
Algebraic Verification of Hybrid Systems
in Isabelle/HOL

University of She�eld

Jonathan Julian Huerta y Munive

Supervisor: Dr. Georg Struth

This dissertation is submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy (PhD) in

Advanced Computer Science

She�eld, UK. October, 2020

i

Signed Declaration

All sentences or passages quoted in this report from other people’s work have been specifically
acknowledged by clear cross-referencing to author, work and page(s). Any illustrations which
are not the work of the author of this report have been used with the explicit permission
of the originator and are specifically acknowledged. I understand that failure to do this
amounts to plagiarism and will be considered grounds for failure in this project and the
degree examination as a whole.

Name: Jonathan Julián Huerta y Munive

Signature:

Date: 30 October 2020

ii

Abstract

The thesis describes an open modular semantic framework for the
verification of hybrid systems in a general-purpose proof assistant. We
follow this approach to create the first algebraic based verification
components for hybrid systems in Isabelle/HOL.
The framework benefits from various design choices. Firstly, an algebra
for programs such as Kleene algebras with tests or modal Kleene
algebras captures the verification condition generation by providing
rules for each programming construct. Intermediate relational or state
transformer semantics instantiated to a concrete model of the program
store allow the framework to handle assignments and ordinary di↵erential
equations (ODEs). The verification rules for ODEs require user-
provided solutions, di↵erential invariants or analytical descriptions of
the continuous dynamics of the system.
The construction is a shallow embedding which makes the approach
quickly extensible and modular. Taking advantage of these features,
we derive di↵erential Hoare logic (dH), a minimalistic logic for the
verification of hybrid systems, and the di↵erential refinement calculus
(dR) for their stepwise construction. Yet the approach is not limited to
these formalisms. We also present a hybrid weakest liberal precondition
calculus based on predicate transformers which subsumes powerful
deductive verification approaches like di↵erential dynamic logic.
The framework is also compositional: we combine it with lenses to vary
the model of the program store. We also support it with a formalisation
of a�ne and linear systems of ordinary di↵erential equations in
Isabelle/HOL. This integration simplifies various certifications that the
proof assistant requires such as guarantees of existence and uniqueness
of the corresponding solutions.
Verification examples illustrate the approach at work. Formalisations
of our solutions to problems of the international friendly competition
ARCH2020, where our components participated, further evidence their
e↵ectiveness. Finally, a larger case study certifying an invariant for a
PID controller of the roll angle in a quadcopter’s flight complements
these verifications.

iii

Acknowledgements

Firstly, I wish to show gratitude to Georg Struth for his above and
beyond support and guidance. I know I am a far better academic than I
would have been if anyone else were my supervisor. From the beginning,
he has been a role model for me due to his ethical integrity and high
standards. He is a very comprehensive person who has patiently shared
with me his knowledge, expertise and enthusiasm. For this and many
more experiences, thank you.
Next, I want to thank my examiners Ana Cavalcanti and Andrei Popescu
for their comments on this thesis. I also appreciate the interesting
discussion we had during my examination and their enthusiasm with
the contributions of my work. Your expert observations have helped me
make this project more robust.
I also would like to o↵er my sincere thanks to various researchers whom I
have had interesting discussions during my time as a PhD student. Great
individuals like Uli Fahrenberg, Simon Foster, Walter Guttmann, Peter
Höfner, Christian Johansen, Achim Jung, Iván Mart́ınez Ruiz, Stefan
Mitsch, Olaf Owe, Lawrence Paulson, and André Platzer have influenced
my way of thinking with their insightful observations and points of view.
Honourable appreciation goes to Achim D. Brucker, Neil Walkinshaw
and Joab Winkler for being an excellent PhD panel that not only guided
me but also demanded the best of me.
Special thanks also go to the members of the verification reading group
in She�eld. I appreciate a lot the huge e↵orts that Harsh Beohar, Kirill
Bogdanov, Rayna Dimitrova, Michael Foster, Michael Herzberg, Rob
Hierons, Raluca-Elena Lefticaru, George O’Brien, and Mike Stannett
have taken for us to better understand a small part of the human
knowledge. It has been a pleasure to study them together.
I am also grateful to my friends and colleagues in She�eld. The people
from the verification and testing lab provided entertaining conversations
every day at lunchtime; the Mexicans added spiciness to the bland
weather of the city, and the Taoists supplied long hours of fun pain
by asking me to stay still.
I thank my friends and family in Mexico for finding time to nurture our
friendship with online video calls and for their unconditional support.
Gracias Bren, Davids, Dulce, Esaú, Fer, Gus, Hecsari, Hector, Hugo,
Karen, Liz, Omar, Roque y Yasmin. Gracias mamá, gracias papá y
gracias hermanos.
Finally, I wish to thank my beautiful wife for growing up with me another
three years.

iv

Contents

Signed Declaration i

Abstract ii

Acknowledgements iii

1 Introduction 3

1.1 Contributions . 5
1.2 Outline . 7

1.3 Publications . 9

2 Related Work 11

2.1 Hybrid Systems Verification . 11
2.2 Model Checking . 13

2.3 Deductive Verification of Software . 14

2.4 Hybrid Automata and Reachability Analysis 15

2.5 Hybrid Programs and Deductive Verification 17

2.6 Verification with General-purpose Proof Assistants 20
2.7 Introduction to Isabelle/HOL’s Notation . 22

3 Kleene Algebras 25

3.1 Kleene Algebra . 25

3.2 Kleene Algebra with Tests . 28

3.3 Modal Kleene Algebra . 31

3.4 Algebraic Structures in Isabelle/HOL . 35

3.5 Kleene Algebras in Isabelle/HOL . 37

4 Hybrid Store Semantics 43

4.1 Ordinary Di↵erential Equations . 43

4.2 ODEs in Isabelle/HOL . 48
4.3 Semantics for Assignments . 51

4.4 Semantics for Evolution Commands . 54

4.5 Hybrid Stores in Isabelle/HOL . 58

v

vi CONTENTS

5 Verification Components 61
5.1 Generalised Semantics for Evolution Commands 61
5.2 Invariants for Evolution Commands . 63
5.3 Components Based on Dynamical Systems 67
5.4 Evolution Commands in Isabelle/HOL . 68
5.5 Di↵erential Invariants in Isabelle/HOL . 72
5.6 Derivation of the Axioms of dL . 74

6 Extensions 79
6.1 Di↵erential Refinement Calculi . 79
6.2 Predicate Transformers à la Back and von Wright 84
6.3 Predicate Transformers from the Powerset Monad 86
6.4 Lenses . 88
6.5 A�ne Systems of ODEs . 90
6.6 Summary of the Verification Components . 95

7 Formal Verifications 99
7.1 Circular Motion . 100
7.2 Docking Station . 103
7.3 Overdamped Door . 106
7.4 Bouncing Ball . 108
7.5 Water Tank . 111
7.6 Select ARCH2020 benchmarks . 114
7.7 Case Study: PID Control . 124
7.8 Evaluation of the verification components . 128

8 Conclusions 133
8.1 Summary . 133
8.2 Future work . 134

References 137

Appendices 147

A ARCH2020 Problems 149

List of Figures

1.1 Development of the verification framework in a general purpose proof-assistant 6

2.1 Schematic representation of the behaviour of a thermostat 12
2.2 A system represented with a finite set of states S and a relation R 13
2.3 Hybrid automaton for a (simplified) thermostat 16
2.4 Assignments change the hybrid system’s state instantaneously. Evolution

commands change it continuously. The dotted lines represent parts of the
solution to the di↵erential equation where evolution commands cannot execute
because they are outside of the boundary condition G. 18

2.5 Hybrid program for a (simplified) thermostat 18
2.6 Depiction of a possible evolution in time of the thermostat hybrid system . . 19
2.7 Isabelle/HOL code for the thermostat hybrid program 24

4.1 Vector field modeling the motion of particles in a fluid 45
4.2 A discrete (left) and a continuous (right) guarded orbit 55
4.3 The continuous line illustrates where the formula |(x0 = f &G)U]Q holds. . . 56

5.1 Invariants for ODEs contain every orbit that starts inside them 63

6.1 Alternatives in the construction of verification components in Isabelle/HOL . 80

7.1 Circular motion vector field . 100
7.2 A spaceship aligned with its station about to start its docking process. . . . 104
7.3 A controller for a water tank that should not be emptied nor spilled out . . . 112
7.4 Various PID simulations . 127

2 LIST OF FIGURES

Chapter 1

Introduction

At least since the First Industrial Revolution, there has been interest in mathematically
modelling the interactions of machines with physical phenomena [15, 94]. On one hand,
di↵erential equations are the standard representation for the continuous dynamics in nature.
On the other, with the advent of computers, our abstractions for digital systems have focused
more on discrete transitions and state updates. Hybrid systems combine both types of models
to describe the evolution in time of physical events controlled via computers. Nowadays, many
forms of hybrid systems abound in the scientific literature [5,39–41,51,61,66,72,86,108]. In
particular, researchers use them to verify the correct behaviour of the systems they intend
to represent [3, 24, 27,48,50, 77].

Among the many techniques for the verification of hybrid systems, deductive verification
stands out. In contrast with other methods [5, 39], the deductive approach usually tackles
complex and simple dynamics with the same techniques, making it generic. Another benefit
is that, in comparison, it adequately represents the compositional nature of engineered
systems [108]. Moreover, after a successful deductive verification, the result is a mathematical
proof of the correct behaviour of the hybrid system relative to a specification while other
methods focus on guaranteeing lack of failure [17, 108]. A prominent approach in this
line of research is di↵erential dynamic logic dL [108]. It extends traditional dynamic logic
based on regular programs and forward box and diamond operators [58], with di↵erential
equations of continuous dynamical systems. Its domain-specific proof assistant KeYmaera
X [50] implements it, and multiple case studies back the e↵ectiveness of its methods [50,
77, 81, 89, 96, 116]. Yet, for reasons of decidability, the approach still limits its language for
di↵erential equations and their solutions. This forces the logic to provide alternative proof
strategies to reason about ODEs [107,117].

On the other hand, many general-purpose proof assistants (or interactive theorem provers)
are at least as expressive as higher-order logic (HOL) [28, 101]. Loosely speaking, this
means that their users can formalise well-established mathematics as part of the prover’s
developments. Specifically, this also applies to embeddings of logics such as dL inside
them. Furthermore, two important features have improved general-purpose proof assistants
considerably [6,32,91,101,104,105]: their increased proof automation and the growth of their
libraries of formalised mathematics, specifically those for ordinary di↵erential equations. The
leading proof assistant with these characteristics is Isabelle/HOL [23,124], which provides its
Sledgehammer tool [95,106] that calls external automated theorem provers and SAT solvers

3

4 CHAPTER 1. INTRODUCTION

to suggest proofs to its users. Accordingly, this has allowed them to formalise various results,
many of which are available in Isabelle’s reviewed Archive of Formal Proofs (AFP). A fitting
example of this is Isabelle’s Analysis library [67]. It starts from topology and filters to
calculus, limits and derivatives, ending with an entry in the AFP for Ordinary Di↵erential
Equations (ODEs) [74, 75]. Thus, Isabelle/HOL can reason about a more general class of
ODEs than existing deductive methods for hybrid systems.

Another relevant formalisation in Isabelle/HOL is that of Kleene algebras [9,10], a model
for regular programs. Their extensions in the form of Kleene algebras with tests (KAT) [8]
and modal Kleene algebras (MKA) [54, 55] generalise typical deductive verification methods
like Hoare logic [65] and dynamic logic [56,58] respectively. Thus, the operations and rules of
inference of these logics can be shallowly embedded in the proof assistant with the algebraic
setting. Then, these rules can be instantiated to concrete models of the program store
and algebras such as relations or state transformers. The shallow embedding enables faster
developments of verification tools as it skips syntactic and proof-theoretic results by directly
encoding the semantics. The result of this process consists of verification components for
regular and while-programs in the proof assistant [55, 56]. As each step of the construction
occurs inside the interactive theorem prover, the implemented tool is correct by construction.
Ultimately, with the Isabelle/HOL libraries for KATs and MKAs, users can do software
verification.

As a consequence of these observations, we are at a point where integrating the Kleene
algebra verification components and the libraries of ODEs seems feasible. Such an integration
would allow us to do deductive verification of hybrid systems in a more expressive manner
than what current methods o↵er. In particular, the integration could be used to reason about
more general ODEs and their solutions than the state of the art in deductive verification. This
expressive potential is only limited by the underlying logic of the proof assistant. Moreover,
in contrast to existing tools, such a combination would become an open framework with a
potentially wider user-base. The combination of this added expressivity and the extended
user-base would make this approach more prone to be extended and include other forms
of dynamics not covered by the continuous ones, like stochastic or adversarial dynamics.
Furthermore, contributions to the interactive theorem prover, both in terms of improving
its automation and in terms of extending its libraries, would reverberate positively in the
integration. Both the expressiveness and the openness could lead to the development of more
general deductive verification techniques. In the end, the integration of these libraries could
be a crucial step in the dissemination of proof assistants in engineering applications. It could
open the possibility of integrating deductive verification with other common approaches like
model checking, simulation and testing.

Hence, this thesis describes a modular and open semantic framework for hybrid system
verification with a general-purpose interactive theorem prover. It details the algebraic
foundations, their integration with ODEs, and uses both of them to derive established
and innovative verification inference rules. The thesis also explores the modularity of the
framework by displaying the consequences of alternating the algebraic foundations, the
representation of the program store, and the model for the program algebras. It shows that
extending the framework not only benefits the end result but it also contributes to growing
the libraries of formalised mathematics. Finally, the thesis contains several verification
examples and case studies that exhibit the capabilities and limitations of the current state

1.1. CONTRIBUTIONS 5

of the framework.

1.1 Contributions

The main contribution of this work is twofold. On the one hand, we provide a detailed
description of a generic, modular and open platform for the verification of hybrid systems.
On the other hand, we give its full formalisation in the general-purpose proof assistant
Isabelle/HOL. Figure 1.1 depicts the steps needed in order to implement this verification
framework in an interactive theorem prover. Essentially, the formalisation of an algebra
of programs, like a Kleene algebra or an algebra of predicate transformers, provides the
structure to reason soundly about regular programs inside the proof assistant. For instance,
the program algebras used in this work already capture the rules for verification condition
generation of Hoare logic or the weakest liberal precondition calculus. The instantiation of
this algebra to an intermediate semantics that models programs, like binary relations, adds
expressivity to the framework and it allows us to encode other programming constructs such
as assignments. It is at this second stage of development, that we can also integrate the
ordinary di↵erential equations, provided that their formalisation is available in the theorem
prover. A final instantiation to a concrete program store model completes the development
as this enables us to access and update program states. Once this is in place, we can
use the proof assistant’s object logic to extend the proving capabilities of the framework.
We evidence how to do this in various ways. For instance, we provide specific rules for
verification condition generation for assignments and ODEs in both, Hoare-logic style or as
weakest liberal preconditions. We have also derived rules of dL and provided alternative
ways to verify safety properties about hybrid systems that were not available previously.
The application of all these verification rules through the proof assistant is what constitutes
our verification components.

To our knowledge, this is the first development of a shallow and semantic embedding
of algebraic based verification components for hybrid systems within a general-purpose
interactive theorem prover. Previous works are deep embeddings of concrete logics and
have been used to certify the result of external provers [22], or are limited to correctness
specifications in the form of Hoare triples [138]. In contrast, our components are open
and flexible because they do not adhere to a specific formal system. Potentially, any
other development for deductive verification of hybrid systems can be integrated into our
framework if it is expressible within the proof assistant’s object logic. In the case of our
implementation in Isabelle, this is restricted to higher order logic (HOL).

Moreover, as evidence for the relevance of our framework, we mention its use for
verification of an autonomous marine vehicle at the University of York [43]. The referred
publication discusses the integration of traditional control-development processes, like
simulation, with the deductive approach used in our framework. Because of their focus
on applications, their work extends a version of our framework with powerful automation
techniques for statements involving ODEs. This clearly shows that the platform presented
in this thesis is open, modular and extensible.

Below we provide a classification of our concrete technical contributions in four categories.

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Development of the verification framework in a general purpose proof-assistant

Formalisations. Writing libraries of mathematical theorems checked by machines is
relevant for the scientific community as it improves rigour, increases confidence in our
knowledge and, as this thesis exemplifies, opens a path to new ways of doing research. As
part of our work, we have formalised several mathematical results. The simplest of our
formalisations are mere instantiation proofs showing that state transformers form KATs and
MKAs. These results are available in Section 3.5. Our reformulations of Picard-Lindelöf’s
theorem using Isabelle’s locales from Section 4.2 form another contribution. One of these
reformulations includes and added parameter representing the flow of systems of ODEs.
It also includes the proof that these flows behave as monoid actions, a relevant result not
formalised explicitly before. In that very same section, we also provide a tactic for automatic
certifications of derivatives in Isabelle/HOL. Finally, our largest formalisation connects linear
algebra and ordinary di↵erential equations to obtain a�ne and linear systems of ODEs.
It includes generic results about existence and uniqueness of solutions for all a�ne/linear
systems, as well as the description of their general solution and methods for simplifying
it. Its description and use as a non-trivial extension for the verification components is in
Section 6.5.

Conceptual. Mathematically, three cacluli for the verification of hybrid systems emerged
from our work: di↵erential Hoare logic dH, the di↵erential refinement calculus dR, and
the hybrid weakest liberal precondition calculus. They became evident after changing the
framework’s underlying algebra of programs which exemplifies the value of the framework’s
modularity. Roughly speaking, these calculi correspond to Kleene algebras with tests,
refinement Kleene algebras with tests, and modal Kleene algebras respectively. In particular,
the author of this thesis proved the soundness of all inference rules of these calculi and
contributed to the derivation of the rules of dH and dR described in Sections 4.4 and 6.1.
He also generalised some mathematical concepts from the dynamical systems literature.

1.2. OUTLINE 7

Specifically, he came up with the generalisation of orbits and invariants available in
Sections 5.1 and 5.2. Nevertheless, their categorical characterisations and properties are due
to his coauthor in [72], Georg Struth. Finally, in Section 5.3, the alternative representation
of dynamical systems as a hybrid program using the solution to a system of ODEs instead
of the ODE itself is also a contribution from the author of the thesis.

Components. Due to our exploration of the modularity of the framework presented in this
thesis, we ended up with various versions of the verification components. Figure 6.1 depicts
the di↵erent levels of the framework where we can get a new version of the components. By
choosing KATs as our algebraic foundation, we obtain dH components. These intend to be
minimalistic as they provide the least amount of inference rules for verification of hybrid
systems. On the other hand, using MKAs or predicate transformers, we obtain a hybrid
weakest liberal precondition calculus as in Sections 3.3, 6.2, and 6.3. These verification
components provide equational reasoning not available in the dH components. We extend
KAT with a refinement operation in Section 6.1 and get dR, hence, a component for refining
hybrid programs. By using lenses, we can instantiate various program store models and
a new verification component for each of them. For this, see Section 6.4. Based on the
semantics of the algebra, we can use the relational or state transformer model to derive the
verification rules. Because of the simplicity with which we can alternate algebraic models,
each of our previously described components has also a relational and a state transformer
implementation. Finally, the most lightweight verification components skip the algebraic
semantics and use direct encodings of predicate transformers. These components are faster
to implement and easy to automate but they loose part of their formal rigour because of
their missing algebraic instantiation.

Verifications. All verifications in this thesis from Chapter 7 and the verification examples
in the rest of the thesis are contributions from our work.

1.2 Outline

Since this thesis describes a generic open platform for the development of verification
components for hybrid systems in a proof assistant, we support each mathematical description
with a corresponding formalisation. Thus, in each chapter we provide sections with Isabelle
code that implement the concepts discussed there. Similarly, we accompany the descriptions
of the technical concepts with examples. In particular, throughout the thesis we use a
running example of a thermostat that intends to keep the temperature of a room within a
comfortable range.

Due to the fact that we have formalised our results in an interactive theorem prover,
we omit most proofs in the thesis or present them in the corresponding formalisation
sections. Also, to match the presentation of Isabelle’s lemmas, we adopt its notation for
the presentation of mathematics. For instance, for function application we use juxtaposition
(with a space) f x instead of the conventional f(x) and we use indistinctly the words
“proposition”, “lemma” and “theorem” as synonym for “formalised result”. In our work,
the interaction of various areas of mathematics in the creation of the components forces us

8 CHAPTER 1. INTRODUCTION

to use diverse symbols, variables and terminology. For the most part, we remain consistent
with our use of them. Yet, at the end of the thesis, we provide a list of symbols and an index
for the interested reader.

Below we describe in more detail the contents of this written work:

In Chapter 2, we give a more refined explanation of the technical concepts discussed
in this introduction. We review basic terminology about hybrid systems and their
verification. We then discuss related work. In particular, we briefly explain the most
popular model for hybrid systems: hybrid automata. Then, we describe the alternative
representation of hybrid programs which is our method of choice in the deductive
approach for verification. We culminate by explaining the benefits of using a general-
purpose proof assistant like Isabelle/HOL and by giving a brief introduction to the
syntax of the prover.

Chapter 3 describes Kleene algebras and its variants for verification. We explain their
axioms and their interpretation as models for programs. In particular, we describe two
of their semantics: the canonical relational version and the state transformer semantics.
During this process, we take the opportunity to explain the isomorphism between both
of them that goes beyond mono-typed instances. We then extend Kleene algebras to
obtain KATs and MKAs and derive verification rules through each of them. We describe
the Hoare logic generated by KAT and the weakest liberal precondition calculus with
predicate transformers obtained with MKA. We end the section with an explanation
of a common approach to formalise algebraic structures in Isabelle/HOL. We use it
to describe the formalisation of Kleene algebras in the proof assistant as well as the
implementation of their semantics.

Chapter 4 connects the algebraic verification approach with the ordinary di↵erential
equations. For this, we take a quick detour at the beginning to recall basic notions
about ODEs including Picard-Lindelöf’s theorem that provides the conditions to
guarantee existence and uniqueness of solutions to ODEs. The specific details in
the formalisation of this crucial result have many consequences for the verification
components. Therefore, we describe its implementation in Isabelle/HOL. Then, we
describe the model for the program states and use this to add assignments and
di↵erential equations to the programming constructs obtained with Kleene algebras.
It serves us to derive verification rules for both constructs. We end the chapter by
detailing the corresponding formalisation of this integration.

Next, in Chapter 5, we focus on the verification procedures generated by our
construction of the components. For this, we generalise the semantics for ODEs
introduced in the previous chapter. We use our generalisations to describe alternative
deductive verification styles for ODEs with the same components. In particular, we
explain how to reason about invariants of systems of ODEs and how to skip certain
certifications that the proof assistant requires by providing in the specification the
analytic dynamics of the system. We end the chapter with the formalisation of both
approaches and the derivation of some rules of inference of dL with our components.
This allows them to also reason in the style of this logic.

1.3. PUBLICATIONS 9

Once the verification components are built, we discuss their modularity, flexibility and
extensibility in Chapter 6. Specifically, extending KATs with a refinement operation
gives us a di↵erential refinement calculus dR in the style of Moargan [99]. Also,
we consider how changing MKAs for predicate transformers, whether à la Back and
von Wright [12] via quantales or through the powerset monad [90], generates the
same weakest liberal precondition calculus. We further extend the modularity of the
components by replacing the program store model with lenses. Finally, we formalise
a�ne systems of ODEs in Isabelle/HOL to extend the capabilities of the components.
This allows them to use matrix representations of the systems of ODEs and it simplifies
some of the verification procedures discussed in the precedent chapters. We end with
a brief explanation of which version of the components to use for di↵erent purposes.

In Chapter 7, we provide various verification examples to illustrate the capabilities
and limitations of the components. The first verification is simple enough so that
we can tackle it using various procedures from previous chapters in full detail. The
second and third examples help us illustrate di↵erent ways to use our formalisation
of a�ne systems of ODEs with our verification components. The fourth verification
is a canonical example from the literature [4, 108] that tests the component’s ability
to tackle most programming constructs. We use our dR components with lenses to
refine the fifth example. Having exemplified in detail the verification approaches, we
then discuss some problems of a friendly competition for verification of hybrid systems
where we participated. They help us discuss the current limitations of our approach.
Finally, we provide an invariant for a hybrid system that models a larger case study: a
common controller to regulate the roll angle in a quadcopter’s flight.

We finish the thesis with the conclusions in Chapter 8.

1.3 Publications

The thesis summarises most of my work during three years of my PhD studies. Along that
process, my coathors and I have written and published various scientific papers. Given that
these publications have served as a guide for the structure and contents of the thesis, I provide
below a complete list of them with a discussion of their relation to this written work.

J. J. Huerta y Munive and G. Struth. Verifying hybrid systems with modal Kleene
algebra. In RAMiCS 2018, volume 11194 of LNCS, pages 225–243. Springer, 2018 [71].
This publication describes the first implementation of the verification components. It
contains a formalisation with a di↵erent model for the program store in terms of lists
that is not discussed in this thesis.

J. J. Huerta y Munive and G. Struth. Predicate transformer semantics for hybrid
systems: Verification components for Isabelle/HOL. arXiv:1909.05618 [cs.LO],
2019 [72]. We generalise most of the techniques of the first publication in [72] which
is under review. Therefore, we prefer the latter article for our explanations here.
Specifically, Chapters 3, 4, and Sections 6.2 and 6.3 of Chapter 6 describe in more

https://arxiv.org/abs/arXiv:1909.05618

10 CHAPTER 1. INTRODUCTION

detail the corresponding parts of [72]. Although Chapter 5 also shares content with [72],
it o↵ers a generalisation of the concepts discussed there. Similarly, Sections 7.1 and 7.4
extend the verification examples of [72] by providing alternative methods for proving
them.

J. J. Huerta y Munive. Verification components for hybrid systems. Archive of Formal
Proofs, 2019 [68]. Our formalisation of all the ideas in [71] and [72] is available in the
Archive of Formal Proofs in [68]. Parts of the formalisation of [68] are available and
explained throughout all chapters.

S. Foster, J. J. Huerta y Munive, and G. Struth. Di↵erential Hoare logics and
refinement calculi for hybrid systems with Isabelle/HOL. In RAMiCS 2020[postponed],
pages 169–186, 2020 [44]. Our work deriving di↵erential Hoare logic dH and the
di↵erential refinement calculus is published in [44]. Thus, it shares contents with our
Sections 3.2 and 6.1. The running example of the thermostat and the example of
Section 7.5 also appear in [44], although in this thesis we extend them.

J. J. Huerta y Munive. A�ne systems of ODEs in Isabelle/HOL for hybrid-program
verification. In SEFM 2020, volume 12310 of LNCS, pages 77–92. Springer, 2020 [69].
In this publication, we find the discussion of a�ne systems of ODEs in Isabelle/HOL.
This is the only publication from which paragraphs are taken verbatim for the thesis
as I am its sole author. The paragraphs are only used in Section 6.5. The examples of
Sections 7.2 and 7.3 are also from this publication although we expand our explanations
for them and do not copy their contents from [69]

J. J. Huerta y Munive. Matrices for ODEs. Archive of Formal Proofs, 2020 [70]. The
formalisation of a�ne systems of ODEs corresponding to [69] is available in [70], which
is also an entry to the AFP.

S. Mitsch, J. J. Huerta y Munive, X. Jin, B. Zhan, S. Wang, and N. Zhan. ARCH-
COMP20 category report: Hybrid systems theorem proving. In ARCH20., pages 141–
161, 2019 [97]. The examples of Section 7.6 are part of a collection of verification
benchmarks for the friendly competition of the 7th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH2020). We contributed to the
report [97] that explains the results of the competition in the Hybrid Systems Theorem
Proving category.

Readers can find all other formalisations discussed in this thesis that are not available
in [68] and [70] in the online repository https://github.com/yonoteam/CPSVerification.
Shortly, we intend to add the ARCH2020 competition examples and the case study for the
verification of the PID controller to the Archive of Formal Proofs.

https://github.com/yonoteam/CPSVerification

Chapter 2

Related Work

This chapter contextualises our work within the existing body of research on verification of
hybrid systems. For this reason, we start with a high-level definition of hybrid systems and
their safety verification problem in Section 2.1. Here we also describe our assumptions on a
running example in the thesis: a digital thermostat. After that, we discuss the techniques
used to tackle that problem starting with the methods employed for formal analysis of
software: model checking (Section 2.2) and deductive verification (Section 2.3). Later on,
we focus on hybrid systems, in particular we discuss reachability analysis through hybrid
automata in Section 2.4. We proceed to describe deductive verification and their model for
hybrid systems, hybrid programs, in Section 2.5. We also discuss related work in Section 2.6
on doing deductive verification and formalising di↵erential equations in interactive theorem
provers. Finally, in Section 2.7, we describe the basic syntax of Isabelle/HOL, our proof
assistant of choice to implement our verification framework.

2.1 Hybrid Systems Verification

Hybrid systems serve as mathematical representations for digital controllers interacting with
physical phenomena. For this reason, they need to combine standard models for discrete
behaviour (automata, n-ary relations, . . .) and continuous dynamics (di↵erential equations
and inequalities). Figure 2.1, for instance, provides a schematic of a thermostat interacting
with the temperature in a room. The discrete part corresponds to the program that the
thermostat uses in order to decide whether to turn the heater on or o↵. A di↵erential equation
provides the mathematical representation of the temperature’s continuous behaviour.

Example 2.1.1. Throughout the thesis up to Chapter 6, we use the thermostat as a running
example of a hybrid system that helps us illustrate the concepts presented in our work. This
is why we state our assumptions of the system here. Variable ✓ represents whether the heater
is turned on, ✓ = 1, or o↵ ✓ = 0. We use variable T to represent the room’s temperature.
The objective of the thermostat is to keep T within a comfortable region Tm T TM ,
where 0 Tm, TM TL and TL is the room’s temperature attained when the heater radiates
maximally. The di↵erential equation T 0 = �a · (T � T✓) models a simplified behaviour of
T . The constant a > 0 indicates how fast the temperature changes. If the heater is o↵,
T✓ = 0 and the temperature decreases. If it is on, it increases with T✓ = TL. For illustration

11

12 CHAPTER 2. RELATED WORK

Figure 2.1: Schematic representation of the behaviour of a thermostat

of the concepts presented in the thesis, we also assume that the thermostat is digital and it
includes a chronometer that helps it intervene at the “right moment”. Thus, we use variable t
to store elapsed time and model its passage with the di↵erential equation t0 = 1. We feel free
to overload t because the solution to this ODE with initial condition t 0 = 0 is the identity
function, that is, the value of the function t after ⌧ units of time is ⌧ . When the thermostat’s
discrete control intervenes, it resets the chronometer t := 0, “measures” the temperature
T0 := T , and decides whether to turn on or o↵ the heater. As its customary in the hybrid
systems literature, we assume that the control intervention is instantaneous. This is a safe
assumption if the duration of the control’s intervention is considerably faster than the unit
of time used to measure the length of the physical process it regulates.

The integration of continuous and discrete models into a single hybrid system allows
controller designers to do a thorough analysis through precise mathematical semantics.
Typically, the main body of the analysis consists of a collection of proofs showing that
the hybrid system X satisfies a given specification which itself is often stated as a safety
verification problem. Such a problem requires showing that every execution of X remains
safe. That is, a precondition P describes the set of initial states of the system and a
postcondition Q indicates the states where X would be safe. Formal analysts implement the
specifications through a formal system that extends a classical logic. They can carry out the
proofs at the level of the formal system’s proof calculus or with its semantics.

In the literature, two predominant kinds of hybrid systems are hybrid automata and
hybrid programs. They roughly correspond to two approaches for tackling the safety
verification problem: reachability analysis and deductive verification. These also are
related to other two methods for doing software verification: model checking and deductive

2.2. MODEL CHECKING 13

Figure 2.2: A system represented with a finite set of states S and a relation R

verification. In the following sections, we describe these terms in more detail and discuss
their respective merits.

2.2 Model Checking

A common mathematical representation of finite-state systems is via a relation R on a finite
set of states S. Graphically, we can depict such a pair as a collection of nodes connected by
edges (see Figure 2.2). The benefit of this representation is that computer scientists can write
algorithms that exhaust the state space by traversing all the possible paths that the system
may follow. This also helps to check if a postcondition is true at each state or in generating
a trace where it is not. Clarke and Emerson introduced the term model checker [29] for their
algorithm that decided the satisfiability of specifications via this process. Their work allowed
automated reasoning about temporal properties for finite-state systems [30].

In model checking, the most common underlying formalisms to encode specifications are
temporal logics [121] restricted to future operators. Linear temporal logic (LTL) [118] is a
frequent example, although for their first automated model checker, Clarke and Emerson used
computation tree logic (CTL) [30]. These logics extend classical logics by adding temporal
operators. For instance, the next operator P asserts that property P holds in the following
state, the always operator ⇤P states that P is true in all upcoming states, eventually ⌃P
indicates the existence of a future state where P holds, and the until operator P U Q says
that P will hold up to a point where Q becomes true. The finite state semantics helps in the
decidability of formulas involving these operators.

Improvements to model checking, like those done for symbolic [25] or bounded [17, 18]
model checkers, have made this technique capable of handling more complex systems over
time. By 2017, model-checking could compete with testing, a frequently used approach
in industry, to the point where model checkers could even find more software bugs than
testing tools [16]. Nevertheless, current model checking techniques are still better suited for
falsification rather than verification, that is, they are better at finding logical errors than
showing that they do not exist [17]. The reason for this is that, in many applications,
the state space is considerably larger than what current methods can handle. For this
reason, in the case of safety-critical systems like some hybrid systems or security protocols,

14 CHAPTER 2. RELATED WORK

model checking complements other more time-consuming but also more exhaustive methods
like deductive verification. In these approaches, mathematical ingenuity and expertise take
a more relevant role aside from computing power. In the upcoming section, we explain
the techniques employed in deductive verification as this is the style that our verification
components implement.

2.3 Deductive Verification of Software

Another method for validating software is deductive verification. Through a formal language,
the hybrid system designer encodes safety verification problems as correctness assertions
to derive in a logical calculus. Proofs of these assertions represent proofs of correctness
of the system. Hoare logic was one of the pioneering and most influential works in this
area where the statements that need to be proved are Hoare triples {P}X {Q} [65]. These
are partial correctness specifications stating that if the system starts in a state satisfying
P , and if the execution of X terminates, then it does so in a state where Q holds. This
is in contrast with total correctness that requires proving termination of X instead of
assuming it. The particular case of digital controllers interacting with their physical
environment is not generally considered a process that terminates, thus, total correctness in
deductive verification of hybrid systems is often delegated as future work [103, 134] or not
mentioned [108]. Moreover, in some cases, convergence of time is an unsafe property [60,61].
For these reasons and to simplify our presentation, in this work we will focus only on partial
correctness assertions.

Theoretically, Hoare triples provide a general formalisation for modal reasoning about any
system X and any constrains P and Q on it. The obstacle then becomes finding a language
to model systems like X and (a possibly di↵erent language to model) assertions P,Q. In one
of its simplest conceptions for verification of programs [58, 65], the underlying language for
assertions is first order logic and that for programs consists of while-programs . The latter
are described with the grammar

X ::= x := e | X ;X | IF P THEN X ELSE X | WHILE P DO X,

where x is a variable, e is a term, and P is a formula. That is, the grammar builds programs
recursively well-known basic commands such as assignments (x := e), sequential compositions
(;), if-then-else branching statements and while-loops. Afterwards, Hoare logic requires the
presentation of rules of inference about Hoare triples for each programming construct (see
Section 3.2). The emerging proof-calculus allows us to obtain formal proofs about correctness
specifications involving this simple class of programs.

Another formalism for deductive software verification is dynamic logic [58]. It subsumes
Hoare logic by making more expressive its language for assertions and for programs. In the
case of programs, dynamic logic uses regular programs defined with the grammar

X ::= x := e |?P | X ;X | X +X | X⇤.

Regular programs include tests (?), (nondeterministic) choices (+), and finite iterations (⇤).
Intuitively, a test checks whether property P holds. If it does, it ends without changing

2.4. HYBRID AUTOMATA AND REACHABILITY ANALYSIS 15

the state, otherwise, it blocks the execution without terminating. Similarly, a choice X + Y
indicates the execution of program X or Y without us knowing which one. Finally, the finite
iteration of a program X⇤ expresses that X repeats an unknown amount of times. Regular
programs generalise while-programs by combining nondeterminism with tests, for example,
the if-then-else branching corresponds to IF P THEN X ELSE Y = (?P ;X) + (?(¬P) ; Y).

At the level of formulas, dynamic logic adds box |X]Q and diamond |XiQ modal
operators to first order logic. The box operator guarantees that Q holds after termination
of X while the diamond operator asserts the existence of a state where Q is true after
the execution of X. Thus, the diamond operation provides a di↵erent way to reason
about programs, namely, in terms of their possible outputs. Furthermore, for deterministic
programs like while-programs, it helps the logic to reason about total correctness. Meanwhile
the forward box allows us to encode the Hoare triple {P}X {Q} with the formula P ! |X]Q.
This is consistent with another formal language for reasoning about programs, namely
Dijkstra’s weakest liberal precondition calculus [36]. That is, |X]Q is a precondition
{|X]Q}X {Q}, and it is the weakest in the sense that every other precondition for X
and Q implies it. This feature allows us to reason in this logic equationally as opposed to
relationally with Hoare logic’s rules of inference. This is because most rules for weakest
liberal preconditions are equations.

As seen in this section, Hoare logic and related formalisms are a modular way to reason
about programs. In particular, the approach is general and may be adapted to include other
features or systems. For instance, we have just described the extension from while-programs
to regular programs but there is also separation logic that allows computer scientists to reason
about programs with shared mutable data structures [122]. In this work, we respect this
modularity and extensibility and apply it to our own development of deductive verification
components for hybrid programs. That is, we extend the language of regular programs and
add a command that represents di↵erential equations as pioneered in di↵erential dynamic
logic dL [108, 113]. Yet, our implementation is not restricted to dynamic logic but can
adapt and absorb other languages for specifications as exemplified in Sections 3.2, 3.3, 6.2
and 6.3. Before describing the integration of di↵erential equations into deductive verification,
we explain how this is done for finite state systems in the upcoming section.

2.4 Hybrid Automata and Reachability Analysis

Hybrid automata appeared in the literature in 1993 as a generalisation of timed automata [5].
They are finite labelled transition systems enriched with continuous dynamics ' at each
node. Additionally, for modelling boundary conditions, a predicate G restricts the domain of
evolution of the dynamics. Other predicates on nodes, P and Q, indicate the initial and final
conditions respectively. Finally, the edges of hybrid automata also contain jump conditions
that indicate variable updates and when edges can be traversed.

Figure 2.3 displays a hybrid automaton that models our simplified thermostat of
Example 2.1.1 that measures the temperature T in a room, and turns a heater on or
o↵ accordingly. In the ON node, we annotate the di↵erential equations modelling the
temperature when the heater is on and the corresponding restriction (predicate G) on
the domain of evolution. The OFF node does the same thing for when the heater is o↵.

16 CHAPTER 2. RELATED WORK

Figure 2.3: Hybrid automaton for a (simplified) thermostat

Traditional representations of the thermostat use temperature restrictions, T TM for ON
and Tm T for OFF, instead of time restrictions. We abandon this approach because it
trivialises the property we want to prove, namely Tm T TM . With the time bounds
that we provide, at least we have to reason about the solution of the di↵erential equation
in order to see that that property holds. Thus, our time bounds guarantee that T remains
within the comfortable range Tm T TM (with 0 Tm and TM TL) which is also the
initial condition (P) as indicated by the outer arrows in Figure 2.3. The postcondition (Q)
is not explicit, but it coincides with this comfortable range. The thermostat cannot alter the
heater unless T is close to the boundary of the comfortable zone as per the jump conditions
T � TM � 1 and T Tm + 1. These also state that whenever the thermostat interferes, it
records the current temperature of the room (T0 := T) and resets t (t := 0). See Figure 2.6
and its accompanying paragraph in the following section for a graph describing a possible
evolution in time of this hybrid system.

With a hybrid automaton, the verification process iterates the transition relation of the
automaton to reach states where the safety specification is true. There are various approaches
to perform this procedure. One of them borrows ideas from bounded model checking. That
is, the procedure encodes the safety verification problem in a propositional formula that SAT
methods can tackle [17, 40, 51]. Yet, the preferred approach of many tools like BACH [24],
CORA [2], Flow* [27] and SpaceX [48] is a reachability analysis. A state is reachable if
there is a finite sequence of discrete and continuous transitions leading to it. Reachability
analysis thus approximates the set of all reachable states as the union of some state set
representations like boxes, polyhedra or ellipsoids [39]. That is, the procedure successively
iterates the transition relation of the automaton starting from an approximation of the set of
initial states. The process stops if this iteration reaches a fixed point or if it reaches a state
that violates the safety specification.

As one of the pioneering models for hybrid systems, hybrid automata are ubiquitous
in the literature. Choosing them for verification relies primarily on their potential for
automation. Many algorithms exist for solving somewhat complex verification problems
with them. However, as with model checking, these approaches are more suitable for finding
errors rather than proving that they do not exist [62, 108]. Moreover, verification problems
for hybrid automata are generally undecidable and their algorithms have to deal with

2.5. HYBRID PROGRAMS AND DEDUCTIVE VERIFICATION 17

computational infeasibility [39]. It is also di�cult to handle complex continuous dynamics
with these methods. Their algorithms are often restricted to simpler subclasses of automata,
either by the class of constraints or the class of di↵erential equations allowed in the nodes [39].
In general, vast parts of the research on this area focus on improving the approximations for
the reachable states for specific subclasses of automata. In contrast, in deductive verification
of hybrid systems, computer scientist can use well-known mathematical techniques for
manipulating di↵erential equations and use them to reason about more complex continuous
dynamics. The trade-o↵ is less automation and a more time-consuming process but this is
acceptable for highly safety-critical systems such as many of those modelled with hybrid
systems. In this work, we show that we can do deductive verification of hybrid systems in
the style of dL (Section 5.6) that uses hybrid programs. Given that there is an embedding
from hybrid automata into hybrid programs [108], our framework could also be extended to
provide tools for reasoning about hybrid automata.

2.5 Hybrid Programs and Deductive Verification

The appeal of using deductive verification for hybrid systems is that its techniques are
not constrained to finite-state systems or relatively easy continuous dynamics. Moreover,
these methods allow modular reasoning because of the compositional nature of their syntax
driven approach. In fact, this is one of the main arguments for the introduction of hybrid
programs [108] that extend regular programs with evolution commands (x0 = f &G). The
grammar

X ::= x := e | x0 = f &G |?P | X ;X | X +X | X⇤,

where G models boundary conditions like in hybrid automata, concisely describes the syntax
for hybrid programs. Intuitively, evolution commands depict the di↵erential equations that
model the continuous behaviour of a hybrid system while composition of the remaining
programming constructs model the discrete control. More specifically, while assignments and
tests represent an instantaneous change in the value of a hybrid system’s state, the evolution
command describes a continuous change guided by the solution to the di↵erential equation
it depicts (see Figure 2.4). Furthermore, evolution commands can only execute while they
satisfy the boundary condition G. This means two things: if we try to execute an evolution
command in a state outside of G, it has the same e↵ect as a failed test. Similarly, if we
execute an evolution command in a state satisfying G, it will end up in any of the states in
the trajectory of the solution to the ODE—as long as that solution remains within G.

Integrating hybrid programs into a proof calculus like Hoare logic allows the user to prove
correctness specifications. For instance, the Hoare triple of Figure 2.5 uses the hybrid program
thermostat = (ctrl ; dyn)⇤ to model a thermostat regulating the temperature of a room
through a heater like in Sections2.1 and 2.4. The variables a, t, ✓, T, T0, Tm, TM and TL denote
the same parameters as before. The hybrid program ctrl models the discrete intervention
of the thermostat, that is, it resets variables t and T0 and if T is close to an uncomfortable
region, it turns the heater on or o↵ accordingly. On the other hand, dyn describes the
continuous dynamics: if the heater is not radiating, then the room’s temperature decreases
and vice versa. Finally, thermostat is just a finite iteration of the control followed by the

18 CHAPTER 2. RELATED WORK

Figure 2.4: Assignments change the hybrid system’s state instantaneously. Evolution
commands change it continuously. The dotted lines represent parts of the solution to the
di↵erential equation where evolution commands cannot execute because they are outside of
the boundary condition G.

dynamics. There is a proof of the safety specification for thermostat using the rules of Hoare
logic and an extra rule for evolution commands [44].

To provide further intuition behind the abstraction of hybrid systems as hybrid programs,
we provide a non-rigorous depiction of the evolution of our thermostat in Figure 2.6. It starts
with the heater on, which explains the exponential increase in temperature. Then, after the
first intervention of the control (represented with a vertical dotted line) and due to the fact
that it is close to the upper bound of the comfortable region, it turns the heater o↵. The
second and third interventions of the control do nothing as indicated by the “else” branch
of the if-statement. Notice that control interventions need not be evenly spaced because
the duration of the evolution command is nondeterministic. The control intervenes at the
right moment on the first, fourth and fifth dotted lines because the boundary conditions of

ctrl = (t := 0) ; (T0 := T);
IF (✓ = 0 ^ T0 Tm + 1) THEN (✓ := 1) ELSE
IF (✓ = 1 ^ T0 � TM � 1) THEN (✓ := 0) ELSE skip

dyn = IF ✓ = 0 THEN

T 0 = �a · T, t0 = 1 & t � 1
a ln

⇣
Tm
T0

⌘

ELSE
T 0 = �a · (T � TL), t0 = 1 & t � 1

a ln
⇣

TL�TM
TL�T0

⌘

{Tm T TM} (ctrl ; dyn)⇤ {Tm T TM}

Figure 2.5: Hybrid program for a (simplified) thermostat

2.5. HYBRID PROGRAMS AND DEDUCTIVE VERIFICATION 19

Figure 2.6: Depiction of a possible evolution in time of the thermostat hybrid system

the evolution command prohibit the solution to the di↵erential equation to go beyond the
comfortable region. Thus, as soon as it gets close to them, the thermostat turns the heater
on or o↵ accordingly. In contrast with the continuous evolution of the temperature, the
derivative of the temperature discretely jumps from positive to negative and vice versa after
the heater changes its state.

Deductive verification of hybrid programs has been successfully applied in many
case studies [77, 81, 116]. Logical calculi and their corresponding tools designed for this
approach include the hybrid communicating sequential processes (HCSP) [86] with the HHL
prover [135], and di↵erential dynamic logic (dL) and its various extensions [108, 113] with
its flagship proof assistant KeYmaera X [50]. The logic dL is a prominent approach because
of its pioneering work introducing hybrid programs and a proof calculus to reason about
invariants of di↵erential equations [107] (see Section 5.2 for definitions of these invariants).
For decidability concerns, it uses expressions of real arithmetic as terms and first order
logic formulas for e�cient quantifier elimination [108]. The restriction on its term-language
further allows dL to guarantee that all di↵erential equations expressible in the logic have
unique solutions (see Section 4.1 for requirements on existence and uniqueness of solutions
to ODEs). These are domain-specific tools and formalisms with a relatively small user-base
and focused research groups behind them that constantly maintain and improve the tools.
Moreover, their underlying logics restrict the expressivity of the continuous dynamics and
mathematical expressions available to the user. From an extremely distrustful point of
view, their tools still require uncertified external input for solving di↵erential equations and
generating invariants. In contrast, throughout this work we discuss an alternative, open,
modular and extensible approach to deductive verification of hybrid programs with wide
adoption potential.

20 CHAPTER 2. RELATED WORK

2.6 Verification with General-purpose Proof Assistants

Instead of depending on domain-specific tools, we can apply a technique from deductive
verification of software: embed the programs and the verification process in the logic of a
general-purpose proof assistant [9, 100, 125]. An advantage of this is that the most widely
used general purpose interactive provers have larger user-bases than specialised provers and
the scientific community actively develops them. Moreover, many proof assistants have been
available since the late 1980s [59] and each year, their libraries of formalised mathematics and
their user base grow. This means that embedded verification components benefit in two ways.
Firstly, they can exploit improvements in proof automation for the interactive theorem prover,
and secondly, users of the proof assistant can quickly adopt them and enhance them. Another
advantage is that the base logic of general-purpose proof assistants is usually more expressive
than first-order logic. Therefore, the verification components can also be more expressive
than current domain-specific tools. Finally, embedding a verification tool makes it correct
by construction relative to the trust on the interactive theorem prover. Yet, trust on the
components themselves can be made equal to that of domain-specific proof assistants. That
is, by connecting the general-purpose proof assistant to external software, the verification
process can either certify or trust the information provided by external tools and use it.

