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Abstract

In metagenomic analyses the rapid and accurate identification of DNA sequences is
important. This is confounded by the existence of novel species not contained in databases.
There exist many methods to identify sequences, but with the increasing amounts of
sequencing data from high-throughput technologies, the use of new deep learning methods
are made more viable. In an attempt to address this it was decided to use Convolutional
Neural Networks (CNNs) to classify DNA sequences of archaea, which are important in
anaerobic digestion. CNNs were trained on two different image representations of DNA
sequences, Chaos Game Representation (CGR) and Reshape. Three phyla of archaea and
randomly generated sequences were used. These were compared against simpler machine
learning models trained on the 4-mer and 7-mer frequencies of the same sequences. It was
found that the simpler models performed better than CNNs trained on either image
representation, and that Reshape was the poorest representation. However, by shuffling
sequences whilst preserving 4-mer count it was found that the Reshape model had learnt
4-mers as an important feature. It was also found that the Reshape model was able to
perform equally well without depending on the use of 4-mers, indicating that certain training
regimes may uncover novel features. The errors of these models were also random or in
weak disagreement, suggesting ensemble methods would be viable and help to identify
problematic sequences.
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Introduction

Microbial Communities

Microbial communities are diverse and important in a range of environments. They are
important in the Earth’s biogeochemical cycles: in soil they impact nutrient cycling and
carbon sequestration (Grosso et al. 2018); at the deep sea floor they cycle buried nutrients
(Roman et al. 2019); and in the human gut they play roles in nutrition and disease, including
autoimmune disorders (Shanahan et al. 2017; Chiang et al. 2019). They also offer a
potential reservoir for pharmaceuticals and cosmetics of varying functions (Demain 2014). A
better understanding of microbial communities would offer insights into the factors affecting
community make-up and the functional mechanisms of metabolism specific to species,
groups of species, and the geochemical system as a whole (Ofek-Lalzar et al. 2014). As
such, microbial communities necessitated the development of the field of metagenomics,
which considers all the genomes in a community (the metagenome), but methods are still
being refined and developed. This will have many implications in genomic understanding,
the health of humans and animals, the preservation of wild microbial communities and their
finessed manipulation in industry.

Anaerobic Digestion

With the increasing global population, the amount of organic waste from food, food
production, and wastewater is likely to increase as a result of, or to meet the demands of,
the population. Anaerobic digestion (AD) is a process carried out by microbes in the absence
of oxygen that breaks down organic matter and produces methane and carbon dioxide as a
result, as well as digestate and waste materials. This is an important process in the global
cycling of carbon, but due to the value of the end-products, systems have been engineered
to not only facilitate the breakdown of organic waste matter, but also recover these products.
This represents a potential source of renewable energy, as not only would it be processing a
waste product aiding in its disposal, but compared to fossil fuels it has the potential to be a
lower source of greenhouse gas emissions (Angelidaki et al. 2011). AD therefore has
promise as a technology to help meet the demands from two areas that will grow with
population: waste disposal and energy. AD is a multi-stage process, with no one member of
the microbial community capable of complete digestion in an anaerobic digester (Sundberg
et al. 2013). One key group of organisms in the AD process and the production of methane
are called methanogens, all known of which are archaea. A range of feedstocks can be
anaerobically digested as a method of treatment, including municipal solid waste (Rao et al.
2000), wastewater and sewage sludge (Gong, Ren, and Xing 2005; Suryawanshi,
Chaudhari, and Kothari 2010), and waste from farming and livestock, which can be rich in
lignocellulose (Alvarez, Villca, and Lidén 2006).

During the treatment of wastewater, AD enables heavy metals to be removed in leachate
(Selling, Hakansson, and Bjornsson 2008) and transforms certain toxins (Saini et al. 2003).
However, byproducts include nitrous oxide, and methane itself is a greenhouse gas with a
global warming effect far greater than carbon dioxide (Paolini et al. 2018). As such,
understanding and control of the process is important, at both mechanical and chemical
levels.
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Methanogens

The production of methane in laboratory conditions was found to be positively related to taxa
diversity, and it is suggested that not only do rare species play an important role, but that the
communities also have little functional redundancy, hence why loss of taxa reduces methane
production (Sierocinski et al. 2018). These are the organisms which perform
methanogenesis. This is the final step in the AD process and relies on the reactions of many
other species, including bacteria. Hydrolysis, acidogenesis, and acetogenesis make the
reactants biologically available for methanogenesis. The production of methane is performed
via two main pathways, acetoclastic and hydrogenotrophic methanogenesis, but is also
possible through the methylotrophic pathway. Not all species of methanogens possess all
three pathways; in fact, it is thought that only those in the order Methanosarcinales do
(Yuchen Liu and Whitman 2008). The material being treated is hydrolysed by the microbial
community into soluble monomers such sugars or amino acids, which are then fermented.

The exact make-up of the community depends on many factors, including the feedstock
being digested, and shows fluctuations over time (Yi et al. 2014). After fermentation the
hydrogen is either used with carbon dioxide by hydrogenotrophic methanogens to produce
methane, or converted into acetic acid in a process called acetogenesis, performed by strict
bacterial anaerobes. It can then be used by acetoclastic methanogens to produce methane
and carbon dioxide. Methylotrophic methanogens use one-carbon (C1) compounds such as
methylamines to produce methane and various byproducts. These are not the only uses of
the intermediate products, for example, acetate can be degraded by syntrophic acetate
oxidisers before obligate interspecies hydrogen transfer to a hydrogenotrophic methanogen
(Zinder and Koch 1984). However, the overall flow should be towards the production of
methane, and the already-mentioned dependencies between members of the community
should also be more apparent. It should be noted that the population dynamics can also
result in shifts in metabolic activity within genera, such as under essential trace element
deprivation, which leads to a shift in Methanosarcina from acetoclastic and methylotrophic to
hydrogenotrophic methanogenesis (Wintsche et al. 2018).

As mentioned, all known methanogens are archaea. Until recently it was thought that they
also belonged to a single phylum inside archaea, Euryarchaeota, and that this is likely where
the capability evolved (Y. Liu 2010). However, multiple archaea from outside Euryarchaeota
have been shown to possess homologs of the genes required for methanogenesis, for
example, the phyla Bathyarchaeota (Evans et al. 2015) and Verstraetearchaeota.
Verstraetearchaeota are likely capable of methylotrophic (Vanwonterghem et al. 2016) and
hydrogenotrophic (Berghuis et al. 2018) methanogenesis. This has implications for how
methanogenesis evolved, but also emphasises that much is unknown about archaeal
lineages and their functionality. Indeed, they were initially thought to be species of bacteria
(Woese, Kandler, and Wheelis 1990), and it has been largely thanks to new studies using
metagenomics that advances in the reconstruction of their phylogeny has been made
(Zaremba-Niedzwiedzka et al. 2017; Castelle and Banfield 2018). Even inside
Euryarchaeota new classes have been proposed and accepted in recent years (Borrel et al.
2014; Nobu et al. 2016). However, work still remains to discover the full functionality of
archaea.
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A key step in determining whether a species or group of species is novel or performs a novel
function is identification and comparison. This means that relationships over time can be
assessed and that differences in genes can inform experimental hypotheses. One way to
identify a species is with the use of conserved marker genes.

16s rRNA

16s rRNA is present in the 30S subunit of the ribosome of prokaryotes and is essential in the
synthesis of all proteins. Within it there are conserved hypervariable regions. These can be
used to identify a species or infer phylogenetic distance. 16s rRNA amplicon sequencing and
analysis has been widely used for determining phylogenetic relationships in microbes (Lane
et al. 1985). This is due to their universal distribution between species, constant function,
and shows a slow rate of change, especially compared with most other proteins (Fox et al.
1980; Karlin, Mrazek, and Campbell 1997). Whilst this analysis is accurate, even with short
amplicon reads only a few base-pairs long (100-250bp) (Z. Liu et al. 2007), they rely on
databases to determine exact identity. They can however be used to place organisms that
are similar enough into operational taxonomic units (OTUs). Many methods used to produce
these have been shown to be unstable, meaning the clustered sequences change
depending on the number of sequences that are clustered. Therefore, the final identity of an
organism could be wrong due to a factor that should not have an affect (He et al. 2015).

Despite the growing size of the 16s rRNA databases, there remain other problems, including
bias against certain taxa due to inefficiency of universal primers used in studies to hybridize
the templates (Campanaro et al. 2018). The variable region that allows classification is
flanked by highly conserved regions that are targeted by the primers, designed to be
universal. However, a recent study found that approximately 10% of environmental microbial
sequences could evade detection by such marker gene surveys using classical PCR
methods (Eloe-Fadrosh et al. 2016). Most of these missed species belong to candidate
phyla radiation, a radiation which is estimated to contain over 70 phyla, half of which seem to
come from novel lineages, or call for a reorganisation of existing lineages. This is a severe
limitation as not only would a large amount of information be missed, but the species missed
are uncultured and less well understood, meaning it would be difficult to account for.

A selection of marker genes could be used, since there are other marker genes that have
been researched and used in phylogenetic studies, such as the RNA polymerase beta
subunit (RpoB) gene, which has similar properties to the 16s rRNA gene but with higher
levels of divergence (Mollet, Drancourt, and Raoult 1997). Even with these problems
accounted for, the information obtained would only relate to phylogenetic relationships
between species. It would not inform anything relevant to their metabolism; some tools exist
to infer function based on phylogenetic make-up of a community, but these have been found
insufficient to accurately predict the full metabolic potential of communities (Sevigny et al.
2019). Marker gene sequencing focussing on 16s rRNA only seems useful as a validation
step after other types of analysis when the goal is to understand the communities at a
functional level.


https://paperpile.com/c/EUzref/K5KXR
https://paperpile.com/c/EUzref/K5KXR
https://paperpile.com/c/EUzref/EsSry+DMYOz
https://paperpile.com/c/EUzref/EsSry+DMYOz
https://paperpile.com/c/EUzref/GXx1z
https://paperpile.com/c/EUzref/G5pJN
https://paperpile.com/c/EUzref/NrrXt
https://paperpile.com/c/EUzref/HVxYl
https://paperpile.com/c/EUzref/JHkKf
https://paperpile.com/c/EUzref/IgqbO
https://paperpile.com/c/EUzref/IgqbO

Metagenomics

Given that communities are dynamic and species have recombination and horizontal gene
transfer events, there’s a lot that could be missed without looking at the whole sequence.
One approach to address this that has become standard in metagenomics is whole genome
shotgun-sequencing, which aims to capture the combined DNA sequences from the
environment without the need for a culturing step. This seems much more desirable as it
could capture sequences rich in insights, allowing estimates of metabolic networks in
anaerobic digesters to be built (J. Zhang et al. 2017). Such approaches have had much
success elsewhere, such as the metabolic activities of organisms in hadal environments (X.
Zhang et al. 2018), and was used to characterize antibiotic resistance in pathogens in
sewage and beach environments to allow better public health surveillance (Fresia et al.
2019). These studies demonstrate that metagenomics allow us to extract more value from
microbial communities, which impact all regions of human life.

Such metagenomic approaches do have their limitations, including cost and genome quality,
however solutions to overcome these are becoming increasingly more effective. These affect
all stages of a metagenomic pipeline, namely: sequencing, assembly, and further analysis,
and will be discussed in their sections. In metagenomics, DNA is extracted from the
environment of interest, prepared and then sequenced. The reads are then assembled into
contigs. The sequencing approaches can vary, but either short or long-read technologies are
used, or a hybrid approach using both. During sequencing errors can occur where one base
is misread as being another. With long read technologies error rate this is generally 1-5%
(Amarasinghe et al. 2020) and for short read it is less than 1% (Pfeiffer et al. 2018). Using
only short read sequencing however will mean that repetitive regions cannot be resolved and
will result in more fragments. Using both would increase costs, and despite the falling cost of
sequencing, the cost of sequencing and analysis is still a limitation of metagenomics
(Schwarze et al. 2019).

Assembly

The aim of the assembly step is to join the read fragments of each individual species
produced by the sequencing step into contiguous sequences, termed a contig. As much of
the community’s metagenome is reconstructed as possible. This is complicated by the
sequences themselves, and the sequencing methods used. Approaches using graphs build
on the shortest common superstring problem, where you can visualise the sequence as a
directed graph with nodes as K-long substrings and edges between being the weighted
overlap (how many bases overlap) between two substrings. Then, the path that visits every
node whilst maximising the overlap cost is found. This approach is NP-hard (Gallant, Maier,
and Astorer 1980), and in the case of repetitive genomes, would collapse the repetitive
regions. Overlap-Layout-Consensus (OLC) methods use the overlap graph and then resolve
the sequence further with multiple sequence alignments. De Bruijn graphs are one method
of assembly that form directed multigraphs from the input sequence using substrings of
length K and substrings of K-1 within those. Each K-1 substring is treated as a node and
overlap between them as an edge, therefore making a substring of length K. There are
various formalisations that could be used to construct a genomic assembly from the graph.
One approach is called the Shortest De Bruijn Superwalk problem that aims to find the
shortest walk that uses every edge of a De Bruijn graph once. Building on this and using
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copy counts estimation the edges can be given multiplicities (how many times that edge
must be walked) and then the superwalk that meets the constraints is used as the assembly.
Both of these are NP-hard again (Medvedev et al. 2007; Kapun and Tsarev 2013). This
means they are all computationally demanding and when sequencing is not perfect can form
fragmented assemblies. This requires faster running, but less accurate, approximations of
the solutions and assembling the unambiguous regions of graphs into separate contigs.

