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Abstract 

Urbanisation has contributed to more dense and diverse travel flows and 
interaction between people and urban spaces. In recent years, mobility 
systems have incorporated more Information technology and sensors, where 
the movement of people can be sensed and captured at high frequency. The 
increased availability of such data enables people and their interactions with 
the physical environment to be analysed and understood within the context of 
complex urban systems. It also has the potential to be used for evidence-
based urban planning and management. However, problems such as 
congestion and air pollution continue to happen as results of high car-
dependency in many cities. To overcome the challenges, sustainable modes 
of transportation such as cycling is (re)emerging through bike-sharing 
schemes as an increasingly common response. Analysing flow interactions is 
key to promoting and developing sustainable and integrated transportation 
systems in cities.  

This study has aimed to better understand and model dynamics within 
sustainable urban transport systems through spatiotemporal and novel graph-
based analysis. Large quantities of travel flows in different and newly emerged 
(e.g.dockless) bike-sharing schemes are investigated with high spatial and 
temporal granularity at the individual level. Weekly, daily and hourly graph 
structures are modelled to uncover and quantify how travel behaviours are 
impacted by the built environment, by changes in transportation systems, and 
as a result of events that disrupt the normal patterns of movement. The 
revealed mobility patterns and graph structural changes indicate underlying 
urban resilience, where individuals can rapidly adopt bike-sharing to fill transit 
gaps that emerged. Furthermore, this thesis, for the first time, quantifies the 
utility of temporal graph indices for enhancing machine learning models to 
making predictions on dynamics and demand in urban traffic systems. This 
research has great potential to help improve transport management and 
planning in urban areas.   
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Chapter 1 
Introduction 

 

1.1 Research context 

With unpreceded global urbanisation, especially in developing countries 
(Chen et al., 2013; Glaeser, 2014; Jiang et al., 2017; Smith, 2019), 68% of the 
world population are projected to live in urban areas by 2050 (UNDESA, 2018). 
Cities provide people with housing, energy, employment, transportation, 
communication and other extensive systems for wide-ranging social and 
economic activities (Batty, 2018). Yet, intensive urbanisation also brings 
significant challenges for planning and management (Duhl, 1986). To solve 
problems like traffic congestion and public service equity, it is crucial to 
understand the interactions among different urban systems and those resident 
and moving in and through cities. 

Cities can be viewed as complex systems constructed from the bottom up 
(Batty, 2013), the diverse behaviours of individuals collectively contribute 
towards the entire system ideally building liveable and sustainable urban 
areas (Makki et al., 2015; Batty, 2018; Freytag et al., 2018). These individual 
behaviours are the fabric of urban space and represent interactions among 
different people and entities. Intra-urban movement (e.g. commuting, trips for 
commercial and social activities) generate intra-urban flows, and they help to 
define how elements in cities are related to each other (Batty, 2018). These 
movements and flows “pulse” to periodic rhythms and reflect the activities, 
constraints and opportunities afforded to individuals and organisations 
(Froehlich et al., 2009; Graells-Garrido et al., 2017; Batty, 2018). 

Considering the temporal nature of flows and interactions in cities is key to 
understand their dynamism, evolution and discontinuities (Batty, 2018; 
Anderson et al., 2020). Although there have been attempts to examine abrupt 
changes in urban form, activity and development caused by catastrophes (e.g. 
earthquake) and other singularities (Drakakis-Smith, 1995; Ghafory-Ashtiany 
et al., 2008), they are normally evaluated in the long term (years, even 
decades) rather than shorter periods (Johnson et al., 2017; Batty, 2018). In 
the last decade, more studies examining shorter term changes in urban flow 
interactions have been reported (Gao et al., 2013; Zhang et al., 2019). These 
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are fuelled by larger and more detailed volumes of data that are made more 
available for research and technology innovations (e.g. sensors and increased 
computation power and software). In urban areas, huge volumes of diverse 
data about peoples’ movements, activities and opinions are now readily 
gathered at a very fine spatiotemporal granularity, and at the individual level 
(Filipponi et al., 2010; Du et al., 2018). Such data are beginning to be used for 
urban planning and real-time management (Chen et al., 2018; Hossain et al., 
2019). A number of the “smart city” monitoring and control centres have 
surged in big cities around the world (Du et al., 2018), where road and rail 
traffic, in particular is continually monitored (Batty, 2018), with responsive 
interventions ready to take place to ensure transport systems work smoothly 
and efficiently. In essence, the massive change in research focus and data 
availability from long-term to short-term, from aggregated to individual level, 
from coarse to fine spatial scale, has provided new opportunities to study and 
understand urban transport dynamics and the evolutions of cities in general.  

Managing traffic is one of the most crucial issues to ensure efficient intra-
urban flows and to maintain different urban systems (Batty, 2018). Despite 
huge investments, the current transportation systems in many big cities, such 
as Beijing and Los Angeles (Lee et al., 2014), still suffer problems of 
congestion and air pollution, related to over dependency on the use of 
polluting car vehicle-based transportation (Li et al., 2012; Chow et al., 2014; 
Fishman, 2016; Rodríguez et al., 2016).  

To overcome the challenges presented by car dependence, sustainable 
modes of transportation such as cycling are (re)emerging as an increasingly 
common response in big cities (Pucher et al., 2012; Fishman, 2016). In the 
last 20 years or so, many different bike-sharing schemes were introduced in 
many cities throughout the world. These schemes allow people to use (borrow) 
bikes with low-cost and high convenience. In the age of the smart mobile 
phone, the bike-sharing mode of transportation has arguably become the 
fastest-growing transportation innovation in the world (Shaheen et al., 2016). 
In addition to replacing short-distance car journeys, bike-sharing has the 
potential to strengthen the existing public transit system, by connecting transit 
hubs (e.g. bus and metro station) to people’s destinations such as their home 
and workspace, thus solving the so-called “first/last mile” problem (Shaheen 
& Chan, 2016). The forms of bike-sharing are also rapidly evolving and 
incorporating more technological innovations. Bike docking stations are able 
to provide a 24 hours service and allow people to borrow and return cycles at 
any time. Recent dockless systems equip bikes with GPS (Global Positioning 
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System) units and smart locking system, which allows them to be more widely 
distributed in urban spaces and not limited to docking stations. These new 
schemes generate much spatial and temporal flexibility for peoples’ 
movements, especially in multi-mode transport journeys. As this innovation is 
new, there is a challenge and opportunity to study how it may impact the way 
people move around and how best to plan and (re)organise other transport 
systems accordingly. The high spatial and temporal resolution data about the 
availability or movement of such sharable bikes offers a new way to study the 
movements of users and how these patterns change at different times and 
during different events (Pase et al., 2020) in the transport system or in the 
cities generally.  

Various studies have explored the dynamics of intra-urban flows, especially 
people’s movements, utilising taxi, bus and metro travel records (Gao et al., 
2013; Zhong et al., 2014; Sun et al., 2015). These studies (for the most part) 
have only helped to understand car-dependent flows characterised by 
relatively long journeys on the main roads in urban areas. Flows of shorter-
distance journeys, many of which do not involve motorised traffic, require 
further studies to shed light on. This will also contribute to an improved 
understanding of urban sustainability (Curtis et al., 2020). 

Successful interpretation of urban and traffic dynamics also requires suitable 
models to be utilised. Graph theory is a branch of mathematics, and it is well 
suited to representing the flows and structures encoded in complex urban 
systems (Batty, 2005; Anderson & Dragićević, 2020). Owing to its advantages 
in representing interactions between different entities, graph-based analysis 
has been utilised in a number of transportation and urban morphology studies 
(Austwick et al., 2013; Heckmann et al., 2015). As a bottom-up approach, 
modelling and analysing the interactions through graphs helps uncover the 
behaviours and patterns such as congestion and transport efficiency (Crucitti 
et al., 2006; Scellato et al., 2006). Many existing studies using graph theory 
focusing on characterising the static and general picture of the urban system. 
There is an ongoing challenge to adopt graph theory to understand and even 
predict the highly dynamic interaction flows. Measuring the temporal mobility 
graphs in urban contexts enables further insight to be obtained and helps 
answer vital questions regarding where, when and why people move. The 
knowledge obtained from mobility graphs will thus facilitate data-driven and 
analytics-powered smart and sustainable city management. 
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1.2 Research aims and objectives 

The overall aim of this work was to investigate the characteristics of flow 
interactions and structures evolutions in sustainable urban traffic systems 
(bike-sharing) using novel temporal graph-based analysis. In addition, the 
study sought to build better models to forecast the transport dynamics and 
demand by incorporating graph theory.  This was to improve urban planning 
and responsive transport management and operation practices. 

This aim and desired outcomes can only be accomplished by breaking down 
the research into a number of objectives, and they were summarised in table 
1.1.  

Table 1.1 Research objectives and corresponding chapters. 

 
Research objectives 

Corresponding 
chapter(s) 

I. 

(1) Design a method to convert travel flows from 
newly emerged sustainable transport mode 
(dockless bike-sharing) into graph structures. 

(2) Quantify the unique spatial and temporal 
characteristics of cycling behaviours in 
dockless bike-sharing. 

(3) Identify and understand the polycentric 
transformation in urban last mile through 
graph-based analysis. 

Chapter 3 

II. 

(4) Quantify the interdependence between metro 
and bike-sharing in the context of different 
transit disruptions and interventions. 

(5) Demonstrate the utility of temporal graph-
based analysis in capturing rapid changing 
interactions between people and places. 

Chapter 3 and 
Chapter  4 

III. 

(6) Quantify the importance of temporal graph 
structures and indices in predicting short-term 
travel demand. 

(7) Design machine learning models to effectively 
process temporal graph features for better 
traffic modelling and demand forecasting. 

Chapter 5 
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1.3 Thesis structure 

This thesis is presented in the alternative format as described by the 
University of Leeds. The thesis consists of six chapters, chapter 3, 4 and 5 
take the form of a self-contained manuscript, all of which have been published 
or submitted to peer-reviewed journals.  

 

Chapter 2 provides a critical literature review of the methodology related to 
understanding urban flow interactions. The data and applications of 
constructing flow networks and graph structures in urban and transport 
systems (e.g. bike-sharing) are also introduced and critically examined. This 
chapter highlights the limitations and current research gaps: it is necessary to 
examine temporal urban flows interactions, with the context of local processes 
to understand and model the dynamics in mobility behaviours. The findings of 
this chapter would motivate the direction of research in the following chapters. 

 

The work in Chapter 3 of the thesis has appeared in the publication as:  

Yang, Y., Heppenstall, A., Turner, A. and Comber, A. 2019. A spatiotemporal 
and graph-based analysis of dockless bike sharing patterns to 
understand urban flows over the last mile. Computers, Environment and 
Urban Systems. 77, p101361. 

Chapter 3 adopted geospatial statistics as well as graph-based approaches 
to reveal how urban flows in “capillary” are affected by “aorta”. The evolution 
in the flow network is examined using newly emerged dockless bike-sharing 
data. This new kind of travel mode can provide a large quantity of data in high 
spatiotemporal granularity and describe people’s movement in non-motorised 
traffic. Thus the study helps to shed more detailed lights on urban flows over 
the last mile.  

 

The work in Chapter 4 of the thesis has appeared in the paper as: 

Yang, Y., Beecham, R., Heppenstall, A., Turner, A., & Comber, A. 
Understanding the impacts of public transit disruptions on bike-sharing 
schemes and cycling behaviours using spatiotemporal and graph-based 
analysis: A case study of four London Tube strikes. Submitted to a peer-
reviewed journal. 
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Chapter 4 sought to provide a more comprehensive picture of the 
interdependency between mass transit and dock-based bike-sharing scheme. 
Cycling flow and behaviours of users, and bike-sharing service provisions 
during transit disruptions are examined. A combination of spatiotemporal and 
graph-based analysis helped to demonstrate the flexibility nature of bike-
sharing and resilience in the urban system. 

 

The work in Chapter 5 of the thesis has appeared in the publication as follows: 

Yang, Y., Heppenstall, A., Turner, A., & Comber, A. 2020. Using graph 
structural information about flows to enhance short-term demand 
prediction in bike-sharing systems. Computers, Environment and Urban 
Systems. 83, p101521. 

Chapter 5 proposed a methodology of incorporating graph features for better 
modelling and forecasting transport dynamics and short-term travel demands. 
This chapter quantified and compared the importance of time-lagged graph 
indices to other commonly used model inputs. Machine learning models are 
examined in term of how they might be enhanced by knowledge obtained from 
temporal graph structures.   

 

Chapter 6 is the conclusion of this thesis. The major findings of the research 
are consolidated, and this chapter summarised the contributions to the 
literature in the broader community of urban and transport studies. It is then 
followed by the critical discussion of limitations and outlooks. 
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Chapter 2 
Literature review 

 

Geography studies the integration of characteristics that define places, as well 
as connections between places and entities (National Research Council, 
1997). It also aims to understand and model highly-connected spatial systems 
like cities and the sub-systems within (e.g. transportation) (Sun et al., 2015; 
Phillips et al., 2015). Researchers in GeoComputation have recognised the 
value of complexity science in understanding geography systems, with 
attempts to interpret and model the real-world from bottom-up (Batty, 2005; 
Crooks and Heppenstall, 2012), as well as represent the relationships 
between entities using graph structure and network science (Anderson and 
Dragićević, 2020). 

The traditional top-down approach of using aggregate models to formulate 
policy and plans for the design and growth of cities have several drawbacks 
due to their aggregated and coarse treatment of individuals (Heppenstall et 
al., 2016). In contrast to the top-down way, bottom-up approaches seek to 
understand how different and heterogeneous entities (e.g. people, 
infrastructure) interact with each other and self-organise to form emergent 
patterns (Heppenstall et al., 2016; Anderson and Dragićević, 2020). These 
emerged behaviours (e.g. commute and travel), will lead to various 
socioeconomic outcomes for cities, such as congestions and the emergence 
of new urban centres (Zhong et al., 2014).  

Examining the static structure of urban transportation systems is not sufficient 
to gain insights and understand the impact of changing dynamics; hence 
representing the dynamics in graphs and how they evolve becomes 
increasingly vital (Anderson and Dragićević, 2020). The inclusion of time is 
not simply gathering different snapshots (or periods) of the system, they need 
to be linked to the changed observations in the system, and then interpreted 
and understood on the basis of the local context and underlying processes 
(Batty, 2005; Anderson and Dragićević, 2020). The world is now more 
digitalised than ever before, and the behaviours and states of entities are 
recorded at an increasingly finer temporal granularity. There is an abundance 
of information encoded in various datasets to describe the interactions of 
people and places. New travel mode and mobility services (bike-sharing) have 
also generated valuable data to shed light on the movement of people. Hence 
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new opportunities have emerged for uncovering more details in urban 
dynamics and flow interaction.  

This chapter provides a comprehensive review of studies related to graph 
theory and their applications in urban and transport studies. The review 
suggests that existing research majorly focuses on static graph structures to 
understand the roles and characteristics within them. There is a need for 
exploring the temporal characteristics of real-world urban and transport 
systems. This will facilitate a better understanding and thus prediction, of 
urban and transport dynamics, for example, the behaviours in public transport 
and bike-sharing systems. Section 2.1 introduces the basic definitions in 
graph theory and related measures that can be used to describe various 
states of graphs. Section 2.2 presents types and applications of graphs 
in geography, especially urban and transportation systems; Specifically, 
the flow and graph structures of bike-sharing systems are discussed in 
section 2.3. 

2.1 Graph and related indices 

Graph Theory was born with the well-known story “Seven Bridges of 
Konigsberg” (Euler, 1741). In that story (model), Euler utilised graph theory to 
prove that it is impossible to walk through all the islands and cross each of 
those bridges once and only once. Therefore, graph theory was considered 
as a logic solving approach back to its origin (Euler, 1741), and traditionally 
often used for solving routing problems. It is concluded that finding (or not 
finding) the route is not a matter of intelligence; it is simply an inherent property 
of the graph (Anderson and Dragićević, 2020). Euler’s findings formed the 
foundation of network science and gave way to the notion that graphs have 
different structural properties that can be discovered and catalogued using 
graph theory (Barabási, 2016). In the late 1990s (Vespignani, 2018; 
Heckmann et al., 2015; Newman, 2003b), networks (graphs) from very diverse 
fields of science were found to exhibit similar properties. This has resulted in 
considerable research into graph-based analysis over the last two decades 
(Vespignani, 2018).  

Generally, a graph 𝐺(𝑁, 𝐸) is a structure consisting (figure 2.1 a) of a set of 
nodes (vertices) 𝑁 which are connected by edges (links) 𝐸 (Bollobás, 2013). 
The structure can be used to represent the relationships between different 
entities. For example, in a telephone network, people can be seen as graph 
nodes, while the action of ringing (a flux of information) can be cast as edges. 
Both nodes and edges can contain attributes, for example, edges may have 
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weights to represent the strength of the relationship (frequency of calling), or 
the distance between two connected components. Edges may also have 
directions to indicates whether the relationship is unidirectional. A graph with 
𝑁 nodes can be mathematically represented as an adjacency matrix (figure 
2.1 b) size of 𝑁 ∗ 𝑁, where 𝐴!" = 1 if node 𝑁!  and 𝑁"  are connected by an 
edge , and 𝐴!" = 0 if they are not.  

 

Figure 2.1 (a) An example of a graph structure; and (b) the adjacency 
matrix. 

 

Once a graph is defined and constructed, a number of measures can thus be 
derived to describe the characteristics of different components within, or the 
overall status of the whole structure. In the context of urban and transport 
system and graphs, these different indicators may be used to measure system 
efficiency (Jiang, 2009), identify urban hubs and centres (Huang et al., 2015), 
understand socioeconomic patterns and activities (Strano et al., 2007), and  
evaluate the resiliency of the network structure to node failure (Wilkinson et 
al., 2012), etc. Several most commonly used measures are as follows. 

2.1.1 Node degree 

The node degree 𝑑 is a centrality measure for describing an individual node 
𝑁! in a graph, and is defined as the sum of neighbours 𝑁" that connected to 𝑁! 
(Opsahl et al., 2010; Newman, M., 2008). In mathematical term, 𝑑(𝑖) of the 
node 𝑁! is defined as: 

𝑑(𝑖) =.𝑚!"
"

 

Where 𝑚!" = 1 if there is an edge between node 𝑁! and 𝑁", and 𝑚!" = 0 if no 
such link exists (Otte and Rousseau, 2002). For example, In a graph 
representing co-authors, the degree centrality of an author is the number of 
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other authors they have co-authored at least one article with (Otte and 
Rousseau, 2002). Degree can also have directions in directed graphs, 
calculated based on the number of edges that start from or end at 𝑁!, so they 
are denoted as in-degree and out-degree, respectively (Newman, M., 2008). 
In the context of spatial networks, such as an airline graph, the in-degree of a 
city (airport) is the number of other cities (airports) that have direct flights to it. 

2.1.2 Betweenness 

In a connected graph, between every pair of nodes exists at least one shortest 
path. “Shortest” may be defined as the minimum number of edges that the 
path passes through, or as the sum of the weights of the edges are smallest. 
Hence, betweenness centrality is defined loosely as the frequency of a node 
𝑁!  is needed/passed for a pair of other nodes to reach each other by the 
shortest path (Barthelemy, 2004).  

Mathematically, the betweenness centrality of 𝑁!, denoted as 𝑏(𝑖) is : 

𝑏(𝑖) =.
𝑔"!#
𝑔"#",#

 

Where 𝑔",# is the number of shortest paths from node 𝑁" to 𝑁#  (𝑗, 𝑘 ≠ 𝑖), and 
𝑔"!# is the number of shortest paths from node j to node k passing through 
node i (Otte and Rousseau, 2002; Anderson and Dragićević, 2020). In spatial 
graph structures such as road network, high betweenness implies a potentially 
high volume of traffic, and such area/road may have a greater risk of 
congestion. 

2.1.3 Eigenvector centrality and PageRank  

Eigenvector centrality is another indicator for measuring the level of 
influence/importance of a node within a graph. Similar to node degree, 
Eigenvector centrality is relative to the number of edges to other nodes. Unlike 
other measures, it weights connections to high-scoring centrality nodes 
contribute higher than low-scoring nodes (Bonacich, 2007). For example, a 
high degree node may be low in eigenvector centrality, if it is only linked with 
similarly low-scored nodes.  

The PageRank is a variant of the Eigenvector centrality, and was first 
introduced by Google to evaluate the importance of a Web page (Brin et al., 
1998). PageRank extends the idea in Eigenvector centrality that not counting 
links from all pages/nodes equally, and it majorly utilised/interested in the in-
links. Therefore, PageRank is similar to voting, where a link from node 𝑁! to 
𝑁" is like a 𝑁! contributed to a vote of importance to 𝑁". 
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Assume node 𝑁%  has incoming edges from other nodes 𝑁&⋯𝑁' , and the 
parameter 𝑑 is a damping factor, 𝐶(𝑁') is defined as the out-degree of node 
𝑁'. The PageRank (𝑃𝑅) of node 𝑁%  is denoted as follows (Page et al., 1999; 
Brin and Page, 1998): 

𝑃𝑅(𝑁%) = (1 − 𝑑) + 𝑑(
𝑃𝑅(𝑁&)
𝐶(𝑁&)

+ ⋯+
𝑃𝑅(𝑁')
𝐶(𝑁')

) 
 

 

The 	𝑃𝑅(𝑁%)  can thus be calculated using an iterative algorithm that 
corresponds to the principal eigenvector of the normalised link matrix of the 
graph (Page et al., 1999; Brin and Page, 1998). Note that the PageRank forms 
a probability distribution over graph nodes, so the sum of all nodes’ PageRank 
will be one. PageRank is an additional indicator of relative node importance 
and centrality in a graph. In a transportation network, this indicator can help 
to identify key nodes (places) in the system that have a high impact on 
transportation efficiency; urban hubs and centres also generally have high 
PageRank values in a travel flow graph (Huang et al., 2015). 

2.1.4 Clustering coefficient 

Clustering coefficient measures the degree to which nodes in a graph tend to 
cluster together (Schank and Wagner, 2005). In many real-world networks 
(graph structures), graph nodes are not randomly or evenly linked to each 
other. To some extent, they usually presented as tightly knit groups 
characterised by a relatively high density of links within the groups (Kim and 
Leskovec, 2012; Šíma and Schaeffer, 2006; Schaeffer, 2007). Hence the 
clustering coefficient is introduced to characterise and quantify this tendency.  

The global clustering coefficient (i.e. transitivity) can be calculated based on 
triplets of nodes in a graph (Schank and Wagner, 2005). A triplet is three 
nodes that are connected by two or three edges, the former one is an open 
triplet, while the latter one is called a closed triplet. For example, in a triangle 
graph structure, which consists of three nodes and three edges, there are 
three closed triplets, because each of the three nodes can respectively be 
regarded as a triplet centre. The global clustering coefficient (Luce and Perry, 
1949; Wasserman and Faust, 1994) is mathematically defined as: 

𝐶 =
𝑁()
𝑁*)

 

Where 𝑁() is the number of closed triplets within the graph, and 𝑁*) is the 
count of all triplets (open and close). 
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2.1.5 Communities and modularity 

In a graph structure, community (i.e. modules or clusters) refers to the 
occurrence of groups of nodes that are more densely connected internally 
than with the rest (Fortunato, 2010). The heterogeneity of connections leads 
to some natural divisions within.  

In spatial graph structures (e.g. transport system), these dense connections 
tend to occur between spatially proximate nodes (Saberi et al., 2018; Yang et 
al., 2019a). Therefore, finding the communities do have some practical 
applications In geography and planning, for example, design of efficient 
national, economic or administrative borders based on human mobility or 
economic interactions (Expert et al., 2011; Blondel et al., 2008; Wang et al., 
2020; Liu, X. et al., 2015). The UK Travel to Work Area (TTWA) utilised a 
community detection approach to define a set of the TTWA for the whole of 
the UK, and it helps in labour market analysis and planning problems 
(Coombes and Bond, 2008).  

Determining the right communities within a graph is relatively difficult because 
the number of communities and their (unequal) sizes are normally unknown. 
Several commonly used algorithms include Hierarchical clustering (Yin et al., 
2015; Reichardt and Bornholdt, 2006), Girvan-Newman algorithm (Duch and 
Arenas, 2005; Despalatović et al., 2014), but the most popular ones are 
modularity maximisation methods (Fortunato and Hric, 2016).  

Modularity is designed to measure the strength of division of a graph into 
communities, and Modularity 𝑄 (Newman, M.E. and Girvan, 2004) is defined 
as:  

𝑄 =.
𝐼+
𝐸 − >

𝑑+
2𝐸@

,'!

+-&
 

Where 𝑛. 	is the number of communities of the partition, 𝐼+ is the number of 
links inside community 𝑠, 𝐸 refers to link counts in the graph, and 𝑑+ is the 
total degree of the nodes in 𝑠. 

A graph with high modularity has dense connections between community 
members but sparse connections with nodes in different communities. 
Optimising this value theoretically results in the best possible segmentation of 
the nodes in a given graph structure. Different heuristics approaches that are 
used for solving this problem include greedy algorithms, simulated annealing, 
and spectral optimisation (Anderson and Dragićević, 2020). One of the most 
popular approaches is the Louvain method, and it first finds small communities 
by optimising modularity locally on all nodes, then each small community is 
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grouped into one node, and the first step is repeated, in an iterative way. The 
division is determined/finalised when the global modularity can no longer be 
improved.  

Although the Louvain method has been widely used in many spatial networks 
(Yang et al., 2019a; Saberi et al., 2018), the results sometimes are not 
successful in uncovering very small clusters (Anderson and Dragićević, 2020). 
In contrast to other approaches, such as greedy algorithms, tend to detect 
more clusters that are smaller in size.  

2.1.6 Assortativity coefficient 

The assortativity coefficient measures the preference of nodes in a graph to 
link to others that are similar (Noldus and Van Mieghem, 2015). Although the 
similarity can be determined in varying ways, normally, they are quantified 
using node degrees (Newman, M.E., 2003a; Newman, M.E., 2002; Anderson 
and Dragićević, 2020; Spiegel et al., 2017), and defined as the Pearson 
correlation coefficient of degree between all pairs of linked nodes in the graph. 
Mathematically, assortativity 𝑎 is defined as: 

𝑎 =
𝑀!"∑ 𝑗#𝑘# − (𝑀!"∑ 1

2 (𝑗# + 𝑘#)# .
$

#

𝑀!"∑ 1
2 (𝑗#

$ + 𝑘#$) − (𝑀!"∑ 1
2 (𝑗# + 𝑘#)# .

$

#

 

where 𝑀 is the number of edges in the graph, 𝑗! and		𝑘! are the degree of the 
vertices at the two ends of the i-th edge, with 𝑖	 = 	1⋯𝑀 (Newman, M.E., 
2002). 

One example of high assortativity is the Rich-club effect (Xu et al., 2010),  
which exists in many real-world networks, such as scientific collaboration 
graph and transportation flow graphs (Wei, Y. et al., 2018). In these graph 
structures, well-connected nodes (rich-club members) are also found to 
connect to each other. 

2.2 Graphs in urban and transport systems 

Two different kinds of graphs are conceptualised to model urban and transport 
systems; these are planar and non-planar graphs (networks). Their structure 
and various indices have been extensively examined in various studies related 
to two main themes: (1) the topology of the urban/transport infrastructures 
(physical course of networks), and (2) the accessibility and centrality of 
different regions/locations (Anderson and Dragićević, 2020). 
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2.2.1 Planar graphs and physical course of transport networks 

In graph theory, a planar graph is a graph that can be embedded in the plane, 
and no edge will cross each other (Barthelemy, 2018). Planar graphs were 
normally used to represent physical infrastructures, for example, roads 
(Cardillo et al., 2006; Strano et al., 2013; Qian et al., 2012), railways (Wei, S. 
et al., 2019), canals and rivers (Bogart, 2009) networks. In planar space, the 
graph links represent the physical course of road/rail/river, while the vertices 
are the intersections between them or the endpoints. Links intersect only at 
vertices (Barthelemy, 2011).  

In urban and transport studies, measuring graph (network) properties of cities 
through examine street network topology is not new and can be traced back 
to the 1960s (Garrison, 1960), and this was popularised by Hillier and Hanson 
(1989) under the term of “space syntax”. For cities around the world, despite 
their varying geographical, climatic, historical, cultural and social-economical 
mechanisms that have shaped them in different ways, recent empirical studies 
have shown that, at least at a coarse-grained level, unexpected similarities 
exist in their graph measures by examining their road networks (Batty, 2018; 
Volchenkov and Blanchard, 2008; Abshirini and Koch, 2017). Generally, the 
structure of planar transportation networks is constrained by geographic 
space and proximity, thus limiting node degree values. As a result, such 
structures normally have a low average node degree. For example, in the 
street networks of many cities, an individual node’s degree rarely exceed five 
(Cardillo et al., 2006; Lämmer et al., 2006) 

Lämmer et al. (2006) studied the German road networks and suggested that 
the distributions of betweenness centrality follow the power law. It indicates 
the strong heterogeneity within the graph in terms of potential traffic volume. 
The existence of several central nodes represents popular points (regions and 
road) and suggests some local congestion (Crucitti et al., 2006; Scellato et al., 
2006). Other studies, for example, Strano et al. (2007) suggested that in 
transport systems, graph measures are related to socio-economical indices 
(Barthelemy, 2011; Jia and Jiang, 2012). In the context of urban areas, a clear 
correlation exists between the betweenness indicators and the presence of 
commercial activities (Strano et al., 2007). 

In the past several decades, many works (Cardillo et al., 2006; Lämmer et al., 
2006) have studied the transport and urban systems upon small and planar 
graphs, looking at the static topology of transport infrastructures (e.g. road 
network). This is partly due to the limited computational power and data 
availability (Ducruet and Lugo, 2013). The planar graphs are normally 
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modelled using data extracted from city or country maps, while the rich and 
voluminous data detailing actual transport flows and movement of people 
remained hardly accessible in the past (Barthelemy, 2011). 

2.2.2 Non-planar graph and flows 

Batty (2018) suggested that there is increasing research interest in measuring 
physical traffic that uses physical infrastructures in more complete ways. 
Planar networks themselves only represent the fundamental infrastructures 
(e.g. physical roads), while how people use them and move around the space 
requires further understanding (Batty, 2018; Barthelemy, 2011). Individual 
flows reflect the location and movement of activities; thus, they are related to 
fundamental problems in geography and spatial economics. Moreover, the 
flows contain information on how diseases might transmit between population 
due to the close proximity and interactions while travelling (Sun et al., 2014). 
There are also applications in commercial domains, such as geomarketing or 
transport resource management. For example, the flows help to (1) identify 
where advertisement should be placed depending on how many people going 
through a location, (2) or how frequently should bus vehicle be dispatched, or 
sharing bikes fleet be rebalanced to meet the local travel demand. Clues on 
the statistics of human behaviours and flow interaction are thus important for 
understanding and managing the urban system (Barthelemy, 2011). 