For deductive verification of hybrid systems, the choice of a proof assistant is di�cult
as many of them share similar developements. In terms of automation, at the start of our
project, Isabelle/HOL was leading in proof-automation thanks to its Sledgehammer tool that
connects it to automated theorem provers like Z3 [33], SPASS [137] or CVC4 [13]. In contrast,
we had no knowledge of similar tools [6] for the Coq proof assistant and development of a
“hammer” for Coq is still in progress [19, 32] as it is for HOL-ligtht [80]. Moreover, in
terms of formalised libraries, Isabelle/HOL provides a huge library of Analysis included in
its distribution. It starts with topological spaces and filters which helps it define in a general
way limits and derivatives [67]. The crucial formalisation of Picard-Lindelöf’s theorem that
guarantees existence and uniqueness of solutions is available online in en entry about ordinary
di↵erential equations [74] in Isabelle’s Archive of Formal Proofs (AFP). The AFP is a refereed
collection of proof libraries mechanically checked by Isabelle and organised as a scientific
journal. In contrast, Coq provides various developments of real numbers and ways to do
analysis. For instance, the Coquelicot library [23] is inspired on Isabelle’s HOL-Analysis
library and similarly develops filters to formalise convergence. It has been successfully used
for the formalisation of the control function of an inverted pendulum [124]. However, the
formalisation of Picard-Lindelöf’s theorem is only available in a separate library, CoRN, of
constructive real numbers [31, 91]. In the end, we choose Isabelle/HOL because it is a proof
assistant that combines a high level of automation with a unique big and coherent library of
theorems about di↵erential equations. However, if this coherence is attained in other proof
assistants, we foresee no obstacle for them to include a version of our framework described
in Section 1.1.

Roughly speaking, there are two ways of embedding a verification component inside a
proof assistant. The first consists in doing a deep embedding, that is, using the proof
assistant’s logic to define the syntax and semantics of the components. Afterwards, by
formalising the soundness of the inference rules, one can use these results to reason about the
entity to be verified. An example of a deep embedding of a Hoare-style logic in Isabelle/HOL

2.6. VERIFICATION WITH GENERAL-PURPOSE PROOF ASSISTANTS 21

is in [125]. The alternative to this approach is a shallow embedding . As opposed to their deep
counterparts, shallow embeddings implement the tool’s terms and syntax as direct functions
on the semantics within the host language. Examples of these embeddings are [9] and [100]
in Isabelle/HOL and Coq respectively. More specifically, the di↵erence relies on the fact
that deep embeddings force the traversal of an abstract syntax tree for evaluation of the
terms while deep embeddings bypass this intermediate traversal and directly operate on the
semantics. As a consequence, shallow embeddings make development of new terms easier [52]
because they are just direct function definitions whereas new terms in deep embeddings
involve creating new branches in the syntax tree and assigning them a semantic meaning.
However, a downside of shallow embeddings is that they do not adapt quickly if the semantics
change because the type of the functions may need to change too. In contrast, in deep
embeddings, one may just instantiate the semantics to the already existing syntax and hide
the underlying changes to the user. The AFP already contains a shallow embedding for
deductive verification of while-programs [9,56] through an intermediate semantics of Kleene
algebras. Extending those verification components to reason about hybrid programs benefits
us because the program algebras remove the downsides of using a shallow embedding. As
we show in sections 3.2, 3.3 and 3.5, changing the semantics is easy because a modular
instantiation of the Kleene algebras to any new semantics is possible through Isabelle’s type
polymorphism. Moreover, the Kleene algebras provide variants of the laws of propositional
dynamic logic on which dL is based. Therefore, in order to have verification components for
hybrid programs in Isabelle/HOL, one only needs to instantiate the Kleene algebras to the
semantics of dL and define the missing terms like the evolution commands in this semantics.
In this thesis, we explore this framework for verification of hybrid systems inside a general-
purpose proof assistant, its extensibility, modularity and limitations.

Apart from the work on deductive verification of software and development of libraries
for ODEs mentioned in previous paragraphs, hybrid systems verfication in general-purpose
proof assistants is an active field of research. In PVS [102], there is work based on the
semantics of hybrid automata for invariant reasoning about hybrid systems [1] and some
first steps in doing verification in the style of dL by formalising semi-algebraic sets and real
analytic functions [126]. In Coq, the ROSCoq framework (short for robot operating system)
is also a shallow embedding for reasoning about hybrid systems, but instead of using hybrid
programs and intermediate algebraic semantics it is based on a Logic of Events (LoE) and
models time with Coq’s CoRN library of constructive real numbers. However, its automation
for handling derivatives is limited. Therefore, users need to supply various manual proofs for
their formalisations. Alternatively, the VeriDrone project [123] uses the Coquelicot library
and it is based on a variant of the temporal logic of actions (TLA) [85]. However, to reason
about ODEs they only use dL’s rule for invariants. In contrast, and as stated before, our
framework is not restricted to a particular formal system and can potentially absorb both
styles of reasoning. In Isabelle/HOL there are other relevant projects. The HHL prover has
had two main versions, first as a deep embedding and then as a shallow embedding [135].
However, the terms of its underlying logic, the calculus of hybrid communicating sequential
processes (HCSP) [86], are still deeply embedded. The logic itself implements a hybrid
Hoare logic to reason about HCSP processes. It also benefits from the LZZ method [87] for
finding semi-algebraic invariants for polynomial dynamical systems that we still need to add
to our verification components. Two dL-related Isabelle/HOL formalisations consist of a

22 CHAPTER 2. RELATED WORK

term-checker for dL’s domain-specific proof assistant, KeYmaera X [22], and a formalisation
of di↵erential game logic (dGL) [114], an extension of dL to also reason about adversarial
dynamics. Both of them are deep embeddings and while the proof-checker provides some
simple examples, the entry on dGL does not. Our framework still lacks the inclusion of
adversarial dynamics, but theoretically, if they are available in the dGL’s deeply embedding,
they can be shallowly embedded in our framework. A di↵erent hybrid systems verification
framework is based on Hoare and He’s unifying theories of programming (UTP) [45,46]. Its
abstraction of the state space allows it to divide program variables in discrete and continuous.
We have recently combined our e↵orts in [44] and are now working towards an improved
verification tool combining the best of both approaches.

2.7 Introduction to Isabelle/HOL’s Notation

Due to the fact that existing Isabelle libraries guide our developments and because we
frequently present the formalisation of each new mathematical concept, in this section we
provide a short introduction to Isabelle’s notation and terminology. As a consensus, we think
of Isabelle as a generic theorem prover. This means that it is a logical framework capable of
supporting various object logics with Isabelle’s logic as their meta-theory [105]. Naming of
the object logics requires adding to the word “Isabelle” a slash “/” and the abbreviation for
the logic, for example Isabelle/FOL, Isabelle/ZF or Isabelle/HOL. The last of these is the
most popular and most developed of all the object logics.

Isabelle’s meta-logic is a type theory with base type prop and three functions on it:
implication (P =) Q), universal quantification (

V
x . P x), and equality (P ⌘ Q). Theorems

of Isabelle/HOL are then terms of type prop.
In the object logic, base types of interest to us are the boolean constants True :: bool

and False :: bool ; natural numbers, 0, 1, 2 . . . :: nat ; integers int, and real numbers real.
Furthermore, Isabelle/HOL also provides type variables 0a, 0b, . . . (read alpha, beta, . . .)
and type constructors to form new types. Below we provide a brief description for the main
type constructions.

Function type The constructor for this type is 0a) 0b and represents all functions from
0a to 0b. Function application for function f :: 0a) 0b and term t :: 0a is by juxtaposition
f t :: 0b as in functional programming languages. Similarly, we can introduce functions in
Isabelle as lambda-abstractions �x . f x :: 0a) 0b which input x :: 0a and output f x :: 0b.
The identity function constant id :: 0a) 0a is available for every type 0a. Finally, important
operations involving this type include function composition (f � g) t = f (g t) and function
updates f (a := b) that map a to b and every other t to f t.

Product type As many other typed systems, Isabelle has a product of types 0a and 0b
whose intended terms are ordered pairs (x , y) :: 0a ⇥ 0b. Thus, it includes projection functions
fst (x , y) = x and snd (x , y) = y as well as the constructor Pair x y = (x , y).

Sum type Opposingly, the type 0a + 0b is the sum of 0a and 0b. It represents a disjoint
union of terms of 0a and 0b. As such, it provides a left inclusion Inl :: 0a) 0a + 0b and a right

2.7. INTRODUCTION TO ISABELLE/HOL’S NOTATION 23

inclusion Inr :: 0b) 0a + 0b, as well as their converse left projl and right projr projections.

Type of sets A frequently used type in our formalisations is the type of sets 0a set for a
given type 0a. If we interpret 0a as a set, 0a set corresponds to its powerset. Some important
terms of this type are the universal set of a type UNIV :: 0a set, containing all elements
of type 0a, and the empty set {} :: 0a set with no elements. We also have traditional set
constructors like set comprehension {x 2 A. P x}, for the subset of A whose elements satisfy
the predicate P :: 0a) bool, and a version of set replacement {f x | x. P k} for all terms of
shape f x that make P k true. In turn, union A[B, intersection A\B and complementation
A�B for sets use well-known notations. The same applies for the elementhood relationship
x 2 A and the subset relation A ✓ B.

Type of lists Isabelle provides a list data type 0a list. An inductive definition via the
empty list [] or Nil, and the constructor cons with infix notation # creates the terms of this
type. The expressions x 1 # x 2 # x 3 # [] and [x 1, x 2, x 3] denote the same list of type 0a list.
Among other functions, it includes the append operation l@x for the list l :: 0a list and term
x :: 0a, and l !n for the retrieval of the nth element in l.

Moreover, in our formalisations along the thesis, we use some syntactic abbreviations for
specific types. For instance we heavily use 0a rel to denote the type of relations over 0a, but
in reality it corresponds to the type (0a ⇥ 0a) set. Important constants for this type include
the identity relation Id :: 0a rel and relational composition R1 ;R2 between relations R1 and
R2. Similarly, we provide an abbreviation 0a pred for the type of predicates 0a) bool.

To add new theorems to Isabelle/HOL, we use the command lemma together with a
term of type prop. Alternative commands are theorem, proposition, and corollary, yet
operationally they perform the same action. To add new constants c :: 0a to the logic,
we must use the command definition. The latter receives a defining equality c = f x,
where the codomain of f is 0a, and adds it as a theorem. When users wish to provide
representations of specific objects without adding theorems about them, they can use the
command abbreviation instead. This has the same structure as a definition, except that
the defining equality c ⌘ f x is at the meta-level. We use these commands in Figure 2.7 that
depicts the formalisation of the correctness specification for the hybrid program of Section 2.5,
that is, it has a proof of the Hoare triple {I Tm TM} therm Tm TM a TL t {I Tm TM}.

Each time that users employ the command lemma, they have to provide a proof of
the theorem. The statement accompanying lemma then becomes the proof obligation.
Users can modify proof-obligations and eventually discharge them with the apply command
and a tactic. The first line in the proof of Figure 2.7 uses this command with our tactic
hyb-hoare to turn the proof-obligation into various proofs about the semantics of the hybrid
program. Isabelle also o↵ers the scripting language Isar that uses keywords to make proofs
resemble mathematical practice. These keywords are available in the declaration of lemmas
too. Figure 2.7, for instance, uses the keywords assumes, and, and shows.

An Isabelle file containing lemmas, definitions, theorems and abbreviations is a theory , as
in collection of lemmas, hence their file-extensions (.thy). Theories can import other theories
to extend their developments. We refer to a collection of theories imported by a working
theory as its theory stack .

24 CHAPTER 2. RELATED WORK

abbreviation I Tm TM ⌘ U(Tm T ^ T TM ^ (# = 0 _ # = 1))

abbreviation ctrl Tm TM ⌘

(t ::= 0); (T0 ::= T);
(IF (# = 0 ^ T0 Tm + 1) THEN (# ::= 1) ELSE
IF (# = 1 ^ T0 � TM � 1) THEN (# ::= 0) ELSE skip)

abbreviation dyn Tm TM a TL t ⌘
IF (# = 0) THEN x´= f a 0 & (G Tm TM a 0) on {0 ..t} UNIV @ 0
ELSE x´= f a TL & (G Tm TM a TL) on {0 ..t} UNIV @ 0

abbreviation therm Tm TM a TL t ⌘
LOOP (ctrl Tm TM ; dyn Tm TM a TL t) INV (I Tl Th)

lemma thermostat-flow :
assumes 0 < a and 0 t and 0 < Tm and TM < TL

shows {I Tm TM} therm Tm TM a TL t {I Tm TM}
apply(hyb-hoare U(I Tm TM ^ t=0 ^ T 0 = T))
prefer 4 prefer 8 using local-flow-therm assms apply force+
using assms therm-dyn-up therm-dyn-down by rel-auto 0

Figure 2.7: Isabelle/HOL code for the thermostat hybrid program

A guiding policy for Isabelle developments is that the logical core remains small while
each new theorem or model has to be correct relative to it and the correctness of the theory
stack. A consequence of this is that any external input needs to be certified within the
proof assistant. For instance, when proving a theorem, Isabelle/HOL users may employ the
Sledgehammer tool that calls external SMT solvers and automated theorem provers. If any of
them returns a proof of the theorem, Sledgehammer reconstructs it in Isabelle’s syntax which
then the user can paste to let the proof assistant certify it. The same correctness criteria
apply to our formalisations in the remaining chapters: each Isabelle lemma in this thesis has
been certified with Isabelle/HOL. Thus, they may be regarded as true mathematical results
relative to Isabelle’s small logical core and their theory stack.

Chapter 3

Kleene Algebras

In this chapter, we present variants of Kleene algebras to serve as the algebraic foundations
for deductive verification of hybrid systems. Originally, they were algebras for regular
expressions [82], although our interest in them is as models to reason about regular programs.
This is why in Section 3.1, we formally define Kleeene algebras and explore this interpretation
together with some of their semantics. Then, in Section 3.2, we present a variant of Kleene
algebras that includes tests. We also extend the semantics of Section 3.1 to capture these
tests and provide definitions that encode while-programs with these algebras. In Section 3.3,
we introduce a more expressive variant capable of doing equational reasoning with predicate
transformers. Finally, in Section 3.5, we describe the formalisations of these algebras in the
interactive theorem prover Isabelle/HOL. This chapter provides more detailed explanations
about Kleene algebras than [72] and [44].

3.1 Kleene Algebra

In this section, we introduce the basic structure of Kleene algebras and their canonical
relational semantics. Additionally, we explain their alternative state transformer semantics
in more detail because of their connection with dynamical systems.

A dioid (S,+, ·, 0, 1) is a structure formed of two monoids, a multiplicative monoid (S, ·, 1)
and an idempotent abelian monoid (S,+, 0), that satisfy distributivity and annihilation
axioms. That is, for all ↵, �, � 2 S, the dioid laws are

associativity ↵ + (� + �) = (↵ + �) + � ↵ · (� · �) = (↵ · �) · �

identity ↵ + 0 = ↵ 0 + ↵ = ↵ ↵ · 1 = ↵ 1 · ↵ = ↵

commutativity ↵ + � = � + ↵

idempotency ↵ + ↵ = ↵

distributivity (↵ + �) · � = ↵ · � + � · � ↵ · (� + �) = ↵ · � + ↵ · �

annihilation/absorption ↵ · 0 = 0 0 · ↵ = 0.

By defining ↵ � $ ↵+ � = � for all ↵, � 2 S, the introduced relation is a partial order
due to idempotency and associativity of +. Moreover, for any two elements ↵, � 2 S, their
addition ↵ + � is their lowest greater bound. In other words, (S,) is a join semilattice.

25

26 CHAPTER 3. KLEENE ALGEBRAS

Furthermore, both · and + preserve this order in both arguments and, by the identity laws,
0 is the least element of S.

If we interpret the elements of dioids as programs, their operations already provide
two of the hybrid program constructors from Section 2.5, that is, addition corresponds
to nondeterministic choice and multiplication to sequential composition. However, dioids
come not only with operations but with axioms too. These are equalities asserted under
the assumption that equivalent programs generate the same output from the same inputs.
For instance, the associativity laws state that local (binary) choices (+) do not a↵ect global
outputs and that the output of sequentially (;) executing three programs should ignore the
(binary) composites involved in the process. Furthermore, dioids provide constants for the
ine↵ective and aborting programs, 1 and 0 respectively. Therefore, their corresponding laws
also describe their behaviour relative to all other programs. The absorption laws dictate that
the output is abortive irrespective of the order of the execution of the abortion. Similarly, the
multiplicative identity laws state that an ine↵ective program in sequential composition with
another program provides the same output as one where no ine↵ective program executes.
Finally, the order () on programs reveals redundancy. The inequality ↵ � says that a
choice between ↵ or � has the same input/ouput behaviour as simply �.

Along this line of reasoning, we use Kleene algebras (K,+, ·, 0, 1,⇤) to capture finite
iteration of hybrid programs. These algebras enrich dioids with a Kleene star operation
(�)⇤ : K ! K that satisfies, for all ↵, �, � 2 K, the axioms

unfold 1 + ↵ · ↵⇤
 ↵⇤ 1 + ↵⇤

· ↵ ↵⇤

induction � + ↵ · � � ! ↵⇤
· � � � + � · ↵ � ! � · ↵⇤

 �.

The intuition behind these star axioms becomes more apparent by applying the dioid laws
to the first unfold axiom:

1 + ↵ · ↵⇤
 ↵⇤ unfold

(1 + ↵ · ↵⇤) · � (↵⇤) · � monotonicity of (·)

� + ↵ · ↵⇤
· � ↵⇤

· � distributivity

Therefore, by the first induction axiom, ↵⇤
· � is the least solution � to the linear inequality

�+↵ ·� �. Similarly, � ·↵⇤ is the least prefixpoint of the monotone function ��. �+� ·↵.
The special case ↵⇤ behaves like the Kleene star string of formal language theory or a reflexive
transitive closure in relational algebra. In fact, there is a semantic interpretation of all Kleene
algebra operations in both semantics.

In the relational interpretation, a program is a set of input-output pairs of states, that
is, programs are binary relations R ✓ S ⇥ S (equivalently R 2 P (S ⇥ S)). We use s1 R s2
instead of (s1, s2) 2 R. Then recall that if R1 ✓ S1⇥S2 and R2 ✓ S2⇥S3, their composition
R1 ; R2 is a relation such that if s1 R1 s2 and s2 R2 s3, then s1 (R1 ;R2) s3. Moreover,
IdS ✓ S⇥S relates every element of S to itself, and the reflexive transitive closure of a relation
R ✓ S⇥S is R⇤ =

S
i2N R

i where R0 = IdS and Ri+1 = Ri ;R. Translating to Kleene algebras,
multiplication corresponds to composition, addition to union, the multiplicative unit to the
identity relation, the additive unit to the vacuous relation, the Kleene star to the reflexive
transitive closure, and the dioid order to set containment. This is summed up in the next
proposition.

3.1. KLEENE ALGEBRA 27

Proposition 3.1.1. For any set S, the tuple (P (S ⇥ S),[, ;, ;, IdS,⇤) forms a Kleene
algebra—the full relation Kleene algebra over S.

By formalising Kleene algebras and their relational semantics in Isabelle/HOL, we
immediately obtain large parts of what we need to encode hybrid programs in the proof
assistant (contrast with Section 2.5). However, there is an added benefit to our approach:
we can overcome the limited adaptability of shallow embeddings to new semantics. That
is, by instantiating to a di↵erent semantics of Kleene algebras, our components preserve
their algebraic foundations. For instance, there is a bijection between binary relations
R 2 P (S1 ⇥ S2) and state transformers F 2 (P S2)S1 that provides an alternative
semantics for Kleene algebras. Indeed, the function F : P (S1 ⇥ S2) ! (P S2)S1 such
that F Rs1 = {s2 2 S2 | s1 R s2} has an inverse R : (P S2)S1 ! P(S1 ⇥ S2) defined
by s1 (R f) s2 , s2 2 f s1. Moreover, these functions are functorial between the Kleisli
composition (f �K g) s1 =

S
{g s2 | s2 2 f s1} and the relational composition, that is

F (R1 ;R2) = F R1 �K F R2, and R (f �K g) = R f ;R g.

Similarly, R ⌘S = IdS and F IdS = ⌘S where ⌘S s = {s}. The terminology and notation
come from category theory. The powerset operator P : Set! Set is an endofunctor on the
category Set of sets such that

P X = {Y | Y ✓ X} and P f S = {f s | s 2 S}

is the direct image of S. Then, ⌘ : 1Set ! P and µ : P2
! P such that µS : P (P S)! P S

and µS X =
S

X are natural transformations, where 1Set is the identity functor on Set and
P

2 = P�P . The triple (P , ⌘, µ) then forms the powerset monad that has an associated Kleisli
category SetP . The objects of SetP are sets, while its morphisms are state transformers.
The composition of f 2 SetP(X, Y) and g 2 SetP(Y, Z) is then

g �SetP f = g† � f = f �K g,

where (�)† is the Kleisli extension g† = µ � (P g). Yet, we use �K to preserve covariance
with our relational composition as this is the default in Isabelle/HOL. Finally, ⌘ provides the
identities idS 2 SetP(S, S), that is idS = ⌘S. Thus, F and R form an isomorphism between
SetP and the category Rel whose objects are sets and morphisms are binary relations.

From here, we can apply the mono-typed instance of the isomorphism F to the full
relational Kleene algebra over a set S to obtain state transformer semantics. In this
interpretation, the state transformer represents a program by associating to each input state
the set of all possible output states. By defining f ⇤K : S ! P S such that

f ⇤K s =
[

i2N

f i s,

where f 0 = ⌘S and f i+1 = f i
�K f , we can check that (P S)S satisfies the Kleene algebra

axioms. That is, addition is pointwise union (f [g) s = (f s) [(g s), multiplication is the
Kleisli composition, the additive unit is the function that maps s 2 S to ;, the multiplicative
unit is the Kleisli unit ⌘S, and the Kleene star is (�)⇤K . We can also see that the subset
order ✓ in relations translates to pointwise containment in state transformers, that is f g
if and only if f s ✓ g s for all s 2 S. In other words, the following holds.

28 CHAPTER 3. KLEENE ALGEBRAS

Proposition 3.1.2. For any set S, the tuple ((P S)S,[, �K ,�s. ;, ⌘S,⇤K) forms a Kleene
algebra—the full state transformer Kleene algebra over S.

The state transformer model for Kleene algebras is important in our presentation because
it fits naturally with concepts of the dynamical systems literature (see Chapter 4). Yet,
we also keep the presentation for the relational model because it is better known and also
because it clearly exemplifies the simple modularity of our approach. Due to our intention
to use variants of Kleene algebras to model hybrid programs, in the sequel we replace the
algebraic · for its program-counterpart ;. We also use ; indistinctly for the relational and
Kleisli composition. A detailed hierarchy of variants of Kleene algebras, their calculational
properties and their most important computational models are in the AFP [10]. Similarly, the
formalisation of the state transformer model via the powerset monad and its Kleisli category
is in [130].

3.2 Kleene Algebra with Tests

We wish to extend Kleene algebras (K,+, ;, 0, 1,⇤) so as to have the test constructor for
hybrid programs of Section 2.5. Thus, we follow Kozen [83] and consider a subset B ✓ K
and an operation ¬ : B ! B such that (B,+, ;, 0, 1,¬) is a boolean algebra. That is, + is
its join, ; is its meet, ¬ is its complementation, 0 is its least element, and 1 is its greatest
element. The two-sorted structure (K,B,+, ;, 0, 1,⇤ ,¬) is a Kleene algebra with tests (KAT).

In the program-interpretation of KAT, tests p 2 B either hold or fail in a program state.
A test sequentially composed with ↵ 2 K restricts its execution. For instance, the test p
restricts the input of ↵ to those states where p holds in the composition p ; ↵. Similarly, the
output of ↵ ; p corresponds to a state that satisfies p.

The relational model of Kleene algebras also holds for KATs. We can encode predicates
P : S ! B as subsets of the identity relation IdS via the bijection dP eR = {(s, s) | P s}. This
suggests an isomorphism between the boolean algebra of predicates on S and a relational
analogue. Indeed, the tuple (P IdS,[, ;, ;, IdS,) is a boolean algebra where R = IdS \ R
for R ✓ IdS and \ is set-complementation. In particular, the following proposition holds.

Proposition 3.2.1. For any set S, the tuple (P (S ⇥ S),P IdS,[, ;, ;, IdS,⇤ ,) forms a
Kleene algebra with tests—the full relation KAT over S.

The isomorphism F between relations and state transformers also provides insight into the
state transformer model of KATs. By applying it to d�eR, we can lift predicates P : S ! B
to this semantics

dP eF = F dP eR s =

(
{s} if P s,

;, otherwise.

An analogue process applied to complementation yields the negation in the state transformer
semantics. That is, for f : S ! P S such that f s ✓ {s} for all s 2 S,

f s = F R f s =

(
{s} if f s = ;,

;, otherwise.

3.2. KLEENE ALGEBRA WITH TESTS 29

The underlying set for this boolean operation is {f : S ! P S | 8s. f s ✓ {s}} which is
the downwards closure #(P S)S ⌘S, where #Y x = {y 2 Y | y x}. The emerging boolean
algebra is therefore (#(P S)S ⌘S,[, ;,�s. ;, ⌘S,) and the following proposition is true.

Proposition 3.2.2. For any set S, the tuple ((P S)S, #(P S)S ⌘S,[, ;,�s. ;, ⌘S,⇤K ,) forms
a Kleene algebra with tests—the full state transformer KAT over S.

To avoid polluting notation with the isomorphisms BS ⇠= P S ⇠= P IdS
⇠= #(P S)S ⌘S, we

will freely identify elements of these sets and refer to them collectively as predicates.
KATs are already expressive enough to capture within their operations simple algebraic

semantics for while programs. That is, we can define for p 2 B and ↵, � 2 K

skip = 1,

abort = 0,

if p then ↵ else � = p · ↵ + ¬p · �,

while p do ↵ = (p · ↵)⇤ · ¬p.

Beyond that, KATs also cover the propositional part—disregarding assignments—of Hoare
logic [84]. We encode Hoare triples {p}↵ {q} in KATs through any of the following equivalent
assertions for p, q 2 B and ↵ 2 K

p · ↵ · ¬q = 0 $ p · ↵ ↵ · q $ p · ↵ = p · ↵ · q.

Semantically, Hoare triples indicate if a predicate holds after the execution of a program
that started satisfying some initial condition. Below we write the semantic representation of
this statement in both the relational and state transformer model,

{P}R {Q}$ (8s1. P s1 ! (8s2. s1 R s2 ! Qs2)),

{P} f {Q}$ (8s1. P s1 ! (8s2. s2 2 f s1 ! Qs2)).

The proofs of these facts are automatic by unfolding definitions in our formalisations (as an
example see lemma wp-rel in Section 4.5). The definition of Hoare triples allows us to derive
the following implications in KATs:

p1 p2 ^ {p2}↵ {q2} ^ q2 q1 ! {p1}↵ {q1}, (h-cons)

{p}↵ {r} ^ {r} � {q}! {p}↵ ; � {q}, (h-seq)

{t ; p}↵ {q} ^ {¬t ; p} � {q} ! {p} if t then ↵ else � {q}, (h-cond)

{t ; p}↵ {p} ! {p}while t do ↵ {¬t ; p}. (h-while)

These derivations describe the rules of inference of propositional Hoare logic. However, we
can go beyond this calculus and obtain rules for other operations. For instance, by defining
loop ↵ = ↵⇤, we get

{p} skip {p}, (h-skip)

{p} abort {q}, (h-abort)

{p}↵ {q} ^ {p} � {q}! {p}↵ + � {q}, (h-choice)

{p}↵ {p}! {p} loop ↵ {p}. (h-loop)

30 CHAPTER 3. KLEENE ALGEBRAS

We can interpret these results in a forward or backward-style reasoning. In the traditional
forward reading, rule (h-choice) says that if two programs share a postcondition after starting
in the same precondition, then a choice between these two programs will still respect the pre
and postcondition. For interactive verification in a proof assistant, the backward reasoning
style is more common. The characteristic of this style is its reading in terms of proof
obligations . For example, the rule (h-loop) says that in order to prove that the loop of
a program preserves certain property, it is enough to prove that a single iteration does so.
We can automate this backward style reasoning to iteratively obtain proof obligations. That
is, the rules of Hoare logic derived so far enable us to do verification condition generation.

Example 3.2.1 (thermostat’s control). Recall from Figures 2.3 and 2.5 that a simple
thermostat can be modelled via the hybrid program thermostat = loop (ctrl ; dyn) where

ctrl = (t := 0) ; (T0 := T);
if ✓ = 0 ^ T0 Tm + 1 then ✓ := 1 else
if ✓ = 1 ^ T0 � TM � 1 then ✓ := 0 else skip.

In this example, we focus on the discrete part of this hybrid program, leaving the continuous
part for Example 4.4.1. For the time being, we also assume that assignments correspond to
some atomic programs ↵i 2 K with i 2 {1, 2, 3, 4} that do not modify the program store. We
remove this assumption in Example 4.3.1. Therefore, under this assumption, Kleene algebras
model all the program operations in ctrl. To prove the correctness specification

{Tm T TM} ctrl {Tm T TM},

we only need to apply backwardly the rules of Hoare logic. After two applications of (h-seq),
where we leave r equal to the precondition, we obtain the proof obligations

{Tm T TM} t := 0 {Tm T TM} and {Tm T TM}T0 := T {Tm T TM},

which we will hold as true due to the fact that the variable T is not being changed in the
assignments. Thus, we can discharge these branches of the proof tree and consider them
solved. The third branch corresponds to the specification

{Tm T TM}

if ✓ = 0 ^ T0 Tm + 1 then ✓ := 1 else

if ✓ = 1 ^ T0 � TM � 1 then ✓ := 0 else skip

{Tm T TM}.

To tackle this branch, we apply twice the rule (h-cond), generating three proof obligations.

{✓ = 0 ^ T0 Tm + 1 ^ Tm T TM} ✓ := 1 {Tm T TM}

{✓ = 1 ^ T0 � TM � 1 ^ ¬(✓ = 0 ^ T0 Tm + 1) ^ Tm T TM} ✓ := 0 {Tm T TM}

{¬(✓ = 1 ^ T0 � TM � 1) ^ ¬(✓ = 0 ^ T0 Tm + 1) ^ Tm T TM} ✓ := 0 {Tm T TM}

Given that the three branches are true due to our assumption on assignments, this shows
that if we execute ctrl in a state satisfying Tm T TM , then this property will remain
true after the execution.

3.3. MODAL KLEENE ALGEBRA 31

An additional benefit of the KAT setting is that it allows us to study invariants for
programs. These are closely related to invariant sets for dynamical systems as we will see in
Section 5.2. An invariant for ↵ 2 K is a test i 2 B such that {i}↵ {i}. We can annotate these
invariants in partial correctness specifications by defining ↵ inv i = ↵. These annotations are
useful for automating the verification condition generation because the proof assistant does
not need to come up with the invariant and instead can use it directly from the specification
by applying the following rules.

p i ^ {i}↵ {i} ^ i q ! {p}↵ inv i {q}, (h-inv)

{i}↵ {i} ^ {j}↵ {j}! {i ; j}↵ {i ; j}, (h-conj-inv)

{i}↵ {i} ^ {j}↵ {j}! {i+ j}↵ {i+ j}, (h-disj-inv)

p i ^ {i ; t}↵ {i} ^ ¬t ; i q ! {p}while t do ↵ inv i {q}, (h-while-inv)

p i ^ {i}↵ {i} ^ i q ! {p} loop ↵ inv i {q}. (h-loop-inv)

The rule (5.2.4) is a variant of (h-cons). We use it together with (h-conj-inv) and (h-disj-
inv) for a procedure to prove invariance for evolution commands in Section 5.2. The rule
(h-loop-inv) is the analogue for loops to the standard (h-while-inv) for while loops.

Despite all this added expressiveness, when proving in a backward style, the rules of Hoare
logic still require input from the user as in (h-seq). Yet, this is not necessary with equational
reasoning and Dijkstra’s weakest precondition calculus [12]. KATs however cannot express
predicate transformer semantics like weakest preconditions [128]. Therefore, we explore
another algebra that can in the next section.

For a formalisation of KATs in Isabelle/HOL, see [8]. It includes preliminary algebraic
structures, their derivable lemmas, and their most important models. The invariant
perspective for KATs, its formalisation and that of the state transformer model in Section 3.5
are an addendum to the knowledge on these algebras from our work [44,68].

3.3 Modal Kleene Algebra

There are other extensions of Kleene algebras for verification. By adding modal box and
diamond operators like those of dynamic logic, the resulting algebras can encode not only tests
and assertions, but predicate transformers too. In this section, we outline these alternative
extensions of Kleene algebras for modal reasoning in the style of dynamic logic. Just like
KATs capture the propositional part of Hoare logic (without assignments), these extensions
capture propositional dynamic logic [58].

The first extension consists in adding an antidomain operation [35, 55] ad : K ! K that
satisfies the axioms

ad ↵ ; ↵ = 0, ad ↵ + d ↵ = 1, ad(↵ ; �) ad(↵ ; d �),

for all ↵, � 2 K where d = ad2 = ad � ad is the domain operation. The resulting structure
(K,+, ·, 0, 1,⇤ , ad) is an antidomain Kleene algebra.

In the interpretation of Kleene algebras as programs, the antidomain of a program ad ↵
models those states from which ↵ cannot be executed. In turn, the domain of a program

32 CHAPTER 3. KLEENE ALGEBRAS

d ↵ is the set of those states from which it can. Thus, the first two equations state that a
program cannot run after its antidomain and that both operations complement each other in
the boolean sense. The final inequality states that the antidomain of a composition should
not be greater than that of the domain of the second composite following the first one.

From these axioms, one can check that in antidomain Kleene algebras the equality d2 = d
holds [54], hence p 2 (P ad K) $ (d p = p). Thus, the image P ad K = Kd, where
Kf is the set of fixpoints of f : K ! K, that is Kf = {↵ 2 K | f ↵ = ↵}. Furthermore,
(Kd,+, ;, 0, 1, ad) forms a boolean algebra, and therefore, our definitions, notation and results
for KATs of Section 3.2 are also available for these algebras.

In antidomain Kleene algebras, we can define forward modal box and diamond operators
|�]� : K ! Kd ! Kd and |�i� : K ! Kd ! Kd such that

|↵] p = ad(↵ ; ad p) and |↵i p = d (↵ ; p).

They also satisfy the De Morgan duality laws

|↵] p = ¬ |↵i¬p and |↵i p = ¬ |↵]¬p,

where we have used the boolean negation ¬ in replacement of ad .
However, another important duality of Kleene algebras is opposition, that is, swapping

the factors in multiplications. In fact, the class of Kleene algebras is closed under opposition,
meaning that swapping the order of multiplication in a Kleene algebra generates another
one. The opposite of the antidomain operation is the antirange operation ar : K ! K that
represents those states into where a program cannot be executed [35]. For further intuition,
in the relational model, the antirange maps a program (relation) to the complement of its
range. It is dually axiomatised via

↵ ; ar ↵ = 0, ar ↵ + r ↵ = 1, ar (↵ ; �) ar (r ↵ ; �),

for all ↵, � 2 K. Again, r = ar 2 = ar � ar is the range operation that describes those output
states into where a program can be executed. As before, Kleene algebras extended with ar
produce antirange Kleene algebras that allow us to define backward modal operators ,

[↵| p = ar(ar p ; ↵) and h↵| p = r (p ; ↵),

for ↵ 2 K, p 2 Kd, and derive their corresponding De Morgan duality laws

[↵| p = ¬ h↵| ¬p and h↵| p = ¬ [↵| ¬p.

We can further extend antidomain and antirange Kleene algebras by adding their opposite
operators, thus obtaining modal Kleene algebras (MKA) with structures given by tuples
(K,+, ;, 0, 1,⇤ , ad , ar) [35]. Observe that an axiomatisation of MKAs depending only on
domain and range would not be as rich because it would lack complementation, thus making
Kd a simple distributive lattice. Notice also that at this point, modal Kleene algebras
have enough expressive power to reason not only as a Hoare logic but as a dynamic logic.
Moreover, the above backward modalities are not available in other work for verification of
hybrid systems. Albeit, our interest in them remains as a theoretical fact and we leave their

3.3. MODAL KLEENE ALGEBRA 33

application in case studies for future work. See the formalisation [54] in the Archive of Formal
Proofs that predates our work for a complete development of algebraic structures that starts
from domain and antidomain semigroups, passing through semirings, and ending up with
MKAs. Said formalisation also contains the calculational properties of those structures and
their most important models.

Rich relationships emerge from adding antidomain and antirange operations to Kleene
algebras. For starters, Kd = Kr = P ad K = P d K = P r K = P ar K. Thus, MKAs are
closed under opposition. Furthermore, the conjugation laws

|↵] p+ q = 1$ p+ [↵| q = 1 and |↵i p ; q = 0$ p ; h↵| q = 0

for p, q 2 Kd and ↵ 2 K are derivable, as well as the Galois connections

h↵| p q $ p |↵] q and |↵i p q $ p [↵| q.

Finally, in MKAs, Hoare triples {p}↵ {q} have another representation equivalent to the other
three of KATs, namely, the implications p |↵] q.

Every concept and result introduced in this section is valid for the relational and state
transformer models. Opposition, for instance, corresponds to the converse relation (�)`

defined by R` = {(s2, s1) | s1 R s2}. The antidomain and antirange operations are then

adR R = {(s1, s1) | ¬ 9s2. s1 R s2} and arR R = adR R` = {(s2, s2) | ¬ 9s1. s1 R s2},

while dR R and rR R correspond to the domain and range of R respectively. From here,
forward diamond and box operators equate to

|R]P = {(s1, s1) | 8s2. s1 R s2 ! P s2} and |RiP = {(s1, s1) | 9s2. s1 R s2 ^ P s2},

and their backward versions come from opposition [R|P = |R`]P and hR|P = |R`
iP . In

summary, the result below holds.

Proposition 3.3.1. For any set S, the tuple (P (S⇥S),P IdS,[, ;, ;, IdS,⇤ , adR, arR) forms
a modal Kleene algebra—the full relation MKA over S.

We can derive the state transformer model from our now familiar isomorphism F and
derive analogous results. It is easy to check that fop = �s2. {s1 | s2 2 f s1} satisfies
fop = F (R f)`. Hence, arF f = adF fop , where

adFf s =

(
{s}, if f s = ;,

;, otherwise.

For state transformers f : S ! P S below ⌘S, that is f 2 #(P S)S ⌘S, the expression adFf
coincides with f of Section 3.2. The forward diamond and box operators follow

|fiP s =

(
{s}, if f s \ {s | P s} 6= ;,

;, otherwise,
and |f]P s =

(
{s}, if f s ✓ {s | P s},

;, otherwise,

34 CHAPTER 3. KLEENE ALGEBRAS

while the backward modal operators are hf |P = |fop
iP and [f |P = |fop]P as before.

Similar computations can be carried out to describe dF and rF . Abusing notation, the set
of all states satisfying hf |P is hf |P = f † P , where (�)† is the Kleisli extension defined in
Section 3.1. This specific equality will be useful as a definition of invariants for systems
of ODEs in Section 5.2 and as the cornerstone of an alternative approach for verification
components in Sections 6.2 and 6.3. To conclude, the foretold proposition is true.

Proposition 3.3.2. For any set S, the tuple ((P S)S, #(P S)S ⌘S,[, ;,�s. ;, ⌘S,⇤K , adF , arF)
forms a modal Kleene algebra—the full state transformer MKA over S.

The main advantage of MKAs over KATs is their modal operators. These modalities
are endofunctions Kd ! Kd on the boolean algebra Kd, and therefore, they agree with
Jónsson and Tarski’s boolean algebras with operators [79]. However, using the isomorphisms
BS ⇠= P S ⇠= P IdS

⇠= #(P S)S ⌘S, the modalities |↵]�, [↵|�, |↵i�, h↵|� : BS
! BS are

also functions from predicates to predicates, that is, they are predicate transformers . In
fact, in a partial correctness setting, the forward box |�]� and backward diamond h�|� of
MKA correspond to Dijkstra’s weakest liberal precondition (wlp) and strongest postcondition
operators respectively. In other words, |↵] q is the weakest precondition p of the Hoare
triple {p}↵ {q} in the sense that every other p implies it, p |↵] q. Similarly, h↵| p implies
every other q such that {p}↵ {q}. Based on this, verification of the correctness specification
p |↵] q means recursively computing |↵] q over the structure of ↵ and checking that the
result is greater or equal to p. For this purpose, the rules of the wlp calculus (without
assignments) are derivable for p, q, i, j, t 2 Kd and ↵, � 2 K [55, 56]

|skip] q = q, (wlp-skip)

|abort] q = 1, (wlp-abort)

|↵ ; �] q = |↵] |�] q, (wlp-seq)

|if t then ↵ else �] q = (t ; |↵] q) + (¬t ; |�] q), (wlp-cond)

p |while t do ↵ inv i] q p i ^ i ; t |↵] i ^ i ; ¬t q, (wlp-while)

and as before, MKA also derives properties about the rest of its operations and invariants

|↵ + �] q = |↵] q ; |�] q, (wlp-choice)

p i ^ i |↵] i ^ i q ! p |loop ↵ inv i] q, (wlp-loop)

i |↵] i ^ j |↵] j ! (i ; j) |↵](i ; j), (wlp-conj)

i |↵] i ^ j |↵] j ! (i+ j) |↵](i+ j). (wlp-disj)

From these rules, it follows that, with equational reasoning, we can compute |↵] q for
regular programs except for loops, which require annotated invariants. Therefore, in our
formalisations we can write simple tactics for verification condition generation. For instance,
a tactic could apply these rules and translate the resultingMKA statement without modalities
to its relational or state transformer model. Thus, it would make proof obligations become
domain-specific problems that are also easily solvable.

Example 3.3.1. Here, we partially compute the weakest precondition for the program ctrl
of Example 3.2.1. Recall that it is part of the thermostat hybrid program, and that it is

3.4. ALGEBRAIC STRUCTURES IN ISABELLE/HOL 35

ctrl = (t := 0) ; (T0 := T);
if t1 then ✓ := 1 else
if t2 then ✓ := 0 else skip,

where, t1 $ (✓ = 0 ^ T0 Tm + 1) and t2 $ (✓ = 1 ^ T0 � TM � 1). Therefore, we use the
wlp-laws (wlp-seq) and (wlp-cond) to recursively compute part of its wlp.

|ctrl] p = |t := 0] |T0 := T ; if t1 then ✓ := 1 else if t2 then ✓ := 0 else skip] p

= |t := 0] |T0 := T] |if t1 then ✓ := 1 else if t2 then ✓ := 0 else skip] p

= |t := 0] |T0 := T] (t1 ; |✓ := 1] p+ ¬t1 ; |if t2 then ✓ := 0 else skip] p)

= |t := 0] |T0 := T] (t1 ; |✓ := 1] p+ ¬t1 ; (t2 ; |✓ := 0] p+ ¬t2 ; |skip] p))

= |t := 0] |T0 := T] (t1 ; |✓ := 1] p+ ¬t1 ; t2 ; |✓ := 0] p+ ¬t1 ; ¬t2 ; p)

Semantically, the argument of the leftmost forward box operations correspond to operations
between subidentity relations or state transformers below ⌘S. The reason for this is that t1,
t2, |✓ := 0] p, |✓ := 1] p, and their negations are elements of the respective boolean algebra.
Therefore, we only need to provide a wlp-rule for assignments in order to completely obtain
the weakest precondition for ctrl. We do this in Section 4.3 of next chapter.

The equational reasoning, the dualities by opposition, the De Morgan, conjugation and
Galois connection laws generalise to predicate transformers of type BS1 ! BS2 . Developing
this variant for verification is the topic of Section 6.3. There are many more interesting facts
about the modal operators of MKA that deviate from our interest in verification condition
generation. For a comprehensive list, the reader can see the AFP entry [54]. Furthermore,
the formalisation in Isabelle/HOL of the wlp calculus through MKAs precedes our work and
is also available in the AFP [56]. However, the formalisation of the invariant rules of MKA
and its state transformer model are a contribution from our work [68,72].

3.4 Algebraic Structures in Isabelle/HOL

In this section, we describe some properties of type classes in Isabelle/HOL. We show their
usage as a mechanism to formalise algebraic structures and we explore two ways to make types
inherit the lemmas and constants of classes. Achieving this inheritance consists in showing
that the type satisfies the axioms of the algebraic structure that the class represents.

Type classes allow us to define constants and operations once. Then, we can use them
among many types through type polymorphism, like in functional programming. Each type
class can introduce not only constants, but axioms for them too. Classes also have a context
delimited with the keywords begin and end where we can derive consequences from those
axioms. The code below formalises mathematical semigroups with a type class.

class semigroup =
fixes mult :: 0a) 0a) 0a (infixl · 70)
assumes mult-assoc: (↵ · �) · � = ↵ · (� · �)

begin

lemma four-assoc: ((↵ · �) · �) · � = ↵ · (� · (� · �))

36 CHAPTER 3. KLEENE ALGEBRAS

by (simp add : mult-assoc)

end

The name of the class, semigroup, must follow the command class to indicate Isabelle
that we are about to define it. After the equal symbol, we provide the class’ constants with
the keyword fixes and its axioms with assumes. The second line states that the operation
mult is a function of type 0a) 0a) 0a. The expression in parenthesis uses keyword infixl
to instruct that infix centred dots · should be parsed as mult. The third line introduces
axiom mult-assoc, which is simply associativity of the binary operation mult. Similarly,
the command lemma introduces the theorem called four-assoc that says that for any four
elements ↵, �, �, � of the semigroup, the equality ((↵ ·�) ·� · �) = ↵ · (� · (� · �)) holds. Finally,
we use the command by to prove the lemma with a call to Isabelle’s simplifier augmented
with the axiom mult-assoc of the semigroup class. Classes can also extend other classes. To
declare the class of monoids that extend semigroups, the structure is the same, but with the
name semigroup following the equality symbol.

class monoid = semigroup +
fixes e :: 0a
assumes mult-idr : ↵ · e = ↵

and mult-idl : e · ↵ = ↵

Classes in Isabelle/HOL allow us to formalise algebraic structures because we can add
axioms to their declaration. This is indeed an easy way to introduce inconsistencies inside the
proof assistant although it is only limited to consequences of the class’ axioms. The rest of the
object logic is una↵ected by them. As in mathematics, they are made consistent by providing
a model to them. This is done with the instantiation command. With it, types can inherit
the constants of the class together with the lemmas for those constants. This requires users
to supply a proof that the type satisfies the axioms of the class via the instance command.
Previous to that, users also have to indicate which of the type’s operations correspond to
the class’ operations. They can do this with the command lift-definition. The code below
exemplifies an instantiation of the type of integers (int) to the monoid class.

instantiation int ::monoid
begin

lift-definition mult-int :: int) int) int is (⇤) .

lift-definition e-int :: int is 1 .

instance — OFCLASS (int , semigroup-add-class)
apply intro-classes —

V
↵ � �. ↵ · � · � = ↵ · (� · �)

apply transfer —
V
↵ � �. ↵ ⇤ � ⇤ � = ↵ ⇤ (� ⇤ �)

apply simp —
V
↵. ↵ · e = ↵

by (transfer , simp)+

3.5. KLEENE ALGEBRAS IN ISABELLE/HOL 37

end

Here, we supply the default integer multiplication (⇤) as an argument to lift-definition to
represent the class multiplication (mult), and similarly for 1 and e. For a better explanation
of the instance proof, we have added next to each line the proof-state that Isabelle displays,
indicated after the long dash — . Thus, after the instance command, Isabelle asks to prove
the instantiation. Then, tactic intro-classes transforms this proof obligation into other three,
the first being associativity for (·) in the integers. After that, applying the transfer tactic
transforms the first proof obligation to an obligation about integers and their multiplicaton
(⇤). This is such an easy obligation, that Isabelle can handle it automatically with its
simplifier. Thus, the next class axiom mult-idr needs to be proved. Finally, we use a plus
symbol + to automatically repeat the previous process for each remaining axiom.

