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Abstract

In the analysis of spatio-temporal networks, many of the commonly used analysis methods

and models use discrete specifications of time – these divide time into a series of discrete

steps. Discrete time specifications require irregularly measured data to be temporally

aggregated into the discrete steps, which introduces error. They also require careful choices

regarding the length of time steps. Using continuous-time models would avoid these issues.

This thesis examines the application of continuous-time models, specifically multilevel

models, to examine temporal patterns of edge properties in spatio-temporal networks.

Following a scoping review of the extent to which continuous-time methods are used in

spatio-temporal network literature, a spline-based multilevel model specification suitable

for analysing temporal patterns of edge properties, along with two methods for simplifying

the interpretation of results from this model, are introduced. These include extracting

temporal ‘pattern features’ (and estimates of uncertainty), which can be further analysed,

and generating continuous temporal functions of whole-network properties (with estimates

of uncertainty) which is a novel contribution. These methods are applied to real and

simulated data, and the ability of the model to extract temporal pattern features accurately

and with appropriate precision was tested using simulations.

Simulated data were generated using a widely applicable simulation tool developed as part

of this research. The thesis also includes a simulated illustration of one of the potential

pitfalls of analysing temporal patterns in data – this was identified as an issue in early

chapters but had not been extensively covered in the literature, so this illustration and

recommendations of how to avoid this issue are an important contribution of this research.

Overall, this thesis identifies that continuous-time models have potential applicability in

spatio-temporal network analysis, especially in the presence of irregularly measured data.
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Further investigation into different model types and specifications to improve accuracy is

recommended.
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Chapter 1

Introduction

Geographers have been evolving the methods they use to understand the world for decades.

In the past, the availability of large quantities of detailed data and powerful computers

to process it was limited. This meant that models and methods focused on aggregate

and high-level relationships between variables. In the present day, data concerning the

world around us are regularly collected for commercial or other purposes (Higham et al.

2017). For example, railway systems might use smart cards as tickets and collect data on

customer journeys in order to charge them the correct fare; weather data is automatically

collected at a range of monitoring sites for forecasting purposes; remote sensing systems

enable collection of geographical data on a large scale. Greater quantities of data with

finer detail are available which enables more detailed modelling of finer-scale processes.

One area of interest to geographers is the movement of people around cities. This field of

interest comprises complex and individual movement, thus requiring researchers to look

in greater detail than aggregate variable relationships across a whole city. For example,

they may focus on collecting data on individual movements, or on the movements between

selected areas or locations. One method that can be used to study movement is network

analysis (Newman 2018). When examining movement around cities, network analysis rep-

resents locations as vertices/nodes and adds connections (edges/links) between locations if

there is travel between them. Networks can also be used in other contexts, for example, to

study infectious disease spread, or to study ecological connections between species (food

webs, for example) (Anderson and Dragicevic 2018; Iotti et al. 2017).
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Network analysis can be used to produce aggregate statistics describing the network of

movements around a city – for example, whether there are clusters of locations that peo-

ple tend to remain within and rarely leave, or whether people take a wide range of paths

throughout the network or only use a few of the available options to move between loca-

tions. Descriptions of specific locations (vertices) or specific edges (links between areas)

and how they interact with other parts of the network can also be produced. Further-

more, network connections can be used to inform other analyses and models. Many spatial

analyses aim to investigate or account for spatial autocorrelation – a degree of similarity

between locations or objects due to their proximity in space (Dubin 2009; Tobler 1970).

Proximity of vertices in a network, for example being directly linked by a single edge, rather

than indirectly linked via another vertex, may also lead to autocorrelation. Analysing the

connections or movement between locations as a network allows us to represent network

proximity numerically and analyse or account for it in models.

Many representations of networks are static, that is they do not change over time. In many

situations, however, we might expect a network to change over time (Blonder, Wey, et al.

2012). For example, a network representing movement of public transport buses around a

city is likely to appear different on a bank holiday than on a normal weekday, as fewer bus

services will be running. Temporal variation in the network can take place in the network

topology (the presence of edges and vertices in the network) and the network properties

(for example, edge weights representing the strength of connections, e.g. the frequency

of buses connecting two locations; or the location of vertices might change over time)

(Blonder, Wey, et al. 2012). These changing properties can be of interest to researchers.

For example, they can be used to predict traffic flow in a network, to examine ecological

changes over time, or to identify times of high travel demand in a public transport network

(Carlsson and Kindvall 2001; T. Cheng et al. 2014).

Many current methods that analyse spatio-temporal networks tend to specify time as a

series of discrete time intervals. This is in contrast to the true, underlying continuous

nature of time, which can be split into infinitely small intervals. While specifying time

as a discrete variable is convenient for the specification of some models, it can introduce

bias to the results of analyses and lead to the loss of information where data are not

measured exactly at these discrete time intervals (de Haan-Rietdijk et al. 2017; Hwang
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2000; Rossana and Seater 1995; W. Wei 1981; Weiss 1984). Using continuous represen-

tations of time would avoid these issues, which is why this research aims to examine the

use of continuous-time models to examine spatio-temporal networks as an alternative to

the more familiar discrete time specifications. Consequently, this research focuses on the

application of continuous-time statistical methods to spatio-temporal networks, examining

temporal patterns of network properties.

