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Abstract

Cyclic dynamics are displayed in many social, economic, physical and
biological systems governed by negative frequency-dependent selec-
tion and delayed feedback. Here, I study the emergence and collapse
of cyclic dynamics in an anti-coordination binary game with mem-
ory. In this model, individuals are faced with two options and aim
to choose the option adopted by a minority in the group. Between
adaptation moves, individuals learn about the behaviour of others
by attending to and recollecting their choices. I introduce a novel
double-fold definition of individual memory, incorporating a rate of
observation (how often one collects new information) and duration
(how long one remembers information). In the context of bounded
rationality, these parameters mirror limitations due to cognitive and
environmental constraints.

I show that finite and infinite observation rates generate different col-
lective dynamics. In the limit of an infinite rate, the population ex-
hibits deterministic and thus cyclic dynamics. In contrast, finite rates
generate noise, enriching the game dynamics with different equilibria.
The time evolution of the frequency of play of the two options in the
group is investigated theoretically and computationally, and charac-
terized as a function of the system parameters, particularly in terms
of amplitude and period. The onset, decay and robustness of cyclic
behaviour is discussed. To make this more concrete, the dynamics
at play are illustrated with a specific example from fashion, intended
as a sociological subject with collective and individual dynamics and
imitation and distinction motifs. Applications to a number of other
social, economic and biological contexts are also discussed.
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Chapter 1

Introduction

From bacteria to people, when acting in groups, individuals often coordinate their
actions giving rise to collective phenomena. Collective phenomena are patterns
in the group behaviour that often stem from simple laws and mechanisms govern-
ing the interactions between individuals, such as positive and negative feedback
and response threshold (Sumpter, 2005). Fascinatingly, when rules are simple
enough, mathematics helps to model and predict the emergence of such patterns.
At other times, computer simulations are necessary. Examples of collective phe-
nomena include ants trailing (Wilson, 1962), crowd dynamics (Helbing et al.,
2005a; Schadschneider et al., 2010) and the heartbeat (Strogatz, 2004). Multi-
agent synchronisation is present across animal groups and biological systems.
Rhythmic synchronisation can lock cells, such as pulsing pacemaker cells, and
individuals, such as flashing fireflies, in phase. On the contrary, the evolution
of turn-taking, such as in traffic congestion models (Helbing et al., 2005b) and
sentinel behaviour (Bednekoff, 1997), is an example of anti-phase coordination.
Likewise, a double pendulum, which is an inanimate object, can reach anti-phase
synchronisation of the two pendulums.

In the study of group behaviour, collective intelligence is the organisation
into an emergent functional behaviour that results from individuals’ interactions
rather than from individual reasoning or global optimisation (Helbing & Johans-
son, 2013). In particular, the limits imposed on individuals to deliberate and
optimise their behaviour are to be taken into account. In social and economic
systems, the theory of bounded rationality (Simon, 1955) states that people’s
behaviour is constrained by the level of access to information and computational
capacities compatible with both the individual and the environment. This theory
is in opposition to the view that individuals possess perfect rationality entailing
access to complete information and abilities to solve optimisation problems that
maximise personal utility (Wheeler, 2018). The El Farol Bar problem, which I
describe in chapter 3, is a computational model exemplifying how social and fi-
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nancial agents under the constraints of bounded rationality can coordinate their
actions using trial-and-error rather than deductive thinking.

Within the field of collective intelligence, my research interest lies in under-
standing the effects that bounded memory and stochastic differences in informa-
tion have on group coordination. Specifically, I propose a binary choice model
with memory in which individuals, between adaptation moves, observe a number
of times the behaviour enacted by others in the group. Individuals who collect
a finite number of observations are said to collect a finite batch. Likewise, in-
dividuals who collect an infinite number of observations are said to collect an
infinite batch. Memory entails the ability to recollect a simple average quantity,
such as the average number of people with a clean-shave, the average number of
times that ‘selling’ was the minority choice and the average density of public-good
molecules dispersed in a medium. The group behaviour will then be described,
primarily, with the dynamics of the recurrence of each option in the population
over time. It is well known that systems with a finite time delay between the mo-
ments that an agent perceives and reacts to information may cause oscillations in
the dynamics (Erneux, 2009). In my original contribution to research, instead, I
look at how much information needs sharing among individuals to induce periodic
oscillations in the dynamics and to what extent these oscillations are sensitive to
model assumptions and robust to individual heterogeneity. Overall, I present
an extensive description of the population’s emergent dynamics using analytical,
numerical and simulation results. I show that infinite and finite batches generate
different collective dynamics. The population exhibits deterministic dynamics in
the limit of infinite batches and stochastic dynamics for finite batches. I show that
deterministic learning always yields periodic oscillating dynamics. In contrast,
stochasticity affects the game dynamics, with noise contributing to the formation
of different equilibria in the population’s dynamics.

The specifications of the model are very general, so that it is paradigmatic of
a broad range of situations where individuals in large groups are confronted with
two options. In social dynamics, the two options can represent opposite fashion
choices, such as clean-shaving or not regarding men’s facial grooming (Robinson,
1976) (being in the minority is motivated by the negative frequency-dependent
attractiveness of beards (Alderman, 2017; Janif et al., 2014)). In financial mar-
kets, the two options can represent buying and selling ‘one share’ (Challet, 2000;
Challet et al., 2013). The two options can also represent the choices available,
within a bacterial population, to the single bacterium that chooses whether to
contribute to the production of a public good or not (Cavaliere & Poyatos, 2013).
Previous research has studied a similar problem. For example, the minority game
(Challet, 2000; Challet et al., 2013) is a financial market model that examines
agents’ efficiency at coordinating their actions when choosing between buying
and selling ‘one share’. However, my research will differ fundamentally when
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compared to this game. The minority game explores how agents coordinate their
actions using different heuristics, also called predictors, whereas I study the case
in which all individual use the same heuristic.

In financial and economics applications, such as in the minority game and
supply-demand chains, the price fluctuations are often seen as a source of market
instability (Mackey, 1989). Consequently, studies intend to discover mechanisms
that reduce such fluctuations. Nonetheless, oscillations are ubiquitous in com-
modity markets, and their mechanisms are still debated. Researchers are asking
whether fluctuations are due to endogenous or exogenous effects and whether
agents are rational or not (Gouel, 2012). The model that I present shows that
endogenous fluctuations can arise once differences in information among agents
are reduced.

Finally, I am interested in linking my model to some specific previous studies
in the natural sciences. Multi-cellular systems, in which synchronisation occurs
by global coupling of individual oscillators, have been widely studied according
to the well-known principle first shown in the Kuramoto model. However, my
interest lies in more recent models of cells that are quiescent below a critical
cell density and oscillate synchronously above such criticality (De Monte et al.,
2007; Taylor et al., 2009). The model that I present exhibits similar features. It
shows a transition from a stable steady state to collective limit-cycle oscillations
at a critical level of ‘information availability’. Here, ‘information availability’ is
controlled by the rate at which individuals sense or collect information about the
state of the system.

Overall, in this thesis, I identify a general scenario for the emergence and
decay of collective oscillations regulated by memory and an information-driven
mechanism. Next is an outline of the content of the thesis.

In chapters 2 and 3, I review some of the methods and definitions used in game
theory and evolutionary game theory. As part of this review, I have replicated
a selection of results from the literature. I introduce the Prisoner’s Dilemma
(section 2.1) and spatial versions of the Prisoner’s Dilemma without (sec. 2.2) and
with memory (sec. 2.3), the definitions of Nash Equilibrium and evolutionarily
stable strategy (sec. 2.4) and the Hawk-Dove game followed by an example of
replicator equation (sec. 2.5). I conclude chapter 2 reviewing relevant features of
a model of the Hawk-Dove game with memory (sec. 2.6). In chapter 3 I present
a review of the El Farol bar problem (sec. 3.1) and qualitative features of the
canonical minority game (sec. 3.2). The Hawk-Dove game with memory and
canonical minority game constitute the basis for developing and discussing a new
model in subsequent chapters.

Chapter 4 includes the definition of a new model and its dynamics (sec. 4.2
and 4.3.1), simulation data (sec. 4.3.2), results for the amplitude and period of
the oscillations for deterministic dynamics (sec. 4.4), scaling properties (sec. 4.5),
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a discussion on the transition between stable state and limit cycles (sec. 4.5.1)
and a characterization of the ‘space of strategies’ (sec. 4.7). Chapter 5 discusses
the model under different scenarios, including: heterogeneous memory duration
(sec. 5.1.1), synchrony of the processes (sec. 5.2), the presence of an hysteresis
(sec. 5.2.1), a scenario without individual memories (sec. 5.1.2), random choice
(sec. 5.3), small populations (sec. 5.6.1) and more. Section 5.7 presents a review
of how each ‘dimension’ of the model impacts on the amplitude of the oscillations.
Chapter 6 contains a summary of the research and a discussion on its applications
and implications.
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Chapter 2

Evolutionary outcomes in games

2.1 The Prisoner’s Dilemma

In game theory, the Prisoner’s Dilemma (PD) models an interaction between two
individuals faced with a binary decision. The game’s name and its description are
due to one of the earliest interpretation of the game given by the mathematician
Albert Tucker when illustrating the game to an audience of psychologists (Mor-
gan, 2007). The PD is described as follows. Two people were involved in the
same crime but, interrogated by the police separately, could individually testify
against the other or remain silent. The two individuals are guilty but there is not
adequate evidence to convict them. Each prisoner has two options: to confess
the crime or not to confess. If they both do not confess, then they can only be
charged with a minor punishment; if they both confess they will be prosecuted
but will receive less than the most severe sentence; but if one confesses and the
other does not, then the confessor will receive lenient treatment while the latter
will get the full sentence (Luce & Raiffa, 1957; Morgan, 2007).

Normally a two-player game is described using a payoff matrix (Nowak, 2006).
For the Prisoner’s Dilemma the matrix is given as follows (Poundstone, 1992):

(C D

C R S
D T P

)
(2.1)

The entries T , R, P , S quantify the payoffs obtained by a focal individual depend-
ing on the behaviour of both players. The following conditions define a Prisoner’s
Dilemma:

T > R > P > S. (2.2)

The two strategies available are denoted with C for cooperation and D for de-
fection. It is assumed that a prisoner cooperates (with the other prisoner) when
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2.1 The Prisoner’s Dilemma

remaining silent and defects when confessing. If both prisoners remain silent
(FCC), they receive the payoff R. If a prisoner confesses (D) and the other does
not (C), the first receives the highest payoff available T and the latter receives
the lowest payoff available S. When both confess (DD), each receives the payoff
P . Any self-interested prisoner who aims to maximise his or her reward based
solely on payoff matrix 2.1 will choose strategy D because this choice yields the
highest payoff regardless of the other prisoner’s strategy, given that T > R and
P > S. Therefore, self-interested individuals end up defecting, obtaining a re-
ward of value P . However, if they both had cooperated, the two individuals would
have got a higher payoff, R (Axerold & Dion, 1988). As a result, the Prisoner’s
Dilemma has become paradigmatic of the ‘tragedy of the commons’ and chal-
lenges faced in establishing cooperative behaviour among purely self-interested
individuals. Cooperation, however, can be established and maintained through
several mechanisms. In the following sections, I describe two such mechanisms,
one based on repetition and reciprocity (section 2.1) and another based on spatial
assortment (section 2.2).

Sometimes the payoffs of the PD are given as shown in matrix 2.3. In this
payoff matrix, the value b is the benefit acquired from the interaction with a
cooperator, and c is the cost associated with cooperative behaviour, with the
benefit exceeding the cost, i.e. b > c. The benefit b is sometimes referred to as
‘donation’ and, for this reason, the game has also been named ‘donation game’
(Hilbe et al., 2013).

( C D

C b− c −c
D b 0

)
(2.3)

The Iterated Prisoner’s Dilemma

The concept of an Iterated Prisoner’s Dilemma (IPD) is introduced to describe the
situation in which two players interact repeatedly and each interaction is governed
by the PD. The IPD was first studied through two computer tournaments, held
by Axelrod in the 1980s, in which various strategies played against each other.
Examples of strategy submitted for competition were ‘always cooperate’ (ALLC)
and ‘always defect’ (ALLD). Both tournaments saw the strategy named Tit-for-
Tat (TFT) winning (Imhof et al., 2007). TFT is a strategy in which an individual
cooperates in the first interaction and afterwards replicates the other individual’s
behaviour in the previous turn. As such, TFT’s success makes it a candidate
strategy for the evolutionary origin of reciprocity (Axelrod & Dion, 1988). Later,
Win-stay-lose-shift (WSLS), also known as Pavlov, was introduced by Nowak
& Sigmund (1993) as a strategy that outperforms TFT. In the late 1980s and
early 1990s, game-theoretic models initiated a new framework based on spatial
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modelling, which discovered the spontaneous emergence of cooperation through
spatial assortment. As such, TFT has allowed a description of the evolutionary
origin of reciprocity (Axelrod & Dion, 1988).

2.2 Spatial models of the Prisoner’s Dilemma

Early work on spatial modelling of the Prisoner’s Dilemma was performed by
Martin Nowak and Robert May (Novak & May, 1992, 1993). They model a
population placed on a square lattice, and each individual only interacts with
the closest eight neighbours. The dynamics are regulated by pairwise interac-
tions, and each interaction is modelled with a simplified version of the Prisoner’s
Dilemma. The game’s payoffs are described in the matrix 2.4, where b is greater
than 1. With this simplification, the authors can describe the behaviour of the
system depending on one parameter only.

(C D

C 1 0
D b 0

)
(2.4)

The evolution of the prevalence of the traits C and D is simulated computa-
tionally. In the first round, each lattice site is randomly assigned either to a
cooperator or a defector. Each individual collects nine payoffs in total (one from
each interaction). The sum of the payoffs collected in the last round is defined
to be the individual’s fitness. Each individual copies the strategy of the best
performing neighbour (the neighbour with the highest fitness from the previous
round) at each subsequent turn. All interactions are synchronous across the lat-
tice and, apart from the random initial distribution of cooperators and defectors,
the dynamics of this model is deterministic. I will present a simulation of the
model above for a population distributed on a 200 by 200 square grid that evolves
according to this scenario for b = 1.85. Consistently with the work of Novak &
May (1993), I consider the case of periodic boundary conditions that allow avoid-
ing border effects. The authors performed the simulations on a 20 by 20 grid,
starting with 90% cooperators and 10% defectors. I suppose that such a high
percentage of cooperators is needed to avoid the cooperators’ initial extinction.
Simulations show that the total number of cooperators can sharply decrease in
an initially randomly distributed population, although numbers can recover and
reach a static level. On the other hand, in social situations resembling the Pris-
oner’s Dilemma, there is evidence showing that humans ‘do not defect in the first
round’. Usually, models take this into account by establishing a significant initial
fraction of cooperators (McNamara et al., 2004).
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2.2 Spatial models of the Prisoner’s Dilemma

Next, I briefly illustrate the model for b = 1.85 by comparing the outcome
of simulations I run to the original results. In figure 2.1 I present the result of
my simulations next to results from the original article. Both graphs show the
density of cooperators over 200 time steps.

My result Novak & May (1993)

Figure 2.1: Density of cooperators over 200 generations for the simulation of the
PD on a square lattice with b = 1.85. Initial conditions have 90 % cooperators
and 10% defectors. The lattice used is a 200 by 200 grid for the graph on the left
and a 20 by 20 grid for the graph on the right, which explains the relative lower
variability in the left-hand plot. Both have approximately the same mean after
convergence.

Figure 2.2 shows the spatial distribution of the population described in the pre-
vious figure for b = 1.85 and additionally for b = 1.45 for three consecutive time
steps. Cooperators are depicted in blue and defectors in red.

Later models have pointed at the biological limits of a deterministic rule and
introduced stochastic evolutionary rules. A rule that proved quite popular was
inherited by statistical physics and used among the first times by Szabo & Toke
(1998). The authors introduced the Fermi-Dirac distribution (2.5) to indicate
the probability W that, once player X has picked neighbour Y, he adopts the
neighbour Y’s strategy, where fK is the last payoff collected by individual K.

W =
1

1 + exp[−β(fY − fX)]
(2.5)

The parameter β, which corresponds to ‘inverse temperature’ in statistical physics,
has the meaning of intensity of selection in evolutionary models and response sen-
sitivity (Galla, 2009) when describing learning dynamics. The value of β describes
how social information is used by individuals in order to update their strategy.
For β → ∞, the system will display strong selection, in the sense that the best
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2.2 Spatial models of the Prisoner’s Dilemma

performing strategy will be chosen at each iteration, which corresponds to a de-
terministic strategy selection. For β → 0, the system will display weak selection,
in the sense that there will be only a minor correction from a random allocation
of strategies and random strategy selection when β = 0.

199th generation 200th generation 201st generation

b =
1.45

b =
1.85

Figure 2.2: Spatial distribution of cooperators (in blue) and defectors (in red) over
three consecutive generations for the Prisoner’s Dilemma on a square lattice for
b = 1.45 (majority of cooperators/blue after convergence) and b = 1.85 (majority
of defectors/red after convergence). Cooperators live on in clusters. This is a
replication on a 200 by 200 lattice grid of the model in Novak & May (1993)
which was presented on a 20 by 20 lattice grid. The number of neighbours is 8.

In figure 2.3 I present the spatial evolution of cooperation and defection after
a simple modification of Novak & May (1993). I model a scenario in which
agents choose their strategy with a probabilistic rule based on the fitness of the
neighbours and self. Following Ho et al. (2007) and Sato & Crutchfield (2003),
the probability W→k to replicate the strategy of neighbour k or self is given in
formula 2.6. In this formula, fk stands for the fitness of the particular agent
to be copied, and fi varies, taking the value of the fitness of all neighbours and
self. This scenario differs from Novak & May (1993) only for having introduced a
stochastic update rule, and thus, strategy updating remains synchronous across
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2.2 Spatial models of the Prisoner’s Dilemma

the population.

W→k =
eβfk∑9
i=1 e

βfi
(2.6)

26th generation 103rd generation 201st generation

b =
1.30

b =
1.45

Figure 2.3: Spatial distribution of cooperators (in blue) and defectors (in red) over
three generations for the Prisoner’s Dilemma on a square lattice with stochastic
updating for b = 1.30 and b = 1.45 and β = 1 .

Comparing figure 2.2 and figure 2.3, one sees that stochastic updating changes
the outcome of the game. In both the deterministic and probabilistic scenar-
ios, cooperators live on in clusters, but clusters have a fragmented shape in the
probabilistic scenario. To illustrate in more detail how stochasticity affects the
game, figure 2.4 compares the evolutionary outcome for a relevant selection of
deterministic and probabilistic scenarios.
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Deterministic Probabilistic

b =
1.13

b =
1.21

b =
1.30

b =
1.55

Figure 2.4: Deterministic and probabilistic outcomes of the Prisoners’ Dilemma
on a lattice. Time evolution over 200 time units of cooperators density with an
initial 90% density of cooperators. As a result of the stochastic update rule,
cooperation is strengthened for low values of b and becomes strongly negatively
affected as b increases.
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2.2 Spatial models of the Prisoner’s Dilemma

From figure 2.4 a pattern starts to emerge. The impact of stochasticity on
the dynamics is two-sided: after the introduction of a stochastic update rule, the
level of cooperation improves for low values of b and is negatively affected as b
increases. This result is mediated by clusters’ fragmentation, which increases the
benefit acquired by defectors from having spatial proximity to cooperators when
b is large.

Overall, in this section, I presented models of the Prisoner’s Dilemma in a two-
dimensional lattice showing that spatial assortment alone can sustain cooperation.
In the next section, I review a study showing how spatial assortment coupled with
a memory effect maintains cooperation in a one-dimensional lattice.
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2.3 A one-dimensional spatial model of the Prisoner’s Dilemma

2.3 A one-dimensional spatial model of the Pris-

oner’s Dilemma

In this section, I review and partially replicate a model (Gelimson et al., 2013) of
competition between cooperators and defectors for a Prisoner’s Dilemma game in
a one-dimensional lattice. I will also point out a specific result for which I disagree
with the authors (Gelimson et al., 2013). The dynamics in the original work are
simulated both on a one- and two-dimensional lattice, but here I only consider
the one-dimensional case. In the one dimensional lattice, each individual has two
neighbours only, and, unlike in the two-dimensional lattice, the spatial effect is not
strong enough to sustain clusters of cooperators. However, the authors propose
that if the current fitness of an individual takes into account past interactions
than cooperation can still be sustained in clusters. Specifically, the authors use a
fitness collection process that entails accumulating payoffs during an individual’s
entire lifetime. Consequently, individual fitness is determined by all collected
payoffs and not only those collected on the last interaction. For individual i, his
fitness fi is defined as follows, where n is the number of interactions in his lifetime
and pli is the payoff collected by individual i in his l-th interaction.

fi = 1 +
1

n

n∑

l=1

pli (2.7)

Next, the authors assume that there are a birth and death process. In this
model, individuals do not change or update their trait (cooperator or defector)
during their lifespan. Instead, strategies replication is obtained with the repro-
duction of existing individuals that produce offsprings of an identical trait.

In this system’s evolution, the population is initialised with cooperators and
defectors randomly distributed with equal probability along the one-dimensional
lattice, with no empty sites. Each individual interacts with the two adjacent
neighbours only, and three processes are unfolding:

1. payoff collection

2. death

3. birth

Death and birth are intertwined. Every time an individual dies, he is immediately
replaced by the offspring of one of the two neighbours. For brevity, I name
this event a death-birth. In the original article, the authors also incorporate a
parameter modelling mobility, but I restrict the analysis to the scenario without
mobility for this review. Following the original work notation, individuals engage
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2.3 A one-dimensional spatial model of the Prisoner’s Dilemma

with a neighbour, thus collecting a payoff, with rate r. The authors model the
payoffs using payoff matrix 2.3 with b = 1 obtaining payoff matrix 2.8, where
0 < c < 1.

( C D

C 1− c −c
D 1 0

)
(2.8)

The rate for an event of death-birth depends on the fitness of individuals. The
rate, let say a, for individual j to die and leave an empty site for an offspring of
neighbour i is given in equations 2.9 and 2.10. In these equations, fi indicates
the fitness of neighbour i, while sk = 0 indicates that individual k is a cooperator
and sk = 1 indicates that individual k is a defector. Importantly, the rates
are strictly positive only for neighbours of differing traits and zero otherwise
(meaning that there is no death-birth process between neighbours of the same
trait). As a result, the death-birth process only happens at the border between
clusters of opposing strategies and does not happen within clusters. As another
result, individuals located within clusters develop a fitness based on a ‘longer’
life-span. Since interactions among cooperators yield higher payoffs (i.e. 1 − c)
than interactions among defectors (i.e. 0), this confers cooperators an advantage.

aC → D (j) = sj
1

2

2∑

i=1

f i(1− si) (2.9)

aD → C (j) = (1− sj)
1

2

2∑

i=1

f isi (2.10)

The control parameters are the cost c linked to cooperation and the rate r, r > 0,
of payoff collection. However, the authors point out that the dynamics’ outcome
is not dependent on the specific value of r. The results of their simulations show
that for r = 5, the cost c u 0.348 is a critical value, with cooperators reaching
fixation for c < 0.348 and defectors reaching fixation otherwise. I simulated the
dynamics, and in figure 2.5 I report four realizations that agree with this finding.
For c = 0.1 cooperators reach extinction (top figure), for c = 0.5 defectors reach
extinction (bottom figure), for c = 0.348 (middle figures) both scenarios have
happened and the fixation time is considerably longer. In the simulations reported
in figure 2.5, the results hold for r = 1. Overall, these findings show that the
payoff-accumulation effect enhances cooperation. This effect is mediated by the
impact on clusters formation, with the accumulation effect improving the fitness
of individuals located within clusters of cooperators. The accumulation effect is
significant because there is no effect of spatial reciprocity that can alone sustain
cooperation in a one-dimensional lattice, contrary to what was described for a
two-dimensional lattice in section 2.2.
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Figure 2.5: Time evolution of cooperators (blue) and defectors (red) on a one-
dimensional lattice with 200 individuals. For c = 0.1 defectors reach extinction
(top figure), for c = 0.5 cooperators reach extinction (bottom figure), for c =
0.348 both scenarios have happened and the fixation time is considerably longer.
The payoff collection rate is set to r = 1. Mobility is set to 0.
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2.3.1 Predicting the critical value

The aim is now to predict the critical value for the cost c. In this process, I follow
the methods developed in Gelimson et al. (2013).

Modelling the interface between clusters

I focus on analysing the dynamics at the interface between a cluster of cooperators
and a cluster of defectors. It is precisely at the interface that local sites can swap
between hosting a cooperator and hosting a defector. It is further assumed that
the agents inside the clusters have been in their cluster for a long time so that their
accumulated average payoff asymptotically equals a one-shot game payoff. For
example, a cooperator that has interacted with cooperators for a long time has
accumulated an average payoff equal to 1− c (cf. payoff matrix 2.8). Let us call
this his reward. A defector that has interacted with a defector has accumulated
an average payoff (his reward) equal to 0. For modelling purposes, only the
two individuals at the cluster’s interface are no longer assumed to be part of
the cluster. Instead, for the two players located at the interface, their reward is
calculated as the average of two one-shot games, one with each neighbour. The
authors acknowledge that this is a strong assumption that they use to estimate
the critical value c u 0.348. Next, I proceed to replicate their calculations to
show that they do not predict the critical value.

