is a dynamic equilibrium in the reaction (Scheme 14b).


Scheme 14. Analysis of the changing diastereomeric ratio during time. a) Insertion of the chiral group on the boronic acid from 12aa gave a ratio 1:4 of both diastereoisomers without any change after 3 days. b) The major diastereoisomer precipited after cooling down the mixture to give a ratio of 1:20. This new ratio was heated again in toluene overnight, returning the ratio to $1: 4$.

Furthermore, we tried to add alternative chiral diols in order to improve the ratio of diastereomers. First, $(R)$-dibromo-BINOL was used but unfortunately the reaction offered a poorer ratio of 2.8:1 of 12a', Based on that, we chose another ligand ( $R$ )-VANOL, but unfortunately this offered a similar ratio of products of $3: 1$ (Scheme 15). We therefore decided to proceed to the exploration of the scope with $(R)$-BINOL.


Scheme 15. Chiral ligand insertion for the resolution of the molecule. Hindered ligand was used to see the impact on the ratio of the diastereoisomers. ${ }^{\text {a }}$ Isolated yield.

The resolution was extended to other boronic acid derivatives to generate the corresponding boronic esters. An excellent yield was obtained for the isoquinoline derivative 12ca and 12cb with respectively $79 \%$ and $88 \%$. The other compounds afford a yield of $50 \%$ to $45 \%$ for the quinoline 12ba and 12bb bearing the phenyl group and $57 \%$ for the product 12aa (Scheme 16). In these different cases, the diastereoisomers were not separable.




12aa $\mathrm{R}=\mathrm{OCH}_{3}$ 57\% (4:1)


12ba $\mathrm{R}=\mathrm{OCH}_{3}$ 50\% (4:1) 45\% (1:1)


12ca $\mathrm{R}=\mathrm{OCH}_{3}$ 79\% (4:1)

12cb $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$ $88 \%(1: 1)$


12da $\mathrm{R}=\mathrm{OCH}_{3}$
87\% (4:1)
12db $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$
56\% (1:1)


12ea $\mathrm{R}=\mathrm{OCH}_{3}$ 57\% (4:1)

Scheme 16. Scope of the boronic ester synthesis. Reaction conditions: 1 ) $\mathbf{1 0}$ ( 1 equiv.), NaOH (10 equiv.), THF, reflux, 16 h 2 ) $\mathbf{1 1}$ (1 equiv.), ( $R$ )-BINOL ( 1 equiv.), toluene, reflux, 1 h .

After some optimisation, we were able to isolate both stereoisomers of 12cb by preparative HPLC. One of them was next dissolved in toluene and heated at reflux for 2 h (Figure 12). Interestingly, in this case we did not observe any change of the ratio, which suggests that this substrate cannot undergo DTR.


Figure 12. Analysis of the diastereomeric ratio over time. Left, the major diastereoisomer precipitated after cooling down the mixture to give a ratio of 1:20. This new ratio was heated again in toluene for 1 h , returning the ratio to 1:4. Right, the diastereoisomers were separated by preparative HPLC and one of them was then heated in toluene for 1 h , affording the same diastereoisomer ratio.

Finally, X-ray crystal structure was obtained of compound 12aa after crystallization in cold toluene (Figure 13). The proton NMR of the resulting 20:1 mixture could confirm that the major diastereoisomer of the ratio $4: 1$ was the one isolate after crystallization by comparing the proton of the methoxy group of the two spectra. Also, the X-ray crystal structure highlighted a possible potential for $\pi$-stacking between the anisole and one of the biaryl rings of the BINOL. We could speculate that the minor diastereomer in these cases could have an unfavourable steric interaction of the ortho-substituent and the Binol ester oxygen atom favoring one diastereomer over the other.


Figure 13. X-ray crystal structure of compounds 12aa (left) and representation of the corresponding major diastereoisomer (right)

### 1.4.Conclusion and outlook

We have shown that the aza-Diels-Alder cycloaddition reactions of 1,2,4-triazines with alkynyltrifluoroborate salts offer a rapid method for the synthesis of atropisomeric pyridines bearing a boronic ester. The purity of the alkyne $\mathrm{BF}_{3} \mathrm{~K}$ salts or the $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ played an important role in the yield of the reaction. We also worked on the resolution of the molecules by addition of a chiral ligand and speculate that the interaction of an adjacent oxygen atom with the boron promotes equilibration of the diastereomers. The experiments suggest that the ratio is the result of dynamic thermodynamic resolution (or DTR).

As expected, when an ethyl group replaced a methoxy group, a diastereomeric ratio of $1: 1$ was obtained. After separation of both ethyl-substituted isomers, one was dissolved in toluene and heated at reflux for 1 h . Interestingly, in this case we did not observe any change of the diastereomeric ratio, which suggests that this substrate cannot undergo DTR.
As discussed, the role of the boron is not only to act as a Lewis acid that promotes association of the alkyne with the triazine, it also provides a site for the addition of a chiral ligand and also as a handle to further elaborate the products. This functionality could be use in cross coupling reactions, such as Suzuki coupling to afford a new panel of highly substituted aromatic compounds.

## 2. Chapter II. Synthesis of imines via MOF-catalysed oxidative condensation of amines

### 2.1.Introduction

In this section, synthesis of imines will be described. Imines are analogous to ketones and aldehydes but contain a $\mathrm{C}=\mathrm{N}$ bond instead of a $\mathrm{C}=\mathrm{O}$ bond. Imines are also known as Schiff bases, and are common synthetic intermediates in the preparation of heterocycles and other nitrogen-containing organic molecules. ${ }^{39}$

### 2.1.1. Synthesis of imines

### 2.1.1.1. Classical methods

Imines can be prepared by condensing carbonyl compounds (aldehydes and ketones) with primary or sec-amines under acidic conditions. ${ }^{40}$ Even though this is the most straightforward method to prepare imines, it gives poor yields when using non-nucleophilic amines or acidsensitive carbonyl compounds. Several alternatives have been developed to overcome these difficulties. For example, Love, ${ }^{41}$ Look ${ }^{42}$ and coworkers found that tetraethyl orthosilicate can be used to synthesise imines in these difficult cases, through their ability to act as desiccant to remove the water and shift the equilibrium towards the imine product (Scheme 17).


Scheme 17. Preparation of N-tosylaldimines.

Several different methods have been introduced to promote what is still essentially a condensation of an amine and aldehyde. But in this report, I will focus on alternative routes, namely those involving oxidation of alcohols or of amines.

### 2.1.1.2. Catalytic methods

### 2.1.1.2.1. C-N bond oxidation

Imines can be prepared through oxidation of carbon-nitrogen single bonds. For example, Ritter and co-workers reported the dehydrogenation of isobornylaniline (Scheme 18) in the presence of sulfur. ${ }^{43}$


Scheme 18. Dehydrogenation of isobornylaniline to obtain the camphor anil.

In recent decades, it has been shown that the use of metal catalysts offers an efficient route for the synthesis of imines. A pioneering example was reported in 1988 by Nishinaga and coworkers, who demonstrated the use of Co (salen) complexes to dehydrogenate amines under aerobic conditions. ${ }^{44}$ At this time, the dehydrogenation was not well documented and this pathway was proposed as a new route towards the synthesis of imines.

As mentioned, imines can be produced via the aerobic oxidation of amines under transition metal catalysis, in which the metal shuttles between an oxidized and a reduced form. A common challenge here is the high-energy barrier that must be overcome to re-oxidize the metal under aerobic conditions. This has been solved in some instances by using electrontransfer mediators. For example, Bäckvall and co-workers described a mild and efficient biomimetic ruthenium-catalysed pathway to generate aldimines and ketimines. ${ }^{45}$ This design was inspired by the role of $\mathrm{NAD}^{+}$and ubiquinone in the biological oxidation of alcohols. By replacing nicotinamide by a ruthenium complex and cytochrome C by a metal macrocycle, they provided a route to oxidise secondary amines using oxygen as the final oxidant (Scheme 19).


Scheme 19. Aerobic oxidation of amines. As metal macrocycle ( $\mathrm{ML}^{\mathrm{m}}$ ), a $[\mathrm{Co}($ salen $)]$-type complex, was used for the $\mathrm{O}_{2}$ activation.

### 2.1.1.2.2. Dehydogenative coupling of amines

A different approach to produce imines consists of the dehydrogenative coupling of two different amines. Instead of oxidizing a $\mathrm{C}-\mathrm{N}$ bond, two amines are reacted under catalytic conditions forming an imine and liberating ammonia. Numerous examples exist, using both homogeneous and heterogeneous catalysts. An example is shown in Scheme 20, where an iron / TEMPO catalytic system was used. ${ }^{46}$


Scheme 20. Aerobic oxidation catalysed by iron

Gopalaiah and co-workers have also used iron catalysts under aerobic conditions for the dehydrogenative coupling of amines, which could lead to the self- or cross-condensation (Scheme 21). ${ }^{47}$

Scheme 21. Iron-catalysed oxidative condensation of primary amines to imines

Another example has been reported by Madsen and co-workers, where cobalt nanoparticles are formed in situ for the coupling of amines into imines (Scheme 22). ${ }^{48}$

$$
\widehat{\mathrm{R}}^{\mathrm{NH}_{2}}+\mathrm{R}^{2} \mathrm{NH}_{2} \xrightarrow[\text { mesitylene, } 164{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}]{3 \mathrm{~mol} \mathrm{Co}_{2}(\mathrm{CO})_{8} \text {, TOPO }} \mathrm{R} \widehat{\mathrm{~N}}^{-\mathrm{R}^{2}}
$$

Scheme 22. Dehydrogenative coupling of primary amines into imines. Nanoparticles of cobalt formed in situ and stabilised by trioctylphosphine oxide (TOPO).

### 2.1.1.2.3. Dehydrogenative coupling of alcohols and amines

One of the great advances in this field was brought about by Haruta's use of CO (carbon monoxide) oxidation and alkene epoxidation, catalysed by supported gold nanoclusters. ${ }^{49}$ Following this work, the use of gold has since become more important in the catalytic oxidation of alcohols ${ }^{50,51}$ but also in the synthesis of imines and oximes via supported gold nanoparticles. ${ }^{52}$ The effect of the gold immobilized onto hydroxyapatite (HAP, $\left.\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{2}\right)$ provided an efficient way to synthesise imines by a tandem oxidationcondensation reaction (Scheme 23). It has been demonstrated that HAP shows great potential as a catalyst support. ${ }^{53,54}$



Scheme 23. Reactions catalysed by gold/hydroxyapatite for the synthesis of a) imines ( $\mathrm{Au} / \mathrm{HAP} 1 \mathrm{~mol} \%$ ), and b ) oxime ( $\mathrm{Au} / \mathrm{HAP}, 2 \mathrm{~mol} \%$ ). ${ }^{\text {a Conversion (\%) based on the }}$ conversion of alcohols to imines.

The acceptorless dehydrogenation (AD) is another pathway used for the amination or imination of alcohols. The development of homogeneous catalysts for this method has been well documented ${ }^{55}$ but they possess several disadvantages such as extensive use of ligands, low sensitivity or poor catalyst recovery. ${ }^{56}$ However, modified hydrotalcites (HTs) have been synthesised as an efficient, cheap and recyclable heterogeneous catalyst. ${ }^{57}$ Hydrotalcite-like compounds are mineral hydroxide based with the general formula $\left[\mathrm{M}^{2+}{ }_{1-\mathrm{x}} \mathrm{M}^{3+}{ }_{\mathrm{x}}(\mathrm{OH})_{2}\right]^{\mathrm{x}}\left(\mathrm{A}^{\mathrm{n}-}\right.$ $)_{\mathrm{x} / \mathrm{n}} \cdot \mathrm{mH}_{2} \mathrm{O}$ composed often of magnesium and aluminium. ${ }^{58}$ Voutchkova-Kostal and coworkers reported good catalytic activity for $\mathrm{Mg}-\mathrm{Al}$ HTs impregnated with $\mathrm{Pd}^{0}$ in alcohol imination reactions, proceeding through acceptorless alcohol dehydrogenation. ${ }^{56}$

Until now, few methods involved reusable heterogeneous catalysts based on earth-abundant eco-friendly metals for the direct imine synthesis. Inspired by the application of N -doped
graphene, ${ }^{59}$ the group of Raman described for the first time the dehydrogenative coupling of alcohols and amines in the presence of an iron-based graphene catalyst (Scheme 24). ${ }^{56}$


Scheme 24. Iron-catalysed direct imine formation by acceptorless dehydrogenative coupling of alcohols with amines. ${ }^{\text {a }}$ Isolated yield.

These examples highlight the great attention that has been paid to heterogeneous catalysis, an area which is in perpetual improvement. Similarly, metal-organic frameworks (MOFs) have shown tremendous potential to act as heterogeneous catalysts for synthetic organic chemistry, ${ }^{60}$ and examples using a MOF catalyst for the synthesis of imines are given below in Section 2.1.2.

### 2.1.2. Metal-organic frameworks for catalytic applications

Metal-organic frameworks (MOFs) are porous compounds involving strong metal-ligand interactions. Many of them possess a particular robustness due to their strong bonding, and they can be easily modified by for example incorporation of functional groups or active sites. ${ }^{61}$ Since the 90 s, MOFs have been studied for their applications, ${ }^{62}$ physical ${ }^{63}$ and catalytic properties. ${ }^{60,64}$

The pore size or the crystalline structure can be controlled by the choice of metal and organic linkers and how they are connected. According to the metal-ligand combination, it is possible to obtain different structures; this is called polymorphism. An example of this principle is given by Tian and co-workers. ${ }^{65}$ They synthesised diverse zinc imidazolates by modifying reaction parameters (such as solvent) or by incorporating small substituents that play the role of structure directing agents (SDAs).

Different approaches to the use of MOFs as catalysts have been studied. ${ }^{60,66}$ Namely, using the structural metal as the catalytic center (i), use of the MOF as a host for immobilizing catalysts (ii), and finally using the porous structure of the MOFs to host different metal nanoparticles (iii). The first case refers to an open shell metal center amenable to the introduction of labile ligands, which can be easily exchanged during catalysis. The use of HKUST-1 as a MOF for the storage of $\mathrm{H}_{2}$ is a good example due to its $\mathrm{Cu}^{2+}$ metal sites accessible by thermal activation.

An example where the catalysis takes place at an additional metal center is shown in Scheme 25. In this case, a metalolinker containing a $\mathrm{Mn}(\mathrm{III})$ center was used for the stereoselective epoxidation of alkenes and for epoxide ring-opening reactions. ${ }^{67}$


Scheme 25. Synthesis of CMOF-1. Design built from $\left[\mathrm{Zn}_{4}\left(\mu_{4}-\mathrm{O}\right)\left(\mathrm{O}_{2} \mathrm{CR}\right)_{6}\right]$ SBUs and a MnSalen derived dicarboxylate.

In the last case, the porous framework provides an efficient space to the catalytic activities of the metal nanoparticles. An example was reported by Haruta et al., where the use of gold nanoparticles inside the MOF allow the aerobic oxidation of alcohols. ${ }^{68}$ Martín-Matutes' group reported also the $\mathrm{C}-\mathrm{C}$ bond-formation (Mizoroki-Heck reaction) mediated by $\mathrm{Pd}(\mathrm{II}) @$ MIL-$101-\mathrm{NH}_{2}$. In this last example, the mononuclear $\mathrm{Pd}(\mathrm{II})$ species were coordinated to the linkers of the MOF and gradually converted to Pd nanocluster under the reaction conditions. A mixture of the both species ( $\mathrm{Pd}(\mathrm{II})$ complexes and Pd nanoclusters) coexisted and became the active species of the process. ${ }^{69}$

MOFs have also been used as catalysts to construct C-C bonds through Suzuki-Miyaura crosscouplings or Ullman-type couplings. These reactions are well known for the assembly of biaryl structures. Chen and co-workers compared the performance of homogeneous catalysts with palladium-based MOFs, such as MOF-253 containing bipyridine linkers functionalized with $\mathrm{PdCl}_{2}{ }^{70}$ They studied the Ulman-type reaction and observed that the catalytic activity was substantially improved when using the heterogeneous catalyst (Scheme 26).


Scheme 26. Ullmann coupling of iodobenzene over MOF-253 $\cdot 0.05 \mathrm{PdCl}_{2}$. ${ }^{\text {a }}$ Based on by GCMS analysis.

The authors suggested that this effect was due to the $2,2^{\prime}$-bipyridine linker of the MOF catalyst increases the electron density on Pd and facilitates the oxidative addition of the aryl halide on the Pd active site. Moreover, this difference of activity with the homogeneous system could be the result of the electron configuration of the bpy moiety in the MOF due to the presence of charge transfer between bordering ligands and metals in MOFs. This resulted in a higher catalytic activity with the MOF than that with homogeneous systems, such as $\operatorname{Pd}(b p y) \mathrm{Cl}_{2}$ (possessing a single bpy molecule) and $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$. Martín-Matute's group has also used $\operatorname{Pd}(0)$-functionalized MOFs, in particular, Pd@MIL-101, for the Suzuki-Miyaura crosscoupling of highly functionalized aryl halides and boronic acids under very mild reaction conditions, ${ }^{71}$ as well as in the aerobic homocoupling of boronic acids. ${ }^{72}$

MOFs are often described as a porous crystalline structure but in fact they can be found in other physical states. Amorphous metal-organic frameworks (aMOFs) keep the same pattern of building block and connectivity of their crystalline siblings but do not possess any long-range periodic order. ${ }^{73}$ Cheetham et al. ${ }^{74}$ characterised a zeolitic crystalline structure, ZIF-4, which undergoes a morphology change on heating to over $300^{\circ} \mathrm{C}$ to an amorphous system. Related work revealed the promising abilities of amorphous ZIFs to trap guest molecules, showing good molecular uptake capacity. ${ }^{75}$ It also appears that this kind of compounds show biomedical applications as drug storage capacities and drug delivery vehicles. ${ }^{76}$

MOFs have been used with great success in a number of synthetic transformations, where the MOF composition plays a pivotal role on the outcome of the reaction. For example, Fe - and Cr- MIL-100 and MIL-101 have been used in allylic oxidations of alkenes in the presence of molecular oxygen. ${ }^{77}$ It was revealed that the product selectivity depends of the nature of the
metal. Whilst the Fe based MOF produced unsaturated alcohols, the Cr-based MOF favoured the formation of unsaturated ketones.

Other classical organic reactions can take place with the use of MOFs, and the role of the MOF structure on the catalysis outcome has been discussed to some extent. ${ }^{60,78}$

### 2.1.3. Synthesis of imines catalysed by MOFs

In this section examples using MOF catalysts to synthesize imines are described. Fe (BTC) (BTC: 1,3,5-benzenetricarboxylate) was used for the synthesis of $N$-benzylimines from the corresponding benzylamines under aerobic conditions. ${ }^{79}$ The authors compared this protocol to previous results ${ }^{80}$ for the oxidation of benzylic compounds in the presence of peroxide, but in this case, with the incorporation of N -hydroxyphthalimide (NHPI). They reported a number of advantages of the MOF system: the only oxidant source is molecular oxygen, and the reaction can be performed without a solvent. Additionally, this material does not require any pre-activation step, alleviating reproducibility issues. Chen, Dong and co-workers developed a new porous $\mathrm{Pd}-\mathrm{Au} @ \mathrm{Mn}(\mathrm{II})-\mathrm{MOF}$ for the one-pot tandem synthesis of imines from benzyl alcohols and anilines, and from benzyl alcohols and benzylamine. This catalyst demonstrated excellent recyclability (Scheme 27). ${ }^{81}$
a)

b)


Scheme 27. Synthesis of imine via aerobic oxidation. a) Oxidation condensation of benzylamine b) One-pot tandem synthesis of imines from alcohols and amines.

Following this work, new catalysts were prepared in an effort to combine high recyclability in a solvent-free system. $\mathrm{A}_{1} \mathrm{Ni}_{3}(\mathrm{OH})(\mathrm{COO})_{6}$-based MOF from $\mathrm{C}_{3}$ symmetric ligands (MOF1) was used in a solvent-free system for the one-pot synthesis of imines (Scheme 28). ${ }^{82}$ The reaction requires activation by base.


Scheme 28. One-pot solvent-free synthesis of N -benzylideneaniline from benzyl alcohol and aniline.

Recently, Jiang and co-workers reported an alternative method by which a diverse variety of benzylamines oxidatively couple in a process mediated by PCN-222 under visible light irradiation (Scheme 29). ${ }^{83}$ PCN-222 is a mesoporous MOF which possess a tetrakis(4carboxyphenyl)porphyrin (TCPP) as a heme-like organic linker and a $\mathrm{Zr}_{6}$ clusters as nodes (structure determines by single X-ray diffraction). ${ }^{85} \mathrm{~A}$ limitation with this system is that since the reaction occurs through auto condensation of two identical benzylamines, the aromatic groups in the final imine have the same substitution pattern.


Scheme 29. Condensation of benzylamine under visible light and air

The Martín-Matute group at Stockholm University has developed a straightforward method for the synthesis of PCN-222 and of metallated PCN-222(M), ${ }^{84}$ (where $\mathrm{M}=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Co}, \mathrm{Pd}$ ) that overcome the limitations of the synthetic protocol reported by Zhou and co-workers ${ }^{85}$ (Scheme 14). Since the new synthetic method is very straightforward, it enables the fast synthesis of PCN-222 functionalized with different metals (M), facilitating catalyst screening (Scheme 30).



Scheme 30. Synthesis of PCN-222(M) [ $\mathrm{M}=\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Pd}]$ and three-dimensional representation of $\mathrm{PCN}-222(\mathrm{M})$.

### 2.2.Aim of this chapter

The second part of this thesis was realised at Stockholm University. The goal of this project was to study the photocatalytic oxidative heterocoupling of two amines using PCN-222(M) [M $=\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Pd}]$ (Scheme 31). In particular, we aimed to identify which metal (M) on the PCN-222 would give the best performance. In addition, we wanted to develop a protocol that gave high selectivity for cross-condensation $v s$ self-condensation. This would dramatically increase the scope of the reaction, as well as the utility of the process. We also want to identify the advantages of using the current method when compared to those described in the literature.


Scheme 31. Photocatalytic oxidative coupling of two different amines.

### 2.3.Results and discussion

The PCN-222 and PCN-222(M) used in this project was synthesised by other member of our group via a three-step, one-pot microwave-assisted. The first step allows the synthesis of the Zr preclusters through the reaction of $\mathrm{ZrOCl}_{2}$ with 2-fluorobenzoic acid (2FBA). The second
step includes the metalation of tetrakis(4-carboxyphenyl)porphyrin under microwave irradiation. The preparation of non-metalated PCN-222, step could be obtained in the absence of metal salts. Finally, the last step of the synthesis was carried out by combination of the two mixtures from steps 1 and 2 and treated with trifluoroacetic acid (Scheme 30).

Preliminary investigations performed in the group using benzylamine 13a and aniline 14a as model substrates demonstrated that $\mathrm{PCN}-222$ and $\mathrm{PCN}-222(\mathrm{Pd})$ are able to mediate the oxidative cross-condensation reaction (Table 4). Despite this, conversions were rather limited and large amounts of the unwanted auto condensation product $\mathbf{1 6 a}$ were formed (Table 4, entries 2 and 4).

Table 4. Influence of the MOF and the reaction time on the photocatalytic oxidative crosscondensation of amines. ${ }^{\text {a }}$


| Entry | 13a:14a | MOF | Time (h) | MOF (mol \%) | 15aa:16a | $\mathbf{1 5 a a}+\mathbf{1 6 a}$ <br> $(\%)^{\mathbf{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $1: 5$ | PCN-222 | 90 | 12 | $1: 12$ | 5 |
| 2 | $1: 1$ | PCN-222 | 90 | 2 | $1: 12$ | 22 |
| 3 | $1: 5$ | PCN-222 | 90 | 2 | $1: 2$ | 37 |
| 4 | $1: 5$ | PCN-222 | 24 | 2 | $1: 6$ | 12 |
| 5 | $1: 5$ | PCN-222(Pd) | 24 | 2 | $1: 3$ | 15 |

a) Reaction conditions: benzylamine 13a ( $0.3 \mathrm{mmol}, 1$ equiv.), aniline $\mathbf{1 4 a}(1.5 \mathrm{mmol}, 5$ equiv.), MOF ( $2 \mathrm{~mol} \%$ ), $\mathrm{MeCN}(3 \mathrm{~mL})$, $\mathrm{h} v(11 \mathrm{~W}$ household lightbulb), rt, for the time indicated. b)Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in comparison to the benzylamine.

A close look at these results reveals that by decreasing the time of the reaction, the selectivity increases in favour of the undesired product 16a ( 90 h vs 24 h ; Table 1, entries 3 vs 4). When PCN-222(Pd) was used instead of PCN-222, a better ratio 15aa / 16a was obtained, although still in favour of the unwanted 16a (Table 4, entry 5).

With these preliminary results, I first investigated the effect of the solvent on the outcome of the reaction (Table 5). Cyclopentyl methyl ether (CPME) brought a poor conversion and a poor
selectivity ( $\mathbf{1 5 a a}: 16 \mathbf{a}=1: 20$, Table 5 , entry 3 ), whereas dichloroethane $(D C E)$ was marginally better than acetonitrile (Table 5 , entry 4 vs 1 and 2 ). On the other hand, increasing the reaction temperature to $60-65^{\circ} \mathrm{C}$ (by inserting the reaction tube in an oil bath heated at $65^{\circ} \mathrm{C}$ ) afforded a very good yield of $75 \%$ and a better selectivity ( $\mathbf{1 5 a a}: \mathbf{1 6 a}=2: 1$, Table 5 , entry 6 ). It is important to notice that the reaction system is covered with a box where the lightbulb is directed on the reaction tube.

Table 5. Condition optimization for photocatalytic oxidation: Influence of solvent. ${ }^{\text {a }}$

|  | $\xrightarrow[\text { hv, rt, time }]{\substack{\mathrm{PCN}-222(\mathrm{Pd}) 2 \mathrm{~mol} \% \\ \text { air, solvent }}}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13a |  |  |  | 16a |  |
| Entry | 2a (equiv.) | t (h) | Solvent | 15aa:16a | $\begin{gathered} 15 a a+16 a \\ (\%)^{b} \\ \hline \end{gathered}$ |
| 1 | 1:5 | 24 | Dry MeCN | 1:6 | 12 |
| 2 | 1:5 | 24 | $\underset{(2 / 1)}{\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}}$ | 1:6 | 13 |
| 3 | 1:5 | 24 | CPME | 1:20 | 3 |
| 4 | 1:5 | 24 | DCE | 1:2.3 | 13 |
| $5^{\text {c }}$ | 1:5 | 24 | MeCN | 1:2.8 | 30 |
| $6^{\text {c }}$ | 1:5 | 80 | MeCN | 2:1 | 75 |

a) Reaction conditions: benzylamine $\mathbf{1 3 a}(0.3 \mathrm{mmol}, 1$ equiv.), aniline $\mathbf{1 4 a}(1.5 \mathrm{mmol}, 5$ equiv.), $\mathrm{PCN}-222(\mathrm{Pd})(2 \mathrm{~mol} \%)$, solvent ( 3 mL ), $\mathrm{h} v$ ( 11 W household lightbulb), rt.; b) Yield determined by proton NMR spectroscopy in comparison to the benzylamine of 1a; c) 60-65 ${ }^{\circ} \mathrm{C}$ (oil bath).

Next a slow addition of benzylamine 13a to the reaction mixture was explored $(0.4 \mathrm{~mL} / \mathrm{h}, 0.125$ M ) at room temperature and after only 20 h , a better product selectivity was obtained in favour of $\mathbf{1 5 a a}$ (Table 6, entry 1). By using the best conditions from Table 5 (entry 6) and using a longer reaction time, a ratio 15aa:16a of 30:1 was obtained, in a quantitative yield (Table 6, entry 2). Unfortunately, these results could not be reproduced when the reaction was run on a larger scale (Table 6, entries 3-5).
When non-metalated PCN-222 was used under the conditions shown in Table 5, entry 6, a lower conversion and a higher ratio in favour of $\mathbf{1 6 a}$ was obtained (Table 6, entry 6). Reducing the temperature to $55^{\circ} \mathrm{C}$ (Table 6, entry 7) gave high conversion in favour of the product after 120 h , but the selectivity was decreased in comparison to entry 2 . Under oxygen-free conditions, a moderate yield was obtained (Table 6, entry 8) after 68 h .

Table 6. Optimization via slow addition of 13a. ${ }^{\text {a }}$

|  | $+$ | $\xrightarrow[\text { hv, } 60-65^{\circ} \mathrm{C}, \text { time }]{\substack{\mathrm{PCN}-222(\mathrm{Pd}) 2 \mathrm{~mol} \% \\ \text { air, MeCN }}}$ |  |  |  | $\triangleq$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13a | 14a |  | 15aa |  | 16a |  |
| Entry | 13a (mmol) | t (h) | $\begin{gathered} \hline \text { 13a } \\ \text { Addition } \\ \text { flow (mL/h) } \\ \hline \end{gathered}$ | 13a Addition time (h) | 15aa:16a | $\begin{gathered} 15 a a+16 a \\ (\%)^{b} \end{gathered}$ |
| $1^{\text {c }}$ | 0.3 | 20 | 0.4 | 6 | 1.3: 1 | 15 |
| 2 | 0.3 | 100 | 0.4 | 6 | 30: 1 | 99 |
| $3^{\text {d }}$ | 0.9 | 72 | 0.4 | 6 | 3: 1 | 80 |
| $4^{\text {d }}$ | 0.9 | 144 | 0.8 | 3 | 1:1.15 | 50 |
| 5 | 0.9 | 96 | 0.3 | 24 | 1.8: 1 | 75 |
| $6{ }^{\text {e }}$ | 0.3 | 72 | 0.4 | 6 | 1: 1.8 | 45 |
| $7{ }^{\text {f }}$ | 0.3 | 120 | 0.4 | 6 | 15: 1 | 98 |
| $8^{8}$ | 0.3 | 68 | 0.4 | 6 | 1: 1.1 | 56 |

a) Reaction conditions: A solution of benzylamine $\mathbf{1 3 a}(0.3 \mathrm{mmol}, 1$ equiv., 0.125 M$)$ in 2.4 mL of MeCN , is added to a suspension of aniline $\mathbf{1 4 a}$ ( 1.5 mmol , 5 equiv.), and $\mathrm{PCN}-222(\mathrm{Pd}$ ) ( $2 \mathrm{~mol} \%$ ), in $\mathrm{MeCN}(1 \mathrm{~mL}$ ). The mixture is stirred under $\mathrm{h} v$ irradiation ( 11 W household lightbulb immobilized in a cardboard box), at $65{ }^{\circ} \mathrm{C}$. b) Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in comparison to the benzylamine; c) Room temperature; d) $\mathbf{1 3 a}$ ( $0.9 \mathrm{mmol}, 1$ equiv., 0.375 M ); e) PCN-222 as catalyst; f) $55^{\circ} \mathrm{C}$; g) Under $\mathrm{O}_{2}$.

The next idea was to use the same protocol but replace the visible light lamp ( 11 W household lightbulb) by a more powerful LED strip (North light, $12 \mathrm{~W}, 1.5 \mathrm{~A}$ ). This new light source provided complete conversion of compound 13a ( 0.125 M , slow addition: $0.4 \mathrm{~mL} / \mathrm{h}$ ) in 80 h . Thus, the scope was then investigated using PCN-222(Pd), $2 \mathrm{~mol} \%$, in MeCN under an atmosphere of air with the new light source. These conditions afforded a full conversion after three days for the different substituted imines (Scheme 32). Compounds 15aa and 15ae were obtained in yields of $50 \%$ and $46 \%$, respectively. Importantly, in these instances, selfcondensation of 16a was not detected. Imine 15af was obtained as a mixture of 15af and 16a in a ratio of $10: 1$ in favour of the former. The same ratio was obtained for 15ad, albeit in a higher yield of $65 \%$. The imine 15ac was formed in the lowest yield (30\%), with a modest ratio of $1.55: 1$. Interestingly, benzimidazole $\mathbf{1 7 a b}$ was obtained by condensation of benzylamine 13a with $o$-phenylene diamine (14b).



15aa
yield $=50 \%$


15ac ratio $15 \mathrm{ac} / \mathbf{1 6 a}=1.55 / 1$ yield $=30 \%$


17ab
yield $=67 \%(50 \%)^{a}$


15ad
ratio 15ad/16a = 10/1
yield $=65 \%(51 \%)^{a}$


15ae
yield $=46 \%(25 \%)^{a}$


15af
ratio $15 a f / 16 a=10 / 1$ yield $=56 \%(41 \%)^{\text {a }}$

Scheme 32. Scope of the reaction based on the substituents of the aniline. Reactions conditions: 13a ( 1 equiv., $0.3 \mathrm{mmol}, 0.125 \mathrm{M}$ ), in 2.4 mL of MeCN , is added in 6 h to a suspension of aniline $\mathbf{1 4 a}$ ( 1.5 mmol , 5 equiv.), and $\mathrm{PCN}-222(\mathrm{Pd})(2 \mathrm{~mol} \%$ ), in $\mathrm{MeCN}(1 \mathrm{~mL})$. The mixture is stirred under $\mathrm{h} v$ irradiation (LED strip (North light, $12 \mathrm{~W}, 1.5 \mathrm{~A}$ )) for 3 days. Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy against an internal standard. a) Isolated yield.

Substituted benzylamines were then subjected to the reaction conditions (Scheme 33). Both electron-withdrawing and electron-donating groups were well tolerated on the aryl ring of the benzyl amines (Scheme 33). Imine 15ca was obtained together with the corresponding selfcondensation product, although only a small amount of the latter was formed.


Scheme 33. Reaction of benzylamines 13b-13e with aniline 14a. Reaction condition: $\mathbf{1 3}$ (1 equiv., 0.3 mmol ), 14a ( 5 equiv., 1.5 mmol ), PCN-222(Pd) ( $2 \mathrm{~mol} \%$ ), LED strip (North light, $12 W, 1.5 A)$, MeCN, under air, 3 days. Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

To further expand the scope of the reaction, we then reacted benzyl amines with 2-aminophenol $\mathbf{1 4 g}$ and with 2-aminobenzenethiol $\mathbf{1 4 h}$, providing the oxidative cross-coupled products $\mathbf{1 5 a g}$ and $\mathbf{1 5 a h}$ in $38 \%$ and $57 \%$ yield, respectively. When benzylamines $\mathbf{1 3 a}$ and $\mathbf{1 3 e}$ were reacted with $o$-phenylenediamine $\mathbf{1 4 b}$, benzimidazoles $17 \mathbf{a b}$ and $17 \mathbf{e b}$ were obtained in good yields of $67 \%$ and $78 \%$, respectively (Scheme 35 a). In these last cases, the reaction is not limited to the oxidative condensation. A cyclization occurs upon nucleophilic attack of the nitrogen to the imine formed in the first step, affording the benzimidazole (Scheme 34).


Scheme 34. Oxidative condensation followed by oxidative cyclization affording the corresponding benzimidazole.

The oxidative cross-coupling of benzyl alcohols with anilines was also attempted (Scheme 35 b). Unfortunately, no product was observed and only the starting materials (SM) remained after reaction.
a)


b)


Scheme 35. a) Reaction of benzylamines 13a, 13e with ortho-substituted anilines 14b, 14g, 14h. b) Oxidative cross-coupling of benzyl alcohols with aniline 14a. Reaction condition: 13 ( 1 equiv., 0.3 mmol ), 14 ( 5 equiv., 1.5 mmol ), $\mathrm{PCN}-222(\mathrm{Pd})(2 \mathrm{~mol} \%$ ), LED strip (North light, $12 \mathrm{~W}, 1.5 \mathrm{~A}$ ), MeCN, under air, 3 days. Yields calculated by ${ }^{1} \mathrm{H}$ NMR spectroscopy against with an internal standard.

We then explored the scope of the oxidative cross-coupling / cyclization reactions. The results are shown in Scheme 36. In a general way, the benzimidazole obtained from the different substituted benzylamines $\mathbf{1 3}$ offered the same range of yields. The best yields, $63 \%$ and $78 \%$, respectively, were obtained for $\mathbf{1 7 e b}$ and $\mathbf{1 7 b b}$. When the $o$-phenylene diamine contained a chlorine atom (14bb) or two methyl group (14ba), yields of $39 \%$ for $\mathbf{1 7 a b b}$ and of $20 \%$ for 17aba were obtained.