Additionally, genomic sequences can contain regions with repetitive elements, which can
also be shared between different taxa in the metagenomic sample (Cahill et al. 2010; Khan
et al. 2018). This problem is greater for short-read technologies, the most popular of which is
lllumina. It is possible for the read length to be insufficient to span the repeat area of the
sequence, though this is dependent upon the taxa the sequence belongs to (Cahill et al.
2010). This complicates the assembly process as the repeat region could be collapsed,
resulting in shorter genomes or chimeric contigs, which are contigs that contain the
sequence of more than one species or strain. The problem is made worse by the fact that
the abundances of species are unknown in environmental samples, meaning it is not
obvious if a low coverage is due to sequencing errors (as assumed in single genomic
assembly) or because of a low abundance of the species. As such, abundances are often
estimated, with various methods existing, such as the use of the read classifier Kraken
followed by Bayesian statistics to calculate probable relative abundances for each species
(Lu et al. 2017). Kraken itself is a programme that can classify reads by using a
user-specified library of genomes against which a query is performed for every K-mer in the
sequences (K by default is 31). Whatever taxa has the most matches is the result, and no
matches will result in the sequence being unclassified (Wood and Salzberg 2014).

Other methods use genome databases (Truong et al. 2015; Milanese et al. 2019), and base
their estimates of abundance on the coverage of clade specific genes or single-copy,
protein-coding phylogenetic marker genes. However, as previously mentioned, database
methods are not guaranteed to account for novel taxa, even with the increased data, though
this would improve them. Therefore, the abundance estimate may be inaccurate at fine-level
classification. Long-read technologies can enable longer contigs by producing reads that are
long enough to span repeat regions, in some cases producing reads over 2Mb in length
(Payne et al. 2019), but averages can vary, with 13 to 20 kb being reported (Tyson et al.
2018). However, they do have a higher error-rate: Nanopore reports that the modal raw read
accuracy for their R9.4.1 and R10.3 pore chemistries are >97%, though results achieved in
recent studies have been lower, but still >95% (Amarasinghe et al. 2020).

One advantage long-read has over short-read technologies was that they don’t use PCR,
which introduces errors in abundance specific to species by favouring sequences without
high or low GC content, as well as differential primer matching (Sipos et al. 2007), which
could result from sequence divergence. However, there are methods to account for this (Aird
et al. 2011; Krehenwinkel et al. 2017) and methods that don’t use PCR (Huptas, Scherer,
and Wenning 2016), as well as a wide variety of tools developed to assemble from short
reads (Ayling, Clark, and Leggett 2019). Combining both sequencing technologies produces
good results, using the long-read to span problematic regions and the greater accuracy of
short-reads to provide a more accurate contig. Accuracy greater than 99.8% has be
produced on the human genome (Jain et al. 2018), and community resolution of the human
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gut microbiota has been improved through 5x greater base pair accuracy, close to 10x fewer
assembly errors, and twice the contiguity than could be achieved with either technology
alone (Bertrand et al. 2019).

With cheaper sequencing technologies, the amount of data being produced is likely to keep
increasing, which also has implications for not only assembly, but all steps in the process;
more data will take more time to process. Not only that, but memory demand will increase,
and some popular assemblers require more than 500GB of RAM for certain environmental
datasets (Walt et al. 2017). This is expected by some to become a greater problem as the
rate data can be produced will exceed the rate of development of memory capacity
(Kleftogiannis, Kalnis, and Bajic 2013). In order to compensate for this there are various
approaches, such as digital normalisation (C. T. Brown et al. 2012), which reduces
redundancies in the data by removing highly covered reads until average coverage reaches
a specified value. This does reduce the size of the data, and thus speeds up downstream
processing, but can result in more fragmented assembilies.

Assembly methods can be made more memory efficient, such as through the use of bloom
filters, which are probabilistic data structures that report whether an element is in a set or
might be in a set, and has therefore been used with De Bruijn graph assemblers to reduce
the memory requirements. This comes at a cost of accuracy, even with methods that aim to
reduce false positives, which are responsible for false branching (branches that don’t exist in
the real graph) (Chikhi and Rizk 2012). With large compute node clusters available, there
are assemblers that can co-assemble terabyte datasets, which has benefits over assembling
and merging smaller datasets, such as lower error-rate (Hofmeyr et al. 2020). However,
these resources are not yet available to all, and the error-rates still persist, meaning
sequences from metagenomic studies would rarely be perfect.

Binning

Another approach to streamline assembly is the partitioning, or “binning”, of reads. Binning
refers to the clustering or classification of assembled or raw reads into separate groups, or
“bins”, that represent some meaningful taxonomic difference between them. When used on
raw reads to aid assembly, certain methods recently have found binning reads improved
results of downstream analysis comparing metagenomic samples (Song, Ren, and Sun
2019).

Binning usually provides more accurate results after an assembly step, due to the longer
resulting sequence that can be more informative than a single raw read. Further to binning,
the bins could be reassembled to create more accurate contigs or annotated and analysed
further. Bins also reduce the size of the data sets that need to be analysed, often improving
the quality too, or facilitating the selection of high quality groups. An example is the
assembly of 238 unique and high-quality draft genomes from 396 microbial samples from the
human gut, one of the most complex microbial communities currently studied (H. B. Nielsen
et al. 2014). For this reason accurate binning is vital to discovering the function of groups
within the microbial communities; if complete or draft prokaryote genomes result, then that
allows inference of taxon-specific activity and the design of experiments to measure their
role in the community in situ. This has allowed metagenomics to garner many insights, such
as the importance of microbes in food from the metagenome associated with the soybean
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product Kinema, from which a novel glutamate decarboxylase gene was validated (J. Kumar
et al. 2019). Another study detected novel biocatalysts and then experimentally validated two
contigs that encoded B-glucosidase and xylanase from geothermal water reservoirs (Kaushal
et al. 2018). These have applications in food, textiles and biofuel industries (V. Kumar,

Dangi, and Shukla 2018). It has also been used discovering new predator prey genotypes
that can be used to analyse evolutionary dynamics (Sangwan et al. 2015).

Binning can be subdivided into two types at a high level; taxonomy binning and genome
binning. Taxonomy binning uses similarity-based methods such as sequence similarity
between whole reads using BLAST (Altschul et al. 1990), as is used in MEGAN to search
databases, like NCBI-NT, and apply a naive lowest common ancestor assignment algorithm.
Also used are clade-specific or single copy genes, or the look-up of specific K-mers. These
are utilised in Kraken, which uses by default K-mers that are 31 nucleobases long, but can
be changed to use any size (Wood and Salzberg 2014). A problem with these
similarity-based taxonomy binning approaches is their reliance on databases, as this biases
them towards species that have already been identified. It is an often cited figure that only
1% of microbes on the planet have been cultured. How accurate this is is debatable, but it
seems that a large majority of prokaryotes remain uncultured across most environments
(Steen et al. 2019).

Whilst information of the sequences of species will have also been added to databases from
metagenomic studies, the major challenge is that there is a vast amount of information and
so the databases will be unrepresentative of the full microbial diversity. This could result in
unassigned contigs that lack a reference in the databases, or contigs that are misassigned
due to the potentially incomplete nature of the sequence that would result from metagenomic
assembly and result in gaps or mismatches. Whilst the assignment may represent roughly
the taxonomic position of the species, there is no guarantee. This is a problem for microbial
communities as they will contain novel species and are analysed largely metagenomically.
As the databases are growing, and the amount of sequence data gathered in experiments
increases due to improved methods and decreasing costs, the computational costs of
look-up approaches comparing large genomic sequences becomes greater than alternatives
(Bonham-Carter, Steele, and Bastola 2014). Methods that depend of marker genes -
MetaPhlAn2 and Kraken2 - have also been found to underrepresent the complexity of
communities due to high complexity of the presence of novel microbial sequence,
highlighting again that such approaches are only accurate when the databases are complete
(Lugli et al. 2019). Using draft genomes recovered from the metagenomic data, termed
metagenomic assembled genomes (MAGSs), helps alleviate this issue, however the quality
and completeness of these MAGs is lower when compared to genomes generated from
isolates (Van Rossum et al. 2020).

Genome binning is done independently of databases and uses features in the DNA
sequence or abundance information to bin, and is much more popular than the alignment
based methods currently. These methods have their advantages, particularly when applied
to fragments of DNA, as they do not rely on exact alignment or databases. Rather, they use
features that are assumed to be specific to taxonomic groups. There are three main
approaches that utilise different features; those based on composition, those based on
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abundance, and those that take a hybrid approach and utilise both composition and
abundance (Sedlar, Kupkova, and Provaznik 2017).

K-mers

A useful set of features used in binning metagenomic reads is the genetic composition of a
read, also called its genome signature. Genetic composition refers to the frequencies of the
set of substrings present in a read when those substrings are of a fixed alphabet (for DNA
this is simply the canonical nucleobases A, C, T, and G) and length. Generally substrings of
lengths of 2 (dinucleotides), 3 (trinucleotides/codons) (Goldman 1993), and 4
(tetranucleotides) are used routinely for sequence analysis, though it is not uncommon to
use substrings of much greater length (Tang et al. 2014). These are called K-mers or K-lets,
where K is the length of the substring. K-mers are counted by moving a sliding window of
size K along a sequence one base at a time (hence K-mers are overlapping) until the
window reaches the end of the sequence. As such, the number of K-mers obtained from a
sequence is equal to the length of the sequence minus K-1, as once the sliding window
reaches the final K bases of the sequence, going any further would result in nucleotide
substrings less than K. Figure 1 shows the resulting 2-mer counts for a short sequence of
DNA. Three 2-mers result from a sequence 4 bases long.

ACTT—ACTT—ACTT

AC,CT, TT

Figure 1. K-mers of length 2 extracted from the sequence ACTT. The sliding window (blue
box) extracts the 2 bases and then moves along by one base, repeating this operation
until it arrives at the last 2-mer. The extracted 2-mers are listed below this.

The reason these are useful for binning reads is because DNA within a species’ genome has
relatively stable distributions of K-mer frequencies, as showed with 2-mers using odds ratio
values (Karlin and Burge 1995), which normalise the 2-mer counts by the frequency of each
mononucleotide that comprises it. It has been shown to hold true for K-mers with greater
values of K, even when looking at only 1000bp long regions of DNA (Zhou, Olman, and Xu
2008). This is despite local heterogeneity and from elements such as repetitive extragenic
palindromes and origins of replication. These distributions also differ between species (Karlin
and Ladunga 1994) and therefore carry phylogenetic signals. For example, 10 kbp
fragments have been successfully characterised by using the species-specific distributions
of K-mers of length 2, 3, and 4 in SOMs (Abe et al. 2003). Not only this, but species which
are more closely related via phylogeny have been found to be more similar in their genomic
compositions (Pride et al. 2003).The simplest genetic composition feature is GC content,
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which is the percentage of G or C in a DNA sequence, or conversely AT content which is the
percentage of A and T. Dinucleotides also vary between species, with CG underrepresented
in some thermophilic bacteria (Karlin, Mrazek, and Campbell 1997) and thermophiles such
as Sulfolobus, and GC being mainly overrepresented in y-Proteobacterial sequences (Karlin,
Campbell, Mrazek 1998). However, it is not the levels of any one genomic signature that
lends them their species resolving capabilities, but a majority of them used in consort, such
as shown using a Bayesian classifier and classifying sequences of 400bp in length at 85%
accuracy (Sandberg et al. 2001).

As might be expected, reducing a sequence or part of a sequence to a single metric like GC
content is oversimplifying the problem of phylogenetic separation and won’t give accurate
and reliable results. The variation in intragenomic GC content in Prokaryotes would however
be less than in Eukaryotes due to high density of coding DNA resulting in a comparatively
narrow heterogeneity (Sueoka 1962).

Yet, it should be noted that anaerobic microbes, such as those present in anaerobic digester
communities, show greater GC heterogeneity (Bohlin et al. 2010). In one study conducted on
the complete genomes of 57 Prokaryotes it was found GC content captured approximately
40% of the species specificity in coding regions and was insufficient for non-coding regions,
where the GC content was on average 3.5% lower (Sandberg et al. 2003). It also reported a
correlation between GC content and genomic signature, as was previously shown when the
first component of a PCA analysing 36 Chaos Game Representation distance matrices was
strongly correlated with AT content (Deschavanne et al. 1999). What was important was that
Sandberg et al. (2003) also showed there was a large variance in the genomic signatures for
any value of GC content, which meant that GC content was not sufficient for species
separation and other factors had to be considered. Given what we know of GC content this
is perhaps unsurprising; it could be reflecting the environment as much or more than it is an
accurate predictor of taxonomy. Environmental factors (Foerstner et al. 2005) such as
temperature (Hao Zheng 2010) and the complexity of the environment, and the size of the
genome are correlated with GC content. It is also still an active area of research; take
genome size, where reduced genome organisms may lack the machinery to repair
mutations, and since most are G/C to A/T, a lower GC content might be expected. However,
it's been shown that bacterial species have an excess of these mutations (Hildebrand,
Meyer, and Eyre-Walker 2010; Galtier 2010), which has important implications for their
evolution and genomes, and it's not known how this occurs or if it's the same in archaea.
This paints GC content as an insufficient measure alone for determining species to inform
binning, but an important feature nonetheless.