Figure 2.6 is an illustration of the payoffs (left T shape) and fitness (right T
shape) under the strong assumption mentioned. The top rows in figure 2.6 are
made of 6 adjacent sites that represent a relevant portion of the lattice where
two clusters meet, with the portion of the red cluster of defectors on the right,
the portion of the blue cluster of cooperators on the left and two sites in the
middle. The transition between cooperation and defection (and vice-versa) can
happen only in the middle. The four two-colour combinations below the first row
represent the four two-strategy configurations that the two sites at the interface
can assume. In addition, the numbers in each cell represent the payoffs (left im-
age) and rewards (right image) obtained under the strong assumption mentioned
above. For example, consider the blue-red two-site combination. The blue site
represents a cooperator placed between a cooperator and a defector. His reward
is the average of the payoffs received, as a cooperator, from the interactions with
a cooperator and a defector. This is 0.5(1 − c) + 0.5(−c) which equals 1

2
− c as

shown in the relevant site. The corresponding fitness (1+ reward, cf. 2.7) is 3
2
− c

as shown on the relevant site in the right image.
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2.3 A one-dimensional spatial model of the Prisoner’s Dilemma

Rewards for players in 1D Fitness for players in 1D

Figure 2.6: Reward and corresponding fitness for six consecutive sites/players in
a specific portion of a one-dimensional lattice. Each site is occupied by either
a cooperator (blue) or a defector (red); all possible combinations are shown for
the two middle sites. For each player, the reward is defined as the average of all
payoffs collected (more details in the main text above). The fitness is defined as
1+reward.

Transition rate matrix

Next I can calculate the transition rates between the four two-strategy combina-
tions. The rates for individual j to be taken over by an offspring of individual i
(a death-birth) is given in equations 2.9 and 2.10. In these equations, fi indicates
the fitness of neighbour i while si,j = 0 for cooperators and si,j = 1 for defectors.
For example the rate T1→4 for blue-red to switch to red-red (from first combina-
tion to fourth combination) is given by 1

2
3
2

+ 1
2
0 = 3

4
. Similarly, the rate T4→1

for red-red to switch to blue-red (from fourth combination to first combination)
is given by 1

2
(2 − c) + 1

2
0 = 1 − c

2
. In this manner, the transition rate matrix

describing the continuous Markov Process is given by

T =




−3
2

+ c
2

0 1
2

1− c
2

0 −3 + c 0 0
3
4
− c

2
3
2
− c −1

2
0

3
4

3
2

0 −1 + c
2




where the diagonal elements are placed so that the elements of each column add
to 0. The red ink indicates a quantity missing from the original article.
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2.3 A one-dimensional spatial model of the Prisoner’s Dilemma

Stationary distribution vector

Following the method proposed in the original article, to find the stationary
probability vector, I calculate the vector ~v such that T · ~v = 0. From row II, I
obtain v2 = 0. One can see that row I is a linear combination of III and IV. As
a result:

(
3

4
− c

2
)v1 =

1

2
v3 (2.11)

3

4
v1 = (1− c

2
)v4 (2.12)

which gives

v3 = (
3

2
− c)v1 (2.13)

v4 =
3
4

1− c
2

v1 (2.14)

The final prevalence of trait C or D is determined by the sign of v3− v4 and thus
the critical value for c is obtained by setting v3 − v4 = 0. Calculating v3 − v4 I
obtain 2c2−7c+3

2(2−c) v1. The roots for the numerator are c0 = 7±5
4

.

Since 0 < c < 1, the solution that one can accept is c = 1/2 which does
not predict the simulations results correctly. The authors, following from the
algebraic error, predicted c = 0.348.

Discussion and conclusion

After replicating the results, I conclude that the assumptions made in the original
article to approximate payoff collection at the interface between clusters are too
strong. I showed that the analytical method suggested by the authors does not
predict the critical cost that separates the scenario in which defection reaches
fixation from the scenario in which cooperation reaches fixation. In practice, their
method overestimates the resilience of cooperators. It is perhaps not completely
incidental that the algebraic error in the computation of matrix T predicts a lower
value (i.e. c = 0.348) for the critical value c compared to the value obtained with
no algebraic error (i.e. c = 0.5). In fact, the algebraic error reduced the rate in
position (1, 4), namely T4→1. The incorrect value T4→1 = 1 − c could have been
derived by assuming that a cooperator in a long-standing cluster has a reward
equal to 2 − 2c rather than 2 − c, obtaining the rate 1

2
(2 − 2c) + 1

2
0 = 1 − c.

Compared to the strong assumptions in the original model, this change would
model a lower fitness for a cooperator within a long-standing cluster that finds
himself next to a defector. This assumption would reflect the reality of the model.
I have additionally verified computationally that there is a non-negligible effect on

18



2.3 A one-dimensional spatial model of the Prisoner’s Dilemma

the rewards of at least three individuals at the interface between clusters, rather
than two only. This strongly suggests that the mathematical analysis of the
transition rates at the interface between clusters shall take into account the effect
on at least three neighbours rather than two. Nevertheless, the above analysis can
help understand and model the dynamics at the interface between long-standing
clusters. To finish, one limitation of the model reviewed here is that births and
deaths only occur at the interface between clusters. This assumption implies
that, once one of two strategies in the population has reached fixation, there is
no longer an active birth and death process. It seems reasonable to consider that
one could extend the birth and death process to all individuals.
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2.4 Nash equilibrium and ESS

2.4 Nash equilibrium and ESS

The Prisoner’s Dilemma described earlier is a two-person game in which each
player has two pure strategies available, namely cooperation and defection. In
game theory, the notion of strategies also includes mixed strategies. A mixed
strategy is a probability distribution over the pure strategies available. With two
strategies available, a mixed strategy defines the probability of playing each one
of the two pure strategies.

A number of concepts have been developed to describe strategies that are
‘stable states’ of a game. Here, I introduce the notions of Nash equilibrium and
evolutionarily stable strategy (ESS) in two-person games.

A Nash equilibrium (NE) defines a set of strategies, one for each player of a
game, that has the property that each player’s strategy is his best response to the
strategy of other players (Holt & Roth, 2004). In a NE, no player can improve his
response by unilaterally changing his strategy. A NE can be defined for both pure
and mixed strategies. Importantly, a NE can be asymmetric because it is defined
as a set of strategies, i.e. one for each player. This asymmetry implies that it can
describe a stable state in which different players play different strategies. This
scenario can apply to equilibria in economic systems where different actors have
different roles in the system. For example, one can consider equilibria for ad-
vertising strategies in distribution channels with separate roles for manufacturers
and retailers (Jørgensen & Zaccour, 2012). However, in population dynamics,
it is often assumed that agents have identical roles (Mesterson-Gibbons, 2001).
Consequently, equilibria are symmetric (Nowak, 2006). Next, I present the formal
definition of Nash equilibrium for symmetric strategies.

Let f(u, v) denote the payoff for strategy u playing against strategy v in a
two-person game. Formally, strategy u is a Nash equilibrium if, for all available
v strategies, v 6= u:

f(u, u) ≥ f(v, u). (2.15)

In addition, strategy u is a strict Nash equilibrium if, for all available v strategies,
v 6= u,

f(u, u) > f(v, u). (2.16)

‘Evolutionarily stable strategy’ (ESS) is a popular equilibrium notion in evolu-
tionary dynamics. It defines a strategy that, once adopted by all members of
a population, resists invasion by any other strategy that is initially rare (Choe,
2019). Formally, strategy u is an ESS if, for all available v strategies, v 6= u,
either

f(u, u) > f(v, u) (2.17)

or
f(u, u) = f(v, u) and f(v, u) > f(v, v). (2.18)
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2.5 The Hawk-Dove game

Furthermore, strategy u is a weak ESS if, for all available v strategies, v 6= u,
either

f(u, u) > f(v, u) (2.19)

or
f(u, u) = f(v, u) and f(v, u) ≥ f(v, v). (2.20)

Thus defined, a weak ESS is stable against invasion by selection but not neutral
drift. Overall, strict Nash equilibrium implies ESS, ESS implies weak ESS and
weak ESS implies Nash equilibrium. The formal definitions of this section can be
found in the book by Nowak (2006).

2.5 The Hawk-Dove game

John Maynard Smith proposed the concept of evolutionarily stable strategy (ESS)
and, together with George Price, presented the Hawk-Dove game and the War of
Attrition game as the first examples of games modelling animal conflict (Smith &
Price, 1973). The Hawk-Dove game is a game with two pure strategies commonly
named Hawk and Dove. In its most general definition, the Hawk-Dove is described
using payoff matrix 2.21 subject to the constraints S > P > T > R.

(H D

H R S
D T P

)
(2.21)

It does differ from the Prisoner’s Dilemma. In the Hawk-Dove game, the best
strategy adopted by one individual depends on the opponent’s strategy: since
S > P , the best response to Dove is Hawk; since T > R, the best response to
Hawk is Dove. Smith & Price (1973) introduce the Hawk Dove game to describe
the conflict between two animals over the control of a territory. The animals
are of the same species but can show different personalities and adopt different
strategies. Hawk-types engage in conflicts, whereas Dove-types flee when an
opponent wants to engage in a fight. The payoff matrix of the Hawk-Dove game
is originally written not as 2.21 but in the less general form 2.22, subject to the
constraints C > V > 0:

( H D

H (V − C)/2 V
D 0 V/2

)
(2.22)

In matrix 2.22, C can be interpreted as the cost of engaging in a fight over
territory or resources of value V . Let us briefly explore this game. There are four
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2.5 The Hawk-Dove game

events possible, namely a Hawk meets a Hawk, a Dove meets a Dove, a Hawk
meets a Dove and a Dove meets a Hawk. I denote these events with DD, HH, HD
and DH respectively. Suppose that the probability of a focal player to play Hawk
is u (his mixed-strategy) and the current probability for him to meet a Hawk in
the population is v (on average, this is equivalent to meeting individuals playing
Hawk with probability v). I denote the expected payoff for a focal player with
f(u, v), i.e. a function of u and v, and obtain

f(u, v) = (1− u)(1− v)
V

2
+ u(1− v)V + uv

V − C
2

. (2.23)

By introducing the substitution θ = V
C

, equation 2.23 becomes

f(u, v) =
1

2
[V (1− v) + c(θ − v)u]. (2.24)

Equation 2.24 implies that the best response to strategy v is Hawk (u = 1) if
v < θ and Dove (u = 0) if v > θ. There is no best (or worst) response for v = θ
as all strategies perform identically against it (Mesterton-Gibbons, 2019). Next,
I show that the mixed-strategy u = θ is a Nash equilibrium and ESS. It is easy
to verify that, for all available v strategies, v 6= u,

f(θ, θ)− f(v, θ) = 0 (2.25)

and

f(θ, v)− f(v, v) =
1

2
C(θ − w)2 > 0 (2.26)

Therefore, since equation 2.25 satisfies condition 2.15 and equation 2.26 satisfies
condition 2.18, the mixed-strategy θ = V

C
is a Nash equilibrium and an evolution-

arily stable strategy. To sum up, when the payoff matrix is given in form 2.22, the
mixed-strategies Nash equilibrium and ESS for the Hawk-Dove game are given by
choosing strategy Hawk with probability V

C
and strategy Dove with probability

1 − V
C

. In a large well-mixed population, the equilibrium can be replicated with
pure strategies. The pure strategies Nash equilibrium corresponds to a fraction V

C

of players adopting strategy Hawk and a fraction 1− V
C

adopting strategy Dove.
Since its formulation, the Hawk-Dove game has been used in a number of

ways to explain, for example, animal conflict (Smith, 1982; Smith & Price, 1973),
animal contest with status signalling (Kim, 1995), pedestrian congestions (Helio-
vaara et al., 2013), colour polymorphism in birds (Kokko et al., 2014) and cat
domestication (Auger & Pontier, 1998).

2.5.1 The replicator equation

Here I introduce the traditional replicator equation (Nowak, 2006) for the specific
case of the Hawk-Dove game played in a large well-mixed population. Let φ
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2.6 Hawk-Dove game with memory

denote the probability of meeting a Hawk in the population. Next, let us focus
on a single individual and call him a focal individual. Using payoff matrix 2.22,
the expected payoff for a focal Hawk is given by fH such that

fH = φ
V − C

2
+ (1− φ)V. (2.27)

Similarly, for a focal Dove

fD = (1− φ)
V

2
. (2.28)

The average payoff in the population is given by f such that

f = φfH + (1− φ)fD. (2.29)

By equating fitness with payoff, the replicator equation for Hawks is given by

φ̇ = φ(fH − f). (2.30)

The replicator equation is fundamental in evolutionary dynamics and describes
frequency-dependent selection in an infinitely large population. It links the vari-
ation in the frequency of a trait to the difference between the fitness of the trait
and the average fitness in the population (Nowak, 2006). Equation 2.30 can be
expanded and simplified to obtain

φ̇ = φ(1− φ)
1

2
(V − φC). (2.31)

Equation 2.31 has three fixed points, namely φ = 0, φ = 1 and φ = θ = V
C

, where

0 < V
C
< 1 by definition of the Hawk-Dove game. By looking at the sign of φ̇ as

a function of θ, one finds that the only stable fixed point is φ = V
C

. This result
shows that the ESS of the Hawk-Dove game is also the only stable attractor of
the replicator equation.

2.6 Hawk-Dove game with memory

2.6.1 The model

Burridge et al. (2017) study a well-mixed large population of individuals with
memory that play the Hawk-Dove game with mixed-strategies. In the classic well-
mixed scenario described above, a population converges to the ESS. However, the
authors show that the introduction of memory can create instabilities and give
rise to cyclic oscillations. Next, I describe the framework of their study.
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2.6 Hawk-Dove game with memory

The authors model a population of individuals that adopt mixed-strategies.
The notation φi(t) is used to denote the probability that individual i plays Hawk
at time t. Consequently 1− φi(t) is the probability for individual i to play Dove
at time t. As the notation suggest, the probability φi(t) is updated over time.
The probability of meeting a Hawk in the population at time t is denoted with
φ(t) = 1

L

∑L
i=1 φi(t) for a population of L individuals.

At any given time t, individuals remember for each interaction in the last m
time units whether they met a Hawk or a Dove and the payoff collected at that
time. Information collected prior to the last m time units is forgotten. Individuals
keep track of the proportion of Hawks met and, for this purpose, φi(t) is defined
as the density of Hawks met by player i in the past m time units. Individuals
also keep track of their moving average payoff.

Next, the authors note that when φ(t) < V
C

, it is convenient for an individual
to switch to Hawk, and Dove otherwise1 (cf. equation 2.24). Based on this
scenario, they further assume that individuals do not immediately switch to the
convenient pure strategy but do this in steps as described next.

φi(t+ δt) =





φi(t) w.p. 1− δt
φi(t) + ε[1− φi(t)] w.p. pδt

φi(t)− εφi(t) w.p.(1− p)δt
(2.32)

where p is a function such that

p = p(φi(t)) = H
[V
C
− φi(t)

]
. (2.33)

Here H is the Heavy-side step function such that H(x) = 0 if x is negative,
H(x) = 1 if x is positive and H(x) = 0.5 if x = 0. The function p acts as a
switch that directs the evolution of strategy φi(t). Importantly, each individual
updates his strategy using his own estimate of the frequency of Hawks to inform
his choice. His estimate is the time-delayed density φi(t), rather than the true
current average φ(t). The value ε is described as an update rate that regulates
how fast players update their strategy. The authors only consider the case of ε
small. Finally, for the remaining part of this review, according to the original
article, I restrict the analysis to the case V/C = 0.5.

2.6.2 Model dynamics

Restricting the analysis to small ε values, the authors showed that the length m of
the memory plays an important role. This role is exemplified in figure 2.7, which

1Quantitatively, this switch is modelled in 2.33
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2.6 Hawk-Dove game with memory

I replicated from the original article. Both realisations show the evolution of the
average strategy φ(t) adopted in a population of 1000 individuals for ε = 0.005.
However, the graph on the left is obtained for memory length m = 101 and the
graph on the right for m = 150. These graphs show that the population reaches
the ESS φ(t) = V

C
= 0.5 for m = 101, while for m = 150 the average strategy

in the group oscillates around the value φ(t) = V
C

= 0.5. Note that although
the ESS is defined in terms of V and C, the dynamics of these simulations are
independent of payoff collection and dependent on ‘memory content’ only. This
observation will become useful in my research. The simulation data in figure 2.7
is a replication of the original article but differs slightly in the manner time is
counted.
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Figure 2.7: Both graphs show the evolution over time of the average strategy
φ(t) for a population of 1000 individuals and ε = 0.005. Obtained for individuals
having memory length m = 101 for the left graph and m = 150 for the right.

The authors also showed that for a fixed memory length m, with m large
enough, the population can either reach a stable state equilibrium or oscillate
depending on the update rate value ε. They showed that, for large memory length
m, there is a critical value ε = εc such that the population reaches equilibrium
for ε < εc and oscillates for ε > εc (in a neighbourhood of εc). I illustrate this
scenario in figure 2.8. In particular, they showed that this critical point is a
Hopf bifurcation and provided an analytical expression for εc as a function of m.
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2.6 Hawk-Dove game with memory

Finally, the authors showed that when a population with a majority of individuals
with a long memory oscillate in strategy, these oscillations can be exploited by a
minority of players with shorter memory. Only in this last scenario, the authors
explicitly modelled the payoff collection process into the dynamics.
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Figure 2.8: Both graphs show the evolution over time of the average strategy
φ(t) for a population of 1000 individuals. Memory length is m = 150 for both
populations while ε = 0.0025 for the left graph and ε = 0.005 right graph.

2.6.3 Evolution equation for φ(t)

Burridge et al. (2017) sought to linearise the evolution equation for φ(t) around
the fixed point 0.5. Through approximations valid in the limit of small oscilla-
tions, population size L → ∞ and memory length m → ∞, the authors derived
a delay differential equation for ψ(t) := φ(t)− 0.5 (2.34). This equation is given
by

1

ε

dψ(t)

dt
= −
√

2m√
π

(ψm(t)− ψ(t)) (2.34)

where

ψm(t) :=

∫ t

t−m
ψ(τ)dτ. (2.35)
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2.6 Hawk-Dove game with memory

By substituting the trial solution ψ(t) = et(x+iy), the authors calculated an ex-
pression for the threshold value εc. They also identified that the lowest frequency
oscillation is at y = π/m, while highest frequencies are transient (for simulations
with m→∞). In addition, by substituting (2.35) into (2.34) and taking the first
derivative of (2.34), I have obtained the following differential equation

ψ̈ + εψ̈ + ε

√
2√
πm

ψ = ε.

√
2√
πm

ψm (2.36)

where m is the delay. Equation 2.36 is a second-order differential equation with
delayed positive feedback, a type of equation that does not admit a general an-
alytical solution. Since my research is a generalisation of this model, it is useful
to point out that equation 2.36 does not have a general analytical solution.

2.6.4 Open questions

The Hawk-Dove game with memory model described here is interesting because
it presents a specific mechanism by which memory can produce coordinated over-
shooting behaviour at the collective level and suboptimal payoffs for the individ-
uals. Maintaining m large and ε small, the authors showed that the amplitude of
the oscillations grows as ε increases past the critical εc, or similarly as memory
increases past a critical memory length. However, is the onset of oscillations in
the Hawk-Dove game with memory reliant on modelling a long memory m and
small update rate ε? For ε = 1 the set of equations in rule 2.32 readily simplifies
to represent a model in which the individual probability φi(t) to play Hawk can
only take values in the set {0, 1}, i.e. individuals play pure strategies. Can oscil-
lations in the average group strategy be sustained as ε increases towards 1? Are
oscillations sustained upon modelling agents that play pure strategy? Is it possi-
ble to obtain analytical expressions for amplitude and frequency as a function of
ε and m? Are the oscillations robust to noise?

In chapter 4 I introduce a model that allows addressing these open questions
but first, in chapter 3, I review the role of memory in the canonical minority
game, focusing on the areas which are necessary to give context to my research.
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Chapter 3

The minority game

The minority game is a mathematical model used to explore how agents in a
group coordinate using inductive reasoning. This game was derived as a rigorous
mathematical formulation of the ‘El Farol bar problem’, an earlier model proposed
in an article titled ‘Inductive reasoning and bounded rationality’ (Arthur, 1994),
in which results were obtained from simulation. Arthur (1994) was inspired by
the theory of bounded rationality developed by Simon (1955) and proposed an
alternative to the economic paradigm that considers humans as deductive rational
agents able to process an infinite amount of information and solve theoretical
complex problems using deductive thinking.

In the following sections, I introduce the ‘El Farol bar problem’ in more detail
and then the minority game, focusing on those features that give context to my
research in chapters 4 and 5.

3.1 The ‘El Farol bar problem’

The ‘El Farol bar problem’ is named after and inspired by the ‘El Farol’ bar in
Santa Fe, in the city of New Mexico in the United States. The problem is de-
scribed as follows. On Thursday night the bar offers Irish music and attendance
is enjoyable if there are no more than 60 people present. There are however 100
people interested to go on that night each week. The question posed is ‘how
should people choose this week?’ when the attendance in the past weeks is the
only information available. The author does not formulate the problem as a
game-theoretical model. He rules out mixed-strategies because he is not inter-
ested in the stable mixed-strategies Nash equilibrium (coin tossing) but in the
inductive dynamics. This problem becomes interesting in the following scenario:
if individuals in Santa Fe build the same expectation about attendance in the
current week, their expectation will not happen. For example, if it is reasonable
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3.1 The ‘El Farol bar problem’

for everyone to assume that few will go then all would go, and vice-versa. Thus
there is not an obvious solution that individuals could adopt. Arthur suggests
than one possible solution is allowing agents to formulate a prediction in a variety
of ways. He proposes that if agents individually predict next week attendance
based on past attendance and if attendance in the past 14 weeks had been

... 44 78 56 15 23 67 84 34 45 76 40 56 22 35

agents could formulate a prediction for the current week attendance using
several working hypotheses, named predictors, for example:

� the same as last week [35]

� a mirror image around 50 of last week’s [65]

� a (rounded) average of the last four weeks [49]

� the trend in the last 8 weeks, bounded by 0, 100 [29]

� the same as two weeks ago [22] (cycle of period 2)

� the same as 5 weeks ago [76] (cycle of period 5)

� etc.

Each person works with k of such predictors (k > 0), ranking them in terms of
efficiency. The most accurate predictor, called ‘active predictor’, is the one em-
ployed to decide whether to go to the bar or not. Each week, once the attendance
is revealed, individuals update the accuracies of their set of predictors (in a way
that is not made explicit by the author) and can change which predictor is their
active one. Finally, the efficiency of these sets of strategies is studied through
simulations. However, it is not known how many strategies there were overall
nor how many each person had. The attendance for one run of simulations is
reproduced in figure 3.1 from Arthur (1994). The figure shows that the agents
managed to self-organise their predictors with attendance over time fluctuating
close to 60 people. Arthur concludes that the predictors are acting like mental
models that mutually co-adapt over time. For this process to work, there need to
be a variety of different predictors to which he refers as an ‘ecology of strategies’.
In the minority game, this problem is examined in more detail.
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3.2 The minority game

Figure 3.1: Reprinted from Arthur (1994). The number of people going to the
bar over 100 weeks.

3.2 The minority game

The minority game (MG), introduced as a toy-model to explore financial markets
dynamics (Challet & Zhang, 1997), models a scenario in which individuals in
a group choose between two options and there is an advantage to choosing the
option being adopted by the minority in the group. Intuitively, the MG is a study
of the ‘El Farol bar problem’ with N people and N/2 seats. Next, I present the
MG in greater detail.

In the MG, a strategy is a formalisation of the idea of a predictor in the ‘El
Farol bar problem’. A strategy is a function that maps the set of possible past
histories into the set of the two actions available, determining which action is the
response to a given history. The history used by agents is however restricted in
time to the latest m time steps. For each time step, the information available
is also restricted to a ‘bit’ indicating only the minority side in the group. In
computational models of the game, each of the two actions available is denoted
with 0 and 1 respectively. Similarly, at each iteration of the game, the minority
side is recorded with a 0 or 1 digit. Table 3.1 is an example of a strategy, where
an agent chooses an action based on a history of m = 3 ‘bits’. In table 3.1 there
are 2m = 8 different possible configurations of the history.
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3.2 The minority game

History Action

000 1
001 0
010 0
011 1
100 1
101 0
110 1
111 0

Table 3.1: Example of a strategy for a memory of 3 bits

In the game, there are N individuals and each individual has S strategies
available. Similarly to the El Farol bar problem, each individual ranks his strate-
gies at each iteration of the game. To rank their strategies, individuals update
a score for each of their strategies by virtually assessing them. They award one
point to a strategy if it would have been successful at predicting the minority,
had it been played, and no points otherwise. The score is often referred to as
‘virtual score’ because it is the result of the accumulation of perceived payoffs.
Virtual payoffs differ from real payoffs because individuals overlook the impact
that using that strategy would have had at the aggregate level (Challet et al.,
2000). The ‘computational’ description above can be translated into a mathe-
matical formulation as follows. The individual decisions are represented with the
set {−1, 1} rather than {0, 1} obtaining

aµi,s = 1 (3.1)

for one side, and with

aµi,s = −1 (3.2)

for the other side, where µ here represents the history in the last M time steps.
aµi,s(t) is defined to be the side taken by individual i, at time step t, using strategy
s, given history µ. In particular i varies in {1, ..., N} and the history µ has m
bits of information corresponding to the minority sides in the last m iterations of
the game. As a result, the minority side for iteration t can be detected using the
opposite of the sign of the following sum:

A(t) =
N∑

i=1

a
µ(t)
i,si(t)

. (3.3)
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3.2 The minority game

A(t) is the aggregate response at time t while si(t) is the ‘best strategy’ used by
individual i at time t. When sign(A(t)) = +1 the minority strategy at time step
t is −1, and vice-versa. The dynamics evolve in discrete time steps and thus time
t is equivalent to iteration t.