The aims of this thesis are to:

• Review existing analysis methods for spatio-temporal networks as used in the recent

literature. This will give a clearer picture of the range of methods used (includ-

ing their specification of time), and in what contexts spatio-temporal networks are

applied.

• Identify continuous-time models that could be applied to examine temporal network

property patterns in spatio-temporal networks and critically analyse them to identify

the most appropriate model development strategies.

• Develop an analytical procedure that applies these models to spatio-temporal net-

work data and simplifies their interpretation in order to provide clear ‘real-world’

inferences.

• Evaluate the accuracy and precision of this analytical procedure in specific circum-

stances, using simulations, to investigate its limitations.

Chapter 2 reviews methods used to analyse spatio-temporal networks in scientific literature

and discusses their limitations. Chapter 3 provides an overview of continuous-time models

used to analyse temporal data that could potentially be used to analyse spatio-temporal

networks. Chapter 4 outlines the model framework applied to spatio-temporal networks

in this research and introduces methods for simplifying the interpretation of results within

this framework. Chapter 5 introduces some real data and tools for producing simulated

data used in further analysis of the model framework discussed in Chapter 4. Chapter 6

provides a more detailed analysis of the problems with one of the methods introduced in

Chapter 3 – this had not previously been covered in detail in the literature, even though

the methods are widely used, particularly in the field of health sciences. Chapter 7 shows

an example application of the model framework introduced in Chapter 4 to both real and
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simulated data. Chapter 8 includes a simulation evaluating the accuracy and prevision of

the model framework introduced in Chapter 4 when applied to spatio-temporal network

data. Chapter 9 summarises and discusses the preceding material with respect to strengths

and weaknesses and provides suggestions for future work.

This thesis is submitted in the alternative format: some of the chapters included are

published or written for publication in peer reviewed journals. These papers make up

Chapters 6, 7 and 8.
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Chapter 2

Scoping Review of

Spatio-temporal Network Methods

2.1 Introduction

This chapter includes a scoping review of methods used to analyse spatio-temporal net-

works in the literature preceded by background information on space-time methods and

network analysis. The key focus for this review is the specification of time as a continuous

or discrete variable.

2.2 Background

2.2.1 Space-time methods

Many problems and questions have both a spatial and a temporal dimension, that is,

they seek to examine variation in some property over both time and space simultaneously.

Unlike many standard statistical analyses, methods applied to spatio-temporal data must

account for interdependence of observations due to both spatial and temporal autocorrela-

tion (Dubin 2009; Fitzmaurice and Ravichandran 2008). A range of geographical methods

are used for spatio-temporal analyses: space-time cubes, prisms, and paths; geographi-

cally and temporally weighted regression; space-time filtering; space-time autoregressive

integrated moving average (STARIMA) models and their relatives; and spatio-temporal

Kriging. These methods are briefly introduced below before a critical review is presented.
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Space-time cubes were originally developed by Hägerstraand as a component of his ‘time

geography’ (Hägerstraand 1970). They provide a way of visualising spatio-temporal infor-

mation over three axes. They are often used to display paths of movement over space and

time, or the potential space that an object could move to, given a starting point and time

limit. These are known as space-time paths and potential path spaces, respectively (Kraak

2003). Such approaches can be used in studies of accessibility in which the calculation

of potential path spaces with a range of restrictions (for example, activity schedules or

transport restrictions) is of importance (Kraak 2003; Kwan 2013).

Geographically and temporally weighted regression is a special case of local regression

that allows for heterogeneity in model parameters across space and time. The model for

a relationship between two (or more) variables at a given space-time location is estimated

using both data from that location, and data from nearby locations which are weighted

according to their distance from the location of interest (Fotheringham et al. 2015). This

approach to modelling spatio-temporal variation is non-parametric, that is, variation in the

relationships between variables over space and time does not have to follow a particular

functional form. The user must specify which nearby locations are used to estimate a

local relationship of interest and how much each one contributes to the estimation. This is

specified using a kernel function that weights each observation’s contribution and includes

a maximum bandwidth – a distance from the point of interest outside of which observations

are not used to estimate the relationship (Huang et al. 2010). Kernel functions can take

a wide range of forms. Spatio-temporal kernel functions include both space and time

dimensions separately, rather than having them operate together as if representing a three-

dimensional space (Huang et al. 2010).

Space-time filtering is a semi-parametric approach to modelling data with spatial and

temporal autocorrelation. It uses a ‘filter’ model to remove spatial and temporal variation

in the data. The residual data can then be modelled using standard methods that assume

independence of observations (Griffith 2012; Patuelli et al. 2006). This method essentially

separates the data into different components which are modelled separately.