13
$R^{1}=H 13 a$
$\mathrm{R}^{1}=p$-methoxy 13 e $\mathrm{R}^{1}=p$-methyl 13 g 2-Pyridinemethanamine 13f

$R^{2}=\mathrm{H} 14 \mathrm{~b}$
$R^{2}=4$-Chloro 14bb
$R^{2}=4,5$-dimethyl 14ba


17eb yield $=67 \%$


17abb
yield $=39 \%$


17bb yield $=78 \%$


17fb
yield $=46 \%$

17aba yield $=20 \%$

Scheme 36. Reaction of benzylamines 13a, 13b, 13e-13g with ortho-substituted anilines 14b, 14ba, 14bb. Isolated yield. a) Yield determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Based on the mechanistic proposals reported in the literature, ${ }^{86}$ we suggested the mechanism shown in Scheme 37. The first step involves the photoexcitation of the organic linkers, followed by electron transfer to the metal cluster (ligand-to-cluster charge transfer, LCCT). This route generates electrons and holes showing oxidative and reductive properties (e-h separation). The photogeneration of electrons and holes is a model described in the literature ${ }^{87}$ and proposed to be operative for imine formation by the Jiang group. ${ }^{83}$

Upon photoexcitation, the PCN-222 gives rise to a e-h separation, reducing the $\mathrm{O}_{2}$ to $\mathrm{O}_{2}{ }^{--}$and oxidizing benzylamine 13a to $\mathrm{PhCH}_{2} \mathrm{NH}_{2}{ }^{++}$. A proton transfer from the $\mathrm{PhCH}_{2} \mathrm{NH}_{2}{ }^{++}$to $\mathrm{O}_{2}{ }^{--}$ generate the benzylamine radicals ( $\mathrm{PhCH}^{\bullet} \mathrm{NH}_{2}$ and $\mathrm{PhCH}_{2} \mathrm{NH}^{*}$ ) and hydroperoxyl radicals $\left(\mathrm{HO}_{2}{ }^{\circ}\right)$ which leads to benzylideneamine and $\mathrm{H}_{2} \mathrm{O}_{2}$ (Scheme 37a). This intermediate is attacked by benzylamine (13a) to afford the imine 16a resulting as the side-product from auto condensation. Finally, the attack of the aniline 14a gave the desired imine 15aa (Scheme 37b).
a)

b)



Scheme 37. Proposed mechanism to the oxidative condensation of the benzylamine 13a with aniline 14a. a) Ligand-to-cluster charge transfer (LCCT). This route generated a hole possessing redox properties allowing to reduce the $\mathrm{O}_{2}$ to $\mathrm{O}_{2}{ }^{--}$and oxidize the benzylamine $\mathbf{1 3 a}$ to $\mathrm{PhCH}_{2} \mathrm{NH}_{2}{ }^{+}$. b) Attack of the benzylamine $\mathbf{1 3 a}$ on the benzylideneamine to generate the side product $16 \mathbf{a}$ which, by attack of the aniline, lead to the product 15aa.

### 2.4.Conclusion and outlook

It has been shown that the oxidative cross-condensation of benzyl amines with anilines can be achieved under photocatalytic conditions using the MOF PCN-222(Pd) as the catalyst. The best results were obtained by slow addition of the benzylamine on a solution containing the MOF catalyst and an excess of the aniline. Importantly, the intensity of the light source played an important role on the reaction outcome. The scope and limitations of the reaction have been investigated. These results need further optimization to improve the yields of some of the substrates. Moreover, the recyclability of the MOF catalyst needs to be investigated.

## 3. Chapter III. Synthesis of heterocyclic compounds via Nicatalysed benzannulation

### 3.1.Introduction

### 3.1.1. Base-mediated benzannulation

Benzannulation is one of the most important methods to synthesize highly substituted benzene derivatives ${ }^{88}$ and it includes many different processes such as Diels-Alder [4+2] cycloadditions (cf. Chapter I), Bergman cyclization, the Dötz reaction or even ring-closing metathesis via Grubbs first- or second-generation catalysts (Scheme 38). ${ }^{89}$


Scheme 38. Synthesis of phenanthrene via ring closing metathesis.

More recently, transition-metal-free benzannulation reactions have been developed to offer benzene type structures. For example, Wu and co-workers developed an efficient synthesis of polysubstituted phthalic acid derivatives in presence of potassium phosphate (Scheme 39). ${ }^{90}$


Scheme 39. Multicomponent transition-metal-free benzannulation reaction in presence of potassium phosphate.

Lee et al. reported an aerobic oxidative benzannulation reaction by using cesium carbonate base, offering polysubstitued phenols with antioxidant properties via Michael addition, intramolecular aldol and oxidation (Scheme 40). ${ }^{91}$


Scheme 40. Benzannulation reaction for the construction of polyarylphenols.

Organic bases can also be used for the synthesis of polyfunctionalized aromatics. A series of DBU-mediated domino reactions, such as Michael addition, cyclization, elimination, was explored by Hu and co-workers for the synthesis of polysubstituted 2-hydroxybenzophenones. In this sequence, substituted chromone and 1,3-dicarbonyl compounds were used for the benzannulation process (Scheme 41). ${ }^{92,93}$


Scheme 11. Synthesis of 2-hydroxybenzophenones from chromones and 1,3-dicarbonyl compounds.

### 3.1.2. Transition metal-mediated benzannulation

Classical approaches to the synthesis of aromatic compounds have been dominated by electrophilic and nucleophilic substitution reactions, and these are often controlled by preexisting directing groups which deliver specific substitution patterns. This approach significantly limits the range of aromatic products that can be produced, prompting researchers to devise alternative methods using ring synthesis approaches.
Metal mediated cyclization reactions of alkynes has been a very effective approach for the assembly of aromatics rings. ${ }^{94}$ A first example was reported by Reppe and co-worker, who revealed that the cyclotrimerization of alkynes can afford benzene derivatives. ${ }^{95}$ Other such cobalt-based complexes have been used for the synthesis of aromatic compounds by promoting the reaction of 1,3-dienes with alkynyl sulfides (Scheme 42). ${ }^{96}$



Scheme 42. Co-catalyzed reaction of 1,3-diene with alkynyl sulfides.

Metal promoted benzannulation strategies can bring challenges concerning chemoselectivity and regioselectivity. The Harrity group previously addressed this issue with regard to the Dötz benzannulation reaction. They were able to show that this chemistry could allow access to quinone boronic esters with high regiocontrol and in good yields (Scheme 43). ${ }^{97}$


Scheme 43. Dötz-type benzannulation. Pin=pinacol

Based on this work and the literature, the group has developed a Ni-catalysed benzannulation method for the mild and selective synthesis of functionalised phenols. ${ }^{98}$ This chemistry offers an effective way to generate benzene-based target molecules from simple starting materials (Scheme 44).



75\%; >98:2


67\%; 67:33


54\%; 85:15


92\%; >98:2

Scheme 44. Synthesis of Heteroaromatic Boronic Esters

### 3.2.Aim of this chapter

While the chemistry outlined in the previous section offers a useful way to generate benzene derivatives, it is currently limited with regard to the synthesis of heterocyclic compounds, as illustrated by the low yields for the synthesis of lactones $\mathbf{2 0}$ (Scheme 45). ${ }^{99}$


Scheme 45. Example of a cycloaddition reaction to form heterocyclic compounds
To overcome the limitation, we decided to explore this transformation further. In particular, we planned to: i) screen different catalysts and ligands to obtain the optimal conditions of the reaction; ii) investigate the suitability of imines and nitriles as reactants; iii) establish empirical scope relating to the different " $R$ " substituents based on the best conditions.

### 3.3.Results and discussion

As mentioned, the previous method was limited with respect to the synthesis of heterocyclic compounds. In order to optimise this reaction, the study was initiated with cyclobutenone 18a and benzaldehyde 19a as coupling partners for the synthesis of lactone 20a. Each metal was screened with all the ligands listed below ( 30 metal/ligand combinations - see Table 7) and the reaction was monitored by LCMS analysis to detect presence of the product.

Table 7. Screening conditions ${ }^{\text {a }}$


| Ligand | Ni complex |
| :--- | :--- |
| Dppb | $\mathrm{NiCp}_{2}$ |
| PCy $_{3}$ | $\mathrm{Ni}($ dppf $)(o$-tolyl $) \mathrm{Cl}^{\text {Xantphos }}$ |
| $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl $) \mathrm{Cl}$ |  |
| DppBz | $\mathrm{Ni}(o$-tolyl $)(\mathrm{PCy})_{3} \mathrm{Cl}$ |
| Dppe | $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2}(o$-napht $) \mathrm{Cl}$ |
| Bipyridine |  |

a) Reaction conditions: $\mathbf{1 8}$ ( $0.01 \mathrm{mmol}, 1$ equiv.), 19a ( 0.01 mmol , 1 equiv.), metal/ligand combination ( $30 \mathrm{~mol} \%$ ), toluene, 16 h , rt , in a glove box.

The presence of product was detected with three different metal sources ( $\mathrm{Ni}(\mathrm{dppf})(\mathrm{o}-\mathrm{tolyl}) \mathrm{Cl}$, $\mathrm{Ni}(\mathrm{TMDA})(0-$ tolyl $) \mathrm{Cl}$ and $\mathrm{NiCp}_{2}$ ) coupled with 1,2-bis(diphenylphosphino) benzene ( dppBz ).

Unfortunately, no trace of product was observed with the other combination of precatalyst/ligands.

In a second step, the loading of the metal $/ \mathrm{dppBz}$ was varied from 30 to $100 \mathrm{~mol} \%$ and the impact on the reaction was evaluated after one and three days. 1,3,5-Trimethoxybenzene was used as an internal standard (IS) allowing us to rapidly estimate how much of the product was formed by calculating the ratio of the product to the IS. As identical stoichiometries of reagents and IS were used in each run, larger ratios were taken as an indication of greater product formation. Increasing the catalyst loading had a direct impact on the ratio in favour of the product up to $80 \mathrm{~mol} \%$, which provided the optimal results (Table 8 , entry 6,9 ). The $\mathrm{Ni}(\mathrm{dppf})(0$-tolyl) Cl catalyst didn't provide any trace of product and was therefore removed from the further tests (Table 8, entry 1,4,7,10). These experiments revealed that the best ratio was obtained after one day and therefore, the reaction was stopped at this time in subsequent experiments.

Table 8. Screening conditions: Loading of catalysts over time ${ }^{\text {a }}$

| Entry | Metal/dppBz | $\begin{aligned} & \hline \text { (Metal/L) } \\ & (\text { mol\%) } \end{aligned}$ | LCMS ${ }^{\text {b }}$ <br> Product/IS $1 \text { day }$ | $\begin{aligned} & \hline \text { LCMS }^{\text {a }} \\ & \text { Product/IS } \\ & \text { 3 days } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Ni}($ dppf)(o-tolyl) Cl | 30 | Only S. M. | Only S. M. |
| 2 | $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl)Cl | 30 | 0.69 | Trace of product |
| 3 | $\mathrm{NiCp}_{2}$ | 30 | 1.57 | 1.24 |
| 4 | $\mathrm{Ni}($ dppf) $(o$-tolyl) Cl | 50 | Only S. M. | Only S. M. |
| 5 | $\mathrm{Ni}(\mathrm{TMDA})($ (o-tolyl) Cl | 50 | 0.8 | 0.7 |
| 6 | $\mathrm{NiCp}_{2}$ | 50 | 3.17 | 1.53 |
| 7 | $\mathrm{Ni}(\mathrm{dppf})(\mathrm{o}$-tolyl) Cl | 80 | Only S. M. | Only S. M. |
| 8 | $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl)Cl | 80 | 1.35 | 1.17 |
| 9 | $\mathrm{NiCp}_{2}$ | 80 | 4.98 | 1.6 |
| 10 | $\mathrm{Ni}($ dppf) $(0-$ tolyl) Cl | 100 | Only S. M. | Only S. M. |
| 11 | $\mathrm{Ni}(\mathrm{TMDA})($ (o-tolyl) Cl | 100 | 1.75 | 0.9 |
| 12 | $\mathrm{NiCp}_{2}$ | 100 | 4.65 | 4.8 |

Reaction condition: 18a ( 0.01 mmol , 1 equiv.), 19a ( $0.01 \mathrm{mmol}, 1$ equiv.), metal/ligand (30-100 $\mathrm{mol} \%$ ), toluene, time, rt, in a glove box b) Surface area of the product to the internal standard (IS)

The temperature was next investigated with the treaction conducted at 40,60 and $80^{\circ} \mathrm{C}$ with three different catalyst loadings ( $30,50,80 \mathrm{~mol} \%$ ). Generally, the ratio increased marginally with increasing temperature until $60^{\circ} \mathrm{C}$ (Figure 14). For reasons that are unclear, no trace of products was detected at $60^{\circ} \mathrm{C}$ at a catalyst loading $50 \mathrm{~mol} \%$ and therefore, the ratio couldn't be calculated in these runs.



Figure 14. LCMS ratio as a function of the temperature for a) $\mathrm{Ni}($ TMDA (o-tolyl) Cl and b ) $\mathrm{NiCp}_{2}$ at three different catalyst loadings. The ratio could not be obtained at $60^{\circ} \mathrm{C}$ at $50 \mathrm{~mol} \%$ loading.

Based on these results, the $\mathrm{NiCp}_{2} / \mathrm{dppBz}$ catalyst system was introduced in batch-mode (higher quantity of mmol ) to be able to analyse the reaction by NMR spectroscopy but only trace amounts of the product were observed (Table 9, entry $1-4$ ). Surprisingly, switching to a catalyst system comprising $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl) $\mathrm{Cl} / \mathrm{dppBz}$, we observed product formation in around $23 \%$ yield (table 9 , entry 5 ).

The cyclobutanone $18 \mathbf{a}$ was completely consumed in our best condition: ( $\mathbf{1 8 a}$ ( $0.01 \mathrm{mmol}, 1$ equiv.), 19a ( $0.01 \mathrm{mmol}, 1$ equiv.), $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl) $\mathrm{Cl} / \mathrm{dppBz}(80 \mathrm{~mol} \%)$, toluene, time, rt , in a glove box, Table 3, entry 5). Therefore, to improve the yield, the loading of the starting material 18a was increased to 4 equivalents. Unfortunately, the product could not be observed in this case (Table 9, entry 6). A control experiment was performed without any catalysts or ligands and as expected, only starting materials was observed (Table 9, entry 7).

Table 9. Batch mode ${ }^{\text {a }}$

| Entry | Metal/dppBz | Loading <br> $(\mathbf{\%})$ | (Metal/L) | Temperature <br> $\left({ }^{( } \mathbf{C}\right)$ | Yields $^{\mathbf{b}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathrm{NiCp}_{2}$ | 50 | 40 | trace |  |
| 2 | $\mathrm{NiCp}_{2}$ | 80 | 40 | trace |  |
| 3 | $\mathrm{NiCp}_{2}$ | 30 | 60 | trace |  |
| 4 | $\mathrm{NiCp}_{2}$ | 80 | 60 | trace |  |
| 5 | $\mathrm{Ni}(\mathrm{TMDA})(\mathrm{o}-$ <br> tolyl)Cl | 80 | 60 | $23 \%$ |  |
| $6^{\mathrm{c}}$ | $\mathrm{Ni}(\mathrm{TMDA})(\mathrm{o}-$ <br> tolyl)Cl | 80 | 60 | No product |  |
| 7 | $/$ | $/$ | 40 | Only S.M. |  |

a) Reaction conditions: 18 ( $0.2 \mathrm{mmol}, 1$ equiv.), 19a ( 0.2 mmol , 1 equiv.), metal/ligand ( $30-80 \mathrm{~mol} \%$ ), toluene, 16 h , rt. in a glove box b) Yield calculated by NMR spectroscopy using 1,3,5 trimethoxybenzene as internal standard. c) 4 equiv. of $\mathbf{1}$ used in this case.

A microwave reactor was next used to accelerate the reaction, and using the conditions from table 9 , entry 5 the time taken to completely consume the starting material was reduced to 6 hours giving the product in a $39 \%$ yield using 3 equivalents of the benzaldehyde (Table 10, entry 1). These conditions were next employed under both nitrogen and air which revealed that the catalytic activity seemed to decrease with increased oxygen levels (Table 10, entry 3 and 4).

Table 10. Cycloaddition of cyclobutenone 18 with benzaldehyde: Microwave system ${ }^{\text {a }}$

| Entry | Metal | Atmosphere | Yield (\%) |
| :--- | :--- | :--- | :--- |
| $1^{\text {a }}$ | $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl)Cl | Nitrogen | $39 \%$ |
| $2^{\mathrm{a}}$ | NiCp 2 | Nitrogen | $/$ |
| 3 | $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl)Cl | Nitrogen | $31 \%$ |
| 4 | $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl)Cl | Air | $15 \%$ |

a) Reaction conditions: $\mathbf{1 8}(0.2 \mathrm{mmol}, 1$ equiv.), 19a ( $0.6 \mathrm{mmol}, 3$ equiv.), metal/ligand ( 80 $\mathrm{mol} \%$ ), toluene, MW $6 \mathrm{~h}, 60^{\circ} \mathrm{C}$, in a glove box. a) reaction set up inside a glove box under inert atmosphere.

The stability of the starting materials and the product under the reaction conditions was another parameter to observe. The same conditions, as reported in Table 10 (entry 1), was used on the product lactone 20a, and the yield of recovered material was only $42 \%$ highlighting that product could be consumed over time (Figure 15).


Figure 15. Analysis of the stability of the product inside the catalytic system.
With the problems observed with these 'optimal' conditions, other catalysts were tested. Based on recent literature concerning the synthesis of coumarin derivatives from cyclobutenones, two different metals were used to extend the scope of the reactions. ${ }^{100}$ Scandium(III) triflate was first analysed with different ligands but afforded poor yields of product (Table 11).

Table 1. Cycloaddition with cyclobutenone 1: New catalyst system. ${ }^{a}$


18
19


20

| Entry | Ligand | NMR <br> $(\%)$ | yield |
| :--- | :--- | :--- | :--- |
| 1 | IPr | $8 \%$ |  |
| 2 | Dppe | $5 \%$ |  |
| 3 | DppBz | $5 \%$ |  |
| 4 | Bipyridine | trace |  |
| 5 | $/$ | trace |  |

a) Reaction conditions: $18 \mathbf{a}$ ( $0.2 \mathrm{mmol}, 1$ equiv.), 19a ( $0.2 \mathrm{mmol}, 1$ equiv.), $\mathrm{Sc}(\mathrm{OTf})_{3} /$ ligand ( $30 \mathrm{~mol} \%$ ), toluene, $16 \mathrm{~h}, \mathrm{~N}_{2}, 60^{\circ} \mathrm{C}$.

Unfortunately, a recently reported and related process (Scheme 46) provided an enantioselective route to the synthesis of the same type of lactone with a much higher yield. ${ }^{100}$


Scheme 46. Enantioselective Synthesis of Lactone via Catalytic Ring Opening/Cycloaddition of Cyclobutenones


Scheme 47. Synthesis of lactam via Catalytic Ring Opening/Cycloaddition of Cyclobutenones with imine.

As the project was therefore stopped for now, we were interested to replace the benzaldehyde by an imine to the synthesis of lactam. The commercially available $N$-benzylideneaniline 21 was used as imine for the synthesis of lactam with the cyclobutenenone $\mathbf{1 8}$ offering the product 22 in $15 \%$ yield, showing the potential of this system to be used on other functionalized molecules.

### 3.4.Conclusion

The Ni-catalysed cycloaddition of cyclobutenones with aldehydes offered a rapid way to synthesise heterocyclic compounds. However, this method is limited due to the instability of the product under the reaction conditions. Unfortunately, recent studies have highlighted yttrium (III) triflate has catalyst for the enantioselective synthesis of the same type of lactone. Therefore, this chemistry can still be improved to the synthesis of lactam type compounds by reaction of cyclobutanone 18 with functionalized imines to the synthesis of $N$-heteroaromatic boronates as intermediates for further coupling reactions.

## 4. Chapter IV. Synthesis of Pyrimidin-6-yl Trifluoroborate Salts as Heterocyclic Boronic Acid Derivatives

### 4.1.Introduction

Pyrimidines are amongst the most widely represented class of heterocycles in biological systems, and they are constituents of nucleic acids as well as many pharmaceuticals and agrochemicals. ${ }^{101}$ Pyrimidines can be synthesised by condensation reaction such as amidines with $\alpha, \beta$-unsaturated ketones ${ }^{102}$ or even condensation of cyanic acid derivatives with N vinyl/aryl amides, reported by Ahmad et al (Scheme 47). ${ }^{103}$


Scheme 47. Synthesis of pyrimidines via condensation of a) $\alpha, \beta$ - unsaturated ketones with amidine salts b ) N -vinyl amides and nitriles

Transition metal catalysts have also been used to promote the synthesis of pyrimidines. Zhan and co-workers have reported the tandem reaction of propargylic alcohols and amidines using $\mathrm{Cu}(\mathrm{OTf})_{2}$ as catalyst. ${ }^{104}$ More recently, Kempe and co-workers developed a procedure using iridium-catalysis for the multicomponent synthesis of pyrimidines from amidines (Scheme 48. ${ }^{105}$

a)


b)





Scheme 48. Synthesis of pyrimidines a) from propargylic alcohols and amidines using $\left.\mathrm{Cu}(\mathrm{OTf})_{2} \mathrm{~b}\right)$ from amidines and alcohols.

However, many methods suffer from the use of expensive or toxic metal catalysts, multistep synthesis of precursors, expensive and sensitive reagents or strongly basic conditions.

Given the significance and the synthetic challenges posed by pyrimidines in the chemical sciences, the Harrity group set out establish a robust strategy for the synthesis of pyrimidine 4boronic acid derivatives via the condensation of amidines and ynone trifluoroborate salts, and to explore their utilization in organic synthesis.
The previous studies investigated the condensation reaction of amidines and ynone trifluoroborate salts and these results are summarized in Scheme 47. Benzamidine was found to undergo smooth condensation with a range of ynone trifluoroborate salts to give the corresponding pyrimidine borates in good yield. The scope of the condensation included a range of aromatic, heteroaromatic and aliphatic substituents (Scheme 49).



Scheme 49. Scope of condensation of ynones trifluoroborate and benzamidine

### 4.2.Aim of this chapter

A significant proportion of marketed pyrimidines contain a 2 -amino group, and so it was important to demonstrate the compatibility of guanidines in this chemistry. Following this, we investigated the scope of an ynone (potassium (3-oxo-3-phenylprop-1-yn-1-yl)trifluoroborate) condensation with various $N$-substituted guanidines. In particular, we wanted to explore the potential of this method to allow access to aryl-, heteroaryl-, and alkyl- substituted aminopyrimidines (Scheme 50). In addition, the issue of regioselectivity was also of interest.


Scheme 50. Synthesis of substituted aminopyrimidines via condensation of potassium (3-oxo-3-phenylprop-1-yn-1-yl)trifluoroborate with N -substituted guanidines.

### 4.3.Results and discussion

The first step was to synthesise the different guanidine precursors. Towards this end, 1 H -pyrazole-1-carboxamidine hydrochloride was reacted with the benzylamine to afford the corresponding guanidine 24 (Scheme 51a). The same reaction was used with the cyclopropylamine $\mathbf{3 0}$ and the 2-propen-1-ylamine 29, however no conversion to the product was observed (Scheme 51b). Fortunately, by replacing the solvent from acetonitrile to dimethylformamide, the guanidine could be obtained after 48 h of reaction at room temperature. The same problem was observed with the synthesis of the precursor $\mathbf{2 4 e}$ by using either acetonitrile or dimethylformamide as solvent. To overcome this problem, another route was considered by using the cyanamide as electrophile, leading in this case to the desired guanidine $\mathbf{2 4 e}$ (Scheme 51c).
(A)



Scheme 51. Synthesis of the guanidine precursors

In parallel to the synthesis of the guanidine precursor, the ynone $\mathbf{2 3}$ was synthesized from benzaldehyde. The first step was the reaction of the benzalehyde with a solution of ethynylmagnesium bromide to afford the propargylic alcohol 31 (figure 16). The second step was the borylation of the terminal alkyne and conversion to the alkynyl trifluoroborate salt 32 following by oxidation using MnO 2 to finally give the ynone trifluoroborate $\mathbf{2 3}$ in a good overall yield.


Figure 16. Synthesis of ynone 23 from benzaldehyde

After this, the corresponding pyrimidines were synthesised based on the previous condensation reactions of the amidines and the ynone trifluoroborate salts (Scheme 50). Unfortunately, the condensation of the guanidine hydrochloride salts was inefficient under the previously reported conditions (toluene, reflux). To overcome this difficulty, potassium carbonate was used as base promoter. Specifically, an excess potassium carbonate was stirred with the guanidine salt in
toluene at reflux for 2 h before adding the ynone trifluoroborate salts. Under these conditions, the different pyrimidines were successfully obtained via condensation (Scheme 52).


Scheme 52. Synthesis of pyrimidines via condensation of guanidines
Under these conditions, the products were isolated with high regioselectivities after recrystallization, and the regiochemistry was assigned on the basis of ${ }^{1} \mathrm{H}$ NMR spectroscopy, and by X-ray crystallography in the case of the compounds 25a and 25e (Figure 17). Minor compounds were observed in the crude which could correspond to regioisomeric condensation products, but these could not be isolated in sufficient purity or quantity to be characterized.



Figure 17. Crystal structure of products $\mathbf{2 5 a}$ (left), 25e (right) confirming the regiochemistry.
Following these results, we decided to functionalise the pyrimidine $\mathbf{2 5 f}$ to confirm the regioselectivity of the condensation. As the alkylation could lead to three possible isomers, it would be interesting to see if the products obtained would be the same or different as the condensation.

The alkylation proceeded smoothly to afford one regioisomer of the corresponding pyrimidine (Scheme 53). Comparing the NMR spectra of these compounds with the previous spectra of compounds 25b and 25e showed that the alkylation led to different product isomers as compared to the condensation reaction.


$\mathbf{2 6 a}$ or $\mathbf{2 7 a} 90 \% \quad \mathbf{2 6}$ or $\mathbf{2 7 b} \mathbf{~ 4 0 \%}$

Scheme 53. Alkylation of the pyrimidine $\mathbf{2 5 f}$

Therefore, this reaction led to two possible products, $\mathbf{2 6}$ or 27, and to obtain more information about the structure of these isomers, a range of NMR experiments were performed. First, 2D NOESY revealed that no correlation was observed between the side chain of $27 \mathrm{a}\left(-\mathrm{CH}_{3}\right)$ or 27b $\left(-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ with the phenyl group, suggesting that the regioisomer could be $\mathbf{2 6}$ (Scheme 54). Secondly, a combination of COSY, HSQC and HMBC NMR experiments were used to confirm the connectivity of the product with respect to the allyl group. A correlation between the allylic $\mathrm{CH}_{2}$ and $\mathrm{C}_{2}$ of the ring carbon was observed. However, no correlation with $\mathrm{C}_{4}$ was observed, supporting the results of the NOESY analysis (Scheme 54).

In summary, the analysis revealed that for both compounds, the side chain should be away from the phenyl group, suggesting that the regioisomer $\mathbf{2 6}$ was obtained. Fortunately, we were able to obtain crystals of compound 26a which provided an opportunity to confirm the regiochemistry of the product by X-ray crystallographic analysis, and which confirmed 26 as the only regioisomer.



NOESY


NOESY


HMBC ( $J$-3 correlation)

( $\mathrm{J}-3$ correlation)



6a





Scheme 54. H-H and H-C correlation. No correlation of the hydrogen of the side chain (in blue) with the hydrogen of the phenyl group (in green) or the carbon (in red) was observed. A crystal structure of compound 26a was obtained, confirming the regiochemistry.

### 4.4.Conclusion

In conclusion, the ynone (potassium (3-oxo-3-phenylprop-1-yn-1-yl)trifluoroborate) was found to undergo condensation with substituted guanidines to afford a range of novel pyrimidin-6-yl trifluoroborate salts. The structure of these compounds was confirmed by a combination ofsingle crystal X-ray analysis and NOESY and HMBC NMR spectroscopy, which confirmed that the condensation and alkylation reactions proceeded with different regiochemistries.

## 5. Chapter V. Experimental part

### 5.1.General consideration

All reactions were carried out in flame-dried glassware under an inert atmosphere unless otherwise specified.

Solvents and reagents were used as supplied or purified using standard laboratory techniques according to methods described by Perrin and Armarego.

Dry solvent was provided via a Grubbs type one manufactured by Innovative Technology. The solvent contained in a lined metal reservoir is forced through a couple of metals columns, containing either molecular sieve or activated alumina. The oxygen and water removal proceeds as the solvent passes through the drying agent.

The dried solvent is then collected to an appropriate vessel under vacuum via a Schlenk line system. The water content is monitored daily by coulometric Karl Fischer titration.

Thin layer chromatography (or TLC) was performed on aluminium-backed plates precoated with silica (Merck silica Kieselgel 60 F254), which were developed using standard visualizing agents: ultraviolet light or potassium permanganate.

Flash chromatography was performed on silica gel ( $60 \AA$, mesh $40-63 \mu \mathrm{~m}$ ).
Melting points were obtained using a Stuart apparatus and are uncorrected.
${ }^{1} \mathrm{H}$ spectra were recorded on a Bruker AVIII HD-400 ( 400 MHz ), Bruker AVI-400 (400 MHz), Bruker AMX-400 ( 400 MHz ) or DPX-400 ( 400 MHz ). Proton magnetic resonance chemical shifts are reported from the residual protic solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right.$ or DMSO: $\left.\delta=2.50 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift ( ppm ), multiplicity $(\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or $\mathrm{br}=$ broad), then coupling constant $(\mathrm{Hz})$.
${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVIII HD-400 (101 MHz), Bruker AVI400 ( 101 MHz ), Bruker AMX-400 (101 MHz) or DPX-400 (101 MHz).
${ }^{19}$ F NMR spectra were recorded on a Bruker AMX-400 ( 376 MHz ) or Bruker AVIII HD-400 ( 376 MHz ) and the chemical shifts are uncorrected.
${ }^{11} \mathrm{~B}$ NMR spectra were recorded on a Bruker AVIII HD-400 (128 MHz), and the chemical shifts are uncorrected.

Infrared spectra were recorded on a Perkin-Elmer Paragon 100 FTIR spectrometer. The most structurally relevant bands are quoted in $\mathrm{cm}^{-1}$.

### 5.2.Chapter I

## Preparation of 2-Quinolylamidrazone 2a



To a stirred suspension of quinoline-2-carbonitrile ( $1 \mathrm{~g}, 6.48 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol ( 4 mL ) under nitrogen was added hydrazine hydrate $(0.63 \mathrm{~mL}, 13 \mathrm{mmol}, 2 \mathrm{eq})$ and the reaction was stirred overnight at room temperature. The yellow precipitate was filtered and washed with cold diethyl ether ( $3 \times 10 \mathrm{~mL}$ ) to afford 2-quinolylamidrazone as a yellow solid ( $1.66 \mathrm{~g}, 94 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): 8.25-8.23(1 \mathrm{H}, \mathrm{m}), 8.10-8.07(1 \mathrm{H}, \mathrm{m}), 8.01-7.99(1 \mathrm{H}, \mathrm{m}), 7.94-7.92(1 \mathrm{H}, \mathrm{m})$, $7.726-7.72(1 \mathrm{H}, \mathrm{m}), 7.58-7.54(1 \mathrm{H}, \mathrm{m}), 5.91(2 \mathrm{H}, \mathrm{br}),, 5.65(2 \mathrm{H}, \mathrm{br})$.
These data are in agreement with the previously reported spectral data. ${ }^{106}$

## Preparation of the isoquinoline-1-carbohydrazonamide 2b



To a stirred suspension of quinoline-2-carbonitrile ( $1 \mathrm{~g}, 6.48 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol ( 4 mL ) under nitrogen was added hydrazine hydrate ( $0.63 \mathrm{~mL}, 13 \mathrm{mmol}, 2 \mathrm{eq}$ ) and the reaction was stirred overnight at room temperature for 4 days. The solution was extracted with dichloromethane ( $3 \times 40$ $\mathrm{mL})$ and washed with water $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to give isoquinoline-1-carbohydrazonamide as a mixture used directly for the next step. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): 9.46-9.42 ( $1 \mathrm{H}, \mathrm{m}$ ), 8.47-8.44 ( $1 \mathrm{H}, \mathrm{m}$ ), $7.83-7.80(1 \mathrm{H}, \mathrm{m}), 7.69-7.60(3 \mathrm{H}, \mathrm{m}), 5.37(2 \mathrm{H}, \mathrm{br}), 4.48(2 \mathrm{H}, \mathrm{br})$.
These data are in agreement with the previously reported spectral data. ${ }^{106}$

## Preparation of the (pyridine-2-yl)amidrazone 2c



To a stirred suspension of 2-cyanopyridine ( $5 \mathrm{~g}, 48.0 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol ( 50 mL ) under nitrogen was added hydrazine monohydrate ( $4.70 \mathrm{~mL}, 96 \mathrm{mmol}, 2 \mathrm{eq}$ ) and the reaction was stirred overnight at room temperature. The yellow precipitate was filtered and washed with cold diethyl ether $(3 \times 10 \mathrm{~mL})$ to afford (pyridine-2-yl)amidrazone as a yellow solid ( $4.5 \mathrm{~g}, 70 \%$ ). ${ }^{1} \mathbf{H}$ NMR ( 400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $8.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.19$ (m, 1H), $5.31(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H})$.

These data are in agreement with the previously reported spectral data. ${ }^{106}$

## Preparation of the 5,6-dimethyl-3-(2-quinolyl)-1,2,4-triazine 4aa





To a stirred solution of butan-2,3-dione ( $0.494 \mathrm{~mL}, 5.64 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol ( 40 mL ) was added 2-quinolylamidrazone ( $1.05 \mathrm{~g}, 5.64 \mathrm{mmol}, 1 \mathrm{eq}$ ) and the reaction was stirred overnight at reflux. Upon cooling, a yellow precipitated formed, which was filtered and washed with cold ethanol $(3 \times 10 \mathrm{~mL})$ to afford the 5,6-dimethyl-3-(2-quinolyl)-1,2,4-triazine ( $1.05 \mathrm{~g}, 80 \%$ ) as a yellow solid. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$ ), $8.37(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 2.6 \mathrm{~Hz}$ ), 7.90 (d, 1H, J = 8.2 Hz ), 7.78 (ddd, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1.4 \mathrm{~Hz}$ ), $7.62(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, 6.9 \mathrm{~Hz}$, 1.2 Hz ), $2.8(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H})$.

These data are in agreement with the previously reported spectral data. ${ }^{106}$

## Preparation of the 5,6-diphenyl-3-(2-quinolyl)-1,2,4-triazine 4ab





To a stirred solution of benzil ( $5.15 \mathrm{~g}, 14.28 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol ( 45 mL ) was added 2quinolylamidrazone ( $2.66 \mathrm{~g}, 14.28 \mathrm{mmol}, 1 \mathrm{eq}$ ) and the reaction was stirred overnight at reflux. Upon cooling, a yellow precipitated formed, which was filtered and washed with cold ethanol ( $3 \times 20 \mathrm{~mL}$ ) to afford 5,6-diphenyl-3-(2-quinolyl)-1,2,4-triazine ( $1.05 \mathrm{~g}, 80 \%$ ) as a yellow solid ( $4.54 \mathrm{~g}, 85 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.81(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, \mathbf{2 H})$, $7.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.55-$ 7.39 ( $\mathrm{m}, 6 \mathrm{H}$ ).