3.2.1 Variance

In the literature, the main quantity of interest to describe the dynamics of the
game is the variance of the aggregate quantity A(t). The variance is defined as

σ2 = 〈[A(t)− 〈A(t)〉]2〉. (3.4)

where the angled brackets indicate the time average and the bar indicates the
average over many realisations. The variance is studied because it is considered
a useful measure of the efficiency of the group at coordinating their actions. This
is because the smaller the variance, the larger is the minority group (Savit et al.,
1999) and thus the larger the aggregate payoff. Using the notation in 3.1-3.4, one
obtains 〈A(t)〉 = 0 and σ2 = 〈A(t)2〉. This result is due to symmetry arguments
which consider that A(t) fluctuates around the average of the two actions (Challet
et al., 2004).

In particular, if we were to assume that each agent i draws action ai(t) ran-
domly and independently from the set {−1, 1} at time t, we would obtain 〈ai〉 = 0
and 〈aiaj〉 = δi,j. This implies:

〈A(t)〉 =
N∑

i=1

〈ai(t)〉 = 0. (3.5)

σ2

N
=

1

N
〈A2(t)〉 =

1

N
〈
N∑

i=1

ai(t)
N∑

i=1

ai(t)〉 =
1

N
〈
N∑

i,j=1

ai(t)aj(t)〉 (3.6a)

=
1

N

N∑

i,j=1

〈ai(t)aj(t)〉 = 1 (3.6b)

Equations 3.6a-3.6b show that σ2

N
= 1 for agents behaving randomly. In the

minority game literature, the coordination among agents is considered efficient
when the variance σ2

N
is less than it would be if they were playing randomly and

inefficient otherwise. Figure 3.2 depicts how the variance depends on the fun-
damental quantity 2m

N
and shows that it admits a global minimum as a function

of 2m

N
, which has created a lot of interest on this problem since an economic or

financial interpretation of this minimum means that a market admits an efficient
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3.2 The minority game

Figure 3.2: Reprinted from Savit et al. (1999). σ2/N as a function of z = 2m

N
on

a log log scale. Individuals have two strategies available (i.e. S = 2).

distribution of allocated resources.
The existence of a minimum has been verified in the literature for S > 2, the case
in which agents have two or more strategies. Let us indicate the minimum with
z = zc. This value has been shown to be a critical value that separates the region
z < zc from z > zc. Using geometrical arguments it has been proposed that
either 2 ∗ 2m (Challet & Zhang (1998)) or 2m (Savit et al. (1999)) are measures
for the dimension of the strategy space. In both cases, the conclusion holds that
the variance reaches its minimum when the population size is of the same order
as the dimension of the strategies space. In the region z > zc, σ

2/N converges to
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3.2 The minority game

the value it would take if agents were choosing between the two options randomly.
Interpretations for this result are not definitive. Most commonly it is interpreted
as the fact that as the (complexity of the) information used by agents increases,
agents become increasingly inefficient at coordinating their strategies, or in other
words, the information provided becomes too complex such that agents can no
longer recognise patterns (Savit et al. (1999),Challet et al. (2004)). However, as
z decreases, due to either an increased number of agents or a reduced amount
of information, agents coordinate their strategies more efficiently until reaching
a minimum for the variance at z = zc. However, in the region z < zc, σ

2/N in-
creases as z further decreases, reaching an inefficient region where σ2/N >> 1. In
particular, simulations (Savit et al. (1999)) have shown that the aggregate quan-
tity A(t) exhibits periodic fluctuations for small values of σ2/N (this information
will be relevant in my research). On a qualitative level, the emergence of inef-
ficient coordination among individuals is interpreted as a ‘crowd effect’ (Challet
et al. (2004),Ghosh et al. (2012)).

3.2.2 Probabilistic strategy choice

In the version of the minority game shown above, agents’ choices follow a deter-
ministic rule given the virtual scores. However, this formulation limits the ana-
lytical tractability of the model. In the article titled ‘Thermal Minority Game’,
Cavagna et al. (1999) propose to use the following probabilistic strategy choice
rule:

Prob{si(t) = s} =
eΓUi,s(t)

Σs′e
ΓUi,s′ (t)

(3.7)

with Γ > 0. Ui,s′(t) is defined to be, at time t, the virtual score of strategy s′

for agent i. Γ has the role of ‘inverse temperature’, regulating the stochasticity
of individuals strategy choices. Similarly, in the Gibbs distribution, temperature
regulates the probability that a system is in a certain state depending on the
temperature of the system itself (Yeomans, 1992). The form of update rule 3.7 is
identical to the form of update rule 2.6 described earlier.

3.2.3 Random history

Initially, the study of the MG assumed that individuals respond to endogenous
information, i.e. the history they have themselves created. However, Cavagna
(1999) showed that there is no feedback loop of information from the past. In
other words, the real history of the aggregate quantity A(t) does not impact
the dynamics of A(t) itself. This result is obtained by comparing the dynam-
ics of populations fed with real and random histories. Note, however, that the
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3.3 Conclusions

information is homogeneous (i.e. the same for all agents) even when randomly
generated. The equivalence between the dynamics generated by real and random
histories is sometimes termed ‘Memory irrelevance’ (Cavagna, 1999). This equiv-
alence implies that agents can co-adapt their responses using any string of shared
information. In particular, in the MG, coordination among individuals evolves
without a capacity to forecast the future based on the understanding of the past
(Challet et al., 2013).

3.3 Conclusions

The canonical version of the minority game has been formalised by Challet &
Zhang (1997) and stemmed from the previous work of Arthur (1994). In this
chapter, I have described some of its features. The canonical version rests firmly
on the ideas of deductive thinking and complexity to the extent that the minority
game is regarded as a case study on those topics. The authors themselves have
called the formulation described in this chapter the standard MG (Challet et al.,
2013). In the rest of this thesis, I refer to the combination of MG and TMG as the
canonical MG. On the other hand, a simple description of the aim of the game is
that “a finite number of players have to choose between two sides; whoever ends
up in the minority side is a winner” (Challet et al., 2013). In light of this primary
definition, I introduce and study a non-canonical version of the minority game
in the next chapter. As a fundamental departure from the canonical model,
inspired by the work of Burridge et al. (2017) on the Hawk-Dove game, I will
propose that agents use one predictor only, which (in the language of the ’El
Farol bar problem’) entails the use of the mean of ‘past attendance’ as recorded
by the single agents. This predictor is an intuitive and sensible use of memory. It
is also used by Burridge et al. (2017). This difference is fundamental to the extent
that endogenous history is now crucially important. The ensuing phenomenology
is rich and arguably presents the potential to explain observational data and
real-world phenomena.
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Chapter 4

Emergence and collapse of
oscillations in binary choice
dynamics.

4.1 Introduction

In previous chapters, I reviewed the canonical description of minority games (in
chapter 3) and a specific version of the Hawk-Dove game with memory (in sec-
tion 2.6). In essence, both games model the social scenario in which individuals
in a group choose between two options. At the same time, the highest reward
goes to the individuals who have selected the option taken up by a minority
in the group. Both games also model a learning process that employs memory
and online learning. The two games, however, adopt opposing views concerning
the granularity of the information available to agents. Specifically, data is finely
grained and stochastic in the Hawk-Dove game with memory. Individuals learn
through one-to-one random interactions, within a large group, the option taken
up by one other individual at a time and, as soon as they have learnt this, up-
date their strategy. On the contrary, in the canonical minority game, individuals
have access to coarse-grained information. At the end of each turn, they learn
which option was taken up by a minority in the group. This information is avail-
able to everyone in the group, neglects any form of stochasticity and originates
deterministic dynamics.

My goal is to present a more comprehensive study of the learning dynamics
in binary games with memory, bridging the gap between the two aforementioned
models. I propose a binary choice model with memory in which individuals,
between adaptation moves, observe a number of times the behaviour enacted
by others in the group. Individuals who collect a finite number of observations
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4.2 The model

are said to collect a finite batch. Individuals who collect an infinite number
of observations are said to collect an infinite batch. I show that infinite and
finite batches generate different collective dynamics. The population exhibits
deterministic dynamics in the limit of infinite batches and stochastic dynamics for
finite batches. I show that deterministic learning always yields periodic oscillating
dynamics. In contrast, stochasticity enriches the game dynamics, with noise
contributing to the formation of different equilibria in the population’s dynamics.

This chapter specifies the dynamical system, describing the processes, vari-
ables, parameters, and initial conditions. I characterise the stochastic dynamics
presenting extensive simulation data for finite batches and derive, through a com-
bination of analytical and numerical means, a description of the deterministic
dynamics in the case of infinite batches. Comparing the results for finite and
infinite batches allows assessing the impact of stochasticity on the system. I also
characterise, depending on the parameters, the transition from a stable collective
state to oscillations.

In chapter 5, I discuss the effects on the dynamics of i) making memory dura-
tion heterogeneous, ii) making individual actions simultaneous and iii) changing
the population size. I also discuss to what extent the convergence property of
the iterated update rule affects the breakdown of oscillations in the simulations.
I conclude the chapter with a review of how each ‘dimension’ of the model im-
pacts on the amplitude of the oscillations. Chapter 6 contains a summary of the
research and a discussion on its applications.

4.2 The model

In this section, I introduce a detailed model of a scenario in which everyone
within a large group is faced with a choice between two options, say A and B,
and aims to adopt the option taken up by a minority in the group. I assume that
individuals learn over time about the two options’ prevalence but recollect any
information for a limited time only. Agents learn through an observation process,
which is modelled as a Poisson process with rate r. An observation is an event
in which an individual observes the option, namely A or B, chosen by another
individual. Individuals remember this information for m time units and after
that discards it; m is defined as the memory duration. The product mr is, on
average, the number of observations recollected by an individual. I assume that
each individual uses the information available to him to estimate which option is
taken up by a minority in the group. This estimation is calculated by computing
a simple statistic. The statistic at time t for individual i, say µi(t), is the fraction
of B players1 observed in the time interval [t−m, t]. I have earlier mentioned that

1A B player is an agent that currently adopts option B.
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4.2 The model

agents choose between option A and B. I further assume that this choice is driven
by a mixed-strategy probability, say φi(t) ∈ [0, 1]. The mixed-strategy φi(t) is
the probability that individual i chooses option B at time t, while 1−φi(t) is the
probability that he chooses option A. The statistic µi(t) is employed at the times
when individual i updates his strategy φi(t). Individuals adapt their strategies
to increase their chances of providing the best response to the group’s behaviour.
An heuristic approach to problem solving guides their adaptation move: when an
agent estimates that most individuals have been adopting option B, he responds
by incrementally decreasing his mixed-strategy probability (his probability of
adopting option B); and vice-versa. The strategy update process is a Poisson
process with rate ρ. It is formally defined in equations 4.1a-4.1c in the limit
∆t→ 0.

φi(t+ ∆t) =





φi(t) w.p. (1− ρ∆t) (4.1a)

φi(t) + ε[1− φi(t)] w.p. ρp̃∆t (4.1b)

φi(t)− εφi(t) w.p. ρ(1− p̃)∆t (4.1c)

where p̃ is a function of µi(t) that takes values in {0,0.5,1} and defined as

p̃(µi(t)) = H
[
0.5− µi(t)

]
. (4.2)

H is the Heaviside step function that takes value 0 when the argument is negative
(i.e. when the estimated fraction of B players is greater than 0.5), 1 when the
argument is positive (i.e. when the estimated fraction of B players is less than
0.5) and 0.5 otherwise. Individuals adapt their strategy incrementally, with the
intensity of response ε modulating the size of the increment; ε can represent a
measure of caution in decision making (Fecteau et al., 2007), a learning rate
(Burridge et al., 2017) or mirror the concept of decision inertia (Alos-Ferrer C,
2016; Pitz G F, 1968), a tendency to repeat previous choices regardless of their
outcome. The constant ρ is the rate at which individuals update their strategy.
The unit of measure for ρ is [T ]−1, whereas φi(t) and ε are dimensionless. The
memory duration m has unit of measure [T ]. The rate of observation r has unit
of measure [T ]−1. The product mr is therefore dimensionless. Given a population
of size L, the average group strategy at time t is given by φ(t) = 1

L

∑L
i=1 φi(t).

In equations (4.1a)-(4.1c), individuals adopt mixed strategies for ε < 1, while
they adopt pure strategies for ε = 1. In the latter case, individuals switch between
pure strategy A (φi = 0) and B (φi = 1). Otherwise, for 0 < ε < 1, individuals
display intermediate reactions. In the case of pure strategies, equations (4.1a)-
(4.1c) reduce to:

φi(t+ ∆t) =





φi(t) w.p. (1− ρ∆t) (4.3a)

1 w.p. ρp̃∆t (4.3b)

0 w.p. ρ(1− p̃)∆t (4.3c)
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We will see that pure and mixed strategies yield similar collective dynamics,
even if they necessarily yield different dynamics at the individual level. In this
chapter I present the simulation results for finite batches in the case ρ = 1 (in
section 4.3), ρ 6= 1 and ε = 1. To lighten the notation throughout the thesis, at
times, I will omit ρ from the notation when assumed equal to 1.

Further comments

The model described above is a generalisation of the one proposed by Burridge
et al. (2017) in the context of Hawk-Dove games with memory. In their study,
Burridge et al. (2017) conflate the two processes, namely observation and strategy
update (online learning), and the rate of observation is thus constrained to be
equal to the rate of strategy update. This is also a feature of the canonical
minority game. Importantly, a novel feature of my model is the separation of
the two processes, observation and strategy update, with the introduction of an
observation rate r 6= 1 1. Except for the results concerning the co-evolution
of two memory traits that make use of payoffs, the results by Burridge et al.
(2017) become a subset of the results that I will describe. The two models are
equal when we assume that the two aforementioned processes are paired with r
being implicitly equal to 1 and ρ = 1. In addition, while Burridge et al. (2017)
studied their model for ε ≈ 0, I extend the analysis to the entire interval [0, 1]
(0 ≤ ε ≤ 1). Note that pure strategies (obtained for ε = 1) represent more closely
the best-response in the Hawk-Dove game (cf. 2.24 for a derivation of the result).

Compared to the work of Burridge et al. (2017), another novel parameter in
my model is the rate of strategy update ρ, which will become helpful in thoroughly
characterising the dynamics of the system. In addition, except for section 5.1.3, I
do not explicitly model payoff collection. Nevertheless, I will still make qualitative
comments on the evolutionary implications of the equilibria reached throughout
the thesis.

Lastly, the novel feature, i.e. the separation of the processes of observation and
strategy update with the subsequent introduction of an observation rate r 6= 1,
allows obtaining an exact analytical and numerical description of the dynamics
of φ(t) in the limiting case r → ∞. This scenario models individuals that are
equipped with an exact knowledge of the behaviour of the group restricted to the
time span of the memory duration m. On the other hand, for finite batches, i.e.
r finite, I investigate the dynamics mainly through extensive simulations, which
I proceed to describe next.

1Note to the reader: the rate r is not explicitly present in 4.1a-4.1c.
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4.3 Simulation results for individual and collective dynamics for finite
batches, r finite.

4.3 Simulation results for individual and collec-

tive dynamics for finite batches, r finite.

4.3.1 The algorithm

The algorithm used for simulations is based on the Gillespie algorithm (Gillespie,
1976, 1977). Specifically, the succession of events is determined according to
the Gillespie algorithm; however, the waiting time elapsed between events is
neither recorded nor generated. Fundamentally, the algorithm models the two
processes mentioned above, observation and strategy update, and records the
evolution of the average strategy φ(t) in the population. It can easily be adapted
to record other quantities, such as the evolution of the individual strategies φi(t)
and standard deviation of the set of individual strategies. Figure 4.1 contains a
diagram representing the workflow of the algorithm. In appendix A, I present an
annotated code followed by its output. The output is a plot showing the evolution
of φ(t) together with the standard deviation of the individual strategies. Here I
list the set of parameters used to initialise the algorithm:

(i) m, the memory duration;

(ii) r, the observation rate;

(iii) ρ, the strategy update rate;

(iv) ε, the intensity of response;

(v) L, the population size;

(vi) the end time of the simulation.

The following variables are updated over time:

(vii) φi(t), the probability that individual i plays option B at time t;

(viii) µi(t), the fraction of B players observed in the group by individual i in the
last mr observations;

(ix) φ(t), the average of all φi(t) at time t.

To summarise, the two possible events are observation and strategy update, hav-

ing probability
r

L(r + ρ)
and

ρ

L(r + ρ)
respectively.
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4.3 Simulation results for individual and collective dynamics for finite
batches, r finite.

Input:
m, r, ε, ρ, L, endtime.

Initialize variables:
time = 0, iterations = 0, φi = 0

Choose event

Observation Strategy update

Two individuals, say i and
j, are randomly chosen.

Individual i plays A
w.p. 1 − φi and plays B
w.p. φi. Repeat for j.

Individual i (resp. j)
observes whether j (resp.
i) played A or B, records

the new observation
and discards the oldest
observation, keeping a

total of mr observations.

Two individuals, say i and
j, are randomly chosen.

From his own set of mr
observations, individual i
computes the proportion
of B players observed,
say µi. Repeat for j.

µi > 0.5 ?

µi < 0.5 ?

φi ← φi − εφi φi ← φi + ε(1− φi)

Count iterations and time.

iterations ← iterations+1

iterations mod (r+ρ)L/2 = 0 ?

time ← time +1
φ(t = time) ← 1

n

∑L
i=1 φi

The algorithm runs for
(r + ρ) × L × endtime/2

iterations.

Repeat for j.

with
probability

r

r + ρ

ρ

r + ρ

YES

YES

YES

NO

Figure 4.1: Diagram visualising the workflow of the algorithm used in simulations.
Note that, at the beginning of simulations, agents have an ‘empty memory’ and
do not discard observations. An agent discards observations only after having
first collected mr observations.
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batches, r finite.

Time keeping

In order to increase computational speed, the algorithm does not keep track of
time for single events, whether the event is a strategy update or an observation.
Instead, it keeps track of how many events occurred. Then, time is estimated. The
rationale behind the estimation is described with the following concrete example.
Suppose the population has 1000 individuals updating their strategy with rate 1
and ‘observing’ with rate 10. On average, in this scenario, one expects 1000 ×
(10 + 1) events in one time unit. Consequently, the algorithm counts time by
increments of one time unit every 1000× (10+1) events. Accordingly, simulation
data is recorded at intervals of one time unit. In general, this estimation is
accurate as long as the expected number of events in one time unit is large.
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Figure 4.2: Frequency plot of the simulated memory duration of 1000 agents with
250 observations at rate r = 10 (blue bars) compared to the normal distribution
N(µ = mr/r, σ2 = mr/r2) (black line) with m = 25 and r = 10. The width of
each frequency bar is 0.2.

In the description of the model given in section 4.2, I stated that agents
recall the events observed in the last m time units. In simulations, however,
the algorithm does not keep track of time. Instead, I assume that each agent
recollects exactly the last mr observations. One can show that, as mr → ∞,
the probability distribution of the memory duration converges to the normal
distribution N(m,m/r). This result follows from the fact that: i) the duration is
given by the sum of a large number (mr) of independent waiting times; ii) waiting
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batches, r finite.

times follow an exponential distribution with rate r, having expected value 1
r

and
variance 1

r2
.

In particular, the expected value of the memory duration is m. The variance
decreases as r increases. Figure 4.2 shows how memory duration may distribute
in simulations. The figure consists of a frequency plot obtained by simulating
the duration of one thousand memories, each made of mr = 250 observation at
rate r = 10. Each memory duration is calculated by adding 249 waiting times
generated with an exponential distribution with rate 10. The figure shows that the
distribution of memory duration is well approximated by a normal distribution
with mean m = 25 and variance m/r = 2.5.

4.3.2 Results

In figure 2.8 one is reminded with a specific example (m = 150, r = 1 and
ρ = 1) that there is a critical value εc such that for ε > εc the group average
strategy φ(t) oscillates around the optimal equilibrium. Considering the same set
of parameters and increasing ε further, I show that (figure 4.3) the oscillations
expand for ‘intermediate’ values of ε and collapse for ‘large’ values of ε. In figure
4.4 I plot the evolution of the strategy φi(t) of a typical individual alongside the
group average strategy φ(t). One can notice that the observation of the aggregate
quantity φ(t) does not help inferring the individual dynamics in the group. In
order to characterize the dichotomy between individual and group behaviour, I
have first run extensive simulations.
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Figure 4.3: Evolution over time of the average strategy φ(t) for a population of
1000 individuals. Rate of update ε varying in {0.01, 0.05, 0.5} for fixed memory
duration m = 150.
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Figure 4.4: Evolution over time of the average strategy φ(t) for a population of
1000 individuals and ε varying in {0.025, 0.01, 0.05, 0.5} for fixed memory duration
m = 150 (black line). Evolution over time of the strategy φi(t) of one typical
individual in each population (grey line). Here, images a to c correspond to
images a to c in figure 4.3.

Preliminary simulations had shown that the relevant parameters are the prod-
uct ερ, memory duration m and rate of observation r. Unless I state otherwise,
simulations results are always obtained from large well-mixed populations, where
demographic noise can be largely ignored. In practice, a population of 1000 in-
dividuals satisfies this constraint. Figure 4.5 is one way to illustrate the range of
outcomes both at the individual and collective level for agents employing mixed
strategies. In this figure, results refer to populations that are simulated for dif-
ferent sizes of ε, while memory duration, m = 50, rate of observation, r = 10,
and rate of update, ρ = 1, are fixed. The group average strategy (black line) is
the mean of all individual strategies (orange points) at any moment in time. I
remind the reader that individual strategies φi(t) take value in the interval [0, 1],
thus the mean value for the collective φ(t) also takes a value between 0 and 1.
Dependent on having simulated a large population of 1000 individuals, I can ob-
serve approximately three phases for the collective average behaviour (black line):
stable equilibria, bounded oscillations and random fluctuations around the equi-
librium. Additionally, on the individual level the population shifts from being
closely aligned to being split into two groups. This can be deduced from observ-
ing the individual distribution of strategies (dotted orange colour) that transition
from steady unimodal to moving unimodal to bimodal distribution.

For cyclical periodic oscillations, I measure the amplitude and period of the
trajectory of φ(t). In order to do this, I execute a code that first detects local
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4.3 Simulation results for individual and collective dynamics for finite
batches, r finite.

Figure 4.5: Each quadrant shows φ(t) = 1
n

∑n
i=1 φi(t), i.e. the trajectory of the

average collective strategy over time (black line), coupled with φi(t), i.e. the
individual strategies of the one thousand individuals in the population (dotted
coloured area). Each quadrant shows one of the realisations obtained for six
populations, ε = 0.0001 (top left), 0.1005 (top middle), 0.3255 (top right), 0.4755
(bottom left), 0.7005 (bottom middle) and 0.8655 (bottom right). For all six
realizations, m = 50, r = 10 and ρ = 1.

maxima and minima from simulation data. In figure 4.6 I exemplify with an illus-
tration the quantities A for amplitude and T for period for φ(t) from simulation
data.

Figure 4.7 depicts the amplitude, A, of the oscillations of the average group
strategy, φ(t), generated from simulation data. Each line represents the amplitude
generated by populations simulated for m, r and ρ fixed and ε varying from 0
towards 1. Populations are simulated for two observation rate values: a less
detailed memory on the left graph (r = 5) and a more detailed memory on
the right graph (r = 10). The value of ε increases from 0 towards 1 in both
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Figure 4.6: An illustration of the period T and amplitude A for the periodic
evolution of the average population strategy φ(t) (black line) for m = 50, ε =
0.1005 and r = 50 over a time of approximately 200 time units. Here, T ≈ 66
time units and A ≈ 0.43.
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Figure 4.7: The amplitude, A, of the oscillations of the group average strategy
φ(t) generated from simulation data. Each line refers to the amplitude of the
oscillations generated collectively by populations defined in terms of fixed m,
fixed r and fixed ρ = 1 with ε varying from 0 towards 1. The observation rate is
lower for the left plot (r = 5) and higher for the right plot (r = 10). Each line
shows that, for a given r and m, the dynamics of the group average strategy φ(t)
undergoes a Hopf-bifurcation at a small value of ε. The memory duration takes
a value in the set {25, 50, 100, 200, 300}. The colour code is a gradient of greys:
a lighter colour refers to a longer memory.
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4.4 Deterministic dynamics in the limit r →∞

graphs. In each graph, the memory duration of individuals take a value in the
set {25, 50, 100, 200, 300}. Different shades of grey are used to indicate different
memory durations. For a lighter colour, individuals have a longer-lasting memory
(i.e. the darkest shade refers to m = 25 and the lightest to m = 300). This figure
confirms a recurring pattern that, as mentioned earlier, comprises three phases:
a stable steady state followed by bounded oscillations followed by a noisy steady
state of dumped fluctuations. Extensive simulations have shown that, given the
condition that the product mr is large but finite, this pattern is universal. What
else does the simulation data reveal? I will show this in section 4.5. Next,
however, I characterize the system dynamics with a combination of analytical
and numerical results for r →∞.