These physical travel flows, together with underlying capital and information 
flows, are the core of how different parts of the city may function and develop. 
Therefore, there is an increasing number of studies that examine the flows 
with non-planar graphs. In these graphs, a node normally represents a 
location or an entity (e.g. transport hub), while the link indicates the connection 
(e.g. trip origin-destination pair) between nodes, rather than physically 
representing a route. The links may have directions to indicate the flow 
direction and weights to represent the frequency or volume of the connection. 
Some examples of the non-planar graph, in the context of urban and transport 
systems, include bus and dock-based bike-sharing systems, where the 
stations are cast as graph nodes, and the travel flow between them are used 
for characterising graph edges. Other examples at a larger spatial scale (e.g. 
globally) include cargo and airline networks.  

Non-planar transport graphs are also found to be constrained by geographic 
space, as well as the physical capacity of the node. For example, airport and 
cargo ships can only handle a limited number of connections because of 
space and travel time constraints (Amaral et al., 2000). However, non-planar 
graphs in the context of general urban commuting are found to be relatively 
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less impacted by physical distance and space. The work of Chowell et al. 
(2003) analysed the simulated movement of 1.6 million individuals during a 
typical day in Portland (Oregon, USA). The results (Chowell et al., 2003) 
suggest that space is not constraining enough for general urban commuting. 
This is because the cost variations are too small, and the important features 
of spatial constraints (e.g. limited/few number of node degree) do not seem to 
appear evidently; hence graph measures (e.g. out-degree) are found to well-
fitted by power laws (Montis et al., 2007; Chowell et al., 2003). However, 
Chowell et al. (2003) did not take the transport capacity into consideration. In 
other words, when certain urban transit systems are under disruption (Saberi 
et al., 2018), it might pose a severe challenge to the capacity and function of 
transport, thus constraining connections between graph nodes. While 
motorised traffic such as metro and bus are fast travel modes, which may be 
less impacted by long travel time/cost, other modes (e.g. cycling and walking) 
are less likely to have many long-distance links. Therefore, different travel 
modes may be differently impacted by physical space and distance. 

While understanding the movement of people has evident benefits and wide 
applications (Sun et al., 2014; Barthelemy, 2011; Saberi et al., 2018), 
obtaining the movement (OD flows) of people is a very difficult and critical task. 
Currently, it largely relies on costly travel surveys. But the recent technological 
advances, for example, mobile phone and geosocial applications provide new 
opportunities and challenges for understanding individual movements, 
interactions and underlying non-planar graph properties. 

2.2.3 Opportunities from new forms of data  

Reliable flow data detailing OD pair or interaction between people are 
important inputs for planning urban and transportation initiatives. Various 
government sources, travel diary studies and roadside/household surveys 
have generated valuable and focused (bespoke) data to facilitate data-driven 
transport and urban studies. However, these data may also have 
disadvantages, for example, high expense, small sample size, lower update 
frequencies and potential sampling biases and reporting errors (Groves, 2006; 
Birkin, 2019). 

But the world is increasingly digitalised nowadays, events and people’s 
behaviours are recorded in a variety of new data unprecedentedly. Vehicles 
and bikes are equipped with GPS (Yang et al., 2019a), location-based service 
and mobile phones (Manley and Dennett, 2019) are popular among people, 
The widening availability of new dataset have the potential to represent the 
movement and interaction between people and places, also help to reveal 
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underlying social and spatial characteristic and processes (Manley and 
Dennett, 2019; Barthelemy, 2011; Batty, 2018). 

2.2.3.1 Mobile phone data 

When a mobile phone is used for making calls, sending a text or using the 
Web, there will be footprints be left. Using methods like triangulating 
positioning algorithm, users location can be roughly calculated (Toole et al., 
2012). The last decade has seen mobile phones, especially smartphones, 
increased their penetration rates (popularity) both in developed and 
developing countries (Manley and Dennett, 2019). Mobile phone data is able 
to characterise large-scale individual trajectories. Subsequently, the data 
have been used to identify “anchor points” where people stay and spend a lot 
of their time, and to reveal mobility patterns (Calabrese et al., 2011), route 
choice modelling, traffic model calibration, traffic flow estimation and obtaining 
OD (Origin and Destination) flows (Iqbal et al., 2014; Bachir et al., 2019). 

Calabrese et al. (2011) used mobile phone data in Boston, USA, to quantify 
OD flows of people, the result is found to correlate well with US Census 
estimations at both the county and census tract level. Compared to traditional 
survey data, the flows generated from mobile phone data have some vital 
advantages, for example, much finer spatial and temporal granularity. It is, 
therefore, possible to look into flow and interactions in specific days or certain 
time periods (e.g. morning rush hour). Hence the data provides new 
opportunities to look deeper into individual mobility patterns. 

The application of mobile phone data and related flows is not limited to 
transport and mobility studies. There is an increasing amount of research that 
has utilised mobile phone data for various purposes in different domains, for 
example, health (Vinceti et al., 2020), commerce (Birkin, 2019), land-use and 
urban planning (Manley and Dennett, 2019). 

The work of Manley and Dennett (2019) combined mobile phone data and 
building use data to analyse activity and interaction in Dakar, Senegal, and 
elucidated their variation across land-use classification and time. Mobile 
phone data was also used to measure mobility restrictions and changes during 
Covid-19 health outbreaks. The reduced mobility, as identified from mobile 
phone data, are found to be inversely related to the daily number of newly 
diagnosed Covid-19 positive cases (Vinceti et al., 2020). An effective 
reduction in transmission occurs almost immediately after the tighter lockdown 
in several Italian regions, given the lag time of around ten days from 
asymptomatic infection to diagnosis (Vinceti et al., 2020). Therefore, 
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measuring mobility behaviours through mobile phone data can be used for 
related emergence response and public health. 

Mobile phone data not only helps to locate an individual’s location and identify 
the movement, but the communications between them can also be used for 
constructing a spatial and social graph structure. For example, community 
detection was performed on Belgian mobile phone network to identify 
language communities (Blondel et al., 2008). Thus graph-based analysis 
played an interesting tool for defining administrative boundaries, and useful 
for policymaking and planning. 

Despite the above applications, a shortcoming of mobile phone data is its 
relatively low positioning accuracy. For example, the accuracy for 2G, 3G, 4G 
networks are reported as 500 - 600 metres, 200m and 150-200m, respectively 
(Liu, Y. et al., 2017). Therefore, the data is much coarser than locations that 
are obtained by GPS (Global Positioning System), whose accuracy is normally 
within several meters (Owari et al., 2009). The nature of the coarse positioning 
accuracy in mobile phone data makes it more suitable for analysing the 
movement of long-distance such as commuting. If using mobile phone data to 
represent short-distance (e.g. within 400m) journey, it will bring greater 
uncertainty to the results. But the emerging 5G network may contribute to 
higher accuracy of cellular positioning, for example, within 1 meter (Liu, Y. et 
al., 2017). Therefore, the utility of mobile phone data will increase with the 
development of new communication technology in the future. 

2.2.3.2 Social media data 

With the increasingly popular social media and location-based services, more 
people are willing to share their location with the service company (e.g. Twitter, 
foursquare) and their friends in their post. While mobile phone data provide 
relatively coarse location accuracy, location-based social media provide 
location-specific data, as people check-in to different places, or at a finer 
spatial granularity of GPS coordinates. This means that the location and 
movement of users could be semantically enriched, by analysing the function 
and land-use related to the place.  

A number of studies have utilised social network data to understand the travel 
behaviours, supplement semantic information (Sari Aslam et al., 2020) or trip 
purpose (Yang et al., 2019b) for travel OD flows. Beyond these utilities, social 
network data also contains valuable information detailing the connections and 
interactions between individuals. The underlying graph structure of social 
relations along with spatial information has been analysed in different studies 
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(Alizadeh et al., 2017; Backstrom et al., 2010; Scellato et al., 2010). For 
example, the work of Cho et al. (2011)  suggests that people’s short-ranged 
travel is less impacted by the social network structure, while if a person travels 
a long distance, then he/she is more likely to be spatially proximate to an 
existing friend in the graph. Therefore, the mobility and location of social 
media friends could be helpful to predict an individual’s location (Cho et al., 
2011; Backstrom et al., 2010).  

2.2.3.3 Transaction data in mobility services 

Transaction data that arise from interactions between customers and mobility 
service providers can also be used to obtain travel flows of people. Various 
public transport systems (e.g. train, bus) and increasingly popular shared-
mobility services (e.g. Uber, Mobike) contain this valuable information, which 
helps to construct the OD matrix (Tang et al., 2020) and understand the travel 
behaviour (Manley et al., 2018) and flow interactions (Birkin, 2019; Batty, 
2013). 

Tap-in/out into stations, or boarding/alighting from vehicles are recorded by 
Automatic Fare Collection (AFC) systems in many public transport modes. By 
analysing these intra-urban flows and behaviours (Fuse et al., 2010), it is 
possible to shed light on local characteristics in different urban regions 
(Pelletier et al., 2011), such as local vitality (Sulis et al., 2018) and urban 
structure and hotspots (Roth et al., 2011; Wang et al., 2020). Taxi data is used 
in the work of Huang et al. (2015) to construct graphs, and then quantify the 
different centralities of urban regions, with high centrality (e.g. PageRank) 
areas potentially indicating hubs or centres in the city. The result obtained 
from the graph-based analysis is then validated by ground-truthing, a group 
of local drivers and experts have participated in confirming the findings. 
Overall the study (Huang et al., 2015) suggest that PageRank of taxi travel 
flow graph is found to be the most successful indicator of urban hubs, with a 
high agreement rate among all participates. 

The recent years have witnessed the huge success and popularity of shared-
economy travel mode (McKenzie, 2020). Companies that provide ride-hailing 
services (e.g. Uber) and micro-mobility (e.g. bike-sharing, scooter-sharing) 
have also generated large quantities of movement data at a fine 
spatiotemporal granularity. In particular, micro-mobility services are normally 
used for relatively short distance journeys and help solve the “first/last mile” 
problem. The low cost, as well as high convenience, made them very popular 
in recent years (McKenzie, 2020; Lovelace et al., 2020). This thesis puts a 
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focus on different bike-sharing data and cycling flows. Therefore, a dedicated 
review on bike-sharing studies and cycling flows are presented in section 2.3. 

  

Despite the new opportunities emerging with the increased availability of the 
above novel datasets, they all are the by-product of the systems such as 
communication services, social media and bike-sharing transactions. 
Therefore, these datasets are not designed specifically for research purposes. 
Disadvantages in sampling bias should be considered in conducting research 
and drawing conclusions for mobility patterns and urban phenomena. 

Moreover, the effective exploitation of the above new opportunities depends 
on the collaboration between commercial to academic sectors (Birkin, 2019). 
All of the above datasets may contain user behaviours and identities at the 
individual level, hence related research ethics (e.g. data privacy) should also 
be taken care of. 

2.2.4 Flows and graph structure evolution 

Studying spatial graph structures have a long tradition; however, applications 
that incorporate temporal features are more recent, due to the increased data 
availability. Characterising real-world networks using graph information 
features is useful because it helps to identify, understand, and anticipate the 
processes that take place (Anderson and Dragićević, 2020). Therefore, 
increased popularity and interests have been observed in understanding the 
evolution of graphs and the underlying process. For example, the graph 
structures in airline networks vary over space and time due to the geographic, 
economic, political and historical factors, and thus are constantly changing as 
links between airports appear, disappear, expand or contract (Anderson and 
Dragićević, 2020). When the global airline graph (network) grows, it will have 
lower assortativity (Barrat et al., 2005), and nodes with a high degree tend to 
connect preferentially with nodes with a low degree. 

Graph measures may look at the immediate environment of nodes by 
examining the changed adjacent neighbours (Ducruet and Lugo, 2013). 
Historically, the evolution of transport systems is examined from the 
perspective of physical infrastructures. In planar graphs, for example, a road 
network (Mohajeri and Gudmundsson, 2014), may evolve along with the 
development and expansion of the city. Some nodes in certain parts of the city 
may increase their degree and reach more places through new road segments 
of new directions. The node betweenness may also change, implying higher 
traffic volumes and potentially more congestions. But motivated by the recent 
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availability of large-scale data on human activities and flows, the centrality and 
vitality of a location may be measured as to how people are attracted from 
other regions, and how diverse their activities are (Zhong et al., 2014; Zhong 
et al., 2017; Manley and Dennett, 2019). In non-planar transport flow graphs, 
questions might concern whether larger nodes are more central in structure 
due to urban development, or whether important nodes tend to connect to 
each other over time to form the so-called “rich-club” effect.  

Centrality measures derived from graph analysis can be used for 
understanding the changed function and emergence of new urban centres. 
Zhong et al. (2017) used intra-urban travel flow data to present Singapore’s 
rapid development towards a polycentric urban form. They concluded that the 
downtown core has strongly gained importance (centrality), which is largely 
attributed to the extension of the public transit system and increased 
accessibility. Similar research is conducted in the work of Sun et al. (2015) 
and presented the temporal variation in graph communities, which becomes 
more connected and considered as the result of improved urban mobility. The 
above studies (Zhong et al., 2017; Sun et al., 2015) all look into the flow 
interactions and graph evolutions caused by the long-term urban growth and 
development. The comparisons, therefore, cover a relatively long period, for 
example, several years.  

With the availability of trip data with higher spatial granularity, recent studies 
have begun to evaluate the evolution of graphs in a shorter temporal course; 
for example, the immediate changes caused by short-term indecent such as 
transport disruptions and adverse weather (Saberi et al., 2018).  

There are also a number of studies that have tried to present the daily variance 
of graph structure during the course of the day (Huang et al., 2015). The work 
of Rahman et al. (2020) compared the bus travel flows and underlying graph 
structures at different times; significant differences were found during peak 
and off-peak hours, and weekdays against weekends. The variance indicates 
the travel pattern changes according to the temporal variable, and related 
information has been preserved in graphs. The temporal graph provides a 
different perspective for understanding travel behaviours, and have the 
potential to be used for better modelling and prediction. 

To summarise, in recent years, many flow data are generated in real-time at 
a fine spatiotemporal resolution (Sun et al., 2015; Batty, 2018). Despite some 
privacy concerns, taking full advantages of such data in transport and urban 
planning would help researchers and stakeholders to better interpret and 
model urban dynamics, as well as contribute to smarter urban development. 
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2.3 Bike-sharing and cycling flows  

Bike-sharing fills an important gap in the intra-urban transportation system 
between pedestrian and motorised vehicles. The low-cost and high 
convenience feature make it increasingly popular worldwide (Fishman, 2016; 
Lovelace et al., 2020). The schemes can bring various benefits to cities and 
their inhabitants – including better air quality, reduce congestion, creating 
livable streets, and health/well-being improvements for people (Shaheen et 
al., 2013). The recent technology development (Gu et al., 2019a) in bike-
sharing contributed to a large quantity of flow data detailing people’s 
movement at an increasingly fine spatial and temporal granularity. Hence, it 
provides new bedrocks for understanding the flow and graph structures in the 
urban “last mile” - the distance between home/workplace and bus/metro 
station (Shaheen et al., 2010). 

2.3.1 Generations of bike-sharing 

The history of bike-sharing can be traced back to 1965 (table 2.1), and the 
first generation provides bicycles to users without costs. Bikes are unlocked, 
normally placed haphazardly throughout an area for use. Despite its 
convenience, there is a fatal weakness of this scheme – the maintenance. 
Most first-generation bike-sharing schemes, such as Witte Fietsen (White 
Bicycle) (Amsterdam, 1965), La Rochelle (France, 1974), Green Bike Scheme 
(Cambridge, 1993), failed due to bicycle damages and thefts (Shaheen, S. et 
al., 2010). 

The second-generation emerged in 1991 in the form of coin-deposit schemes 
(Shaheen et al., 2010).  Bicycles are not freely available, and users have to 
use small deposits to unlock the bike from docking stations. Thus it is theft-
resistant but with higher operating cost (especially human resources) than the 
previous generation.  

The third-generation (table 2.1) of bike-sharing is similar to the second-
generation, but incorporated more advanced technologies for bicycle 
management. Smart cards, mobile phones or codes may be used for bicycle 
check-in and check-out at docking stations. These schemes are relatively 
simpler to manage in terms of human resources, but requires a higher 
investment in IT (Information Technology). A great advantage of the IT-based 
scheme is the availability of 24-hour services. Besides, the system 
automatically records the transactions with information detailing borrowing 
and returning time, as well as related stations. This benefits research of 
cycling OD flows and travel behaviours (Lovelace et al., 2020; Beecham, 
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2015). Some example of the third-generation bike-sharing includes Santander 
Cycles in London and Citi Bike in New York. 

Table 2.1 Generations of bike-sharing schemes. 

Generation Birth time Scheme 
Station/dock-

based 

First 1965 Free usage No 

Second 1991 Coin-deposit system Yes 

Third 1996 IT-based system Yes 

Fourth 2015 Dockless system No 

 

The fourth and latest generation, dockless schemes, emerged around 2015 
and have spread to large numbers of cities, especially in China (Sun, 2018). 
Although services are provided by different companies (e.g. Mobike, OFO) 
and differ slightly, they have the same core feature: bikes can be borrowed 
and returned “haphazardly” (Chen et al., 2020), and no longer relies on 
docking stations. Cycles are equipped with Internet-enabled GPS units which 
can provide their real-time location to users and operators. In addition, every 
cycle has a built-in smart lock system. To start a trip, registered users can 
search for nearby vacant cycles through a smartphone app. Once located, the 
user then unlocks it by scanning the QR code (Quick Response Code) printed 
on the bike. When ending the ride, the cycle can be parked in any appropriate 
place, and it becomes available for the next user to locate and use.  

In summary, dockless bike-sharing schemes are more flexible to use while 
also anti-theft (GPS traced). With competitive pricing, the scheme has become 
a huge success in Asia, especially in some Chinese cities. For example, the 
number of dockless sharing bikes in Beijing and Shenzhen reached 2.2 million 
and 0.89 million by 2018, respectively (Gu et al., 2019a). The vast amount, 
increased spatial flexibility, and real-time systems make travel flow data 
obtained from dockless bike-sharing an ideal proxy for measuring the activities 
and structures in urban last mile. However, despite its popularity in Asian 
countries, the expansion to European countries is not smooth at the first try. 
In 2017, Mobike, one of the industry leader of dockless bikes, chose 
Manchester as their 100th city, and the first outside Asia to host their dockless 
service. But the company ended the scheme in the following year (Sherriff et 
al., 2020). The failure is considered not due to the technological solution 
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(dockless), but the lack of consideration in the context of existing infrastructure, 
local cycling environment and social exclusion (Sherriff et al., 2020). 

2.3.2 Users’ changed behaviours in bike-sharing schemes 

Researchers have intensively examined various correlates with bike-sharing 
usage and travel behaviours in cities. Similar conclusions are drawn and 
suggested that bike-sharing trips can be influenced by user characteristics, 
scheme accessibility, weather and built environment (El-Assi et al., 2017; 
Gebhart and Noland, 2014; Gu et al., 2019 b, Lovelace et al., 2020; Younes 
et al., 2019). Most of these studies put a focus on confirming correlation, but 
causality and behaviour changes are less established (Wang & Lindsey, 2019).  

One way to understand the changed behaviours in bike-sharing is to 
investigate travel pattern variations in response to different incidents. Gu et al. 
(2019b) examined the impact of a new metro line on an existing dock-based 
bike-sharing system, and concluded that the number of bike-sharing users 
and trips has increased. However, this work (Gu et al., 2019b) only examined 
patterns of trip numbers, while the underlying structural changes are not 
revealed. Gu et al. (2019b) also suggested that the potential impacts of new 
metro service on GPS-enabled dockless bike-sharing require further study. 
Bike-sharing is also reported to promote metro travels in return; Ashraf et al. 
(2021) indicated that in New York, a 10% increase in the number of bike-
sharing trips could increase the average daily subway ridership by 2.3%. The 
presence of dedicated bike lanes and bike racks attracted more bike usage 
and increased subway ridership. Wang & Lindsey (2019) revealed in the 
circumstance of adding or changing the location of bike docking stations, the 
improved accessibility to bike-sharing service leads to a significantly higher 
frequency of usage among registered scheme members. Younes et al. (2019) 
analysed the impact of several metro stations’ closure for maintenance on 
bike-sharing demand. They found that the temporary closing of stations can 
lead to between 24% and 45% more bike-sharing trips nearby the disrupted 
station. A transit disruption at a larger spatial scale, the Tube strike in London, 
is examined by Saberi et al. (2018). In addition to increased bike ridership, the 
graph-based analysis suggested that disruptions caused greater connectivity 
and more graph edges, node centrality measures still fit a power-law 
distribution but with greater scores (Saberi et al., 2018). It should be noted 
that the newly generated OD pairs are probably caused by the reduced 
availability of cycles and docks at each station. During mass transit disruption, 
the increased cycling demand requires extra maintenance to support the 
scheme’s operation by providing sufficient resources (cycles and docks) at 
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different stations. Otherwise, users may be forced to use nearby alternative 
stations to start and end their journey, thus bringing more diverse flows to the 
graph. However, more evidence is required to look into the patterns of 
resource apply and their effect on flow structures. Dockless bikes may 
relatively suffer less from the capacity problems in dock-based schemes 
because bikes may be located more haphazardly, rather than only at fixed 
docking stations.  

The changed behaviours brought by various events may also vary depending 
on people’s different socioeconomic characteristics and attitudes on cycling. 
For example, people can have diverse feelings on the scheme pricing, 
different level of knowledge (whether know how to ride bikes and use bike-
sharing schemes), physical capability and self-efficacy (e.g. whether feel 
confident about cycling). These characteristics are likely to impact people’s 
decisions and travel behaviours as well. Zhu et al. (2017) suggested that 
people with lower incomes are more likely to choose lower-cost alternative 
mobility services such as bike-sharing, rather than ride-hailing (e.g. Uber, Lyft) 
and taxi when large transit disruption happens. 

Overall,  travel behaviours in bike-sharing and underlying flow structure can 
be impacted by various events like adverse weather, transit disruptions and 
urban development, also influenced by user’s socioeconomic characteristics.  

2.3.3 Cycling flows and graphs 

The trips in third-generation bike-sharing travel start and end at docking 
stations. Therefore, the cycling flow can readily be converted to a directed and 
weighted graph, using docking stations as graph nodes, and the trips 
represent the graph edge with the frequency variable. 

The work of Austwick et al. (2013) analysed the flows and graph structures in 
5 cities in North America and Europe, and suggest that high similarities exist 
in the graphs properties, such as link weight distribution. But this work focused 
and compared the system at a highly aggregated level, for example, 
generating graphs using travel record of several months. It may be desirable 
to further disaggregate the temporal variable to create time-dependent (e.g. 
hourly) graphs (Tang, J. et al., 2010; Casteigts et al., 2012). Measuring the 
changing graph metrics (Nicosia et al., 2013) at a fine temporal granularity 
helps to reflect varied use and behaviours in the scheme at different times, 
such as commuting in the morning rush hour and leisure-related trip during 
the weekend afternoon. 
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The recent dockless bike-sharing schemes and their nature of flexibility also 
bring challenges for graph-based analysis, in particular, the conceptualising 
of graph vertices. No docking stations exist, therefore the graph vertices 
should be cast based on other entities, for example, street segments, grid cells, 
transportation zones or regions that are divided by various algorithms (e.g. 
DBSCAN clustering). Grid cells are used in some studies (Yang et al., 2017) 
to aggregate trip counts of dockless sharing bikes. But it should be noted that 
the short distance of trips, which is a nature of cycling activity in the urban 
area, requires grid cells at a very fine spatial granularity to capture flow OD. If 
too coarse, it might lose information in the subtitle (short-distance) trips, 
because the origin and destination might fall in the same grid. However, if 
setting too small, there will be a lot of grid cells have very few or no trips were 
made, this results in a very sparse matrix, and unnecessarily increase the 
computation burden. How to conceptualise and construct graph structures for 
urban dockless bike-sharing schemes require further study. 

Overall, it is increasingly interesting and challenging to examine the flows in 
bike-sharing schemes with finer spatiotemporal granularities, and to model 
and understand the process undertaken in urban space. The nature and 
characteristics of cycling and bike-sharing schemes, such as their functions in 
complementing the “last mile”, low-cost and replacing relatively short distance 
journey of other transport (e.g. bus, taxi), makes them unique while important 
in contributing to inclusive and sustainable urban development. 

2.4 Chapter summary 

This chapter provides a critical literature review of research fields relevant to 
graph theory and its application in urban and transport systems. The 
increased availability of novel movement data, enabled travel flows to be 
examined at individual level with richer details. Although many current studies 
put a focus on describing the static structure and function of urban spaces, 
transport hubs or other entities, the great benefits and utility of temporal 
graphs should not be ignored. Temporal graphs can reveal how different part 
of the system interact and evolved by interpreting local and global changes in 
various graph-based measures. More importantly, it helps to shed light on how 
these changes are associated with or caused by different kinds of 
interventions such as infrastructure changes and disruptions. How to take full 
advantage of temporal graphs to contribute to better interpretation and 
modelling of urban and transport systems remained to be explored. 
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The evolving bike-sharing schemes have incorporated more information and 
communication technology, which enable the graph-based analysis to look at 
the flow interaction at finer spatial and temporal resolution. Chapter 3 and 4 
sought to answer the question of how flow data from different generations of 
bike-sharing can support a better understanding of the individual’s behaviours 
and interactions within the urban environment. The knowledge and metrics 
obtained from temporal graphs are further explored in Chapter 5. Case studies 
are conducted (Chapter 5) to demonstrate their utilities for real-time 
management of the transport system and contributing to smart and 
sustainable cities. 
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Chapter 3 
A spatiotemporal and graph-based analysis of dockless bike-
sharing patterns to understand urban flows over the last mile 

 

Abstract 

The recent emergence of dockless bike-sharing systems has resulted in new 
patterns of urban transport. Users can begin and end trips from their origin 
and destination locations rather than docking stations. Analysis of changes in 
the spatiotemporal availability of such bikes has the ability to provide insights 
into urban dynamics at a finer granularity than is possible through analysis of 
travel card or dock-based bike scheme data. This study analyses dockless 
bike-sharing scheme in Nanchang, China over a period when a new metro 
line came into operation. It uses spatial statistics and graph-based 
approaches to quantify changes in travel behaviours and generates previously 
unobtainable insights about urban flow structures. Geostatistical analyses 
support understanding of large-scale changes in spatiotemporal travel 
behaviours, and graph-based approaches allow changes in local travel flows 
between individual locations to be quantified and characterised. The results 
show how the new metro service boosted nearby bike demand, but with 
considerable spatial variation, and changed the spatiotemporal patterns of 
bike travel behaviour. The analysis also quantifies the evolution of travel flow 
structures, indicating the resilience of dockless bike schemes and their ability 
to adapt to changes in travel behaviours. More widely, this study demonstrates 
how an enhanced understanding of urban dynamics over the “last mile” is 
supported by analyses of dockless bike data. These allow changes in local 
spatiotemporal interdependencies between different transport systems to be 
evaluated, and support spatially detailed urban and transport planning. A 
number of areas of further work are identified to better understand 
interdependencies between different transit system components. 

3.1 Introduction 

Cities are complex systems, composed of people, places, flows, and activities 
(Batty, 2013). Quantifying their dynamics, system interdependencies and 
spatial structures can characterise urban morphology and metabolism. People 
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as physical carriers, drive the flows of materials, money and information within 
urban spaces, and influence economic growth, social equity (Batty, 2013). 
Understanding the nature of these flows provides perspectives and insights 
into how socioeconomic and environmental problems such as urban 
development, transportation efficiency and air quality are being addressed 
(Borrego et al., 2006; Desouza and Flanery, 2013; Fishman et al., 2014). 

Travel data can be used as proxies for urban flows because they describe 
people’s movement. Traditionally, such data were obtained from household 
travel surveys, with high cost and time overheads. Recent research has used 
automated mass transit fare-collection data (e.g. travel cards of bus and metro 
travel), which is cheap and has high spatiotemporal granularity, to analyse 
urban flows travel behaviours and mobility patterns. However, very little 
research has considered urban morphology and metabolism. Zhong et al. 
(2014) and Gong et al. (2017) used smart card data (bus and metro) and 
graph-based approaches to quantify the dynamics of urban structures through 
the analysis of spatial networks. This characterises by medium-long distance 
travel but fails to reveal dynamics in local areas over short distances. Some 
research has used cell phone data to detect urban travel flows and some 
aspects of urban structure (e.g. home-to-work commuting structures) 
(Calabrese et al., 2011; Louail et al., 2014), but this lacks spatial detail due to 
cellular positioning, with median errors of hundreds of meters (Zandbergen, 
2009). This results in large uncertainties when inferring people’s movement 
over shorter distances. Thus, much previous work has examined broad scale 
urban flows, but with little consideration of finer scale “capillary” flows. These 
are characterised by non-motorised trips (walking, cycling), and they have the 
capacity to reveal the nature of urban flows over the “last mile”.  

This study examined dockless bike-sharing data from Nanchang, China over 
the period when a new metro line came into operation and compared “before” 
and “after” to reveal changes in travel behaviours, mobility patterns and flows 
over the last mile through spatial and analyses of dockless bike usage. 

3.2 Background 

Bike-sharing schemes have become increasingly popular in recent years, 
reflecting their environment friendly, low cost and convenient nature. They are 
understudied, with research focused on cycling behaviours associated with 
dock-based bike-sharing schemes. Vogel et al. (2011)  examined 
geographical clusters of docking stations using spatiotemporal usage. Others 
have identified bike fleet rebalancing strategies for different types of stations 
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and quantified links between bike demand and land use (Daddio and 
Mcdonald 2012; Jiménez et al., 2016; Kaltenbrunner et al., 2010; O’Brien et 
al., 2014).   

However, bike-sharing schemes can play an important role in examining the 
“first/last mile” problem. This is the distance between home/workplace and 
public transport that is too far to walk (Fishman, 2016; Saberi et al., 2018; 
Shaheen et al., 2010), and bike schemes provide access to other forms of 
public transport and mass transit (train, metro, bus etc.): they act as the 
“capillaries” for the mass transit aorta. The advent of dockless bike schemes 
opens up the opportunity to examine the last mile in detail.  