These data are in agreement with the previously reported spectral data. ${ }^{106}$

## Preparation of the 5,6-dimethyl-3-(2-isoquinolyl)-1,2,4-triazine 4ba





To a stirred solution of butan-2,3-dione ( $1.40 \mathrm{~mL}, 16.21 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol ( 35 mL ) was added 2-quinolylamidrazone ( $3.0 \mathrm{~g}, 16.21 \mathrm{mmol}, 1 \mathrm{eq}$ ) and the reaction was stirred overnight at reflux. Upon cooling, the solvent was removed in vacuo and the residue was purified chromatographically over silica gel with ethyl acetate to afford 5,6-dimethyl-3-(2-isoquinolyl)-1,2,4-triazine ( 1.05 g , $40 \%$ ) as a yellow solid. ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.77(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}$, $1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$.
These data are in agreement with the previously reported spectral data. ${ }^{106}$

## Preparation of the 5,6-diphenyl-3-(2-isoquinolyl)-1,2,4-triazine 4bb



To a stirred solution of benzil ( $3.09 \mathrm{~g}, 14.76 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol ( 35 mL ) was added 2quinolylamidrazone ( $2.75 \mathrm{~g}, 14.76 \mathrm{mmol}, 1 \mathrm{eq}$ ) and the reaction was stirred overnight at reflux. Upon cooling, a yellow precipitated formed, which was filtered and washed with cold ethanol $(3 \times 20 \mathrm{~mL})$ to afford 5,6-diphenyl-3-(2-isoquinolyl)-1,2,4-triazine ( $1,05 \mathrm{~g}, 80 \%$ ) as a yellow solid ( $3.00 \mathrm{~g}, 57 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ): $\delta 8.83(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.41$ -7.33 (m, 2H).
These data are in agreement with the previously reported spectral data. ${ }^{[34]}$

## Preparation of the 5,6-dimethyl-3-(2-isoquinolyl)-1,2,4-triazine 4ca





To a stirred solution of butan-2,3-dione ( $2.6 \mathrm{~mL}, 29.38 \mathrm{mmol}, 1 \mathrm{eq}$ ) in ethanol $(60 \mathrm{~mL})$ was added 2-quinolylamidrazone ( $4.0 \mathrm{~g}, 29.38 \mathrm{mmol}, 1 \mathrm{eq}$ ) and the reaction was stirred overnight at reflux. Upon cooling, the solvent was removed in vacuo and the residue purified chromatographically over silica gel with ethyl acetate to afford the product 5,6-dimethyl-3-(2-pyridyl)-1,2,4-triazine ( $1,05 \mathrm{~g}, 80 \%$ ) as a yellow solid ( $4.7 \mathrm{~g}, 85 \%$ ). ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.90-8.86(\mathrm{~m}, 1 \mathrm{H})$, $8.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H})$. These data are in agreement with the previously reported spectral data. ${ }^{106}$

## Preparation of the 2-ethynylanisole 8a



To a stirred solution of 1-ethyl-2-iodo benzene $\mathbf{5 a}(5.0 \mathrm{~g}, 21.4 \mathrm{mmol}, 1$ equiv.) in degassed THF were added, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0,6 \mathrm{~g}, 0,865 \mathrm{mmol}, 0.04$ equiv.), $\mathrm{CuI}(0,33 \mathrm{~g}, 0,172 \mathrm{mmol}, 0.08$ equiv.), $\mathrm{NEt}_{3}(15 \mathrm{~mL}, 101 \mathrm{mmol}, 5$ equiv.) and trimethylsilyl acetylene ( $4.5 \mathrm{~mL} 32.1 \mathrm{mmol}, 1.5$ equiv.). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ under nitrogen and monitored by TLC analysis. After 5 h , the reaction mixture as cooled and the mixture tritured with pentane. The filtrate was collected, and the solvent was removed under vacuum to afford the product $7 \mathrm{a}(3.0 \mathrm{~g}, 68 \%)$ as a yellow oil. The alkyne 7 a ( $3.0 \mathrm{~g}, 14.7 \mathrm{mmol}, 1$ equiv.) was added to methanol $(30 \mathrm{~mL})$ containing potassium carbonate ( $0.81 \mathrm{~g}, 5.87 \mathrm{mmol}, 0.4$ equiv.). The mixture was stirred at room temperature overnight and the solvent removed under vacuum. A solution $5 \%$ citric acid ( 50 mL ) was added and the product was extracted with dichloromethane. The residue was purified chromatographically over silica gel with pentane to afford the product ( $1.6 \mathrm{~g}, 80 \%$ ) as a pale yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.47$ (dd, 1H, J = 1.7, 7.5 Hz ), 6.94-6.89 (m, 2H), 3.92 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.23 (s, 1H). These data are in agreement with the previously reported spectral data. ${ }^{107}$

## Preparation of 1-ethyl-2-ethynylbenzene 8b



To a stirred solution of 1-ethyl-2-iodo benzene $\mathbf{5 b}(5.0 \mathrm{~g}, 21.7 \mathrm{mmol}, 1$ equiv.) in degassed THF were added, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.6 \mathrm{~g}, 0.865 \mathrm{mmol}, 0.04$ equiv. $)$, and $\mathrm{CuI}(0.33 \mathrm{~g}, 0.172 \mathrm{mmol}, 0.08$ equiv.), $\mathrm{NEt}_{3}$ ( $15 \mathrm{~mL}, 101 \mathrm{mmol}, 5$ equiv.) and added trimethylsilyl acetylene ( $4.5 \mathrm{~mL}, 32.1 \mathrm{mmol}$, 1.5 equiv.). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 5 h under nitrogen and followed by TLC. The mixture was tritured with pentane and the solvent was removed in vacuum to afford the product ( $3.2 \mathrm{~g}, 70 \%$ ) as a yellow oil.

The compound $\mathbf{7 b}$ ( $3.2 \mathrm{~g}, 15.8 \mathrm{mmol}, 1$ equiv.) was added in a 30 mL of methanol containing potassium carbonate ( $0.9 \mathrm{~g}, 6.33 \mathrm{mmol}, 0.4$ equiv.). The mixture was stirred at room temperature for the night and the solvent removed in vacuum. 50 mL of a solution $5 \%$ citric acid was added, and the product was extracted with dichloromethane. the residue was purified chromatographically over silica gel with pentane to afford the product $(1.6 \mathrm{~g}, 80 \%)$ as a pale-yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 7.30(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 1.4 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=7.6 \mathrm{~Hz}), 7.16(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 1.4 \mathrm{~Hz}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.27(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $=7.5 \mathrm{~Hz}$ ).
These data are in agreement with the previously reported spectral data. ${ }^{83}$

## Preparation of BINOL esters: Representative procedure



A solution of 5,6-dimethyl-3-(2-quinolyl)-1,2,4-triazine 4aa ( $40 \mathrm{mg}, 0.168 \mathrm{mmol}, 1$ equiv.) and potassium ((2-methoxyphenyl)ethynyl)trifluoroborate $\mathbf{8 a}$ ( $120 \mathrm{mg}, 0.504 \mathrm{mmol}, 3$ equiv.) in dichloromethane $(4 \mathrm{~mL})$ was treated with boron trifluoride diethyl etherate $(0.104 \mathrm{~mL}, 0.84 \mathrm{mmol}$, 5 equiv.). The reaction was stirred for one hour at reflux and then quenched with brine ( 15 mL ). The mixture was extracted with dichloromethane $(4 \times 15 \mathrm{~mL})$ and the extract dried over $\mathrm{MgSO}_{4}$, filtered and the solvent evaporated. The residue was purified chromatographically silica gel using hexane/ethyl acetate (6:4) to afford 2-(3-(difluoroboranyl)-5,6-dimethyl-4-(2-ethylphenyl)pyridin-2-yl)quinoline 10aa as a pale yellow amorphous solid ( $110 \mathrm{mg}, 77 \%$ ).

## Compound 10aa



Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}$
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 158.3, 157.3, 156.5, 152.4, 149.6, 144.2, 140.3, 134.4, 133.2, 130.7, $129.4,129.1,128.6,128.4,127.7,122.9,120.8,115.5,111.1,55.8,23.7,16.5 .{ }^{19}$ F ( $\mathbf{3 7 6 . 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta$-152.3--158.7 (2F, m). ${ }^{\mathbf{1 1}} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 9.1. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ $\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{20}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O} 389.1637$, found 389.1640. FTIR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 2842$, 1598, 1246, 1084.

## Compound 10cb



Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BF}_{2} \mathrm{~N}_{2}$

Following the representative procedure, 5,6-dimethyl-3-(2-isoquinolyl)-1,2,4-triazine 4ba (100 $\mathrm{mg}, 0.427 \mathrm{mmol}, 1$ equiv.), potassium ((2-ethylphenyl)ethynyl)trifluoroborate ( $290 \mathrm{mg}, 1.27$ mmol, 3 equiv.) and boron trifluoride diethyl etherate ( $0.26 \mathrm{~mL}, 2.14 \mathrm{mmol}, 5$ equiv.) were combined to give crude product $\mathbf{1 0} \mathbf{c b}$. The residue was purified chromatographically over florisil using hexane/ethyl acetate (8:2) to afford 2-(3-(difluoroboranyl)-5,6-dimethyl-4-(2-ethylphenyl)pyridin-2-yl)isoquinoline as a pale yellow amorphous solid ( $66 \mathrm{mg}, 40 \%$ ). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 10.61-10.54(1 \mathrm{H}, \mathrm{m}), 8.29(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 7.96-7.93(2 \mathrm{H}, \mathrm{m}), 7.92-7.87$ $(1 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 7.42-7.37(2 \mathrm{H}, \mathrm{m}), 7.36-7.30(1 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz})$, $2.76(3 \mathrm{H}, \mathrm{s}), 2.12(3 \mathrm{H}, \mathrm{s}), 2.06(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.11(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0 . 6}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 157.8,155.2,154.4,152.1,141.2,139.6,138.2,134.0,132.4,132.0,130.1,130.0$, 128.7, 128.0, 127.9, 127.0, $125.5,125.2,123.0,60.4,26.1,23.9,21.1 .{ }^{19} \mathbf{F}\left(\mathbf{3 7 6 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $-162.6--164.6(\mathrm{~m}, 2 \mathrm{~F}) .{ }^{\mathbf{1 1}} \mathbf{B}\left(\mathbf{1 6 0 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.3$. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{22}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2}: 387.1844$, found 387.1845 . FTIR (neat) $v_{\max } / \mathrm{cm}^{-1}$ 2961, 2925, 2874, 1597, 1447, 1269, 1087, 953, 846, 809.

## Compound 10ca



Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}$

Following the representative procedure, 5,6-dimethyl-3-(2-isoquinolyl)-1,2,4-triazine 4ba (100 $\mathrm{mg}, 0.427 \mathrm{mmol}, 1$ equiv.), potassium ((2-methoxyphenyl)ethynyl)trifluoroborate ( $250 \mathrm{mg}, 1.07$ mmol, 2.5 equiv.) and boron trifluoride diethyl etherate ( $0.13 \mathrm{~mL}, 1.07 \mathrm{mmol}, 2.5$ equiv.) were combined to give crude product 10ca. The residue was precipitated slowly from dichloromethane to afford 2-(3-(difluoroboranyl)-5,6-dimethyl-4-(2-methoxyphenyl)pyridin-2-yl)isoquinoline as a pale brown amorphous solid ( $130 \mathrm{mg}, 70 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 10.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}$, $3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 157.4,156.3,155.2,154.6,149.4,139.5$, 134.0, 133.4, 132.0, 130.6, 130.3, 129.7, 129.2, 128.4, 126.9, 125.2, 122.8, 120.7, 111.0, 55.7, 23.7, 16.3. ${ }^{19} \mathbf{F}$ ( $\mathbf{3 7 6 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\left.\delta-158.8--168.3(\mathrm{~m}, 2 \mathrm{~F}) .{ }^{\mathbf{1 1}} \mathbf{B} \mathbf{( 1 6 0 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.3$. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{20}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}: 389.1637$, found 389.1632. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3079,2953,2836,1600,1553,1494,1353,1243,1089,952,832$.

## Compound 10ab



Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BF}_{2} \mathrm{~N}_{2}$
Following the representative procedure, 5,6-dimethyl-3-(2-quinolyl)-1,2,4-triazine 4aa ( 100 mg , $0.427 \mathrm{mmol}, 1$ equiv.), potassium ((2-ethylphenyl)ethynyl)trifluoroborate ( $290 \mathrm{mg}, 1.27 \mathrm{mmol}, 3$ equiv.) and boron trifluoride diethyl etherate ( $0.26 \mathrm{~mL}, 2.14 \mathrm{mmol}, 5$ equiv.) were combined to give the crude 10ab. The residue was purified chromatographically over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate (1:1) to afford 2-(3-(difluoroboranyl)-5,6-dimethyl-4-(2-ethylphenyl)pyridin-2-yl)quinoline as a beige amorphous solid ( $110 \mathrm{mg}, 67 \%$ ). ${ }^{1} \mathbf{H}$ NMR ( 400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31$ (m, 1H), $7.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 158.5,157.1,154.6,152.3,144.2,141.2,140.2$, 138.1, 133.3, 133.2, 129.0, 128.7, 128.5, 128.0, 127.7, 125.6, 122.8, 116.6, 115.4, 26.1, 23.6, 16.4, 14.6. ${ }^{19} \mathbf{F}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-155.0--157.0(2 \mathrm{~F}, \mathrm{~m}) .{ }^{11} \mathbf{B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.7$. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{22}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} 387.1844$, found 387.1841. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 2961,2925,2874,1597,1447,1269,1087,953,846,809$.

## Compound 10bb



Following the representative procedure, 5,6-diphenyl-3-(2-quinolyl)-1,2,4-triazine 4ab ( 85 mg , $0.236 \mathrm{mmol}, 1$ equiv.), potassium ((2-ethylphenyl)ethynyl)trifluoroborate ( $139 \mathrm{mg}, 0.590 \mathrm{mmol}$, 2.5 equiv.) and boron trifluoride diethyl etherate ( $0.15 \mathrm{~mL}, 1.18 \mathrm{mmol}, 5$ equiv.) were combined to give the crude 10bb. The residue was slowly precipitated from dichloromethane to afford 2-(3-(difluoroboranyl)-5,6-diphenyl-4-(2-ethylphenyl)pyridin-2-yl)quinoline as a beige amorphous solid (55 mg, 46\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{3}$ ) $\delta 8.68$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}$, $2 \mathrm{H}), 7.37$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.08-6.90(\mathrm{~m}, 5 \mathrm{H}), 2.51$ - $\left.2.35(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $159.1,156.5,154.2,153.4,144.4,140.8,140.7,140.2,137.9$ (x2 C) 137.5, 133.4, 131.1, 130.2, 129.9, 129.4, 128.6, 128.1, 127.8, 127.7 (x2 C) 127.3, 127.2, 126.6, 124.7, 123.0, 115.8, 25.9, 14.1. ${ }^{\mathbf{1 9}} \mathbf{F}$ ( $\mathbf{3 7 6 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta-153.3$ - - 156.1 (m, 2F). ${ }^{\mathbf{1 1}} \mathbf{B} \mathbf{N M R}\left(\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.7$. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{34} \mathrm{H}_{26}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} 511.2157$, found 511.2166 . FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3273,2924,1628,1553,1492,1243,1089,952,832$.

## Compound 10ba



Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}$

Following the representative procedure, 5,6-diphenyl-3-(2-quinolyl)-1,2,4-triazine 4ab ( 85 mg , $0.236 \mathrm{mmol}, 1$ equiv.), potassium ((2-ethylphenyl)ethynyl)trifluoroborate ( $139 \mathrm{mg}, 0.590 \mathrm{mmol}$, 2.5 equiv.) and boron trifluoride diethyl etherate ( $0.15 \mathrm{~mL}, 1.18 \mathrm{mmol}, 5$ equiv.) were combined to give the crude 10ba. The residue was slowly precipitated from dichloromethane and washed with diethyl ether to afford 2-(3-(difluoroboranyl)-5,6-diphenyl-4-(2-methoxyphenyl)pyridin-2yl)quinoline as a light grey amorphous solid ( $60 \mathrm{mg}, 50 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.67$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.06-6.92(\mathrm{~m}$, $5 \mathrm{H}), 6.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 158.8,156.5,155.8$, $154.4,150.4,144.8,141.0,140.1,138.6,138.5,133.4,131.1,130.9,130.5,130.1,129.5,129.1$, 128.9, 128.1, 127.5, 127.4, 126.8, 126.4, 122.6, 119.8, 115.7, 110.3, 54.9. ${ }^{19}$ F (376.5 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta-151.5(\mathrm{~d}, J=102.0 \mathrm{~Hz}),-158.0(\mathrm{~d}, J=102.0 \mathrm{~Hz}) .{ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.2$. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{33} \mathrm{H}_{24}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O} 513.1950$, found 513.1959. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 2925,1597,1240,1103,1006,914,825,731,699$.

## Compound 10ea



Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}$
Following the representative procedure, 5,6-dimethyl-3-(2-pyridyl)-1,2,4-triazine $\mathbf{4 c a}$ ( 100 mg , $0.424 \mathrm{mmol}, 1$ equiv.), potassium ((2-methoxyphenyl)ethynyl)trifluoroborate ( $197 \mathrm{mg}, 1.06$ $\mathrm{mmol}, 2.5$ equiv.) and boron trifluoride diethyl etherate ( $0.13 \mathrm{~mL}, 1.06 \mathrm{mmol}, 2.5$ equiv.) were combined to give the crude 10ea. The residue was purified chromatographically over silica gel with ethyl acetate to afford 2-(3-(difluoroboranyl)-5,6-dimethyl-4-(2-methoxyphenyl)pyridin-2yl)pyidine as a pale yellow amorphous solid ( $60 \mathrm{mg}, \mathbf{3 0 \%}$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$ ) $\delta 8.45$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.42-$ $7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, 3H), $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 158.3, 156.4, 156.0, 151.9, 149.9, 143.8, 141.3, 133.9, 130.6, 129.4, 128.4, 124.3, 120.8, 118.6, 111.0, 55.8, 23.7, 16.5. ${ }^{19}$ F (376.5 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta-156.2(\mathrm{~d}, J=90.0 \mathrm{~Hz}),-163.2(\mathrm{~d}, J=90.0 \mathrm{~Hz}) .{ }^{11} \mathbf{B} \mathbf{N M R}\left(\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 7.6. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{18}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O} 339.1480$, found 339.1486. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 2923,1626,1560,1486,1244,1077,946,818,756$.

## Compound 10da



Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}$
Following the representative procedure, 5,6-diphenyl-3-(2-isoquinolyl)-1,2,4-triazine ( 121 mg , $0.336 \mathrm{mmol}, 1$ equiv.), potassium ((2-methoxyphenyl)ethynyl)trifluoroborate ( $240 \mathrm{mg}, 1.0 \mathrm{mmol}$, 3 equiv.) and trifluoride diethyl etherate ( $0.13 \mathrm{~mL}, 1.0 \mathrm{mmol}, 3$ equiv.) were combined to give the crude 10da. The residue was purified chromatographically over silica gel with dichloromethane to afford 2-(3-(difluoroboranyl)-5,6-diphenyl-4-(2-methoxyphenyl)pyridin-2-yl)isoquinoline as a light yellow amorphous solid ( $104 \mathrm{mg}, 60 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 10.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.09$ $\left.-6.93(\mathrm{~m}, 6 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.0$, $157.3,155.7,153.9,150.5,141.2,139.6,138.5,137.8,134.2,132.1,131.2,130.9,130.24,130.20$, 129.1, 128.0, 127.6, 127.4, 127.0, 126.9, 126.4, 125.3, 123.6, 120.1, 116.9, 110.3, 55.0. ${ }^{\mathbf{1 9}} \mathbf{F}(\mathbf{3 7 6 . 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta-158.8(\mathrm{~d}, J=114.0 \mathrm{~Hz}),-165.9(\mathrm{~d}, J=114.0 \mathrm{~Hz}) .{ }^{\mathbf{1 1}} \mathbf{B} \mathbf{N M R}\left(\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta$ 7.8. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{33} \mathrm{H}_{24}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O} 513.1950$, found 513.1961. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3057,2838,1547,1243,1109,1009,914,822,753,700$.

## Compound 10db



Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{BF}_{2} \mathrm{~N}_{2}$
Following the representative procedure, 5,6-diphenyl-3-(2-isoquinolyl)-1,2,4-triazine ( 85 mg , $0.236 \mathrm{mmol}, 1$ equiv.), potassium ((2-ethylphenyl)ethynyl)trifluoroborate ( $139 \mathrm{mg}, 0.590 \mathrm{mmol}$, 2.5 equiv.) and boron trifluoride diethyl etherate ( $0.15 \mathrm{~mL}, 1.18 \mathrm{mmol}, 5$ equiv.) were combined to give the crude $\mathbf{1 0 d b}$. The residue was slowly precipitated from dichloromethane to afford 2-(3-(difluoroboranyl)-5,6-diphenyl-4-(2-ethylphenyl)pyridin-2-yl)isoquinoline as a light yellow amorphous solid ( $55 \mathrm{mg}, 46 \%$ ). ${ }^{1}$ H NMR ( 400 MHz ) $\delta 10.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.07-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.06$ $-6.89(\mathrm{~m}, 5 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4,157.0,153.7,153.2,141.1,140.7,139.7,137.8,137.5,137.1,134.2,132.2$, 130.2 (x2 C), 130.2, 130.1, 129.8, 127.7 (x2 C), 127.5, 127.2 (x2 C), 127.1, 126.6, 125.4, 124.7, $123.7,25.8,14.1 .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ( $\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta-161.05(\mathrm{~d}, J=111.5 \mathrm{~Hz}),-163.89(\mathrm{~d}, J=110.5$ Hz ). ${ }^{11}$ B NMR ( $128 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta$ 7.30. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{34} \mathrm{H}_{26}{ }^{11} \mathrm{BF}_{2} \mathrm{~N}_{2} 511.2152$, found 511.2167. FTIR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3272,2925,1628,1552,1493$, 1243, 1089, 952, 832.

## Preparation of BINOL esters: Representative procedure



10


12

To a solution of 2-(3-(difluoroboranyl)-5,6-diphenyl-4-(2-methoxyphenyl)pyridin-2-yl)quinoline 10ba ( $0.14 \mathrm{~g}, 0.273 \mathrm{mmol}$, 1 equiv.) in THF ( 8 mL ) was added $\mathrm{NaOH}(1.4 \mathrm{~mL}$ of a 1.0 M aqueous solution, $1.4 \mathrm{mmol}, 5$ equiv.). The reaction was stirred for 16 hours at reflux and the solvent was evaporated under reduced pressure. Brine solution $(20 \mathrm{~mL})$ was added and the organic phase was extracted with dichloromethane ( $4 \times 20 \mathrm{~mL}$ ), dried over $\mathrm{MgSO}_{4}$, filtered and the solvent evaporated. The crude material was dissolved in toluene $(8.0 \mathrm{~mL})$ and $(R)$-BINOL ( $0.084 \mathrm{~g}, 0.295$ mmol, 1 equiv.) was added. The reaction was stirred for 1 h at reflux and the solvent was evaporated under reduced pressure. The residue was purified chromatographically over silica gel using dichloromethane to afford the compound 12ba as $4: 1$ mixture of diastereomers ( 111 mg , 50\%).

## Compound 12ba


${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 8.76-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.63-8.57(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 0.4 H ), 7.93 (d, $J=8.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.89-7.82$ (m, 1.6H), $7.81-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $0.8 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1.4 \mathrm{H}), 7.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}$, $4.6 \mathrm{H}), 7.29-7.15(\mathrm{~m}, 6.6 \mathrm{H}), 6.95-6.85(\mathrm{~m}, 4.6 \mathrm{H}) 6.84-6.72(\mathrm{~m}, 1.4 \mathrm{H}), 6.70-6.65(\mathrm{~m}, 0.8 \mathrm{H})$, $6.62-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.39-6.33(\mathrm{~m}, 0.2 \mathrm{H}), 6.18-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.90$ (d, $J=8.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.30(\mathrm{~s}, 0.6 \mathrm{H}), 3.24(\mathrm{~s}$, $2.4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) Major diastereomer only: $\delta 158.3,157.5,154.9,154.8,154.6$, $150.5,143.7,141.3,141.1,139.2,138.8,133.7,133.3,131.9,131.5,130.3,130.2,130.1$ (x2 C),
129.4, 129.2, 129.0, 128.4, 128.1, 127.8, 127.7, 127.5 (x2 C), 127.2 (x2 C), 127.1, 126.3, 126.2, $125.9,125.2,124.5,124.3,123.8,123.5,123.3,122.8,122.7,122.3,120.9,118.3,116.1,109.2$, 54.1. ${ }^{11} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 13.5. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{53} \mathrm{H}_{36}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{3} 759.2819$, found 759.2781. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3056,3002,2956,2924,1594$, 1546, 1335, 1251, 1097, 1005.

## Compound 12bb



Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{2}$

Following the representative procedure, difluoroborane $\mathbf{1 0 b b}$ ( $50 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), and $(R)$-BINOL ( $28 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) were combined to give crude product $\mathbf{1 2 b b}$. The residue was purified chromatographically over silica gel using petrol/ $\mathrm{AcOEt}(7 / 3)$ to afford $\mathbf{1 2 b b}$ as a $1: 1$ mixture of diastereomers ( $34 \mathrm{mg}, 45 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( ~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 8.73(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.57(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.69(\mathrm{~m}, 4 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-6.97(\mathrm{~m}, 10 \mathrm{H}), 6.97-6.80(\mathrm{~m}, 5 \mathrm{H}), 6.79-6.64(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.52-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.23-6.15(\mathrm{~m}, 0.5 \mathrm{H}), 6.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.90(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 0.5 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 0.5 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 0.5 \mathrm{H}), 2.03-1.94$ $(\mathrm{m}, 0.5 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $158.8,157.4,155.00,154.5,154.4,152.8,152.6,150.3,143.7,143.7,141.4,141.3,140.2,139.1$, $139.0,138.5,138.2,138.0,134.7,133.6,133.4,133.3,132.4,131.8,131.5,131.4,131.1,131.0$, $130.2,130.1(\mathrm{x} 2 \mathrm{C}), 129.4,129.3,129.28 \mathrm{x} 2 \mathrm{C}), 129.0,128.9,128.4,129.0,127.8,127.6$ (x2 C), 127.58 (x2 C), 127.4, 127.3, 127.2, 127.1, 127.0, 126.9, 126.8, 126.2, 126.0, 125.2, 125.1, 124.9 (x 2 C ), $124.7,124.5,124.2,124.0,123.4,123.3,123.2,123.1,123.0,123.0,122.9,122.2,120.1$, 117.8, 116.2, 116.1, 25.4, 13.3, 13.1. ${ }^{\mathbf{1 1}} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta$ 13.4. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{54} \mathrm{H}_{38}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{2} 759.2813$, found 759.2781. FTIR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3057$, 2971, 2929, 2924, 1619, 1596, 1544, 1339, 1252, 1098, 995.

## Compound 12ca



Following the representative procedure, difluoroborane 10ca ( $70 \mathrm{mg}, 0.18 \mathrm{mmol}$, 1 equiv.), and $(R)$-BINOL ( $52 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ equiv.) were combined to give crude product $\mathbf{1 2 c a}$. The residue was purified chromatographically over silica gel using petrol/AcOEt (7.5/2.5) to afford the compound 12ca as a $4: 1$ mixture of diastereomers ( $89 \mathrm{mg}, 79 \%$ ). $\left.{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( 4 0 0 ~} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ $10.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.96-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 1 \mathrm{H})$, $7.75-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.13$ (m, 9.4H), $7.02-6.97$ (m, 1H), 6.85 (d, $J=7.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.80$ $-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 0.2 \mathrm{H}), 6.58-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.95(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.88(\mathrm{~s}, 2.4 \mathrm{H}), 3.29(\mathrm{~s}, 0.6 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.06$ - $2.01(\mathrm{~m}, \mathbf{3 H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$ ) major diastereomer only: $\delta 159.6,156.8,155.6$, $154.7,154.5,149.3,146.1,139.3,133.8,133.6,133.1,132.3,131.9,131.6,130.5,130.3,130.1$, $129.9,129.2,129.1,128.6,128.2,128.1,128.0,127.6,127.3,126.9,126.8,125.1,124.5,124.2$, 123.5, 123.3, 122.9, 122.6, 122.2, 121.5, 119.1, 109.7, 55.0, 23.8, 16.3. ${ }^{11}$ B NMR ( 128 MHz , $\mathbf{C D C l}_{3}$ ): $\delta$ 10.6. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{43} \mathrm{H}_{31}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{3}$ 635.2506, found 635.2496. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3054,3002,2953,2925,1593,1551,1339,1253,1078,1024$, 960, 819.

## Compound 12cb



Following the representative procedure, difluoroborane $\mathbf{1 0 c b}$ ( $80 \mathrm{mg}, 0.21 \mathrm{mmol}$, 1 equiv.), and $(R)$-BINOL ( $60 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.) were combined to give crude product $\mathbf{1 2 c b}$. The residue was purified chromatographically over silica gel using petrol/AcOEt (7.5/2.5) to afford the compound 12cb as a $1: 1$ mixture of diastereomers ( $120 \mathrm{mg}, 88 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 10.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.82-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 0.5 \mathrm{H}), 7.54$ - $7.48(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.02(\mathrm{~m}, 8.5 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.62-6.43(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H})$, $2.79-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.56-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 1.5 \mathrm{H}), 1.97(\mathrm{~s}, 1.5 \mathrm{H}), 1.32$ (t, $J=7.5 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 157.4,155.7$, $154.4,154.0,152.6,141.0,139.7,139.4,138.2,133.6,133.4,133.2,133.1,132.8,130.3,130.1$, $129.7,129.5,129.3,128.6,128.0,127.7,127.2,127.1,126.9,126.8,126.5,125.5,125.1,124.9$, 124.6, 124.3, 123.4, 123.3, 123.1, 122.6, 122.1, 121.5, 120.4, 25.6, 24.0, 16.7, 14.1. ${ }^{11}$ B NMR ( $128 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta$ 12.2. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{44} \mathrm{H}_{34}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{2}$ 633.2708, found 633.2710. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3055,2963,2934,1593,1505,1466,1339,1254,1098$, 1023, 961, 819.

Compounds 12da


Following the representative procedure, difluoroborane $\mathbf{1 0 d a}(100 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.), and $(R)$-BINOL ( $56 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) were combined to give crude product 12da. The residue was purified chromatographically over silica gel using petrol/AcOEt (7.5/2.5) to afford the compound 12da as a $4: 1$ mixture of diastereomers ( $124 \mathrm{mg}, 83 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 10.78-10.65(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 0.75 \mathrm{H})$, 7.68 (d, $J=8.0 \mathrm{~Hz}, 0.75 \mathrm{H}$ ), $7.58-7.50(\mathrm{~m}, 2.25 \mathrm{H}), 7.46-7.12$ (m, 12.5H), $7.07-7.03$ (m, 1H), $7.02-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.79-6.69(\mathrm{~m}, 1.5 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.25 \mathrm{H}), 6.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.25 \mathrm{H})$, $6.53-6.48(\mathrm{~m}, 0.25 \mathrm{H}), 6.39-6.33(\mathrm{~m}, 0.75 \mathrm{H}), 6.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.25 \mathrm{H}), 6.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $0.75 \mathrm{H}), 5.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 2.25 \mathrm{H}), 3.26(\mathrm{~s}, 0.75 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ major diastereomer only: $\delta 158.2,157.9,157.6,154.9,154.6,154.3,153.9,150.3,141.6,139.4$, 138.8, 138.2, 133.8, 133.6, 133.2, 133.0, 132.2, 130.4, 130.2 (x2 C), 129.9, 129.4, 128.7, 128.3, 128.0, 127.6 (x2 C), 127.5 (x2 C), 127.3, 127.2, 127.0, 126.8, 126.4, 126.0, 125.4, 125.2, 124.5, 123.4 (x2 C), 123.1, 122.6, $122.3,122.0,120.6,118.6,109.4,54.3 .{ }^{11} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta$ 13.2. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{53} \mathrm{H}_{36}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{3} 759.2819$, found 759.2844. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3056,2966,2932,1593,1540,1505,1339,1253,1099,995$.

## Compound 12db



Chemical Formula: $\mathrm{C}_{54} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{2}$
Following the representative procedure, difluoroborane $\mathbf{1 0 d b}(70 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.), and $(R)$-BINOL ( $40 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.) were combined to give crude product $\mathbf{1 2 d b}$. The residue was purified chromatographically over silica gel using petrol/AcOEt (7.5/2.5) to afford the compound 12db as a $1: 1$ mixture of diastereomers ( $59 \mathrm{mg}, 56 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ : $\delta 10.76-10.69(\mathrm{~m}, 1 \mathrm{H}), 8.03-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.80-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ $7.46(\mathrm{~m}, 2.5 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1.5 \mathrm{H}), 7.35-7.07(\mathrm{~m}, 10 \mathrm{H}), 7.00-6.73(\mathrm{~m}, 6 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 0.5 \mathrm{H}), 6.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.37-6.32$ $(\mathrm{m}, 1 \mathrm{H}), 6.29-6.25(\mathrm{~m}, 0.5 \mathrm{H}), 5.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 0.5 \mathrm{H}), 2.40-2.31(\mathrm{~m}$, $0.5 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 0.5 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 0.5 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.78(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1.5 H ). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 158.1,158.0,157.6,157.1,154.4$ (x2 C), 154.3, 153.9, $153.7,153.6,153.5,152.5,151.0,142.7,142.6$ 141.6, 141.4, 140.6, 139.5, 139.4, 139.2, 138.5, 137.9, 137.7, 137.0, 133.8 (x2 C) 133.5, 133.2, 133.1 (x2 C), 132.3, 131.9, 131.2, 130.3, 130.2, 129.9, 129.6, 129.3, 129.1, 128.7 (x2 C), 128.0, 127.9, 127.6, 127.5, 127.4, 127.3, 127.2, 127.0, $126.9,126.8,126.7,126.4$ (x2 C), 126.3, 125.6, 125.5, 125.3, 125.2, 125.1, 124.6, 124.5, 124.0, 123.6, 123.4 (x2 C), 123.3, 123.2, 123.1, 122.7, 122.4, 122.2, 122.0, 25.4 (x2 C), 13.5, 13.0. ${ }^{11} \mathbf{B}$ NMR ( $128 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 11.2$. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{54} \mathrm{H}_{38}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{2} \mathrm{Na}$ 779.2846, found 779.2846. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3055,2963,2934,1593,1505,1466,1339$, 1254, 1098, 1023, 961, 819.

## Compound 12aa



Following the representative procedure, difluoroborane $\mathbf{1 0 a a}(53 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1 equiv.), and $(R)$-BINOL ( $39 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.) were combined to give crude product 12aa The residue was purified chromatographically over silica gel using petrol/AcOEt $(7 / 3)$ to afford the compound 12aa as a $4: 1$ mixture of diastereomers ( $49 \mathrm{mg}, 57 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$ ) major diastereomer only: $\delta 8.61$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.76$ - 7.66 (m, 2H), 7.55 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.14(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.23(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$ ) major diastereomer only: $\delta$ 158.1, 157.7, 155.4, 155.1, 154.9, 141.0, 135.0, 133.7, 133.6, 133.5, 131.6, 131.5, 130.4, 130.1, 129.5, 123.0, 129.2, 128.5, 128.4, 127.8, 127.7, 127.6, 127.4, 127.3, 126.9, 125.2, 124.6, 124.4, 124.0, 123.8, 123.7, 123.2, 123.0, 122.6, 122.4, 121.3, 119.0, 118.0, 109.6, 54.9, 23.8, 16.5. ${ }^{\mathbf{1 1} \mathbf{B}} \mathbf{\text { NMR ( }} \mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 12.9$. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3059,2952,2922,2849,1594,1523,1467,1337,1253,1083,956,746$. HRMS (ESI-TOF) $m / z\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{43} \mathrm{H}_{32}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{3} 635.2508$, found 635.2511.

## Compound 12ea



Following the representative procedure, difluoroborane 10ea ( $60 \mathrm{mg}, 0.18 \mathrm{mmol}$, 1 equiv.), and $(R)$-BINOL ( $51 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ equiv.) were combined to give crude product 12ea. The residue was purified chromatographically over silica gel using petrol/AcOEt (6/4) to afford the compound 12ea as a $4: 1$ mixture of diastereoisomer ( $60 \mathrm{mg}, 58 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.43$ $8.36(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, 0.8 H ), $7.55-7.42(\mathrm{~m}, 0.6 \mathrm{H}), 7.40-7.07(\mathrm{~m}, 8.4 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $0.2 \mathrm{H}), 6.75-6.57(\mathrm{~m}, 2.2 \mathrm{H}), 6.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.77(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 0.8 \mathrm{H}$ ), $3.88(\mathrm{~s}, 2.4 \mathrm{H}), 3.24(\mathrm{~s}, 0.6 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) Major diastereomer only: $\delta 157.6,156.1,155.7,154.5,154.4,154.1,152.5,149.7$, 143.1, 141.7, 134.3, 133.5, 133.0, 131.9, 130.1, 129.9, 129.4, 129.1, 128.7, 128.3, 128.0, 127.8, $127.7,127.3,126.8,125.3,124.7,123.5,123.2,122.8,122.0,120.9,119.2,118.4,109.7,55.1$, 23.7, 16.5. ${ }^{11} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta$ 11.4 HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}\left[\mathrm{MH}^{+}\right]$calcd for $\mathrm{C}_{39} \mathrm{H}_{30}{ }^{11} \mathrm{BN}_{2} \mathrm{O}_{3} 585.2344$, found 585.2358. FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3056,2995,2924,2832,1624$, 1492, 1466, 1339, 1252, 1076, 966, 751.

### 5.3. Chapter II

## Preparation of imines: Representative procedure

In a tube rack was added the aniline $\mathbf{1 4 a}(0.137 \mathrm{~mL}, 5$ equiv., 1.5 mmol$)$ and the $\mathrm{PCN}-222(\mathrm{Pd})$ ( $0.012 \mathrm{~g}, 0.02$ equiv.) in 1 mL of acetonitrile. The benzylamine $\mathbf{1 3 a}$ ( $0.034 \mathrm{~mL}, 1$ equiv., 0.3 mmol ) was dilued in 2.4 mL of acetonitrile and added via a push syringe to the solution $(0.4 \mathrm{~mL} / \mathrm{h}, 6 \mathrm{~h})$. The mixture was left stirred inside a light box under visible light (LED lamp $13.5 \mathrm{~W}, 15 \mathrm{~kW}, 155$ mA ) for three days and then transferred in a falcon with 20 mL of acetonitrile. The solution was centrifuged ( $20 \mathrm{~min}, 10{ }^{\circ} \mathrm{C}, 10.000 \mathrm{RPM}$ ), decanted, and evaporated. The crude was finally purified chromatographically over silica gel column using $\mathrm{AcOEt} / \mathrm{NEt}_{3} /$ Pentane $(0.5: 1.5: 8)$ to afford the imine $\mathbf{1 5 a}$ as a pale-yellow solid ( $27 \mathrm{mg}, 50 \%$ ).

## Compound 15aa



Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}$
${ }^{1}$ H NMR ( 400 MHz , Chloroform-d) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H})$, 7.46 - $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 160.45,152.08$, $136.22,131.39,129.15$ (x2 C), 128.83 (x2 C), 128.78, 125.95, 120.88 (x2 C), 115.16.

These data are in agreement with the previously reported spectral data. ${ }^{108}$

## Compound 15ad



Based on the representative procedure, aniline $\mathbf{1 4 d}$ ( $184 \mathrm{mg}, 1.5 \mathrm{mmol}$, 5 equiv.), and benzylamine 13a ( $0.034 \mathrm{~mL}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally
 afford the imine $\mathbf{1 5 a d}$ as a pale-yellow solid ( $32 \mathrm{mg}, 51 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H})$, 3.90 ( $\mathrm{s}, 3 \mathrm{H}$ ). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 162.26,159.67,152.39,130.50(\mathrm{x} 2 \mathrm{C}), 129.31$, 129.09 ( x 2 C ), $125.54,120.86$ ( x 2 C ), 114.19 ( x 2 C ), 55.43 .