STARIMA integrates autoregressive and moving average model structures, in which the

current value of a variable depends on previous values (autoregressive) or previous model

error values (moving average). These structures exist in both spatial and temporal dimen-
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sions (Pfeifer and Deutsch 1980). Spatial relationships between observations are specified

using a spatial weight matrix – this is often based on neighbour relations of locations

rather than distance-based relationships. Neighbour relationships specify whether two lo-

cations are ‘first neighbours’, for example if they share a boundary, or ‘second neighbours’,

if they share a first neighbour et cetera (Dubin 2009). A maximum distance over which

locations can affect each other through autoregressive and moving average processes is

specified. Similarly, a maximum time lag over which previous observations affect current

ones is specified (Pfeifer and Deutsch 1980). Autoregressive and moving average processes

that deal with time lags tend to treat time as a series of discrete steps, rather than a truly

continuous process (Oud et al. 2012).

Spatio-temporal Kriging is a geostatistical method that uses explicit modelling of spatio-

temporal covariance structures. It aims to obtain more precise predictions of variables at

different points in space and time. This method models a mean spatio-temporal trend in

addition to explicitly modelling spatio-temporal random variation (Gneiting et al. 2006).

Modelling of the random variation is carried out using a variogram model. Different

variogram models incorporate space and time dimensions in different ways; specifically

‘separable’ variogram models combine spatial and temporal models as if time were an ex-

tra spatial dimension, for example, by multiplying them together, whereas ‘non-separable’

models are designed specifically for examining space and time together and allow space-

time interactions (Gneiting et al. 2006). Separable models are more computationally effi-

cient, but the assumption of no space-time interactions is not always appropriate (Gneiting

et al. 2006).

2.2.2 Networks and analysis methods

Networks are used in a wide range of subject areas to represent or analyse connections

between objects. They can be used in many different contexts to represent different types of

structures using two structural components: edges (or links) representing the connections

between vertices (or nodes) which represent the objects (Newman 2002).

Edges and vertices can represent both tangible and abstract objects. For example, net-

works are commonly used in the transport literature. In this area, one might use a network

to represent a railway network. Vertices might represent stations and edges the physical
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rail line connections between them – these are both tangible objects.

In some contexts, vertices might represent tangible objects, but edges might represent

more abstract connections between them. For example, social network analysis is often

used to represent social connections between people (Scott 1988), which might be thought

of as a more abstract concept than a physical rail line.

In geography, some spatial structures can be thought of as network connections. For

example, when examining geographical areas, boundary sharing is often used as a way of

representing spatial connections between areas. Boundary sharing can be thought of as a

network connection between areas, with each area representing a vertex and each shared

boundary representing an edge between the areas in question (Dubin 2009).

The use of networks is not limited to the examples above – network structures are found in

a range of areas. For example, they might be used to represent economic trading networks

(S. Liu et al. 2018), urban structures like road networks (Colak et al. 2013), ecological

environments (Neeson et al. 2012), ecological connections between organisms such as food

webs (Anderson and Dragićević 2018), communication networks (Ramachandran et al.

2007a), or the spread of a contagious disease through a network of contacts (Iotti et al.

2017).

The following paragraphs include some background information on network structures,

statistics used to describe them and the treatment of time in network analysis. They also

discuss the possibility of networks forming a context for analyses where they are not the

main focus.

Networks are graph structures formed of vertices (or nodes) connected by edges (or links).

They can be represented in data as an origin-destination matrix, with rows and columns

representing each vertex. A zero entered in row i and column j shows there is no edge

from vertex i to vertex j, and a one can be used to represent an edge between vertices

(Newman 2003).

Networks can be directed or undirected. In directed networks, the edges between vertices

have a direction. This indicates that the connection, or flow of something along the

connection between vertices, is unidirectional (Newman 2003). For example, an edge may

go from vertex i to vertex j but not vice versa. To include a two-way connection, two
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edges would be included. In an undirected network, edges are inherently bidirectional and

indicate a connection from vertex i to vertex j and vice versa. For undirected networks,

the origin-destination matrix is always symmetrical, but this is not necessarily the case

for directed networks (Newman 2018).

Edges in networks can be weighted to indicate, for example, the intensity of a connection

between two vertices. In a weighted network, a range of numbers (not just one) may

be used in the origin-destination matrix to indicate the presence of a connection and its

weight (Newman 2003). Other properties may be assigned to vertices and edges, too. For

example, vertices may be given a location. In a road network, edges might be classified

by the type of road surface or structure.

It is possible to calculate all possible paths between two vertices on the network along

edge connections. This can be useful, for example, when finding possible routes for moving

through a transport network. Often the shortest of the potential paths (in terms of the

number of edges traversed) between two vertices is used to represent how closely they are

connected (Saberi et al. 2017). This is called the shortest path distance. The longest

distance between any two vertices in the network is called the network diameter. This

whole-network property gives an indication of the network distance spanned by the graph

(Saberi et al. 2017).

There are other network properties that can be used to summarise network structure at

both a local and whole-network level. Network properties are descriptive statistics that

are used to give information about the structure of a network, either across the whole

graph or at the level of individual vertices and edges, or subgroups of them.