To understand the last mile using bike data, the provision of other transport 
systems needs to be considered as well. Many studies have examined how 
cycling and metro trips are combined (Martens, 2007; Lin et al., 2017), how 
this varies for different socio-economic groups (Zhao & Li 2017), are affected 
by pricing (Lin et al., 2017) and has sought to quantify the interdependencies 
between bike-sharing schemes and metro systems (Ma et al., 2015; El-Assi 
et al., 2017; Ding et al., 2019). Most of these studies have found a positive 
correlation between metro stations and bike-sharing trips, but some have 
questioned this (e.g. Tran et al., 2015) and suggested that underlying land use 
patterns drive bike trip (residential, industrial and commercial). Overall, these 
studies have focused on sharing trips preference, bike trip spatial clustering 
around other transportation hubs (metro, tramway and railway stations), and 
have ignored flows and structures in the last mile. Examining the relationships 
between bike and transportation flows and structures can lead to a deeper 
understanding of urban dynamics. Saberi et al. (2018) analysed 
spatiotemporal statistics and network (graph structure) properties of bike-
sharing trips to examine the impact of metro strikes, identifying increases in 
bike use (numbers and trip distances). Chen et al. (2016) constructed a 
framework to predict the short-term over-demand periods for sharing bike 
station clusters considering of metro delay. Both studies used data from dock-
based bike-sharing schemes. These have a number of important 
shortcomings, including service coverage (e.g. bikes may not be available in 
the suburbs), docks may have large distances from the actual 
origin/destination (OD), and there can be dock capacity/availability issues. 
Thus the inference derived from analyses of these data are limited.  

The development of the IoT (Internet of Things) has the potential to 
revolutionise many aspects of our lives which are increasingly connected and 
sensed, generating large volumes of data with location and temporal 
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attributes. In bike-sharing schemes, dockless bikes emerged around 2015 and 
rapidly became a success in a number of countries, including China (iiMedia 
Research, 2017; Xu et al., 2019). Unlike traditional bike-sharing schemes 
where bikes can only be borrowed and returned at docking stations, dockless 
schemes enable users to locate and borrow bicycles via a smartphone app, 
returning them to any suitable public location. Dockless schemes allow 
convenience and flexibility for users. The smart lock system and GPS unit on 
the bikes not only facilitate scheme operation and bike management, but also 
create a large quantity of spatiotemporal individual level data. An advantage 
over data from traditional dock-based bike-sharing schemes, is that the flows 
captured by the data are more detailed (i.e. with higher spatial granularity) and 
better capture people’s actual activities, travel demands and behaviours. 

Dockless bike-sharing studies are few and have focused on bike fleet 
management (Pal and Zhang, 2017), planning of related infrastructures (Bao 
et al., 2017), and bike distribution patterns (Liu et al., 2018). Liu et al. (2018) 
proposed combining a factor analysis and convolutional neural networks for 
inferring dockless sharing bike distribution in new cities. However, this work 
treated these spatial distributions as a temporally static problem and ignored 
any temporal changes over time. Other studies (Ai et al., 2018; Xu et al., 2019; 
Yang et al., 2018) have shown that bike distribution is significantly time-
dependent, especially around metro stations, suggesting that dockless bike 
flows and activities are highly dynamic. Zhang et al. (2019) developed a 
framework for planning geo-fences to constrain dockless bike parking. 
Clustering analysis and location-allocation models were applied to assess the 
implications of spatial planning of geo-fences in different scenarios. While this 
framework incorporated spatial detail, it lacked explanatory social and 
economic information, for example, related to the cost of geo-fences and 
punishment/reward of parking bikes outside / inside geo-fences. Zhou et al. 
(2018) used questionnaires to examine attitudes over the effects of dockless 
bikes on metro commuting. Their results showed a significant positive 
influence, especially for non-motorised vehicle owners and metro stations 
outside city centres and highlighted the positive role of such schemes in mass 
transit systems.  

Analyses of data from dockless bike-sharing schemes have the capacity to 
provide high resolution insights into people’s non-motorised mobility patterns 
and behaviours and to reveal their relationship with other urban structures and 
processes, for example, flow networks in other mass transit system (e.g. 
metro), urban infrastructure development (e.g. new train stations, new bridge) 
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and related urban updates. Critically such data allow such relationships to be 
examined dynamically over the last mile. 

3.3 Study area and data 

3.3.1 Study area 

Nanchang in southeast China is the capital city of Jiangxi province with a 
population of 2.15 million. The city has a typical humid subtropical climate, 
characterised by hot and humid summers and mild winters. It has two metro 
lines as of September 2017. A new line of 17 stations, Metro Line 2, opened 
and started running on August 18, 2017. Figure 3.1 shows the transit map of 
Nanchang with the Gan river running through the city and the two metro lines. 
Other public transit systems include bus and dockless bike-sharing. This study 
analysed data of around 80,000 dockless bikes from the Nanchang urban area 
around the time of the opening of Metro Line 2, specifically to compare bike 
usage “before” and “after” the opening of the new metro line. 

3.3.2 Data description 

A program was set up to collect dockless bike availability data via the bike 
scheme API (application programming interface) for the month of August 
2017. Queries to the API can return bike availability for any specified location 
(point), returning information on bike identifiers and their coordinates, with an 
in-built limit of the nearest 30 available bikes. The program iterated through 
the whole urban area collecting data on bike availability on a raster grid of 
0.0015 degrees (length of sides equals to approximately 150 m). Most 
available bikes locations across Nanchang were captured approximately 
every four minutes due to the large urban area and the API query limits. There 
were some gaps in coverage due to bike GPS and communication unit signal 
receiving problems (e.g. GPS does not function well in tunnels). The data 
include bike ID (identifier), coordinates and timestamp information. Figure 3.2 
(a) shows a snapshot of dockless bikes in Nanchang, with each point 
representing an available dockless bicycle. 
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Figure 3.1  Study area of Nanchang, China. (source: OpenStreetMap)  

 

Extreme weather conditions have been found to have significant negative 
effects on cycling activity (El-Assi et al., 2017; Zhou et al., 2017). To ensure 
consistency across both time periods, only data from rain-free days were 
analysed, with weather data from wunderground.com (one meteorological 
station, every 3 hours). Although other conditions (e.g. air condition, 
temperature) may have minor impacts on bike usage, these were relatively 
consistent over the study periods. Data for five weekdays before and five 
weekdays after the opening of the new metro line were selected for analysis, 
with all data collected in the same month and under the same general weather 
conditions on rain-free days. 

Table 3.1 shows an example of the data collected, and table 3.2 shows the 
dates of the data used in the analysis. Open Street Map data were also used 
to provide basic background mapping and road network data.  
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(a) (b) 

Figure 3.2 (a) Snapshot of dockless bike distribution; (b) detecting bike trips. 

 

Table 3.1 Example of data records. 

Time Bike ID Longitude Latitude 

2017-08-07 
13:35:29 

7910***002 115.9190 28.61415 

2017-08-07 
13:35:29 

7910***748 115.8367 28.78435 

2017-08-07 
13:35:29 

7910***911 115.8369 28.78446 

 

Table 3.2 Date of collected data. 

Period Day of week Date 

Before 
Monday, Tuesday 7, 8 August, 2017 

Wednesday -Friday 2, 3, 4 August, 2017 

After Monday- Friday 21-25 August, 2017 

 

3.4. Methods 

3.4.1 Detecting bike trips 

The data provide snapshots of available dockless bike locations, bike identifier 
and timestamps. From the stacks of snapshots, it is possible to identify the 
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changes in location of an individual bike and thus to derive dockless bike trip 
information. For this study, the threshold trip value was 100 metres: if the 
change in location of an available bike between two timestamps exceeded this 
threshold, then the two records were linked as a trip, with the earlier one 
providing the origin coordinates, and the latter one the destination. It should 
be noted that this method is unable to identify round trips where the origin is 
close to the destination. Figure 3.2 (b) shows an example trip. The bike 
changes its location from t1 to t5, which are combined to form a bike trip. It 
stays in the same place from t5 to t9 and is considered as available in this 
period. Similarly, a second trip can be identified from t9 to t10. The dockless 
bike-sharing scheme also allows bikes to be scheduled (booked) in advance 
of 15 minutes, but this still allows trip origin and destination to be identified, 
although with a small impact on trip duration. 

3.4.2 Constructing dockless bike mobility graph (network) 
structure 

Converting the bike data into a graph structure to represent flows allows the 
changes arising from the introduction of a new metro line to be examined. 
Typically, any system composed of interconnected individuals can be viewed 
as a graph (i.e. network) with individual components are represented by nodes 
(i.e. vertices) and their interconnections by arcs or links (i.e. edges). Examples 
include online friendship networks, scientific collaboration networks and global 
airline routes. In urban and transportation studies, bike-sharing docking 
stations (Austwick et al., 2013), bus stops and metro stations are typically 
viewed as nodes. If there is at least one trip between a pair of nodes (stations), 
then a link is generated between them. By representing the relationship 
between transportation nodes (e.g. bike/bus/metro stations) as travel flow 
links, mobility graph structures can be constructed. For example, Saberi et al. 
(2018) studied the dynamics of the bike-sharing scheme in London, casting 
docking stations as graph nodes, and flows between stations as links. 
However, dockless bike-sharing schemes provide greater spatial detail about 
the patterns of bike movements and therefore their riders than docking station 
data. Because bikes and bike trips are not aggregated over docking stations, 
constructing graphs of dockless trips requires different considerations. Figure 
3.3 (a) shows an example of bike trip origins in an urban area. Instead of being 
located at fixed docking stations, they are more loosely distributed along 
roads, and sometimes clustered at certain road segments. Figure 3.2 (a) also 
confirms that the majority of the bikes are located close to roads, with few of 
them distant to the road network in the north and southeast. These are 
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locations outside the Nanchang urban area, and distant from the metro 
system.  

This study uses road segments to aggregate bike locations and to cast them 
as vertices in a graph structure. The graph links represent trips originating 
from one road segment to another. Choosing the right spatial scale of 
aggregation is important because this can impose a source of bias in spatial 
analysis, i.e. the MAUP (modifiable areal unit problem) (Openshaw, 1979). 
Some research (Calabrese et al., 2011; Louail et al., 2014) using cell phone 
data to detect commuting flows in cities choose grid cells to aggregate flow 
origin and destinations with size varying from 500 m to 2 km. These scales 
may be useful for capturing work-home commuting flows and inferring coarse-
scale urban structure, but here the focus was on identifying more spatially 
detailed structures in small areas requiring a finer spatial scale. Figure 3.3 (b) 
reveals that trip distances are commonly around 400 m and that 28% of trip 
O-D distance are less than 500 m, with 1km and 2km distances corresponding 
to 60% and 85% of trips respectively. Here, road segments of 200 m were 
used to aggregate dockless bike flows, since this distance captures most of 
the trips. More than 96% of bike travels’ distance are larger than 200 m, so 
this threshold should be sufficient to capture all the flows between different 
segments, while larger distance (such as 400 or 600) may lead to a higher 
level of information loss. 

The choice of using grid cells or road segments is relatively arbitrary and 
depends on the local characteristics of the road network, urban morphology 
and the people’s mobility pattern. In the case study area of Nanchang, the 
service catchment of the new metro line does not have a dense road network, 
especially around the more rural end of it. Therefore, using street networks 
can help aggregate the movement more effectively, also avoid using a large 
number of grid cells to construct a large and sparse graph. The work of Gao 
et al. (2020) assessed the scale impact and MAUP of dockless bike trip 
aggregation using different aggregation units, size ranging from 100 m to 1000 
m, with an interval of 100 m. The result (Gao et al., 2020) suggested that road 
length is the most stable factor under varying scales. In other words, the work 
of Gao et al. (2020) implied that road segments of equal or similar length could 
be a very suitable choice for aggregating dockless bike-sharing trip origins 
and destinations. 

Figure 3.4 illustrates the process of casting bike trips to a graph using road 
networks as nodes. First, the Nanchang road network was split into segments 
based on road joins. Second, if a split segment was longer than 200 m, then 
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it was divided into smaller segments of equal distance, all less than 200 m. 
Then, bike trip origin and destination were assigned to the nearest road 
segment. The result is that each trip has information about its origin and 
destination road segment, with a trip regarded as a flow from one node to 
another.  

 
 

(a) (b) 

Figure 3.3 (a) Examples of bike trip origin spatial distribution; (b) dockless 
bike trip distance probability distribution. 

 

 

Figure 3.4 Diagram of creating graph nodes from the road network. 

 

Dockless bike travel flows and the graph structures in the “before” period (5 
days) are shown in figure 3.5, using a spatial layout and a Fruchterman 
Reingold layout. Each node represents a short road segment with the edge 
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between any two nodes indicating travel flow between them, and the graph 
was trimmed using a threshold of at least ten trips between two nodes, to 
improve the visualisation. Figure 3.5 characterises nodes degree (number of 
connections) using both shading and node size. Node degree in an urban 
mobility network represents the connectivity or accessibility to destinations or 
activities across the network. In this case study, bike travel is split by the river, 
with few links crossing it (figure 3.5 a). Most of the trips are local, with most of 
the links connecting nearby areas (figure 3.5 a), and the graph structure has 
a clear multi-core (multi-cluster) spatial pattern. This is different to graph 
structures derived from other transportation modes such as metro and bus 
travel (e.g. Zhong et al. 2014) which tend to link different parts of the city over 
longer distances. The Fruchterman Reingold layout (figure 3.5 b) seeks to 
reduce the overlaps between nodes and maintain spatial topology. For 
example, two clusters of nodes presented in figure 3.5 (c) and (d) are shown 
in figure 3.5 (e) and (f), respectively. The group of nodes in figure 3.5 (c) and 
(e) are dominated by two nodes connected to surrounded nodes with low 
degree, while figure 3.5 (d) and (f) suggest a group of more evenly connected 
nodes. The structures imply many different patterns of how people move 
around and use urban space. 

 

Figure 3.5 Dockless bike travel flows and graph structure of “before period”. 
(a) Spatial layout; (b) Fruchterman Reingold layout, with detail in (c) to 
(f) as described in the text. 
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3.5 Result and discussion 

3.5.1 Spatiotemporal analysis 

3.5.1.1 Temporal pattern  

Temporal analysis of bike usage can reveal the dynamics in and 
characteristics of dockless bike-sharing schemes. Figure 3.6 (a) shows the 
temporal travel patterns of dockless bike trips in Nanchang (whole study area) 
with the highest daily temperature. Trip amount is the count of trips starting at 
different times in hourly intervals. Over the two periods, bike usage shows a 
similar overall temporal pattern with some difference in trip numbers. There 
are two significant rush hours each day, one from 07:00 lasting for two hours 
and another around 18:00, with the hourly trip number reaching approximately 
19,000. There is also a lunchtime peak at 12:00. The trip amounts overlap 
with the exception of Monday at 12:00, when it is slightly lower, which is 
potentially due to the hotter weather (38°C) than any other days (figure 3.6 a). 
The total trip amounts for the two periods is 838,464 and 892,764, 
respectively, an increase of 6.5%. 

 

 

(a) 

 
(b) 

Figure 3.6 Temporal pattern of dockless bike trips in (a) Nanchang city; (b) 
around new metro service catchments. 

  

Figure 3.6 (b) defines service area catchments of 2 km around new metro 
stations. Trip amounts in these catchments increased by 28.0%, from 96,239 
to 123,182. The highest rise was found in the early morning with 38.5%, 38.0% 
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and 31.3% in the hour intervals from 06:00-09:00, respectively. There are also 
substantial increases in the afternoon peak. The observations indicate the 
popularity of trips using the new metro with dockless bike as a preferred travel 
mode during morning and afternoon commuting. 

3.5.1.2 Spatial pattern 

Dockless bike-sharing scheme offers flexibility, efficiency, and low cost 
making it an attractive way to fill the gaps in the public transit system (such as 
bus and metro). Bike-sharing travel has different spatial properties from other 
public transit modes, due to its non-motorised nature. For example, dockless 
bikes are not suitable for long distance travel, but they can be left immediately 
adjacent to the destination. Understanding the unique spatial pattern of 
dockless bike usage is important for scheme management (bike rebalancing) 
and the interdependence between metro and dockless bike system provides 
crucial information about local mobility. A spatial analysis was conducted to 
examine the characteristics and dynamics of dockless bike-sharing scheme 
in the study area. Figure 3.7 (a) shows the dockless bike trip kernel density 
across the city in the five weekdays of the before period based on trip origins. 
A KDE bandwidth of 118.2 m was determined as follows: 

          𝑏𝑎𝑛𝑑	𝑤𝑖𝑑𝑡ℎ = 0.9 ∗ min >𝑆𝐷,O &
/0(,)

∗ 	𝐷3@ ∗ 𝑛45.,             (3-1) 

where SD is the standard distance of the points spatial distribution, Dm is the 
median distance, and n is the number of points. The KDE has a 100 meters 
resolution. 

The city centre from where most trips originate, straddles both sides of the 
river, and it has the highest kernel density. Several hubs can also be observed 
in the south, away from the city centre and the metro service. 

Figure 3.7 (b) shows the changes in kernel density estimation (KDE) between 
the two periods. The highlighted area in figure 3.7 (b) shows the new metro 
service catchments west of the river. It shows a clustering pattern of increased 
density. By contrast, in other parts of the city, areas of increased bike use are 
adjacent to or nearby to areas of decrease, suggesting an overall balanced 
and dynamic pattern. The observed spatial proximity between increase and 
decrease is due to the nature of dockless bike-sharing scheme: people are 
able to pick up and park bikes at places of their choice when necessary, 
subject to availability. The flexibility of travel is demonstrated by heterogenous 
use patterns, especially at fine spatial scales. 
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(a) (b) 

Figure 3.7 (a) Kernel density of dockless bike trips in “before period”; (b) 
kernel density difference of dockless bike trips in the two periods.  

 

To better understand the impact of the new metro service on dockless bike-
sharing trips, a further statistical analysis was conducted to examine the 
probability density of dockless bike origin/destination spatial distribution. 
Figure 3.8 (a, b) illustrates the probability and cumulative probability of start 
and end distances from the newly opened metro stations.  

 

  

(a) (b) 

Figure 3.8 (a) Probability density; and (b) accumulative probability of distance 
between dockless bike trip origin/destination and nearest new metro 
station in the two periods. 
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In figures 3.8 (a), a new peak at around 120 metres in the “after” period is 
observed, which suggests that more bike trips originate from or end at areas 
very close (around 120 m) to new metro stations. This distance (120 m) can 
also be understood as how far metro travellers are typically walking to get or 
leave bikes around their metro usage. The first peak (figure 3.8 a) decreases 
and reaches a floor around 220 m, indicating weakened spatial clustering of 
bike trips origins and destinations. This distance can be interpreted as the 
affordable (walking distance) limit between the metro station and the bike, and 
provides information to support the planning of related bike parking facilities, 
suggesting in this case an upper limit for the provision of bike parking areas 
around the metro stations. The highest peak in the “before” period is located 
at around 800 m, but moves to 600 m in the “after” period (figure 3.8 a), 
suggesting the impact of the new metro stations on bike usage. The 
cumulative probability (figure 3.8 b) indicates that this impact is 
heterogeneous, with higher cumulative probability in areas at shorter 
distances to new metro stations in the “after” period. Figure 3.7 and 3.8 
indicate the extent to which the areas closer to new metro stations 
experienced greater changes in daily dockless bike trips, in terms of distances 
people walked to get a bike and volume of trips.  

Metro services not only change where people pick or park their bikes, but also 
influence local trip distance patterns. Building on the results in figure 3.8 (a), 
buffers of 250 m and 2000 m around new metro stations were used to select 
bike trips with origin or destination within them. Trips that start or end in the 
250 m buffer can be understood as “last mile” trips, and trips in the 2000 m 
buffer capture flows within the metro service catchment area, indicating 
changes over larger areas. The travel distance patterns were examined their 
distributions compared (figure 3.9).  

Figure 3.9 (a, c) indicates that bike trip counts increased significantly in both 
buffer zones and that the new metro service stimulated more trips, especially 
short bike travels. Figure 3.9 (b, d) describes the changes in probability 
distributions and indicates that trips with a travel distance of less than 1,000 
m are more likely to be made with the introduction of the new metro service 
and long distance trips (greater than 1,000 m) less likely. t-tests were used to 
confirm the difference in dockless bike trip distances in the two periods (table 
3.3) for the two trip types. The p-values in each case are less than 0.001, 
indicating the statistical significance of the observed reduction in trip distances 
with the introduction of the new metro line. Mean travel distance dropped from 
1178 m to 1034 m for “last mile” trips, and trips in the larger service areas 
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around new metros (radius of 2000 m) significantly decreased from 1317 m to 
1150 m. Overall, the results suggest that new metro stations encouraged 
increases in cycling activity but with reduced trip distances, indicating 
improvements in local mobility and access to transportation services. 

  

(a) (b) 

  

(c) (d) 

Figure 3.9 Distributions of dockless bike trip travel distance around new metro 
stations over the two periods: (a) Density distribution (buffer within 250 
m); (b) probability density (buffer within 250 m); (c) density distribution 
(buffer within 2000 m); (d) probability density (buffer within 2000 m). 

 

Table 3.3 t-test for travel distance (m). 

buffer 
radius 

p-value 
mean value 95% confidence interval 

before after before after 

250 < 0.001 1178 1034 1059-1297  865-1203 

2000  < 0.001 1317 1150 1160-1473 973-1327 
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3.5.2 Graph-based analysis 

Interpreting the changes in flow networks is important for understanding 
changes in mobility patterns and urban dynamics. Graph-based approaches 
were applied to quantify and compare the differences in the network 
structures. Firstly, two graph structures were constructed based on bike travel 
flow data for the two periods according to the method described above. Only 
trips with their origin and destination road segments in the 2000 m buffers 
around metro stations were selected, as this was considered the maximum 
distance people would travel using the combination of dockless bike and 
metro. 

3.5.2.1 Network (Graph) statistical properties 

Table 3.4 shows the network (graph) properties in the new metro service 
catchments. From the table, some changes between the two periods can be 
identified: the number of nodes increased from 984 to 1064, and the number 
of edges increased from 34948 to 41967. Network connectivity, δ, 
representing graph structure resilience, the higher value suggests its 
robustness in the graph structure to against disruptions of potential nodes 
failures.  

Table 3.4 Graph properties in the two periods. 

Properties Before After 

Number of nodes (N) 984 1064 

Number of edges (L) 34948 41967 

δ = 2L/N2 0.072 0.074 

Total Flux 85393 111920 

Mean Node flux 173.6 210.4 

Mean node degree 71.0 78.9 

Variance of Node flux 343.2 385.6 

Variance of Node degree 87.9 90.8 

Mean clustering coefficient 0.6455 0.6560 

Node degree helps evaluate the connectivity to and accessibility of 
destinations in a mobility graph (Zhong et al., 2014). Table 3.5 confirm the 
significance of the changes in node degree, with the mean value increasing 
from 71.0 to 78.9. Figure 3.10 (a) shows the CDF (Cumulative Density 
Function) of node degree in the two periods, both of them follows the power 
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law, and the pattern implies a higher probability of observing a node with larger 
degree in the “after” period than “before”. The node flux of the graph, evaluate 
the total amount of trips that start from or end at a node, can be used to 
understand trip volumes. The rises in both total and mean flux (table 3.4 and 
3.5) indicate that the demand for dockless bikes in local areas increased. The 
node flux CDF in figure 3.10 (b) also confirms this finding, indicating a higher 
probability of larger weights links. These changes describe the increased 
attractiveness of road segments, as well as their interaction strength in 
connection to other segments in the network. Node flux variability (table 3.4) 
increases from 343.2 to 385.6, the significant (p-value<0.001 as shown in 
table 3.6) rise indicates a more heterogeneous distribution of interaction 
strength across the network. Clustering coefficient (table 3.4) represents the 
extent to which nodes in a network tend to cluster (i.e. have links between 
them) (Saberi et al., 2018). Its average value shows an increase after the new 
metro opening, suggesting that the dockless bike trip network became more 
locally connected. 

  

(a) (b) 

  

(c) (d) 

Figure 3.10 Cumulative Density Function of graph properties; (a) degree; (b) 
flux; (c) betweenness; (d) PageRank. 
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Table 3.5 t-test for degree and flux.  

graph 
property 

p-value 
mean value 95% confidence interval 

before after before After 

degree 0.046 71.0 78.9 65.5-76.5 73.4-84.3 

flux <0.001 173.6 210.4 152.1-195.1 187.2-233.6 

Alternative hypothesis is true: both true differences in means of degree and flux are not equal 

to 0. 

 

These results suggest that the dockless bike-sharing mobility network became 
denser and more heterogeneous after the opening of the new metro service. 
Similar patterns are evident in other graph properties. Firstly, changes in 
betweenness centrality were examined through “node betweenness” 
(Newman, 2005) rather than “edge betweenness” (Girvan & Newman, 2002). 
Node betweenness represents the extent to which nodes stand between each 
other in a graph, or serve as a bridge from one part to another (Newman, 
2005). In the context of urban studies, this measure can identify hubs in flow 
networks (Zhong et al., 2014). Figure 3.10 (c) shows the cumulative probability 
of node betweenness centrality, and it indicates that the probability of low 
betweenness nodes dropped, while the probability of higher betweenness 
nodes increased. The pattern implies that nodes with higher levels of 
connectedness have a more intensive role in the “after” graph, which suggests 
the emergence of well-connected hubs. 

Table 3.6 Variance test for degree and flux difference. 

graph 
property 

p-value 
ratio of variances 

(before divide after) 
ratio of variance (95% 
confidence interval) 

degree 0.2989 0.9369 0.8289-1.0595 

flux <0.001 0.712 0.630-0.805 

Alternative hypothesis (flux) is true: the true ratio of variances of flux is not equal to 1. 

 

PageRank is another indicator of graph node importance. Generally, if the 
number of highly centred nodes (with very high PageRank) decreases while 
the number of secondary PageRank nodes increases, then this implies a 
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polycentric change. These suggest that the influence of strongly centred 
nodes has gradually relaxed with their centrality increasingly shared with 
emerging subcentres (Zhong et al., 2014). Figure 3.10 (d) shows the CDF of 
PageRank, the “after” period exceeds the “before” period at around 0.75 of 
the cumulative probability (y-axis) and indicates that nodes are more likely to 
have secondary high PageRank, suggesting underlying polycentric 
transformation. The next two sections reinforce this finding by detecting 
community structures in graphs, as well as interpreting od flow changes. 

Table 3.7 shows the result of Kolmogorov-Smirnov test to investigate the 
changes of the four graph indices as presented in figure 3.10. All p-values are 
smaller than 0.05 and confirmed the changes are statistically significant.  

Table 3.7 Kolmogorov-Smirnov test results. 

Graph Property d-value p-value 

Degree 0.062099 0.03879 

Flux 0.077167 0.004538 

Betweenness 0.076525 0.00502 

PageRank 0.066294 0.02236 

 

3.5.2.2 Community detection and graph structure 

Communities in a dockless bike-sharing mobility graph can be understood as 
a set of road segment clusters (graph subsets, or sub-graphs) that are more 
connected by trips internal to the cluster than external. This difference in 
internal and external connections in clusters is measured by modularity 
(Newman and Girvan, 2004). A modularity maximisation algorithm, the 
Louvain method (Blondel et al., 2008), was applied to detect the communities 
in the dockless bike network. Modularity characterises the density of edges 
inside potential communities relative to edges outside of the community. 
Networks with high modularity have dense connections between community 
members but sparse connections with nodes in different communities. 
Optimising this value theoretically results in the best possible segmentation of 
the nodes in a given graph structure. The Louvain method first finds small 
communities by optimising modularity locally on all nodes, then each small 
community is grouped into one node, and the first step is repeated in an 
iterative way. 
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Figure 3.11 shows the different communities detected in the two periods using 
colour shades. Although the analysis does not include node (road segment) 
location, the communities are spatially coherent, suggesting considerable 
spatial structure in this graph. The introduction of new metro stations resulted 
in the emergence of new communities in the graph structure (figure 3.11). One 
is located around the transfer station in the north, and another can be found 
near the centre of the network and demonstrates the impact of a new metro 
line on the structure of dockless cycling activities. Combined with the changes 
in other graph properties, it is possible to conclude that the new metro 
catchment area results in more bike trips and forms stronger local travel 
connections, which are more polycentric.  

Another important indicator graph structure is assortativity. This describes the 
tendency of high degree nodes (nodes with many edges), to connect to other 
high degree nodes. For example, the structures in figure 3.5 (d) and (f) have 
higher assortativity than the structures of figure 3.5 (c) and (e). Structures with 
high assortativity are more robust to node removal or failure. Assortativity 
increased from 0.1832 to 0.2895 after the introduction of the new metro 
service, along with a slight increase in modularity, from 0.3236 to 0.3733. 
From a transportation perspective, the rise in the two indicators suggests that 
the new network alleviates congestion and enhances the efficiency of travel 
by non-motorised traffic (discussed in Sun et al., 2012). Here, the evolution in 
graph structure shows a quick self-adaptive process that meets the increasing 
and changing patterns of travel demand and traffic flows, and strongly implies 
underlying urban resilience. Whether the performance of the network will 
deteriorate with future increases in network size or a dramatic rise in trip 
numbers, remains to be seen. From the perspective of “urban metabolism”, 
the assortative structure suggests a robust spread and interaction of various 
urban flows of information, capital and materials through non-motorised traffic, 
but may also pose future challenges, for example, in the context of protecting 
against the spread of epidemics. 
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Figure 3.11 Communities of road segments for dockless bike-sharing trip in 
two periods. 

3.5.2.3 Flowmap 

A final exploration of the changes in bike flow through flow maps is shown in 
figure 3.12. This illustrates bike travel origin or destinations in the 2000 m 
buffers, and the colour shades are used to indicate trip frequency between 
different road segments, connected by the directed links. Several important 
differences can be observed, especially in areas close to the new metro 
stations. For example, Cuiyunlu, Xuefudadaodong, Wolongshan and 
Guotizhongxin stations all show large changes in flow and structures. These 
stations resulted in many new outward flows and regions of high trip 
destination density. The flows “i” and “ii” in figure 3.12 (a) suggest that bike 
users travel long distances from their origins to destinations in the “before” 
period, but these flows disappeared in the “after” period (figure 3.12 b). This 
is because travellers used the metro service instead of taking long-distance 
cycling trips, implying local mobility improvements. In the before period, there 
are many travel flows on the east of Yingtanjie Station (a large residential 
area). After the opening of the new metro service, more bike travel flows 
extended from and linked to Yingtanjie station, indicating that residents quickly 
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changed their travel habits and started to combine dockless bikes trips with 
metro travel. 

