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Abstract 
Unlike other southern continents where leopard seals (Hydrurga leptonyx) are considered vagrant 

visitors from Antarctica, sightings of leopard seals in New Zealand have been increasing, resulting in a 

re-classification from a vagrant to resident species in 2019.  However, their ability to adapt to northerly 

environments still remains relatively unknown. Assessments of leopard seal body condition within this 

northern part of their range is one way in which scientists can understand their health status and 

thereby adapt strategies to protect populations. Preceding this study research investigating body 

condition of leopard seals often-employed invasive and costly techniques that carried risk to seals and 

researchers. This thesis presents four non-invasive procedures to examine body condition of leopard 

seals found in New Zealand waters, designed to assist with understanding their health status following 

such a substantial habitat shift. A body condition scoring system allocated leopard seal sighting 

records into body condition groups based upon presence/absence of bony protrusions and identified 

that sighting records of New Zealand leopard seals (n=80) were predominantly in Good condition 

(71.25%). Using these body condition groups, machine learning classifiers were successful in 

predicting sighting records of New Zealand leopard seals into Good, Moderate and Poor body 

condition using differences in body shape defined by photogrammetry. Whilst highest classification 

accuracy was obtained using photographic measurements of body width and Linear Discriminant 

Analysis (87.5%), an Artificial Neural Network based on leopard seal silhouettes (81.25%) was also 

identified as being suitable for examining body condition New Zealand leopard seals due to its ability 

to utilise large, complex datasets and flexibility with lower quality images. Methodologies developed 

here were enabled by a large photograph library collated by citizen scientists and volunteer 

researchers and can potentially be applied to assess the body condition of leopard seals in other 

regions as well other pinniped species.  
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Chapter 1 : Introduction to leopard 

seal ecology with a focus on their 

population in New Zealand and 

methods for assessing body condition 
 

 

Leopard seal hauled out on Wellington’s south coast (New Zealand)  
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1.1 Leopard seal morphology and ecology  
The leopard seal (Hydrurga leptonyx, de Blainville 1820) is a renowned pagophilic Antarctic predator. 

The body shape of this species is characteristically slender as compared to other Antarctic phocids, 

and differences in body shape between individuals can be examined in order to assess condition (Gray 

et al., 2009; Hupman et al., 2019). This phocid (earless or ‘true’ seal) has an easily distinguished, almost 

reptilian appearance, created by their attenuated figure with a long, thick neck and large head with 

wide gaping jaws (Jefferson et al., 2015). Leopard seal foreflippers are similar to those of otariids 

(eared seals), as they are both long and wide and set further back on the body, which further creates 

this long reptilian neck (Jefferson et al., 2015). Their pelage is strongly countershaded, grey dorsally 

and white ventrally with a broad stripe of darker fur that runs from the back of the head down the 

spine, with lighter patches above both eyes (Hamilton 1939). In both males and females of all age 

groups the entire body is covered with irregular, asymmetrical dark and light spots with a pattern that 

is unique to individuals. Leopard seal pups are born with this same colour pattern (Figure 1.1), 

although their lanugo (fine hair which covers the foetus of many mammalian species; Riedman 1990) 

is longer and thicker in a shade of brownish grey and creamy white. Uniquely, leopard seals are one 

of the few pinniped species born with countershaded lanugo (Jefferson et al., 2015). This pelage 

pigmentation does not change throughout their lifetime (with the exception of developing a yellow or 

brown tinge before moulting), thereby spot patterns can be used for individual recognition (Hamilton 

1939).  

 

Leopard seals are a solitary species that spend much of their time at sea, only coming ashore for short 

durations to rest and digest food (Gwynn 1953). Even the moulting process (that occurs in January) 

does not seem to interfere with normal activity or swimming, as the hairs fall out individually rather 

than in large sections of epidermis as seen in other pinnipeds (Gwynn 1953). The fatty acid 

composition of leopard seal blubber analysed by Guerrero et al., (2016) revealed that 

monounsaturated fatty acids (important for maintaining fluidity under the skin and reducing heat loss; 

Best et al., 2003) were in high quantities in leopard seal blubber (and particularly abundant the outer 

layer) which may support thermoregulation and enable this species to spend so much time in the 

water. They are extremely strong and agile swimmers, propelling themselves through the water both 

by undulating their hindflippers (typical for phocids) and by sweeping their long foreflippers (more 

typical of otariids; Jefferson et al., 2015). When hauled out on ice floes leopard seals are typically 

alone, and when ashore where other leopard seals are present they remain at a distance from one 

another, although incidences of leopard seal socialising interpreted as “play” on land has been 

documented by Gwynn (1953) on Heard Island.  
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Figure 1.1. Photograph extracted from Acevedo et al., (2017) of female leopard seal and pup seen in 
Parry Fjord (Chile) in 2012, showing the pigmentation patterns. 

 

Leopard seals are thought to live for at least 26 years, with females reaching sexual maturity between 

two and seven years, and males at three to six years old (Jefferson et al., 2015). As adults, females can 

grow up to 3.8m long and weigh as much as 500kg, while males are smaller at maximum lengths of 

3.3m and weights of 300kg (Rogers 2009). Individuals are generally classified into year-classes until 

they reach the age of maturity, based upon age-length curves researched by Laws (1957), who 

provided a series of lengths for seals belonging to each age group. Laws (1957) however, stated that 

not only do females grow larger than males, they also mature slightly later (i.e. in their fifth or sixth 

year). Following this, Forcada and Robinson (2006) published a different set of growth rates for males 

and females which assumed that the mean age for sexual maturity was four years old. These growth 

rates were adapted from the age-length classifications from Laws (1957) and categorised individuals 

into pup (up to 200cm), juvenile (between 200 and 285cm for females and 200 and 275cm for males) 

or adult (> 285cm for females and > 275cm for males), rather than specific year-classes (Forcada and 

Robinson 2006). Most recently, research by Krause et al., (2020) assigned individual leopard seals as 

adult life stage based upon measurements of standard length of >2.7m for females and >2.5m for 

males.  

 

Leopard seal pups are predominantly born on the Antarctic ice prior to the breeding season, from late 

October through to mid-November, although the breeding period may extend to early January (Rogers 

2009; Jefferson et al., 2015). At birth, pups are approximately 120cm long and they quickly grow in 

length during the first six months postpartum (Rogers 2009). Little is known about levels of parental 

care; pups are only accompanied by the mothers (Siniff and Stone 1985). It is suggested that leopard 

seals have a very short lactation period, varying between 10 – 14 days (suggested due to the advanced 

development of teeth in new-born pups; Brown 1952) and up to 4 weeks (Rogers 2009; Jefferson et 

al., 2015), after which point pups are left to fend for themselves. Leopard seals breed from November 

through to January following pupping. Mating is thought to occur in the water and has never been 
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formally documented in the wild (Rogers 2009). During the mating season both males and females are 

highly vocal. They emit low –medium frequency calls underwater which are extremely powerful and 

can be heard from above water and felt through ice (Rogers 2009). Females produce long-distance 

acoustic calls at the beginning of the mating season – presumably to attract mates – while males 

vocalise throughout the day for the entire season as part of an underwater breeding display (Rogers 

2007; Rogers 2009).  

 

1.2 Leopard seal diet and feeding methods 
The leopard seal is an ambush predator with an extremely broad diet that encompasses a huge variety 

of species, which allows them to take advantage of seasonal abundances of prey throughout the year 

and in different regions (Hall-Aspland and Rogers 2004). They are born with large curved incisors and 

canines that facilitate the capture of bigger prey types like penguins, fish, cephalopods and seals, as 

well as modified molars similar to those of crabeater seals (Lobodon carcinophagus) which allow them 

to sieve krill from the water column (Rogers 2009; Southwell et al., 2012). The predation of leopard 

seals on Antarctic species is well documented in the literature across different regions of Antarctica. 

Antarctic fur seal pups (Arctocephalus gazella), demersal notothen fish, penguins and krill (Euphausia 

superba) were identified as the primary prey items for leopard seals inhabiting the South Shetland 

Islands (Krause et al., 2020). In comparison, in Antarctica leopard seals have also been found to feed 

on Adelie (Pygoscelis adeliae), gentoo (Pygoscelis papua) and macaroni (Eudyptes chrysolophus) 

penguins, Antarctic fur and crabeater seals, amphipods, benthic and pelagic fish, squid and krill 

(Hofman et al., 1977; Øritsland 1977; Stone and Meier 1981; Siniff and Stone 1985; Hall-Aspland and 

Rogers 2004).  

 

Leopard seals are well known for their predation upon penguins, where they are known to hide 

amongst ice floes and ambush prey in the water as they enter or depart from colonies (Jefferson et 

al., 2015). As well as being captured, prey is also eaten in the water as leopard seals will forcibly slap 

penguins on the water surface to tear them open, the sound of which can be heard from at least 1km 

away (Jefferson et al., 2015). Although usually intolerant of conspecifics, leopard seals are known to 

hunt alongside one another in areas of abundant prey, where instances of kleptoparasitism and food 

caching (perhaps as a response to kleptoparasitism) have both been documented (Penny and Lowry 

1967; Rogers and Bryden 1995; Krause et al., 2015). Cooperative feeding between leopard seals has 

rarely been observed, however a publication by Robbins et al., (2019) describes the first instance of 

co-feeding between leopard seals in South Georgia, on king penguins (Aptenodytes patagonicus). It 

was suggested that these instances of co-feeding were rare within the leopard seal population and 

facilitated in this location by a high proportion of predators at the site of large prey colony (Robbins 
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et al., 2019). On these occasions co-feeding may have occurred as it would have been more 

energetically costly to defend the prey item, than it was to tolerate kleptoparasitism on a large prey 

species whereby both seals would gain a sufficient portion of food (Robbins et al., 2019). Leopard seals 

have also been documented feeding from whale carcases, and predation on crabeater seals is well 

evidenced by the high proportion of adult seals bearing the scars of leopard seal attacks (Jefferson et 

al., 2015).  

 

The leopard seal diet varies between sex, with the change of the season. Research by Krause et al., 

(2020) in the South Shetland Islands found that over three study years (2013, 2014 and 2017) the 

austral spring diet of males and females both comprised of krill, fish and penguin, however during the 

transition to summer, the diet of the males remained unchanged whilst female leopard seals began 

to incorporate more energy-rich foods of penguins and Antarctic fur seal pups. This diet change was 

likely a response to the increase in energy and nutrient required for gestation and lactation. Previous 

research has suggested that the leopard seals ability to maximise on so many different prey types is 

related to a flexible reproductive strategy involving a less defined breeding period and shorter 

breeding cycle (Siniff and Stone 1985). This particular strategy would involve high levels of dispersal 

within the population to take advantage of food sources within different areas (Forcada and Robinson 

2006).  

 

1.3 Leopard seal distribution and occurrence within and outside of Antarctica 
Leopard seals have broad home range which encompasses the Antarctic coast and circumpolar pack 

ice, as well as being distributed throughout the Antarctic and sub-Antarctic islands between 50°S and 

80°S (Gwynn 1953; Bonner 1994; Bester et al., 2002; Bester et al., 2017). This species exhibits a 

movement pattern that follows the seasonal expansion and contraction of sea-ice. During the austral 

spring and summer when ice cover is at its lowest, leopard seals congregate further south towards the 

Antarctic continent, then when the sea-ice reforms in the subsequent autumn and winter, leopard 

seals disperse northwards following the ice-edge (Rounsevell and Eberhard 1980; Bester et al., 2002). 

Population density is inversely related to the size of the pack ice, where highest densities of leopard 

seals have been found in areas of abundant pack ice (2–20m in diameter ice floes) and brash ice (>2m 

in diameter ice floes; Rogers 2009). In recent years it has been observed that a part of the leopard seal 

population ventures north of the polar front to continents in the Southern Ocean. Thus far leopard 

seals have been recorded in; Argentina (Rodríguez et al., 2003), Australia (Rounsevell and Eberhard 

1980; Rice 1998; King 1983), Brazil (De Moura et al., 2011), Chile (Aguayo-Lobo et al., 2011); the Cook 

Islands (the most northerly sighting to date at approximately 21°S; Berry 1960; Hupman et al., 2019), 
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New Zealand (Hupman et al., 2019), South Africa (Vinding et al., 2013) and Uruguay (Vaz Ferriera 

1984). 

 

Reports exist of a cyclic fluctuation in the number of leopard seals visiting northerly regions; every 

four to five years at Macquarie Island and Australia (Rounsevell and Eberhard 1980; Elliot 1982), and 

every three to four years at Bird Island, South Georgia (Walker et al., 1998). Large numbers of adult 

leopard seals have been recorded at Heard Island in August, followed by an increase in juveniles in the 

following months (Gwynn 1953). The reverse was documented at Macquarie Island whereby young 

and “sickly”  leopard seals were most commonly observed from late winter to early summer (June to 

December), whilst adults were only present later in the year towards summer and in smaller numbers 

(Gwynn 1953). In years when leopard seals are abundant at Macquarie Island, a significant number 

are also sighted on the Australian coast (Rounsevell and Eberhard 1980). A  study by Rounsevell and 

Eberhard (1980) between 1949 to 1979 using hindflipper tags revealed that the seals that visited 

Macquarie Island were highly mobile as most individuals left after hauling out once. Of the 278 seals 

tagged at Macquarie Island within this period two were re-sighted in other regions; one four-year-old 

female was tagged on 11th July 1977 and re-sighted at Campbell Island on 24th August 1977, whilst a 

four-year-old male tagged in the same year on the 4th August was found dead in Tasmania two months 

later on 26th October. Rounsevell and Eberhard (1980) further reported that each year seals were 

observed returning to the island that had been tagged in the previous year, and thereby suggested 

that this movement is a periodic dispersal of non-breeding individuals in relation to shortage of food 

resources.  

 

In comparison to the Antarctic Islands, a constant increase of leopard seals has been recorded in Chile, 

where Aguayo-Lobo et al., (2011) reports that of the 115 individual leopard seals observed in the 

country between 1927 and 2010, 96 were sighted between 2000 and 2010. Furthermore, Aguayo-

Lobo et al., (2011) discovered that leopard seals of both sexes and varied ages (adult and juvenile) 

were sighted in all seasons in Chile, South America. A very small (estimated at ~180cm in length) 

individual was also seen at Parry Fjord, leading the authors to suggest that leopard seals might be 

breeding in Chile, and therefore should be considered as a resident species (Aguayo-Lobo et al., 2011). 

More recently further evidence has been published supporting this, as two occurrences of births in 

Parry Fjord were documented (Acevedo et al., 2017) and indication of philopatry of one leopard seal 

for five months in the Magellan Strait was observed (Acevedo and Martinez 2012). The regions in 

which leopard seals were observed most commonly in Chile (the Feuguian Channels) are situated in 

close proximity to the Antarctic peninsula and share similar climatic characteristics with the Antarctic 
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habitat, including; similar temperatures of seawater and air, as well as presence of pack-ice (Aguayo-

lobo et al., 2011), offering a favourable habitat for leopard seals. This is reinforced by research by 

Gwynn (1953) who found that presence of snow on stony beaches caused an increase in the number 

of leopard seals hauled out, hypothesising that the presence of the white snow “attracted” them, and 

by Jessopp et al., (2004) who discovered a negative correlation between sea surface temperatures 

and the number of leopard seals observed at Bird Island in Antarctica, whereby higher numbers of 

leopard seals were recorded on days when the sea surface temperature was lower. 

 

A number of publications to date have suggested that the northward dispersal of leopard seals from 

their core home range is a result of highly mobile juveniles being pushed out of Antarctica during a 

time of food stress during the austral winter. At this time crabeater seal pups (a primary food source 

for leopard seals; Øritsland 1977; Siniff et al., 2008) are older, and while adults are more proficient in 

catching them juvenile seals lose their advantage (Siniff and Stone 1985; Rounsevell and Eberhard 

1980). Antarctic krill are also an important source of food for juvenile seals (Siniff and Bengston 1977; 

Siniff et al., 2008); however, the winter distribution of krill in the Southern Ocean is infamously patchy 

and resides in deeper waters (Marr 1962). Leopard seals are shallow water hunters which lack the 

anatomical and physiological adaptations that are used to increase the transport, storage and 

conservation of oxygen during diving, meaning that they must compete with more adept species at 

foraging for krill such as Adelie penguins, crabeater seals and Antarctic minke whales (Balaenoptera 

bonaerensis; Siniff and Stone 1985; Lynch et al., 1999; Lynch and Bodley 2007; Vogelnest et al., 2010). 

It has also frequently been proposed that the northerly displacement of leopard seals occurs in 

juveniles as a result of aggressive behaviour displayed by adults when parturition and mating occur 

(Siniff and Stone, 1985; Øritsland 1970). Since juveniles do not require the pack-ice habitat for birthing 

and nursing, they are able to disperse northwards into alternative territories.  

 

1.4        Leopard seal population estimates 
Due to the extreme and remote conditions in which they live, population studies of leopard seals are 

enormously difficult and expensive to conduct (population density in the pack ice has been reported 

to be as low as 0.003 – 0.151 seals/km2; Rogers 2009), which has resulted highly variable population 

estimates over the years. The first estimate was published by Laws (1953), who gave a figure of 40 000 

individuals. However, Laws (1953) cautioned on his own work as he stated that the figure was largely 

based upon guess work. Later, a circumpolar population estimate of 100 000–300 000 individuals was 

calculated by Scheffer (1958), however, the methods used to obtain these estimates were not 

described (Southwell et al., 2012). Erickson and Hanson (1990) published a similar value for 

circumpolar abundance of 300 000 leopard seals, calculated by aggregating results from a multitude 
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of surveys within different regions around the continent between 1968 and 1983. Although this 

research employed rigorous survey techniques which were an improvement on the earlier surveys, 

the data collection only occurred in summer, and across several years, during which time leopard seal 

abundances may have changed both on the continent and within regions (Erickson and Hanson 1990). 

The most recent and robust large-scale survey to date is named the Antarctic Pack-Ice Seal (APIS) 

project, directed by use of vessel based and aerial surveys along designated transects in Antarctica 

between the years of 1996 and 2001 (Southwell et al., 2012). Estimates from the APIS project 

designate a leopard seal abundance ranging largely between 3500–65 000 individuals (Southwell et 

al., 2012), much lower than the estimates made in previous years, although more in line with the 

original population estimates by Laws (1953). The authors of the APIS project do however report that 

because leopard seals are a solitary species that spend the majority of their time in the water, 

individuals were difficult to observe, and therefore the estimate was likely to be highly uncertain 

(Southwell et al., 2012). Presently, all abundance estimates have been based in Antarctic waters. There 

are no published population estimates for leopard seals in northern regions outside of their core home 

range.  

 

1.5 Leopard seal anthropogenic impacts and conservation status  
Antarctica has undoubtedly been affected by climate change as result of climate change due to 

increased carbon emissions. The Antarctic Peninsula is one of the most rapidly warming regions of the 

world, increasing by almost 3°C in the past 50 years (Vaughan et al., 2003; Turner et al., 2005). The 

climatic changes in the Antarctic continent are thought to have the potential to further alter sea-ice 

cover, increase the length of the summer season and cause a shift in the architecture of flora and 

fauna of the Antarctic ecosystem (Lamers et al., 2011). While the extent of the sea ice has been 

decreasing in the Antarctic Peninsula, the ice cover has been increasing in the Ross Sea (Siniff et al., 

2008). The result of this is that summer sea ice in the Antarctic Peninsula has become effectively 

absent in recent years, whilst in the Ross Sea the sea ice persists into spring and takes a longer period 

of time to recede towards the continent (Siniff et al., 2008). These variations in sea-ice as result of 

climate change may potentially affect the life cycle and populations of Antarctic krill, whose 

reproductive success is be related to extent, duration and timing of the winter sea ice (Quentin and 

Ross 2001). Furthermore, it has been identified that the early development of krill is vulnerable when 

exposed to higher levels of CO2, and growth is inhibited when temperatures are 0.5°C above optimum 

temperatures (Kawagushi et al., 2013; Atkinson et al., 2006). As a keystone species of Antarctica which 

forms the base of the food chain, Antarctic krill are of an important food resource for leopard seals, 

principally juveniles which feed upon them directly (Siniff and Stone 1985; Siniff et al., 2008; Rogers 

2009; Krause et al., 2020). Furthermore, leopard seals predate upon mesopredators (such as Adelie 
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penguins) that also rely upon the krill to some degree (Lamers et al., 2011). Although the reduction of 

sea-ice may be detrimental to leopard seals which are reliant upon this environment for critical stages 

in their life-history (i.e. birth of pups), the impact is thought to be less than that of the other Antarctic 

pinnipeds due to their diverse diet and ability to inhabit varied environments in the Southern ocean 

(Siniff et al., 2008). However, the environmental changes catalysed by changes in sea ice cover and ice 

thickness will likely increase competition for food resources and resting areas and will thereby affect 

leopard seals to some extent (Siniff et al., 2008).  

 

The Antarctic continent is often thought of as the last area of true wilderness on the planet, relatively 

untouched by human activity when compared to the other six continents. In recent times however, 

Antarctica has become a destination for travel and research, in addition to a huge resource for 

commercial seafood. The upsurge in human activity within the region has led to concerns of increased 

noise pollution from vessels and aircraft, and it has recently been demonstrated that leopard seals 

suffer from noise disturbance in the presence of vessels (Mallet 2020). In a study by Mallet (2020) the 

acoustic behaviour of leopard seals was studied during the arrival and departure of the German 

research vessel Polarstern in Atka Bay, to determine how underwater noise emitted from the 

increased amount of Antarctic tourism boat traffic would affect the local fauna. Mallet (2020) found 

leopard seal calls decreased abruptly with the arrival of the vessel and increased immediately 

following the departure of the vessel, as well as reporting that the call repertoire altered as lower 

frequency calls decreased markedly with the presence of the vessel, during which time high frequency 

calls were more often used (Mallet 2020). Since leopard seals are reliant upon sound in their 

underwater environment for communication (Mallet 2020), this intensification in underwater noise 

pollution from increased boat traffic has the potential to negatively impact the species, particularly 

during the breeding period when leopard seals - that are solitary and known to have an extensive 

home range - use specific calls to communicate to one another.  

 

In some regions, it appears leopard seals have been at risk from shooting by fishermen, fish farm 

operators and even members of the public (Aguayo-Lobo et al., 2011; Rounsevell and Pemberton 

1994; LeopardSeals.Org unpublished data). In Chile, Torres (1987) reported that leopard seals were 

hunted by fisherman as they were viewed as being dangerous at sea.. Additionally, Torres (1987) 

stated that the number of leopard seals observed in the southern fjordlands of Chile may have only 

been a portion of the total number of seals in the area due to illegal sealing operations by local 

fishermen (Aguayo-Lobo et al., 2011). In Tasmania salmonid fish farms are licenced to shoot Australian 

fur seals (Arctocephalus pusillus) which attack and steal penned fish (Pemberton and Shaughnessy 
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1993), and the presence of leopard seals in this region overlaps with the peak time that Australian fur 

seals are known to ‘attack’ these pens in late winter (Rounsevell and Pemberton 1994). Since these 

attacks usually happen during the night, it is possible that leopard seals in the area may be mis-

identified as fur seals and shot by the farm operators (Rounsevell and Pemberton 1994). In Western 

Australia, a leopard seal that died from being shot, was in an area that was likely to have active fishing 

operations (Mawson and Coughran 1999). By comparison, in New Zealand there are multiple reports 

of leopard seals having been shot in the head by members of the public (LeopardSeals.org, 

unpublished data).  

 

In Chile, there are three known instances of leopard seals being rehabilitated and re-released into the 

wild, one of which was reported to be in poor condition and had multiple injuries, that included a deep 

cut on the tongue which was presumed to have been caused by a hook, from which the seal survived 

(Aguayo-Lobo et al., 2011). In contrast, in Western Australia, 15 out of 27 recorded leopard seals 

between 1986 and 1996 were discovered already deceased or died whilst receiving treatment 

(Mawson and Coughran 1999). Of these 15 seals, the causes of death were noted as: shooting (n=1); 

fishing line/hook related (n=1); immune system failure (n=1); euthanasia (n=4) and; anaesthesia 

(during relocation to a rehabilitation centre or treatment; “several” out of n=8); and only one was 

successfully released (Mawson and Coughran 1999).  

 

Leopard seals are classified as ‘Least Concern’ on the IUCN Red List following assessment in 2015 and 

under the Antarctic Treaty’s Convention for the Conservation of Antarctic Seals up to 12 000 animals 

can be legally harvested annually (Hückstädt 2015), although it is unknown if this takes place. In the 

past, leopard seals were frequently killed for scientific research purposes and in some cases they were 

harvested for dog food (Reijinders et al., 1993), however this is not currently practiced today. 

 

1.6 Leopard seal presence in New Zealand 

In New Zealand, LeopardSeals.Org (hereafter referred to as LSO) was founded by Dr Krista Hupman 

and Dr Ingrid Visser in 2016, with the intent to conduct research on leopard seal biology and ecology 

and contribute to management and conservation of this species within this region. Leopard seals were 

only recently (May 2019) classified as ‘Resident’ species under the Department of Conservation New 

Zealand Threat Classification System (Baker et al. 2019), based on evidence of long-term presence in 

New Zealand, annual sightings throughout all seasons, and records of three births that support 

evidence of breeding (Hupman et al., 2019). An extensive database (the New Zealand Leopard Seal 

Database; NZLSD) was collated by LeopardSeals.org (Hupman et al., 2019) from the LSO sighting 

network (a collation of sighting records obtained via an online sighting form, toll free phone number 
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0800 LEOPARD and social media) as well as: published resources (e.g. books and scientific journals); 

unpublished information (museum records and data from zoos and aquariums); grey literature (e.g. 

online newspaper articles, wildlife, photography and fishing forums), and; the Department of 

Conservation marine mammal database (more information can be found in Hupman et al., 2019). The 

NZLSD included 2711 unique records of leopard seal sightings and/or specimens from around the New 

Zealand coastline up until the end of 2018 (Hupman et al., 2019). Their presence in this region has 

been dated back to 1200 from remains in Maori middens in Abel Tasman National Park (Smith 1985). 

Contrary to other regions and islands north of the polar front, data from LSO suggest that the number 

of leopard seal sightings in New Zealand has been increasing annually, most significantly from years 

2000 to 2019 (Hupman et al., 2019).  