Centrality is one such property – it is intended to give an indication of the importance of

different vertices within the network (Newman 2002). For example, in a rail network where

vertices represent stations and edges represent rail connections between them, centrality

measures aim to identify which stations are the most important for the functioning of

the rail network. When assessed locally, centrality indicates how ‘important’ or ‘well-

connected’ a vertex is within a network (L. Freeman 1978; Opsahl, Agneessens, et al.

2010). A simple way to measure this is vertex degree, the number of edges leaving or

entering a vertex. In directed networks, this can be subdivided into in-degree (edges to

the vertex in question) and out-degree (edges from the vertex). In weighted networks, the
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sum of the weights of edges leaving or entering a vertex can be used to represent centrality.

This is called vertex strength (Opsahl, Agneessens, et al. 2010).

Vertex degree and strength only take into account the network structure immediately

surrounding the vertex in question (Opsahl, Agneessens, et al. 2010). Other measures

can be used to assess vertex centrality while accounting for wider network structure. For

example, closeness centrality is the inverse of the sum of distances from a vertex to every

other vertex in the network (L. Freeman 1978). The distances are calculated as the number

of network edges traversed on the shortest path from one vertex to another. This measures

how closely connected a vertex is to all other vertices in the network, rather than just the

number of immediate connections. Betweenness is another measure of centrality. This

method calculates all the shortest paths between each pair of vertices in the network. The

betweenness centrality of a vertex is the number of these shortest paths that it appears

in (L. Freeman 1978). This gives an indication of how important a particular vertex is in

maintaining connectivity across the whole network.

Centrality can also be measured for a whole network to give an indication of the extent to

which centrality is concentrated in a small number of vertices. The distribution of vertex

degrees is often of interest as it can give some indication of the processes underlying

network formation (Newman 2003). The average degree can also be calculated. Whole-

network closeness centrality can be calculated from individual vertex centrality measures

if they are scaled to a range of zero to one. The resulting measure gives an indication of

the extent to which centrality is concentrated in a small number of vertices versus spread

evenly across the whole network (L. Freeman 1978).

Edge density is another important whole-network property. This gives an indication of how

many edges there are in a network, relative to the number of vertices. In a rail network, a

high edge density would indicate a lot of connections between all the rail stations, whereas

a rail network with low edge density would have few connections linking them. Edge

density is the ratio of the total number of edges in the network, to the number of possible

edges (Horvath 2011). For weighted networks, the total number of edges is replaced with

the sum of all edge weights. This gives an indication of whether connections in the network

are rare or abundant in relation to the number of vertices.

Sometimes, networks contain clusters of vertices that are more densely connected to each
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other than to other vertices. A clustering coefficient gives an indication of the extent to

which clustering exists in a network (Saberi et al. 2017). There is more than one way to

measure clustering, but one common clustering coefficient is based on identifying triplets

in a network – these are sets of three vertices with two or three edges connecting them. The

clustering coefficient is the proportion of triplets with three edges connecting them (Saberi

et al. 2017). If a network has high clustering, vertices that share a neighbour are more likely

to be directly connected themselves. This will give a higher proportion of triplets with

three edges, rather than two. There are also several methods that aim to identify cluster

membership of individual vertices in a network. These are often algorithms that aim to

divide the network graph into sections while optimising a property related to clustering,

similar to clustering algorithms used on data without a network structure (Luptáková and

Pospichal 2018). There are alternative clustering methods for networks (such as ‘walktrap

clustering’ (Pons and Latapy 2005)) that are based on simulated flow of some object, for

example information or vehicles, between vertices.

Networks can be temporally dynamic, that is, the structure of the network might change

over time. This change might take place in vertex or edge properties or the presence of

vertices and edges in the network (Blonder, Wey, et al. 2012). Changes in network prop-

erties may take place as a result of flow of some object, property or substance through the

network, for example vehicles or information. When network structure changes dynami-

cally over time, network analysis carried out on aggregated time windows or cross-sections

may misrepresent the network structure, resulting in inappropriate inferences (Blonder,

Wey, et al. 2012). Time-ordered networks are a way of representing temporally dynamic

networks with changing connections. Graphically, these show each vertex in the network

as they move through the time dimension, with arrows indicating the start and end times

for connections between different vertices. Mathematically, several ‘temporary vertices’

are used to represent each vertex in the network at the start and end times for each con-

nection. Edges between the temporary vertices are included at their appropriate start and

end times, and directed edges are used to connect temporary vertices that represent the

same vertex in time order (Blonder, Wey, et al. 2012). This method is useful for looking

at changes in binary properties over a continuous time period, for example, the presence

or absence of connections, but cannot represent continuous-time changes in continuous

properties, for example, continuous changes in flow or spatial location of vertices. The
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graphical representation of time-ordered networks could be extended to include a spatial

dimension in a similar way to the space-time cube, however this may result in a crowded

graph that is difficult to interpret, especially for large networks.