 

 

(a) (b) 

Figure 3.12 Flow maps of dockless sharing bike trips in new metro service 
catchment, (a) “Before” period; (b) “After” period. 

3.6 Conclusion 

In order to capture the impact of metro service on the dockless bike-sharing 
system, this study applied a combination of geo-statistical and graph theory 
approaches. The analyses led to an in-depth understanding of the interaction 
and evolution of urban behaviours around non-motorised activity, by 
considering the changes in the spatial patterns of dockless bike-sharing as a 
result of a new metro line. The new metro service increased nearby dockless 
bike-sharing demand by 28%, and resulted in changes in other spatiotemporal 
patterns of travel behaviours, including bike travel distance and bike origin-
destination spatial distributions. The observed changes in travel were not 
homogenous across the study area, with greater impacts closer to new metro 
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stations. The dynamics and evolution in the graph structure capture the urban 
resilience of dockless bike schemes that are able to adapt to infrastructural 
changes such as new metro systems. Dockless bike trip structure has a 
tendency towards being polycentric (i.e. with more community structures), 
stronger local connectivity, higher assortativity reflecting increased travel 
demand and scheme robustness. This insight is not only useful for dockless 
bike-sharing schemes, but also provides a new perspective for the analysis 
on urban resilience and the interdependence between different urban complex 
systems. Observations from flow maps can be used to indicate improvements 
in local mobility, and the speed of adaption by people to combine dockless 
bikes for metro travels. 

A number of policy and planning implications emerge from this study. First, it 
is important for bike-sharing operators to prepare more bike fleets in the new 
metro service areas as demand will increase. Second, bike parking facilities 
need to be planned around metro stations over distances up to 220 m. Third, 
analysis of the changes in the origin-destination and network structure can 
help to reveal which locations (roads) are more frequently used by bike users, 
thus supporting related planning. Last, bike fleet rebalancing strategies need 
to be redesigned to adapt to changes in flows.  

There are several limitations to this work. First, it used short road segments 
(less than 200 m) to aggregate bike travel flows, which, although selected 
through analysis, may be specific to this study. Another analysis based on 
hexagon grid cells (size of 1 square km) has also been conducted and 
presented in the previous work of Yang et al. (2018); similar results and 
patterns in graph indices (e.g. degree and strength) has been found, which 
suggested that the findings are relatively robust under different travel 
aggregation methods and scale. Second, the study analysed data from a 
limited number of days. Climate (rainy days in summer) and the timing of the 
school year (the new term starts in September) were the major reasons for 
excluding data in order to minimise the variance of environmental factors. The 
changes in bike travel behaviours and associated flow structures could be 
confirmed if data for a longer period was available and through analysis of a 
similar case study area, with newly opened metro lines. Third, the data 
acquisition (section 3.3.2) procedure is only able to obtain information about 
the nearest 30 available bikes for each location, at each query. This potential 
data loss, if more bikes are available in that small area, introduces uncertainty 
into the analysis and results. Such shortcoming is also found in other dockless 
bike-sharing research (e.g. Shen et al., 2018; Liu et al., 2018; Ai et al., 2018). 
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However, since the data are consistent over the two periods, with similar 
sampling characteristics and uncertainties, the findings from “before” and 
“after” the new metro line are comparable. Finally, although dockless bike-
sharing data provide a better representation of non-motorised travel behaviour 
than cell phone data, there is an inherent sampling bias because not all city 
inhabitants will be cyclists or will use a bike-sharing scheme. Future work will 
examine these issues further and will extend the analysis to integrate urban 
context, in order to develop a deeper understanding of the implications of 
changes in spatiotemporal patterns and graph structure evolutions. It may also 
examine the long-term spatiotemporal effects of new metro stations on 
dockless bike-sharing whose future patterns may change over time, as a 
result of deeper integration of the two travel systems. 
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Chapter 4 
Understanding the impacts of public transit disruptions on 

bike-sharing schemes and cycling behaviours using 
spatiotemporal and graph-based analysis: A case study of 

four London Tube strikes 

 

Abstract  

Understanding the interactions between different travel modes is crucial for 
improving urban transport resilience, especially during times of disruptions 
and transit failures. As a flexible and sustainable travel mode, bike-sharing 
schemes are able to solve “first/last mile” problems in urban transit as well as 
provide an alternative to motorised traffic. This paper uses OD (origin and 
destination) trip data from the London Cycle Hire Scheme and temporal 
docking station bike availability data to explore the impact of four separate 
London Underground (Tube) strikes on bike-sharing usage and behaviours. 
The results suggest that bike-sharing usage generally rises in response to 
Tube disruptions, but the extent and nature of this rise in use varies according 
to the type of disruption. A novel measure of station pressure suggests that 
the scheme very quickly reaches saturated capacity and is unusable in certain 
parts of London during disruptions. A graph-based analysis reveals several 
changes in OD flow structures. This implies a modal shift from Tube to bike-
sharing and a change of route behaviours amongst bike-sharing users. 
Weekday Tube strikes bring new behaviours and new OD pairs to the bike 
flow structures, whilst for weekend strikes, existing patterns are consolidated. 
The corollary is that more heterogenous OD trip patterns are introduced by 
higher volumes of commuting trips and intense competition of cycles/docks. 
Cyclists are forced into using alternative (second or third preference) docking 
stations with new behaviours, and possibly users, as journeys that would 
otherwise be made via the Tube are made via bike-sharing. Overall, this work 
comprehensively presents and compares the impacts of Tube strikes under 
varied circumstances and offers a detailed understanding of the changed 
cycling behaviours that could be used in transport planning and management. 
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4.1 Introduction 

Public transit disruptions have become more frequent in recent years due to 
the increasing maintenance needs of ageing infrastructures, natural disasters 
as well as social and political events such as city-wide festivals and strikes 
(Zhu et al., 2017; Gonçalves et al., 2020; Rahimi et al., 2020). Such events 
and disruptions can significantly affect the resilience of transportation 
systems. Disruptions have many different consequences across the transport 
network, and characterising them, as well how travellers may respond to 
transit failures, can inform urban transport planning and decision-making. 
Among different travel modes in big cities, bike-sharing schemes are low-cost, 
highly flexible and convenient (Shaheen et al., 2013). In urban contexts, they 
fill an important gap between pedestrian and vehicular transport (Curran, 
2008), and can provide a genuine alternative travel mode when other parts of 
the transportation system experience disruptions. Previous research (Green 
et al., 2012; Zhu et al., 2017; Younes et al., 2019) has shown that disruptions 
to metro and bus systems may result in a shift to bike-sharing schemes, 
especially for low-income groups, as bike-sharing is a low-cost alternative to, 
for example, private taxi and minicab services. 

Understanding the changes in cycling behaviour during transit disruptions is 
crucial for minimising the impacts in the short-term, also benefits sustainable 
transport planning in the long-term (Dill et al., 2003; Zhu et al., 2010). Mass 
transit disruptions can prompt new behaviours and introduce new people to 
cycling. Research has shown that many new cyclists used bike-sharing in 
London during previous transit strikes (Green et al., 2012), and may have 
continued to use bike-sharing schemes subsequently (Zhu & Levinson, 2010). 
A more contemporary context is the reduced public transport capacity as a 
result of public health outbreaks, which require social distancing. This is likely 
to lead to an increase in cycling activities. Quinn (2020) predicts a multi-fold 
increase in cycling in London post-lockdown, and several plans have been 
made to overhaul the capital’s streets and public space. These include: (1) the 
rapid construction of a strategic cycling network to help reduce crowding on 
bus and metro services; and (2) the transformation of local town centres to 
allow people to walk and cycle where possible (Quinn, 2020). The impacts of 
reduced public transport on shifts to cycling may be determined from the 
analysis of historical bike-sharing data, and the results can be used to inform 
related sustainable urban and transport planning. 

During disruptions, a range of different travel behaviours emerge according to 
the spatiotemporal characteristics of the incidents. To understand the changes 
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in travel behaviours, observational data need to be analysed within their 
spatial and temporal context. Such spatiotemporal analyses have been 
published (Vertesi, 2008; Zhu et al., 2017; Saberi et al., 2018), but not in a 
comprehensive and large-scale way, partly due to data availability. Large 
transit disruptions (e.g. Tube strikes) are relatively rare events, and difficult to 
compare whilst controlling across changing explanatory variables. Previous 
work also has focused on changes in demand, i.e. related to user behaviour 
(Vertesi, 2008; Zhu et al., 2017; Saberi et al., 2018) and has not considered 
the resource supply such as the provision of cycles and cycle docks. 
Information on dock availability could provide supporting context to explain 
user behaviours and may also support bike scheme operators in their fleet 
management strategies, which include manually redistributing bikes. 

Until recently, reliable “impact” and “behaviour change” analysis has been 
problematic due to a relative lack of historical time series data. However, the 
London Cycle Hire Scheme (LCHS) has been in operation since 2010, and 
each timestamped user trip has been continuously recorded over this period. 
This greatly benefits long-term service analysis (Lovelace et al., 2020) and 
comparative studies, for example, characterising how usage and behaviours 
change in response to different events and interventions (Beecham, 2015). 

The work presented in this paper tries to address the above problems by 
examining four London Tube strike events and their impacts on LCHS using 
freely available bike OD (origin-destination) usage data and station availability 
data. These strikes have varied temporal and spatial characteristics, which 
results in distinct patterns of change in LCHS. Temporal, spatial and structural 
patterns are examined to consider the impacts of Tube (i.e. metro, 
Underground) strikes on the bike-sharing scheme. The results have the 
potential to support LCHS service provision, to guide strategies for filling 
public transport gaps, and to strengthen transit resilience. 

The structure of this paper is as follows: Section 4.2 reviews recent literature 
on bike-sharing studies related to disruptions and user behaviour, and section 
4.3 introduces the methods as well as case study. The results are presented 
in section 4.4, providing insight on user behaviour changes and scheme 
dynamics in bike-sharing due to transit disruptions. Section 4.5 summarises 
and compares the findings to those of other research, before conclusions are 
drawn (section 4.6). 



- 73 - 

4.2 Background 

Transit disruptions can adversely affect transport network reliability and bring 
substantial economic, social and safety impacts to cities and travellers 
(Wilson, 2007; Bauernschuster et al., 2017; Pregnolato et al., 2017; Yu et al., 
2020). To minimise the impacts, people may change their travel behaviours 
according to the characteristics of the disruption (Cairns et al., 2002). For 
example, a short-term disruption (e.g. transport strike or a bridge closure) may 
lead to temporary changes in travel mode, choosing alternative destinations, 
reductions in journey frequency, etc. The behaviours in response to 
disruptions may also become permanent as new travel habits emerge (Zhu & 
Levinson, 2010).  

A number of studies have analysed individual perceptions of and preferred 
reactions to transit disruption using questionnaires and survey data (Tsuchiya 
et al., 2008; Fukasawa et al., 2012; Teng et al., 2015). These suggest that 
patterns of temporary modal shifts during transit disruptions are related to 
income (Zhu et al., 2017). Different sharing-economy travel options offer new 
ways to minimise the impact of transit service failure, with wealthier people 
more likely to switch to taxis or car ridesharing (e.g. Uber, Lyft), and people 
with lower incomes choosing lower-cost mobility services such as bike-sharing 
(Zhu et al., 2017). Studies evaluating the impact of transit disruption on bike-
sharing usage are critical for mitigating the impacts for disadvantaged groups. 

Many large cities such as London have introduced bike-sharing schemes 
composed of a network of docking stations and bikes into their urban centres. 
They are used heavily by tourists and commuters, especially for short journeys 
that would otherwise be made by bus and metro (Shaheen et al., 2013). Bike-
sharing works well when linked to public transport, solving the so-called 
`first/last” mile problem in urban transit - for example, by supporting short 
connecting trips from a major transport hub to a workplace or home (Yang et 
al., 2019). The majority of bike-sharing studies can be grouped into two 
classes (Beecham, 2015): exploratory studies analysing variations in scheme 
usage related to the built and social-spatial environment (Faghih-Imani et al., 
2014; El-Assi et al., 2017); and more narrowly-focused studies developing 
algorithms for supporting fleet management and rebalancing (De Chardon et 
al., 2016). Nello-Deakin (2020) suggest that over the last twenty years, there 
has been an abundance of empirical studies with similar conclusions drawn, 
namely that urban environments with dedicated cycling infrastructure, traffic 
calming measures and moderate to high urban densities are associated with 
higher cycling rates (Nello-Deakin, 2020) and bike-sharing usage (El-Assi et 
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al., 2017). Numerous algorithmic approaches have been proposed in the 
literature to solve the traffic prediction and rebalancing problems (De Chardon 
et al., 2016; Pan et al., 2019). In contrast, there are comparatively few studies 
examining the interdependence between bike-sharing and other transit 
modes, especially during disruption events or infrastructure changes.   

Transit disruptions clearly have the most direct impact on public transport 
provision and influence bike-sharing use substantially (Chen et al., 2016). The 
work of Chen et al. (2016) combined bike-sharing usage data in New York 
with event data from multiple sources (Twitter, traffic data live feeds) to rank 
the impact of various social and transportation events on bike-sharing. They 
suggest that metro delays have a much larger impact on bike-sharing use than 
other disruption events such as surface road congestion and restrictions. 
Metro strikes (or closure for maintenance) are not included in Chen et al. 
(2016) ’s events data set, and it is reasonable to speculate that they may have 
a higher or at least similar level of influence on bike ridership. This is due to 
the fact that strikes will make the metro service unavailable for a longer period, 
thus providing a more radical disruption than a delay to the schedule. Although 
highlighting the importance of understanding interdependence between metro 
and bike, the work of Chen et al. (2016) does not explore changes in 
spatiotemporal patterns of bike-sharing scheme use.  

Further explorations into bike-sharing user’s ridership changes may benefit 
scheme management activities, improve equity in mobility service provision, 
as well as long-term traffic planning. “Novice” cyclists who are not familiar with 
biking also make comparatively more trips on metro strike days (Green et al., 
2012). These examples provide evidence that transit disruptions can introduce 
bike-sharing to new users, potentially promoting and increasing cycling rates 
in the long term. 

Reviewing the literature has demonstrated that transport users may look to 
bike-sharing as an alternative to public transport during metro service failures. 
However, there is comparatively little research quantitatively examining 
changes in usage patterns in bike-sharing schemes while metro services are 
in disruption. Among the limited number of studies, Younes et al. (2019) 
analysed the impact of metro station closure for maintenance (a.k.a “surge”) 
on bike-sharing demand. They found that the “surge” can lead to between 
24% and 45% more trips in bike-sharing stations within 0.5 mile to the metro. 
However, “Surges” are very different to network- or line-level metro 
disruptions, because they operate over small spatial scales. Typically, only up 
to three metro stations are closed for maintenance (Younes et al., 2019); 
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therefore, travellers often find alternative routes within the metro station 
network. Network-level disruption is examined in the work of Saberi et al. 
(2018), which characterised the impact of a weekday Tube strike on all lines 
and stations in London, along with its effects on LCHS. The work suggests 
that the ridership increase shows a significant distance decay pattern: the 
closer a docking station is to metro lines, the higher ridership increase it will 
experience. However, the findings may only be applicable for weekdays, when 
a lot of journeys are made for commuting purposes to complete the “last mile” 
between the Tube or rail station and workplace. It is unclear whether this 
pattern still holds if the disruptions fall on holidays or weekends.  

Over thirty strikes have occurred on London’s Tube network since 2010 
(Transport for London, 2017).  These are caused by a mixture of factors, 
including disputes related to pay, safety, pensions and job security issues. 
The strikes may happen at the whole network-level, where at least the majority 
of the Tube service is unavailable, or at individual line-level, where only certain 
lines are disrupted. Impacts of these incidents on LCHS use will clearly be 
different depending on where and when disruptions occur as well as the 
duration of the disruption. According to Transport for London (2017), line-level 
strikes are more common in the London Tube than network-level strikes. 
Despite this higher frequency, the impact of line-level incidents on bike-
sharing has rarely been examined in previous studies. An exception is Yang 
et al. (2019), which analyses how the introduction of a new metro line service 
stimulates bike-sharing ridership. Data from new forms of bike-sharing 
(dockless) are examined, which provide higher spatiotemporal granularity for 
understanding cycling activities and urban flows in the last mile. Yang et al. 
(2019) analyse the more flexible travel OD pairs in the dockless scheme, and 
the study indicates how a new metro line can rapidly boost local bike travel 
demand and result in emerging parking clusters within around 220 metres 
around new metro stations. The work also highlights the structural changes 
caused by new OD pairs (when cast into a graph), capturing system-level 
adaptations and responses to changes in demand. Although this work focused 
on the impact of new metro lines, the graph structure and metrics it used 
suggest research opportunities for quantifying large-scale behavioural 
responses to line-level disruption. 

Whilst existing literature (Saberi et al., 2018; Yang et al., 2019; Younes et al., 
2019) has evaluated the impact of events using travel records on patterns of 
use (demand), the dynamics of bike-sharing service supply have yet to be 
examined. Metro disruptions pose significant management problems for bike-
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sharing scheme operators (Younes et al., 2019), even if daily total trip 
frequencies do not substantially increase. Docking stations should always 
have cycles and empty docks available, but metro incidents may break this 
balance (Saberi et al., 2018). The dynamics in docking station capacity during 
disruptions have yet to be comprehensively analysed. The work presented in 
this paper starts to address the above gaps, by examining spatiotemporal and 
structural changes in bike-sharing schemes in relation to metro (Tube) strikes. 

4.3 Method 

4.3.1 Case study: London Cycle Hire Scheme (LCHS) and Tube 
strikes 

The LCHS was launched by London’s public transport authority (Transport for 
London, TfL) in June 2010, initially with 315 docking stations and 5000 bikes. 
The scheme expanded its service significantly with more bikes and larger 
coverage areas in March 2012 and December 2013. By 2014, it had become 
the world’s second-largest bike-sharing scheme (Fishman, 2016), covering 
mostly central London. Due to the high prevalence of commuting activities, 
many LCHS trips are made to connect travellers’ home, workplace and transit 
hubs. This presents a solution to the “first/last mile” problem by combining with 
train and Tube trips, but this combination can be interrupted during transit 
disruptions.  

Whilst there have been more than 30 London Tube strikes over the last 
decade (Transport for London, 2017), several factors must be considered 
when studying the effect of such events on LCHS use. Both weather 
conditions and particular calendar events may also significantly change bike-
sharing use, thus introducing uncertainties when comparing bike ridership 
patterns between strike and non-strike days. To control for these types of 
events, this work only focuses on rain-free day Tube strikes, and not on 
national holidays such as Christmas or bank holidays. A total of four Tube 
strikes have been selected (table 4.1), with two at network-level and two at 
line-level. Among these incidents, Strike 2 was at a weekend, while the others 
occurred on weekdays. A map of the London Tube and bike docking stations 
is shown in figure 4.1. The Piccadilly line is the fourth busiest line in the 
London Tube network, and serves many of London’s key tourist attractions, 
including Harrods, Hyde Park and Buckingham Palace. It also connects with 
the major London King’s Cross railway station. The Central line is the second 
busiest line, running through Oxford Street and the financial centre of the City 
of London. The Waterloo & City line is a shuttle line that runs between 
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Waterloo and Bank with no intermediate stops. Its primary traffic consists of 
commuters from southwest London, Surrey and Hampshire arriving at 
Waterloo station and connecting to the City, London’s financial district. 

Table 4.1 London Tube strikes. 

Name Category Date Tube Line Day 

Strike 1 Network-level 2015/07/09 All Weekday 

Strike 2 Network-level 2015/03/07 All Weekend 

Strike 3 Line-level 2018/09/27 Piccadilly Weekday 

Strike 4 Line-level 2018/10/05 Central, 
Waterloo & 

City line 

Weekday 

 

 

Figure 4.1 London Tube lines and bike-sharing docking stations. 

4.3.2 Data 

4.3.2.1 London Cycle Hire Scheme (LCHS) trip data 

The LCHS data detailing trip origin-destination pairs (OD) is published by 
Transport for London (TfL), covering the period from 2010 to present (2020), 
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and can be retrieved using the R package “bikeshare” (Padgham et al., 2017). 
Pre-processing work was carried out to remove redundant/duplicated and 
incomplete/faulty records from raw data. Each record in the cleaned dataset 
describes a single bike trip in the LCHS and contains complete information 
describing a trip’s start and end docking station, with associated timestamps. 
Therefore the trip OD flows can be examined in some spatial and temporal 
detail. Because the data covers over a decade, it can support longer-term 
analysis of the evolution of the scheme (Lovelace et al., 2020), or to 
understand and compare the behaviours and dynamics in LCHS during 
different events and periods, such as holidays, lock-down, and transit 
disruptions. In this research, bike travel records on four different strike days 
and their respective corresponding two non-strike days are examined and 
compared. To quantify the changes caused by Tube strikes, bike data on 
strike days (listed in table 4.1), their two nearest rain-free days of the same 
day of the week are used for comparison (Saberi et al., 2018). For example, 
if a strike happened on Friday, then data of the previous and subsequent 
Fridays (both rain-free) are used. Docking station location data, provided by 
the UK Consumer Data Research Centre1, were applied to supplement spatial 
coordinates for trip origins and destinations. The data describes station-id, 
coordinates and several other variables such as the docking station’s opening 
date. When linked to LCHS trip OD records by matching on station-id, spatial 
details of travel flows can be obtained. 

4.3.2.2 Docking station availability data 

Data on the availability of bike docks are obtained from the LCHS live feed2. 
This records the number of available bikes and (empty) docks at each docking 
station every 10 minutes. The variables include station-id, timestamp, number 
of available bikes and number of empty docks. Stations can sometimes lack 
bikes or docks due to changes in bike-sharing demand throughout the day. 
For example, Beecham et al. (2014) revealed that many people ride bikes 
from their home for commuting in the morning. This renders some docking 
stations unavailable to users at specific periods. Examining the time-series of 
dock availability helps to evaluate variations in scheme “usability” during the 
course of the day, or in transit disruptions. 

 

1 https://www.cdrc.ac.uk 

2 https://tfl.gov.uk/tfl/syndication/feeds/cycle-hire/livecyclehireupdates.xml 
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4.3.3 Analysis 

4.3.3.1 Spatiotemporal trip analysis 

In order to shed light on when and how Tube disruptions may impact or 
increase bike travel, temporal analysis is conducted to compare the time-
series of hourly bike travel counts over the four strike days and their 
comparison days. Within these periods, bike trip data were also aggregated 
over two different spatial units to characterise ridership change and its spatial 
patterns. Bike trips were first aggregated over a 500 m hexagonal grid (roughly 
0.6 km2) covering the central London study area. The reason for using 500 m 
is that the average distance of nearby docking stations is reported as 
approximately 500 m (Duncan, 2015). Bike trip counts were allocated to the 
grid cells based on the origin station. The change in counts was determined 
by comparing counts from the control data (average value of 2 non-strike days 
for each disruption). The second approach was to aggregate bike trips over 
docking stations and to calculate changes (Saberi et al., 2018). Docking 
stations were categorised into different groups based on their shortest 
distance to disrupted Tube stations. A spatial interval of 250 metres was used 
as suggested in the work of Saberi et al. (2018). 

4.3.3.2 Docking station availability analysis 

When using bike-sharing schemes, travellers may encounter the problem of 
having no bike available at their desired trip origin, or more frustratingly, 
having no docks available at the desired destination. Increases in bike-sharing 
usage, and greater competition for bikes and docks, may lead to a higher rate 
of such “service outages” (De Chardon et al., 2016), decreasing the scheme’s 
reliability and attractiveness. Therefore, it is vital to ensure the availability of 
both bikes and docks during transit disruption. In LCHS, an individual station 
has 24 docks on average, and this work used a threshold of 15% to identify a 
station that is under low availability. That is to say, if a docking station has less 
than 15% bikes or 15% empty docks of its total capacity, then it is marked with 
the status of “low availability”. The proportion of 15% is an arbitrary choice, 
considering the typical dock capacity (24), it roughly equals to a mean value 
of three bikes or docks, and is a reasonable threshold for this analysis.  

As described in section 4.3.2, availability data indicates the number of 
available bikes and docks at a frequency of ten minutes. Therefore, each 
station has six observations describing its status each hour. This paper 
defines the sum of “low availability” timestamps in each hour as a “service 
pressure” index, so it has the range of between zero to six. Higher values 
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indicate that more timestamps have seen insufficient availability, whilst lower 
values suggest that the stations are often at a more balanced state. By 
analysing the fluctuation in service pressure in different groups of stations, the 
dynamics of the service provision can thus be evaluated, also reflecting their 
varying spatiotemporal patterns during strikes. The time periods of low bike 
usage, i.e. late night hours, were removed from the analysis due to the small 
number of trips made and the steady service provision at those times. 

4.3.3.3 Graph analysis 

Events in Tube networks may not only impact bike ridership volumes, but also 
change the structure of travel patterns and flows (Saberi et al., 2018; Yang et 
al., 2019). To quantify these structural changes, graph-based analysis was 
utilised in this study. First, the travel flows in LCHS were represented as 
directed and weighted graphs. A graph consists of a number of nodes (i.e. 
vertices), and they are connected by links (i.e. edges) to indicate their 
relationship and interactions, examples include social network graphs and 
global flight line graphs. To present LCHS as a directed and weighted graph, 
the bike docking stations were cast as nodes, while the cycling trips between 
them were defined as the links, with direction (from origin to destination) and 
weight (frequency) attributes. Once graphs are constructed, different indices 
can thus be derived to describe the state of the structure. By comparing non-
strike and strike day graph indices, it is possible to characterise related 
structural dynamics and evolution, leading to a more comprehensive 
understanding of the changed relationships between OD pairs, and the 
different roles of docking stations. The indices can be categorised as 
measures for graph nodes, graph links and whole graph structure.  

Node centrality measures are helpful for characterising graph nodes. They are 
indicators of the importance of individual vertices in a graph, and the definition 
of importance may vary over different indices. For example, the most common 
and basic node centrality is the degree. In this study, degree describes how 
many other bike stations in the graph are linked to a given bike station (with 
either in- or out-flows). There are also many other centrality measures such 
as flux, PageRank, node betweenness and eigenvector centrality. 
Eigenvector centrality (Bonacich, 2007) extends the idea of node degree by 
considering that nodes connected to other high centrality (degree) nodes 
should have a higher importance score than those connecting to low centrality 
nodes. It is also a relative measure, which ranges from zero to one, with higher 
values indicating larger importance and centrality.  
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Graph links can also be evaluated by various indices, with the most common 
being link weight. In the context of a bike-sharing network, link weight 
represents the number of bike trips (OD frequency) that travel from one 
docking station to another.  

There are also graph (global) level indices or metrics that can be used to 
characterise the state of the whole structure, for example, graph transitivity 
and assortivity. 

Transitivity (also called clustering coefficient), indicates the extent of graph 
nodes within a network cluster (i.e.community, subgroups, cliques). It captures 
the degree of local cluster (sub-graph) interactions compared to connections 
with nodes outside of the cluster (Saberi et al., 2018). It is calculated from the 
ratio between the observed number of closed triplets (triangles) and the 
maximum possible number of closed triplets in the graph structure.  

Assortivity evaluates a preference for a graph’s nodes to attach to others that 
are similar in centrality (Newman, 2002; Noldus et al., 2015). In the context of 
bike-sharing schemes, higher values imply that similar important docking 
stations, such as those close to transit hubs, are more likely to be connected 
by travel flows. 

The various graph metrics were calculated for the periods during each Tube 
strike, and compared to those calculated for non-strike days, under the 
hypothesis that any changes in these may indicate the temporary structural 
responses to strike activity. Bike trips from the two comparison days were cast 
into two graphs, with their metrics calculated. Then the average value of the 
two was used for comparison. In addition to this, changes in the maps of flows 
were examined to confirm the findings and to provide context for interpreting 
the various graph metrics, thereby providing a deeper understanding of the 
observed trends. A particular focus was placed on OD pairs that experienced 
ridership increases, as these were hypothesised to represent higher transport 
needs. Thus, this work compares how different places are more strongly 
connected by LHCS users, which helps to interpret underlying travel 
behaviours. 
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4.4 Results  

4.4.1 Bike-sharing usage characteristics 

4.4.1.1 Temporal pattern 

A consequence of Tube strikes is an increase in bike journeys, as shown in 
figure 4.2. A network-level weekday disruption (figure 4.2 a) was found to 
increase bike trip volumes from 37,070 to 69,734 (88%) throughout the day. 
At the weekend (figure 4.2 b) the numbers rise from 15,910 to 24,160 (52%), 
with a more significant peak time around 2-3 pm. 

 

Figure 4.2 Hourly LCHS bike use on strike days and non-strike days; (a) 
Strike 1;  (b) Strike 2;  (c) Strike 3;  (d) Strike 4. 

 

The hourly use changes are also associated with the spatial scale of the 
incident. When line-level strikes occurred (figure 4.2 c, d), the increases are 
less pronounced. Total use increased by 9.9% during Strike 3, and for Strike 
4 it is 12.2%. The smaller increases compared to network-level strikes is to be 
expected and suggests that additional increases in bike-sharing usage are 
likely to be constrained to parts of the city that fall within the disrupted line’s 
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service catchment. A more subtle but interesting pattern can also be observed: 
trip volumes (figure 4.2 c, d) increase from noon to 8 pm, while there is only a 
marginal impact on trip volumes in the morning (6-10 am). This may be due 
to the fact that there is generally less flexibility when travelling in the morning 
peak. The observational data shows that the morning peak is consistently 
narrower than the afternoon peak (figure 4.2 a, c, d). This has particular 
implications for the LCHS, where usage is heavily constrained by the number 
of bikes and docking spaces available. Intense competition for bikes and 
spaces at peak times means that the scheme can support only a limited 
number of additional trips - and this is exacerbated when disruption events 
such as Tube strikes contribute additional demand.   

Overall, the different changes in patterns of hourly use indicate that network-
level and line-level strikes have varied temporal impacts on people’s modal 
shifting to bike-sharing. While network-level disruptions increase trip 
frequencies across most time slots, line-level strikes impact noon and 
afternoon periods more heavily. Weekend cycling has very different trends 
compared to weekdays, but increases are observed particularly in the 
afternoon of the strike days. 