GC content also partially determines the frequencies of higher magnitude K-mers; a codon
such as GGC could be expected to be more likely to occur in a GC rich organism through
simple probability. This would also extend to K-mers and K-mers of length of K-1. Consider
the sequence ATGT: its frequencies could be anticipated with knowledge of the frequencies
of ATG and TGT which constitute it, and those by the dinucleotides which form them, and
those by the individual nucleobases. However, this is assuming that such sequences are
random, which they are not, and whilst these assumptions hold partially true, it is the
deviations from the expected values by such probabilistic reasoning that would be more
informative. Indeed, Markov models have been used for sequence analysis based on that
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reasoning (Gelfand, Kozhukhin, and Pevzner 1992; Burge, Campbell, and Karlin 1992;
Schbath, Prum, and de Turckheim 1995). It was also found that 4-mer frequencies explain
more than GC content trends (Dick et al. 2009), and as such are less affected by GC content
variation due to environmental factors and neutral factors such as mutations. This makes
4-mers an appealing feature for use in classification.

However, other values of K could be used, and indeed as K increases, so does the

specificity of the K-mer, at the cost of an increased number of possibilities (Akwhere Ais
alphabet size). With this comes a sparser problem space since far fewer of the possible
K-mers will be observed, which would lead to an increase in computational time for
algorithms processing this information (T.-J. Wu, Huang, and Li 2005). Moreover, using long
K-mers is applicable when identifying known species, but since the patterns of them would
be so specific at larger lengths, they wouldn’t generalise well to help the classification of
novel species. Generally then, the choice of K-mer size will depend upon the compute
resources available, the size of the sequence being analysed, and how similar those
sequences are, as sequences more closely related would require more specific K-mers to
separate them. Since 4-mers have been shown to separate reads with the same or similar
GC content (Karlin and Ladunga 1994), have been used to train ESOMs (emergent
self-organizing maps) to separate reads as short as 500bp (Dick et al. 2009), and agree with
16s rRNA analysis when used in binning experiments of 9054 in-silico-generated
fosmid-sized DNA fragments (Teeling et al. 2004), they seem a sufficient point of comparison
for this study.

Machine Learning

The advances in sequencing technology, both long and short, and computing power have
allowed omics technologies to enter into an era of “Big Data”. Indeed, one study predicted
the annual sequencing capacity for genomics in 2015 to be more than 35 Pbp (1 Pbp =
1000000 Gbp), and under the most conservative estimate would rise to exabase capacity
within a decade (1 Ebp = 1000 Pbp), but stated the possibility for it to increase by four or five
orders of magnitude due to the demand of human genome sequencing from governments
(Stephens et al. 2015). Metagenomics has benefited from this, with the large amount of data
produced in the field, thanks to the increasing popularity of next gen sequencing, and the
amount of DNA in the microbiome.

This presents an ideal environment for machine learning methods to be applied. Machine
learning is a subset of artificial intelligence that aims to build models purely from data,
capable of making predictions and forming decision boundaries. This may seem similar to
statistics, and whilst there is some disagreement between where classical statistics ends
and machine learning begins, it is generally the focus of the model that differentiates. In
classical statistics the model’s purpose is for hypothesis testing and inference from this
about how a system behaves and how confident we can be in any relationships discovered.

In machine learning the focus is on prediction through recognising complex patterns in the
underlying data and finding a model that best explains these by using a learning algorithm
and reducing a loss function, some of which require the data to be partitioned into data the
algorithm trains on, the “training set”, and then unseen data to test how well the model
generalises, the “testing set”. There is also a “validation” set, which can be used to tune
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hyperparameters or update weights in neural networks. This is possible as the model fits on
the training set, and is then evaluated against the validation set. Hyperparameters can be
tuned this way by trying out the different combinations and seeing which perform best on the
validation set. This is improved by a strategy called cross-validation subdivides the training
set multiple times into the training and validation data, with the validation datasets not
overlapping. The performance over all these subdivisions can then be used to account for
random effects in the division of training and validation sets on the performance and in
therefore choosing the hyperparameters. The test set is then used to give a final measure of
performance on unseen data. Since the testing test cannot provide all possible unseen data,
the performance of a model on it is instead an approximation of real world application
performance.

Machine learning also makes fewer assumptions about the data, such as its distribution,
which helps when applying it to complex problems with many variables, where drawing
inferences can also become harder due to the complexity (Bzdok 2017; Bzdok, Altman, and
Krzywinski 2018). However, both do share methods, such as bootstrapping and generalised
linear models, so the boundary between them isn’t completely clear.

There are a variety of machine learning algorithms belonging to two main groups, those that
perform supervised learning and those that perform unsupervised learning, however
semi-supervised learning is also used. All machine learning algorithms require “features”,
which represent a variable or multiple variables from the input data; often these have to be
selected and engineered to ensure that the algorithm can utilise them. For instance,
categorical variables such as gender would have to be encoded with dummy variables, using
a different number for each unique gender. The difference between the groups is how the
data is presented and what tasks they are used for.

Supervised learning algorithms require a label for each input, the input’s class, such as a
binary outcome, like cancerous or non-cancerous, or continuous explanatory variable such
as height, for which they are trained to predict, so that they can determine a label for unseen
data. It is also possible to give multiple labels, called a multiclass classification problem.

Unsupervised learning algorithms don’t require labels as they are not intended to make
predictions about single data points but instead are used to find any structure underlying the
data, and as such are used in cluster analysis, but also dimensionality reduction.

Semi-supervised learning uses both labelled and unlabelled data to perform either a
classification or regression task as in supervised learning, or clustering as in unsupervised
learning, by making assumptions about the data based on the type of expected interactions
between the distribution of marginal data and the posterior distribution (van Engelen and
Hoos 2020).

When training models, the learning algorithms may fit the training data too well, which can
result in noise and outliers present in the data being encoded in the trained model. This
means performance on the training set would be perfect or close to, depending on how
much of the noise has been fitted. However, this comes at the expense of a reduced
performance on the validation set, since it has been fitted to the unrepresentative points, and
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therefore reduces the generalisability of the model. This is called overfitting. As model
complexity increases, there may often be improvements in the reduction of the loss function,
however, when models get too complex they are more affected by overfitting, which is seen
as an increase in performance on testing but a reduction in performance on the validation
(H. Wu and Shapiro 2006). It can also be a result of too few data points during training.
There exist methods that aim to modify learning algorithms to reduce the error on the
validation set and fit less well to the training set, and therefore increase the generalisability
and reduce the effect of overfitting (also known as high variance), which are called
regularization methods.

Conversely, when a model is too simple it will underfit, as it will be unable to learn all the
relationships that are underlying the data and are required for good model performance
(Lever, Krzywinski, and Altman 2016a). This can require making the model more complex or
cleaning the data to reduce noise so only the most meaningful points remain, however what
points are noise and what points aren’t may be unknown and difficult to determine. As such,
defining the model could be seen as finding a balance between complexity and the data
available.

Unsurprisingly, machine learning has been used in metagenomics, including binning,
assigning taxonomy to sequences, and predicting gene function. Binning is a largely
unsupervised process since it is grouping reads based on some similarity of features,
whereas assigning a taxonomy requires the learning of labels and is therefore supervised.
Indeed, CONCOCT is an algorithm that uses K-mers and coverage of multiple samples in a
gaussian mixture model to cluster contigs (Alneberg et al. 2014). The previously mentioned
TETRA uses a linear regression of the Z-scores for 4-mer frequencies for comparative
analysis (Teeling et al. 2004). As with binning, assigning a sequence a taxonomic rank can
use K-mers as features. It can also use sequence alignment, but the effectiveness of this
relies heavily upon the completeness and quality of the database used. Such methods are
also slower to use than trained models, which should have a linear run time, which affects
their applicability to the data sets of large scale metagenomics; compositional methods can
be up to 17.3 times faster (Vervier et al. 2015).

Most of the machine learning taxonomic assignment tools not based on sequence alignment
use K-mers, however the value of K is variable. These are effective, yet there may be more
complex features or relationships which have not been engineered yet into features for
learning algorithms. Exploiting these could result in better performance.

Deep Learning

Deep learning is a subfield of machine learning, based on artificial neural networks. It has
both supervised and unsupervised methods, which have the same aims as in machine
learning. In recent years deep learning methods have advanced many fields, outperforming
previous methods, including non-deep learning machine learning algorithms. Such areas
include speech recognition, where they have outperformed the previous methods which
used hidden Markov models and Gaussian mixture models (Dahl et al. 2012), and in
sequence translation tasks, such as English to French (Sutskever, Vinyals, and Le 2014).
One of the most recent and well-publicised works in NLP comes from OpenAl in the form of
an autoregressive language model aimed to improve task-agnostic performance, GPT-3.
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This model has 175 billion trainable parameters, over ten times the size of the previously
largest models, and is trained on a mix of data-sets using over 1000 Petaflop/s-days of
compute to do so. As a result it can perform well in a variety of NLP tasks, such as
producing text indistinguishable from that produced humans (T. B. Brown et al. 2020). Deep
learning represents an exciting area of active research, of which the capabilities will grow as
computation becomes cheaper and datasets larger.

Another set of tasks performed by deep learning are those within computer vision, such as
image classification or segmentation. Convolutional neural networks (CNNs) became the
most popular deep learning approach to tackle these tasks after the success of AlexNet at
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Krizhevsky, Sutskever,
and Hinton 2017). They train on labelled examples and use their performance on a validation
set to gradually reduce their loss over a series of cycles. The final performance is then
measured on a test set that the network has not seen.

Neurons and the Network

Neural networks are composed of neurons. These neurons are based upon mathematical
reasoning about biological neurons (McCulloch and Pitts 1990), which take one or multiple
inputs, find the sum of the weighted input and bias, which is then fed into an activation
function that decides whether the neuron ‘fires’ or not. As such, the output of a single neuron
with two inputs can be written as in equation 1.

2

7, = fb,+ 5 w) (1)

Where ylis the output, f is the activation function, blthe bias, and w and x the weights and

inputs respectively. Figure 2 is a diagram of such a neuron. The bias relates to how easy it is
to make a certain neuron fire, whilst the weights tell of the importance of each input. The
activation function exists to introduce non-linearity into the network, which allows the
modelling of complex, non-linear patterns, allowing better performance than linear methods
in these cases. The activation function is also what allows changes in weights and biases in
a neural network to be modified via an algorithm called backpropagation. A common
activation function used in CNNs is Rectified Linear Unit (ReLU), as used in AlexNet
(Krizhevsky, Sutskever, and Hinton 2017), which is given by equation 2.

|0 forx <0
f(x)_{xforx >0 )

RelLU trains faster than saturating activation functions, such as the sigmoid or Tanh, since
they will lead to sparser activation. Despite the positive values being linear, the fact that
values less than 0 are set to 0 makes it a nonlinear function. It suffers less from the
vanishing gradient problem, caused when by a gradient that is close to 0, resulting in
backpropagation failing to update the weights. Since ReLU only saturates one direction, this
is less of an issue. This is a problem particularly in deeper networks and other architectures
such as Recurrent Neural Networks (Hochreiter 1998).
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Figure 2. A single neuron as given by equation 1. A node contains the summation and
activation functions. The inputs are multiplied by their respective weights, and then
summed with the bias. This value then undergoes activation by the chosen function and
the result from this is the output.

Single neurons are simple units, but even alone they could be used as a simple binary
classifier; if the activation of the sum and the bias is above a threshold it can be classified as
one class, and if it's below then it can be classified as the other. Estimating these weights
and biases is the process of learning, and can be achieved through backpropagation,
discussed later. Neurons are very modular, a property that allows them to be stacked to
create large networks, “neural networks”, which can take a large number of inputs. In doing
this the inputs are received by every neuron in the first layer, and the output of those is sent
forward to every neuron in the subsequent layer. Feed-forward neural networks (an example
in figure 3) are one type of neural network, and are used in CNNs for supervised learning
tasks.
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Figure 3. A fully connected feed-forward neural network. The output of each layer is
connected to every node in the subsequent layer, hence fully connected. Any single node
has only one output; the multiple arrows leaving a node represent this value being fed into
multiple subsequent nodes, not multiple outputs. During a pass information flows from left
to right until it reaches the output. There can be any number of hidden layers.

Importantly, the hidden layers after the first are using inputs from previous hidden layers,
which means they are using non-linearly transformed abstractions of the data, which, when
trained, is what allows a neural network to learn complex relationships between the inputs.
Whilst there is no universally agreed-upon definition of when a neural network becomes
deep, it depends on the task, yet in general deep learning neural networks will have multiple
hidden layers between the input and output layer (Schmidhuber 2015).