After this instantiation, we can freely use (·) with integers in Isabelle. Furthermore, all
the lemmas in the class monoid are available for this type too. For instance, the following
result requires calling the lemma four-assoc of our semigroup class, as it just restates it.

lemma (((a::int) · b) · c) · d = a · (b · (c · d))
using semigroup-class.four-assoc .

However, the analogous result (((a::int) ⇤ b) ⇤ c) ⇤ d = a ⇤ (b ⇤ (c ⇤ d)) has a
longer proof that requires the transfer tactic to convert from the class operation to the
type operation. This is because class instantiations only provide the class’ lemmas for their
designated constants. To obtain instantiated lemmas for the type operations we require
interpretations.

interpretation int-semigroup: semigroup (⇤)
by standard simp

lemma (((a::int) ⇤ b) ⇤ c) ⇤ d = a ⇤ (b ⇤ (c ⇤ d))
using int-semigroup.four-assoc .

In the code above, we use the command interpretation followed by the name of the
interpretation int-semigroup, a colon, the name of the class to interpret and the type operation
to instantiate. In this case, the latter two are the semigroup class and the multiplication
of integers (⇤). Then, after proving that the type satisfies the axioms of the class, the
class’ lemmas are automatically instantiated. Their names consist of the name of the
interpretation followed by a dot and the name of the original class lemma, for instance,
int-semigroup.four-assoc.

3.5 Kleene Algebras in Isabelle/HOL

Here, we describe the formalisation of the concepts presented in previous sections of this
chapter. The objective is to list the rules for verification condition generation as they appear
in our AFP submission [68]. Therefore, the material discussed in this section, becomes the

38 CHAPTER 3. KLEENE ALGEBRAS

algebraic foundations for developing a hybrid system verification component with the proof
assistant. More specifically, for illustration purposes, we present an example formalisation of
Kleene algebras in Isabelle/HOL via type classes. However, such example is not the actual
content of [10] nor [54] that are the AFP entries that precede our work and on top of which we
developed our verification components. Despite not using the light-weight version presented
here, it displays the essence of the basis for our work. We also explain in this section our
extensions to Isabelle/HOL’s libraries for program algebras. In particular, we contribute by
implementing rules for verification condition generation that were previously unavailable in
existing formalisations.

The code below uses type classes to model Kleene algebras.

class plus-ord = plus + ord +
assumes leq-def : x y ! x + y = y

and less-def : x < y ! ¬ (y x)

class dioid = comm-monoid-add + monoid + plus-ord +
assumes add-idem: ↵ + ↵ = ↵

and distribl : ↵ · (� + �) = ↵ · � + ↵ · �
and distribr : (↵ + �) · � = ↵ · � + � · �
and absorpl : ↵ · 0 = 0
and absorpr : 0 · ↵ = 0

class kleene-algebra = dioid +
fixes kstar :: 0a) 0a (-? [101] 101)
assumes unfoldl : e + ↵ · ↵?

 ↵?

and unfoldr : e + ↵?
· ↵ ↵?

and inductl : � + ↵ · � � =) ↵?
· � �

and inductr : � + � · ↵ � =) � · ↵?
 �

The presentation is as discussed in previous sections: in plus-ord, we can define a relation
() using the nondeterministic choice (+). Afterwards, the class dioid extends additive and
multiplicative monoids as well as plus-ord with the idempotency, distributivity and absorption
axioms. Finally, the class kleene-algebra adds the remaining axioms. The full formalisation
of Kleene algebras, KATs and MKAs, their substructures, and an analysis of the consequences
for each added axiom are in the AFP [8, 10, 54]. We simply use those libraries to shallowly
embed regular programs as elements of Kleene algebras and derive their rules for verification
condition generation. Many of these rules are already available from the AFP libraries,
for instance, below we restate the formalisation of (wlp-skip), (wlp-abort), (wlp-seq), and
(wlp-choice) in the context of the class for antidomain Kleene algebras.

context antidomain-kleene-algebra
begin

3.5. KLEENE ALGEBRAS IN ISABELLE/HOL 39

— Skip
lemma |1] x = d x
using fbox-one .

— Abort
lemma |0] q = 1
using fbox-zero .

— Sequential composition
lemma |x · y] q = |x] |y] q
using fbox-mult .

— Nondeterministic choice
lemma |x + y] q = |x] q · |y] q
using fbox-add2 .

end

The reader can compare the above rules with their analogs in previous sections and confirm
that they are a faithful formalisation. In contrast with the wlp-rules above, we add the
corresponding definitions and preliminary lemmas for (wlp-cond), (wlp-while), (wlp-loop),
(wlp-conj), and (wlp-disj).

— Conditional statement
definition aka-cond :: 0a) 0a) 0a) 0a (if - then - else - [64 ,64 ,64] 63)
where if p then x else y = d p · x + ad p · y

lemma fbox-cond [simp]: |if p then x else y] q = (ad p + |x] q) · (d p + |y] q)
using fbox-export1 local .ans-d-def local .fbox-mult
unfolding aka-cond-def ads-d-def fbox-def by auto

— While loop
definition whilei :: 0a) 0a) 0a) 0a (while - do - inv - [64 ,64 ,64] 63)
where while t do x inv i = (d t · x)? · ad t

lemma fbox-whilei :
assumes d p d i and d i · ad t d q and d i · d t |x] i
shows d p |while t do x inv i] q
hproofi

— Finite iteration
definition aka-loopi :: 0a) 0a) 0a (loop - inv - [64 ,64] 63)
where loop x inv i = x ?

lemma fbox-loopi : d p d i =) d i |x] i =) d i d q =) d p |loop x inv i] q
unfolding aka-loopi-def by (meson dual-order .trans fbox-iso fbox-star-induct-var)

40 CHAPTER 3. KLEENE ALGEBRAS

— Invariants
lemma plus-inv : i |x] i =) j |x] j =) (i + j) |x] (i + j)
by (metis ads-d-def dka.dsr5 fbox-simp fbox-subdist join.sup-mono order-trans)

lemma mult-inv : d i |x] i =) d j |x] j =) (d i · d j) |x] (d i · d j)
using fbox-demodalisation3 fbox-frame fbox-simp by auto

In the code above, we omit long proofs and replace them with an indicator hproofi. For
conditional statements and while loops, we follow the verification components for regular
programs in the AFP [56]. Yet, the formalisation of finite iterations and invariants (last
four lemmas) is our contribution. We have done a similar development for KATs and their
derived rules for Hoare logic for [44]. However, the KAT construction in Isabelle/HOL via
type classes is di↵erent from the presentation in this thesis [8]. Type classes only allow
mono-typed constants and functions. This rules out the two-sorted approach with boolean
algebras. The alternative then adds a mono-typed antitest function n : K ! K to the
Kleene algebra K. Using this operation, a test function t : K ! K can be obtained via
t = n � n. This is similar to our presentation of antidomain and domain operations. Then
Kt = {↵ | t↵ = ↵} is the hidden boolean algebra inside the type class for KATs with n as
its test complementation. We use this encoding of KATs in our work as well as the libraries
of MKAs [54]. Our full formalisation work is also available in the AFP [68]. It covers all the
formalisation sections in this thesis except for those in Section 6.4.

We still need to formalise this chapter’s propositions 3.1.1, 3.1.2, 3.2.1, 3.2.2, 3.3.1
and 3.3.2, but all these results are analogous. Therefore, we only show here that relations and
state transformers form antidomain Kleene algebras. For relations, we use an interpretation
command whose proof is easy due to Isabelle’s automation for sets.

definition rel-ad :: 0a rel) 0a rel where
rel-ad R = {(x ,x) | x . ¬ (9 y . (x ,y) 2 R)}

interpretation rel-aka: antidomain-kleene-algebra rel-ad ([) (O) Id {} (✓) (⇢) rtrancl
by unfold-locales (auto simp: rel-ad-def)

State transformers, on the other hand, are not a default type in Isabelle/HOL. Thus, we
use their definition in [129] and do an instantiation proof for them. They are nondeterministic
functions, f :: 0a nd-fun. This type precisely corresponds with the set of all functions of type
0a) 0a set. Therefore, we heavily use the bijections f • and f • between these types in our
formalisation. Below, we show a small part of our instantiation proof with omissions marked
with vertical dots.

typedef 0a nd-fun = {f :: 0a) 0a set . f 2 UNIV }

by simp

instantiation nd-fun :: (type) antidomain-kleene-algebra
begin

definition ad f = (�x . if ((f •) x = {}) then {x} else {})•

3.5. KLEENE ALGEBRAS IN ISABELLE/HOL 41

...
lemma nd-fun-plus-assoc[nd-fun-aka]: x + y + z = x + (y + z)
and nd-fun-plus-comm[nd-fun-aka]: x + y = y + x
and nd-fun-plus-idem[nd-fun-aka]: x + x = x for x :: 0a nd-fun
unfolding plus-nd-fun-def by (simp add : ksup-assoc, simp-all add : ksup-comm)

...
instance
apply intro-classes
using nd-fun-aka by simp-all

end

This formalisation of state transformer semantics for KATs and MKAs as nondeterministic
functions is a contribution from our work.

The interpretation and instantiation proofs depicted in this section are crucial for the
modularity of our approach. They not only serve to show that state transformers and relations
form models for Kleene algebras, but also formalise the fact that the axioms are sound. It
means that we can use the laws of KATs and MKAs with state transformers or relations in
Isabelle/HOL. If at any point we prefer one over the other to build verification components,
we can quickly and smoothly switch between them. In Section 6.6, we analyse and compare
all the verification components that emerge from our formalisations.

At this point, we have formalised verification condition rules for regular and while
programs. First, we provided the mathematical definition of Kleene algebras, Kleene
algebras with tests, and modal Kleene algebras. Then, we defined in these algebras both
regular and while programs. Moreover, we saw that these algebras also allow us to derive
rules for verification condition generation. Finally, we formalised all these developments in
the general-purpose proof assistant, Isabelle/HOL. Yet, looking at the syntax

X ::= x := e | x0 = f &G |?P | X ;X | X +X | X⇤,

for hybrid programs, we are still missing rules for assignments and evolution commands. We
formalise them within the concrete state transformer and relational semantics in Sections 4.3
and 4.4. However, in order to integrate these into our verification components, we take a
slight detour and explore the relationship between dynamical systems, di↵erential equations
and state transformers.

42 CHAPTER 3. KLEENE ALGEBRAS

Chapter 4

Hybrid Store Semantics

Just like state transformers model programs by associating to initial input states the set of
all possible output states, they can also model physical systems by associating to a current
state the set of all future states. However, exact analytical descriptions of future states are
not always viable, which is why the preferred representations of physical phenomena through
mathematical analysis are di↵erential equations.

State transformers are related to di↵erential equations through the intermediate
mathematical concept of a dynamical system. These are functions ' : T ! S ! S
that model the time dependency of points in a state space S. To represent time, the set T
has a monoid structure and ' is a monoid action on S. That is, the equations

' (t1 + t2) = ' t1 � ' t2 and ' 0 = id

hold for all t1, t2 2 T , where 0 2 T is the monoid’s unit and id : S ! S is the identity
function. The first equation represents the inherent determinism in the passage of time, while
the second, that our analysis of the system starts at 0. Usual monoids for dynamical systems
are Z, R, and their nonnegative variants N and R+. If the monoid is at most countable,
the function ' is a discrete dynamical system. Otherwise and with an underlying topological
structure, ' is a flow or a continuous dynamical system. Flows emerge as solutions to certain
systems of di↵erential equations [11, 63, 131].

In Section 4.1, we describe in more detail the connection between state transformers, flows
and di↵erential equations. Then, we formalise these results in Section 4.2. At that point,
we are ready to add the semantics of the two remaining hybrid programs. Thus, we discuss
assignments in Section 4.3 and evolution commands in Section 4.4. Finally, we show the
formalisation of the rules for verification condition generation for assignments in Section 4.5,
leaving that for evolution commands for Chapter 5.

4.1 Ordinary Di↵erential Equations

We briefly review the mathematical definitions and results for di↵erential equations needed
for developing verification components for hybrid systems.

An ordinary di↵erential equation (ODE) F (t, x t, x0 t, . . . , x(n) t) = 0 describes a
relationship between a k-continuously di↵erentiable function x : T ! R and 0 2 R

43

44 CHAPTER 4. HYBRID STORE SEMANTICS

via a continuous function F , where t 2 T ✓ R. A function satisfying the equation is a
solution to it. By the implicit function theorem, we can locally solve for x(n) t and represent
ODEs in their more familiar implicit form

x(n) t = g (t, x t, x0 t, . . . , x(n�1) t),

where g : T ⇥ S ! R is continuous and S ✓ Rn. The number n of the highest derivative
is the order of the ODE. Furthermore, we can turn any nth-order ODE into a system of n
first-order ODEs by introducing new variables xi with 1 i n� 1 such that

x0 t = x1 t, x0
1 t = x2 t, . . . x0

n�1 t = g (t, x t, x1 t, . . . , x(n�1) t).

We can even provide a time-independent or autonomous related system of n + 1 ODEs by
adding the equation x0

0 t = 1, thus obtaining x0
n�1 t = g (x0 t, x t, x1 t, . . . , x(n�1) t).

Given all these possible manipulations, for the rest of this work we will focus on first-order
systems of ODEs,

x0
1 t = f1 (t, x1 t, . . . , xn t),

x0
2 t = f2 (t, x1 t, . . . , xn t),

...

x0
n t = fn (t, x1 t, . . . , xn t),

for continuous functions fi : T ⇥ S ! R with t 2 T ✓ R and S ✓ Rn. Moreover, we also opt
for the vector representation of these systems

X 0 t =

0

BBB@

x0
1 t

x0
2 t
...

x0
n t

1

CCCA
=

0

BBB@

f1 (t, x1 t, . . . , xn t)
f2 (t, x1 t, . . . , xn t)

...
fn (t, x1 t, . . . , xn t)

1

CCCA
= f (t,X t),

where the function f : T ⇥ S ! Rn is a vector field . That is, it assigns a vector of Rn

to each point in T ⇥ S. Therefore, an initial value problem (IVP) consists of a vector field
f : T ⇥ S ! Rn and an initial condition (t0, s) 2 T ⇥ S. Then, a solution to the system of
ODEs is a continuously di↵erentiable function X : T ! S such that X 0 t = f (t,X t) for all
t 2 T . Such a function also solves the IVP if it satisfies X t0 = s.

Example 4.1.1 (Particles in fluid). To model the three-dimensional motion of particles in a
fluid, we can assign a velocity vector to each point in space. For instance, Figure 4.1 shows a
graphical representation of the vector field described by the system of di↵erential equations

x0 t = v, y0 t = 0, z0 t = � sin (x t),

where v 2 R \ {0} is a nonzero constant, and the functions x, y, and z model the position of
the particles in the three dimensional space.

The corresponding vector field f : R3
! R3, is therefore

f

0

@
x
y
z

1

A =

0

@
v
0

� sin x

1

A .

4.1. ORDINARY DIFFERENTIAL EQUATIONS 45

Figure 4.1: Vector field modeling the motion of particles in a fluid

Hence, for initial values x0, y0, z0 2 R at initial time t0 = 0, the corresponding solution
X : R! R3 is the function defined by

X t =

0

@
x0

y0
z0 �

cosx0
v

1

A+

0

@
vt
0

cos (x0+vt)
v

1

A .

The fact that X solves the system of ODEs is easily certified with simple applications of
well-known derivative rules:

X 0 t =

0

@
v
0

� sin (x0 + vt)

1

A = f

0

@
x0 + vt

y0
z0 +

cos (x0+vt)�cosx0

v

1

A = f (X t).

On the other hand, checking that this function solves the IVP is just a simple substitution.

X 0 =

0

@
x0

y0
z0 �

cosx0
v

1

A+

0

@
v0
0

cos (x0+v0)
v

1

A =

0

@
x0

y0
z0

1

A .

Therefore, the function X represents the trajectory for a given particle starting at the initial
point (x0, y0, z0). In Figure 4.1, the red line and dot are a possible depiction of X.

In practice, solutions X : T ! S to initial value problems X 0 t = f (t,X t) with X t0 = s
represent a possible evolution in time of the system described by the ODEs. Accordingly, the
initial condition (t0, s) describes the initial time and state of the system [63, 131]. However,
solutions to IVPs need not be unique, which is an often needed property for the detailed
analysis of the corresponding phenomenon.

For its relevance to our formalisation, below we describe a common method for obtaining
conditions that guarantee local existence and uniqueness of solutions to IVPs. We start by

46 CHAPTER 4. HYBRID STORE SEMANTICS

regarding IVPs as integral equations via the fundamental theorem of calculus:

X t�X t0 =

Z t

t0

f (⌧, X ⌧)d⌧.

Rearranging terms and substituting X t0 = s, a function satisfies this equation if the operator
h, defined by

hX t = s+

Z t

t0

f (⌧, X ⌧)d⌧,

has a fixpoint. Therefore, finding conditions for local existence and uniqueness of solutions
to IVPs is just a matter of applying fixpoint theory to h. In particular, h needs to be a
contraction on a complete metric space, where completeness means existence of limits of
Cauchy sequences and contraction refers to a distance decreasing map. Specifically, we need
to choose ", � > 0 so that h is a contraction on the metric space of bounded and continuous
functions of type B"(t)! B�(s), where B�(s) = {⌧ | k⌧ � tk �} is the closed ball of radius
� around s. If that is the case, then we can iterate h on this space, by defining h0 X t = s
and hn+1 = h � hn, so that

X t = lim
n!1

✓
s+

Z t

0

f (hn�1 ⌧)d⌧

◆
= s+

Z t

0

f (X ⌧)d⌧,

where the last equality follows by continuity of addition, integration and f .
Moreover, for ensuring that h is a contraction, another requirement is that f : T⇥S ! Rn

must be locally Lipschitz continuous in S. That is, for each t 2 T and each s 2 S there must
be � > 0 and ` � 0 such that for all s1, s2 2 B�(s) \ S,

kf (t, s1)� f (t, s2)k ` ks1 � s2k .

Here, ksk =
pPn

i=1 s
2
i is the euclidean norm of Rn. Thus, we have sketched the proof of the

following result.

Theorem 4.1.1 (Picard-Lindelöf). Let f : T ⇥ S ! Rn be a vector field defined on a
neighbourhood T ⇥S of (t0, s) such that f is locally Lipschitz continuous in S and continuous
in T , then the IVP X 0 t = f (t,X t) with X t0 = s has a unique solution for all t 2 Ts on
some interval Ts = B"(t) ✓ T with " > 0.

Flows or continuous dynamical systems ' : T ! S ! S arise from the result above as
follows. First, we set the time coordinate of the initial condition as t0 = 0 to start imposing
the monoid structure on T . Because of this, we can introduce the extra ODE x0

0 t = 1 with
initial condition x0 0 = 0 to our system. Therefore, we obtain a time-independent system of
ODEs described by a vector field f : S ! Rn. Picard-Lindelöf theorem for the autonomous
case follows from the time-dependent case by using the function �(t, s). f s. Hence, for each
s 2 S, this theorem provides the existence of an interval Ts ✓ T and a unique local solution
or trajectory 'f

s : Ts ! S for the IVP, that is, 'f
s
0 t = f ('f

s t) for all t 2 Ts and 'f
s 0 = s.

Geometrically, the functions 'f
s are unique curves in S passing through their respective s and

always tangential to f like the one depicted in Figure 4.1. Furthermore, their domains are all
intervals around 0, which means that we can define a local flow function from

S
s2S Ts ⇥ {s}

4.1. ORDINARY DIFFERENTIAL EQUATIONS 47

to S that maps each (t, s) to 'f
s t. Alternatively, if, for all s 2 S, Ts = T is an uncountable

monoid with neutral element 0, then ' : T ! S ! S such that ' t s = 'f
s t is a (global) flow.

That is, it satisfies the monoid action identities ' 0 s = s and ' (t1 + t2) s = ' t1 (' t2 s) for
all t1, t2 2 T [131].

Finally, flows provide state transformers by associating a given initial state s to the set
of all points in its trajectory. Defining the orbit map �' : S ! P S, such that

�' s = P 'f
s Ts = {' t s | t 2 Ts},

is the first step towards connecting ODEs with the state transformer model for Kleene
algebras. As we will see in Section 4.4, this allows us to obtain rules for verification condition
generation of hybrid programs.

Example 4.1.2 (Particles in a fluid revisited). A well-known result to check if a function is
locally Lipschitz continuous consists in seeing if it is continuously di↵erentiable. That is, it
must be di↵erentiable and its derivative, continuous. In the case of the vector field

f

0

@
x
y
z

1

A =

0

@
v
0

� sin x

1

A

of Example 4.1.1, the three coordinates satisfy this property. Therefore, it is locally Lipschitz
continuous. Furthermore, for each s = (s1, s2, s3) 2 R3, the interval of existence of the unique
solution 'f

s is the entire real line R. Therefore, a global function ' : R! R3
! R3 emerges

' t s = 'f
s t =

0

@
s1
s2

s3 �
cos s1

v

1

A+

0

@
vt
0

cos (s1+vt)
v

1

A .

Checking that this function satisfies the additive monoid action law is entirely calculational:

' t1 (' t2 s) =

0

@
s1 + vt2

s2
s3 �

cos s1
v + cos (s1+vt2)

v �
cos(s1+vt2)

v

1

A+

0

@
vt1
0

cos (s1+vt2+vt1)
v

1

A

=

0

@
s1
s2

s3 �
cos s1

v

1

A+

0

@
v(t1 + t2)

0
cos (s1+v(t1+t2))

v

1

A

= ' (t1 + t2) s.

Given this property and the fact that ' 0 s = s which we know true from Example 4.1.1, we
can conclude that ' is a flow. Thus, for each s 2 R3, its orbit �' s = {' t s | t 2 R} collects
all the points in space where a particle starting at s will be.

In summary, ordinary di↵erential equations are the preferred model for describing physical
phenomena. We can use vector fields to concisely represent systems of ODEs and, if the
vector fields satisfy local Lipschitz continuity, then their associated initial value problems
have unique local solutions by Picard-Lindelöf theorem. We can group these solutions or
trajectories by patching their domains and defining a local flow. Yet, if the solutions are

48 CHAPTER 4. HYBRID STORE SEMANTICS

global, the flow is a proper continuous dynamical system, that is, a monoid action. In the
end, to obtain state transformers from ODEs, we only need the orbit of each initial state of
the system. That is, we need the set of all its possible future states.

We can go beyond unique solutions in the description of our program semantics. This is
the central concept of Section 5.1. However, in the meantime, we focus on the Isabelle/HOL
formalisation of the concepts discussed in this section.

4.2 ODEs in Isabelle/HOL

In contrast with Section 3.5 where we use type classes to formalise Kleene algebras, here we
use the related notion of locales for the formalisation of the results in Section 4.1. Their
declaration di↵ers only by the command used to call them (class and locale respectively).
Two reasons require us to make this choice. Firstly, classes are mono-typed which does not
fit with the two types in a flow’s type ' : T ! S ! S, where T ✓ R and S is a possibly
di↵erent complete metric space. Secondly, a crucial reason for our use of locales is that
we base our verification components on Immler and Hölzl’s formalisation of Picard-Lindelöf
theorem, which itself is done with locales on top of a large Isabelle/HOL library for analysis
and ordinary di↵erential equations [67, 73, 74,76].

In [74], Hölzl and Immler prove existence and uniqueness results for time-dependent
vector fields f :: real) (0a::{heine-borel ,banach})) 0a in various scenarios. Specifically,
in the context of their locale called unique-on-bounded-closed, they have a theorem called
unique-solution that guarantees uniqueness of solutions within closed intervals of R. Then,
they specialise this to the entire real line in their locale unique-on-strip, to cartesian products
of intervals times closed balls of fixed radii in unique-on-cylinder, and to open domains
containing the initial condition in ll-on-open-it. We base our approach on the latter version
as it is the one that resembles the most Theorem 4.1.1. Yet, for convenience we add the
condition t0 2 T and remove intermediate definitions of their formalisation in the introduction
of our own locale picard-lindeloef shown below.

locale picard-lindeloef =
fixes f ::real) (0a::{heine-borel ,banach})) 0a
and T ::real set
and S :: 0a set
and t0::real

assumes open-domain: open T open S
and interval-time: is-interval T
and init-time: t0 2 T
and cont-vec-field : 8 s 2 S . continuous-on T (�t . f t s)
and lipschitz-vec-field : local-lipschitz T S f

begin

sublocale ll-on-open-it T f S t0
by (unfold-locales) (auto simp: cont-vec-field lipschitz-vec-field interval-time open-domain)

4.2. ODES IN ISABELLE/HOL 49

lemma unique-solution: — proved for a subset of T for general applications
assumes s 2 S and t0 2 U and t 2 U
and is-interval U and U ✓ existence-ivl t0 s
and xivp: D Y 1 = (�t . f t (Y 1 t)) on U Y 1 t0 = s Y 1 2 U ! S
and yivp: D Y 2 = (�t . f t (Y 2 t)) on U Y 2 t0 = s Y 2 2 U ! S

shows Y 1 t = Y 2 t
hproofi

end

In the locale above, we list the assumptions of Picard-Lindelöf theorem. That is, the
time-dependent vector field f is a total function, but continuous in time for each s 2 S and
locally Lipschitz on the open sets T and S, where T is also an interval that satisfies t0 2 T .
In its context we show with the sublocale command that its assumptions imply those of
ll-on-open-it. The latter provides the constant existence-ivl t0 s which corresponds to the
largest interval subset of T where solutions exist for initial (t0, s). We use this constant to
prove the unique-solution lemma for subsets U of T . The notationD X = (�t. f t (X t)) on T
is equivalent to 8t 2 T. X 0 t = f t (X t) whereas X 2 T ! S indicates that the total function
X maps elements of T specifically into S.

The uniqueness lemma above describes in its assumptions the formalisation of solutions to
initial value problems. Due to their relevance, we define a corresponding set in Isabelle/HOL.

definition ivp-sols :: (real) 0a) (0a :: real-normed-vector))) (0a) real set)) 0a set)
real) 0a) (real) 0a) set (Sols)
where Sols f U S t0 s = {X2U s ! S . (D X = (�t . f t (X t)) on U s) ^ X t0 = s ^ t0 2 T s}

In this definition, U is a function to model the dependency of the interval of existence of
solutions on the initial state s. Therefore, X 2 Sols f U S t0 s if and only if X solves the
initial value problem 8t 2 U s. X 0 t = f t (X t) with X t0 = s and X 2 U s! S.

Locales such as picard-lindeloef bundle the assumptions of a theorem with its name as a
predicate. Hence, asserting in Isabelle/HOL picard-lindeloef f T S t0 is the same as asserting
that f , T , S, and t0 satisfy all the assumptions in that locale. If this predicate holds, then all
the lemmas in the context of the locale such as unique-solution are derivable for f , T , S, and
t0. Based on this feature, we specialise picard-lindeloef to the time-independent case where
also t0 = 0 in a new locale called local-flow. Furthermore, we require a supplied function '
that for each s 2 S satisfies the associated IVP on every closed interval {0��t}, which is
the set of all points between 0 and t where t might be greater or lower than 0.

locale local-flow = picard-lindeloef (� t . f) T S 0
for f :: 0a::{heine-borel ,banach}) 0a
and T S L +

fixes ' :: real) 0a) 0a
assumes ivp:V

t s. t 2 T =) s 2 S =) D (�t . ' t s) = (�t . f (' t s)) on {0��t}V
s. s 2 S =) ' 0 s = sV
t s. t 2 T =) s 2 S =) (�t . ' t s) 2 {0��t} ! S

50 CHAPTER 4. HYBRID STORE SEMANTICS

As a consequence of this definition, the set T of the locale is its own maximal interval
of existence. This forces users of the locale to provide a correct domain for f from the
specification. Other consequences are that �t. ' t s solves the systems of ODEs on all of T ;
it is therefore, for each s 2 S, a solution of the associated IVP, and every other solution for
such an IVP coincides with it on t 2 T . That is, ' is a local flow for f .

lemma ex-ivl-eq : s 2 S =) existence-ivl t0 s = T
hproofi

lemma has-vderiv-on-domain: s 2 S =) D (�t . ' t s) = (�t . f (' t s)) on T
hproofi

lemma in-ivp-sols: s 2 S =) 0 2 U s =) U s ✓ T =) (�t . ' t s) 2 Sols (�t . f) U S 0 s
hproofi

lemma eq-solution:
assumes s 2 S
and is-interval (U s) and U s ✓ T and t 2 U s
and xivp: X 2 Sols (�t . f) U S 0 s

shows X t = ' t s
hproofi

Finally, if T = R, formalised below as T = UNIV where UNIV is the universal set of a type,
then the flow ' is global and therefore a monoid action.

lemma ivp-sols-collapse: T = UNIV =) s 2 S =) Sols (�t . f) (�s. T) S 0 s = {(�t . ' t s)}
hproofi

lemma is-monoid-action:
assumes s 2 S and T = UNIV
shows ' 0 s = s
and ' (t1 + t2) s = ' t1 (' t2 s)
hproofi

Finally, for certifying derivatives, we have created a tactic in Isabelle/HOL that consists
in collecting derivative rules and feeding them to the auto tactic. That is, we have created a
list of theorems named poly-derivatives.

named-theorems poly-derivatives compilation of optimised miscellaneous derivative rules .

Then, we add derivative rules to this list, for instance, rules for sines, cosines and exponentials.

lemma vderiv-cosI [poly-derivatives]:
assumes D (f ::real) real) = f 0 on T and g = (�t . � (f 0 t) ⇤ sin (f t))
shows D (�t . cos (f t)) = g on T
hproofi

4.3. SEMANTICS FOR ASSIGNMENTS 51

lemma vderiv-sinI [poly-derivatives]:
assumes D (f ::real) real) = f 0 on T and g = (�t . (f 0 t) ⇤ cos (f t))
shows D (�t . sin (f t)) = g on T
hproofi

lemma vderiv-expI [poly-derivatives]:
assumes D (f ::real) real) = f 0 on T and g = (�t . (f 0 t) ⇤ exp (f t))
shows D (�t . exp (f t)) = g on T
hproofi

Other rules that we have added include rules for addition, multiplication, division and
exponentiation to a natural power. This allows auto to apply the rule that fits best
automatically. The following is a derivative certification involving exponentials, cosines and
divisions.

lemma c 6= 0 =) D (�t . a5 ⇤ tˆ5 + a3 ⇤ (tˆ3 / c) � a2 ⇤ exp (tˆ2) + a1 ⇤ cos t + a0) =
(�t . 5 ⇤ a5 ⇤ tˆ4 + 3 ⇤ a3 ⇤ (tˆ2 / c) � 2 ⇤ a2 ⇤ t ⇤ exp (tˆ2) � a1 ⇤ sin t) on T
by(auto intro!: poly-derivatives simp: power2-eq-square)

As we will see in Sections 5.4 and 5.5, this improvement in automation contributes to faster
completion of two verification procedures described in Section 4.4 and Section 5.2 respectively.

In summary, the picard-lindeloef locale provides conditions for existence and uniqueness
of solutions for time-independent IVPs in Isabelle/HOL. On the other hand, local-flow is the
autonomous special case of picard-lindeloef with 0 being the initial time and extended with
a variable ' for specifying a characterisation of the flow. They form the basic infrastructure
of dynamical systems for building verification components in the proof assistant. We also
added the tactic poly-derivatives to certify derivatives automatically.

4.3 Semantics for Assignments

Recall that we wish to provide semantics of hybrid programs defined by the grammar

X ::= x := e | x0 = f &G |?P | X ;X | X +X | X⇤,

and derive verification conditions for each constructor. In the case of the last four, we
explained in Chapter 3 how to obtain these from state transformers f : S ! P S or relations
R ✓ S ⇥ S via Kleene algebras. Here we focus on defining semantics for assignments x := e.

We start by fixing a finite set of program variables V . Then, states s 2 S of hybrid
programs correspond to functions from V to R, that is S ✓ RV . Intuitively, for a state
s : V ! R and a variable x 2 V , the real number s x is the value of x at state s. Section 6.4
discusses an alternative approach that abstracts from this concrete implementation to more
complex state spaces.

Given an input state s : V ! R, the output state of an assignment x := e should coincide
with s everywhere but in x, where expression e dictates the value of s x. Furthermore,
the right hand side in an assignment x := e may depend on the value of the program

52 CHAPTER 4. HYBRID STORE SEMANTICS

variables at the previous state. This means that making e a fixed value would not align with
our intuition. Instead, we make it a function e : S ! R. Also, in our shallow embedding
approach, assignments should correspond to either a state transformer or to a relation. Hence,
we define them in the state transformer model as functions that map states to singletons of
updated states, that is

(x :=F e) s = {s[x 7! e s]},

where we use update functions �[� 7! �] : BA
! A ! B ! BA such that f [a 7! b] a = b

and f [a 7! b] x = f x for any function f : A ! B and for x 6= a. Using our notation from
the powerset monad, our definition of assignments is just lifting update functions to state
transformers S ! P S via ⌘S � �[x 7! e s].

Similarly to other hybrid programs, the isomorphism R between relations and state
transformers allows us to compute the relational version of the semantics for assignments

(x :=R e) = R (x :=F e) = {(s, s[x 7! e s]) | s 2 S}.

We can also start with the relational version and define (x :=F e) = F (x :=R e).
Nevertheless, in both semantics, the wlp or forward box predicate transformer, computes
the same value for assignments

|x := e]Qs = Qs[x 7! e s], (wlp-assign)

which justifies dropping the subscripts F and R. In the equation above, we also adhere to
our indistinction of predicates Q : S ! B with their respective boolean algebras of each
semantics. Similarly, the Hoare triple for assignments is also derivable

{�s. Q s[x 7! e s]}x := e {Q}. (h-assign)

The following couple of examples show how to use these two rules of verification condition
generation for assignments.

Example 4.3.1 (thermostat’s control revisited). In Example 3.2.1, we derived the leafs of a
proof tree to verify the correctness specification

{�s. Tm s T TM} ctrl {�s. Tm s T TM},

where the hybrid program

ctrl = (t := �s. 0) ; (T0 := �s. s T);
if �s. s ✓ = 0 ^ s T0 Tm + 1 then ✓ := �s. 1 else
if �s. s ✓ = 1 ^ s T0 � TM � 1 then ✓ := �s. 0 else skip

models a simple control for a thermostat turning a heater ✓ on or o↵ to regulate the
temperature T of a room. The specification then requires that, after the discrete intervention
of the thermostat, the room’s temperature remains between Tm and TM . Notice that, in
contrast with our previous depiction of ctrl, we now make explicit the types S ! R and
S ! B in assignments and tests respectively.

4.3. SEMANTICS FOR ASSIGNMENTS 53

In Example 3.2.1, we conclude that each leaf of the tree requires a proof of a Hoare triple
involving an assignment. Two of them are

{�s. Tm s T TM} (t := �s. 0) {�s. Tm s T TM},

{�s. Tm s T TM} (T0 := �s. s T) {�s. Tm s T TM}.

With our recently defined semantics for assignments, we can validate the conclusion of
Example 3.2.1. Indeed, we just need to observe that

(�s. (�&. Tm & T TM) s[t 7! 0]) = (�s. Tm s T TM) and

(�s. (�&. Tm & T TM) s[T0 7! s T]) = (�s. Tm s T TM),

because the update does not modify s T . Therefore, we can rewrite the above Hoare triples
in the (h-assign) form and discharge them because they are simply true.

The rest of the leafs of the proof tree involve assignments for ✓, either (✓ := �s. 1) or
(✓ := �s. 0) with the same postcondition (�s. Tm s T TM). The only di↵erence is that
the precondition includes an extra conjunct. For instance,

{�s. s ✓ = 0 ^ Tm s T TM} (t := �s. 1) {�s. Tm s T TM}.

In those cases, we only need to weaken the precondition with an application of (h-cons) to
obtain the proof obligation

{�s. Tm s T TM} (✓ := �s. 1) {�s. Tm s T TM},

and proceed as in the previous branches.
Therefore, due to the fact that we can derive a true statement for each of the leafs in the

proof tree, the results presented here and in Example 3.2.1 verify that �s. Tm s T TM is
an invariant for ctrl.

Example 4.3.2 (wlp of thermostat’s control). Similarly, in Example 3.3.1 we partially
obtained a weakest liberal precondition of ctrl which we copy here.

|ctrl]P = |t := 0] |T0 := T] (t1 ; |✓ := 1]P + ¬t1 ; t2 ; |✓ := 0]P + ¬t1 ; ¬t2 ; P) ,

where t1 = (✓ = 0 ^ T0 Tm + 1) and t2 = (✓ = 1 ^ T0 � TM � 1).
Making explicit the semantic types of assignments and tests, the wlp becomes

|ctrl]P s = |t := �&. 0] |T0 := �&. & T](Q1 _Q2 _Q3) s, where

Q1 s = (t1 s ^ |✓ := �&. 1]P s),

Q2 s = (¬t1 s ^ t2 s ^ |✓ := �&. 0]P s),

Q3 s = (¬t1 s ^ ¬t2 s ^ P s).

Thus, it remains for us to apply (wlp-assign) to complete the calculation. The right hand
side then becomes (Q1 _Q2 _Q3) s[t 7! 0][T0 7! s T]. In particular,

Q1 s[t 7! 0][T0 7! s T] = s ✓ = 0 ^ s T Tm + 1 ^ P s[t 7! 0][T0 7! s T][✓ 7! 1],

Q2 s[t 7! 0][T0 7! s T] = ¬ (s ✓ = 0 ^ s T Tm + 1) ^ (s ✓ = 1 ^ s T � TM � 1)

^ P s[t 7! 0][T0 7! s T][✓ 7! 0], and

Q3 s[t 7! 0][T0 7! s T] = ¬ (s ✓ = 0 ^ s T Tm + 1) ^ ¬ (s ✓ = 1 ^ s T � TM � 1)

^ P s[t 7! 0][T0 7! s T].

54 CHAPTER 4. HYBRID STORE SEMANTICS

Intuitively, eachQi with i 2 {1, 2, 3} represents a region of the thermostat’s behaviour. Q1

corresponds to the moment when the temperature gets close to the lower bound Tm. Similarly,
Q2 represents a region where the temperature is close to TM . Finally, Q3 considers all the
remaining regions where T might not be close to any of the boundaries of the comfortable
zone. Therefore, the wlp of ctrl, states that P holds after its execution if and only if
any of the regions is true with P s[t 7! 0][T0 7! s T][✓ 7! 1] holding at Q1, accordingly
P s[t 7! 0][T0 7! s T][✓ 7! 0] doing so at Q2, and P s[t 7! 0][T0 7! s T] at Q3. In particular,
observe that if P = (�s. s t = 0), then

P s[t 7! 0][T0 7! s T][✓ 7! 1] = P s[t 7! 0][T0 7! s T][✓ 7! 0] = P s[t 7! 0][T0 7! s T] = >.

Therefore, �s. s t = 0 holds after the execution of ctrl.

Adding (h-assign) to the rules obtained from KATs completes the derivation of Hoare logic
for while programs as in [9]. Accordingly, adding (wlp-assign) to the forward box equations
of MKAs like in [55] generates a calculus for computing weakest liberal preconditions of
while programs. Therefore, to obtain a hybrid version of these calculi, it remains to provide
semantics and rules for verification condition generation of evolution commands x0 = f &G.
In the sequel we pursue this goal.

4.4 Semantics for Evolution Commands

In this section, we explain one of the most important conceptual contributions from our work
in [44, 72]. Specifically, we proceed to define the state transformer and relational semantics
of evolution commands x0 = f &G. These are hybrid programs that consist of a system
of di↵erential equations, supplied by the vector field f , and a predicate G which models
boundary conditions. The predicate G is called an evolution domain constraint or simply
a guard . The remaining variable x0 and the equality symbol = are just syntactic addenda
to resemble ODEs. Intuitively, “executing” an evolution command means that the system
follows the flow of the di↵erential equation while respecting the guard for an unspecified
amount of time. In what follows, we make this intuition mathematically concrete.

At the end of Section 4.1, we observed that the orbit �' s = {'f
s t | t 2 Ts} for a trajectory

'f
s : Ts ! S, with Ts ✓ R and s 2 S ✓ RV , is a state transformer �' : S ! P S. Therefore, it

is a good initial candidate for a semantics of evolution commands. Due to the isomorphism
between the finite dimensional vector space Rn and RV , where V is the set of n possible
program variables, this observation still holds in our state space S ✓ RV . However, we can
generalise orbits in two ways. Firstly, we do not need trajectories to describe evolutions
in time. In fact, we only need functions X : T ! S mapping times to states. Secondly,
because of the evolution domain restriction in evolution commands, we prefer to work with
a G-guarded version of the orbit. Hence, we define the G-guarded orbit map as the function
� : (T ! S)! (S ! B)! P T ! P S such that

�X GU =
[

{P X (#U t) | P X (#U t) ✓ G},

where we abuse notation and treat predicates as sets. Recall that #U t = {⌧ 2 U | ⌧ t},
and observe that, by its type, U ✓ T . Therefore, the set �X GU patches the image under

4.4. SEMANTICS FOR EVOLUTION COMMANDS 55

Figure 4.2: A discrete (left) and a continuous (right) guarded orbit

X of all the points of U below t that respect G for each t 2 T . Figure 4.2 schematises two
guarded orbits, one with a discrete time domain and another with continuous time. It shows
points in the discrete guarded orbit as filled dots and those in the continuous one as part of
an uninterrupted line. The guarded orbit are all those points in the image of X that satisfy
G within U . Notice that U is mainly there to restrict our domain of interest for the guarded
orbit even though X is defined in all of T . We can see the resemblance of this definition with
that of traditional orbits in the following result.

Lemma 4.4.1. Let S be a set, U ✓ T ✓ R, X : T ! S and G : S ! B, then

�X GU = {X t | t 2 U ^ 8⌧ 2 #U t. G (X ⌧)}.

Geometrically, if U is an interval, this means that G-guarded orbits collect all the points
of the longest initial segment of the curve X that also satisfies G. Moreover, as indicated
in the lemma below, >-guarded orbits coincide with traditional orbits �', where > is the
constant true predicate.

Lemma 4.4.2. Suppose 'f
s is the unique solution on Ts to the IVP given by the locally

Lipschitz continuous vector field f : S ! S and the initial condition (0, s), then

� 'f
s >Ts = �' s.

Given these results, we are ready to define the state transformer semantics for evolution
commands. For a state s 2 S ✓ RV , an autonomous locally Lipschitz continuous vector field
f : S ! S, and a predicate G : S ! B, let 'f

s : Ts ! S be the unique longest trajectory for
the respective IVP such that 'f

s 0 = s with Ts ✓ R. If U is an interval satisfying 0 2 U ✓ Ts,
then the state transformer semantics of evolution commands is the G-guarded orbit

(x0 =F f &G)U s = � 'f
s GU = {'f

s t | t 2 U ^ 8⌧ 2 #U t. G ('f
s ⌧)}.

On the other hand, applying the isomorphism R between relations and state transformers
yields the relational semantics

(x0 =R f &G)U = R (x0 =F f &G)U = {(s,'f
s t) | t 2 U ^ 8⌧ 2 #U t. G ('f

s ⌧)}.

Just like with assignments, we could start with this equation and obtain our original definition
via (x0 =F f &G)U = F (x0 =R f &G)U . Furthermore, recall that the interval Ts guaranteed

56 CHAPTER 4. HYBRID STORE SEMANTICS

Figure 4.3: The continuous line illustrates where the formula |(x0 = f &G)U]Q holds.

by Picard-Lindelöf theorem is a neighbourhood of 0, thus, some part of the unique solution
exists on the positive reals. Based on this, if the interval U ✓ Ts is the longest initial segment
of the nonnegative reals R+ in Ts, we get the standard relational semantics of dL [113].

It only remains to derive rules for verification condition generation of evolution commands.
Recall that in the MKA semantics P ; ↵ ↵ ; Q of wlps and Hoare triples, the sequential
composition on the left-hand side guarantees P before ↵. Similarly, Q holds after ↵ by the
right hand side. Contrastingly, in the case of evolution commands and consistently with dL,
all the points of the orbit satisfy Q (see also Figure 4.3):

|(x0 = f &G)U]Qs = 8t 2 U. (8⌧ 2 #U t. G ('f
s ⌧))! Q ('f

s t). (wlp-evol)

As expected, in both semantics the weakest liberal preconditions coincide, which enables
us to omit subscripts F and R. Similarly, a Hoare triple for evolution commands is also
available

{� s. 8t 2 U. (8⌧ 2 #U t. G ('f
s ⌧))! Q ('f

s t)} (x0=f &G)U {Q}. (h-evol)

The assumptions on our definition of the semantics for evolution commands are essential.
The results derived so far hold only for autonomous Lipschitz continuous vector fields with
initial time 0. As a consequence, verifying x0 = f &G in this setting requires the following
procedure

1. Show that f : S ! S satisfies the assumptions of Picard-Lindelöf theorem, that is, f
is locally Lipschitz continuous and S ✓ RV is open;

2. Supply a (local) flow ' for f with a subset 0 2 U of the interval of existence T ;

3. Certify that it is indeed a (local) flow, that is, show that for all s 2 S and all t 2 T ,
'f
s
0 t = f ('f

s t) and 'f
s 0 = s.

4. If all previous steps succeed, apply either (h-evol) or (wlp-evol) depending on the
required specification.

4.4. SEMANTICS FOR EVOLUTION COMMANDS 57

As with other deductive verification approaches, the procedure above is as successful as
the user is knowledgable and skillful with mathematical results. This is because finding a
Lipschitz constant or a solution to a di↵erential equation ranges from easy to impossible.
In many cases, working with analytical solutions is not possible which is why we discuss in
Section 5.2 alternative ways to reason about ODEs. In dL, the first step is not required
because all terms in its language generate Lipschitz continuous vector fields. Nevertheless,
in many applications, we can remove this requirement or use an alternative one (see
Sections 5.3 and 6.5). Similarly, in practice, users can delegate the computation of solutions
to systems of di↵erential equations in step 2 to computer algebra systems. We explore
further simplifications to the procedure above in Sections 5.2 and 5.3. In the meantime, we
exemplify its use below.

Example 4.4.1 (thermostat’s verification). Recall from Figure 2.5, and the running
Examples 3.2.1, 3.3.1, 4.3.1 and 4.3.2 that thermostat = loop (ctrl ; dyn) where

dyn = if �s. s ✓ = 0 then x0 = f0 &G0 else x0 = fTL >L ,

and ctrl is as in Example 4.3.1. The vector field fc models the heating and cooling dynamics
with its defining equations fc s T = �a(s T � c), fc s t = 1, fc s ✓ = 0, and fc s T0 = 0.
Essentially, this means that fc makes the room temperature decrease or grow exponentially
towards c 2 {0, TL} at a rate of a > 0, where 0 Tm and TM TL. As the derivatives
equate to 0, it leaves the program variables T0 and ✓ unchanged. Finally, it also includes a
coordinate to model the passing of time. The guards in the dynamics are

Gc s$

✓
s t �

1

a
ln

✓
c� Lc

c� s T0

◆◆
,

where Lc is Tm if c = 0 or TM if c = TL. They restrict the duration of the evolution command
to never go beyond Tm or TM .

The material presented so far su�ces to verify the entire hybrid program. However, for
simplicity, we will limit ourselves to obtain the wlp for the first branch of the continuous
dynamics, that is x0 = f0 &G0. For a full verification of thermostat, we refer the reader to
the formalisation in Section 5.4.

According to the above procedure, to obtain |(x0=f0 &G0)U]P , we first need to check
that f0 is locally Lipschitz continuous. Simply put, we must find a constant ` such that
kf0 s1 � f0 s2k ` ks1 � s2k in a suitable region. Given that for variables t, T0 and ✓ the
vector field is constant, the di↵erence f0 s1 � f0 s2 becomes 0 at those coordinates. Thus,

kf0 s1 � f0 s2k = |f0 s1 T � f0 s2 T | = a |s1 T � s2 T | a ks1 � s2k .