4.4 Deterministic dynamics in the limit r →∞
In this section, by analytical and numerical means, I study an infinitely large
population of individuals equipped with a fully detailed memory of the social
environment for the time spanned by their memory duration, corresponding to
the limiting case of an infinite batch (r →∞) with m finite and fixed across the
population. Importantly, this allows us to understand better the behaviour of
individuals collecting finite batches (r finite) by describing how the latter relates
to the former.

The collective trajectory.

Here I assume that r → ∞ and n → ∞, where r is the observation rate and
n is the population size. The assumption r → ∞ implies that every agent at
time t has recorded the exact time-averaged fraction of B players in the popu-
lation in the time interval [t −m, t]. In our model, each individual samples the
social environment, recording the behaviour enacted at different times by other
individuals, excluding himself. However, in the limit of infinite population size,
the impact of a single individual’s strategy is negligible on an agent’s memory
content. Therefore, in this limiting case, memory content is identical for all indi-
viduals. I can rewrite the statistic µi(t) as a time-averaged integral over the time
interval [t−m, t] as follows:

lim
n→∞

lim
r→∞

µi(t) = lim
n→∞

1

m

∫ t

t−m

1

n− 1

n∑

j 6=i,j=1

φj(τ)dτ =

=
1

m

∫ t

t−m
φ(τ)dτ.

(4.4)
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4.4 Deterministic dynamics in the limit r →∞

By recalling the definition in formula (4.2), one has that the individual dynamics
is regulated by the switch “µi(t) > 0.5?” (i.e. an agent chooses how to update
his strategy depending on whether he believes that B players constitutes the
majority or not). Therefore, for r → ∞ and n → ∞, individuals form identical
expectations (identical memories µi) and make the same choices. This implies
that agents are synchronous. It follows that individual and group trajectories
coincide.

The exact solution

By inspection of the simulation results, I earlier observed that the collective
trajectory φ(t) exhibits periodic oscillations in a specific range of parameters.
Figure 4.8 presents ‘oscillations’ obtained from simulation data. The image is
annotated to clarify the argument that is about to follow. The argument is based
on a thought experiment.

Assume that agents are oscillating synchronously in a periodic fashion with
an arbitrarily fixed amplitude, A, according to equations (4.1b)-(4.1c). Solving

t1 t1 + T/2 t1 + T

0.5− A

0.5

0.5 + A

Figure 4.8: Illustration of the assumptions in the thought experiment that helps
determining amplitude and period. The portion of the trajectory in green shows
the reach into the past for the individual memory of an agent at time t1 + T .
Here, m = 50, T ≈ 66 time units and A ≈ 0.43.

equations (4.1b)-(4.1c) in the limit ∆t → 0, one obtains an analytical piece-
wise description of the collective trajectory strictly valid for n, r → ∞ and m
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4.4 Deterministic dynamics in the limit r →∞

arbitrarily fixed and finite. Equations (4.1b)-(4.1c) can be rewritten, in the limit
∆t→ 0, as follows.

φi(t+ ∆t)− φi(t)
∆t

=ερ[1− φi(t)] (4.5)

φi(t+ ∆t)− φi(t)
∆t

=− ερφi(t). (4.6)

Using a more concise notation, the same equations can be rewritten as

φ̇i(t) =ερ[1− φi(t)] (4.7)

φ̇i(t) =− ερφi(t). (4.8)

The general-form solution to equation 4.8 is φi(t) = k exp(−ερt). This general-
form solution describes a descending curve and, notably, approximates well the
trajectory of the plot in the interval in which it decreases (figure 4.8). Therefore,
for the purpose of writing the solution, it is useful to define time with reference
to the plot in figure 4.8. Without loss of generality, one can define the initial
condition φi(t1 + 0) = 0.5 + A. Consequently, the solution to equation 4.8 is
φi(t1 + t) = (0.5 + A) exp(−ερt). Similarly, one finds a solution to equation 4.7.
Finally, I choose to write the two solutions in the following form, where time is
defined in reference to figure 4.8.

φ

(
t1 +

T

2
+ t

)
= 1− (0.5 + A) exp(−ερt) (when ascending) (4.9)

φ(t1 + t) = (0.5 + A) exp(−ερt) (when descending) (4.10)

Notably, this piece-wise exponential solution approximates well the trajectory
observed in figure 4.8, but fails to describe the collective trajectory φ(t) for all
values of ερ in the range [0, 1] in the case of finite batches (i.e. r finite).

Amplitude and period.

Now consider that the solutions in 4.9-4.10 are symmetric and φ(t) reaches a
maximum at times t1 and t2 = t1 + T , and a minimum at time t1 + T

2
, as

annotated in figure 4.8. One has that φ(t) evaluated at t1 + T
2

is 0.5− A. Thus,
from equation 4.10, it must hold that

(0.5 + A) exp

(
−ερT

2

)
= 0.5− A (4.11)

By expanding equation 4.11 and solving for A, I obtain

A = 0.5 · tanh(ερ · T/4). (4.12)
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4.4 Deterministic dynamics in the limit r →∞

The next argument is based on the assumption that agents aim to be in the
minority side and update their strategy φi(t) based on their current estimate,
µi(t), of the fraction of B players in the group. In the model this corresponds to
the fact that agent i chooses to decrease φi(t) when µi(t) > 0.5 and increase φi(t)
when µi(t) < 0.5. This implies that µi(t) − 0.5 changes sign exactly at the time
when agent i switches between ‘increasing φi(t)’ and ‘decreasing φi(t)’. From this
it follows that, with reference to figure 4.8, µi takes value 0.5 at time t1 + T . By
using the formula for µi given in 4.4, one obtains

µi(t1 + T ) =
1

m

∫ t1+T

t1+T−m
φ(τ)dτ = 0.5. (4.13)

In figure 4.8, the green segment overriding the black curve shows exactly the
region of φ(t) that is being integrated in expression 4.13. The segment extends
backwards for m time units starting at time t1 + T .

Since the ascending and descending parts of the trajectory φ(t) have an hor-
izontal axes of symmetry at 0.5, the integral calculated over one period gives
1
T

∫ t1+T

t1
φ(τ)dτ = 0.5. Equating the last two integrals, one obtains:

1

T −m

∫ t1+T−m

t1

φ(τ)dτ = 0.5 (4.14)

Integral 4.14 is calculated between time t1 + T − m and t1, i.e it refers to the
descending tract of the trajectory. Thus, in equation 4.14, one can replace φ(t)
with the solution given in 4.10 and A with the expression given in 4.12. The
resulting equation can be manipulated to obtain the following equation:

[
1 + tanh(ερT/4)

][
1− exp[−ερ(T −m)]

]
= (T −m)ερ. (4.15)

I was not able to solve this equation globally but was able to find an approximate
solution in the limit ερ→ 0 for m finite and fixed. The derivation of this solution
is in section 4.8.1. The approximation is shown in equation 4.16 and shows that
T → 2m as ερ→ 0.

T (ερ,m)

m
= 2− 1

3
mερ+

1

18
(mερ)2 +

2

135
(mερ)3 + O((ερ)4) (4.16)

In remarkable agreement, separate calculations for finite batches (r finite) show
that oscillations arising near the Hopf-bifurcation (cf. equation 4.67) have the
property that T → 2m as ε → εc (assuming ρ = 1). Substituting equation 4.16
(for T ) into equation 4.12 (for A), one obtains an expression for the amplitude in
the limit ερ→ 0

A(ερ,m) =
1

2
· tanh

(1

2
mερ− 1

12
(mερ)2 +

1

72
(mερ)3+

1

270
(mερ)4 + O((ερ)5)

)
.

(4.17)
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4.4 Deterministic dynamics in the limit r →∞

In these approximations T/m and A are functions of the ‘fundamental variable’
ερm as ερ→ 0 . Now let us consider the substitution τ = T

m
. Then equation 4.15

becomes
[
1 + tanh(ερmτ/4)

][
1− exp[−ερm(τ − 1)]

]
= ερm(τ − 1). (4.18)

Again, this means that, if 4.15 admits a solution, it must be of the form T/m =
f(ερm). The existence of such solution is confirmed numerically1 and plotted in
figure 4.9. Once the period is determined numerically, the numerical values can
be used to compute the amplitude, A, through equation 4.12. The numerical
solution confirms that A and T/m are functions of mερ, thus effectively reducing
the description of the behaviour of the system to just two universal curves. One
can also verify that T/m and mερ are dimensionless. Figure 4.9 also point out
that T/m takes values in the interval [1,2]. This fact is consistent with my thought
experiment in which I assumed that memory lasts between T and T/2 time units.
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Figure 4.9: Plots of the two universal curves (black lines) that describe the am-
plitude and period of the oscillations in the limiting case r →∞. The curve for
T/m tends asymptotically to 1 as ερm → ∞. In reality it seems more plausible
that ρ→∞, rather than m→∞. Grey dashed lines only help the eye.

1The equation is solved using the function roots.all from the RootSolve package (Kar-
line Soetaert, 2009).
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4.5 Scaling properties

At this stage we can ask whether the scaling properties observed in section 4.4
for r → ∞ hold for r finite. In order to check this hypothesis, in figure 4.10 I
compare the numerical values of amplitude and period for r → ∞ (black lines)
and for r = 10 and r = 5 obtained from simulation data (red and orange lines).
More specifically, figure 4.10 (A) compares the amplitude A as ε ranges in [0, 1]
for ρ = 1 fixed in the following three scenarios:

(i) r →∞
(ii) rm = 250 for the two combinations (r,m) equals (5, 50) and (10, 25)

(iii) rm = 500 for the two combinations (r,m) equals (5, 100) and (10, 50)

Similarly, figure 4.10 (B) compares the period T/m for r → ∞ and rm = 250
with ε in the range [0, 1]. Figure 4.10 (C) compares the period T/m for r → ∞
and rm = 500 with ε in the range [0, 1]. These figures show that ερm and
rm are the two fundamental parameters that regulate the system’s behaviour
even when r is finite. The reader can note that there is a region in figure 4.10
in which the period stops being a smooth line. This effect indicates that the
algorithm used to calculate the period, which works by identifying peaks, does
not provide a reliable estimate. In turn, this is due to the fact that the periodic
cyclic oscillations broke down. However, by performing a spectral analysis of the
trajectories, I can confirm the value of the period before the oscillations break
down and further identify the main frequency in the entire range displayed. The
value of T/m for T calculated through spectral analysis is shown in figure 4.24.
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r → ∞

rm = 500

rm = 250
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Figure 4.10: (A) A as a function of mερ (ρ = 1) from simulation data (red dashed
and orange lines) and exact results (black line). Here, the simulations results for
r = 10 with m = 25, 50 (red dashed lines) and r = 5 with m = 50, 100 (orange
lines) are merged from the two panels in fig. 4.7. The amplitude and period for
the limiting case r → ∞ are obtained via analytical and numerical means (cf.
equations 4.12,4.15). The range for εm is chosen to highlight the full range of
interesting outcomes. (B) Period T/m for r →∞ and rm = 250. A vertical line
is drawn at εcm = 0.3875. (C) Period T/m for r →∞ and rm = 500. A vertical
line is drawn at εcm = 0.275. In both cases εc is retrieved from the simulations.
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4.5 Scaling properties

Figure 4.11 shows that the scaling property obtained for ρ = 1 fixed and ε
variable (figure 4.10) is preserved for ε = 0.01 fixed and ρ variable.
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Figure 4.11: The black crosses correspond to the values of the amplitude, in (A),
and period, in (B), for simulation results obtained for mr = 50× 5, ε = 0.01 and
ρ varying in [0, 50]. A closer look at the transition from steady state to regular
oscillation for φ(t) at the bifurcation in this scenario is given in figure 4.23. The
red and orange lines correspond to the cases mr = 250 in figure 4.10. Here, the
dynamics for ε fixed and variable fully match.
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4.5 Scaling properties

Figure 4.12 shows that the scaling property valid for ρ = 1 fixed and ε variable
(figure 4.10) is largely preserved for ε = 1 fixed and ρ variable.
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Figure 4.12: (A) Amplitude for ε = 1 fixed and ρ in [0, 1] for mr = 25 × 10
(black triangles) and mr = 50 × 5 (black circles) compared to mr = 250 with ε
in [0, 1] and ρ = 1 fixed (red and orange lines). (B) Period calculated through
spectral analysis for ε = 1 fixed and ρ in [0, 1] for mr = 25× 10 (black triangles)
and mr = 50 × 5 (black circles) compared to the prediction for r → ∞ (black
line). Overall, the behaviour near the Hopf-bifurcation is preserved. The overall
phenomenology is also preserved.
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4.5 Scaling properties

4.5.1 Analytical predictions at the bifurcation

Bifurcation as ε increases

Here, I present an analytical derivation of the value of ε at the transition from
steady states to limit cycles for given memory duration m and observation rate r.
The derivation follows the steps proposed by Burridge et al. (2017), here adapted
to include the parametrization of the rate of observation r. In this section, I
present the main results while the calculations with a comment on the derivation
and accuracy of the prediction are presented in section 4.8.2. The calculations
correctly estimate the critical εc as well as the period of the oscillations near the
bifurcation. They also confirm that the fundamental variables are ερm as well
as rm. To highlight the role of ε, and without loss of generality, in this section I
write εc in place of (ερ)c, thus assuming ρ = 1.

In 4.19, I present an expression for the critical ε at the bifurcation, namely εc.
This expression is an approximation of the analytical derivation that preserves
the scaling properties and still provides a good estimation. For a full expression
see 4.70.

εc ≈ 1

2

√
π5

2rm3
+

π3

2rm2
+

3

4

√
π7

2r3m5
+ .... (4.19)

The accuracy of the analytical prediction 4.19 is shown in figure 4.13 where it
is shown to match the bifurcation point for simulation data. In addition, by
rewriting equation 4.19, one obtains 4.20. In this expression, one readily sees
that εcm is a function of rm.

εcm ≈ 1

2

√
π5

2rm
+

π3

2rm
+

3

4

√
π7

2r3m3
+

12π4 + π6

24r2m2
+ ... (4.20)

Next I report a truncated version of the solution obtained in 4.67 for the
frequency y at the Hopf-bifurcation.

y =
π

m
+

π1.5

√
2rm1.5

+
π2

2rm2
+ ... (4.21)

Since the frequency is calculated in radiants per time unit, from the frequency
I calculate the period, T = 2π/y, to obtain at leading order that T → 2m as
ε→ εc. The precision of this relationship is shown in figure 4.10, panels (B) and
(C), where T/m → 2 as ε → εc for the simulation data. Studying the dynamics
of this system by varying ε (ερ) has shown us that there are three phases: stable
equilibrium, oscillations and a breakdown of the oscillations. However, studying
the same system as r varies gives us a different insight.

56



4.5 Scaling properties

A
m

pl
itu

de
, A

ε10−4 10−3 10−2 10−1 

0
0.

1
0.

2
0.

3
0.

4
0.

5

Figure 4.13: The vertical lines show the analytical approximation of εc for memory
duration 200 (dashed), 100 (dot dashed), 50 (dotted), ρ = 1 and r = 10. The
curved lines show the amplitude, A, of the trajectories φ(t) obtained with the
simulations for memory duration 200 (triangles), 100 (circles), 50 (crosses), ρ = 1
and r = 10 as ε varies.

Bifurcation as r increases

By varying r the system displays only one transition, this being from a stable
equilibrium towards determinist cycles. In figure 4.14 I show two examples of
this type of bifurcation. For low rates of observation (i.e. small r), the collective
trajectory φ(t) reaches a steady state. As r increases past a critical value φ(t)
develops bounded oscillations. This means that, for a fixed memory duration,
oscillations emerge at a critical level of information detail. In particular, this
transition captures the role of information detail in the coordination of a large
group of agents. The critical value rc at which oscillations arise can be estimated
numerically by solving 4.70 for r, with ερ and m fixed. In figure 4.14, the vertical
dashed lines indicate the numerical value predicted for rc while the horizontal
dashed lines indicates the amplitude A calculated numerically for the case r →∞
(cf. 4.12 and 4.15).
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Figure 4.14: Amplitude, A, of the fluctuations of φ(t) as a function of r from
simulation data. Simulation results are obtained for m = 5, ρ = 25 (crosses) and
m = 50, ρ = 5 (circles) while ε = 0.002 in both plots. There is a Hopf-bifurcation
at a critical observation rate rc. The horizontal lines indicate the amplitude
obtained numerically for r → ∞. The vertical lines show the prediction for the
value of rc at the bifurcation, obtained numerically by solving 4.70 for r, with ερ
and m fixed. The prediction for rc equals 149.44 and 4.52 respectively.

Therefore, as shown in figure 4.14, I can predict the emergence of coordinated
oscillations in the population as a function of the rate of sampling and to further
estimate the upper bound of the amplitude, reached as the sampling rate tends to
infinity. The plots show a slight difference between the upper bound and the ac-
tual amplitude measured from the simulation data. This difference is mainly due
to simulation data being recorded in time steps of one unit. The simulation data
is only recorded at times 1, 2, 3, 4, etc. Therefore, the maximum amplitude is not
always captured in the data, especially for small memory duration values. The
impact of this discretization on the amplitude measurement is negligible for long
memories but non-negligible for short memories. Therefore, for short memories,
the measurement can be improved by recording the simulation data at a finer
resolution. I suggest that the observation rate acts as an ‘inverse temperature
of selection’ analogous to the role of selection intensity in the ‘thermal minority
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4.5 Scaling properties

game’ (TMG) (Cavagna et al., 1999). The TMG differs from the MG as it intro-
duces a parameter Γ modelling selection intensity, which is considered equivalent
to an ‘inverse temperature of selection’ (see equation 3.7). In the limiting case
Γ→∞, agents choose precisely the best response and the system is deterministic;
the limiting case Γ → 0 models random choice. In the TMG, a higher ‘inverse
temperature’ produces the ‘remarkable’ (Challet et al., 2013) result of increas-
ing fluctuations, precisely as the observation rate does in my model. Since, in
the minority game, the group’s objective is to coordinate their actions to reduce
fluctuations, Cavagna et al. (1999) concludes that agents perform better when
operating with a non-zero degree of individual error, i.e. when Γ is finite. Fur-
ther work should address similarities and differences between my model and the
TMG and investigate whether the model that I studied corresponds to a limiting
case of the thermal minority game, namely the limit z = D/N → ∞, where D
is the size of the strategy space and N the population size. It is precisely in this
limit that Cavagna et al. (1999) drew the conclusion that I mentioned.

In addition, having modelled the rate of sampling allows us to suggest a rein-
terpretation of previous studies, in particular referring to the work of Burridge
et al. (2015) and Burridge et al. (2017). Burridge and co-authors study two-
strategy anti-coordination competition models in which they incorporate memory
duration but not a rate of observation. The authors show that long memories give
agents a ‘statistical’ advantage against short memory agents (insofar as memory
is not too long since this would originate oscillations). The statistical advantage
derives from a larger sample but vanishes as the sample becomes too large, thus
triggering fluctuations. In particular, a greater memory duration (when restricted
to values that do not originate oscillations) provides a statistical advantage since
it allows agents to locate the best response and reduces randomness in the sys-
tem. In this manner, the authors show that memory duration acts equivalently
to an ‘inverse temperature’ (Burridge et al., 2015). In this regard, it would be
interesting to investigate whether the statistical advantage in these systems, reg-
ulated by the sample size, is primarily linked to the sampling rate rather than
memory duration.
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4.6 Comments

‘Information flow’

Until now, in this chapter, we have seen through analytical, numerical and sim-
ulation results that the quantities rm and ερm essentially regulate A and T/m.
Here I provide an explanation of why these two quantities are crucial.

First, let us assume that ε = 1 is fixed and study the system in terms of the
rates r and ρ. On average, r defines the number of samples collected in one unit
of time, whereas 1/ρ defines the time elapsed between two consecutive strategy
updates. Next, consider two populations are having identical values for rm, and
also for ρm. This implies that the ratio rm/ρm is identical for the two populations
and equals r/ρ. This ratio is important because it defines the average size of the
sample of observations collected by any one of the agents between two consecutive
strategy updates. This implies that, on average, agents in the two populations
share the sample size rm of the information stored in their memory and the size
of the sample collected between consecutive strategy updates. Thus the ‘flow of
information’ remains unchanged when considering ‘equivalent’ systems.

The roles of r and m

Having modelled memory both in terms of accuracy (rate r per unit of time) and
duration (m time units), I find that the role of the memory size is two-faceted.
Although rm is itself a control parameter, r and m contribute differently to the
dynamics.

A higher level of information detail unequivocally increases coordination among
agents. As r → ∞, since all agents use the same learning heuristic, agents form
identical expectations. On the contrary, as r → 0, agents collect widely diverse
information (i.e. with significant variation and variance) and cannot coordinate
their behaviour.

A change in memory duration can also mediate coordinated behaviour. Mem-
ory duration, however, produces a double-fold effect. Memory duration can in-
deed influence a collective phenomenon (oscillations) that requires a degree of
coordination among agents. However, a larger memory duration causes an ‘ear-
lier’ break down of the oscillations. As shown in figure 4.7, a longer memory
duration corresponds to a smaller range of values for which the variable ε sus-
tains oscillations (for r and ρ fixed).
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4.7 Strategy space

In a previous section, figure 4.5 shows how the individual strategies (the φi values
shown as orange dots) are distributed for six different values of ε, while r = 10,
m = 50 and ρ = 1 are fixed. In particular, the values of the individual strategies
are displayed over 200 consecutive time units for populations made of 1000 agents.

Here, figure 4.15 portrays the entire ‘strategy space’ used by agents. For each
of 209 different ε values in [0, 1] and r, m, ρ fixed as above, I plot the set of all
values assumed by the individual strategy φi adopted by each of 1000 agents over
200 consecutive time units. For each ε value, a total of 200000 points is plotted
(1000 individual strategies recorded for 200 successive time units).

Figure 4.15: For each of 209 values of ε on the x-axis, I have plotted, as points,
all the φi values assumed by 1000 agents over 200 time units, resulting in 200000
points for each ε value. All 209 simulated populations have parameters r = 10,
m = 50 and ρ = 1 fixed.
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In figure 4.16, the data from the last figure is displayed differently. On the
y−axis, the interval [0, 1] is divided into 400 small intervals of width 0.0025
and, for each ε value, the 200000 data points are grouped into the appropriate
intervals. A vertical line is drawn at ε = 0.5 to help the eye see where the strategy
space seems to diversify. It is helpful to note that this plot does not alter the
visual representation of the strategy space significantly. However, it allows me
to analyse the data to show how the frequency of strategies varies across the
different intervals. In figure 4.17 I use a colour code to show precisely this.

Figure 4.16: This figure represents the same data as in figure 4.15. However, the
[0, 1] interval for the y-axis is divided into intervals of duration 0.0025, and the
data is grouped accordingly. At the mid-point of each group, a dot is plotted
if a strategy is recorded within the group at least once (i.e. if the group has
a strictly positive frequency). Only 400 buckets are available to depict 200000
points. Additionally, a vertical line is drawn at ε = 0.5 to help the eye see where
the strategy space diversify.
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Figure 4.17: As in 4.16, the data is grouped. However, groups are not displayed
if the frequency is lower than 101. Since there are 200000 data-points, having
fewer than 101 recurrences within a group represents a probability of less than or
equal to 0.05%. The colour-coded legend below shows how the probability that
an agent is in a given group is linked to the colour it is plotted with.
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4.7.1 Characterizing the strategy space

The images above offer an insight into the structure of the strategy space as a
function of the variable ε. Notably, an evolving strategy travels a path produced
by a sequence of steps, with each step governed by one of the two equations 4.1b-
4.1c. Here, I characterize the strategy space by considering the set of all possible
travel paths. First, I rewrite equations 4.1b-4.1c in a convenient form as recursive
equations, obtaining, respectively,

xn+1 =xn + ε(1− xn) (4.22)

xn+1 =xn − εxn. (4.23)

In addition, equations 4.22-4.23 can be rewritten as

xn+1 =xn(1− ε) + ε (4.24)

xn+1 =xn(1− ε). (4.25)

Using equations 4.24-4.25, I explicitly calculate all possible outcomes of the evo-
lution of the system of recursive equations starting from x0 and up the third
iteration. The set of all trajectories is displayed as a tree diagram in figure
4.18. This tree helps inferring a closed form expression for the general solution

x0

x0(1− ε) + ε

x0(1− ε)2 + ε(1− ε) + ε

x0(1− ε)3 + ε(1− ε)2 + ε(1− ε) + ε

x0(1− ε)3 + ε(1− ε)2 + ε(1− ε)

x0(1− ε)2 + ε(1− ε)
x0(1− ε)3 + ε(1− ε)2 + ε

x0(1− ε)3 + ε(1− ε)2

x0(1− ε)

x0(1− ε)2 + ε

x0(1− ε)3 + ε(1− ε) + ε

x0(1− ε)3 + ε(1− ε)

x0(1− ε)2
x0(1− ε)3 + ε

x0(1− ε)3

Figure 4.18: All possible outcomes of the evolution of the system of recursive
equations starting from x0 and up the third iteration.

after n steps, based solely upon knowing which iterations obeyed equation 4.24
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rather than 4.25. Let define N to be the set of natural numbers from 1 to n,
i.e. {1, 2, ..., n− 1, n}. Let define S to be the subset of N such that the iteration
from xk−1 into xk is increasing (i.e. it follows 4.24) for k ∈ S and decreasing for
k ∈ N \S. Using this definition, the value of the variable xn with initial condition
x0 is

xn = x0(1− ε)n +
∑

k∈S

ε(1− ε)n−k. (4.26)

From equation 4.26, one can see that the total number of paths can be computed
as
∑n

r=0

(
n
r

)
. For each r,

(
n
r

)
represents how many (different) paths are made of

n − r terms, each term having the form u(1 − ε)i with 0 ≤ i ≤ n and u = x0 or
u = ε. For example, for r = n, there is only one path (

(
n
n

)
= 1), namely x0(1−ε)n,

which has no terms of the form ε(1 − ε)i. Alternatively, one can note that the
number of paths is doubled at each iteration and therefore the number of paths
for xn is 2n. By counting the solutions through the two methods proposed here,
one obtains the identity 2n =

∑n
r=0

(
n
r

)
, i.e. a case of the binomial theorem.