Learning

For learning to happen, the weights and biases of each input/output and neuron need to be
capable of being modified to improve performance, as they determine the importance of an
input in the classification. As such, a loss function relating the error in model performance to
reality is needed. A general workflow for training is shown in figure 4. The aim is to reach a
global minimum of loss from the loss function, using the gradients to inform the descent to
the point. This is part of the reason why deep learning needs so many examples to train
from. Reality in the case of image classification would be the images available in the
validation set. To allow this information about performance flow backwards through the
network, the backpropagation algorithm makes use of the chain rule of multivariable calculus
to calculate the gradients of the loss function with respect to the weights of the network,
which is used to update the biases and weights. This can be repeated in training cycles
termed “epochs”.This means activation functions also have to be differentiable, as well as
non-linear. For non-binary classification tasks the commonly used loss function is categorical
cross entropy, which is the cross-entropy loss after a softmax activation. This calculates the
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differences between the probability distributions used to assign classes by the network.
Weights are updated at the end of every batch, a small division of the training input, which is
determined by batch size (Radiuk 2017). Once a number of samples equal to the set batch
size have been processed, the weights are allowed to update.

\/

Loss

Figure 4. A simplified learning cycle of a deep neural network. Truth is either the true value
of data from the training or validation set, for a classification task this would be the true
class of that object. The loss function is what compares truth to the obtained outputs. The
optimizer uses the loss to calculate how much to update the weights of the hidden layers.
The cycle can be run infinitely, though generally training is stopped when validation loss
rises and training loss continues to fall, indicating overfitting.

An important component of the training process of a neural network is the optimizer. The
optimizer affects how quickly the neural network will learn and also how well, and does so
using gradients calculated from the loss function with the backpropagation algorithm. If we
think of the problem of learning as a constrained optimization problem, we want to reach the
global minima, the point at which the loss will be lowest, and performance on the training
and validation sets the best, according to our loss function. One way of doing this is to use
gradient descent, which is a basic algorithm, but isn’t suited to large datasets as it can get
caught in local minima and takes a long time to converge.

However, it does form the basis of reasoning for other methods. As such, a frequently used
optimised is Adaptive Moment Estimation (Adam) (Kingma and Ba 2014), which uses a
variable learning rate. A learning rate is the rate at which weights in the neural network are
updated, and as such it is one of the most important hyperparameters. When the learning
rate is too large, the descent of the gradient may miss the minima and as a result increase
the error, whereas a learning rate that is too slow will take a lot of time and resources to
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train, and may get stuck in local minima. The learning rates in Adam are updated on a per
weight basis, by using exponential moving averages of the gradient and squared gradient as
estimates of the mean and uncentered variance of that gradient and corrects for bias, which
bounds the weight update by the learning rate and makes choosing the scale of the learning
rate easier. Two parameters, called betas, determined the rate of decay for these values.
This results in faster convergence and oftentimes better performance (figure 5).
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Figure 5. The effect of learning rate on convergence. The black line represents the
problem space with the lowest valley representing the global minima, and the ends of
arrows the position in the problem space after a weight update. When the learning rate is
too high (blue arrow) the weight updates cause a divergence from the minima. The orange
arrow shows what happens when a learning rate is too low: it gets stuck in a local minima
and takes a large number of updates to do so. The green arrow represents an adaptive
learning rate, such as those in Adam, where local minima are avoided and fewers steps
are needed due to initially large steps.

Since changing the weights of the layers will also affect the inputs of subsequent layers,
training is complicated further, since the distribution of input for each layer is likely to change.
To tackle this ‘internal covariate shift’ is a method called batch normalisation, which speeds
up training time (loffe and Szegedy 2015). It does this by applying normalization for each
training mini-batch, often performed after convolution layers but before activation with a
nonlinear function. The result is a smoothening of the optimization landscape, and so
gradients behaviour is more stable. This allows training times to be reduced since gradients
become more predictive (Santurkar et al. 2019). Two important parameters of this are
epsilon and momentum. Momentum affects the rate at which the estimates of mean and
variance are updated and epsilon is a constant in the calculation which improves stability.
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There are also learnable parameters, y and 3, which are vectors of size equal to input. The
calculation which uses all these is shown in equation 3.

_ x—EX)
y = W (Y + [3) (3)

Overfitting

As mentioned, neural networks are large and prone to overfitting, but there are ways to
combat this. One way is to train for fewer epochs, since the network is fit gradually to the
training data by weight updates once in each epoch, it is possible to stop training before the
network is fit too closely to the data and performance on the validation set decreases (i.e
before overfitting). This is usually done by monitoring the performance of the network on the
validation set, and stopping if performance doesn’t improve or grows worse, within a
timeframe of epochs.

Another way is to increase the amount of training data so that it takes longer to overfit and
has more time to learn the relationships between inputs that reduce loss further. One way to
do this is to gather more data. Another is called augmentation, which takes data already in
the dataset and changes it in some way that has relevance, for the case of images this may
be reflecting the image horizontally so that other orientations can be learnt. This works
because the class of the image, say for instance, cat, does not change if its orientation is
different. This isn’t applicable to all cases, and so other augmentations may have to be used.

Regularization methods are changes to the model aimed at reducing overfitting, such as
dropout (Hinton et al. 2012), where every hidden neuron has a random chance, defined by a
set probability, to be omitted from the network. This means it is temporarily removed from the
network, as are its connections to other neurons. The rationale for this is that neurons can fix
the mistakes made in others, that could result in co-adaptations developing that then don’t
generalise well to unseen data and thus have caused the model to overfit. By randomly
omitting neurons, neurons in the network can’'t develop these co-adaptations as each epoch
it is not certain what neurons will be present. Weight decay is also a regularization method
(Krogh and Hertz 1991). The aim of weight decay is to constrain how fast weights grow in a
network, to make it less complex and more generalizable. It adds a cost function that
penalizes large weights, so the only weights that will grow large are those where it is
important for learning. When used with Adam, weight decay needs to be decoupled due to
its use of momentums and adaptive nature (Loshchilov and Hutter 2017).

CNNs

In CNNs the inputs are features extracted arrays which are then used for learning the correct
classification by layers similar to the fully connected network described above, making them
a feed-forward neural network. Images are a common input, a 2D array, however they can
be used on any dimensional array such as 3D arrays, an example of which would be video,
or 1D arrays such as sequences. Such networks have been useful in biology, such as in live
microscopy, where they have led to detection of live cells with 96% accuracy whilst being
100 times faster than previous methods (Linsley et al. 2020). In bicinformatics they have
been widely used, such as for gene expression classification from histone modification data
(Singh et al. 2016), predicting splice junctions on pre-mRNA transcripts (Jaganathan et al.
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2019), and the prediction of gene expression using proximal and distal promoter and
enhancer-promoter interactions (W. Zeng, Wang, and Jiang 2019). They have also been
used in metagenomics as part of a methodology to predict genes in ORFs (Al-Ajlan and El
Allali 2019) and to improve the classification of fungi (Vu, Groenewald, and Verkley 2020)
and bacteria (Liang et al. 2020).

Figure 6. A general diagram of a CNN: convolutional layers are stacked with an activation
function (ReLU) and a pooling layer, before entering a fully connected layer or layers that
give the output classification. Only the convolution layers and fully connected layers
receive weight updates.

The layers in CNNs will vary depending on the model, yet they have a core set of layers
common to most. They generally take the form of a series of repeating of convolution, ReLU
(or other activation function), and pooling operations, before the fully connected layer or
layers, which provide the outputs (figure 6). Since CNNs are used for cases of supervised
learning, these outputs are predictions.

In CNNs, the convolution operation is a linear operation that multiplies the inputs by values
in a kernel (Goodfellow, Bengio, and Courville 2016). The values of the kernel are what a
CNN aims to learn. The kernels are often initialised randomly and then adjusted in a similar
manner to the weights in a fully connected feed-forward neural network. That is to say, they
are learnt using backpropagation to minimise a loss function. When applied to 2D data, such
as images, the kernels are often 2D as well. The kernels move across the image a number
of pixels at a time, called a stride. At each step the kernel computes the dot product of the
input values and the weights in the kernel (see figure 7A). Since the kernels are usually of
size 3x3 or greater, multiple pixels in the input will provide a single output. This is done until
the whole image is traversed. The result is a smaller matrix than the original image, which
are referred to as feature maps. This is done with multiple kernels. A kernel will have the
same weights at every point in the image that it is used. Since weights contributing to the
output feature maps are those in the kernel, each pixel will have the same weights as those
that occupied the same position in the kernel. This is called weight sharing (Rumelhart,
Hinton, and Williams 1986). It means that a kernel will learn a single set of weights and
increases the efficiency of the network. As such the kernel will be able to detect the feature it
has trained, regardless of where it is located in the image, making this design translation
invariant. The use of kernels also means the network has sparse weights, when the kernel is
smaller than the image.
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Figure 7. (A) A convolution of a 3x3 matrix without padding. In blue is the receptive field of
the input image. The dot product of the receptive field and the kernel (green), to produce a
single value output (orange). The receptive field moves by a step of 1 and the dot product
is repeated at the remaining 3 possible positions, using the same kernel for each receptive
field. The result is a 2x2 feature map. If a similar convolution was applied to the output, the
effective receptive field would be 3x3 even whilst only looking at 2x2 pixels since those
2x2 summarise the 3x3. (B) Shows an example of how padding allows retention of
dimensions (a 3x3 input gives a 3x3 output) by adding extra values, often 0, before
applying the kernel.

This is because every pixel is not connected to every output. Indeed, only the pixels present
in the kernel will link to their output, so for a 3x3 image using a kernel size of 2x2, each
output will have 4 weights instead of 9. When scaling this up to real images, which have
upwards of thousands of pixels, there is an even clearer improvement in efficiency. These
two features of the weights in neural networks, that they are shared and sparse, mean that
not only is learning computationally feasible, but that a range of simple features can be
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learnt by the different kernels and detected at multiple locations in the input image. Not only
this, but the receptive field (those inputs that affect an output) grows the deeper the
convolution layers are stacked, since they will take the outputs of the previous convolutional
layer as inputs, and will therefore be indirectly connected to more of the original input pixels.
This means that the features learnt by a layer will become more complex, built from the
simpler features (Kriegeskorte 2015; Geirhos et al. 2018). In such a fashion deep outputs
can be connected to all or large portions of the input image indirectly and learn increasingly
complex features. After the dot product is found, bias, which must also be learnt, is added to
each output feature map to reflect the importance of the feature for classification of the input
(M. A. Nielsen 2015).

Often, shrinking the input may be undesirable, so zero-padding surrounds the matrix with a
border of zeroes, the thickness of which depends on the filter size used. Padding is often
employed to allow for more layers to be employed without shrinking the feature map (figure
7B) (Yamashita et al. 2018).

The ReLU function is then used to set negative values in the output feature maps to zero,
which speeds up computation since there are then no operations to perform on zero.
Additionally it introduces non-linearity. Since convolutions are linear operations it would be
possible to collapse all chained convolutions into a single linear operation. By introducing
non-linearity this cannot happen, and allows the multi-resolution properties of the CNN (-C.
Jay Kuo 2016).

The pooling operation is designed to reduce the size of the input via a function, in order to
extract important and representative features, whilst also achieving invariance to translations
and removing noise, and make the model more robust against overfitting (Gholamalinezhad
and Khosravi 2020). It does this by summarising the features in a small area, or
neighbourhood. Common pooling methods include max-pooling (Ranzato, Boureau, and
Cun 2008) and mean-pooling (Lecun et al. 1998), with max being better suited to sparse
features and giving reduced variability (Boureau, Ponce, and LeCun 2010). Similar to how
kernels traversed over the input image, values in a striding area of the output feature maps,
a 2x2 area most commonly, are either averaged to find the mean or the maximum value is
taken, for mean-pooling and max-pooling respectively. This is effectively downsampling the
features to make the exact position matter less, since a small translation in the input will not
affect the output of most pooling layers. This also allows the network to become invariant to
certain transformations (Goodfellow, Bengio, and Courville 2016).

Since CNNs remove the need for feature engineering, which often requires an expert and
thorough understanding of the problem, they can be applied to problems where such
knowledge does not yet exist or the systems of study are not fully understood. There is
therefore great potential for applying such networks to genomic data, as previously
mentioned.

Image Representations of DNA

DNA can be represented as a string of letters. There are several approaches to turn these
into a 2D image to train a CNN. Chaos game representation (CGR) is a method of
converting a sequence into an image (Jeffrey 1990). It derives its name from the chaos
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game, which can be used to generate fractal attractors, such as the Sierpinski triangle, if
three points are used. However, CGR uses four points in a square, with each point
representing a base, A, C, T or G. For a sequence of DNA a point is drawn halfway between
the center and the corner representing the current base. After this a point is drawn halfway
between that base and the subsequent base, repeating until the end of the sequence (figure
8). This will create a series of points that give a fractal pattern, due to the non-random nature
of the DNA sequence. The exact pattern will be unique to the sequence used and can be
reconstructed from it (figure 8).