These data are in agreement with the previously reported spectral data. ${ }^{84}$

## Compound 15ae



$$
\text { Chemical Formula: } \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}
$$

Based on the representative procedure, aniline $\mathbf{1 4 e}(258 \mathrm{mg}, 1.5 \mathrm{mmol}, 5$ equiv.), and benzylamine 13a ( $0.034 \mathrm{~mL}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally purified chromatographically over silica gel column using $\mathrm{AcOEt}^{2} \mathrm{NEt}_{3} / \mathrm{Pentane}$ (0.4:0.1:9.5) to afford the imine 15ae as a brown solid ( $20 \mathrm{mg}, 25 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.45$ $(\mathrm{s}, 1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 1 ~ M H z ,}$ $\mathbf{C D C l}_{3}$ ) $\delta 160.74,151.03,135.96,132.19$ ( 2 x C ), 131.64, 128.89 ( x 2 C ), $122.59,119.31$ ( $2 \mathrm{x} \mathrm{C)}$, 114.63.
${ }^{109}$ These data are in agreement with the previously reported spectral data.

## Compound 15af



Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{CIN}$

Based on the representative procedure, aniline $\mathbf{1 4 f}(191 \mathrm{mg}, 1.5 \mathrm{mmol}, 5$ equiv.), and benzylamine 13a ( $0.034 \mathrm{~mL}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally purified chromatographically over silica gel column using AcOEt/Pentane (4:6) to afford the imine 15af as a pale-yellow solid ( $26 \mathrm{mg}, 41 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d ) ~} \delta 8.46$ (s, 1H), C), 122.20 ( x 2 C ).

These data are in agreement with the previously reported spectral data. ${ }^{85}$

## Compound 17aba



Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2}$

Based on the representative procedure, aniline 14ba ( $204 \mathrm{mg}, 1.5 \mathrm{mmol}$, 5 equiv.), and benzylamine 13 a ( $0.034 \mathrm{~mL}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue crude was finally purified chromatographically over silica gel column using AcOEt/DCM (2:8) to afford the benzimidazole $\mathbf{1 7 a b a}$ as a pale-yellow solid ( $13 \mathrm{mg}, 20 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( ~} \mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.14-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 5 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta 150.99,137.54,132.02,129.93,129.84$ ( 2 x C ), 129.16 ( 2 x C ), 128.97, 126.57, 115.28, 29.71, 20.37 ( $2 x$ C).

These data are in agreement with the previously reported spectral data. ${ }^{110}$

## Compound 17fb



Based on the representative procedure, aniline 14b ( $162 \mathrm{mg}, 1.5 \mathrm{mmol}, 5$ equiv.), and benzylamine $\mathbf{1 3 f}$ ( $33 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally purified chromatographically over silica gel column using $\operatorname{AcOEt} / \mathrm{DCM}(1: 1)$ to afford the benzimidazole $\mathbf{1 7 f b}$ as a pale-yellow solid ( $26 \mathrm{mg}, 46 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.66$ (dd, $J=$ $5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}$,
$2 \mathrm{H}), 7.40(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 150.65$, 149.12 ( 2 x C), $148.10,137.38$ ( 2 x C ), 124.68 ( 2 x C ), 123.45 ( 2 x C ), 121.82 ( 2 x C ).

These data are in agreement with the previously reported spectral data. ${ }^{111}$

## Compound 17gb



Based on the representative procedure, aniline $\mathbf{1 4 b}$ ( $162 \mathrm{mg}, 1.5 \mathrm{mmol}, 5$ equiv.), and benzylamine $\mathbf{1 3 g}$ ( $36 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally purified chromatographically over silica gel column using $\mathrm{AcOEt} /$ Pentane (3:7) to afford the benzimidazole $\mathbf{1 7 g b}$ as a pale-yellow solid ( $24 \mathrm{mg}, 45 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}$ ) $\delta$ $8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$. These data are in agreement with the previously reported spectral data. ${ }^{87}$

## Compound 17bb



Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN} \mathrm{N}_{2}$

Based on the representative procedure, aniline $\mathbf{1 4 b}$ ( $162 \mathrm{mg}, 1.5 \mathrm{mmol}, 5$ equiv.), and benzylamine $\mathbf{1 3 b}$ ( $56 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally purified chromatographically over silica gel column using $\mathrm{AcOEt} /$ Pentane (3:7) to afford the benzimidazole 17bb as a pale-brown solid ( $32 \mathrm{mg}, \mathbf{3 8 \%}$ ). ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{M e O D}$ ) $\delta 7.99$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 154.78,135.91$ (x2 C), 132.64, 132.00 (x2 C), 128.08, $126.73 \times 2 \mathrm{C}$ ), 118.55. These data are in agreement with the previously reported spectral data. ${ }^{111}$

## Compound 17abb



Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{CIN}_{2}$

Based on the representative procedure, aniline 14bb ( $214 \mathrm{mg}, 1.5 \mathrm{mmol}$, 5 equiv.), and benzylamine 13 a ( $0.034 \mathrm{~mL}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally purified chromatographically over silica gel column using AcOEt/Pentane (4:6) to afford the benzimidazole $\mathbf{1 7 a b b}$ as a pale-orange solid ( $26 \mathrm{mg}, 39 \%$ ). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, MeOD) $\delta 8.08-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, MeOD) $\delta$ 153.27, 130.25 (2x C), 129.18, 128.77, 128.00 ( 2 x C ), 126.46 ( 2 x C ), 122.89. These data are in agreement with the previously reported spectral data. ${ }^{112}$

## Compound 17eb



Based on the representative procedure, aniline $\mathbf{1 4 b}$ ( $162 \mathrm{mg}, 1.5 \mathrm{mmol}, 5$ equiv.), and benzylamine $\mathbf{1 3 e}$ ( $41 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv.) were combined to give the crude. The residue was finally purified chromatographically over silica gel column using AcOEt/Pentane (3:7) to afford the benzimidazole 17eb as a white solid ( $29 \mathrm{mg}, 43 \%$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - d ) ~} \delta 8.15-8.06$ (m, 2H), $7.54(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 161.11,151.76,128.50(x 2 \mathrm{C}), 123.03,122.28$ (x2 C), 114.84 (x2 C), 55.81. These data are in agreement with the previously reported spectral data. ${ }^{113}$

### 5.4. Chapter III

## Synthesis of cyclobutanone 18



To a suspension of zinc-copper couple ( $9.60 \mathrm{~g}, 147 \mathrm{mmol}$ ) and phenylacetylene ( $5.00 \mathrm{~g}, 49 \mathrm{mmol}$ ) in diethyl ether ( 100 mL ) was added a solution of trichloroacetyl chloride ( $10.9 \mathrm{~mL}, 98 \mathrm{mmol}$ ) in dimethoxyethane ( 50 mL ) dropwise over 15 min . After 18 h , the resulting brown mixture was filtered and the black residue was washed with hexane $(100 \mathrm{~mL})$. The filtrate was washed with ice-cold hydrochloric acid $(0.5 \mathrm{~N}, 100 \mathrm{~mL})$, ice-cold sodium hydroxide solution $(5 \%, 100 \mathrm{~mL})$, saturated sodium chloride solution ( 100 mL ), dried over anhydrous $\mathrm{MgSO}_{4}$, and then concentrated in vacuo to give the crude 3 -substituted-4,4-dichlorocyclobutenone. The residue was directly used in the next step without any purification. To a suspension of zinc dust ( $25.60 \mathrm{~g}, 392 \mathrm{mmol}$ ) in absolute ethanol $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added glacial acetic acid ( $11.2 \mathrm{~mL}, 196 \mathrm{mmol}$ ) dropwise over 5 min . Then a solution of 3-phenyl-4,4-dichlorocyclobutenone ( $8.35 \mathrm{~g}, 39 \mathrm{mmol}$ ) in absolute ethanol $(10 \mathrm{~mL})$ was added over 10 min . The reaction mixture was stirred for 2.5 h and then filtered and washed with a mixture of diethyl ether and pentane ( $1: 1,250 \mathrm{~mL}$ ). The filtrate was washed with hydrochloric acid ( $1 \mathrm{~N}, 100 \mathrm{~mL}$ ), water $(100 \mathrm{~mL})$ and saturated sodium chloride ( 100 mL ). After extraction with a mixture of diethyl ether and pentane $(1: 1,3 \times 300 \mathrm{~mL})$ the organic layers were washed with saturated sodium bicarbonate solution ( 500 mL ), dried over MgSO 4 and concentrated in vacuo. The residue was finally purified chromatographically over silica gel column using $\mathrm{AcOEt} /$ Pentane affording the cyclobutenone $\mathbf{1 8}$ as a yellow solid ( $2.4 \mathrm{~g}, 40 \%$ ). ${ }^{1} \mathbf{H}$ NMR ( 400 MHz, Chloroform-d) $\delta 3.52$ (s, 2H), 6.37 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.48-7.52 (m, 3H), 7.60-7.63 ( $\mathrm{m}, 2 \mathrm{H}$ ).

These data are in agreement with the previously reported spectral data. ${ }^{114}$

## Synthesis of lactone 20 with $\mathrm{Ni}(\mathrm{COD})_{2}$ as catalyst



A flame-dried Schlenk tube was charged with cyclobutenone 18 ( $28.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv.) and benzaldehyde 19 ( $23.3 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1$ equiv.) in anhydrous and degassed toluene ( 1 mL ) under an nitrogen atmosphere in a glove box. The mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ before $\mathrm{Ni}(\operatorname{cod}) 2(8.3 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.3$ equiv.) was added. The solution was allowed to reach room temperature and stirred for 16 h . All volatiles were removed in vacuo. The residue was concentrated in vacuo and purified chromatographically over silica gel column using nhexane/EtOAc (80:20) provided lactone 20 as a white solid ( $16 \mathrm{mg}, 31 \%$ ).

## Synthesis of lactone 20 with $\mathrm{Ni}(\mathrm{TMDA})(o-t o l y l) \mathrm{Cl}$ as catalyst



Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$

Under a nitrogen atmosphere in a glove box, the cyclobutenone 18 ( $20 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.), benzaldehyde 19 ( $44 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.), $\mathrm{Ni}(\mathrm{TMDA})(o$-tolyl) $\mathrm{Cl}(33 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.8$ equiv.) and $\mathrm{dppBz}(22 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.8$ equiv.) were added into a 8 mL microwave tube with 3 mL of toluene. The resultant mixture was stirred in a microwave reactor for 6 hours at $60^{\circ} \mathrm{C}$, concentrated in vacuo and the resulting residue was analysed by ${ }^{1} \mathrm{H}$ NMR (39\%). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform-d) $\delta 3.04-3.06(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.57(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.48(\mathrm{~m}, 1 \mathrm{H})$, 7.36-7.50 (m, 8H), 7.55-7.57 (m, 2H).

These data are in agreement with the previously reported spectral data. ${ }^{115}$

## Synthesis of lactam 22 with Yttrium(III) triflate as catalyst



In a 10 mL round bottom flask was added under nitrogen atmosphere, the cyclobutenone $\mathbf{1 8}$ (20 $\mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv.), imine 21 ( $44 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.), Yttrium(III) triflate ( $6.5 \mathrm{mg}, 0.02$ mmol, 0.1 equiv.) and $\operatorname{IPr}(4 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv.) in $\operatorname{DCE}(4 \mathrm{~mL})$. The resultant mixtured was stirred for 24 hours at $60^{\circ} \mathrm{C}$, concentrated in vacuo and finally purified chromatographically over silica gel column using AcOEt/heptane (3:7) to afford the compound $22(6 \mathrm{mg}, 15 \%) .{ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 3.12-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.23(\mathrm{~m}, 2 \mathrm{H})$, 6.56-6.57 (m, 1H), $7.20(\mathrm{t}, J=7.5 \mathrm{~Hz} 1 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.51(\mathrm{~m}, 12 \mathrm{H})$.

### 5.5. Chapter IV

## Synthesis of 1-Phenylprop-2-yn-1-ol 31



Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$

To a stirring solution of ethynylmagnesium bromide ( 0.5 M in $\mathrm{THF}, 90 \mathrm{~mL}, 1.1$ equiv.) at $-78{ }^{\circ} \mathrm{C}$ was added benzaldehyde ( $3 \mathrm{~mL}, 30 \mathrm{mmol}, 1$ equiv.). The reaction mixture was stirred for 10 minutes before warming to room temperature over 2 hours. NH 4 Cl (sat. aq., 50 mL ) was added and the solvent phases separated. The aqueous phase was extracted with EtOAc ( 3 x 100 mL ) and the combined organic phases dried over anhydrous MgSO 4 then concentrated in vacuo. The resulting dark mixture was purified by flash column chromatography on silica gel using nhexane/EtOAc (80:20) to afford the title compound $\mathbf{3 1}$ as a gold coloured oil (3.5, 88\%). ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \text { Chloroform- } \boldsymbol{d})_{\delta н} \mathrm{ppm} 2.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 2.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$ ), 5.50 (dd, $1 \mathrm{H}, \mathrm{J}=2.0,6.0 \mathrm{~Hz}), 7.46-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H})$.

## Synthesis of Potassium (3-hydroxy-3-phenylprop-1-yn-1-yl)trifluoroborate 32



To a solution of 1-Phenylprop-2-yn-1-ol $31(2.0 \mathrm{~g}, 19 \mathrm{mmol}$, 1 equiv.) in THF ( 190 mL ) at -78 ${ }^{\mathrm{o}} \mathrm{C}$, nbutyllithium $\sim 2.5 \mathrm{M}$ in hexanes, ( $16.7 \mathrm{~mL}, 42 \mathrm{mmol}, 2.2$ equiv.) was added dropwise. The mixture was stirred for 1 hour before adding 2-isopropoxy-4,4,5,5- tetramethyl-1,3,2dioxaborolane ( ${ }^{1}$ PrOBPin $)(6.33 \mathrm{~mL}, 57 \mathrm{mmol}, 3$ equiv.) dropwise and allowing it to warm to -20 ${ }^{\circ} \mathrm{C}$ over a period of 2 hours. Potassium hydrogen difluoride ( $17.7 \mathrm{~g}, 228 \mathrm{mmol}, 12$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added slowly and the flask was allowed to warm to room temperature. The resulting mixture was concentrated to dryness in vacuo and the product was separated from excess inorganic material by addition of acetone and vigorous stirring for 1 hour followed by filtration. The filtrate was concentrated in vacuo and redissolved in the minimum amount of acetone affording a saturated solution. The product was precipitated by adding diethyl
ether and isolated by filtration followed by washing with diethyl ether. The precipitate was dried in vacuo to give the ynol trifluoroborate $\mathbf{3 2}$ salt as a colourless solid ( $3.2 \mathrm{~g}, 71 \%$ ). M.p. $=234{ }^{\circ} \mathrm{C}$;


 DMSO-d ${ }^{6}$ ) бс $^{\text {ppm }} 64.0,90.8,127.0,127.4,128.3,144.1$

## Synthesis of Potassium (3-oxo-3-phenylprop-1-yn-1-yl)trifluoroborate 23



Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{BF}_{3} \mathrm{KO}$
To a stirring suspension of manganese(IV) oxide ( $7.3 \mathrm{~g}, 84 \mathrm{mmol}, 10$ equiv.) in acetone ( 50 mL ) was added portion-wise ynol trifluoroborate $32(2 \mathrm{~g}, 8.4 \mathrm{mmol}, 1$ equiv.) at room temperature for 4 hours. The reaction mixture was then filtered through a bed of Celite and the filtrate concentrated in vacuo. The solid residue was redissolved in the minimum amount of acetone affording a saturated solution. The product was precipitated by adding diethyl ether and isolated by filtration followed by washing with diethyl ether. The precipitate was dried in vacuo to give the ynone trifluoroborate salt as a colourless solid ( $1.5 \mathrm{~g}, 75 \%$ ). M.p. $=169-170{ }^{\circ} \mathrm{C} ; \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( 4 0 0 ~ M H z , ~}$ DMSO-d ${ }^{\mathbf{6}}$ ) $\delta \mathrm{H}$ ppm 7.53 - $7.60(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.71(\mathrm{~m}, 1 \mathrm{H}), 8.04-8.10(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO-d $^{\mathbf{6}}$ ) $\delta$ F ppm -132.8--133.3 (m); ${ }^{\mathbf{1 1}} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z , ~ D M S O - d ~}{ }^{\mathbf{6}}$ ) $\delta \mathrm{B} \mathrm{ppm}$ $-1.9(q, J=33.0 \mathrm{~Hz}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O - d}{ }^{\mathbf{6}}$ ) $\delta \mathrm{C} \mathrm{ppm} \mathrm{88.6}, \mathrm{129.2}, \mathrm{129.4}, \mathrm{134.3}, \mathrm{137.2}$, 178.7.

## General procedure A: Freebasing and condensation of $N$-alkyl guanidine hydrochloride

 salts $\mathbf{2 5}$ with $\mathbf{2 3}$To a stirring suspension of alkylguanidine hydrochloride (2.4-2.5 eq) in toluene was added potassium carbonate (2.4-2.5 eq). The mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h , then $23(1.0 \mathrm{eq})$ was added and the mixture was heated at reflux for 16 h . The mixture was cooled to room temperature and concentrated in vacuo, followed by dissolving in acetone and filtering to remove residual salts. The resultant acetone solution was concentrated to afford a saturated solution and $\mathrm{Et}_{2} \mathrm{O}$ was added slowly. The aminopyrimidine trifluoroborate precipitate was then collected by filtration and dried thoroughly in vacuo.

## Preparation of 2-(benzylamino)-4-phenylpyrimidin-6-yl trifluoroborate 25a



Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BF}_{3} \mathrm{KN}_{3}$
Following general procedure using benzylguanidine hydrochloride ( $200 \mathrm{mg}, 1.08 \mathrm{mmol}$ ), potassium carbonate ( $147 \mathrm{mg}, 1.06 \mathrm{mmol}$ ), $23(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ and toluene $(10 \mathrm{~mL})$. The title compound was obtained as a colourless solid ( $114 \mathrm{mg}, 74 \%$ ). M.p. $=234-235{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$ ) $\delta$ н ppm $4.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$ ), $7.37-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.99(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO$\mathbf{d}^{6}$ ) $\delta_{\mathrm{C}} \mathrm{ppm} 44.2,108.5,126.3$ (x2C), 127.3, 128.0, 128.5, 129.4, 138.7, 141.5, 159.6, 162.1; ${ }^{19} \mathbf{F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\text {F }} \mathrm{ppm}-142.6 ;{ }^{11}$ B NMR ( $\mathbf{1 2 8} \mathbf{~ M H z , ~ D M S O - d ~}{ }^{6}$ ) $\delta_{\mathrm{B}} \mathrm{ppm} 1.3$; FTIR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3432$ (m), 3063 (w), 3033 (w), 2945 (w), 1534 (s), 1026 (s), 953 (s); HRMS (ESI-TOF) $m / z[\mathrm{M}-\mathrm{K}]^{-}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14}{ }^{11} \mathrm{BF}_{3} \mathrm{~N}_{3} 328.1238$, found 328.1251.

## Preparation of 2-((N-allyl)amino)-4-phenylpyrimidin-6-yl trifluoroborate 25b



Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BF}_{3} \mathrm{KN}_{3}$
Following general procedure A using allylguanidine hydrochloride ( $115 \mathrm{mg}, 0.85 \mathrm{mmol}$ ), potassium carbonate ( $117 \mathrm{mg}, 0.85 \mathrm{mmol}$ ), $\mathbf{2 3}(82 \mathrm{mg}, 0.35 \mathrm{mmol})$ and toluene $(6 \mathrm{~mL})$. The title compound was obtained as a colourless solid ( $60 \mathrm{mg}, 54 \%$ ). M.p. $=204-205{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$ ) $\delta_{\text {H }} \mathrm{ppm} 3.97-4.06(\mathrm{~m}, 2 \mathrm{H}), 5.00-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.25(\mathrm{~m}, 1 \mathrm{H})$, 5.98 (ddt, 1H, J = 17.0, 10.5, 5.5 Hz ), 6.69 (s, 1H), $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.51(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{dd}, 2 \mathrm{H}$, J = 8.0, 1.5 Hz ); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z , ~ D M S O - d ~}{ }^{6}$ ) $\delta_{\mathrm{C}} \mathrm{ppm} 43.7,109.0,114.8,116.4,126.8,129.0$, 129.8, 139.1, 159.9, 162.3; ${ }^{19}$ F NMR ( 377 MHz , DMSO-d ${ }^{6}$ ): $\delta_{\mathrm{F}} \mathrm{ppm}-142.6 ;{ }^{11}$ B NMR (128 MHz, DMSO-d ${ }^{6}$ ) $\delta_{\text {B }}$ ppm 1.6; FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3383$, 1645, 1601, 1534, 1033; HRMS (ESI-TOF) $m / z[\mathrm{M}-\mathrm{K}]^{-}$calculated for $\mathrm{C}_{13} \mathrm{H}_{12}{ }^{11} \mathrm{BF}_{3} \mathrm{~N}_{3}$ 278.1082, found 278.1091.

## Preparation of 2-((N-cyclopropyl)amino)-4-phenylpyrimidin-6-yl trifluoroborate 25c



Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BF}_{3} \mathrm{KN}_{3}$
Following general procedure A using cyclopropylguanidine hydrochloride ( $145 \mathrm{mg}, 1.07 \mathrm{mmol}$ ), potassium carbonate ( $147 \mathrm{mg}, 1.06 \mathrm{mmol}$ ), $\mathbf{2 3}(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ and toluene ( 10 mL ). The title compound was obtained as a pale-yellow solid ( $100 \mathrm{mg}, 75 \%$ ). M.p. $=168-170{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$ ) $\delta_{\text {H }} \mathrm{ppm} 0.44-0.57$ (m, 2H), $0.65-0.77$ (m, 2H), $2.77-2.85$ (m, 1H), $6.80(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 3 \mathrm{H}), 8.03-8.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13}$ C NMR (101 MHz, DMSO$\mathbf{d}^{6}$ ) $\delta_{\mathrm{C}} \mathrm{ppm} 6.9,24.4,106.4,127.2,129.2,131.0,137.5,159.3,163.9 ;{ }^{19}$ F NMR ( 377 MHz , DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{F}} \mathrm{ppm}-142.6 ;{ }^{11} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{B}} \mathrm{ppm} 1.5$; FTIR (neat) $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1} 3373,1672$, 1532, 1347, 1058; HRMS: (ESI-TOF) $m / z[\mathrm{M}-\mathrm{K}]{ }^{-}$calculated for $\mathrm{C}_{13} \mathrm{H}_{12}{ }^{11} \mathrm{BF}_{3} \mathrm{~N}_{3}$ 278.1082, found 278.1094.

## Preparation of 2-(( $N$-methyl)amino)-4-phenylpyrimidin-6-yl trifluoroborate 25e



Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BF}_{3} \mathrm{KN}_{3}$
Following general procedure A using methylguanidine hydrochloride ( $116 \mathrm{mg}, 1.06 \mathrm{mmol}$ ), potassium carbonate ( $147 \mathrm{mg}, 1.06 \mathrm{mmol}$ ), $\mathbf{2 3}(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ and toluene $(10 \mathrm{~mL})$. The title compound was obtained as a pale yellow solid ( $30 \mathrm{mg}, 25 \%$ ). M.p. $=154-155{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{H}} \mathrm{ppm} 2.83-2.91(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.52(\mathrm{~m}$, $3 \mathrm{H}), 7.97-8.10(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}-\mathbf{d}^{6}$ ) $\delta_{\mathrm{C}} \mathrm{ppm} 28.5,108.7,126.8,129.0$, 129.8, 139.3, 160.1, 163.2; ${ }^{19}$ F NMR ( $\mathbf{3 7 7} \mathbf{~ M H z , ~ D M S O - d ~}{ }^{6}$ ) $\delta_{\mathrm{F}} \mathrm{ppm}-142.6 ;{ }^{11} \mathbf{B}$ NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{B}} \mathrm{ppm} 1.8$; FTIR (neat) $v_{\max } / \mathrm{cm}^{-1}$ 3357, 1662, 1542, 1308, 1080; HRMS: (ESITOF) $m / z[\mathrm{M}-\mathrm{K}]^{-}$calculated for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{11} \mathrm{BF}_{3} \mathrm{~N}_{3} 252.0925$, found 252.0936.

## Preparation of Potassium (2-amino-4-(naphthalen-2-yl)pyrimidin-6-yl)trifluoroborate 25f



Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BF}_{3} \mathrm{KN}_{3}$

To a stirring suspension of $\mathbf{2 3}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ in toluene at room temperature was added N carbamimidoyl pivalate ( $250 \mathrm{mg}, 1.75 \mathrm{mmol}$ ) in one portion. The mixture was heated at reflux for 48 hours, then cooled to room temperature and concentrated in vacuo. The residue was then suspended in acetone, and $\mathrm{Et}_{2} \mathrm{O}$ was added slowly from a dropping funnel (typically $\sim 10$ times the volume of acetone). The mixture was then filtered and the resultant solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ then dried in vacuo to provide the product $\mathbf{2 5 f}$ as a tan solid ( $92 \mathrm{mg}, 80 \%$ ). M.p. $=235-236^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathbf{H}$ NMR ( 400 MHz , DMSO-d6) бн ppm 6.08 (br, 2H), 7.07 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.40 - 7.49 (m, 3H), 7.96 - 8.01 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ( $101 \mathbf{M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{C}}$ ppm 109.2, 126.8, 129.0, 129.8, 139.2, 160.6, 163.6; ${ }^{19}$ F NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{F}} \mathrm{ppm}-142.6$; ${ }^{11}$ B NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{B}} \mathrm{ppm} 1.5$; FTIR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3467$ (w), 3305 (w), 3189 (w), 1526 (s), 954 (s); HRMS (ESITOF) $m / z[\mathrm{M}-\mathrm{K}]^{-}$calculated for $\mathrm{C}_{14} \mathrm{H}_{10}{ }^{11} \mathrm{BF}_{3} \mathrm{~N}_{3} 288.0925$, found 288.0930

## Preparation of 2-((4-chorophenyl)amino)-4-phenylpyrimidin-6-yl trifluoroborate 25d



Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BCIF}_{3} \mathrm{KN}_{3}$

To a slurry of $\mathbf{2 3}$ ( $174 \mathrm{mg}, 0.74 \mathrm{mmol}$ ) in toluene was added (4-chlorophenyl)guanidine $\mathbf{2 4 d}$ ( 150 $\mathrm{mg}, 0.88 \mathrm{mmol})$. The mixture was heated at reflux for 16 h then cooled to room temperature and concentrated in vacuo. The crude mixture was dissolved in acetone, and $\mathrm{Et}_{2} \mathrm{O}$ was added. The resultant precipitate was collected. Cooling the mixture to $0^{\circ} \mathrm{C}$ provided a second crop of product. The solids were combined, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to give the title compound as a yellow solid ( $178 \mathrm{mg}, 62 \%$ ). M.p. $=156-157{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathbf{H}$ NMR ( 400 MHz, DMSO- $\mathbf{d}^{6}$ ) $\delta_{\mathrm{H}} \mathrm{ppm}$ 7.31 (d, 2H, J = 9.0 Hz ), 7.33 (s, 1H), $7.29-7.32$ (m, 3H), 7.98 (d, 2H, J = 9.0 Hz ), 8.08 (dd, 2H, $\mathrm{J}=8.0,1.0 \mathrm{~Hz}$ ), $9.53(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( 101 MHz , DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{C}} \mathrm{ppm} 110.9,119.4,123.4$, 126.6, $128.2,128.8,129.9,138.3,140.9,159.6,160.0 ;{ }^{19}$ F NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{F}} \mathrm{ppm}-$ 142.7; ${ }^{11}$ B NMR ( $\mathbf{1 2 8} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\mathrm{B}} \mathrm{ppm} 1.5$; FTIR (neat) $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3414$ (w), 3338 (br), 3338 (w), 1522 (s), 1490 (s), 1059 (m); HRMS (ESI-TOF) $m / z[M-K]^{-}$calculated for $\mathrm{C}_{16} \mathrm{H}_{11}{ }^{11} \mathrm{~B}^{35} \mathrm{ClF}_{3} \mathrm{~N}_{3} 348.0692$, found 348.0702 .

## General procedure B: Ring alkylation of $\mathbf{2 5 f}$

To a stirring suspension of $\mathbf{2 5 f}(1.0 \mathrm{eq})$ in acetone at room temperature was added alkyl halide (1.0 eq). The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 16 h , then cooled to room temperature and concentrated in vacuo, giving a saturated solution. $\mathrm{Et}_{2} \mathrm{O}$ was added and the resultant precipitate was collected, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried thoroughly in vacuo to afford the corresponding alkylated pyrimidine trifluoroborate salt.

## Preparation of 1-allyl-2-(1H)-4-phenylpyrimidinimin-6-yl trifluoroborate 26b



Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BF}_{3} \mathrm{KN}_{3}$
Following general procedure B, using $\mathbf{2 5 f}(70 \mathrm{mg}, 0.25 \mathrm{mmol}$ ), allyl bromide ( $22 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$ ) and acetone $(8 \mathrm{~mL})$. The title compound was obtained as a colourless solid ( $40 \mathrm{mg}, 50 \%$ ). M.p $=$ $173-174{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\mathrm{d}^{6}$ ) $\delta_{\mathrm{H}} \mathrm{ppm} 4.96(\mathrm{~d}, 2 \mathrm{H} \mathbf{J}=3.0 \mathrm{~Hz}$ ), $5.21(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=17.5 \mathrm{~Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}), 5.83-5.95(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.67$ (m, 3H), 8.08 - 8.22 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1 ~ M H z , ~ D M S O - d ~}{ }^{6}$ ) $\delta_{\mathrm{C}} \mathrm{ppm} 52.1,109.9,118.5,128.0$, 129.3, 130.4, 132.8, 134.5, 155.7, 166.8; ${ }^{19}$ F NMR ( $\mathbf{3 7 7} \mathbf{~ M H z , ~ D M S O - d ~}{ }^{6}$ ) $\delta_{F} \mathrm{ppm}-140.7 ;{ }^{11} \mathbf{B}$ NMR (128 MHz, DMSO-d ${ }^{6}$ ) $\delta_{\text {в }}$ ppm 0.6; FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3367,1636,1597,1556,1362$; HRMS: (ESI-TOF) $m / z[\mathrm{M}-\mathrm{K}]^{-}$calculated for $\mathrm{C}_{13} \mathrm{H}_{12}{ }^{11} \mathrm{BF}_{3} \mathrm{~N}_{3}$. 278.1082, found 278.1096.

## Preparation of 1-methyl-2-(1H)-4-phenylpyrimidinimin-6-yl trifluoroborate 26a



Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BF}_{3} \mathrm{KN}_{3}$
Following general procedure B, using $\mathbf{2 5 f}$ ( $70 \mathrm{mg}, 0.25 \mathrm{mmol}$ ), iodomethane ( $15 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$ ) and acetone ( 8 mL ) The title compound was obtained as a colourless solid ( $68 \mathrm{mg}, 93 \%$ ). M.p $=$ $175-177^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{\text {H }} \mathrm{ppm} 3.77$ (s, 3H), $6.90(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H})$, $7.55-7.67(\mathrm{~m}, 3 \mathrm{H}), 8.11-8.21(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}-\mathbf{d}^{6}$ ) $\delta_{\mathrm{C}} \mathrm{ppm} 38.6,109.4$, 127.8, 129.2, 132.5, 134.6, 156.5, 166.3; ${ }^{19}$ F NMR ( $377 \mathbf{M H z}$, DMSO-d ${ }^{6}$ ) $\delta_{F} \mathrm{ppm}-141.5 ;{ }^{11} \mathbf{B}$ NMR (128 MHz, DMSO-d ${ }^{6}$ ) $\delta_{\text {B }}$ ppm 0.6; FTIR (neat) $v_{\max } / \mathrm{cm}^{-1} 3367,1639,1599,1562,1360$; HRMS: (ESI-TOF) $m / z[\mathrm{M}-\mathrm{K}]^{-}$calculated for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{11} \mathrm{BF}_{3} \mathrm{~N}_{3} 252.0925$, found 252.0932.