4.4.1.2 Spatial Patterns 

The spatial pattern of LCHS ridership also varies during different Tube strikes, 
as illustrated in figure 4.3. Trip volume significantly increased in central 
London during Strike 1, with areas surrounding train stations experiencing the 
largest increases, for example, King’s Cross, Paddington and Liverpool Street 
train station (marked as 1,2,3 in figure 4.3 a). Piccadilly Circus also shows 
significant increases (marked as 4). In contrast, during a weekend strike, 
areas with the highest increases are around Hyde park (marked as 5 in figure 
4.3 b). These varied patterns suggest that the spatial distribution of increases 
in bike use is severely impacted by whether the strike occurred during a 
weekday or weekend. 
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Figure 4.3 Ridership change (number of trips) in hexagonal grid, with white 
lines indicating the Tube routes that are disrupted, white lines are disrupted 
Tube lines;  (a)  Strike  1;  (b)Strike 2; (c) Strike 3; (d) Strike 4.  

 

For line-level strikes (figure 4.3 c, d), the impact is more localised, with regions 
closer to disrupted lines experiencing increases in use. In figure 4.3 (c), areas 
closest to south Kensington (marked as 6), where numerous museums are 
located, show the greatest increase in bike use. Green park (7) and Piccadilly 
Circus (8) also show marked increases. During Strike 4, most regions along 
Central line experienced higher LCHS trip counts.  

The relationship between individual dock’s distance to Tube and bike use 
changes are further examined by boxplots in figure 4.4. The x-axis indicates 
the distance to the nearest disrupted Tube stations, and the y-axis shows 
changes in trip frequencies at those docking stations (Saberi et al., 2018). A 
distance decay pattern can be observed during weekday disruptions (e.g. 
figure 4.4 a, d), with stations closer to Tube stations experiencing a greater 
increase in use, and these increases reducing with distance to affected Tube 
stations. This is consistent with the findings of Saberi et al. (2018). However, 
for weekend strikes (figure 4.4 b), the pattern is not replicated, rather 
increases are observed at greater distances with the peak at 1000-1250 m 
from the disrupted Tube stations. The differing patterns of distance decay may 
not only be driven by the density of docking stations,  but also cycling purposes. 
On weekdays, bike use is more heavily associated with utility cycling 
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(commuting), whilst weekend trips are more likely to be discretionary and 
made for leisure purposes. This inference can be further supported by 
comparing line-level strikes and associated trips. During Strike 4 (figure 4.4 d), 
the distance decay trend is more similar to Strike 1 (figure 4.4 a); whilst in 
Strike 3, no obvious distance decay exists. Tube lines affected by Strike 4 run 
through many employment-related locations and are associated with many 
cycling trips for commuting purposes. By contrast, The Piccadilly line, affected 
in Strike 3, covers comparatively more tourist attractions than does Central 
and Waterloo & City (Strike 4). So utilitarian commuting trips are less 
displaced in Strike 3, as shown by a lack of distance decay in figure 4.4 (c). A 
further interesting pattern is observed in line-level strikes (figure 4 c, d). There 
is an increase in trip frequencies for the most distant group (2000 m). This 
may be observed due to displaced Tube travellers switching to other travel 
options (e.g. overland local train services, buses, etc.) combined with bike 
travel for their journey, thereby contributing to more bike trips in typically less-
heavily used parts of the LCHS network (Larcom et al., 2017). This 
phenomenon and related route changing behaviour is further analysed in later 
sections (section 4.4.3 and 4.4.4). 

 

Figure 4.4 Box plots of bike use changes with distance to the nearest Tube 
stations affected by disruption; (a) Strike 1; (b) Strike 2; (c) Strike 3; (4) 
Strike 4. 

4.4.2 Changes in docking station availability 

The increased trip volumes during strikes pose challenges for service 
provision. Time-series of “service pressure” measures during network-level 
strikes are shown in figure 4.5. This shows the frequency with which stations 
suffer from “low availability” throughout the day. 

For weekend strikes, the number of stations recorded as under pressure 
doubles during the weekday morning peak (8 to 10 am). Increased 
competition for bikes creates availability problems for the scheme as a whole. 
Service pressure at weekends also increases under strike events but in a 
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different way to the weekday strikes, with a peak observed around 16:00 
(figure 4.5 b) during the disruption. 

 

Figure 4.5 Time-series of service pressure during network-level Tube 
strikes, blue lines indicate non-strike day, red lines represent strike day; (a) 
Strike 1, weekday ; (b) Strike 2, weekend. 

 

 

Figure 4.6 Time-series of service pressure in service catchment of specific 
Tube lines; (a) Piccadilly line - Strike 1 (b) Piccadilly line - Strike 3; (c) 
Central line and Waterloo & City line - Strike 1; (d) Central line and Waterloo 
& City line -Strike 4. 
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Line-level strikes lead to more localised trip increases, thereby bringing 
generally more service pressures to LCHS. Figure 4.6 shows service pressure 
around specific Tube lines in the event of network- and line-level Tube strikes 
on weekdays. When line-level strikes occur (figure 4.6 b, d), all distance 
groups generally show higher service pressure in the morning, but for evening 
periods (e.g. around 6 pm), bike stations further from the affected Tube lines 
(750-1000 m) do not exhibit such higher pressure.  

The results from the service pressure analysis - characterising where, when 
and to what extent docking stations become unusable on strike days - could 
inform future targeting of rebalancing strategies. It should also be noted that 
disruption events may counter-intuitively lead to patterns of usage that are 
beneficial to fleet management. There is evidence that usage under strike 
conditions can become more heterogeneous. Analysing the dynamics in 
LCHS usage in greater spatial detail may therefore be instructive, and in the 
following section we present such an analysis, considering full OD flow data. 

4.4.3 Graph statistics 

Different graph statistics are derived from the full LCHS OD trip data, providing 
various insight into changes in spatial travel behaviours under disruption. 
Table 4.2 presents these statistics from network-level strikes along with what 
would be expected under normal conditions (a control group). Disruptions lead 
to higher graph connectivity (𝛿), which indicates more heterogeneous cycling 
behaviours - new OD pairs. The number of new OD pairs (L) increased by 80% 
for the weekday and 38% for weekend strike events. On one hand, this greater 
diversity in cycling behaviour may indicate that a wider and new set of users 
are attracted to the scheme during strike days. On the other hand, it is perhaps 
a function of parts of the scheme under service pressure becoming partially 
unavailable at peak times under strike conditions (established in section 4.4.2), 
and so existing users must find alternative routes; new OD pairs are 
introduced by bike-sharing cyclists forced to use second- or third- preference 
docking stations due to the additional competition for bikes/spaces during 
strikes.  

Differences in centrality scores are also observed under strike events. 
Average node degree, �̅�, is larger under both events, implying that docking 
stations are linked to a larger set of other stations. But the coefficient of 
variation in node degree, cv(d), shows a contrasting pattern. Whilst the 
indicator remained unchanged for the weekend strike, cv(d) increased from 
0.62 to 0.68 for the weekday strike. The reasons are twofold: (1) during 
weekday disruptions, where commuting and utility cycling tends to be the 
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dominant trip purpose, demand is concentrated at particular space-times. 
Because of increased service pressure, some bike-sharing cyclists are 
required to use alternative docking stations either to pick-up or drop-off bikes 
in intense demand regions. This will link many more nodes to one vertice; (2) 
and more importantly, due to the dominant commuting behaviours, parts of 
the bike-sharing network connecting key employment centres and transit hubs 
(e.g. King’s Cross) experience disproportionally more trip frequencies and 
therefore serve a more diverse set of stations than other parts of the city that 
are less strategically important. During weekends, however, trip purposes are 
typically discretionary. There may be an overall increase in LCHS usage, but 
this is not so spatially concentrated, so the cv(d) remains unchanged. 

Table 4.2 Graph statistics of network-level strikes. 
N represent the number of nodes; L is the number of links; �̅� is the 
average node degree, cv(d) is the coefficient of variation of node 
degree; 𝑤S  is the mean link weight; 𝛿 = 2L/N2 is defined as network 
connectivity; T is the sum of all link weights; a is the graph assortativity; 
t is the transitivity. 

Graph 
Property 

Strike 1 
(weekday) 

Strike 1 
control 
group 

Strike 2 
(weekend) 

Strike 2 
control 
group 

N 735 739 742 740 

L 50,455 28,027 16,474 11,973 

N/L 68.6 38 22.2 16.2 

�̅� 137.3 75.9 44.4 32.3 

cv(d) 0.68 0.62 0.63 0.63 

𝑤S  1.38 1.32 1.47 1.32 

cv(w) 0.80 0.98 1.27 0.84 

𝛿 0.187 0.103 0.06 0.044 

T 69,734 37,070 24,160 15,910 

a 0.001 0.098 0.071 0.069 

t 0.31 0.23 0.17 0.14 
 
Average link weight, 𝑤S  increases as a result of more trips being made, but the 
coefficient of variation, cv(w), shows an interesting opposite pattern. The value 
of cv(w) decreased under the weekday strike while it increased under the 
weekend strike. Combining this pattern with the larger 𝑤S  in Strike 2 than Strike 
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1, a speculative explanation can be proposed: many of the new flows (OD 
pairs) occurring under weekday disruptions are of comparatively lesser weight 
than those occurring during the weekend strike event. It is likely that the new 
weekday pairs are between alternative or less-popular docking stations - 
made by commuting cyclists who are not able to complete their preferred trip 
(OD pair) due to the additional and highly concentrated demand. Further 
evidence to support this assumption is in the graph assortivity scores (a).  For 
strike 1, assortivity shows an exponential reduction from 0.098 to 0.001. In 
contrast, under Strike 2, assortivity slightly increased (by 0.002). This 
difference indicates that under weekday disruptions it is more common to 
observe bike trips between an important, heavily used hub docking station and 
another, previously underused docking station; and by extension that 
weekday strikes induce new trip combinations (OD pairs) and possibly new 
users. In contrast, assortivity increased slightly under weekend strikes, 
suggesting that these more discretionary trips tend to be made typically 
between similarly important (popular) docking stations. 

Overall, both Strike 1 and 2 have contributed to a denser cycling network, with 
a larger number of travel OD pairs and increased average link weights - a 
function of greater LCHS use during strike events. However, due to different 
travel purposes and docking station availability, the weekday strike (Strike 1) 
makes the graph structure more heterogeneous in terms of node centrality 
(degree), while the weekend strike (Strike 2) does not. 

Further analysis on node centrality is shown in figure 4.7, and illustrates the 
CDF (Cumulative Distribution Function) of degree and eigenvector centrality. 
A high node degree indicates a node is connected to many other nodes, while 
a high eigenvector score means that a node is connected to many other nodes, 
which are also high in centrality (Oldham et al., 2019). All CDFs in figure 4.7 
follow a power law. Figure 4.7 (a,b) suggests there is a higher probability of 
observing a node (a docking station) with a larger degree (connects to many 
other stations) during strikes on both weekdays and weekends; this accords 
with the patterns of �̅�  in table 4.2. Interestingly, figure 4.7 (c,d) shows a 
diverging pattern in eigenvector centrality: in figure 4.7 (c) there is a large 
difference between non-strike and strike days, while in figure 4.7 (d), no such 
difference exists. This further reinforces the patterns previously identified. 
When a low degree node links to a high degree node - a frequently used 
docking station connects to a less frequently used docking station - the 
eigenvector score of the low node (the less frequently used docking station) 
will increase. This kind of situation is more common in Strike 1, as indicated 
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by the assortivity changes in table 4.2. During a weekend strike, however, 
docking stations are more likely to link to other docking stations with similar 
centrality. Therefore, many low-scoring nodes do not link and benefit from 
other high centrality nodes – during weekend strike events, there is a 
‘doubling-down’ on existing travel behaviours with increased trips between 
already frequently used docking stations, presenting a clearer “rich-club” 
effect (Zhou et al., 2004). 

 

Figure 4.7 Node centrality change in network-level Tube strikes; (a) Strike 1: 
degree; (b) Strike 2: degree; (c) Strike 1: eigenvector centrality; (d) Strike 2: 
eigenvector centrality. 

 

The above analysis on the cumulative probability of the graph properties are 
further examined by Kolmogorov–Smirnov test, and the results are shown in 
table 4.3. All p-values are smaller than 0.05, and confirmed that all the 
changes are statistically significant. The d-value of Eigenvector centrality 
(0.8045) is larger than the degree centrality (0.3694) during Strike 1; while 
contrasting results are shown in Strike 2, as eigenvector centrality (0.1014) is 
smaller than degree centrality (0.2272).  
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Table 4.3 Kolmogorov–Smirnov test results. 

 graph property d-value p-value 

Strike 1 
Degree Centrality 0.3694 <0.0001 

Eigenvector Centrality 0.8045 <0.0001 

Strike 2 
Degree Centrality 0.2272 <0.0001 

Eigenvector Centrality 0.1014 <0.0001 

Strike 3 and 4 are line-level events, which also happened on weekdays. 
Therefore, the changed graph statistics (table 4.4) share many similar trends 
with Strike 1.  

Table 4.4 Graph statistics of line-level strikes on weekday.  

Graph 
Property 

Strike 3 
(Weekday) 

Strike 3 
Control 
group 

Strike 4 
(Weekday) 

Strike 4 
Control 
group 

N 784 785 785 784 

L 29569 27207 28588 25932 

N/L 37.7 34.7 36.4 33.1 

�̅� 75.4 69.3 72.8 66.1 

cv(d) 0.64 0.65 0.64 0.64 

𝑤S  1.28 1.27 1.3 1.28 

cv(w) 0.74 0.64 0.68 0.65 

𝛿 0.096 0.088 0.093 0.084 

T 38321 34883 37648 33562 

a 0.092 0.096 0.09 0.098 

t 0.22 0.21 0.21 0.2 

 

Higher �̅�  and 𝑤S  have been observed in Strike 1, 3 and 4. But a different 
pattern can be identified in cv(w). While strike 1 (network-level) shows a lower 
value, decreasing from 0.98 to 0.8 (table 4.2), strike 3 and 4 both show 
increases in this index (table 4.4), and is due to the effect of changing Tube 
routes. For example, in the evening peak, when all Tube lines are unavailable 
(Strike 1), commuters may cycle a long distance directly from their workplace 
to home/train station. Due to the large variance in work-home/train station 
location pairs, the bike travel flows will present higher randomness to connect 
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different docking stations. Hence, higher homogeneous link weights may be 
observed, and lead to lower cv(w). When only certain Tube lines are affected 
(Strike 3,4), people may change their Tube route, and combine it with a shorter 
bike-sharing journey to their destination. In this case, the cycling 
origin/destination randomness is lower than Strike 1 because many bike trips 
are aggregated at (made from/to) certain docking stations close to unaffected 
Tube lines. 

To obtain a more comprehensive understanding, and to confirm the changed 
travel behaviours as speculated here as well as in section 4.4.1.2, the next 
part provides a supplementary interpretation of flow maps variations. 

4.4.4 Origin-Destination visualizations 

Whilst the graph statistics provide useful aggregate-level summaries, visual 
analysis of the OD flow data allows us to characterise with greater richness 
the nature of changes in response to the strike events.  

In figure 4.8, each cycled OD pair is represented as a Bézier curve, using 
asymmetric curves to indicate journey direction, with a straight end 
representing journey origin and a curved end indicating journey destination 
(Beecham et al., 2014). Flows are encoded according to the increases in flow 
frequencies recorded during network-level strikes (Strike 1 and 2) using colour 
value (lightness) and transparency. During Strike 1 (figure 4.8), increased trip 
frequencies are distributed across central London and the City of London. 
London’s large transit hubs can also be identified here. For example, 
increased trips from King’s Cross, Liverpool Street, Paddington and Waterloo. 
Notice that the increases recorded here are particularly in trips originating from 
these stations.  

For Strike 2 (weekend), a different pattern is identified. There is a sense that 
bike-sharing users “double down” on their typical weekend travel OD - 
increases are observed for apparently leisure trips made within Hyde Park and 
West London. There is also a stronger bi-directional link between the 
southeast corner of Hyde Park and Piccadilly Circus, which are close to major 
shopping and entertainment areas in London’s West End. Higher trip counts 
between Hyde Park and the Regent’s park can also be identified. One of the 
most substantial increases in trip frequencies runs through the northeast and 
connects Victoria Park and the Broadway Market, and there are some 
comparatively long distance journeys from Liverpool street stations to Millwall 
Park. Overall, the increased OD pairs typically connect one leisure or 
shopping spot to another. 
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Figure 4.9 illustrates weekday line-level Tube strikes, and some differences to 
network-level disruptions (figure 4.8 a) can be found. Many major links in 
figure 4.8 (a) disappeared in figure 4.9. For example, in the case of train 
transfer, the stronger flow from Paddington to King’s Cross station (figure 4.8 
a) is not visible in figure 4.9 (a); instead, many more trip counts are observed 
connecting King’s cross and central London (figure 4.9 a), but also trips 
starting and ending close to Tube line stations in central London and the City 
of London (e.g. Bakerloo line and Central line). This phenomena strongly 
implies the change of Tube routes among travellers. When all Tube services 
are unavailable, people may cycle from Paddington to King’s Cross to transfer 
trains, while if only Piccadilly line is in disruption, transit users will firstly travel 
via other Tube lines to stations that are close to King’s Cross, then combine a 
bike trip to reach their destination (King’s Cross). This highlights the role of 
cycle hire as a flexible travel mode, and its advantages in providing a service 
under different conditions for travellers to complete their journey, and 
strengthen urban and mass transit resilience. 

 

Figure 4.8 Increased OD flows during network-level Tube strike; (a) Strike 1; 
(b) Strike 2. 

 

Figure 4.9 Increased OD flows during line-level Tube strike; (a) Strike 3; (b) 
Strike 4. 
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4.5 Discussion 

Several findings can be abstracted from this analysis. Firstly, the effect of 
public transit disruptions such as Tube strikes on bike-sharing usage clearly 
varies depending on the nature of the public transit disruption. A network-level 
strike will increase overall bike trip frequencies throughout the day, whilst line-
level disruption leads to higher usage mainly in the afternoons. There is also 
an expected distance decay effect to these increased trip frequencies, with 
docking stations closer to the disrupted Tube lines experiencing the largest 
increases in trip frequencies during the strike events. This is consistent with 
other observational studies (Saberi et al., 2018), but we add that this distance 
decay effect on individual docking stations is much stronger where the tube 
strike events occur in parts of the city that typically serve commuting journeys. 
The distance decay effect on individual station is much reduced, or even 
disappears entirely, for parts of the city or time periods are associated with 
leisure activities.   

Secondly, the consequences of increased bike-sharing usage on the LCHS’s 
usability is quantified by creating a novel service pressure index. Tube strikes 
are found to increase service pressure and the likelihood of docking stations 
either containing insufficient available bikes or docks. The consequences are 
most severe for weekday network-level strikes – the number of observed 
instances of docking stations under pressure generally doubles when 
compared to the non-strike control. For line-level strikes, the patterns of 
increased service pressure vary depending on the proximity of a docking 
station to the disrupted Tube stations.  

Thirdly, graph-based analysis has identified several trends. The results 
indicate that Tube strikes can lead to a denser cycling network with higher 
numbers of trips and graph links. But weekday strikes tend to link nodes (bike 
docking stations) with varied centrality scores, and this is opposite to weekend 
disruption events when slightly more nodes with similar centrality are 
connected. These opposing patterns relate not only to differences in travel 
purpose (commute versus leisure), but also differences in observed service 
pressure during weekday and weekend disruption events. Moreover, visually 
representing changes in trip patterns via flow maps is instructive, with 
increased bike-sharing trips connecting central London with major rail 
terminals, suggesting that bike-sharing is being substituted for (commuting) 
journeys that would otherwise be taken by Tube. These all imply the 
importance and potential of bike-sharing as a flexible travel mode that might 
therefore strengthen urban transit resilience. 
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Whilst the LCHS is demonstrated to provide an alternative travel option when 
other parts of the transit network are under disruption, the scheme soon 
reaches capacity, especially at peak times. Efforts to maintain a functioning 
bike-sharing network under disruption events may have important social 
benefits - providing a cheap and accessible travel alternative, especially to 
lower-income groups whose employment may be more precarious, shift-
based and less flexible (Green et al., 2012; Zhu et al., 2017; Younes et al., 
2019). The maintenance and bike fleet rebalancing work should take the 
impacted behaviours of travellers into consideration. For example, when line-
level disruptions happen, it is also important to provide more cycles around 
some unaffected Tube lines/stations, because they will experience higher 
demand due to travellers’ changing Tube routes. Pop-up cycle lines may be 
set up between different hotspots locations as identified in this work. It helps 
to enlarge the space to meet the temporary increased cycling activities, 
provide a safer environment and eliminate potential congestion on cycle lanes.  

Disruptions and reduced capacity in other public transport will lead to higher 
usage of bike-sharing, and these might be developed as new travel habits for 
people. The social distancing guidance may lead to much higher LCHS usage, 
combining with the increasing popularity of sustainable travel mode, more 
investment into LCHS, and improved service management and station 
capacity are required to meet the potential demand. This also helps to 
promote and facilitate greener and healthier travels of people. 

A shortcoming of this work is the lack of user’s socioeconomic information. 
Some studies (Green et al., 2012; Zhu et al., 2017) have suggested that low-
income groups may benefit more from bike-sharing during mass transit failure, 
also more occasional users have seen using the sharing bikes. Therefore, 
future research will examine the characteristics of different groups of users 
and compare their modal shift behaviours. Surveys will also be used to confirm 
the trip purpose during varied strike events, to supplement understanding their 
attitude, preferences on using bikes as an alternative travel mode. Besides, 
the assumption of new users may be further confirmed by analysing the 
residual effect of the assortivity scores as its decreasing value during weekday 
strikes implies new OD trips are probably made by new scheme users. To 
validate this, further examination of whether assortivity scores stay at 
comparatively lower levels immediately post-strike (residual effect) will allow 
more insights to be obtained, and shed light on how transit disruptions attract 
new users and trips to the scheme. 
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4.6 Conclusion 

This work combined spatiotemporal analysis and graph-based approaches to 
explore the changing behaviour of bike-sharing users in the LCHS as a result 
of four Tube strikes. Changes in user cycling activities and bike-sharing 
usability (the availability of bikes and docking points) were quantified. This 
study demonstrates that there is a distinct geography to affected travel 
behaviours and ridership that are consistent with previous studies (Saberi et 
al., 2018), with the docking station-level pattern is conditional on whether the 
disrupted parts of the city and the time periods relate to commuting activities. 
Systematic changes in travel behaviour were found by examining changes in 
OD flow graph structures. The observed variation in bike-sharing usage under 
disruption events demonstrates the flexibility of cycle hire schemes and their 
contribution to enhanced understandings of urban transit resilience. The 
findings of this work and the methods used provide useful information and 
tools for scheme operators to better manage system resources and to support 
cycle infrastructure policy-makers and planners in designing interventions 
aimed at incentivising cycling. 

References 

Bauernschuster, S., Hener, T. and Rainer, H. 2017. When labor disputes bring 
cities to a standstill: The impact of public transit strikes on traffic, 
accidents, air pollution, and health. American Economic Journal: 
Economic Policy. 9(1), pp.1-37. 

Beecham, R. 2015. Using Bikeshare Datasets to Improve Urban Cycling 
Experience and Research Urban Cycling Behaviour. In: Gerike, 
R. and Parkin, J. eds. Cycling Futures: From Research into Practice. 
Farnham: Ashgate, pp. 267-283. 

Beecham, R., Wood, J. and Bowerman, A. 2014. Studying commuting 
behaviours using collaborative visual analytics. Computers, Environment 
and Urban Systems. 47, pp.5-15. 

Bonacich, P. 2007. Some unique properties of eigenvector centrality. Social 
Networks. 29(4), pp.555-564. 

Cairns, S., Atkins, S., and Goodwin, P. 2002. Disappearing traffic? The story 
so far. Proceedings of the Institution of Civil Engineers-Municipal 
Engineer. 151(1),  pp.13-22. 



- 97 - 

Chen, L., Zhang, D., Wang, L., Yang, D., Ma, X., Li, S., Wu, Z., Pan, G., 
Nguyen, T.-M.-T. and Jakubowicz, J. 2016. Dynamic cluster-based over-
demand prediction in bike sharing systems. In: Proceedings of the 2016 
ACM International Joint Conference on Pervasive and Ubiquitous 
Computing,12-16 September 2016, Heidelberg. New York: Association 
for Computing Machinery, pp.841-852. 

Curran, A. 2008. Translink public bike system feasibility study. Vancouver: 
Quay Communications. 

De Chardon, C.M., Caruso, G. and Thomas, I. 2016. Bike-share rebalancing 
strategies, patterns, and purpose. Journal of transport geography. 55, 
pp.22-39. 

Dill, J. and Carr, T. 2003. Bicycle Commuting and Facilities in Major U.S. Cities: 
If You Build Them, Commuters Will Use Them. Transportation Research 
Record. 1828(1), pp.116-123. 

Duncan, R. 2015. Developer guidance for Santander cycles. [Online] London: 
Transport for London. [Accessed 1 December 2020]. Available from: 
http://content.tfl.gov.uk/developer-guidance-for-santander-cycles.pdf 

El-Assi, W., Mahmoud, M.S. and Habib, K.N. 2017. Effects of built 
environment and weather on bike sharing demand: a station level 
analysis of commercial bike sharing in Toronto. Transportation. 44(3), 
pp.589-613. 

Faghih-Imani, A., Eluru, N., El-Geneidy, A.M., Rabbat, M. and Haq, U. 2014. 
How land-use and urban form impact bicycle flows: evidence from the 
bicycle-sharing system (BIXI) in Montreal. Journal of Transport 
Geography. 41, pp.306-314. 

Fishman, E. 2016. Bikeshare: A review of recent literature. Transport Reviews. 
36(1), pp.92-113. 

Fukasawa, N., Yamauchi, K., Murakoshi, A., Fujinami, K. and Tatsui, D. 2012. 
Provision of forecast train information and consequential impact on 
decision making for train-choice. Quarterly Report of RTRT. 53(3), 
pp.141-147. 

Gonçalves, L.A.P.J. and Ribeiro, P.J.G. 2020. Resilience of urban 
transportation systems. Concept, characteristics, and methods. Journal 
of Transport Geography. 85, p102727. 



- 98 - 

Green, J., Steinbach, R. and Datta, J. 2012. The travelling citizen: emergent 
discourses of moral mobility in a study of cycling in London. Sociology. 
46(2), pp.272-289. 

Larcom, S., Rauch, F. and Willems, T. 2017. The benefits of forced 
experimentation: striking evidence from the London underground network. 
The Quarterly Journal of Economics. 132(4), pp.2019-2055. 

Lovelace, R., Beecham, R., Heinen, E., Vidal Tortosa, E., Yang, Y., Slade, C. 
and Roberts, A. 2020. Is the London Cycle Hire Scheme becoming more 
inclusive? An evaluation of the shifting spatial distribution of uptake based 
on 70 million trips. Transportation Research Part A: Policy and Practice. 
140, pp.1-15. 

Nello-Deakin, S. 2020. Environmental determinants of cycling: not seeing the 
forest for the trees? Journal of Transport Geography. 85, p102704. 

Newman, M.E. 2002. Assortative mixing in networks. Physical Review Letters. 
89(20), p208701. 

Noldus, R. and Van Mieghem, P. 2015. Assortativity in complex networks. 
Journal of Complex Networks. 3(4), pp.507-542. 

Oldham, S., Fulcher, B., Parkes, L., Arnatkevic̆iūtė, A., Suo, C. and Fornito, A. 
2019. Consistency and differences between centrality measures across 
distinct classes of networks. PloS One. 14(7), pe0220061. 

Padgham, M. and Ellison, R. 2017. bikedata. Journal of Open Source 
Software. 2(20), p471. 

Pan, L., Cai, Q., Fang, Z., Tang, P. and Huang, L. 2019. A deep reinforcement 
learning framework for rebalancing dockless bike sharing systems. In: 
Proceedings of 33rd AAAI Conference on Artificial Intelligence, 27 
January – 1 February 2019, Honolulu. Vancouver: PKP, pp.1393-1400. 

Pregnolato, M., Ford, A., Wilkinson, S.M. and Dawson, R.J. 2017. The impact 
of flooding on road transport: A depth-disruption function. Transportation 
Research Part D:Ttransport and Environment. 55, pp.67-81. 

Quinn, B. 2020. London cycling could increase tenfold after lockdown, says 
TfL. The Guardian. [Online]. 6 May. [Accessed 1 December 2020]. 
Available from: 
https://www.theguardian.com/world/2020/may/06/cycling-could-
increase-five-fold-in-london-after-lockdown 



- 99 - 

Rahimi, E., Shamshiripour, A., Shabanpour, R., Mohammadian, A. and Auld, 
J. 2020. Analysis of Transit Users’ Response Behavior in Case of 
Unplanned Service Disruptions. Transportation Research Record. 
2674(3), pp.258-271. 

Saberi, M., Ghamami, M., Gu, Y., Shojaei, M.H.S. and Fishman, E. 2018. 
Understanding the impacts of a public transit disruption on bicycle sharing 
mobility patterns: A case of Tube strike in London. Journal of transport 
geography. 66, pp.154-166. 

Shaheen, S., Martin, E. and Cohen, A. 2013. Public bikesharing and modal 
shift behavior: a comparative study of early bikesharing systems in North 
America. Berkeley: University of California, Berkeley. 

Teng, J. and Liu, W.-R. 2015. Development of a Behavior-Based Passenger 
Flow Assignment Model for Urban Rail Transit in Section Interruption 
Circumstance. Urban Rail Transit. 1(1), pp.35-46. 

Transport for London. 2017. History of bus and tube strikes. [Online]. 
[Accessed September 25]. Available from: 
https://tfl.gov.uk/corporate/transparency/freedom-of-information/foi-
request-detail?referenceId=FOI-1931-1617 

Tsuchiya, R., Sugiyama, Y. and Arisawa, R. 2008. A Route Choice Support 
System for Use During Disrupted Train Operation. In: Proceedings of 15th 
World Congress on Intelligent Transport Systems and ITS America's 
2008 Annual Meeting. 16-20 November 2008. New York. Washington DC: 
The National Academies of Sciences, Engineering and Medicine, 
p01135975. 

Vertesi, J. 2008. Mind the gap: The London underground map and users' 
representations of urban space. Social Studies of Science. 38(1), pp.7-
33. 