Hence, f0 is Lipschitz continuous in all of RV , and the equations 'f0
s ⌧ T = s T exp(�a⌧),

'f0
s ⌧ t = s t + ⌧ , 'f0

s ⌧ T0 = s T0, and 'f0
s ⌧ ✓ = s ✓ describe the unique solution to the

associated initial value problem for s = (s1, s2, s3)> 2 RV .
To simplify our result, we fix U s = R+. Based on this, applying (wlp-evol) gives us

|(x0 = f0 &G0)R+]Qs = 8r � 0. (8⌧ 2 [0, r]. G ('f0
s ⌧))! Q ('f0

s r)

= 8r � 0.

✓
8⌧ 2 [0, r]. 'f0

s ⌧ t �
1

a
ln

✓
Tm

s T0

◆◆
! Q ('f0

s r).

58 CHAPTER 4. HYBRID STORE SEMANTICS

In particular, we know from Example 4.3.1 that �s. s t = 0 holds after the execution of
ctrl. Therefore, 'f0

s ⌧ t = ⌧ for all ⌧ 2 [0, r] during the execution of this branch of dyn.
Thus, in that case, the inequality in the wlp above implies 0 � �a⌧ � ln(Tm/s T0). If we
can guarantee that 'f0

s 0T = s T = s T0, we could prove that 'f0
s ⌧ T = s T exp(�a⌧) � Tm.

This is the reason why ctrl includes the assignment (T0 := �s. s T). See lemma thermostat
in Section 5.4 for a full verification of thermostat.

Despite the requirements listed in the procedure above, our G-guarded orbits apply
to more functions than just those satisfying Picard-Lindelöf theorem. This suggests the
possibility of alternative generalised semantics of evolution commands which we explore in
more detail in Sections 5.1 and 5.3.

Adding assignments and evolution commands to the regular programs from Kleene
algebras generates hybrid programs. Thus, our work in this section completes our derivation
of rules for each of them. Namely, by adding (h-evol) and (h-assign) to the rules of Hoare
logic of Section 3.2, we get di↵erential Hoare logic dH. This is a minimalistic logic for
verification of hybrid systems. Analogously, (wlp-evol) and (wlp-assign) complete our work
in this chapter for extending the wlp-calculus of Section 3.3 to reason about hybrid programs.
As usual, we provide one verification rule for each hybrid program. Then, applying these
rules recursively generates proof obligations which are specific to the concrete relational or
state transformer semantics on S ✓ RV .

4.5 Hybrid Stores in Isabelle/HOL

In this section, we describe the instantiation of the state transformer and relational semantics
to our concrete hybrid store in Isabelle/HOL. We explain the connection between our previous
Sections 3.5 and 4.2 that formalise Kleene algebras and ODEs respectively. Then we build
upon them to define assignments as in Section 4.3 and obtain rules for verification condition
generation for this hybrid program.

As explained in Section 4.3, our hybrid stores s 2 RV correspond to functions from a
finite set of program variables to the real numbers. In Isabelle, we model the set V with
a finite type 0n :: finite. The state space RV then corresponds to the type of real valued
vectors (real , 0n) vec which we abbreviate with realˆ 0n. By definition, this is a subtype of
the type of functions from 0n to real. This means that, by default, Isabelle/HOL provides
an isomorphism between realˆ 0n and 0n) real. This isomorphism uses infix notation $.
Operationally, s$i is the ith coordinate of s, or rather, the value of store s at variable i. Its
inverse uses a �-binder replacing �-abstraction. Hence, (�i . s$i) = s for all s :: realˆ 0n and
(� i . x)$i = x for x :: real

In Isabelle there is an instantiation proof showing that vectors with finite dimension over
a field such as realˆ 0n form a Banach space where the Heine-Borel theorem applies. That
is, realˆ 0n is a complete metric space in the sense of Section 4.1 whose compact sets are
precisely its closed and bounded sets. This enables us to use the assumptions of the locale
picard-lindeloef on vector fields f :: real) realˆ 0n) realˆ 0n.

Similarly, recall that we have two models for Kleene algebras in Isabelle/HOL because of
our interpretation of relations as antidomain Kleene algebras and a similar instantiation proof
for state transformers of Section 3.5. This means that we can apply our rules for forward box

4.5. HYBRID STORES IN ISABELLE/HOL 59

operators on relations of type (realˆ 0n ⇥ realˆ 0n) set and nondeterministic functions (realˆ 0n)
nd-fun. Thus, we only show the formalisation with the relational model below because the
process for state transformers is analogous. However, as shown below, we change notation at
the level of these concrete semantics to resemble that of regular programs. We also simplify
the verification laws by removing antidomain and antirange operations as follows.

notation Id (skip)
and relcomp (infixl ; 70)
and zero-class.zero (0)
and rel-aka.fbox (wp)

With command notation, we can use skip instead of the identity relation, semicolon ;
instead of relational composition, and wp instead of the forward box operator. Afterwards,
below we introduce the isomorphism between predicates and subidentity relations and add
simplification rules about this operator via the lemma p2r-simps. The last two lines of this
lemma, in particular, indicate that the antidomain operation on a lifted predicate corresponds
to the lifting of its negation, and that the domain operation leaves them unchanged.

definition p2r :: 0a pred) 0a rel ((1 d-e)) where
dPe = {(s,s) |s. P s}

lemma p2r-simps[simp]:
dPe dQe = (8 s. P s �! Q s)
(dPe = dQe) = (8 s. P s = Q s)
(dPe ; dQe) = d� s. P s ^ Q se
(dPe [dQe) = d� s. P s _ Q se
rel-ad dPe = d�s. ¬ P se
rel-aka.ads-d dPe = dPe
unfolding p2r-def rel-ad-def rel-aka.ads-d-def by auto

Then, we show the relational equivalent to the forward box operation with lemma wp-rel.
Finally, we introduce upper case abbreviations for the hybrid programs of Sections 3.2 and 3.5.
The corresponding rules for verification condition generation, just call their Kleene algebra
versions of Section 3.5 and the auto tactic.

lemma wp-rel : wp R dPe = d� x . 8 y . (x ,y) 2 R �! P ye
unfolding rel-aka.fbox-def p2r-def rel-ad-def by auto

abbreviation cond-sugar :: 0a pred) 0a rel) 0a rel) 0a rel (IF - THEN - ELSE - [64 ,64] 63)
where IF P THEN X ELSE Y ⌘ rel-aka.aka-cond dPe X Y

abbreviation loopi-sugar :: 0a rel) 0a pred) 0a rel (LOOP - INV - [64 ,64] 63)
where LOOP R INV I ⌘ rel-aka.aka-loopi R dI e

lemma wp-loopI :
dPe dI e =) dI e dQe =) dI e wp R dI e =) dPe wp (LOOP R INV I) dQe
using rel-aka.fbox-loopi [of dPe] by auto

60 CHAPTER 4. HYBRID STORE SEMANTICS

At this point, we only need to add assignments and evolution commands to our
Isabelle/HOL verification components. We leave the formalisation of the latter for
Section 5.4 because for their Isabelle implementation we use a generalisation described
in Section 5.1. Therefore, we focus on assignments here. The first step is to define updates
for the type realˆ 0n. We do this via the inverse � of the isomorphism $ between vectors and
functions with finite domain, and with Isabelle’s function updates denoted f (a := b) instead
of f [a 7! b]. We show that our definition behaves as expected in lemma vec-upd-eq below.

definition vec-upd :: (0aˆ 0b)) 0b) 0a) 0aˆ 0b
where vec-upd s i a = (� j . ((($) s)(i := a)) j)

lemma vec-upd-eq : vec-upd s i a = (� j . if j = i then a else s$j)
by (simp add : vec-upd-def)

Based on this, the definition of assignments is as in Section 4.3. Its rule for verification
condition generation just requires to unfold definitions and call lemma wp-rel.

definition assign :: 0b) (0aˆ 0b) 0a)) (0aˆ 0b) rel ((2- ::= -) [70 , 65] 61)
where (x ::= e) = {(s, vec-upd s x (e s))| s. True}

lemma wp-assign [simp]: wp (x ::= e) dQe = d�s. Q (� j . ((($) s)(x := (e s))) j)e
unfolding wp-rel vec-upd-def assign-def by (auto simp: fun-upd-def)

The construction of hybrid programs and the derivation of their rules of inference that
we have described so far is a relatively fast way to build verification components for hybrid
systems in a proof assistant. There are two main obstacles to achieving their implementation.
The first consists in deriving all the necessary properties in Kleene algebras to derive the rules
of Hoare logic or the weakest liberal precondition calculus. In Isabelle/HOL however, this is
trivial as such derivations are available in AFP entries that precede our work [8,54]. Secondly,
the shallow embedding of the verification components also requires a su�cient formalisation
of relations, functions and ordinary di↵erential equations. Yet, once attained, it simplifies
the construction of verification tools for hybrid systems. For instance, function updates and
their properties replace implementation nuances about assignments and substitutions. The
approach also benefits from the compositionality of Kleene algebras, as new models can be
quickly instantiated. Looking at the syntax

X ::= x := e | x0 = f &G |?P | X ;X | X +X | X⇤,

this means that formalisation of the Kleene algebras provide us with four out of six hybrid
programs. In the following chapters, we explore variations to this implementation to make
them faster, more expressive or more flexible.

Chapter 5

Verification Components

So far, we have shown a mathematical roadmap for deriving a minimal logic for verification
of hybrid programs, dH, and a hybrid wlp-calculus. However, we have not finished its
development in Isabelle/HOL nor verified any hybrid system with the resulting verification
components. In this chapter, we tackle those missing discussions. Specifically, we give further
mathematical background to implement the components in a general manner that also allows
us to reproduce alternative verification procedures from dL. Specifically, those involving
di↵erential invariants [107]. Then, we formalise our approach in Isabelle/HOL and derive the
most important rules of dL with it.

As stated before, in order to formalise invariants shallowly in a proof assistant, we
generalise our semantics for evolution commands in Section 5.1. Then, in Section 5.2 we use
this semantics to generalise invariant sets for dynamical systems and implement verification
with di↵erential invariants as in dL. In Section 5.3, we present another way to verify hybrid
systems based on dynamical systems rather than using di↵erential equations. In Sections 5.4
and 5.5, we formalise all these developments in Isabelle/HOL which finishes our construction
of verification components for hybrid systems. Finally, we use Section 5.6 to derive the most
important axioms and rules of inference of dL with our components. This guarantees that, in
our framework, verification is feasible not only via di↵erential Hoare logic dH and our hybrid
wlp-calculus, but also via our derived rules in the style of dL.

5.1 Generalised Semantics for Evolution Commands

The verification procedure presented in Section 4.4 requires certifying solutions to systems of
ODEs. However, there are many systems of ODEs for which it is impossible to supply analytic
solutions. In theory, given that our work is inside a general purpose proof assistant, we could
formalise non-analytic functions and still supply them for the verification. Nevertheless, in
practice said approach would take too much time and manipulations of such complicated
functions are non-trivial. Yet, there are alternative mathematical methods for solving the
verification problem. For instance, one can try to deduce properties about the vector field
before even trying to find a solution for it. A well-studied method in dL, involves analysing
the properties of the vector field in the form of invariants of the system [107]. Therefore,
one can obtain partial correctness specifications for evolution commands without generating

61

62 CHAPTER 5. VERIFICATION COMPONENTS

the solutions to the ODEs. This is feasible because dL provides in terms and rules to reason
about its invariants. In our case, we have two options: provide a deep embedding of dL’s
syntax for invariants or develop the approach semantically. We opt for the second one as it
opens new avenues for research and fits better with our shallow embedding. Therefore, this
section presents a generalisation of evolution commands that is useful to implement invariant
reasoning in a general-purpose proof assistant.

The semantics for evolution commands developed in the previous chapter are G-guarded
orbits specialised to the trajectories of a locally Lipschitz continuous vector field. However, we
can generalise beyond flows and trajectories with definitions that we have already provided.
We start with the following set introduced in Section 4.2.

Sols f U S t0 s = {X : U s! S | (8t 2 U s. X 0 t = f tX t) ^X t0 = s ^ t0 2 U s}.

A few remarks about this definition apply to the rest of the chapter. Firstly, we do not impose
local Lipschitz continuity, nor even continuity for the vector field f : T ! S ! S. Therefore,
uniqueness of the solutions to associated IVPs do not necessarily applies. Secondly, instead
of using the intervals of existence Ts ✓ T , as provided by Picard-Lindelöf’s theorem, we use
a function U : S ! P R mapping each state s 2 S ✓ RV to a subset of R. Finally, if t0 2 U s,
then Sols f U S t0 s collects all the local solutions U s! S to the IVP given by f and (t0, s).
Otherwise, Sols f U S t0 s is empty.

As a consequence, for each X 2 Sols f U S t0 s and predicate G : S ! B, we get one
G-guarded orbit, namely, �X G (U s). To obtain the set of all possible future states of the
system described by f that satisfy G, we then patch all these G-guarded orbits in a G-guarded
orbital via the function �f

G : S ! P S as

�f
G s =

[
{�X G (U s) | X 2 Sols f U S t0 s}.

By their type, G-guarded oribtals are state transformers. To see that they can replace
our former semantics for evolution commands, the following results su�ce.

Proposition 5.1.1. Let f : T ! S ! S be a vector field, G : S ! B a guard, and
U : S ! P T with t0 2 T ✓ R and S ✓ RV . Then

1. if X 2 Sols f U S t0 s, then �X G (U s) ✓ �f
G s.

2. �f
G s = {Xt | t 2 U s ^ (8⌧ 2 #(U s) t. G (X ⌧)) ^X 2 Sols f U S t0 s}.

Furthermore, if f is locally Lipschitz continuous on S and continuous on T , and if U s is a
subinterval of the longest interval of existence Ts ✓ T of the unique solution 'f

s : Ts ! S
such that t0 2 U s, then

�f
G s = � 'f

s G (U s) = {'f
s t | t 2 U s ^ 8⌧ 2 #(U s) t. G ('f

s ⌧)}.

Hence, we introduce a variant of evolution commands (x0 =F f &G on U S at t0) given
by these G-guarded orbitals. As before, the corresponding relational semantics is

(x0 =R f &G on U S at t0) = {(s,X t) | t 2 U s ^ 8⌧ 2 #U t. G (X ⌧) ^X 2 Sols f U S t0 s}

Once again, rules for computing weakest liberal preconditions or forward box operators
are available for this generalisation

5.2. INVARIANTS FOR EVOLUTION COMMANDS 63

Figure 5.1: Invariants for ODEs contain every orbit that starts inside them

Theorem 5.1.2 (wlp-g-orbital). Let f : T ! S ! S be a vector field, G : S ! B a guard,
and U : S ! P T with t0 2 T ✓ R and S ✓ RV . Then

|x0 = f &G on U S at t0]Qs = 8X 2 Sols f U S t0 s.8t 2 U s. P X (#U t) ✓ G! Q (X t).

Similarly, we obtain a Hoare triple for G-guarded orbitals

Theorem 5.1.3 (h-g-orbital). Let f : T ! S ! S be a vector field, G : S ! B a guard, and
U : S ! P T with t0 2 T ✓ R and S ✓ RV . Then

{�s. 8X2 Sols f U S t0 s.8t2U s. P X (#U t) ✓ G! Q (X t)}x0 = f &G on U S at t0 {Q}.

If an IVP has two solutions, then it has infinite solutions, and models with infinite
evolutions in time are unlikely to be of use in applications. However, a benefit from this
generalisation is that it enables us to reason with di↵erential invariants. This is the topic of
the following section.

5.2 Invariants for Evolution Commands

Recall from Section 3.2 that an invariant for a (hybrid) program ↵ is a property I such
that {I}↵ {I}. The di↵erential invariants of dL are exactly the invariants from Section 3.2
specialised to evolution commands. They are inspired by invariant sets of dynamical systems
theory or (semi)group theory. Namely, for a (semi)group action ' : T ! S ! S, these are
sets I ✓ S such that T · I ✓ I, where T · I = {' t s | t 2 T ^ s 2 I}. In terms of flows, this
means that invariant sets contain all of their orbits �' s, that is �' s = P 'f

s T ✓ I for all
s 2 I [131]. In other words and as depicted in Figure 5.1, every trajectory that starts in the
region defined by the invariant remains in the invariant. In this section, we make this idea
mathematically precise in terms of our generalisation of guarded orbits.

Therefore, we define an invariant for a vector field f : T ! S ! S and guard G : S ! B
along U : S ! P T as a predicate I : S ! B such that

(�f
G)

† I ✓ I,

64 CHAPTER 5. VERIFICATION COMPONENTS

where we use the Kleisli extension g† = µ � P g and µS X =
S

X from the powerset monad
as in Section 3.1. Apart from manipulating predicates as sets, we also use I1 ^ I2 instead of
(�s. I1 s^ I2 s) and similar simplifications of notation. With the following result, we provide
a relationship between our invariants for vector fields and di↵erential invariants of dL.

Proposition 5.2.1. Let f : T ! S ! S be a vector field, G : S ! B a guard, and
U : S ! P T with t0 2 T ✓ R and S ✓ RV . Then the following are equivalent.

1. I is an invariant for f and G along U .

2. hx0 = f &G on U S at t0| I I

3. I |x0 = f &G on U S at t0] I

4. {I}x0 = f &G on U S at t0 {I}

As observed in Section 3.3, the first two are equivalent because they both are the Kleisli
extension of �f

G on I. Then, (2) and (3) are equivalent because of the Galois connection
between backward diamonds and forward boxes. The equivalence between the last two was
also stated in Section 3.3.

When doing verification condition generation, statements (3) and (4) are the most
frequently found. By the previous result, we can turn them into the first statement and
prove it instead. For this purpose, we list more results about our invariants. In particular,
they generalise invariant sets of dynamical systems.

Proposition 5.2.2. Let f : T ! S ! S be a vector field, G : S ! B a guard, and
U : S ! P T with t0 2 T ✓ R and S ✓ RV . Then the following are equivalent

1. I is an invariant for f and G along U ,

2. (�f
G s) ✓ I, for all s 2 I, and

3. for all s 2 I, X 2 Sols f U S t0 s and t 2 U s, if P X (#U t) ✓ G, then I (X t).

Under local Lipschitz continuity and other conditions of Proposition 4.4.1, the second
statement becomes the definition of an invariant set. The third statement is a direct
application of (wlp-g-orbital) of Theorem 5.1.2 on I |x0 = f &G on U S at t0] I of
Proposition 5.2.1.

The relationship between guards and invariants is also useful. In general, guards do
not contribute much in the proof of invariance, but they are required for guaranteeing
postconditions. Fortunately, we can take guards out of the evolution command into the
postcondition. The following result makes these assertions mathematically precise.

Lemma 5.2.3. Let f : T ! S ! S be a vector field, G : S ! B a guard, and U : S ! P T
with t0 2 T ✓ R and S ✓ RV . Then

1. I |x0 = f &> on U S at t0] I ! I |x0 = f &G on U S at t0] I, and

2. |x0 = f &G on U S at t0]Q = |x0 = f &G on U S at t0](G ^Q).

5.2. INVARIANTS FOR EVOLUTION COMMANDS 65

The first statement follows by antitonicity of forward boxes over the set containment
�f
G s ✓ �f

> s for all s 2 S. The second statement holds because, as explained in Section 4.4,
both guards and postconditions hold along the entire evolution.

Therefore, in order to prove P |x0 = f &G on U S at t0]Q, we may use an invariant
I |x0 = f &G on U S at t0](G^ I) such that P I and (G^ I) Q by (h-cons). That is,
the following rule is derivable.

Theorem 5.2.4 (h-inv/wlp-inv). Let f : T ! S ! S be a vector field, G : S ! B a guard,
and U : S ! P T with t0 2 T ✓ R and S ✓ RV . Then

P I^I |x0 = f &G on U S at t0]G ;I^(G ;I) Q ! P |x0 = f &G on U S at t0]Q.

For a procedure to determine the second conjunct in the antecedent of the above
implication without actually solving the system, we rely on the next lemma.

Lemma 5.2.5. Let f : T ! S ! S be a vector field, G : S ! B a guard, and U : S ! P T
a function that maps states of S ✓ RV to intervals U s such that t0 2 U s ✓ T ✓ R. If
µ, ⌫ : S ! R are di↵erentiable, then

1. µ = ⌫ is an invariant for f along U if (µ �X)0 = (⌫ �X)0 for all X such that X 0 t =
f t (X t) for t 2 U (X t0),

2. both µ � ⌫ and µ > ⌫ are invariants for f along U if (µ �X)0 t � (⌫ �X)0 t when t > 0,
and (µ �X)0 t (⌫ �X)0 t when t < 0 for all X such that X 0 t = f t (X t) and G (X t)
for t 2 U (X t0),

3. ¬(µ � ⌫) is an invariant for f along U if and only if µ < ⌫ is also an invariant for f
along U ,

4. µ 6= ⌫ is an invariant for f along U if both µ > ⌫ and ⌫ > µ are (and conversely if t0
is below every U s with s 2 S).

Each of these results relies heavily on the mean value theorem. As an example, we use
Proposition 5.2.2 (3) for an intuitive argument that explains the first statement. Suppose s
satisfies µ s = ⌫ s and let X 2 Sols f U S t0 s, then X t0 = s. By the mean value theorem,
if two functions coincide at the initial time µ (X t0) = ⌫ (X t0) and their derivatives are the
same (by hypothesis), then they remain equal. That is, µ (X t) = ⌫ (X t) for all t 2 U (X t0).

As a consequence of these results, the following procedure for proving partial correctness
specifications P |x0 = f &G on U S at t0 inv I]Q emerges.

1. Check that I is an invariant for f along U

(a) Transform I into negation normal form.

(b) If applicable, use (wlp-conj), (wlp-disj) and Lemma 5.2.5 (3) and (4) to obtain
positive atomic correctness specifications Ii |x0 = f &G on U S at t0] Ii.

(c) For each atomic Ii |x0 = f &G on U S at t0] Ii apply Lemma 5.2.5 (1) and (2).

2. If step 1 is successful, we only need to show P I and (G ^ I) Q by (wlp-inv).

66 CHAPTER 5. VERIFICATION COMPONENTS

Just like solutions to systems of ODEs, invariants can also be supplied by external
tools [115, 127]. We do not pursue such extensions to our components in this thesis
precisely because, scientifically, we know its possible. Instead, we focus on more conceptual
contributions detailed in the upcoming chapters.

The example below shows an application of the procedure above. In particular, it
evidences the simplicity of its use and its resemblance to mathematical practice. We show
the corresponding Isabelle formalisation in Section 5.5.

Example 5.2.1 (Invariant for free fall). A simple di↵erential equation to model the free fall
of an object is x00 t = g, where g 2 R is the acceleration due to gravity. The equations
fg s y = s v and fg s v = g define the corresponding vector field f for variables y, v 2 V and
s 2 RV . We obtain it by converting x00 t = g to a system of first order ODEs as explained in
Section 4.1. In this example, we show that the law of conservation of energy, I s defined by

I s$

✓
�
1

2
m(s v)2 = mg(h� s y)

◆
,

is an invariant for fg and any guard G along R for all s 2 RV . Here, m is the mass of the
object and h is the height from where it started falling.

Steps 1(a) and 1(b) do not apply. For, 1(c) we should apply Lemma 5.2.5.1. That is,
cancelling m above, we need to show that

✓
�
1

2
(X t v)2

◆0

= (g(h�X t y))0,

for allX that solves the system of ODEs and for all t 2 R. In particular, from this assumption
it follows that X 0 t y = fg (X t) y = X t v and X 0 t v = fg (X t) v = g. The equation above
then holds as shown below

✓
�
1

2
(X t v)2

◆0

= �(X t v)(X 0 t v) = �g(X t v) = �g(X 0 t y) = (g(h�X t y))0.

Therefore, I is an invariant for the system and, by Proposition 5.2.1.3, it holds that

I |x0 = fg &G on RRV at t0] I.

As a last remark, we specialise previous results about invariants to the evolution
commands of Section 4.4 guarded by the constant true predicate >. In this setting,
invariants are strengthened to equalities.

Corollary 5.2.6. Let f : T ! S ! S be a locally Lipschitz continuous vector field on
S ✓ RV and continuous on T ✓ R, and U a subinterval of the longest interval of existence
Ts ✓ T of the unique solution 'f

s : Ts ! S such that 0 2 U . Then the following are equivalent.

1. I is an invariant for f and > along U ,

2. h(x0 = f &>)U | I = I,

5.3. COMPONENTS BASED ON DYNAMICAL SYSTEMS 67

3. I = |(x0 = f &>)U] I,

4. {I} (x0 = f &>)U {I}, and

5. (�' s) ✓ I, for all s 2 I.

Just like in Section 4.4, we can add (h-inv) of Theorem 5.2.4 to the rules of di↵erential
Hoare logic. These allows dH to reason about systems of ODEs without solving them. The
same applies by adding the respective (wlp-inv) for the weakest liberal precondition calculus.
The results presented in this section, generalise our previous work in [72].

5.3 Components Based on Dynamical Systems

So far we have presented mathematical background to develop verification components for
hybrid systems based on solutions or invariants for systems of ODEs. In both cases, users
supply the solution or the invariant and they need to certify them with the proof assistant.
Specifically for the solution based approach, checking Lipschitz continuity and certifying the
derivation could represent formalising more than one really needs. In those cases, one could
introduce the solution as an invariant but then one needs to certify invariance. That is, for
some users, these procedures might seem too pessimistic as they do not trust user-input.
Therefore, an alternative approach introduces the dynamics of the physical system from
the specification and trusts the correctness of this input. This section adds an innovative
variation of evolution commands that adheres to this more optimistic viewpoint. In this
setting, correctness of solutions is entirely the responsibility of users or the software they use
to describe the dynamics of the system.

The implementation itself is easy as we have already defined all the preliminary concepts
in previous sections. We start with a couple of functions ' : T ! S ! S and U : S ! P T
that, by their types, resemble flows of Section 4.1 and our interval functions of Section 5.1
respectively. Yet, we impose no algebraic or topological structure for T and S to maximise
the range of applications for our definitions in this section. Then we just use these functions
as arguments of G-guarded orbits to obtain our desired variation of evolution commands,

(evol'GU) s = � (�t. ' t s)G (U s).

Hence, ' models the evolution of a system in time. It takes a time t 2 T and a state
s 2 S and outputs the corresponding state ' t s. Analogously, U s represents a choice of
a subdomain of T where ' can evolve. Therefore, evol'GU represents all the possible
states of the system as constrained by G and U . By definition, time T needs to at least
be a preorder. However, if T is a monoid, we can require ' to be a monoid action on
S, and thus, a dynamical system. As the action can be either discrete or continuous, this
new hybrid program generalises evolution commands and it also opens the possibility of
integrating discrete systems in correctness specifications. With Isabelle, we can add all these
additional constraints via type classes or locales.

Based on our definition, we can compute the wlp for these modified evolution commands.

|evol'GU]Qs = 8t 2 U s. (8⌧ 2 #(U s) t. G (' ⌧ s))! Q (' t s). (wlp-g-dyn)

68 CHAPTER 5. VERIFICATION COMPONENTS

This is of course the same for both the relational and the state transformer semantics. We
list the corresponding Hoare rule for a complete presentation.

{�s. 8t 2 U s. (8⌧ 2 #(U s) t. G (' ⌧ s))! Q (' t s)} evol'GU {Q}. (h-g-dyn)

In those cases where optimistic users can use this alternative approach, most of the
procedure of Section 4.4 becomes redundant and they only need to apply rule (wlp-g-dyn)
or (h-g-dyn). If a user wishes to certify the solution, they can still quickly check that
(' t s)0 = f t (' t s) for t 2 U s. Yet, certification of solutions is usually not required in
other approaches [39], which simplifies their verification process. If instead, users prefer to
certify not only the solution but the fact that it is unique, they can use the procedure of
Section 4.4. However, it is not always the case that an analytic solution is available. For these
scenarios, our procedure with invariants is still an option. The hybrid program presented
in this section is not only a variation of evolution commands, but it is also evidence that
our modular approach enables us to quickly add new hybrid programs targeted for specific
verification problems. It also shows that our framework provides a good place to experiment
by developing di↵erent hybrid programs.

5.4 Evolution Commands in Isabelle/HOL

Here we describe our formalisation of our verification components based on certification of
solutions. That is, we define guarded orbitals and orbits in Isabelle/HOL and use them to
derive their respective rules of dH and the hybrid wlp-calculus. In summary, this section
formalises the concepts and results of Sections 4.4 and 5.1.

As in Section 4.4, we start with the definition of G-guarded orbits and its resemblance to
traditional orbits of Lemma 4.4.1, where down U t formalises #U t.

definition g-orbit :: ((0a::ord)) 0b)) (0b) bool)) 0a set) 0b set (�)
where � X G U =

S
{P X (down U t) |t . P X (down U t) ✓ {s. G s}}

lemma g-orbit-eq : � X G U = {X t |t . t 2 U ^ (8 ⌧2down U t . G (X ⌧))}
unfolding g-orbit-def using order-trans by auto blast

The proof just requires unfolding the definition and calling the auto tactic extended with
order-transitivity.

For G-guarded orbitals, we define them as in Equation 5.1 and provide their extension of
Proposition 5.1.1.2. As before, the proof just calls auto and unfolds definitions.

definition g-orbital :: (real) 0a) 0a)) (0a) bool)) (0a) real set)) 0a set) real)
(0a::real-normed-vector)) 0a set
where g-orbital f G U S t0 s =

S
{� X G (U s) |X . X 2 Sols f U S t0 s}

lemma g-orbital-eq : g-orbital f G U S t0 s =
{X t |t X . t 2 U s ^ P X (down (U s) t) ✓ {s. G s} ^ X 2 Sols f U S t0 s }

unfolding g-orbital-def ivp-sols-def g-orbit-eq by auto

5.4. EVOLUTION COMMANDS IN ISABELLE/HOL 69

We also formalise the equivalence between orbitals and orbits (part 3 of Proposition 5.1.1)
within the context of the locale picard-lindeloef.

lemma g-orbital-orbit :
assumes s 2 S
and ivl : is-interval (U s)
and ivp: Y 2 Sols f U S t0 s
and U s ✓ T

shows g-orbital f G U S t0 s = g-orbit Y G (U s)
hproofi

In local-flow, we provide their full denotation by instantiating to the locale’s parameters and
we show that guarded orbitals and orbits generalise their traditional counterparts.

context local-flow
begin

lemma g-orbital-collapses:
assumes s 2 S and is-interval (U s) and U s ✓ T and 0 2 U s
shows g-orbital (�t . f) G U S 0 s = {' t s| t . t 2 U s ^ (8 ⌧2down (U s) t . G (' ⌧ s))}
apply (subst g-orbital-orbit [of - - �t . ' t s], simp-all add : assms g-orbit-eq)
by (rule in-ivp-sols, simp-all add : assms)

lemma orbit-eq : s 2 S =) �' s = {' t s| t . t 2 T}

by(unfold orbit-def , subst g-orbital-collapses , simp-all add : assms init-time interval-time)

lemma true-g-orbit-eq : s 2 S =) g-orbit (�t . ' t s) (�s. True) T = �' s
unfolding g-orbit-eq orbit-eq [OF assms] by simp

end

It only remains to derive the rules for verification condition generation of evolution
commands. We start by introducing the notation of Section 5.1. The wlp-law (wlp-g-orbital)
of Theorem 5.1.2 follows immediately by using lemma wp-rel of Section 4.5 and unfolding
definitions.

definition g-ode :: (real) (0a::banach)) 0a)) 0a pred) (0a) real set)) 0a set) real)
0a rel ((1x´=- & - on - - @ -))
where (x´= f & G on U S @ t0) = {(s,s 0) |s s 0. s 0

2 g-orbital f G U S t0 s}

lemma wp-g-orbital : wp (x´= f & G on U S @ t0) dQe =
d�s. 8X2Sols f U S t0 s. 8 t2U s. (8 ⌧2down (U s) t . G (X ⌧)) �! Q (X t)e
unfolding g-orbital-eq wp-rel ivp-sols-def g-ode-def by auto

We do this same procedure for guarded orbits to obtain (wlp-g-dyn).

70 CHAPTER 5. VERIFICATION COMPONENTS

definition g-evol :: ((0a::ord)) 0b) 0b)) 0b pred) (0b) 0a set)) 0b rel (EVOL)
where EVOL ' G U = {(s,s 0) |s s 0. s 0

2 g-orbit (�t . ' t s) G (U s)}

lemma wp-g-dyn[simp]:
fixes ' :: (0a::preorder)) 0b) 0b
shows wp (EVOL ' G U) dQe = d�s. 8 t2U s. (8 ⌧2down (U s) t . G (' ⌧ s)) �! Q (' t s)e
unfolding wp-rel g-evol-def g-orbit-eq by auto

For (wlp-evol), we instantiate guarded orbitals to the parameters of the local-flow.

context local-flow
begin

lemma wp-g-ode-subset :
assumes

V
s. s 2 S =) 0 2 U s ^ is-interval (U s) ^ U s ✓ T

shows wp (x´= (�t . f) & G on U S @ 0) dQe =
d�s. s 2 S �! (8 t2(U s). (8 ⌧2down (U s) t . G (' ⌧ s)) �! Q (' t s))e
hproofi

lemma wp-g-ode: wp (x´= (�t . f) & G on (�s. T) S @ 0) dQe =
d�s. s 2 S �! (8 t2T . (8 ⌧2down T t . G (' ⌧ s)) �! Q (' t s))e
by (subst wp-g-ode-subset , simp-all add : init-time interval-time)

end

Given that lemmas wp-g-ode-subset and wp-g-ode are inside the local-flow locale, to use
them in proofs it is necessary to show previously that the conditions of the locale hold. This
implies checking that f , T and S satisfy, for instance local Lipschitz continuity, and that '
solves the associated IVP for intervals [0, t] with t 2 T .

In the formalisations above, it is evident that Isabelle handles theorems about sets
automatically. The only lemmas where we need considerable user interaction, because of their
long structured proofs, are inside the locales picard-lindeloef and local-flow. In these cases,
we often need to use lemma unique-solution of Section 4.2 which requires us to show more
analytical properties like existence of derivatives on a subset of the interval T . Nevertheless,
our proofs highly resemble those of traditional mathematical textbooks in length and form.

This completes the construction of our verification components for hybrid systems
in Isabelle/HOL. In order to verify a hybrid program, users should apply the wlp-laws
recursively to obtain domain specific proof obligations about predicates and relations or
state transformers. In case that the hybrid program involves evolution commands, users can
apply either lemma wp-g-ode-subset or wp-g-ode. This will require them to supply a function
' that must satisfy the conditions of the local-flow locale. As explained in the procedure of
Section 4.4, they need to prove that f is locally Lipschitz continuous and that ' solves its
IVPs. Because of our interest on the mathematical concepts that the framework provides
and our interest in exploring its qualitative features, we have delegated the automation of
these procedures for future work.

We culminate this section with a formalisation of the hybrid program thermostat from

5.4. EVOLUTION COMMANDS IN ISABELLE/HOL 71

Figure 2.5 and the running Examples 3.2.1, 3.3.1, 4.3.1, 4.3.2, and 4.4.1. As the number of
variables is 4, we use Isabelle’s finite type of four elements. We fix 1 ::4 for variable T , 2 ::4
for t, 3 ::4 for T0, and 4 ::4 for ✓. Then, we formalise the vector field, the guard and the
unique solution as in Example 4.4.1 with the � abstraction to denote vectors.

abbreviation temp-vec-field :: real) real) realˆ4) realˆ4 (f)
where f a L s ⌘ (� i . if i = 2 then 1 else (if i = 1 then � a ⇤ (s$1 � L) else 0))

abbreviation therm-guard :: real) real) real) real) realˆ4) bool (G)
where G Tmin Tmax a L s ⌘ (s$2 � (ln ((L�(if L=0 then Tmin else Tmax))/(L�s$3)))/a)

abbreviation temp-flow :: real) real) real) realˆ4) realˆ4 (')
where ' a L t s ⌘ (� i . if i = 1 then � exp(�a ⇤ t) ⇤ (L � s$1) + L else
(if i = 2 then t + s$2 else s$i))

The proof for local Lipschitz continuity of Example 4.4.1 requires relatively longer
scripting proofs in mathematical style. This is because Isabelle lacks proof automation
for arithmetic with real numbers. In Sections 6.5 and 7.6, we discuss ways to avoid this
certifications. In the meantime, we have omitted the proofs below and used an identifier
hproofi for them instead.

lemma norm-di↵-temp-dyn: 0 < a =) kf a L s1 � f a L s2k = |a| ⇤ |s1$1 � s2$1 |
hproofi

lemma local-lipschitz-temp-dyn:
assumes 0 < (a::real)
shows local-lipschitz UNIV UNIV (�t ::real . f a L)
hproofi

In contrast, the proof that the vector field and the unique solution satisfy the assumptions
of our local-flow is simpler.

lemma local-flow-temp: a > 0 =) local-flow (f a L) UNIV UNIV (' a L)
by (unfold-locales, auto intro!: poly-derivatives local-lipschitz-temp-dyn simp: forall-4 vec-eq-i↵)

The formalisation of thermostat highly resembles Figure 2.5. Below we provide a proof
of its correct behaviour. That is, the temperature s$1 remains within the comfortable range.

lemma thermostat :
assumes a > 0 and 0 t and 0 < Tmin and Tmax < L
shows d�s. Tmin s$1 ^ s$1 Tmax ^ s$4 = 0 e wp
(LOOP (
— control
((2 ::= (�s. 0));(3 ::= (�s. s$1));
(IF (�s. s$4 = 0 ^ s$3 Tmin + 1) THEN (4 ::= (�s.1)) ELSE
(IF (�s. s$4 = 1 ^ s$3 � Tmax � 1) THEN (4 ::= (�s.0)) ELSE skip));

72 CHAPTER 5. VERIFICATION COMPONENTS

— dynamics
(IF (�s. s$4 = 0) THEN (x´=(�t . f a 0) & G Tmin Tmax a 0 on (�s. {0 ..t}) UNIV @ 0)
ELSE (x´=(�t . f a L) & G Tmin Tmax a L on (�s. {0 ..t}) UNIV @ 0)))

) INV (�s. Tmin s$1 ^ s$1 Tmax ^ (s$4 = 0 _ s$4 = 1)))
d�s. Tmin s$1 ^ s$1 Tmaxe

apply(rule wp-loopI , simp-all add : fbox-temp-dyn[OF assms(1 ,2)])
using temp-dyn-up-real-arith[OF assms(1) - - assms(4), of Tmin]
and temp-dyn-down-real-arith[OF assms(1 ,3), of - Tmax] by auto

The first line in the lemma above lists the assumptions of the verification problem.
The second to last line describes the loop invariant. It consists of the postcondition and
the fact that the heater is either turned on or o↵. In the first line of the proof, this loop
invariant is picked automatically using the rule (wlp-loop). Using the wlp of evolution
commands instantiated to the thermostat’s vector field in fbox-temp-dyn, the structure of
the hybrid program is also tackled in this line. This leaves only proof obligations about
real numbers, which we have proved separately and named temp-dyn-up-real-arith and
temp-dyn-down-real-arith. We use them together with auto to complete the proof.

5.5 Di↵erential Invariants in Isabelle/HOL

We still need to formalise invariants for vector fields along a collection of intervals. Here we
describe the addition of these invariants to the verification components. This allows users
to prove partial correctness specifications without solving the system of ODEs as explained
in Section 5.2. We also certify various results from that section. We start by writing their
definition with the Kleisli extension already unfolded.

definition di↵-invariant :: (0a) bool)) (real) (0a::real-normed-vector)) 0a))
(0a) real set)) 0a set) real) (0a) bool)) bool
where di↵-invariant I f U S t0 G ⌘ (

S
� (P (g-orbital f G U S t0))) {s. I s} ✓ {s. I s}

As before, proofs about sets are easy to discharge by unfolding definitions. Thus, we
immediately obtain the equivalences of Proposition 5.2.2.

lemma di↵-invariant-eq : di↵-invariant I f U S t0 G =
(8 s. I s �! (8X2Sols f U S t0 s. (8 t2U s.(8 ⌧2(down (U s) t). G (X ⌧)) �! I (X t))))
unfolding di↵-invariant-def g-orbital-eq image-le-pred by auto

lemma di↵-inv-eq-inv-set :
di↵-invariant I f U S t0 G = (8 s. I s �! (g-orbital f G U S t0 s) ✓ {s. I s})
unfolding di↵-invariant-eq g-orbital-eq image-le-pred by auto

For Proposition 5.2.1, we focus on the equivalence between invariants and wlp-specifications.
The corresponding Hoare triple and backward diamond are merely notational changes.

lemma wp-di↵-inv [simp]: (dI e wp (x´= f & G on U S @ t0) dI e) = di↵-invariant I f U S t0 G

5.5. DIFFERENTIAL INVARIANTS IN ISABELLE/HOL 73

unfolding di↵-invariant-eq wp-g-orbital by(auto simp: p2r-def)

Working towards the procedure of Section 5.2, Lemma 5.2.3 also follows by definition.

lemma di↵-inv-guard-ignore:
assumes dI e wp (x´= f & (�s. True) on U S @ t0) dI e
shows dI e wp (x´= f & G on U S @ t0) dI e
using assms unfolding wp-di↵-inv di↵-invariant-eq by auto

lemma wp-g-orbital-guard :
assumes H = (�s. G s ^ Q s)
shows wp (x´= f & G on U S @ t0) dQe = wp (x´= f & G on U S @ t0) dH e
unfolding wp-g-orbital using assms by auto

Therefore, we can derive rule (wlp-inv) of Theorem 5.2.4.

lemma wp-g-odei :
dPe dI e =) dI e wp (x´= f & G on U S @ t0) dI e =) d�s. I s ^ G se dQe =)
dPe wp (x´= f & G on U S @ t0 DINV I) dQe
hproofi

For this result, DINV is syntactic sugar to add invariants to specifications. Operationally it
is the same as our evolution commands from the previous section. That is, (�)DINV I is
the Isabelle notation for (�) inv I of Section 3.2 specific for evolution commands.

Finally, we have proved each one of the clauses of Lemma 5.2.5 as its own theorem in
Isabelle/HOL. Just like the tactic for derivatives using the list poly-derivatives, we group these
clauses in a list called di↵-invariant-rules. Below we only show the clause for equalities.

named-theorems di↵-invariant-rules rules for certifying di↵erential invariants.

lemma di↵-invariant-eq-rule [di↵-invariant-rules]:
assumes Uhyp:

V
s. s 2 S =) is-interval (U s)V

X . (D X = (�⌧ . f ⌧ (X ⌧)) on U (X t0))=)(D (�⌧ . µ(X ⌧)�⌫(X ⌧)) = ((⇤R) 0) on U (X t0))
shows di↵-invariant (�s. µ s = ⌫ s) f U S t0 G
hproofi

This completes the procedure of Section 5.2. To verify a correctness specification of
the form dPe wp (x´= f & G on U S @ t0 DINV I) dQe, users need only apply rule
wp-g-odei. This will generate three proof obligations, one of which is a proof for di↵erential
invariance. They can discharge this one by a repeated application of our di↵-invariant-rules.
In combination with auto and the list poly-derivatives, this process is almost automatically,
except when the invariants involve inequalities. In these cases, users need to provide the
derivatives of the functions µ and ⌫ of Lemma 5.2.5. To exemplify this, we provide below the
formalisation of the automatic proof of invariance in Example 5.2.1 with s$1 representing
variable y and s$2 doing the same for v.

74 CHAPTER 5. VERIFICATION COMPONENTS

lemma di↵-invariant (�s . 2 ⇤ g ⇤ s$1 � 2 ⇤ g ⇤ h � s$2 ⇤ s$2 = 0) (f g) (�s . UNIV) S t0 G
by (auto intro! : poly-derivatives di↵-invariant-rules)

For a complete formalisation of Section 5.2, we also include Corollary 5.2.6 below.

context local-flow
begin

lemma wp-di↵-inv-eq :
assumes

V
s. s 2 S =) 0 2 U s ^ is-interval (U s) ^ U s ✓ T

shows di↵-invariant I (�t . f) U S 0 (�s. True) =
(d�s. s 2 S �! I se = wp (x´= (�t . f) & (�s. True) on U S @ 0) d�s. s 2 S �! I se)
hproofi

lemma di↵-inv-eq-inv-set :
di↵-invariant I (�t . f) (�s. T) S 0 (�s. True) = (8 s. I s �! �' s ✓ {s. I s})
unfolding di↵-inv-eq-inv-set orbit-def by (auto simp: p2r-def)

end

The formalisations presented in the last two sections are an improvement to our 2019
submission to Isabelle’s Archive of Fromal Proofs [68]. They extend our entry with the
dependency of the interval U on the initial state s and generalise accordingly the results
of [72]. In future chapters we explore the benefits of these modifications.

5.6 Derivation of the Axioms of dL

The first implementation of modal reasoning for hybrid programs was di↵erential dynamic
logic (dL) [108]. Among other innovations, this approach pioneered the use of di↵erential
invariants for proving correctness specifications. Furthermore, numerous case studies
evidence its e↵ectiveness and that of its domain-specific proof assistant KeYmaera
X [50, 77, 81, 89, 96, 116]. Therefore, in order to evidence the capabilities of our components,
we can emulate dL-style verification. Thus, in this section we derive some axioms and rules
of inference of dL that allow us to verify hybrid systems as one would do with this logic.
As the rules of dynamic logic come from the axioms of MKA, we focus specifically on the
axioms that involve evolution commands.

In general, the rules of inference involving evolution commands in dL are reformulations of
the axioms. However, there are di↵erent presentations in the literature for them. Hence, we
take [112] and KeYmaera X’s cheat sheet [20] as templates for our derivations in this section.
Furthermore, the interval of existence of solutions for the axioms of dL are not explicit in
the logic’s syntax. For our formalisations, we prefer to leave this parameter general, except
when we intend closer resemblence to the dL rule. In those cases, we opt to use U s = R�0

and S = RV . Thus, we include an Isabelle/HOL abbreviation for them:

5.6. DERIVATION OF THE AXIOMS OF DL 75

abbreviation g-dl-ode ::((0a::banach)) 0a)) 0a pred) 0a rel ((1x´=- & -))
where (x´=f & G) ⌘ (x´= (�t . f) & G on (�s. {t . t � 0}) UNIV @ 0)

abbreviation g-dl-ode-inv :: ((0a::banach)) 0a)) 0a pred) 0a pred) 0a rel
where (x´= f & G DINV I) ⌘ (x´= (�t . f) & G on (�s. {t . t � 0}) UNIV @ 0 DINV I)

Our first derivation is axiom DS, formalised below. It has two versions, one with a general
vector field f and the other with the constant vector field mapping everything to c. Both cases
follow from a simple application of (wlp-evol) or, in Isabelle/HOL, lemma wp-g-ode-subset.

lemma di↵-solve-axiom1 :
assumes local-flow f UNIV UNIV '
shows wp (x´= f & G) dQe =
d�s. 8 t�0 . (8 ⌧2{0 ..t}. G (' ⌧ s)) �! Q (' t s)e
by (subst local-flow .wp-g-ode-subset [OF assms], auto)

lemma di↵-solve-axiom2 :
fixes c:: 0a::{heine-borel , banach}
shows wp (x´=(�s. c) & G) dQe =
d�s. 8 t�0 . (8 ⌧2{0 ..t}. G (s + ⌧ ⇤R c)) �! Q (s + t ⇤R c)e
by (subst local-flow .wp-g-ode-subset [OF line-is-local-flow ,of UNIV], auto)

The corresponding rule of inference is just one direction of the equivalence in axiom DS
but with added preconditions as in Hoare rules.

lemma di↵-solve-rule:
assumes local-flow f UNIV UNIV '
and 8 s. P s �! (8 t�0 . (8 ⌧2{0 ..t}. G (' ⌧ s)) �! Q (' t s))

shows dPe wp (x´= f & G) dQe
using assms by (subst local-flow .wp-g-ode-subset [OF assms(1)], auto)

Alternatively, for working with invariants, we derive three axioms of dL with their
respective rules of inference. Applied in a backward style, the axiom and rule for di↵erential
cuts (DC) serve to introduce invariants inside guards.

lemma di↵-cut-axiom:
assumes wp (x´= f & G on U S @ t0) dC e = Id
shows wp (x´= f & G on U S @ t0) dQe = wp (x´= f & (�s. G s ^ C s) on U S @ t0) dQe
hproofi

lemma di↵-cut-rule:
assumes wp-C : dPe wp (x´= f & G on U S @ t0) dC e
and wp-Q : dPe wp (x´= f & (�s. G s ^ C s) on U S @ t0) dQe

shows dPe wp (x´= f & G on U S @ t0) dQe
hproofi

Recall from Section 4.4 that specifically for evolution commands, postconditions hold

76 CHAPTER 5. VERIFICATION COMPONENTS

along the entire orbit. Hence, intuitively, the DC axiom above states that if the cut C is
satisfied along the evolution, then it is safe to annotate it in the guard. Similarly, in the
assumptions of its respective rule, G, C and Q hold along the evolution if starting in a state
satisfying P , hence Q trivially holds too.