## References

${ }^{1}$ A.-L. Auvinet, J.P.A. Harrity, Angew. Chem. Int. Ed. 2011, 50, 2769.
${ }^{2}$ D. L. Comins, S. O’Connor, R. S. Al-awar, Comprehensive Heterocyclic Chemistry III Vol. 7 (Eds: A. Katritzky, E.F.V Scriven, C. A. Ramsden, J.K. Taylor), 2008.
${ }^{3}$ G. D. Henry, Tetrahedron 2004, 60, 6043 - 6061.
${ }^{4}$ R. Pingaew, S. Prachayasittikul, S.Ruchirawat, Molecules 2010, 15, 988 - 996.
${ }^{5}$ M. Vrábel, M. Hocek, L. Havran, M. Fojta, I. Votru ba, B. Klepetářová, R. Pohl, L. Rulíšek, L. Zendlová, P. Hobza, I. H. Shih, E. Mabery, R. Mackman, Eur. J. Inorg. Chem. 2007, 1752 1769.
${ }^{6}$ J. A. Joule, K. Mills, Heterocyclic Chemistry (Eds: Fifth), 2010.
${ }^{7}$ Y. M. Choi, N. Kucharczyk, R. D. Sofia, J. Label. Compd. Radiopharm. 1987, 24, 1 - 14.
${ }^{8}$ F. Bohlmann, D. Rahtz, Chem. Ber. 1957, 90, 2265 - 2272.
${ }^{9}$ M. Movassaghi, M. D. Hill, O. K. Ahmad, J. Am. Chem. Soc. 2007, 129, 10096 - 10097.
${ }^{10}$ B. M. Trost, Gutierrez, A. C. Org. Lett. 2007, 9, 1473 - 1476.
${ }^{11}$ S. Liu and L. S. Liebeskind J. Am. Chem. Soc. 2008, 130, 6918 - 6919.
${ }^{12}$ F. Fringuelli, A. Taticchi, The Diels-Alder Reaction: Selected Practical Methods, 2002. ${ }^{13}$ J. Sauer, Angew. Chem. Int Ed. Engl. 1967, 6, 16.
${ }^{14}$ I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley \& Sons, Chichester, 1976.
${ }^{15}$ E. A. Aydin, 2012, Diels-Alder reactions of phencyclone and coumarin derivatives and click chemistry of novel BODIPY dyes for fluorescence Detection, Ph.D. thesis, Univeristy of Sheffield, Sheffield.
${ }^{16}$ R.B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M. Mclamore, J. Am. Chem. Soc. 1952, 74, 4223-4251.
${ }^{17}$ M. Gates, G. Tschudi, J. Am. Chem. Soc. 1952, 74, 1109 - 1110.
${ }^{18}$ M. Gregoritza, F. P. Brandl, Eur. J. Pharm. Biopharm. 2015, 97, 438 - 453.
${ }^{19}$ M. Behforouz, M. Ahmadian, Tetrahedron 2000, 56, 5259-5288.
${ }^{20}$ S. Jayakumar, M. P. S. Ishar and M. P. Mahajan, Tetrahedron 2002, 58, 379 - 471.
${ }^{21}$ B. Groenendaal, E. Ruijter, R. V. A. Orru, Chem. Commun. 2008, 5474 - 5489.
${ }^{22}$ D. L. Boger, Chem. Rev. 1986, 86, 781 - 793.
${ }^{23}$ H. Neunhoeffer, P. F. Wiley, Chemistry of Heterocyclic Compounds, Wiley, 1978, vol 33.
${ }^{24}$ D. L. Boger, Tetrahedron, 1983, 39, 2912 - 2922.
${ }^{25}$ (a) S. M. Winreb, F.Z. Basha, S. Hibino, N. A. Khatri, D. Kim, W. E. Pye, T. T. Wu, J. Am. Chem. Soc. 1982, 104, 536 - 544 (b) F. Z. Basha, S. Hibino, D. Kim, D, W. E. Pye, T. T. Wu, S. M. Weinreb, Ibid. J. Am. Chem. Soc. 1980, 102, 3962 - 3964.
${ }^{26}$ D. L. Boger, J. S. Panek, J. Am. Chem. Soc. 1985, 107, 5745 - 5754.
${ }^{27}$ D. L. Boger, J. S. Panek, J. Org. Chem. 1981, 46, 2179 - 2182.
${ }^{28}$ S. P. J. T. Bachollet, J. F. Vivat, D. C. Cocker, H. Adams, J. P. A. Harrity, Chem. Eur. J. 2014, 20, 12889-12893.
${ }^{29}$ J. F. Vivat, H. Adams, J. P. A. Harriy, Org. Lett. 2010, 136, $160-163$.
${ }^{30}$ S. R. LaPlante, L. D. Fader, K. R. Fandrick, D. R. Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, and P. J. Edwards, J. Med. Chem. 2011, 54, 7005 - 7022.
${ }^{31}$ S. R. LaPlante P. J. Edwards, L. D. Fader, A. Jakalian, O. Hucke, ChemMedChem. 2011, 7, 505-513.
${ }^{32}$ G. Bringmann, Y. Reichert, V. Kane, Tetrahedron 2004, 60, 3539 - 3574.
${ }^{33}$ J. Porter and al, Bioorg. Med. Chem. Lett. 2009, 19, 1767 - 177.
${ }^{34}$ M. B. Kim, K. E. Giesler, Y. A. Tahirovic, V. M. Truax, D. C. Liotta, L. J. Wilson, Expert Opin. Investig. Drug 2016, 25, 1377 - 1392.
${ }^{35}$ R. Ratz and H. Schroeder, J. Org. Chem. 1958, 23, 1931 - 1934.
${ }^{36}$ F. H. Case, J. Org. Chem., 1965, 30, 931 - 933.
${ }^{37}$ S. P. J. T. Bachollet, D. Volz, B. Fiser, S. Mìnch, F. Rönicke, J. Carrillo, H. Adams, U. Schepers, E. Gûmez - Bengoa, S. Bräse, J. P. A. Harrity, Chem. Eur.J. 2016, 22, 12430 - 12438. ${ }^{38}$ A. S. Vieira, P. F. Fiorante, T. L. S. Hough, F. P. Ferreira, D. S. Lüdtke H. A. Stefani, Org. Lett. 2008, 10, 5215-5218.
${ }^{39}$ A. Kajal, S. Bala, S. Kamboj, N. Sharma, V. Saini, Journal of Catalysts. 2013, 1 - 14.
${ }^{40}$ B. E. Love, T. S. Boston, B. T. Nguye, J. R. Rorer, Organic Preparations and Procedure Int., 1999, 31, 399 - 405.
${ }^{41}$ a) B. E. Love, J. Ren, J. Org. Chem. 1993, 58, 5556 - 5557 b) B. E. Love, P. S. Raje, T. C. Williams, Synlett. 1994, 8, 491 - 493.
${ }^{42}$ G. C. Look, M. M. Murphy, D. A. Campbell, M. A. Gallop, Tetrahedron Lett. 1995, 36, 2937 2940.
${ }^{43}$ J. Ritter, J. Am. Chem. Soc. 1933, 55, 3322 - 3326.
${ }^{44}$ A. Nishinaga, S. Yamazaki, T. Matsuura, Tetrahedron Lett. 1988, 29, $4115-4118$.
${ }^{45}$ J. S. M. Samec, A. H. Éll, J-E. Bäckvall, Chem. Eur. J. 2005, 11, 2327 - 2334.
${ }^{46}$ E. Zhang, H. Tian, S. Xu, X. Yu, Qing Xu, Org. Lett. 2013, 15, $2704-2707$.
${ }^{47}$ K. Gopalaiah, A. Saini, Cat. Lett. 2016, 9, $1648-1654$.
${ }^{48}$ F. Bottaro, A. Takallou, A. Chehaiber, R. Madsen, Eur. J. Org. Chem. 2019, $7164-7168$.
${ }^{49}$ a) M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 1989, 115, 301-309 b) M. Haruta, Chem. Rec. 2003, 3, 75-87.
${ }^{50}$ a) H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, J. Am. Chem. Soc. 2005, 127, 9374 9375 b) C. Milone, R. Ingoglia, G. Neri, A. Pistone, S. Galvagno, Appl. Catal. 2001, 211, 251 257.
${ }^{51}$ S. Biella, M. Rossi, Chem. Commun. 2003, 378 - 379.
${ }^{52}$ H. Sun, F-Z. Su, J. Ni, Y. Cao, H-Y. He, K-N. Fan, Angew. Chem. 2009, 121, $4454-4457$.
${ }^{53}$ Z. Opre, D. Ferri, F. Krumeich, T. Mallat, A. Baiker, Journal of Catalysis 2006, 241, 287 295.
${ }^{54}$ S. Sebti, A. Solhy, R. Tahir, A. Smahi, Appl. Catal. A. 2002, 235, 273 - 281.
${ }^{55}$ a) J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2005, 127, 10840 10841 b) R. Yamaguchi, C. Ikeda, Y. Takahashi, K. I. Fujita, J. Am. Chem. Soc. 2009, 131, 8410 -8412 c) D. Spasyuk, D. G. Gusev, Organometallics 2012, 31, 5239-5242 d) S. Musa, S. Fronton, L. Vaccaro, D. Gelman, Organometallics 2013, 32, 3069 - 3073.
${ }^{56}$ G. Jaiswal, V. G. Landge, D. Jagadeesan, E. Balaraman, Green Chem. 2016, 18, 3232 - 3238.
${ }^{57}$ J. Bain, P. Cho, A. Voutchkova-Kostal, Green Chem. 2015, 17, 2271 - 2280.
${ }^{58}$ F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 1991, 11, 173 - 301.
${ }^{59}$ A. V. Iosub, S. S. Stahl, Org. Lett. 2015, 17, 4404 - 4407.
${ }^{60}$ V. Pascanu, G. González Miera, A. K. Inge, B. Martín-Matute, J. Am. Chem. Soc. 2019, 141, 7223-7234.
${ }^{61}$ J. L. C. Rowsell, O. M. Yaghi, Microporous Mesoporous Mater. 2004, 73, 3 - 14.
${ }^{62}$ H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276 - 279.
${ }^{63}$ a) B. F. Abrahams, B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1991, 113, 3606 - 3607.
b) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460 - 1494 c) B. Chen, M. Eddaoudi, S. T. Hyde, M. O. Keeffe, O. M. Yaghi, Science 2002, 295, 469 - 472.
${ }^{64}$ Q. Wang, D. Astruc, Chem. Rev. 2020, 120, 1438 - 1511.
${ }^{65}$ Y. Q. Tian, Y. M. Zhao, Z. X. Chen, G. N. Zhang, L. H. Weng, D. Y. Zhao, Chem. Eur. J. 2007, 13, 4146-4154.
${ }^{66}$ A. Corma, H. Garcia, F. X. Llabres i Xamena, Chem. Rev. 2010, 110, 4606 - 4655.
${ }^{67}$ F. Song, C. Wang; W. Lin, Chem. Commun. 2011, 47, 8256 - 8258.
${ }^{68}$ T. Ishida, M. Nagaoka, T. Akita and M. Haruta, Chem. Eur. J. 2008, 14, 8456 - 846.
${ }^{69}$ N. Yuan, V. Pascanu, Z. Huang, A. Valiente, N. Heidenreich, S. Leubner, A. K. Inge, Jakob G. Norbert, S. Persson, B. Martín-Matute, X. Zou, J. Am. Chem. Soc. 2018, 140, 8206 - 8217. ${ }^{70}$ L. Chen, Z. Gao, Y. Li, Catal. Today 2015, 245, 122 - 128.
${ }^{71}$ a) F. Carson, V. Pascanu, A. Bermejo Gómez, Y. Zhang, A. E. Platero-Prats, X. Zou, B. Martín-Matute, Chem. Eur. J. 2015, 21, 10896 - 10902 b) V. Pascanu, P. R. Hansen, A. Bermejo Gómez, C. Ayats, A. E. Platero-Prats, M. J. Johansson, M. À. Pericàs, B. Martín-Matute, ChemSusChem. 2015, 8, 123 - 130 c) V. Pascanu, Q. Yao, A. Bermejo Gómez, M. Gustafsson, Y. Yun, W. Wan, L. Samain, X. Zou, B. Martín-Matute, Chem. Eur. J. 2013, 19, 17483 - 17493. ${ }^{72}$ A. Valiente, S. Carrasco, A. Sanz-Marco, C.-W. Tai, A. Bermejo Gómez, B. Martín-Matute, ChemCatChem. 2019, 11, 3933-3939.
${ }^{73}$ T. D. Bennett, A. K. Cheetham, Acc. Chem. Res. 2014, 47, 1555 - 1562.
${ }^{74}$ T. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker, E. R. Barney, A. K. Soper, E. G. Bithell, J. C. Tan, A. K. Cheetham, Phys. Rev. Lett. 2010, 104, No. 115503, 1 - 4 ${ }^{75}$ K. W. Chapman, D. F. Sava, G. J. Halder, P. J. Chupas, T. M. Nenoff, J. Am. Chem. Soc. 2011, 133, 18583-18585
${ }^{76}$ P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F.Taulelle, G. Férey, Angew. Chem., Int. Ed. 2006, 45, 5974 - 5978.
${ }^{77}$ O. A. Kholdeeva, I. Y. Skobelev, I. D. Ivanchikova, K. A. Kovalen- kob, V. P. Fedin, A. R. B. Sorokin, Catal. Today 2014, 238, 54-61.
${ }^{78}$ L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Chem. Rev. 2017, 117, 8129 - 8176.
${ }^{79}$ A. Dhakshinamoorthy, M. Alvaro, H. Garcia, ChemCatChem 2010, 2, 1438-1443.
${ }^{80}$ A. Dhakshinamoorthy, M. Alvaro, H. Garcia, J. Catal. 2009, 267, 1 - 4.
${ }^{81}$ G.-J. Chen, H.-C. Ma, W.-L. Xin, X.-B. Li, F.-Z. Jin, J.-S. Wang, M.-Y. Liu, Y.-B. Dong, Inorg. Chem. 2017, 56, 654 - 660.
${ }^{82}$ J.-Yi Tan, J.-X. Shi, P.-H. Cui, Y.-Y. Zhang, N. Zhang, J.-Y. Zhang, W. Deng, Microporous and Mesoporous Mater. 2019, 287, 152 - 158.
${ }^{83}$ C. Xu, H. Liu, D. Li, J-H. Su, H-L. Jiang, Chem. Sci. 2018, 9., 3152 - 3158.
${ }^{84}$ S. Carrasco, A. Sanz-Marco, B. Martín-Matute, Organometallics 2019, 38, 3429 - 3435.
${ }^{85}$ D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C. Zhou, Angew. Chem. Int. Ed. 2012, 51, 10307-10310.
${ }^{86}$ M. Gutierrez, B. Cohen, F. Sánchez, A. Douhal, Phys. Chem. Chem. Phys. 2016, 18, 27761 27774.
${ }^{87}$ L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649 - 13657.
${ }^{88}$ T. N. Poudel, R. J. I. Tamargo, H. Cai, Y. R. Lee, Asian J. Org. Chem. 2018, 7, 985 -1005.
${ }^{89}$ M. C. Bonifacio, C. R. Robertson, J.-Y. Jung, B. T. J. King, J. Org. Chem. 2005, 70, 8522 8526
${ }^{90}$ W. M. Shu, K. L. Zheng, J. R. Ma, A. X. Wu, Org. Lett. 2015, 17, 5216 - 5219.
${ }^{91}$ S. M. B. Maezono, T. N. Poudel, Y. R. Lee, Org. Biomol. Chem. 2017, 15, 2052 - 2062.
${ }^{92}$ J. Gong, F. Xie, H. Chen, Y. Hu, Org. Lett. 2010, 12, 3848-3851.
${ }^{93}$ H. Chen, F. Xie, J. Gong, Y. Hu, J. Org. Chem. 2011, 76, $8495-8500$.
${ }^{94}$ S. J. Hein, D. Lehnherr, H. Arslan, F. J. Uribe-Romo, W. R. Dichtel, Acc. Chem. Res. 2017, 50, 2776-2788.
${ }^{95}$ W. Reppe, W. J. Schweckendiek, Justus Liebigs Ann. Chem. 1948, 560, 104 - 116.
${ }^{96}$ G. Hilt, S. Lüers, K. Harms, J. Org. Chem. 2004, 69, 624 - 630.
${ }^{97}$ a) M. W. Davies, C. N. Johnson, J. P. A. Harrity, Chem. Commun.1999, 2107 - 2108; b) M.
W. Davies, C. N. Johnson, J. P. A. Harrity, J. Org. Chem. 2001, 66, 3525 - 3532.
${ }^{98}$ a) M. A.Huffman, L. S. Liebeskind, J. Am. Chem. Soc. 1990, 112, 8617 - 8618; b) M. A.
Huffman, L. S. Liebeskind, J. Am. Chem. Soc. 1991, 113, 2771 - 2772; c) A.-L. Auvinet, J.P.A. Harrity, Angew. Chem. Int. Ed. 2011, 50, 2769
${ }^{99}$ T. Stalling, 2014, Synthetic and Mechanistic Studies on Ni-catalysed Benzannulation Reactions, Postdoctoral Research, Univeristy of Sheffield, Sheffield.
${ }^{100}$ H. Zhang, Y. Luo, D. Li, Q. Yao, S. Dong, X. Liu, X. Feng, Org. Lett. 2019, 7, 2388 - 2392.
${ }^{101}$ V. Sharma, N. Chitranshi, A. K. Agarwal, Int. J. Med. Chem. 2014, 202784.
102 A. L. Marzinzik, E. R. Felder, J. Org. Chem. 1998, 63, 723 - 727.
${ }^{103}$ O. K. Ahmad, M. D. Hill, M. Movassaghi, J. Org. Chem. 2009, 74, 8460 - 8463.
${ }^{104}$ M. Lin, Q. Chen, Y. Zhu, X. Chen, J. Cai, Y. Pan, Z. Zhan, Synlett, 2011, 1179 - 1183.
${ }^{105}$ N. Deibl, K. Ament, R. Kempe, J. Am. Chem. Soc. 2015, 137, 12804 - 12807.
${ }^{106}$ S. P. J. T. Bachollet, D. Volz, B. Fiser, S. Mìnch, F. Rönicke, J. Carrillo, H. Adams, U.
Schepers, E. Gûmez - Bengoa, S. Bräse, J. P. A. Harrity, Chem. Eur. J. 2016, 22, 12430-12438.
${ }^{107}$ C. C. Chen, M. Y. Wu, H. Y. Chen, and M. Wu, J. Org. Chem. 2017, 82, 6071-608.
${ }^{108}$ F. Bottaro, A. Takallou, A. Chehaiber, R. Madsen, Eur. J. Org. Chem. 2019, 42, 7164 - 7168.
${ }^{109}$ Y. Zhang, F. Lu, H.-Y. Zhang, J. Zhao, Catal. Lett. 2017, 147, 20 - 28.
${ }^{110}$ S. Belkharchacha, H. Elayadia, H. Ighachanea, S. Sebtic, M. A. Alib, H. B. Lazreka, J. Chem. Res. 2018, 42, 614-618.
${ }^{111}$ R. Nongrum, G. K. Kharmawlong, Jims W. S. Rani, N. Rahman, A. Dutta, R. Nongkhlaw J. Hetero. Chem. 2019, 56, 2873 - 2883.
${ }^{112}$ S. Das, S. Mallick, S. De Sarkar, J. Org. Chem. 2019, 84, 12111 - 12119.
${ }^{113}$ L.-L. Zhao, W. Liu, Z. Zhang, H. Zhao, Q. Wang, X. Yan, Org. Lett. 2019, 21, 10023 10027.
${ }^{114}$ Y. Li, Z. Huang, X. Wu, P.-F. Xu, J. Jin, Y. Zhang, J. Wang, Tetrahedron 2012, 68, 5234 5240.
${ }^{115}$ T. Bai, S. Ma, G. Jia, Tetrahedron 2007, 63, $6210-6215$.

## Appendix

X-ray crystal structures of compounds 12aa, 31a, 31e and 32e are provided below.

## X-ray crystal structure data for compound 12aa



Table 1 Crystal data and structure refinement for 2018ncs0765t.

| Identification code | 2018 ncs 0765 t |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{50} \mathrm{H}_{39} \mathrm{BN}_{2} \mathrm{O}_{3}$ |
| Formula weight | 726.64 |
| Temperature/K | 100.15 |
| Crystal system | monoclinic |
| Space group | $\mathrm{P} 2_{1}$ |
| $\mathrm{a} / \AA$ | $6.8740(4)$ |
| $\mathrm{b} / \AA$ | $32.7563(18)$ |
| $\mathrm{c} / \AA$ | $16.3196(11)$ |
| $\alpha /{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | $92.276(6)$ |


| $\gamma /{ }^{\circ}$ | 90 |
| :--- | :--- |
| Volume $/ \AA^{3}$ | $3671.7(4)$ |
| Z | 4 |
| $\rho_{\text {calc }} / \mathrm{cm}^{3}$ | 1.314 |
| $\mu / \mathrm{mm}^{-1}$ | 0.081 |
| $\mathrm{~F}(000)$ | 1528.0 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.12 \times 0.025 \times 0.02$ |
| Radiation | MoK $\alpha(\lambda=0.71075)$ |
| $2 \Theta$ range for data collection $/{ }^{\circ} 3.524$ to 55.054 |  |
| Index ranges | $-8 \leq \mathrm{h} \leq 8,-42 \leq \mathrm{k} \leq 42,-21 \leq 1 \leq 21$ |
| Reflections collected | 22769 |
| Independent reflections | $22769\left[\mathrm{R}_{\text {int }}=\mathrm{Merged}, \mathrm{R}_{\text {sigma }}=0.0466\right]$ |
| Data/restraints/parameters | $22769 / 1 / 1018$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.006 |
| Final R indexes [I>=2 $\sigma(\mathrm{I})]$ | $\mathrm{R}_{1}=0.0587, \mathrm{wR}_{2}=0.1417$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0794, \mathrm{wR}_{2}=0.1515$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA^{-3} 0.35 /-0.36$ |  |
| Flack parameter | $1.3(8)$ |

Table 2 Fractional Atomic Coordinates ( $\times 1 \mathbf{0}^{4}$ ) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2018ncs0765t. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $\mathrm{U}_{\mathrm{IJ}}$ tensor.

| Atom $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\mathbf{Z}$ |  | U(eq) |
| :--- | ---: | ---: | ---: | ---: |
| O24A | $5742(5)$ | $3933.1(10)$ | $7857.8(18)$ | $27.7(7)$ |
| O28A | $4052(4)$ | $4938.0(9)$ | $5895.2(16)$ | $19.7(7)$ |
| O39A | $505(4)$ | $4860.7(10)$ | $5977.5(16)$ | $20.3(7)$ |
| N2A | $2339(5)$ | $5493.8(12)$ | $6562(2)$ | $17.8(8)$ |
| N17A | $2277(5)$ | $5184.0(12)$ | $8646(2)$ | $19.8(8)$ |
| C3A | $2364(6)$ | $5817.0(14)$ | $6029(2)$ | $17.1(9)$ |
| C4A | $2444(7)$ | $5758.7(15)$ | $5174(3)$ | $21.4(10)$ |
| C5A | $2360(7)$ | $6087.6(16)$ | $4659(3)$ | $24.3(10)$ |
| C6A | $2275(7)$ | $6488.8(16)$ | $4968(3)$ | $25.0(11)$ |
| C7A | $2257(7)$ | $6549.9(16)$ | $5783(3)$ | $24.7(10)$ |
| C8A | $2281(6)$ | $6221.8(15)$ | $6343(3)$ | $19.7(9)$ |
| C9A | $2214(6)$ | $6279.1(15)$ | $7198(3)$ | $21.3(10)$ |
| C10A | $2212(6)$ | $5950.7(15)$ | $7708(3)$ | $20.3(10)$ |
| C11A | $2280(6)$ | $5558.9(14)$ | $7367(2)$ | $18.2(9)$ |
| C12A | $2311(6)$ | $5177.6(15)$ | $7829(2)$ | $17.9(9)$ |
| C13A | $2415(6)$ | $4838.7(15)$ | $7320(2)$ | $18.4(9)$ |
| C14A | $2523(6)$ | $4459.9(15)$ | $7717(2)$ | $17.6(9)$ |
| C15A | $2449(6)$ | $4450.0(15)$ | $8574(3)$ | $19.0(9)$ |


| C16A | 2311(6) | 4815.3(16) | 9014(2) | 18.9(9) |
| :---: | :---: | :---: | :---: | :---: |
| C18A | 2676(7) | 4071.9(15) | 7230(3) | 23.0(10) |
| C19A | 1197(8) | 3965.1(16) | 6671(3) | 30.7(11) |
| C20A | 1295(8) | 3604.6(17) | 6218(3) | 40.3(14) |
| C21A | 2860(9) | 3355.2(17) | 6324(3) | 38.2(13) |
| C22A | 4373(7) | 3452.2(15) | 6872(3) | 27.0(11) |
| C23A | 4271(7) | 3812.5(14) | 7322(2) | 21.6(10) |
| C25A | 7297(9) | 3654(2) | 8021(4) | 43.3(14) |
| C26A | 2224(7) | 4820.7(17) | 9928(2) | 24.7(10) |
| C27A | 2443(7) | 4055.9(16) | 9048(3) | 25.7(10) |
| C29A | 4285(6) | 4586.2(14) | 5464(2) | 19.2(9) |
| C30A | 5961(7) | 4354.6(16) | 5645(3) | 25.5(10) |
| C31A | 6277(8) | 4006.2(17) | 5217(3) | 32.4(12) |
| C32A | 4934(8) | 3861.2(16) | 4618(3) | 31.4(12) |
| C33A | 5217(9) | 3490.6(18) | 4187(3) | 40.9(14) |
| C34A | 3860(10) | 3348.9(18) | 3626(3) | 44.8(15) |
| C35A | 2137(9) | 3566.5(17) | 3469(3) | 39.9(14) |
| C36A | 1818(8) | 3934.0(16) | 3861(3) | 29.3(11) |
| C37A | 3232(7) | 4094.8(15) | 4431(3) | 25.0(10) |
| C38A | 2965(7) | 4480.1(14) | 4833(2) | 19.9(9) |
| C40A | 152(7) | 4920.5(15) | 5156(2) | 21.1(10) |
| C41A | -1519(7) | 5149.1(15) | 4910(3) | 25.0(10) |
| C42A | -1897(7) | 5237.8(16) | 4108(3) | 25.6(11) |
| C43A | -555(7) | 5132.3(15) | 3509(3) | 24.5(10) |
| C44A | -791(7) | 5259.8(16) | 2679(3) | 27.1(11) |
| C45A | 594(8) | 5176.0(16) | 2130(3) | 29.3(11) |
| C46A | 2276(8) | 4963.7(17) | 2376(3) | 30.8(12) |
| C47A | 2528(7) | 4827.1(16) | 3168(3) | 24.9(10) |
| C48A | 1103(7) | 4897.1(14) | 3748(3) | 22.8(10) |
| C49A | 1361(7) | 4761.6(14) | 4589(2) | 20.7(9) |
| B1A | 2329(7) | 4988.1(16) | 6372(3) | 18.5(10) |
| O24B | 10584(5) | 7294.8(11) | 7326.5(18) | 27.5(7) |
| O28B | 9126(4) | 6250.6(9) | 9261.2(16) | 20.5(7) |
| O39B | 5579(4) | 6328.6(10) | 9100.1(16) | 18.5(7) |
| N2B | 7363(5) | 5703.1(12) | 8540(2) | 17.3(8) |
| N17B | 7356(5) | 6020.5(13) | 6461(2) | 19.0(8) |
| C1S | 7407(8) | 3988.5(17) | 1940(3) | 31.9(12) |
| C2S | 6220(8) | 3732.0(18) | 1440(3) | 37.2(13) |
| C3B | 7349(6) | 5376.3(15) | 9071(2) | 18.0(9) |
| C3S | 6961(9) | 3554.8(17) | 755(3) | 40.1(13) |
| C4B | 7390(6) | 5432.1(16) | 9926(3) | 22.2(10) |
| C4S | 8848(9) | 3620.6(17) | 557(3) | 37.8(13) |
| C5B | 7236(7) | 5098.2(16) | 10430(3) | 23.7(10) |
| C5S | 10037(8) | 3871.9(17) | 1052(3) | 33.5(12) |
| C6B | 7099(6) | 4700.2(16) | 10113(3) | 23.7(10) |


| C6S | 9303(8) | 4047.3(16) | 1733(3) | 30.8(11) |
| :---: | :---: | :---: | :---: | :---: |
| C7B | 7128(7) | 4641.5(15) | 9288(3) | 22.8(10) |
| C7S | 6592(10) | 4194(2) | 2668(4) | 53.9(17) |
| C8B | 7242(6) | 4976.3(15) | 8742(3) | 20.4(10) |
| C8S | 2344(8) | 7280.8(17) | 3217(3) | 32.6(12) |
| C9B | 7225(6) | 4921.3(15) | 7887(3) | 20.1(9) |
| C9S | 3792(8) | 7428.5(17) | 3755(3) | 35.5(12) |
| C10B | 7277(6) | 5252.1(15) | 7377(3) | 19.9(9) |
| C10S | 3338(10) | 7600.5(19) | 4498(3) | 42.6(15) |
| C11B | 7324(6) | 5641.1(15) | 7730(2) | 17.5(9) |
| C11S | 1415(10) | 7621.0(18) | 4715(3) | 42.1(14) |
| C12B | 7349(6) | 6023.9(15) | 7278(2) | 17.0(9) |
| C12S | -10(9) | 7473.0(18) | 4191(3) | 40.1(14) |
| C13B | 7419(6) | 6363.5(15) | 7797(2) | 17.5(9) |
| C13S | 452(8) | 7307.5(17) | 3449(3) | 33.5(12) |
| C14B | 7485(6) | 6742.6(15) | 7408(3) | 20.4(10) |
| C14S | 2858(10) | 7095(2) | 2423(3) | 55.2(18) |
| C15B | 7408(6) | 6755.5(16) | 6546(3) | 21.8(10) |
| C16B | 7371(6) | 6387.2(16) | 6097(2) | 20.0(10) |
| C18B | 7586(7) | 7130.2(14) | 7893(2) | 21.0(10) |
| C19B | 6120(7) | 7225.0(14) | 8420(3) | 26.2(10) |
| C20B | 6133(8) | 7591.1(16) | 8852(3) | 35.0(13) |
| C21B | 7625(8) | 7862.1(16) | 8761(3) | 31.2(12) |
| C22B | 9134(7) | 7775.4(16) | 8256(3) | 26.7(10) |
| C23B | 9116(7) | 7409.6(14) | 7826(3) | 21.6(10) |
| C25B | 12046(8) | 7592.4(18) | 7169(3) | 35.1(13) |
| C26B | 7351(7) | 6383.3(16) | 5180(3) | 24.3(10) |
| C27B | 7291(8) | 7148.2(16) | 6076(3) | 28.7(11) |
| C29B | 9397(6) | 6612.8(14) | 9666(2) | 19.8(9) |
| C30B | 11060(7) | 6840.6(15) | 9495(3) | 23.8(10) |
| C31B | 11436(7) | 7198.9(16) | 9900(3) | 28.1(11) |
| C32B | 10103(7) | 7354.3(16) | 10455(3) | 28.3(11) |
| C33B | 10413(8) | 7738.0(17) | 10854(3) | 35.6(13) |
| C34B | 9077(9) | 7891.9(17) | 11362(3) | 39.1(13) |
| C35B | 7364(9) | 7675.3(17) | 11489(3) | 35.2(13) |
| C36B | 7038(8) | 7306.4(16) | 11130(3) | 26.9(10) |
| C37B | 8429(7) | 7127.1(15) | 10622(2) | 23.9(10) |
| C38B | 8143(7) | 6731.4(15) | 10258(2) | 21.1(9) |
| C40B | 5311(6) | 6284.9(14) | 9919(2) | 19.6(10) |
| C41B | 3668(7) | 6057.2(15) | 10149(3) | 22.3(10) |
| C42B | 3331(7) | 5990.9(16) | 10949(3) | 23.7(10) |
| C43B | 4682(7) | 6122.5(15) | 11569(3) | 23.4(10) |
| C44B | 4452(7) | 6029.4(16) | 12412(3) | 26.9(11) |
| C45B | 5792(8) | 6146.3(16) | 12998(3) | 29.6(11) |
| C46B | 7464(7) | 6354.8(16) | 12780(3) | 27.7(11) |


| C47B | $7731(7)$ | $6455.6(15)$ | $11977(3)$ | $23.8(10)$ |
| :--- | ---: | ---: | ---: | ---: |
| C48B | $6332(7)$ | $6353.1(15)$ | $11346(2)$ | $21.3(10)$ |
| C49B | $6541(6)$ | $6457.7(14)$ | $10503(2)$ | $18.4(9)$ |
| B1B | $7383(7)$ | $6206.0(16)$ | $8746(3)$ | $19.5(11)$ |

Table 3 Anisotropic Displacement Parameters ( $\AA^{2} \times 10^{3}$ ) for 2018ncs0765t. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+2 h k a * b^{*} \mathbf{U}_{12}+\ldots\right]$


| C36A | $42(3)$ | $15(3)$ | $31(3)$ | $-2.8(19)$ | $1.4(19)$ | $-3(2)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| C37A | $38(3)$ | $16(3)$ | $22(2)$ | $-0.5(18)$ | $2.1(18)$ | $2(2)$ |
| C38A | $25(2)$ | $12(2)$ | $22(2)$ | $1.5(17)$ | $3.8(16)$ | $1(2)$ |
| C40A | $27(2)$ | $16(3)$ | $21(2)$ | $-1.6(17)$ | $0.8(16)$ | $-5(2)$ |
| C41A | $29(3)$ | $17(3)$ | $29(3)$ | $-1.7(18)$ | $1.5(17)$ | $-2(2)$ |
| C42A | $28(3)$ | $18(3)$ | $31(3)$ | $1.2(19)$ | $-2.7(18)$ | $2(2)$ |
| C43A | $30(3)$ | $18(3)$ | $25(2)$ | $-2.1(18)$ | $-4.1(17)$ | $-7(2)$ |
| C44A | $34(3)$ | $17(3)$ | $29(3)$ | $2.2(18)$ | $-4.2(19)$ | $-6(2)$ |
| C45A | $44(3)$ | $21(3)$ | $22(2)$ | $3.1(19)$ | $-4.3(19)$ | $-9(2)$ |
| C46A | $42(3)$ | $28(3)$ | $23(2)$ | $-5(2)$ | $5.5(19)$ | $-11(3)$ |
| C47A | $26(3)$ | $19(3)$ | $29(2)$ | $-2.9(19)$ | $-0.6(17)$ | $-4(2)$ |
| C48A | $33(3)$ | $11(2)$ | $24(2)$ | $-3.1(17)$ | $-1.2(17)$ | $-7(2)$ |
| C49A | $28(2)$ | $12(2)$ | $22(2)$ | $-2.4(17)$ | $-1.8(16)$ | $-3(2)$ |
| B1A | $22(3)$ | $11(3)$ | $23(2)$ | $0.1(19)$ | $-0.1(18)$ | $2(2)$ |
| O24B | $29.6(18)$ | $15.9(18)$ | $37.3(19)$ | $-2.4(14)$ | $5.5(13)$ | $-1.0(15)$ |
| O28B | $27.7(17)$ | $12.9(18)$ | $20.9(15)$ | $-2.0(12)$ | $0.5(11)$ | $-0.8(14)$ |
| O39B | $25.0(16)$ | $11.3(17)$ | $19.3(15)$ | $-2.2(11)$ | $1.1(11)$ | $-1.9(14)$ |
| N2B | $17.8(19)$ | $10(2)$ | $24.3(19)$ | $-1.2(14)$ | $1.0(13)$ | $-0.5(15)$ |
| N17B | $15.3(19)$ | $19(2)$ | $22.9(19)$ | $-0.9(15)$ | $-0.1(13)$ | $-1.5(16)$ |
| C1S | $43(3)$ | $17(3)$ | $36(3)$ | $0(2)$ | $4(2)$ | $2(2)$ |
| C2S | $39(3)$ | $26(3)$ | $48(3)$ | $3(2)$ | $3(2)$ | $-6(3)$ |
| C3B | $14(2)$ | $13(3)$ | $26(2)$ | $2.2(17)$ | $0.0(16)$ | $0.2(18)$ |
| C3S | $63(4)$ | $20(3)$ | $37(3)$ | $3(2)$ | $-1(2)$ | $-4(3)$ |
| C4B | $24(2)$ | $14(3)$ | $28(2)$ | $0.8(18)$ | $-3.6(17)$ | $3(2)$ |
| C4S | $58(4)$ | $19(3)$ | $37(3)$ | $2(2)$ | $12(2)$ | $8(3)$ |
| C5B | $25(2)$ | $23(3)$ | $23(2)$ | $0.1(18)$ | $-2.2(17)$ | $4(2)$ |
| C5S | $41(3)$ | $20(3)$ | $40(3)$ | $12(2)$ | $4(2)$ | $4(2)$ |
| C6B | $16(2)$ | $21(3)$ | $33(3)$ | $9.1(19)$ | $-2.5(17)$ | $-2(2)$ |
| C6S | $38(3)$ | $22(3)$ | $32(3)$ | $9(2)$ | $-4(2)$ | $-2(2)$ |
| C7B | $22(2)$ | $9(2)$ | $38(3)$ | $-0.5(18)$ | $-4.4(18)$ | $0(2)$ |
| C7S | $60(4)$ | $45(4)$ | $58(4)$ | $-12(3)$ | $21(3)$ | $-3(3)$ |
| C8B | $14(2)$ | $18(3)$ | $29(2)$ | $-0.4(18)$ | $-0.4(16)$ | $0.1(19)$ |
| C8S | $45(3)$ | $16(3)$ | $36(3)$ | $9(2)$ | $-1(2)$ | $0(2)$ |
| C9B | $17(2)$ | $11(2)$ | $33(2)$ | $-3.7(17)$ | $2.1(16)$ | $-1.7(19)$ |
| C9S | $37(3)$ | $22(3)$ | $47(3)$ | $10(2)$ | $0(2)$ | $-4(2)$ |
| C10B | $20(2)$ | $17(3)$ | $23(2)$ | $-5.2(17)$ | $0.7(16)$ | $-4.1(19)$ |
| C10S | $60(4)$ | $26(3)$ | $41(3)$ | $4(2)$ | $-12(3)$ | $-8(3)$ |
| C11B | $15(2)$ | $15(2)$ | $23(2)$ | $0.3(17)$ | $1.2(15)$ | $-0.7(19)$ |
| C11S | $69(4)$ | $20(3)$ | $38(3)$ | $2(2)$ | $0(3)$ | $6(3)$ |
| C12B | $10(2)$ | $14(3)$ | $27(2)$ | $-1.3(17)$ | $2.9(15)$ | $-1.1(18)$ |
| C12S | $45(3)$ | $30(3)$ | $45(3)$ | $11(2)$ | $5(2)$ | $3(3)$ |
| C13B | $16(2)$ | $16(3)$ | $21(2)$ | $-4.5(17)$ | $2.7(15)$ | $-0.1(19)$ |
| C13S | $41(3)$ | $20(3)$ | $38(3)$ | $8(2)$ | $-7(2)$ | $-2(2)$ |
| C14B | $18(2)$ | $19(3)$ | $24(2)$ | $0.5(18)$ | $0.5(16)$ | $-1.3(19)$ |
| C14S | $64(4)$ | $65(5)$ | $37(3)$ | $-9(3)$ | $0(3)$ | $5(4)$ |
|  |  |  |  |  | $109)$ |  |


| C15B | $18(2)$ | $21(3)$ | $26(2)$ | $2.5(18)$ | $1.8(16)$ | $-3(2)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| C16B | $15(2)$ | $22(3)$ | $23(2)$ | $-1.7(18)$ | $1.5(16)$ | $0(2)$ |
| C18B | $30(3)$ | $9(2)$ | $23(2)$ | $3.9(17)$ | $-2.4(17)$ | $3(2)$ |
| C19B | $32(3)$ | $10(3)$ | $37(3)$ | $1.9(18)$ | $7.6(19)$ | $2(2)$ |
| C20B | $54(3)$ | $16(3)$ | $37(3)$ | $-1(2)$ | $22(2)$ | $4(3)$ |
| C21B | $52(3)$ | $12(3)$ | $30(3)$ | $-0.4(19)$ | $5(2)$ | $0(2)$ |
| C22B | $37(3)$ | $16(3)$ | $27(2)$ | $2.6(19)$ | $-1.7(18)$ | $-2(2)$ |
| C23B | $28(2)$ | $14(3)$ | $22(2)$ | $3.7(17)$ | $-0.8(17)$ | $4(2)$ |
| C25B | $30(3)$ | $29(3)$ | $47(3)$ | $-5(2)$ | $10(2)$ | $-9(2)$ |
| C26B | $23(2)$ | $24(3)$ | $26(2)$ | $-0.3(19)$ | $0.3(16)$ | $0(2)$ |
| C27B | $41(3)$ | $21(3)$ | $24(2)$ | $4.5(19)$ | $1.4(19)$ | $-2(2)$ |
| C29B | $27(2)$ | $13(2)$ | $19(2)$ | $2.9(16)$ | $-3.5(16)$ | $0(2)$ |
| C30B | $24(2)$ | $21(3)$ | $26(2)$ | $5.4(18)$ | $-0.2(17)$ | $1(2)$ |
| C31B | $30(3)$ | $20(3)$ | $34(3)$ | $5(2)$ | $-3.0(19)$ | $-9(2)$ |
| C32B | $37(3)$ | $20(3)$ | $28(2)$ | $1.8(19)$ | $-10.0(19)$ | $-3(2)$ |
| C33B | $48(3)$ | $15(3)$ | $42(3)$ | $4(2)$ | $-12(2)$ | $-6(3)$ |
| C34B | $57(4)$ | $14(3)$ | $45(3)$ | $-4(2)$ | $-12(2)$ | $-3(3)$ |
| C35B | $52(3)$ | $19(3)$ | $34(3)$ | $-6(2)$ | $-2(2)$ | $8(3)$ |
| C36B | $38(3)$ | $15(2)$ | $28(2)$ | $-1.9(18)$ | $-1.3(18)$ | $1(2)$ |
| C37B | $33(3)$ | $17(3)$ | $22(2)$ | $-0.3(18)$ | $-5.6(17)$ | $2(2)$ |
| C38B | $25(2)$ | $17(2)$ | $20(2)$ | $3.0(17)$ | $-5.7(16)$ | $-2(2)$ |
| C40B | $24(2)$ | $12(2)$ | $22(2)$ | $-3.0(17)$ | $2.1(16)$ | $4(2)$ |
| C41B | $28(3)$ | $14(3)$ | $24(2)$ | $-2.8(18)$ | $-3.2(17)$ | $0(2)$ |
| C42B | $24(2)$ | $18(3)$ | $29(2)$ | $1.1(19)$ | $2.6(17)$ | $-3(2)$ |
| C43B | $28(3)$ | $16(3)$ | $26(2)$ | $-3.9(18)$ | $3.4(17)$ | $2(2)$ |
| C44B | $35(3)$ | $20(3)$ | $25(2)$ | $2.7(19)$ | $7.1(18)$ | $-3(2)$ |
| C45B | $42(3)$ | $22(3)$ | $25(2)$ | $2.4(19)$ | $0.8(19)$ | $3(2)$ |
| C46B | $35(3)$ | $24(3)$ | $24(2)$ | $-7.1(19)$ | $-5.0(18)$ | $4(2)$ |
| C47B | $28(3)$ | $15(3)$ | $28(2)$ | $-0.4(18)$ | $0.1(17)$ | $0(2)$ |
| C48B | $27(2)$ | $14(2)$ | $23(2)$ | $-2.4(17)$ | $1.2(16)$ | $6(2)$ |
| C49B | $20(2)$ | $9(2)$ | $26(2)$ | $-3.0(16)$ | $4.5(16)$ | $3.3(18)$ |
| B1B | $26(3)$ | $7(3)$ | $25(3)$ | $-3.5(19)$ | $2.5(19)$ | $-4(2)$ |
|  |  |  |  |  |  |  |