 

At present, it is unclear if this increase in leopard seal sightings in New Zealand represents an increase 

in the number of leopard seals in New Zealand waters or an increase in the number of sightings that 

are reported (Hupman et al., 2019). The pelage and morphology of the leopard seal is visually unlike 

that of the two other resident pinnipeds in New Zealand; the New Zealand fur seal (Arctocephalus 

forsteri) and the New Zealand sea lion (Phocarctos hookeri) which are predominantly shades of brown 

in colouration. This dissimilarity might affect reporting regularity as sightings of ‘unusual’ species are 

more likely to be reported (Hupman et al., 2019). Moreover, it could be expected that the increase in 

sightings could be a reflection of the increase in human population in New Zealand, and/or the ability 

to capture and share data by means of digital equipment such as cameras and smartphones. Logically, 

some or all of these points may not be mutually exclusive. Despite this, the number of leopard seals 

visiting and residing in New Zealand is likely to be imprecise due to the fact that many seals may have 

been un-noticed and un-reported due to: its small national human population; remote locations 

where seals may haul-out; the time of day seal haul out (i.e. the sightings may be missed at night); 

lack of information provided on who to report sightings to, and; possible misidentification of the 

species. Otago’s largest city, Dunedin, was identified as one of three sightings ‘hotspots’ of leopard 

seals on the New Zealand coast, along with Christchurch and Auckland (Figure 1.2; Hupman et al., 

2019). These sighting hotspots represent areas with the most frequent leopard seal sightings and 

correspond with the most densely populated coastal cities in the country (Hupman et al., 2019). For 

these reasons, it is difficult to know if leopard seals have always been present in New Zealand in large 

numbers and seals just haven’t been reported, or if the frequency of leopard seal sightings are 

increasing.  
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A recent publication by Hupman et al., (2019) analysed age-classes of leopard seals seen in New 

Zealand waters. These age-classes were divided into three groups: pup; non-adult, and; adult and 930 

records of leopard seal sightings were assessed. Of these sightings 319 (34.3%) were determined to 

be non-adults. Moreover, an evaluation of body condition was conducted on the same records, and it 

was found that the majority of the juveniles found within New Zealand were classified as having ‘Good’ 

or ‘Excellent’ body condition (Hupman et al., 2019). Given the extensive distance between mainland 

New Zealand and Antarctica, it would be expected that these juvenile individuals would arrive in New 

Zealand in poorer health condition. It is therefore reasonable to suggest that some leopard seal births 

might take place outside of the Antarctic, either within New Zealand or neighbouring islands, and that 

due to remoteness of these regions and deficiency of research into the species, these occurrences 

have not yet been recorded (Hupman et al., 2019).  

 

In New Zealand leopard seals are protected under the New Zealand Marine Mammals Protection Act 

1978 (MMPA) where it is an offence to disturb, harass, harm, injure or kill any seal. The Department 

of Conservation is the government authority tasked with managing populations of marine mammals 

within New Zealand, which includes making decisions regarding euthanasia of individuals that are 

judged to be in poor body condition or show presence of injury. A number of seals that arrive in New 

Zealand waters have been euthanised in the past due to such judgements, however, without thorough 

assessment of leopard seal health and condition in this region, it is difficult to accurately assess what 

‘poor condition’ looks like. A scale for assessing body condition for this species was developed in 2019 

based upon photo-identification, the accuracy of which has not been quantitively examined (Hupman 

et al., 2019). Therefore, decisions on euthanasia of this species are being made without scientific basis 

for which they are being assessed.  
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Figure 1.2. Heat map extracted from Hupman et al., (2019) that shows leopard seal sightings around 
the New Zealand coastline (denoted by grey circles) and areas of high density represented by the 
colour gradient. From top to bottom of the map, these locations from top to bottom are; Auckland, 
Christchurch and Dunedin.  
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1.7 Review of methods to assess leopard seal body condition 
Due to the remoteness and harshness of the Antarctic climate and solitary nature of wide-ranging 

leopard seals assessment of health and body condition (hereafter BC) in this species presents a 

substantial task. In spite of the challenges there are several studies which have investigated and 

reported on the BC of leopard seals using a range of techniques, as discussed below.  

 

1.7.1 Unverified methods 
To date, there are several studies that classify individual leopard seals into BC categories (i.e. poor, 

fair, good or excellent) without providing an explanation on how this classification was made. For 

example, Aguayo-Lobo et al., (2011) examined BC of leopard seals in Chile and stated that at least five 

leopard seals were reported as being in poor condition and some were observed with injuries,  

however no BC classification methodology was described. Similarly, Rounsevell and Pemberton (1994) 

described the BC of leopard seals in Tasmania, Australia, stating that 18 leopard seals were judged as 

being in good condition, while 7 of the remaining 16 seals were assessed as being thin, however, no 

formal BC classification techniques were outlined. In another example Bester et al., (2017) 

commented on a leopard seal at Tristan da Cunha Island in the South Atlantic, stating that the leopard 

seal appeared to be in poor condition and had minor injuries, yet specific methodologies for this 

assessment were again, not described. The shortcomings with such methods are that classifications 

were reliant upon observations of experts as well as being entirely subjective based upon individual 

assessment. Moreover, these comments were not supported by quantitative measures to 

substantiate these classifications.  

 

1.7.2 Visual scales 
A visual BC index was first published for leopard seals by Gray et al., (2009). Within this research 

qualitative material was described in the form of a figure where four black and white photographs 

were provided to illustrate the four BC categories (see their Figure 1.3, their Chapter 9; Gray et al., 

2009).  From this visual scale individuals could be assessed, i.e. Gray et al., (2009) stated that leopard 

seals sampled in years 1997/1998 were identified as being in excellent condition as well as being larger 

than seals observed in 1999/2000.  Although morphometric measures were also taken (standard 

length, axillary girth, weight and blubber thickness for example), these measures were not reported 

alongside nor in support for the BC index, with the exception of stating that of the leopard seals 

sampled in New South Wales, many were too weak to return to the sea and were euthanised due to 

judgement of poor body condition, which was later evident in examination of sternal blubber 

thickness (Gray et al., 2009). It was further conveyed that the blubber thickness of these individuals 

was distinctly less than the blubber thickness of the two leopard seals sampled in Antarctica (Gray et 
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al., 2009). However, while this study was the first to provide a visual scale for BC assessment, no 

additional morphological descriptions were provided to assist in allocating individuals into each 

category (Figure 1.3).  A benefit to this visual scale means that by comparing leopard seal side-profiles 

to these four images, this technique can be applied to leopard seals in other studies and regions.  

 

 

Figure 1.3. The body condition (BC) classification system extracted from Gray et al., 2009, whereby: 
(a) excellent; (b) good; (c) fair/thin, and; (d) poor. 

 

A publication by Hupman et al., (2019) used a body condition scoring system (hereafter BCSS) to 

categorise leopard seals in New Zealand. Using images of a full-body profile, leopard seals lying in 

ventral recumbency, parallel to the ground were assessed for visible bony protrusions.  Following 

methods modified from Gray et al., (2009), research by Hupman et al., (2019) assessed each animals 

BC by providing qualitative scores to visible bony protrusions including the sagittal crest, zygomatic 

arch, neural spines, rib bones and pelvic bones (Figure 1.4 and Figure 1.5; their Table 1 and Figure 3, 

Hupman et al., 2019). When a bony protrusion was visible it was scored as 1 and when it was not 
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visible it was scored 0 (Figure 1.4 and Figure 1.5; their Table 1 and Figure 3, Hupman et al., 2019). 

Scores were summed, and the BC of each animal was classified as Severe (score of 5; all bony 

protrusions were visible), Poor (score of 3-4; most bony protrusions were visible), Good (score of 1-2; 

some bony protrusions were visible) or Excellent (score of 0; no bony protrusions were visible). This 

allowed Hupman et al., (2019) to classify leopard seal BC into four distinct categories; ‘Excellent’, 

‘Good’, ‘Poor’ and ‘Severe’ (Figure 1.4). Employing this method, Hupman et al., (2019) suggests that 

sightings of leopard seals in New Zealand are primarily individuals of Good and Excellent BC.  

 

 
Figure 1.4. The body condition scoring system extracted from Hupman et al., (2019), their Table 1. 

 

 
Figure 1.5. An image showing locations of bony protrusions, extracted from Hupman et al., (2019), 
their Figure 3. 

 

1.7.3 Measurements of blubber volume 
An approach used by Kuhn et al., (2006) adopts the truncated cones method, using measurements of 

length, girth and blubber depth (obtained by an ultrasound scanner) to determine blubber volume. 

Kuhn et al., (2006) applied this method to examine the body composition of a studied leopard seal 

which was comprised of approximately 70% lean tissue and 30% adipose tissue. This approach 

however was only opportunistically trailed on a single juvenile male (Kuhn et al., 2006). As such, more 

observations would be required in order to compare blubber volumes between individuals, and/or 

provide an estimate of BC within leopard seal population(s).  

 

1.7.4 Morphometrics to estimate mass 
An alternative method is using morphometrics to estimate mass. Hofman (1975) studied the 

relationship between length (L), girth (G) and mass in Antarctic seals, using linear models to estimate 
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the weight of anaesthetised leopard seals.  He proposed that the geometric form of a seal is similar to 

that of two adjoining cones with a common base (Figure 1.6), and that equation LG2 should represent 

volume of the seal. Hofman (1975) found that although seal weight correlated highly with the volume 

index, the index was sensitive to G measurements and the regression equation had tendency to 

overestimate weights of smaller leopard seals, whilst underestimating weights of larger leopard seals.  

 

 
Figure 1.6. The theoretical relationship between girth (G), length (L) and volume in phocid seals 
extracted from Hofman (1975). 

 

More recently, research by van den Hoff et al., (2005) aimed to develop similar equations that would 

predict body mass using morphometric measurements. In this study the leopard seals observed at 

Heard Island, Antarctica, were pre-assigned into five subjective visual body condition groups 

(hereafter BCGs): very poor; poor; moderate; good, and; very good. The seals were chemically 

immobilised, and measurements of snout-tail length (STL) and girth were input into the Smirnov Index 

(STL*G2*10-5) and Fitness Ratio (the ratio between seal length and seal height) to estimate seal mass. 

The results of these indices were compared to determine which would be the most suitable for future 
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use, both however, were found to have high levels of uncertainty particularly with larger seals. van 

den Hoff et al., (2005) reported that from using the Smirnov Index a seal with a volume of 40 could 

potentially have a mass that ranges between 150kg and 210kg, and larger seals were subject to more 

variability as a seal with a volume of 80 could weigh from 280kg and up to 400kg. Using Fitness Ratio, 

a seal 2.8m long could have a mass between 240kg and 480kg, double the size. Employing ANOVA, 

van den Hoff et al., (2005) reported that significant differences existed between the means of Fitness 

Ratio and Smirnov Index values between the pre-assigned BCGs. Further post-hoc testing however 

revealed not all means were significant and therefore BCGs were amended to: poor (=very poor + 

poor); medium (=moderate + good), and; good (=very good; van den Hoff et al., 2005). The 

morphology of two leopard seals belonging to the new BCGs were described, whereby one individual 

that was judged as medium condition had a thick neck and a “well-rounded” body, whilst the other 

who was assessed as being in poor condition had a thin neck, protruding pelvic region and “wasted” 

appearance. Both descriptions were accompanied by images (Figure 1.7), and subsequent ANOVA and 

post-hoc testing was able to significantly delineate Smirnov Index and Fitness Ratio values of seals in 

poor condition, to those in moderate and good condition. The amended BCGs (derived from visual 

examination of leopard seals at Heard Island) were then applied to leopard seals observed in three 

distinct regions; Antarctic (Palmer Station), sub-Antarctic (Macquarie and Heard Island) and sub-

Tropical (New Zealand) in order to make comparisons of BC. van den Hoff et al., (2005) reported that 

the BC of leopard seals observed in the sub-Tropical region were recorded as 1.06 index groups (on 

average) less than leopard seals observed in the sub-Antarctic and 0.5 index groups (on average) lower 

than leopard seals observed in the Antarctic.  
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Figure 1.7. Photographs extracted from van den Hoff et al., (2005) that illustrates two individual 
leopard seals belonging to two of the visual body condition groups (BCGs), whereby a) shows a 
leopard seal judged to be in medium body condition (BC) based upon “a thick neck and well-rounded 
body” in addition to a snout-tail length of 180cm and a girth of 230cm. Photograph b) shows a 
leopard seal judged to be in poor BC, based upon a “wasted body appearance, a thin neck and 
protruding pelvic region” and snout-tail length to height ratio of 5.5:1 (van den Hoff et al., 2005).  

 

Research by both Hofman (1975) and van den Hoff et al., (2005) both reported large degrees of error 

in estimations of leopard seal mass, rendering estimates of mass unreliable. For van den Hoff et al., 

(2005) the addition of the G measurement in the Smirnov Index yielded slightly more accurate results 

than the Fitness Ratio, although this measurement was difficult to obtain in the field as it requires 

anaesthesia, of which leopard seals are particularly vulnerable (Vogelnest et al., 2010; Pussini and 

Goebel 2015). Furthermore, the dataset of van den Hoff et al., (2005) was comprised of several, 

smaller datasets from different regions, which employed different methods to obtain measurement 

data. For example, in this study leopard seals were weighed via different equipment depending upon 

the region they were observed in, meaning that results were not directly comparable. Based upon the 

images in Figure 1.7, a standardised method for visually assessing BC was also lacking, as leopard seals 
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in these images were photographed from different angles and under different conditions (the leopard 

seal in 1.7a was in the process of being administered an intramuscular injection of sedative; van den 

Hoff et al., 2005). The implication of this is that despite the visual BC index developed in this research 

having been successfully validated by two condition indices, due to variations in the method the visual 

BC index cannot be reliably applied to studies of leopard seal BC in other regions. Moreover, Hofman 

(1975) stated that while length is related to weight, it does not effectively express the condition of an 

animal. Similarly, estimates of weight and body mass of leopard seals do not directly provide an 

evaluation of body condition or individual health, since these values also represent sex and life-stage 

of an individual. 

 

1.7.5 Unmanned aerial systems and photogrammetric models to estimate mass 
Krause et al., (2017) developed a non-invasive method that will enable researchers to determine size 

and mass of leopard seals using photographs taken from an UAS (unmanned aerial system). Images 

obtained by the UAS were processed in ImageJ software (https://imagej.nih.gov/ij/) where a 

customised Java script (also known as a macro called ‘ten widths’) was loaded to enable semi-

automatic processing. The script marks 10 equidistant points on a line drawn from the tip of the snout 

to the tip of the tail, representing photographic standard length (PSL; Figure 1.8). A total of 15 

photographic measurements were taken (as seen in Figure 1.8) and were measured in pixels. Using 

the height of the drone (distance from lens to the object) and focal length of the lens, the photographic 

pixel measurements were converted into accurate ground units (Krause et al., 2017).  

 

 
Figure 1.8. A leopard seal photographed by an unmanned aerial system (UAS) complete with the 15 
photographic measurements; PW1-10 (width 1-10), PAW (axillary width), PUW (umbilical width), PSL 
(standard length) and POL (overall length) extracted from Krause et al. (2017), their Figure 3.  
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Ordinary least squares, linear and power regression, and linear mixed effects models were all utilised 

to determine leopard seal mass, using both photographic and manual measurements. This study 

reported the first instance in which photogrammetric models were more accurate at predicting seal 

body mass than models using manual measurements, since all photogrammetric models contained 

considerably lower residual error than manually derived models (Krause et al., 2017). This was likely a 

result of reduced measurement error and addition of body width measurements taken from overhead 

photos from the UAS (Krause et al., 2017). This included a measure of photographic umbilical width 

(PUW; Figure 1.8), which was found to correlate most highly with seal mass (Krause et al., 2017). The 

authors further suggested that this particular measurement should be considered when developing a 

BC index for leopard seals (contrary to the commonly used girth measurement (van den Hoff et al., 

2005) labelled PAW or ‘photographic axillary width’; Figure 1.8), and that the index should be 

condition index (CI) = photographic overall length (POL) / PUW (Krause et al., 2017).  

 

No significant differences were detected between mean values for photographic and manual 

measurements, supporting the further use of photogrammetry in estimating seal mass in future 

research. It should be noted however, that these findings are based upon a small sample size (n=15) 

of adult female leopard seals, possibly in a state of reduced body fat following the breeding season 

which occurs from November to January (Stirling and Siniff 1979). It therefore cannot be assumed that 

similar findings and relationships would be observed in leopard seals of the opposite sex, in different 

age classes and in different regions. Nevertheless, these findings offer an alternative to the use of risky 

and costly manual procedures and provide promise for the further use of photogrammetry for future 

studies of leopard seal mass and BC.  

 

1.7.7 Evaluation of body condition assessment methods 
Research involving chemical immobilisation of leopard seals is frequently associated with high 

mortality rates due to incorrect estimates of seal mass with respect to volume of administered 

sedative (Mitchell and Burton 1991; Higgins et al., 2002). Although leopard seals are large phocids (the 

second largest species in Antarctica after the Southern elephant seal, Mirounga leonina), they are 

characteristically slender and as a consequence their mass is commonly overestimated resulting in 

higher doses of sedative, which causes anoxia by means of apnoea (Hofman 1975). In research by 

Hofman (1975), of the 23 seals that were sedated were four mortalities and two which required 

assistance in forcing open the nasal plates to ensure breathing and prevent anoxia (Hofman 1975). 

Leopard seals have also been observed to become agitated by the drugs and retreat to the water, 

which may lead them to drown (Vogelnest et al., 2010). Mortality rates of leopard seals in such studies 

ranges between 5 and 38% (Mitchell and Burton 1991; Higgins et al., 2002). Research was conducted 
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by Vogelnest et al., (2010) on the anaesthesia of leopard seals, where the mass of individual seals was 

estimated using the Fitness Ratio published by van den Hoff et al., (2005). Here Vogelnest et al., (2010) 

reported that mass was overestimated on 9 occasions up to 110kg, and underestimated on 11 

occasions by 80kg, stating that this was a significant error margin within their field operations.  

 

Despite being described as non-invasive, methods described from Kuhn et al., (2006) and van den Hoff 

et al., (2005) were both disturbance procedures which carried substantial risk to both seals and 

researchers and required specialised, often non-viable equipment that would have entailed training 

in order to use. For example, anaesthesia involved the use of oxygen masks which are both heavy and 

impractical for researchers to carry on slippery ice (Vogelnest et al., 2010). Similarly, weighing seals 

required large slings (or nets) together with a weighing system (such as a hydraulic crane) which may 

be sufficient for use on the Antarctic islands (van den Hoff et al., 2005), but are perhaps not suitable 

for the pack-ice where leopard seals are most commonly found. For these reasons, sample sizes in 

such studies can be small (n=1; Kuhn et al., 2006, n=7; Hofman 1975). Within Hofman (1975) it was 

stated that the small sample size did not represent juvenile individuals, therefore results are often not 

generally representative of leopard seals as a species.  

 

1.8 Thesis rationale 
In the Antarctic bionetwork leopard seals are at the top of the food web with orca (Orcinus orca) as 

their only known predator (Jefferson et al., 2015). As result the ability to interpret their BC within this 

area and other regions they occupy is important for understanding the health of the population as 

well as serving as a reflection of the health of their oceanic environment (Krause et al., 2017). 

Assessment of BC is also imperative in research of marine mammals as it can provide information 

regarding which individuals are suitable for research without employing invasive techniques (i.e. 

avoiding examination of poor BC individuals). To date, much of the research investigating BC of 

leopard seals throughout the southern hemisphere has involved a range of techniques being 

employed across many different studies. At present these methods include: unverified methods 

(Rounsevell and Pemberton 1994; Aguayo-Lobo et al., 2011; Bester et al., 2017), visual scales (Gray et 

al., 2009; Hupman et al., 2019), measurements examining blubber thickness (Kuhn et al., 2006) 

morphometrics to estimate mass (Hofman 1975; van den Hoff et al., 2005) and photogrammetric 

models to estimate mass (Krause et al., 2017). As each of these studies employ different techniques 

indices of BC are not comparable between populations or across regions. Moreover, only a small 

number of the techniques used quantitative measures, some of which have been shown to have high 

degrees of error (van den Hoff et al., 2005) and most of which use procedures which carry substantial 

risk to leopard seal mortality (Hofman 1975; van den Hoff et al., 2005; Kuhn et al., 2006).  
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This study intends to provide validation for a BCSS by extracting measurements from photographic 

data obtained by citizen science, which can be used for conservation initiatives in the region. This 

thesis further aims to provide non-invasive, minimum-effort, objective and accurate methods as a 

standardised method for measuring BC of this species. The manuscript intends to combine BC scores 

(hereafter BCS) as employed in Hupman et al., (2019) with statistical modelling and machine learning 

techniques, which are practical for a citizen science approach. Moreover, these methods can be 

applied to leopard seals in other regions which would enable comparisons of BC across populations 

inhabiting the Southern hemisphere.  
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Chapter 2 : Body condition scoring as a 

non-invasive method for examining 

condition in sighting records of free-

ranging New Zealand leopard seals from 

photographs 

 

 
Leopard seal photographed resting on Owhiro Bay beach (New Zealand) 
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2.1 Introduction 

2.1.1 Photo-identification 
Photo-identification (hereafter photo-ID) is a low-risk, cost effective and minimally invasive research 

technique, that uses photographs to identify distinctive markings for individual recognition within a 

target species (Würsig and Würsig 1977). This method has been applied across a huge array of species 

for assessing abundance, distribution and movement patterns. Key assumptions of photo-ID are that: 

markings are unique to individuals; marks can be read without error, and; marks do not alter or get 

lost over time (Urian et al., 2014). Many pinniped studies have applied photo-ID for individual 

recognition. This is done by identifying distinctive natural or anthropogenic markings and/or pelage 

patterns (i.e. using spot patterns on seal pelage) and includes studies of: grey seals (Halichoerus 

grypus; Hiby et al., 2007; Sayer et al., 2019); harbour seals (Phoca vitulina; Mackey et al., 2007); 

leopard seals (Forcada and Robinson 2006; Hupman et al., 2019); Hawaiian (Neomonachus 

schauinslandi) and Mediterranean (Monachus monachus) monk seals (Harting et al., 2004; Forcada 

and Aguilar 2000), and; Saimaa ringed seals (Pusa hispida; Koivuniemi et al., 2016).  

 

2.1.2 Photograph assessment 
A key element to photo-ID is photograph assessment, i.e. the manual characterisation of which 

photographs are suitable for use. Assessing the quality of photographs for photo-ID is important to 

maintain uniformity within the data and to ensure that the same features are visible within each 

photograph for comparative purposes. Factors such as clarity and focus, contrast and orientation can 

affect the appearance and visibility of natural markings being identified, which can create false 

positive and false negative errors (Urian et al., 2014). To exemplify this method, a recent study of 

common dolphins by Hupman et al., (2018) which utilised photo-ID assessed quality of photographs 

by classifying images into categories, for example poor, fair, good or excellent (adapted from Urian et 

al., 1999 and Nicholson et al., 2012). First, each image was assessed to determine the proportion of 

the dorsal fin within the photo frame, and when the fin occupied less than 10% of the whole image 

then these photographs were discarded (Hupman et al., 2018). Secondly, images were assessed for 

photo quality, whereby each image was assigned a score based upon: clarity and focus; contrast; 

orientation, and; the visibility of the dorsal fin edge (Hupman et al., 2018). In this instance these scores 

were weighted, so that deficiency in any of the criteria outlined would result in a poor score for that 

particular image, which were subsequently discounted from further use (Hupman et al., 2018). The 

use of photograph assessment thereby eliminates photographs from examination which could 

potentially lead to false results due to imprecisions within the images caused by lack of detail in 

photographs with reduced resolution, poor lighting and/or obstructions.  
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Photograph assessment methods were  employed in a photo-ID study of leopard seals combined with 

traditional tagging methods (Forcada and Robinson 2006). During a leopard seal observation multiple 

digital photographs were taken of the individual from six specific angles (Figure 2.1; their Figure 1, 

Forcada and Robinson 2006), in addition to notations of scars and wounds present for identification 

purposes. In this study, good quality photographs were described as those that were both in focus and 

with good definition, and in using these good quality photographs both tagged and untagged leopard 

seals were considered as photo identified (Forcada and Robinson 2006). When leopard seals were 

untagged, only individuals with an incomplete photograph series (Figure 2.1) that did not contain the 

most frequently photographed sides were discarded from further use (Forcada and Robinson 2006). 

Of the 269 occasions when leopard seals were observed, 59 were identified by these methods 

(Forcada and Robinson 2006). Using identifiable individuals from the photo-ID catalogue analysis of 

leopard seal population abundance, structure and estimates of turnover during the austral winter was 

conducted of leopard seals at Bird Island (Forcada and Robinson 2006). This research by Forcada and 

Robinson (2006) suggested that photo-ID techniques using leopard seal pelage patterns could be used 

to recapture known individuals as effectively as traditional tagging methods.  
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Figure 2.1. The six photograph views of leopard seals (Hydrurga leptonyx) used for photo-
identification in a study by Forcada and Robinson (2006). From top to bottom (left to right) the 
photographs are as follows: head left (HL), throat (TH), head right (HR), body left (BL), ventrum (BV) 
and body right (BR). 

 

2.1.3 Body condition scoring 
Body mass and condition parameters are vital in the understanding of pinniped population health 

(Krause et al., 2017). Not only this, but as an upper trophic marine predator the health of pinniped 

species is reflective of the health of the ecosystem they occupy and thus serve as an indicator of 

habitat quality (Boyd and Murray 2001). One simple method for estimating body condition (BC) is 

using a system called body condition scoring (BCS). BCS is a subjective technique that visually (and 

sometimes physically) assesses the quantity of metabolisable energy stored on live animals, by 

comparing the amount of fat covering bony structures (e.g. the pelvis and the spine; Edmonson et al., 

1988; Zeilke et al., 2018).  It is usually done by looking at each key morphological feature individually 

and allocating a score of ‘fatness’. Then, the average or sum of scores for the entire body can be used 

to allocate a BC category for an individual (Zielke et al., 2018). Since bony structures on the body 
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become more visible with decreasing fat density, individuals in a slimmer condition will receive lower 

BCS, whilst more rounded individuals (where bony structures are barely visible due to increased fat 

deposition) would receive higher BCS.  

 

2.1.4 BCS origin and applications 
The BCS method was originally introduced in the farming industry and has been described in the 

literature from as early as the 1960’s when the method was trialled in ewes (Jefferies 1961). The ewes 

were allocated a score between 0 (“the point of death”) and 5 (“very fat”) based upon physical 

assessment, whereby the backbone and lumbar portion of the animals were examined to detect the 

sharpness of the bones as felt through the skin (Jefferies 1961; Edmonson et al., 1988). This technique 

was subsequently adapted to cows in both the beef and dairy industries in both the United States and 

the United Kingdom (Wildman et al., 1982; Mulvany 1977), as well as Australia and New Zealand whom 

combined the method with photographs (Earle 1967; Grainger and McGowan 1982). The use of 

photographs modernised the practice of assigning BC and allowed a complete hands-off approach, 

which reduced risk and stress to the animals as well as increasing efficiency, and today the 

management of welfare and fertility of dairy cows are entirely reliant upon this method (Edmonson 

et al., 1988; Zielke et al., 2018).  BCS is also extensively practiced in veterinary medicine, where scoring 

charts exist for a number of animals including: dogs (Dorsten 2004); horses (Carroll and Huntingdon 

1988); rabbits (Prebble et al., 2015), and; donkeys (Pearson and Oussat 2000). 