Importantly though, due to the fractal nature of this representation, K-mers are represented
using CGR (Hill, Schisler, and Singh 1992). Considering the most recent K bases to reach a
point will give the K-mer at that point in the sequence. It is also true that the most recent K
bases will fall inside the area covered by the most recent K-1 bases. See figure 10, where all
dinucleotides ending in C fall inside the area covered by C. However, to have each point

map to a pixel and retain a necessary square aspect ratio the image would use 4"total
pixels, where K is K-mer length. As such this is infeasible for high values of K long before
coming close to reaching the lengths of DNA sequences. Therefore at manageable
resolutions images produced by CGR will be a representation of shorter K-mers.

AC

ACC T ACCG

Figure 8. (Left) The chaos game with the 4-mer ACCG. The red dot indicates the center.
From here a point is placed halfway between the center and the A corner. This is
repeated, placing a new dot halfway between the current point and the corner of the next
base. The arrows are to show order of plotting of the dots and are not part of the actual
representation. (Right) A fractal pattern resulting from the chaos game with the sequence
of an entire species. The corner bases are the same as denoted in the left image. Such an
image is an example of chaos game representation (CGR).

Since the resolution limit means CGR creates images which are K-mer summarisations of
the sequence, it may be that some important details are lost. Another way of converting a
DNA sequence to an image is using space-filling curves, which retain all the bases of the
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raw sequence. They do this by mapping each element of the sequence to a pixel in the
resulting 2D image (figure 9). This has been done using a variety of space-filling curves,
including Hilbert curves and Reshape curves, to predict determinants of chromatin structure
(Yin et al. 2018). By using space-filling curves the proximity for the most proximal elements
is retained, whilst distal elements are brought into close proximity. This covers short and
longer range interactions, and preserves their sequence. CGR does not do this beyond the K
bases at each pixel value; the sequence cannot be reconstructed from a CGR image, but it
could be from a space-filling curve image. Reshape curves are easier to implement than
Hilbert curves, yet provide comparable or better accuracy than other alternative curves (Yin
et al. 2018). Not only does this mean that by using Reshape, meaningful long range patterns
might be discovered, but that those patterns which are found could be used on other DNA
sequences, not limiting the analysis to interactions between K-mers of a set length.

1 2 3 4 10 11
5 6 7 8 9 12
9 10 11 12 14 13
13 14 15 16 15 16

Figure 9. Space-filling curves structure a sequence into a 2D image. Reshape (Left) and
Hilbert (right) curves of the same sequence, 1-16. Both retain the order of the sequence,
but bring distal elements closer.

Since histones are commonly present in archaea (Henneman et al. 2018), using Reshape
could also reflect the importance of spatial configuration which makes interactions between
distal regions important. Currently the only lineage not possessing orthologs of H3 and H4,
histones important in chromatin assembly, is thought to be Crenarchaota, but even they
possess proteins thought to compact DNA by altering its configuration (Driessen et al. 2013),
so here too distal elements are likely important. A representation that reflects these
differences in distally related elements between lineages, such as might therefore improve
classification.

This study aims to leverage CNNs on DNA in an archaeal classification task. By
representing DNA sequence as an image and using CNNs it is hoped we can leverage the
work already performed on improving model architecture and training techniques to improve
classification performance over simpler machine learning models. Using a CNN will allow
feature importance to be learnt in a supervised manner. The two image conversion formats
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used will also be compared. Reshape encourages the learning of distal interactions,
whereas CGR summarises the sequence as K-mers (in this case 7-mers so that resolution is
the same). CGR could therefore miss out on important features of the sequence, or it could
reduce noise and improve performance. These two approaches are compared to the best
performing of a consort of machine learning models that use 4-mers and 7-mers as features.
Limitations of the approach used and future work are also discussed.

C

AA | TA |AT | TT

CA|GA|CT|GT

TC|AG|TG

=

Figure 10. (Top Left) Shows the CGR representation of the sequence ACCG at the
resolution of nucleotides, with the nucleotide the square represents overlaid. The pixel
intensity for each square corresponds to the number of that nucleotide in the sequence.
(Top Right) Shows how to arrive at the top left CGR, with the sequence and chaos game
steps overlaid. (Bottom Left) The CGR representation of the same sequence but at the
resolution of dinucleotides. The beginnings of the fractal nature can be seen, with each
nucleotide square being divided up and the first base having the same relative position
inside that square as in the lower resolution grid. For example, AC occupies the top left of
the C quadrant, just as A occupies the top left of the nucleotide resolution grid. The pattern
is true for all positions and all resolutions. (Bottom Right) Show the chaos game overlaid
on the image. Since A is in the middle of the four squares in the top left quadrant it does
not count towards any of the dinucleotide counts, so the remaining dinucleotides are of
equal intensity since there is only one of each.

G

27



Methods

DNA sequences gathered from Genbank or randomly generated, before being converted
into images or tables of K-mers, then split into training and test sets. The models were
trained on the former and evaluated using the latter. Figure 11 shows a schematic overview
of this, and the elements are discussed in further detail in the relevant sections.

Genbank Random Generation

Euryarchaeota - Crenarchaeota Random

Convert Data

Train Model

Evaluate Model

Figure 11. All archaeal sequences were retrieved from Genbank and Random sequences
were randomly generated. The sequences were converted into tables of 4-mers, 7-mers,
or were converted into images using CGR or Reshape. These were then split into training
and testing sets, with the test sets of the archaea containing species of the same and
different genera. Training used the species and random sequences in the training
datasets, and performance was evaluated on the testing sets.

Datasets

The training data was constructed by randomly selecting the whole genomes of species
belonging to Euryarchaeota, Thaumarchaeota, or Crenarchaeota from GenBank. These
Orders represent the most well studied archaea with high quality genomes for a variety of
species within. In addition, the random set in the training data was made by generating
random sequences of bases, with equal probability to pick each base. The training data was
split further into training and validation datasets for the CNN models. This was done using a
random allotment into training or validation sets. The validation set is what allows the CNN to
learn; it provides the ground truth against which performance can be measured and loss
calculated, which informs how the weights are updated. Therefore, both are involved in the
training process.
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The validation set in the context of the other models would serve a slightly different role; it
would be used to determine optimal hyperparameters, after which all the data would be used
to train on using these. However, hyperparameter tuning was not performed due to time
constraints, so the training data was not split before it was used to train the models. This is
because multiple models were, many of which would improve little with hyperparameter
tuning.

The test set was composed of three main groups: one consisted of species from the same
genera as those in the training set, and the second consisted of species of Euryarchaeota,
Crenarchaeota, and Thaumarchaeota from different genera to those in the training set. This
is to ensure the model is not overfitting to features specific to the genera of the training set,
and to see whether the rules learnt by the model allow it to identify closely and more
distantly related, unseen species.

The final group in the test set were randomly generated sequences, generated using a
different seed to those in the training set, resulting in a different set of random sequences.
The random data was used to act as a control as a set of sequences that are obviously
different from the others. Table 1 shows the split of the training set.

Table 1. The split for each class, the number of species used and how many sections 16384
bp long that represents.

Class Partition Number of Number of 16384 bp
species used | sequences

Euryarchaeota Train 31 9864
Euryarchaeota Test (Same Genus) 24 3175
Euryarchaeota Test (Different Genus) | 27 4511
Crenarchaeota Train 21 4808
Crenarchaeota Test (Same Genus) 21 2604
Crenarchaeota Test (Different Genus) | 18 2968
Thaumarchaeota | Train 10 2451
Thaumarchaeota | Test (Same Genus) 3 508
Thaumarchaeota | Test (Different Genus) | 2 704
Random Train N/A 999
Random Test N/A 3999
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Metrics

For a majority of the experiments, F1-score was used since the classes are imbalanced in
size. It is the harmonic mean of precision and recall. Precision is the ratio of correctly
classified positive results of a class (true positives, tp) to total results classified as that class,
consisting of true positives, and the results which were incorrectly predicted to belong to the
specific class in question (false positives, fp). Recall is the ratio of true positives of a class to
all data points in that class: the true positives and all the examples incorrectly classified as
other classes (false negatives, fn). Since F1-score is an aggregate measurement it balances
the effect of recall and precision. This is important as recall and precision consider false
negatives and false positives respectively, which are important to understand in class
imbalanced classification (Lever, Krzywinski, and Altman 2016b). Using a single metric also

simplifies comparison. F1-score is given by equation 4.

F1 = . = 2
precision +recall tp+ %(fn +1p)

(4)
Furthermore, as some classes are rarer within the training data, the macro-F1 score was
used to assess model performance, which takes the mean average of each class’s F1 score
with respect to the number of classes, not the number examples. This emphasises model
performance on rare classes, removing the effect of class size, as each class should be
equally valued. However, where only one class is considered accuracy is used instead.

A multiclass variant of Matthews Correlation Coefficient (Jurman, Riccadonna, and
Furlanello 2012) was used to compare the errors of replicate CNN models. It is a metric that
ranges between -1 and 1, where -1 represents perfect inverse prediction, 0 represents
random prediction, and 1 represents perfect prediction.

Features and Training

To convert the sequence data into a format amenable for machine learning models to train
on, features needed to be extracted. K-mers of length four (4-mers) were chosen for this due
to their taxonomic resolution capabilities at high levels, such as phyla. These were counted
in sections of the sequences 16384 bases long. The count of each 4-mer in these 16384
base regions is treated as a feature to train upon, resulting in 256 features. If a sequence
was shorter than 16384 bases, it was excluded from the dataset. Each row was then scaled
by the total number of canonical 4-mers counted. As some sequences had unresolved
bases, marked with an N, they would not be included, so not all rows totalled to 16381
4-mers.

Models were trained using scikit-learn version 0.23.1 and Python version 3.8.3. Models were
trained on the entire training dataset and final performance assessed using performance on
the test sets. As mentioned, the performance metric used was F1-Score due to an
imbalance between classes.

Feature selection was performed with L1 regularization of a logistic regression model (a

logistic LASSO regression). 2, 5, 10, and 25 features were selected using L1 regularization.
Feature selection was also performed by removing variables that had a pearson correlation
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coefficient greater than 0.8 in the original 256 features as these would most likely be
redundant when making a prediction. This yielded 121 features.

Using LASSO regression to perform a continuous subset selection of features is possible
due to the nature of the L1 penalty it applies to the logistic regression. It is capable of
reducing the coefficients of features to 0. This is a type of regularization. As the penalty is
increased, complexity is punished more, so the coefficients of features are reduced.
Features which are less important as predictors will have their coefficients reduced to O first.
Once this happens, a feature can be ignored as it doesn’t impact the classification result.
The penalty can be increased until the target number of features is met.

A variety of models were then trained on 2, 5, 10, 25, 121 and 256 (all) 4-mers, and the top 5
highest F1-Scores taken. The top 5 performing models differed between the number of
features used. All were normalised after feature selection to prevent information leakage.
Feature values are a ratio of all selected 4-mers, not the relative frequency when considering
all 256. The models used were scikitlearn implementations of following classifiers: Ada
Boost, Bagging, ExtraTrees, Gradient Boosting, Random Forest, Gaussian Process, Logistic
Regression, Passive Aggressive, Ride, SGD, Preceptron, Bernoulli and Gaussian Naive
Bayes, KNN, Linear SVM, Linear Discriminant Analysis, and Quadratic Analysis.

The same sequences used in the training and test sets were converted into images to train
the CNN upon. This was done by using a Reshape curve and ordinally encoding each base
to an equally spaced pixel value between 0 and 255. Unlike the features used by the other
machine learning models, the data used to train the CNN kept the sequences with
unresolved bases. Thus there were five different possible values a pixel could take. These
sequences of numbers were then shaped into a 128 by 128 square, reading from left to right,
and top to bottom. A simple Reshape curve is shown in figure 10. A Reshape curve was
chosen since it maintains the sequential nature of the DNA whilst also bringing distal regions
close together. It also allowed for simple image augmentation to increase the number of
training examples. This was performed by shifting the start of the image 8192 bases forward,
so what was the halfway point of the image becomes the starting point of the augmented
image, and the end is the halfway point of the image subsequent to the original image (figure
12).

1 213 1|4 9 110 | 11| 12
5| 6|7 |8 13 (14 | 15| 16
9 110 | 11 | 12 17 118 | 191 20
13 |14 | 15 | 16 2112223 | 24

Figure 12. (Left) How a Reshape curve would position the elements of a sequence. (Right)
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Shows how the transforming of images was performed to augment the datasets, beginning
from the ninth element, the start of the latter half of the previous image.