Observe that the DC rule generates two proof obligations labelled wp-C and wp-Q. If C is
an invariant for the system, the di↵erential induction (DI) rule discharges the wp-C branch.
Hence, we formalise it and its axioms below.

lemma di↵-inv-axiom1 :
assumes G s �! I s and di↵-invariant I (�t . f) (�s. {t . t � 0}) UNIV 0 G
shows (s,s) 2 wp (x´= f & G) dI e
using assms unfolding wp-g-orbital di↵-invariant-eq apply clarsimp
by (erule-tac x=s in allE , frule ivp-solsD(2), clarsimp)

lemma di↵-inv-axiom2 :
assumes picard-lindeloef (�t . f) UNIV UNIV 0
and

V
s. {t ::real . t � 0} ✓ picard-lindeloef .ex-ivl (�t . f) UNIV UNIV 0 s

and di↵-invariant I (�t . f) (�s. {t ::real . t � 0}) UNIV 0 G
shows wp (x´= f & G) dI e = wp dGe dI e
hproofi

lemma di↵-inv-rule:
assumes dPe dI e and di↵-invariant I f U S t0 G and dI e dQe
shows dPe wp (x´= f & G on U S @ t0) dQe
apply(rule wp-g-orbital-inv [OF assms(1) - assms(3)])
unfolding wp-di↵-inv using assms(2) .

The first axiom says that if I is an invariant of the system and a state s satisfies the
implication G ! I, then the state also satisfies the forward box of I after the evolution
command. The reason is that the implication guarantees that I holds at the beginning of
the evolution. This and invariance guarantees I for the rest of the orbit.

The formalisation of the second axiom requires us to make an assumption of dL explicit.
Namely, that the vector field satisfies Picard-Lindelöf’s theorem. This holds in dL because
its vector fields correspond to terms of the language of real arithmetic which satisfy this
hypothesis [108]. Due to the fact that we fix U s = R�0, we have to add the second
assumption not listed in the typical presentation of dL-axioms. The hypothesis states that
the nonnegative real numbers are a subset of the interval of existence. The axiom says that
if I is a di↵erential invariant, its satisfaction as a postcondition of evolution commands is
equivalent to showing that I follows after G. The corresponding rule of DI is an alternative
version of our (wlp-inv) of Theorem 5.2.4.

To discharge the wp-Q branch of rule DC, dL takes advantage of the richer guard. Thus
it uses a di↵erential weakening axiom that essentially says that if the guard implies the
postcondition, then the postcondition holds.

lemma di↵-weak-axiom1 : Id ✓ wp (x´= f & G on U S @ t0) dGe
unfolding wp-rel g-ode-def g-orbital-eq by auto

5.6. DERIVATION OF THE AXIOMS OF DL 77

lemma di↵-weak-axiom2 :
wp (x´= f & G on T S @ t0) dQe = wp (x´= f & G on T S @ t0) d� s. G s �! Q se
unfolding wp-g-orbital image-def by force

lemma di↵-weak-rule:
assumes dGe dQe
shows dPe wp (x´= f & G on U S @ t0) dQe
using assms by (auto simp: wp-g-orbital)

The rules derived so far provide evidence of the fact that our components serve as a
verification tool for hybrid programs. But they also complement our previous derivations
and procedures in terms of weakest liberal preconditions or Hoare rules. It remains to prove
di↵erential e↵ect (DE) and di↵erential ghost (DG) rules of dL [22]. These rules serve as tools
to reason about complicated solutions of di↵erential equations like exponentials, logarithms,
sines and cosines. They are necessary for dL because its syntax resides on a first order setting
for real numbers. However, our components lie in the higher order logic of Isabelle, which
means that we can explicitly write and reason about those complicated solutions in the proof
assistant. In some cases, that approach may be undesirable which is why, in Section 7.6,
we discuss alternative ways to tackle problems that require these axioms. This is why we
refrain from formalising DE and DG. However, we still intend to develop a general semantic
approach that subsumes them.

Finally, a di↵erent hybrid program often used in dL corresponds to nondeterministic
assignments. This is an assignment of a variable to an undetermined variable. Because of
the shallowness of our constructions in Isabelle/HOL, we can quickly formalise it and provide
a rule for verification condition generation.

definition nondet-assign :: 0b) (0aˆ 0b) rel ((2- ::= ?) [70] 61)
where (x ::= ?) = {(s,vec-upd s x k)|s k . True}

lemma wp-nondet-assign[simp]: wp (x ::= ?) dPe = d�s. 8 k . P (� j . ((($) s)(x := k)) j)e
unfolding wp-rel nondet-assign-def vec-upd-eq apply(clarsimp, safe)
by (erule-tac x=(� j . if j = x then k else s $ j) in allE , auto)

As easily as we added this hybrid program, we can also extend or modify our components.
In the following chapter, we explore the extensibility and modularity of our approach.

This concludes the formalisations of this chapter. Including preliminary lemmas to
derive the main results displayed here, they amount to approximately 20 pages of proofs
in Isabelle/HOL. Furthermore, we have not only derived a weakest liberal precondition
calculus and a Hoare logic for verification of hybrid programs, but we have also shown that
our components can simulate the reasoning style of dL. Furthermore, we have provided a
generalisation for evolution commands that removes the need for intermediate certifications
required in the procedure of Section 4.4. The content of this chapter is an extension to our
previous work in [71] and [72].

78 CHAPTER 5. VERIFICATION COMPONENTS

Chapter 6

Extensions

So far, we have described a generic method to build verification components for hybrid
systems within the proof assistant Isabelle/HOL. We start with an algebraic abstraction of
hybrid programs and then provide a semantics to it. Then we instantiate this semantics to
a concrete program store where we derive the rules of verification condition generation for
each hybrid program. We summarise this process in Figure 6.1.

Furthermore, Figure 6.1 also describes the contents of this chapter, that is, we explore
in more detail the modularity and extensibility of our approach for building verification
components. Specifically, in Section 6.1 we show how extending Kleene algebras with tests
allows us to derive a refinement calculus for hybrid systems. Secondly, in Sections 6.2 and 6.3,
we replace the approach based on Kleene algebras with direct encodings of forward box
operators as predicate transformers. Section 6.4 varies the program store model and uses
lenses instead of our vectors s 2 RV . Section 6.5 explains a formalisation of a�ne systems of
di↵erential equations in Isabelle/HOL. It evidences that improvements to the libraries of the
proof assistant reverberate in the verification components. Finally, we culminate the chapter
with a review of all the available verification components, their use cases and features in
Section 6.6,

6.1 Di↵erential Refinement Calculi

Our first modification to our components consists in adding a refinement operation [�,�] :
B ⇥ B ! K to our Kleene algebras with tests, where B is the subjacent boolean algebra.
The refinement must satisfy for all ↵ 2 K and p, q 2 B,

{p}↵ {q}$ ↵ [p, q].

If this holds, we get a refinement Kleene algebra with tests (rKAT) [9]. Easy consequences
of this definition include {p} [p, q] {q} and {p}↵ {q} ! ↵ [p, q]. That is, [p, q] is the
greatest element ↵ in K satisfying the Hoare triple {p}↵ {q}. Hence, [p, q] works as a partial
correctness version of Morgan’s specification statement [99] which justifies our notation.

Furthermore, just like KAT provides us with rules of propositional Hoare logic, we can
derive in rKAT variants to Carroll Morgan’s propositional refinement laws [9]. These are

79

80 CHAPTER 6. EXTENSIONS

Figure 6.1: Alternatives in the construction of verification components in Isabelle/HOL

consequences of the definition of the refinement operation and the rules of Section 3.2.

skip [p, p], (r-skip)

abort [p, q], (r-abort)

[p0, q0] [p, q], if p p0 and q0 q, (r-cons)

[p, r] ; [r, q] [p, q], (r-seq)

[p, q] + [p, q] [p, q], (r-choice)

if t then [t ; p, q] else [¬t ; p, q] [p, q], (r-cond)

while t do [t ; p, p] [p,¬t ; p], (r-while)

loop [p, p] [p, p]. (r-loop)

We can also obtain modified versions of our invariant rules and, specifically for refinement,
we derive monotonic rules for some hybrid programs.

if t then ↵1 else �1 if t then ↵2 else �2, if ↵1 ↵2 and �1 �2; (r-cond-mono)

while t do ↵1 while t do ↵2, if ↵1 ↵2; (r-while-mono)

loop ↵1 loop ↵2, if ↵1 ↵2; (r-loop-mono)

while t do ↵ inv i [p, q] if p i ; t and ↵ [i, i] and ¬t ; i q; (h-while-inv)

loop ↵ inv i [p, q] if p i and ↵ [i, i] and i q. (h-loop-inv)

Finally, despite not using them in proofs, we get ↵ [abort, skip] and [abort, abort] ↵.
In both, our relational and state transformer semantics for hybrid programs based on

states s 2 S ✓ RV , the refinement operation corresponds to its algebraic intuition of the
greatest element satisfying the Hoare triple. That is,

[P,Q]R =
[

{R ✓ S ⇥ S | {P}R {Q}} , and [P,Q]F s =
[

{f s 2 P S | {P} f {Q}} .

6.1. DIFFERENTIAL REFINEMENT CALCULI 81

Alternatively, one can simply regard them as a program that relates each input satisfying P
to all outputs where Q holds.

Therefore, instantiating to these concrete semantics we also obtain refinement laws for
assignments as well as their leading and following laws that introduce assignments before or
after another hybrid program [9].

(x := e) [�s. Q[x 7! e s], Q] , (r-assgn)

(x := e) ; [Q,Q] [�s. Q[x 7! e s], Q], (r-assgnl)

[Q,�s. Q[x 7! e s]] ; (x := e) [Q,Q]. (r-assgnf)

We can do similar derivations for each of our versions for evolution commands. We start
with the version based on vector fields and unique solutions of Section 4.4.

Lemma 6.1.1. Let U : S ! P T and G,Q be predicates. Suppose that f : T ! S ! S is
a locally Lipschitz continuous vector field on S ✓ RV and continuous on T ✓ R. If for each
s 2 S, U s is a subinterval of the longest interval of existence Ts ✓ T of the unique solution
'f
s : Ts ! S with 0 2 U s, then

(x0 = f &G)U [�s 2 S.8t 2 U s. (8⌧ 2 #(U s) t. G ('f
s ⌧))! Q ('f

s t), Q], (r-evol)

(x0 = f &G)U ; [Q,Q] [�s 2 S.8t 2 U s. (8⌧ 2 #U t. G ('f
s ⌧))! Q ('f

s t), Q], (r-evoll)
⇥
Q,�s 2 S.8t 2 U s. (8⌧ 2 #U t. G ('f

s ⌧))! Q ('f
s t)
⇤
; (x0 = f &G)U [Q,Q]. (r-evolr)

For guarded orbitals and orbits of Sections 5.1 and 5.3, similar derivations with leading
and following laws are available. Here, we just write those for the variants of evolution
commands where we directly write the dynamics ' : T ! S ! S in specifications.

evol'GU [�s.8t 2 U s. (8⌧ 2 #(U s) t. G (' ⌧ s))! Q (' t s), Q], (r-g-dyn)

(evol'GU) ; [Q,Q] [�s.8t 2 U s. (8⌧ 2 #(U s) t. G (' ⌧ s))! Q (' t s), Q], (r-g-dynl)

[Q,�s.8t 2 U s. (8⌧ 2 #(U s) t. G (' ⌧ s))! Q (' t s)] ; (evol'G) [Q,Q]. (r-g-dynr)

Again, these latter variants avoid the need to certify solutions or prove uniqueness. Therefore,
they simplify the procedure of Section 4.4.

Together, the laws stated in this section form our di↵erential refinement calculus dR.
If applied step by step, they work incrementally and compositionally to construct a hybrid
program that abides to a given initial specification [p, q]. The following example shows the
formalised approach at hand.

Example 6.1.1. In Section 5.4, we verified the correct behaviour of the thermostat hybrid
program of Figure 2.5. An alternative procedure uses our dR laws to incrementally build
it. We start by providing an abbreviation for the loop invariant saying that the temperature
s$1 is within the comfortable range and that the heater s$4 is either turned on or o↵.

abbreviation therm-loop-inv :: real) real) realˆ4) bool (I)
where I Tmin Tmax s ⌘ Tmin s$1 ^ s$1 Tmax ^ (s$4 = 0 _ s$4 = 1)

Then we refine the two possible continuous dynamics for thermostat, when the
temperature of the room decreases, and when it rises.

82 CHAPTER 6. EXTENSIONS

lemma R-therm-dyn-down:
assumes a > 0 and 0 ⌧ and 0 < Tmin and Tmax < L
shows rel-R d�s. s$4 = 0 ^ I Tmin Tmax s ^ s$2 = 0 ^ s$3 = s$1 e dI Tmin Tmaxe �
(x´= (�t . f a 0) & G Tmin Tmax a 0 on (�s. {0 ..⌧}) UNIV @ 0)

apply(rule local-flow .R-g-ode-ivl [OF local-flow-therm])
using assms therm-dyn-down-real-arith[OF assms(1 ,3), of - Tmax] by auto

lemma R-therm-dyn-up:
assumes a > 0 and 0 ⌧ and 0 < Tmin and Tmax < L
shows rel-R d�s. s$4 6= 0 ^ I Tmin Tmax s ^ s$2 = 0 ^ s$3 = s$1 e dI Tmin Tmaxe �
(x´= (�t . f a L) & G Tmin Tmax a L on (�s. {0 ..⌧}) UNIV @ 0)

apply(rule local-flow .R-g-ode-ivl [OF local-flow-therm])
using assms therm-dyn-up-real-arith[OF assms(1) - - assms(4), of Tmin] by auto

The first formalisation states that the dynamics when the heater is o↵ refine the
precondition-postcondition pair where the loop invariant is preserved, but the heater is
initially turned o↵ and the thermostat has already measured the room’s temperature. The
second is similar but with the heater initially turned on. Their proofs consist of a simple
application of (r-evol) and automatically discharging the emerging arithmetic obligations.
Then, we can integrate these branches with (r-cond-mono) to obtain the lemma below.

lemma R-therm-dyn:
assumes a > 0 and 0 ⌧ and 0 < Tmin and Tmax < L
shows rel-R d�s. I Tmin Tmax s ^ s$2 = 0 ^ s$3 = s$1 e dI Tmin Tmaxe �
(IF (�s. s$4 = 0) THEN (x´= (�t . f a 0) & G Tmin Tmax a 0 on (�s. {0 ..⌧}) UNIV @ 0)
ELSE (x´= (�t . f a L) & G Tmin Tmax a L on (�s. {0 ..⌧}) UNIV @ 0))
hproofi

We can do a similar process for the discrete part of thermostat.

lemma R-therm-assign1 :
rel-R dI Tmin Tmaxe d�s. I Tmin Tmax s ^ s$2 = 0 e � (2 ::= (�s. 0))
by (auto simp: R-assign-rule)

lemma R-therm-assign2 :
rel-R d�s. I Tmin Tmax s ^ s$2 = 0 e d�s. I Tmin Tmax s ^ s$2 = 0 ^ s$3 = s$1 e �
(3 ::= (�s. s$1))
by (auto simp: R-assign-rule)

lemma R-therm-ctrl :
rel-R dI Tmin Tmaxe d�s. I Tmin Tmax s ^ s$2 = 0 ^ s$3 = s$1 e �
(2 ::= (�s. 0)); (3 ::= (�s. s$1));
(IF (�s. s$4 = 0 ^ s$3 Tmin + 1) THEN (4 ::= (�s.1)) ELSE
IF (�s. s$4 = 1 ^ s$3 � Tmax � 1) THEN (4 ::= (�s.0)) ELSE skip)

6.1. DIFFERENTIAL REFINEMENT CALCULI 83

hproofi

Finally, we can bring all of these partial results together to obtain our desired specification.

lemma R-therm-loop: rel-R dI Tmin Tmaxe dI Tmin Tmaxe �
(LOOP
rel-R dI Tmin Tmaxe d�s. I Tmin Tmax s ^ s$2 = 0 ^ s$3 = s$1 e;
rel-R d�s. I Tmin Tmax s ^ s$2 = 0 ^ s$3 = s$1 e dI Tmin Tmaxe

INV I Tmin Tmax)
by (intro R-loop R-seq , simp-all)

lemma R-thermostat-flow :
assumes a > 0 and 0 ⌧ and 0 < Tmin and Tmax < L
shows rel-R dI Tmin Tmaxe dI Tmin Tmaxe �
(LOOP (
— control
((2 ::= (�s. 0));(3 ::= (�s. s$1));
(IF (�s. s$4 = 0 ^ s$3 Tmin + 1) THEN (4 ::= (�s.1)) ELSE
(IF (�s. s$4 = 1 ^ s$3 � Tmax � 1) THEN (4 ::= (�s.0)) ELSE skip));
— dynamics
(IF (�s. s$4 = 0) THEN (x´=(�t . f a 0) & G Tmin Tmax a 0 on (�s. {0 ..t}) UNIV @ 0)
ELSE (x´=(�t . f a L) & G Tmin Tmax a L on (�s. {0 ..t}) UNIV @ 0)))

) INV I Tmin Tmax)
by (intro order-trans [OF - R-therm-loop] R-loop-mono

R-seq-mono R-therm-ctrl R-therm-dyn[OF assms]

In R-therm-loop, we show that the specifications for the control and the dynamics in a loop
refine the loop invariant. Thus, in R-thermostat-flow by transitivity, the original program
also preserves it.

In Section 7.5, instead of the compositional style presented here, we show an alternative
proof-style to refine a hybrid program with a linear sequence of refinements. As before,
changing semantics is very easy. This is why we have not only derived our laws of the
di↵erential refinement calculus in the relational setting, but also with the state transformer
semantics. The extension is such a straightforward addendum to our previous formalisations,
that we only need four pages of proofs per semantics, giving a total of eight pages which
corresponds roughly to 400 lines of code.

Due to the fact that MKAs subsume KATs, we can also derive a refinement component
in that setting. This would follow Back and von Wright’s approach with predicate
transformers [12] which we explain further in the next couple of sections. However, due
to time constrains, we did not pursue this construction in our submissions to the Archive
of Formal Proofs [68]. Furthermore, there is a previous refinement variant for verification
of hybrid systems based on dL, namely di↵erential refinement logic [88]. Its focus is on
local incremental refinement relations to already verified hybrid programs in order to safely
augment them. In contrast, our dR resembles more the standard Morgan-style approach [99]
with global refinement relations to safely build programs from specifications. Yet, their
refinement logic has the same expressivity as dL [88]. Hence, we only need to prove the

84 CHAPTER 6. EXTENSIONS

soundness of their rules in the MKA-based components as we did in Section 5.6 to attain
similar capabilities. The limitations of such a development remain to be explored. In the
sequel, we focus instead on alternative algebraic foundations for the development of our
verification components.

6.2 Predicate Transformers à la Back and von Wright

As shown in Figure 6.1, the process for developing verification components in Isabelle/HOL
is compositional. Thus, instead of our approach with program algebras such as MKAs and
KATs, we can use di↵erent encodings of predicate transformers. In this section, we focus on
Back and von Wright’s model as functions between complete lattices [12] as they provide
di↵erent levels of generality with respect to modal Kleene algebras.

Initially, we consider an alternative algebraic development of Kleene algebras. It
begins with near-quantales (S,, ·), which is a complete lattice with an associative binary
composition operation · that preserves suprema in its left argument. In other words, it is a
partially ordered set (S,) with suprema

F
A and infima

d
A for every subset A ✓ S, such

that ⇣G
A
⌘
· � =

G

↵2A

↵ · �.

From this assumption, we can show that composition · preserves the lattice order in its first
argument, that is, ↵ � ! ↵ · � � · �. If in a near-quantale, this also holds true for
its second argument, then it is a prequantale. On the other hand, if the composition of the
near-quantale preserves sups not only in the left argument but in its right argument, then
we get a quantale. Thus, we can do a similar derivation for order preservation on the second
argument to show that quantales are prequantales. Finally, all these structures are unital if
their composition has a unit 1.

From near-quantales, we get most of the dioid axioms from Section 3.1 by defining as
usual 0 =

F
;. We are only missing the identity laws for 1, right distributivity and the

annihilation ↵ · 0 = 0. But we obtain the identity laws with unital near-quantales, and
the other two we get from quantales. Therefore, to obtain Kleene algebras we only need a
Kleene star, which is definable in unital near-quantales via ↵⇤ =

F
i2N ↵

i. Its left and right
unfold and induction axioms then follow from the axioms of quantales and Kleene’s fixpoint
theorem. Therefore, the following holds.

Proposition 6.2.1. Every quantale is a Kleene algebra.

For a detailed derivation of these algebraic facts with further intermediate structures and
their consequences see the Isabelle/HOL formalisation precluding our work in [129].

The next step is to regard predicate transformers as functions f : L1 ! L2 between
complete lattices (L1,1) and (L2,2). These are order preserving if ↵ 1 � ! f ↵ 2

f �, sup-preserving if f �
F

=
F
�P f and inf-preserving if f �

d
=

d
�P f . Notice

that either of the latter, sup- or inf-, imply the former. Fixing a complete lattice L,
we write T (L), T(L),Tt(L), and Tu(L), for the set of transformers, order-, sup-, and
inf-preserving transformers respectively. In the opposite lattice, sup- and inf- preserving
transformers reverse their properties, that is Tu(L) = Tt(Lop). Furthermore, the following
result holds [12, 53].

6.2. PREDICATE TRANSFORMERS À LA BACK AND VON WRIGHT 85

Proposition 6.2.2. For a set X and a complete lattice L, the functions in LX form a
complete lattice with order and sups extended pointwise.

From this we can define infima, least and greatest elements from sups on LX in the
standard way. Moreover, in LL we obtain a unit idL and a composition � that preserves sups
and infs in its first argument but not always in the second one. In summary, we get the next
proposition.

Proposition 6.2.3. Given a complete lattice L,

1. T (L) and T (Lop) are unital near-quantales;

2. T(L) and T(Lop) are unital prequantales;

3. Tt(L) and Tu(L) are unital quantales.

With this result attained, the predicate transformers f 2 Tt(L) define the modalities of
MKA. To see this, recall from Section 3.1 that an alternative characterization of hf |P is
f † P . Translated to quantale notation this corresponds to sup-preserving transformers, that
is, (

F
�P f)P . In turn, the forward box operator is an inf-preserving transformer in the

opposite quantale with the lattice dualised and composition swapped. Explicitly, this is

|f]P =
⇣l
�P (L \ fop)

⌘
(¬P).

Similar equivalences hold for the remaining modal operators. In comparison withMKA, using
this approach over Tt(L) is less general due to the fact that it implies the finite sups and
infs of MKA. Accordingly, this approach over T(L) is more general as finite sup- and inf-
preservation of MKA implies order preservation.

Finally, for tests we can assume that the lattice is a complete boolean algebra. Then we
can introduce the predicate transformer |p](�) such that |p] q = p ! q, which gives us in
Tu(L) the standard definitions [12],

if p then f else g = |p] �f u |¬p] �g and while pdo f = (|p] � f)⇤ � |¬p].

From the constructions on this section we can derive the wlp-rules of Section 3.3, thus
obtaining verification components for regular programs. For hybrid program verification we
only need to instantiate this approach to the relational or the state transformer model and
proceed as in Sections 4.3 and 4.4. There is a proof of the fact that state transformers
form quantales in [129]. Yet, the approach generalises to functions in LL1

2 and hence, to
categories [12]. Although the formalisation of quantales is available in the AFP [129], we
have opted for developing in Isabelle/HOL the categorical approach concretised to predicate
transformers from the powerset monad because it is more general. We explain these ideas in
the following section.

86 CHAPTER 6. EXTENSIONS

6.3 Predicate Transformers from the Powerset Monad

Another approach for encoding modal operators of Kleene algebras as predicate transformers
uses monads [90]. It can be seen as a direct encoding of the hybrid programs over the
relational or state transformer model. To obtain it, we return to the powerset monad (P , ⌘, µ)
of Section 3.1, where ⌘ : 1Set ! P and µ : P2

! P such that ⌘S s = {s} and µS X =
S

X
are natural transformations. Moreover, in contrast to previous chapters and to shorten the
length of this section, we include the Isabelle/HOL formalisation after the introduction of
each mathematical concept.

As stated before, each monad (T, ⌘, µ) with T : C ! C gives rise to its Kleisli category CT

whose objects are those of C and whose morphisms are Kleisli arrows CT (X, Y) = C(X, T Y)
whose composition is g �CT f = g† �C f , where (�)† is the Kleisli extension g† = µ �C (T g). In
the case of the powerset monad, SetP provides state transformers, and our functors R and
F make this isomorphic to the category of sets and binary relations Rel.

To obtain more general predicate transformers h�| 2 Set(P X,P Y), we use the Kleisli
extension as a functor that maps the set X 2 SetP to the pair (P X,

S
) 2 SetP and

f 2 SetP(X, Y) = Set(X,P Y) to f †
2 SetP(X†, Y †) = Set(P X,P Y). Here, SetP is

the category of Eilenberg-Moore algebras of the powerset monad whose objects are pairs
(X,

F
) or complete lattices and its morphisms are sup-preserving functions. Notice that its

morphisms coincide with the predicate transformers of Section 6.2. The Isabelle formalisation
using bdF for “backward diamond” is analogous bdF f = µ � P f. Moreover, the embedding
h�| = (�)† maps to complete boolean algebras (P X,

S
). In the context of verification,

these correspond to the boolean algebras of MKAs or the complete lattices in the Back and
von Wright approach of the previous section. The embedding also has an inverse defined on
morphisms by h�|�1 = (�)�⌘. The emerging isomorphism therefore preserves compositions,
units, and sups, thus respecting our purpose for hybrid program verification. In summary,
we get SetP ⇠= SetP ⇠= Rel, where the first isomorphism holds by h�|, and the second by F .

Similarly, forward boxes are a contravariant functor |�] : Set(X,P Y)! Set(P Y,P X)
that maps state transformers into inf-preserving functions on complete lattices. In Isabelle,
it is formalised in [130] with a lattice dualisation function @ that for boolean algebras is De
Morgan’s duality, and in this case, set complementation @ X = UNIV � X. It allows us to
define the functor @F f = @ �f �@ which is naturally isomorphic to the identity functor via @.
Then, the weakest precondition predicate transformer is |�] = @F �h�| �(�)op , which unfolds
to its expected |f]P = {s | f s ✓ P}. In Isabelle, this is automatic by unfolding definitions.

lemma fbF F S = {s. F s ✓ S}
by(auto simp: ↵b-def kop-def klift-def map-dual-def dual-set-def f2r-def r2f-def)

The functor has an inverse |�]�1 such that |g]�1 x =
T
{P | x 2 g P}. The emerging

isomorphism thus preserves infs of powerset lattices, its greatest elements, but not always
sups and least elements. In turn, the isomorphism to relations is as before with F and R.

In [130], the formalisation of forward diamonds and backward boxes is as in Section 3.3:
fdF = bdF � opK and bbF = fbF � opK . Their inverses similarly are |�i�1 = (�)op � h�|�1

and [�|�1 = (�)op � |�]�1 . In a mono-typed setting, these operators are coherent with
the isomorphisms between relations and state transformers: |fi = |R fi, |Ri = |F Ri,

6.3. PREDICATE TRANSFORMERS FROM THE POWERSET MONAD 87

|f] = |R f], |R] = |F R], and, dually, hf | = hR f |, hR| = hF R|, [f | = [R f | and [R| = [F R|.
As with predicate transformers from quantales, we can derive the wlp-rules of previous

Sections. For the complete derivations, see our formalisation in [68].

lemma ↵b-assign[simp]: fbF (x ::= e) Q = {s. (� j . ((($) s)(x := (e s))) j) 2 Q}

unfolding vec-upd-def assign-def by (subst ↵b-eq) simp

lemma ↵b-kcomp[simp]: fbF (G ; F) P = fbF G (fbF F P)
unfolding ↵b-eq by (auto simp: kcomp-def)

lemma ↵b-if-then-else[simp]: fbF (IF T THEN X ELSE Y) Q =
{s. T s �! s 2 fbF X Q} \ {s. ¬ T s �! s 2 fbF Y Q}

unfolding ↵b-eq ifthenesle-def by auto

lemma ↵b-loopI : P {s. I s} =) {s. I s} Q =) {s. I s} fbF F {s. I s}
=) P fbF (LOOP F INV I) Q
unfolding loopi-def using ↵b-kstarI [of P] by simp

lemma fbox-g-evol [simp]:
fixes ' :: (0a::preorder)) 0b) 0b
shows fbF (EVOL ' G U) Q = {s. (8 t2U s. (8 ⌧2down (U s) t . G (' ⌧ s)) �! (' t s) 2 Q)}
unfolding g-evol-def g-orbit-eq ↵b-eq by auto

lemma ↵b-g-ode-subset :
assumes

V
s. s 2 S =) 0 2 U s ^ is-interval (U s) ^ U s ✓ T

shows fbF (x´= (�t . f) & G on U S @ 0) Q =
{s. s 2 S �! (8 t2(U s). (8 ⌧2down (U s) t . G (' ⌧ s)) �! (' t s) 2 Q)}
hproofi

Knowing the categorical representation of forward box operators as predicate transformers
allows us to go one step further and obtain verification components with a direct encoding.
Therefore, instead of relying on previous formalisations of MKAs in [54] or predicate
transformers through the powerset monad in [130], we have created a lightweight verification
component by directly defining weakest preconditions.

definition fbox :: (0a) 0b set)) 0b pred) 0a pred (|-] - [61 ,81] 82)
where |F] P = (�s. (8 s 0. s 0

2 F s �! P s 0))

By their type, these are indeed predicate transformers. Furthermore, Isabelle’s ability to
prove properties about them highly increases, as it mostly relies on the representation on the
right hand side as a higher order logic formula. The proofs of the wlp-rules are the same as
those presented above in this section up to renaming of the lemmas.

Both versions of the verification components, the spartan version and the one based on
predicate transformers of the powerset monad are a contribution from our work. Each of them
consists of approximately 400 lines of code which covers 4 pages of proofs. To build them,
we relied on knowledge of the categorical approach to predicate transformers due at least to
Manes [92]. However, given the restrictive type system of Isabelle to encode categories, the

88 CHAPTER 6. EXTENSIONS

formalisations of predicate transformers used here consist only on the particular instance of
the powerset monad. There is an alternative formalisation of predicate transformers à la Back
and von Wright by Preoteasa [119,120]. However, we used the formalisation in [129,130] for
its emphasis on quantales and verification. It includes, for example, a forward box operator
for the relational model fbR that we ended up not using. As the approach is compositional, we
can potentially vary the store model like in next section or add refinements like in Section 6.1.

6.4 Lenses

As Figure 6.1 shows, apart form modifying the underlying algebraic structure for the
components, we can also modify the model for the program store. This illustrates another
section where our framework is modular but also opens the possibility for a generalisation
of our state space. Repeating our previous approach with algebras for programs, we can
use an algebraic entity to obtain various store models at once. Thus, in this section we
use lenses [47] to provide the verification components with the potential to use state space
models other than vectors in RV .

Lenses are an abstract algebraic representation of the program store with access get and
mutation put functions to manipulate it. Formally, the four-tuple x = (A, S, getx, putx) is a
lens [47], denoted x : A =) S, if the laws

getx (putx s v) = v, putx (putx s u) v = putx s v, putx s (getx s) = s,

hold for all s 2 S and v, u 2 A, where getx : S ! A and putx : S ! A ! S. Intuitively
and for our purposes, the lens x : A =) S represents a variable. The view A models the
type of the variable which comes from the source S that corresponds to the state space or
program store. Modelling the accessing and mutating behaviour with these equations goes
back at least to Back and Von Wright [12]. The axioms express that getx queries the value
of x while putx updates it. Thus, the first axiom states that after updating x’s value to be
v, querying it will give v. The second axiom says that updating the value of x twice, is the
same as updating it once to the second value. Finally, the third equation says that updating
the value of x with its current value is the same as doing nothing. For x 2 V , with V a
finite set, the tuple vec-lensVx = (R,RV ,�s. s x,�s t. s[x 7! t]) is a lens. Therefore, the set
{vec-lensVx | x 2 V } corresponds to the finite dimensional vector model RV of the program
store that we have used in previous sections.

Two lenses x and y on the same state space S can be independent of each other,
represented with the symmetric irreflexive relation x ./ y. It indicates that they correspond
to di↵erent regions of S which is formalised with the equations [47]

getx (puty s v) = getx s, gety (putx s u) = gety s, and putx (puty s v) u = puty (putx s u) v.

Intuitively, if x and y are independent, updating y on state s has no e↵ect on querying x
and vice versa. The commutativity of the third equation means that we can update two
independent lenses in any order without a↵ecting the overall result. In the case of our hybrid
programs, every variable is independent of the other.

Similarly, given a function f and a lens x, we say that x is unrestricted in f , denoted x] f
if for each s 2 S and v 2 A, f (putx s v) = f s. Unrestriction serves to formalise the common

6.4. LENSES 89

provisos in logic and programming for substitutions saying that f does not depend on x [47].
We can use these notions to prove properties about assignments with lenses. To do that, we
first define state updates after a function f : S ! S with the equation

f(x 7! e) s = putx (f s) (e s),

where x : A =) S and e : S ! A. That is, it updates the value of f s to the value of the
expression e evaluated on s. As in previous sections, e is a function to model dependency
on previous states, for instance, to update to x + y + 1 for variables x and y, we would use
e s = getx s+ gety s+ 1. Simultaneous updates for n � 2 variables then correspond to

[x1 7!s e1, x2 7!s e2, · · · , xn 7!s en] = id(x1 7! e1)(x2 7! e2) · · · (xn 7! en),

because [x 7!s e, y 7!s f] = [y 7!s f, x 7!s e] when x ./ y, and [x 7!s e, x 7!s f] = id(x 7! e)
by the second law of lenses. In particular, this notation is useful for defining vector fields
f : S ! S. The semantics for assignments as state transformers are therefore

(x := e) s = {id(x 7! e) s} = {putx s (e s)}.

Notice that the program algebra semantics remains, but the underlying store semantics has
changed. Thus, we can use di↵erent lenses as our program store model like records and
functions [47]. In Isabelle/HOL, for instance, there is an alternative axiomatisation of vector
spaces V and their ordered bases via type classes [67, 76]. Foreseeing applications with code
generation, this formalisation includes a list representation ` s of vectors s 2 V. Functions
l !n and list-update l n v output the nth element of the list l and the update of the nth
element of l to the value v respectively. Therefore, the lenses

eucl-lensnk = (R, U,�s. (` s) ! k,�s v. list-update (` s) k v), for k < n, and

fun-lens(A,B)
x = (B,A! B,�f. f x,�f v. f [x 7! v]),

are possible alternatives in the development of verification components. In particular, lenses
eucl-lensnk might be useful for code generation of verified programs. We use them below for an
alternative formalisation of the thermostat hybrid program of Figure 2.5. It is still unknown
if the lenses fun-lens(N,R)x are an infinite dimensional alternative for our components.

Another benefit of lenses comes from the extensive formalisation of Isabelle/UTP [45,46].
It provides a rich collection of commands such as utp-lift-notation or U (below) that enable
us to avoid lambdas � in our formalisation. Thus, instead of using numbers s$1, s$2, s$3,
and s$4 as in Example 6.1.1, we can have a cleaner presentation of thermostat with lenses.

abbreviation T :: real =) realˆ4 where T ⌘ ⇧[0]
abbreviation t :: real =) realˆ4 where t ⌘ ⇧[1]
abbreviation T 0 :: real =) realˆ4 where T 0 ⌘ ⇧[2]
abbreviation # :: real =) realˆ4 where # ⌘ ⇧[3]

abbreviation ftherm :: real) real) (real , 4) vec) (real , 4) vec (f)
where f a c ⌘ [T 7!s � (a ⇤ (T � c)), T 0 7!s 0 , # 7!s 0 , t 7!s 1]

90 CHAPTER 6. EXTENSIONS

abbreviation therm-guard :: real) real) real) real) (realˆ4) upred (G)
where G T l Th a L ⌘ U(t � (ln ((L�(if L=0 then T l else Th))/(L�T 0)))/a)

abbreviation therm-loop-inv :: real) real) (realˆ4) upred (I)
where I T l Th ⌘ U(T l T ^ T Th ^ (# = 0 _ # = 1))

abbreviation therm-flow :: real) real) real) (realˆ4) usubst (')
where ' a c ⌧ ⌘ [T 7!s � exp(�a ⇤ ⌧) ⇤ (c � T) + c, t 7!s ⌧ + t , T 0 7!s T 0, # 7!s #]

abbreviation therm-ctrl :: real) real) (realˆ4) nd-fun (ctrl)
where ctrl T l Th ⌘

(t ::= 0); (T 0 ::= T);
(IF (# = 0 ^ T 0 T l + 1) THEN (# ::= 1) ELSE
IF (# = 1 ^ T 0 � Th � 1) THEN (# ::= 0) ELSE skip)

abbreviation therm-dyn :: real) real) real) real) real) (realˆ4) nd-fun (dyn)
where dyn T l Th a Tu ⌧ ⌘
IF (# = 0) THEN x´= f a 0 & G T l Th a 0 on {0 ..⌧} UNIV @ 0
ELSE x´= f a Tu & G T l Th a Tu on {0 ..⌧} UNIV @ 0

abbreviation therm T l Th a L ⌧ ⌘ LOOP (ctrl T l Th ; dyn T l Th a L ⌧) INV (I T l Th)

We formalised the alternative verification components using lenses vec-lensVx and
eucl-lensnk for [42]. This section is a recapitulation of the main contributions from that
reference. The formalisation includes both the state transformer and a relational semantics.
It covers 53 pages of proofs which is equivalent to approximately 2400 lines of code. The
formalisation of Isabelle/UTP and lenses comes from [45, 46]. We do not use lenses in the
verification examples of the following chapter.

6.5 A�ne Systems of ODEs

We take most of this section verbatim from our original publication [69] and the corresponding
formalisation [70]. This work focuses on extending the libraries of formalised mathematics of
Isabelle/HOL directly related to our components. With this extension, we provide evidence
for the fact that improvements to the general purpose proof assistant also benefit the
verification components. In particular, by formalising certain well-studied classes of ordinary
di↵erential equations, we can use their properties to simplify the verification procedure.

An important class of vector fields with unique solutions are those representing a�ne
systems of ODEs. They satisfy the equation

X 0 t = A t ·X t+B t,

for matrix-vector multiplication ·, n ⇥ n matrices A t and vectors B t, where A and B are
continuous functions on T . Equally important are the corresponding linear systems where
B t = 0 for all t 2 T . In the time-independent or autonomous case where A and B are
constant functions, their unique solutions are well-characterised and globally defined. That

6.5. AFFINE SYSTEMS OF ODES 91

is, flows ' for autonomous a�ne systems exist and satisfy

' t s = exp (tA) · s+ exp (tA) ·

Z t

0

(exp (�⌧A) · B) d⌧,

where exp is the matrix exponential exp A =
P

i2N
1
i!A

i. By formalising a generic version of
this particular case in Isabelle/HOL, we do the procedure of Section 4.4 for users rather than
asking them to do it. Therefore, we explain this formalisation below which not only serves
verification but it actually adds definitions and lemmas from mathematics for a seamless
integration of the existing libraries of ODEs and linear algebra.

In Isabelle/HOL, matrices are vectors of vectors—an m⇥n matrix A has type realˆ 0nˆ 0m.
The product of matrix A with vector s is denoted A ⇤v s; the scaling of vector s by real
number c is written c ⇤R s. Thus, a solution X to an a�ne system with A :: real) realˆ 0nˆ 0n
and B :: real) realˆ 0n satisfies the predicate D X = (�t . A t ⇤v X t + B t) on T.

A�ne systems of ODEs are locally Lipschitz continuous with respect to the operator
norm kMkop =

F
{kM · sk | ksk = 1}, where M is a matrix with real coe�cients. This

specific instance of the norm on matrices is one of the contributions of our formalisation. We
introduce it by specialising Isabelle’s onorm that lives in its HOL-Analysis library.

abbreviation op-norm :: (0a::real-normed-algebra-1)ˆ 0nˆ 0m) real (1k-kop)
where kAkop ⌘ onorm (�x . A ⇤v x)

It is an alternative definition of the operator norm onorm f = Sup {kf xk / kxk | x 2 V }.
However, for many proofs, our characterisation of k�kop above is more convenient. Hence,
we formalise the equivalence as shown below.

lemma op-norm-def : kAkop = Sup {kA ⇤v xk | x . kxk = 1}
hproofi

We also show that k�kop satisfies the norm axioms and other properties.

lemma op-norm-ge-0 : 0 kAkop
using ex-norm-eq-1 norm-ge-zero norm-matrix-le-op-norm basic-trans-rules(23) by blast

lemma op-norm-eq-0 : (kAkop = 0) = (A = 0)
unfolding onorm-eq-0 [OF blin-matrix-vector-mult] using matrix-axis-0 [of 1 A] by fastforce

lemma op-norm-triangle: kA + Bkop (kAkop) + (kBkop)
hproofi

lemma op-norm-scaleR: kc ⇤R Akop = |c| ⇤ (kAkop)
unfolding onorm-scaleR[OF blin-matrix-vector-mult , symmetric] scaleR-vector-assoc ..

lemma norm-matrix-le-mult-op-norm: kA ⇤v xk (kAkop) ⇤ (kxk)
hproofi

92 CHAPTER 6. EXTENSIONS

lemma op-norm-matrix-matrix-mult-le: kA ⇤⇤ Bkop (kAkop) ⇤ (kBkop)
hproofi

lemma op-norm-le-transpose: kAkop ktranspose Akop
hproofi

Using these properties, we can show Lipschitz continuity. Indeed, with Lipschitz constant
` =

F
{kA tkop | t 2 B"(s)}, we get

k(A t) · s1 � (A t) · s2k = k(A t) · (s1 � s2)k kA tkop ks1 � s2k ` ks1 � s2k .

In particular ` exists by continuity of A and k�k, and compactness of B"(s). The
formalisation however, does not immediately require continuity for kAkop , just that it is
bounded above using predicate bdd-above.

lemma lipschitz-cond-a�ne:
defines L ⌘ Sup {kA tkop |t . t 2 T}

assumes t 2 T and bdd-above {kA tkop |t . t 2 T}

shows kA t ⇤v x � A t ⇤v yk L ⇤ (kx � yk)
hproofi

An alternative Lipschitz constant involves the matrix maximum norm kAkmax which is
the greatest absolute value of A’s entries [131]. We have also formalised this norm. Below,
we show its relationship to the operator norm which we could use to replace ` in the last
inequality of the Lipschitz argument above.

abbreviation max-norm :: realˆ 0nˆ 0m) real (1k-kmax)
where kAkmax ⌘ Max (abs ‘ (entries A))

lemma max-norm-def : kAkmax = Max {|Aij | |i j . i2UNIV ^ j2UNIV }

hproofi

lemma op-norm-le-max-norm:
fixes A :: realˆ(0n::finite)ˆ(0m::finite)
shows kAkop real CARD(0m) ⇤ real CARD(0n) ⇤ (kAkmax)
hproofi

Another benefit of our formalisation of the operator norm is that it allows us to define
matrix continuity. Together with local Lipschitz continuity, we can show that a�ne systems
satisfy the assumptions of our picard-lindeloef locale.

definition matrix-continuous-on :: real set) (real) (0a::real-normed-algebra-1)ˆ 0nˆ 0m)) bool
where matrix-continuous-on T A = 8 t2T .8 ">0 .9 �>0 .8 ⌧2T . |⌧ � t |<� �! kA ⌧ � A tkop"

lemma picard-lindeloef-a�ne:
fixes A :: real) 0a::{banach,real-normed-algebra-1 ,heine-borel}ˆ 0nˆ 0n
assumes Ahyp: matrix-continuous-on T A

6.5. AFFINE SYSTEMS OF ODES 93

and
V
⌧ ". ⌧ 2 T =) " > 0 =) bdd-above {kA tkop |t . dist ⌧ t "}

and Bhyp: continuous-on T B and open S
and t0 2 T and Thyp: open T is-interval T

shows picard-lindeloef (� t s. A t ⇤v s + B t) T S t0
hproofi

With this result, we obtain a generic instance of picard-lindeloef .unique-solution of
Section 4.2 for every a�ne system. This is useful for verification as exemplified in Section 7.1.
Assumptions Ahyp and Bhyp, above, state that functions A and B are continuous. The
second one requires that the image of B⌧ (") for ⌧ 2 T under � t. kA tkop is bounded above.
The remaining assumptions are direct conditions of Picard-Lindelöf’s theorem.

Continuity in Ahyp is di↵erent from that in Bhyp because Isabelle’s default norm for
matrices as vector of vectors A :: realˆ 0nˆ 0m is the Euclidean norm, not the operator norm.
This issue reverberates also in the general solution for time-independent a�ne system as, in
Isabelle, the exponential operation exp x =

P
n2N

1
n!x

n is available only within the type-class
real -normed -algebra-1. Among its axioms, one requires that the identity element 1 must
satisfy k1k = 1. Yet, this is not true for realˆ 0nˆ 0n, because k(� i. 1)k 6= 1. Therefore, we
define a sub-type of square matrices, set the operator norm as its default norm, and show
that this new type is an instance of real -normed -algebra-1 and banach.

typedef 0m sq-mtx = UNIV ::(realˆ 0mˆ 0m) set
morphisms to-vec sq-mtx-chi by simp

instance sq-mtx :: (finite) real-normed-algebra-1
hproofi

instance sq-mtx :: (finite) banach
hproofi

The command morphisms introduces the bijection to-vec and its inverse to-mtx between
0n sq-mtx and realˆ 0nˆ 0n. Both instantiations require proving that matrices form normed
vector spaces. Beyond that, the first instantiation requires showing that they also form a
ring. The second instantiation formalises our notion of complete metric space of Section 4.1.
That is, it shows that every Cauchy sequence of square matrices converges.

Introducing this new type in Isabelle/HOL means that we must lift previous properties
and operations for realˆ 0nˆ 0n to 0n sq-mtx. The code below, shows some examples of this.

lift-definition sq-mtx-ith :: 0m sq-mtx) 0m) (realˆ 0m) (infixl $$ 90) is ($) .

lift-definition sq-mtx-vec-mult :: 0m sq-mtx) (realˆ 0m)) (realˆ 0m) (infixl ⇤V 90) is (⇤v) .

lift-definition sq-mtx-inv :: (0m::finite) sq-mtx) 0m sq-mtx (-�1 [90]) is matrix-inv .