 

In recent years, visual BCS systems (BCSS) have been applied to a variety of species, both wild and in 

captivity, these include; Asian elephants (Elephas maximus; Chusyd et al., 2019),  mule deer 

(Odocoileus hemionus), elk (Cervus canadensis), moose (Alces alces; Cook et al., 2010) and European 

bison (Bison bonasus; Zeilke et al., 2018). In a number of studies, the relationship between the visual 

BCS system and quantitative physiological traits (thickness of rump fat, for example; Cook et al., 2010) 

was examined in order to validate the system. For European bison, the BCS system was developed 

with the purpose of monitoring the health of herds resettled in north-eastern Europe (Zeilke et al., 

2018). To do this, Zielke et al., (2018) developed a standard scale for the species that relied on “a few 

clearly detectible characteristics” (i.e. bones that were easy to distinguish on the body) ranging from 

1 (emaciated) to 5 (obese) by examining photographs of animals both in semi-wild conditions and 

from zoos. It was essential that the BCSS was both reliable and easy to use, so that it could be taught 

to other organisations involved in the resettling program, and to people of different skill levels (Zielke 

et al., 2018). The successful creation of the BCSS would enable comparisons of individuals in herds 

across different countries, in different habitats and on similar re-introduction schemes (Zielke et al., 

2018). 
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2.1.5 BCS applications to marine mammals 
BCSS have also been applied to a number of marine mammal studies worldwide, including Gray whales 

(Eschrichtius robustus; Bradford et al., 2012), North Atlantic right whales (Eubalaena glacialis; Pettis 

et al., 2011) and short-beaked common dolphins (Delphinus delphis; Joblon et al., 2008). Research by 

Joblon et al., (2008) used a BCSS to determine condition and potential survivability of individuals 

within a population of short-beaked common dolphins. In this study a 4-point visual BCS scale was 

designed based upon anatomical landmarks which were indicative of emaciation and body condition 

and was created to determine potential of survivability in live-stranded dolphins, as well as a 

standardised measure to compare BC across all delphinid species (Joblon et al., 2008). In order to 

identify these landmarks, photographs of 802 short-beaked common dolphins were assessed in 

conjunction with morphometric measurements (as means of validation for the BCSS), and results 

showed a significant difference in measurements obtained from dolphins  which were successfully 

released, and those that died or were euthanised as they were judged unfit for release (Joblon et al., 

2008).  Similarly, (Pettis et al., 2011) describes the first instance when a visual BCSS was developed for 

North Atlantic right whales by analysing body and skin condition, rake marks and blow hole cyamids 

using over 200 000 photographs. In this particular study, BC was evaluated based upon estimates of 

the quantity of subcutaneous fat in the area behind the blowhole (the nuchal crest), whereby 

individuals were allocated a score of 1 if (good condition) when the nuchal crest was flat or rounded, 

a score of 2 (moderate condition) if the nuchal crest was slight to moderately concaved or a score of 

3 (poor condition) if the individual showed evident “humps” with significant concavity posterior to the 

hump in the nuchal crest (Figure 2.2; their Figure 1 Pettis et al., 2004). Using this technique Pettis et 

al., (2011) reported that adult female whales were significantly thinner in their calving year as well as 

the subsequent year afterwards as compared with the year prior to calving. Moreover, in assessment 

of right whales that were “presumed dead” during the course of the study, evaluation of images in the 

5 years prior revealed that these individuals received lower BCS in this time, indicating compromised 

health. Pettis et al., (2011) further reported that the methodology used in this research was objective 

(assessed by comparing scores by multiple experienced researchers) and could be utilised in future 

studies of BC assessment for the species.  
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Figure 2.2. Body condition scoring system developed for North Atlantic right whales (Eubalaena 
glacialis) by Pettis et al., (2011; their Figure 1). Photograph a identifies an individual with a distinct 
fat roll in the nuchal crest region (as shown by the arrow), while photograph b shows a whale with a 
flat nuchal crest, both of which were identified to be in good (score 1) condition. Photographs c and d 
show individual right whales examined to be moderate (score 2) condition, with slight concavity 
behind the nuchal crest (as shown by the arrows), and photographs e–g show individuals that were 
characterised as poor (score 3) condition. For the three poor condition photographs the large arrows 
denote areas of concavity while small arrows identify distinct “humps” often seen in very 
underweight whales. 
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2.1.6 BCS applications to leopard seals 
BCS was applied by Hupman et al., (2019) to New Zealand leopard seal data using methods outlined 

in Chapter 1. Despite the Hupman et al., (2019) study providing the most detailed and robust 

methodology to date for assigning BC from photographs, a number of shortcomings of these methods 

should be noted. The first is that the four BC categories were unequally weighted, as the BC groups 

Severe (a score of 5) and Excellent (a score of 0) were classified by one point each, whilst the BC groups 

Poor (scores of 3-4) and Good (scores of 1-2) were both characterised by two points each (refer to 

Figure 1.4, Chapter 1). This created a bias towards the BC groups of Poor and Good as individual 

records were more likely to fall into those categories than that of Severe and Excellent. Secondly, the 

BC categories progress from Good to Poor condition with no Moderate condition in between. In 

reality, an individual would not transfer directly from Good to Poor BC without going through an 

intermediate stage, however this was not recognised in the BC methodology of Hupman et al., (2019). 

Thirdly; the BC assessment in Hupman et al., (2019) was solely based upon the presence or absence 

of bony protrusions, and there was no quantification provided in the form of morphometric 

measurements (for example weight, blubber thickness, or measurements of girth). Bony protrusions 

can be difficult to detect making the BCS subjective as seals may be allocated different scores by 

different observers. It was therefore important to design a BCS system in which BC categories were of 

equal weighting with an intermediate Moderate category of BC. Furthermore, it was essential to 

provide a means of validation for the BCSS in order to support the subjective, visual BC categories.  

 

2.2 Aims 
This chapter aimed to describe the methods used to develop a robust BCSS using data from the New 

Zealand Leopard Seal Photograph Library (NZLSPL). In addition, this chapter aimed to develop a more 

robust BCSS to assess the BC of leopard seals in New Zealand waters to assist in the understanding of 

the health of these individuals and the marine environment they occupy.  

Specifically, the objectives were to: 

1. Describe the methods employed for both collection and recording of data; 

2. Describe the procedures used when assessing photograph quality to be used in the BCSS; 

3. Conduct photograph assessment on sighting records in the NZLSPL to identify photographs 

suitable for applications to the BCSS and successive photographic measurement (Chapter 3); 

4. Develop a BCSS which is unbiased towards BC categories and included a ‘Moderate’ BC 

category, and; 

5. Conduct an assessment of BC using suitable photographs identified by the two-tiered photo 

assessment criteria, using the BCSS.  
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2.3 Methods 

2.3.1 Data collection 
Leopard seal sighting records were derived from the NZLSPL which contains photograph sets of 

individual leopard sightings collected by an individual (member of the public or volunteer researcher, 

for example) organised by date and location, i.e. a sighting record labelled “20140915 Leopard Seal, 

Aramoana, Otago – Derek Cox” was collected on the 15th September 2014, at Aramoana in Otago, by 

Derek Cox. An individual leopard seal which has been the focus of ongoing study since 2015 was 

excluded from this analysis in order to reduce the impact of over-representation of individual seals 

and therefore limit bias within the results.  

 

2.3.2 Photograph assessment 
All sighting records within the NZLSPL were submitted to photograph assessment to ensure that 

images of high resolution were used where bony protrusions could be easily detected (when visible). 

Firstly, each photograph in a sighting record was graded according to Photograph Assessment Criteria 

(PAC). The PAC was used to determine if the seals’: full body was visible; full (left or right) side profile 

was visible; body positioning was parallel to the ground in ventral recumbency, and; body positioning 

was perpendicular to the camera (Table 2.1). Only sighting records which contained at least one 

photograph that met all of the described PAC were retained for further analysis. Secondly, each 

photograph in a photograph set was graded according to Photograph Quality Criteria (PQC). 

Photograph quality was assessed by assigning a score of 0 or 1 for resolution, lighting and contrast, 

whereby a 0 would be assigned to a photograph with insufficient quality and a 1 would be assigned to 

a photograph with sufficient quality for each of these criteria. Based on this, each photograph in a 

sighting record would thereby receive a score of 1–3, whereby Good=3, Fair=2 and Poor=1. Only 

sighting records which contained at least one photograph that achieved a score of 2 or 3 in the PQC 

was retained for further analysis.  
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Table 2.1. Photograph Assessment Criteria (PAC) used to examine images of New Zealand leopard 
seals. Examples of photographs which passed and failed, whereby reasons for failing were as follows: 
no full body side profile visible due to obstruction by water (photograph B); no full body side profile 
visible due to cropping (photograph D), and; no full body side profile visible due to body position of 
seal  being not parallel to the ground (photograph F) and not perpendicular to the camera 
(photograph H). Photographs A, B, D and G were taken by Thelma Wilson, Gary Mathers, Kerry 
Butterfield and Katharina Achterberg (LeopardSeals.org unpublished data), while photographs C, E, F 
and H were taken by the author.
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Table 2.2. Photograph Quality Criteria (PQC) used to examine images of New Zealand leopard seals. 
A score of 1 was assigned to photographs with sufficient quality for each of the three criteria 
(resolution, lighting and contrast) while a score of 0 was designated for photographs which were of 
insufficient quality with regard to the criteria. Photographs were taken by Giverny Forbes (A, C and 
E), Joanne Thwaites (B), Thelma Wilson (D) and Neil Morrison (F; LeopardSeals.org unpublished 
data).

 

 

2.3.3 Body condition scoring 
Using sightings records from the NZLSPL that met both the PAC and PQC, a visual assessment of BC 

was conducted using all photographs for each record. Scores were stored in the Body Condition – 

Leopard Seals Database (hereafter referred to as the BCLSD) and assigned a sighting-ID for the purpose 

of differentiating between sighting records (i.e. sighting-ID HL001 referred to Hydrurga leptonyx 

sighting record number 1). Following Hupman et al., (2019), BC was graded by detecting the presence 

of visible bony protrusions including the: zygomatic arch; sagittal crest; neural spines; rib bones, and; 

the pelvis (Table 2.3). If bony protrusions were visible then a score of 1 was recorded and the sum of 

the scores allocated the seal into a category named a body condition group (BCG) whereby: 0-1 = 

Good; 2-3 = Moderate, and; 4-5 = Poor (Table 2.3, adapted from Hupman et al., 2019).  Here, BCGs 

described by Hupman et al., (2019) were modified so that there was an equal chance of belonging to 

each category (i.e. each BCG has increments of 2, thus as scores can range from 0 to 5, there is a 1/3 

or 33.3% chance of an individual belonging to one of the categories).  Sighting records of leopard seals 

extracted from the NZLSPL were organised as ‘encounters’ and not photo-ID’d ‘known individuals’, 

however there were nine occasions (n=18 sighting records) when sighting records were identified 

having the same date and location, and therefore were likely to contain photographs of the same 
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leopard seal, and thus were denoted as ‘repeat encounters’. Each repeat encounter sighting record 

was assessed to determine if these records would be categorised into the same BCG using the BCS. 

Photo-ID of individuals was not a method used within this chapter as it is the focus of another study 

(LeopardSeals.org unpublished data).  

 

Table 2.3. Body condition group (BCG) chart and classification for New Zealand leopard seals based 
upon visibility of bony protrusions, adapted from Hupman et al., (2019). Examples of body condition 
(BC) classifications are outlined to illustrate how body condition scores (BCS) were calculated. 

  Example 

BCG Score Sagittal 

crest 

Zygomatic 

arch 

Neural 

spines 

Rib  

bones 

Pelvic 

bones 

Good 0 - 1 e.g. 0 e.g. 0 e.g. 0 e.g. 0 e.g. 1 

Moderate 2 - 3 e.g. 1 e.g. 0 e.g. 0 e.g. 1 e.g. 1 

Poor 4 - 5 e.g. 1 e.g. 1 e.g. 1 e.g. 1 e.g. 1 

 

Table 2.4. Body condition groups (BCG) of New Zealand leopard seals classified as Good (example 

image A), Moderate (example image B) and Poor (example image C) using a body condition scoring 

system (BCSS) following methods modified by Hupman et al., (2019). Photographs A and C were 

taken by Giverny Forbes and Francis Murphy (LeopardSeals.org unpublished data) while photograph 

B was taken by the author.

 

 

2.4 Results  
A total of 80 sighting records from the BCLSD met both the PAC and PQC. Sighting records were more 

frequently classified as Good (n=57; 71.25%), compared to those classified as Moderate (n=15; 
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18.75%) or Poor (n=8; 10%; Figure 2.3), identifying that leopard seals observed within New Zealand 

are predominantly in good condition. Of the 57 sighting records categorised as Good, many (n=41) 

were assigned a score of 0; i.e. no bony protrusions visible, representing just over 50% of sighting 

records. When bony protrusions were visible (n=39), the pelvic bones were the most frequent 

protrusion that was identifiable, observed in 84.6% of the sighting records (n=33), followed by the 

sagittal crest (n=21; 53.8%), neural spines (n=11; 28.2%), rib bones (n=10; 25.6%) and zygomatic arch 

(n=7; 17.9%; Figure 2.4). The zygomatic arch was only seen in Poor BC sighting records where seals 

were categorised 4 or 5 for BCS. Although the neural spines and rib bones were observed a similar 

number of times (n=11 and n=10; Figure 2.4) they were only seen in conjunction with one another on 

four occasions, again within sightings records that contained Poor BC individuals.  

 

Regarding the ‘repeat encounter’ sighting records, on eight out of nine occasions the seal within the 

sighting record was allocated the same BCS, specifically by identifying the presence of the same bony 

protrusions on each occasion. In the one instance where two different scores given, the sightings 

records were split into two BCG; Good and Moderate. The sighting record with the sighting-ID HL072 

(i.e. Hydrurga leptonyx sighting record number 72) was identified as containing a leopard seal in Good 

condition (a score of 0), whereas the record HL029 (i.e. Hydrurga leptonyx sighting record number 29) 

was reported as BCG Moderate (a score of 2) where the neural spines and pelvic bones were both 

observed.  

 

 
Figure 2.3. Number of individual New Zealand leopard seal sighting records categorised to each body 
condition group (BCG) based upon a body condition scoring system (BCSS). 
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Figure 2.4. Frequency the five distinct bony protrusions were visible using a body condition scoring 
system (BCSS), distinguished for each New Zealand leopard seal sighting record. 

 

2.5 Discussion 

2.5.1 Photograph assessment 
The number of sighting records containing photographs identified as suitable for BCS by means of 

photograph assessment within this chapter (n=80) were relatively low as compared with other studies 

using BCS methods based on photographic data. For instance, research by Joblon et al., (2008) on 

short-beaked common dolphins involved photographs of 802 individuals, while research on North 

Atlantic right whales by Pettis et al., (2011) utilised a database of over 200,000 photographs of 435 

photo-ID’d known individuals. In comparison, the number of sighting records examined within this 

chapter (n=80) contained less than 5.7% of the total number of sighting records available in the 

NZLSPL, possibly as result of stringent photograph assessment criteria which eliminated the use of 

many photograph records. Regarding photograph assessment, limited information was provided in 

the literature concerning how photographs were sorted into those that were of sufficient quality to 

be used for analysis vs those that were not. Hupman et al., (2019) reported that photographs were 

examined for quality and categorised as either; poor, fair, good or excellent using methods outlined 

in Hupman et al., (2018), and of the 1408 photographic records of New Zealand leopard seals, 368 

photographs were identified as suitable for analysis of BC using these categories. Comparatively, 

research by Zielke et al., (2018) on European bison states describes the challenge of photographing 

animals, stating that visibility of the animals was an issue as they were living semi-free, however 

details on how this was overcome were not conveyed. The study by Pettis et al., (2011) outlined 

difficulties with using photographic data for BC assessment, stating that 38.9% of the 200 000 

photographs available were identified as not suitable for assessment of North Atlantic right whale 
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health parameters (including BC, skin condition, rake marks and cyamids). Furthermore, of the 

remaining photographs 68.4% were unsuitable for assessment of BC due to the body positioning of 

the whale, as well as the angle the photograph was taken, as it was difficult to make BC assessments 

on images that were not taken laterally parallel to the whale (Pettis et al., 2011). The body position of 

the whale was identified an important consideration when allocating BCS as photographs of whales 

engaged in feeding or head lifting behaviours created a “temporary concavity” which meant these 

images were not suitable for BC assessment, however, no further information or scales were provided 

to illustrate how photographs were sorted into suitable or unsuitable for use (Pettis et al., 2011). 

Within this chapter photograph assessment was an important element to BCS, to ensure that images 

of leopard seals were standardised so that when bony protrusions were protuberant, they could be 

clearly detected from high resolution images with good quality and lighting (Table 2.2). 

Correspondingly to limitations outlined by Pettis et al., (2011) the body position of the leopard seal 

was also identified within this study as being important for BC assessment, and thus only photographs 

of the whole left or right side-profile while the animal was lying in ventral recumbency, parallel to the 

ground and perpendicular to the camera should be used in future analysis of leopard seal BC (Table 

2.1).  

 

2.5.2 Body condition scoring 
BCSS have not been thoroughly explored as means of assessing population health for pinnipeds, 

despite being described as early as the 1960s for applications for agriculture (Jefferies 1961), as well 

as being employed for other marine mammal studies in recent years (i.e. short-beaked common 

dolphins; Joblon et al., 2008 and North Atlantic right whales; Pettis et al., 2011). The BCSS developed 

for leopard seals in this chapter was based upon five clearly detectable bony protrusions; sagittal crest, 

zygomatic arch, neural spines, rib bones and pelvic bones. Three of these bony protrusions (neural 

spines, rib bones and pelvic bones) were common with three of the five bony protrusions (ribs, spine 

and hips) used in a BCSS by Zielke et al., (2018) for assessing BC in European bison. The five bony 

protrusions identified by Zielke et al., (2018) were scored separately between 1 and 5 based upon the 

gradation of visibility, and the average of all five scores equated to the BCS for that individual. In 

comparison, BCS in this assessment ranged between 0 and 5 where a score of one was allocated for 

each bony protrusion visible. Research by Pettis et al., (2011) and Joblon et al., (2008) utilised simpler 

BCS methods. For North Atlantic right whales only one morphological area was assessed (the nuchal 

crest) as this was the only area consistently photographed above water, where BC was categorised 

based upon the degree of concavity or convexity in this one morphological region (Pettis et al., 2011). 

The study of short-beaked common dolphins also assessed concavity in the nuchal crest, in addition 

to examining the epaxial section (ventrolateral to the dorsal fin) and the thoracic wall (rib bones) as 
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well as overall shape of the trunk as part of a more robust 4-point BC scale (Joblon et al., 2008). Alike 

methods employed within this chapter, however, Joblon et al., (2008) had the advantage of 

photographing dolphins out of water, in ventral recumbency and on a firm surface, while Pettis et al., 

(2011) utilised images of free-ranging North Atlantic right whales whereby the majority of the animal 

was submerged underwater in each photograph.  

 

While BCS is not always the most accurate method due to its subjectivity between observers, it is an 

extremely useful, non-invasive and low-risk technique for investigating the ecology of wild and free-

ranging animal populations, without requiring require specialised or costly equipment. BCS is 

particularly useful in studies of marine mammals, where investigating BC is often difficult due to 

restricted visibility of an animal’s body while submerged underwater (Pettis et al., 2011). BCS can 

therefore be opportunistically employed to species of pinniped, which spend a proportion of their 

time on land where the entire of the body is visible to observers. As result, all morphological areas can 

be assessed for bony protrusions which gives a more accurate representation of individual health. The 

BCS method is also particularly useful with regard to citizen science due to its application to 

photographic data, as seen in research by Hupman et al., (2019), where photographs taken of leopard 

seals by members of the public were also incorporated into the database alongside photographs taken 

by volunteer researchers. This significantly increased the size of the dataset which portrayed a more 

accurate representation of BC within the leopard seal population in New Zealand.  

 

2.5.2.1 Bony protrusions 

Of all five bony protrusions within the BCSS the pelvic bones were most frequently observed 

suggesting the umbilical region may be significant for determining body condition in the leopard seal 

species. This is in agreement with research by Krause et al., (2017) who found that the umbilical width 

(located in front of the pelvic bones, as discussed in Chapter 1) correlated strongly with seal mass. As 

result of this the umbilical region was identified as a morphological area of interest for the subsequent 

chapter of this study during extraction of photographic measurements.  The bony protrusions neural 

spines and rib bones were not always seen in conjunction with one another when present. On 13 

occasions one of the two protrusions were observed compared to only four occasions where they 

were both recorded, despite these regions being located around the same body area. This suggests 

that perhaps not all leopard seals body fat is distributed throughout the body in the same way. There 

may be differences between unique individuals, between males and females and between different 

life stages which influenced the cover of fat on the leopard seal body, meaning BCS may not be directly 

indicative of health but also reflective of variation in morphology between individuals, which should 

be taken into consideration in future studies.  
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2.5.2.2 Validation 

Similar techniques have been employed for assessing consistency in BCS between observers in 

research by Joblon et al., (2008), Pettis et al., (2011) and Zielke et al., (2018), who all utilised variations 

of blind studies, which were also a means of providing validation for the subjective BCS methods. 

Research by Joblon et al., (2008) found a significant level of agreement between assessors, by using a 

random assortment of 30 photographs sent to five assessors (trained stranding reporters) who 

independently used the BCSS to allocate a BCS to each animal. Similarly, a double-blind study was used 

by Pettis et al., (2011) which confirmed a “strong agreement” between the primary researcher and 

two independent researchers (experienced right whale biologists) for assessments of BC using 100 

randomly selected photographs. Although an attempt at assessing consistency in BCS was conducted 

within this chapter by using sighting records containing repeat encounters, BCS were allocated by the 

same observer on each occasion (the author) and was only conducted on a small scale compared to 

other studies (Joblon et al., 2008; Pettis et al., 2011; Zielke et al., 2018). All but one of the repeat 

encounter sighting records were assigned the same BCG by identifying the same bony protrusions, 

reinforcing the reliability of the method. For the records where two different BCG were allocated for 

the same individual leopard seal, it was identified that this could be due to the number of photographs 

within each sighting. Sighting record HL072 contained 18 images, whereas sighting record HL029 

contained 37 images. Naturally, with sightings that had larger photograph sets there was a higher 

chance that if a bony protrusion was visible, then it was identified - this factor may be responsible for 

the variation in BCS and subsequent BCG of the two sightings. In future assessments using BCS it may 

be useful to focus only on one photograph from each sighting record (i.e. the photograph of the 

leopard seal lying in ventral recumbency, parallel to the ground and perpendicular to the camera), 

rather than the entire set of images. Although this would mean that that bony protrusions present 

may be missed, error between each sighting record would be equal. 

  

 

2.6 Conclusions 
Research involving photo-ID and photograph assessment for pinnipeds exists for a range of species, 

including leopard seals (Forcada and Robinson 2006; Hupman et al., 2019), as methods for assessing 

population abundance, distribution and movement patterns. In contrast, BCSS have rarely been 

developed for pinnipeds in spite of their extensive applications and success for studies involving land 

mammals in agriculture (Jefferies 1961; Edmonson et al., 1988) and veterinary science (Carroll and 

Huntingdon 1988; Dorsten 2004) as well as wild and captive mammals (Cook et al., 2010; Zielke et al., 

2018; Chusyd et al., 2019).  Using photograph assessment methods outlined in this chapter 80 sighting 

records from the NZLSPL were identified as sufficient quality using two tiered assessment criteria; PAC 
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and PQC, and thus were extracted for application to BCS in order to determine composition of BC 

within the New Zealand leopard seal population. Although this dataset was substantially smaller than 

the dataset of Hupman et al., (2019) whom identified 368 photographs suitable for BCS, employing 

the BCSS 71.25% of sighting records from the NZLSPL were identified as containing images of Good 

condition leopard seals, with a further 18.75% identified as containing Moderate and 10% containing 

Poor condition seals. This was consistent with findings by Hupman et al., (2019), whom reported that 

the composition of BC within New Zealand leopard seals was; 33.34%=Excellent condition (n=119) 

57.88% =Good condition (n=213), 4.89%=Poor condition (n=18) and 0.54%=Severe condition seals 

(n=2), which disputes existing publications from other northerly regions (regions where leopard seals 

have been observed outside of their core home range of the circumpolar pack ice of Antarctica) whom 

report that individuals observed in these areas of predominantly of poor condition (Rounsevell and 

Pemberton 1994; Mawson and Coughran 1999; Bester et al., 2017). In future research using BCSS in 

this species it would be advantageous to run BCS alongside photo-ID, so that individual leopard seals 

can be compared in addition to monitoring condition of individuals over time. Moreover, during BC 

assessment, it is suggested that only one photograph per sighting record is used to assess BC, to 

maintain the levels of error between sightings.  
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Chapter 3 : Dimensionality reduction of 

photogrammetric measurements of body 

width extracted from sighting records of 

New Zealand leopard seals using Principal 

Component Analysis 

 

 
Leopard seal photographed at Wellington’s boat sheds on Oriental bay (New Zealand) 
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3.1 Introduction  

3.1.1 Photogrammetry 
Photogrammetry is a technique used to obtain measurements from photographs. This method is 

widely used in the field of science and has been applied for studies in obtaining measurements from 

species that are large and/or impractical to physically capture i.e. scalloped hammerhead sharks 

(Sphyrna lewini; Klimley and Brown 1983), fin whales (Balaenoptera physalus; Ratnaswamy and Winn 

1993) as well as North Pacific (Eubalaena japonica) and southern right whales (Eubalaena australis; 

Christiansen et al., 2019; Dawson et al., 2017). Research by Christiansen et al., (2019) employed 

photogrammetry in a study aimed to estimate body mass of free-ranging right whales (Eubalaena sp.), 

using an unmanned aerial vehicle (UAV) equipped with a camera, compared against historical catch 

records (Omura et al., 1969). Both dorsal and lateral angles of free-ranging southern right whales were 

photographed using an UAV, where the camera was facing directly down (Christiansen et al., 2019). 

From the dorsal photographs, total body length (BL; the tip of the rostrum to the tip of the tail notch) 

were measured in addition to measurements of body width at 5% increments, while measurements 

of height (H; dorsal to ventral distance) were measured at the same 5% intervals using lateral 

photographs (Figure 3.1; their Figure 1, Christiansen et al., 2019). All photographic measurements 

were converted from pixels to metric values using  values for the relative size of the whale (in pixels), 

the size of the camera sensor, ratio of the altitude of the UAV (measured by a range finder) and camera 

focal length (Christansen et al., 2018). Using these data, body volume of 86 individual whales were 

estimated by incorporating their condition (by modelling each individual as a series of ellipses; Figure 

3.1) and size (employing a linear model which made use of body girth and length data; Figure 3.1). 