Equation 4.26 also shows that x0 only appears in the highest-order term,
x0(1 − ε)n, which is negligible as n tends to infinity. This fact implies that, for
large n, ,xn is independent of the initial condition x0.

Considering each recursive equation separately, its evolution admits a closed-
form solution in the following form.

xn =1− (1− x0)(1− ε)n (4.27)

xn =x0(1− ε)n (4.28)

where x0 is the initial value and n the number of iterations. Equation 4.28 follows
directly from equation 4.25 whereas a proof for equation 4.27 is given next.

Brief proof. Using equation 4.22 recursively, the value of xn for n = 1, 2, 3 can
be written as follows.

x1 =x0 + ε(1− x0)

x2 =x0 + ε(1− x0) + ε (1− (x0 + ε(1− x0)))

x3 =x0 + ε(1− x0) + ε (1− (x0 + ε(1− x0))) +

+ ε (1− (x0 + ε(1− x0) + ε (1− (x0 + ε(1− x0)))))

By means of expanding, collecting and rearranging, one obtains

x1 =1− (1− x0) + ε(1− x0) (4.29)

x2 =1− (1− x0) + 2ε(1− x0)− ε2(1− x0) (4.30)

x3 =1− (1− x0) + 3ε(1− x0)− 3ε2(1− x0) + ε3(1− x0) (4.31)
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The coefficients of (1− x0) are the binomial expansion of (1− ε)n, for n = 1, 2, 3.
By generalising this result, equation (4.23) becomes

xn = 1− (1− x0)(1− ε)n. End of proof. (4.32)

The results collected so far allow to better understand the structure of the strategy
space. The solution equation 4.26 tells us that all points in the strategy space are
reached as a modification of the power series in the variable (1−ε) with coefficient
x0 for the higher order term and ε for every other term. Ignoring the trivial case
ε = 0 and ε = 1, equation 4.32 tells us that the power series converges towards 1
as n tends to infinity. The leading terms of this series are the lower order terms,
namely ε, ε(1− ε), ε(1− ε)2, and so forth. This implies that a point, say p, in the
strategy space may be written as

p = ε+ ε(1− ε) + ε(1− ε)2 + O ((1− ε)3). (4.33)

The corresponding point inversion (across the point 0.5) can be written as

q = 1−
[
ε+ ε(1− ε) + ε(1− ε)2 + O

(
(1− ε)3

)]
. (4.34)

Following this notation, I list all points obtained as a combination of their leading
terms up to the third leading term, for ε fixed. There are 16 (2× 23) such points.

p1 = ε+ ε(1− ε) + ε(1− ε)2 + O
(
(1− ε)3

)
.

p2 = ε(1− ε) + ε(1− ε)2 + O
(
(1− ε)3

)
.

p3 = ε+ ε(1− ε)2 + O
(
(1− ε)3

)
.

p4 = ε(1− ε)2 + O
(
(1− ε)3

)
.

p5 = ε+ ε(1− ε) + O
(
(1− ε)3

)
.

p6 = ε(1− ε) + O
(
(1− ε)3

)
.

p7 = ε+ O
(
(1− ε)3

)
.

p8 = 0 + O
(
(1− ε)3

)
.

p9 = 1−
[
ε+ ε(1− ε) + ε(1− ε)2 + O

(
(1− ε)3

)]
.

p10 = 1−
[
ε(1− ε) + ε(1− ε)2 + O

(
(1− ε)3

)]
.

p11 = 1−
[
ε+ ε(1− ε)2 + O

(
(1− ε)3

)]
.

p12 = 1−
[
ε(1− ε)2 + O

(
(1− ε)3

)]
.

p13 = 1−
[
ε+ ε(1− ε) + O

(
(1− ε)3

)]
.

p14 = 1−
[
ε(1− ε) + O

(
(1− ε)3

)]
.

p15 = 1−
[
ε+ O

(
(1− ε)3

)]
.

p16 = 1− O
(
(1− ε)3

)
.
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I look at these points as the ‘limit values’ for all realizations of the system of two
iterative equations 4.22-4.23, for fixed ε as n→∞. In figure 4.19, the 16 points
are plotted as ε varies in [0, 1] and ignoring the O(·) term. Notably, these points
generate lines that accurately represent the borders of the strategy space on the
right hand side of the plot. In particular, the lines separate the right hand side
of the strategy space into 8 separate segments. These results can be repeated for

Figure 4.19: Truncated series describe paths in the strategy space predictive of
its structure.

any number of ’leading terms’. For example, four terms would generate 32 lines,
including the 16 lines already generated, splitting the right hand side of the plot
into 16 separate segments.

Lastly, a short argument allows to prove that, for 0.5 < ε ≤ 1, the strategy
space is restricted to the area above the line f(ε) = ε and below the line f(ε) =
1 − ε. By taking any point xn ∈ [0, 1], xn+1 can either take value xn(1 − ε) or
xn(1−ε)+ε. Since xn ∈ [0, 1], it follows that xn(1−ε) ≤ 1−ε and xn(1−ε)+ε ≥ ε.
This shows that either xn+1 > ε or xn+1 < 1− ε.
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4.8 Analytical results

4.8.1 Analytical approximation of the period T near ε = 0

In this section, I approximate the solution for T (ε) in equation 4.15 (here rewritten
in equation 4.35) as a power series expansion valid near ε = 0.

[
1 + tanh(εT/4)

][
1− exp[−ε(T −m)]

]
= (T −m)ε. (4.35)

I rewrite equation 4.35

f(ε) = (T −m)ε−
[
1 + tanh(εT/4)

][
1− exp[−ε(T −m)]

]
.

and aim to find T (ε) for f(ε) = 0. I assume T (ε) = x0 +x1ε+x2ε
2 +x3ε

3 +x4ε
4 +

O(ε5) and rewrite f(ε) as

f(ε) = (T −m)ε−1− tanh(εT/4)+exp[−ε(T −m)]+tanh(εT/4)exp[−ε(T −m)].

I derive the following Taylor expansions for ε→ 0.

(i) (T −m)ε = (x0 −m)ε+ x1ε
2 + x2ε

3 + x3ε
4 + x4ε

5 + O(ε6).

(ii) tanh(εT/4) = x0
4
ε+ x1

2
ε2

2
+ (3

2
x2 − 1

32
x3

0) ε
3

6
+ (6x3 − 3

8
x2

0x1) ε
4

24
+ O(ε5).

(iii) exp[−ε(T −m)] = 1 + (m− x0)ε + [(m− x0)2 − 2x1] ε
2

2
+ [−6x1(m− x0) +

(m− x0)3− 6x2] ε
3

6
+ [−12x1(m− x0)2− 24x2(m− x0) + (m− x0)4 + 12x2

1−
24x3] ε

4

24
+ O(ε5).

By substituting the Taylor expansions into the function above, one obtains

T (mε) = 2m− m2

3
ε+

m3

18
ε2 +

2m4

135
ε3 + O(ε4). (4.36)

Finally, one obtains the following power series expansion for T :

T (ε,m)

m
= 2− 1

3
(mε) +

1

18
(mε)2 +

2

135
(mε)3 + O(ε4). (4.37)

Substituting equation 4.36 into equation 4.12 I obtain an expression for A that
depends on εm as follows:

A(mε) =
1

2
· tanh

(
2mε− 1

3
(mε)2 +

1

18
(mε)3 +

2

135
(mε)4 + O(ε5)

)
(4.38)

The expression for T (ε) in equation 4.36 has a region of non-uniformity of order
O( 1

m
). I expect that equation 4.36 approximates the solution for ε ∈ [0, 1

m
).

68



4.8 Analytical results

4.8.2 Hopf-bifurcation

Burridge et al. (2017) have rewritten the set of equations 4.1a-4.1c as one sin-
gle delay differential equation that specifies the evolution of φ(t). From the
linearization of the equation, the authors obtained a critical value of ε at the
Hopf-bifurcation, say εc. An important step in this process consists of approxi-
mating the memory content of an individual with, first, a binomial distribution
and, second, a normal distribution. This approximation works better for large
samples of observations. In this chapter, the size of the memory content of an
individual is given by rm. While the work of Burridge et al. (2017) corresponds to
the case r = 1, requiring a long memory duration for the approximation to hold,
I study the case r > 0, which allows having large samples for a short memory
duration m and large observation rate r. Here I present a derivation for εc valid
for any positive observation rate r. Although it is still convenient to assume m
large in analytical derivations, eventually the results hold for mr large (i.e. it is
the product of r and m that matters, rather than m alone). Overall, in the follow-
ing calculations, I follow the ideas presented by Burridge et al. (2017) although,
at times, I follow different analytical derivations of the results. In particular, a
powers expansion method is introduced in steps 4.64-4.71. In steps 4.44a-4.53, a
novel approach is proposed for the derivation of equation 4.48.

Finding the evolution equation. Here, I am interested in deriving an evolu-
tion equation for φ(t). However, first, it is useful to study the evolution equation
of a single individual. From equations (4.1a)-(4.1c), one can derive an expected
value for the individual displacement ∆φi(t) during an infinitesimal time interval
∆t. Assuming that µi(t) is a stochastic variable (more on this later), one obtains:

E [φi(t+ ∆t)− φi(t)] = ερ (E [p̃(µi(t))]− φi(t)) ∆t. (4.39)

Without loss of generality, to simplify the notation, I assume that ρ = 1 for the
remainder of this section.

In equation 4.39, the quantity µi(t) is stochastic. Its distribution can be
approximated as follows. For memories made of large samples, i.e. mr →∞, the
distribution of the set of sampling times in agents’ memory at time t approaches
a uniform distribution in [t −m, t]. Consequently, µi(t) is approximated by the
time-averaged average population strategy as follows:

µi(t)→
1

m

∫ t

t−m
φ(τ)δτ as mr →∞. (4.40)

It is now useful to establish the following notation:

φ(t) :=
1

m

∫ t

t−m
φ(τ)δτ. (4.41)

69



4.8 Analytical results

The number, say d, of B players that an agent observes in mr observations will
have a probability mass function which, for φ(t) constant, is binomial and, at
time t, follows:

P(d = h) ≈ (m · r)! · (φ(t))h · (1− φ(t))mr−h

h!(mr − h)!
. (4.42)

Thus d can be approximated with a binomial distribution with ‘probability of
success’ φ(t), that is dt ∼ B(mr, φt), where φt is a shorthand notation for the
moving average φ(t). Whenmr is large enough, the binomial can be approximated

with a normal distribution to obtain dt ∼ N
(
φ̄tmr, φ̄t (1− φ̄t)mr

)
. This allows

to approximate the expected mean of the memory of a general individual, µi(t),
obtaining:

µi(t) =
dt
mr
∼ N

(
φ̄t,

φ̄t (1− φ̄t)
mr

)
. (4.43)

At this stage, we have the tools to answer the following question: what is the
value of E [p̃(µi(t))]? To answer this question, it is useful to remind the reader
that p̃(µi(t)) can only take value in {0,1} with the following probabilities.

p̃(µi(t)) =





0 w.p. P
(
N
(
φ̄t,

φ̄t (1−φ̄t)
mr

)
> 0.5

)
. (4.44a)

1 w.p. P
(
N
(
φ̄t,

φ̄t (1−φ̄t)
mr

)
< 0.5

)
. (4.44b)

Assuming that φ(t) makes small oscillations around 0.5, I define

ψ(t) := φ(t)− 0.5. (4.45)

and the corresponding time average

ψ(t) :=
1

m

∫ t

t−m
ψ(τ)dτ. (4.46)

In light of the last two definitions, equations 4.44a-4.44b can be rewritten as

p̃(µi(t)) =





0 w.p. P
(
N
(
ψ̄t,

0.52−ψ̄2
t

mr

)
> 0
)

. (4.47a)

1 w.p. P
(
N
(
ψ̄t,

0.52−ψ̄2
t

mr

)
< 0
)

. (4.47b)

From equations 4.47a-4.47b, it follows that

E [p̃(µi(t))] = P

(
N

(
ψ̄t,

0.52 − ψ̄2
t

mr

)
< 0

)
. (4.48)
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f(x)

0 x

Figure 4.20: Probability distribution function f(x) of a normal random variable

having a small positive mean ψ̄ and variance
0.52−ψ̄2

t

mr
. There is a vertical line at

x = ψ̄. The shaded area corresponds to the value of E [p̃(µi(t))] according to
equation 4.48.

As a helpful visual reference, the shaded area in figure 4.20 corresponds to the
value of E [p̃(µi(t))]. To evaluate its value, one can perform a Taylor expansion
for the normal cumulative distribution function around 0 and calculate its value
to first order in ψ̄t. First, I can rewrite the argument of the probability as follows.

P

(
N

(
ψ̄t,

0.52 − ψ̄2
t

mr

)
< 0

)
= P

(
N

(
0,

0.52 − ψ̄2
t

mr

)
< −ψ̄t

)
. (4.49)

The value of the former can be computed as the following integral.

∫ −ψ̄t
−∞

1√
2πσ

exp

(
− x2

2σ2

)
dx, (4.50)

with σ2 =
0.52−ψ̄2

t

mr
. The exp (·) function can be written as a Taylor expansion

around x = 0 to give

∫ −ψ̄t
−∞

1√
2πσ

exp

(
− x2

2σ2

)
dx =

1√
2πσ

∫ −ψ̄t
−∞

∞∑

n=0

(−1)n
x2n

2nn!σ2n
dx. (4.51)

Since
∫ 0

−∞
1√
2πσ

exp
(
− x2

2σ2

)
dx = 0.5, the value of the former becomes

1

2
+

1√
2πσ

∞∑

n=0

(−1)n
(−ψ̄t)2n+1

2nn!σ2n(2n+ 1)
. (4.52)

Additionally, a Taylor expansion for
1

σ
in ψ̄t around 0 gives

1

σ
= 2
√
mr + O(ψ̄t

2
). (4.53)
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Equations 4.52 and 4.53, taken together, give the following first order approxi-
mation, valid for ψ̄t → 0.

E [p̃(µi(t))] ≈
1

2
−
√

2mr√
π

ψ̄t. (4.54)

Alternatively, equation 4.54 can be derived with an ‘holistic’ approach. Figure

4.20 displays the probability distribution function f(x) of N(ψ̄t,
0.52−ψ̄2

t

mr
) and a

vertical line at x = ψ̄t. With reference to this figure, the value of E [p̃(µi(t))]
corresponds the the grey shaded area underlying the bell curve. Use Ā to denote
the value of the area of the small rectangular stripe underlying the bell curve for
x ∈ [0, ψ̄t]. For ψ̄t infinitesimal, which corresponds to small oscillations, one has
Ā = 0.5− f(ψ̄t)ψ̄t. The following equality concludes the alternative proof.

f(ψ̄t) =

√
2mr√
π

. (4.55)

Finally, equation 4.54 helps writing an evolution equation for the group average
strategy φ(t) = 0.5+ψt. At this stage, the aim becomes to approximate the value
of

∆ψ(t)

∆t
=

1

n

n∑

i=1

∆ψi(t)

∆t
. (4.56)

For n→∞, the evolution of φ(t) can be approximated with the following differ-
ential equation:

∆φ(t)

∆t
= ε

(
1

n

n∑

i=1

p̃(µi(t))− φ(t)

)
. (4.57)

The corresponding evolution equation for ψt is

∆ψ(t)

∆t
= ε

(
1

n

n∑

i=1

p̃(µi(t))− ψ(t)

)
. (4.58)

Since individual memories are independent and identically distributed, I approx-
imate the average 1

n

∑n
i=1 p̃(µi(t)) with the expected value of p̃(µi(t)), to obtain

the following delay differential equation valid for small oscillations:

∆ψ(t)

∆t
= ε

(√
2mr√
π

ψ(t)− ψ(t)

)
. (4.59)
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Finding the Hopf bifurcation. To find a solution to equation 4.59, I substi-
tute eλt as a trial solution to obtain the characteristic equation

λ2 + λε+

√
2r√
πm

ε
(

1− e−λm
)
. (4.60)

By substituting λ with x+ iy, I obtain

x2 − y2 + εx+

√
2r√
πm

ε
(

1− e−mx cos(my)
)

= 0. (4.61)

2xy + εy +

√
2r√
πm

ε
(
e−mx sin(my)

)
= 0. (4.62)

The simulations show a Hopf-Bifurcation arising for φ(t) at critical values of ε,
which depend on r and m. To calculate these critical values, I set x = 0 in
equation (4.62), obtaining

sin(my) = −
√
π√

2mr
my (4.63)

In order to approximate the solution for the frequency y, I suppose that the
frequency is a function of m, y(m), and approximate my(m) with the following
power series expansion in the limit m→∞:

my(m) = x0 + x1η + x2η
2 + x3η

3 + ... with η = mα, α < 0. (4.64)

By using the substitution 4.64, equation 4.63 becomes

sin(x0 + x1η + x2η
2 + x3η

3 + ..) = −
√
π√

2mr
(x0 + x1η + x2η

2 + x3η
3 + ...). (4.65)

The left hand side of 4.65 can be approximated with a Taylor expansion centred
at η = 0, which gives

sin(x0)+x1 cos(x0)η+
(
x2 cos(x0)− 1

2
x1

2 sin(x0)
)
η2 + ... = −

√
π√

2mr
(x0 +x1η+ ..).

(4.66)
The leading term gives sin(x0) = 0. This has infinite solutions but I look for the
slowest oscillation frequency. This is also called the fundamental solution (Jarvis,
2017). Thus one obtains x0 = π. Using the last result, the next two leading terms

now give −x1η = −
√
π√

2mr
π. This is in a convenient form to see that η =

1√
m
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and x1 =
π

3
2√
2r

. Continuing iteratively in this manner, eventually the frequency

can be written as

y(m) =
π

m
+

π1.5

√
2rm1.5

+
π2

2rm2
+

6
√

2π2.5 +
√

2π4.5

24r1.5m2.5
+

3π3 + 2π5

12r2m3
+ O(

1

m3.5
) as m→∞. (4.67)

Simulations results confirm that this is a very accurate approximation of the
frequency at the Hopf-bifurcation: in solution 4.67, at leading order, the period of
the oscillations (period= 2π/y) at the Hopf-bifurcation is 2m which is confirmed
in simulation data shown in figure 4.10, panels (B) and (C). To obtain the critical
value for ε, one can substitute expression (4.67) into equation (4.61) and solve
for x = 0. Equation (4.61) becomes

y(m)2 =

√
2r√
πm

ε
(

1− cos(my(m))
)
. (4.68)

One can expand cos(·) in the RHS, for m→∞, to obtain

cos(my(m)) = −1 +
π3

4rm
+

π3.5

2
√

2r1.5m1.5
+

12π4 + π6

32r2m2
+ ... (4.69)

Finally, the critical value can be written, for m→∞, as follows:

(ερ)c =

1
m

(√
π5

2rm
+ π3

rm
+ 3

2

√
π7

2(rm)3
+ 12π4+π6

12(rm)2
+ 15π4.5+5π6.5

12
√

2(rm)2.5

)
+ ..

2− π3

4rm
− π3.5

2
√

2(rm)1.5
− 12π4+π6

32(rm)2
− 3π4.5+π6.5

6∗
√

2(rm)2.5
..

. (4.70)

Although not a formal approximation, a polynomial solution for εc with ρ = 1
can be given by approximating the denominator to 2, in which case one has

εc ≈ 1

2

√
π5

2rm3
+

π3

2rm2
+

3

4

√
π7

2r3m5
+

+
12π4 + π6

24r2m3
+

6
√

2π2.5 +
√

2π4.5

24r2.5m3.5
+ O

(√
1

m7

)
. (4.71)

Comments. The accuracy of the analytical prediction 4.70 is presented in fig-
ure 4.13 where it is shown to match the bifurcation point for simulation data.
The critical relationship at the Hopf bifurcation in equation 4.70 can be rewritten
in terms of the fundamental variables as (ερm)c = g(rm). The shape of g(x) is
plotted in figure 4.21.
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Figure 4.21: Plot of g(x), the function defined such that equation 4.70 can be
rewritten as ερm = g(rm).

This plot shows that, for given ερm > 0, there exists a unique r that satisfies
4.70. Therefore the critical value of r at the bifurcation, say rc, can be deter-
mined numerically by inverting a truncated version of 4.70. The accuracy of this
calculation is presented in figure 4.14 where it is shown to closely predict the
bifurcation point for simulation data.

Lastly, consider the denominator of the main fraction in equation 4.70. Setting
this denominator to 0 and solving for rm provides the discontinuity point of
the function g(x). Numerical solutions show that the discontinuity point is at
xd ≈ 10.1871. The function g(x) tends to positive∞ as rm→ xd, with rm > xd.
Consequently, as rm approaches xd, the Hopf bifurcation point (ερm)c tends to
∞. The discontinuity point also acts as a lower bound such that for rm < xd the
system does not admit a Hopf bifurcation.

An evolutionary interpretation of the magical number seven. The
existence of a tipping point, corresponding to only 10 bits of information, provides
a reason to motivate the existence and evolution of the magical number seven
(Miller, 1956). George Miller’s 1956 influential article proposes that humans can
hold 7±2 chunks of information in short-term memory on average. Other studies
propose that a lower limit of 4 elements applies (Cowan, 2001). In all cases, these
limits imply that recollection in short-term human memory does not exceed the
critical value of xd bits. The model studied in this chapter proposes that, when
attending to the same information, the use of very small samples prevent a group
from incurring the cost of inefficient collective decision making (i.e. fluctuations).
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Therefore, the model suggests, the onset of fluctuating group behaviour might
provide an evolutionary pressure on the evolution of the size in human working
memory.

4.9 Additional material

In this section, I describe additional aspects of the dynamics of the model studied.
A brief introduction explains the significance of the four figures that follow.

Memory dynamics.

In section 4.4, the derivation of the exact evolution equation in the limit of infinite
batches (r →∞) is presented. The derivation is based on the self-consistent as-
sumption that ‘0.5−µi(t)’1 changes sign when φi(t) changes the direction of evolu-
tion from ascending to descending as well as vice versa. In this section, I show that
this assumption can be observed in simulation data for finite batches (r = 10).
Figure 4.22 shows how the average memory content, µ(t) = 1

N

∑N
i=1 µi(t), oscil-

lates around 0.5 as a specific population evolve. In particular, the black dots
represent the evolution of φ(t) = 1

N

∑N
i=1 φi(t) and the blue dots are a good in-

dication of the corresponding dynamics of the average ‘proportion of B players
observed’ in the group.

Regularity near the bifurcation.

The derivation of the Hopf bifurcation, say at ε = εc, tells us that prior to the
onset of oscillations, say for ε < εc, the system dynamics converges to a stable
state. However, the simulation data presented in this chapter consistently shows
(cf. figure 4.10) that the period T , which equals 2m at the bifurcation, increases
past 2m prior to the bifurcation. Here, I briefly examine, for ε→ εc, whether the
dynamics displays random fluctuations or regular periodic oscillations. In par-
ticular, the presence of micro periodic oscillations prior to the Hopf bifurcation
would suggest that the group behaviour is coordinated. In fact, figure 4.23 sug-
gests that regular periodic oscillations are present for ερ values prior to the onset
of the Hopf-bifurcation. This result suggests that group coordination emerges
gradually.

Period calculated using spectral analysis.

In section 4.5 I discuss the significance of figure 4.10. The figure reports the values
of the period calculated through a specific algorithm that works by detecting

1The variable µi(t) represents the proportion of B players observed by agent i.
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maxima and minima of trajectories. Here, the same simulation data is analysed
through spectral analysis. The results from the spectral analysis confirm the
value of the period before the oscillations break down and further identify the
main frequency of oscillation in the entire ερm range displayed in figure 4.10.
The spectral analysis is performed using the function spectrum() from the package
spectral in R, in particular using the fast Fourier transform algorithm (FFT). The
period is obtained by selecting the frequency with the highest spectral density.