To train the CNN on the Reshape curve data, the data was split at a 80:20 training:validation
ratio. Final performance was assessed against complete test sets. Again, F1-score was
used as the performance metric. The model architecture used was based on that of VGG19
(Simonyan and Zisserman 2015) and was implemented in fastai. A batch size of 10, weight
decay of 0.0001, were used when training the CNN for 10 epochs on a fit one cycle policy
(Smith 2018). The Adam optimiser was used with betas (0.9, 0.99), and categorical cross
entropy was used as the loss function. The model uses blocks of 2D convolutions followed
by batch normalisation and then ReLU activation. After repetition of these blocks there is
max pooling (the number of repetitions before pooling varies). Max pooling uses a kernel
size and stride of 2 with no padding. As such, after every max pooling the width and height
dimensions are halved and the depth left unaffected, except for the final max pooling layer,
which occurs alongside average pooling. After the final convolution layer, average pooling to
create a 7x7 size is performed, after which both average and max pooling is performed. The
result of this is flattened into a vector and goes through two-fully connected layers before
output. Convolutional layers used a kernel size of 3x3 and a stride of 1, with padding (1, 1).
Batch normalisation uses an epsilon of 1e-5 and a momentum of 0.1. Further model details
can be found in table 2.

Generation of the CGR images was done at the resolution of 7-mers, since this would result
in a 128x128 resolution image, as used in the Reshape curves. The images that were shifted
along half the length of the image to augment the dataset were not used to generate CGR
images, as sequence continuity is not important in such a representation. They could
therefore be omitted to improve training times. With this exception, the same 16384 base
segments of sequences were used to generate the images. Training on the CGR data was
performed using the same architecture, but only for 6 epochs instead of 10 to avoid
overfitting.

To generate the sequences of random 4-mers used to perturb the CNN, random sequences
were taken from each of the four classes from the training data to form a subset. These
4-mers were counted to provide the 4-mer frequencies that the randomly generated
sequences had to meet. Sequence generation was done using a Python implementation of
uShuffle (Jiang et al. 2008). uShuffle works by using the Euler algorithm (Kandel et al. 1996)
with an updated algorithm for the generation of uniform random rooted directed graphs
(arborescences) (Propp and Wilson 1998). This is permuted, and then a Eulerian walk
generates the sequence by outputting the sequence along the walk by using each edge.
This produces a uniformly random sequence where K-mer counts, such as 4-mers in this
instance, can be preserved. These sequences were then converted into images using
Reshape curves as previously described. These were then added as a fifth class, meaning
the dimensions of the final fully connected layer in the model were changed to (512, 5).

t-SNE was performed to embed the 4-mers used to train the machine learning models into
2D space: using perplexity 30, early exaggeration 12, learning rate 200, with a gradient
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calculation algorithm using the Barnes-Hut approximation over 1000 iterations with
scikit-learn.

Table 2. The layers of the CNN architecture, (input channels, output channels), and the
number of trainable parameters for each layer. Batch normalisation layers and the ReLU that
follows each convolution layer is omitted for brevity, but the second value in parameters for
each convolutional layer is the number for the associated batch normalization layer.

Input Image (128x128x3) Parameters
Conv (3, 64) 84, 12

Conv (64, 64) 1792, 256
Max pooling 0

Conv (64, 128) 73856, 512
Conv (128, 128) 147584, 512
Max pooling 0

Conv (128, 256)

295168, 1024

Conv (256, 256)

590080, 1024

Conv (256, 256)

590080, 1024

Conv (256, 256)

590080, 1024

Max pooling

0

Conv (256, 512)

1180160, 2048

Conv (512, 512)

2359808, 2048

Conv (512, 512)

2359808, 2048

Conv (512, 512)

2359808, 2048

Max pooling

0

Conv (512, 512)

2359808, 2048

Conv (5612, 512)

2359808, 2048

Conv (512, 512)

2359808, 2048

Conv (512, 512)

2359808, 2048

Max pooling 0
IAverage pooling and max pooling 0
Flatten 0
Batch normalisation (1024) 1096
Drop out (p = 0.25) 0

Fully connected (1024, 512) 524800
ReLU then batch normalisation (512) 2048
Drop out (p = 0.5) 0

Fully connected (512, 4) 2052

Adding in species

4 species of Thermococci were present in the training data. To see how easily these are
learnt, and what effect adding more examples had on the overall accuracy of predictions of
species of Thermococci, all 4 were removed. The CNN model was then trained three times
with random initialization, and made predictions over the test sets and the four species
removed. Species of Thermococci were then added one at a time; after a species was
added the model was trained again with replicates and made the same predictions. This was
repeated until all 4 of the Thermococci originally in the training set were returned.
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Results

The 4-mer distributions of the same genus test dataset was found to be significantly different
from the other two. Increasing the number of features improved performance with
diminishing returns, and at 25 4-mers as features out of 256 performance is only slightly
lower. Both CGR and Reshape-trained CNNs performed worse than the machine learning
consort trained on 7-mers. Reshape CNNs were able to learn the importance of order in
sequence over 4-mer distributions, with increasing ability as shuffled sequences from other
orders with retained 4-mer distributions were used. Thaumarchaeota performance was
significantly worse than the other Orders. Certain species within the Euryarchaeota class
Thermococci resulted in significantly worse performance than others. Further, errors within
some other classes of Euryarchaeota showed predictive relationships. Uncertainty in the text
body of this section is given as mean + SEM unless otherwise stated.
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Figure 13. The relative frequency profiles of 4-mers between training and test sets are
similar in shape. The 4-mers begin with A, C, G then T, with A-rich 4-mers being leftmost,
then C-rich, then G-rich, and then T-rich being rightmost. The difference between the
relative frequencies of the same genus set was found to be significantly different from the
training (x2= 874.1; df = 255; p = 8.734e-69) and different genus set (x*= 1977.4; df = 255;
p = 1.138e-263).

In order to see how similar 4-mer frequencies were between the training set and test sets the
4-mer profiles were compared (figure 13). Whilst there are slight differences in scale, they
are all in the same order of magnitude and show similar shape. The most abundant 4-mers
by relative frequency are those rich in Aand T, in particular AAAA and TTTT are most highly
abundant in all sets. To see whether this is an effect of the differences in class size, the
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4-mer profiles were also plotted for Euryarchaeota, Crenarchaeota and Thaumarchaeota in
the training and two test sets (figure 14). From this it can be seen that the profile shapes are
similar between the sets, with the largest difference coming from Euryarchaeota of a different
genus, however the peaks and troughs are largely in the same place, it is only the intensity
of these that vary. The intra-phyla differences (17.6 + 2.69%) were found to be significantly
less than the inter-phyla differences (38.6 + 2.44%) (Two Sample t-test, one-tail: t = -4.65; df
= 34; p = 2.45e-5).
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Figure 14. The relative frequency profiles of 4-mers for the three phyla are similar in shape
between their respective training and test sets. The 4-mers begin with A, C, G then T, with
A-rich 4-mers being leftmost, then C-rich, then G-rich, and then T-rich being rightmost.
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PCA us to visualize the multi-dimensional problem in 2D space. Figure 15 shows a PCA of
the training data and the two principal components explain 53.89% of the variance. From it
we can see a separation between Crenarchaeota and Thaumarchaeota whilst
Euryarchaeota overlaps with all other Phyla and Random. The biological data points appear
spread out more, with Euryarchaeota showing the most spread. The randomly generated
sequences form a fairly central cluster.
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Figure 15. Training data classes form clusters when 256 dimensions are reduced to 2. All
sequences from the training dataset were used in a PCA. The most obvious clustering is
crenarchaeota, sequences of which form a most separate band above euryarchaeota and
thaumarchaeota. The separation of the two largest sets may explain why thaumarchaeota
overlaps with euryarchaeota. A minority of euryarchaeota sequences cluster with the
crenarchaeota. Random sequences form a uniform, tight cluster in the center of the plot,
since the 4-mers in those are fair more evenly distributed than in biological sequences.

To give a better visualisation of the problem space, t-SNE was used to embed the data into
2D space (figure 16). Smaller clusters seem to form within the three Phyla, with each cluster
being made up of only data points belonging to one Phylum, apart from a few outliers
causing some clusters to be heterogeneous. The number of clusters is close to the number
of species used for each class, but less. Regions of clusters appear as though they could be
multiple clusters in close proximity, so to investigate it is necessary to look at a level more
fine-grain than phyla. This is excluding the randomly generated sequences, which are still
forming one cluster.
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Figure 16. t-SNE of training data shows clusters homogeneous in class. Excluding the
randomly generated data, the classes do not form one cluster each; instead multiple
smaller clusters form, which are largely homogenous. The t-SNE uses all training data of

the 4-mer trained models.
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e NC _014374.1 Acidilobus saccharovorans 345-15, complete sequence
NZ_CP010515.1 Acidilobus sp. 7A, complete genome

NC_000854.2 Aeropyrum pernix K1, complete sequence

NC_019791.1 Caldisphaera lagunensis DSM 15908, complete genome
NC_009954.1 Caldivirga maquilingensis IC-167, complete genome
NC_011766.1 Desulfurococcus amylolyticus 1221n, complete sequence
NC_017461.1 Fervidicoccus fontis Kam940, complete sequence

NC _009776.1 Ignicoccus hospitalis KIN4/l, complete genome
NC_009440.1 Metallosphaera sedula DSM 5348, complete genome
NC_015435.1 Metallosphaera cuprina Ar-4, complete sequence
NC_015931.1 Pyrolobus fumarii 1A, complete genome

NC_014205.1 Staphylothermus hellenicus DSM 12710, complete genome
NC_007181.1 Sulfolobus acidocaldarius DSM 639, complete sequence
NC_012588.1 Sulfolobus islandicus M.14.25, complete genome
NC_017276.1 Sulfolobus islandicus REY15A, complete sequence
NZ_AP018929.1 Sulfolobus sp. JCM 16833 DNA, complete genome
NZ_CP045484.1 Sulfurisphaera ohwakuensis strain TA-1 chromosome, complete genome
NZ_CP007493.1 Thermofilum adornatus 1505 chromosome, complete genome
NC_017954.1 Thermogladius calderae 1633, complete sequence
NC_014160.1 Thermosphaera aggregans DSM 11486, complete genome
NC_014537.1 Vulcanisaeta distributa DSM 14429, complete genome
Non-Crenarchaeota

e & & & @
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Figure 17. t-SNE clustering of sequence 4-mers corresponds to different genuses and
species. All species in black are non-crenarchaeota. Two Acidolobus species overlap in
orange and red at the top of the plot, whereas Sulfolobus form separate clusters within a
larger cluster of multiple genuses in the centre of the plot.

Figure 17 shows that these clusters correspond mostly to individual species, however the
central cluster is a mix of species from the genus Sulfolobus and several other species from
the order Sulfolobales. Other closely related species overlap entirely.
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Figure 18. F1-score increases with the number of 4-mers used to train machine learning
models. F1-score of the top 5 scoring models on the combined training sets for each
number of 4-mers were taken. Error bars show SEM. Performance stops increasing
significantly at 121 features (0.988 + 0.0011).

Classification of sequences at the level of phyla using 4-mers was therefore carried out. To
see how much information 16384 bases carries, the number of features used was reduced,
since if features are redundant, losing them should not reduce the information carried
significantly, and therefore the performance of classification should not be reduced either.
Redundancy in the features used is somewhat obvious, as it would be expected for certain
4-mers to be correlated due to sharing part of their sequence. For example, AAAA could be
correlated with AAAG. Unsurprisingly, increasing the number of features used to train the
model and make predictions from leads to an increase in F1 score. The increase is
asymptotic and by 25 features the F1 score is only 0.01 below that obtained from using 121
features and all 256 features, yet this difference is significant (Friedman Test, x> = 8.4; p =
0.015). At 121 features there is no significant difference between the F1-Score obtained and
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that obtained using 256 features (figure 18). As the number of features increased, more
linear models entered the top 5, displacing parametric models.
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Figure 19. The CNN models perform significantly worse than the 7-mer machine learning
models for both image representations. K-mer trained models take the five-best
performances and CNNs use the performances of 3 models trained with the same
parameters. Additionally, the Reshape-trained CNNs have significantly lower F1-scores
than both the CGR-trained CNNs and the machine learning models trained on 4-mers.
Error bars show SEM. *** p < 0.001, ** p <0.01, * p < 0.05.

Since the CGR is learning effectively visual representation of 7-mers, 7-mers were also used
as features for machine learning models. When comparing the top 5 machine learning
models and both CNNs there is a significant difference in F1-score between the models
used (ANOVA: F =30.72; df = 3, 11; p = 1.2e-5). Post-hoc testing revealed that the
differences were between the model using 16384 features, which had the highest F1-score
(0.993 + 0.00122) and both CNN models (CGR: 0.983 + 0.0025, Reshape: 0.965 + 0.00441).
Additionally, the F1-score of the Reshape-trained CNN was significantly lower than that of
the model using 256 features (0.988 + 0.0011) and the CNN trained of CGR data (figure 19).
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Figure 20. Sequences shuffled into a random order whilst preserving 4-mer count are
initially mistaken as sequences from their original phyla. In total, 464 sequences were
randomly chosen and shuffled, and used as training sequences, and additional sequences
were used to make a test set. Adding an additional class with examples of shuffled
sequences added one phyla at a time, there is a reduction in this type of error. Test
shuffled sequences are compared to the same sequences without having been shuffled.
Error bars show SD, plot titles show phyla from which shuffled sequences have been
added to the testing set.