This model was applied to data from eight lethally caught North Pacific right whales (where actual 

body mass was measured) to obtain a body volume-body mass conversion factor (Omura et al., 1969; 

Christiansen et al., 2019). Results by Christiansen et al., (2019) reported that this non-invasive 

photogrammetry approach yielded accurate estimates of body mass, which fell within close range to 

actual values of body mass. Furthermore, it was suggested that this technique can be applied to other 

free-ranging marine mammals, simply by adjusting model parameters. Photogrammetric methods 

were also applied by Krause et al., (2017) to estimate mass of leopard seals in Antarctica using an 

unmanned aerial system (UAS; refer to Chapter 1). Results from this study revealed the first instance 

where photogrammetric methods were more precise than traditional manual measurements for 

estimating mass (Krause et al., 2017), reinforcing the reliability of photogrammetric measurements.  
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Figure 3.1. Examples of photographs of an individual southern right whale (Eubaleana australis) 

taken from the unmanned ariel vehicle (UAV) extracted from Christiansen et al., (2019). Photograph 

(a) shows the dorsal side of the whale complete with the photographic measurement of total body 

length (BL) from the tip of the rostrum to the tip of the tail notch (as shown by white arrows) and the 

body width measurements at 5% increments (W). Photograph (b) shows the same whale 

photographed from the lateral side, used to extract photographic measurements of body height (i.e. 

the dorsal to ventral distance; H) at the same 5% increments, the solid lines represent girths (G) at 

25% (pectoral fin), 50% (umbilicus) and 72% (anus) body length. Photograph (c) shows a 3D model of 

the same whale photographed in (a) and (b), as a series of ellipses used to estimate body volume, 

where each ellipse represents the variation in height-width ratio (Christiansen et al., 2019). 
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3.1.2 Principal Component Analysis 
Principal Component Analysis (hereafter PCA) is a statistical technique of feature extraction used for 

dimensionality reduction, when there are a large number of variables (Manly 1994; Kim and Kim, 

2012). Dimensionality reduction works to decrease the number of variables, without losing the original 

variation and trends within the data (Tharwat et al., 2017). As a result, fewer relationships exist 

between variables, therefore making it easier for the user to identify these relationships as well as 

trends within the data (Czarnowski and Jędrzejowicz 2018). PCA works by transforming the original 

correlated variables into a smaller set of uncorrelated variables (artificial variables) named principal 

components, which account for a large proportion of the variability within the data (Manly 1994; Kim 

and Kim 2012). These new principal components are ordered in such a way that the first PC (PC1) 

commonly contains the most variation within the independent variables, and the subsequent PCs 

account for the majority of the remaining variation, that is not contained in the former PCs (Jolliffe 

1968). This statistical method is also used for observing clusters of observations which are similar to 

one another using biplots (which can be denoted as separate groups). In simplified terms, PCA can be 

used to identify a set of similar variables which cause observations to differentiate from one another, 

and is therefore often used in classification techniques, to identify which variables are useful for 

explaining differences between observations.  

 

3.1.3 Applications of Principal Component Analysis 
PCA has been employed in biological and ecological research, including: using morphometric features 

extracted from bones for taxonomy, palaeontology and sex classification (Marrama and Kriwet 2017; 

Pearcy and Wijitten 2011; Lewis et al., 2014); species recognition through images obtained by camera 

traps (Giraldo-Zuluaga et al., 2017); species identification via acoustics (Binder and Hines 2012), and; 

identifying differences in diet across a species (Lowry et al., 2004). As an example of biological 

application, Marrama and Kriwet (2017) used PCA as part of a taxonomic classification study for 

identifying which features of a tooth were responsible for differentiating between different taxonomic 

groups of living and extant shark species. Using photogrammetry, 14 measurements plus two angles 

were extracted from images of teeth using image manipulation software TPSdig2.19 (Rohlf 2005), 

after standardisation and log-transformation these measurements were input into a PCA. The PCA 

identified the seven most important variables (i.e. features of shark teeth) for explaining 93.6% of the 

total variability, consequently eliminating the need for future analysis or measuring of the remaining 

nine variables, thus saving time in data collection. Of these variables, it was found that PC1 (76% of 

the variation) was predominantly associated with “degree of slant” i.e. how curved the tooth is, 

therefore suggesting that this feature alone is a key distinguisher between taxonomic groups 

(Marrama and Kriwet 2017). Following the PCA, discriminant analysis and Hotelling’s t2-test (Hotelling 
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1951) were employed to determine if the tooth measurements were useful for assigning 

indeterminate shark teeth to a specific taxon, and reported that these indeterminate teeth were 

significantly different to three of the four extant shark species, but showed non-significant separation 

to teeth belonging to Brachycarcharias, and therefore were assigned to the Brachycarcharias taxon 

(Marrama and Kriwet 2017). 

 

3.1.4 Applications of Principal Component Analysis to marine mammal studies 
The application of PCA to biological questions have been used in a number of marine mammal studies, 

including; detecting and classifying North Atlantic right, humpback (Megaptera novaeangliae), 

bowhead (Balaena mysticetus), minke (Balaenoptera acutorostrata) and sperm (Physeter 

macrocephalus) whales using acoustics (Binder and Hines 2012); analysing fatty acid signatures within 

blubber of North Atlantic orca (Orcinus orca; Bourque et al., 2018), and; examining the origin of high-

frequency hearing in whales (Churchill et al., 2016). Research by Lowry et al., (2004) used PCA for 

comparing the diet of bowhead whales between three locations in the Beaufort Sea of Alaska: Barrow 

(western Beaufort Sea); Kaktovik (eastern Alaskan Beaufort Sea), and; Nuiqsut (central Alaskan 

Beaufort Sea), using examination of stomach contents. In research by Lowry et al., (2004), PCA was 

applied to a dataset within which the importance of 16 unique prey types were ranked for each 

individual whale, where importance was defined by the ratio between the volume of that prey type 

to the total volume of the sample. The analysis resulted in three PCs that were responsible for 

explaining the largest amount of variance within the dataset (48.9%), where PC1 (18% of total 

variability) was defined by a contrast of copepods and euphausiids in the diet of the whale (Lowry et 

al., 2004). These three PCs were then used as the dependent variables in a multiple regression analysis 

which assessed the relationships between Alaskan bowhead whale diet and: location; season; length; 

sex, and; year. The multiple regression found a significant difference between diet and season for all 

three PCs, as well as a significant effect between diet and location for PC1 (where copepods dominated 

the eastern Beaufort Sea and euphausiids were most frequently observed in the western Beaufort 

Sea; Lowry et al., 2004). Therefore, of the 16 prey types observed, the difference between the ratio of 

copepods and euphausiids in the stomach contents was highlighted by the PCA as being an important 

factor for identifying differences between bowhead whale diet at different locations and within 

different seasons in the Alaskan Beaufort Sea.   

 

3.1.5 Applications of Principal Component Analysis to leopard seal studies 
PCA has also been applied to studies involving leopard seals, some of which include; analysing the 

evolution of the pinniped jaw (Jones et al., 2013); examining differences between carnivoran tooth 

sharpness with reference to filter-feeding capabilities (Hocking et al., 2017); measuring characteristics 
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of leopard seal calls (Kreiss et al., 2013), and; determining the fatty acid composition of leopard seal 

blubber (Guerrero et al., 2016). Within research by Kriess et al., (2013) underwater vocalisations of 

leopard seals were examined between three distinct Antarctic locations (Drescher Inlet, Atka Bay and 

Davis Sea) during the breeding season (the austral summer), in order to investigate acoustic ecology. 

In this instance, PCA was used to determine if high double trill (hereafter HDT) calls could be 

distinguished according to the location in which they were recorded. HDTs are a broadcast call 

produced by both male and female leopard seals of all age groups (Rogers et al., 1996; Rogers 2007), 

and are composed of two short duration pules at ~3.5s each (Rogers et al., 1995) recorded in this study 

at each of the three locations using underwater hydrophones (Kreiss et al., 2013). The Lower and 

upper HDT call frequencies together with durations of HDT call part 1 and 2 and five pule repetition 

rate (PRR) parameters were input into the PCA which revealed that principal components 1 and 2 (PC1 

and PC2) were explained by 67% of the variance within the data. It was deduced that PC1 reflected 

the PRR parameters while PC2 was represented by the upper frequency of call parts 1 and 2 (Kreiss et 

al., 2013). Using PCA, HDTs recorded at Drescher Inlet were separated to HDTs recorded at both Atka 

Bay and Davis Sea, with differences in characteristics of HDT calls were strongest between Drescher 

Inlet and Atka Bay despite being located in closest proximity (~500km; Kreiss et al., 2013). 

Characteristics of HDT calls recorded in Atka Bay and Davos Sea were highly similar with respect to 

PC1, however differentiated slightly with respect to PC2 (i.e. upper frequencies of both HDT call parts; 

Kreiss et al., 2013). Using PCA in this application, Kreiss et al., (2013) provided support for previous 

studies  which suggest movements of leopard seals between breeding groups to avoid the occurrence 

of genetically isolated leopard seal populations, by showing a high degree of similarity between HDT 

calls recorded at all three testing sites in Antarctica.  

 

As can be seen from these examples, PCA is a useful method that allows the user to take a large array 

of variables and reduce the number of these variables down to those which are important for 

explaining variation within a dataset, as well as for distinguishing between observations (Kreiss et al., 

2013). PCA is also applicable for differentiating between features responsible for variation and 

features which represent background noise. As result, ‘background noise’ features can be discarded 

from further analysis, thus saving time and effort in future research. Features identified by PCA as 

being ‘most important’ be used for statistical analysis to identify relationships (Lowry et al., 2004) and 

to allocate observations into classification groups (Marrama and Kriwet 2017). 
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3.2 Aims 
The aim of this chapter was to employ PCA to refine the number of variables used to categorise body 

condition groups (BCGs) from photographs and observe any relationship between photographic 

measurements of body width and pre-assigned BCGs derived in Chapter 2. Photographic 

measurements were also extracted to provide validation for the body condition scoring system (BCSS) 

discussed in the preceding Chapter 2, in addition to being applied to machine learning methods in the 

following Chapter 4.  

Specifically, the objectives were to: 

1. Use ImageJ software to extract 13 photographic measurements from images identified in 

Chapter 2 for meeting Photographic Quality Criteria (PQC); 

2. Apply these photographic measurements to a PCA to identify the ‘most important’ 

photographic measurements for explaining the variation within the data with respect to pre-

assigned BCGs; 

3. Plot individual leopard seal sighting records to observe if records allocated to the same BCG 

form clusters, and; 

4. Use ANOVA and post-hoc testing to observe whether statistically significant differences exist 

between the means of photographic measurements identified as ‘most important’ by PCA 

with regard to pre-assigned BCGs.  

 

3.3 Methods 

3.3.1 Photogrammetry 
For all 80 sighting records in the Body Condition – Leopard Seals Database (BCLSD) one image was 

selected for each sighting record to be used for extraction of measurements, resulting in a sample size 

of 80 images. These images were chosen for meeting all criteria in photograph assessment (refer to 

Tables 2.1 and 2.2 in Chapter 2), whereby the full body of the left or right side profile was visible within 

the frame, and the leopard seal was lying in ventral recumbency, parallel to the ground and 

perpendicular to the camera. Independently all images were loaded into ImageJ and cropped tightly 

around the body of the seal. Using the straight-line tool, a line was drawn from the tip of the snout to 

the tip of the hind flippers representing total body length. This line was then measured in pixels. A 

macro called ‘ten widths’ designed by Krause et al., (2017) was then implemented to create 10 

individual equidistant points along the line, marked red and blue in between the two points denoting 

the beginning and end of the line. These beginning and end points can be seen at the tip of the snout 

(in blue) and over the tip of the hindflippers (in red) in Figure 3.2 and were not measured but served 

as markers for the beginning and end of the line to generate the equidistant points. Measurements of 

body width were taken using the straight-line tool at each of the ten points from the ventral side to 
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the dorsal side of the seal (Figure 3.2). An additional three manual measurements were taken; axillary 

width (AW), umbilical width (UW) and the angle between the head and the neck (A; which was 

measured in degrees; Figure 3.2). The additional measurements of AW and UW were selected as both 

have been previously identified as important measurements for estimating body condition (BC) in 

studies that undertake manual measurements (Hofman 1975; Van den Hoff et al., 2005; Krause et al., 

2017), as well as the umbilical region being identified as a morphological area of interest in Chapter 2. 

The 13 total photographic measurements from each image were input into an excel spreadsheet and 

assigned a sighting-ID relating to the folder ID of the sighting record, i.e. row HL001 in the database 

corresponded to the sighting folder “HL001 - 20140915 Aramoana, Otago - Derek Cox” (see Chapter 2 

methods for details).  

 

The 12 body width measurements (i.e. the ten width measurements from the ten widths macro plus 

AW and UW) were standardised by dividing each photographic measurement by total body length and 

log-transformed to reduce effects of size and ontogeny (i.e. the difference in size of animals occupying 

the image frame and difference in size of animals observed at different developmental stages; 

Marrama and Kriwet 2017). Standardising the measurements was an essential step as photographs of 

leopard seals at different developmental stages were used, as well as the pixel resolution of 

photographs varied between 600 and 7000 pixels, therefore standardising in this way meant that only 

body shape was compared between individual sightings. These new standardised widths were given 

the prefix ‘S’ in the database and were so named ‘S1-10’, ‘SAW’ and ‘SUW’. Standardising also enabled 

comparisons of measurements between individual seals. Measurement A was not standardised (and 

therefore remained as “A”) as this variable was recorded in degrees, therefore was already directly 

comparable between sighting records. Averages of all standardised photographic measurements were 

calculated for the 80 leopard seal sighting records and plotted to show difference in seal silhouettes 

belonging to each BCG (Figure 3.3). As testing normality is a fundamental requirement of PCA, all 13 

photographic measurements were also tested for normality using Shapiro-Wilk tests (Shapiro and Wilk 

1965). Despite standardisation and log-transformation, 6 of the 13 measurements were non-normal 

(S5, S7, SUW, S9, S10 and A), and therefore were not used in further analysis in this chapter. 
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Figure 3.2. Leopard seal side profile displayed in ImageJ software exhibiting ten equidistant points along the overall length of the body (i.e. 1-10 shown on 
the ventral side of the seal), between the start point at the tip of the snout (in blue) and the end point at the tip of the hindflippers (in red), using the ten 
widths macro developed by Krause et al., (2017). Locations of the three manual measurements (A, AW and UW shown on the dorsal side of the seal; see 
methods for definitions) are also identified. Here, all 13 photographic measurements are shown as examples of how measurements were taken from the ten 
widths line. Photo by Giverny Forbes, LSO (LeopardSeals.org unpublished data). 
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Using standardised photographic widths from ImageJ and PCA (S1, S2, S3, SAW, S4, S6 and S8), a one-

way ANOVA was applied to determine if any statistically significant differences existed between 

average body width measurements of Good, Moderate and Poor condition seals. Of all normally 

distributed photographic measurements, only width S1 returned with a statistically non-significant 

result (p>0.05), indicating there were no differences between the different conditioned seals at this 

width location, and thus this variable was not tested further in this chapter. The remaining 

photographic measurements all produced a statistically significant result (i.e. p<0.05 in all six 

instances), signifying that significant differences did exist between sighting records of leopard seals 

belonging to the different BCGs, at these width locations. Thereafter, Tukey multiple comparison of 

means (Tukey 1977) tests were employed on these photographic measurements to detect the 

differences between BCGs.  

 

It was also hypothesised that measurements of A (the angle between the head and the neck, in 

degrees) would be larger in seals identified as being in Good BC, than those in both Moderate and 

Poor BC  as a wider angle would represent a ‘thicker’ neck with increased body fat, whilst a smaller 

angle would signify reduced body fat thus a sharper, more angled body profile. Therefore, 

measurement A for all 80 records were visualised in a boxplot for each BCG (Figure 3.4). A Kruskal-

Wallis (Kruskal and Wallis 1952) test showed that statistically significant differences existed between 

measurements of A for leopard seal sighting records belonging to the three BCGS (p<0.05), therefore 

Wilcoxon pairwise comparison tests (Wilcoxon 1945) were also employed to determine which BCGs 

were statistically different with respect to A.  

 

3.3.2 PCA  
The 80 sightings from the BCLSD were applied to six PCA models for dimensionality reduction 

(reducing the number of photographic measurements) and for identifying relationships between the 

photographic measurements and BCGs assigned in Chapter 2, using a BCSS. The first PCA (PCA-1) 

included all normally distributed photographic measurements (S1, S2, S3, SAW, S4, S6 and S8) and a 

corrplot (a visual display of a correlation matrix; Wei and Simko 2017) was used to show the 

contribution of each variable to the principal components (Figure 3.5). The variable which contributed 

the least was ‘dropped’ from further analysis within this chapter, and this method was repeated, each 

time refining the number of variables. In doing this, width S8 was identified in PCA-1 as the first 

photographic measurement which contributed to the PCs the least, and thereby was eliminated from 

further analysis. Subsequent PCAs eliminated SAW (PCA-2), S4 (PCA-3), S1 (PCA-4) and S3 (PCA-5) in 

that order (Table 3.1).  
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Biplots were also drawn to visualise clustering of observations between the three pre-assigned BCGs, 

where points close to one another represent sighting records with similar measurement values. These 

biplots were useful for visualising the data as each point on the biplot represented the whole 

photographic measurement profile for each individual sighting record. Thus, instead of several plots 

comparing photographic measurements one-by-one, the biplots compared all photographic 

measurements for all leopard seal sighting records in one figure (Figure 3.7 and Figure 3.8).  

 
 
Table 3.1. Photographic measurements used for each Principal Component Analysis (PCA). Cells 
where information was not applicable were denoted NA. 

 Photographic Measurements Used ‘Dropped’ Measurement 

PCA-1 S1, S2, S3, SAW, S4, S6, S8 S8 

PCA-2 S1, S2, S3, SAW, S4, S6 SAW 

PCA-3 S1, S2, S3, S4, S6 S4 

PCA-4 S1, S2, S3, S6 S1 

PCA-5 S2, S3, S6 S3 

PCA-6 S2, S6 NA 

 

All analysis was completed using R 4.0.2 (R Core Team 2020) using packages; pastecs (Grosjean et al., 

2018), ggplot2 (Wickham 2016), plyr (Wickham 2011), scales (Wickham and Seidel 2020), grid (R Core 

Team 2020), ggbiplot (Vu 2011), FactoMineR (Le et al., 2008), factoextra (Kassambara and Mundt 

2020), rlang (Henry and Wickham 2020), reshape (Wickham 2007) and corrplot (Wei and Simko 2017). 

 

3.4 Results 

3.4.1 Photogrammetry 
It was evident that photographic width measurements for sighting records containing Good BC 

leopard seals were larger on average than records of those containing Moderate and Poor BC seals 

(Figure 3.3). The Moderate BC profile appears to follow the shape of Good (with smaller average width 

measurements) whilst the Poor BC profile has a distinctly larger upper torso (i.e. measurements S3, 

SAW and S4) leading to a slimmer umbilical region (i.e. measurements S5, S6, S7, SUW and S8), 

revealing a distinct difference in average body shape between these three BCGs.  

 

The Tukey tests found that for photographic body width locations: S2; S3; SAW, and; S4 there was a 

statistically significant difference between sighting records containing Good and Moderate BC 

individuals, whilst for width S8 there was a statistically significant difference between sighting records 

containing Good and Poor BC individuals. Width S6 was the only width that achieved statistically 
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significant differences between two groups; Good – Moderate, and Good – Poor. These results signify 

that the Good BCG was most distinguished from the other two BCGs with regard to the photographic 

measurements of body width. Unexpectedly, for the photographic measurements that were able to 

differentiate between Good and Moderate BC sighting records, there wasn’t a corresponding 

difference between Good and Poor BC sighting records, with the exception of S6. For this reason, 

photographic measurement S6 was identified as an important width for differentiating between seal 

sightings belonging to different BCGs. 

 

 

 
Figure 3.3. Body shape of 80 New Zealand leopard seals using average (and standardised, indicated 
by ‘S’) widths, divided into body condition groups (BCG); Good (n=57), Moderate (n=15) and Poor 
(n=8), based upon body condition scores (BCS), at 12 positions along the body (S1 – 10, SAW and 
SUW). 

 

With respect to measurement A, pairwise Wilcoxon testing identified that statistically significant 

differences existed between BCGs Good – Moderate, as well as Good – Poor (p<0.05). This supports 

the hypothesis that the measurement of A was larger in seals belonging to the BCG Good, which is 

also visible in Figure 3.4. No significant difference existed for the size of A between Moderate and 

Poor BCGs. 
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Figure 3.4. Boxplot displaying variation in measurement of the neck angle (A) in degrees between the 
three body condition groups (BCG) for 80 New Zealand leopard seals, where Good=1 (n=57), 
Moderate=2 (n=15) and Poor=3 (n=8). 

 

3.4.2 PCA models 
In total, six different PCA models were trialled. Each time the number of variables were reduced by 

‘dropping’ the variable which contributed to PC1 and PC2 the least. This reduction of variables was 

done primarily using a corrplots (correlation matrices), illustrated in Figure 3.5 where photographic 

measurement S8 can be observed as being less important than the other six variables for explaining 

the variation in BC in both PC1 and PC2 (represented by Dim.1 and Dim.2) in PCA-1, as shown by the 

much smaller and paler blue circles. Similarly, Figure 3.6 (an alternative representation of the corrplot 

in Figure 3.5, whereby each photographic measurement is represented by a vector) shows how 

photographic measurement S8 contributed the least out of all seven photographic measurements 

within PCA-1, indicated by the shortest length, and blue-green colour of the vector within the plot, 

compared to the other variables symbolised by longer vectors in shades of yellow (S1, SAW, S4 and 

S6) and orange (S2 and S3).  
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Figure 3.5. Corrplot from the first Principal Component Analysis model (PCA-1) where ‘Dim’ along the 
top represents the principal components (PC) and the photographic measurements of body width are 
displayed on the left. The larger and darker a circle represented the higher the variable contributed 
to each of the PCs (i.e Dim.1… Dim.7), as shown by the colour scale on the right. 
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Figure 3.6. Loadings plot from the first Principal Component Analysis model (PCA-1) where ‘Dim1’ 
and ‘Dim2’ represent principal components (PC) PC1 and PC2. The colour (denoted by ‘contrib’ on the 
right) and the length of the vector indicate how much each of the variables contributed to the PCs.  

 

The first biplot of PCA-1 (Figure 3.7) showed that the majority of sighting records containing Good BC 

individuals occupied the centre and upper right portion of the biplot, while Moderate BC records 

occupied the centre to upper left portion of the biplot and Poor BC records were visible across the 

lower portion of the biplot. There was considerable overlap of records belonging to all three BCGs 

within the centre, although the ellipses created by the biplot revealed some distinction between BCGs 

which indicated that these photographic measurements were related to pre-assigned BCGs. When the 

photographic measurements were refined down to three in PCA-5 (S2, S3 and S6) the biplot (Figure 

3.8) showed less overlap in the centre and individual observations were more dispersed, revealing 

clearer distinction between BCGs than Figure 3.7. As PCA-6 began to show less grouping structure 

compared to previous PCAs within the biplot, the photographic measurements in PCA-5 were 

identified as the three most important variables for explaining variation between pre-assigned BCS in 

New Zealand’s leopard seals. 
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Figure 3.7. Biplot of the first Principal Component Analysis (PCA) model (PCA-1) using all normally distributed photographic measurements: S1; S2; S3; SAW; 
S4; S6, and; S8 with body condition groups Good, Moderate and Poor superimposed. Each point on the plot represents the measurement profile of an 
individual leopard seal sighting record (n=80), where values of all seven photographic measurements have been projected as one data point, onto the first 
two principal components (PC1 and PC2, where var = variation) using coordinates. The body condition groups are denoted by three different colours, with 
ellipses drawn to encompass the majority of the grouping. 
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Figure 3.8. Biplot of the fifth Principal Component Analysis (PCA) model (PCA-5) using photographic measurements: S2; S3, and; S6 with body condition 
groups Good, Moderate and Poor superimposed. Each point on the plot represents the measurement profile of an individual leopard seal sighting record 
(n=80), where values of all three photographic measurements have been projected as one data point, onto the first two principal components (PC1 and PC2, 
where var = variation) using coordinates. The body condition groups are denoted by three different colours, with ellipses drawn to encompass the majority of 
the grouping. 
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3.5 Discussion 

3.5.1 Photogrammetry 
Measurements of body width were successfully extracted from photographic sighting records of New 

Zealand leopard seals in this chapter by means of photogrammetric methods. Using photographic 

measurements, the average body shapes of New Zealand leopard seals belonging to each BCG were 

compared revealing distinct differences between the profiles of the three groups, particularly for BCG 

Good, which showed a markedly larger profile than the BCGs Moderate and Poor (Figure 3.3). 

Supporting this observation, when photographic measurements were applied to ANOVA, the BCG 

Good was more frequently distinguished from both Moderate and Poor BCGs. It was further found 

that body width S6 represented the most important photographic measurement for distinguishing 

between BCGs as statistically significant differences between both Good – Moderate and Good – Poor 

sighting records were identified for this measurement, which marks the half-way point between AW 

and UW (Figure 3.2). Therefore, with respect to this dataset photographic measurement S6 

represented the morphological region on the body where New Zealand leopard seals differed the most 

between the three pre-assigned BCGs and was therefore recognised as being the most important 

photographic width for discriminating between the BC of individual leopard seals. 

 

The UW was recognised as an important measurement by Krause et al., (2017) in addition to the 

umbilical region being identified as a morphological area of interest in Chapter 2 of this manuscript. 

Despite this, measurement SUW was unable to be applied to PCA within this chapter for also not 

conforming to rules of normality. Although there may have been a number of reasons why SUW did 

not meet normality assumptions, a factor which may have contributed was fact that the UW was 

attained manually, and unlike AW (the widest area of girth) which can be taken from the crease of the 

foreflippers (Figure 3.2), UW is the slimmest part of the body in front of the pelvic bones and was 

therefore more difficult to consistently locate on the seal body (especially if the pelvic bones were not 

visible). As a result, the UW was likely not reliably measured in the correct place, giving inaccurate 

measures of photographic body width. In future applications of photogrammetry and PCA, it would 

be essential to determine a method to accurately characterise the exact point of UW, to ensure that 

it is consistently measured from precisely the same location. 

 

Disadvantages to photogrammetry used in this chapter were that due to the citizen science nature of 

the project, data collection was carried out by a number of different observers utilising a variety of 

different camera types. The consequences of this were that vigorous photograph assessment 

techniques were employed (refer to Chapter 2 methods) to refine the data, and that photographic 

measurements of body width were maintained in pixels, rather than being converted to metric units 
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as seen in other photogrammetric studies (Krause et al., 2017; Christiansen et al., 2019). However, 

alike other research which utilised photogrammetry (Krause et al., 2017; Christiansen et al., 2019), 

methods utilised within this chapter offer a non-invasive and low-risk and low cost alternative to 

obtaining measurements of free-ranging animals, which can be applied to leopard seals in other 

regions as well as other pinniped species. Similar to BCS techniques outlined in Chapter 2, 

photogrammetric methods are suitable for application to leopard seals (as well as other pinniped 

species) which are often difficult to observe since they spend large proportions of their time at sea, 

and only come ashore for short periods of time for the purpose of resting and digestion (Gwynn 1953). 