Fluctuations size assessed via standard deviation.

Figure 4.10 reports the value of the amplitude of the oscillations of φ(t). The
amplitude is calculated through a specific algorithm that works by detecting
maxima and minima of trajectories. As a result, the precision of this algorithm
can be affected by demographic noise. However, the use of the standard deviation
to assess the size of the fluctuations is more robust to demographic noise, albeit
less informative. Here, in figure 4.25, I use the standard deviation rather than
the amplitude to describe the size of the fluctuations of φ(t). A selection of
populations already analysed in this chapter is assessed via standard deviation.
The figure confirms the scaling properties of the system. In particular, it confirms
that the case ε = 1 (pure strategies) has slightly different collective dynamics
compared to the other cases studied.
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Figure 4.22: A detailed illustration of the collective strategy (black dots) and
collective memory (blue dots) for m = 50, ε = 0.1005, ρ = 1 and r = 10 over
a time of 100 time units. T ≈ 66 time units and A ≈ 0.43. The dynamic of
a fictional memory µ(t) is obtained as a moving average of φ(t) according to
expression 4.4. One can note that in this simulation data, due to the granular
nature of the memory (r << ∞) and stochastic effects, µ(t) − 0.5 changes sign
with a small delay with respect to the time in which the collective trajectory
reaches a maximum. Here the delay is quantified to be between 3 and 4 time
units. The data is plotted at integer units of time.
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Figure 4.23: An illustration of the oscillations at/near the Hopf-bifurcation. For
each ερ value denoted with a cross I have plotted the corresponding trajectory
for φ(t) generated after 25000 time units. Regularity arises at the bifurcation
where the period is already well-defined and the collective trajectory generates
micro-oscillations. The system is simulated for m = 50, r = 10, ε = 0.01 fixed
and ρ variable.
.
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Figure 4.24: (A) The period T for r × m equals 5 × 100 (dashed red line) and
10× 50 (orange line) with ρ = 1 and ε variable. The black line refers to the case
r → ∞. (B) The period T for r × m equals 5 × 50 for: ρ = 1 and ε variable
(dashed red line); ρ variable and ε = 0.01 fixed (dashed green line); ρ variable
and ε = 1 (dashed blue line). For ερm > 30, the period T has average value: (A)
52.90 with s.d. 0.168 (orange line) (B) 54.04 with s.d 0.338 (red dashed line),
54.042 with s.d. 0.419 (green dashed line), 54.07 with s.d. 0.392 (blue dashed
line).
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Figure 4.25: (A) S.d. of φ(t) for r ×m equals 5× 100 (dashed red) and 10× 50
(orange) with ρ = 1 and ε variable. (B) S.d. of φ(t) for r × m equals 5 × 50
for: ρ = 1 and ε variable (red dashed); ρ variable and ε = 0.01 (dashed green); ρ
variable and ε = 1 (dashed blue). In each of the 5 cases, the s.d. for ερm > 35 is
constant or has a microscopic trend which I have not detected. For all five case,
for ερm > 35, σ has mean between 0.010 and 0.009 (with standard deviation
around the mean between 0.0002 and 0.0004). A least squares linear regression
of the 5 different lines shows that each line has a gradient of value ≈ 10−5 where
both negative and positive values have been obtained.
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Chapter 5

Further features

5.1 Memory

We have seen that the onset of oscillations is regulated by the extent to which
agents develop similar backward-looking expectations based on the information
collected. Given this result, it is natural to ask if variations on how memory
is modelled and information is used impact on the emergence of collective phe-
nomena. In this section I investigate three interesting scenarios: heterogeneous,
fictitious and mutant memories.

5.1.1 Heterogeneous memories

The oscillations are a collective phenomenon that results from a degree of coordi-
nation between agents. This coordination depends on the level of homogeneity of
the information owned by different individuals. In the model, I have assumed that
individuals have identical memory capacity in terms of the observation rate and
duration. Within an evolutionary setting, however, it is reasonable to admit dif-
ferences in the phenotypical expression of individual memory capacity. Therefore,
I am interested to know to what extent the collective behaviour so far described is
maintained when individuals exhibit heterogeneous memory capacity. Note that
in the El Farol bar problem and the minority game, heterogeneous strategies are
studied to find the combination of strategies that reduces fluctuations. Similarly,
Burridge et al. (2017) are interested in the selection dynamics, between compet-
ing agents having different memory durations, that drive the system to a stable
equilibrium. Whereas these studies remain interesting, here I want to analyse het-
erogeneous memory to test the robustness of the oscillation, not the convergence
to optimal group coordination nor the ability of the group to withstand invasions
from an intruder with a different memory capacity. Here, I have simulated the
evolution of populations with memory duration varied across individuals, while
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Figure 5.1: The Cartesian quadrant shows the amplitude of the oscillations for
different realizations obtained for population of mean memory duration 50 and
rate of sampling 10. The red dashed line is for a homogeneous population, while
the other dashed lines are for heterogeneous populations for which memory dura-
tion is distributed around the mean m = 50. More specifically, the whiskers-plot
show the distribution of individual memories duration.
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the observation rate is fixed. In figure 5.1 I show the results. This figure com-
pares the amplitude of the oscillations for homogeneous individuals as previously
shown in figure 4.10 and for populations with memory duration normally dis-
tributed across individuals. The chosen normal distributions N(mean, var) for
the duration are the following: N(50, 5), N(50, 10) and N(50, 15). The specific
set of durations is generated only once according to each of the three distribution
by creating a set of 1000 draws from a normal distribution (note that in com-
putational models population size is 1000). Each draw is rounded to the nearest
integer number. For each of the three phenotypical variations of the memory, a
population is simulated for several different values of the parameter ε varying in
[0, 1] with r = 10 and ρ = 1 fixed. For each realization, the amplitude of the col-
lective trajectory is plotted with a geometric symbol, either a cross (variance 5),
a rotation of the same cross (variance 10) and a triangle (variance 15). The rect-
angular frame below the main graph contains box-plots showing the distribution
of the three sets of memory durations generated following a normal distribution.

Figure 5.2 shows in detail a section of figure 5.1, specifically indicating that the
Hopf-bifurcation, point at which oscillations arise, moves to the right as memories
become phenotypically more diverse. This result is consistent with the previous
result stating that the Hopf-bifurcation point moves to the right for less detailed
memories (i.e. for lower r, cf. equation 4.70).

Figure 5.3 suggests that the system obeys the scaling properties according to
‘new’ fundamental quantities mr and mε, with m denoting the mean memory
duration in a given population. In particular, it shows different realizations for
populations with mr = 50 × 10 (grey dash line with crosses) and mr = 25 × 20
(black circles). The latter set of memories is obtained by halving the duration of
the previous set of memories. The durations’ distribution of the previous set is
approximately N(50, 5) and thus for the new set is approximately N(25, 5/4). As
a result, one can verify that the variance of the set made of the sizes (m×r) of all
memories in a given population is equal to 500 for both sets of memories. This
suggests that in this scenario there is an additional fundamental variable, namely
the variance of the set of the sizes of all memories in a given population. The
parameter ρ = 1 is fixed for the investigation of heterogeneous memory duration.
Crosses and circles are plotted corresponding to the ε values of the population
simulated.

To conclude, in this section I introduced a specific form of variability of the
capacity of individuals to remember information. The brief analysis shows that
periodic fluctuations can arise even under heterogeneous memory capacity, pro-
viding evidence that the phenomenology studied in the model withstand biological
and evolutionary scrutiny.
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Figure 5.2: A close look at the bifurcation for heterogeneous memory capacity.
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Figure 5.3: The amplitude as a function of mε scales according to the fundamental
quantities mr and mε under the assumption of heterogeneous memory duration
(m) normally distributed. Here, m = 50 and r = 10 (grey dashed line with
crosses) and m = 25 and r = 20 (black circles).

85

_

_
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5.1.2 Fictitious memory

There is a difference between the theoretic mean-field formulation of equations
4.41-4.42 and the operative individual memories coded in simulations.

On one hand, the operative approach uses the realistic assumption that agents
have individual memories, which are personal recordings of the history of the sys-
tem. These recordings are updated over time. In this updating process, individual
memories are subject to biased sampling. For example, an individual may ob-
serve an unusually high number of A players which does not reflect the state of
the population. These observations could sway the average memory content of
that individual until, after several more observations, the earlier observations are
eventually replaced in the memory of the individual.

On the other hand, the theoretical mean-field approach of equations 4.41-4.42
entails the fact that a biased sample does not persist in individual memory. In
other words, although the content of memories is subject to variance, bias is not
carried on. The theoretical formulation corresponds more practically to agents
that make decisions based on memories sampled anew every time that a deci-
sion is made. Nonetheless, the analytical estimate of the Hopf-bifurcation still
predict correctly the ‘experimental’ Hopf-bifurcation observed in the simulation
data for populations with individual memories (see figure 4.13). This suggests
that the theoretical mean-field approximation of individual memories is valid in
a neighbourhood of the bifurcation observed for simulation data. However, this
approximation may not hold globally for all ερ > 0. In particular, such a the-
oretical mean-field approximation may not characterise the decay of oscillations
as well as it does their emergence.

To investigate this last point I simulated a population of individuals that
do not accumulate biased information in their memory. On the contrary, these
individuals sample the history of the strategies used in the population anew each
time they perform a strategy update. In the code, this feature is obtained by
maintaining a large set of recorded strings of the history of the population, which
are updated as if belonging to fictitious agents. When an agent needs to use their
memory, he resorts to using the memory of a randomly picked fictitious agent.

The simulation results reported in figure 5.4 compare two sets of simulations
obtained for fictitious memories (black crosses joined by a dashed-dotted line
and black circles) and two sets of simulation reproduced from chapter 4 (red
and orange lines). These simulations reveal that the size of the oscillations is
invariant near the bifurcation and is affected (although only slightly) when εm is
‘large’. This indicates a limitation on the use of the above mentioned theoretical
approximation of memory to fully characterise the behaviour of a population with
agents holding individual memory. Such an approximation will not characterise
the decay of oscillations as well as it does their emergence.
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Figure 5.4: The black crosses joined by a dotted-dashed line and the black circles
show the amplitude of the oscillations of φ(t) for populations having parameters,
respectively, mr = 50 × 10 and 25 × 20 with ρ = 1 and ε varying. In these
populations, individuals employ ‘collective’ memories, i.e at each strategy update,
individuals employ at random one memory from a set of 1000 memories each
belonging to a fictitious agent. This simulation data is compared to data for
processes with rm = 500 and ρ = 1 (red and orange lines), which are results
reproduced from chapter 4.

Overall, this brief study tells us that fictitious memory, rather than individual
memory, corresponds more closely to the theoretical mean-field analysis presented
in this thesis. This suggests that further analytical mean-field quantitative ex-
plorations of the decay of the oscillations may more closely describe a scenario of
agents with fictitious memory.

However, having decoupled agents from their memories allows focusing on
the evolution of memories as ‘separate entities’. Here, in particular, I suggest a
description of the evolution of individual memories as a binary De Bruijn graph.
This method is introduced by Challet & Marsili (2000) in their study of the
minority game, enabling them to study in details the dynamics of the histories
in the game.

In the model studied in chapters 4 and 5, individual memory can be encoded
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by a binary sequence of length mr which consists of mr ordered elements where
each element belongs to the set {0, 1}. After an observation, the new individual
memory is obtained by adding 0 or 1 to the right and erasing the oldest obser-
vation on the left of the memory sequence. Thus, for a given memory, there are
two possible updates. This updating rule defines the De Bruijn graph of order
mr (Challet & Marsili, 2000).

The two main differences between this model and the minority game consist
of the number of histories and strategies that define the game. The minority
game has one history that encodes the last m minority groups and 2m strategies
available, whereas the model studied in this thesis has N histories, one for each
agent, encoding the last mr observations, and one strategy. Further research
is needed to explore this method and find out whether one can establish the
transition probabilities between individual histories in a De Bruijn graph. It may
be convenient to first address the scenario involving only pure strategies (i..e.
ε = 1).

5.1.3 Modelling an invader

As part of the investigation on the role of memory duration into the emergence
of fluctuations, Burridge et al. (2017) model the competition between long and
short memories. Upon setting up selection dynamics operating between two spe-
cific memory durations, they show how a population evolves close to a Hopf-
bifurcation point by maintaining a balance between the proportion of agents with
short and long memories thus preventing the emergence of oscillations. Following
on from the idea that under evolutionary pressure a population self-organises, in
this section I model a rare mutant that competes with the host population. In
particular, I take a preliminary view at the benefits and costs that an invader, as
a rare mutant, may initially face.

Here, the aspect of the individual that is considered subject to variation and
evolution is the memory duration. However, I do not model the variation process
but directly introduce an invader. In practice, I assume that memory duration
is fixed for a large population of 1000 individuals and introduce 20 individuals
having a different memory duration. The host population has memory duration
m = 50, while the mutant population is simulated for a broad range of durations,
namely minv ∈ {1, 2, ..., 99}. Note that the interaction between m = 50 and each
mutant minv is simulated and analysed separately. The remaining parameters are
fixed for both the host and mutant populations as follows: ε = 0.03, r = 10 and
ρ = 1. Figure 5.5 presents the results. Each graph depicts the evolution of the
average strategy φ(t) of the host population averaged over 1000 agents (black line)
and the strategy of the invading population averaged over 20 agents (red line).
Figure 5.5 displays the simulations outcome for invaders having memory duration
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Figure 5.5: Strategies evolution over time of the host population averaged over
1000 agents (black line) and strategies evolution of the invading population av-
eraged over 20 agents (red line). The host population has parameters m = 50,
r = 10, ε = 0.03 and ρ = 10. The invading population has the same parameters
apart from the memory duration m. Here I display the simulation results for m
in the set {2, 10, 50, 70, 84, 99}.

minv in the set {2, 10, 50, 70, 84, 99}. Dependent on the host population having
m = 50, the mutant agents are entrained to the host population when minv =
50 and approximately reach anti-phase synchronisation for minv = 2. Having
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simulated the evolution of the strategy for invading agents, it is sensible to ask
which mutant memory provides the greatest advantage in terms of evolutionary
fitness. This question can be answered by introducing payoff collection dynamics.
I choose to model the pay-off yielding interactions using payoff matrix 2.22 with
V = 1 and C = 2, thus effectively maintaining the ESS φ(t) = 0.5 (see section
2.5). In figure 5.6, I plot the expected payoff for an invader as a function of its
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Figure 5.6: Average payoff for mutant agents (y-axis) as a function of the mu-
tant’s memory minv (x-axis) A triangle is drawn at minv = 50, which matches the
memory duration of the hosting population. A black cross is at minv = 83, match-
ing the period of the hosting population, calculated directly from the simulations,
measuring 83.25.

memory duration minv. The expected payoff is calculated using equation 2.24
where u is the average strategy of an invader (the red line in figure 5.5) and v
the probability to meet a Hawk in the host population (the black line in figure
5.5). I assume that individuals collect a payoff once per unit of time and that the
expected payoff is obtained by averaging the payoff over time for 1200 time units.
In this manner, the payoff is only an expectations. Nonetheless, figure 5.6 shows
quite clearly that a short memory is an advantage for an invader (global maximum
payoff). The payoff also shows a local maximum just after the value of the period
generated by the oscillation in strategy of the host population. In fact, the period
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computed from the simulations for the host population is 83.25± 0.1. Further to
this, the synchronisation of the strategy with the host population gives the worst
outcome and deviating from the memory duration of the host population always
provides an advantage.

This brief analysis allows to speculate further questions for future research:
(i) will the invader eventually take over, or reach coexistence? will coexistence
depend on the specific payoff matrix? (ii) what might happen if lots of agents
were allowed to evolve their own memories simultaneously? (iii) What might be
the trade-offs in the co-evolution of memory duration (m) and observation rate
(r) while incorporating a cost specific to memory size (mr)? To explore these
open questions, one could set up computer simulations similarly to Arthur (1994)
in the El Farol bar problem and to the computer tournaments for the Iterated
Prisoner’s Dilemma (Axerold & Dion, 1988; Axerold R, 1981), or alternatively
employing a genetic algorithm (Guttal & Couzin, 2010; Zafeiris & Vicsek, 2013).

5.2 Synchronous processes

In chapter 4, the model dynamics for r finite are simulated using an agent-based
computational model. Although the rates of observation and strategy update
are identical for all players, agents are picked at different times to perform the
two processes. I refer to this scenario as having asynchronous processes. On
the contrary, in this section, I ask what happens if agents perform each event
simultaneously. I refer to the last scenario as having ‘synchronous processes’.
In particular, an event can be thought of as a collective event. For example, all
agents update their strategy simultaneously. Figure 5.8 presents a visualisation of
the workflow of the algorithm for synchronous processes for ρ = 1. Without loss
of generality, the algorithm can be described as follows. Given an observation
rate r = cρ and a strategy update rate ρ > 1, with c > 1, agents perform
an observation event c consecutive times, each time simultaneously. Next, they
simultaneously update their strategy once. Finally, time is estimated as follows:
a time unit corresponds to r + ρ (collective) events.

In figure 5.7, I compare the simulation results from chapter 4 obtained us-
ing a modified Gillespie algorithm for asynchronous processes to new simulation
data obtained for populations in which observation and strategy update are syn-
chronous. The figure shows a plot of the amplitude of the oscillations obtained for
synchronous processes (grey crosses connected with a dashed line to help the eye),
asynchronous process (red and orange lines) and for the theoretical prediction in
the limiting case r →∞ (black line).
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Figure 5.7: The grey crosses, joined by a dashed line, indicate the amplitude
of the trajectory φ(t) obtained for a population of individuals that update their
strategies simultaneously, for mr = 50 × 10 with ρ = 1 and ε variable. This
is compared to results reproduced from chapter 4 of populations simulated for
asynchronous process with mr = 50× 10 and mr = 25× 20 (red and orange lines
respectively) and for the limiting case of a deterministic system in which r →∞
(black line).
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Input:
m, r, ε, ρ = 1, L, endtime.

Initialize variables:
time = 0, φi = 0

Observation

All individuals are randomly paired.

Individual i plays A w.p. 1 − φi and plays
B w.p. φi. Applies to all individuals.

Individual i observes whether his match
played A or B, records the new ob-
servation and discards the oldest ob-
servation, keeping a total of mr ob-
servations. Applies to all individuals.

Strategy update

From his own set of mr observations,
individual i computes the proportion
of B players observed, say µi for in-
dividual i. Applies to all individuals.

φi ← φi − εφi φi ← φi + ε(1− φi)

Count time.

time ← time +1
φ(t = time) = 1

n

∑L
i=1 φi

The algorithm stops
when time=endtime.

Then move on.

µi > 0.5 µi < 0.5

Repeat r times.

Figure 5.8: Diagram visualising the workflow of the algorithm for synchronous
processes used in simulations. In this scenario, each step of the algorithm involv-
ing an individual action is performed by all agents simultaneously.
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Figure 5.9 presents a closer look at the previous figure near the Hopf-bifurcation
point. The two figures, taken together, show that synchronous processes preserve
the Hopf-bifurcation (fig. 5.9) and enhance synchrony among agents in a large
neighbourhood on the right of the Hopf-bifurcation (fig. 5.7).
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Figure 5.9: The Hopf-bifurcation does not depend on synchrony or lack thereof
of the processes involved. The grey crosses, joined by a dashed line, indicate
the amplitude of the oscillations of the trajectory φ(t) obtained for synchronous
processes, for mr = 50 × 10 with ρ = 1 and ε variable. The red and orange
lines respectively refer to populations simulated for asynchronous processes with
mr = 50× 10 and mr = 25× 20 and the black line refers to numerical results for
the limiting case r →∞.

Lastly, figure 5.10 compares two sets of simulations for synchronous processes,
respectively for mr = 50 × 10 and mr = 25 × 20, with ε variable and ρ = 1.
This figure indicates that, for synchronous processes, oscillations break down
with a sharp transition (in this case at ερm ≈ 30). These results imply that
asynchronous and synchronous processes provide different and gradual approxi-
mations to the dynamics studied for r →∞. Finally, these results point out that
the dynamics near the Hopf-bifurcation are strongly determined by the statistical
properties of the ‘information flow’ and not influenced by the synchrony of the
processes, or lack thereof.
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Figure 5.10: The grey crosses, joined by a dashed line, and the black circles show
the amplitude of the oscillations of φ(t) of population simulated with synchronous
processes for mr = 50 × 10 with ρ = 1 and mr = 25 × 20 with ρ = 2, with ε
variable. These results obeys the scaling acording to ερm and rm as predicted.
The breakdown of oscillation happens for values of ε between 0.5975 and 0.6, i.e
at ερm ≈ 30.

5.2.1 An hysteresis region

Further investigating the features of the dynamics with synchronous processes
uncovers the presence of a thin hysteresis region. The hysteresis region is uncov-
ered by comparing the results from the last section with simulation data obtained
using a novel approach. In all previous simulations, the dynamics for different
values of ε are always tested by completely restarting the simulation for each
value of ε. Indeed, this holds true for all system parameters, namely m, r, ρ and
ε. In this section, however, I present the simulation results obtained for one single
simulation with ε updated en-route while all other parameters are fixed. Specifi-
cally, this entails that, after φ(t) had reached equilibrium for a given ε value, the
value of ε was increased. To verify that the system had reached equilibrium, the
simulations were run for 20000 time units for each ε value. Since the memory
duration, m, equals 50 and the period, T , tends to m as ε increases, the trajectory
of φ(t) performed nearly 4000 periodic oscillations before incrementing the value
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of the parameter ε.
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Figure 5.11: The grey crosses indicate the amplitude of φ(t) obtained with one
simulation for mr = 50 × 10 and ρ = 1 with ε progressively updated ‘en-route’.
Overall, in this figure, ε is consecutively increased following this list of values:
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.64, 0.66,
0.665, 0.67, 0.675, 0.68, 0.685. The grey crosses showing the amplitude of the
asymptotic trajectories for m = 50 and r = 10 are compared with the black
line showing the numerical values for the limiting case r → ∞ and m = 50 and
the orange and red lines showing the amplitude for asynchronous populations for
mr = 50× 10 and 100× 5.

In figure 5.11 I present the simulation data. The grey crosses, joined with
a dashed line, indicate the amplitude obtained from one single simulation for
synchronous processes with ε initialised to ε = 0.05 (first grey cross from the left).
Next, the algorithm is updated to ε = 0.1 (second grey cross from the left) for the
next cross displayed, and so on. The grey crosses showing the amplitude of the
asymptotic trajectories are compared to the black line showing the theoretical
values for the limiting case r → ∞ and the orange and red lines showing the
amplitude for asynchronous populations. The latter are results reproduced from
chapter 4. This simulation data suggests that the system displays a hysteresis
region because it admits two different equilibria in the region 30 < ερm < 35
depending on the route used to reach this region. One equilibrium has just been
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5.3 Variance and noise in fluctuations

shown, while the other equilibrium, consisting of damped fluctuations, is shown in
figure 5.10. To summarise, I have shown that, for synchronous processes, there is
a hysteresis region that separates coordinated oscillations from noisy fluctuations.

This result reminded me of a result by Matthews & Strogatz (1990). The
authors show that the order parameter of a system of linearly coupled oscillators
undergoes several transitions. In particular, the system admits a thin hysteresis
region through which the order parameters leaves a locked state corresponding
to oscillators rotating around the origin with constant frequency and amplitude.
The specific parameter that drives the transition is the width of the initial distri-
bution of the frequencies of the oscillators. The system thus transitions through
a hysteresis as the individual oscillators become more diverse. The period then
follows a route to chaos. This thin hysteresis region parallels the behaviour ob-
served in my model which also leaves a stable equilibrium through a hysteresis
region. In particular, the coordinated state of group oscillations for φ(t) mirrors
the locked state displayed by the coupled oscillators.

5.3 Variance and noise in fluctuations

So far I have studied and extensively characterised a model of binary choice
with memory. I showed that oscillations (of the probability that agents choose
between the two options) are present in differing scenarios involving a range
of ways in which individuals use information. Here, I introduce a population
in which individuals have no memory and use no information. I use such a
population as a benchmark to study the efficiency of the system.