This means that we can write $$ and ⇤V instead of $ and ⇤v respectively, and we can
convert proofs between the new and the old type. We thus obtain the same results as
before in the new type, including Picard-Lindelöf’s theorem. Notice that this time we do

94 CHAPTER 6. EXTENSIONS

not need di↵erent versions of continuity. Similarly, the other assumptions have absorbed the
requirement for boundedness above.

lemma picard-lindeloef-sq-mtx-a�ne:
assumes continuous-on T A and continuous-on T B

and t0 2 T and is-interval T and open T and open S
shows picard-lindeloef (�t s. A t ⇤V s + B t) T S t0
hproofi

The next step is to formalise the general solution for autonomous a�ne systems and
linear systems of ODEs. We formalise the a�ne version below, while that for linear systems
specialises to X t = (exp ((t� t0)A)) · s for s 2 Rn.

lemma has-vderiv-on-sq-mtx-a�ne:
fixes t0::real and A :: (0a::finite) sq-mtx
defines lSol c t ⌘ exp ((c ⇤ (t � t0)) ⇤R A)
shows D (�t . lSol 1 t ⇤V s + lSol 1 t ⇤V (

R
t0

t (lSol (�1) ⌧ ⇤V B) @⌧)) =
(�t . A ⇤V (lSol 1 t ⇤V s + lSol 1 t ⇤V (

R
t0

t (lSol (�1) ⌧ ⇤V B) @⌧)) + B) on {t0��t}
hproofi

As no conditions on the parameter t are given, these general solutions are proper flows in
the sense that they are defined over the entire monoid R and state space Rn. We formalise
these results with the locale local-flow of Section 4.2.

lemma local-flow-sq-mtx-a�ne: local-flow (�s. A ⇤V s + B) UNIV UNIV
(�t s. exp (t ⇤R A) ⇤V s + exp (t ⇤R A) ⇤V (

R
0
t(exp (� ⌧ ⇤R A) ⇤V B)@⌧))

hproofi

lemma local-flow-sq-mtx-linear :
local-flow ((⇤V) A) UNIV UNIV (�t s. exp (t ⇤R A) ⇤V s)
hproofi

Determining such exponentials may be computationally expensive due to the iteration
of matrix multiplication. Exceptions are diagonalisable matrices A which are similar to a
diagonal matrix D in the sense that there is an invertible P such that A = P�1DP . For
these matrices,

exp A = exp (P�1DP) = P�1(exp D)P,

where exp D in the right hand side is diagonal and easy to characterise: its entries in the
main diagonal are the exponential of those in D. Therefore, when working with solutions of
autonomous a�ne (or linear) systems, it is preferable to work with those in diagonal form.
As reasoning with general solutions is easier for diagonalisable matrices, we formalise matrix
invertibility, similarity and diagonal matrices from linear algebra. We also characterise the
exponential of a matrix in terms of these concepts.

lemma mtx-invertible-def : mtx-invertible A ! (9A 0. A 0
⇤ A = 1 ^ A ⇤ A 0 = 1)

hproofi

6.6. SUMMARY OF THE VERIFICATION COMPONENTS 95

definition similar-sq-mtx :: (0n::finite) sq-mtx) 0n sq-mtx) bool (infixr ⇠ 25)
where (A ⇠ B) ! (9 P . mtx-invertible P ^ A = P�1

⇤ B ⇤ P)

definition diag-mat f = (� i j . if i = j then f i else 0)

lemma exp-scaleR-diagonal1 :
assumes mtx-invertible P and A = P�1

⇤ (diag i . f i) ⇤ P
shows exp (t ⇤R A) = P�1

⇤ (diag i . exp (t ⇤ f i)) ⇤ P
hproofi

The first three concepts and related properties are available for matrices of type realˆ 0nˆ 0n
and 0n sq-mtx. The exponential is only available for the latter. For example, the notation
(diag i . f i) is the 0n sq-mtx version of diag-mat f.

All the lemmas and abbreviations displayed above are part of our entry in Isabelle’s
Archive of Formal Proofs [70]. Our work covers over 10 pages of proofs and definitions about
matrix limits, norms, and operations. This is equivalent to more than 600 lines of code. Our
development of the type 0m sq-mtx and the diagonalisation of square matrices is over 16 pages
long. It spans over 900 lines of code or more than 200 lemmas whose proofs are long due
to the various convergence arguments and instantiations. These substantial formalisations
allow Isabelle users to prove facts involving derivatives of matrix operations. We exemplify
their use in verification in Sections 7.2 and 7.3.

6.6 Summary of the Verification Components

In this section, we do a brief recapitulation of the current state of the verification components
formalised so far. We mention the benefits of using one implementation over another and we
also describe the theoretical use cases for our developments.

Our verification components based on KATs prove the least amount of properties about
hybrid systems as they formalise the minimal logic dH. They do not include diamond
operators and do not compute weakest preconditions. Yet, this is the only version that
includes a refinement calculus via rKAT and it is also the only version with a variant that
includes lenses and the notational benefits of Isabelle/UTP. The reason for this is only due to
the chronological development of the components. That is, the other components discussed
in the sequel can also include lenses and refinement but this is left for future work. Overall,
we recommend the KAT-based components only for simple verifications or, temporarily, for
refinement of hybrid programs.

The MKA version of the verification components with its relational model is our most
developed variant. It not only subsumes KATs di↵erential Hoare logic, but extending it is
easy due to its high modularity and Isabelle’s support for proofs about relations. Adding new
results, for instance about MKAs forward diamonds, is straightforward. The alternative state
transformer version occasionally is harder to use due to lack of support and frequent use of
translations between the type of nondeterministic functions 0a nd-fun and the function type
0a) 0a set. Yet, this only applies to its development as for verifications and case studies, its
use is indistinguishable from the relational version. A possible issue with both MKA variants

96 CHAPTER 6. EXTENSIONS

is that care must be present when introducing a new concrete semantics for hybrid programs.
Class instantiations quickly become non-compositional because Isabelle users can only do
this process once. For instance, combining HOL-Analysis and the AFP entry [56] generates
such a crash for the relational model of MKAs.

The components based on predicate transformers from quantales or the powerset monad
require the most preliminary work for their implementation. However, their verification
proofs tend to be faster. This is because, for Isabelle, their underlying types of sets and
functions are easier to handle than relations or state transformers. Their dependencies,
however, a↵ect common notation like set-elementhood replacing s 2 S with s2p S s which
may make them harder to learn for users that plan to build upon them.

In contrast, the lightweight version based on predicate transformers includes all these
automation benefits without any issues about dependencies on previous theories. Not only
that, but loading it is a lot faster than for the rest of the components. It is the ideal choice
for fast developments and tests.

At the level of verification condition generation, however, non of these implementations is
comparatively better than the other. That is, the formalisation of the soundness rules in each
of them is similar in length and they implement very similar proof-styles. Furthermore, all of
them include the three variants of evolution commands, the traditional one (x0 = f &G)U , the
one based on guarded orbitals (x0 = f &G on U S at t0), and the one that directly encodes
the dynamics evol'GU . Verifying the second of these three involves either following the
procedure of Section 4.4 that supplies and certifies solutions and Lipschitz continuity, or
providing a di↵erential invariant as in the procedure of Section 5.2. The evolution command
(x0 = f &G)U is a special case of the orbital based one and it requires the same procedures.
We merely have it for resemblance to di↵erential dynamic logic and the derivation of its
rules of inference. Thus, we can do some verifications in the style of dL with it. On the
other hand, dynamics based evolution commands evol'GU are more optimistic in the
sense that verifications with them do not require certifications that ' is correct. Yet, in
many applications the function ' is not known. The other two are alternatives to verify
those cases.

In the case of our formalisation of a�ne systems, users have several methods for proving
properties about them. The choice of the method depends on whether users know a solution
to the system

X 0 t = A t ·X t+B t, (6.1)

and, in the autonomous case A t = A, it also depends on whether A is diagonalisable.
For instance, certifying that a function X solves system (6.1) is a matter of just stating

the corresponding Isabelle formalisation and using our tactic poly-derivatives to check that
both sides of the equation reduce to the same expression as in Section 4.2.

In Section 7.1, we see that sometimes a characterisation X1 of the solution to system (6.1)
is simpler than other X2. In those cases, the uniqueness lemmas as provided by
picard-lindeloef locale instantiated to our lemma picard-lindeloef-sq-mtx-a�ne formalise
the fact that X1 t = X2 t. This allows us to conveniently switch between characterisations.

In cases where users do not have a solution to system (6.1), but this is time-independent,
they can use our formalisation of the general solution for autonomous a�ne systems X 0 t =
A · X t + B in terms of the matrix exponential with lemmas has-vderiv-on-sq-mtx-a�ne

6.6. SUMMARY OF THE VERIFICATION COMPONENTS 97

and has-vderiv-on-sq-mtx-linear. We also provide theorems for simplifications of the general
solution in case that A is diagonalisable A = P�1DP . An external tool, like a computer
algebra system, can provide the diagonal matrix D and change of basis matrix P . Then it
is just a a matter of using our lemma exp-scaleR-diagonal1 of Section 6.5 to simplify the
general solution. Hence, in the particular case of the autonomous version of system (6.1)
with A diagonalisable, the procedure of Section 4.4 has already been done on the background
with our formalisation. Not only that, but we have already proved that these systems satisfy
the local-flow locale. Thus, the monoid action equations are available for them.

Yet, there is still much to add for a full treatment of linear systems in Isabelle/HOL.
For non-diagonalisable matrices, the more general approach with Jordan Normal forms [131]
is missing. However, many non-diagonalisable matrices can still be tackled with our
formalisation. See Sections 7.1 and 7.2 for examples of this. Another result missing is a
general solution for system (6.1), which is non-autonomous. The approaches to obtaining
it have to solve an associated linear system where B t = 0 [49, 63]. These include the
variation of parameters method, the resolvent matrix method or a change in the dimension
of system (6.1) by solving instead

✓
X 0 t
10

◆
=

✓
(A t) (B t)
0> 0

◆
·

✓
X t
1

◆
=

✓
A t ·X t+B t

0

◆

which subsumes it in its first entry. Here, 0> is a transposed zero-vector with the same length
as B t and 0, 1 2 R. Nevertheless, our formalisation is a good basis for implementing these
extensions.

In summary, for simple verification tasks users may use KAT and rKAT. This is the
recommended component if nice syntax is a requirement as there is a variant with lenses and
Isabelle/UTP. For fast development and extensions independent of algebraic preliminaries,
the lightweight stripped down predicate transformer components are the better choice. At
the level of verification condition generation however, the MKA or any predicate transformer
version are interchangeable. The formalisation of a�ne systems is compositional with any
of these approaches. Yet, it improves not only the verification components but also includes
lemmas to prove properties about specific instances of system (6.1). The complete Isabelle
formalisation, including examples, covers about 170 pages of proofs. Previous versions can
be found in the Archive of Formal Proofs [68,70] while the most recent developments for this
thesis are available in the online repository https://github.com/yonoteam/CPSVerification.

https://github.com/yonoteam/CPSVerification

98 CHAPTER 6. EXTENSIONS

Chapter 7

Formal Verifications

Until now, the running example of the thermostat hybrid program of Figure 2.5 is the only
application where we use our verification components. In order to illustrate more diverse
usages, we exhibit a wider variety of verification problems of increasing di�culty. We use
each one of them to highlight particular aspects of our components. Despite their early stage
of development, our components display various features that we can contrast and compare
to existing tools for deductive verification. To do this, throughout the chapter we discuss the
following concrete categories when doing these comparisons: the variety of hybrid programs
available in the tool, the language or formulas the tool can use to write specifications, its
diversity of methods for verifying evolution commands, the length of the proofs, and the
amount of proof-automation the tool supports. We also limit our comparisons to dL’s flagship
theorem prover KeYmaera X and to the HHL prover because their verification style is closer
to that of our components.

In Section 7.1, we prove an invariance property for a single evolution command with our
procedures of Sections 4.4 and 5.2 for supplying solutions to systems of ODEs and providing
invariants respectively. We also formalise these results and show alternative verifications
with our components for a�ne systems and the dynamics-based evolution commands. In
Section 7.2, we use again the properties of linear systems to verify a sequential composition
of an evolution command and an assignment. A final usage of our linear systems formalisation
with a diagonalisable matrix is in Section 7.3. Afterwards, we verify the classical example of
a bouncing ball in Section 7.4 that helps us test the integration of evolution commands
with loops and conditional statements. For this reason, we verify it four times: using
invariants, supplying flows, directly annotating the dynamics, and via dH and the refinement
components with lenses and the Isabelle/UTP framework. After that, we showcase an
alternative formalisation of doing refinement proofs in Isabelle/HOL in Section 7.5. Then, we
briefly report on our participation in the ARCH2020 friendly competition [97] in Section 7.6.
Throughout the section, we verify di↵erent benchmark problems of the competition that
exhibit the main limitations of our verification components: their proof-automation and
better support for invariant reasoning. At the same time, these problems allow us to discuss
the versatility of our framework to provide alternative solutions to them. In Section 7.7,
we lay the first steps towards a verification of a more complicated system: the control of
a quadcopter that uses the standard PID technique [34]. We conclude the chapter with
Section 7.8 where we summarise the features and limitations of the components discussed so

99

100 CHAPTER 7. FORMAL VERIFICATIONS

Figure 7.1: Circular motion vector field

far in comparison with other deductive verification tools.

7.1 Circular Motion

Our first example is a simple proof of invariance for an evolution command. Because of
its simplicity, it is ideal for showcasing the various verification procedures supported by
our components. It also helps us to highlight the di↵erence between them. Its continuous
dynamics are described with the di↵erential equations

x0 t = y t and y0 t = �x t,

that, as a vector field f : R{x,y}
! R{x,y}, correspond to the linear system

✓
f s x
f s y

◆
=

✓
0 1
�1 0

◆
·

✓
s x
s y

◆
=

✓
s y
�s x

◆
.

Figure 7.1 shows a graphical representation of this vector field. It already illustrates
that if a particle starts in the circumference I s $ ((s x)2 + (s y)2 = r2), it remains there.
Alternatively, to obtain this invariant we can use parametric derivation. That is, abusing
notation, we can consider the variation of y relative to x via

dy

dx
=

y0

x0 = �
x

y
.

Solving this ODE with respect to x yields the desired x2 + y2 = r2 with r � 0.
Therefore, throughout this section, we are interested in proving

{�s. (s x)2 + (s y)2 = r2} (x0 = f &G)U {�s. (s x)2 + (s y)2 = r2}, (7.1)

7.1. CIRCULAR MOTION 101

where G : R{x,y}
! B and U : R{x,y}

! P R maps states to intervals. In the next couple of
examples, we prove this using either invariance or the system of ODEs’ flow. We conclude the
section with alternative verifications using properties of a�ne systems and direct annotations
of the dynamics.

Example 7.1.1 (Circular Motion via Invariant). Proceeding as in Example 5.2.1, we follow the
procedure from Section 5.2 to show that I s$ ((s x)2 + (s y)2 = r2) is a di↵erential invariant
for f and G along U .

As before, steps 1(a) and 1(b) do not apply as I is a single positive clause of a conjunctive
formula. Next, we use Lemma 5.2.5.1 to test if an equality is an invariant. For that we need
to show �

(X tx)2 + (X t y)2
�0
= (r2)0,

for a function X such that X 0 t i = f (X t) i for i 2 {x, y}. The result is calculational.
�
(X tx)2 + (X t y)2

�0
= 2(X tx)(X 0 t x) + 2(X t y)(X 0 t y)

= 2(X tx)(f (X t) x) + 2(X t y)(f (X t) y)

= 2(X tx)(X t y)� 2(X t y)(X tx) = 0

Therefore, by Proposition 5.2.1, we have just shown that

{�s. (s x)2 + (s y)2 = r2} (x0 = f &G)U {�s. (s x)2 + (s y)2 = r2}.

In Isabelle/HOL, the corresponding proof is automatic using our tactics for derivatives
and di↵erential invariants.

abbreviation fpend :: realˆ2) realˆ2 (f)
where f s ⌘ (� i . if i = 1 then s$2 else �s$1)

lemma (�s. r2 = (s$1)2 + (s$2)2) |x´= f & G] (�s. r2 = (s$1)2 + (s$2)2)
by (auto intro!: di↵-invariant-rules poly-derivatives)

Here, we use the number 1 for x and 2 for variable y.

Example 7.1.2 (Circular Motion via Flow). Another way to prove the Hoare triple 7.1 is by
providing the solution to the di↵erential equations. It corresponds to a rotation on the initial
state. ✓

' t s x
' t s y

◆
=

✓
cos t sin t
� sin t cos t

◆
·

✓
s x
s y

◆
=

✓
(s x) cos t+ (s y) sin t
�(s x) sin t+ (s y) cos t

◆
.

Due to the fact that the system is linear, we know that it satisfies Lipschitz continuity.
The following equalities check that �t. ' t s solves the system
✓
'0 t s x
'0 t s y

◆
=

✓
� sin t cos t
� cos t � sin t

◆
·

✓
s x
s y

◆
=

✓
0 1
�1 0

◆✓
cos t sin t
� sin t cos t

◆
·

✓
s x
s y

◆
=

✓
f (' t s) x
f (' t s) y

◆
.

Furthermore, ' 0 s = � ·s = s where � is the identity matrix. Therefore, we can safely apply
either (h-evol) or (wlp-evol). To do this we observe that

I (' t s)$ (' t s x)2 + (' t s y)2 = r2

$ ((s x) cos t+ (s y) sin t)2 + (�(s x) sin t+ (s y) cos t)2 = r2

$ (s2 x+ s2 y)(cos2 t+ sin2 t) = r2 $ I s

102 CHAPTER 7. FORMAL VERIFICATIONS

The wlp-rule for evolution commands therefore yields

I |(x0 = f &G)U] I = (�s. I s! (8t 2 U. (8⌧ 2 #U t. G (' ⌧ s))! I s))) = >.

We split the Isabelle formalisation corresponding to the process above in three stages.
First, we introduce the flow. Then, we show that the vector field satisfies the assumptions
of our local-flow locale which involves a proof for Lipschitz continuity. Finally, we use this
result to compute the wlp and prove the correctness specification.

abbreviation circ-flow :: real) realˆ2) realˆ2 (')
where ' t s ⌘ (� i . if i = 1 then s$1 ⇤ cos t + s$2 ⇤ sin t else � s$1 ⇤ sin t + s$2 ⇤ cos t)

lemma local-flow-circ: local-flow f UNIV UNIV '
apply(unfold-locales, simp-all add : local-lipschitz-def lipschitz-on-def vec-eq-i↵ , clarsimp)
apply(rule-tac x=1 in exI , clarsimp, rule-tac x=1 in exI)
apply(simp add : dist-norm norm-vec-def L2-set-def power2-commute UNIV-2)

by (auto simp: forall-2 intro!: poly-derivatives)

lemma (�s. r2 = (s$1)2 + (s$2)2) |x´=f & G] (�s. r2 = (s$1)2 + (s$2)2)
by (force simp: local-flow .fbox-g-ode-subset [OF local-flow-circ])

The longest proof corresponds to lemma local-flow-circ. The first line of its proof unfolds
definitions. The second lines supplies a radius of existence of the solutions and the Lipschitz
constant (both equal to 1). The third line discharges the obligation about Lipschitz
continuity. The final line uses our tactic poly-derivatives to check that the derivatives
coincide. Thus, the proof of the correctness specification is a simple application of the
corresponding wlp-rule based on the fact that local-flow-circ holds.

For completeness of this section, we present two alternative verifications of the Hoare
triple 7.1. The first one uses our components for linear systems. First we introduce the
matrix of the vector field using our function mtx that turns lists into square matrices.

abbreviation mtx-circ :: 2 sq-mtx (A)
where A ⌘ mtx
([0 , 1] #
[�1 , 0] # [])

From this we know that the solution to the system of ODEs is �t s. exp (tA) ·s. However,
the diagonlisation of this matrix involves complex numbers and expanding the exponential
requires handling infinite sums. As described in Section 6.6, an alternative method involves
using the uniqueness lemmas to replace this solution with a simpler one. Below we show this
process for the function ' of the previous Example 7.1.2.

lemma mtx-circ-flow-eq : exp (t ⇤R A) ⇤V s = ' t s
apply(rule local-flow .eq-solution[OF local-flow-sq-mtx-linear , symtrc, of - �s. UNIV], simp-all)
apply(rule ivp-solsI , simp-all add : sq-mtx-vec-mult-eq vec-eq-i↵)

unfolding UNIV-2 using exhaust-2
by (force intro!: poly-derivatives simp: matrix-vector-mult-def)+

7.2. DOCKING STATION 103

In the proof above, the first line calls the uniqueness lemma of locale local-flow which holds
because we have shown in our formalisation of linear systems that they satisfy the assumptions
of this locale. The remaining lines just prove that �t. ' t s 2 Sols(�s. A · s) (�s. R)R{x,y} 0 s
by unfolding definitions and using our derivative tactics. Thus, we can use this result to show
the correctness specification.

lemma (�s. r2 = (s$1)2 + (s$2)2) |x´=(⇤V) A & G] (�s. r2 = (s$1)2 + (s$2)2)
apply(subst local-flow .fbox-g-ode-subset [OF local-flow-sq-mtx-linear])
unfolding mtx-circ-flow-eq by auto

The first line applies the wlp rule while the second uses the equality given by uniqueness
to complete the proof.

However, the simplest formalisation of the Hoare triple 7.1, corresponds to a direct
encoding of the function ' in the specification.

lemma (�s. r2 = (s$1)2 + (s$2)2) |EVOL ' G T] (�s. r2 = (s$1)2 + (s$2)2)
by force

This is expected because the proof involves no checks for invariance or derivatives.
In comparison with other tools for deductive verification of hybrid systems like KeYmaera

X or the HHL prover, our first formalisation using invariants would also be possible in both. In
fact, both provers have increased automation that allows them to handle complex invariants
more easily than we can. However, the circular motion is so simple, that our basic tactics
can discharge its proof obligations easily too.

Contrastingly, our proof supplying the flow is bigger than our proof with invariants
because we also need to certify Lipschitz continuity and that the flow is indeed a solution
to the system of ODEs. Yet, it also serves to evidence how smoothly we can handle
transcendental functions like sines, cosines and exponentials in Isabelle/HOL. For reasons of
decidability, these transcendental functions are not supported in KeYmaera X. Nevertheless,
KeYmaera X can supply a solution to this circular motion problem by extending the
dimension of the state space to reason about sines and cosines indirectly. The HHL prover
can also provide the flow of this system as it is also implemented in Isabelle/HOL. However,
neither KeYmaera X nor the HHL prover provide syntax for matrix reasoning as we do with
our formalisation of linear and a�ne systems of ODEs. Similarly, they also do not include a
hybrid program to reason about the dynamics directly in the specification.

7.2 Docking Station

In this section we consider a hybrid program involving only an assignment and an evolution
command. Hence, the example is still simple but it allows us to focus on our formalisation of
a�ne and linear systems. In particular, the dynamics involve a non-diagonalisable matrix.

The verification problem involves a spaceship moving at a constant speed of v0 > 0
and aligned with its docking station at a distance d of the ship which currently is at x0.
To stop exactly at d, the ship determines that it needs a constant negative acceleration of

104 CHAPTER 7. FORMAL VERIFICATIONS

Figure 7.2: A spaceship aligned with its station about to start its docking process.

a = � v20
2(d�x0)

. Figure 7.2 illustrates this scenario. The corresponding partial correctness
specification is therefore

{�s. s x = x0 ^ s v = v0}

✓
a := �s. �

v20
2(d� x0)

; (x0 = f0 &G)R+

◆
{�s. s v = 0$ s x = d},

where G is any predicate. The dynamics of the system coincide with those of Example 5.2.1,
that is x000 t = 0. Yet, we can write the corresponding vector field f0 with a matrix

0

@
f0 s x
f0 s v
f0 s a

1

A = K ·

0

@
s x
s y
s a

1

A =

0

@
0 1 0
0 0 1
0 0 0

1

A ·

0

@
s x
s y
s a

1

A ,

for variables V = {x, v, a} that respectively represent the ship’s position, velocity and
acceleration. Due to the fact that this is a linear system, it has unique solutions. Moreover,
because the system is autonomous, its solutions are equal to ' t s = exp (tK) · s.

Computation of the exponential operator on tK is still manageable because

tK =

0

@
0 t 0
0 0 t
0 0 0

1

A , (tK)2 =

0

@
0 0 t2

0 0 0
0 0 0

1

A and (tK)3 =

0

@
0 0 0
0 0 0
0 0 0

1

A .

Therefore, unfolding definitions we get that

exp(tK) =

X

n2N

1

n!
(tK)n

!
=

✓
1 + tK +

(tK)2

2!

◆
=

0

@
0 t t2

2
0 0 t
0 0 0

1

A .

Below, the formalisation of these results is straightforward. Notice that the proofs
are relatively simple because, in our work with a�ne systems of ODEs, we have added
simplification rules for matrix operations. This produces fast certifications involving them.

lemma exp-mtx-cnst-acc: exp (t ⇤R K) = ((t ⇤R K)2/R 2) + (t ⇤R K) + 1
unfolding exp-def apply(subst suminf-eq-sum[of 2])
using powN-scaleR-mtx-cnst-acc by (simp-all add : numeral-2-eq-2)

7.2. DOCKING STATION 105

lemma exp-mtx-cnst-acc-vec-mult-eq : exp (t ⇤R K) ⇤V s =
vector [s$3 ⇤ tˆ2/2 + s$2 ⇤ t + s$1 , s$3 ⇤ t + s$2 , s$3]
apply(subst exp-mtx-cnst-acc, subst pow2-scaleR-mtx-cnst-acc)
apply(simp add : sq-vec-mult-eq vector-def)
unfolding UNIV-3 by (simp add : fun-eq-i↵)

In the formalisation above, we use states s = (s$1, s$2, s$3) where s$1 is the ship’s
position, s$2 is its velocity and s$3 is its acceleration. Therefore, the second lemma states
that the exponential of tK applied to a state s generates the traditional kinematics equations

0

@
(exp(tK) · s) x
(exp(tK) · s) v
(exp(tK) · s) a

1

A =

0

@
(s a) t

2

2 + (s v)t+ s x
(s a)t+ s v

s a

1

A ,

where vector is a function that turns Isabelle’s lists into vectors. We can use these results to
verify the desired correctness specification.

lemma docking-station-arith:
assumes (d ::real) > x and v > 0
shows (v = v2 ⇤ t / (2 ⇤ d � 2 ⇤ x)) ! (v ⇤ t � v2 ⇤ t2 / (4 ⇤ d � 4 ⇤ x) + x = d)
hproofi

lemma docking-station:
assumes d > x 0 and v0 > 0
shows PRE (�s. s$1 = x 0 ^ s$2 = v0)
HP ((3 ::= (�s. �(v0ˆ2/(2⇤(d�x 0))))); x´=(⇤V) K & G)
POST (�s. s$2 = 0 ! s$1 = d)
apply(clarsimp simp: le-fun-def local-flow .fbox-g-ode[OF local-flow-sq-mtx-linear [of K]])
unfolding exp-mtx-cnst-acc-vec-mult-eq using assms by (simp add : docking-station-arith)

The proof of the specification is simple because it calls our lemma stating that a�ne systems
satisfy the assumptions of the local-flow locale. It also calls lemma docking-station-arith that
restates and shows the last proof obligation. Supplying it to Isabelle’s simplifier allows the
proof assistant to finish the verification automatically.

As explained before, we have proved a generic theorem that provides the requirements
for Lipschitz continuity and certification of the flow with our formalisation of a�ne systems.
This simplifies those parts of the procedure of Section 4.4. Instead, users might have to
convert the provided solution in terms of the matrix exponential into simpler expressions as
we have done here.

Among other things, the example shows that, in our setting, sequential composition,
assignments and ODEs work smoothly together. They get transformed into proof obligations
about real numbers automatically with Isabelle’s simplifier. This is also easily done with
KeYmaera X and the HHL prover. Nevertheless, the main feature displayed in the example is
the support of our components for matrix reasoning which is not available in other deductive
verification provers. This is not to say that those other tools cannot verify the problem
presented above. In fact, both KeYmaera X and the HHL prover could supply an alternative

106 CHAPTER 7. FORMAL VERIFICATIONS

representation of the solution to the ODE or reason about it with invariants. Yet, the
availability of including a�ne systems opens the possibility for future research that improves
the technique as they are used frequently in control engineering [133].

7.3 Overdamped Door

In this section, we present a verification using our formalisation of a�ne systems of ODEs that
uses a diagonalisation. We focus on a common second order ODE in physics and engineering:

x00 t = a(x t) + b(x0 t).

For instance, by setting a = 1
CL and b = R

L , the ODE models the current in a closed circuit
of a resistor (R) in series with an inductor (L), a capacitor (C) and a source of constant
voltage [63]. However, we are more interested in its representation as a damped harmonic
oscillator by fixing a = � k

m and b = � d
m . Here, m represents a mass attached to a spring

of constant k and sliding horizontally with a damping factor d. In particular, our system of
interest is the overdamped mechanism of a door that prevents if from slamming against its
frame or from opening on the other side. Hence, we must require that b2 + 4 · a < 0.

To prove that the assumption b2 +4 · a < 0 guarantees that the door behaves adequately,
we use variable x to indicate the horizontal extension of the spring and, therefore, how much
the door is opened. Thus, s x = 0 represents the spring at its natural state, hence, a closed
door. Accordingly, s x > 0 is an open door and s x < 0 is the unsafe region. Similarly, s v
represents the velocity of the horizontal displacement.

To model a person opening the door, we use open door s = {s | s x > 0 ^ s v = 0}. This
state transformer covers all the possible cases where the door is open and the person has just
stopped pushing or pulling it. After this happens, the evolution command follows. Yet, we
represent the second order ODE as a linear system:

✓
f s x
f s v

◆
=

✓
0 1
a b

◆
·

✓
s x
s v

◆
,

or more briefly f s = (Aa b) · s for s 2 R{x,v}. Thus, the hybrid program for our system is

loop
�
open door ; (x0 = �s. (Aa b) · s&G)R+

�
.

We can assume that the loop models a child constantly reopening the door. Moreover, the
guard G could be any predicate including the guard that does nothing >.

As the system is linear, we know that the flow is ' t s = exp (t(Aa b))·s. To simplify it, we
need the eigenvalues ◆1 and ◆2, and the change of basis matrix P that diagonalise Aa b. That
is, Aa b = P�1DP where D is the diagonal matrix with ◆1 and ◆2 constituting it. Instead of
doing the diagonalisation in Isabelle, we can use a computer algebra system to supply it:

P =

✓
�

◆2
a �

◆1
a

1 1

◆
, ◆1 =

b�
p
b2 + 4a

2
and ◆2 =

b+
p
b2 + 4a

2
.

In Isabelle/HOL, we certify the diagonlisation as shown below.

7.3. OVERDAMPED DOOR 107

lemma mtx-hOsc-diagonalizable:
defines ◆1 ⌘ (b � sqrt (bˆ2+4⇤a))/2 and ◆2 ⌘ (b + sqrt (bˆ2+4⇤a))/2
assumes b2 + a ⇤ 4 > 0 and a 6= 0
shows A a b = P (�◆2/a) (�◆1/a) ⇤ (diag i . if i = 1 then ◆1 else ◆2) ⇤ (P (�◆2/a) (�◆1/a))�1

hproofi

As explained in Section 5.2, we leave the automation of this process that connects a computer
algebra system with the certifications in Isabelle for future work.

The exponential exp (t(Aa b)) = exp (tP�1DP) = P�1 exp (tD)P in the flow simplifies to

P�1 exp (tD)P =
1

p
b2 + 4a

✓
◆2 exp(t◆1)� ◆1 exp(t◆2) exp(t◆2)� exp(t◆1)
a exp(t◆2)� a exp(t◆1) ◆2 exp(t◆2)� ◆1 exp(t◆1)

◆
.

We also certify this with Isabelle.

lemma mtx-hOsc-solution-eq :
defines ◆1 ⌘ (b � sqrt (b2+4⇤a))/2 and ◆2 ⌘ (b + sqrt (b2+4⇤a))/2
defines � t ⌘ mtx (
[◆2⇤exp(t⇤◆1) � ◆1⇤exp(t⇤◆2), exp(t⇤◆2)�exp(t⇤◆1)]#
[a⇤exp(t⇤◆2) � a⇤exp(t⇤◆1), ◆2⇤exp(t⇤◆2)�◆1⇤exp(t⇤◆1)]#[])
assumes b2 + a ⇤ 4 > 0 and a 6= 0
shows P (�◆2/a) (�◆1/a) ⇤ (diag i . exp (t ⇤ (if i=1 then ◆1 else ◆2))) ⇤ (P (�◆2/a) (�◆1/a))�1

= (1/sqrt (b2 + a ⇤ 4)) ⇤R (� t)
hproofi

We use this result to prove that the system satisfies the local-flow locale. Then, we obtain
an instance of (wlp-evol) and prove the correctness specification for the overdamped door.

lemma local-flow-mtx-hOsc:
defines ◆1 ⌘ (b � sqrt (bˆ2+4⇤a))/2 and ◆2 ⌘ (b + sqrt (bˆ2+4⇤a))/2
defines � t ⌘ mtx (
[◆2⇤exp(t⇤◆1) � ◆1⇤exp(t⇤◆2), exp(t⇤◆2)�exp(t⇤◆1)]#
[a⇤exp(t⇤◆2) � a⇤exp(t⇤◆1), ◆2⇤exp(t⇤◆2)�◆1⇤exp(t⇤◆1)]#[])
assumes b2 + a ⇤ 4 > 0 and a 6= 0
shows local-flow ((⇤V) (A a b)) UNIV UNIV (�t . (⇤V) ((1/sqrt (b2 + a ⇤ 4)) ⇤R � t))
hproofi

lemma overdamped-door :
assumes b2 + a ⇤ 4 > 0 and a < 0 and b 0
shows PRE (�s. s$1 = 0)
HP (LOOP open-door ; (x´=(⇤V) (A a b) & G) INV (�s. 0 s$1))
POST (�s. 0 s $ 1)
apply(rule fbox-loopI , simp-all add : le-fun-def)
apply(subst local-flow .fbox-g-ode-subset [OF local-flow-mtx-hOsc[OF assms(1)]])
using assms apply(simp-all add : le-fun-def fbox-def)
unfolding sq-mtx-scaleR-eq UNIV-2 sq-mtx-vec-mult-eq
by (clarsimp simp: overdamped-door-arith)

108 CHAPTER 7. FORMAL VERIFICATIONS

Again, s$1 denotes position s x and s$2, velocity s v. The verification assumes a < 0
and b � 0 because a = � k

m , b = � d
m , and the constants k, d and m are often positive. We

also use the postcondition as the loop invariant. Then, the proof uses the wlp-rules in its
first two lines. The remaining three lines discharge proof obligations by calling the respective
arithmetical facts for this problem.

Just like in the previous section, the latest example shows that our formalisation of
a�ne systems of ODEs provides more expressiveness to our components. In this case, the
formalisation helps us to certify a diagonalisation and use it to reason about the solution of
a system of di↵erential equations in terms of matrices and linear operations. These features
are not available in other deductive verification tools.

7.4 Bouncing Ball

In this section we present a classical example from the hybrid systems literature [4, 108]:
the bouncing ball. Formalising it allows us to combine loops with the rest of the hybrid
programs addressed in previous examples. The bouncing ball verification problem is also
more complex than our previous examples but it is still relatively simple. It models a ball
that has been dropped from rest at an initial height h � 0 and that bounces with completely
elastic collisions with the floor. The states s 2 R{x,v} of the system use s x to represent
the ball’s height and s v for its velocity. The discrete control of the hybrid program models
the bounce with a conditional statement that tests whether the ball has reached the floor.
If it has, an assignment flips the direction of the velocity, otherwise it does nothing. The
continuous dynamics model the free fall motion with a guard Gs = s x � 0 that prohibits
the ball to go below ground level. A loop guarantees that this process repeats an indefinite
amount of times. Hence, the bouncing ball hybrid program is

ctrl = if (� s. s x = 0) then v := (� s. � s v) else skip,

ball = loop
�
(x0 = fg &G)R+ ; ctrl

�
,

where fg is the constant acceleration vector field of Example 5.2.1 and Section 7.2.
The precondition P s$ (s x = h ^ s v = 0) describes the initial state of the system. We

wish to show that the bouncing ball will never go below ground level or above its original
initial height h. Hence, the corresponding partial correctness specification is

{P} ball {Q},

where Qs$ 0 s x h.
To prove the specification, the rules (h-loop-inv) or (wlp-loop) require that we provide

a loop invariant. In Example 5.2.1 we showed that a di↵erential invariant for the system is
Is$ �1

2(s v)
2 = g(h� s x). Hence, for ball’s loop invariant J , we use Js = (Gs ^ I s).

Below we provide two examples. In the first one we verify {P} ball {Q} using only
invariants. In the second one, we use the flow for fg.

Example 7.4.1 (Bouncing Ball via Invariants). To prove {P} ball {Q}, we first rewrite it to
its equivalent

P |loop
�
(x0 = fg &G)R+ inv I ; ctrl

�
inv J]Q

7.4. BOUNCING BALL 109

thanks to the relationship between Hoare triples and forward box operators. We also used the
fact that invariant annotations ↵ inv i are operationally the same as their original programs
↵. Then we can apply (wlp-loop) and obtain the proof obligations

P J, J |(x0 = fg &G)R+ inv I ; ctrl] J, and J Q.

The first and last obligations are immediate: if s x = h ^ s v = 0, then both I and G hold
because �1

2(s v)
2 = �1

20 = 0 = g(h�h) = g(h� s x) and 0 0 = s x. Similarly, from J s we
get 0 s x while I s implies s x h because �g(h� s x) remains nonnegative as it is equal
to 1

2(s v)
2. In Isabelle/HOL, because of lack of automation for proofs with real numbers, we

need to prove this latter fact.

lemma inv-imp-pos-le[bb-real-arith]: 0 > g =) 2 ⇤ g ⇤ x � 2 ⇤ g ⇤ h = v ⇤ v =) (x ::real) h
hproofi

Thus, the only remaining proof obligation is J |(x0 = fg &G)R+ inv I] |ctrl] J , where
we have already applied (wlp-seq). Hence, we can apply rule (wlp-inv) of Theorem 5.2.4 to
once again obtain three proof obligations

I I, I |(x0 = fg &G)R+]G ^ I, and G ^ I |ctrl] J.

The first obligation trivially holds. By Proposition 5.2.1 and Example 5.2.1, the second
obligation also holds. Finally, the third obligation follows by the chain of simplifications
below and the definition of J = (G ^ I),

|ctrl] J s = |if (� s. s x = 0) then v := (� s. � s v) else skip] J s

= (s x = 0 ^ |v := � s. � s v] J s) _ (s x 6= 0 ^ |skip] J s)

= (s x = 0 ^ J s[v 7! �s v]) _ (s x 6= 0 ^ J s)

= (s x = 0 ^ J s) _ (s x 6= 0 ^ J s) = J s.

Therefore, we have discharged all branches of the proof tree and we have verified that
{P} ball {Q}. In Isabelle/HOL, the argument presented in this example is a brief proof.

lemma bouncing-ball-inv : g < 0 =) h � 0 =)
(�s. s$1 = h ^ s$2 = 0)
|LOOP (
(x´=(f g) & (� s. s$1 � 0) DINV (�s. 2 ⇤ g ⇤ s$1 � 2 ⇤ g ⇤ h � s$2 ⇤ s$2 = 0)) ;
(IF (� s. s$1 = 0) THEN (2 ::= (�s. � s$2)) ELSE skip))

INV (�s. 0 s$1 ^2 ⇤ g ⇤ s$1 � 2 ⇤ g ⇤ h � s$2 ⇤ s$2 = 0)]
(�s. 0 s$1 ^ s$1 h)
apply(rule fbox-loopI , simp-all , force, force simp: bb-real-arith)
by (rule fbox-g-odei) (auto intro!: poly-derivatives di↵-invariant-rules)

Above, we use again s$1 for the position of the ball and s$2 for its velocity. Similarly,
DINV is our notation in Isabelle/HOL for ↵ inv i applied specifically to evolution commands.
The first line of the proof blasts away the program structure leaving only evolution commands.
The second line concludes by first applying (wlp-inv) and then discharging the arithmetic
and invariance obligations automatically with our tactics of Section 4.2.

110 CHAPTER 7. FORMAL VERIFICATIONS

Example 7.4.2 (Bouncing Ball via Flow). Alternatively to our proof above, we can compute
the wlp of the evolution command in the bouncing ball. That is, we retake the proof starting
from the proof obligation J |(x0 = fg &G)R+] |ctrl] J .

We know from Section 7.2, that the flow ' for fg is given by

✓
' t s x
' t s v

◆
=

✓
g t2

2 + (s v)t+ s x
gt+ s v

◆
.

Therefore, applying (wlp-evol) we get

|(x0 = fg &G)R+] |ctrl] J s = 8t � 0. (8⌧ 2 [0, t]. G (' ⌧ s))! G (' t s) ^ I (' t s),

where

I (' t s) =

✓
�
1

2
(gt+ s v)2 = g(h� g

t2

2
� (s v)t� s x)

◆
=

✓
�
1

2
(s v)2 = g(h� s x)

◆
= I s.

Hence, J |(x0 = fg &G)R+] |ctrl] J simplifies to

8s. G s ^ I s! (8t � 0. (8⌧ 2 [0, t]. G (' ⌧ s))! I s),

which trivially holds. The proof in Isabelle is a two line proof as in the previous example.
Yet, this time, the preliminary lemmas for arithmetic with real numbers are more since we
have to add the fact that I (' t s) = I s.

For complete coverage of our components, we show the code for the verification of the
bouncing ball with the flow ' directly written in the specification. The formalisation uses
lenses and the Isabelle/UTP framework. Hence, instead of computing wlps the proof uses
the rules of dH. We also include the refinement of the bouncing ball. The proof is the same
as in the recent Example 7.4.2 but without certification of derivatives or Lipschitz continuity.

abbreviation ball-flow :: real) real) (realˆ2) usubst (')
where ' g ⌧ ⌘ [x 7!s g · ⌧ ˆ 2/2 + v · ⌧ + x , v 7!s g · ⌧ + v]

abbreviation bb-evol g h T ⌘
LOOP (EVOL (' g) (x � 0) T ; (IF (x = 0) THEN (v ::= �v) ELSE skip))
INV (0 x ^ 2 · g · x = 2 · g · h + v · v)

lemma bouncing-ball-dyn:
assumes g < 0 and h � 0
shows {x = h ^ v = 0} bb-evol g h T {0 x ^ x h}
apply(hyb-hoare U(0 x ^ 2 · g · x = 2 · g · h + v · v))
using assms by (rel-auto 0 simp: bb-real-arith)

lemma R-bouncing-ball-dyn:
assumes g < 0 and h � 0
shows [x = h ^ v = 0 , 0 x ^ x h] � bb-evol g h T
apply(refinement ; (rule R-bb-assign[OF assms])?)
using assms by (rel-auto 0 simp: bb-real-arith)

7.5. WATER TANK 111

The proofs of the bouncing ball in Isabelle/HOL are simple because we have added the
wlp-rules of Section 3.3 to its simplifier which allows Isabelle to do equational reasoning on
the program structure. In the case of di↵erential Hoare logic and the refinement calculus,
simple tactics hyb-hoare and refinement supply this increased proof-automation in our
framework. The example also displays one of the common consequences of doing deductive
verification. Namely, wherever we have not automated the verification process, the proofs’
lengths increase. Specifically, as Isabelle lacks support for reasoning about arithmetical facts
with real numbers, we have to provide proofs for them separately. Then, we group them in
the list of theorems bb-real-arith to supply them as part of the auto tactic. Contrastingly,
other more mature deductive theorem provers like KeYmaera X and the HHL prover can
verify the bouncing ball automatically [113]. Yet, together, the three di↵erent verifications of
the bouncing ball (by invariants, with the flow and with annotated dynamics) cover no more
than two pages of proofs in our setting. The longest of them would require four proofs: three
proofs of the arithmetical facts in a mathematical style and one of the actual verification.

Overall, the bouncing ball is an important example to test our framework because it
shows that the verification components can handle traditional programs like while-loops,
conditional branching and assignments, together with the di↵erential equations. The next
examples focus on other aspects of the verification components.

7.5 Water Tank

To this point, we have only refined thermostat in Example 6.1.1 by doing single refinements
in di↵erent lemmas and combining them in a final result. Alternatively, we can do an ordered
sequence of refinements that build the final hybrid program in one structured proof. This
section illustrates such a refinement.

We consider a controller that turns a water pump on and o↵ to keep the volume of water
h in a tank within the bounds hl h hh. Just like for thermostat, the controller registers
the initial level of water h0 at the beginning of each of its interventions. It also uses variable
⇡ to indicate whether the pump is on or o↵. The inflow of water is linear at a rate ci while the
outflow’s rate is co. Therefore, the overal rate of change is proportional to k 2 {�co, ci� co},
depending on the value of ⇡, where ci > co. Figure 7.3 depicts the system.

Given the linear behaviour of the flow of water, the di↵erential equation h0 t = k is part
of the dynamics of the system. The rest of the variables either do not change x0 t = 0 or
define time t0 = 1. We formalise this with the Isabelle/UTP framework below.

abbreviation f k ⌘ [⇡ 7!s 0 , h 7!s k , h0 7!s 0 , t 7!s 1]

We use this vector field in the definition of the dynamics for the hybrid system. They indicate
that if the pump is turned on, the evolution command involves both inflow and outflow rates
h0 t = ci � co. If it is o↵, it only uses the outflow rate h0 t = �co.

abbreviation G hx k ⌘ U(t (hx � h0)/k)

abbreviation dI hl hh k ⌘ U(h = k · t + h0 ^ 0 t ^ hl h0 ^ h0 hh ^ (⇡ = 0 _ ⇡ = 1))

112 CHAPTER 7. FORMAL VERIFICATIONS

Figure 7.3: A controller for a water tank that should not be emptied nor spilled out

abbreviation dyn ci co hl hh ⌧ ⌘ IF (⇡ = 1) THEN
x´= f (ci�co) & G hh (ci�co) on {0 ..⌧} UNIV @ 0 DINV (dI hl hh (ci�co))

ELSE x´= f (�co) & G hl (�co) on {0 ..⌧} UNIV @ 0 DINV (dI hl hh (�co))

Similarly to thermostat, guards Ghh (ci � co) and Ghl � co limit the duration of the
dynamics to guarantee the intervention of the control before the water level gets close to
the boundaries. The invariant for the evolution commands is an assertion of four statements:
time is nonnegative, the water level remains safe hl h0 hh, the pump is either on or
o↵ ⇡ = 0 _ ⇡ = 1, and the solution to the di↵erential equation is h = kt + h0. The proof
of invariance involves our tactics poly-derivatives and di↵-invariant-rules. It is longer than
previous proofs because of the inequalities and multiple conjuncts in the invariant. Notice
that it is also independent on the choice of the guard, hence the variable Guard.

lemma tank-di↵-inv : 0 ⌧ =) di↵-invariant (dI hl hh k) (f k) {0 ..⌧} UNIV 0 Guard
hproofi

The control of the water tank is also similar to that of thermostat. That is, it resets t
and h0 and then turns the water pump on or o↵ according to its readings.

abbreviation ctrl hl hh ⌘
(t ::=0);(h0 ::= h);
(IF (⇡ = 0 ^ h0 hl + 1) THEN (⇡ ::= 1) ELSE
(IF (⇡ = 1 ^ h0 � hh � 1) THEN (⇡ ::= 0) ELSE skip))

Then, we integrate control and dynamics in the standard way with a finite iteration. The
loop invariant is the same as the invariant for evolution commands without restrictions on
the solutions to the di↵erential equations.