Using this technique, individual seals can be opportunistically photographed by researchers as well as 

members of the public, and photographic data can be subject to photogrammetry making this method 

ideal for citizen science projects, in addition to projects with limited funding. While photogrammetric 

methods were validated by using actual measurements of body mass for each individual leopard seal 

by Krause et al., (2017), and the volume-mass equation by Christiansen et al., (2019) obtained for 

southern right whales were validated by individuals of known body mass, photogrammetry in this 

application was used as means for validation for a subjective BCSS.  

 

 

3.5.2 PCA 
The application of PCA within this chapter confirmed a relationship between pre-assigned BCGs (Good 

(n=57), Moderate (n=15) and Poor (n=8), derived from a BCSS in Chapter 2) and measurements 

extracted from 80 photographs of leopard seal sighting records in New Zealand. The use of PCA 

enabled the seven useable photographic measurements to be refined down three (S2, S3 and S6) that 

were identified as most important in explaining the variation in photographic body width 

measurements between leopard seal sighting records assigned to the three BCGs. Of the three most 

important widths, both S2 and S3 were located directly next to one another on the neck of the seal 

(Figure 3.2). Although measurement A was not able to be used (as these measurements did not 

conform to rules of normality), the identification of S2 and S3 (in addition to the results of the 

Wilcoxon pairwise comparisons that identified significant differences between the size of A for BCGs 

Good – Moderate and Good – Poor) indicated that the neck region was an important morphological 

area for assessing and comparing body condition in New Zealand leopard seals. These findings do not 

concur with previous research using photogrammetric methods for leopard seals, as Krause et al., 

(2017) recognised the umbilical width as being the most important morphological region for 

correlating with leopard seal mass. Moreover, previous studies using morphometrics to estimate mass 

of leopard seals have primarily focused upon axillary girth (photographic measurement AW and SAW 

in this study), however this photographic measurement was not found to be ‘important’ as SAW was 
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dropped from analysis after PCA-2 (Table 3.1). Estimates of mass derived in studies using axillary girth 

measurements however, were found to have high degrees of error (refer to Chapter 1; Hofman 1975) 

particularly for larger seals  where estimates of mass ranged between 240 and 480kg – double the 

weight (van den Hoff et al., 2005).  

 

The input data used within this chapter (13 photographic measurements) was consistent with the 

amount of input data from other studies employing the PCA technique e.g. 16 tooth measurements 

(Marrama and Kriwet 2017), 16 prey types (Lowry et al., 2004) and nine call attributes (Kreiss et al., 

2013). However, when compared to these studies, the variation explained by the first two PCs (PC1 

and PC2) were higher in this chapter (87.9% for PCA-1 and 94.4% for PCA-5) than the study 

investigating shark teeth (88%; Marrama and Kriwet 2017), and the study assessing leopard seal 

vocalisations (67%; Kriess et al., 2013), as well as being substantially higher than study investigating 

the diet of bowhead whales (23.4%; Lowry et al., 2004). Within these studies, variables identified by 

PCA were used for additional analysis, including multiple regression (Lowry et al., 2004) and 

classification (Marrama and Kriwet 2017) which was not explored within this chapter. Thus far studies 

involving applications of PCA to leopard seals described within the literature have analysed; 

morphometric features (Jones et al., 2013), acoustics (Kreiss et al., 2013) and leopard seal blubber 

content (Guerrero et al., 2016), and have focused on deceased (Jones et al., 2013), as well as 

anaesthetised (Guerrero et al., 2016) and free-ranging individuals (Kreiss et al., 2013). The use of PCA 

within this chapter describes the first application of PCA combined with photogrammetric methods, 

as well as the first instance when PCA has been used for assessing BC of free-ranging leopard seals in 

New Zealand. The photographic measurements of body width extracted using photogrammetry and 

identified as being ‘most important’ by PCA within this chapter can be applied to machine learning 

techniques for classifying sighting records into BCGs.  

 

3.6 Conclusions 
The process of extracting measurements of body width from photographic sighting records of leopard 

seals in New Zealand has proven to be useful as these measurements were found to be related to 

subjective BCGs based upon a BCSS (discussed in Chapter 2). There is therefore a potential for these 

photographic measurements to be applied to machine learning classification methods, which could 

classify unique leopard seal sightings into a BCG based upon photographic measurements alone, in a 

similar manner to research described previously by Marrama and Kriwet (2017) using shark teeth. In 

this way, the BC of New Zealand leopard seals would be classified by objective measurements, rather 

than subjective BCS.  
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Chapter 4 : The application of Linear 

Discriminant Analysis and Random Forest 

Classifiers for assigning body condition 

groups to sighting records of New Zealand 

leopard seals 

 

 
Leopard seal photographed resting on the south Wellington coast (New Zealand) 
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4.1 Introduction 
Biological and ecological datasets frequently encompass highly dimensional and nonlinear data (often 

with missing values) where complex interactions exist between variables (Cutler et al., 2007).  Analysis 

of these datasets to identify patterns and relationships within them is challenging using traditional 

statistical methods, such as generalised linear models, however, can be exposed using more 

sophisticated classification techniques known as machine learning (De’ath and Fabricius 2000; Cutler 

et al., 2007). In simplified terms, machine learning uses statistical models that are able to assign 

classification predictions by learning and adapting from experience, thereby improving performance 

without following explicit instructions (Mohri et al., 2018). In the application of supervised machine 

learning, ‘experience’ refers to a set of sample data known as training data, where data observations 

are correctly labelled with the classification group. During the learning process, supervised learning 

models use training data to develop rules which separate observations into two or more classification 

groups and can assign both existing and new observations into these groups based upon predictor 

variables (Cutler et al., 2007). The field of machine learning currently contains a number of complex 

statistical techniques that are suitable for analysis of complex biological and ecological datasets (Cutler 

et al., 2007), and has applications in: vegetation mapping (Steele 2000); modelling species distribution 

(Guisan and Thuiller 2005); object detection and recognition (Mohri et al., 2018); image and acoustic 

classification (Affonso et al., 2015; Zhong et al., 2020), and; species identification (Parson and Jones 

2000; Satti et al., 2013; Begue et al., 2017). Both Linear Discriminant Analysis (hereafter LDA) and 

Random Forest Classifiers (hereafter RFC) discussed within this chapter are examples of such 

techniques, under the branch of supervised learning. 

 

4.1.1 Linear Discriminant Analysis 
LDA is a multivariate analysis of variance used to predict group membership (categorical, dependent 

variables) based upon a linear combination of predictor variables (interval, independent variables). 

Similar to that of Principal Component Analysis (PCA; outlined in Chapter 3), the LDA algorithm works 

to identify directions called linear discriminants (a combination of the original predictor variables) that 

maximises the separation between classification groups (Field et al., 2012). The method involves a set 

of observations whereby the values of both the predictor variables and group membership are known, 

which are divided into two subsets known as training and testing data. Using the training data, LDA 

computes the means of the predictor variables and uses these means to calculate the probability that 

an observation will belong to each of the classification groups (Field et al., 2012). The group with 

highest probability is given as the prediction. LDA can generate evaluations of accuracy called correct 

classification rates (CCR) by comparing the known values of group membership in the testing data, 

against the values of group membership as predicted by the model. CCR is given as a score between 0 
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and 1 which can be converted to a percentage. LDA is a parametric method and thereby data must 

meet the assumptions of normality and covariance homogeneity for the models to be reliable (Field 

et al., 2012). There are both advantages and limitations to using the LDA technique (see overview in 

Table 4.1) however overall, this classification method is often highly accurate and superior to most 

methods commonly used (Cutler et al., 2007).   

 

An example of LDA application is research by Galimberti et al., (2018) who used this machine learning 

technique to assess whether southern elephant seals could be accurately categorised into age-classes 

based upon “nose-metrics” of the proboscis. Digitalised landmarks that represented both size and 

shape of the proboscis were applied to photographs taken of 43 individual elephant seals using 

photogrammetry and geometric morphometrics (a mathematical portrayal of a biological form based 

upon size and shape definitions; Savriama 2018), which were input into four LDA models. Results 

showed that classification accuracy ranged between 57 and 77% whereby the two LDA models which 

analysed landmarks representing proboscis size performed better than the two models that analysed 

landmarks representing proboscis shape (Galimberti et al., 2018). Research by Galimberti et al., (2018) 

in this application demonstrated that photogrammetric techniques can successfully be used on large, 

free-ranging and non-sedated animals within the field and therefore can be similarly applied to other 

species. 

 

4.1.2 Random Forest Classifiers 
RFC are a non-parametric machine learning algorithm built using classification trees to produce 

accurate classifications (Cutler et al., 2007). This algorithm was designed by Breiman (2001) to cope 

with the increasing size of modern datasets by scaling with the volume of data whilst sustaining 

statistical efficiency (Biau and Scornet 2016). Similar to the LDA process, RFC datasets can be split into 

training and testing data, whereby training data are used for the learning process and testing data are 

used to evaluate accuracy (e.g. CCR) and error of the classifier, however as a non-parametric method 

this data is not required to conform to rules of normality or covariance homogeneity. Within an RFC 

each individual classification tree is drawn using a subset of predictor variables and produces a 

prediction of classification (Cutler et al., 2007). The classification most frequently predicted by all trees 

combined is output as the RFCs overall prediction (Cutler et al., 2007). For a RFC to perform well it is 

crucial that each classification tree has low correlation with the other trees in the model, this low 

correlation between trees accounts for error between trees, i.e. while some of the trees will produce 

incorrect predictions, the majority of trees will produce correct predictions therefore the overall 

output of the model will be accurate (Biau and Scornet 2016). RFC calculations also produce measures 

both of variable importance and similarity of data points which can be applied for clustering, 
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infographics as well as missing value imputation (Cutler et al., 2007). Despite the recent emergence of 

this technique, RFCs are competitive with other machine learning methods in common use, however, 

have their own advantages and limitations to be considered (see overview in Table 4.1). 

 

An example of RFCs used in ecological application is outlined in research by Rogers et al., (2017) who 

used RFCs as means to analyse differences in morphometric ratios amongst both male and female 

small-spotted catsharks (Scyliorhinus canicula) of both mature and immature life stages using manual 

measurements obtained from 101 animals caught as bycatch in commercial fisheries. Using 

morphometric ratios calculated from these measurements, RFC models were developed to make life-

stage and sex predictions of the bycaught catsharks; one RFC model used all morphometric ratios for 

classification and the second RFC model focused only on the top 10 ratios (Rogers et al., 2017). The 

RFCs were successfully able to discriminate between catsharks of different genders and life stages, 

correctly predicting sex (80% (all ratios) and 79% (top 10 ratios) accuracy) and life stage for both males 

(80 and 86% accuracy) and females (78 and 83% accuracy; Rogers et al., 2017). Measurements 

obtained from 46 bycaught catsharks were also used in a Conditional Inference tree (used to highlight 

the morphometric ratios used for predicting life-stage; Rogers et al., 2017), used to classify life-stages 

of free-swimming male catsharks (n=26) where measurements were extracted by laser 

photogrammetry (the use of cameras to record projection of a laser onto an animal later analysed in 

image analysis software to obtain measurements; Webster et al., 2010; Rogers et al., 2017). This 

technique made accurate life-stage predictions of male catsharks 88% of the time using laser 

photogrammetric measurements (Rogers et al., 2017). As consequence of these results, Rogers et al., 

(2017) stated that photogrammetric techniques could replace destructive sampling of catsharks 

traditionally used to collect essential information on this species’ life stages.  

 

4.1.3 Comparing applications of LDA and RFC 
Research by Cutler et al., (2007) compared the classification performances of both LDA and RFCs 

amongst two other supervised learning techniques (Logistic Regression and Classification Trees) using 

two ecological datasets. The first dataset looked at methods to predict the presence of invasive 

species in Lava Beds National Monument in California, whilst the second dataset used these 

techniques to predict habitat utilised by cavity-nesting bird species in the Uinta Mountains of Utah. 

Accuracy of the four different statistical classifiers were quantified using overall percentage correctly 

classified (PCC) scores. In both instances’ RFC models were the highest scoring technique, particularly 

with regard to the Lava Beds National Monument dataset for which RFC PCC scores (95.3 and 92.6%) 

were over 10% higher than those of the LDA model (79.4% and 79.2%; Cutler et al., 2007). It was 

suggested by Cutler et al., (2007) that RFC models were expected to perform better than linear 
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methods including LDA, when relationships exist between the predictor variables, which is precisely 

what was observed in the Lava Beds NM dataset where interactions between variables were known.  

 

In contrast, research by Hupman (2016) compared the classification accuracy of a variety of statistical 

models (including LDA, RFC, Shrinkage Discriminant Analysis, k-Nearest Neighbours and Naïve Bayes). 

This study examined the prevalence and variation of pigmentation patterns on 187 individual common 

dolphin (Delphinus sp.) dorsal fins to assess if these patterns could be used to identify unique animals 

(Hupman 2016). The success of each model was determined by calculating the percentage of 

individuals whom were correctly identified (via their dorsal fin pigmentation pattern) within the top-

1, top-5 and top-10 individuals (i.e. the top 1, 5 or 10 individuals that the model predicted as a most 

likely match). In this instance, LDA outcompeted RFC in all classifications, as well as achieving the 

highest classification score out of all other classification techniques in both top-5 (70.9%) and top-10 

(78.9%; Hupman 2016). In comparison, the RFC scored 51.3% accuracy in top-5 and 62.4% accuracy in 

top-10. The top-1 LDA classification rate (52.3%) scored 25.5% higher than the RFC (26.8%; Hupman 

2016).  
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Table 4.1. Advantages and disadvantages of Linear Discriminant Analysis (LDA) and Random Forest 
Classifiers (RFC). 

Method        Advantages        Disadvantages 

Linear 
Discriminant 
Analysis (LDA) 

❖ Considered to be the most well-
used method for data reduction 
(Tharwat et al., 2017).  

❖ Can be used for classification as 
well as dimensionality reduction 
(Feldesman 2002; Tharwat et al., 
2017). 

❖ Easy, interpretable and robust 
classification technique (Feldesman 
2002). 

❖ Complex parametric method 
where data must conform to 
normality theory assumptions 
thereby results are objective 
(Feldesman 2002). 

❖ Interpretations of results utilise 
traditional statistical techniques 
(e.g. P values, confidence intervals 
and ANOVA testing). 

❖ Sensitive to non-normality, 
outliers, missing values, small 
sample sizes and unequal groups, 
any of which make results 
undependable (Feldesman 2002; 
Tharwat et al., 2017). 

Random 
Forest 
Classifiers 
(RFC) 

❖ Limited parameters to tune (Biau 
and Scornet 2016). 

❖ Utilises small sample sizes and 
copes with missing values (Cutler 
et al., 2007). 

❖ Can be used when the number of 
predictor variables surpasses the 
number of observations (Cutler et 
al., 2007). 

❖ A novel technique for determining 
importance of variables (Cutler et 
al., 2007). 

❖ Able to model complex 
interactions between variables 
(Cutler et al., 2007).  

❖ Allows correlated variables to be 
analysed (Rogers et al., 2017). 

❖ Can perform a number of types of 
statistical analysis, i.e. 
unsupervised learning, regression 
and classification (Cutler et al., 
2007). 

❖ RFC infographics provide 
information as to which variables 
are important for classification, as 
well as how they influence which 
category a datapoint will fall into. 

❖ High classification accuracy (Cutlet 
et al., 2007). 

❖ Interpretations are unsuitable for 
application to traditional statistical 
techniques, such as P values, 
confidence intervals, or ANOVA 
testing (Cutler et al., 2007). 

❖ The importance of predictor 
variables is subjective and may be 
a result of its interactions with 
other variables in the dataset 
(Liaw and Wiener 2002). 
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4.2 Chapter Aims 
This chapter focuses on the use of LDA and RFC to classify individual leopard seals photographed in 

New Zealand waters, into body condition groups (BCGs) based upon photographic measurements of 

body width. This chapter also highlights how LDA and RFC contrast using features of both techniques. 

Specifically, the objectives were to; 

1. Assess the effectiveness of using LDA models to allocate predictions of BCG membership to 

leopard seal sighting records based on photographic measurements of body width; 

2. Assess the effectiveness of using RFC models to allocate predictions of BCG membership to 

leopard seal sighting records based on photographic measurements of body width, and; 

3. Compare both LDA and RFC models using correct classification rates (CCRs). 

 

4.3 Methods 

4.3.1 Linear Discriminant Analysis 
The BCLSD (defined in Chapter 2) which contained 80 sighting records of New Zealand leopard seals 

was used to test the efficiency of the LDA models. Within this database each record was accompanied 

by 13 photographic measurements which were extracted from photographs using ImageJ; 12 body 

width measurements in pixels (denoted ‘S1-10’, ‘SAW’ and ‘SUW’) and one angle measurement in 

degrees (denoted as ‘A’; refer to Chapter 3 methods). LDA is a parametric method and thereby the 

assumptions of normal distribution and homogeneity of variances had to be met prior to analysis. 

Using Shapiro-Wilk tests (Shapiro and Wilk 1965) all variables were standardised, log-transformed and 

tested for normality (refer to Chapter 3 methods). The photographic measurements in the dataset 

used for LDA models were those that met these assumptions, and included; S1, S2, S3, S4, SAW, S6 

and S8.  

 

The dataset was divided into training and testing datasets with an 80%/20% split, following methods 

outlined in previous machine learning studies (e.g. Franklin and Ahmen 2018; Ditria et al., 2020). Four 

separate LDA models were used; LDA-1, LDA-2, LDA-3 and LDA-4 (Table 4.2). There were differences 

in the probability that a sighting record would be assigned to Good, Moderate or Poor BCG. This is 

because there were substantially more sighting record containing Good BC animals than both 

Moderate and Poor BC animals, which created a bias within the dataset towards Good BC leopard 

seals. For both LDA-1 and LDA-3 the prior probabilities were automatically calculated in R 4.0.2, based 

upon the number of sightings assigned to each class within the training dataset and therefore were 

biased models. To account for this bias, the R script for LDA-2 and LDA-4 contained an additional line 

to control prior probabilities as equal (i.e. 1/3 or 33.33% chance of an individual leopard seal belonging 
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to either of the three BCGs; Field et al., 2012) and were therefore unbiased versions of models LDA-1 

and LDA-3 (Table 4.2).  

 

Table 4.2. Photographic measurements of body width of New Zealand leopard seals used in four 
Linear Discriminant Analysis (LDA) models designed to predict body condition groups (BCG). 

LDA-1 All normally distributed photographic measurements; S1, S2, S3, S4, SAW, S6 and S8. 

LDA-2 All normally distributed photographic measurements; S1, S2, S3, S4, SAW, S6 and S8 with a 

control for bias towards Good BC animals. 

LDA-3 Photographic measurements identified as most important by Principal Component Analysis in 

Chapter 3; S2, S3 and S6. 

LDA-4 Photographic measurements identified as most important by Principal Component Analysis in 

Chapter 3; S2, S3 and S6, with a control for bias towards Good BC animals.  

 

LDA models can be plotted using a scatterplot which visualises how the linear discriminants (LD1 and 

LD2) separate observations belonging to the classification groups. An example of such a plot can be 

seen in Figure 4.1, which visualises model LDA-4. The co-ordinates for the plot were determined by 

discriminant scores, i.e. the score for each sighting record for each linear discriminant using the linear 

regression equation: 

V1i = b0 + b1DV1i + b2DV2i 

 

Where V1i represents the linear discriminant (i.e. LD1 and LD2), and DV1i and DV2i represent the 

predictor variables (i.e. photographic measurements S2, S3 and S6 for LDA-4). The b-values within this 

equation give information about the contribution of each predictor variable to the linear discriminant 

known as coefficients for the linear discriminants, and b0 is the y-intercept. For LDA-4 the coefficients 

for LD1 and LD2 (b-values) can be seen in Table 4.4. Details on how to plot a sighting record into a 

biplot are outlined in Appendix I.  

 

All LDA models were computed in R 4.0.2 (R Core Team 2020) using packages MASS (Venables and 

Ripley 2002), caret (Kuhn 2020), car (Fox and Weisberg 2019) and tidyverse (Wickham et al., 2019). 

CCRs were recorded in a Microsoft Excel spreadsheet.  

 

4.3.2 Random Forest Classifiers 
The BCLSD (defined in Chapter 2) which contained 80 sighting records of New Zealand leopard seals 

was used to test the efficiency of the RFC models. Of these 13 measurements, the 12 body width 

measurements (S1-10, SAW and SUW) were standardised (refer to Chapter 2 methods) and the angle 

measurement (A) was continued in degrees. The data was partitioned into training and testing 

datasets with an 80%/20% split, following methods outlined in previous machine learning studies (e.g. 
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Franklin and Ahmen 2018; Ditria et al., 2020). In total, four RFC models were run (Table 4.3) and all 

analysis was conducted in R 4.0.2 using the package randomForest (Liaw and Wiener 2002) with 

reprtree (Dasgupta 2014) used for data visualisation. CCRs for all four RFC models were calculated and 

recorded in a Microsoft Excel file. 

 

Table 4.3. Photographic measurements of body width of New Zealand leopard seals used in four 
Random Forest Classifier (RFC) models designed to predict body condition groups (BCG). 

RFC-1 All 13 standardised photographic measurements. 

RFC-2 All normally distributed photographic measurements; S1, S2, S3, S4, SAW, S6 and S8. 

RFC-3 Standardised photographic measurements identified as most important by Principal 

Component Analysis in Chapter 3; S2, S3 and S6. 

RFC-4 A reduced dataset (n=38) containing all 13 standardised photographic measurements with 

more equally weighted BCGs to account for bias of sighting records containing Good BC animals 

(Good=15, Moderate=15 and Poor=8). This reduced dataset was split into approximately 80% 

training (n=31) and 20% testing (n=7). 

 

4.3.3 Repeat Sighting Records 
Because the 80 sightings records of leopard seals were ‘sightings’ and not ‘known individuals’ (refer 

to Chapter 2) an effort was made to reduce repeats where the same seal was photographed on the 

same day, by different observers. These sightings were divided so that one sighting was part of the 

training data, and the other was included in the testing data, for both LDA and RFC. For example, two 

records exist in the BCLSD as; 

❖ HL043 - 20190723 Oriental bay, Wellington – Jodie Warren 

❖ HL058 - 20190723 Oriental bay, Wellington – Lana Young & Jodie Warren 

 

In this instance, HL043 was included in the training dataset whilst HL058 was incorporated into the 

testing dataset. 

 

4.4 Results 

4.4.1 Linear Discriminant Analysis 
CCRs of the four LDA models ranged between 62.5% (LDA-2) and 87.5% (LDA-4; Table 4.5). Model LDA-

4, using only widths S2, S3 and S6 to classify BC achieved the highest accuracy with only two incorrect 

predictions (CCR=87.5%). Compared to models LDA-1 and LDA-2, where accuracy decreased by 

18.75% after introducing a control for prior probabilities, the accuracy of model LDA-4 was 6.25% 

higher than that of model LDA-3 (Table 4.5). It is clear that while LDA-1 and LDA-3 achieved relatively 

high accuracy scores (both 81.25%), both models made exactly the same BCG predictions and were 

biased towards the BCG Good. Although CCR decreased for LDA-2 after a control for bias was 

introduced, the model made a wider range of BCG predictions (i.e. predictions of leopard seal sighting 



86 
 

records into both Good and Moderate BC) than model LDA-1. LDA-4 exhibited a full range of 

predictions, allocating sighting records of leopard seals into all three BCGs – the only model to do so 

of the LDA methods.  

 

With respect to the most accurate LDA model (LDA-4) LD1 represented 86.91% of total variation and 

LD2 signified the remaining 13.09%. Examination of these linear discriminants (Table 4.4) revealed 

that LD1 was characterised by a difference between S2 and S6 with S3, where LD1 had a negative 

relationship with both S2 (-2.85) and S6 (-7.53) compared to a positive relationship with S3 (3.96). LD2 

was strongly characterised by a positive relationship with S3 (7.82), and a slightly negative relationship 

with both S2 (-0.80) and S6 (-0.16; Table 4.4). Using LD1 and LD2, Figure 4.1 displays how both variants 

combined discriminate between the leopard seal sighting records. LD1 appears to distinguish between 

sighting records containing Good BC leopard seals with records that contain Moderate and Poor BC 

individuals, where the majority of Good observations (red) can be seen on the left side of the plot 

(predominantly below 0 on the x-axis), while Moderate (green) and Poor (blue) observations occur on 

the right side (above -1 on the x-axis). LD2 is not so easily distinguished, as values for sighting records 

belonging to all three BCGs are widely spread across the y-axis.  
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Table 4.4. Coefficients (b-values) of linear discriminants (LD1 and LD2) for each of the three 
photographic measurements used for the most accurate Linear Discriminant Analysis (LDA) model; 
LDA-4, where the coefficients give information about the relationship of the predictor variable 
(photographic measurement) to each linear discriminant. Negative values portray negative 
relationships while positive values identify positive relationships. 

Photographic 
 measurement 

Coefficients for linear discriminants (b-values) 

LD1 LD2 

S2 -2.85 -0.80 

S3 3.96 7.82 

S6 -7.53 -0.16 

 
 

 
Figure 4.1. Biplot of the most accurate Linear Discriminant Analysis (LDA) model LDA-4 which used 
photographic measurements S2, S3 and S6 to distinguish between pre-assigned body condition 
groups (BCG) of sighting records containing Good (red), Moderate (green) and Poor (blue) body 
condition (BC) leopard seals within the training dataset (n=64). Each point on the plot represents the 
measurement profile of an individual leopard seal sighting plotted by the discriminant scores of the 
linear discriminants LD1 and LD2, that were obtained by the equation V1i = b0 + b1DV1i + b2DV2i. 
 

 

4.4.2 Random Forest Classifiers 
CCRs in the three RFC models varied between 75% (RFC-1 and RFC-3) and 87.5% (RFC-1; Table 4.5). 

The RFC-4 model using a subset of the original data did not yield precise results as only two out of 

seven seals were classified correctly (CCR=28.6%). In RFC-4 all seals were predicted to belong to the 
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Moderate BCG, when the actual distribution of BC was; Good=4, Moderate=2 and Poor=1. Of all RFC 

models RFC-1 was the most accurate with only two incorrect predictions (CCR = 87.5%).  RFC-2 and 

RFC-3 both achieved the same level of accuracy (75%) as well as making the same predictions for all 

leopard seal sighting records in the testing dataset (Table 4.5). Despite the fact that models RFC-1, 

RFC-2 and RFC-3 all calculate predictions into Good and Moderate BCGs, no predictions of sighting 

records containing Poor BC individuals were made, and bias of predictions of sighting records to BCG 

Good was apparent.  