Wilson, M.C. 2007. The impact of transportation disruptions on supply chain 
performance. Transportation Research Part E: Logistics and 
Transportation Review. 43(4), pp.295-320. 

Yang, Y., Heppenstall, A., Turner, A. and Comber, A. 2019. A spatiotemporal 
and graph-based analysis of dockless bike sharing patterns to 
understand urban flows over the last mile. Computers, Environment and 
Urban Systems. 77, p101361. 

Younes, H., Nasri, A., Baiocchi, G. and Zhang, L. 2019. How transit service 
closures influence bikesharing demand; lessons learned from SafeTrack 



- 100 - 

project in Washington, DC metropolitan area. Journal of Transport 
Geography. 76, pp.83-92. 

Yu, D., Yin, J., Wilby, R.L., Lane, S.N., Aerts, J.C.J.H., Lin, N., Liu, M., Yuan, 
H., Chen, J., Prudhomme, C., Guan, M., Baruch, A., Johnson, C.W.D., 
Tang, X., Yu, L. and Xu, S. 2020. Disruption of emergency response to 
vulnerable populations during floods. Nature Sustainability. 3, pp.728-736. 

Zhou, S. and Mondragón, R.J. 2004. The rich-club phenomenon in the Internet 
topology. IEEE Communications Letters. 8(3), pp.180-182. 

Zhu, S. and Levinson, D.M. 2010. A Review of Research on Planned and 
Unplanned Disruptions to Transportation Networks. In: Proceedings of 
Transportation Research Board 89th Annual Meeting, 10-14 January 
2010, Washington DC. Washington DC: The National Academies of 
Sciences, Engineering, and Medicine, p10-2275. 

Zhu, S., Masud, H., Xiong, C., Yang, Z., Pan, Y. and Zhang, L. 2017. Travel 
Behavior Reactions to Transit Service Disruptions: Study of Metro 
SafeTrack Projects in Washington, DC. Transportation Research Record. 
2649(1), pp.79-88.



- 101 - 

Chapter 5 
Using graph structural information about flows to enhance 

short-term demand prediction in bike-sharing systems. 

 

Abstract 

Short-term demand prediction is important for managing transportation 
infrastructure, particularly in times of disruption, or around new developments. 
Many bike-sharing schemes face the challenges of managing service 
provision and bike fleet rebalancing due to the “tidal flows” of travel and use. 
For them, it is crucial to have precise predictions of travel demand at fine 
spatiotemporal granularities. Despite recent advances in machine learning 
approaches (e.g. deep neural networks) and in short-term traffic demand 
predictions, relatively few studies have examined this issue using a feature 
engineering approach to inform model selection. This research extracts novel 
time-lagged variables describing graph structures and flow interactions from 
real-world bike usage datasets, including graph node Out-strength, In-
strength, Out-degree, In-degree and PageRank. These are used as inputs to 
different machine learning algorithms to predict short-term bike demand. The 
results of the experiments indicate the graph-based attributes to be more 
important in demand prediction than more commonly used meteorological 
information. The results from the different machine learning approaches 
(XGBoost, MLP, LSTM) improve when time-lagged graph information is 
included. Deep neural networks were found to be better able to handle the 
sequences of the time-lagged graph variables than other approaches, 
resulting in more accurate forecasting. Thus incorporating graph-based 
features can improve understanding and modelling of demand patterns in 
urban areas, supporting bike-sharing schemes and promoting sustainable 
transport. The proposed approach can be extended into many existing models 
using spatial data and can be readily transferred to other applications for 
predicting dynamics in mass transit systems. A number of limitations and 
areas of further work are discussed. 
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5.1 Introduction 

Research has shown that bike-sharing contributes to improved air quality and 
reduced congestion in cities as a part of a sustainable travel infrastructure 
(Shaheen et al., 2010; Lovelace et al., 2014). Its global popularity has 
increased in the last few years due to advantages in both cost and 
convenience over other forms of transport such as cars. A growing number of 
cities have operated such schemes to promote sustainable mobility, such as 
London Cycle Hire Scheme (London), Citi Bikes (New York) and more 
advanced dock-less systems (e.g. Mobike in Chinese cities). Bike schemes 
provide a key component of urban transportation infrastructures by providing 
an “extension service” for the “first/last mile” from other public transport hubs 
(Shaheen et al., 2010; Ma et al., 2015; Saberi et al., 2018).  

While bike-sharing greatly enhances urban mobility as an affordable and 
sustainable traffic mode (Fishman, 2016),  meeting the demand of users 
poses a challenge to scheme operators. This is due to the “tidal flows” of bike-
sharing trips, with certain areas in the city facing the problem of insufficient 
bikes (Beecham et al., 2014). For example, during the morning rush hour, the 
number of commuting trips departing from residential areas will be high, 
potentially leading to a deficit of available bikes in those areas. This results in 
reduced service reliability and reduced user satisfaction (O’Brien et al., 2014; 
Fishman, 2016). Accurate and up-to-date estimations of travel demands 
across the city over the course of the day are crucial for successful bike 
scheme management and fleet rebalancing. This also has attracted a lot of 
research interest in recent years. 

Researchers have used a combination of statistical models, machine learning 
and more recently, deep learning neural networks to forecast short-term travel 
demands (Karlaftis et al., 2011; Vlahogianni et al., 2014; Lin et al., 2018). 
While some studies have evaluated alternative predictive models for demand 
forecasting, fewer studies have focused on feature engineering, i.e. the 
identification and extraction of latent data features that can potentially improve 
the performance of predictive models (Borges et al., 2017). Recent thinking 
conceptualises cities as complex systems driven by the pattern of flows and 
networks of relations (Batty, 2013). One approach to understanding the 
temporality of urban dynamics and transportation flows is through the analysis 
of graph structures (Hoang et al., 2016; Yao et al., 2018b; Lin et al., 2018), 
which has been shown to support insights into different urban and transport 
problems. However, as yet little research has been undertaken that examines 



- 103 - 

how information from temporal graphs can contribute to better traffic prediction 
in bike-sharing systems. 

This paper evaluates the use of temporal information encoded in graph 
structures of bike traffic flow interactions for forecasting short-term bike-
sharing demand. The experiments in this work retained initial model hyper-
parameters to demonstrate the utility of the graph derived features. Section 
5.2 introduces related work and reviews different models and inputs used for 
predicting bike travel demand. Section 5.3 presents the data and the concept 
of graph-based measures in the transportation network. It compares graph-
based features to other commonly used variables such as meteorological 
data, in terms of importance, explanatory power and their potential 
contribution to demand prediction models. Section 5.4 presents and compares 
the results in detail and describes the relative benefits of including graph-
based features for improved forecasting. The features, methods and their 
applicability to other application domains related to transport and flow 
predictions are discussed, and conclusions are drawn (Section 5.5). 

5.2 Related works 

There are two conventional approaches for dealing with dock-based bike-
sharing travel demand forecasting problems: predicting at an individual station 
level or over aggregated groups/areas. The former approach models 
dynamics at each station (Lin et al., 2018), while the latter focuses on regional 
dynamics (Xu et al., 2013; Zhou et al., 2019b). Station level modelling can 
support bike-fleet management at finer spatial granularities, but can be less 
accurate due to higher levels of noise in the data. Many studies (Li et al., 2015; 
Zhou et al., 2019b) attempt to predict demand over small geographical areas 
for the following reasons. Firstly, bike docking stations are dynamic in urban 
areas over long periods. New stations may be added, with existing stations 
removed, or relocated. Analysing small clusters of stations allows local travel 
dynamics to be captured and supports a deeper understanding of these 
dynamics (Li et al., 2015; Zhou et al., 2019b).  Secondly, the emergence and 
rise of dockless bike-sharing may change the nature of bike-sharing in the 
future. Dockless schemes allow individuals to borrow and return bikes at any 
location, rather than at fixed docking stations, this makes it both challenging 
as well as important to understand travel demand at the small area level (Cao 
et al., 2019; Yang et al., 2019). Finally, grouping stations into small area-
based clusters supports bike fleet management regardless of the scheme 
type, with sufficient spatial grain to support rebalancing (Li et al., 2015). 
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A broad range of data-driven models have been proposed to forecast short-
term travel demand in bike-sharing systems and other transportation systems 
such as the metro, buses and taxis (Vlahogianni et al., 2014). These can be 
categorised into parametric statistical models and nonparametric machine 
learning (ML) approaches (Zhang et al., 2019). Some examples of the former 
group include ARIMA (Autoregressive Integrated Moving Average model) and 
its variants (e.g. ARIMAX, seasonal ARIMA) and Bayesian Networks 
(Froehlich et al., 2009). Statistical models are easier to interpret but may have 
lower prediction accuracies when compared to ML models. Karlaftis and 
Vlahogianni (2011) observed a trend of research moving from statistical 
models to ML models as a result of both increased data accessibility and 
computing power.  

Different ML models have been applied to forecast short-term traffic demand, 
such as support vector regression (Xu et al., 2013) and Regression Trees (Li 
et al., 2015). More recently, deep neural networks have attracted significant 
research interest due to their automatic feature extraction capacity and their 
success in handling temporal, spatial and semantic dependencies. 

Temporal dependencies include snapshots of historical relationships, and 
have been widely used for traffic demand prediction problems (Froehlich et 
al., 2009; Giot et al., 2014; Li et al., 2018). For example, useful travel demand 
information is retained from the last few hours to suggest demand intensity 
trends. Deep neural networks such as Recurrent Neural Networks (RNNs) 
provide powerful tools for dealing with sequential information, and are suitable 
for analysing temporal dependencies. These recurrently connect hidden 
layers with different timestamps, identifying sequential characteristics and 
patterns that are then used to predict the next likely scenario. LSTM (Long 
Short-Term Memory) and GRU (Gated Recurrent Unit) Networks, both 
enhanced forms of RNNs, have been used to predict travel demand (Fu et al., 
2016; Xu et al., 2018).  They are able to overcome the “vanishing gradients” 
problem common in Neural Networks. This occurs when gradients of the loss 
function approach zero, making the neural network hard to train, which 
commonly happens when processing long-term temporal dependencies with 
standard RNNs.  

The idea of spatial dependencies (Tobler, 1970) suggests that information 
from nearby locations can contribute to improved forecasting. Some studies 
(Ke et al., 2017) have applied Convolutional Neural Networks (CNNs) to 
capture spatial dependencies in traffic demand forecasting. CNNs were 
initially designed for the analysis of gridded data, such as images. They 
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capture spatial dependencies between grid locations using localised filters or 
kernels. Previous research (Ke et al., 2017; Zhang et al., 2017) using this 
approach to analyse travel demand divided urban areas into two-dimensional 
grid cells and calculated the demand across each grid, with demand intensity 
represented as colour scales. However, the selection of grid size is critical and 
difficult to determine objectively: if the grid is too coarse, it will fail to capture 
sufficient spatial granularity to support bike fleet management. If it is too fine, 
then the computational burden increases significantly due to the large image-
like matrices containing redundant information (grid cells with zero demand).  

More recent studies have used semantic dependence. Semantically similar 
areas may not be contiguous or near each other. For example, metro stations 
located in two distant residential areas may have similar temporal patterns of 
bike travel demand. Characterising semantic dependencies from such similar 
areas may improve model performance. Some research has quantified the 
similarity of historical travel demand sequences over different sites and 
constructed semantic graphs to connect similar places (Hoang et al., 2016; 
Yao et al., 2018b). Lin et al. (2018) applied Multi-Graph Convolutional Neural 
Networks (MGCNN) to capture pairwise relations between bike stations, using 
spatial and semantic graphs to provide multi-graph embedding. However, the 
pre-processing requirements of capturing demand sequence similarities for 
MGCNNs are heavy, requiring at least one year’s historical data to obtain 
good prediction accuracy in bike demand forecasting (Chai et al., 2018; Lin et 
al., 2018). This leads to significant limitations for analyses of sites and 
systems with insufficient historical travel records, for example, when new 
service stations or areas are introduced into a bike-sharing scheme.  

Outside of the deep neural networks family, XGBoost (Chen et al., 2016b), an 
implementation of gradient boosted decision/regression trees, has been found 
to perform well in transport prediction problems and was the winner of the 
Kaggle bike-sharing prediction competition (Kaggle, 2015). Some research 
compared XGBoost to neural networks (Lin et al., 2018; Yao et al., 2018b; Ma 
et al., 2019; Yao et al., 2019; Zhou et al., 2019a). Most of these suggest that 
XGBoost is capable of obtaining better or similar performances in travel 
demand forecasting when compared to RNNs (LSTM, GRU), CNNs and to 
hybrid neural networks, for example, ConvLSTM (combine CNN with LSTM) 
and  ST-ResNet (Deep Spatio-Temporal Residual Network). XGBoost is also 
found to have comparable performance to MGCNN in the work of  Zhou et al. 
(2019a), in 50% of datasets, XGBoost produced better predictions than 
MGCNN. However, XGBoost may be inferior to some state-of-the-art fusion 
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deep neural networks, such as Spatio-Temporal U-shape Networks (Zhou et 
al., 2019a) and Spatial-Temporal Dynamic Networks (Yao et al., 2018a).  

Despite the intense competition among complex algorithms, whether one 
model outperforms the others is questionable. Li et al. (2019) compared 
various models for traffic demand forecasting, and concluded that the 
universally best model does not exist. When considering different specific 
areas and timestamps, several algorithms (e.g. LSTM and XGBoost) may 
offer better solutions depending on the nature of the spatial and temporal 
variables. Therefore, it could be beneficial to combine the prediction results of 
different models (KDD-Cup, 2017). There are also reproducibility issues in the 
literature; for example, ST-ResNet was found to outperform XGBoost in Chen 
et al. (2018). However, some studies (Ma et al., 2019; Yao et al., 2019) show 
contrasting results. Zhou et al. (2019a) found that MGCNN is worse than 
Xgboost on several datasets, while Lin et al. (2018) suggested a significantly 
better performance on New York bike-sharing. Differences in results may be 
due to the complexity of hyperparameter tuning in deep neural networks, 
varied model performance on different datasets, different preprocessing or 
unfair comparisons (Karlaftis & Vlahogianni, 2011). These make the “best” 
models even more of a challenge to identify. 

Overall, short-term traffic forecasting is a highly dynamic and developing 
research arena with ever-growing literature that has mainly focused on testing 
and comparing the performance of alternative models (Vlahogianni et al., 
2014). This focus on models has left other vital questions relatively 
unaddressed, for example, consideration of what kinds of variables should be 
included in models. The performance of a predictive model is not only 
associated with its generalisation ability but also its dependency on the input 
data and features (Hall et al., 1998). Deep learning neural networks require 
less effort to manually extract features from raw data (Goodfellow et al., 2016; 
Lin et al., 2018), but still may benefit from effective feature engineering, 
especially when the size of the training dataset is limited (Ketkar, 2017). 
Research has suggested that short-term traffic demand can be inferred from 
its spatiotemporal properties (e.g. historical travel demand) but may also 
benefit from other explanatory variables (Ke et al., 2017). However, there is 
only limited insight into the nature and direction of feature engineering, with 
studies generally using temporal features (e.g. time of day, day of the week) 
and meteorological features (e.g. temperature)  to forecast travel demand 
(Giot & Cherrier, 2014; Salaken et al., 2015; Lin et al., 2018). For example, 
the work of Yang et al. (2016) suggests that average trips amount on 
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weekdays are relatively smaller than during weekends (with the patterns being 
opposite for stations in residential areas). Both day of week and calendar 
events (Kim, 2018) are informative for modelling trip demand. Meteorological 
information, especially temperature, has a huge influence on user behaviours 
in bike-sharing systems. Good weather is strongly correlated with trip amount 
(Yang et al., 2016; Kim, 2018). In particular, temperature has been included 
in many studies and identified as a useful feature for predicting bike trip 
demand in various cities and regions (e.g. American, Asian, Europe) under 
different climates and cultural backgrounds (Rudloff et al., 2013; Li et al., 
2015; Salaken et al., 2015; Yang et al., 2016). Some studies have used urban 
context such as land-use, Points of Interest (POI) (Tran et al., 2015; Xu et al., 
2018) and event information (e.g. metro delays, concerts) (Chen et al., 2016a; 
Rodrigues et al., 2019) to improve forecasts. The work of Xu et al. (2018) 
suggests that land-use information derived from POI is not as helpful as 
meteorological features, but still can enhance prediction performance for 
neural network models. However, these are data enrichment approaches, 
requiring data from other sources (e.g. POI, textual data from Twitter), some 
of which are relatively difficult to obtain, process and merge into models. This 
leaves an important question: is it possible to derive additional useful 
information from the flow data itself, such as bike travel records, to improve 
the prediction performance further? In machine learning, feature engineering 
is the process of using domain knowledge to extract and transform raw data 
into explanatory features. The result is that machine learning algorithms are 
better able to detect patterns in input data, leading to better outcomes. As yet 
relatively little research has been undertaken using such approaches in this 
area to consider what features can be derived from raw travel data using 
domain knowledge, and whether they can improve different traffic prediction 
models. Here we examine the graph structures presented in bike travel 
records. 

Research using graph theory has been successfully applied to analyse urban 
phenomena such as polycentric transformation, urban resilience, 
infrastructure updates and mobility change, through analysing and 
understanding urban flows such as travel  (Batty, 2013; Zhong et al., 2014; 
Yang et al., 2019). Graph structures of travel flow spatial and temporal 
patterns may be used for interpreting urban dynamics as well as for traffic 
demand prediction (Zhang et al., 2017). Austwick et al. (2013) examined bike-
sharing systems in different cities. They highlighted the use of graph analysis 
for understanding urban flow in spatial systems and whilst Zhang et al. (2017) 
argued that the historical regional inflows are related to outflows. Generally, 
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studies examining short-term traffic demand forecasting have not fully 
exploited inflow interactions. The current state of the art in this area uses 
historical demand and common environmental variables (e.g. temperature) to 
predict future demand (Xu et al., 2013; Li et al., 2015; Feng et al., 2018; Li & 
Shuai, 2018; Lin et al., 2018; Yao et al., 2018b; Li & Axhausen, 2019). There 
are many kinds of graph information (e.g. degree, PageRank) that can be 
derived from bike travel data to describe flow interactions and to characterise 
the different urban places within the graph, for example, to infer the likelihoods 
of bike trips starting from specific regions. The utility of spatiotemporal graph 
properties to support short-term bike-sharing demand prediction has not been 
evaluated, and the research described in this paper starts to address this. 

5.3 Methods 

5.3.1 Study area and data 

This study uses dock-based bike-sharing data from two cities to ensure the 
findings are not exclusive to a specific case. They are New York Citi bike and 
Chicago Divvy bike schemes, as shown in table 5.1.  

Table 5.1 Bike-sharing schemes and data. 

Scheme time 
Number of 

stations 
Variables 

New York 

Citi Bike 

2016/11/01 – 

2017/10-31 
785 

Departure time, 

End time, 

Departure station, 

End station 

Chicago 

Divvy Bike 

2016/10/01- 

2017/09/30 
569 

 

The datasets cover one year and contain variables describing bike trip 
departure and end time, departure station and end station. Corresponding 
hourly meteorological data were obtained from open weather map 
(https://openweathermap.org/), and the variables included temperature, 
humidity, wind speed, pressure and weather description (e.g. Cloudy, light 
rain). 
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5.3.2 Data pre-processing 

5.3.2.1 Station groups 

This study predicts regional (small area) demand and groups stations based 
on their spatial proximity. A hierarchical clustering method was applied to 
cluster stations into 120 and 80 groups in the New York and Chicago data, 
respectively (figure 5.1).  

 

Figure 5.1 Groups of bike-sharing docking stations; (a) New York, (b) 
Chicago. 

 

Li et al. (2015) analysed the choice of k when grouping (clustering) bike-
sharing docking stations in New York, and concluded that the cluster number 
should be chosen by knowledge and real-world experience rather than purely 
based on optimizing clustering statistics (e.g. silhouette score or within cluster 
sum of squares), thus to facilitate real-world application of bike fleet 
rebalancing work. More clusters will generally lead to greater difficulties in 
prediction because travel amount may fluctuate tremendously at an individual 
station (Li et al., 2015) or in a small group. While few clusters, for example, 
when there is only one cluster, the demand is the entire traffic which can be 
predicted with high accuracy (Li et al., 2015), but may fail to reflect the spatial 
pattern in fine granularity, so the utility for guiding rebalancing work is reduced. 
Overall, this study followed the suggestion in the work of Li et al. (2015) and 
used a hierarchical clustering approach to obtain the groups of stations. The 
values of k were chosen to generate groups consisting of roughly 6 or 7 
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stations on average (table 5.1 shows total station number), which makes 
sense in real-world application for fleet management units (areas) as shown 
in figure 5.1(a, b), where the shading and plot characters indicate different 
clusters.  

5.3.2.2 Travel flow graph structure construction 

Graph theory is a mathematical approach for modelling pairwise relations 
between individuals. A graph structure typically consists of observations 
represented by nodes or vertices and their relationships represented by links 
or edges (although this can be reversed). A system formed of nodes and links 
that are interconnected is termed a graph.  In urban and transport studies, 
public transportation systems have been viewed as complex networks (Zhong 
et al., 2014; Saberi et al., 2018; Yang et al., 2019) and represented as graphs 
in order to generate different scale-free graph-based measures pertaining to 
the network. Generally, transportation hubs and urban areas are regarded as 
graph nodes, and the travel flows between a pair of nodes generate links to 
connect them. Analysis of the network flows between nodes and their 
changes, for example over time, provides insights into spatiotemporal mobility 
characteristics in transportation systems. Saberi et al. (2018) used graph-
based analysis to examine the impact of public transit disruptions on bike-
sharing usage. 

In this study, hourly graph structures were constructed from bike trip records. 
Each group of bike stations were cast as nodes, and the volume of hourly bike 
trips between any two nodes was used to generate edges to represent the 
origin-destination flows between them. This resulted in a series of temporally 
weighted and directed graph structures, from which a number of graph 
properties were calculated, describing the state of each node at different 
times. Following Zhong et al. (2014); Saberi et al. (2018); Yang et al. (2019), 
the graph properties were: 

1. Strength – the total of the edge weights. In a directed and weighted 
graph structure, there are two strength measures, in-strength and out-
strength. Here they represent the number of trips that start from and 
end at a node in the network. Out-strength can also be interpreted as 
the number of departures – i.e. travel demand.  

2. Degree – the number of edges that are incidental to the node, 
indicating the number of neighbouring nodes. In-degree and out-
degree account for the number of in-flow and out-flow links in a directed 
graph. A node is considered important if it is connected to many 
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neighbours, and for urban mobility networks, the degree can be used 
to describe the connectivity and accessibility to destinations or activities 
across the network (Zhong et al., 2014). 

3. PageRank – a measure of node importance. This was first 
introduced by Google to evaluate the importance of a web page (Brin 
et al., 1998). The key idea behind PageRank in a graph context is that 
nodes with the same degree may not have the same importance in a 
graph. By not counting links from other nodes equally, PageRank treats 
an edge from a strongly connected node as more important than an 
edge linked to a node with few connections. Assume graph node A has 
incoming edges coming from a set of other nodes T1...Tn, and the 
parameter d is a damping factor (0.85 as the default value), C(Tn) is 
defined as the out-degree of node Tn. The PageRank (PR) of a node 
A  is denoted as follows: 

𝑃𝑅(𝐴) = (1 − 𝑑) + 𝑑(
𝑃𝑅(𝑇&)
𝐶(𝑇&)

+ ⋯+
𝑃𝑅(𝑇')
𝐶(𝑇')

)  

The PageRank of node A can thus be calculated using an iterative 
algorithm that corresponds to the principal eigenvector of the 
normalised link matrix of the graph (Brin & Page, 1998). Note that the 
PageRank forms a probability distribution over graph nodes, so that the 
sum of all nodes’ PageRank will be one. PageRank is an additional 
indicator of relative node importance and centrality in a graph. In a 
transportation network, PageRank can help identify key nodes (places) 
in the system that have a high impact on transportation efficiency. 

4. Betweenness – the number of links that pass through a node. The 
greater the betweenness, the more important it is (Newman, 2005). For 
each pair of nodes in a graph, there exists at least one shortest path 
between them.  Node betweenness refers to the number of the shortest 
paths that pass through a node. Therefore, betweenness helps to 
represent the extent to which nodes are connected, and indicate 
transfers from one area to another in a transport system. Although bike-
sharing trips generally do not rely on or are impacted by middle stations 
to reach the destination, they are still limited by station availabilities 
(available bike and empty docks) to start or complete journeys. The 
work of Saberi et al. (2018)  suggests that in bike-sharing systems, the 
probability and spatial distribution of betweenness changed in 
response to urban public transit failure. Furthermore, betweenness is 
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helpful to examine system changes during special events and adverse 
weather conditions. 

Figure 5.2 (a) shows the map of the New York bike-sharing station groups, 
with each dot indicating the group’s central position. Figure 5.2 (b-e) give 
examples of the graph information properties for each node, with the different 
properties normalised to [0,1] for visualisation purposes. The redder and 
larger the plot character, the higher value it has.  

 

Figure 5.2 An example of the spatial distribution of graph properties using 1 
hour of data; (a) station groups in New York, (b) out-strength, (c) out-
degree , (d) PageRank, (e) betweenness. 

 

This graph (figure 5.2) was constructed using 1 hour (8:00 to 9:00 am on 
October 25, 2017) of bike-sharing travel data, representing flow interactions 
in the morning rush hour. Figure 5.2 (b) shows the out-strength, directly 
representing area travel demand intensities. Areas close to Grand Central 
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Terminal (GCT) have the most bike trips with high numbers of trips in 
surrounding areas (Midtown Manhattan). Figure 5.2 (c) illustrates the 
distribution of out-degree, and suggests that different regions in Manhattan all 
have high levels of flow interactions indicated by the number of neighbours 
linked by travel flows. Interestingly, the GCT region does not have the highest 
out-degree. This is because the trip destinations are less diverse during the 
selected period. Figure 5.2 (d) shows the PageRank and has a similar pattern 
to figure 5.2 (b), emphasising the importance of GCT in the network. Figure 
5.2 (e), shows that betweenness has a different spatial pattern to the other 
figures (figure 5.2 b, c, d). It highlights the region of Williamsburg, located at 
the east side of the Williamsburg bridge. The high betweenness value 
indicates its crucial role as a bridge in the graph connecting different parts of 
the city (e.g. Manhattan and Brooklyn). The different graph properties describe 
the flows and their interactions in the graph structure, allow the importance of 
each node to be characterised in different ways.  

5.3.3 Analysis 

5.3.3.1 Feature importance  

Various models can be used to evaluate feature importance for making 
predictions, for example, Random Forest and Support Vector Machine. 
Among these approaches, XGBoost (extreme gradient boosting) is a gradient 
boosted regression tree algorithm and has been found to be one of the most 
powerful models in the literature (Lin et al., 2018; Li & Axhausen, 2019) and 
in competitions (Kaggle, 2015; KDD-Cup, 2017). It has been shown to have a 
comparable (or better) performance to several advanced deep neural 
networks such as MGCNN, ST-ResNet (Ma et al., 2019; Yao et al., 2019; Zhou 
et al., 2019a). Another advantage of XGBoost is that its results are easily 
explainable: once the boosted trees are constructed, importance (i.e. gain) 
scores of each feature can readily be retrieved. The importance metric 
provides an evaluation of how useful or valuable each feature is, based on the 
degree to which a feature is used to make key decisions in trees. Therefore, 
this study used XGBoost to evaluate feature importance. 

There are potential multi-collinearity problems that may impact the feature 
importance identified from different models. Strong collinearity can affect 
model reliability and precision (Comber et al., 2018) and can result in unstable 
estimates of feature importance and therefore inferential and prediction biases 
(Dormann et al., 2013). As a result, model extrapolation may be erroneous, 
and there may be problems in separating variable effects (Meloun et al., 
2002). For example, in a random forest model, the importance of a feature 



- 114 - 

may be diluted by another highly correlated variable, because each tree is 
independent of others, and random choice will be made on features. XGBoost 
has been found to be relatively immune to the multi-collinearity problem (Chen 
& Guestrin, 2016b; Chen, 2018) because the algorithm does not re-focus on 
any specific link between feature and outcome after it has been made and 
learnt in the boosting process. Table 5.2 lists the input variables in the 
XGBoost model used to predict bike-sharing demand. Based on the literature 
reviewed, temporal and meteorological variables were included in the Basic 
Features group (Li et al., 2015; Zhou et al., 2019a).  

Table 5.2 Variables in XGBoost. 

Feature 
origin 

Feature type Variable 

Basic 
Features 

Temporal 

Hour of day, 

Day of week, 

Holiday, 

Time-lagged travel demand 
(-1 hour). 

Meteorological 

Temperature, 

Humidity, 

Wind speed, 

Weather description, 

Pressure. 

Graph 
features 

Time lagged (-1 hour) graph 
information 

Out-strength, 

In-strength, 

Out-degree, 

In-degree, 

PageRank, 

Betweenness. 

 

Bike travel flows were transformed into directed weighted graphs, allowing the 
strength and degree properties to represent the flow directions. Time-lagged 
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travel demand is identical to time-lagged out-strength. All time-lagged 
properties (table 5.2) were obtained from the last hour to provide temporal 
dependence for the prediction (longer time-lags are examined in section 5.4.2 
and 5.4.3). As XGBoost only accepts numeric values, categorical variables 
(e.g. hour of day) were processed using Multiple Correspondence Analysis 
(Meng et al., 2016) to generate lower-dimensional numeric representations.  

5.3.3.2 Adding time and graph information  

A good feature improves model performance (e.g. prediction) as it allows more 
parsimonious (less complex) models to be constructed, and non-optimised 
model hyperparameters to be included, whilst still generating good results. By 
continually adding different features into a machine learning model, changes 
in prediction results can be evaluated accordingly. A good feature will reduce 
forecasting errors, while bad features will result in higher errors (and more 
noise). In this study, Multi-Layer Perceptron (MLP) Neural Networks were 
constructed to confirm the usefulness of various input features. MLP is a class 
of feed-forward neural networks. It utilises backpropagation for training, and 
its multiple layers and non-linear nature contribute to its ability to distinguish 
data that is not linearly separable. As a neural network, it has a relatively 
simple structure, making it easier to construct and train than others. MLP also 
has been shown to have a strong performance in predicting short-term traffic 
demand (Lin et al., 2018; Li & Axhausen, 2019).  