Table 4 Bond Lengths for 2018ncs0765t.

| Atom Atom Length $/ \AA$ | Atom Atom Length $/ \AA$ |  |  |
| :--- | :--- | :--- | :--- |
| O24A C23A | $1.369(6)$ | N2B C11B | $1.336(5)$ |
| O24A C25A | $1.424(7)$ | N2B B1B | $1.681(6)$ |
| O28A C29A | $1.363(5)$ | N17B C12B | $1.335(5)$ |
| O28A B1A | $1.452(6)$ | N17B C16B | $1.340(6)$ |
| O39AC40A | $1.368(5)$ | C1S C2S | $1.410(8)$ |
| O39AB1A | $1.448(6)$ | C1S C6S | $1.373(7)$ |
| N2A C3A | $1.371(6)$ | C1S C7S | $1.493(8)$ |
| N2A C11A | $1.333(5)$ | C2S C3S | $1.375(8)$ |


| N2A B1A | 1.685(7) | C3B C4B | 1.406(6) |
| :---: | :---: | :---: | :---: |
| N17AC12A | $1.335(5)$ | C3B C8B | 1.417(7) |
| N17AC16A | 1.348 (6) | $\mathrm{C} 3 \mathrm{~S} \quad \mathrm{C} 4 \mathrm{~S}$ | 1.367(8) |
| C3A C4A | 1.411(6) | C4B C5B | 1.376 (7) |
| C3A C8A | 1.423 (6) | $\mathrm{C} 4 \mathrm{~S} \quad \mathrm{C} 5 \mathrm{~S}$ | 1.395 (8) |
| C4A C5A | 1.366 (7) | C5B C6B | 1.404(7) |
| C5A C6A | 1.409 (7) | $\mathrm{C} 5 \mathrm{~S} \mathrm{C6S}$ | 1.366(7) |
| C6A C7A | 1.346 (6) | C6B C7B | $1.362(6)$ |
| C7A C8A | 1.410(6) | C7B C8B | 1.417(7) |
| C8A C9A | 1.411(6) | C8B C9B | 1.406 (6) |
| C9A C10A | 1.360 (6) | $\mathrm{C} 8 \mathrm{~S} \mathrm{C9S}$ | 1.388(8) |
| C10A C11A | 1.401(6) | C 8 S C13S | 1.372(8) |
| C11A C12A | 1.459(6) | $\mathrm{C} 8 \mathrm{~S} \mathrm{C14S}$ | 1.488 (8) |
| C12A C13A | 1.390 (6) | C9B C10B | 1.368(7) |
| C13A C14A | 1.400(6) | $\mathrm{C} 9 \mathrm{~S} \mathrm{C10S}$ | 1.383(8) |
| C13A B1A | $1.621(6)$ | C10B C11B | $1.398(6)$ |
| C14A C15A | 1.403(6) | C10S C11S | 1.384 (9) |
| C14A C18A | $1.505(6)$ | C11B C12B | $1.455(6)$ |
| C15A C16A | 1.400 (7) | C11S C12S | 1.364(8) |
| C15A C27A | $1.505(6)$ | C12B C13B | 1.397(6) |
| C16A C26A | $1.495(6)$ | C12S C13S | 1.376(7) |
| C18A C19A | 1.384 (7) | C13B C14B | $1.396(6)$ |
| C18A C23A | 1.391 (7) | C13B B1B | 1.633(6) |
| C19A C20A | 1.396 (7) | C14B C15B | 1.407(6) |
| C20A C21A | 1.356 (8) | C14B C18B | 1.496(6) |
| C21A C22A | 1.381 (7) | C15B C16B | 1.411(7) |
| C22A C23A | $1.394(6)$ | C15B C27B | 1.498(7) |
| C29A C30A | 1.401(6) | C16B C26B | $1.496(6)$ |
| C29A C38A | $1.389(6)$ | C18B C19B | 1.386(7) |
| C30A C31A | 1.360 (7) | C18B C23B | 1.402(7) |
| C31A C32A | 1.401(8) | C19B C20B | 1.391(7) |
| C32A C33A | 1.420 (7) | C20B C21B | 1.369(8) |
| C32A C37A | 1.421 (7) | C21B C22B | 1.380 (7) |
| C33A C34A | $1.362(9)$ | C22B C23B | 1.388(7) |
| C34A C35A | 1.397 (9) | C29B C30B | $1.402(6)$ |
| C35A C36A | $1.385(7)$ | C29B C38B | 1.376 (6) |
| C36A C37A | 1.420 (7) | C30B C31B | 1.367 (7) |
| C37A C38A | $1.437(6)$ | C31B C32B | 1.409 (7) |
| C38A C49A | $1.480(6)$ | C32B C33B | 1.428(7) |
| C40A C41A | 1.416(7) | C32B C37B | 1.406(7) |
| C40A C49A | $1.371(6)$ | C33B C34B | 1.359(8) |
| C41A C42A | $1.356(6)$ | C34B C35B | 1.397(8) |
| C42A C43A | 1.414(7) | C35B C36B | 1.358(7) |
| C43A C44A | $1.421(6)$ | C36B C37B | 1.417(7) |
| C43A C48A | 1.418(7) | C37B C38B | 1.436(7) |


| C44A C45A | $1.361(7)$ C38B C49B | $1.486(6)$ |
| :--- | :--- | :--- |
| C45A C46A | $1.394(8)$ C40B C41B | $1.417(7)$ |
| C46A C47A | $1.371(7)$ C40B C49B | $1.371(6)$ |
| C47A C48A | $1.407(7)$ C41B C42B | $1.353(6)$ |
| C48A C49A | $1.447(6)$ C42B C43B | $1.413(7)$ |
| O24B C23B | $1.374(6)$ C43B C44B | $1.423(6)$ |
| O24B C25B | $1.431(6)$ C43B C48B | $1.422(7)$ |
| O28B C29B | $1.367(5)$ C44B C45B | $1.356(7)$ |
| O28B B1B | $1.444(6)$ C45B C46B | $1.395(7)$ |
| O39B C40B | $1.363(5)$ C46B C47B | $1.371(6)$ |
| O39B B1B | $1.446(6)$ C47B C48B | $1.421(6)$ |
| N2B C3B | $1.378(6)$ C48B C49B | $1.431(6)$ |

Table 5 Bond Angles for 2018ncs0765t.

Atom Atom Atom Angle ${ }^{\circ}$
C23A O24AC25A
C29A O28AB1A
C40A O39AB1A
C3A N2A B1A
C11AN2A C3A
C11AN2A B1A
C12A N17AC16A
N2A C3A C4A
N2A C3A C8A
C4A C3A C8A
C5A C4A C3A
C4A C5A C6A
C7A C6A C5A
C6A C7A C8A
C7A C8A C3A
C7A C8A C9A
C9A C8A C3A
C10A C9A C8A
C9A C10AC11A
N2A C11AC10A
N2A C11AC12A
C10A C11AC12A
N17AC12AC11A
N17AC12A C13A
C13A C12A C11A
C12A C13A C14A C12A C13AB1A
C14A C13A B1A

Atom Atom Atom Angle ${ }^{\circ}$
117.6(4) C6S C1S C2S 118.3(5)
119.2(3) C6S C1S C7S 121.4(5)
120.8(3) C3S C2S C1S 119.9(5)
130.0(3) N2B C3B C4B 121.5(4)
120.2(4) N2B C3B C8B 118.8(4)
109.8(3) C4B C3B C8B 119.7(4)
115.4(4) C4S C3S C2S 120.8(5)
121.7(4) C5B C4B C3B 119.4(4)
119.3(4) C3S C4S C5S 119.7(5)
$119.0(4) \mathrm{C} 4 \mathrm{~B}$ C5B C6B 121.5(4)
119.9(4) C6S C5S C4S 119.6(5)
121.1(4) C7B C6B C5B 119.5(4)
119.6(4) C5S C6S C1S 121.7(5)
121.8(5) C6B C7B C8B 121.0(4)
118.4(4) C7B C8B C3B 118.7(4)
122.6(4) C9B C8B C3B 119.5(4)
118.9(4) C9B C8B C7B 121.7(4)
120.1(4) C9S C8S C14S 120.3(5)
118.7(4) C13S C8S C9S 117.9(5)
122.8(4) C13S C8S C14S 121.8(5)
111.8(4) C10B C9B C8B 120.2(4)
125.4(4) C10S C9S C8S 121.0(5)
120.2(4) C9B C10B C11B 118.1(4)
127.8(4) C9S C10S C11S 119.7(5)
112.0(4) N2B C11B C10B 123.0(4)
115.8(4) N2B C11B C12B 111.7(4)
109.1(4) C10B C11B C12B 125.2(4)
135.0(4) C12S C11S C10S 119.4(5)

C13A C14A C15A
C13A C14A C18A
C15A C14A C18A
C14A C15A C27A
C16A C15A C14A
C16A C15A C27A
N17AC16A C15A
N17AC16A C26A
C15A C16A C26A
C19A C18A C14A
C19A C18A C23A
C23A C18A C14A
C18A C19A C20A
C21A C20A C19A
C20A C21A C22A
C21A C22A C23A
O24A C23A C18A
O24AC23A C22A
C18A C23A C22A
O28AC29A C30A
O28A C29A C38A C38A C29A C30A C31A C30A C29A

C30A C31A C32A
C31A C32A C33A
C31A C32A C37A
C33A C32A C37A
C34A C33A C32A
C33A C34A C35A
C36A C35A C34A
C35A C36A C37A
C32A C37A C38A
C36A C37A C32A
C36A C37A C38A
C29A C38A C37A
C29A C38A C49A
C37A C38A C49A
O39AC40A C41A
O39AC40A C49A
C49A C40A C41A
C42A C41A C40A
C41A C42A C43A
C42A C43A C44A
C42A C43A C48A
C48A C43A C44A

| 118.6(4) | N17BC12B C11B | 120.0(4) |
| :---: | :---: | :---: |
| 120.6(4) | N17BC12B C13B | 127.6(4) |
| 120.9(4) | C13B C12B C11B | 112.3(4) |
| 122.2(4) | $\mathrm{C} 11 \mathrm{~S} \mathrm{C12S} \mathrm{C13S}$ | 120.5(5) |
| 119.8(4) | C12B C13B B1B | 108.7(4) |
| 117.9(4) | C14B C13B C12B | 115.7(4) |
| 122.6(4) | C14B C13B B1B | 135.5(4) |
| 115.6(4) | C 8 S C13S C12S | 121.5(5) |
| 121.8(4) | C13B C14B C15B | 118.7(4) |
| 119.8(4) | C13B C14B C18B | 121.1(4) |
| 118.2(4) | C15B C14B C18B | 120.2(4) |
| 122.0(4) | C14B C15B C16B | 119.5(4) |
| 120.9(5) | C14B C15B C27B | 122.4(4) |
| 119.7(5) | C16B C15B C27B | 118.0(4) |
| 121.2(5) | N17BC16B C15B | 122.5(4) |
| 118.9(5) | N17BC16B C26B | 115.8(4) |
| 116.9(4) | C15B C16B C26B | 121.7(4) |
| 122.0(4) | C19B C18B C14B | 119.9(4) |
| 121.1(4) | C19B C18B C23B | 118.0(4) |
| 117.5(4) | C23B C18B C14B | 122.1(4) |
| 120.5(4) | C18B C19B C20B | 121.2(5) |
| 121.9(4) | C21B C20B C19B | 119.6(5) |
| 119.5(4) | C 20 B C 21 B C 22 B | 121.0(5) |
| 121.9(5) | C21B C22B C23B | 119.2(5) |
| 122.4(5) | $\mathrm{O} 24 \mathrm{BC} 23 \mathrm{~B} \mathrm{C18B}$ | 116.0(4) |
| 118.8(4) | O24BC23B C22B | 123.0(4) |
| 118.8(5) | C22B C23B C18B | 121.0(4) |
| 121.4(5) | O28BC29B C30B | 117.5(4) |
| 120.1(5) | O28B C29B C38B | 120.5(4) |
| 120.5(5) | C38B C29B C30B | 121.9(4) |
| 120.6(5) | C31B C30B C29B | 120.0(4) |
| 119.6(4) | C30B C31B C32B | 120.4(5) |
| 118.5(4) | C31B C32B C33B | 121.5(5) |
| 121.9(4) | C37B C32B C31B | 119.5(5) |
| 117.8(4) | C37B C32B C33B | 119.1(5) |
| 120.1(4) | C34B C33B C32B | 120.8(5) |
| 122.1(4) | C33B C34B C35B | 119.8(5) |
| 117.6(4) | C36B C35B C34B | 120.9(5) |
| 121.3(4) | C35B C36B C37B | 121.2(5) |
| 121.1(4) | C32B C37B C36B | 118.1(5) |
| 120.6(4) | C32B C37B C38B | 119.8(4) |
| 120.7(5) | C36B C37B C38B | 122.1(5) |
| 122.3(5) | C29B C38B C37B | 117.7(4) |
| 118.8(4) | C29B C38B C49B | 120.7(4) |
| 118.8(4) | C37B C38B C49B | 121.6(4) |


| C45A C44A C43A | $120.8(5)$ | O39B C40B C41B | $117.1(4)$ |
| :--- | ---: | :--- | ---: |
| C44A C45A C46A | $120.3(4)$ | O39B C40B C49B | $122.3(4)$ |
| C47A C46A C45A | $120.4(4)$ | C49B C40B C41B | $120.6(4)$ |
| C46A C47A C48A | $121.0(5)$ | C42B C41B C40B | $120.7(4)$ |
| C43A C48A C49A | $119.6(4)$ | C41B C42B C43B | $120.6(4)$ |
| C47A C48A C43A | $118.5(4)$ | C42B C43B C44B | $122.1(4)$ |
| C47A C48A C49A | $121.7(4)$ | C42B C43B C48B | $119.2(4)$ |
| C40A C49A C38A | $121.3(4)$ | C48B C43B C44B | $118.8(4)$ |
| C40A C49A C48A | $118.0(4)$ | C45B C44B C43B | $121.5(5)$ |
| C48A C49A C38A | $120.6(4)$ | C44B C45B C46B | $120.1(4)$ |
| O28AB1A N2A | $102.2(3)$ | C47B C46B C45B | $120.3(4)$ |
| O28AB1A C13A | $118.6(4)$ | C46B C47B C48B | $121.5(5)$ |
| O39AB1A O28A | $116.0(4)$ | C43B C48B C49B | $119.0(4)$ |
| O39A B1A N2A | $111.2(4)$ | C47B C48B C43B | $117.6(4)$ |
| O39A B1A C13A | $109.6(4)$ | C47B C48B C49B | $123.3(4)$ |
| C13A B1A N2A | $97.0(3)$ | C40B C49B C38B | $120.3(4)$ |
| C23B O24B C25B | $117.2(4)$ | C40B C49B C48B | $119.2(4)$ |
| C29B O28B B1B | $117.6(3)$ | C48B C49B C38B | $120.4(4)$ |
| C40B O39B B1B | $121.0(3)$ | O28BB1B O39B | $116.3(4)$ |
| C3B N2B B1B | $129.4(3)$ | O28BB1B N2B | $102.5(4)$ |
| C11B N2B C3B | $120.3(4)$ | O28BB1B C13B | $118.5(4)$ |
| C11B N2B B1B | $110.3(3)$ | O39BB1B N2B | $110.6(4)$ |
| C12B N17B C16B | $115.8(4)$ | O39B B1B C13B | $109.7(4)$ |
| C2S C1S C7S | $120.2(5)$ | C13B B1B N2B | $96.9(3)$ |

Table 6 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ( $\AA^{2} \times 10^{3}$ ) for 2018ncs0765t.

| Atom $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ | $\mathbf{U ( e q )}$ |  |
| :--- | ---: | ---: | :---: | :--- |
| H4A | 2555.45 | 5491 | 4957.28 | 26 |
| H5A | 2359.3 | 6045.1 | 4083.36 | 29 |
| H6A | 2231.15 | 6714.69 | 4602.22 | 30 |
| H7A | 2225.97 | 6821.36 | 5986.58 | 30 |
| H9A | 2169.77 | 6547.34 | 7417.66 | 26 |
| H10A | 2165.73 | 5986.44 | 8284.74 | 24 |
| H19A | 100.58 | 4139.41 | 6593.86 | 37 |
| H20A | 269.62 | 3534.25 | 5836.2 | 48 |
| H21A | 2915.88 | 3109.52 | 6016.77 | 46 |
| H22A | 5465.67 | 3276.21 | 6939.89 | 32 |
| H25A | 8193.45 | 3767.34 | 8443.35 | 65 |
| H25B | 7996.08 | 3606.79 | 7517.63 | 65 |
| H25C | 6770.49 | 3394.31 | 8213.82 | 65 |
| H | 989.86 | 4701.43 | 10089.55 | 37 |
| HA | 2316.26 | 5103.04 | 10124.31 | 37 |


| HB | 3310.01 | 4661.36 | 10168.23 | 37 |
| :---: | :---: | :---: | :---: | :---: |
| H27A | 1343.2 | 4054.65 | 9412.57 | 39 |
| H27B | 3663.27 | 4030.35 | 9375.52 | 39 |
| H27C | 2317.77 | 3826.05 | 8665.43 | 39 |
| H30A | 6870.22 | 4440.31 | 6063.66 | 31 |
| H31A | 7442.04 | 3856.71 | 5327.73 | 39 |
| H33A | 6375.74 | 3338.23 | 4292.64 | 49 |
| H34A | 4085.22 | 3101.55 | 3341.46 | 54 |
| H35A | 1177.73 | 3461.61 | 3090.79 | 48 |
| H36A | 643.43 | 4079.68 | 3747.94 | 35 |
| HC | -2382.63 | 5241.23 | 5311.28 | 30 |
| HD | -3076.4 | 5372.15 | 3947.02 | 31 |
| HE | -1929.15 | 5405.34 | 2504.53 | 33 |
| H45A | 415.08 | 5262.53 | 1576.72 | 35 |
| H46A | 3253.23 | 4913.36 | 1993.46 | 37 |
| H47A | 3681.06 | 4683.02 | 3326.64 | 30 |
| H2S | 4909.56 | 3681.72 | 1574.84 | 45 |
| H3S | 6151.37 | 3384.56 | 415.51 | 48 |
| HF | 7523.27 | 5698.12 | 10152.88 | 27 |
| H4S | 9348.76 | 3495.91 | 83.45 | 45 |
| HG | 7221.41 | 5137.74 | 11006.81 | 28 |
| HH | 11347.87 | 3920.59 | 916.8 | 40 |
| HI | 6987.9 | 4473.67 | 10471.79 | 28 |
| HJ | 10126.4 | 4214.51 | 2073.13 | 37 |
| H7B | 7070.44 | 4371.75 | 9074.4 | 27 |
| H7SA | 6700.95 | 4491.01 | 2605.59 | 81 |
| H7SB | 7321.63 | 4108 | 3165.84 | 81 |
| H7SC | 5219.36 | 4119.36 | 2708.51 | 81 |
| H9B | 7176.92 | 4653.56 | 7663.62 | 24 |
| H9S | 5115.66 | 7411.13 | 3611.72 | 43 |
| H10B | 7281.92 | 5218.5 | 6798.54 | 24 |
| HK | 4341.27 | 7704.2 | 4856.54 | 51 |
| HL | 1090.9 | 7737.29 | 5225.31 | 51 |
| HM | -1331.05 | 7484.14 | 4340.02 | 48 |
| HN | -562.93 | 7209.59 | 3088.53 | 40 |
| H14A | 4247.18 | 7026.2 | 2440.21 | 83 |
| H14B | 2576.66 | 7288.94 | 1977.34 | 83 |
| H14C | 2089.27 | 6845.9 | 2328.01 | 83 |
| H19B | 5088.18 | 7036.59 | 8487.67 | 31 |
| HO | 5111.95 | 7652.76 | 9207.81 | 42 |
| HP | 7621.65 | 8113.65 | 9050.78 | 37 |
| HQ | 10171.47 | 7963.85 | 8202.64 | 32 |
| HR | 12963.21 | 7479.95 | 6783.86 | 53 |
| HS | 12746.65 | 7663.62 | 7684.35 | 53 |
| HT | 11430.18 | 7837.48 | 6932.37 | 53 |


| H26A | 6069.22 | 6470.57 | 4961.52 | 36 |
| :--- | ---: | ---: | ---: | :--- |
| H26B | 7622.13 | 6106.35 | 4987.86 | 36 |
| H26C | 8349.82 | 6570.44 | 4989.29 | 36 |
| H27D | 6246.66 | 7130.35 | 5651.43 | 43 |
| H27E | 8533.28 | 7198.44 | 5819.08 | 43 |
| H27F | 7018.05 | 7372.92 | 6451.19 | 43 |
| HU | 11924.49 | 6745.9 | 9096.54 | 29 |
| HV | 12603.17 | 7344.03 | 9806.55 | 34 |
| HW | 11569.15 | 7887.6 | 10763.11 | 43 |
| HX | 9305.9 | 8145.83 | 11630.15 | 47 |
| HY | 6414.21 | 7787.67 | 11831.27 | 42 |
| HZ | 5855.92 | 7166.05 | 11220 | 32 |
| H41B | 2794.5 | 5949.99 | 9737.88 | 27 |
| H0AA | 2174.9 | 5854.69 | 11095.99 | 28 |
| H1AA | 3334.58 | 5882.12 | 12566.92 | 32 |
| H2AA | 5591.48 | 6086.06 | 13557.31 | 35 |
| H3AA | 8421.13 | 6427.3 | 13189.75 | 33 |
| H4AA | 8879.11 | 6597.15 | 11838.65 | 29 |

## Crystal structure determination of 2018ncs0765t

Crystal Data for $\mathrm{C}_{50} \mathrm{H}_{39} \mathrm{BN}_{2} \mathrm{O}_{3}(M=726.64 \mathrm{~g} / \mathrm{mol})$ : monoclinic, space group P 21 (no. 4), $a=6.8740(4) \AA, b=$ $32.7563(18) \AA, c=16.3196(11) \AA, \beta=92.276(6)^{\circ}, V=3671.7(4) \AA^{3}, Z=4, T=100.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.081 \mathrm{~mm}^{-}$ ${ }^{1}$, Dcalc $=1.314 \mathrm{~g} / \mathrm{cm}^{3}, 22769$ reflections measured $\left(3.524^{\circ} \leq 2 \Theta \leq 55.054^{\circ}\right), 22769$ unique $\left(R_{\text {int }}=\right.$ ?, $\left.R_{\text {sigma }}=0.0466\right)$ which were used in all calculations. The final $R_{1}$ was $0.0587(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1515 (all data).

## X-ray crystal structure data for compound 31a

## ORTEP of 6, thermal ellipsoids are shown at $50 \%$ probability



## Crystal structure determination of compound 31a

Crystals of 32a were grown from a saturated acetone solution, allowing slow evaporation.
Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BF}_{3} \mathrm{KN}_{3}\left(M=367.22 \mathrm{~g} / \mathrm{mol}\right.$ ): monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=$ $18.251(5) \AA, b=10.005(3) \AA, c=9.1105(18) \AA, \beta=94.150(16)^{\circ}, V=1659.2(7) \AA^{3}, Z=4, T=$ $100 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.355 \mathrm{~mm}^{-1}$, Dcalc $=1.470 \mathrm{~g} / \mathrm{cm}^{3}, 4270$ reflections measured $\left(4.476^{\circ} \leq 2 \Theta \leq\right.$ $\left.46.598^{\circ}\right), 2330$ unique ( $R_{\text {int }}=0.0897, \mathrm{R}_{\text {sigma }}=0.1525$ ) which were used in all calculations. The final $R_{1}$ was $0.0678\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$ ) and $w R_{2}$ was 0.1452 (all data).

Table 1 Crystal data and structure refinement for $\mathbf{0 j H 3 8 8 k}$.

| Identification code | ojH388k |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BF}_{3} \mathrm{KN}_{3}$ |
| Formula weight | 367.22 |
| Temperature/K | 100 |
| Crystal system | monoclinic |
| Space group | P21/c |
| $\mathrm{a} / \AA$ ¢ | 18.251(5) |
| b/Å | 10.005(3) |
| c/ $\AA$ | $9.1105(18)$ |
| $\alpha /{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | 94.150(16) |
| $\gamma /{ }^{\circ}$ | 90 |
| Volume/ $\AA^{3}$ | 1659.2(7) |
| Z | 4 |
| $\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.470 |
| $\mu / \mathrm{mm}^{-1}$ | 0.355 |
| F(000) | 752.0 |
| Crystal size/mm ${ }^{3}$ | $0.61 \times 0.21 \times 0.025$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection $/{ }^{\circ} 4.476$ to 46.598 |  |
| Index ranges | $-14 \leq \mathrm{h} \leq 20,-9 \leq \mathrm{k} \leq 11,-10 \leq 1 \leq 10$ |
| Reflections collected | 4270 |
| Independent reflections | 2330 [ $\left.\mathrm{R}_{\text {int }}=0.0897, \mathrm{R}_{\text {sigma }}=0.1525\right]$ |
| Data/restraints/parameters | 2330/199/226 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.021 |
| Final R indexes $[\mathrm{I}>=2 \sigma$ (I)] | $\mathrm{R}_{1}=0.0678, \mathrm{wR}_{2}=0.1209$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.1523, \mathrm{wR}_{2}=0.1452$ |
| Largest diff. peak/hole / e $\AA^{-3}$ | 0.44/-0.44 |

Table 2 Fractional Atomic Coordinates ( $\times \mathbf{1 0}^{4}$ ) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $0 j H 388 \mathrm{k}$. $\mathrm{U}_{\mathrm{eq}}$ is defined as $1 / 3$ of of the trace of the orthogonalised $\mathrm{U}_{\mathrm{IJ}}$ tensor.

| Atom | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ | $\mathbf{U}(\mathbf{e q )}$ |
| :--- | ---: | ---: | ---: | ---: |
| K1 | $4804.9(7)$ | $2868.2(15)$ | $5155.8(15)$ | $20.5(4)$ |
| F1 | $5722.0(16)$ | $4324(4)$ | $727(3)$ | $23.6(10)$ |
| N1 | $6075(3)$ | $4493(5)$ | $4782(5)$ | $17.9(13)$ |
| C1 | $6653(3)$ | $4283(6)$ | $5805(6)$ | $16.6(15)$ |
| B1 | $5562(4)$ | $4735(8)$ | $2153(8)$ | $16.5(16)$ |
| F2 | $5350.8(17)$ | $6104(4)$ | $2087(4)$ | $24.4(9)$ |
| N2 | $7360(3)$ | $4100(6)$ | $5533(5)$ | $21.3(14)$ |


| C2 | $7517(3)$ | $4156(7)$ | $4114(7)$ | $20.5(16)$ |
| :--- | ---: | ---: | ---: | ---: |
| F3 | $4923.1(17)$ | $3994(4)$ | $2490(3)$ | $21.8(9)$ |
| N3 | $6485(2)$ | $4228(5)$ | $7237(5)$ | $20.0(14)$ |
| C3 | $6962(3)$ | $4334(6)$ | $3002(7)$ | $17.6(15)$ |
| C4 | $6240(3)$ | $4500(6)$ | $3351(6)$ | $16.8(14)$ |
| C5 | $7052(3)$ | $4058(7)$ | $8443(6)$ | $21.8(16)$ |
| C6 | $7437(3)$ | $5366(7)$ | $8943(6)$ | $20.4(15)$ |
| C7 | $7084(4)$ | $6267(7)$ | $9760(7)$ | $28.0(17)$ |
| C8 | $7439(4)$ | $7439(8)$ | $10294(8)$ | $37.0(19)$ |
| C9 | $8161(4)$ | $7658(9)$ | $9991(8)$ | $51(2)$ |
| C10 | $8512(4)$ | $6751(10)$ | $9158(8)$ | $52(2)$ |
| C11 | $8157(4)$ | $5597(9)$ | $8628(7)$ | $42(2)$ |
| C12 | $8301(3)$ | $3998(8)$ | $3825(7)$ | $28.5(18)$ |
| C13 | $8770(3)$ | $3262(8)$ | $4785(7)$ | $37(2)$ |
| C14 | $9508(4)$ | $3134(10)$ | $4535(8)$ | $58(3)$ |
| C15 | $9791(4)$ | $3781(10)$ | $3362(8)$ | $55(3)$ |
| C16 | $9328(3)$ | $4536(9)$ | $2420(8)$ | $45(2)$ |
| C17 | $8585(3)$ | $4647(8)$ | $2643(7)$ | $32(2)$ |

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $0 \mathbf{j H} 388 \mathrm{k}$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

| Atom | $\mathbf{U}_{11}$ | $\mathbf{U}_{22}$ | $\mathbf{U}_{33}$ | $\mathbf{U}_{23}$ | $\mathbf{U}_{13}$ | $\mathbf{U}_{12}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| K1 | $18.4(8)$ | $25.5(9)$ | $19.0(7)$ | $1.5(8)$ | $9.9(6)$ | $-0.1(8)$ |
| F1 | $12.6(18)$ | $44(3)$ | $15.1(18)$ | $-2.4(19)$ | $6.6(15)$ | $-1.8(18)$ |
| N1 | $16(3)$ | $23(4)$ | $16(2)$ | $0(3)$ | $5(2)$ | $-3(3)$ |
| C1 | $16(3)$ | $20(4)$ | $15(3)$ | $1(3)$ | $8(2)$ | $-3(3)$ |
| B1 | $15(4)$ | $22(4)$ | $13(3)$ | $0(3)$ | $10(3)$ | $2(3)$ |
| F2 | $30(2)$ | $23(2)$ | $20(2)$ | $-0.6(18)$ | $0.3(17)$ | $2.4(18)$ |
| N2 | $13(3)$ | $32(4)$ | $21(3)$ | $-8(3)$ | $12(2)$ | $-1(3)$ |
| C2 | $16(3)$ | $26(4)$ | $20(3)$ | $-5(3)$ | $6(2)$ | $-2(3)$ |
| F3 | $13.2(18)$ | $34(3)$ | $19.2(19)$ | $1.0(19)$ | $8.5(15)$ | $-6.2(17)$ |
| N3 | $9(3)$ | $36(4)$ | $16(2)$ | $-7(3)$ | $9(2)$ | $0(3)$ |
| C3 | $14(3)$ | $16(4)$ | $24(3)$ | $-2(3)$ | $11(2)$ | $-6(3)$ |
| C4 | $14(3)$ | $17(4)$ | $20(3)$ | $0(3)$ | $6(2)$ | $-5(3)$ |
| C5 | $17(3)$ | $38(4)$ | $12(3)$ | $6(3)$ | $8(3)$ | $1(3)$ |
| C6 | $16(3)$ | $31(4)$ | $15(3)$ | $8(3)$ | $3(3)$ | $-2(3)$ |
| C7 | $17(4)$ | $31(4)$ | $37(4)$ | $8(3)$ | $6(3)$ | $1(3)$ |
| C8 | $41(4)$ | $35(5)$ | $36(4)$ | $6(4)$ | $8(3)$ | $-4(3)$ |
| C9 | $46(4)$ | $71(6)$ | $35(5)$ | $6(4)$ | $-1(4)$ | $-32(4)$ |
| C10 | $27(4)$ | $93(7)$ | $37(5)$ | $2(5)$ | $10(4)$ | $-29(4)$ |
| C11 | $26(4)$ | $80(6)$ | $23(4)$ | $0(4)$ | $9(3)$ | $-15(4)$ |
| C12 | $12(3)$ | $57(5)$ | $17(3)$ | $-4(3)$ | $7(3)$ | $1(3)$ |
| C13 | $21(3)$ | $66(6)$ | $26(4)$ | $2(4)$ | $10(3)$ | $13(4)$ |


| C14 | $21(4)$ | $118(8)$ | $34(4)$ | $2(5)$ | $6(3)$ | $24(5)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| C15 | $20(4)$ | $113(8)$ | $33(4)$ | $-9(5)$ | $14(3)$ | $6(4)$ |
| C16 | $19(4)$ | $91(7)$ | $28(4)$ | $-9(4)$ | $16(3)$ | $-5(4)$ |
| C17 | $15(3)$ | $59(6)$ | $23(4)$ | $1(4)$ | $13(3)$ | $-1(4)$ |

Table 4 Bond Lengths for $\mathbf{0 j H} \mathbf{3 8 8 k}$.
Atom Atom Length $/ \AA$ Atom Atom Length $/ \AA$
K1 K1 ${ }^{1}$ 4.337(3) B1 C4 1.607(9)
K1 K1 ${ }^{2} \quad 4.6144(10) \mathrm{N} 2 \quad \mathrm{C} 2 \quad 1.346(7)$
K1 K1 ${ }^{3} \quad 4.6145(10) \mathrm{C} 2 \quad \mathrm{C} 3 \quad 1.390(8)$
$\begin{array}{lllll}\mathrm{K} 1 & \mathrm{Fl}^{2} & 2.785(4) \mathrm{C} 2 & \mathrm{C} 12 & 1.483(8)\end{array}$
$\begin{array}{lllll}\mathrm{K} 1 & \mathrm{~N} 1{ }^{1} \quad 3.093(5) \mathrm{N} 3 & \mathrm{C} 5 & 1.464(7)\end{array}$
$\begin{array}{lllll}\mathrm{K} 1 & \mathrm{~N} 1 & 2.872(5) \mathrm{C} 3 & \mathrm{C} 4 & 1.387(7)\end{array}$
$\mathrm{K} 1 \quad \mathrm{~B} 1^{2} \quad 3.412(8) \mathrm{C} 5 \quad \mathrm{C} 6 \quad 1.538(9)$
$\begin{array}{lllll}\mathrm{K} 1 & \mathrm{~B} 1^{1} & 3.528(7) & \mathrm{C} 6 & \mathrm{C} 7 \\ 1.361(9)\end{array}$
$\begin{array}{lllll}\mathrm{K} 1 & \mathrm{~F} 2^{4} & 2.700(4) \mathrm{C} 6 & \mathrm{C} 11 & 1.384(8)\end{array}$
K1 F2 ${ }^{1}$ 2.748(4) C7 C8 1.408(9)
K1 F3 ${ }^{2}$ 2.824(4) C8 C9 1.383(9)
K1 F3 2.699(3) C9 C10 1.372(11)
F1 B1 1.413(7) C10 C11 1.394(11)
N1 C1 1.372(7) C12 C13 1.389(9)
$\begin{array}{lllll}\mathrm{N} 1 & \mathrm{C} 4 & 1.359(7) & \mathrm{C} 12 & \mathrm{C} 17 \\ 1.389(9)\end{array}$
C1 N2 1.343(7) C13 C14 1.388(8)
C1 N3 1.363(7) C14 C15 1.381(10)
B1 F2 $\quad 1.423(9) \mathrm{C} 15 \quad \mathrm{C} 16 \quad 1.383(10)$
B1 F3 1.434(8) C16 C17 1.390(8)
${ }^{1} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{2}+\mathrm{X}, 1 / 2-\mathrm{Y}, 1 / 2+\mathrm{Z} ;{ }^{3}+\mathrm{X}, 1 / 2-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{4} 1-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z}$

Table 5 Bond Angles for $\mathbf{0 j H 3 8 8 k}$.