 

The most accurate RF model RFC-1 (87.5% accuracy) can be visualised by the RFC tree in Figure 4.2, 

which contains labels atop the branches denoting the photographic measurements used as well as 

direction in classification. The RFC-4 tree shows 23 possible classification outcomes, whereby BCG 

Good was most frequently predicted (n=16), compared to almost equal number of predictions for 

Moderate (n=4) and Poor BC (n=3). The branch labels showing photographic measurements used 

within the RFC-4 tree revealed that of the 13 total measurements applied within this RFC model 

photographic widths S1 and S7 were most frequently used to separate sighting records into BCGs 

(n=4), followed by SAW (n=3), S6, SUW and A (n=2) and S4, S5, S8, S9 and S10 (n=1; Figure 4.2).  
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Figure 4.2. Classification tree for the most accurate Random Forest Classifier (RFC) model RFC-1, used to predict New Zealand leopard seal sighting records 

into one of three body condition groups (BCGs); Good, Moderate or Poor using photographic measurements. For this RFC model all 13 photographic 

measurements were used for classification of BCGs (see methods for further details). 
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Table 4.5. Correct body condition groups (BCG) and BCGs as predicted by the four Linear Discriminant 
Analysis (LDA; LDA-1, LDA-2, LDA-3, LDA-4) and three Random Forest Classifier (RFC; RFC-1, RFC-2, 
RFC-3) models (columns). The bottom row provides a score of correct classification rates (CCRs) and 
the * indicates the most accurate model for each method (i.e. the models that scored the most 
correct BC classifications). Correct predictions are highlighted in blue whilst incorrect predictions are 
visible in orange. Cells where information was not applicable were denoted NA. 

Sighting-
ID 

Correct 
BCG 

Predicted BCG 

LDA-1 LDA-2 LDA-3 LDA-4 RFC-1 RFC-2 RFC-3 

HL001 Good Good Good Good Good Good Good Good 

HL002 Poor Good Moderate Good Poor Moderate Moderate Moderate 

HL003 Good Good Good Good Good Good Good Good 

HL004 Moderate Good Moderate Good Moderate Moderate Good Good 

HL005 Good Good Moderate Good Poor Good Good Good 

HL006 Good Good Good Good Good Good Moderate Moderate 

HL007 Good Good Good Good Good Good Good Good 

HL010 Good Good Good Good Good Good Good Good 

HL012 Good Good Good Good Good Good Good Good 

HL016 Good Good Moderate Good Good Good Good Good 

HL026 Good Good Good Good Good Good Good Good 

HL050 Good Good Moderate Good Good Good Good Good 

HL052 Good Good Good Good Good Good Good Good 

HL054 Good Good Moderate Good Good Good Good Good 

HL058 Moderate Good Good Good Good Good Good Good 

HL072 Good Good Good Good Good Good Good Good 

CCR (%) NA 81.25 62.5 81.25 87.5* 87.5* 75 75 

 

 

4.4.3 Comparison of Linear Discriminant Analysis and Random Forest Classifiers 
Both machine learning methods achieved the same level of accuracy at 87.5%. Average accuracy 

across all four models for each technique revealed LDA was slightly more accurate overall at 78.13% 

compared to 66.52% for RFC. The LDA model which achieved highest levels of accuracy (LDA-4) used 

only three photographic measurements that were identified as the ‘most important’ using PCA in 

Chapter 3, with equal prior probabilities to account for bias. Comparatively, the highest scoring RFC 

model used all 13 photographic measurements to achieve the same level of accuracy. Despite no 

correction for bias of sighting records containing Good BC individuals, the three RFC models in Table 

4.2 all made predictions into both Good and Moderate BCGs. Comparatively, two of the four LDA 

models only made predictions into the BCG Good (Table 4.5). Only one model (LDA-4) accurately 

predicted the Poor BC sighting record (HL002 in Table 4.5) therefore was identified as the most 

successful machine learning model of those tested here.  
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4.5 Discussion 

4.5.1 Linear Discriminant Analysis 
The number of leopard seal sighting records used in this dataset was considered small for application 

to machine learning techniques and contained fewer input values than similar studies previously 

described (e.g. 22 features extracted from 856 images of 187 individual common dolphin dorsal fins 

in Hupman 2018 and 8251 data observations used by Cutler et al., 2007). The number of input values  

in this study was more in line with research by Galimberti et al., (2018), although based on a small 

sample size of 43 animals, three images of each individual elephant seal were used on which 

landmarks were drawn twice, resulting in 258 total observations. Comparatively the LDA models 

explored within this chapter used; 560 input values (i.e. seven photographic widths for each of the 80 

sighting records; LDA-1 and LDA-2), or 240 input values (i.e. three photographic widths for each of the 

80 sighting records; LDA-3 and LDA-4). The LDA technique is well-known to be sensitive to small 

sample sizes (Tharwat et al., 2017), however despite the small sample size used within this chapter 

three of the LDA models developed (LDA-1, LDA-3 and LDA-4) achieved higher classification accuracy 

(81.25 and 87.5%; Table 4.5) than the highest performing models in research by Galimberti et al., 

(2018; 77%), Cutler et al., (2007; 79.4%) and Hupman (2016; 79.8%).  

 

In this application, LDA models which used fewer photographic measurements (n=3; LDA-3 and LDA-

4) achieved higher CCRs than models that contained a higher number of measurements (n=7; LDA-1 

and LDA-2; Table 4.5).  Research by Galimberti et al., (2018) reported a similar result, whereby LDA 

classification models based upon elephant seal proboscis size using only four landmarks, 

outperformed LDA models that classified elephant seals based upon proboscis shape, using 23 

landmarks (Galimberti et al., 2018). It was suggested that the reason for this was that a number of the 

landmarks represented background noise rather than proboscis shape, despite these landmarks 

representing a better visualisation of overall body shape from the photographs (Galimberti et al., 

2018). This inference could be applied to results from this chapter, whereby models that used a higher 

number of photographic widths might have been less accurate at making BCG classifications due to 

some of the measurements representing background noise, despite exemplifying more information 

on overall leopard seal body shape. 
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4.5.2 Random Forest Classifiers 
Similar to the four LDA models, the number of input values were relatively low within this chapter, 

with the exception of RFC-1 which contained almost double the number of input values (n=1040) as 

compared to the other RFC (and LDA) models (RFC-2 contained 560 input values i.e. seven 

photographic measurements for all 80 sighting records, while RFC-3 contained 240 input values i.e. 

three photographic measurements for all 80 sighting records and RFC-4 utilised 494 input values i.e. 

all 13 photographic measurements for 38 sighting records). This was not expected to be problematic, 

as RFC are known to cope well with small sample sizes (Cutler et al., 2007), however, the RFC with the 

smallest sample size within this chapter (n=38, RFC-4) performed to much lower classification accuracy 

than the three remaining RFCs (46.4% lower than RFC-2 and RFC-3 and 58.9% lower than RFC-1). Input 

values for the most accurate RFC model (RFC-1) were in line with the number of input values of the 

most accurate RFC models by Rogers et al., (2017; n=1818 and 1010) in which case classification 

accuracy was slightly higher (78-86%) than results within found this chapter (28.6-87.5%). The most 

accurate RFC (RFC-1) achieved substantially lower classification accuracy than research by Cutler et 

al., (2007; 92.6-95.3%), however performed to higher levels of accuracy than Hupman (2016; 26.8-

62.4%).  

 

Research by Rogers et al., (2017) shared similar aims with those within this manuscript, whereby the 

use of photogrammetry was used as an alternative method for obtaining essential life-stage 

information for a species that are difficult to assess, thus potentially replacing traditional 

morphometric techniques. Their methods differed however, as RFCs that were purposed for 

application to free-swimming animals were based upon manual measurements of deceased catsharks, 

placed in a “natural position” on a fish board for examination (Rogers et al., 2017). Moreover, live 

catsharks that were assessed using laser photogrammetry were kept in observation tanks, i.e. not 

examined within their natural environment, as compared to methods utilised in this chapter where all 

photogrammetric measurements obtained from images of leopard seals that were taken whilst the 

animal was at rest, in its natural environment. Thereby, data used to train RFC models in this chapter 

was congruent with data from which the models were tested and intended for future applications.  

 

4.5.3 Comparison of Linear Discriminant Analysis and Random Forest Classifiers 
Due to the small sample size (Tharwat et al., 2017) and presence of correlated variables (each 

photographic measurement was related to all other photographic measurements within the dataset; 

Rogers et al., 2017) RFCs were expected to perform to higher levels of accuracy than LDA models. This 
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was not found to be the case as both machine learning techniques achieved similar CCRs, with LDA 

proving slightly superior for its ability to make predictions across all three BCGs (Table 4.5). Contrary 

to results from the four LDA models where classification accuracy increased as the number of 

photographic measurements decreased, the RFC models applied within this chapter generally 

decreased in performance as the number of measurements decreased (Table 4.5). The RFC (RFC-3) 

which used the three photographic measurements identified as most important for explaining 

variability within the dataset using PCA (Chapter 3) achieved a CCR that was lower than the 

corresponding LDA models (6% for LDA-3 and 13% for LDA-4) using the same dataset. Moreover, LDA-

4 allocated sighting records of New Zealand leopard seals into all three BCGs, which was the only 

machine learning model to do so within this chapter. Predictions made by both LDA and RFC models 

in this chapter elicited a bias towards sighting records containing Good BC animals (Table 4.5). When 

this bias was not accounted for within the R script, this was more evident as in some cases only BCG 

Good (LDA-1 and LDA-3; Table 4.5) or Moderate (RFC-4) were the only prediction made. As RFCs are 

suitable for modelling complex interactions between variables, as well as allowing variables which are 

correlated to be analysed (Cutler et al., 2007; Rogers et al., 2017), the full potential of this technique 

has not been examined within this chapter. Therefore, the development of a RFC with a larger dataset 

that contains sighting records of New Zealand leopard seals more evenly distributed over each of the 

three BCGs, could potentially produce more accurate classification predictions.  

 

The LDA technique is sensitive to non-normality, outliers, missing values, small sample sizes and 

unequal groups, any of which can make results undependable (Table 4.1). This can be a disadvantage 

to the technique, as data must conform to rules of normality and homogeneity of variances for LDA 

classifications to be reliable. As consequence of this, photographic measurements identified and 

utilised in previous study of leopard seal body mass and condition (axillary width (AW); Hofman 1975, 

van den Hoff et al., 2005 and umbilical width (UW); Krause et al., 2017) could not be examined within 

this machine learning technique. The addition of AW and UW to LDA in this chapter may have 

produced LDA models with higher CCRs. In future applications of methods outlined within this chapter, 

LDA models would be advantageous to use with respect to data collection, as only three of the 

photographic measurements would need to be measured (S2, S3 and S6) as compared to the most 

accurate RFC which utilised all 13 measurements. The addition of more measurements also presents 

more opportunity for human errors in photographic measurement extraction, which again highlights 

the practicality of the LDA technique.  
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4.6 Conclusions 
The combination of pre-assigned BCGs (obtained by BCS methods discussed in Chapter 2) and 

photographic measurements of body width (extracted using methods outlined in Chapter 3) were 

successfully used to train and test two supervised learning techniques; LDA and RFCs. Both methods 

were able to successfully classify sighting records of New Zealand leopard seals into one of the three 

BCGs (Good, Moderate or Poor) based upon the photographic measurements body width to similar 

levels of accuracy. The most successful model was identified to be LDA model; LDA-4 due to highest 

CCR (together with RFC-1) and ability of the model to make predictions into all three of the BCGs. In 

machine learning both the size and quality of this training data is fundamental to the success of the 

model (Mohri et al., 2018). In this particular dataset, there was a bias towards sighting records 

containing Good BC leopard seals, and although attempts were made to account for this, bias was still 

evident in the classification predictions of all models. To alleviate the effect of this bias an increased 

number of sighting records containing both Moderate and Poor BC individuals should be incorporated 

into the training data, which would improve the learning ability of the models regarding these 

classification groups. As consequence the classification models have the potential to increase in 

accuracy and generalise better when presented with new data in future applications of these machine 

learning techniques.  
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Chapter 5 : The application of Artificial 

Neural Networks for assigning body 

condition groups to sighting records of New 

Zealand leopard seals 

 

 
Leopard seal photographed resting on Owhiro Bay beach (New Zealand) 
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5.1 Introduction 

5.1.1 Artificial Neural Networks 
Artificial Neural Networks (hereafter ANNs) have proven to be a highly competitive machine learning 

technique with many applications to real-world problems as compared to more traditional methods 

of data analysis, which are usually based upon statistical modelling (Prieto et al., 2016). ANNs have 

been widely used in environmental, medicinal and engineering sciences often providing highly 

accurate results and out-competing existing machine learning methods (Krogh 2008). This novel 

machine learning technique has been very successful in image classification (Affonso et al., 2015), face 

recognition (Taigman et al., 2014) and object detection (Ren et al., 2015). ANNs were created to 

simulate the learning process of the human brain, modelling the interconnected network of neurons 

which communicate to one another by transferring electrical signals that are received by dendrites 

and passed forwards along the axon via synapses (Jian et al., 1996; Priddy and Keller 2005; Krogh 

2008). Simply put, a neuron can be viewed as a switch that receives an input from neighbouring 

neurons and is either excited (activated) or inhibited (inactivated) by the sum of these inputs 

(McCulloch and Pitts 1943). In a similar fashion, an ANN can be created on a computer from model 

neurons (otherwise known as a threshold unit), that are interconnected and applied with specific 

algorithms which emulate the learning process (Krogh 2008). A threshold unit receives an input from 

one or more neighbouring units, weighs them and calculates the sum of all the input weights. The type 

of response is determined by the sum of the weights and biases of the input (represented by arrows 

in Figure 5.1 and Figure 5.2), i.e. whether it is higher or lower than the threshold for the neuron to 

activate; if the total weight of inputs is above the threshold then the unit output is one, whereas if the 

sum of the input weights is below the threshold then the unit output is zero (Priddy and Keller 2005; 

Krogh 2008). Positive weights are associated with activated inputs whilst negative weights correspond 

with inhibited inputs (Jian et al., 1996).  

 

ANNs are built using three main types of layers; input, hidden and output, where the inputs are the 

predictors (the dataset), the output is the outcome (or classification), and the hidden layer(s) contain 

units which transform the input data into a form that the output can interpret and classify (Priddy and 

Keller 2005) and are divided into; feed-forward (most common) and feedback networks (Jian et al., 

1996). In a feed-forward network each layer supplies information directly to the next, in one direction 

and generates one set of output values (Jian et al., 1996). Comparatively, within a feedback neural 

network an input is repeatedly cycled through the network and an output is computed each time to 

reduce output error (Zhang 2000). Depending upon the number of units in the output layer, an ANN 

can be binary (one unit in the output layer, i.e. the output will fall into one of two categories; Figure 
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5.1), or multiclass (multiple units in the output layer to account for multiple classification predictions; 

Figure 5.2).  

 

Similar to other machine learning methods, ANNs use datasets subdivided into training and testing for 

classification purposes, where training data are utilised during the learning phase, and test data is 

used to determine if the ANN can turn input data into the specific anticipated outputs. There are three 

main types of learning used in ANNs: supervised learning; unsupervised learning, and; hybrid learning 

(Jian et al., 1996). As discussed in Chapter 4, supervised learning is the type of learning when each 

input in the neural network is also provided with the correct output. Before training of an ANN using 

supervised learning, weights and biases (the ‘learnable’ parameters of a neural network) are all set to 

random values, which are tuned during training to facilitate learning enabling the network to generate 

outputs which match (or as close as possible to) the correct output (Jian et al., 1996; Krogh 2008). In 

the case of unsupervised learning, the neural network is not provided with a correct output for each 

input, and therefore the network works to identify correlations and patterns within the data, and 

hybrid learning is a combination of both supervised and unsupervised, whereby the values for weights 

are determined through a combination of known outputs and underlying data structure (Jian et al., 

1996).  

 

 
Figure 5.1. A template of a basic, binary, feed-forward Artificial Neural Network (ANN; adapted from 
Krogh 2008) with an input layer containing three input units, one hidden layer containing four input 
units and one output layer containing one input unit. Each arrow represents weight and biases, which 
pass an input forwards to the next layer with the associated weight. 
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Figure 5.2. A template of a basic, multi-class, feed-forward Artificial Neural Network (ANN; adapted 
from Krogh 2008) with an input layer containing three input units, one hidden layer containing four 
input units and one output layer containing three input units. Each arrow represents weight and 
biases, which pass an input forwards to the next layer with the associated weight.  
 

 

5.1.2 Applications of Artificial Neural Networks 
In ecological research, ANNs have frequently been applied to species classification and detection using 

images and acoustic data. For example, ANNs were used alongside discriminant function analysis 

(otherwise known as DFA or LDA; described in Chapter 4) by Parsons and Jones (2000) to classify 12 

species of bat using temporal and spectral features from recordings of 641 echolocation calls. They 

found that ANNs were highly effective in classifying calls to species level (correct classification rates 

(CCR) of 87% and 85%) and performed better than LDA (CCR of 79% and 81%) at an equivalent level. 

ANNs have also been adapted in plant recognition. Identification of plant species is fundamental for 

plant management in agriculture, as well as for medicinal uses in botany (Satti et al., 2013). Research 

by Satti et al., (2013) offers a simple and efficient plant identification technique making use of digital 

images using computer vision. The process is comprised of three phases; pre-processing, feature 

extraction and classification using 1907 samples of 33 plant species. Pre-processing involved image 

enhancement, which was essential prior to feature extraction which derives features for identification 

using the colour and shape of the leaf. These features were divided between; colour, shape and 

geometric, morphological and tooth features, and were used as predictors for two different classifier 

methods; ANN and Euclidean classifier (also known as K-Nearest Neighbours; KNN) which is based 

upon distance, where datapoints that are close to one another in a feature space are assumed to be 

similar (Satti et al., 2013). Both networks were run, and calculations of accuracy were reported as 
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85.9% (KNN) and 93.3% (ANN), however it was additionally stated that while the ANN outperformed 

KNN on larger datasets, the KNN was more efficient using smaller datasets (Satti et al., 2013). In a 

similar study of medical plant recognition by Begue et al., (2017) ANNs were compared against four 

other machine learning classifiers: Random Forest (defined in Chapter 4); Support Vector Machine (an 

algorithm that works to find a hyperplane which distinguishes between data points; Noble 2006); 

Naïve Bayes (an algorithm based upon Bayes’ rule which assumes that all data observations are 

independent of one another and uses learning to estimate the probability that a datapoint to belongs 

to a certain class; McCallum and Nigam 1998), and; KNN. Using a database of 720 leaves, it was 

surmised that the Random Forest classifier achieved the highest levels of accuracy (90.1%) followed 

by the ANN (88.2%), Support Vector Machine (87.4%), Naïve Bayes (84.3%) and finally KNN (82.5%; 

Begue et al., 2017). It was however stated by Begue et al., (2017) that the potential of the ANN had 

not been fully exploited as result of resource constraints, they concluded by specifying that higher 

levels of accuracy could potentially be achieved with this machine learning method.  

 

5.1.3 Application of Artificial Neural Networks to marine mammal studies 
More recently, ANNs have been used by Zhong et al., (2020) as part of a study that estimated seasonal 

occurrence of a declining population of beluga whales (Delphinapterus leucas) in Cook Inlet of Alaska. 

A total of 13 000 hours of acoustic recordings of underwater noise were collected using passive 

acoustic moorings and beluga vocalisations were extracted by semi-automated tonal detectors within 

PAMGuard software (https://www.pamguard.org/) which were manually validated through analysis 

of spectrograms (Zhong et al., 2020). The recordings were labelled as true (beluga vocalisations 

present) or false (beluga vocalisations not present) detections and data were input into a 

convolutional neural network (a version of a ANN primarily used in computer vision; Yamashita et al., 

2018) in with a 49%:21%:30% training, validation and testing split. The model achieved high accuracy 

scores in both training (96.57%) and testing (92.26%) datasets thereby proving an effective model for 

identifying presence and absence of beluga whale calls (Zhong et al., 2020). It was reported by the 

authors that this method could save up to 93% of the highly time-consuming and subjective validation 

process (Zhong et al., 2020).  

 

As can be seen from these examples, ANNs are an effective and versatile classification method that 

are able to handle large amounts of complex data, and regularly outperform other machine learning 

methods to high levels of accuracy. A comparison of ANNs with other machine learning techniques 

can be seen in Table 5.1. 
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Table 5.1. Comparison of machine learning techniques. 
Method           Advantages            Disadvantages 

Euclidean 
Classifier 
(KNN) 

❖ An extremely simple yet effective 
classifier that requires no training 
(Satti et al., 2013). 

❖ Can be utilised on weak processors 
(Satti et al., 2013). 

❖ Testing time increases with the size of 
the training data which limits the 
scalability (Satti et al., 2013).  

Random 
Forest 
Classifier (RFC) 

❖ Limited parameters to tune (Biau 
and Scornet 2016). 

❖ Utilises small sample sizes and 
copes with missing values (Cutler et 
al., 2007). 

❖ Can be used when the number of 
predictor variables surpasses the 
number of observations (Cutler et 
al., 2007). 

❖ RFC infographics provide 
information as to which variables 
are important for classification, as 
well as how they influence which 
category a datapoint will fall into. 

❖ Interpretations are subjective, the RFC 
method is not suitable for application to 
traditional statistical techniques, such as 
P values, confidence intervals, or ANOVA 
testing (Cutler et al., 2007). 

❖ The importance of predictor variables is 
subjective and may be a result of its 
interactions with other variables in the 
dataset (Liaw and Wiener 2002). 

Linear 
Discriminant 
Analysis (LDA) 

❖ Easy, interpretable and robust 
classification technique (Feldesman 
2002). 

❖ Complex parametric method where 
data must conform to normality 
theory assumptions thereby results 
are objective (Feldesman 2002). 

❖ Interpretations of results utilise 
traditional statistical techniques 
(e.g. P values and ANOVA testing). 

❖ Data must conform to normality theory 
assumptions for LDA to be accurate - 
LDA is sensitive to non-normality, 
outliers, missing values, small sample 
sizes and unequal groups, any of which 
make results undependable (Feldesman 
2002). 

Support Vector 
Machine 
(SVM) 

❖ Simple and interpretable 
classification technique. 

❖ Can be applied to large datasets 
(Noble 2006).  

❖ Does not assume normal 
distribution of data (Noble 2006).  

❖ Assumes that both training and testing 
data are drawn from the same 
distribution (Noble 2006).  

❖ Only suitable for binary classifications 
(i.e. distinguishing between two classes; 
Nobel 2006).  

Naïve Bayes 
(NB) 

❖ Very simple classification method 
that often performs to high levels 
of accuracy (McCallum and Nigam 
1998).  

❖ Due to assumption of independent 
observations, parameters of each 
class are learnt separately which 
simplifies the learning process 
(McCallum and Nigam 1998).  

❖ Makes the assumption that all data 
observations are independent of one 
another with regard to the classes being 
tested, which is often not a realistic 
assumption for real-life applications 
(McCallum and Nigam 1998).  

Artificial 
Neural 
Network 
(ANN) 

❖ Highly accurate and adaptable to 
varied and complicated datasets 
(Krogh 2008; Boguki et al., 2018). 

❖ Provide state-of-the-art solutions to 
interesting problems (Krogh 2008). 

❖ Able to identify patterns in data 
that are not clearly visible to human 
researchers or identifiable using 
other statistical methods (Masters 
1993).  

❖ Can be used when non-linear 
relationships exist between 
variables (Bradshaw et al., 2012).  

❖ Require vast datasets to facilitate 
learning, i.e. it is not uncommon for 
neural network datasets to contain 
many thousands of observations (Boguki 
et al., 2018). 
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5.2 Chapter aims 
The aim of this chapter was to evaluate the usability of ANN classification models to both distinguish 

between and classify sighting records containing Good, Moderate and Poor body condition (BC) 

leopard seals by comparing silhouettes extracted from side-profile photographs obtained by citizen 

science data. Specifically, the objectives were to:  

1. Extract silhouettes from photographs of New Zealand leopard seals using ImageJ software and 

create new image files which correspond to the sighting-ID in the Body Condition – Leopard 

Seals Database (BCLSD; defined in Chapter 2); 

2. Compile the new image files of leopard seal silhouettes into a dataset and use these data to 

design two ANN models; one with class imbalance not accounted for (i.e. the higher 

proportion of Good BC records) and one with class imbalance accounted for (i.e. editing the R 

script to mediate the effect of the high proportion of Good BC records);  

3. Compare the accuracy of both ANN models using CCRs (as previously mentioned in Chapters 

3 and 4), and; 

4. Test the effectiveness of both ANN models when new data is applied using silhouettes 

extracted from photographs of leopard seals in New Zealand (i.e. not part of the original 

BCLSD).  

 

5.3 Methods 

5.3.1 Extraction pixel data from leopard seal silhouettes 
Using data from the BCLSD (defined in Chapter 2) a total of 80 photographs of leopard seals were 

individually loaded into ImageJ and cropped tightly around the body to eliminate background noise 

caused by the surrounding environment (e.g. sand, stones and seaweeds). Using the polygon tool, the 

body shape outline of each seal was traced, and the polygon was printed onto a new, blank white 

image file of 8000x2000 pixels (since the width of photographs varied greatly between 600 and 7000 

pixels, this resolution size enabled all seal polygons to fit into the new image). In the new image file, 

the polygon was scaled to fit the dimensions of the new image file and inverted to create a solid black 

silhouette (Figure 5.3). The silhouettes were saved into a new folder and named according to the 

sighting-ID that was allocated, e.g. HL001.jpg (refer to Chapter 2).  

 

Using packages keras (Allaire and Chollet 2020) and EBImage (Pau et al., 2010) the 80 silhouette 

images were read into R 4.0.2 (R Core Team 2020) and stored as a list. Each image was resized to 

800x200 pixels to reduce processing time and then reshaped into an  array comprised of 160 000-pixel 

values between 0 and 1 which signified lightness, with higher numbers representing darker pixels. All 

image arrays were combined as a data frame whereby the rows represented the image names (or 
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sighting-ID’s) and the columns represented the pixel values from 1 to 160 000. The data frame was 

split into 80% training (rows 17-80) and 20% testing (rows 1-16), following methods outlined in 

previous machine learning studies (e.g. Franklin and Ahmen 2018; Ditria et al., 2020) and the two new 

data frames named ‘train’ and ‘test’ were exported as CSV files, to be used as input data for the ANNs. 

 

5.3.2 ANN-1 and ANN-2 
These CSV files were then uploaded into a Kaggle online notebook that allows the use of specialist R 

scripts using R 3.6.3 (R Core Team 2020). The data frames train and test were imported and converted 

into matrices and were defined as trainx and testx. Two unique lists of labels (trainy and testy) were 

assigned to each matrix that represented the pre-allocated body condition group (BCG). All analysis 

was completed using packages tensorflow (Allaire and Tang 2020) and keras (Allaire and Chollet 2020). 

Using both packages, a simple three-layer, multi-class, feedforward ANN was designed (ANN-1), 

compiled and fit with trainx and trainy using a 20% validation split, where the validation data was 

derived from a set of samples from the training data and used to provide an evaluation of model fit 

whilst tuning model parameters in the learning phase. The success of the model was determined by 

values of accuracy and loss for both trainx and testx. Accuracy was scored as a percentage by 

computing how many occasions the model predicted the correct BCGs for each sighting-ID using CCRs, 

and was calculated when model parameters were fixed, and no further learning occurred. In contrast, 

loss was an indicator of how well a model behaved after each iteration and was a summation of errors 

made in both the training and validation datasets (i.e. not a percentage). It was expected that as 

iterations increased, accuracy of the model would also increase, whilst loss decreased. In addition to 

this, a list of predicted values for all leopard seal sighting-ID’s was obtained for trainx and testx.  