7.5. WATER TANK 113

abbreviation I hl hh ⌘ U(hl h ^ h hh ^ (⇡ = 0 _ ⇡ = 1))

abbreviation tank-dinv ci co hl hh ⌧ ⌘
LOOP (ctrl hl hh; dyn ci co hl hh ⌧) INV (I hl hh)

Then, we refine the hybrid program for the water tank in a single structured proof.

lemma R-tank-inv :
assumes 0 ⌧ and 0 < co and co < ci
shows [I h l hh, I h l hh] � tank-dinv ci co h l hh ⌧

proof�
have [I h l hh, I h l hh] �
LOOP ((t ::= 0);[I h l hh ^ t = 0 , I h l hh]) INV I h l hh (is - � ?R1)
by (refinement , rel-auto 0)

moreover have ?R1 � LOOP
((t ::= 0);(h0 ::= h);[I h l hh ^ t = 0 ^ h0 = h, I h l hh]) INV I h l hh (is - � ?R2)
by (refinement , rel-auto 0)

moreover have ?R2 �
LOOP (ctrl h l hh;[I h l hh ^ t = 0 ^ h0 = h, I h l hh]) INV I h l hh (is - � ?R3)
by (simp only : mult .assoc, refinement ; (force)? , (rule R-assign-law)?) rel-auto 0

moreover have ?R3 � LOOP (ctrl h l hh; dyn ci co h l hh ⌧) INV I h l hh

apply(simp only : mult .assoc, refinement ; (simp)?)
prefer 4 using tank-di↵-inv assms apply force+

using tank-inv-arith1 tank-inv-arith2 assms by rel-auto 0

ultimately show [I h l hh, I h l hh] � tank-dinv ci co h l hh ⌧
by auto

qed

The proof is an ordered sequence of refinements to finally obtain the specification of tank-dinv
using the laws of dR. It uses schematic variables ?R to abbreviate long expressions. The first
refinement introduces the loop structure and the first assignment. A second refinement brings
in the second assignment and the precondition for the conditional statement together with
the postcondition of the dynamics. Hence, in the third refinement, the control is already
in the specification. The final refinement brings the dynamics via lemma tank-di↵-inv to
conclude the proof, as the result follows by transitivity.

Alternatively, the verification of the water tank with dH is automatic.

lemma tank-inv :
assumes 0 ⌧ and 0 < co and co < ci
shows {I hl hh} tank-dinv ci co hl hh ⌧ {I hl hh}
apply(hyb-hoare U(I hl hh ^ t = 0 ^ h0 = h))
prefer 4 prefer 7 using tank-di↵-inv assms apply force+
using assms tank-inv-arith1 tank-inv-arith2 by rel-auto 0

As before, our tactic hyb-hoare blasts away the control structure and provides the
loop-invariant. The second line tackles evolution commands with lemma tank-di↵-inv.
Arithmetical lemmas proven separately help us finish the proof.

114 CHAPTER 7. FORMAL VERIFICATIONS

Overall, the water tank allows us to test the refinement components together with the
nicer syntax provided by our state-space abstraction with lenses of Chapter 6. We plan to
include both extensions in future versions of the components with predicate transformers and
wlps. In comparison with other deductive verification tools, on one hand, the HHL prover
does not have a refinement calculus. Nevertheless, it includes other capabilities from the
calculus of hybrid communicating sequential processes (HCSP) and the duration calculus
that are missing in our implementation. For instance, it includes features to reason about
communicating and parallel processes as well as mechanisms to reason about the history of a
formula through a “chop” operator [135]. Di↵erential dynamic logic on the other hand does
have support for a di↵erent kind of refinement [88] to the one presented here. In di↵erential
refinement logic (dRL), one is interested in safely and modularly augmenting simple hybrid
programs whereas in our approach, we are interested in building hybrid programs from
specifications. However, there is some overlap in the proof rules that both approaches use,
specifically, in those rules designed for refinement of regular programs. Yet, our approach
does not cover dRL’s rules for refinement of ODEs and loops as our original motivation for the
introduction of dR did not intend to simulate dRL. We leave for future work implementing
the refinement rules of that calculus.

7.6 Select ARCH2020 benchmarks

In Section 5.6, we argued that our components do not need all the rules of di↵erential
dynamic logic for evolution commands. In particular, we did not prove the di↵erential e↵ect
and di↵erential ghosts rules. To support that statement, in this section we present various
benchmark problems from the friendly competition of the 7th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH2020) [97]. In particular, we
focus on the problems of the Hybrid Systems Theorem Proving category, where state of the
art tools like KeYmaera X [50] and the HHL Prover [135] participate yearly.

In this category, competitors can choose to verify any of the 214 benchmark problems
in any of three formats: automated, hints and scripted. To participate in the first mode,
the prover must solve the verification problem after only receiving its specification. In the
hinted version, annotated loop-invariants and other aids in the description of the problem
are also allowed. Finally, interactive verification with user inputs is the scripted format. The
benchmark problems are classified as follows: 60 design shapes, 10 problems of case studies,
3 games and 141 nonlinear. The design shape problems test the essentials for verification
of hybrid programs with a small focus on dL’s rules. They go from simple assignments,
tests, choices, finite iterations and evolution commands, to problems that specifically need
any of the rules described in Section 5.6. The case studies come from previously published
verifications, for instance [77] and [116]. The game category checks the prover’s ability to
verify adversarial dynamics of di↵erential game logic [111]. Finally, the nonlinear problems
cover various verifications whose vector field’s defining equations are polynomial systems,
that is, x0

i t = Pi (t, x1 t, . . . , xn t) where Pi is a polynomial function.
We participated in the ARCH2020 competition in the scripted format and decided to

focus on all 60 design shape problems and one problem of a case study. We focused on the
scripted format because the components still lack proof automation for manipulating real

7.6. SELECT ARCH2020 BENCHMARKS 115

arithmetic expressions as evidenced in Section 7.4. For the same reason and because our
components do not include adversarial dyanimcs, we restrict our participation to mostly the
design shape problems. Moreover, the span of a month was too short to cover all 211 problems
interactively. In fact, at the end of that period, we fully verified, without any help from an
external tool, 52 out of the 60 design shape problems together with the first problem of the
first case study. Three of these unsolved design shape problems and another problem of the
first case study depend on properties of real numbers that we did not certify with Isabelle but
checked with Mathematica 12.1. By asserting these properties (without proving them) in
the proof assistant, the verifications of their corresponding problems succeed. We verified one
more of the remaining 5 unsolved problems but not in time to submit it to the competition.
The other four require extensions to our components like adding rules of inference relating
diamond operators and di↵erential equations or variants of Picard-Lindelöf theorem.

The examples below discuss some of the competition’s most challenging problems for our
verification components. For reference to the competition we have named each example with
the problem’s name. After each explanation of the proof obligations we reflect on possible
improvements to our framework.

Example 7.6.1 (Potentially overwrite exponential decay). Our first example involves the
di↵erential equation x0 t = �x t. The solutions to their respective IVPs are exponentials
x t = x0 exp(t0 � t) with initial condition (t0, x0), hence, decreasing functions. However, no
matter how much x t decreases, it still remains above 0 if x0 > 0. This is the property that
we must prove for this benchmark problem. In more detail, the correctness specification is

x > 0 ^ y > 0! |x0 = �x] |(loop x := x+ 3 inv x > 0) + y := x] x > 0 ^ y > 0,

where we have omitted lambdas � and references to states s. We also use (x0 = f x) instead
of (x0 = f &>)R+ . Notice that an argument with invariants is not possible since, by the
second item of lemma 5.2.5, x0

 00 $ �x 0$?, given that x > 0.
In these cases, dL’s syntax does not cover exponentials by default, but the logic overcomes

this obstacle with the di↵erential ghost rule to introduce an auxiliary ODE that aids in the
proof of the specification [117]. Yet, in our case, we have the full expressiveness of higher
order logic. Hence, in simple cases like this one, we can introduce the solution without any
reference to auxiliary ODEs. We discuss more complicated dynamics in the examples below.

The dynamics x0 t = �x t repeat in various benchmark problems. Nevertheless, we can
always supply the solution and verify the corresponding partial correctness specifications. As
usual, we formalise the vector field, its flow and prove that they satisfy the assumptions of
our locales.

abbreviation po-exp-dec-f :: realˆ2) realˆ2 (f)
where f s ⌘ (� i . if i=1 then �s$1 else 0)

abbreviation po-exp-dec-flow :: real) realˆ2) realˆ2 (')
where ' t s ⌘ (� i . if i=1 then s$1 ⇤ exp (� t) else s$i)

lemma local-flow-exp-flow : local-flow f UNIV UNIV '
hproofi

116 CHAPTER 7. FORMAL VERIFICATIONS

Afterwards, we verify the hybrid program.

lemma d�s::realˆ2 . s$1 > 0 ^ s$2 > 0 e wp (x´= f & G)
(wp ((LOOP (1 ::= (�s. s$1 + 3)) INV (�s. 0 < s$1)) [(2 ::= (�s. s$1)))
d�s. s$1 > 0 ^ s$2 > 0 e)
apply(subst rel-aka.fbox-mult [symmetric])
apply(rule rel-aka.fbox-seq-var)
apply(subst local-flow .wp-g-ode-ivl [OF

local-flow-exp-flow , where Q=�s. s$1 > 0 ^ s$2 > 0]; simp)
apply(subst le-wp-choice-i↵ , rule conjI)
apply(subst change-loopI [where I=�s. s$1 > 0 ^ s$2 > 0])
by (rule wp-loopI , auto)

From the formalisation above, it is evident that s$1 denotes x while s$2 corresponds to y.
The proof is longer than proofs in previous sections because we have not provided yet proof
automation for manipulating the simplest hybrid programs. That is why the first line applies
(wlp-seq) in reverse to obtain a simple forward box. The second line applies (h-seq) to split
the structure. The third line discharges the first proof obligation by supplying the flow. The
next line addresses the nondeterministic choice, while the remaining two lines discharge each
of the emerging branches of the proof tree: one for the loop, the other for the assignment.
This is a common pattern with our proofs of the benchmark problems of the competition.
They tend to be longer because they use choices, tests and separated box operators instead
of our typical if-then-else statements. In future work we plan to provide automation for all
hybrid programs and not just while programs.

Example 7.6.2 (Dynamics: Exponential growth (2)). Our next example shows how we can
solve problems in the style of dL. In particular, we use the method described in Section 5.6.
That is, we use di↵erential cuts to add invariants to guards. This strengthening enables us
to prove the postcondition merely because the guard implies it. The following specification
is among the simplest problems where we used this approach

x � 0 ^ y � 0! |x0 = y, y0 = y2] x � 0.

We simplify notation by writing ODEs directly in evolution commands without vector fields.
The formalisation is straightforward.

lemma d�s::realˆ2 . s$1 � 0 ^ s$2 � 0 e
wp (x´=(�t s. (� i . if i=1 then s$2 else (s$2)2)) & G) d�s. s$1 � 0 e
apply(rule-tac C=�s. s$2 � 0 in di↵-cut-rule)
apply(subst g-ode-inv-def [symmetric, where I=�s. s$2 � 0], rule wp-g-odei ; simp?)
apply(rule-tac ⌫ 0=�s. 0 and µ 0=�s. (s$2)ˆ2 in di↵-invariant-rules(2); (simp add : forall-2)?)
apply(rule-tac C=�s. s$1 � 0 in di↵-cut-rule, simp-all)
apply(subst g-ode-inv-def [symmetric, where I=�s. s$1 � 0], rule wp-g-odei ; simp?)
apply(rule-tac ⌫ 0=�s. 0 and µ 0=�s. (s$2) in di↵-invariant-rules(2); (simp add : forall-2)?)
by (rule di↵-weak-rule, simp)

The first line above uses a di↵erential cut to introduce in the guard the expression y � 0.
The second line then applies (wlp-inv) from Theorem 5.2.4 while the third line completes the

7.6. SELECT ARCH2020 BENCHMARKS 117

proof of invariance for y � 0 by using Lemma 5.2.5. Notice that for inequalities, users have
to supply the terms µ0 and ⌫ 0 of that lemma. An improved di↵-invariant-rules tactic that
does this automatically is left for future work. The next lines repeat this process for x � 0
and the last line uses a weakening to indicate that the guard G ^ y � 0 ^ x � 0 implies the
postcondition x � 0.

Alternatively, Mathematica 12.1 provides us with the solution to the ODEs.

DSolve[{x’[t] == y[t], y’[t] == y[t]^2, x[0] == x0, y[0] == y0}, {x, y}, t]
⇢⇢

y ! Function

{t},�

y0

ty0� 1

�
, x! Function

{t}, x0� log

t�

1

y0

�
+ log

�

1

y0

����

The two functions y t = �y0/(ty0 � 1) and x t = x0 � log(t � 1/y0) + log(�1/y0) can
be written in Isabelle/HOL and supplied as the flow. We follow this approach for the next
example. Nevertheless, the fact that we can employ the dL-invariant approach is a testament
to the flexibility of our components.

Example 7.6.3 (Darboux inequality). We solved this problem after the competition was
finished. It is a good example to highlight delicate details when doing verification of hybrid
systems. At first glance, the dynamics for this problem resemble those of the previous
example. The specification given is

x+ z � 0! |x0 = x2, z0 = zx+ y & y = x2] x+ z � 0.

However, unlike the previous benchmark, an invariant argument does not su�ce. To see this
consider Lemma 5.2.5.2 and observe that (x + z)0 = x0 + z0 = x2 + zx + y = 2x2 + zx and
2x2 + zx is not always greater than 0. Hence, we proceed as in Example 7.6.1.

We obtain the solutions with Mathematica

x t =
x0

1� x0t
, z t =

z0 � x0 log (1� x0t)

1� x0t
.

However, the first detail that we must highlight is that the domain of the solutions needs
to be treated carefully. In particular, taking the constant function �s. R+ as in previous
examples makes the specification incorrect. A correct function is �s. {t � 0 | 1� (s x)t > 0}
because this ensures that the solutions are defined. This simple example illustrates why we
use U : S ! P S in our definition of guarded orbitals in Section 5.1. Such a focus on the
interval of existence is not present in dL since its semantics alleviate thinking about them.
It makes the verification with our components more subtle and harder. Yet, thinking about
these constraints in the context of verification is a positive feature that increases trust in the
final result.

With this in mind, we can formalise the fact that the equations above solve the ODE.

abbreviation darboux-ineq-f :: realˆ2) realˆ2 (f)
where f s ⌘ (� i . if i=1 then (s$1)ˆ2 else (s$2)⇤(s$1)+(s$1)ˆ2)

abbreviation darboux-ineq-flow2 :: real) realˆ2) realˆ2 (')
where ' t s ⌘ (� i . if i=1 then (s$1/(1 � t ⇤ s$1)) else

(s$2 � s$1 ⇤ ln(1 � t ⇤ s$1))/(1 � t ⇤ s$1))

118 CHAPTER 7. FORMAL VERIFICATIONS

lemma darboux-flow-ivp: (�t . ' t s) 2 Sols (�t . f) (�s. {t . 0 t ^ t ⇤ s $ 1 < 1}) UNIV 0 s
by (rule ivp-solsI) (auto intro!: poly-derivatives

simp: forall-2 power2-eq-square add-divide-distrib power-divide vec-eq-i↵)

Despite the presence of logarithms in the flow, our poly-derivatives tactic still makes the
certification proof relatively easy. Nevertheless, another issue with this system occurs in the
Lipschitz continuity argument. Ideally, we would like to use the fact that because x0 t and
z0 t are di↵erentiable, then the corresponding vector field is Lipschitz continuous. However,
this fact is not yet present in Isabelle’s libraries of Analysis. The alternative direct proof by
definition, is complicated due to the term x2 on the right hand side of the system of ODEs.
Thus, we have two options. The first one asserts in the proof assistant that the vector field
satisfies Picard-Lindelöf’s theorem without actually certifying this fact. The second one skips
this process, considers the flow certification above enough, and uses our evolution commands
based on direct annotations of the dynamics. We have done both, although here we just
show the second one because their proofs only di↵er by the line that supplies the solution.

lemma darboux-ineq-arith:
assumes 0 s1 + s2 and 0 (t ::real) and t ⇤ s1 < 1
shows 0 s1 / (1 � t ⇤ s1) + (s2 � s1 ⇤ ln (1 � t ⇤ s1)) / (1 � t ⇤ s1)
hproofi

lemma d�s::realˆ2 . s$1 + s$2 � 0 e
wp (EVOL ' (�s. y = (s$1)ˆ2) (�s. {t . 0 t ^ t ⇤ s $ 1 < 1}))
d�s. s$1 + s$2 � 0 e
apply(subst wp-g-dyn, simp-all)
using darboux-ineq-arith by smt

The proof applies rule (wlp-g-dyn) and uses the real arithmetical fact darboux-ineq-arith
to discharge the emerging proof obligation.

In conclusion, this example highlights several characteristics of our components. Firstly, it
evidences the fact that, in a strongly typed setting like Isabelle/HOL, a correct specification
considers the dependency of the solution on the domain of the vector field. Secondly, it
e↵ectively uses our dynamics based evolution commands and makes a case in our setting for
preferring them over the traditional versions that require further certifications.

Example 7.6.4 (Darboux equality). This problem and the next one are proofs of invariance.
In dL, one can solve them with the help of the di↵erential ghost rule. However, due to
our HOL-expressiveness, we do not need it. We proved both problems interactively with
Isabelle’s scripting language Isar for mathematical proofs. This was necessary because the
rules of inference and procedures presented so far were insu�cient. Consequently, the length
of our proofs for both problems increased. Overall, this new requirements evidence that our
semantic tactics for invariants can be strengthened. Alternatively, we could benefit from
formalising the di↵erential ghost rule. Exploring both approaches and their relative strength
is an interesting project [117] that we leave for future work.

7.6. SELECT ARCH2020 BENCHMARKS 119

The partial correctness specification for this example is

x+ z = 0! |x0 = Ax2 +Bx, z0 = Azx+Bz] 0 = �x� z.

Once again, if we try to use Lemma 5.2.5.1, we obtain the following chain of equations

(x+ z)0 = x0 + z0 = Ax2 +Bx+ Azx+Bz = x(Ax+B) + z(Ax+B) = (x+ z)(Ax+B).

The final result is only 0 if we take into account the precondition x + z = 0. But this is
not stated in the lemma. Nevertheless, our definition of invariance does consider the initial
state of the system. This is evident in the assumptions s 2 I and X 2 Sols f U S t0 s of
Proposition 5.2.2.3.

Therefore, to verify the benchmark problem, we unfolded the characterisation of
invariance for this specific problem. That is, we have to prove that if a function
X : R ! R{x,z} satisfies X 0 x + X 0 z = 0, X 0 t x = A(X tx)2 + B(X tx) and
X 0 t z = A(X t z)(X tx)+B(X t z), then it also satisfies X ⌧ x+X ⌧ z = 0 for all ⌧ 2 R. This
follows by uniqueness of the solutions to the di↵erential equation y0 t = (A(X tx)+B)y t. In
particular, notice that the constant function 0 and �t. X t x+X t z satisfy such ODE, hence
they are the same. In Isabelle/HOL, the formalisation of this argument is in the scripted
language Isar and shown below.

lemma d�s::realˆ2 . s$1 + s$2 = 0 e
wp (x´= (�t s. (� i . if i=1 then A⇤(s$1)ˆ2+B⇤(s$1) else A⇤(s$2)⇤(s$1)+B⇤(s$2))) &
G on (�s. UNIV) UNIV @ 0)
d�s. 0 = � s$1 � s$2 e

proof�
have key : di↵-invariant (�s. s $ 1 + s $ 2 = 0)

(�t s. � i . if i = 1 then A⇤(s$1)ˆ2+B⇤(s$1) else A⇤(s$2)⇤(s$1)+B⇤(s$2))
(�s. UNIV) UNIV 0 G
proof(clarsimp simp: di↵-invariant-eq ivp-sols-def forall-2)
fix X ::real)realˆ2 and t ::real
let ?y = (�t . X t $ 1 + X t $ 2)
assume init : ?y 0 = 0
and D1 : D (�t . X t $ 1) = (�t . A · (X t $ 1)2 + B · X t $ 1) on UNIV
and D2 : D (�t . X t $ 2) = (�t . A · X t $ 2 · X t $ 1 + B · X t $ 2) on UNIV

hence D ?y = (�t . ?y t ⇤ (A · (X t $ 1) + B)) on UNIV
by (auto intro!: poly-derivatives simp: field-simps power2-eq-square)

hence D ?y = (�t . (A · X t $ 1 + B) · (X t $ 1 + X t $ 2)) on {0��t}
using has-vderiv-on-subset [OF - subset-UNIV [of {0��t}]] by (simp add : mult .commute)

moreover have continuous-on UNIV (�t . A · (X t $ 1) + B)
apply (rule vderiv-on-continuous-on)
using D1 by (auto intro!: poly-derivatives simp: field-simps power2-eq-square)

moreover have D (�t . 0) = (�t . (A · X t $ 1 + B) · 0) on {0��t}
by (auto intro!: poly-derivatives)

moreover note picard-lindeloef .ivp-unique-solution[OF
picard-lindeloef-first-order-linear [OF UNIV-I open-UNIV is-interval-univ calculation(2)]
UNIV-I is-interval-closed-segment-1 subset-UNIV -
ivp-solsI [OF - - funcset-UNIV , of ?y]

120 CHAPTER 7. FORMAL VERIFICATIONS

ivp-solsI [OF - - funcset-UNIV , of �t . 0], of t �s. 0 0 �s. t 0]
ultimately show X t $ 1 + X t $ 2 = 0
using init by auto

qed
show ?thesis
apply(subgoal-tac (�s. 0 = � s$1 � s$2) = (�s. s$1 + s$2 = 0), erule ssubst)
using key by auto

qed

The proof consists in guaranteeing the assumptions of our lemma ivp-unique-solution in
the picard-lindeloef locale. We reference this lemma near the end of the proof and use the
schematic variable ?y to abbreviate (�t . X t $ 1 + X t $ 2). The middle part of the
proof shows that ?y and the constant 0 function satisfy the same ODE. In combination with
uniqueness, these facts complete our proof.

In contrast, the alternative method of using the solutions to the system of ODEs is not
appealing. For instance, z t involves nested functions of fractions of exponentials of logarithms
of di↵erence of exponentials of fractions of logarithms. Proving arithmetical facts about such
complicated expressions would be extremely time consuming. This fact reinforces the need
of better proof automation for manipulation of expressions with real numbers in Isabelle.

Therefore, uniqueness theorems are crucial for some proofs of invariance. In this case, we
managed to have an adequate formalisation in picard-lindeloef .ivp-unique-solution. However,
another similar benchmark problem with the dynamics

x0 = (Ay +Bx)/z2, z0 = (Ax+B)/z & y = x2 & z2 > 0

is not as easy to verify because the underlying domain is not all of R and R{x,z}. In fact,
it is still unsure if the existing uniqueness theorems in Isabelle/HOL allow us to prove this
alternative version. We suspect that a di↵erent formalisation of Picard-Lindelöf’s theorem
with closed intervals instead of open intervals as in picard-lindeloef might be necessary.
Hence, the creation of generic strategies that automate the proof given in this example is left
for future work.

Example 7.6.5 (Open Cases). Contrastingly with the previous example, here we need to prove
invariance for a couple of strict inequalities. The partial correctness specification is

x3 > 5 ^ y > 2! |x0 = x3 + x4, y0 = 5y + y2] x3 > 5 ^ y > 2.

Again we can see that

(x3)0 = 3x2x0 = 3x2(x3 + x4),

y0 = 5y + y2,

and neither of them are always greater or equal to 0. Hence, Lemma 5.2.5.2 does not apply.
Moreover, it is not clear how the uniqueness argument of the previous example would help
us for this inequality. However, the initial condition is still relevant because if x3 > 5 > 0
and y > 2 > 0, then 3x2(x3 + x4) > 0 and 5y + y2 > 0. Thus, we need to show that any
function X that starts above a constant X t0 � c, and whose derivative X 0 t is greater than
0 after that point t � t0, will remain above c.

7.6. SELECT ARCH2020 BENCHMARKS 121

Our proof of this fact in Isabelle is complicated and involves properties of suprema,
continuity and derivatives. Therefore, we only show the formalisation of the statements
below and their use in the proof of the correctness specification.

lemma has-vderiv-mono-test :
assumes T-hyp: is-interval T
and d-hyp: D f = f 0 on T
and xy-hyp: x2T y2T x y

shows 8 x2T . (0 ::real) f 0 x =) f x f y
and 8 x2T . f 0 x 0 =) f x � f y
hproofi

lemma current-vderiv-ge-always-ge:
fixes c::real
assumes init : c < x t0 and ode: D x = x 0 on {t0..}
and dhyp: x 0 = (�t . g (x t)) 8 x�c. g x � 0

shows 8 t�t0. x t > c
hproofi

lemma 0 t =) d�s::realˆ2 . s$1ˆ3>5 ^ s$2>2 e
wp (x´= (�t s. (� i . if i=1 then s$1ˆ3 + s$1ˆ4 else 5 ⇤ s$2 + s$2ˆ2)) & G)
d�s. s$1ˆ3>5 ^ s$2>2 e
apply(rule di↵-invariant-rules , simp-all add : di↵-invariant-eq ivp-sols-def forall-2 ; clarsimp)
apply(frule-tac x=�t . X t $ 1 ˆ 3 and
g=�t . 3 ⇤ tˆ2 + 3 ⇤ (root 3 t)ˆ5 in current-vderiv-ge-always-ge)
apply(rule poly-derivatives , simp, assumption, simp)
apply (force simp: field-simps odd-real-root-power-cancel , force simp: add-nonneg-pos, force)

apply(frule-tac x=�t . X t $ 2 in current-vderiv-ge-always-ge)
by (force, force, force simp: add-nonneg-pos, simp)

The last proof unfolds the characterisation of invariance in its first line. Then it uses our
recently formalised lemma on the function x3 and its derivative. The emerging obligations
go away with our derivative tactics and properties about real numbers. Then, the proof does
the same procedure for the invariant y > 2.

Despite our generic result current-vderiv-ge-always-ge, we still need a similar one for non-
strict inequalities. However, the proof method does not generalise to this case. Hence, this
example reinforces one of the conclusions from the last benchmark problem. Namely, we still
need general methods to prove invariance that complement Lemma 5.2.5 or generalise it.

Example 7.6.6 (LICS: Example 4c relative safety of time-triggered car). Our final example
from the competition is representative of the majority of the benchmark problems that we
tackled. This is true even for those that were part of case studies. Specifically, for many
of them, evolution commands involve the already explained constant acceleration dynamics.
The challenge was in the structure of the hybrid program or in the clever use of formulas
inside programs and vice versa. Particularly for this example, the verification problem is
an implication of forward boxes —not the standard simple Hoare triple or its equivalent

122 CHAPTER 7. FORMAL VERIFICATIONS

formulations:

(|x0 = v, v0 = �b] x m) ^ v � 0 ^ A � 0 ^ b > 0!

|loop (
��
?(2bm� x � v2 + (A+ b)(A"2 + 2" ⇤ v)) ; a := A

�
++ a := �b

�
;

t := 0 ; (x0 = v, v0 = a, t0 = 1 & v � 0 & t ")

) inv v2 2b(m� x)

] x m,

where we use ++ as nondeterministic choice to distinguish it from addition +.
As forward boxes are predicate transformers, asserting them in our semantic setting

requires a state s 2 RV . Therefore, the meaning of asserting |↵] p in a specification as above
corresponds to 8s. |F]P s. Specifically in the relational model and without our notational
simplifications, this translates to 8s. (s, s) 2 |RF]dP eR according to Section 3.2. Given that
our rules for loops and invariants require inequalities instead of containment 2, for various
benchmark problems we have to provide variants adapted to this notation. For instance, the
wlp rule for loops with invariants shown below.

lemma in-wp-loopI :
I x =) dI e ✓ dQe =) dI e ✓ wp R dI e =) y = x =) (x ,y) 2 wp (LOOP R INV I) dQe
hproofi

Based on these observations, we formalise the verification problem in Isabelle as follows.

abbreviation LICS-Ex4c-f :: real) real) realˆ4) realˆ4 (f)
where f time acc s ⌘ (� i . if i=1 then s$2 else (if i=2 then acc else if i=3 then 0 else time))

lemma LICSexample4c-arith1 :
assumes v2 2 · b · (m � x) 0 t A � 0 b > 0
and key : v2 + (A · (A · "2 + 2 · " · v) + b · (A · "2 + 2 · " · v)) 2 · b · (m � x)
and guard : 8 ⌧ . 0 ⌧ ^ ⌧ t �! (0 ::real) A · ⌧ + v ^ ⌧ "

shows (A · t + v)2 2 · b · (m � (A · t2 / 2 + v · t + x)) (is - ?rhs)
hproofi

lemma
assumes A � 0 b > 0 s$2 � 0
shows (s,s) 2 wp (x´=(f 0 (�b)) & (�s. True)) d�s. s$1 me =)
(s,s) 2 wp
(LOOP
((d�s. 2⇤b⇤(m�s$1) � s$2ˆ2+(A+b)⇤(A⇤"ˆ2+2⇤"⇤(s$2))e;(3 ::= (�s. A)))
[(3 ::= (�s. �b)));
(4 ::= (�s. 0));
(x´= (�s. f 1 (s$3) s) & (�s. s$2 � 0 ^ s$4 "))

INV (�s. s$2ˆ2 2⇤b⇤(m�s$1))) d�s. s$1 me
apply(subst (asm) local-flow .in-wp-g-ode-subset [OF local-flow-LICS-Ex4c-1], simp-all)
apply(rule in-wp-loopI)

7.6. SELECT ARCH2020 BENCHMARKS 123

apply(erule-tac x=s$2/b in allE)
using hb > 0 i hs$2 � 0 i apply(simp add : field-simps power2-eq-square, simp)
apply (smt hb > 0 i mult-sign-intros(6) sum-power2-ge-zero)

apply(simp add : rel-aka.fbox-add2)
apply(simp-all add : local-flow .wp-g-ode-subset [OF local-flow-LICS-Ex4c-2], safe)
using LICSexample4c-arith1 [OF - - h0 Ai h0 < bi] apply force
by (auto simp: field-simps power2-eq-square)

Apart from the first line that calls our modified version for loop invariants, the proof is
a standard manipulation of forward boxes until we are only left with arithmetical problems.
The last two lines call the corresponding property about real numbers. In fact, this was a
common issue among most problems. Isabelle lacks proof automation for basic arithmetical
operations which forced us to prove these properties by hand and then formalise them as
above. This was the most time demanding part of the problems and explains our need to
supply these properties with an external tool like Mathematica.

In general, this problem exemplifies the remaining di�culties that we faced when
solving the competition’s problems. Certifying arithmetical proofs in Isabelle/HOL is time
consuming and adapting notation from dL to our semantic setting requires new lemmas.
Such a combination a↵ected 8 of the unfinished benchmark verifications: we could not
translate in time 2 of them from dL to our components, we finished 4 of them by asserting
without proofs the corresponding arithmetical requirements, and we did not certify in time
with an external tool the remaining 2.

Summarising this section, the verification problems exhibited here make it clear that
both our components and Isabelle/HOL require more proof automation. Specifically,
Example 7.6.1 showed that we can provide the solution to the system of ODEs in some
cases where dL requires its domain-specific rules. However, our components can still benefit
from generic tactics that blast away the structure of every hybrid program. Isabelle’s proof
method language Eisbach [93] should make this task relatively easy, and our tactic hyb-hoare
could be a starting point for this.

Example 7.6.2 shows how our verification components can reason in the style of dL if
needed: they can use di↵erential cuts, induction and weakenings as derived in Section 5.6.
However, they would benefit from improvements to our tactics for proofs of invariance. This
is further evidenced with Examples 7.6.4 and 7.6.5 that show that our list of theorems
di↵-invariant-rules corresponding to Lemma 5.2.5 is incomplete. Finding a complete list of
conditions for proofs of invariance would be a valuable conceptual and technical contribution
of future work.

Example 7.6.3 shows that our framework (including dH) can use transcendental functions,
like exponentials or logarithms, that established tools cannot. Moreover, our tactics for
certification of derivatives make this part of the verification process smooth. However, this
example also evidences that two parts of the process must improve. One is the certification
of Lipschitz continuity and Picard-Lindelöf’s theorem in general. The other is the final proof
obligations involving properties of real arithmetic which is also a recurring problem in most
benchmarks. For Lipschitz continuity, extensions to the libraries of formalised mathematics
are necessary. For the other, Isabelle requires generic tactics to prove properties about real
numbers.

124 CHAPTER 7. FORMAL VERIFICATIONS

Finally, Example 7.6.6 simply is representative of most of the problems from the
competition. Its only unique characteristic is its non-standard presentation of the verification
problem. Although it was easily translated to our setting and proved there, we could not
do this on time for other two problems from the competition. For this purpose, using a
combination of Isabelle/UTP with lenses and our components might help to translate dL
formulas to our setting faster.

Despite all these discoveries, our participation in the competition was strong. The fact
that we can solve so many di↵erent problems in the short span of a month with such recently
developed verification components indicates how fast we can modify and extend them.

The interested reader can see a complete list of all 63 benchmark problems in Appendix A.
The table only includes the name of the problem and whether we verified it or not. In case
we did not, the table also adds a requirement to finish the proof. For a full formalisation
of these problems with proofs in .thy files, see our online repository https://github.com/
yonoteam/CPSVerification. The verifications are also in a proof document which resides in
our repository. The problems cover 30 pages that correspond to more than 2000 lines of code.

7.7 Case Study: PID Control

The final example of the chapter is a first step towards verifying more complex hybrid
systems with our components. It involves a widespread regulatory controller in industry:
the proportional integral derivative (PID) controller. In fact, by 2000, 97% of industrial
controllers already used PID feedback [34]. Therefore, verification of these systems has wide
impact. In this section we explain basic notions behind PID controllers and formalise one
that stabilises a quadcopter’s flight [14]. Then, we verify simple properties about it with our
components.

The decision making process of controllers often involves a desired value function or set
point SP t for the parameter that they try to regulate. Similarly, every certain amount of time
they register inside a process variable PV t the true value of the parameter. Then, controllers
obtain the current error e t = SP t � PV t for that parameter. Based on this, a proportional
controller simply multiplies the error by a constant

u t = Kp(e t).

Here, the actuation command u t tells the controller how much feedback it needs to apply.
If e t is large, then so is u t and vice versa. The corresponding components connected to the
controller that physically adjust the parameters according to u t are actuators.

In some systems however, u t = 0 is problematic as input is still required from the
controller to keep the system stable. This scenario can happen when the error is 0. Therefore,
a simple proportional controller does not su�ce. Thus, adding an integral term

u t = Kp(e t) +Ki

Z t

0

(e ⌧)d⌧

improves the actuation. This latter term collects previous positive and negative values of the
error over time to help in the stabilisation.

https://github.com/yonoteam/CPSVerification
https://github.com/yonoteam/CPSVerification

7.7. CASE STUDY: PID CONTROL 125

Nevertheless, if an external agent tinkers with the system and impedes progress of the
actuation, the integral term would accumulate the same error many times. This can lead to
overshooting once the tinkerer stops, that is, the actuation could exceed the set point and
take too much time to stabilise. Another risk is that proportional-integral (PI) controllers
may never reach a steady state, remaining therefore in a constant oscillation. To correct and
prevent for these scenarios, a derivative term

u t = Kp(e t) +Ki

Z t

0

(e ⌧)d⌧ +Kd(e
0 t)

detects fast changes in the error and responds accordingly. If the rate of change of the error
is large, the value of the derivative term is too. Thus, the sign of the constant Kd can balance
the contribution of the other two terms. The addition of these three terms characterises PID
controllers.

Hence, a discretisation of the actuation of a PID controller as pseudocode is the following

error sum := 0

loop

error := SP� PV

error sum := error sum+ error

u := Kp ⇤ error+Ki ⇤ error sum ⇤ dt+Kd ⇤ (error� prev error)/dt

prev error := error

where dt indicates the amount of time it takes the controller to intervene. Thus, we assume
that after an iteration of the loop, dt seconds pass before its body changes u again. In
applications, engineers use various methods to determine the value of the constants Kp, Ki

and Kd. They can decide those parameters before implementation by using simulations,
or empirically by tuning them after the control is finished. Often, a combination of both
approaches is necessary.

For our example, we consider a PID in charge of regulating the roll attitude of a
quadcopter’s flight. We take the equations for the dynamics from [14]’s Section 7.2. In more
detail, a flying vehicle has three angles of motion: its pitch angle p for frontal diving or
ascending, its yaw angle y for left and right turns in a horizontal plane, and its roll angle
r for dives to the left or to the right. In [14], a simplification of the dynamics for the roll
angle uses the second order ODE r00 t = T , where T is the amount of rolling torque that the
left and right motors of the quadrotor should produce. The corresponding vector field is our
familiar constant acceleration vector field fT from Example 5.2.1 and Sections 7.2 and 7.4.

We have explained everything we need about the PID for our Isabelle/HOL formalisation.
Now, we describe it starting with the set of program variables. We split these in three:
continuous variables, discrete variables and proof variables. The first category corresponds
to the physical variables of the roll’s angle r, its rate of chage v, and its torque T together
with time t. The discrete variables include error and error sum. Finally, we have added
proof variables to help us in the description of the invariants of the system. These include the
variables roll and roll rate that model the controller’s measurement of r and v respectively.
Their purpose is just like that of h0 for the water tank in Section 7.5 that measured the water

126 CHAPTER 7. FORMAL VERIFICATIONS

level h. We also add variable veri test to indicate the cumulative value of error sum, and
variable counter, for the amount of times the loop has been executed. Di↵erently from
previous sections, here we use a finite set of strings as the set of program variables. This
avoids using our memory to relate specific numbers with corresponding variables. Then we
define a type based on said set. This is shown below.

abbreviation kin-PI-strs ⌘ {
00t 00, 00r 00, 00v 00, 00T 00, 00roll 00, 00error 00,

00roll-rate 00, 00error-sum 00, 00veri-test 00, 00counter 00
}

typedef kin-PI-vars = kin-PI-strs
morphisms to-str to-var
by blast

The vector field and flow are well-known to us. However, instead of the function s$i that
queries the value at the ith position of vector s, we have to use its analogous s⌫V 00i 00 which
gives the value of variable 00i 00 at state s. The quotation marks 00i 00 emphasise the string type.

abbreviation kin-PI-vec-field :: realˆkin-PI-vars) realˆkin-PI-vars (f)
where f s ⌘ (� i . if i = ⌫V 00t 00 then 1 else

(if i = ⌫V 00r 00 then s�V 00v 00 else
(if i = ⌫V 00v 00 then s�V 00T 00 else 0)))

abbreviation kin-PI-flow :: real) realˆkin-PI-vars) realˆkin-PI-vars (')
where ' t s ⌘
(� i . if i = ⌫V 00t 00 then t + s�V 00t 00 else

(if i = ⌫V 00r 00 then (s�V 00T 00)⇤tˆ2/2 + (s�V 00v 00)⇤t + (s�V 00r 00) else
(if i = ⌫V 00v 00 then (s�V 00T 00)⇤t + (s�V 00v 00) else s$i)))

Based on this, below we present the formalisation of the hybrid program that combines
the PID and its respective roll dynamics. As announced before, we use the di↵erence between
the current value of r and its previous value as the error for the PID. We also follow [14] in
assigning the result of the PID actuator formula to the torque.

LOOP
(IF (�s. s�V 00t 00 = dt) THEN
— CONTROL
(⌫V 00error 00 ::= (�s. s�V 00r 00

� s�V 00roll 00));
(⌫V 00error-sum 00 ::= (�s. s�V 00error-sum 00 + s�V 00error 00));
(⌫V 00T 00 ::= (�s. Prop ⇤ s�V 00error 00 + Integr ⇤ dt ⇤ s�V 00error-sum 00));
(⌫V 00roll 00 ::= (�s. s�V 00r 00));
(⌫V 00roll-rate 00 ::= (�s. s�V 00v 00));
(⌫V 00veri-test 00 ::= (�s. s�V 00veri-test 00 + s�V 00error-sum 00));
(⌫V 00counter 00 ::= (�s. s�V 00counter 00 + 1));
(⌫V 00t 00 ::= (�s. 0))

ELSE
— DYNAMICS
(x´= f & (�s. s�V 00t 00 dt)))

7.7. CASE STUDY: PID CONTROL 127

(a) If Kp > 0, then r diverges (b) If Ki � 0, then r increases

(c) Higher values of Kd increase frecuency (d) Chosen values for our PID

Figure 7.4: Various PID simulations

In practice, after each time the PID updates variable T , it passes the value of T to another
controller (possibly a PID). Accordingly, this di↵erent controller uses that value to compute
the desired voltage needed at a motor of the quadcopter. Nevertheless, as a simplification of
our hybrid program above, we assume that this intermediate process is instantaneous relative
to the action of our PID of interest.

As evidenced in previous examples, there is much work to do in terms of proof-automation
to make Isabelle/HOL and our components capable of even certifying constraints for a
complex interaction involving a PID controller. Instead, to obtain values for the constants
Kp, Ki and Kd, we simulated the behaviour of the system in Mathematica. Then, we did
a sensitivity analysis to see how variations in Kp, Ki and Kd a↵ect the overall behaviour of
r t. Figure 7.4 shows a small sample of the simulations we performed. Our objective was to
find parameters that stabilise the roll angle r to 0. We discovered that, with non-negative
values of Kp, r either oscillates or diverges from 0. Similarly, positive values of Ki make r an
increasing function. Also, |Kp| must be at least an order of magnitude greater than |Ki| to
obtain asymptotic and non-oscillating behaviour. Hence, we chose Kp = �6 and Ki = �0.1.
Finally, for these values, the contribution of Kd was negligible except for positive values near
100 that generated an oscillating and diverging behaviour. Therefore, we set Kd = 0 for
simplification of our analysis and opted to work with a PI controller instead.

As postconditions, we have verified simple invariants for this hybrid program. A first
version starts with every value set to 0 except for the torque which begins at 1. The proof

128 CHAPTER 7. FORMAL VERIFICATIONS

then uses the following predicate as a postcondition and invariant.

(�s. (s�V 00counter 00
� 1 �! s�V 00T 00 = Prop ⇤ s�V 00error 00 + Integr ⇤ dt ⇤ s�V 00error-sum 00) ^

s�V 00counter 00
2 IN ^ s�V 00v 00 = s�V 00T 00

⇤ s�V 00t 00 + s�V 00roll-rate 00
^

s�V 00r 00 = s�V 00T 00
⇤ s�V 00t 00̂ 2/2 + s�V 00roll-rate 00

⇤ s�V 00t 00 + s�V 00roll 00)

Essentially, we show that after the first iteration, the value of s�V 00T is always given by
the PID equation. Similarly, the counter is a natural number and the roll and its rate of
change always satisfy the flow equations.

Our second verification uses as precondition the values of the variables after one iteration
of the hybrid program’s loop, and as postcondition, the invariant above. Yet, it adds to the
latter a defining equation for variable roll rate based on veri test and error sum.

(�s. s�V 00T 00 = Prop ⇤ s�V 00error 00 + Integr ⇤ dt ⇤ s�V 00error-sum 00
^

s�V 00roll-rate 00 = Prop ⇤ dt ⇤ (s�V 00error-sum 00
� s�V 00error 00) +

Integr ⇤ dtˆ2 ⇤ (s�V 00veri-test 00 � s�V 00error-sum 00) ^
s�V 00counter 00

2 IN ^ s�V 00v 00 = s�V 00T 00
⇤ s�V 00t 00 + s�V 00roll-rate 00

^

s�V 00r 00 = s�V 00T 00
⇤ s�V 00t 00̂ 2/2 + s�V 00roll-rate 00

⇤ s�V 00t 00 + s�V 00roll 00)

The proofs of both correctness specifications apply the same methods as in previous
sections. The wlp rules blast away the program structure while the remaining proof
obligations use arithmetical results.

The invariants provided with these verifications are useful properties to obtain further
results of safety. Ideally, the characterisation of roll rate in terms of veri test should
enable us to derive an analytical description of roll in terms of time that predicts the curve
in Figure 7.4d. Then, this should allow us to formally verify that the roll angle does not
deviate from 0 more that 0.15 units as the figure shows. Yet, further work is required in order
to attain such a derivation. Nevertheless, our proofs here serve to evidence the capabilities of
the components to analyse properties of more complicated systems than those presented in
previous sections. We can regard these formalisations as a first step towards a methodology
that integrates hybrid program verification with controller design.

7.8 Evaluation of the verification components

Up to this point, we have compared our components with other verification tools at the
end of each section of this chapter and we have focused on concrete features like diversity
of hybrid programs available in the tool, the various kinds of specifications that the tool
can encode, the di↵erent methods for verification of evolution commands, the lengths of
the proofs and the amount of proof-automation that the tool supports. We choose these
features because they are the easiest to assess qualitatively. Broader notions like scalability
or versatility would be harder to evaluate since they also depend on other factors like the
age of the tool or the amount of people developing it. Therefore, in this section, we use the
above concrete criteria to further evaluate our components and compare them with other
frameworks. Specifically, we compare our components with the other two participants of
the ARCH2020 friendly competition in the theorem proving category: the HHL prover and

7.8. EVALUATION OF THE VERIFICATION COMPONENTS 129

KeYmaera X. The HHL prover is an important tool for deductive verification of hybrid
systems embedded in Isabelle/HOL while KeYmaera X is the successor to the pioneering
domain-specific KeYmaera prover.

Diversity of hybrid programs Despite their algebraic foundations based on KATs and
MKAs, our verification components for hybrid programs initially had support only for while
programs extended with evolution commands [72]. Nevertheless, throughout this thesis we
have shown how easy it is to extend the hybrid program grammar in our setting as long as
the new constructs have a state transformer (or relational) semantics. This is the reason
why we could add to our components the Hoare rules in Section 3.2 about nondeterministic
choices and tests in time for the ARCH2020 competition, or the program open door of
Section 7.3. This is also the reason why our components provide a variation of evolution
commands unavailable in other tools: evol'GU . Yet, unlike di↵erential game logic (dGL),
our components do not support adversarial dynamics. The games of dGL involve two players
and extend hybrid programs with a dual operator ↵d describing that the second player is
executing ↵. The HHL prover does not have all the regular programs that dL or our
components support. Instead, it can use history formulas from the duration calculus [26]
and message passing and parallel composition from communicating sequential processes [64].
Neither dGL nor our components provide these features. We leave for future work the possible
integration of these hybrid programs into our framework.

Variety of specifications Just like with hybrid programs, specifications are di↵erent
among these tools. The HHL prover restricts its specifications to Hoare triples with an
added duration calculus formula in the postcondition that talks about the history of the
hybrid program [135]. Both dL and our components can encode Hoare triples, however,
neither include this added feature from the duration calculus. As before, our approach
closely resembles that of KeYmaera X but not all versions of our components adequately
cover the non-Hoare-like specifications of dL. As seen in Example 7.6.6, the components
using relational semantics sometimes require stating that a certain dL-like predicate is
inhabited. For instance, the statement (s, s) 2 |↵]dP e would represent the dL-assertion
|↵]P . Alternatively, using the light-weight predicate transformer components, the same
specification would be |↵]P s which resembles more the forward box of dL. Moreover, even
though our verification components can express various modalities (forward and backward)
that dL cannot, they are still prototypical. We neglected them for verification and decided to
focus more on specifications that resembled the well-known Hoare triples. As a consequence,
backward diamond and box operators do not occur in our light-weight verification components
and the proof support for them in the MKA-based components is limited to the properties
available from the Kleene algebra libraries. We leave for future work the optimisation of rules
for verification condition generation for all our modal operators. Apart from the backward
modalities, dL also lacks support for expressing quantification over predicates as it is a first-
order logic, while our components reside in Isabelle’s higher order setting. Yet, the recent
constructive variant of dGL models formulas as predicates in a type theory [21] which could
make KeYmaera X handle these cases in a near future.

130 CHAPTER 7. FORMAL VERIFICATIONS

Verification methods for evolution commands The HHL prover focuses in a single
approach for evolution commands: it calls an external invariant generator and it certifies that
it is an invariant [135]. In comparison, our components are still not connected to an external
invariant generator but they include simple tactics for their certification. KeYmaera X is also
connected to the Mathematica based tool Pegasus [127] that supports invariant generation
and the certification can be done quickly with dL’s rules as described in Example 7.6.2.
Users can supply the solution to the system of ODEs in both our components and KeYmaera
X. However, the restriction to first-order real arithmetic in KeYmaera X limits its ability
to express complex solutions like those provided with our formalisation of a�ne systems
of ODEs. Moreover, just like in Example 7.6.5, users can always unfold the definition of
invariance and use the tools from mathematical analysis available in Isabelle/HOL.