| Atom Atom Atom |  |  | $\begin{aligned} & \text { Angle } /^{\circ} \\ & 94.63(5) \end{aligned}$ | Atom Atom Atom |  |  | $\begin{aligned} & \text { Angle }{ }^{\circ} \\ & 86.16(15) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K1 ${ }^{1}$ | K1 | $\mathrm{K} 1^{2}$ |  | F3 ${ }^{3}$ | K1 | B1 ${ }^{1}$ |  |
| K1 ${ }^{1}$ | K1 | K1 ${ }^{3}$ | 103.49(5) | F3 | K1 | F2 ${ }^{1}$ | 133.34(12) |
| K1 ${ }^{3}$ | K1 | K1 ${ }^{2}$ | 161.62(7) | F3 | K1 | F2 ${ }^{4}$ | 66.60(11) |
| F1 ${ }^{3}$ | K1 | $\mathrm{K} 1^{2}$ | 90.91(8) | F3 | K1 | F3 ${ }^{3}$ | 161.09(10) |
| F1 ${ }^{3}$ | K1 | K1 ${ }^{1}$ | 133.43(9) | B1 | F1 | $\mathrm{K} 1{ }^{2}$ | 103.8(4) |
| F1 ${ }^{3}$ | K1 | K1 ${ }^{3}$ | 74.50(7) | K1 | N1 | K1 ${ }^{1}$ | 93.22(13) |
| F1 ${ }^{3}$ | K1 | N1 | 89.35(13) | C 1 | N1 | K1 ${ }^{1}$ | 119.5(4) |
| F1 ${ }^{3}$ | K1 | $\mathrm{N} 1^{1}$ | 167.08(13) | C 1 | N1 | K1 | 114.9(4) |
| F1 ${ }^{3}$ | K1 | B1 ${ }^{1}$ | 123.17(15) | C 4 | N1 | K1 ${ }^{1}$ | 99.5(4) |
| F1 ${ }^{3}$ | K1 | B1 ${ }^{3}$ | 23.72(13) | C 4 | N1 | K1 | 110.7(4) |
| F1 ${ }^{3}$ | K1 | F3 ${ }^{3}$ | 47.75(9) | C 4 | N1 | C1 | 116.1(5) |

$\left.\begin{array}{lllrllr}\text { N1 } & \text { K1 } & \text { K1 }^{2} & 85.17(10) & \text { N2 } & \text { C1 } & \text { N1 }\end{array}\right) 126.6(5)$

| F3 | K1 | N1 $^{1}$ | $74.68(12)$ | C14 | C13 | C12 | $120.4(6)$ |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| F3 | K1 | N1 | $62.58(12)$ | C15 | C14 | C13 | $120.4(8)$ |
| F3 $^{3}$ | K1 | N1 1 | $124.11(11)$ | C14 | C15 | C16 | $119.4(7)$ |
| F3 $^{3}$ | K1 | B1 $^{3}$ | $24.32(12)$ | C15 | C16 | C17 | $120.7(7)$ |
| F3 | K1 | B1 $^{1}$ | $111.90(15)$ | C12 | C17 | C16 | $119.9(7)$ |
| F3 | K1 | B1 $^{3}$ | $137.96(14)$ |  |  |  |  |

${ }^{1} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{2}+\mathrm{X}, 1 / 2-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{3}+\mathrm{X}, 1 / 2-\mathrm{Y}, 1 / 2+\mathrm{Z} ;{ }^{4} 1-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ;{ }^{5} 1-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z}$

Table 6 Torsion Angles for $\mathbf{0 j H 3 8 8 k}$.
$\begin{array}{llllllll}\text { A } & \text { B C D } & \text { Angle } /{ }^{\circ} & \text { A } & \text { B } & \text { C } & \text { D } & \text { Angle } /{ }^{\circ}\end{array}$
$\mathrm{K} 1^{1} \mathrm{~F} 1 \mathrm{~B} 1 \mathrm{~K} 1^{2}$ $-136.4(9) \mathrm{N} 2 \mathrm{C} 1 \mathrm{~N} 3 \mathrm{C} 5$ 3.7(9) 2.1(10) 27.9(10) -148.2(7) 0.2(9) $\begin{array}{rlrr}118.5(6) & \mathrm{C} 2 & \mathrm{C} 3 & \mathrm{C} 4 \\ \mathrm{~B} 1 & 179.0(6)\end{array}$ 63.1(7) C2 C12 C13 C14 -178.7(7) $-46.4(7) \mathrm{C} 2 \mathrm{C} 12 \mathrm{C} 17 \mathrm{C} 16 \quad 177.3(6)$
46.3(6) F3 B1 F2 K1 ${ }^{3}$-112.0(4) -50.8(6) F3 B1 F2 K1 ${ }^{2}$ 74.0(5) 128.1(5) F3 B1 C4 N1 -42.5(8) -134.8(5) F3 B1 C4 C3 138.7(6) 131.2(3) N3 C1 N2 C2 179.9(6) 174.0(5) N3 C5 C6 C7 74.9(7) $-54.8(6) \mathrm{N} 3 \mathrm{C} 5 \mathrm{C} 6 \mathrm{C} 11 \quad-108.5(6)$ 126.9(4) C3 C2 C12C13 -151.2(7) 169.27(12) C3 C2 C12 C17 32.7(10) -63.8(3) C4 N1 C1 N2 0.7(10) 43.1(5) C4 N1 C1 N3 -177.7(6)

$$
-103.0(6) \mathrm{C} 4 \mathrm{~B} 1 \mathrm{~F} 2 \quad \mathrm{~K} 1^{2} \quad-48.6(5)
$$

$$
\begin{array}{lllll}
78.2(7) & \mathrm{C} 4 & \mathrm{~B} 1 & \mathrm{~F} 2 & \mathrm{~K}^{3}
\end{array} 125.4(4)
$$

$$
-135.7(6) \text { C4 B1 F3 K1 }
$$

F1 B1 F2 K1 ${ }^{2} \quad-172.6(3)$ C4 B1 F3 K1 ${ }^{1} \quad-112.9(5)$
F1 B1 F2 K1 ${ }^{3} \quad 1.4(8) \mathrm{C} 5 \mathrm{C} 6 \mathrm{C} 7 \mathrm{C} 8 \quad 176.7(6)$
F1 B1 F3 K1 ${ }^{1} \quad 10.0(5)$ C5 C6 C11 C10 $-176.4(6)$
F1 B1 F3 K1 137.0(4) C6 C7 C8 C9 -0.8(10)
F1 B1 C4 N1 -161.6(6) C7 C6 C11 C10 0.2(10)
F1 B1 C4 C3 19.6(9) C7 C8 C9 C10 1.3(11)
N1 C1 N2C2 1.5(10) C8 C9 C10C11 -1.0(12)
N1 C1 N3 C5 -177.7(6) C9 C10C11 C6 0.3(11)
C1 N1 C4 B1 179.6(5) C11C6 C7 C8 0.1(10)
C1 N1 C4 C3 -1.6(9) C12C2 C3 C4 -178.9(6)

| C1 | N2 C2 C3 | $-2.9(10)$ | C12 C13C14C15 | $2.6(13)$ |
| :--- | :--- | ---: | :--- | ---: |
| C1 | N2 C2 C12 | $178.0(6)$ | C13 C12C17 C16 | $1.2(11)$ |
| C1 | N3 C5 C6 | $82.9(7)$ | C13 C14C15 C16 | $-1.3(13)$ |
| F2 | B1 F3 K1 1 | $125.1(4)$ | C14C15C16C17 | $0.0(13)$ |
| F2 | B1 F3 K1 | $-107.9(5)$ | C15 C16C17 C12 | $0.1(12)$ |
| F2 | B1 C4 N1 | $76.8(7)$ | C17C12 C13 C14 | $-2.5(11)$ |
| F2 | B1 C4 C3 | $-102.0(7)$ |  |  |

${ }^{1}+\mathrm{X}, 1 / 2-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{2} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{3} 1-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z}$

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ( $\AA^{2} \times 10^{3}$ ) for $\mathbf{0 j H 3 8 8 k}$.

| Atom | $\boldsymbol{x}$ | $y$ | $z$ | U(eq) |
| :---: | :---: | :---: | :---: | :---: |
| H3 | 6022.19 | 4295.73 | 7441.48 | 24 |
| H3A | 7077.71 | 4342.09 | 2002.16 | 21 |
| H5A | 7425.49 | 3422.76 | 8128.53 | 26 |
| H5B | 6824.36 | 3656.78 | 9294.03 | 26 |
| H7 | 6590.36 | 6103.73 | 9974.37 | 34 |
| H8 | 7186.3 | 8068.28 | 10852.51 | 44 |
| H9 | 8412.32 | 8433.43 | 10358.26 | 61 |
| H10 | 9005.74 | 6911.99 | 8938.58 | 62 |
| H11 | 8406.14 | 4973.7 | 8055.25 | 51 |
| H13 | 8584.13 | 2844.82 | 5618.07 | 45 |
| H14 | 9819.85 | 2598.57 | 5173.73 | 69 |
| H15 | 10297.86 | 3708.01 | 3202.93 | 66 |
| H16 | 9520.79 | 4982.55 | 1611.93 | 54 |
| H17 | 8272.35 | 5166.4 | 1989.25 | 39 |

## X-ray crystal structure data for compound 31e



## Crystal structure determination of compound 31e

Crystals of 31e were grown from a saturated acetone solution, allowing slow evaporation.
Crystal Data for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BF}_{3} \mathrm{KN}_{3}(M=291.13 \mathrm{~g} / \mathrm{mol})$ : monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=17.226(8) \AA, b=$ $17.878(9) \AA, c=9.023(4) \AA, \beta=96.749(11)^{\circ}, V=2759(2) \AA^{3}, Z=8, T=100 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.407 \mathrm{~mm}^{-1}$, , calc $=$ $1.402 \mathrm{~g} / \mathrm{cm}^{3}, 44917$ reflections measured $\left(3.296^{\circ} \leq 2 \Theta \leq 55.336^{\circ}\right), 6407$ unique ( $R_{\text {int }}=0.1692$, $\mathrm{R}_{\text {sigma }}=0.1227$ ) which were used in all calculations. The final $R_{1}$ was 0.1171 (I $>2 \sigma(\mathrm{I})$ ) and $w R_{2}$ was 0.2700 (all data).

Table 1 Crystal data and structure refinement for OJH383k.

Identification code
OJH383k
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BF}_{3} \mathrm{KN}_{3}$
291.13

100
monoclinic
P2 ${ }_{1} / \mathrm{c}$
17.226(8)
b/ $\AA$
17.878(9)
c/Å
9.023(4)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ}$

| $\gamma /{ }^{\circ}$ | 90 |
| :--- | :--- |
| Volume $/ \AA^{3}$ | $2759(2)$ |
| Z | 8 |
| $\rho_{\text {calcg }} / \mathrm{cm}^{3}$ | 1.402 |
| $\mu / \mathrm{mm}^{-1}$ | 0.407 |
| $\mathrm{~F}(000)$ | 1184.0 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.5 \times 0.1 \times 0.045$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection $/{ }^{\circ} 3.296$ to 55.336 |  |
| Index ranges | $-22 \leq \mathrm{h} \leq 22,-23 \leq \mathrm{k} \leq 23,-8 \leq 1 \leq 11$ |
| Reflections collected | 44917 |
| Independent reflections | $6407\left[\mathrm{R}_{\text {int }}=0.1692, \mathrm{R}_{\text {sigma }}=0.1227\right]$ |
| Data/restraints/parameters | $6407 / 0 / 327$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.039 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\mathrm{R}_{1}=0.1171, \mathrm{wR}_{2}=0.2386$ |
| Final R indexes $[$ all data $]$ | $\mathrm{R}_{1}=0.1759, \mathrm{wR}_{2}=0.2700$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA^{-3} 1.93 /-1.56$ |  |

Table 2 Fractional Atomic Coordinates ( $\times \mathbf{1 0}^{4}$ ) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $0 J H 383 \mathrm{k}$. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $\mathrm{U}_{\mathrm{IJ}}$ tensor.

| Atom | $\boldsymbol{y}$ | $\boldsymbol{y}$ |  | $\boldsymbol{y}$ |
| :--- | ---: | ---: | ---: | ---: |
| K1 | $5122.6(9)$ | $5060.8(9)$ | $2478.9(15)$ | $24.2(4)$ |
| K2 | $5754.2(9)$ | $7772.3(8)$ | $7464.7(16)$ | $22.9(4)$ |
| F1 | $6192(4)$ | $6721(3)$ | $-473(6)$ | $62.8(17)$ |
| F2 | $5393(2)$ | $5787(3)$ | $29(4)$ | $40.6(13)$ |
| F3 | $6244(2)$ | $5606(3)$ | $-1640(4)$ | $36.4(12)$ |
| F4 | $5263(3)$ | $5749(3)$ | $5096(4)$ | $41.1(7)$ |
| F5 | $5318(3)$ | $6997(3)$ | $5100(4)$ | $41.1(7)$ |
| F6 | $4618(3)$ | $6406(3)$ | $6716(4)$ | $41.1(7)$ |
| N1 | $6644(3)$ | $5821(3)$ | $2440(6)$ | $17.6(12)$ |
| N2 | $7922(3)$ | $5386(3)$ | $3398(6)$ | $16.1(11)$ |
| N3 | $7051(3)$ | $5788(3)$ | $4956(6)$ | $22.9(13)$ |
| N4 | $4221(3)$ | $6443(3)$ | $2573(6)$ | $19.7(12)$ |
| N5 | $2842(3)$ | $6531(3)$ | $1768(5)$ | $15.5(11)$ |
| N6 | $3738(3)$ | $6487(3)$ | $93(6)$ | $23.2(13)$ |
| C1 | $7218(4)$ | $5653(4)$ | $3546(7)$ | $16.6(13)$ |
| C2 | $8071(4)$ | $5234(3)$ | $1992(6)$ | $13.7(12)$ |
| C3 | $7520(4)$ | $5373(4)$ | $784(7)$ | $18.4(14)$ |
| C4 | $6806(4)$ | $5679(4)$ | $1028(7)$ | $16.6(13)$ |
| C5 | $7604(4)$ | $5629(5)$ | $6254(7)$ | $28.1(17)$ |
| C6 | $8852(4)$ | $4915(4)$ | $1848(6)$ | $14.8(12)$ |
| C7 | $9500(4)$ | $5145(4)$ | $2816(7)$ | $19.2(14)$ |
| C8 | $10232(4)$ | $4849(4)$ | $2691(7)$ | $20.4(14)$ |
| C9 | $10315(4)$ | $4318(4)$ | $1620(8)$ | $23.0(15)$ |


| C10 | $9689(4)$ | $4086(4)$ | $665(7)$ | $19.8(14)$ |
| :--- | ---: | ---: | ---: | ---: |
| C11 | $8945(4)$ | $4384(4)$ | $767(7)$ | $18.3(13)$ |
| C12 | $3593(4)$ | $6483(3)$ | $1523(7)$ | $17.6(14)$ |
| C13 | $2701(4)$ | $6521(3)$ | $3200(7)$ | $17.2(13)$ |
| C14 | $3305(4)$ | $6459(4)$ | $4368(7)$ | $18.4(14)$ |
| C15 | $4061(4)$ | $6427(4)$ | $4015(7)$ | $20.2(14)$ |
| C16 | $3157(4)$ | $6574(4)$ | $-1176(7)$ | $19.5(14)$ |
| C17 | $1879(4)$ | $6624(3)$ | $3493(6)$ | $15.8(13)$ |
| C18 | $1373(4)$ | $7023(4)$ | $2511(7)$ | $22.1(15)$ |
| C19 | $610(4)$ | $7164(4)$ | $2817(8)$ | $23.7(15)$ |
| C20 | $351(4)$ | $6885(4)$ | $4096(7)$ | $24.1(15)$ |
| C21 | $851(4)$ | $6475(4)$ | $5085(7)$ | $24.2(15)$ |
| C22 | $1619(4)$ | $6340(4)$ | $4794(7)$ | $20.8(14)$ |
| B1 | $6158(5)$ | $5946(5)$ | $-294(9)$ | $23.3(17)$ |
| B2 | $4806(6)$ | $6402(7)$ | $5258(9)$ | $41.1(7)$ |

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for OJH383k. The Anisotropic displacement factor exponent takes the form: - $\mathbf{2 ~}^{2}\left[\mathbf{h}^{2} \mathbf{a}^{* 2} \mathbf{U}_{11}+\mathbf{2 h k a} \mathbf{W}^{*} \mathbf{U}_{12}+\ldots\right]$.

| Atom | $\mathbf{U}_{11}$ | $\mathbf{U}_{22}$ | $\mathbf{U}_{33}$ | $\mathbf{U}_{23}$ | $\mathbf{U}_{12}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| K1 | $24.3(8)$ | $38.2(9)$ | $10.4(6)$ | $-2.5(6)$ | $2.9(5)$ | $-1.5(7)$ |
| K2 | $32.4(9)$ | $20.1(7)$ | $15.9(7)$ | $1.6(6)$ | $2.0(6)$ | $1.4(6)$ |
| F1 | $90(5)$ | $35(3)$ | $55(3)$ | $22(3)$ | $-27(3)$ | $9(3)$ |
| F2 | $22(2)$ | $85(4)$ | $15(2)$ | $11(2)$ | $2.4(17)$ | $21(2)$ |
| F3 | $19(2)$ | $78(4)$ | $12.1(19)$ | $-9(2)$ | $-1.1(16)$ | $9(2)$ |
| F4 | $36.4(15)$ | $74(2)$ | $11.6(11)$ | $-6.6(12)$ | $-1.1(10)$ | $-10.8(14)$ |
| F5 | $36.4(15)$ | $74(2)$ | $11.6(11)$ | $-6.6(12)$ | $-1.1(10)$ | $-10.8(14)$ |
| F6 | $36.4(15)$ | $74(2)$ | $11.6(11)$ | $-6.6(12)$ | $-1.1(10)$ | $-10.8(14)$ |
| N1 | $18(3)$ | $21(3)$ | $12(3)$ | $2(2)$ | $-3(2)$ | $0(2)$ |
| N2 | $13(3)$ | $23(3)$ | $11(2)$ | $1(2)$ | $-3(2)$ | $2(2)$ |
| N3 | $13(3)$ | $43(4)$ | $12(3)$ | $-2(2)$ | $-1(2)$ | $9(3)$ |
| N4 | $27(3)$ | $24(3)$ | $8(2)$ | $-2(2)$ | $1(2)$ | $3(3)$ |
| N5 | $20(3)$ | $18(3)$ | $10(2)$ | $1(2)$ | $5(2)$ | $-1(2)$ |
| N6 | $19(3)$ | $41(4)$ | $10(3)$ | $1(2)$ | $3(2)$ | $8(3)$ |
| C1 | $15(3)$ | $17(3)$ | $18(3)$ | $-1(2)$ | $1(3)$ | $-6(3)$ |
| C2 | $15(3)$ | $16(3)$ | $11(3)$ | $0(2)$ | $3(2)$ | $-2(2)$ |
| C3 | $22(3)$ | $22(3)$ | $12(3)$ | $3(3)$ | $5(3)$ | $-3(3)$ |
| C4 | $18(3)$ | $19(3)$ | $13(3)$ | $5(2)$ | $5(2)$ | $0(3)$ |
| C5 | $20(4)$ | $53(5)$ | $10(3)$ | $-3(3)$ | $-1(3)$ | $6(3)$ |
| C6 | $15(3)$ | $18(3)$ | $11(3)$ | $-1(2)$ | $3(2)$ | $2(3)$ |
| C7 | $19(3)$ | $23(3)$ | $15(3)$ | $-1(3)$ | $0(3)$ | $-4(3)$ |
| C8 | $14(3)$ | $29(4)$ | $18(3)$ | $4(3)$ | $-2(3)$ | $-3(3)$ |
| C9 | $19(4)$ | $25(4)$ | $26(4)$ | $4(3)$ | $6(3)$ | $0(3)$ |
| C10 | $14(3)$ | $29(4)$ | $16(3)$ | $-3(3)$ | $4(3)$ | $0(3)$ |


| C11 | $18(3)$ | $19(3)$ | $16(3)$ | $1(3)$ | $-2(3)$ | $1(3)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| C12 | $29(4)$ | $14(3)$ | $11(3)$ | $4(2)$ | $5(3)$ | $7(3)$ |
| C13 | $23(4)$ | $13(3)$ | $15(3)$ | $-2(2)$ | $1(3)$ | $-1(3)$ |
| C14 | $26(4)$ | $22(3)$ | $7(3)$ | $0(2)$ | $2(3)$ | $0(3)$ |
| C15 | $28(4)$ | $19(3)$ | $13(3)$ | $2(3)$ | $0(3)$ | $-2(3)$ |
| C16 | $29(4)$ | $18(3)$ | $10(3)$ | $3(2)$ | $1(3)$ | $1(3)$ |
| C17 | $22(3)$ | $17(3)$ | $8(3)$ | $-3(2)$ | $-1(2)$ | $2(3)$ |
| C18 | $29(4)$ | $24(4)$ | $15(3)$ | $7(3)$ | $8(3)$ | $-2(3)$ |
| C19 | $28(4)$ | $19(3)$ | $23(4)$ | $0(3)$ | $-2(3)$ | $5(3)$ |
| C20 | $28(4)$ | $26(4)$ | $20(3)$ | $-6(3)$ | $11(3)$ | $-1(3)$ |
| C21 | $37(4)$ | $21(3)$ | $16(3)$ | $-1(3)$ | $11(3)$ | $-4(3)$ |
| C22 | $27(4)$ | $16(3)$ | $19(3)$ | $2(3)$ | $1(3)$ | $2(3)$ |
| B1 | $19(4)$ | $33(4)$ | $18(4)$ | $7(3)$ | $0(3)$ | $0(3)$ |
| B2 | $36.4(15)$ | $74(2)$ | $11.6(11)$ | $-6.6(12)$ | $-1.1(10)$ | $-10.8(14)$ |

Table 4 Bond Lengths for OJH383k.
Atom Atom Length $/ \AA$ Atom Atom Length $/ \AA$

| K1 | K1 ${ }^{1}$ | 4.623(3) | N2 | C1 | 1.325 (8) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| K1 | K1 ${ }^{2}$ | 4.449(3) | N 2 | C2 | $1.351(8)$ |
| K1 | $\mathrm{K} 2^{3}$ | 4.024(3) | N3 | C1 | $1.358(8)$ |
| K1 | F2 | $2.652(5)$ | N3 | C5 | $1.449(8)$ |
| K1 | F2 ${ }^{2}$ | $2.781(5)$ | N4 | C12 | $1.353(8)$ |
| K1 | F3 ${ }^{2}$ | $2.668(5)$ | N4 | C15 | $1.361(8)$ |
| K1 | F4 ${ }^{1}$ | 2.768 (5) | N5 | C12 | $1.342(8)$ |
| K1 | F4 | 2.648 (4) | N5 | C13 | $1.343(8)$ |
| K1 | F6 ${ }^{1}$ | 2.744(6) | N6 | C12 | 1.343 (8) |
| K1 | N1 | $2.956(6)$ | N6 | C16 | $1.438(8)$ |
| K1 | N4 | 2.926 (6) | C 2 | C3 | 1.381(9) |
| K1 | B2 ${ }^{1}$ | $3.311(11)$ | C 2 | C6 | 1.481 (8) |
| K2 | $\mathrm{K} 2^{4}$ | 4.615(2) | C3 | C4 | 1.386(9) |
| K2 | F1 ${ }^{4}$ | 2.981(7) | C 4 | B1 | 1.608(10) |
| K2 | F1 ${ }^{5}$ | 2.690 (5) | C6 | C7 | $1.395(9)$ |
| K2 | F2 ${ }^{4}$ | $3.396(5)$ | C6 | C11 | $1.384(9)$ |
| K2 | F5 ${ }^{4}$ | 2.610 (4) | C 7 | C8 | 1.386(9) |
| K2 | F5 | $2.581(5)$ | C8 | C9 | 1.373(10) |
| K2 | F6 | $3.152(5)$ | C9 | C10 | 1.363(9) |
| K2 | $\mathrm{N} 1{ }^{4}$ | 2.947 (6) | C 10 | C11 | $1.402(9)$ |
| K2 | $\mathrm{N} 4^{4}$ | $3.002(6)$ | C 13 | C14 | $1.396(9)$ |
| K2 | B1 ${ }^{4}$ | $3.512(9)$ | C 13 | C17 | $1.482(9)$ |
| K2 | B2 ${ }^{4}$ | 3.488(10) | C14 | C15 | 1.379(9) |
| F1 | B1 | $1.397(10)$ | C 15 | B2 | 1.603(11) |
| F2 | B1 | 1.411(9) | C 17 | C18 | 1.369(9) |
| F3 | B1 | 1.381 (9) | C 17 | C22 | $1.399(9)$ |


| F4 | B2 | $1.425(13)$ | C18 | C19 | $1.397(10)$ |
| :--- | :--- | ---: | :--- | :--- | :--- |
| F5 | B2 | $1.398(12)$ | C19 | C20 | $1.379(10)$ |
| F6 | B2 | $1.391(9)$ | C20 | C21 | $1.377(10)$ |
| N1 | C1 | $1.353(8)$ | C21 | C22 | $1.399(10)$ |
| N1 | C4 | $1.360(8)$ |  |  |  |

${ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1-X, 1-Y,-Z ;{ }^{3}+X, 3 / 2-Y,-1 / 2+Z ;{ }^{4}+X, 3 / 2-Y, 1 / 2+Z ;{ }^{5}+X,+Y, 1+Z$

Table 5 Bond Angles for OJH383k.

| Atom Atom Atom |  |  | Angle ${ }^{\circ}$168.04(8) | Atom Atom Atom |  |  | $\begin{aligned} & \text { Angle }^{\circ} \\ & 165.89(14) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K1 ${ }^{1}$ | K1 | $\mathrm{K} 1^{2}$ |  | $\mathrm{N} 1{ }^{4}$ | K2 | F6 |  |
| K2 ${ }^{3}$ | K1 | $\mathrm{K} 1{ }^{1}$ | 92.15(5) | $\mathrm{N} 1{ }^{4}$ | K2 | $\mathrm{N} 4^{4}$ | 93.56(16) |
| K2 ${ }^{3}$ | K1 | $\mathrm{K} 1^{2}$ | 95.99(5) | $\mathrm{N} 1{ }^{4}$ | K2 | B1 ${ }^{4}$ | 44.88(16) |
| F2 ${ }^{1}$ | K1 | $\mathrm{K} 1{ }^{1}$ | 34.08(10) | $\mathrm{N} 1{ }^{4}$ | K2 | $B 2^{4}$ | 86.1(2) |
| F2 | K1 | K1 ${ }^{1}$ | 35.99(12) | $\mathrm{N} 4{ }^{4}$ | K2 | $\mathrm{K} 1{ }^{4}$ | 46.45(11) |
| F2 | K1 | $\mathrm{K} 1{ }^{2}$ | 152.71(14) | $\mathrm{N} 4{ }^{4}$ | K2 | $\mathrm{K} 2^{4}$ | 88.03(10) |
| F2 ${ }^{1}$ | K1 | $\mathrm{K} 1^{2}$ | 135.86(12) | $\mathrm{N} 4{ }^{4}$ | K2 | F2 ${ }^{4}$ | 64.66(13) |
| F2 ${ }^{1}$ | K1 | K2 ${ }^{3}$ | 125.64(11) | $\mathrm{N} 4{ }^{4}$ | K2 | F6 | 80.94(15) |
| F2 | K1 | $\mathrm{K} 2^{3}$ | 56.77(12) | $\mathrm{N} 4{ }^{4}$ | K2 | B1 ${ }^{4}$ | 88.09(17) |
| F2 | K1 | F2 ${ }^{1}$ | 70.1(2) | $\mathrm{N} 4{ }^{4}$ | K2 | B2 ${ }^{4}$ | 44.80(18) |
| F2 | K1 | F3 ${ }^{1}$ | 102.60(15) | $B 1^{4}$ | K2 | K1 ${ }^{4}$ | 56.66(14) |
| F2 | K1 | F4 ${ }^{2}$ | 175.41(15) | $B 1^{4}$ | K2 | K2 ${ }^{4}$ | 148.56(14) |
| F2 | K1 | F6 ${ }^{2}$ | 130.51(15) | $B 2^{4}$ | K2 | K1 ${ }^{4}$ | 55.99(19) |
| F2 | K1 | N1 | 61.44(14) | $B 2^{4}$ | K2 | $\mathrm{K} 2^{4}$ | 47.86(16) |
| F2 ${ }^{1}$ | K1 | N1 | 116.10(14) | $B 2^{4}$ | K2 | $B 1^{4}$ | 112.6(2) |
| F2 ${ }^{1}$ | K1 | N4 | $111.35(15)$ | $\mathrm{K} 2^{6}$ | F1 | K2 ${ }^{3}$ | 108.86(19) |
| F2 | K1 | N4 | 75.92(15) | B1 | F1 | K2 ${ }^{6}$ | 139.5(5) |
| F2 | K1 | B2 ${ }^{2}$ | 154.6(2) | B1 | F1 | K2 ${ }^{3}$ | 100.4(4) |
| F2 ${ }^{1}$ | K1 | B2 ${ }^{2}$ | 93.2(2) | K1 | F2 | K1 ${ }^{1}$ | 109.9(2) |
| F3 ${ }^{1}$ | K1 | $\mathrm{K} 1^{2}$ | 94.51(10) | $\mathrm{K} 1{ }^{1}$ | F2 | K2 ${ }^{3}$ | 163.07(17) |
| F3 ${ }^{1}$ | K1 | K1 ${ }^{1}$ | 73.53(9) | K1 | F2 | K2 ${ }^{3}$ | 82.44(12) |
| F3 ${ }^{1}$ | K1 | K2 ${ }^{3}$ | 131.25(12) | B1 | F2 | K1 | 122.1(4) |
| F3 ${ }^{1}$ | K1 | F2 ${ }^{1}$ | 48.58(12) | B1 | F2 | K1 ${ }^{1}$ | 99.1(4) |
| F3 ${ }^{1}$ | K1 | F4 ${ }^{2}$ | 72.84(14) | B1 | F2 | K2 ${ }^{3}$ | 82.9(4) |
| F3 ${ }^{1}$ | K1 | F6 ${ }^{2}$ | 76.01(15) | B1 | F3 | K $1^{1}$ | 105.3(4) |
| F3 ${ }^{1}$ | K1 | N1 | 162.95(14) | K1 | F4 | $\mathrm{K} 1^{2}$ | 117.18(19) |
| F3 ${ }^{1}$ | K1 | N4 | 86.12(16) | B2 | F4 | K1 | 118.6(4) |
| F3 ${ }^{1}$ | K1 | B2 ${ }^{2}$ | 77.8(2) | B2 | F4 | $\mathrm{K} 1^{2}$ | 99.3(4) |
| F4 | K1 | K1 ${ }^{1}$ | 155.13(14) | K2 | F5 | K2 ${ }^{3}$ | 125.5(2) |
| F4 | K1 | K1 ${ }^{2}$ | 32.19(11) | B2 | F5 | K2 ${ }^{3}$ | 117.8(4) |
| F4 ${ }^{2}$ | K1 | $\mathrm{K} 1^{2}$ | 30.64(10) | B 2 | F5 | K2 | 116.7(4) |
| F4 ${ }^{2}$ | K1 | K1 ${ }^{1}$ | 139.98(12) | $\mathrm{K} 1^{2}$ | F6 | K2 | 127.32(16) |
| F4 | K1 | K2 ${ }^{3}$ | 63.86(12) | B2 | F6 | $\mathrm{K} 1^{2}$ | 101.3(6) |


| F4 ${ }^{2}$ | K1 | $\mathrm{K} 2^{3}$ | 126.57(11) | B2 | F6 | K2 | 90.0(5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F4 | K1 | F2 | 120.63(17) | $\mathrm{K} 2^{3}$ | N1 | K1 | 85.96(15) |
| F4 | K1 | F2 ${ }^{1}$ | 164.91(15) | C1 | N1 | K1 | 117.4(4) |
| F4 ${ }^{2}$ | K1 | F2 ${ }^{1}$ | 105.94(15) | C1 | N1 | K2 ${ }^{3}$ | 121.3(4) |
| F4 | K1 | F3 ${ }^{1}$ | 116.47(14) | C1 | N1 | C4 | 115.9(5) |
| F4 | K1 | F4 ${ }^{2}$ | 62.82(19) | C 4 | N1 | K1 | 101.8(4) |
| F4 | K1 | F6 ${ }^{2}$ | 102.29(15) | C 4 | N1 | K2 ${ }^{3}$ | 109.3(4) |
| F4 ${ }^{2}$ | K1 | N1 | 123.03(14) | C1 | N2 | C2 | 116.4(5) |
| F4 | K1 | N1 | 78.99(15) | C1 | N3 | C5 | 122.1(6) |
| F4 ${ }^{2}$ | K1 | N4 | 103.96(16) | K1 | N4 | K2 ${ }^{3}$ | 85.50(16) |
| F4 | K1 | N4 | 64.84(15) | C 12 | N4 | K1 | 114.0(4) |
| F4 ${ }^{2}$ | K1 | B2 ${ }^{2}$ | 25.1(2) | C 12 | N4 | K2 ${ }^{3}$ | 125.9(4) |
| F4 | K1 | B2 ${ }^{2}$ | 79.9(2) | C 12 | N4 | C15 | 115.8(6) |
| F6 ${ }^{2}$ | K1 | K1 ${ }^{1}$ | 102.29(10) | C15 | N4 | K1 | 100.2(4) |
| F6 ${ }^{2}$ | K1 | $\mathrm{K} 1^{2}$ | 74.06(9) | C 15 | N4 | K2 ${ }^{3}$ | 108.6(4) |
| F6 ${ }^{2}$ | K1 | $\mathrm{K} 2^{3}$ | 152.30(11) | C 12 | N5 | C13 | 116.4(5) |
| F6 ${ }^{2}$ | K1 | F2 ${ }^{1}$ | 73.80(14) | C 12 | N6 | C16 | 125.2(6) |
| F6 ${ }^{2}$ | K1 | F4 ${ }^{2}$ | 48.52(14) | N1 | C1 | N3 | 115.8(6) |
| F6 ${ }^{2}$ | K1 | N1 | 109.02(15) | N 2 | C1 | N1 | 127.1(6) |
| F6 ${ }^{2}$ | K1 | N4 | 150.47(16) | N 2 | C1 | N3 | 117.1(6) |
| F6 ${ }^{2}$ | K1 | B2 ${ }^{2}$ | 24.32(19) | N 2 | C2 | C3 | 121.1(6) |
| N1 | K1 | K1 ${ }^{1}$ | 89.43(11) | N 2 | C2 | C6 | 115.7(5) |
| N1 | K1 | K1 ${ }^{2}$ | 102.53(11) | C3 | C2 | C6 | 123.2(5) |
| N1 | K1 | K2 ${ }^{3}$ | 46.92(11) | C 2 | C3 | C4 | 119.1(6) |
| N1 | K1 | $\mathrm{B} 2{ }^{2}$ | 113.7(2) | N1 | C4 | C3 | 120.4(6) |
| N4 | K1 | $\mathrm{K} 1^{2}$ | 84.31(11) | N1 | C4 | B1 | 116.0(6) |
| N4 | K1 | K1 ${ }^{1}$ | 94.73(11) | C3 | C4 | B1 | 123.4(6) |
| N4 | K1 | $\mathrm{K} 2^{3}$ | 48.05(12) | C7 | C6 | C2 | 120.0(6) |
| N4 | K1 | N1 | 94.95(17) | C11 | C6 | C2 | 120.5(6) |
| N4 | K1 | B2 ${ }^{2}$ | 129.1(2) | C11 | C6 | C7 | 119.6(6) |
| B2 ${ }^{2}$ | K1 | K1 ${ }^{1}$ | 125.00(18) | C8 | C7 | C6 | 120.3(6) |
| B2 ${ }^{2}$ | K1 | $\mathrm{K} 1^{2}$ | 50.00(17) | C9 | C8 | C7 | 119.4(6) |
| B2 ${ }^{2}$ | K1 | K2 ${ }^{3}$ | 140.53(17) | C 10 | C9 | C8 | 121.1(6) |
| K14 | K2 | K2 ${ }^{4}$ | 99.73(4) | C9 | C10 | C11 | 120.3(6) |
| F1 ${ }^{4}$ | K2 | K1 ${ }^{4}$ | 78.88(11) | C6 | C11 | C10 | 119.3(6) |
| F1 ${ }^{5}$ | K2 | K1 ${ }^{4}$ | 136.42(14) | N5 | C12 | N4 | 126.6(6) |
| F1 ${ }^{5}$ | K2 | $\mathrm{K} 2^{4}$ | 37.67(14) | N5 | C12 | N6 | 116.7(6) |
| F14 | K2 | $\mathrm{K} 2^{4}$ | 164.24(11) | N6 | C12 | N4 | 116.8(6) |
| F1 ${ }^{5}$ | K2 | F1 ${ }^{4}$ | 138.4(2) | N5 | C13 | C14 | 121.7(6) |
| F1 ${ }^{4}$ | K2 | F2 ${ }^{4}$ | 40.55(13) | N5 | C13 | C17 | 117.0(5) |
| F1 ${ }^{5}$ | K2 | F2 ${ }^{4}$ | 173.21(16) | C14 | C13 | C17 | 121.2(6) |
| F1 ${ }^{5}$ | K2 | F6 | 73.95(16) | C15 | C14 | C13 | 118.0(6) |
| F1 ${ }^{4}$ | K2 | F6 | 105.09(13) | N 4 | C15 | C14 | 121.5(6) |
| F1 ${ }^{5}$ | K2 | $\mathrm{N} 1{ }^{4}$ | 119.86(17) | N 4 | C15 | B2 | 115.8(6) |
| F1 ${ }^{5}$ | K2 | $\mathrm{N} 4^{4}$ | 118.68(19) | C14 | C15 | B2 | 122.7(6) |