Networks can also form a context for analyses where they are not the direct subject of

investigation. When analysing data that is associated with a network it is important

to account for this underlying structure. Connections between observational units, for

example, due to spatial or temporal proximity, must often be accounted for in analyses as

these connections violate the assumption of independence of observations made by many

simpler statistical methods (Dubin 2009; Fitzmaurice and Ravichandran 2008). Network

connections between observational units may also lead to a violation of this assumption and

must be accounted for in the analysis (T. Cheng et al. 2014). As with spatial correlations,

choices must be made about how to include network correlations in an analysis – these

could be based only on immediate connections (e.g. boundary sharing, or sharing a single

edge), or on the number of edges between two vertices (their geodesic distance) (Ermagun

and Levinson 2018; Leenders 2002). It is also possible to include spatial information, for

example, the distance along a road network between two junctions.

2.2.3 Method types for spatio-temporal networks

There are a range of different method types that can be used to examine spatio-temporal

networks. In this review they are categorised as stochastic models, statistical models, ma-

chine learning methods, discrete-time network analysis, continuous-time network analysis

and visualisation methods.

Stochastic models are models of a system that inherently include some amount of ran-

domness (Morris et al. 2019; Zoppou 2001). For example, a model for the occurrence of

an event may include the probability of an event happening in a given period. The output

of the model will vary each time it is run because the model contains uncertainty as to

whether the event will happen or not (Zoppou 2001). As well as discrete events, stochastic

models can model properties of a system or parts of a system. These might be discrete

properties (e.g. the colour of a car) or continuous (e.g. the amount of rainfall). The

probability of properties taking certain values, or of events occurring, is specified using a

probability distribution which might be estimated using real data (Morris et al. 2019).
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Often a statistical model estimates the relationship between one or more input variables

and one or more outcome variables. Unlike stochastic models, statistical models fit a

deterministic relationship between variables (Zoppou 2001); if used to generate data, the

relationship would be the same every time. Randomness is incorporated as error or resid-

ual variation, often in the outcome variable(s), and is constrained to follow a particular

probability distribution (Zoppou 2001).

The aim of machine learning is to provide computers with ‘experience’ from which they

‘learn’ through the use of algorithms (Bi et al. 2019). In the context of the papers reviewed,

the ‘experience’ comes in the form of data and the computer ‘learns’ by identifying patterns

in the data. This is often done with the aim of prediction, rather than inference (Bi et al.

2019). The boundary between machine learning and statistical methods is sometimes un-

clear – some model selection algorithms and methods like logistic regression are considered

machine learning methods as well as being common statistical methods (Muthukrishnan

and Rohini 2016; Wu et al. 2010). There is some overlap between machine learning meth-

ods and network analysis methods, in that some machine learning methods are designed

specifically for networks.

Network analysis methods are a set of analysis tools designed specifically for network

structures. They often include metrics for summarising local or global properties of a

network, or analysis methods aiming to find paths through a network. Various network

and vertex properties were discussed in Section 2.2.2. Network analysis methods might

aim to treat time as a discrete or continuous variable, however it is much more common

for time to be aggregated into discrete windows with static representations of the network

examined in each window (Blonder, Wey, et al. 2012).

Visualisation methods are often important for enabling interpretation of analyses and

communication of information to a wider audience. However, visualising variation in a

property over both time and space, in the context of a network, is challenging. Often,

spatio-temporal visualisation is approached by aggregating data into time windows and

plotting static network maps. These methods mean the reader only sees temporal patterns

as snapshot images that can be difficult to link together and may leave out important

temporal pattern features occurring in between snapshots. As the interpretation of spatio-

temporal information is so difficult, alternative visualisation methods to discrete-time

13
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snapshots are of particular interest for this review.

2.2.4 Specification of time

Most of the spatio-temporal methods in Section 2.2.1 and methods for examining tempo-

ral networks use a discrete specification of time. That is, instead of treating time as a

continuous variable, they treat it as a series of discrete time steps or windows. This can be

convenient for modelling complex systems but is contrary to the true nature of time which

is continuous and can be divided into infinitely small units. Treating time as a series of

discrete steps requires the researcher to choose the length of these steps carefully based on

their knowledge of the underlying system (Comber and Wulder 2019) – too long or short

a step length can mask variation in temporal patterns and introduce bias (J. Freeman

1989; W. Wei 1981; Weiss 1984). In many cases, however, the minimum size of time step

is determined by the frequency of measurements in the data, rather than knowledge of the

underlying system (J. Freeman 1989). In some cases, data will not be measured at regular

intervals – in this situation the measurements are often aggregated into time steps. Tem-

poral aggregation introduces error into the time measurement for each observation and

can introduce bias to autoregressive and other time series models (Hwang 2000; Rossana

and Seater 1995). Using continuous-time models in spatio-temporal data analysis and

temporal network analysis would circumvent the issues associated with the choice of time

step length and temporal aggregation.

2.3 Review aims

This scoping review aims to survey the methods used to analyse spatio-temporal networks

in the published literature, with a particular focus on the treatment of time (discrete or

continuous) by these methods. Often the methods chosen for an analysis are shaped by

the research question posed which is in turn shaped by the context of the analyses (the

subject area, structure represented by the network, temporal and spatial dimensions).