This study firstly constructed an MLP that is neither under- nor over-fitted, 
using the “basic features” listed in table 5.2 of meteorological and temporal 
features that included time-lagged travel demand of -1 hour. Different time-
lagged travel demand variables and graph information properties were then 
sequentially added into the MLP, with the outputs evaluated accordingly. This 
identifies which lagged-time steps are more strongly associated with current 
travel demand and provides validation of the important features as identified 
by the XGBoost.  

An investigation of the hyperparameters determined that an MLP with two 
layers of 32 and 8 units neither under- nor over-fitted models on both datasets. 
The mini-batch size was set to 1024 and training epochs to 150 (enough for 
convergence). The loss function used was RMSE (Root Mean Square Error), 
which is denoted as: 

RMSE = Y
1
𝑛.

(𝐴! − 𝐹!),
'

!-&
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where Ai  and Fi are the actual value and forecast value, respectively. There 
are alternative loss functions, such as Mean Absolute Error (MAE), which may 
be used for training machine learning models. However, the errors are 
squared before being averaged in RMSE, thereby giving relatively high weight 
to large errors. RMSE was used in this study due to the fact that in a bike-
sharing system, large errors of demand estimation may pose significant 
difficulties to scheme operators for successful bike fleet rebalancing. 

5.4 Results 

5.4.1 Feature importance and variable selection 

The data was split into training, validation and test datasets, with the data 
ordered by time. The first 80% of records were assigned as the training set, 
the following 10% as validation and the final 10% as the test set. The training 
datasets were inputted to the XGBoost models to rank the importance of 
different features with the results are shown in figure 5.3. Generally, 
temperature is considered as an important factor related to cycling activity 
(Miranda-Moreno et al., 2011; Thomas et al., 2013), and many bike travel 
demand prediction studies include temperature or a series of time-lagged 
temperatures as model inputs (Salaken et al., 2015; Zhou et al., 2019a). 
Interestingly here, in both case studies (figure 5.3 a, b), out-strength, in-
strength, out-degree, in-degree and PageRank were all found have greater 
(or comparable) importance scores than temperature, indicating their potential 
utility in short-term demand prediction. This suggests that despite temperature 
being widely used for bike-sharing demand prediction studies, several graph 
features are potentially more important. Betweenness failed to outperform 
temperature, probably due to it being less associated with travel demand 
intensity. As observed in figure 5.2, strength, degree and PageRank are 
relatively similar in their spatial patterns, while betweenness is different as it 
describes the “bridge effect” of a node.  

In summary, feature selection using an initial XGBoost model identified the 
following parameters for inclusion in subsequent models: out-strength (OS), 
in-strength (IS), out-degree (OD), in-degree (ID) and PageRank (PR). In the 
following section, the results of applying a different machine learning model 
(MLP) are described to confirm the utility of these graph information properties 
in solving bike-sharing demand prediction problems. 
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Figure 5.3 Feature importance ranked by XGBoost; (a) New York data, (b) 
Chicago data, with temperature as a typical benchmark shaded in 
orange. 

5.4.2 Adding time and graph information comparison 

Two types of MLP were constructed in the experiment, namely MLP-GI and 
MLP-DT. The former requires that graph information (GI) properties at a time 
lag of -1 hour are sequentially added into the model, with the order of out-
strength (OS), in-strength in (IS), out-degree (OD), PageRank (PR) and in-
degree (ID), as suggested in figure 5.3 (a). The MLP-DT model used time-
lagged travel demand (DT) from only -1 hour to a group of  -1 to -5 hours. This 
is a common approach, using multiple time-lagged demands from the last few 
hours provides a greater indication of temporal dependence in the models (Ke 
et al., 2017; Lin et al., 2018). 

Figure 5.4 shows box plots of the distribution of the RMSE of 15 experiments, 
with the results evaluated on the validation set. Initially, the two models (MLP-
GI and MLP-DT) are identical because they both used the travel demand (i.e. 
out-strength) number from the last hour. As more variables included, the MLP-
GI models benefit from additional lagged graph information, with decreasing 
RMSE, in both average and median values. This is observed in both datasets 
(figure 5.4 a, b). Another finding is that adding OD (out-degree) and ID (in-
degree) reduces prediction errors for the New York dataset (figure 5.4 a), but 
has less effect with the Chicago data (figure 5.4 b). The pattern accords with 
the previous finding in figure 5.3, where OD and ID much outperform the 
benchmark (temperature) in New York (figure 5.3 a), this again confirms the 
variable importance identified by XGBoost in section 5.4.1. 

In the MLP-DT groups, there is a different pattern to MLP-GI. Although adding 
more time-lagged travel demand variables reduces errors initially, this 
improvement is reversed with longer sequences. In the case of New York 
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(figure 5.4 a), the RMSE slightly increased after adding the travel demand of 
-5 hour. For the Chicago data (figure 5.4 b), the model shows 
underperformance after adding demand intensity of -4 hour, with a higher 
mean and median RMSE. 

 

Figure 5.4 The impacts of adding different features into MLP models; (a) New 
York, (b) Chicago, with the mean indicated by a star and the median by 
a bar. 

 

The possible underperformance with a longer temporal dependence is a 
general phenomenon, observed and discussed in many studies (Ke et al., 
2017). The performance does not always improve when a long sequence of 
previous observations are fed into machine learning approaches modelling 
temporal dependency. The inclusion of information at less correlated 
timestamps can lead to poor forecasting. Therefore, the majority of previous 
studies only chose specific time steps to provide temporal dependence and to 
predict travel demand (Ke et al., 2017; Lin et al., 2018).  

Comparing MLP-GI and MLP-DT with the same number of extra variables, 
MLP-GI always outperforms MLP-DT (see figure 5.4). The pattern indicates 
that using the groups of graph information properties is more effective than 
only using time-lagged observation of forecasting target (travel demand). 

In summary, temporal dependence modelling is limited if only historical travel 
demand is utilised, because only a finite number of time lags will improve the 
prediction. However, better forecasting results may be obtained by introducing 
graph information properties. 
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5.4.3 Model comparison 

The analysis and results from the previous sections indicate the potential 
usefulness of information derived from the bike flow interaction graph, but the 
properties were all derived from a single lagged timestep. This section 
examines how different ML models can comprehensively use varying lagged 
time-sequences of graph features and compares their performance with two 
other baseline approaches: HA (Historical Average) and ARIMA 
(Autoregressive Integrated Moving Average). The models are described as 
follows: 

1. HA: uses the historical average demand for prediction. For example, 
the travel demand of Tuesday 12:00 is predicted as the average value 
of all past Tuesday’s at 12:00 in the training dataset. 

2. ARIMA: a statistical model, ARIMA is commonly used for analysing 
and forecasting time-series data. It has been widely applied in traffic 
prediction problems (Van Der Voort et al., 1996; Williams et al., 2003). 
In this work to predict demand at time T, the inputs to ARIMA were the 
demand observations from the first hour until T-1. It was undertaken 
using the automatic ARIMA model provided by the “forecast” package 
in R, a variation of the Hyndman-Khandakar algorithms (Hyndman et 
al., 2018). The model combines unit root tests, minimisation of the 
Akaike Information Criteria and Maximum Likelihood Estimation to 
construct the ARIMA. It should also be noted that the performance can 
be significantly influenced by model tuning, and there are also several 
variants, such as seasonal ARIMA, which may generate better results. 

3. XGBoost: all features, including meteorological features, temporal 
features, and different groups of time-lagged graph information 
features are placed into a one-dimensional vector and used for 
prediction. 

4. MLP: uses the same features as XGBoost, and like XGBoost, MLP 
does not differentiate between variables across time to model temporal 
dependencies. 

5. LSTM: (Long-short Term Memory) is an improved version of RNN. 
Time-lagged variables are reshaped to a sequence and put into a bi-
directional LSTM layer. Other temporal features (hour of day, day of 
week, holiday) and meteorological features are placed into a vector and 
processed using a densely-connected layer which is concatenated to 
the LSTM layer. The two branches are merged using another densely-
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connected layer. The LSTM unit is composed of three gates: input, 
forget and output gates. These gates determine whether to include new 
inputs, delete information and whether the hidden state of the current 
time step is carried over to the next time step (iteration). As a result, 
LSTMs suffer less from the vanishing gradients problem and can 
handle complex temporal dependencies. 

XGBoost, MLP, and LSTM models have three variants, denoted as “-TD”,”-
PGI”,”-FGI”, respectively. They all use the basic features including 
meteorological and temporal variables, but have different inputs in terms of 
graph information features. 

1. -TD: uses time-lagged travel demand (out-strength) for prediction, 
as commonly observed in the literature (Lin et al., 2018). 

2. -PGI: this uses part of the time-lagged graph information. Out-
strength and in-strength are provided for temporal dependence 
modelling and demand forecasting.  

3. -FGI: uses the full set of time-lagged graph information properties 
that were identified as more important than the baseline temperature 
variable; out-strength, in-strength, out-degree, in-degree in and 
PageRank. 

Models with the same suffix (e.g. -PGI) used identical input features for travel 
demand prediction.  

Incorporating the flexibility of feature engineering in machine learning models, 
allows them to achieve better results under the same or even reduced 
complexity. In this experiment, the hyperparameters of each -TD models were 
fine-tuned using grid search approaches, and the -PGI and -FGI models used 
the same hyperparameters. Therefore, -PGI and -FGI models do not 
significantly increase complexity in the algorithms (e.g. the learning rate in 
XGBoost, number of hidden layers in NN) compared to -TD models. For the 
neural networks, the Adam optimiser was applied as well as callbacks with a 
threshold of 10. This means that if the model performance (RMSE) does not 
improve for 10 epochs, the model will stop training to overcome potential 
overfitting problems. 

In order to utilise hourly, daily and weekly periodicities in the model temporal 
dependencies (Zhang et al., 2019), time lags of today (-1 to -4 hour for the 
New York data; and -1 to -3 hour for the Chicago data), yesterday (-23 to -25 
hours) and seven days ago (-167 to -169 hour) were selected,  to provide 
three kinds of temporal dependence for forecasting. Graph information at 
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these time lags was calculated and incorporated into the different models. 
Table 5.3 indicates the model forecasting results evaluation metrics. To 
eliminate randomness in NN outputs (MLP and LSTM), table 5.3 shows the 
average MAPE (Mean Absolute Percentage Error) and RMSE of multiple (9) 
experiments. MAPE is denoted as follows: 

𝑀𝐴𝑃𝐸 =
100%
𝑛 .^

𝐴7 − 𝐹7
𝐴7

^
'

7-&

  

This is a measure of relative error used to remove the scale effect of demand 
intensity levels, with lower MAPE generally indicating better prediction. 
Because bike trip number (At) may be 0 or near to 0 at certain places and 
times, leading to calculation and sensitivity problems, a threshold for At  is 
usually set in MAPE evaluations (Ke et al., 2017). This study uses a threshold 
of 5.  

Overall, the machine learning models (XGBoost, MLP and LSTM) outperform 
the two baseline approaches (HA and ARIMA). An important pattern is also 
evident: the more graph information that is included in an ML model, the lower 
the MAPE and RMSE values. However, different models have varying abilities 
in processing input features. XGBoost performed the best among the -TD 
models, similar to findings in other research. Lin et al. (2018) suggested that 
XGBoost outperforms LSTM and MLP in predicting New York bike-sharing 
demand, with historical travel demand included in the feature set.  

When additional graph information is provided, the various -PGI models show 
significant improvements over the -TD models, and even lower errors with the 
remaining features (-FGI). Despite better forecasting results of using the full 
feature set, the performance of XGBoost -FGI becomes worse than LSTM - 
FGI. This is because time-lagged graph information properties are directly 
transformed into a vector for XGBoost and MLP. Although model 
improvements can be achieved, it is harder for them to differentiate 
information from different timestamps, and they fail to take full advantages of 
the long feature vector. However, LSTM, as a special RNN, leads to an 
improvement in forecasting (lower RMSE and MAPE) when using the complex 
full set (-FGI) of time-lagged graph information properties. 

Overall, the results in table 5.3 confirm that the feature engineering in this 
study results in a better prediction and that different kinds of machine learning 
models can generally benefit from time-lagged graph information properties 
for bike travel demand prediction. 
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Table 5.3 Model result evaluation. 

Model New York Chicago 

MAPE(%) RMSE      MAPE(%) RMSE       
XGBoost-TD 28.2 8.678 29.1 5.560 

XGBoost-PGI 26.9 8.358 28.1 5.344 

XGBoost-FGI 26.5 8.261 27.9 5.305 

LSTM-TD 28.8 8.795 29.8 5.776 

LSTM-PGI 27.0 8.299 28.4 5.360 

LSTM-FGI 26.2 8.114 27.9 5.268 

MLP-TD 29.2 8.833 29.8 5.845 

MLP-PGI 27.8 8.301 28.4 5.394 

MLP-FGI 27.1 8.178 28.3 5.303 

ARIMA 47.1 18.273 48.8 12.49 

HA 72.3 31.777 65.2 21.205 

 

5.4.4 Spatial patterns of errors 

Table 5.3 indicates that XGBoost is the strongest in the “-TD” group, and 
LSTM performs the best in “-FGI” family. These approaches are from two 
broad categories of machine learning models: regression tree and neural 
networks, respectively. Therefore, this section provides spatial interpretation 
as a supplementary analysis of the two models, and the results are shown in 
figures 5.5 and 5.6. 

Figure 5.5 (a) indicates the total travel demand in each region (groups of 
stations) in the New York case study over the period of the test set. Figure 5.5 
(b, c, d) shows how LSTM models benefit from additional graph information 
variables to forecast bike travel demand in New York. Areas close to 
Manhattan Midtown south  (marked as “1” in figure 5.5 a) shows improvement 
in the LSTM-PGI model (figure 5.5 c), they are also areas with a high bike trip 
intensity. LSTM-FGI (figure 5.5 d) further improves the prediction by reducing 
MAPE in Upper East Side and Brooklyn (marked as“2” and “3” in figure 5.5 a), 
which presents medium-high demand. XGBoost also benefited from additional 
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graph information properties (figure 5.5 e, f, g), but to a lesser degree than the 
changing patterns in LSTM, especially when the “-PGI” and “-FGI” models are 
compared. For example, less improvement was found in the Manhattan 
Midtown south area in figure 5.5 (e-f-g), compared to figure 5.5 (b-c-d). This 
pattern also accords with the findings in table 5.3, as LSTM experienced a 
significant decrease in MAPE from -PGI to -FGI. This again highlights LSTM’s 
ability to process complicated sequential information. It should also be noted 
that LSTM and XGBoost may outperform each other in different areas of the 
city, suggesting that no single ML algorithm will have the best performance at 
all areas, as discussed in the work of Li and Axhausen (2019).  

 

Figure 5.5 Travel demand and MAPE of different models on New York 
dataset; (a)Travel demand (b) LSTM-TD, (c) LSTM-PGI, (d) LSTM-FGI, 
(e) XGBoost-TD, (f) XGBoost-PGI, (g) XGBoost-FGI. 

 

Similar patterns to figure 5.5 are observed in figure 5.6 for the Chicago case 
study. XGBoost outperformed LSTM in the “-TD” models (figure 5.6 b, e; table 
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5.3), but LSTM-FGI (figure 5.6 d) obtained better predictions than both LSTM-
PGI (figure 5.6 c) and XGBoost-FGI (figure 5.6 g) in areas that have large 
numbers of travel demand around the city centre. This is helpful for bike fleet 
management because regions with higher demand may experience greater 
bike shortages and more precise forecasting benefits the rebalancing work of 
scheme operators. 

 

Figure 5.6 Travel demand; and MAPE of different model on Chicago dataset; 
(a) Travel demand (b) LSTM-TD, (c) LSTM-PGI, (d) LSTM-FGI, (e) 
XGBoost-TD, (f) XGBoost-PGI, (g) XGBoost-FGI. 

5.5 Discussion and conclusions 

By examining travel flow interactions in transport systems, it is possible to 
shed light on the underlying structural characteristics of regions. This work 
highlights the importance of domain knowledge and feature engineering in 
machine learning problems. Casting complex urban systems such as 
transport networks into graph structures allows graph derived measures such 
as node importance and centrality to be included in models to capture and 
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represent travels flow and regional attractiveness patterns (Batty, 2013; 
Zhang et al., 2017; Yang et al., 2019). Related graph features improve and 
enhance modelling and prediction in both tree-based model and neural 
networks, demonstrating the utility of better feature engineering.  

It should be noted that this research predicts demand at regional levels 
(groups of station), rather than at the individual station level in order to avoid 
the impacts of service change and to reduce noise in such a complex system 
(Li et al., 2015). There are other strategies to eliminate these, for example, Lin 
et al. (2018) sought to predict demand at individual station level, and removed 
more than half of the New York bike stations from the data in order to only 
focus on stations that persisted over time with relatively high travel demand. 
Despite finer spatial granularity (station level), their approach provided only a 
partial representation of actual demand patterns.  

The station group/cluster size used in this work was a relatively arbitrary 
decision and may have affected the graph properties used in the models. Very 
large groups (areas) may result in many travel flows that start and end at the 
same region, making various centrality measures less representative of the 
actual dynamics and flows. Therefore, the choice of group number and 
clustering needs to find a balance between fine flow representations and 
system noises elimination.  

There are several shortcomings in this study that will be improved and 
investigated in future work. First, more statistical time-series models could be 
used for comparisons, such as KNN and seasonal ARIMA. Other hybrid deep 
neural networks may also be applied to verifying the FGI improvement, 
examples include MGCNN and ST-ResNet. MGCNN can benefit from 
concatenating RNN (LSTM, GRU) layers to model time-lagged variables (Lin 
et al., 2018), and it may be enhanced by FGI further, just like LSTM has shown 
in this work. This study only compared the utility of time-lagged graph indices 
on three machine learning models, because they are recognised as powerful 
models (Li & Axhausen, 2019; Lin et al.,2018) in literature for travel demand 
forecasting, also belong to different model family (regression tree, feed-
forward neural network and recurrent neural network). Some complex hybrid 
neural networks are relatively difficult to implement and may suffer from 
reproducibility issue to some extent. For example, MGCNN models do not 
have a “stable” performance for predicting short-term traffic demand; Zhou et 
al. (2019a) tested the performance of MGCNN on short-term demand 
forecasting in four different bike-sharing and taxi datasets. The result (Zhou 
et al., 2019a) suggested that MGCNN is worse than XGBoost in half datasets 
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while outperforming the remaining ones. The work of Li & Axhausen (2020) 
also suggested that the MGCNN’s outperformance is not stable in all periods 
and sub-regions. The result of several models are compared at each hourly 
interval during the course of the day (Li & Axhausen 2020); while obtaining 
lower RMSE, MGCNN is normally worse than random forest in terms of MAPE 
indicator; it only slightly outperforms random forest during the morning peak 
(3 hours from 6:00 to 9:00 am), while showing higher MAPE in the remaining 
21 hourly intervals (Li & Axhausen 2020). The “unstable” performance is partly 
due to the difficulties in constructing the semantic graph. MGCNN’s is capable 
of obtaining good prediction of dynamics based on planar networks (e.g. road 
networks) due to the clear concept of graph construction – roads are 
connected at intersections. However, for non-planar networks such as origin 
and destination graphs (e.g. bike-sharing travel flow graph. The nodes 
(docking stations) connection in semantic graphs is subject to several factors, 
for example, they depend on the relatively arbitrary and ambiguous choice of 
threshold (e.g., proximity, similarity, consistency), as well as specific 
preprocessing (e.g., removing less-used stations) (Chai et al., 2018; Lin et al., 
2018). These lead to reproducibility issue in current MGCNN literature for 
predicting short-term travel demand. Therefore, this work did not include 
MGCNN for comparison to avoid bringing higher uncertainties into the results. 
Second, this study applied node-level graph information properties for better 
forecasting. Future work will examine the utility of including edge level (e.g. 
edge betweenness) and sub-graph level (e.g. modularity) information to 
improve transport demand forecasting. Third, this work only used data from 
two American cities, although similar patterns were identified, it is uncertain 
whether these findings are universally applicable to bike-sharing systems in 
other regions (e.g. Asia, Europe). Additionally, both datasets are from dock-
based bike-sharing systems. Examining dockless bike-sharing systems as 
graphs (Yang et al., 2019) and deriving useful information for demand 
forecasting is an area for further study. 

Overall, this study identified the importance and effectiveness of time-lagged 
graph information properties in bike-sharing travel demand forecasting. 
Analysis of real-world data from different cities suggests that several time-
lagged graph properties are of greater relevance (importance) for predicting 
bike demand than more commonly used environmental measures. Graphs 
capture important structural information and system properties, and graph 
derived measures should be included in forecasting models. The follow-up 
experiments confirmed the improvements to several advanced machine 
learning approaches, noting that LSTM neural networks are able to effectively 
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use a complex set of graph features, due to their ability to process sequential 
information. 

A number of graph information variables were found to improve machine 
learning prediction of bike travel demand when included as lagged information 
in ML models: out-strength, in-strength, out-degree, in-degree and PageRank. 
Using in-strength can significantly decrease prediction errors, while the 
inclusion of the full set can lead to even lower average errors. The 
improvement also presents a spatial pattern and is more evident in areas with 
a medium and high volume of journeys, which is helpful in real-world 
applications. Unlike many data enrichment methods, this approach does not 
require data from other sources (e.g. land-use information from POI, Twitter) 
or extra processing, data cleaning and fusion. These features are easily 
derived from bike flow graphs and are relatively easy to include in existing 
models. Predictions using such data can inform bike scheme operators, help 
them to better understand and model demand patterns in different urban areas 
and to run more successful bike-sharing schemes, thereby promoting 
sustainable transport. The improved short-term demand predictions can also 
benefit “user-based rebalance” activities (Duan et al., 2019; Wu et al., 2019), 
which often have directed user incentives to help bike rebalancing work, and 
dynamically optimise service provision.  

The key finding from this work is that time-lagged graph flow information 
derived from actual bike-sharing patterns were found to be stronger predictors 
of demand than several more commonly used temporal features and 
meteorological features. This is because graph structural information captures 
important spatial and behavioural properties. Our study also found LSTM 
neural networks to be the most effective at handling a complex set of graph 
features and at processing sequential information. Combining these, resulted 
in enhanced and more accurate demand forecasting in bike-sharing systems. 

References 

Austwick, M.Z., O’Brien, O., Strano, E. and Viana, M. 2013. The structure of 
spatial networks and communities in bicycle sharing systems. PloS One. 
8(9), pe74685. 

Batty, M. 2013. The new science of cities. Cambridge: MIT press. 

Beecham, R., Wood, J. and Bowerman, A. 2014. Studying commuting 
behaviours using collaborative visual analytics. Computers, Environment 
and Urban Systems. 47, pp.5-15. 



- 128 - 

Borges, J., Ziehr, D., Beigl, M., Cacho, N., Martins, A., Sudrich, S., Abt, S., 
Frey, P., Knapp, T. and Etter, M. 2017. Feature engineering for crime 
hotspot detection. In: Proceedings of 2017 IEEE SmartWorld, Ubiquitous 
Intelligence & Computing, Advanced & Trusted Computed, Scalable 
Computing & Communications, Cloud & Big Data Computing, Internet of 
People and Smart City Innovation, 4-8 August 2017, San Francisco. 
Piscataway: IEEE, pp.1-8. 

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual web 
search engine. Computer Networks and ISDN Systems. 30(1-7), pp.107-
117. 

Cao, Y. and Shen, D. 2019. Contribution of shared bikes to carbon dioxide 
emission reduction and the economy in Beijing. Sustainable Cities and 
Society. 51, p101749. 

Chai, D., Wang, L. and Yang, Q. 2018. Bike flow prediction with multi-graph 
convolutional networks. In: Proceedings of the 26th ACM SIGSPATIAL 
International Conference on Advances in Geographic Information 
Systems, 6-9 November 2018, Seattle. New York: Association for 
Computing Machinery, pp.397-400. 

Chen, C., Li, K., Teo, S.G., Chen, G., Zou, X., Yang, X., Vijay, R.C., Feng, J. 
and Zeng, Z. 2018. Exploiting spatio-temporal correlations with multiple 
3d convolutional neural networks for citywide vehicle flow prediction. In: 
2018 IEEE International Conference on Data Mining (ICDM), 17-20 
November 2018. Piscataway: IEEE, pp.893-898. 

Chen, L., Zhang, D., Wang, L., Yang, D., Ma, X., Li, S., Wu, Z., Pan, G., 
Nguyen, T.-M.-T. and Jakubowicz, J. 2016. Dynamic cluster-based over-
demand prediction in bike sharing systems. In: Proceedings of the 2016 
ACM International Joint Conference on Pervasive and Ubiquitous 
Computing,12-16 September 2016, Heidelberg. New York: Association 
for Computing Machinery, pp.841-852. 

Chen, T. and Guestrin, C. 2016. Xgboost: A scalable tree boosting system. In: 
Proceedings of the 22nd ACM SIGKDD international conference on 
knowledge discovery and data mining, 13-17 August 2016, San Francisco. 
New York: Association for Computing Machinery, pp.785-794. 

Chen, T., Tong, H., Benesty, M., Yuan, T., 2018. Understand your dataset 
with Xgboost. [Online]. [1 December 2020]. Available from: https://cran.r-
project.org/web/packages/xgboost/vignettes/discoverYourData.html 



- 129 - 

Comber, A., Chi, K., Huy, M.Q., Nguyen, Q., Lu, B., Phe, H.H. and Harris, P. 
2018. Distance metric choice can both reduce and induce collinearity in 
geographically weighted regression. Environment and Planning B: Urban 
Analytics and City Science. p2399808318784017. 

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., 
Marquéz, J.R.G., Gruber, B., Lafourcade, B. and Leitão, P.J. 2013. 
Collinearity: a review of methods to deal with it and a simulation study 
evaluating their performance. Ecography. 36(1), pp.27-46. 

Duan, Y. and Wu, J. 2019. Optimizing rebalance scheme for dock-less bike 
sharing systems with adaptive user incentive. In: Proceedings of 2019 
20th IEEE International Conference on Mobile Data Management, 10-13 
June 2019, Hong Kong. New York: IEEE, pp.176-181. 

Feng, S., Chen, H., Du, C., Li, J. and Jing, N. 2018. A hierarchical demand 
prediction method with station clustering for bike sharing system. In: 
Proceedings of 2018 IEEE Third International Conference on Data 
Science in Cyberspace,  18-21 June 2018, Guangzhou. New York: IEEE, 
pp.829-836. 

Fishman, E. 2016. Bikeshare: A review of recent literature. Transport Reviews. 
36(1), pp.92-113. 

Froehlich, J.E., Neumann, J. and Oliver, N. 2009. Sensing and predicting the 
pulse of the city through shared bicycling. In: Twenty-First International 
Joint Conference on Artificial Intelligence, 12-13 July 2009, Pasadena. 
Palo Alto: AAAI Press, pp.1-7. 

Fu, R., Zhang, Z. and Li, L. 2016. Using LSTM and GRU neural network 
methods for traffic flow prediction. In: Proceedings of 2016 31st Youth 
Academic Annual Conference of Chinese Association of Automation, 11-
13 Nov 2016, Wuhan. New York: IEEE, pp.324-328. 

Giot, R. and Cherrier, R. 2014. Predicting bikeshare system usage up to one 
day ahead. In: Proceedings of 2014 IEEE Symposium on Computational 
Intelligence in Vehicles and Transportation Systems, 9 – 12 December 
2014, Orlando. New York: IEEE, pp.22-29. 

Goodfellow, I., Bengio, Y. and Courville, A. 2016. Deep learning. Cambridge: 
MIT press. 

Hall, M.A. and Smith, L.A. 1998. Practical feature subset selection for machine 
learning. Journal of Computational Science. 98, pp.181-191. 



- 130 - 

Hoang, M.X., Zheng, Y. and Singh, A.K. 2016. Forecasting citywide crowd 
flows based on big data. In: Proceedings of the 24th ACM SIGSPATIAL 
International Conference on Advances in Geographic Information 
Systems, 31 October – 3 November 2016, San Francisco. New York: 
Association for Computing Machinery, pp.1-10. 

Hyndman, R.J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., 
O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E. and Yasmeen, 
F. 2018. forecast: Forecasting functions for time series and linear models. 
[software]. [Accessed 1 December 2020]. 

Kaggle. 2015. Bike Sharing Demand. [Online]. [Accessed 22 September, 
2019]. Available from: https://www.kaggle.com/c/bike-sharing-demand 

Karlaftis, M.G. and Vlahogianni, E.I. 2011. Statistical methods versus neural 
networks in transportation research: Differences, similarities and some 
insights. Transportation Research Part C: Emerging Technologies. 19(3), 
pp.387-399. 

KDD-Cup. 2017. Announcing KDD Cup 2017: Highway tollgates traffic flow 
prediction.[Online]. [Accessed 22 September, 2019]. Available from: 
https://www.kdd.org/kdd2017/announcements/view/announcing-kdd-
cup-2017-highway-tollgates-traffic-flow-prediction 

Ke, J., Zheng, H., Yang, H. and Chen, X.M. 2017. Short-term forecasting of 
passenger demand under on-demand ride services: A spatio-temporal 
deep learning approach. Transportation Research Part C: Emerging 
Technologies. 85, pp.591-608. 

Ketkar, N. 2017. Deep Learning with Python. New York: Springer. 

Kim, K. 2018. Investigation on the effects of weather and calendar events on 
bike-sharing according to the trip patterns of bike rentals of stations. 
Journal of Transport Geography. 66, pp.309-320. 

Li, A. and Axhausen, K.W. 2019. Comparison of short-term traffic demand 
prediction methods for transport services.Zurich: ETH Zurich. [Accessed 
1 December 2020]. Available from: https://www.research-collection. 
ethz.ch /handle/20.500.11850/356143 

Li, A., & Axhausen, K. W. 2020. Short-term Traffic Demand Prediction using 
Graph Convolutional Neural Networks.  In: Proceedings of  Association 
of Geographic Information Laboratories in Europe (AGILE) Conference 
2020. 18-20 June, 2020. Crete, Sweden. London: Springer, pp.1-14. 



- 131 - 

Li, Y. and Shuai, B. 2018. Origin and destination forecasting on dockless 
shared bicycle in a hybrid deep-learning algorithms. Multimedia Tools and 
Applications. 79, pp.1-12. 

Li, Y., Zheng, Y., Zhang, H. and Chen, L. 2015. Traffic prediction in a bike-
sharing system. In: Proceedings of the 23rd SIGSPATIAL International 
Conference on Advances in Geographic Information Systems, 3-6 
November 2015, Seattle. New York: Association for Computing 
Machinery, p33. 