 

As previously described in Chapters 3, 4 and 5, the balance of classes within the BCLSD (n=80) was not 

equal, as there were substantially more sighting records containing Good condition leopard seals than 

Moderate or Poor condition seals (Figure 5.4). For this reason, a second ANN model (ANN-2) was 

designed to account for class imbalance by introducing a line of code that controlled class weights. 

Within the BCLSD, a seal sighting was 7.125 times more likely to be classified as Good than Poor 

condition, and 3.8 times more likely to be classified as Good than Moderate BC. Considering this, ANN-

2 contained an additional line of R script to edit class weights using these values. Calculations of loss 

and accuracy were determined for both trainx and testx and a list of predicted BCGs were computed 

for each sighting record.  

 

Both ANN-1 and ANN-2 were plotted to display how accuracy and loss varied through each epoch, 

where both models contained 100 epochs each. An epoch is the process of passing the entire set of 
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training data though the network. As the number of epochs in a model increases, the number of times 

the model parameters (weights) are altered to facilitate learning. Values for loss and accuracy are 

calculated after each epoch and these values can be plotted to illustrate how well the model fits to 

the data. ANN-1 can be visualised in Figure 5.5 while ANN-2 was visualised in Figure 5.6. 

 

 
Figure 5.3. Leopard seal silhouette being extracted using ImageJ software where: A is the original 
image with the traced polygon; B is the polygon printed onto the new blank image; C is the scaled 
polygon to fit the image, and; D is the polygon inverted into a silhouette.  

 



104 
 

 
Figure 5.4. Proportion New Zealand leopard seals with a Good (n=57), Moderate (n=15) and Poor 
(n=8) body condition within the Artificial Neural Network (ANN) dataset (n=80). 

 

5.3.3 Added-Data 
An additional dataset (named “Added-Data”) was compiled of 48 New Zealand leopard seal sighting 

records for which a BCG had not been allocated, as this data was comprised of photographs that did 

not meet the Photograph Assessment Criteria (PAC) or Photograph Quality Criteria (PQC; defined in 

Chapter 2). These types of images were used to determine how models ANN-1 and ANN-2 would 

perform with new, less-desirable data, and to generate an estimate of BC composition within the New 

Zealand leopard seal population. Silhouettes were extracted in ImageJ, transformed in R 4.0.2 and 

uploaded into the Kaggle R Notebook using the same methods previously outlined. The data was 

converted into a matrix run through both ANN models where a list of predicted BCGs was derived. 

These BCGs were compared to one another, and to BCG estimates made by the author following 

methods outlined in Chapter 2.  

 

5.4 Results 

5.4.1 ANN-1 and ANN-2 
Accuracy scores for training (trainx) and testing (testx) data within both ANN models varied 

considerably with ANN-2 scoring substantially higher than ANN-1 in both situations (Table 5.1). In 

addition to higher accuracy scores, values for loss in ANN-2 were also slightly lower than those for 

ANN-1 (Table 5.2). Confusion matrices were used to compare correct BCGs and predicted BCGs made 

by both ANN models in the original data (Table 5.3). Predictions made by ANN-1 in trainx fell under all 
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three BCG and into two BCG (Good and Moderate) within testx. Predictions made by ANN-2 also fell 

across all BCG within trainx, however all predictions in testx were projected to be in the Good BCG. 

Despite ANN-2 achieving higher levels of accuracy, when applied to testing data the ANN failed to 

accurately classify the two sighting records of Moderate BC leopard seals, and a single sighting record 

containing a Poor BC leopard seal, compared to test data for ANN-1 which did correctly classify the 

two records of Moderate BC seals (Table 5.3).  

 

Table 5.2. Values for accuracy and loss for Artificial Neural Network (ANN) Models ANN-1 and ANN-2 
which classified body condition groups (BCG) of sighting records containing images of New Zealand 
leopard seals, within both training data (trainx) and testing data (testx). 

 

Table 5.3. Four confusion matrices showing predicted vs correct body condition groups (BCG) for both 
Artifical Neural Network models (ANN-1 and ANN-2) which classified BCGs of sighting records 
containing images of New Zealand leopard seals, within the data subsets trainx and testx.  

Correct BCG  
ANN-1 (trainx) 

Predicted BCG Good Moderate Poor 

Good 39 1 2 

Moderate 7 10 2 

Poor 0 0 3     

 
ANN-1 (testx)  

Good Moderate Poor 

Good 6 0 1 

Moderate 7 2 0 

Poor 0 0 0     

 
ANN-2 (trainx)  

Good Moderate Poor 

Good 45 1 3 

Moderate 1 10 1 

Poor 0 0 3     

 
ANN-2 (testx)  

Good Moderate Poor 

Good 13 2 1 

Moderate 0 0 0 

Poor 0 0 0 

  
Model 

Accuracy Loss 

trainx (%) testx (%) trainx testx  

ANN-1 81.25 50.00 3.75 4.81 

ANN-2 90.63 81.25 3.21 3.55 
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Loss values within the optimisation learning curves show how the training and validation data for both 

ANN-1 (Figure 5.5) and ANN-2 (Figure 5.6) decreased to the point of stability. When looking at the 

performance learning curves, for model ANN-1 (Figure 5.5) accuracy values within the training and 

validation datasets are consistently high, rarely dipping below 50%. The accuracy for training data 

steadily increases through the 100 epochs, however validation data slightly decreases during the 

learning phase. For ANN-2 (Figure 5.6) accuracy values for both training and validation fluctuate 

largely between high and low values through each epoch, however within both datasets a gradual 

increase in model accuracy is evident.   

 

 
Figure 5.5. Optimisation learning curves (loss, i.e. sum of errors made) and performance learning 
curves (accuracy, in %) for training and validation data within Artificial Neural Network (ANN) model 
ANN-1 which classified body condition groups (BCGs) of sighting records containing photographs of 
New Zealand leopard seals. The plots visualise training (red points) and validation (blue points) data, 
where after 100 epochs loss=3.75 and accuracy=81.25% for training data. 
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Figure 5.6. Optimisation learning curves (loss, i.e. sum of errors made) and performance learning 
curves (accuracy, in %) for training and validation data within Artificial Neural Network (ANN) model 
ANN-2 which classified body condition groups (BCGs) of sighting records containing photographs of 
New Zealand leopard seals. The plots visualise training (red points) and validation (blue points) data, 
where after 100 epochs loss=3.21 and accuracy=90.625% for training data. 

 

5.4.2 Added-Data 
BCG estimates for New Zealand leopard seal sighting records within Added-Data (n=48) were most 

frequently classified as Good (68.75%; n=33), followed by Moderate (20.83%; n=10) and Poor BC 

(10.42%; n=5). These estimates were compared with predictions made by models ANN-1 and ANN-2 

(Figure 5.5). Compared to BCG estimates ANN-1 was accurate 58.34% of the time (28 out of 48 correct 

predictions) and predicted BCG of seals to be either BCG Good (n=30) or Moderate BC (n=18), none 

were predicted to be as BCG Poor. ANN-2 performed better with 75% accuracy (36 out of 48 correct 

predictions) and predicted the majority of the dataset to be a BGC Good (n=41), with BCGs Moderate 
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(n=6) and Poor (n=1) also being allocated. Within both models BCG Good was the most frequent 

classification predicted and on 36 occasions (75% of the time) both models produced the same BCG 

predictions. Regarding Moderate BC predictions, ANN-1 was marginally better with 6 out of 10 correct 

predictions compared to 5 out of 10 for ANN-2. Although ANN-2 predicted one Poor BC classification, 

the leopard seal within this sighting record was estimated by the author to belong to the BCG Good 

(point 20 on the x-axis of Figure 5.7 which corresponds to sighting record HL102).  

 

 
Figure 5.7. Comparison between body condition group (BCG) estimates denoted ‘ESTIMATE’ (dark 
grey) and BCG predictions made by the two Artificial Neural Network (ANN) models ANN-1 (light 
grey) and ANN-2 (mid-grey) for sighting records containing photographs of New Zealand leopard 
seals in the database ‘Added-Data’, where the x-axis signifies the 48 sighting records within this 
dataset. For the purpose of this plot BCGs were modified whereby Good=0, Moderate=1 and Poor=2.  
 

 

The proportion of sighting records allocated into each of the three BCGs for Added-Data were 

consistent with the proportion of sighting records allocated from the BCLSD (Table 5.4). Combining 

these figures gives an average estimate of the BC composition of New Zealand leopard seals based 

upon 128 sighting records (i.e. BCLSD=80 and Added-Data=48), whereby 69.63% of sightings contain 

Good BC individuals, while 19.79% of sighting records contain Moderate BC individuals and only 

10.21% of sighting records represent animals in Poor BC (‘Average’ in Table 5.4).  
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Table 5.4. Proportion (%) of New Zealand leopard seal sighting records containing Good, Moderate 
and Poor condition individuals from both; Added-Data (n=48) and the Body Condition – Leopard Seals 
Database (BCLSD; n=80), in addition to both databases combined (Average). 

BCG Added-Data (%) BCLSD (%) Average (%)   

Good 68.75 71.25 69.63   

Moderate 20.83 18.75 19.79   

Poor 10.42 10.00 10.21   

 

 

5.5 Discussion 

5.5.1 ANN-1 and ANN-2 
The process of obtaining silhouettes from photographs of New Zealand leopard seal sighting records 

enabled an in-depth analysis of BC where each leopard seal image was characterised by 160 000 data 

points. These data points represented 160 000 pixels (800x200-pixel images for each silhouette) 

where each pixel value ranged between 0 and 1 which signified lightness. These pixel values were then 

successfully used to train and test two ANN models; ANN-1 and ANN-2 in classifying sighting records 

of New Zealand leopard seals belonging to pre-assigned BCGs using data from the BCLSD. Of both 

ANNs the bias-corrected model ANN-2 achieved the highest number of correct BCG classifications with 

accuracy scores of 90.63% (training data) and 81.25% (testing data), compared to 81.25% (training 

data) and 50% (testing data) for ANN-1 (Table 5.2). As can be derived from the accuracy scores, both 

models performed well on the training data, however ANN-2 out-performed ANN-1 on the testing 

data by 30.25%. However, with respect to BCG predictions it was ANN-1 that performed slightly better, 

as a wider range of BCG predictions were made for testing data than for ANN-2 where all BCG 

predictions were calculated to be Good. It was therefore difficult to determine if the class imbalance 

correction was effective, in this instance.  

 

Optimisation learning curves for both ANN-1 and ANN-2 revealed good fit models, i.e. the models 

were a good fit to the data, as opposed to overfit (which occurs when a model ’memorises‘ training 

data, and incorporates ’background noise‘ as part of the learning process; Jabbar and Khan 2015) or 

underfit (the instance where the model was not able to determine the underlying data structure; 

Jabbar and Khan 2015). Overfitting is generally characterised on optimisation learning curves when 

the loss values for training data decrease with experience, but the validation loss values decrease 

initially before increasing again (Jabbar and Khan 2015), compared to underfitting which is visualised 

by a flat, horizontal line for training data. ANN models that are overfit tend to perform well on training 

data, but poorly on testing data, however ANN models that are underfit do not perform well on either 

training or testing data (Jabbar and Khan 2015). Looking at the accuracy figures for both models 

reinforced that ANN-2 was a good fit model as it performed well on both sets of data, however ANN-
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1 may have experienced an element of overfitting as accuracy levels were much lower in the testing 

dataset. 

 

ANNs designed within this chapter under-performed compared to other ANN models in the literature. 

Classification accuracy in the testing data for both models was lower (Table 5.2) compared to 85% and 

87% for classifying species of bat (Parson and Jones 2000), 93.3% (Satti et al., 2013) and 88.2% (Begue 

et al., 2017) for classifying species of plants as well as 92.26% for classifying echolocation calls of 

beluga whales (Zhong et al., 2020). As was acknowledged in Chapter 4, one reason for this could be 

that the number of pixels (i.e. 160 000 pixels per sighting record) were too high and signified 

background noise rather than true variation within the data (Galimberti et al., 2018). Reducing the 

dimensions of the silhouettes by half to a smaller image size (400x100-pixels) might produce ANN 

models with more accurate prediction and generalisation capabilities.  

 

Research by both Satti et al., (2013) and Begue et al., (2017) employed similar techniques of image 

processing to those outlined within this chapter, where photographs of leaves were converted to 

binary images and features were extracted to be used as input values for ANNs (e.g. length, perimeter 

and area; Satti et al., 2013). In these applications the sample sizes of the ANN input data were 

substantially higher the small sample size of 80 sighting records used for ANN models within this 

chapter, derived from 1907 (Satti et al., 2013) and 720 leaf samples (Begue et al., 2017).  

 

5.5.2 Added-Data 
Although it was not possible to predict accurate body condition scores (BCS) and therefore BCG for 

sighting records within Added-Data, from examining the photographs visually, estimates could be 

made based upon any bony protrusions that were visible (Figure 5.8 and Figure 5.9). For example, 

Figure 5.8 shows leopard seal with sighting-ID HL127. Using models ANN-1 and ANN-2 this seal was 

predicted to belong to BCG Good, however looking at the profile the bony protrusions sagittal crest, 

spine and pelvis can all be seen despite the low resolution. For this reason, this individual was classed 

as a BCS of ’3‘ and therefore would be at least Moderate BC. However, due to the low resolution it is 

not possible to determine if any further bony protrusions were visible, looking at the overall silhouette 

it would be suspected that this seal was actually Poor BC. Another example is shown in Figure 5.9 

which shows leopard seal with sighting-ID HL125. Using models ANN-1 and ANN-2 this individual was 

predicted to be in BCG Moderate BC. Although the image is in low resolution both the spine and pelvis 

can clearly be seen, however the shape of the seal is much more robust than the one seen in Figure 

5.8, suggesting this could be an adequate classification by the model.  
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Regarding the singular Poor classification made by ANN-2 (sighting-ID HL102 signified by number 20 

on the x-axis of Figure 5.7), this same record was predicted to be BCG Moderate by ANN-1, indicating 

that the BCG estimate made by the author was incorrect and this leopard seal was in reduced 

condition than appeared from the photographs. In spite of these inaccuracies, overall BCG estimates 

made from unsuitable photographs that did not meet the Photograph Assessment and Photograph 

Quality Criteria (PAC and PQC) were in fact in line with BCGs from the BCLSD (Table 5.3), suggesting 

that despite the photographs being of reduced quality accurate predictions of BC can be made. It was 

difficult to assess how the ANN models performed when presented with new data as a significant 

portion of the Added-Data (n=33) were in fact estimated to be Good BC individuals. ANN-1 appeared 

to over-classify records into Moderate BC and failed to classify any records as Poor BC. Comparatively, 

predictions made by ANN-2 under-classified Moderate BC records and mis-classified a Poor BC record. 

In order to observe this more effectively the BCLSD should incorporate an increased number of 

sighting records that contain Moderate and Poor BC leopard seals which would enable the ANNs to 

more accurately learn and recognise the parameters of these classification groups.  

 

 
Figure 5.8. Sighting-ID HL127 from Added-Data. 

 

 
Figure 5.9. Sighting-ID HL125 from Added-Data. 

 

5.6 Conclusions 
The use of silhouettes extracted from New Zealand leopard seal sighting records allowed for an 

extremely detailed comparison of body shape using ANNs, characterised by differences in pixel data 

representing shape. The ANN model that accounted for bias of Good BC sighting records within the 

BCLDS, ANN-2, was denoted the ‘best’ model due to higher levels of accuracy not only using data from 
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the BCLSD but within the dataset Added-Data also. From comparing the BCG predictions to estimates 

made by the author it appeared that model ANN-2 was able to generalise to some degree when 

presented with new data, however, still exhibited bias towards the BCG Good in the testing data. From 

the success of this ANN, a similar ANN model using a larger dataset with an increased number of 

sighting records containing both Moderate and Poor BC leopard seals, and reduced pixel dimensions 

to reduce the influence background noise, would likely improve the ability of the ANN to produce 

accurate BCG classifications, as well as being able to generalise when presented with new data.  
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Chapter 6 : Discussion of statistical and 

machine learning techniques used to assess 

body condition in New Zealand leopard 

seals 
 

 

 

 

Leopard seal photographed trying to get some rest in front of the boat sheds on Oriental Bay(New 
Zealand) 
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6.1 Overview 
Despite the widespread distribution of leopard seals in the southern hemisphere, knowledge of their 

northern occupation outside of Antarctica is very limited. While photo-identification (photo-ID) can 

be used to examine various aspects of their ecology (including health), photo-ID catalogues for leopard 

seals are scarce and have rarely been created within these northern regions. To date, a number of 

existing studies have examined leopard seal body condition (BC) both within Antarctica and these 

northern regions using a range of methods that include: subjective visual observations (Rounsevell 

and Pemberton 1994; Gray et al., 2009; Aguayo-Lobo et al., 2011; Bester et al., 2017); calculating 

blubber volume via morphometrics and values of blubber depth (Kuhn et al., 2006), and; estimating 

seal mass using manual and photographic measurements (Hofman 1975; Van den Hoff et al., 2005; 

Krause et al., 2017). The use of different techniques across these studies means that baseline 

information for leopard seal health and condition parameters is lacking, and findings from such studies 

cannot be directly compared to one another (i.e. in making comparisons of leopard seal health across 

different regions). Without this baseline information, it is difficult to monitor their health condition 

throughout their range and over time. 

 

The paucity of baseline data on their health condition is also apparent within New Zealand waters, 

currently only one study has been done to examine their BC within this region. This research focussed 

on using a visual, qualitative body condition scoring system (BCSS) based on presence/absence of bony 

protrusions in photographs (Hupman et al., 2019). In New Zealand, no quantitative analysis regarding 

BC has been published thus far, such data is needed to provide baseline information on their health 

status to provide effective conservation management initiatives within the region, as well as for 

comparing BC between individuals and documenting change in BC over time. This study provides the 

first assessment of BC for leopard seals in New Zealand waters that combines qualitative and 

quantitative data in the form of body condition groups (BCG) derived using body condition scoring 

(BCS) and measurements obtained using photogrammetry. This study also provides the first 

assessment of BC on New Zealand leopard seals using machine learning techniques; Principal 

Component Analysis (PCA), Linear Discriminant Analysis (LDA), Random Forest Classifiers (RFC) and 

analysis of body shape via Artificial Neural Networks (ANN).  

 

Here, key research findings from each chapter are summarised and the significance and contribution 

of this research is discussed. In addition, the limitations of this study are highlighted followed by 

suggestions of methodological improvements and questions for future research. Lastly, the 

management considerations for leopard seals in New Zealand are outlined. 
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6.2 Chapter 2: Body condition scoring as a non-invasive method for examining body 

condition in sighting records of free-ranging New Zealand leopard seals from photographs 

6.2.1 Key research findings 
Results from the BCS identified that the majority of leopard seal sighting records extracted from the 

New Zealand Leopard Seals Photo Library (NZLSPL) contained images of Good BC individuals (71.25%) 

compared to Moderate (18.75%) and Poor (10%) BC. Of these Good BC records (n=57), 71.9% (n=41) 

were allocated a BCS of 0 (aka no bony protrusions were visible), which represented over half of all 

sighting records, suggesting that the majority of leopard seals observed within the region are in 

predominantly very good health. This reinforced conclusions by Hupman et al., (2019). When bony 

protrusions were visible (n=39), the pelvic bones were most frequently observed appearing in 33 

sighting records (84.6% of the time) which indicated that this may be an area of interest in their 

morphology when assessing condition of leopard seals. This finding was congruent with research by 

Krause et al., (2017) who reported that the same morphological area (the umbilical region) showed a 

strong correlation with leopard seal mass. 

 

6.2.2 Contribution and significance 
Understanding leopard seal health parameters is vital for understanding health of the population as 

well as health of the marine ecosystem they occupy as upper trophic marine predators (Krause et al., 

2017). One way health of an individual can be assessed is by using BCS, which is a well-practiced 

technique in the fields of agriculture and veterinary science, and has more recently been applied to 

both captive and wild animals as a hands-off approach for assessing the amount of subcutaneous fat 

on the body of an animal, as an indicator of individual health (Jefferies, 1961; Edmonson et al., 1988; 

Dorsten 2004; Pettis et al., 2004; Cook et al., 2010; Zielke et al., 2018). With respect to the New 

Zealand population of leopard seals, the species was only recently (May 2019) classified as resident 

under the Department of Conservation New Zealand Threat Classification System (Baker et al. 2019), 

and therefore it is vital to understand population parameters (e.g. health, sex and age-classes) as part 

of management initiatives. Furthermore, due to their presence in this northern region being so far 

from their core home range of Antarctica, it is essential to observe health to determine how well they 

are adapting to the change in environment and resources (for example sea temperature, lack of ice 

floes and prey items), which may help to understand other research questions regarding their 

presence in New Zealand, and how they the utilise this environment.   

 

Data from this study identified that leopard seals are overall in very good health, with only a small 

number of sighting records (10%) being identified as containing Poor BC individuals. This is in stark 

contrast to publications from other northern regions outside of Antarctica which have reported that 
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leopard seals observed in these areas are predominantly in poor condition (Rounsevell and Pemberton 

1994; Mawson and Coughran 1999; Bester et al., 2017). There is a general trend in the literature that 

condition is inversely related to latitude, whereby the further north leopard seals are observed the 

lower the condition they are found in (van den Hoff et al., 2005; Bester et al., 2006). This result overall 

reinforces that New Zealand is part of the leopard seals current home range and advocates that they 

are not just able to survive but thrive within this northern region. However, whether this has always 

been the case and leopard seal presence has been under-reported or whether there is an increase in 

the number of leopard seals inhabiting New Zealand is not yet clear.  

 

6.2.3 Limitations and improvements 
Due to the nature of citizen science data collection many of the sightings that contained photographs 

were not of desirable quality. This resulted in a very small sample size (n=80) compared to the total 

number of photographic sightings (n=1408 until the end of 2018; Hupman et al., 2019) observed in 

New Zealand, in addition to other studies using photo-ID techniques (Joblon et al., 2008; Pettis et al., 

2011) and as a consequence results were not highly generalisable to the New Zealand leopard seal 

population. One way to enhance sample sizes to make results more generalisable is via data 

augmentation, which involves altering existing photographs either by flipping, scaling or rotating, and 

reinstating them back into the dataset as a new data point (Bogucki et al., 2018). Using this method 

datasets can quickly be magnified to larger sizes (Bogucki et al., 2018). Alternatively, in New Zealand 

guidelines outlining the type of photographs required for BC assessment (i.e. whole left or right-side 

profile where the seal is lying in ventral recumbency, parallel to the ground and perpendicular to the 

camera), could be promoted by means of social media and community engagement events to increase 

the number of suitable photographs obtained from citizen science. As the performance of digital 

cameras and smartphone technology continues to develop, the availability of high-resolution 

photographs obtained by citizen scientists may increase, facilitating the citizen science approach to 

this method. This manuscript focused on records of sighting ‘encounters’ not known photo-ID’d 

individuals. The consequence of this is that BC could not be thoroughly assessed between individuals 

or compared over time for the same animal. In future research, BC assessment should be run in 

conjunction with photo-ID methods (i.e. using spot patterns on leopard seal pelage) to identify 

individual seals. 

 

BCS itself has limitations that should be identified. Most significantly, BCS is a subjective measure 

which can vary highly between observers. Even with high resolution photographs it is sometimes 

difficult to determine whether bony protrusions are visible or not, as thickness of body fat does not 

always fall into discrete categories, and rather, it is a continuous measure. Herein it was also assumed 
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that leopard seals maintain, lose and gain body fat at the same rate all over the body, however this 

has not been confirmed in existing literature. Within this manuscript no differentiation was made 

between male and female leopard seals, or between age-classes (i.e. pup, juvenile or adult) and as 

such it was assumed that leopard seals of both sexes and all age-classes carry their weight in the same 

way. However, although leopard seals are not a sexually dimorphic species, it has been reported that 

some discrete differences do exist in the way weight is distributed between adult males and females, 

as well as between adults and juveniles (Hamilton 1939; Gwynn 1953). Research on skull morphology 

by Hamilton (1939) reports that adult females have larger sagittal crests, whilst adult males have wider 

zygomatic arches, which could potentially have affected BCS as these were two morphological 

landmarks of interest. Hamilton (1939) also stated that juvenile leopard seals have an attenuated and 

cylindrical shape with a large head, and that while females develop a large thorax as they mature from 

juveniles to adults, the morphology of males remains similar to that of a juvenile throughout its life. 

Similar findings were supported by Gwynn (1953) who reported differences between animals in their 

first three years and at adulthood. Gwynn (1953) specified that one-year old leopard seals were easily 

distinguishable by smaller size and smaller heads, while second-year animals had “noticeable larger 

heads” and three-year olds approached the length of adult seals, however had narrow hips “giving 

them a long, slim figure”. This morphological variation between sex and age groups will likely have 

influenced not only BCS but BC as predicted by photographic measurements (in LDA and RFC) and by 

pixel information extracted from seal profiles (in ANN).  

 

An assessment of reliability was conducted within this chapter during which ‘repeat encounters’ were 

independently assessed by the same observer (the author) to determine if equivalent BCS were 

allocated for sighting records from the same date and location. It was concluded that on 8 out of 9 of 

these repeat encounters the same BCS were allocated using the same visible bony protrusions. On the 

single event that different BCS were scored for two sighting records documented on the same 

occasion, it was suggested that this could have been due to the difference in the number of 

photographs between these sighting records. The record with sighting-ID HL029 which contained a 

greater number of photographs was allocated a BCS of 2 (i.e Moderate BC), whereas the record 

sighting-ID HL027 with a smaller number of photographs was allocated a score of 0 (i.e. Good BC), 

thereby these two bony protrusions (neural spines and pelvic bones) were both missed in this 

assessment. It was therefore surmised that only photographs which met all criteria from both 

Photograph Assessment and Photograph Quality Criteria (PAC and PQC) should be used in future 

assessments of BC. Moreover, only one photograph from each record (of the leopard seal lying in 

ventral recumbency and parallel to the ground and perpendicular to the camera) should be used for 
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comparisons of BC. Although this would mean that some bony protrusions may not be identified, the 

degree of error between sightings would be equal and internal validity would increase.  

 

6.3 Chapter 3: Dimensionality reduction of photographic measurements of body width 

extracted from sighting records of New Zealand leopard seals using Principal Component 

Analysis  

6.3.1 Key research findings 
The use of PCA in this chapter showed that photographic measurements of leopard seal body width 

were associated to pre-assigned BCGs based upon a BCSS. This provided support for the validity of the 

BCS technique, enabling the method to be used in future estimates of leopard seal BC within the 

region. Using PCA, the 13 total photographic measurements extracted from leopard seal images were 

refined down to three without losing any variation within the data. These three variables were useful 

on their own for defining BC, thereby potentially decreasing processing time by eliminating the need 

to measure the remaining ten measurements during potential future study. Of these three 

measurements, S2 and S3 were both located around the neck area, which highlighted this 

morphological area as being important for differentiating between BC of New Zealand leopard seals. 