Therefore, this review will examine the context of the analyses, research question type

(for example, descriptive or forecasting) and analysis methods used in relevant papers,

including the specification of time (discrete or continuous) and methods used to visualise

or present spatio-temporal networks.
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2.4 Methods

A scoping review was used to identify papers analysing spatio-temporal networks and

survey the methods and models they utilised. The SCOPUS and Web of Science databases

were searched for papers published on any date up to February 2021 (inclusive), in English,

with a title, abstract or keywords matching one or more of the following phrases (where

‘?’ represents a wild-card character): ‘space?time’ or ‘spatio?temporal’ preceding either

‘network’ or ‘graph’; or ‘dynamic’ preceeding ‘spatial’, ‘space?time’ or ‘spatio?temporal’,

and the word ‘network’.

Papers were screened for relevance based on their title, abstract, introduction and methods

sections, and then full text. A range of information was recorded about the papers,

including their subject area, research question or aim, methods applied, time period,

spatial scale, network level of input and output information and specification of time

(discrete or continuous). Once recorded, much of this information was categorised as

shown in Table 2.1.

The aims of the papers fell into four categories: 1) hypothetical ‘what if?’ scenarios, for

example, assessing potential policies; 2) description of the structure of a system, for ex-

ample, examining the structure of a social network; 3) quantifying relationships between

variables, for example, examining the relationship between two properties of objects con-

nected in a network; and 4) forecasting, for example, traffic flow prediction.

The ‘network level’ characteristic is not commonly used and may be unfamiliar for readers.

In this review, the papers examined worked with information at three different levels:

whole-network information, for example, properties relating to the whole of the network;

information about network components, for example, properties of individual edges and

vertices in the network; or properties of actors that moved through the network, for

example in a road traffic network, vehicles can be considered actors that move through

the edges (road segments) and vertices (junctions) of a road network.

The same object might be represented at different network levels in different analyses

depending on how it is characterised. For example, in a social network analysis, people

often form the vertices of a network with their social connections forming the edges. In

this context, there are no actors moving through the network. However, in the context of
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Information Definition Categories

Subject area Subject area in which the
analysis was carried out

Transport, Economics,
Ecology, Sociology, Net-
work Analysis Methods,
Communications, Geog-
raphy, Urban Planning
History, Epidemiology

Research
question/aim

The type of research ques-
tion being asked

Hypothetical scenario, De-
scribe network structure,
Quantify relationships,
Forecasting

Methods applied The type of method
used to analyse a spatio-
temporal network

Stochastic Simulation, Sta-
tistical Model, Discrete-
time network analysis, Ma-
chine Learning, Visualisa-
tion, Continuous-time net-
work analysis

Time specifica-
tion

Whether the analysis uses
discrete or continuous time
specification

Discrete, continuous

Time period The approximate time pe-
riod the data analysed cov-
ered – for some papers this
was an abstract number of
time steps or unspecified
period

Hours, Days, Months,
Years, Abstract/Unspeci-
fied

Spatial scale The size of the spatial
area covered by the data –
in some examples, particu-
larly simulations, the area
covered is not specified

Small area, Partial City of
town, City-wide, Regional,
Multi-region, Country
wide, Multi-country,
Unspecified

Network level
(input and out-
put)

Level on the network struc-
ture which input and out-
put information for the
analysis is recorded

Whole-network, Network
components (edges or
vertices), Actors (ob-
jects moving through the
network)

Table 2.1: Characteristics recorded about reviewed papers
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a public transport network, people may be represented as actors that move through the

edges and vertices of a network formed by train lines or bus connections.

The ‘input network level’ detailed whether the data used as an input for the analysis

pertained to actor, component or whole-network properties. The ‘output network level’

detailed whether the outcome of interest for the analysis related to actor, component

or whole-network level properties. For both input and output, it was possible for one

analysis to include information on more than one level, for example, a simulation of animals

moving through a hypothetical river network might include information about the animal

behaviour (actor level) and the structure of the river network (whole-network level) as an

input.

2.5 Results

538 unique references were initially identified and screened for relevance based on title,

followed by abstract, introduction and then full text. The screening process is summarised

as a flow diagram in Figure 2.1. 87 relevant papers remained. Two of these were not

duplicated references but detailed the same work by the same authors and were reviewed

as one paper – leaving 86 papers (Abdelghany et al. 2001; Albers et al. 2018; Anderson

and Dragicevic 2018; Anderson and Dragićević 2018; Anderson and Dragićević 2020a;

Anderson and Dragićević 2020b; Basile et al. 2018; Baybeck and Huckfeldt 2002; Burnett

and X. Zhao 2017; Cai et al. 2014; Carlsson and Kindvall 2001; Carter et al. 2020; Caruso

2007; L. Chen et al. 2020; S. Chen, Ilany, et al. 2015; S. Cheng et al. 2018; T. Cheng

et al. 2014; Colak et al. 2013; Diao et al. 2019; Donfouet et al. 2018; Fan et al. 2019; S.