One possible advantage of using sequence over the summarisation with K-mers in that order
may be important in certain cases, which only using the raw sequence data would reveal. By
changing the order of the sequence but preserving 4-mer count, the sequence is made
identical in terms of 4-mers and similar in close K-mers (3 and 5). This can be used to
determine the importance of order. Not only that, it assesses the importance of 4-mers in the
classification by Reshape-CNN. Sequences were shuffled using ushuffle to preserve 4-mer
counts, but generate random and non-biological sequences. Using the same 4-class trained
models as previously the shuffled sequences were classified as the phyla of which they were
from before shuffling. Once an additional class is added for these shuffled sequences, and
examples of shuffled sequences added one phyla at a time, fewer of these sequences were
classified as their phyla before shuffling. Figure 20 shows that adding shuffled
Euryarchaeota sequences reduces both the percentage of shuffled Euryarchaeota and
Crenarchaeota sequences identified as their respective phyla. The percentage of shuffled
Thaumarchaeota sequences did not reduce, and only reduced a little after shuffled
Crenarchaeota sequences were also added to training data. The most significant reduction
in the percentage of shuffled Thaumarchaeota sequences identified as Thaumarchaeota
came only after shuffled Thaumarchaeota were added to the training data.

No significant difference on the F1-scores was found between the Reshape-trained models
which included randomly shuffled 4-mers in the training data as a separate class and those
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that did not include this fifth class. Looking into the Reshape-trained models which used only
four classes there was found to be no significant difference in F1-scores between the
species in the testing sets that were in the same genus as those in the training data and
those that were in different genuses.
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Figure 21. Mean F1-scores for all the classes. The F1-Score is based on the performance
of three models on both training sets combined. The mean F1-Score for sequences from
Thaumarchaeota was significantly lower than all other classes in the four class model.
Error bars show SEM. *** p < 0.001, ** p < 0.01, * p < 0.05.

However, the classification class significantly impacted performance of the Reshape-CNN
models on all training examples for each class (ANOVA: F =16.74; df = 3, 8; p = 0.000827).
Post-hoc testing revealed that the differences were between Thaumarchaeota, the class for
which performance was lowest (0.917 + 0.0164), and all other classes (figure 21). There
were no significant differences found between phyla for the mean percentage differences of
4-mers between training and test species.

In order to gain insight into why the Reshape-CNN performed worse overall than any other
model, the performance on Euryarchaeota, the largest class, was broken down further into
performance on phylogenetic class. The performance of most classes is high, with first
quartiles around or above 95% accuracy (figure 22). However, there is a significant
difference in accuracy between the phylogenetic classes of species classified (ANOVA: F
=8.69; df = 7, 181; p = 3.47e-9). Post-hoc testing revealed that the differences were between
Thermococci, which had the lowest accuracy (90.6 + 2.63%), and all other classes, apart
from DHVE?2 (figure 22).
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Figure 22. The accuracy of one phylogenetic class, Thermococci, is significantly lower
than all but one of the other classes. The performance was of Reshape-CNN models
without shuffled-sequences in the training data, meaning they had 4 possible output
classes (the three phyla and random). Only DHVEZ2 sequences were not classified
significantly better than those belonging to Thermococci. *** p < 0.001, ** p < 0.01.

Since this class was performing worse than others it was removed from the training data and

the models retrained. Reads from one species were added back in one at a time and the
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model retrained after each. From this it was found that there is a significant difference in
accuracy of prediction of Thermococci between the models trained on different numbers of
Thermococci species (ANOVA: F =20.68; df = 4, 85; p = 6.25e-12). Post-hoc testing
revealed that the differences were between models trained on 0 Thermococci, which had the
lowest accuracy (46.67 + 5.37%), and all other models, and between the model trained on
one Thermococcus species (74.84 + 4.29%) and the model trained on 4 (90.6 + 2.63%)
(figure 23).

100

751

Accuracy (%)
8

25

— *k*k

*k*k

*k*%

*k*

0 1 2 3 L

Number of Thermococci in training data

Figure 23. Increasing the number of Thermococci in the training data improves
classification accuracy of Thermococci species. The models were retrained after each
species was added to the training data. The significant improvements were between 0 and
all other numbers of species in the training data, and 1 and 4 (how many there were
before removal). *** p < 0.001, ** p < 0.01.
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Figure 24. Accuracy on species in the training data. Sequences belonging to Pyrococcus
abyssi GE5 were classified with significantly less accuracy than the other three
Thermococci species trained on. Error bars show SEM. ** p < 0.01, * p < 0.05.

After the final species was added back in, the accuracy of predictions on four species used
to train revealed a significant difference between the accuracy of predictions for each
species (ANOVA: F = 8.77; df = 3, 8; p = 0.00656). Post-hoc testing revealed that the
differences were between Pyrococcus abyssi GE5, which had the lowest accuracy (95.4 +
1.41%) and was significantly lower than the accuracy for all of the other species (figure 24).
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Figure 25. The mean MCC scores for errors in some phylogenetic classes are not
significantly different from 0, but Methanobacteria, Methanococci and Thermococci are.
MCC was calculated for each pairing of three replicate Reshape-CNNs used. *** p <
0.001, ** p <0.01.

To test whether the errors were happening randomly or at the same positions for each

duplicate model, the mean Matthews Correlation Coefficient (MCC) was found between each

pairing of the models. The mean of the mean Matthews Correlation Coefficient of the
classification errors were significantly different from zero for Thermococci (One Sample t

-test: t =-3.95; df = 5; p = 0.005425), Methanobacteria (One Sample t -test: t =-10.75; df = 2;
p = 0.004275), and Methanococci (One Sample t -test: t =-8.52; df = 7; p = 3.04e-05). Figure

25 shows this. All means were also greater than -1 apart from that of the MCC of
Thermoplasmata.
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Discussion

4-mer Distributions

The 4-mer distributions are different between the same genus testing set and the other two.
This may be due to different amounts of each Order in them, but also due to differences
between species of certain genus. Most machine learning models assume that the testing
set is drawn from a stationary distribution (Hulten, Spencer, and Domingos 2001). Despite
this, the performance on both testing sets was not significantly different, suggesting the
difference in 4-mer distributions could be due to make-up rather than differences in DNA
sequence of the species used.

The variance in distributions between phyla are greater than within, which is consistent with
4-mers distributions as a taxonomic signal (Karlin and Ladunga 1994). The most common
4-mers are AAAA and its complement TTTT. These 4-mers have been found in binding sites
involved in the regulation of heat shock response in hyperthermophilic archaea (Vierke et al.
2003). They also feature in important regions in the regulation of the cold response in some
archaea: the pentamer AAAAA is needed to induce cold stress DEAD box RNA helicase in
Thermococcus kodakarensis (Nagaoka et al. 2013). The composition may reflect the
extremophile nature of the archaea. The variation in 4-mers remaining within phyla is likely
due to species differences in the dataset.

The PCA shows separation in two dimensions with approximately 54% of variance
explained, which again suggests that the use of 4-mers is sufficient in some degree to
separate DNA sequences at the level of phyla, which has been widely accepted (Pride et al.
2003). The clear lack of overlap between Crenarchaeota and Thaumarchaeota suggests that
the two phyla could be easier to separate than either from Euryarchaeota, which has data
points overlapping on the 2D projection (figure 15). The spread on the projection is
proportional to the number of examples used for each Phyla, supporting the idea of 4-mer
frequencies being species specific (Teeling et al. 2004). The randomly generated sequences
form a relatively tight cluster, which is consistent with the random distribution of 4-mers in
each randomly generated sequence, meaning that they are distributed evenly around the
expected values of an equal number of each 4-mer, so can’t be separated as much as the
other non-random classes by these values, so have less spread. Overall they support the
idea that even simple linear models should be able to separate the classes. The overlap may
result in certain examples being classified incorrectly, or could be because it is a low
dimensional representation of a high dimensional feature space, and in the original higher
dimensions separation could be easier.

The t-SNE provides an alternate mapping to lower dimensional space. This again is good
evidence that the classes could be separated at phylum level, and even below, using only
4-mer counts. However, certain species from the same genus appear to overlap in clusters.
Apart from this, the near-homogeneous clusters suggest that they exist in clear divisions in
the feature space, though the few outliers may prevent perfect classification by models. The
random sequences should be the easiest to identify as they always form the same cluster
and have no outliers.
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Effect of Features

That F1-Score increases diminishingly with the number of features (4-mers) used to train the
machine learning models is unsurprising considering that they were selected to remove the
least informative first. A F1-Score of roughly 0.45 is achieved using only the ratio of two
4-mers, which suggests large differences between the phyla. Given that K-mer counts have
been used to separate species, it might follow that a smaller subset of these features could
separate sequences into phyla. That performance is very close between 25 and 256 features
also supports this. It also suggests that the length of sequence used (16384 bp) could
possibly be reduced, since using less than 10% of the input features yield results almost as
good. This could be because of the relatedness between 4-mers, as can be seen from the
removal of highly correlated 4-mers, to leave 121 features, not impacting performance
significantly. It should also be noted that the top five highest performing models change,
shifting from non-linear decision tree models to linear models, likely due the greater
dimensionality from the extra features aiding separation.

As specificity of a K-mer increases with length, the risk of overfitting increases as the training
data become sparser. Machine learning models using 7-mers achieve a higher F1-Score
than those using 4-mers. However, it seems that 7-mers are still sufficiently generalizable for
separating phyla whilst also outperforming 4-mer models. The lengths of K-mers used to bin
are often much longer than either, however (Sczyrba et al. 2017).

Representation Performance

The collection of best performing machine learning algorithms using 7-mers also
outperforms both CNN approaches. The CGR representation is presenting 7-mers in an
image, so contains the same information, yet performance is worse despite this. This may
suggest that the models were overfitting or underfitting on the training data. The architecture
used was originally designed for 224x224 images for the ILSVRC, which has over 1000
classes and much larger training sets (around one million images before augmentation) than
the one used in this study. Since increasing training data size can help reduce the effects of
overfitting, using an architecture designed for more data than is provided could therefore
lead to overfitting. As such, the architecture may be too deep for the purpose at hand, given
the current amount of data. Solutions to this could include changing the regularization
methods to make their effects stronger, such as increasing the frequency of dropout or
tuning weight decay.

More simply, reducing the number of layers may be a viable approach, as many neural
networks produced to process DNA use few layers (Le and Nguyen 2019; Busia et al. 2019).
Using the same architecture with reduced layers would be possible, as the paper the
architecture is based on also includes shallower models. It is not obvious how the
performance will be affected, and alternate shallower models may perform better. Increasing
the number of examples to combat overfitting might also work, however when performing
classification at phyla level a large array of species are needed across and within genuses to
ensure generalization of the model. This is a problem when the number of archaeal
sequences freely available is relatively few, especially compared to the much better studied
bacteria (Adam et al. 2017). Reducing the resolution of images would be a possible
approach, as it may be the lengths used are too long. Indeed, other studies at the level of
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species classification have used much shorter sequences (Dick et al. 2009). Reducing
image size not only increases the amount of examples at the cost of information in each
example, but allows classification of smaller sequences for Reshape curve, for which the
minimum length is currently 16384 bp, since every pixel needs to be filled. This would allow
better application to metagenomic problems which often produce fragments that can be
shorter than this, and also allows for the classification of shorter plasmids. For CGR this
would result in a sparse representation that may adversely affect performance.

Changing the image size would demand further changes to the architecture. Generally, the
ratio between the split of training and testing data is around 80:20 and 70:30, though on
smaller sets cross-validation may be preferential. In this study the testing and training data
for biological sequences (i.e. excluding random) was close to 50:50. Alternate ratios would
need to be experimented with, but including more species will either reduce the number of
species from different genuses available or increase the number of species belonging to a
genus already in the training data and may then increase the risk of overfitting to that genus.
However, without trialling and tuning this by experiment the effects of changing the split is
unclear. The number of epochs was determined by looking at the validation versus test
performance and using the configuration before training loss exceeded validation loss, an
indicator of overfitting. However, this may not be the ultimate best configuration for this
problem, and introducing patience in the training regime could result in better performing
models (Hutter, Licke, and Schmidt-Thieme 2015).

Moreover, various hyperparameters, such as the aforementioned regularization methods, but
also the number of epochs to train for and batch size, could be tuned via a systematic
search of possible combinations to account for their effects on each other. This could also
explore the possibility of underfitting by comparing higher epoch models. Exploring different
architectures with this search is an option for further performance improvement. The reason
neither part of this was performed was because of the computational expense and time
restraints.

The worst performance was that of the Reshape CNN, which may reflect poor suitability of
the model to the representation, or a requirement for longer training on that data type. Firstly,
the Reshape representation was chosen in an attempt to allow the model to uncover
patterns in DNA useful for classification, including those at a distance, in an unsupervised
manner (Yin et al. 2018). This is different to supplying the CGR representation, for although
that allows patterns in 7-mers to be discovered, it is only a summation of the raw sequence,
whereas using Reshape provides the sequence itself. It was unclear whether this would
result in learning aberrant features due to the random nature of the training-validation split
and the relatively few images that would result in incorrect classification. This is especially
true for those only seen in few or one class in the training dataset, but existing in many in the
test. The use of raw sequence could also introduce noise that the model can overfit on.
Again, only by testing different training regimes and hyperparameter tunings as described
above will the root of the difference between representation performances become apparent.
CGR may be a better representation for such a high-level classification, since, due to its
fractal nature, similar K-mers are close to each other. This means the kernel will pass over

49


https://paperpile.com/c/EUzref/M5uzQ
https://paperpile.com/c/EUzref/rtCJv
https://paperpile.com/c/EUzref/T4S5

correlated K-mers and this may allow more efficient summarisation than for a raw sequence,
and abstractions will be composed of K-mers that are more and more distal.