Lin, L., He, Z. and Peeta, S. 2018. Predicting station-level hourly demand in a 
large-scale bike-sharing network: A graph convolutional neural network 
approach. Transportation Research Part C: Emerging Technologies. 97, 
pp.258-276. 

Liu, J., Sun, L., Chen, W., & Xiong, H. (2016, August). Rebalancing bike 
sharing systems: A multi-source data smart optimization. In: Proceedings 
of the 22nd ACM SIGKDD international conference on knowledge 
discovery and data mining, 13-17 August 2016, San Francisco. New York: 
Association for Computing Machinery, pp. 1005-1014. 

Lovelace, R. and Philips, I. 2014. The ‘oil vulnerability’ of commuter patterns: 
A case study from Yorkshire and the Humber, UK. Geoforum. 51, pp.169-
182. 

Ma, S., Guo, J., Guo, S. and Guo, M. 2019. Position-Aware Convolutional 
Networks for Traffic Prediction. New York: arXiv preprint,p.1904.06187. 

Ma, T., Liu, C. and Erdoğan, S. 2015. Bicycle sharing and public transit: does 
Capital Bikeshare affect Metrorail ridership in Washington, DC? 
Transportation Research Record. 2534(1), pp.1-9. 

Meloun, M., Militký, J., Hill, M. and Brereton, R.G. 2002. Crucial problems in 
regression modelling and their solutions. Analyst. 127(4), pp.433-450. 

Meng, C., Zeleznik, O.A., Thallinger, G.G., Kuster, B., Gholami, A.M. and 
Culhane, A.C. 2016. Dimension reduction techniques for the integrative 
analysis of multi-omics data. Briefings in Bioinformatics. 17(4), pp.628-
641. 

Miranda-Moreno, L.F. and Nosal, T. 2011. Weather or not to cycle: Temporal 
trends and impact of weather on cycling in an urban environment. 
Transportation Research Record. 2247(1), pp.42-52. 

Newman, M.E. 2005. A measure of betweenness centrality based on random 
walks. Social Networks. 27(1), pp.39-54. 



- 132 - 

O’Brien, O., Cheshire, J. and Batty, M. 2014. Mining bicycle sharing data for 
generating insights into sustainable transport systems. Journal of 
Transport Geography. 34, pp.262-273. 

Rodrigues, F., Markou, I. and Pereira, F.C. 2019. Combining time-series and 
textual data for taxi demand prediction in event areas: A deep learning 
approach. Information Fusion. 49, pp.120-129. 

Rudloff, C. and Lackner, B. 2013. Modeling demand for bicycle sharing 
system–neighboring stations as a source for demand and a reason for 
structural breaks. Transportation Research Record. 2430(1):1-11. 

Saberi, M., Ghamami, M., Gu, Y., Shojaei, M.H.S. and Fishman, E. 2018. 
Understanding the impacts of a public transit disruption on bicycle sharing 
mobility patterns: A case of Tube strike in London. Journal of Transport 
Geography. 66, pp.154-166. 

Salaken, S.M., Hosen, M.A., Khosravi, A. and Nahavandi, S. 2015. 
Forecasting bike sharing demand using fuzzy inference mechanism. In: 
Proceedings of 2015 International Conference on Neural Information 
Processing, 9-12 November 2015, Istanbul. New York: Springer, pp.567-
574. 

Shaheen, S.A., Guzman, S. and Zhang, H. 2010. Bikesharing in Europe, the 
Americas, and Asia: past, present, and future. Transportation Research 
Record. 2143(1), pp.159-167. 

Thomas, T., Jaarsma, R. and Tutert, B. 2013. Exploring temporal fluctuations 
of daily cycling demand on Dutch cycle paths: the influence of weather 
on cycling. Transportation. 40(1), pp.1-22. 

Tobler, W.R. 1970. A computer movie simulating urban growth in the Detroit 
region. Economic Geography. 46, pp.234-240. 

Tran, T.D., Ovtracht, N. and d’Arcier, B.F. 2015. Modeling Bike Sharing 
System using Built Environment Factors. Procedia CIRP. 30, pp.293-298. 

Van Der Voort, M., Dougherty, M. and Watson, S. 1996. Combining Kohonen 
maps with ARIMA time series models to forecast traffic flow. 
Transportation Research Part C: Emerging Technologies. 4(5), pp.307-
318. 

Vlahogianni, E.I., Karlaftis, M.G. and Golias, J.C. 2014. Short-term traffic 
forecasting: Where we are and where we’re going. Transportation 
Research Part C: Emerging Technologies. 43, pp.3-19. 



- 133 - 

Williams, B.M. and Hoel, L.A. 2003. Modeling and forecasting vehicular traffic 
flow as a seasonal ARIMA process: Theoretical basis and empirical 
results. Journal of Transportation Engineering. 129(6), pp.664-672. 

Wu, R., Liu, S. and Shi, Z. 2019. Customer incentive rebalancing plan in free-
float bike-sharing system with limited information. Sustainability. 11(11), 
p3088. 

Xu, C., Ji, J. and Liu, P. 2018. The station-free sharing bike demand 
forecasting with a deep learning approach and large-scale datasets. 
Transportation Research Part C: Emerging Technologies. 95, pp.47-60. 

Xu, H., Ying, J., Wu, H. and Lin, F. 2013. Public bicycle traffic flow prediction 
based on a hybrid model. Applied Mathematics & Information Sciences. 
7(2), p667. 

Yang, Y., Heppenstall, A., Turner, A. and Comber, A. 2019. A spatiotemporal 
and graph-based analysis of dockless bike sharing patterns to 
understand urban flows over the last mile. Computers, Environment and 
Urban Systems. 77, p101361. 

Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J. and Moscibroda, T. 2016. 
Mobility modeling and prediction in bike-sharing systems. In: Proceedings 
of the 14th annual International Conference on Mobile Systems, 
Applications, and Services, 26-30 June, Singapore. New York: 
Association for Computing Machinery, pp.165-178. 

Yao, H., Tang, X., Wei, H., Zheng, G. and Li, Z. 2019. Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction. In: 
Proceedings of 33rd AAAI Conference on Artificial Intelligence, 27 
January – 1 February 2019, Honolulu. Vancouver: PKP, pp.5668-5675 

Yao, H., Tang, X., Wei, H., Zheng, G., Yu, Y. and Li, Z. 2018a. Modeling 
spatial-temporal dynamics for traffic prediction. New York: arXiv preprint 
p.1803.01254. 

Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J. and Li, Z. 
2018b. Deep multi-view spatial-temporal network for taxi demand 
prediction. In: Proceedings of 32rd AAAI Conference on Artificial 
Intelligence. 2–7 February 2018, New Orleans. Vancouver: PKP, 
pp.2588-2595. 

Zhang, J., Zheng, Y. and Qi, D. 2017. Deep spatio-temporal residual networks 
for citywide crowd flows prediction. In: Proceedings of 31st AAAI 



- 134 - 

Conference on Artificial Intelligence. 4-9 February 2017, San Francisco. 
Vancouver: PKP, pp.1-7 

Zhang, Y., Cheng, T. and Ren, Y. 2019. A graph deep learning method for 
short‐term traffic forecasting on large road networks. Computer-Aided 
Civil and Infrastructure Engineering. 34, p19. 

Zhong, C., Arisona, S.M., Huang, X., Batty, M. and Schmitt, G. 2014. 
Detecting the dynamics of urban structure through spatial network 
analysis. International Journal of Geographical Information Science. 
28(11), pp.2178-2199. 

Zhou, Y., Chen, H., Li, J., Wu, Y., Wu, J. and Chen, L. 2019. Large-Scale 
Station-Level Crowd Flow Forecast with ST-Unet. ISPRS International 
Journal of Geo-Information. 8(140), pp.1-16. 

Zhou, Y., Li, Y., Zhu, Q., Chen, F., Shao, J., Luo, Y., Zhang, Y., Zhang, P. and 
Yang, W. 2019. A reliable traffic prediction approach for bike-sharing 
system by exploiting rich information with temporal link prediction strategy. 
Transactions in GIS. 23(5), pp.1125-1151. 



- 135 - 

Chapter 6 
Discussion and conclusions 

The thesis is concluded and the research undertaken is critically discussed in 
this chapter. A chapter-by-chapter summary is given in section 6.1, and the 
main findings of each chapter are outlined. Section 6.2 expounds the 
contribution of the thesis to the literature of urban and transport studies. 
Section 6.3 critically examines the limitations as well as future studies. A 
conclusion is provided in section 6.4, which also provides an outlook on 
understanding and modelling sustainable urban mobility. 

6.1 Thesis summary 

Chapter 1 demonstrated the research background and aims, the works in the 
thesis are devoted to deepening our understanding of dynamics and 
interactions in sustainable transport (bike-sharing) over the urban last mile, 
adopting spatiotemporal and graph-based approaches.  

Chapter 2 provided a critical review of the relevant research on graph theory 
and its applications in urban and transportation systems. Firstly, the graph 
theory and various metrics were introduced, including their definition and 
potential indication in the geographical context. Secondly, the application of 
graphs in geography and urban systems are introduced, along with the data 
which has been used to generate graph structures to characterise urban 
mobility structures. Thirdly, chapter 2 reviewed the history of bike-sharing and 
the new research opportunities that emerged from the IT-based and dockless 
schemes to understand travel behaviours in urban last mile. Overall, the 
review concluded that urban travel flow interactions should be understood in 
the context of local processes, such as urban development and interventions. 
The breakdown to analysing temporal graphs will help interpret the variation 
and evolution in behaviours and the dynamics in urban space. 

In chapter 3, the dockless bike-sharing scheme and the new opportunity and 
challenges it brings are presented. Through examining the flexible travel flows 
in the dockless bike-sharing scheme, the study revealed the quick adaption 
by people to combine a dockless bike with metro travels to complete their 
journeys. The integration with mass transit systems can rapidly boost local 
cycling demand, leading to new clusters of cycle trip origins and destinations 
emerging around new metro stations within walking distance. By aggregating 
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flows origin and destinations by road segments in a novel way, related graph 
metrics are extracted and compared. This research found that with the 
development of the mass transit system, dockless bike-sharing is a flexible  
“first/last mile” solution, and the urban last mile has a tendency towards being 
polycentric and showing stronger local connectivity.  

In chapter 4, dock-based bike-sharing (London Cycle Hire Scheme) were 
analysed to reveal how cycling travel behaviour changed during different 
transit disruptions in London. The results suggest that bike-sharing usage 
generally rises in response to transit disruptions, but the extent and nature of 
this rise varies according to the spatiotemporal characteristics of disruption. A 
novel measure of station pressure suggests that the scheme very quickly 
reaches saturated capacity and leads to insufficient service provision during 
disruptions. Graph-based analysis reveals several changes in OD flow 
structures, which imply a modal shift from Tube to bike-sharing and a change 
of route behaviours amongst bike-sharing users. Weekday Tube strikes may 
bring many new behaviours and new OD pairs to the bike flow structures, 
whilst for weekend strikes existing patterns are relatively consolidated.  

Chapter 5 was inspired by one of the key findings that emerged from chapters 
3 and 4: cycling flow structures rapidly evolve in response to different 
interventions in the urban system, and this varies according to different spatial 
(locations) and temporal variable (e.g. hour of the day). Flow structural 
dynamics represent the underlying changing mobility behaviours of people, 
therefore examining the temporal graph metrics is helpful for improving 
understanding of these behaviours and therefore modelling the system. This 
chapter extracted time-lagged graph metrics from real-world bike-sharing 
datasets, including graph node out-strength, in-strength, out-degree,in-degree 
and PageRank. They were added to different machine learning algorithms to 
predict short-term bike demand. Results indicated that the time-lagged graph 
metrics were more significant in predicting demand than commonly used 
meteorological information. Different machine learning approaches (XGBoost, 
MLP, LSTM) all benefit from the additional graph features. Deep neural 
networks were found to be better able to handle the sequences of the time-
lagged graph variables than other approaches, resulting in more accurate 
forecasting. Thus, incorporating graph-based features can improve 
understanding and modelling of demand patterns in urban areas, supporting 
bike-sharing schemes and promoting sustainable transport. 
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6.2 Contribution to literature 

In this section, the potential contribution of the research behind this thesis in 
a broader context of previous work are summarised. The contribution can be 
divided into four categories. (1) Contribution to the literature of dockless micro-
mobility service and user behaviours; (2) Contribution to the literature of 
understanding urban dynamics over the last mile, especially how the 
structures change in response to different interventions; (3) Contribution to the 
literature of short-term travel demand prediction; and (4) Contribution to the 
literature of graph-based analysis on temporal travel flows. 

6.2.1 Contribution to the literature of dockless shared-mobility 
services and user behaviours 

In recent years, dockless bike-sharing schemes have emerged and grown 
rapidly in several countries. The fleets of these bikes in China surged in 
number to around 23 million in approximately two years, accounting for around 
92% of all sharing bikes in China in 2018 (Gu et al., 2019). The proportion also 
grew rapidly (44%) in the USA (Shaheen et al., 2020). Given similar amounts 
of economic and social investment, dockless schemes are considered to 
operate more efficiently and provide more convenience for travellers than 
docked-based service (Mooney et al., 2019; Chen et al., 2020). Sharing 
vehicles in such a way radically improves mobility (McKenzie, 2020). Dockless 
electric powered scooters are another new trend that is radically changing the 
way that many people move around. In the future, shared self-driving vehicles 
(of whatever kind) might completely change the ways people live and move 
around and not just in urban areas. Problems such as congestion and car 
parking will be relieved by shared-mobility systems resulting in a more 
sustainable and more inclusive transport system. The changes are taking 
place first in more urban areas where there is a critical mass of potential users 
and where the problems of congestion and where to park vehicles is most 
acute. Therefore, understanding the dockless mode of shared-mobility is of 
vital importance in transport and urban planning. But because this is a 
relatively new phenomenon, there is little published academic literature, 
especially that based on quantitative, detailed and large scale studies.  

This study addressed the challenges of understanding dockless micro-
mobility service and user behaviours by: 

• Proposing the method of detecting dockless bike trips from time-series of 
location snapshots, the trip origin and destinations can be determined by 
the location changes of individually available bikes. 
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• Identifying the role of dockless bike-sharing in rapidly serving for metro 
systems as the first/last mile solution, implying the quick adaption of new 
behaviour among people and the underlying urban resilience. 

• Providing guidance of parking area planning for dockless bikes. For 
example, to promote the integration of metro and bike usage, parking 
areas should be located close to metro stations within an identified 
acceptable walking distance (220 m in the case study).  

6.2.2 Contribution to the literature of understanding urban 
dynamics and structures over the last mile 

The spatial structures of the city and the flow interactions within are becoming 
more complex with the growing population and new technology. People now 
engage in more diverse activities and have more sustainable travel options; 
these new forms and patterns of flow interactions remain to be understood. 
Despite the dynamics and structures of cities that have been explored in a 
number of studies (Zhong et al., 2014; Sun et al., 2015), the focus is normally 
on the broad-scale urban flows, for example, long-medium intra-urban travels 
in metro and taxi. Little knowledge of finer-scale “capillary” flows regarding 
individual non-motorised short-distance movement (e.g. cycling) is 
uncovered. 

The research in this thesis contributes to a  more comprehensive picture of 
the structure and dynamics over the urban last mile through analysing bike-
sharing travel records at the individual level. These are summarised as: 

• Quantifying the spatial distribution and temporal pattern (e.g. peak hours) 
of cycling behaviours in the urban last mile, within the dock-based and 
dockless bike-sharing scheme.  

• Presenting the interdependence between the mass transit system and 
bike-sharing, and how the urban last mile activities may respond to 
different interventions. Disruptions in the metro system will lead to higher 
travel amounts in bike-sharing, and the station-level “distance decay” 
effect suggested in previous literature (Saberi et al., 2018) is further 
supplemented and explained by the work in this thesis. The effect is 
subject to the density of stations and commuting behaviours, thus can be 
weakened or eliminated by travels of other purposes (e.g. leisure). 

• Introducing a novel “service pressure index” to quantify the challenges of 
bike-sharing schemes in providing sufficient resources. Spatial and 
temporal patterns of the index are presented within the context of mass 
transit disruption to demonstrate its utility to observe service provision 
shortages.  
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• Quantifying the structural changes in the urban last mile towards 
polycentric transformation with the development and extended services of 
mass transit system. 

6.2.3 Contribution to the literature of travel demand prediction 

Short-term traffic demand prediction is a key component for efficient transport 
and smart city management. In the last few decades, various prediction 
models have been extensively studied to forecast traffic dynamics. But it is 
very challenging to fully address this problem because of the complexity of 
transport and urban systems. Travel flows, demand and volumes are the 
outcomes of the interaction between people and the urban space. A number 
of factors, such as traveller’s socioeconomic background, road network and 
infrastructures, traffic incidents, weather conditions, all can bring changes to 
the transport system. Although various models were studied, ranging from 
classical statistical models to relatively novel machine learning models, few 
studies have put a focus on the model inputs to answer the vital question: 
what hidden variables might be helpful to enhance different model’s prediction 
performance. The study presented in this thesis addressed the question by: 

• Using real-world datasets, this work quantified and proved that time-lagged 
graph node metrics (in-strength, out-strength, in-degree, out-degree and 
PageRank) are more helpful than meteorological features (e.g. 
temperature) for short-term travel demand prediction. 

• Suggesting that different machine learning algorithms, such as gradient 
boosting trees and deep neural networks, can all benefit from extra input 
variable that derived from time-lagged temporal graph structures. 

• Proposing to use LSTM neural networks layers to process the complex 
sequence of time-lagged graph variables, while concatenating with MLP 
layers to deal with the remaining variables (e.g. meteorological features). 
The model is able to obtain a better prediction for short-term travel demand 
in bike-sharing system, comparing to XGboost and MLP models. 

6.2.4 Contribute to the literature of graph-based analysis on 
temporal travel flows 

Using graph theory to mathematically characterise dynamics in travel flow is 
one of the key areas of novelty within this research. The generated graph 
structures covered a different range of temporal resolutions, from weekly 
(chapter 3) to daily (chapter 4), further broken down to hourly in chapter 5. 
The spatiotemporal and graph-based analysis provides the opportunities to 
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better understand the flows and changing nature behind them. The proposed 
method and obtained findings are as follow: 

• Proposing using short road segments to aggregate dockless bike trip 
origins and destinations for constructing an OD matrix, this approach has 
the potential to capture the spatial details in short-distance travel flows. 

• Confirming that cycling flows in both dock-based and dockless bike-
sharing present power-law distribution in graph metrics; disruptions (e.g. 
transit strike) or infrastructure changes (e.g. new metro line) will not 
change this nature. 

• Investigating mobility graphs with high temporal resolution (hourly interval), 
This work showcased the utility of the highly dynamic temporal graph and 
the metrics in better modelling dynamics in transport systems(chapter 5).  

6.3 Discussion and limitation of the study 

A number of limitations, however, were encountered during the research. The 
limitations are highlighted in this section, and they should be considered while 
applying the research outcomes to urban and transport studies.  

6.3.1 Limitation in understanding people’s travel behaviours  

The research presented in this thesis focused on analysing the structural 
changes in intra-urban cycling travel flows. An assumption is made that the 
variance in the graph structures represents the underlying changed behaviour 
of people, and associated with the potential transformation in the function of 
urban space over time or under interventions. However, it should be noted 
that when interpreting the driving force and mechanism of why people 
changed their travel options or routes, the consideration of individual 
socioeconomic information is vital but missing in this thesis. The changed 
behaviours should be further broken-down to link with the heterogeneity that 
lies in each individual. Lacking consideration in users’ socioeconomic 
characteristics carries the risk of making an inaccurate inference. In chapter 3 
and 4, although the ridership has increased, it is not clear whether the 
additional and changed journeys are made by the same group of users. It 
could be the case that large amounts of previous users gave up using bike-
sharing, while the new users are from a completely different socioeconomic 
background. In this case, the changed travel flows and structures do not 
represent the adoption of new behaviours, but only reflect the mobility 
characteristics of different groups in the population. It is a paradox that despite 
the emerging transport data at finer spatiotemporal granularity, access to the 
individual’s identity, socioeconomic or travel purpose is highly limited (Kitchin, 
2013). Researchers are normally cut-off from the rich seam of potential 
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studies unless the rare access is granted by private and public sectors of the 
data owner. Moreover, sometimes the socioeconomic variables are not 
collected because the travel records are generated only for management and 
engineering purposes rather than research, while only fundamental 
behaviours (e.g. action of departure) is available. 

But there are possible solutions to supplement this understanding, for 
example, utilising social media, land use or POI data at the trips’ origin and 
destination (Yang et al., 2019) can help infer travel purpose. The census data 
(Zhang et al., 2020) or other geodemographic indicators, such as IMD (index 
of multiple deprivations) (Noble et al., 2006), also have the potential to 
illustrate the characteristics of people as well trip origins and destinations. 

6.3.2 Limitation in data bias and representativeness  

The studies in chapter 3 and 4 sought to represent the urban dynamics over 
the last mile through analysing behaviours in bike-sharing schemes. However, 
the issue of data bias and representativeness should be noted. Since not 
everyone is a bike-sharing user, the findings and conclusions are drawn from 
a biased sampling of urban dwellers.  

Much research has been devoted to answering the question of who uses bike-
sharing. In a European (e.g. London) context, young males have higher 
incomes than average and are more likely to use bike-sharing (Fishman, 2016; 
Lovelace et al., 2020). Meanwhile, in some American cities (e.g. Washington), 
the users are more likely to be female with a lower household income (Buck 
et al., 2013). The user profiles may also change over time. The research of 
Lovelace et al. (2020) suggests that the London Cycle Hire Scheme has 
become more inclusive over the last decade, with an increasing amount of 
usage associated with lower-income areas in the city. In any case, dynamics 
within the bike-sharing schemes do not account for all the behaviours nor the 
whole population within the urban last mile. The results should not be over-
generalised to infer patterns in private-owned bikes or pedestrian movements. 
Future work on comparing the patterns in different non-motorised traffic (e.g. 
pedestrian, scooter) will help to obtain a more nuanced picture of these 
different sustainable travel modes and the dynamics within. Moreover, a 
shortcoming of using data of observed activities in transit systems, is that they 
do not address fundamental preferences or barrier to usage; especially for 
disadvantaged groups who have limited access to mobility services. For 
example, in Shanghai, most users of dockless bike-sharing systems are aged 
between 20 to 40, with relatively high education level and middle-income level, 
although the rental fee of dockless bike-sharing is considered affordable for 
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most people, with pricing of less than one Chinese yuan per hour, 
approximately 0.11 British Pound (Lyu et al., 2020). Pricing is not the only 
issue that prevents the disadvantaged group and older people to use 
innovative mobility services. Dockless bike-sharing, as well as many Internet 
ride-hailing services (e.g. Uber), tend to rely on smartphone applications. This 
inevitably leads to a selection bias. People suffering from digital poverty (e.g. 
not familiar with the Internet, do not have a smartphone) are being cut off from 
these mobility services. Disadvantaged groups’ travel preference, behaviours, 
and barriers in using these travel modes are missing in the transaction-
generated travel records. The development of and research on new and novel 
traffic mode should be aware of the underlying data bias issue. And it could 
be beneficial to combine travel records with survey data to obtain a more 
comprehensive understanding of different users and non-users, thus making 
sure the mobility service is inclusive. 

6.3.3 Simplification of the spatial graphs 

The graphs analysed in this thesis have been constructed using travel OD 
matrixes, and presented as weighted and directed graph structures. Although 
edges have attributes to indicate the flow direction as well as trip frequency, 
they do not include spatial attributes such as distances or travel time between 
different nodes.  

OD graphs in the context of intra-urban travel (e.g. commuting) are found to 
be relatively less impacted by physical distance and space, as suggested by 
Chowell et al. (2003). However, cycling is an active travel mode that might be 
impacted by the distance to a greater extent. The changed spatial distribution 
of available bikes could also impact the flow structures, for example, not 
having enough dockless bikes may lead to fewer out-flows from certain places, 
thereby introducing uncertainties into the analysis and results.  

In chapter 3, road segments are cast as graph nodes to aggregate the flexible 
dockless bike travels; there are other approaches, such as using grid cells, in 
the literature (Song et al., 2021). The choice is relatively arbitrary and depends 
on the local characteristics of the road network, urban morphology and the 
people’s mobility pattern. In the case study area of Nanchang (chapter 3), the 
service catchment of the new metro line does not have a dense road network, 
especially around the more rural end of it. Therefore, using street networks 
can help aggregate the movement more effectively, and avoid using a large 
amount of area-based grid to construct a large and sparse graph.  
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The modifiable areal unit problem (Openshaw, 1981) should also be 
mentioned in relation to chapter 3 and 5. Point-based trip origins and 
destinations are aggregated into lines or regions (clusters), and the 
aggregation unit could bring uncertainties to the statistics in graph metrics, 
validation of using different aggregation length/size would help to consolidate 
the conclusions that are drawn in the two chapters.  

Overall, future studies may investigate more aspects of travel flow spatial 
characteristics; these may include describing physical distance, available 
space and resources (e.g. parking place and vehicles) and suitable 
aggregation unit of graph nodes.  

6.3.4 Limitation in incorporating more graph indices and models 

Despite using different datasets from varied generations of bike-sharing 
schemes, the graph indices analysed in different chapters are similar. A focus 
was put on several node-level centrality measures such as degree and 
PageRank, with several structural-level indices (e.g. assortativity) used to 
characterise underlying characteristics in connections and the whole structure.  
The works may be further improved by incorporating additional graph indices. 
Other metrics (e.g. link betweenness, reciprocity) could be derived from 
graphs, and they should be explored and understood in the context of the 
urban and transport system. Moreover, the study in chapter 5 could benefit 
from evaluating more machine learning models, such as MGCNN, thus to 
consolidate the conclusion of the utility of graph indices in enhancing various 
machine learning models. Although LSTM is identified as suitable for dealing 
with the time-series of graph indicators, the work in chapter 5 does not provide 
comparisons to other types of RNN (e.g. GRU). There are also other 
mechanisms that could be incorporated into LSTMs. For example, adding the 
attention mechanism (Qin et al., 2017) could potentially enhance the model 
performance by equipping the neural network with the ability to further focus 
on an important subset of inputs in long sequences. Future works may 
investigate a wider range of graph indices and machine learning models to 
quantify their different utilities in understanding and predicting dynamics in 
transportation and urban systems. 

6.4 Conclusion and outlook 

In this thesis, spatiotemporal and graph-based approaches are proposed to 
better understand and model the dynamics over the urban last mile. Through 
examining flow data that are generated by different schemes and generations 
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of bike-sharing, the research sheds more light on the relationship between 
people’s changing travel behaviours and the associated built environment 
development and social interventions (e.g. strikes). The revealed mobility 
patterns and structural changes (e.g. polycentric transformation) imply urban 
resilience, where bike-sharing can rapidly be adopted by individuals to fill 
transit gaps that emerged with various spatial and temporal characteristics. A 
number of planning and management recommendations and strategies are 
drawn from the analysis presented in this thesis. More importantly, the work 
proposed that temporal graphs and the derived time-lagged node indices 
could be helpful to enhance machine learning models (e.g. neural networks) 
for making predictions on dynamics and demand in urban traffic systems, 
which benefits sustainable and smart urban development. 

As the population in cities continue to grow, the flows and interaction of people 
and urban space are becoming more complex and diverse. However, the 
opportunities emerging from technological innovations provide new 
opportunities to capture detailed intra-urban travel flows at a fine spatial and 
temporal granularity. This enables the dynamics to be examined and 
understood in the context of local processes, policies and interventions. 

The COVID-19 pandemic might change how people work and travel forever, 
while an increasing number of people are embracing sustainable options in 
daily life with greater environmental awareness. Growth and expansions in 
shared-mobility, especially dockless bike schemes, have been observed 
worldwide since 2016 (Fishman, 2016). The continued popularity among 
users and surge of private capital led operations makes the assessment of 
shared-mobility and “last mile” problems important (Lovelace et al., 2020). 
Understanding how, where, why, and by whom the sustainable transport is 
used is essential to ensure that cities and infrastructures are inclusive for all. 

To conclude, the successful application in urban planning, transport 
management and policy-making relies on incorporating the knowledge of the 
complexity of urban travel flows and activities. The proposed spatiotemporal 
and graph-based approaches are likely to have considerable potential in 
practice, and can possibly improve the understanding of people’s movement 
and promote sustainable urban development. 
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  List of Abbreviations 

a: Assortativity 

b: Betweenness 

AFC: Automatic Fare Collection  

ARIMA: Autoregressive Integrated Moving Average model 

c: Clustering coefficient 

CDF: Cumulative Density Function 

CNNs: Convolutional Neural Networks 

cv(d): Coefficient of variation of node degree 

D: Node degree 

�̅�: Average node degree 

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 

DT: Model used time-lagged travel demand  

E: Edge 

FGI: Model uses the full set of time-lagged graph information properties that 
were identified as more important than the baseline temperature variable; out-
strength, in-strength, out-degree, in-degree in and PageRank. 

G: Graph 

GCT: Grand Central Terminal  

GI: Model used time-lagged graph information 

GPS: Global Position System 

GRU: Gated Recurrent Unit Networks 

HA: Historical Average 

ID: In-degree   

IMD: Index of Multiple Deprivations 

IS: In-strength,  

IT: Information Technology 

KDE: Kernel Density Estimation 
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L: Links 

LCHS: London Cycle Hire Scheme 

LSTM: Long Short-Term Memory 

𝛿: Connectivity 

MAE: Mean Absolute Error  

MAPE: Mean Absolute Percentage Error 

MGCNN: Multi-Graph Convolutional Neural Networks  

MLP: Multi-Layer Perceptron  

ML: Machine Learning  

N: Node 

O-D: Origin and destination 

OD: Out-degree,  

OS: Out-strength,  

PGI: Model uses part of the time-lagged graph information. Out-strength and 
in-strength are provided for temporal dependence modelling and demand 
forecasting.  

POI: Points of Interest  

PR: PageRank 

QR code: Quick Response Code 

RMSE: Root-Mean-Square Error 

RNNs: Recurrent Neural Networks  

ST-ResNet: Deep Spatio-Temporal Residual Network 

t:  Transitivity. 

TD: Model uses time-lagged travel demand (out-strength) 

TfL: Transport for London  

TTWA: Travel to Work Area 

𝑤S : Mean link weight 

XGBoost: Extreme gradient boosting 

 