In the canonical minority game (CMG), the literature focuses on describing
the range of condition that minimize the fluctuations of the number of individuals
choosing each of the two strategies over time. In order to determine the efficiency
of a population, the CMG literature measures the variance of the fluctuations.
As explained in chapter 3, a system is considered efficient when the variance is
lower than the one produced from random choice (cfr. figure 3.2 and formula
3.4). In relation to this, there are several findings in the CMG, for example: (i)
the system converges to the efficiency of random choice when z = 2m

N
tends to

∞ (cfr. figure 3.2) ; (ii) the variance is minimized as the process of switching
between predictors is slowed down or the ‘temperature’ in the system increased
(cf. Challet et al. (2013) pages 36,38,52). Similarly, in this section I compare
the standard deviation of the fluctuations for the model I studied in chapter 4 to
the same model modified with the introduction of random strategy-updating and
no memory. In figure 5.12 I compare the standard deviation σ of the trajectory
φ(t) for mr = 50× 10 in a population with individual memories (black line) and
the standard deviation for a system with random updating and no memory (blue
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Figure 5.12: σ is the standard deviation of the average strategy φ(t) over time
and a good measure of the size of the fluctuations of φ(t). In all three panels, I
compare the value of σ for two scenarios: (i) a population with memory (black
line) and (ii) one made of individuals without memory that update their strategy
randomly (blue line). The top panel focuses on values such that the two scenarios
are more closely comparable (σ < 0.22); the smallest panel shows that for ε→ 0
random choice is more efficient; the last panel shows the full range of the data.
For random updating, the data shows that σ = 0.01559 when ε = 0.9955. The
corresponding analytical prediction is σ = 0.0158 when ε = 1. The population
with memory has parameters mr = 50× 10 and ρ = 1.

line). It holds that σ = 0 if and only if φ(t) is constant over time. For random
choice, when ε = 1 one can calculate the standard deviation of φ(t) as follows.

First, for simplicity, I define Φi(t) = φi(t) − 0.5. In this manner, Φ(t) :=
1
N

∑N
i=1 Φi(t) = φ(t) − 0.5 and Φ(t) exhibits fluctuations around 0. Since φi(t)

takes random values in the set {0, 1}, Φi(t) takes random values in the set
{−0.5, 0.5}. In addition, Var[Φ(t)] = Var[φ(t)].
Therefore, by defining σ2 := Var[φ(t)] one obtains:

σ2 = Var [Φ(t)] = E
[
Φ(t)2

]
= E

[(
1

N

N∑

i=1

Φi(t)

)(
1

N

N∑

i=1

Φi(t)

)]
(5.1)
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5.4 Group synchrony

Since agent randomly updates their strategies, the strategies Φi(t) and Φj(t)
are independent for i 6= j. Therefore E[Φi(t)Φj(t)] = 0. As a result,

σ2 =
1

N2

N∑

i=1

E[Φi(t)
2] =

N

N2
E[Φi(t)

2] (5.2)

Finally, for a population of 1000 individuals, one obtains

σ =

√
0.25

1000
= 0.0158. (5.3)

The simulation data reported in figure 5.12 confirms this prediction with σ =
0.01559 for ε = 0.9955. Figure 5.12 shows that, for ε larger than approxi-
mately 0.6, individuals are more efficient using memory rather than choosing
randomly. This means that individuals process the information meaningfully.
This behaviour resembles an anti-phase coordination effect in which individuals
effectively learn to take turns. In section 4.5.1 I suggest that my model is equiv-
alent to a limiting case of the thermal minority game (TMG) (Cavagna et al.,
1999), specifically the role of the rate of sampling in my model is equivalent
to the role of selection intensity in the TMG. One notable result in the TMG
states that the game admits an optimal intensity of selection (Γ∗) such that it
minimises fluctuations in the system below the level corresponding to random
fluctuations. Compared to the optimal selection intensity, a lower intensity of
selection (Γ → 0) would drive the system towards random fluctuations, while
a greater intensity of selection (Γ → ∞) would drive the system towards large
cyclic fluctuations. My model predicts the same result. Here, the parameters’
space ε > 0.6, with m = 50, r = 10 and ρ = 1 is a specific scenario in which
the system outperforms random choice. However, I also suggest that (with all
parameters constant except r) when r → 0 the system converges to a random
choice scenario, whereas when r → ∞ the system converges to coordinated os-
cillations. To conclude, note that the standard deviation of the average strategy
in the group grows linearly for approximately ε > 0.1 and non-linearly otherwise.
A preliminary analysis of the simulation data suggests that this is due to the
changing ‘interaction’ that agents have with the boundaries (i.e. the boundaries
0 and 1 imposed on the evolution of the individual strategies φi) as ε increases.

5.4 Group synchrony

In chapter 4 and 5 I state that synchrony among agents is necessary for the
system to exhibit coordinated oscillations. This is not surprising given that φ(t) =∑1000

i=1 φi(t). However, we do not yet have a measure of such synchrony.
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Figure 5.13: The graph shows the group standard deviation for: mr = 50 × 10,
ρ = 1 and ε variable for asynchronous processes (red line) and for synchronous
processes (grey line); mr = 50 × 10, ρ = 1 and ε variable for asynchronous
processes and fictitious memory (black dotted-dashed line); ρ = 1 and ε variable
for asynchronous processes and no memory, i.e random updating (blue dashed
line). The group s.d. is defined as the average over time of the s.d. of the set of
strategies {φi(t)}i∈{1,...,1000}.

In this section I provide a measure of the degree of synchrony among agents
and comment on the findings. Here, in order to quantify synchrony in a popula-
tion, I propose the use of the standard deviation of the set of individual strategies
φi(t) in the group (which is different from the standard deviation of the trajectory
that give a good estimate of the size of the fluctuations of φ(t)). This measure is
calculated as the average (over a period of time of several times the duration of
the period of the oscillations) standard deviation of the sample {φi(t)}i∈{1,...,1000}.
This is an indication of how much apart agents are or, in other words, of the
spread of the strategies in the group at any one moment in time. Specifically, in
figure 5.13 I illustrate the value of the average standard deviation for four differ-
ent systems: mr = 50× 10, ρ = 1 and ε variable for asynchronous processes (red
line, corresponds to simulation data already reported in figure 4.7 with the same
colour) and for synchronous processes (grey line, corresponds to simulation data
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already reported in figure 5.7 with the same colour); mr = 50× 10, ρ = 1 and ε
variable for asynchronous processes with fictitious memory (black dashed-dotted
line, corresponds to simulation data already reported in figure 5.4 with the same
colour); ρ = 1 and ε variable for asynchronous processes with no memory at all,
i.e random updating (blue dashed line, corresponds to simulation data reported
in figure 5.12 with the same colour). In the last instance, the values of ε on the
x−axis are multiplied by 50 for a direct comparability of the standard deviation
with the other results with respect to ε.

From the figure, comparing the case of individual memories (red line) and
fictitious memories (black line) one infer that the spread of strategies can differ
substantially even though the collective behaviour, as evidenced in figure 5.4, is
remarkably similar in terms of amplitude and period of the fluctuations. On the
other hand, comparing the case of fictitious memories (black dot-dashed line)
and no memories (blue dashed line) one can infer that the spread of strategies is
similar even though in one case agents use information and in the other do not.
In the case of a system with individual memories the group spread has a local
maximum at the Hopf-bifurcation. Finally, similarly to the behaviour described
in the previous section, for processes without memory and random updates (blue
dashed line) the group standard deviation grows linearly when εm is roughly
greater than 10 and non-linearly otherwise.

The results from this section show that, when comparing two populations,
the spread of individual strategies can differ substantially even if the collective
average strategy is similar. At the same time, even when the spread of individual
strategies is similar, the use of information and the collective average strategy
may be considerably different.

5.5 Modelling discrete time steps.

In the limit of an infinite population size and r →∞, the model studied in chapter
4 is described by a pair of simple ODEs that evolve in continuous time. In that
scenario, the amplitude and period are uniquely determined by the fundamental
quantities ερ and m (cf. 4.12 and 4.15). Therefore, one can argue that the
relationship between ε and ρ is inversely proportional, i.e. the dynamics are
preserved as long as ερ is fixed. However, in chapter 4 and 5, I have extensively
simulated the model using a Gillespie algorithm (Gillespie, 1977). According to
this algorithm, the simulations operate by discretization of the time steps, picking
random numbers for the waiting times (Bolker, 2008). Given these considerations,
here I ask to what extent the discretization of the time steps induces a sensitivity
on the value of ρ and ε for the evolution of φ(t). I show that dynamics evolving
in discrete time are not invariant under a constant value of the product ερ, i.e.
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the value of each factor matters. In particular, I include working that quantifies
under what conditions the evolution of φ(t) is preserved when ρ or ε are varied.
Besides, the working presented in this section is also used to derive closed form
solutions for the evolution of the recursive functions 4.27-4.28.

Calculations and discussion

First, I assume without loss of generality that p̃ = 1 is satisfied in equations 4.1a-
4.1c and thus the evolution of φi follows equation 4.1b. Working on equation 4.1c
would give equivalent results. If one truncates the evolution of φi to one step,
one obtains

φi(t+ δt) = φi(t) + ε[1− φi(t)] with rate ρ (5.4)

Next, using equation 5.4 recursively, I calculate the value of φi(t+ 1) for different
values of ρ. For deterministic events, the following holds true:

φi(t+ 1) =φi(t) + ε[1− φi(t)]
when ρ = 1

φi(t+ 1) =φi(t) + ε[1− φi(t)] + ε
[
1− [φi(t) + ε[1− φi(t)]]

]

when ρ = 2

φi(t+ 1) =φi(t) + ε[1− φi(t)] + ε
[
1− [φi(t) + ε[1− φi(t)]]

]
+

ε

[
φi(t) + ε[1− φi(t)] + ε

[
1− [φi(t) + ε[1− φi(t)]]

]]

when ρ = 3

By means of expanding, collecting and rearranging, I obtain

φi(t+ 1) =1− (1− φi(t)) + ε(1− φi(t)) (5.5)

when ρ = 1

φi(t+ 1) =1− (1− φi(t)) + 2ε(1− φi(t))− ε2(1− φi(t)) (5.6)

when ρ = 2

φi(t+ 1) =1− (1− φi(t)) + 3ε(1− φi(t))− 3ε2(1− φi(t)) + ε3(1− φi(t)) (5.7)

when ρ = 3

I note that the coefficients of the term 1 − φi(t) are the binomial expansion of
(1− ε)ρ. As a result, equation (5.4) becomes

φi(t+ 1) = 1− (1− φi(t))(1− ε)ρ (5.8)
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Now one can study how to preserve the dynamics when changing ε, say from ε1
to ε2, by changing ρ, say from ρε1 to ρε2 . In order to do this, I compare the two
processes ensuing from the use of ρ1 together with ερ1 and ρ2 together with ερ2 .
Here, with the wording ‘preserving the dynamics’ I mean that φi(t+ 1)− φi(t) is
preserved. If the condition

(1− ε1)ρε1 = (1− ε2)ρε2 (5.9)

is satisfied, than the two processes make the same change in one unit of time.
From this condition, we obtain the relationships

ε2 = 1− (1− ε1)ρε1/ρε2 (5.10)

and, equivalently,
ρε1
ρε2

=
log(1− ε2)

log(1− ε1)
(5.11)

From equation 5.11, in the limiting case ε1, ε2 → 0, I recover the following

ε2 / ε1 = 0.25

ε2 / ε1 = 0.5

ε20 0.5

0

0.5

ρε1
ρε2

Figure 5.14: An illustration of the ‘trade-off’ between ε and ρ which preserves
the dynamics. The ratio ρε1/ρε2 is plotted for the case ε1 = 2ε2 (continuous
line) and ε1 = 4ε2 (dashed line). The value of ε1 is constrained in order for
the corresponding value of ε2 to be in the interval [0, 1]. In more detail, this
illustration answers the following question: in order to preserve the evolution of
φi(t), how does ρ vary when ε is doubled (or quadrupled)?
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equality:
ρε1ε1 = ρε2ε2 (5.12)

This equality recovers the condition which preserves the dynamics in equations
4.12 and 4.15. Figure 5.14 confirms graphically that condition 5.12 holds true
in the limiting case mentioned. In this figure, the ratio

ρε1
ρε2

is plotted on the

y-axis for different values of ε2 while keeping fixed the ratio ε2/ε1 = 0.25 for the
dashed line and ε2/ε1 = 0.5 for the continuous line. One would obtain identical
results from studying equation (4.1c). Although these results point out that the
trade-off between ε and ρ is not inversely-proportional for discrete time dynamics,
the trade-off remains inversely proportional for several results of the agent-based
Gillespie simulations. Several simulation results consistently show that for the
product ερ the value of the single factors does not matter. This is supported by
the simulation data showing that rescaling according to the fundamental quantity
ερm is valid for ε in [0, 1] and m fixed when varying ρ (see figure 4.11). However,
other simulation data shows that for ε = 1 fixed (i.e. pure strategies) and ρ
variable, the discretization may have a minor influence on the outcome of the
simulations.
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5.6 Changing the number of individuals

5.6.1 Small population size

So far, the entirety of theoretical, numerical and simulation results presented re-
lies on the assumption of modelling a large population. The population size tends
to infinity in analytical results and is set to one thousand in all performed simu-
lations. However, many biological and social systems evolve under demographic
noise and fluctuating population size. Therefore, it is logical to explore to what
extent a small population size would affect the collective behaviour of the model
studied. In particular, I am interested to know whether small populations merely
break down the observable features or, alternatively, originate new features. Be-
fore moving on, I point out two relatable results from the literature. First, figure
3.2 shows that the most defining feature of the minority game is derived in the
continuum between small and large population size. This feature is regulated
by the size of the population (relative to the dimension of the strategy space),
with small and large populations yielding differing behaviours. Second, Helbing
et al. (2005b) study turn-taking equilibria with periodic dynamics for 2-person
and 4-person binary anti-coordination games. This study is interesting because
the equilibria that holds for 2-person games quickly deteriorates for larger pop-
ulations. Inspired by these reflections, I decided to explore the existence of new
properties for small populations in my model. Upon exploring several scenarios,
a new behaviour is uncovered and depicted in figure 5.15. This figure shows that
small populations of mixed-strategy agents have the capacity to self-organise into
stable groups that play pure strategies. This behaviour contrasts with the one
shown in figure 4.5 (top left graph). In the latter, each individual fluctuates
closely around the equilibrium. In the former, individual strategies evolve into
either: (i) two separating groups of opposing strategies if the number of agents n
is even (left hand plot, n = 10) or (ii) into two groups plus an undecided agent if
the number of agents is odd (right hand plot, n = 5). Therefore, while in large
groups agents throw a dice at each turn, in small groups agents freeze into pure
strategies which entails a different ability to exploit the information collected. To
illustrate the transition between the two scenarios, I have plotted figure 5.16. In
this figure I plot the asymptotic distribution of strategies as a function of different
population sizes. The plots show a transition from a bi-modal (pure strategies)
towards a uni-modal distribution of strategies (mixed-strategies) as the number
of agents increases.

In this new setting, I discover that the scaling properties uncovered for large
population are preserved for small populations. In particular the transition be-
tween uni-modal and bi-modal is regulated by the fundamental quantities rm
and εm (ρ = 1 fixed). This is illustrated in figure 5.17. In each plot, the left
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Figure 5.15: Evolution over time of individual (orange lines) and group average
(black lines) strategies. Left plot: realization of a population of 10 agents using
mixed-strategies which spontaneously converges to a pure-strategies equilibrium.
Right plot: realizations of a population of 5 agents using mixed strategies which
spontaneously converges to 4 pure-strategy agents and 1 mixed-strategy agent.
Parameters used m = 50, r = 10, ε = 0.0026 and ρ = 1.

y-axis shows the percentage of agents using a pure strategy, while the x-axis
shows the number of agents. The value of rm is 250 and 500 respectively, while
εm = 0.1 and ρ = 1 are fixed. On the same plots, the right vertical axes shows a
theoretical approximation of the probability that an agent collects a misleading
sample of the strategies played in the group. In this case, a sample is considered
to be misleading when it forecasts the incorrect minority in the population. The
probability is calculated by approximating memory with a binomial distribution.
The probability of a misleading sample is calculated as follows. Let consider
a population of N = 10 individuals that are evenly split into two groups of 5.
Next, consider a focal individual from one group, say group A. This individual
can observe 4 individuals in his own group, group A, and 5 individuals in the
other group, group B. If the focal individual randomly samples this population,
there would be a probability p = 4/9 that he samples an individual in his group
(A) and p = 5/9 that he does otherwise. Since, the aim of the focal agent is to
correctly identify the minority group in the population (without counting himself
in), a sample is misleading when it predicts a majority of A individuals. The
probability of collecting a misleading sample increases as the population size in-
creases and decreases as the sample size increases. Now, let X(n, p) be binomially
distributed with n trials and p chances of success in each trial, where n = rm is
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Figure 5.16: Strategies frequency measured over 10000 time units as a function of
population size. Parameters: r = 20 (top) and r = 10 (bottom); m = 50, ρ = 1
and ε = 0.002 fixed. For a small population size the group self-organises by adopt-
ing pure strategies whereas it assumes a mixed-strategy equilibrium depicted as
a unimodal distribution for large population sizes.

the size of the memory string of an agent and p = (N/2)/(N − 1) is the probabil-
ity that a focal individual samples a B-group member. Let F (k) = Pr(X ≤ k)
be the cumulative distribution function for X(rm, (N/2)/(N − 1)). Using this
notation, one obtains that the probability of collecting a misleading sample is
approximately F (rm/2− 1). This quantity is calculated numerically and plotted
as a grey line in figure 5.17 with a corresponding y-axes on the right side of the
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plots. One can see that this probability is a good indicator of the transition be-
tween the uni-modal and bi-modal distribution and captures well the population
size at which a group fails to split into two pure strategies groups.

5.6.2 Comments

In chapters 4 and 5, the model assumes that individuals estimate the prevalence
of B players by collecting samples of the behaviour of others through observations.
A corollary of the mean-field model for large populations is that, in the limiting
case of large samples (i.e. r,m → ∞), individuals build expectations (of the
proportion of B players) that are convergent to the same value. However, this is
not true for small populations.

In small groups, individuals form diverging estimates of the proportion of
B players in the group. Specifically, individuals’ estimates differ depending on
whether they themselves are A, B or mixed-strategies players. For example, in
small groups with an even population size N , the observed proportion of B players
at equilibrium is N/2

N−1
for an A player and N/2−1

N−1
for a B player. However, both

proportions tend to 0.5 as N tends to ∞. Therefore, for large populations, the
two proportions become indistinguishable and the mean-field approximation is
valid.

Overall, I would expect that the small-group equilibrium described in section
5.6.1 (for N < 20, mr ≥ 500) depends on the values of N and mr and holds
generally for N << mr.

Further research is required to fully characterise small-group dynamics, for
example, as a function of N , ερm, rm. It is useful to note that the computational
cost of simulations increases with rm: when the individual memory duration
m increases, the amount of data to be held in RAM storage increases; when the
observation rate r increases, in addition to RAM storage, the number of iterations
also increases.

Overall, this brief study suggests that individuals, although using the same
learning strategy, coordinate differently within small groups compared to large
groups. In particular, small group size does not cause demographic noise. Small
groups can ‘naturally’ converge to pure-strategy efficient stable equilibria.

From an evolutionary perspective, one might consider a cost associated with
memory size and information storage and recollection. In this scenario, indi-
viduals may have an incentive to incur the cost of a detailed perception in small
groups but not large ones. This consideration leads to a research question. Would
it be possible that individuals have an incentive to incur the cost of a detailed
perception in small groups but not large ones? Could a transition from small
scale communities to large scale communities, such as from rural areas to cities,
disrupt the use of established effective learning strategies?
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Figure 5.17: Top: mr = 25 × 10 (yellow) and mr = 50 × 5 (red); bottom:
mr = 25 × 20 (yellow) and mr = 50 × 10 (red). Fixed εm = 0.1 and ρ = 1.
Left side y-axes: frequency of individuals holding a pure strategy, i.e. φi(t) = 0
or φi(t) = 1 with a precision of 0.0005, calculated from simulations over 10000
time units. Right side y-axes: theoretical probability that an individuals does
not make a mistake due to biased sampling (grey line). This quantity is derived
using a binomial approximation for the memory content of individuals, assuming
they are equally distributed between the two pure strategies. N represents the
number of agents.
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5.7 Onset and collapse of oscillations: a review.

5.7 Onset and collapse of oscillations: a review.

Amplitude and period in deterministic dynamics. In the limiting case
r →∞, the dynamics of φ(t) is deterministic and can be reduced to the combined
study of two ODEs. In this scenario, the rescaled period (T/m) and amplitude
(A) are uniquely determined as a function of ερm. The next two tables report
the known formulae for amplitude and period in the deterministic scenario. An
upward arrow indicates that the variable is positively correlated to the size of the
amplitude. A downward arrow indicates that the variable is negatively correlated
to the size of the amplitude. The two arrows together indicate that the variable
is either positively or negatively correlated to the amplitude depending on the
range of values considered.

Variable
Effect
on A

Comments

ερT ↑

The exact solution for the amplitude is

A(ερT ) = 0.5 tanh

(
ερT

4

)
.

The function tanh(·) is positive, monotone and increasing
from [0,∞) to [0, 1).

ερmτ ↑

The exact solution for the amplitude is

A(ερmτ) = 0.5 tanh
(ερmτ

4

)
.

with τ = T/m = f(ερm). Numerical solutions show that
f(x) is a decreasing monotone smooth function from (0,∞)
to (1, 2).

ερm ↑

The exact solution for the amplitude is

A(ερm) = 0.5 tanh

(
ερmf(ερm)

4

)
.

Numerical solutions show that g(x) = xf(x) is an increas-
ing monotone smooth function from (0,∞) to (0,∞).

Table 5.1: Impact on the amplitude A of the parameters of the model for deter-
ministic dynamics.
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Variable
Effect
on T

Comments

ερ ↓

The exact solution for the period is

T = mf(ερm).

Numerical solutions show that f(x) is a decreasing mono-
tone smooth function from (0,∞) to (1, 2).

m ↑ Numerical solutions show that T (m) = mf(ερm) is an in-
creasing monotone smooth function from (0,∞) to (0,∞).

Table 5.2: Impact on the period T of the parameters of the model for deterministic
dynamics.

Amplitude and period in stochastic dynamics, r finite. The dynamics
of the population in the case of finite batches, i.e. r finite, can be understood
as the dynamics of the population in the case of infinite batches (deterministic
scenario) with added noise. It turns out that such noise can affect the dynamics
significantly, leading to damped oscillations and noise-sustained equilibria. Sim-
ulation results for finite batches suggest that the period, T , of the oscillations in
φ(t) obeys the formula given for the period in deterministic dynamics1. Conse-
quently, in the case of finite batches, the amplitude but not the frequency of the
fluctuations is affected by the noise induced by finite sampling.

In the next table, I review the ways in which several variables influence the
amplitude of the oscillations in φ(t) for finite batches. Some of the effects dis-
cussed here are equivalent to those already observed for deterministic dynamics.
Therefore it is important to differentiate between the new contributions due to
stochasticity and those intrinsic to the model (with and without noise). For exam-
ple, the amplitude increases as m increases for deterministic dynamics; however,
m has a double-fold effect on the amplitude in dynamics with noise.

Importantly, in table 5.3, the comparison between the parameters ρ and m
helps to identify which parameters contribute to the collapse of the oscillations
and which do not. The comparison reveals that the value of T/m is correlated to
the collapse, while the value of the period T is not. In fact, figures 4.10, 4.11 and
4.12 consistently show that oscillations decay as the ratio T/m nears the value
1. This implies that the ratio between period and memory duration regulates
the breakdown of the oscillations, albeit not providing an exact prediction for a
breakdown value.

1The formula, T (m, ερ) = mf(ερm), is discussed in the tables above.
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Variable
Effect
on A

Description

Observation
rate, r

↑

As r increases from 0 to∞, the system transitions (pos-
sibly through different routes depending on the other
system parameters) from being random to determinis-
tic. For given ε, ρ and m, there is a unique critical value
rc where the system exhibits a Hopf bifurcation.

Agents si-
multaneity

↑
Simultaneity defers the decay of oscillations to larger
values of ερm but does not impact on the Hopf bifurca-
tion.

Update
rate, ρ

↑ ↓

As it increases, ρ triggers a Hopf bifurcation, say at ρc,
followed by bounded oscillations until it dumps oscil-
lations as it increases further. As ρ increases past the
Hopf bifurcation, the period largely follows the rule valid
without noise described above: T = mf(ερm). In par-
ticular, as ρ increases: i) the period T decreases, i.e.
oscillations become faster; ii) the ratio T/m decreases.

Intensity
of
response, ε

↑ ↓

An identical argument applies to ε as to ρ. In addi-
tion, ε causes the discretization of the ‘strategy space’,
affecting the trajectory of the dynamics. However, the
comparison of the simulation results for different values
of ε indicate that the discretization effect on the dynam-
ics is minor and only qualitative.

Memory
duration,
m

↑ ↓

As it increases, m triggers a Hopf bifurcation, say at
mc, followed by bounded oscillations until it dumps os-
cillations as it increases further. As m increases past
the Hopf bifurcation, the period largely follows the rule
valid without noise described above: T = mf(ερm). In
particular, as m increases: i) the period T increases, i.e.
oscillations become slower; ii) the ratio T/m decreases.

Heterogeneous
memory
duration

↓

Intra-group variations on memory duration increase the
variability of the information intake. The resulting ef-
fect is similar to reducing r, which defers the Hopf bi-
furcation to higher values of ερm and dumps oscillations
everywhere else. Notably, oscillations close to the Hopf
bifurcation are more robust to this form of noise than
those far from it.

Small pop-
ulations

n/a

Small-population effects can lead to a new pure-strategy
stable equilibrium in the game. Whereas in large popu-
lations the simulated behaviour of the group is well ap-
proximated by a theoretical mean-field description, this
approximation fails in small populations.