Additionally, the performance of models using 7-mers and 4-mers not being significantly
different suggests diminishing returns in performance improvement from K-mers for
increasing values of K, or a need to tune models for different K-mer values. It could also tell
of a saturation in performance at the level of phyla, due to being a very high taxonomic level.
The errors remaining could be regions of uncharacteristic K-mers or those uniform across
class, perhaps as a result of conserved genes and presence in unbalanced classes skewing
how such a feature affects classification.

Shuffled Sequences

One possible advantage of using sequence over the summarisation with K-mers is that order
may be important in certain cases, which only using the raw sequence data would reveal.
From the results on shuffled 4-mers it can be seen that initially order is not valued highly; the
amount of shuffled Euryarchaeota, Crenarchaeota, and Thaumarchaeota classified as their
non-shuffled respective phyla is very close to the number of actual sequences classified as
such. 4-mers are important to the model for classification, since maintaining them but
changing the order of the sequence has very little effect on model performance. Indeed,
more shuffled Thaumarchaeota are classified as Thaumarchaeota than unshuffled
Thaumarchaeota, which lends support to the idea that certain sequences can be deleterious
to performance due to noise or aberrant features. The models learn the importance of
4-mers, and when the Thaumarchaeota sequences are shuffled they preserve these, so the
shuffling must also remove some arrangement of bases causing confusion with another
class.

Adding shuffled Euryarchaeota sequences reduces the number of shuffled Euryarchaeota
and Crenarchaeota identified as their unshuffled phyla, without reducing the classification
performance on unshuffled sequences. This means that not only the model learning
differences between sequences with the same 4-mer counts, but that the features learnt can
be applied to other phyla. The reduction is not total, indicating that 4-mers are still important
features to the model, perhaps due to the relatively few shuffled sequences added (less than
200 per phyla), but their importance is reduced. However, not all phyla benefit;
Thaumarchaeota is unaffected. When shuffled Crenarchaeota are added in addition to
shuffled Euryarchaeota, there’s a only minor reduction in the amount of shuffled
Thaumarchaeota identified as Thaumarchaeota. Crenarchaeota and Euryarchaeota seem to
benefit more from having the other’s shuffled sequences added than Thaumarchaeota does
from either. This could indicate a greater similarity in key 4-mers between the two phyla that
are reduced in classification importance for either phyla. It could also be due to a greater
similarity of features learnt in the place of 4-mers. This is reinforced by the addition of
shuffled Thaumarchaeota to training data reducing the number of shuffled Thaumarchaeota
in the test set being classified as Thaumarchaeota but not reducing the performance on
unshuffled being correctly classified as Thaumarchaeota. This means that the models can
tell the difference between shuffled and unshuffled Thaumarchaeota. Therefore the very
slight reductions in misclassification of shuffled Thaumarchaeota sequences when Eury- and
Crenarchaeota were added isn’t due to a greater difficulty in classifying Thaumarchaeota.
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Once shuffled sequences from all phyla are added to the training data it is shuffled
Euryarchaeota sequences that have the most classified as Euryarchaeota. This may be due
to Euryarchaeota being the largest class in the training dataset, and having a larger variance
in 4-mers and sequences, and since equal amounts of shuffled reads were added for each
phyla, it may not be representative enough of the whole phyla. Adding more reads could test
this, and it may simply be that the randomly shuffled class needs more examples. This could
tell us whether 4-mers have been reduced in importance for classification or if specific
examples are needed if they present unique or rarer features. The effect of adding more
shuffled reads should also be investigated per phyla, to see which produces the greatest
rate of reduction in misclassification.

Phylogenetic Differences

Thaumarchaeota also has a significantly lower F1-score than all other classes for the
four-class Reshape CNN models, which may reflect similarities between it and the larger
classes, or that the number of Thaumarchaeota in the training data are too small to properly
generalize. Thaumarchaeota only has 10 species in the training dataset as opposed to 31
and 21 of Euryarchaeota and Crenarchaeota respectively. These models the 4-mers were
relatively important features, hence the results on shuffled and unshuffled sequences when
no shuffled were in the training set. Given that there were no significant differences between
phyla for mean percentage differences of 4-mers between training and test data, it cannot be
that the Thaumarchaeota had ‘harder’ test data.

Thaumarchaeota were first classified as Crenarchaeota from SSU rRNA results, and it was
not until it was shown that they lacked typical genome signatures of Crenarchaeota using
newly available genome sequence data that they were classified as a distinct phyla
(Brochier-Armanet et al. 2008). The study points out that Cenarchaeum symbiosum, now a
Thaumarchaeota, was found to have homologs of EAG3 (Cubonova et al. 2005), an
archaeal histone gene, which is present in most Euryarchaeota but not Crenarchaeota. It
could be sequences such as these which are affecting the performance of the models on
Thaumarchaeota. If such features are only present in the test data, this may explain why
they result in incorrect classification, likely as Euryarchaeota. To address this, using different
compositions of training and test sets could reflect whether the data is not enough to
generalise on, or if there are problematic species, the effect of which will be increased in a
smaller test set. This was not performed due to computation and time limitations. Due to the
relative lack of Thaumarchaeota sequences, many studies have focussed on assembling the
genomes of species from novel environments (Zhong et al. 2020). It is therefore likely that
the number of available sequences for unique species will increase. Using these in the future
should improve performance or again reveal hard to learn species.

Of all the Euryarchael classes, performance on Thermococci was significantly lower than
most others. This may indicate that species belonging to this class are more varied or have
features that are harder to learn. The Thermococci genuses Thermococcus and Pyrococcus
are both obligate anaerobic chemoorganotrophs (Lee et al. 2008) and can grow at
temperatures approaching 100°C (Weinberg et al. 2005). They differ, therefore, to some of
the other Euryarchaeota, which include halophiles, methanogens and lithotrophs. However,
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they are present in the training data, so these differences in metabolism should be
accounted for.

Removing all Thermococci sequences reveals that some features learnt on other classes of
Euryarchaeota allow approximately half of the Thermococci sequences to be correctly
identified. Repeating this with other species would allow a comparison to determine whether
this is high or low, but such analysis was not performed here. Adding sequences back in one
species at a time reveals that further features are learnt and increase the accuracy of
classification. However, when looking at the Thermococci species trained on, the models
were significantly less accurate on predicting reads of Pyrococcus abyssi GE5. As the model
has already seen these sequences, this suggests something unusual about the sequences.
Pyrococcus abyssi GES is a barophile, which does result in differences in amino acid
substitutions in orthologous genes when compared to non-barophilic species of the same
genus (Di Giulio 2005). It may be possible that this could result in sequence differences that
cannot be resolved without increasing loss elsewhere in the models, and hence poor
performance on a model species already trained on. The species of Thermococci that were
predicted most accurately from the test all belonged to the genus Thermococcus.
Pyrococcus furiosus was present in the test set also, and is a non-barophilic organism.
Palaeococcus pacificus was also in the test set, but had no species of the same genus in the
test set. These two species had the lowest accuracy predictions. This may suggest that the
organisms belonging to Thermococci are relatively diverse. Even within Palaeococcus,
Palaeococcus pacificus is an obligate chemoorganoheterotroph and a strict anaerobe
dependent on sulfur (X. Zeng et al. 2013), whereas Palaeococcus helgesonii is capable of
both microaerobic and anaerobic growth (Amend et al. 2003). With such a diversity of
metabolisms and so few species available to train on, it's possible that certain clades of
organisms require more data to train on before models can generalise properly. Regardless,
further work done should note whether performance is similarly poor on this species, if using
different architectures and hyperparameters as previously suggested.

The mean MCC scores of the errors show that the majority of errors present in
Euryarchaeota offer random or weak disagreement in prediction of each other. This suggests
that by using an ensemble of models it would be possible to improve performance. Since the
models have differing errors, likely as a result of the weight initialization, using a large
enough ensemble would minimize the effect of these random errors. Not only this, but the
regions where many or all of the models produce errors could be investigated and provide
insight into why the models are not able to classify these sequences correctly. This would aid
future experimental designs and could uncover interesting features.

Limitations

The methods described in this study are useful to a limited extent at comparing the four and
five classes. There are a few caveats and limitations that should be addressed directly and
considered before they can be implemented as useful tools or pipelines.

The first is something that has been touched on previously. Archaea are a relatively new

domain, and new denominations are being created within it. Given the lack of sequencing
data for certain clades, it is possible that further shifts are likely to occur. Thaumarchaeota
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became a distinct phylum in 2008 (Brochier-Armanet et al. 2008), and the superphylum
Asgardarchaeota was proposed in 2017 (Zaremba-Niedzwiedzka et al. 2017). Their
discovery currently seems to support the idea that Eukaryotes emerged from within archaea
(MacLeod et al. 2019). It is possible the models were therefore trained on species that
belonged to the wrong phyla, or were put into the wrong class, which could affect model
performance and what features are learnt. The sequences were also taken from GenBank,
and as some of the new species used were recovered from metagenomes, there may be
certain errors present.

Leading on from this, the models used only consider four classes. This is okay when using
the models to compare the four classes, but a severe limitation in leveraging the work to be
useful in identification tasks. This is because it would treat classification as a closed-set
problem, whereas in reality it is an open-set recognition problem when also considering
novel taxa (Scheirer et al. 2013). Therefore, using these models, sequences from other
domains or phyla will be classified as one of the four classes, as rejection as unknown is not
possible, which is incorrect. Increasing the number of classes requires sufficient examples
for each class. This could be tailored to each application; for instance, for use in AD studies
models could be trained on all taxa known to be involved in AD. However, this is still a
closed-set problem, just with more classes. Therefore, in order to try an utilise the
architecture, using a sigmoid function instead of softmax in the final layer and a series of one
vs. all binary classification models would allow a probabilistic approach, with a cut-off
probability needing to be determined by using out-of-distribution examples (such as unseen

phyla).

Intra-class splitting is another method of achieving this, which involves splitting a class into
typical and atypical examples, which allows for a tighter and closed decision boundary; the
models in this paper use open decision boundaries, which is why the four classes occupy
the whole problem space and rejection as unknown is not possible (Schlachter, Liao, and
Yang 2019). However, determining atypical and typical examples would likely be very difficult
to do manually, so the results from a closed-set model architecture such as the one used
here could be used to inform this splitting. Not only this, but the models should also be able
to identify lower-level taxonomy, such as class or genus, as phyla is too broad to be of much
use. This would help with analysing novel species most.

Determining which features found by the neural network are useful is a difficult task. Many of
the neural networks used in image-classification can be fooled by adversarial examples that
exploit biases and introduce noise that changes the images imperceptibly to humans, but
causes the network’s accuracy to significantly drop (Hendrycks et al. 2019). This is due an
overreliance on certain features which can cause a model to be less robust. The stresses a
problem; the features learnt may be vulnerable to changes in input, such as strain
differences, inversions, deletions, translocations and horizontal gene transfer events. There
is also the problem of interpreting these features. Methods to do this, such as saliency maps,
random and systematic perturbations can change feature importance (Ghorbani, Abid, and
Zou 2019). Whether this will occur in such neural networks described or result from the
previously mentioned genomic events is unclear, but should be investigated. This creates
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another problem as human intuition cannot be applied to an image representation of DNA in
the same way as it can to an image of an object.

Given the rapid advance of neural networks, and architectures such as Transformer, which
has recently outperformed CNNs in image classification, there seems to be potential for
greater performance than demonstrated here (Dosovitskiy et al. 2020). Whether
representing DNA as an image is the most efficient representation is not clear, but it is likely
that different representations have different virtues, as demonstrated by the performance of
CGR over Reshape, but the ability for random 4-mer shuffling to be learnt by Reshape
trained models.

Given certain problems that exist in metagenomics, using simulated and well studied data
sets would be useful in seeing how the model not only handles other datasets, but would
also provide an idea of how sequencing errors affect performance of the model. It could be
that the use of a random set in the training data in this instance would cause the sequence
to be misclassified if the errors are frequent enough. With current assembly and sequencing
technology, having such an error rate seems unlikely, however. Computation time is also a
concern within metagenomics, and given the use of CNNs and the need for data conversion,
timing experiments would also be a good idea for future work.

Overall this study has helped compare the effectiveness of two representations of DNA for
use in CNNs, and has shown that both are effective classifiers at the level of phyla, though
less than simpler models using K-mers. However, Reshape representation offers the ability
to learn features more complex than K-mers, which could be leveraged in tandem for
classification. There remains much work to be done before such models are useful, such as
introducing the ability for the model to reject examples as unknown. Given the progress in
the field, it is likely that many new discoveries will inform and aid the improvement of this
work.
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