Proof lengths In the case of the HHL prover, the proofs in its online repository [136]
are long. Approximately 200 lines of code correspond to a single verification but this is a
choice of style for Isabelle proofs. Common Isabelle tactics like simp-all and intro could
reduce the length of the proofs in the repository. In our setting, verifications with dynamics
directly written in specifications are evidently shorter than those where flows need to be
supplied. This is because we also need to show that the conditions of local-flow hold. In
comparison, simple invariants tend to require even shorter proofs than those with flows or
annotated dynamics. However, if the invariant is a conjunction of various assertions, the
proof quickly becomes longer as in Example 7.6.5. The prover KeYmaera X can solve many
of the ARCH2020 competition problems automatically. In the scripted format, our multi-line
dL-style proofs correspond to one line in KeYmaera X with just two tactics [98].

Proof-automation This criteria is directly related with length of proofs. Therefore,
because of the style of proofs chosen with the HHL prover, we limit our discussion for
this prover by simply stating that benefits to Isabelle/HOL would also help to automate
proofs for it and for our components. However, despite the prototypical state of our various
verification components, we have supplied some proof automation for them. Our tactics
for derivatives certify various polynomial and transcendental expressions quickly. Similarly,
our tactics for invariants can handle equalities, conjunctions and disjunctions automatically
while inequalities require user-input. Finally, our Eisbach tactics for Hoare logic and the
refinement calculus blast away the program structure for our KAT-based components while
a simplification with wlp rules does the same for our MKA and predicate transformer
components. In contrast, KeYmaera X’s ODE tactic automatically discharges some proof
obligations with a single evolution command. This does more than certifying derivations.
For some proofs where the di↵erential ghosts rule is required, KeYmaera X provides the
tactic dbx that quickly applies the ghosts rule and the corresponding invariant reasoning
with cuts and weakenings. Finally, it also provides a master tactic that blasts away the
program structure and discharges some arithmetical facts. As explained before, discharging
real-arithmetical facts in Isabelle/HOL is left for future work.

The tools discussed in this section have various strengths relative to the others. In general,
we can observe that while the Isabelle-based tools are more expressive, they are still lacking
in proof automation in comparison to KeYmaera X. This is a consequence of the fact that
the domain specific prover has accumulated a lot of features that would also benefit the other

7.8. EVALUATION OF THE VERIFICATION COMPONENTS 131

two provers. Furthermore, various versions of dL compensate for this lack of expressiveness.
However, the openness and modularity of the framework presented in this thesis should help
in the fast development of related or alternative verification components that include these
features.

Except for the benchmark problems of the ARCH2020 competition and the PID of the
quadcopter, we have formalised all the examples in this chapter with the various versions
of the components depicted in Figure 6.1. For time constraints, the examples from the
ARCH2020 competition and the PID only occur in the relational MKA components and in
our light-weight predicate transformer components. All these verifications are available in the
Archive of Formal Proofs [68, 70] or in our online repository https://github.com/yonoteam/
CPSVerification. Like we explained in Section 6.6, the verification examples throughout this
chapter for the state transformer and the relational semantics require exactly the same code.
This further evidences that our approach for building verification components is modular.
For the rest of the components, the proofs are similar up to renaming of lemmas and changes
in notation.

https://github.com/yonoteam/CPSVerification
https://github.com/yonoteam/CPSVerification

132 CHAPTER 7. FORMAL VERIFICATIONS

Chapter 8

Conclusions

In this thesis, we presented an open, modular semantic framework for deductively verifying
hybrid systems in a general-purpose proof assistant. We carried out the concrete
implementation of this framework as various verification components in the interactive
theorem prover Isabelle/HOL. We also showed the approach at work by solving verification
problems and case studies. This is the first time that such an algebraic based component
serves to reason about hybrid programs.

The fact that the resulting components are part of a proof assistant, together with
the fact that they serve for deductive reasoning, makes them capable of expressing more
complex continuous dynamics than established methods. Another benefit from this choice
is that the soundness of the rules for verification condition generation is certified during
their development. This makes the components correct by construction relative to the trust
on the proof assistant. Moreover, because of their openness and their implementation in
the well-established Isabelle/HOL, the user base of the proof assistant can contribute and
improve them more rapidly than other domain-specific tools. The components also benefit
from Isabelle’s huge and impressive libraries of formalised mathematics and various proof
automation tactics.

8.1 Summary

Figure 1.1 of the introduction and Figure 6.1 of Chapter 6 depict the general steps for
implementing this framework. Initially, the formalisation of an algebraic structure that
models predicate transformers provides us with laws for computation of weakest liberal
preconditions. Alternatively, the algebraic structure can subsume the rules of Hoare logic.
Then, the framework requires a shallow embedding of hybrid programs via an instance of the
underlying algebra. Finally, we select a representation of the program store that enables us
to complete the construction of hybrid programs and the derivation of verification rules.

Figure 6.1 also depicts the modularity of the approach. At every step of the
implementation, there are alternative design choices with options beyond what we have shown
in this thesis and that are yet to be explored. Firstly, we can choose the underlying algebraic
structure. In this work, we have used Kleene algebras with tests, modal Kleene algebras, and
three versions of predicate transformers: from the powerset monad, transformers based on

133

134 CHAPTER 8. CONCLUSIONS

quantales, and a direct encoding. We can instantiate each one of these algebraic entities to
an intermediate semantics. We have focused on relational and state transformer semantics
in this thesis. Finally, we can choose a concrete model for the program store. Throughout
this work we have mostly used functions from a finite set of variables to the real numbers,
but we have also dedicated a section to discuss the algebraic model of lenses. In [71], we
even used functions from the infinite type of strings to the real numbers.

The framework not only o↵ers modularity, but also extensibility for the components.
We can do so in many ways. Firstly, as the embedding is shallow, we can use the model
for programs to quickly define more variants of hybrid programs. Examples of this are the
nondeterministic assignment of Section 5.6, the open door of Section 7.3 and our definition
of evolution commands based on analytical descriptions of the dynamics of the system. The
same applies at the level of predicate transformers: apart from forward or backward box and
diamond operators, we can define others functions of type BS

! BS to interact with them.
We can also formalise various subclasses of systems of di↵erential equations and derive their
corresponding properties as exemplified with a�ne systems of ODEs in Section 6.5. These
extensions are only restricted by what users can develop within higher-order logic.

Finally, the verification examples of Chapter 7 show that the ending result works. That is,
users can utilise the emerging verification components to successfully analyse complex hybrid
programs, albeit with added tactics to automate the verification condition generation.

8.2 Future work

Other researchers have used our framework. For instance, in [43], the authors successfully
take advantage of the extensibility of the approach and use lenses to provide alternative
matrix representations of systems of ODEs. Then, they use their implementation to verify
some avoidance tactics of an autonomous marine vehicle. We plan to collaborate with them
and supply our framework as a basis for the development of a tool for verification of hybrid
systems soon. Furthermore, successor work after this thesis could include the derivation
and proof of safety specifications for more controllers involved in the stabilisation of the
quadcopter’s flight.

On the algebraic side of the components, future work might involve exploring total
correctness and rely-guarantee methods for concurrent systems. For instance, in [54,55], the
verification components for regular programs already include a section for total correctness.
The underlying structure consists of divergence Kleene algebras that include a function
r : K ! K where r↵ models those states where ↵ does not necessarily terminate.
Furthermore, this approach is already available in Isabelle/HOL. Extending its methods
for infinite iterations and evolution commands is worth considering. In particular, a total
correctness setting might provide alternative manipulations of the evolution commands based
on guarded orbitals independent of uniqueness results. On the other hand, in [7], the authors
use concurrent Kleene algebras for formal verifications of rely-guarantee specifications in
Isabelle/HOL. As explained in the verification of the PID, many controllers operate in parallel
within an engineered system. This means that rely-guarantee methods could complement the
verification style described in this thesis.

To evidence the generality of our approach, future work could also focus on absorbing

8.2. FUTURE WORK 135

other well-established calculi for verification of hybrid systems. That is, like we did in
Section 5.6, incorporation of rules of inference and programming constructs from other logics
is possible. For instance, we could explore the possibility of encoding with our components
the denotational semantics of the calculus of hybrid communicating sequential processes
(HCSP) [135]. This proof system can also derive a hybrid Hoare logic for verification of
hybrid systems. If we could derive the rules of inference of that calculus, it would strengthen
even more the relevance of our framework.

Similarly, there are many variations of dL that we could try to encode. For instance,
di↵erential game logic [111] serves to study not only discrete and continuous interactions,
but also adversarial dynamics in the form of games. It uses hybrid games, whose semantics
are all functions of type P S ! P S where S is the set of game states. With our semantic
framework, we should be able to replicate this approach as smoothly as the rest of the
constructions depicted in previous chapters. Other interesting alternatives include quantified
di↵erential dynamic logic for reasoning about hybrid distributed systems [110] and stochastic
di↵erential dynamic logic for stochastic hybrid systems [109].

Our framework also provides the perfect place to explore interesting conceptual ideas
about dynamical systems. For example, the evolution commands of Section 5.3—where
we directly encode the dynamics in the specification—allow us to use discrete dynamical
systems as hybrid programs. This could be helpful to encode with our components well-
known discrete systems such as traces of type ' : N ! S ! S or finite automata. In turn,
this could become an alternative verification style for simulated hybrid systems. That is,
we could verify safety properties about traces generated by simulations of hybrid systems.
Additionally, these innovative evolution commands could serve to extend our methods for
the analysis of continuous dynamical systems by integrating the Poincaré maps of [76].

In the case of di↵erential equations, a lot of work remains. For starters, the guards of
evolution commands are the ideal place to add an algebraic equation. These would lead to
a study of di↵erential-algebraic systems of equations with our components [57]. Another
important addendum considers that so far our approach has been restricted to ordinary
di↵erential equations. Nevertheless many systems in nature are better represented with
partial di↵erential equations [78]. An extension of the components in such direction is not
only interesting but a relevant mathematical formalisation per se. It could open the way to
new formalisations of physical theories like quantum mechanics in proof assistants.

Another very important path for future work involves tool extensions. In [74, 75],
the authors formalise Runge-Kutta methods in Isabelle/HOL. These and other numerical
methods are the de facto choice for physicists and engineers whenever finding solutions
or invariants is di�cult [63]. It remains to be seen if integrating their formalisation with
our verification components is viable. Nevertheless some extension of certified numerical
methods to our framework would make it more relevant for verification.

Another extension involves our formalisation of a�ne systems of ODEs. It is one of many
linear algebra developments in the Archive of Formal Proofs, each of which tackles di↵erent
properties of matrices and linearity. For example, in [38,132] the focus is on obtaining Jordan
Normal Forms. These have been combined with a list representation of vectors to generate
executable code in Standard ML or Haskell [37,38]. Considering our components with lenses
in Isabelle/UTP and executable euclidean spaces discussed in Section 6.4, the integration of
these theories with ours towards the generation of verified code is another research option.

136 CHAPTER 8. CONCLUSIONS

Furthermore, this integration would allow us to reason beyond diagonalisable systems. All of
this could also be complemented by formalising the general solution for the time-dependent
versions of a�ne systems of ODE that uses resolvent matrices.

Finally, proof automation is always a pursuable endeavour. In particular, we could
address the limitations of our components described in Section 7.6. For instance, although we
showed that we can provide semantic proofs for the verification problems where di↵erential
ghosts are needed in dL, a generic method is still missing. In particular, we pointed out
that we could improve the tactics for invariance of systems of ODEs by finding conditions
for various cases involving it. This path is not only mathematically interesting but would
also help in the automation of verification condition generation. Another weakness of the
components involved the more time-consuming parts: formalising facts of arithmetic with
real numbers. In fact, in Appendix A, we do not assign the simple “verified” status to 10
of the 63 benchmark problems that we did for the ARCH2020 competition. From those 10,
we require better proof automation for reasoning with real numbers in 7 of them. Just like
our tactic poly-derivatives that automatically certifies derivatives, we could develop tactics
that certify basic factorisations, algebraic manipulations and operations with transcendental
functions. This would greatly benefit the verification procedure. Lastly, at many points of the
thesis, we considered a Sledgehammer approach [95, 106] where a computer algebra system
supplies the solution to a problem while Isabelle certifies it. This is particularly necessary
for providing solutions, generating invariants, diagonalising matrices and finding Lipschitz
constants. In our work, because of the short span of a PhD project, we have preferred to
focus on more conceptual contributions rather than these technical extensions to the proof
assistant. Yet, now that the framework is robust, proof automation remains a crucial task
that would strengthen the approach.

In the end, just like nowadays formal methods for software support other well-established
approaches in industry [16], deductive verification of hybrid systems should complement the
traditional techniques of testing and simulation. Our work in this thesis represents a small
step in that direction.

Bibliography

[1] E. Ábrahám-Mumm, M. Ste↵en, and U. Hannemann. Verification of hybrid systems:
Formalization and proof rules in PVS. In ICECCS 2001, pages 48–57. IEEE Computer
Society, 2001.

[2] M. Altho↵. An introduction to CORA 2015. In ARCH 2015, pages 120–151. EasyChair,
2015.

[3] R. Alur. Formal verification of hybrid systems. In EMSOFT 2011, pages 273–278.
ACM, 2011.

[4] R. Alur. Principles of Cyber-Physical Systems. The MIT Press, 2015.

[5] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In Hybrid
Systems, pages 209–229, 1992.

[6] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In J. Jouannaud and
Z. Shao, editors, CPP 2011, volume 7086 of Lecture Notes in Computer Science, pages
135–150. Springer, 2011.

[7] A. Armstrong, V. B. F. Gomes, and G. Struth. Algebraic principles for rely-guarantee
style concurrency verification tools. In FM 2014, volume 8442 of LNCS, pages 78–93.
Springer, 2014.

[8] A. Armstrong, V. B. F. Gomes, and G. Struth. Kleene algebra with tests and demonic
refinement algebras. Archive of Formal Proofs, 2014.

[9] A. Armstrong, V. B. F. Gomes, and G. Struth. Building program construction and
verification tools from algebraic principles. Formal Aspects of Computing, 28(2):265–
293, 2016.

[10] A. Armstrong, G. Struth, and T. Weber. Kleene algebra. Archive of Formal Proofs,
2013.

[11] V. I. Arnol’d. Ordinary Di↵erential Equations. Springer, 1992.

[12] R. Back and J. von Wright. Refinement Calculus—A Systematic Introduction. Springer,
1998.

137

138 BIBLIOGRAPHY

[13] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In CAV 2011, pages 171–177, 2011.

[14] R. W. Beard. Quadrotor dynamics and control. Technical report, Brigham Young
University, 2008.

[15] S. Bennett. A brief history of automatic control. IEEE Control Systems Magazine,
16(3):17–25, 1996.

[16] D. Beyer and T. Lemberger. Software verification: Testing vs. model checking - A
comparative evaluation of the state of the art. In O. Strichman and R. Tzoref-Brill,
editors, HVC 2017, volume 10629 of LNCS, pages 99–114. Springer, 2017.

[17] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Adv. Comput., 58:117–148, 2003.

[18] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
bdds. In R. Cleaveland, editor, Tools and Algorithms for Construction and Analysis
of Systems, 5th International Conference, TACAS ’99, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’99, Amsterdam,
The Netherlands, March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in
Computer Science, pages 193–207. Springer, 1999.

[19] L. Blaauwbroek, J. Urban, and H. Geuvers. The tactician - A seamless, interactive
tactic learner and prover for Coq. In C. Benzmüller and B. R. Miller, editors, CICM
2020, volume 12236 of LNCS, pages 271–277. Springer, 2020.

[20] B. Bohrer, N. Fulton, S. Mitsch, A. Platzer, J.-D. Quesel, and M. Völp. KeYmaera
X: Cheat sheet, 2020. http://www.ls.cs.cmu.edu/KeYmaeraX/KeYmaeraX-sheet.pdf,
Accessed: 15-9-2020.

[21] B. Bohrer and A. Platzer. Constructive hybrid games. In N. Peltier and V. Sofronie-
Stokkermans, editors, IJCAR 2020, volume 12166 of LNCS, pages 454–473. Springer,
2020.

[22] B. Bohrer, V. Rahli, I. Vukotic, M. Völp, and A. Platzer. Formally verified di↵erential
dynamic logic. In CPP 2017, pages 208–221. ACM, 2017.

[23] S. Boldo, C. Lelay, and G. Melquiond. Coquelicot: A user-friendly library of real
analysis for Coq. MCS, 9(1):41–62, 2015.

[24] L. Bu, Y. Li, L. Wang, X. Chen, and X. Li. BACH 2 : Bounded reachability checker for
compositional linear hybrid systems. In DATE 2010, pages 1512–1517. IEEE Computer
Society, 2010.

[25] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10ˆ20 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[26] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Inf. Process.
Lett., 40(5):269–276, 1991.

http://www.ls.cs.cmu.edu/KeYmaeraX/KeYmaeraX-sheet.pdf

BIBLIOGRAPHY 139

[27] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In CAV 2013, volume 8044 of LNCS, pages 258–263. Springer, 2013.

[28] A. Chlipala. Certified Programming with Dependent Types—A Pragmatic Introduction
to the Coq Proof Assistant. MIT Press, 2013.

[29] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In D. Kozen, editor, Logics of Programs, 1981,
volume 131 of LNCS, pages 52–71. Springer, 1981.

[30] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.

[31] L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-corn, the constructive Coq repository at
nijmegen. In A. Asperti, G. Bancerek, and A. Trybulec, editors, MKM 2004, volume
3119 of LNCS, pages 88–103. Springer, 2004.

[32] L. Czajka and C. Kaliszyk. Hammer for Coq: Automation for dependent type theory.
JAR 2018, 61(1-4):423–453, 2018.

[33] L. M. de Moura and N. Bjørner. Z3: an e�cient SMT solver. In TACAS 2008, pages
337–340, 2008.

[34] L. Desborough and Y. Miller. Increasing customer value of industrial control
performance monitoring? honeywell experience. In 6th International Conference
Chemical Process Control, AIChE Symp., Series 326, 2002.

[35] J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of
Computer Programming, 76(3):181–203, 2011.

[36] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

[37] J. Divasón and J. Aransay. Gauss-Jordan algorithm and its applications. Archive of
Formal Proofs, 2014.

[38] J. Divasón, O. Kunc̆ar, R. Thiemann, and A. Yamada. Perron-Frobenius theorem for
spectral radius analysis. Archive of Formal Proofs, 2016.

[39] L. Doyen, G. Frehse, G. J. Pappas, and A. Platzer. Verification of hybrid systems. In
Handbook of Model Checking., pages 1047–1110. Springer, 2018.

[40] A. Eggers, N. Ramdani, N. S. Nedialkov, and M. Fränzle. Improving the SAT modulo
ODE approach to hybrid systems analysis by combining di↵erent enclosure methods.
Software and Systems Modeling, 14(1):121–148, 2015.

[41] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Hybrid controllers for path planning:
A temporal logic approach. In IEEE Conference on Decision and Control, pages 4885–
4890, 2005.

140 BIBLIOGRAPHY

[42] S. Foster, J. Baxter, A. Cavalcanti, A. Miyazawa, and J. Woodcock. Automating
verification of state machines with reactive designs and Isabelle/UTP. CoRR,
abs/1807.08588, 2018.

[43] S. Foster, M. Gleirscher, and R. Calinescu. Towards deductive verification of
control algorithms for autonomous marine vehicles. CoRR, abs/2006.09233, 2020.
arXiv:2006.09233 [cs.LO].

[44] S. Foster, J. J. Huerta y Munive, and G. Struth. Di↵erential Hoare logics and refinement
calculi for hybrid systems with Isabelle/HOL. In RAMiCS 2020[postponed], pages 169–
186, 2020.

[45] S. Foster and F. Zeyda. Optics in Isabelle/HOL. Archive of Formal Proofs, 2018.

[46] S. Foster, F. Zeyda, Y. Nemouchi, P. Ribeiro, and B. Wol↵. Isabelle/UTP: Mechanised
Theory Engineering for Unifying Theories of Programming. Archive of Formal Proofs,
2019.

[47] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with lenses.
In ICTAC 2016, volume 9965 of LNCS, pages 295–314, 2016.

[48] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems.
In CAV 2011, volume 6806 of LNCS, pages 379–395. Springer, 2011.

[49] B. Friedland and S. W. Director. Control Systems Design: An Introduction to State-
Space Methods. McGraw-Hill Higher Education, 1985.

[50] N. Fulton, S. Mitsch, J. Quesel, M. Völp, and A. Platzer. KeYmaera X: an axiomatic
tactical theorem prover for hybrid systems. In CADE-25, volume 9195 of LNCS, pages
527–538. Springer, 2015.

[51] S. Gao, S. Kong, and E. M. Clarke. dreal: An SMT solver for nonlinear theories over
the reals. In CADE-24, pages 208–214, 2013.

[52] J. Gibbons and N. Wu. Folding domain-specific languages: deep and shallow
embeddings. In 19th ACM SIGPLAN ICFP 2014, pages 339–347, 2014.

[53] G. Gierz, K. H. Hofmann, J. D. Lawson, M. Mislove, and D. S. Scott. A Compendium
of Continuous Lattices. Springer, 1980.

[54] V. B. F. Gomes, W. Guttman, P. Höfner, G. Struth, and T. Weber. Kleene algebra
with domain. Archive of Formal Proofs, 2016.

[55] V. B. F. Gomes and G. Struth. Modal Kleene algebra applied to program correctness.
In FM 2016, volume 9995 of LNCS, pages 310–325, 2016.

[56] V. B. F. Gomes and G. Struth. Program construction and verification components
based on Kleene algebra. Archive of Formal Proofs, 2016.

https://arxiv.org/abs/2006.09233

BIBLIOGRAPHY 141

[57] E. Hairer and G. Wanner. Solving Ordinary Di↵erential Equations II: Sti↵ and
Di↵erential-Algebraic Problems. Springer, 1996.

[58] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[59] J. Harrison, J. Urban, and F. Wiedijk. History of interactive theorem proving. In
Computational Logic, pages 135–214. 2014.

[60] T. A. Henzinger. Sooner is safer than later. Inf. Process. Lett., 43(3):135–141, 1992.

[61] T. A. Henzinger. The theory of hybrid automata. In LICS 1996, pages 278–292. IEEE
Computer Society, 1996.

[62] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? J. Comput. Syst. Sci., 57(1):94–124, 1998.

[63] M. W. Hirsch, S. Smale, and R. L. Devaney. Di↵erential equations, dynamical systems,
and linear algebra. Academic Press, 1974.

[64] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
1978.

[65] C. A. R. Hoare. An axiomatic basis for computer programming (reprint). In Software
Pioneers, pages 367–383. Springer Berlin Heidelberg, 2002.

[66] P. Höfner and B. Möller. An algebra of hybrid systems. J. Logic and Algebraic
Programming, 78(2):74–97, 2009.

[67] J. Hölzl, F. Immler, and B. Hu↵man. Type classes and filters for mathematical analysis
in Isabelle/HOL. In ITP 2013, volume 7998 of LNCS, pages 279–294. Springer, 2013.

[68] J. J. Huerta y Munive. Verification components for hybrid systems. Archive of Formal
Proofs, 2019.

[69] J. J. Huerta y Munive. A�ne systems of ODEs in Isabelle/HOL for hybrid-program
verification. In SEFM 2020, volume 12310 of LNCS, pages 77–92. Springer, 2020.

[70] J. J. Huerta y Munive. Matrices for ODEs. Archive of Formal Proofs, 2020.

[71] J. J. Huerta y Munive and G. Struth. Verifying hybrid systems with modal Kleene
algebra. In RAMiCS 2018, volume 11194 of LNCS, pages 225–243. Springer, 2018.

[72] J. J. Huerta y Munive and G. Struth. Predicate transformer semantics for hybrid
systems: Verification components for Isabelle/HOL. arXiv:1909.05618 [cs.LO], 2019.

[73] F. Immler and J. Hölzl. Numerical analysis of ordinary di↵erential equations in
Isabelle/HOL. In ITP 2012, volume 7406 of LNCS, pages 377–392. Springer, 2012.

[74] F. Immler and J. Hölzl. Ordinary di↵erential equations. Archive of Formal Proofs,
2012.

https://arxiv.org/abs/arXiv:1909.05618

142 BIBLIOGRAPHY

[75] F. Immler and C. Traut. The flow of ODEs. In ITP 2016, volume 9807 of LNCS, pages
184–199. Springer, 2016.

[76] F. Immler and C. Traut. The flow of ODEs: Formalization of variational equation and
Poincaré map. J. Automated Reasoning, 62(2):215–236, 2019.

[77] J. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch, and
A. Platzer. A formally verified hybrid system for safe advisories in the next-generation
airborne collision avoidance system. STTT, 19(6):717–741, 2017.

[78] F. John. Partial Di↵erential Equations. Springer, 1986.

[79] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. Americal Journal
of Mathematics, 73(4):207–215, 1951.

[80] C. Kaliszyk and J. Urban. Hol(y)hammer: Online ATP service for HOL light. MCS,
9(1):5–22, 2015.

[81] Y. Kouskoulas, D. W. Renshaw, A. Platzer, and P. Kazanzides. Certifying the safe
design of a virtual fixture control algorithm for a surgical robot. In HSCC 2013, pages
263–272, 2013.

[82] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput., 110(2):366–390, 1994.

[83] D. Kozen. Kleene algebra with tests. ACM TOPLAS, 19(3):427–443, 1997.

[84] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM TOCL, 1(1):60–76,
2000.

[85] L. Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

[86] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for hybrid
CSP. In APLAS 2010, volume 6461 of LNCS, pages 1–15. Springer, 2010.

[87] J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial
dynamical systems. In S. Chakraborty, A. Jerraya, S. K. Baruah, and S. Fischmeister,
editors, EMSOFT 2011, pages 97–106. ACM, 2011.

[88] S. M. Loos and A. Platzer. Di↵erential refinement logic. In LICS 2016, pages 505–514.
ACM, 2016.

[89] S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid, distributed,
and now formally verified. In FM 2011, volume 6664 of LNCS, pages 42–56. Springer,
2011.

[90] S. MacLane. Categories for the Working Mathematician. Springer, 1971.

BIBLIOGRAPHY 143

[91] E. Makarov and B. Spitters. The picard algorithm for ordinary di↵erential equations
in Coq. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP 2013, volume
7998 of LNCS, pages 463–468. Springer, 2013.

[92] E. G. Manes. Predicate Transformer Semantics. Cambridge University Press, 1992.

[93] D. Matichuk, T. C. Murray, and M. Wenzel. Eisbach: A proof method language for
Isabelle. J. Automated Reasoning, 56(3):261–282, 2016.

[94] J. C. Maxwell. On Governors. In Proceedings of the Royal Society of London, pages
270–283. JSTOR, 1868.

[95] J. Meng, C. Quigley, and L. C. Paulson. Automation for interactive proof: First
prototype. Inf. Comput., 204(10):1575–1596, 2006.

[96] S. Mitsch, K. Ghorbal, and A. Platzer. On provably safe obstacle avoidance for
autonomous robotic ground vehicles. In Robotics: Science and Systems, 2013.

[97] S. Mitsch, J. J. Huerta y Munive, X. Jin, B. Zhan, S. Wang, and N. Zhan. ARCH-
COMP20 category report: Hybrid systems theorem proving. In ARCH20., pages 141–
161, 2019.

[98] S. Mitsch and A. Platzer. Benchmarks. commit
0e8372e01ac7d7dcdc2bbe730d31a9a6810c1748, 2020. https://github.com/LS-Lab/
KeYmaeraX-projects/tree/master/benchmarks.

[99] C. Morgan. Programming from specifications, 2nd Edition. Prentice Hall, 1994.

[100] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: dependent
types for imperative programs. In ICFP 2008, pages 229–240, 2008.

[101] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[102] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, CADE 11, volume 607 of LNCS, pages 748–752. Springer, 1992.

[103] P. K. Pandya, H. Wang, and Q. Xu. Toward a theory of sequential hybrid programs.
In D. Gries and W. P. de Roever, editors, PROCOMET ’98, volume 125 of IFIP
Conference Proceedings, pages 366–384. Chapman & Hall, 1998.

[104] L. C. Paulson. Natural deduction as higher-order resolution. J. Log. Program., 3(3):237–
258, 1986.

[105] L. C. Paulson. Isabelle: The next 700 theorem provers. CoRR, cs.LO/9301106, 1993.

[106] L. C. Paulson and K. W. Susanto. Source-level proof reconstruction for interactive
theorem proving. In K. Schneider and J. Brandt, editors, TPHOLs 2007, volume 4732
of LNCS, pages 232–245. Springer, 2007.

https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks
https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks

144 BIBLIOGRAPHY

[107] A. Platzer. The structure of di↵erential invariants and di↵erential cut elimination.
LMCS, 8(4), 2008.

[108] A. Platzer. Logical Analysis of Hybrid Systems. Springer, 2010.

[109] A. Platzer. Stochastic di↵erential dynamic logic for stochastic hybrid programs. In
N. Bjørner and V. Sofronie-Stokkermans, editors, CADE, volume 6803 of LNCS, pages
446–460. Springer, 2011.

[110] A. Platzer. A complete axiomatization of quantified di↵erential dynamic logic for
distributed hybrid systems. Logical Methods in Computer Science, 8(4):1–44, 2012.

[111] A. Platzer. Di↵erential game logic. ACM TOCL, 17(1):1:1–1:52, 2015.

[112] A. Platzer. A complete uniform substitution calculus for di↵erential dynamic logic. J.
Autom. Reason., 59(2):219–265, 2017.

[113] A. Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018.

[114] A. Platzer. Di↵erential game logic. Archive of Formal Proofs, 2019, 2019.

[115] A. Platzer and E. M. Clarke. Computing di↵erential invariants of hybrid systems as
fixedpoints. Formal Methods Syst. Des., 35(1):98–120, 2009.

[116] A. Platzer and J. Quesel. European train control system: A case study in formal
verification. In ICFEM, volume 5885 of Lecture Notes in Computer Science, pages
246–265. Springer, 2009.

[117] A. Platzer and Y. K. Tan. Di↵erential equation axiomatization: The impressive power
of di↵erential ghosts. In LICS, pages 819–828. ACM, 2018.

[118] A. Pnueli. The temporal logic of programs. In 18th ASoFoCS, 1977, pages 46–57. IEEE
Computer Society, 1977.

[119] V. Preoteasa. Algebra of monotonic boolean transformers. In SBMF 2011, volume
7021 of LNCS, pages 140–155. Springer, 2011.

[120] V. Preoteasa. Algebra of monotonic boolean transformers. Archive of Formal Proofs,
2011.

[121] A. N. Prior. Time and Modality. Clarendon Press, 2003.

[122] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS
2002, pages 55–74. IEEE Computer Society, 2002.

[123] D. Ricketts, G. Malecha, M. M. Alvarez, V. Gowda, and S. Lerner. Towards verification
of hybrid systems in a foundational proof assistant. In MEMOCODE 2015, pages 248–
257. IEEE, 2015.

[124] D. Rouhling. A formal proof in Coq of a control function for the inverted pendulum.
In J. Andronick and A. P. Felty, editors, CPP 2018, pages 28–41. ACM, 2018.

BIBLIOGRAPHY 145

[125] N. Schirmer. Verification of sequential imperative programs in Isabelle-HOL. PhD
thesis, Technical University Munich, Germany, 2006.

[126] J. T. Slagel, L. White, and A. Dutle. Formal verification of semi-algebraic sets and
real analytic functions. In C. Hritcu and A. Popescu, editors, CPP 21, pages 278–290.
ACM, 2021.

[127] A. Sogokon, K. Ghorbal, P. B. Jackson, and A. Platzer. A method for invariant
generation for polynomial continuous systems. In VMCAI 2016, pages 268–288, 2016.

[128] G. Struth. On the expressive power of Kleene algebra with domain. Information
Processing Letters, 116(4):284–288, 2016.

[129] G. Struth. Quantales. Archive of Formal Proofs, 2018.

[130] G. Struth. Transformer semantics. Archive of Formal Proofs, 2018.

[131] G. Teschl. Ordinary Di↵erential Equations and Dynamical Systems. AMS, 2012.

[132] R. Thiemann and A. Yamada. Matrices, Jordan normal forms, and spectral radius
theory. Archive of Formal Proofs, 2015.

[133] H. L. Trentelman, A. A. Stoorvogel, and M. Hautus. Control Theory for Linear Systems.
Communications and Control Engineering. Springer Verlag, 2001.

[134] S. Wang, N. Zhan, and D. P. Guelev. An assume/guarantee based compositional
calculus for hybrid CSP. In M. Agrawal, S. B. Cooper, and A. Li, editors, TAMC
2012, volume 7287 of LNCS, pages 72–83. Springer, 2012.

[135] S. Wang, N. Zhan, and L. Zou. An improved HHL prover: An interactive theorem
prover for hybrid systems. In ICFEM 2015, pages 382–399, 2015.

[136] S. Wang, N. Zhan, and L. Zou. HHL prover. commit
c0b19867aef72275316ae↵37ac7dd2f4dc66d24, 2018. https://github.com/wangslyl/
hhlprover.

[137] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
SPASS version 3.5. In CADE-22 2009, pages 140–145, 2009.

[138] L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu. Verifying chinese
train control system under a combined scenario by theorem proving. In E. Cohen and
A. Rybalchenko, editors, VSTTE 2013, volume 8164 of LNCS, pages 262–280. Springer,
2013.

https://github.com/wangslyl/hhlprover
https://github.com/wangslyl/hhlprover

146 BIBLIOGRAPHY

Appendices

147

Appendix A

ARCH2020 Problems

The table below lists the names and status of the 63 problems that we tackled for the Theorem
Proving category of the friendly competition of the 7th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH2020) [97]. The first 60 correspond
to the 60 design shape benchmark problems, while the last three are part of a case study.
Overall, we have given the simple “verified” status to 53 of them. Three more are verified with
a minor caveat and the remaining 7 require that we extend our components for verification of
hybrid programs. All the verifications are available in the online repository https://github.
com/yonoteam/CPSVerification both as Isabelle code and in a proof document.

Number Problem Status

1 Basic assignment verified
2 Overwrite assignment on some branches verified
3 Overwrite assignment in loop verified
4 Overwrite assignment in ODE verified
5 Overwrite with nondeterministic assignment verified
6 Tests and universal quantification verified
7 Overwrite assignment several times verified
8 Potentially overwrite dynamics verified
9 Potentially overwrite exponential decay verified
10 Dynamics: Cascaded verified
11 Dynamics: Single integrator time verified
12 Dynamics: Single integrator verified
13 Dynamics: Double integrator verified
14 Dynamics: Triple integrator verified
15 Dynamics: Exponential decay (1) verified
16 Dynamics: Exponential decay (2) verified
17 Dynamics: Exponential decay (3) verified
18 Dynamics: Exponential growth (1) verified
19 Dynamics: Exponential growth (2) verified
20 Dynamics: Exponential growth (4) verified
21 Dynamics: Exponential growth (5) verified
22 Dynamics: Rotational dynamics (1) verified

149

https://github.com/yonoteam/CPSVerification
https://github.com/yonoteam/CPSVerification

150 APPENDIX A. ARCH2020 PROBLEMS

Number Problem Status

23 Dynamics: Rotational dynamics (2) verified
24 Dynamics: Rotational dynamics (3) verified
25 Dynamics: Spiral to equilibrium verified
26 Dynamics: Open cases verified
27 Dynamics: Closed cases verified
28 Dynamics: Conserved quantity verified
29 Dynamics: Darboux equality verified
30 Dynamics: Fractional Darboux equality requires variation of

Picard-Lindelöf
31 Dynamics: Darboux inequality verified without

Lipschitz continuity
32 Dynamics: Bifurcation verified
33 Dynamics: Parametric switching between two

di↵erent damped oscillators
verified with the help of
external CAS

34 Dynamics: Nonlinear 1 verified
35 Dynamics: Nonlinear 2 verified
36 Dynamics: Nonlinear 4 verified
37 Dynamics: Nonlinear 5 verified
38 Dynamics: Riccati verified
39 Dynamics: Nonlinear di↵erential cut verified
40 STTT Tutorial: Example 1 verified
41 STTT Tutorial: Example 2 verified
42 STTT Tutorial: Example 3a verified
43 STTT Tutorial: Example 4a verified
44 STTT Tutorial: Example 4b verified
45 STTT Tutorial: Example 4c verified
46 STTT Tutorial: Example 5 verified
47 STTT Tutorial: Example 6 verified
48 STTT Tutorial: Example 7 verified
49 STTT Tutorial: Example 9a verified
50 STTT Tutorial: Example 9b requires arithmetic

support for exponentials
51 STTT Tutorial: Example 10 requires arithmetic

support for real
numbers

52 LICS: Example 1 Continuous car accelerates
forward

verified

53 LICS: Example 2 Single car drives forward verified
54 LICS: Example 3a event/triggered car drives

forward
verified

55 LICS: Example 4a safe stopping of time-
triggered car

verified

151

Number Problem Status

56 LICS: Example 4b progress of time-triggered
car

requires diamond
operator law for ODEs

57 LICS: Example 4c relative safety of time-
triggered car

verified

58 LICS: Example 5 Controllability Equivalence verified
59 LICS: Example 6 MPC Acceleration

Equivalence
verified with the help of
external CAS

60 LICS: Example 7 Model-Predictive Control
Design car

requires arithmetic
support for real
numbers

61 ETCS: Essentials verified
62 ETCS: Proposition 1 (Controllability) requires arithmetic

support for real
numbers

63 ETCS: Proposition 4 (Reactivity) requires careful
translation from dL
to Isabelle

152 APPENDIX A. ARCH2020 PROBLEMS

List of Symbols

General Mathematics

Set category of sets and functions

f : A! B function from A to B

a 2 A a is an element of A

A ✓ B A is a subset of B

A⇥ B cartesian product of A and B

A \B set of elements in A not in B

BA functions from A to B

A \ B intersection of A and B

A [B union of A and B

S
S union of all sets in S

(f [g) s pointwise union of f s and g s

(f � g) function composition of f and g

f [a 7! b] update value of f at a to b

id identity function

; empty set

> constantly true predicate

B set of boolean values

Z set of integers

N set of nonnegative integers

R set of real numbers

R+ set of nonnegative reals

#Y x downward closure on Y of x

Kf set of fixpoints of f : K ! K

P S set of all subsets of S

P f S direct image of S under f

1C identity functor on category C

Rel category of sets and relations

s1 R s2 object s1 is R-related to s2

R1 ;R2 relational composition of R1 and R2

R complementation of relation R

R` converse of relation R

IdS identity relation on S

R⇤ reflexive transitive closure of R

dP eR lifting from predicates to relations

SetP Kleisli category of the powerset monad

f �K g Kleisli composition of f and g

⌘S Kleisli unit on S

µS union of a collection of subsets of S

f ⇤K Kleisli finite iteration of f

f † Kleisli extension of f

fop opposite state transformer of f

f complementation of state transformer
f

153

154 LIST OF SYMBOLS

F isomorphism from relations to state
transformers

R isomorphism from state transformers
to relations

dP eF lifting from predicates to state
transformers

C(X, Y) set of C-morphisms with source X
and target Y

f �C g C-composition of morphisms f and g

SetP category of Eilenberg-Moore algebras
of the powerset monad

@ lattice dualisation operator

Lop lattice with the opposite order to L
F

A supremum of the ordered set A
d

A infimum of the ordered set A

T (L) transformers on L

T(L) order-preserving transformers on L

Tt(L) sup-preserving transformers on L

Tu(L) inf-preserving transformers on L

Hybrid Programs

x := e program assignment

x0 = f &G evolution commands

↵ + � nondeterministic choice

↵ ; � sequential composition

↵⇤ finite iteration

?↵ test

skip ine↵ective program

abort aborting program

if t then ↵ else � conditional branching

while t do ↵ while loop

loop ↵ finite iteration

↵ inv i program with annotated invariant

dL di↵erential dynamic logic

(x0 = f &G)U evolution command on U

x0 = f &G on U S at t0 orbital based
evolution command

evol'GU dynamics based evolution
command

x :=? nondeterministic assignment

DS solve axiom/rule of dL

DC di↵erential cut axiom/rule of dL

DW di↵erential weakening axiom/rule of
dL

DI di↵erential induction axiom/rule of dL

DG di↵erential ghost axiom/rule of dL

DE di↵erential e↵ect axiom/rule of dL

Kleene Algebras

KAT Kleene algebra with tests

↵ + � addition of ↵ and �

↵ · � multiplication of ↵ and �

↵⇤ Kleene star of ↵

¬↵ complementation of ↵

↵ � dioid order

0 additive unit

1 multiplicative unit

{p}↵ {q} Hoare triple

P ! Q P implies Q

P $ Q P if and only if Q

P ^Q conjunction of P and Q

LIST OF SYMBOLS 155

P _Q disjunction of P and Q

MKA modal Kleene algebra

ad antidomain operation

d domain operation

ar antirange operation

r range operation

|↵] p forward box of ↵ on p

|↵i p forward diamond of ↵ on p

[↵| p backward box of ↵ on p

[p, q] refinement operation

h↵| p backward diamond of ↵ on p

x : A =) S x is a lens with view A and
source S

getx the get function of lens x

putx the put function of lens x

x ./ y lens x is independent of lens y

x] f unrestriction of f on x

f(x 7! e) lens-based state update after f

Di↵erential Equations

F (t, x t, x0 t, . . . , x(n) t) = 0 explicit ODE of
order n

x(n) t = g (t, x t, x0 t, . . . , x(n�1) t) implicit
ODE of order n

x0 t = g (t, x t) implicit first order ODE

X 0 t = f (t,X t) vector form of a system of
first order ODEs

f : T ⇥ S ! S time-dependent vector field

f : S ! S autonomous vector field

(t0, s) initial condition

t0 initial time
R b

a g ⌧d⌧ multivariate integral of g from a to
b

limn!1 sn limit of the sequence s : N! S

B"(s) closed ball of radius " around s

|t| absolute value of t

ksk euclidean norm of vector s

exp t exponential operator on t

'f
s unique solution for initial state s of

IVP given by f and (t0, s)

Ts interval of existence of the unique
solution for initial state s of IVP given
by f and (t0, s)

' : T ! S ! S the flow of a system of ODEs

�' s the orbit of s

�X GU the G-guarded orbit of X

Sols f U S t0 s set of solutions to the system
of ODEs given by f

�f
G s the G-guarded orbital of s

X 0 t = A t ·X t+B t vector representation
of a�ne system of ODEs

X 0 t = A t ·X t vector representation of
linear system of ODEs

kAkop operator norm of matrix A

Isabelle Syntax

AFP Archive of Formal Proofs

⌘ meta-logic equality

=) meta-logic implication
V

meta-logic universal quantification

prop meta-type of propositions

0a, 0b, . . . type-variables

156 LIST OF SYMBOLS

0a) 0b type of functions from 0a to 0b

0a ⇥ 0b product type of 0a and 0b

0a + 0b sum type of 0a and 0b

0a set type of sets over 0a

0a list type of lists over 0a

nat type of natural numbers

int type of integers

real type of real numbers

bool type of boolean values

True boolean value true

False boolean value false

�x . f x function that maps x to f x

id identity function

Id identity relation

UNIV set of all terms of a given type

{} emptyset

lemma adds object-logic theorems

definition adds defining equations

abbreviation adds meta-definitions

class declares a new class

begin indicates the start of a context

end indicates the end of a context

assumes adds its argument as an
assumption to a context

and extends the input of other keywords in
a context

fixes sets a type for a specific symbol in a
context

shows declares the proof obligation of a
lemma

apply uses a tactic to progress a proof

by uses a tactic to conclude a proof

instantiation declares the beginning of an
instantiation context

lift-definition interprets its argument as a
class function

instance starts an instantiation proof

interpretation starts an interpretation
proof

locale declares a new locale

sublocale starts a locale interpretation
proof

context to (re)start a context of
assumptions

typedef to (re)start a context of
assumptions

named-theorems groups lemmas in a list to
create tactics

notation introduces alternative notation for
a function

utp-lift-notation allows direct input
of predicates without lambda
abstractions

U allows direct input of predicates
without lambda abstractions

A ⇤v s matrix product of A times vector s

a ⇤R s scaling of vector s by real number a

Index

G-guarded orbit, 54
G-guarded orbital, 62
KAT invariant, 31

annihilation/absorption law, 25
antidomain Kleene algebra, 31
antidomain operation, 31
antirange Kleene algebras, 32
antirange operation, 32
Archive of Formal Proofs, 20
assignment, 14
associativity, 25
autonomous system of ODEs, 44

backard box, 32
backward diamond, 32
binary relation, 26
bounded model checking, 13

commutativity, 25
continuous dynamical system, 43
converse, 33
Coq, 20

De Morgan dualities for boxes and
diamonds, 32

deductive verification, 14
derivative term, 125
di↵erential cut, 75
di↵erential dynamic logic, 19
di↵erential Hoare logic, 58
di↵erential induction, 76
di↵erential invariant, 63
di↵erential weakening, 76
dioid, 25
discrete dynamical system, 43

distributivity, 25
domain operation, 31
dynamic logic, 14
dynamical system, 43

evolution command, 17
evolution domain constraint, 54

finite iteration, 14
flow, 43
following law, 81
forward box, 32
forward diamond, 32

guard, 54

HCSP, 19
Hoare triple, 14
hybrid automata, 15
hybrid programs, 17
hybrid systems, 11

idempotency, 25
identity law, 25
induction axiom, 26
initial value problem, 44
integral term, 124
invariant of guarded orbitals, 63
invariant set, 63
Isabelle, 22
Isabelle/HOL, 20
Isar, 23

KeYmaera X, 19
Kleene algebra, 26
Kleene algebra with tests, 28
Kleisli category, 27

157

158 INDEX

Kleisli composition, 27
Kleisli extension, 27

leading law, 81
local flow, 46
locally Lipschitz continuous, 46

modal Kleene algebra, 32
model checking, 13
monoid action, 43

near-quantale, 84
nondeterministic choice, 14

opposition, 32
orbit, 47
order of an ODE, 44
ordinary di↵erential equations, 43

partial correctness specifications, 14
PID controller, 124
powerset monad, 27
predicate transformers, 34
prequantale, 84
proof obligations, 30
proportional term, 124

quantale, 84

range operation, 32
refinement Kleene algebra with tests, 79
regular programs, 14

safety verification problem, 12
semilattice, 25
sequential composition, 14
shallow embedding, 21
solution of an ODE, 44
solution to a system of ODEs, 44
solution to an IVP, 44
state transformer, 27
strongest postcondition, 34
symbolic model checking, 13

temporal logic, 13
test, 14
theory, 23
theory stack, 23
trajectory, 46

unfold axiom, 26

vector field, 44
verification condition generation, 30

weakest liberal precondition, 34
while-programs, 14

	 Signed Declaration
	 Abstract
	 Acknowledgements
	Introduction
	Contributions
	Outline
	Publications

	Related Work
	Hybrid Systems Verification
	Model Checking
	Deductive Verification of Software
	Hybrid Automata and Reachability Analysis
	Hybrid Programs and Deductive Verification
	Verification with General-purpose Proof Assistants
	Introduction to Isabelle/HOL's Notation

	Kleene Algebras
	Kleene Algebra
	Kleene Algebra with Tests
	Modal Kleene Algebra
	Algebraic Structures in Isabelle/HOL
	Kleene Algebras in Isabelle/HOL

	Hybrid Store Semantics
	Ordinary Differential Equations
	ODEs in Isabelle/HOL
	Semantics for Assignments
	Semantics for Evolution Commands
	Hybrid Stores in Isabelle/HOL

	Verification Components
	Generalised Semantics for Evolution Commands
	Invariants for Evolution Commands
	Components Based on Dynamical Systems
	Evolution Commands in Isabelle/HOL
	Differential Invariants in Isabelle/HOL
	Derivation of the Axioms of dL

	Extensions
	Differential Refinement Calculi
	Predicate Transformers à la Back and von Wright
	Predicate Transformers from the Powerset Monad
	Lenses
	Affine Systems of ODEs
	Summary of the Verification Components

	Formal Verifications
	Circular Motion
	Docking Station
	Overdamped Door
	Bouncing Ball
	Water Tank
	Select ARCH2020 benchmarks
	Case Study: PID Control
	Evaluation of the verification components

	Conclusions
	Summary
	Future work

	References
	Appendices
	ARCH2020 Problems