Table 5.3: Impact on the amplitude A of the parameters of the model for stochas-
tic dynamics.
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To conclude this section, I provide an explanation of the role of T/m in causing
the decay of oscillations. To do this, consider that the time-averaged integral of
φ(t) over one period always equals 0.5, i.e.

1

T

∫ t

t−T
φ(τ)dτ = 0.5 for any t. (5.13)

Consider that, in the limit r →∞, the proportion of B players in an individual’s
memory at time t is given by

µi(t) =
1

m

∫ t

t−m
φ(τ)dτ for any t. (5.14)

In the case r finite, equation 5.14 is valid on average. Similarly, it would be valid
if one included an appropriate noise term with expected value 0 on the RHS. In
the limit r →∞, the study of the dynamics (cf. figure 4.8) tells us the necessary
and sufficient condition such that, at time t, an individual changes the direction
of strategy update (increase or decrease φi(t)). This necessary and sufficient
condition states that

µi(t) =
1

m

∫ t

t−m
φ(τ)dτ = 0.5. (5.15)

Next, consider that, as T/m → 1, the individual memory duration converges
to the duration of the period, T . Equations 5.13-5.14, taken together, tell us
that, in the limit T → m, µi(t) converges to 0.5 (for any t). This also means
that µi(t) evolves within a small neighbourhood of 0.5. Condition 5.15 implies
that, at µi(t) = 0.5, individual i changes the direction of evolution of his strategy
φi(t). However, the fact that µi(t) evolves in a small neighbourhood of 0.5 implies
that µi(t) is always close to a critical point. In particular, the introduction of
a source of noise would increase the likelihood that µi(t) traverses the value 0.5
(the critical point) by random drift.

In the case of finite batches, noise is generated by the stochastic distribution
of the duration of memories, as well as by the random distribution of observation
times. In fact, figure 4.2 tells us that memory duration is normally distributed
with mean m and variance m/r (for large mr). These sources of stochasticity
imply that, while µi(t) is close to 0.5, it is also subject to random drift. Con-
sequently, agents are more likely to randomly switch the direction of strategy
update. As a result, to sum up, group coordination becomes vulnerable to noise
as T/m approaches 1.

In addition, this argument also shows that, as r increases, coordinated oscil-
lations break down at a larger value of T/m. This is due to the fact that, as
r increases, observation samples become more detailed and the distribution of
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memory durations acquires a lower variance. This concludes my exploration of
the role of T/m on the collapse of coordinated oscillations. Overall, this discus-
sion presents a scenario for a spontaneous (occurring without apparent cause)
break down of oscillations as the population reaches a tipping point characterised
in terms of the value of the period of the oscillations themselves. An exact quan-
titative prediction of the tipping point requires further research.
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Chapter 6

Conclusion

This thesis has progressed from a review of agent-based game-theoretical evolu-
tionary models to studying a scenario for the emergence of collective behaviour
in a binary game with memory incorporating difference in information among
individuals.

At the beginning of this research project, my research interest lay in inves-
tigating the evolutionary origin of differences in learning and response in group
behaviour. Chapter 2 contains preliminary results in which I review a 2-D spatial
model of the Prisoners’ Dilemma showing that the introduction of a stochastic
learning rule changes the outcome of the game (section 2.2). For example, I
proved that stochastic learning can both strengthen and hinder the evolution of
cooperation compared to a deterministic learning rule (figure 2.4). In light of
these early results, I introduced a simple selection dynamics operating on dif-
ferent levels of response sensitivity (modelled with the parameter β in formula
2.6). In particular, following from Guttal & Couzin (2010) and Zafeiris & Vicsek
(2013), I hypothesised that the evolution of individual sensitivity might depend
on the individual position occupied within the clusters that naturally emerge on
the lattice and a cost function for the response sensitivity. I preliminarily tested
a range of scenarios through simulations not reported in this thesis, and they
did not present emerging patterns of interest for the evolution of the response
sensitivity. Consequently, I shifted my interest to the study of learning dynam-
ics in well-mixed populations, where the role of learning is un-coupled from the
effects of spatial structures. For the Prisoners’ Dilemma, however, this topic has
already been extensively discussed in differing scenarios (Axelrod & Hamilton,
1981; Galla, 2009; Hauert & Schuster, 1997; Hilbe et al., 2017; Imhof et al., 2005;
McNamara et al., 2004; Nowak & Sigmund, 1992; Stewart & Plotkin, 2016).

My research focused on the study of information use in the context of group
coordination in an anti-coordination game. A coordination game models a sit-
uation in which agents benefit from choosing the same action, such as in the
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Stug Hunt game. An anti-coordination game models a situation in which agents
benefit from choosing different actions. Examples of anti-coordination games are
the minority game, the Hawk-Dove game and congestion games. In sections 2.6
and 3.2 I review a model of the Hawk-Dove game with memory and the canonical
minority game, offering an overview of the effects of memory on the learning dy-
namics in an unstructured population of individuals faced with a binary choice.
These models incorporate memory and online learning (Saad, 2009) and provide
the basis to investigate the effects of different learning strategies.

In chapter 4, following on from reviewing these models, I define a two-strategy
anti-coordination game with memory. Memory has a two-fold description, com-
prising duration and observation rate. In the game, individuals choose between
two options, which correspond to two pure strategies in the language of game
theory. Each individual holds a preference for each option, formally referred to
as a mixed-strategy probability quantifying the chances to choose each option.
The objective of each individual is to choose the option adopted by the minority
in the group. Individuals respond to the empirical frequency of play observed
(fictitious play (Fudenberg et al., 1998)). Agents observe (through random sta-
tistical sampling) the strategies enacted by other agents in the population. Each
agent remembers his observations for a fixed time only, and memory does not
feature gradual forgetfulness or decay. The observation rate regulates the level of
detail of the information collected. In the limit of an infinite rate, the dynamics
of the prevalence of the two options over time is deterministic. With a finite
rate of observation, the dynamics are stochastic, in which case the rate regulates
the degree of stochasticity in the system. This is an innovative approach com-
pared to conventional approaches to learning in evolutionary game theory where
stochastic choice is modelled (a posteriori) through a ‘temperature of selection’
(Cavagna et al., 1999; Galla, 2009; Traulsen et al., 2008). Here, instead, the
observation rate is the parameter that models the degree of uncertainty in the
decision-making process. Within the field of bounded rationality, this rate can
represent the amount of detail on the information available due to constraints on
the agent or the environment (Kozyreva & Hertwig, 2019). The model accounts
for sampling (e.g. observing or sensing), acquired without engaging in a contest,
of the behaviour enacted by other members of the group. The learning experiences
are not conflated with the process of accumulation of gains and losses, and there-
fore the frequency of encoding information in the memory does not correspond to
the rates of playing. This definition is based on the separation of the time scales
of the play and information collection processes and motivated by neuroscien-
tific theories of model-based reinforcement learning, accounting for algorithms in
which individuals collect information about their environment without directly
incurring reward or punishment (Lee et al., 2012; Tolman, 1948). Therefore, the
model that I propose differs from the Hawk-Dove game with memory proposed
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by Burridge et al. (2017) in this primary aspect of separation of the two pro-
cesses and their timescales. On the level of the analysis of the model, this new
definition has fruitfully allowed a systematic description of the game, uncovering
among other findings: (i) the fundamental variables; (ii) a universal classification
of the dynamics based on the fundamental variables; (iii) a deterministic descrip-
tion of the dynamics in the limiting case of an infinite rate of sampling; (iv) a
dis-entanglement of the effects of memory size, discerning between the role of
duration and observation rate. As outlined in section 4.5.1, given this definition
of memory, I suggest that (v) the observation rate acts as an ‘inverse temperature
of selection’ analogous to the role of response sensitivity in the ‘thermal minor-
ity game’ (Cavagna et al., 1999) and following this hypothesis I have proposed
further research possibilities, in particular suggesting that (i) my model ‘maps’
to a limiting case of ‘thermal minority game’ and (ii) how it may shed light on
specific features of other anti-coordination games (Burridge et al., 2015, 2017).
In total, the model depends on four quantities corresponding to memory dura-
tion (m), observation rate (r), update rate (ρ) and intensity of response (ε). All
results hold for pure strategies (ε = 1) and mixed strategies (0 < ε < 1), albeit
with some qualitative differences. The thesis presents a detailed discussion on the
onset of collective oscillations as well as their decay in a binary anti-coordination
game with memory.

In light of this analysis, I propose that the model has the potential to provide
a framework to describe mechanisms in sociological and social phenomena such
as fashion. As a sociological subject, fashion is related to collective and per-
sonal identity dynamics and social distinction and imitation mechanisms (Aspers
& Godart, 2013; Berger & Heath, 2007). The term fashion describes prevailing
aesthetic styles at particular points in time and inherently refers to temporary
cyclical phenomena (Sproles, 1981). It can be used to comprise more than cloth-
ing styles (Aspers & Godart, 2013; Kawamura, 2020). Male facial hair choices,
although driven by a range of factors (Dixson et al., 2017), are considered a mat-
ter of fashion (Dixson et al., 2017; Janif et al., 2014) and appear to stem from a
combination of features that my model effectively captures.

Making a binary distinction between having a clean-shave and a beard, data
collected from the Illustrated London News from 1842 to 1972 shows how beards
choices are subject to cyclic patterns over time (Robinson, 1976). Other studies
point out that beard dynamics are subject to negative-frequency selection and
consistent with mechanisms operating in fashion trends (Alderman, 2017; Janif
et al., 2014). At the same time, studies have hypothesised that the importance
of beard choices is amplified in settings with large numbers of people and high
anonymity (Dixson et al., 2017) such as crowded urban areas (Dixson et al.,
2017; Scott et al., 2014). Such settings may provide ‘opportunities to discern
relationships between facial traits and behaviour by exposing individuals to large
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numbers of unfamiliar faces, revealing patterns too subtle to detect with smaller
samples’ (Scott et al., 2014).

In my model, for ε = 1, individuals use a simple heuristic which operates as a
negative frequency-selection rule on a binary choice: an individual keeps a beard
as long as it corresponds to the minority style in the group and shaves otherwise.
The model is particularly flexible as it predicts that oscillations arise both when
individual switch between clear preferences (pure strategies for ε = 1) and when
they tune their preference more gradually (for 0 < ε < 1) and in a continuous
spectrum of preferences (for ε → 0). However, the analysis points out that the
spectrum of preferences, previously called space of strategies in this work, only
reduces notably for ε > 0.5. The model also parametrises individual memory
reaching over an arbitrary duration of m time units into the past. I showed that
cyclic patterns are present even in the case of heterogeneous memory duration
in the population. As mentioned, beard style dynamics are captured in data
collected in urban settings where individuals are exposed to large samples of the
styles adopted by people mostly unknown. Similarly, the model analysed in this
thesis corresponds to the limiting case of a large population in which behaviour
is anonymous instead of tag-based. Finally, large urban groups are usually pro-
vided with opportunities to efficiently exchange visual social information through
posters, television, and the Internet (Scott et al., 2014). While this itself may
influence individual preferences (Batres & Perrett, 2014), it may also provide dif-
ferent individuals with homogeneous visual information, whereby enhancing the
synchronisation of their choices.

In addition to beard style dynamics, an analogous mechanism may be at play
across different scenarios. It is closely related to other fashion subjects, such
as, for example, first names dynamics (Kessler et al., 2012). The framework
may also describe phenomena observed in supply-demand chains and bacterial
communities.

In supply-demand chains, output and price fluctuations are well documented.
It is still debated whether the cause of such fluctuations is endogenous or ex-
ogenous and whether agents are rational or resort to rule-of-thumb expectations
which are understood as a rational solution to the trade-off between costly and
cheap predictions (Brock & Hommes, 1997; Gouel, 2012). In this context, simple
backward-looking expectations often ‘generate systemic errors with strong cyclic
patterns’ (Gouel, 2012). A similar effect is described in my model, which explains
the emergence of cyclic patterns from backward-looking expectations. My study
proposes that oscillations arise endogenously as the information collected is ho-
mogeneous across the population. Oscillations are also sustained for a broader
range of parameters when the processes in the system are synchronous. Therefore
this study underscores the possible side-effects of an ever more connected soci-
ety in which actors are highly interconnected and with the possibility to respond
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synchronously to the same information while located at greater distances.
Finally, the model may capture the emergence of synchronisation in unicel-

lular populations. Although the model is not fine-tuned to describe a particular
observed behaviour, I suggest that it models an essential mechanism at play
in some populations. Bacteria, for example, use simple rules-of-thumb to regu-
late their actions when choosing to release a public good (Cavaliere & Poyatos,
2013) and some unicellular organisms also undergo transitions to coordinated ac-
tivity with increasing cell density or nutrient availability (Gregor et al., 2010).
For these organisms, the emergence of coordination is always mediated through
communication by chemical signalling via the extracellular solution De Monte
et al. (2007); Garcia-Ojalvo et al. (2004); Taylor et al. (2009). When modelling
the collective synchronisation in biological populations, researchers often refer to
coupled oscillators models with non-linear coupling such as Ariaratnam & Stro-
gatz (2001); Kuramoto (1975); Winfree (1967) and linear coupling such as in
Matthews & Strogatz (1990). These studies describe systems of individual oscil-
lators that synchronise by entrainment of their phases. Other studies (De Monte
et al., 2007; Gregor et al., 2010; Taylor et al., 2009), however, pointed out that
some organisms present a collective transition to synchrony in which organisms
are quiescent/random at low information density and display synchronise as they
share more and more information, either as a result of increasing the population
size or as a result of increasing the transport rate in the external solution. Thus,
unicellular populations are usually coupled through shared information available
and encoded as chemicals dispersed in the medium and have been shown to syn-
chronise as the information becomes uniform in the medium. My model provides
an example of this type of transition in which oscillatory behaviour becomes en-
trained as individuals share more of the same information. On another note,
the emergence of cyclic oscillations can provide stability and predictability to
biological systems (Alon, 2019). In accordance with this fact, figure 5.3 shows
that the onset of limit cycles corresponds to an increase in the synchrony in the
population.

To conclude, in this thesis, I have studied a model for the emergence of collec-
tive behaviour in a general anti-coordination game and tested how fluctuations
emerge and disappear depending on the system parameters in a wide range of
alternative scenarios. This study adds to previous research describing how oscil-
lations develop when negative-frequency selection is coupled to delay. I further
formalise a specific mechanism in which information is explicitly modelled and
becomes the leading parameter regulating the onset of collective behaviour. Fur-
ther research should fruitfully extend this model to other games and tune its
features to specific scenarios.
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Appendix A

Annotated code

A.1 Code for simulation of the stochastic model

# R code. As tested in RStudio Version 1.2.5033.

# The output is a plot in the "Plots" window on Rstudio.

### PARAMETERS ###

L = 1000 # Population size: unit of measure 1. Must be even.

m = 25 # Memory duration: unit of measure [T].

r = 20 # Observation rate: unit of measure 1/[T].

rho = 1 # Update rate: unit of measure 1/[T].

epsilon = 0.05 # Update step: unit of measure 1.

TT = 150 # Final time: unit of measure [T].

# m,r,rho,TT must be positive integers.

### USEFUL AUXILIARY OBJECTS (matrices, vectors, constants) ###

rp = r + rho # Sum of the two rates.
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A.1 Code for simulation of the stochastic model

factor = L/2*rp # Number of events in one unit of time (on average).

# An event always involves two agents,

# thus the factor "/2".

I = TT*factor # Number of iterations in TT time units (on average).

players = seq(1:L)# Players are numbered from 1 to L.

strat = c(0, 1) # Binary encoding of the two options available:

# 0 means playing A, 1 means playing B.

phi = rep(0,L) # Vector of each player individual strategy.

# Everyone’s strategy is set to 0 at the beginning.

mu = rep(0,L) # Vector of each player..

# ..‘proportion of B players met’.

# Everyone’s proportion is set to 0 at the beginning.

nos = m*r # Memory size: number of observations recorded.

nosmu = nos - 1 # Costant used to "shift" the memory content.

memory = matrix(NA,L,nos)

# Object definition (empty matrix): size L*m*r.

# Row ‘i’ of ‘memory’ contains the last m*r ..

# .. obervations of individual i.

memory[,1]=0 # Memory is initilized at 0 for all agents.

Phi_graph = rep(0,TT)# Vector recording the group average strategy..

# ..at consecutive integer time units.

st_dv = rep(0,TT) # Vector recording the s.d. of the strategies

# at consecutive integer time units.

### ITERATIONS ###

for(ti in 1:I){

# "ti" is an auxiliary variable that keeps count of the iterations.
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### OBSERVATION ###

if(sample(1:rp,1)>rho){

# The "if clause" chooses between the two processes:

# observation and strategy update.

# Here it picks observation.

# To make sense of the ‘if clause’, remember that:

# rp=r+rho.

Two_players = sample(players, 2, replace = FALSE)

# Pick 2 out of L players.

player1 = two_players[1]

# Establish which one is player 1 for this iteration.

player2 = two_players[2]

# Establish which one is player 2 for this iteration.

memory[player1,1:nosmu] = memory[player1,2:nos]

# Player 1 shifts the content of his memory by one position.

memory[player2,1:nosmu] = memory[player2,2:nos]

# Player 2 shifts the content of his memory by one position.

# The shift clears the one "bit" of memory which will be updated next.

zfunction = function(i){sample(strat, 1, prob = c(1-phi[i], phi[i]) )}

# Define function:

# choose action A with prob 1-phi[i] or B with prob phi[i].

z1 = zfunction(player1)

# Player 1 chooses his action.

z2 = zfunction(player2)

# Player 2 chooses his action.
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A.1 Code for simulation of the stochastic model

memory[player1,nos] = z2

# The action of player 2 is observed by player 1.

memory[player2,nos] = z1

# The action of player 1 is observed by player 2.

}

else{

### STRATEGY UPDATE ###

two_players = sample(players, 2, replace = FALSE)

# Pick 2 out of L players.

player1 = two_players[1]

# Auxiliary variable for player 1 in this iteration.

player2 = two_players[2]

# Auxiliary variable for player 2 in this iteration.

mu[player1] = mean(memory[player1,], na.rm=T)

# Compute the proportion of B players observed..

# ..by player 1 in the last r*m observations.

mu[player2] = mean(memory[player2,], na.rm=T)

# Compute the proportion of B players observed..

# ..by player 2 in the last r*m observations.

phi[player1] = phi[player1]

+ as.double((0.5 > mu[player1]))*epsilon*(1-phi[player1])

- as.double((0.5 < mu[player1]))*epsilon*phi[player1]

# Increase phi[player1] if mu[player1] < 0.5. Run this as one line.

phi[player2] = phi[player2]

+ as.double((0.5 > mu[player2]))*epsilon*(1-phi[player2])

- as.double((0.5 < mu[player2]))*epsilon*phi[player2]

# decrease phi[player1] if mu[player2] > 0.5. Run this as one line.
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A.1 Code for simulation of the stochastic model

}

### COUNTING TIME ###

# Remember the fact that..

# ..factor = L/2*(r+rho) = average number of iterations in 1 time unit.

# ti is the variable counting the iterations.

if(ti %% factor == 0){

# %% means "mode", e.g. 1000 %% 500 = 2

Phi_graph[ti/factor] = mean(phi)

# record "average group strategy" at time "ti/factor"

st_dv[ti/factor] = sd(phi) }

# record "standard deviation among players" at time "ti/factor"

}

### ITERATIONS HAVE ENDED ###

# OUTPUT: a plot that shows the average group strategy (black line)..

# .. +- 1*standard deviation (grey area)

Tm = TT/2

at_v = round(c(1,Tm,TT))

labels_v = round(c(1,Tm,TT))

# Define x-axis labels

plot(Phi_graph, ylim = c(0,1), ylab = expression(phi),

xaxt="n" ,xlab = "Time", type = "l")

# Create a plot with labels

polygon(c(seq(1:TT),rev(seq(1:TT))),c(Phi_graph+st_dv,

rev(Phi_graph-st_dv)),ylim = c(0,1),col="lightgrey", border = "NA")

# Add a filled in polygon
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A.1 Code for simulation of the stochastic model

lines(Phi_graph, ylim = c(0,1))

# Plot the black line over the shaded area

axis(1, at= at_v , labels=labels_v )

# Add x-axis and its labels
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A.2 Code for synchronous processes

A.2 Code for synchronous processes

### PARAMETERS ###

L = 1000 # Population size: unit of measure 1. Must be even.

m = 25 # Memory duration: unit of measure [T].

r = 20 # Observation rate: unit of measure 1/[T].

rho = 1 # Update rate: unit of measure 1/[T].

epsilon = 0.05 # Update step: unit of measure 1.

TT = 150 # Final time: unit of measure [T].

# m,r,TT must be positive integers.

# Code is written for rho=1. Do not change rho.

### USEFUL AUXILIARY OBJECTS (matrices, vectors, constants) ###

rp = r + rho # Sum of the two rates.

factor = L/2*rp # Number of events in one unit of time (on average).

# An event always involves two agents,

# thus the factor "/2".

players = seq(1:L)# Players are numbered from 1 to L.

strat = c(0, 1) # Binary encoding of the two options available:

# 0 means playing A, 1 means playing B.

phi = rep(0,L) # Vector of each player individual strategy.

# Everyone’s strategy is set to 0 at the beginning.

mu = rep(0,L) # Vector of each player..

# ..‘proportion of B players met’.

# Everyone’s proportion is set to 0 at the beginning.

nos = m*r # Memory size: number of observations recorded.

nosmu = nos - 1 # Costant used to "shift" the memory content.
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memory = matrix(NA,L,nos)

# Object definition (empty matrix): size L*m*r.

# Row ‘i’ of ‘memory’ contains the last m*r ..

# .. obervations of individual i.

memory[,1]=0 # Memory is initilized at 0 for all agents.

Phi_graph = rep(0,TT)# Vector recording the group average strategy..

# ..at consecutive integer time units.

st_dv = rep(0,TT) # Vector recording the s.d. of the strategies

# at consecutive integer time units.

n = L/2 # Used below to split the group in two.

n1 = n+1 # Used below to split the group in two.

### ITERATIONS START ###

for(ti in 1:TT){

# "ti" is an auxiliary variable that keeps count of the iterations

for(obs in 1:r ){

### OBSERVATIONS ###

zfunction = function(i){sample(strat, 1, prob = c(1-phi[i], phi[i]))}

# Define function: choose action A with prob. 1-phi[i] or..

# .. B with prob. phi[i]. Argument i is the i-th player.

z = sapply(players, zfunction)

# Each agent picks a strategy.

all_players = sample(players, L, replace = FALSE)

# Pick L out of L players in random order.

players1 = all_players[1:n]

# Vector of L/2 players by index.
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players2 = all_players[n1:L]

# Vector of the remaining L/2 players.

memory[players,1:nosmu] = memory[players, 2:nos]

# Shift memory content by one.

memory[players1,nos] = z[players2]

# Agents in players1 observe the strategies enacted by agents in players2.

memory[players2,nos] = z[players1]

# Agents in players2 observe the strategies enacted by agents in players1.

}

### STRATEGY UPDATE ###

### After the obsevations, each agent updates mu ###

muf = function(i){mean(memory[players[i],], na.rm=T)}

mu[players1] = sapply(players1, muf)

mu[players2] = sapply(players2, muf)

# Compute the proportion of observed B players for each agents.

phif <- function(i){phi[players[i]] +

as.double((0.5 > mu[players[i]]))*epsilon*(1-phi[players[i]])-

as.double((0.5 < mu[players[i]]))*epsilon*phi[players[i]]}

# Function that calculates the strategy update. Use with mr even.

## phif <- function(i){phi[players[i]]*(1 - epsilon) +

## as.double((0.5 > mu[players[i]]))*epsilon }

## Simpler phif function. Use with mr odd. Runs faster.

phi = sapply(players,phif)

# Strategy update

Phi_graph[ti] = mean(phi)
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# Record "average group strategy" at time "ti"

st_dv[ti] = sd(phi)

# Record "standard deviation among players" at time "ti"

}

### ITERATIONS HAVE ENDED ###

# OUTPUT: a plot that shows the average group strategy (black line)..

# .. +- 1*standard deviation (grey area)

Tm = TT/2

at_v = round(c(1,Tm,TT))

labels_v = round(c(1,Tm,TT))

# Define x-axis labels.

plot(Phi_graph, ylim = c(0,1), ylab = expression(phi),

xaxt="n" ,xlab = "Time", type = "l")

# Create a plot with labels.

polygon(c(seq(1:TT),rev(seq(1:TT))),c(Phi_graph+st_dv,

rev(Phi_graph-st_dv)),ylim = c(0,1),col="lightgrey", border = "NA")

# Add a filled in polygon.

lines(Phi_graph, ylim = c(0,1))

# Plot the black line over the shaded area.

axis(1, at= at_v , labels=labels_v )

# Add x-axis and its labels
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A.3 Code output
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

 Time

φ

1 75 150

Figure A.1: Output obtained from running the code for the original model in

section A.1. Parameters: m = 25, r = 20, ρ = 1, ε = 0.05, population size

= 1000.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

φ

1 75 150

Figure A.2: Output obtained from running the code for synchronous processes

in section A.2. Parameters: m = 25, r = 20, ρ = 1, ε = 0.05, population size

= 1000.
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