Fang et al. 2019; Y. Fang et al. 2019; Feng et al. 2020; Ferenc et al. 2016; Garbin et al.

2019; D. Guo et al. 2013; S. Guo et al. 2019; Y. Guo et al. 2020; Hall et al. 2018; Han

et al. 2019; He et al. 2020; Iotti et al. 2017; Jacoby et al. 2012; Jeong and L. Lee 2020;

Jia et al. 2019; G. Jin et al. 2020; Y. Jin et al. 2019; Jovanovic et al. 2019; Kuersteiner

and Prucha 2020; Lengyel et al. 2020; G. Li et al. 2020; T. Li and Liao 2016; W. Li et al.

2021; X. Li and Griffin 2013; Y. Li et al. 2008; Z. Li et al. 2020; Lin et al. 2020; C. Liu

et al. 2018; S. Liu et al. 2018; Ma et al. 2020; Mateus-Anzola et al. 2019; Mendoza-Cota

and Torres-Preciado 2019; Neeson et al. 2012; Neto et al. 2016; Ou et al. 2020; Parent

and LeSage 2010; Peng et al. 2020; Perez and Dragicevic 2009; Perry and F. Lee 2019; Qu
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et al. 2020; Ramachandran et al. 2007a; Ramachandran et al. 2007b; Ryser et al. 2019;

Semboloni 2000; Srivastava and Salapaka 2020; B. Sun et al. 2021; G. Sun et al. 2017;

K. Tian et al. 2020; X. Wang et al. 2016; Wanzenböck and Piribauer 2018; V. Wei et al.

2020; Xu and Z. Gao 2009; B. Yang et al. 2020; Yao et al. 2019; H. Yu et al. 2019; W. Yu

et al. 2019; Zambrano-Monserrate et al. 2020; C. Zhang et al. 2019; H. Zhang et al. 2020;

W. Zhang, Z. Tian, et al. 2019; X. Zhang et al. 2019; Z. Zhang et al. 2019; N. Zhao et al.

2020; X.Y. Zhao and Pu 2018; Zheng et al. 2020; F. Zhou et al. 2020).

Figure 2.1: Flow diagram showing the process of identifying relevant papers.

A summary of the different characteristics of interest for these papers is shown in Table

2.2. The sum of counts for some variables is greater than 86 – this occurs if some papers fit

into more than one category. Individual information for the papers is shown in Appendix

A. The most common subject area was transport followed by ecology and economics.

The least common subject area was history. The most common method was stochastic

simulation, followed by machine learning, which was very common amongst more recent

papers. Discrete network methods, i.e. carrying out network analysis methods on discrete

time slices or periods of data, were also commonly used, though only one paper sought

to use continuous-time network methods. Only four papers treated time as a continuous

variable in their analysis, and one of these also included a discrete specification alongside

continuous information. These included two statistical papers and one using stochastic
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methods, alongside the continuous-time network methods paper.

Most papers used data that spanned multiple months or years. Many machine learning

papers used months of data in order to train their models. The most common spatial level

was the town or partial city. This was often used in machine learning traffic prediction

papers. Many papers also had an abstract spatial setting – this was used frequently

in papers developing new models or looking at effects of network structure on various

outcomes.

Figure 2.2 shows the correspondence between the subject area, aim, method type and time

specification of papers. Three subjects make up more than half of the papers: transport,

ecology and economics. A large proportion of transport papers involve forecasting and

these make up the majority of forecasting papers. Ecology and economics make up a large

proportion of the hypothetical scenario papers, with the rest being transport, network

methods, communications, urban planning and epidemiology, the latter of which exclu-

sively includes papers with hypothetical aims. Sociology papers only included aims to

do with description and quantifying relationships; geography papers also only aimed to

quantify relationships.

Hypothetical scenario papers exclusively employed stochastic methods, with some fore-

casting and descriptive papers also using these methods. Most of the papers aiming to

quantify relationships between variables used statistical methods and most aiming to de-

scribe the structure of a network used discrete or continuous-time network analysis and

visualisation methods. Forecasting papers were the only papers to use machine learning,

and almost all of these were in the transport literature (with some in the communications

area), however stochastic and statistical methods were also used for forecasting aims.

Figure 2.3 shows the different levels of the network information used as inputs and outputs

for papers with different method types. Only papers using stochastic methods incorporated

information at the level of whole network structure as an input. These papers either looked

at the effect of changing network topology on the outcome of the stochastic simulation

(Carter et al. 2020; Y. Li et al. 2008; Neeson et al. 2012) or used information about a

network (for example a transport network) to govern the movement of agents (Garbin et al.