$\left.\begin{array}{lllrllr}\text { F1 }^{4} & \text { K2 } & \text { N4 }^{4} & 101.69(16) & \text { C18 } & \text { C17 } & \text { C13 }\end{array}\right) 119.9(6)$

[^0]Table 6 Torsion Angles for OJH383k.

| A | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | Angle $^{\circ}$ | A | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | Angle $/{ }^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

K1 F2 B1 K1 ${ }^{1}$ 120.5(5) N1 C4 B1 F1 75.4(8)
K1 F2 B1 K2 ${ }^{2}$ -76.4(4) N1 C4 B1 F2
-42.3(9)
$\mathrm{K} 1^{1} \mathrm{~F} 2 \mathrm{~B} 1 \mathrm{~K} 2^{2}$
163.02(18) N1 C4 B1 F3
-162.7(6)
$-123.4(5) \mathrm{N} 2 \mathrm{C} 2 \mathrm{C} 3 \mathrm{C} 4 \quad 0.5(9)$
$\mathrm{K} 1{ }^{1} \mathrm{~F} 2 \mathrm{~B} 1 \mathrm{~F} 1 \quad 116.0(5) \mathrm{N} 2 \mathrm{C} 2 \mathrm{C} 6 \quad \mathrm{C} 7 \quad-35.2(8)$
K1 ${ }^{1}$ F2 B1 F3
K1 F2 B1 F3
$\mathrm{K} 1^{1} \mathrm{~F} 2 \mathrm{~B} 1 \quad \mathrm{C} 4$
K1 F2 B1 C4
-0.1(6) N2 C2 C6 C11 120.4(5) N4 C15B2 K1 ${ }^{3}$ -123.8(5) N4 C15 B2 K2 ${ }^{2}$
144.2(6)
-121.4(5)
24.4(6)
-60.7(9)
$\mathrm{K} 1^{1} \mathrm{~F} 3 \mathrm{~B} 1 \mathrm{~K} 2^{2}$
$\mathrm{K} 1^{1}$ F3 B1 F1
K1 ${ }^{1}$ F3 B1 F2
K1 ${ }^{1}$ F3 B1 C4
K1 F4 B2 K1 ${ }^{3}$
K1 F4 B2 K $2^{2}$
$\mathrm{K} 1^{3} \mathrm{~F} 4 \mathrm{~B} 2 \mathrm{~K} 2^{2}$
$\mathrm{K} 1^{3} \mathrm{~F} 4 \mathrm{~B} 2$ F5
K1 F4 B2 F5
$\mathrm{K} 1^{3} \mathrm{~F} 4 \mathrm{~B} 2 \mathrm{~F} 6$
K1 F4 B2 F6
K1 F4 B2 C15
$\mathrm{K} 1^{3} \mathrm{~F} 4 \mathrm{~B} 2 \mathrm{C} 15$
-3.3(8) N4 C15 B2 F4
$\begin{array}{llll}-89.4(18) & \mathrm{N} 4 & \text { C15 B2 } & \text { F5 } \\ -114.1(6) & \text { N4 C15 B2 F6 } & \text { 55.4(10) } \\ \end{array}$
0.1(6) N5 C13 C14C15 1.6(10) 123.3(5) N5 C13C17C18 -27.7(9)
128.0(4) N5 C13 C17C22 $\quad 154.6(6)$ $-60.8(4) \mathrm{C} 1 \mathrm{~N} 1 \mathrm{C} 4 \mathrm{C} 3 \quad 0.6(9)$
171.21(15) C1 N1 C4 B1 -174.7(6) $132.9(5) \mathrm{C} 1 \mathrm{~N} 2 \mathrm{C} 2 \mathrm{C} 3 \quad 1.8(9)$
-99.1(5) C1 N2 C2 C6 -178.2(5)
18.2(7) C2 N2 C1 N1 -3.2(9) 146.3(5) C2 N2 C1 N3 178.2(6) 21.4(9) C2 C3 C4 N1 -1.8(10)
-106.6(6) C2 C3 C4 B1 173.2(6)
K1 ${ }^{3}$ F6 B2 K2 ${ }^{2} \quad-134.9(11)$ C2 C6 C7 C8 $179.9(6)$
K1 ${ }^{3}$ F6 B2 F4 $\quad-18.5(7) \mathrm{C} 2 \quad \mathrm{C} 6 ~ \mathrm{C} 11 \mathrm{C} 10 \quad-179.4(6)$
K1 ${ }^{3}$ F6 B2 F5 -130.7(7) C3 C2 C6 C7 144.8(6)
K1 ${ }^{3}$ F6 B2 C15 104.5(8) C3 C2 C6 C11 $\quad-35.8(9)$
$\begin{array}{llllll}\mathrm{K} 1 \mathrm{~N} 1 \mathrm{C} 1 & \mathrm{~N} 2 & 122.6(6) & \mathrm{C} 3 & \mathrm{C} 4 & \mathrm{~B} 1 \\ \mathrm{~K} 1{ }^{1} \quad 79.4(8)\end{array}$
K1 N1 C1 N3 -58.8(7) C3 C4 B1 K2 ${ }^{2} \quad-149.1(6)$
K1 N1C4 C3
K1 N1C4 B1
K1 N4C12N5
K1 N4C12N6
K1 N4C15C14
-128.1(6) C3 C4 B1 F1
-99.7(8)
142.6(7)
22.1(10)
2.0(9)
$\begin{array}{rllllr}-123.9(6) & \mathrm{C} 4 & \mathrm{~N} 1 & \mathrm{C} 1 & \mathrm{~N} 3 & -179.3(6) \\ 58.4(7) & \mathrm{C} 5 & \mathrm{~N} 3 & \mathrm{C} 1 & \mathrm{~N} 1 & 179.3(6)\end{array}$
K1 N4C15 B2
K2 ${ }^{4}$ F1 B1 K1 ${ }^{1}$
$\mathrm{K} 2^{2} \mathrm{~F} 1 \mathrm{~B} 1 \mathrm{~K} 1^{1}$
K2 ${ }^{4}$ F1 B1 K2 ${ }^{2}$
K2 ${ }^{4}$ F1 B1 F2
K2 ${ }^{2}$ F1 B1 F2
K2 ${ }^{4}$ F1 B1 F3
K2 ${ }^{2}$ F1 B1 F3
$\mathrm{K} 2^{4}$ F1 B1 4
56.6(6) C3 C4 B1 F2
117.8(6) C3 C4 B1 F3
$\begin{array}{rllllr}-123.9(6) & \mathrm{C} 4 & \mathrm{~N} 1 & \mathrm{C} 1 & \mathrm{~N} 3 & -179.3(6) \\ 58.4(7) & \mathrm{C} 5 & \mathrm{~N} 3 & \mathrm{C} 1 & \mathrm{~N} 1 & 179.3(6)\end{array}$
-19.3(10) C5 N3 C1 N2 -1.9(10)
116.8(4) C6 C2 C3 C4 -179.5(6)
$-136.2(8) \mathrm{C} 6$ C7 C8 C9 $-0.9(10)$
-79.0(9) C7 C6 C11C10 0.1(9)
$\begin{array}{rrrrr}57.2(5) & \mathrm{C} 7 & \mathrm{C} 8 & \mathrm{C} 9 & \mathrm{C} 10 \\ 35.9(11) & \mathrm{C} 8 & \mathrm{C} 9 & \mathrm{C} 10 \mathrm{C} 11 & -0.4(10)\end{array}$
172.0(4) C9 C10C11C6 -0.1(10)
$\mathrm{K} 2^{2}$ F1 B1 C4
$159.9(5) \mathrm{C} 11 \mathrm{C} 6 \mathrm{C} 7 \mathrm{C} 8 \quad 0.4(10)$
-63.9(6) C12 N4 C15C14 -0.8(9)

| $\mathrm{K} 2^{2} \mathrm{~F} 2 \mathrm{~B} 1 \mathrm{~K} 1^{1}$ | -163.02(18) | C 12 N 4 C 15 B 2 | -178.4(7) |
| :---: | :---: | :---: | :---: |
| $\mathrm{K} 2^{2} \mathrm{~F} 2 \mathrm{~B} 1 \mathrm{~F} 1$ | -47.0(5) | C 12 N 5 C 13 C 14 | -0.3(9) |
| K2 ${ }^{2}$ F2 B1 F3 | -163.2(5) | C 12 N 5 C 13 C 17 | 176.1(6) |
| $\mathrm{K} 2^{2} \mathrm{~F} 2 \mathrm{~B} 1 \quad \mathrm{C} 4$ | 73.1(5) | C 13 N 5 C 12 N 4 | -1.7(10) |
| $\mathrm{K} 2^{2} \mathrm{~F} 5 \mathrm{~B} 2 \mathrm{~K} 1^{3}$ | 125.5(5) | C 13 N 5 C 12 N 6 | 179.4(6) |
| K2 F5 B2 K $1^{3}$ | -54.3(9) | C 13 C 14 C 15 N 4 | -1.0(10) |
| K2 F5 B2 K2 ${ }^{2}$ | -179.7(7) | C 13 C 14 C 15 B 2 | 176.5(7) |
| K2 F5 B2 F4 | -110.4(5) | C 13 C 17 C 18 C 19 | -176.1(6) |
| $\mathrm{K} 2^{2} \mathrm{~F} 5 \mathrm{~B} 2 \mathrm{~F} 4$ | 69.3(6) | C 13 C 17 C 22 C 21 | 176.9(6) |
| $\mathrm{K} 2^{2} \mathrm{~F} 5 \mathrm{~B} 2 \mathrm{~F} 6$ | -176.8(5) | C 14 C 13 C 17 C 18 | 148.7(6) |
| K2 F5 B2 F6 | 3.5(10) | C 14 C 13 C 17 C 22 | -28.9(9) |
| K2 F5 B2 C15 | 129.6(5) | $\mathrm{C} 14 \mathrm{C} 15 \mathrm{~B} 2 \mathrm{~K} 1^{3}$ | 60.9(9) |
| $\mathrm{K} 2{ }^{2} \mathrm{~F} 5 \mathrm{~B} 2 \mathrm{C} 15$ | -50.6(9) | $\mathrm{C} 14 \mathrm{C} 15 \mathrm{~B} 2 \mathrm{~K} 2^{2}$ | -153.2(6) |
| K2 F6 B2 K $1^{3}$ | 128.2(2) | C 14 C 15 B 2 F 4 | 121.6(7) |
| K2 F6 B2 K $2^{2}$ | -6.7(12) | C 14 C 15 B 2 F 5 | -122.2(8) |
| K2 F6 B2 F4 | 109.6(6) | C 14 C 15 B 2 F 6 | 0.7(12) |
| K2 F6 B2 F5 | -2.5(7) | C 15 N 4 C 12 N 5 | 2.3(10) |
| K2 F6 B2 C15 | -127.3(8) | C 15 N 4 C 12 N 6 | -178.9(6) |
| $\mathrm{K} 2{ }^{2} \mathrm{~N} 1 \mathrm{C} 1 \mathrm{~N} 2$ | -134.5(6) | C16N6 C12N4 | -175.8(6) |
| $\mathrm{K} 2{ }^{2} \mathrm{~N} 1 \mathrm{C} 1 \mathrm{~N} 3$ | 44.1(7) | C16N6 C12N5 | 3.1(10) |
| $\mathrm{K} 2^{2} \mathrm{~N} 1 \mathrm{C} 4$ C3 | 142.1(5) | C 17 C 13 C 14 C 15 | -174.6(6) |
| $\mathrm{K} 2{ }^{2} \mathrm{~N} 1 \mathrm{C} 4 \mathrm{~B} 1$ | -33.2(6) | C 17 C 18 C 19 C 20 | -1.8(11) |
| K2 ${ }^{2}$ N4C12 5 | -139.7(5) | C 18 C 17 C 22 C 21 | -0.8(10) |
| K2 ${ }^{2}$ N4C12 N 6 | 39.2(8) | C 18 C 19 C 20 C 21 | 1.0(10) |
| K2 ${ }^{2}$ N4C15C14 | 147.4(5) | C 19 C 20 C 21 C 22 | -0.2(10) |
| K2 ${ }^{2}$ N4C15 B2 | -30.2(7) | C 20 C 21 C 22 C 17 | 0.0(10) |
| N1 C4B1 K1 ${ }^{1}$ | -105.4(6) | C 22 C 17 C 18 C 19 | 1.6(10) |
| N1 C4B1 K2 ${ }^{2}$ | 26.0(5) |  |  |

${ }^{1} 1-\mathrm{X}, 1-\mathrm{Y},-\mathrm{Z} ;{ }^{2}+\mathrm{X}, 3 / 2-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{3} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{4}+\mathrm{X},+\mathrm{Y},-1+\mathrm{Z}$

Table 7 Hydrogen Atom Coordinates ( $\AA \times 10^{4}$ ) and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $0 J H 383 \mathrm{k}$.

| Atom | x | $y$ | $z$ | U(eq) |
| :---: | :---: | :---: | :---: | :---: |
| H3 | 6592.37 | 5978.81 | 5084.12 | 28 |
| H6 | 4226.67 | 6431.75 | -81.02 | 28 |
| H3A | 7628.05 | 5260.43 | -199.58 | 22 |
| H5A | 8084.81 | 5914.86 | 6194.92 | 42 |
| H5B | 7724.58 | 5093.35 | 6286.93 | 42 |
| H5C | 7376.41 | 5771.78 | 7159.16 | 42 |
| H7 | 9437.91 | 5507.08 | 3564.37 | 23 |
| H8 | 10674.21 | 5010.83 | 3341.26 | 25 |
| H9 | 10815.53 | 4109.59 | 1543.1 | 28 |
| H10 | 9758.11 | 3720.21 | -72.51 | 24 |


| H11 | 8508.28 | 4223.18 | 101.13 | 22 |
| :--- | ---: | ---: | ---: | ---: |
| H14 | 3198.08 | 6438.55 | 5376.85 | 22 |
| H16A | 3385.28 | 6839.94 | -1970.63 | 29 |
| H16B | 2714.64 | 6861.45 | -885.25 | 29 |
| H16C | 2974.88 | 6080.26 | -1538.58 | 29 |
| H18 | 1541.58 | 7206.02 | 1613.34 | 27 |
| H19 | 268.2 | 7453.9 | 2141.62 | 28 |
| H20 | -170.79 | 6974.26 | 4293.55 | 29 |
| H21 | 674.91 | 6282.87 | 5968.43 | 29 |
| H22 | 1963.36 | 6057.3 | 5478.19 | 25 |

Table 8 Solvent masks information for OJH383k.

| Number | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ | Volume | Electron <br> count | Content |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.156 | 0.250 | -0.798 | 160.6 | 60.9 Solvent |  |
| 2 | 0.844 | 0.750 | -0.780 | 160.6 | 60.7 Solvent |  |

## X-ray crystal structure data for compound 32e

ORTEP of 10a, thermal ellipsoids are shown at $\mathbf{5 0 \%}$ probability


## Crystal structure determination of compound 32e

Crystals of 32 e were grown from a saturated acetone solution, allowing slow evaporation.
Crystal Data for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BF}_{3} \mathrm{~N}_{3}(M=253.04 \mathrm{~g} / \mathrm{mol})$ : monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$ (no. 14 ), $a=$ $17.8400(7) \AA, b=6.8724(3) \AA, c=19.3259(8) \AA, \beta=102.492(2)^{\circ}, V=2313.33(17) \AA^{3}, Z=$ $8, T=100.03 \mathrm{~K}, \mu(\mathrm{CuK} \alpha)=1.055 \mathrm{~mm}^{-1}$, Dcalc $=1.453 \mathrm{~g} / \mathrm{cm}^{3}, 12247$ reflections measured $\left(6.116^{\circ} \leq 2 \Theta \leq 133.71^{\circ}\right), 3735$ unique ( $R_{\text {int }}=0.0706, \mathrm{R}_{\text {sigma }}=0.0683$ ) which were used in all calculations. The final $R_{1}$ was 0.1587 ( $\mathrm{I}>2 \sigma(\mathrm{I})$ ) and $w R_{2}$ was 0.3409 (all data).

Table 1 Crystal data and structure refinement for OJH391v_0m.

| Identification code | $\mathrm{OJH} 391 \mathrm{v}_{2} 0 \mathrm{~m}$ |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BF}_{3} \mathrm{~N}_{3}$ |
| Formula weight | 253.04 |
| Temperature/K | 100.03 |
| Crystal system | monoclinic |
| Space group | $\mathrm{P} 2_{1} / \mathrm{n}$ |
| $\mathrm{a} / \AA$ | $17.8400(7)$ |
| $\mathrm{b} / \AA$ | $6.8724(3)$ |
| $\mathrm{c} / \AA$ | $19.3259(8)$ |
| $\alpha /{ }^{\circ}$ | 90 |
| $\beta /{ }^{\circ}$ | $102.492(2)$ |
| $\gamma /{ }^{\circ}$ | 90 |


| Volume $/ \AA^{3}$ | $2313.33(17)$ |
| :--- | :--- |
| Z | 8 |
| $\rho_{\text {calcg }} / \mathrm{cm}^{3}$ | 1.453 |
| $\mu / \mathrm{mm}^{-1}$ | 1.055 |
| $\mathrm{~F}(000)$ | 1040.0 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.2 \times 0.034 \times 0.025$ |
| Radiation | $\mathrm{CuK} \alpha(\lambda=1.54178)$ |
| $2 \Theta$ range for data collection $/{ }^{\circ}$ | 6.116 to 133.71 |
| Index ranges | $-21 \leq \mathrm{h} \leq 21,-7 \leq \mathrm{k} \leq 8,-22 \leq 1 \leq 22$ |
| Reflections collected | 12247 |
| Independent reflections | $3735\left[\mathrm{R}_{\text {int }}=0.0706, \mathrm{R}_{\text {sigma }}=0.0683\right]$ |
| Data/restraints $/$ parameters | $3735 / 282 / 279$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.419 |
| Final R indexes $[\mathrm{I}=2 \sigma(\mathrm{I})]$ | $\mathrm{R}_{1}=0.1587, \mathrm{wR}_{2}=0.3370$ |
| Final R indexes [all data $]$ | $\mathrm{R}_{1}=0.1701, \mathrm{wR}_{2}=0.3409$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$ | $0.58 /-0.53$ |

Table 2 Fractional Atomic Coordinates ( $\times \mathbf{1 0}^{\mathbf{4}}$ ) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{O J H} 391 v_{-} 0 \mathrm{~m}$. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $\mathrm{U}_{\mathrm{IJ}}$ tensor.

| Atom |  | $y$ | $z$ | U(eq) |
| :---: | :---: | :---: | :---: | :---: |
| F1 | 783(3) | 4825(10) | 4127(3) | 31.3(15) |
| N1 | 3398(4) | 3611(11) | 3600(4) | 15.2(15) |
| C1 | 3503(5) | 3610(14) | 4301(5) | 16.7(11) |
| B1 | 1457(6) | 4661(15) | 4654(6) | 15.0(18) |
| F2 | 1385(3) | 3095(9) | 5100(3) | 27.9(14) |
| N2 | 2910(4) | 3998(11) | 4639(4) | 13.7(15) |
| C2 | 2178(5) | 4252(14) | 4258(5) | 16.7(11) |
| F3 | 1570(3) | 6370(9) | 5045(3) | 27.0(14) |
| N3 | 4191(4) | 3323(13) | 4686(4) | 21.9(18) |
| C3 | 2063(5) | 4146(13) | 3537(5) | 16.1(8) |
| C4 | 2688(5) | 3875(13) | 3215(5) | 16.1(8) |
| C5 | 3096(5) | 4202(14) | 5416(5) | 16.7(11) |
| C6 | 2610(5) | 3877(13) | 2434(5) | 16.1(8) |
| C7 | 1890(5) | 3723(13) | 1961(5) | 16.1(8) |
| C8 | 1836(5) | 3778(14) | 1237(5) | 17.9(19) |
| C9 | 2480(6) | 3963(14) | 958(5) | 20.0(19) |
| C10 | 3193(6) | 4094(14) | 1417(5) | 19.8(19) |
| C11 | 3267(5) | 4061(13) | 2146(5) | 16.1(8) |
| B2 | 5799(6) | 663(17) | 3943(6) | 19(2) |
| F4 | 5301(3) | -934(9) | 3877(3) | 27.7(14) |
| N4 | 6988(4) | 972(11) | 2157(4) | 14.5(15) |
| F5 | 5386(3) | 2399(9) | 3956(3) | 25.9(14) |


| N5 | $5838(4)$ | $889(11)$ | $2584(4)$ | $15.4(15)$ |
| :--- | ---: | ---: | ---: | ---: |
| F6 | $6340(3)$ | $487(11)$ | $4562(3)$ | $33.2(16)$ |
| N6 | $5824(4)$ | $1077(12)$ | $1378(4)$ | $19.1(17)$ |
| C12 | $6220(5)$ | $968(14)$ | $2043(5)$ | $16.3(17)$ |
| C13 | $6248(5)$ | $744(13)$ | $3276(5)$ | $16.3(17)$ |
| C14 | $7024(5)$ | $723(13)$ | $3387(5)$ | $17.2(11)$ |
| C15 | $7385(5)$ | $873(14)$ | $2814(5)$ | $17.2(11)$ |
| C16 | $5001(5)$ | $1022(15)$ | $2411(5)$ | $20(2)$ |
| C17 | $8231(5)$ | $935(14)$ | $2913(5)$ | $17.2(11)$ |
| C18 | $8564(5)$ | $786(14)$ | $2328(5)$ | $18.7(19)$ |
| C19 | $9352(5)$ | $891(16)$ | $2395(6)$ | $25(2)$ |
| C20 | $9819(5)$ | $1133(14)$ | $3065(6)$ | $22(2)$ |
| C21 | $9502(6)$ | $1247(15)$ | $3651(6)$ | $24(2)$ |
| C22 | $8719(6)$ | $1124(15)$ | $3585(5)$ | $23(2)$ |

Table 3 Anisotropic Displacement Parameters ( $\AA^{2} \times 10^{3}$ ) for OJH391v_0m. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathbf{a}^{* 2} \mathbf{U}_{11}+2 h k \mathbf{a}^{*} \mathbf{b}^{*} \overline{\mathbf{U}}_{12}+\ldots\right]$.

| Atom | $\mathbf{U}_{11}$ | $\mathbf{U}_{22}$ | $\mathbf{U}_{\mathbf{3 3}}$ | $\mathbf{U}_{\mathbf{2 3}}$ | $\mathbf{U}_{13}$ | $\mathbf{U}_{\mathbf{1 2}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| F1 | $13(3)$ | $56(4)$ | $26(3)$ | $-5(3)$ | $7(2)$ | $3(3)$ |
| N1 | $20(3)$ | $8(4)$ | $19(3)$ | $-1(3)$ | $6(3)$ | $-3(3)$ |
| C1 | $12(2)$ | $16(3)$ | $23(2)$ | $-1(2)$ | $5.5(18)$ | $0(2)$ |
| B1 | $15(4)$ | $13(4)$ | $21(5)$ | $0(3)$ | $13(3)$ | $0(4)$ |
| F2 | $30(3)$ | $27(3)$ | $33(3)$ | $7(3)$ | $20(3)$ | $-1(3)$ |
| N2 | $11(3)$ | $10(4)$ | $21(3)$ | $3(3)$ | $7(3)$ | $-2(3)$ |
| C2 | $12(2)$ | $16(3)$ | $23(2)$ | $-1(2)$ | $5.5(18)$ | $0(2)$ |
| F3 | $28(3)$ | $24(3)$ | $34(3)$ | $-6(2)$ | $16(3)$ | $4(3)$ |
| N3 | $16(3)$ | $36(5)$ | $17(4)$ | $3(4)$ | $10(3)$ | $3(4)$ |
| C3 | $19.6(19)$ | $6.4(17)$ | $22.5(18)$ | $0.9(16)$ | $4.9(15)$ | $0.2(16)$ |
| C4 | $19.6(19)$ | $6.4(17)$ | $22.5(18)$ | $0.9(16)$ | $4.9(15)$ | $0.2(16)$ |
| C5 | $12(2)$ | $16(3)$ | $23(2)$ | $-1(2)$ | $5.5(18)$ | $0(2)$ |
| C6 | $19.6(19)$ | $6.4(17)$ | $22.5(18)$ | $0.9(16)$ | $4.9(15)$ | $0.2(16)$ |
| C7 | $19.6(19)$ | $6.4(17)$ | $22.5(18)$ | $0.9(16)$ | $4.9(15)$ | $0.2(16)$ |
| C8 | $17(4)$ | $14(5)$ | $22(4)$ | $0(4)$ | $1(3)$ | $4(4)$ |
| C9 | $32(4)$ | $10(4)$ | $19(4)$ | $5(4)$ | $8(3)$ | $5(4)$ |
| C10 | $25(4)$ | $11(4)$ | $26(4)$ | $3(4)$ | $11(3)$ | $0(4)$ |
| C11 | $19.6(19)$ | $6.4(17)$ | $22.5(18)$ | $0.9(16)$ | $4.9(15)$ | $0.2(16)$ |
| B2 | $19(5)$ | $20(5)$ | $20(4)$ | $-1(4)$ | $9(3)$ | $-3(4)$ |
| F4 | $28(3)$ | $29(3)$ | $28(3)$ | $2(3)$ | $12(3)$ | $-7(3)$ |
| N4 | $15(3)$ | $8(4)$ | $21(3)$ | $0(3)$ | $4(3)$ | $-1(3)$ |
| F5 | $24(3)$ | $27(3)$ | $30(3)$ | $-5(3)$ | $13(3)$ | $4(2)$ |
| N5 | $18(3)$ | $8(4)$ | $21(3)$ | $0(3)$ | $8(3)$ | $2(3)$ |
| F6 | $21(3)$ | $61(5)$ | $19(3)$ | $-4(3)$ | $8(2)$ | $1(3)$ |
| N6 | $9(4)$ | $25(4)$ | $24(3)$ | $-3(3)$ | $6(3)$ | $2(3)$ |


| C12 | $16(4)$ | $12(4)$ | $21(4)$ | $3(4)$ | $6(3)$ | $0(4)$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| C13 | $21(4)$ | $7(4)$ | $22(4)$ | $-4(4)$ | $8(3)$ | $-1(3)$ |
| C14 | $18(2)$ | $12(2)$ | $23(2)$ | $0(2)$ | $7.2(18)$ | $-3(2)$ |
| C15 | $18(2)$ | $12(2)$ | $23(2)$ | $0(2)$ | $7.2(18)$ | $-3(2)$ |
| C16 | $19(4)$ | $23(5)$ | $19(5)$ | $-7(4)$ | $3(4)$ | $-2(4)$ |
| C17 | $18(2)$ | $12(2)$ | $23(2)$ | $0(2)$ | $7.2(18)$ | $-3(2)$ |
| C18 | $20(4)$ | $15(5)$ | $22(4)$ | $-2(4)$ | $7(3)$ | $1(4)$ |
| C19 | $16(4)$ | $26(6)$ | $34(5)$ | $-2(5)$ | $9(4)$ | $3(4)$ |
| C20 | $11(4)$ | $15(5)$ | $41(5)$ | $4(4)$ | $6(3)$ | $3(4)$ |
| C21 | $15(4)$ | $21(5)$ | $32(5)$ | $-5(4)$ | $-1(4)$ | $2(4)$ |
| C22 | $22(4)$ | $23(5)$ | $25(4)$ | $-3(4)$ | $7(3)$ | $-1(4)$ |

Table 4 Bond Lengths for OJH391v_0m.
Atom Atom Length $/ \AA$ Atom Atom Length $/ \AA$
F1 B1 1.402(13) B2 F4 1.401(12)
N1 C1 1.327(12) B2 F5 1.405(13)
N1 C4 $1.335(12)$ B2 F6 $1.370(13)$
C1 N2 1.384(11) B2 C13 1.658(13)
C1 N3 1.304(12) N4 C12 1.339(12)
B1 F2 1.403(12) N4 C15 1.315(12)
B1 C2 1.657(13) N5 C12 1.368(11)
B1 F3 1.387(12) N5 C13 1.383(12)
N2 C2 1.364(12) N5 C16 1.460(12)
N2 C5 1.474(11) N6 C12 1.328(12)
C2 C3 1.365(13) C13 C14 1.355(13)
C3 C4 1.402(13) C14 C15 1.399(13)
C4 C6 1.486(13) C15 C17 1.481(13)
C6 C7 $\quad 1.410(13) \mathrm{C} 17 \quad \mathrm{C} 18 \quad 1.390(13)$
C6 C11 1.408(12) C17 C22 1.405(14)
C7 C8 1.383(13) $\mathrm{C} 18 \quad \mathrm{C} 19 \quad 1.385(13)$
C8 C9 1.377(13) C19 C20 $\quad 1.389(15)$

C9 C10 $\quad 1.386(14) \mathrm{C} 20 \quad \mathrm{C} 21 \quad 1.373(14)$
C10 C11 1.386(13) C21 C22 1.377(14)

Table 5 Bond Angles for OJH391v_0m.

| Atom Atom Atom |  |  |  |  |  |  |
| :--- | :--- | :--- | ---: | :--- | :--- | :---: |
| C1 | N1 | C4 | Atom Atom Atom |  |  |  |
| N1 | C1 | N2 | $118.5(8)$ | F4 | B2 |  |
| F5 |  |  |  |  |  |  |
| N3 | C1 | N1 | $121.8(8)$ | F4 | B2 |  |
| C13 |  |  |  |  |  |  |
| N3 | C1 | N2 | $119.3(8)$ | F5 | B2 |  |
| C13 |  |  |  |  |  |  |
| F1 | B1 | F2 | $118.8(8)$ | F6 | B2 |  |
| F4 |  |  |  |  |  |  |
|  |  | $109.3(8)$ | F6 | B2 | F5 |  |

Angle ${ }^{\circ}{ }^{\circ}$
$110.0(8)$
$111.0(8)$
$109.2(8)$
$108.9(9)$
$109.4(8)$

| F1 | B1 | C2 | 107.8(7) | F6 | B2 | C13 | 108.3(8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F2 | B1 | C2 | 109.7(8) | C15 | N4 | C12 | 118.4(8) |
| F3 | B1 | F1 | 109.2(8) | C 12 | N5 | C13 | 119.7(8) |
| F3 | B1 | F2 | 109.7(8) | C 12 | N5 | C16 | 118.5(8) |
| F3 | B1 | C2 | 111.1(8) | C 13 | N5 | C16 | 121.8(7) |
| C1 | N2 | C5 | 118.1(7) | N4 | C12 | N5 | 122.4(8) |
| C2 | N2 | C1 | 120.7(8) | N6 | C12 | N4 | 118.1(8) |
| C2 | N2 | C5 | 121.1(7) | N6 | C12 | N5 | 119.4(8) |
| N2 | C2 | B1 | 121.3(8) | N5 | C13 | B2 | 120.7(8) |
| N2 | C2 | C3 | 117.3(8) | C 14 | C13 | B2 | 121.8(8) |
| C3 | C2 | B1 | 121.4(8) | C 14 | C13 | N5 | 117.5(8) |
| C2 | C3 | C4 | 120.1(9) | C 13 | C14 | C15 | 120.2(9) |
| N1 | C4 | C3 | 121.3(8) | N 4 | C15 | C14 | 121.7(8) |
| N1 | C4 | C6 | 115.8(8) | N 4 | C15 | C17 | 116.3(8) |
| C3 | C4 | C6 | 122.8(8) | C 14 | C15 | C17 | 122.0(8) |
| C7 | C6 | C4 | 122.0(8) | C 18 | C17 | C15 | 119.7(8) |
| C11 | C6 | C4 | 119.9(8) | C 18 | C17 | C22 | 118.0(9) |
| C11 | C6 | C7 | 118.0(8) | C 22 | C17 | C15 | 122.2(8) |
| C8 | C7 | C6 | 120.6(9) | C 19 | C18 | C17 | 121.5(9) |
| C9 | C8 | C7 | 121.1(9) | C 18 | C19 | C20 | 119.1(9) |
| C8 | C9 | C10 | 118.9(9) | C 21 | C20 | C19 | 120.3(9) |
| C11 | C10 | C9 | 121.5(9) | C 20 | C21 | C22 | 120.6(9) |
| C10 | C11 | C6 | 119.9(9) | C 21 | C22 | C17 | 120.4(9) |

Table 6 Torsion Angles for OJH391v_0m.
$\begin{array}{llllllllll}\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \text { Angle }^{\circ} & \text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \text { Angle } /{ }^{\circ}\end{array}$
F1 B1 C2 N2 -179.0(8) B2 C13 C14C15 -177.4(9)
F1 B1 C2 C3 0.7(12) F4 B2 C13N5 59.5(12)
N1 C1 N2 C2
N1 C1 N2 C5
$\begin{array}{rllr}5.0(14) & \text { F4 B2 C13C14 } & -122.3(10) \\ -172.7(8) & \text { N4 } & \text { C15C17C18 } & -10.0(13)\end{array}$
N1 C4 C6 C7
166.2(8) N4 C15C17C22 170.6(9)

N1 C4 C6 C11
-14.6(13) F5 B2 C13N5 -62.0(11)
C1 N1 C4 C3 $0.0(13)$ F5 B2 C13C14 116.3(10)
C1 N1 C4 C6
179.5(8) N5 C13C14C15 0.9(13)

C1 N2 C2 B1 178.4(8) F6 B2 C13N5 179.0(8)
C1 N2 C2 C3 -1.3(13) F6 B2 C13C14 -2.8(13)
B1 C2 C3 C4 177.5(8) C12N4 C15C14 1.4(14)
F2 B1 C2 N2 -60.1(12) C12N4 C15C17 -178.4(8)
F2 B1 C2 C3 119.6(10) C12N5 C13B2 179.5(8)
N2 $\quad \mathrm{C} 2 \quad \mathrm{C} 3 ~ \mathrm{C} 4 \quad-2.9(14) \mathrm{C} 12 \mathrm{~N} 5 \mathrm{C} 13 \mathrm{C} 14 \quad 1.2(13)$
C2 C3 C4 N1 3.6(14) C13N5 C12N4 -2.2(13)
C2 C3 C4 C6 -175.8(9) C13 N5 C12N6 179.0(9)
F3 B1 C2 N2 61.4(12) C13C14C15N4 -2.3(15)
$\left.\begin{array}{llllllr}\text { F3 } & \text { B1 } & \text { C2 } & \text { C3 } & -118.9(10) & \text { C13 C14C15C17 } & 177.5(9) \\ \text { N3 } & \text { C1 } & \text { N2 } & \text { C2 } & -178.1(9) & \text { C14 C15 C17C18 } & 170.2(9) \\ \text { N3 } & \text { C1 } & \text { N2 } & \text { C5 } & 4.2(13) & \text { C14C15 C17C22 } & -9.2(15) \\ \text { C3 } & \text { C4 } & \text { C6 } & \text { C7 } & -14.3(14) & \text { C15 N4 } & \text { C12N5 }\end{array}\right) 0.8(14)$

Table 7 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ( $\AA^{2} \times 10^{3}$ ) for OJH391v_0m.

| Atom | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ |  | $\boldsymbol{U}(\mathrm{eq})$ |
| :--- | ---: | ---: | ---: | ---: | :--- |
| H3A | 4578.98 | 3132.98 | 4479.7 | 26 |  |
| H3B | 4266.38 | 3319.69 | 5150.93 | 26 |  |
| H3 | 1558.68 | 4255.6 | 3253.3 | 19 |  |
| H5A | 3282.07 | 2954.72 | 5632.71 | 25 |  |
| H5B | 2635.13 | 4594.65 | 5578.72 | 25 |  |
| H5C | 3495.71 | 5193.5 | 5553.59 | 25 |  |
| H7 | 1438.5 | 3580.37 | 2141.99 | 19 |  |
| H8 | 1345.28 | 3686.14 | 926.16 | 22 |  |
| H9 | 2437.64 | 4000.07 | 459.86 | 24 |  |
| H10 | 3639.56 | 4208.7 | 1227.71 | 24 |  |
| H11 | 3760.74 | 4162.97 | 2450.26 | 19 |  |
| H6A | 6065.43 | 1149.91 | 1027.74 | 23 |  |
| H6B | 5318.42 | 1076.72 | 1288.56 | 23 |  |
| H14 | 7325.26 | 606.44 | 3854.59 | 21 |  |
| H16A | 4843.67 | 2161.79 | 2109.77 | 31 |  |
| H16B | 4812.27 | 1150.73 | 2848.92 | 31 |  |
| H16C | 4785.55 | -155.97 | 2158.59 | 31 |  |
| H18 | 8243.4 | 608.61 | 1871.02 | 22 |  |
| H19 | 9569.43 | 797.36 | 1989.38 | 29 |  |
| H20 | 10359.54 | 1220.86 | 3116.87 | 27 |  |
| H21 | 9826.58 | 1411.6 | 4106.63 | 28 |  |
| H22 | 8508.62 | 1167.24 | 3995.75 | 27 |  |


[^0]:    ${ }^{1} 1-\mathrm{X}, 1-\mathrm{Y},-\mathrm{Z} ;{ }^{2} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{3}+\mathrm{X}, 3 / 2-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{4}+\mathrm{X}, 3 / 2-\mathrm{Y}, 1 / 2+\mathrm{Z} ;{ }^{5}+\mathrm{X},+\mathrm{Y}, 1+\mathrm{Z} ;{ }^{6}+\mathrm{X},+\mathrm{Y},-1+\mathrm{Z}$