Photographic measurement S6 was the only measurement of body width where two statistically 

significant differences were observed between BCGs; Good – Moderate and Good – Poor, signifying 

S6 as the most important measurement for differencing between the three BCGs. Finally, in this 

chapter BCG Good was most easily distinguished from both Moderate and Poor BC. This was contrary 

to observations by van den Hoff et al., (2005) who used manual body measurements of leopard seals 

to estimate mass and reported that they were able to differentiate poor condition individuals to those 

in medium and good condition.  

 

6.3.2 Contribution and significance 
The third chapter in the manuscript describes the first instance of PCA being applied to New Zealand 

leopard seal data. The use of this technique revealed important morphological locations on the 

leopard seal body for differentiating between pre-assigned BCGs, derived from photogrammetry. 

Furthermore, PCA in this application validated the use of a BCSS which can be used as part of future 

research to investigate leopard seal population parameters, comparable to other studies of marine 

mammals where BCSS are applied, including Gray (Bradford et al., 2012) and North Atlantic right 

whales (Pettis et al., 2011).  Similar to other photogrammetric studies (e.g. Krause et al., 2017; 

Christiansen et al., 2019), methods utilised within this chapter offer a non-invasive and low-risk and 

low cost alternative to obtaining measurements of free-ranging animals, which is functional for 

leopard seals in other regions as well as having potential applications for other species of pinniped. 
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6.3.3 Limitations and improvements 
Shortcomings to the application of photogrammetry to data within the BCLSD were that due to the 

citizen science nature of the data collection, photographs of leopard seals were taken by a number of 

different observers utilising a variety of different camera types. Hence, robust photograph assessment 

techniques were employed (refer to Chapter 2 methods) in order to extract useful photographs for 

photogrammetry. This method largely reduced the number of useable photos to less than 5.7% of the 

original photograph library. A second consequence of this was that photographic measurements of 

body width were measured in pixels rather than being converted to metric units as seen in other 

research employing photogrammetry (Krause et al., 2017; Christiansen et al., 2019), which provide 

more interpretable data with uses for other applications (e.g. estimates of mass; Krause et al., 2017). 

Independent studies utilising subjective BC categories based upon visual observations have used 

validation techniques based upon morphometric measurements (van den Hoff et al., 2005; Chusyd et 

al., 2018) or blind studies evaluating agreement of individual assessors (Joblon et al., 2008; Pettis et 

al., 2011). Preferably, the BCGs allocated within this study would be validated by similar methods, 

however as obtaining manual morphometrics carries substantial risk to both leopard seals (due to 

sedations) and researchers (potential injury), photographic measurements were trialled as a non-

invasive alternative. To improve upon the photogrammetric method, photographic body width 

methods could be measured by multiple independent assessors, to evaluate the accuracy and 

reliability of the measurements.  

 

6.4 Chapter 4: The application of Linear Discriminant Analysis and Random Forest 

Classifiers for assigning body condition groups to sighting records of New Zealand leopard 

seals 

6.4.1 Key research findings 
The use of photographic measurements of body width within this chapter were successful in 

predicting BCG membership of sighting records containing New Zealand leopard seals relatively to 

relatively high levels of accuracy using both LDA (87.5%) and RFC (87.5%) methods, which further 

supports the relationship between the photographic measurements and pre-assigned BCGs. Overall, 

both techniques achieved similar correct classification rates (CCR), however the LDA method achieved 

higher levels of accuracy on average (78.13%) compared to the RFCs (66.52%) using this dataset, as 

well as making predictions into all three BCGs. The most accurate LDA model (LDA-4) used the three 

most important widths identified by PCA, as well as containing a control for bias of sighting records 

containing Good BC individuals by introducing class weights. In comparison, the most accurate RFC 

model (RFC-1) made use of all 13 photographic measurements and no control for class imbalance. 
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Therefore, with respect to potential future use, the use of the RFC increases time spent in data 

collection, making the LDA model more desirable for future application.  

 

6.4.2 Contribution and significance 
This research chapter describes the first instance when machine learning techniques have been 

applied to New Zealand leopard seal data, in order to make predictions of BCG membership using 

photographic measurements of body width obtained via photogrammetry. Significantly, this chapter 

identified that photographic measurements of body width (measured in pixels) can be reliably used 

to differentiate between and classify BC of New Zealand leopard seals as an objective and quantitative 

alternative to the subjective, qualitative BCSS currently in place. The use of morphometrics also allows 

unique leopard seal sighting records to be directly compared by metric values, which can be plotted 

to reveal differences in body shape which may not be so easily distinguished by the human eye. In 

potential future applications, the three measurements from the LDA-4 model; S2, S3 and S6 can be 

extracted from photographs in ImageJ and run through the LDA-4 model to get an estimation of BC 

which would predict correct classifications of BCG 87.5% of the time. These estimation outputs from 

the model can then be checked using a human observer to moderate model accuracy.  

 

6.4.3 Limitations and improvements 
While the most accurate LDA model (LDA-4) developed within this chapter outperformed LDA models 

in other research studies (Galimerti et al., 2018; Cutler et al., 2007; Hupman 2016), the RFCs generally 

performed to lower classification accuracy than other models in the literature (Rogers et al., 2017; 

Cutler et al., 2007), as well as lower than was expected in this chapter despite small sample size of the 

BCLSD and correlation between variables (Cutler et al., 2007; Tharwat et al., 2017). It is stated by 

Mohri et al., (2018) that the size and quality of the training data is essential to the success of a model’s 

predictive ability. Within this dataset, as previously discussed there is an evident bias of sighting 

records containing Good BC individuals, which despite being corrected for within a number of the 

models in this chapter (n=3; LDA-2, LDA-4 and RFC-4) was still apparent when looking at the model 

predictions. In order to alleviate the effect of this bias within the LDA and RFC models, additional data 

collection would be required, particularly for of sighting records containing Moderate and Poor BC 

leopard seals. The addition of these records would reduce the impact of class imbalance. It is likely 

that as a result of this accuracy, reliability and generalisability of the models would also increase. As 

the full potential of RFCs were not explored within this chapter, future applications using this novel 

machine learning technique has the potential to produce more accurate BC predictions using data 

from the NZLSPL.  
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6.5 The application of Artificial Neural Networks for assigning body condition groups to 

sighting records of New Zealand leopard seals 

6.5.1 Key research findings 
The process of extracting silhouettes from photographs within New Zealand Leopard Seal Photograph 

Library allowed for an in-depth comparison of leopard seal body shape by means of ANNs. Both ANN 

models were successful in distinguishing between and classifying sighting records into the three BCGs 

(Good, Moderate and Poor) based upon differences in pixel values for each silhouette. ANN model 

ANN-2 (training data=90.65%, testing data=81.25%) which accounted for class imbalance achieved 

higher levels of accuracy than ANN-1 (training data=81.25%, testing data=50%) using data from the 

BCLSD. An additional dataset called ‘Added-Data’ was introduced within this chapter to determine 

how the ANN models would perform when introduced to new images of leopard seal silhouettes. 

Again, model ANN-2 outperformed ANN-1 where predictions made by ANN-2 matched estimates 

made by the author 75% of the time, compared to 58.34% of the time for ANN-1, suggesting that ANN-

2 was more adept at generalising to new data. Interestingly, estimates of BCG based upon BCS made 

by the author on the lower quality Added-Data mirrored BCG calculations from sighting records in the 

BCLSD (refer to Table 5.3 in Chapter 5), signifying that accurate predictions of BC can be made even in 

lower resolution photographs.  

 

6.5.2 Contribution and significance 
This chapter defines the first application of ANNs to New Zealand leopard seal data. In this manuscript 

a technique adapted from a study on plant recognition using features extracted from images (Satti et 

al., 2013) was trialled using side-profile images of New Zealand leopard seals. The procedure used a 

total of 160 000 pixel values (800x200-pixel images) per sighting record as input values to train and 

test two ANN models, which were effective in making predictions of BCG that were in line with BCGs 

allocated by the author using BCS. Although the full potential of ANNs were not explored, classification 

accuracy of the most accurate ANN model (ANN-2) were relatively high within both training and 

testing data, which is promising for future applications of this technique. ANN-2 can be employed as 

an objective, quantitative alternative to the subjective, qualitative BCSS presently used for leopard 

seals in New Zealand as well as other regions. For this reason, R script used for ANN-2 is provided in 

Appendix II. 

 

6.5.3 Limitations and improvements 
Complications were identified with the ANN method regarding the size of the seal silhouette within 

the binary image file. Despite the fact that silhouettes were copied, rotated, and shrunk or enlarged 

to fit the new image file of 8000x2000 pixels, variation in the size and orientation of silhouettes 
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remained, as can be observed in Figures 6.1 and 6.2. In both figures, the seals are lying slightly at an 

angle to the observer (i.e. not a flat 180 degrees) and the body of seal within sighting-ID HL029 is in 

an elongated, stretched-out position compared to the seal envisioned in sighting-ID HL036, as well as 

the silhouette appearing slightly larger. The ANN models therefore may have incorporated size 

information in addition to shape, which could have affected BCG predictions. However, as ANNs are 

difficult to interpret, it is unknown which features, or variables, contributed to the classification 

process. In potential future applications of ANN models using leopard seal side-profile silhouettes 

efforts to standardise the size and orientation of the seal to ensure that difference in shape is the only 

parameter being tested.  

 

 

Figure 6.1. A leopard seal silhouette used in Artificial Neural Network (ANN) models, of a Good body 
condition (BC) individual (sighting-ID HL036). 

 

Figure 6.2. A leopard seal silhouette used in Artificial Neural Network (ANN) models, showing a 
Moderate body condition (BC) individual (sighting-ID HL029). 

 

One technique often used in smaller datasets to increase accuracy and ensure results are more reliable 

is a method called k-fold cross-validation, which is often applied to assess the predictive ability of 

machine learning models (François et al., 2007; Baykan and Yilmaz 2011). In this technique, rather 

than training models with a training/validation/testing split, the entire dataset is split k times, where 

k equals the number of groups the dataset is divided into, resulting in a less biased estimate of model 

ability (Diamantidis et al., 2000; Baykan and Yilmaz 2011). The process involves randomly shuffling the 

data, splitting into k groups, then extracting one group to use as testing while the remaining groups 

are used to fit and evaluate the model as training. This method is repeated using all k groups and 
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overall model ability is assessed by the summary of all evaluations (Diamantidis et al., 2000; Baykan 

and Yilmaz 2011). k-fold cross-validation is known to work well with smaller datasets and therefore 

would be an appropriate method to trial with the New Zealand leopard seal data using ANNs, as an 

effort to increase the predictive ability and generalisability of the model.  

 

6.6 Comparison of machine learning methods 
With respect to testing data, the most accurate ANN model ANN-2 was less accurate at predicting 

BCGs compared to the most accurate RFC and LDA models (Table 6.1). This ANN model, based upon 

pixel data derived from images of leopard seal silhouettes, also only made predictions into one BCG 

(Good), as opposed to the two models based upon photographic measurements of body width which 

made predictions into two (Good and Moderate; RFC-1) or all three (LDA-4) of the BCGs. Upon review 

of Table 6.1 it can be inferred that the LDA model LDA-4 was the most successful of all three machine 

learning techniques in predicting BCG membership of New Zealand leopard seals. This particular 

model made use of the three ‘most important widths’ identified by PCA in Chapter 3 of this manuscript 

for differentiating between pre-assigned BCGs, and performed slightly better than RFC-1 (that made 

use of all 13 photographic measurements) by correctly classifying the one Poor BC sighting record 

(HL002; Table 6.1). Although ANN methods were less effective in this application, the potential of this 

machine learning technique was not fully explored and could provide more promising results in future 

investigation. It was proposed that the lower accuracy levels of both ANN models as compared to 

ANNs within the literature could be related to the volume of pixels for each sighting record, and 

subsequent models using images of silhouettes could perform to higher levels of accuracy is the pixel 

dimensions of the images were reduced. Advantages and disadvantages to each of the three machine 

learning techniques employed in this manuscript are outlined in Table 6.2. 
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Table 6.1. Comparison of actual (Correct) against predicted body condition groups (BCG) of sighting 
records containing images of New Zealand leopard seals (Sighting-ID) across the three most accurate 
models from each machine learning technique; Linear Discriminant Analysis (LDA-2.5), Random 
Forest Classifier (RFC-1) and Artificial Neural Network (ANN-2). Correct predictions are highlighted in 
blue whilst incorrect predictions are visible in orange. Cells where information was not applicable 
were denoted NA. 

 
Sighting-ID 

BCG 

Correct LDA-4 RFC-1 ANN-2 

HL001 Good Good Good Good 

HL002 Poor Poor Moderate Good 

HL003 Good Good Good Good 

HL004 Moderate Moderate Moderate Good 

HL005 Good Poor Good Good 

HL006 Good Good Good Good 

HL007 Good Good Good Good 

HL010 Good Good Good Good 

HL012 Good Good Good Good 

HL016 Good Good Good Good 

HL026 Good Good Good Good 

HL050 Good Good Good Good 

HL052 Good Good Good Good 

HL054 Good Good Good Good 

HL058 Moderate Good Good Good 

HL072 Good Good Good Good 

CCR (%) NA 87.5 87.5 81.25 
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Table 6.2. Advantages and disadvantages of the machine learning methods trialled in this manuscript 
for use at predicting body condition groups (BCG) for New Zealand leopard seals. 

Method Advantages Disadvantages 

Principal 
Component 
Analysis 
(PCA) 

❖ PCA produced distinct values (and 
plots) which depicted how each 
variable contributed to the principal 
components. This was extremely 
useful for highlighting the three most 
important variables for 
differentiating between pre-assigned 
BCGs, these three widths went on to 
be the most successful machine 
learning model in making predictions 
of BCG based upon the 
measurements alone.  

❖ Data was required to conform to rules 
of normality and homogeneity 
therefore umbilical width was not able 
to be analysed, despite being 
identified as a morphological area of 
interest.  

Linear 
Discriminant 
Analysis  
(LDA) 

❖ Results of LDA are interpretable, the 
equation for plotting individual 
sighting records based upon linear 
discriminants shows how each 
predictor variable contributed to the 
linear discriminant. 

❖ A very simple machine learning 
technique to run and tune.  

❖ Utilised only three out of the 13 total 
photographic measurements to 
achieve relatively high levels of 
classification accuracy. 

❖ Data was required to conform to rules 
of normality and homogeneity 
therefore umbilical width was not able 
to be analysed, despite being 
identified as a morphological area of 
interest. 

Random 
Forest 
Classifier  
(RFC) 

❖ As a non-parametric approach data 
was not required to conform to 
normality and homogeneity 
assumptions thereby all 13 
photographic measurements were 
subject for analysis, including 
umbilical width.  

❖ Tolerates small datasets, useful as 
the BCLSD only contained 80 records.  

❖ Plotting RFC trees showed the 
direction of classification and which 
variables were used to make certain 
predictions. 

❖ A very simple machine learning 
technique to run and tune.  

❖ As a non-parametric approach RFC 
trees - although interpretable – were 
subjective and could not be assessed 
by traditional statistical techniques 
such as P values.  

❖ The most successful RFC model 
utilised all 13 photographic 
measurements and therefore is more 
labour intensive to achieve the same 
levels of accuracy as the LDA model 
which used only three photographic 
measurements.  

Artificial 
Neural 
Network 
(ANN) 

❖ Utilises more information from an 
image than RFC and LDA as the 
complete silhouette is input into the 
model, it therefore took into account 
the entire body shape as opposed to 
body shape at select points; this 
method involved 160,000 data points 
per individual seal photograph 
compared to three using LDA or 13 
for RFC.   

❖ The small dataset in this instance 
meant that the ANNs could easily 
handle the large number of pixel 
values per image file, so image 
dimensions did not have to be 
significantly reduced. 

❖ Usually applied to extremely large 
datasets –  the dataset in this 
manuscript was extremely small. 

❖ Difficult to interpret – remains unclear 
how the ANN differentiated between 
the silhouettes of leopard seal sighting 
records based upon pixel values.  

❖ More difficult than the other three 
techniques to design and tune 
models. 
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6.7 Suggestions for further research 
This thesis has provided baseline information regarding three non-invasive techniques for assessing 

BC of leopard seals by means of BCS and machine learning methods. It is recommended that future 

research continues to collect information on BC in New Zealand leopard seals for longitudinal studies. 

Such data would enable leopard seals in New Zealand to be monitored over time and can provide 

updated estimates of BC within this region. Moreover, this manuscript focused on records of sighting 

‘encounters’ not known photo-ID’d individuals. In future research, BC assessment should be run in 

conjunction with photo-ID methods (i.e. using spot patterns on leopard seal pelage) to identify 

individual seals, which would enable assessments between individuals to be compared over time. In 

addition to completing further investigations on baseline information, this thesis has also identified a 

number of key research questions which need to be answered. Future key research questions are 

outlined below.  

 

1. Can photographs of New Zealand leopard seal silhouettes be examined though an ANN using the k-

fold cross validation method to improve model predictive ability and reliability? 

This first research question is important for exploring the potential of ANNs to identify whether a more 

accurate machine learning model can be utilised to make objective BC predictions of leopard seals 

within this region.  

 

2. Can photographs of New Zealand leopard seals be applied to an ANN to predict BCS? 

This research question proposes whether ANNs can be employed to make more refined predictions of 

direct BCS (which range between 0 and 5 i.e. six classification groups; refer to Chapter 2) as opposed 

to BCGs (i.e. three classification groups). BCS predictions from an ANN can also be directly compared 

to BCS derived from manual evaluations made by human assessors to further gauge the reliability of 

the BCS technique. 

 

3. Can individual leopard seals be identified using photo-ID and then their individual BC be assessed 

over time? 

This research question is particularly useful for determining the BC in which leopard seals are first 

observed in New Zealand waters as it may help to understand their presence here, i.e. do leopard 

seals arrive in Poor or Good BC? Does BC generally improve or deteriorate whilst they are in this 

region, due to difference in resources? This is particularly relevant for leopard seals that are judged to 

be in Poor BC or show presence of injuries for management considerations.  
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4. How does BC of the overall New Zealand leopard seal population compare to BC of leopard seals in 

Antarctica, as well as in other northern regions? 

This research question is important for defining the difference (if any) in BC of the overall New Zealand 

leopard seal population, as compared to leopard seals observed within their core home range 

(Antarctica) and north of the polar front as vagrant visitors to other regions.   

 

6.8 Management considerations 
Monitoring BC in New Zealand leopard seals is important not only to help to understand their presence 

in the region but for monitoring the health of the population as a gauge of overall ecosystem health. 

As a top marine predator, the health condition of this species is indicated by resource availability and 

thereby overall habitat quality (Krause et al., 2017). Equally as important, it is vital to monitor the 

health of leopard seals in a time when pagophilic species are particularly vulnerable to the effects of 

climate change. Leopard seal population estimates have produced extremely variable figures in the 

past and IUCN states an unknown population trend at present (Hückstädt 2015), thereby leopard seals 

may be susceptible to impacts of climate change. Studies such as this that provide baseline 

information on leopard seal BC within a particular region can therefore assist in conservation efforts 

of the species.  

 

In New Zealand the presence of leopard seals hauled-out at beaches and marinas can frequently draw 

in crowds (LeopardSeals.Org unpublished data). On occasions where these individuals are identified 

as being in Poor BC, it is particularly important that members of the public are made aware of this as 

disturbance to these individuals can have detrimental impacts. Leopard seals tend to spend much of 

their time at sea and only haul-out to rest and digest food (Gwynn 1953), therefore, they are forced 

to waste valuable energy when disturbed back into the water to locate a new haul-out site.  

 

Findings from this manuscript have identified that a large proportion of the sampled leopard seals in 

New Zealand waters were of good health, as the majority occupied either Good or Moderate BCGs. 

This indicates that the species can survive well within this region at the northern limits of their range. 

Data from this thesis should assist management protocols for New Zealand’s Department of 

Conservation for the protection of this species within the region.  

 

6.9 Concluding statement 
Prior to this study research investigating BC of leopard seals involved a multitude of methods often 

employing techniques that carry substantial risk to seals as well as researchers. As result there 

currently does not exist a standardised and non-invasive way to examine BC for leopard seals in the 
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literature. This manuscript presents the first non-invasive procedures that were able to distinguish 

between body shape of Good, Moderate and Poor BC leopard seals in New Zealand from sighting 

records obtained by citizen scientists and volunteer researchers, using photographic measurements 

of body width and pixel values from images of leopard seal silhouettes. Of all three methods explored, 

LDA produced the most accurate classification model, decided by the highest number of correct 

classification predictions and ability to generalise into all three BCGs. Although less accurate, ANNs 

were also identified as being suitable for New Zealand leopard seal data, due to their ability to utilise 

large, complex datasets and flexibility with lower quality images. To improve the ANN models for 

future use, implementing a k-fold cross validation method to a larger sample size of silhouette images, 

with smaller pixel dimensions could improve both accuracy and reliability of the ANN. Ideally, for both 

LDA and ANN methods more sighting records containing Moderate and Poor BC animals should be 

incorporated into the database to reduce bias thereby improving the ability of the model to generalise 

when presented with new images and produce outcomes that are generalisable to the New Zealand 

leopard seal population. Following this, machine learning models could then be used to predict BCG 

of leopard seals in lower quality images (i.e. images that are lower in resolution) where it is not 

possible to accurately allocate a BCG. Alternatively, the already instated BCSS could be continued since 

there is now evidence that these categories are validated by photographic measurements of body 

width. All procedures outlined within this manuscript can be applied to leopard seal populations in 

other locations of the southern hemisphere, which would enable longitudinal comparisons of BC 

across regions.  
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Appendix I: Details on how to plot a data observation onto a biplot using linear discriminant 

scores. 
 

LDA models can be plotted using a scatterplot which visualises how the linear discriminants (LD1 and 

LD2) separate observations belonging to the classification groups. An example of such a plot can be 

seen in Figure 4.1, which visualises model LDA-4. The co-ordinates for the plot were determined by 

discriminant scores, i.e. the score for each sighting record for each linear discriminant using the linear 

regression equation: 

V1i = b0 + b1DV1i + b2DV2i 

 

Where V1i represents the linear discriminant (i.e. LD1 and LD2), and DV1i and DV2i represent the 

predictor variables (i.e. photographic measurements S2, S3 and S6 for LDA-4). The b-values within this 

equation give information about the contribution of each predictor variable to the linear discriminant 

known as coefficients for the linear discriminants, and b0 is the y-intercept. For LDA-4 the coefficients 

for LD1 and LD2 (b-values) can be seen in Table 4.4. 

 

Using the b-values, the equations for calculating discriminant scores for LD1 and LD2 were: 

LD1 = b0 + (-2.85 x S2i) + (3.96 x S3i) – (7.53 x S6i) 

LD2 = b0 + (-0.80 x S2i) + (7.82 x S3i) – (0.16 x S6i) 

 

To translate this into a point on the biplot, example sighting record HL008 was used whereby S2 = 

0.095, S3 = 0.138 and S6 = 0.110, therefore: 

LD1 = b0 + (-2.85 x 0.095) + (3.96 x 0.138) – (7.53 x 0.110) 

LD1 = -0.41 

 

LD2 = b0 + (-0.80 x 0.095) + (7.82 x 0.138) – (0.16 x 0.110) 

LD2 = 0.68 

 

Therefore, co-ordinates for leopard seal sighting record HL008 on the biplot were (-0.41, 0.68; Figure 

4.1). 
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Appendix II: R script for ANN-2. 
 

Install packages tensorflow and keras: 

install.packages("tensorflow") 
library(tensorflow) 
install_tensorflow() 
library(tensorflow) 
tf$constant("Hellow Tensorflow") 
install.packages("keras") 
library(keras) 

 

 

Read-in training and testing data and convert to matrix: 

testx <- read.csv("../input/ls-data/test.csv", row.names = 1) 
trainx <- read.csv("../input/ls-data/train.csv", row.names = 1) 
trainx <- as.matrix(trainx) 
testx <- as.matrix(testx) 
 

 

Add BCG labels (where Good=0, Moderate=1 and Poor=2): 

trainy <- c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,0,2,
0,0,1,0,0,1,0,1,0,0,0,0,0,2,1,2,2,2,0,0,1,0,0,0,2,0,2,0,0) 
testy <- c(0,2,0,1,0,0,0,0,0,0,0,0,0,0,1,0) 

trainLabels <- to_categorical(trainy) 
testLabels <- to_categorical(testy) 

 

 
Design and fit model: 

model2 <- keras_model_sequential() 
model2 %>%  
         layer_dense(units = 256, activation = 'relu', input_shape = c(160000)
) %>%  
         layer_dense(units = 128, activation = 'relu') %>%  
         layer_dense(units = 3, activation = 'softmax') 
summary(model2) 
 
model2 %>%  
         compile(loss = 'categorical_crossentropy', 
                 optimizer = optimizer_rmsprop(), 
                 metrics = 'accuracy') 
 
history2 <- model2 %>%  
         fit(trainx, 
             trainLabels, 
             epochs = 100, 
             validation_split = 0.2, 
             class_weight = list("0" = 1, "1" = 3.8, "2" = 7.125)) 
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Plotting optimisation (for loss values) and performance (for accuracy values) learning curves for 

ANN-2 (history2): 

plot(history2) 

 

 

Predict BCGs (classes) for training data using ANN-2 which produces a confusion matrix: 

pred2 <- model2 %>% predict_classes(trainx) 
table(Predicted = pred2, Actual = trainy) 

 

 

Generate a list of BCG predictions for training data against actual BCGs using ANN-2: 

prob2 <- model2 %>% predict_proba(trainx) 
cbind(prob2, Prected = pred, Actual= trainy) 
 

 

Evaluate loss and accuracy for training data: 

model2 %>% evaluate(trainx, trainLabels) 
  

 

Predict BCGs (classes) for testing data using ANN-2 which produces a confusion matrix: 

pred <- model2 %>% predict_classes(testx) 
table(Predicted = pred, Actual = testy) 
  

 

Generate a list of BCG predictions for testing data using ANN-2: 

prob <- model2 %>% predict_proba(testx) 
cbind(prob, Prected = pred, Actual= testy) 
 

 

Evaluate loss and accuracy for training data: 

model2 %>% evaluate(testx, testLabels) 

 

 

Input Added-Data: 

addeddata <- read.csv("../input/added-data/added-data.csv") 

addeddata <- as.matrix(newdata) 
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Predict BCG of Added-Data using ANN-2: 

pred3 <- model2 %>% predict_classes(addeddata) 

 

 

Compare predictions of Added-Data with actual BCG estimates (where Good=0, Moderate=1 and 

Poor=2) using a confusion matrix: 

addeddata.actual <- c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,1,
0,1,0,1,0,2,2,2,0,0,1,0,0,2,1,0,2,1,0,0) 
table(Predicted = pred3, Actual = addeddata.actual) 
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