2019; Perez and Dragicevic 2009). The majority of these types of papers used simulated

networks with an undefined spatial area (Garbin et al. 2019; Neeson et al. 2012), but
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Information Category Count

Subject area

Transport 39
Ecology 14
Economics 13
Network Analysis Methods 8
Sociology 8
Communications 4
Epidemiology 4
Urban planning 3
Geography 2
History 1

Aim

Forecasting 29
Hypothetical scenario 25
Describe structure 23
Quantify relationships 13

Method

Stochastic sim 28
Machine learning 23
Statistical model 20
Discrete network methods 18
Visual 3
Continuous network methods 1

Time period

Hours 9
Days 12
Months 26
Years 24
Abstract or Unspecified 16

Time spec
Continuous 4
Discrete 84

Spatial level

Small area 3
Town or partial city 20
City wide 18
Regional 13
Multi-region 1
Country wide 6
Multi-country 10
Abstract 19

Input network level
A 34
C 64
WN 5

Output network level
A 4
C 55
WN 46

Table 2.2: Summary of characteristics of reviewed papers
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Figure 2.2: Correspondence between subject area, aim, method type and time specification
of reviewed papers
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some, like Carter et al. (2020), used real spatial settings. Stochastic methods were also

the only category that included information about the actors in the network as an output

– this included prediction of individual level traffic behaviour and individual infection in

an epidemic model embedded in a spatial transport network (Ferenc et al. 2016; Y. Guo

et al. 2020; Perez and Dragicevic 2009).

Figure 2.3: Relationship between method type and the network level of input and output
information in the reviewed papers

Figure 2.4 outlines the correspondence between the network level of input information

in the analysis and the network level of output information. More low level information

(actors and components) was used as an input, with a greater proportion examining whole-

network information as an output. Of those papers beginning with low level information

about actors moving through the network, most had an output only one level higher –

at the component level. These papers looked at how the properties of individual objects

moving through the network affected the properties of individual links and vertices in the

network. For example, how the behaviour of lamprey fish and their larvae moving through

a river network affects the properties of individual reaches of the river network (Neeson

et al. 2012). Very few papers began with whole-network level information. Those that did
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often used this in conjunction with other lower level information. Frequently this was to

assess the impact of structural changes in the network on network processes occurring at

a lower level.

Figure 2.4: Correspondence between levels of input and output information in the reviewed
papers

2.5.1 Methods used by reviewed papers

The most common type of method used was the stochastic model, followed by machine

learning then statistical models. There are a range of different types of models within each

of the categories described.

The reviewed papers used a range of stochastic methods. Two common types were agent-

based models and microsimulation (Anderson and Dragicevic 2018). These methods model

the properties of ‘agents’ in a system using information captured on a micro-scale to build

up a larger picture of how the system may respond under different circumstances. Agent-

based models allow interactions between agents and microsimulations do not (Crooks and

Heppenstall 2011). These models were often used to examine the movement of actors

within a network.
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Some stochastic models were used to model the formation of networks. For example, Iotti

et al. (2017) presented a new model to mimic the behaviour of social networks. Semboloni

(2000) presented a model for the growth of an ‘urban cluster’ of cells and roads. Both these

models use a series of probability-based rules to govern changes at the level of network

components (edges and vertices) at each unit advance in time.

Anderson and Dragićević (2018) introduced the concept of geographic network automata

for modelling the evolution and changes in an ecological network with fixed vertices over

time. This also included a set of rules that governed edge formation based on connection

‘costs’ related to distance. Stochastic models are often based on a set of rules at the level of

small components within a system. While this could be said to mimic how the properties

of real systems develop, poor specification of properties at a low scale can compound to

larger inaccuracies and departures from reality as models are run over time (Ward et al.

2016).

23 papers used machine learning methods, with many of these focusing on traffic speed or

flow prediction. Generally these used deep learning or graph convolutional neural network

approaches (Diao et al. 2019; S. Guo et al. 2019; Yao et al. 2019). Many of the papers

presented new models for prediction in spatio-temporal networks which accounted for

local and long distance dependencies between locations related to the network structure

(L. Chen et al. 2020; S. Fang et al. 2019; Feng et al. 2020).

The most common statistical model in the papers reviewed was the dynamic spatial panel

data model. This includes an autoregressive component, as well as effects of an explanatory

variable and spatially and temporally local effects. Terms with explanatory variable effects

are lagged over space and/or time (Basile et al. 2018). Spatial relationships are specified

using a spatial weight matrix. Other models based on autoregressive and moving average

processes, such as STARIMA and space-time autoregressive models, were also included

in the reviewed papers (Burnett and X. Zhao 2017; T. Cheng et al. 2014). Instead of

modelling temporal patterns as a continuous function of time, these models estimate the

effect of previous and nearby measures of a variable (or model errors) on the current

measure in a given location. These models can include network-based spatial relationships

(Basile et al. 2018).

Another common method was multilevel or mixed models. These model data in a hierar-
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chical format where observations are grouped in ‘clusters’ between which model coefficients

are allowed to vary randomly (Goldstein 2011). These models can be extended to incor-

porate complex correlation structures (Goldstein 1994; Goldstein et al. 1994). They are

able to model temporal data with a continuous representation of time but are limited to

fitting parametric temporal patterns.

Two papers use stochastic differential equations – a type of continuous-time statistical

model. These papers examined the persistence of populations of organisms in a river

network (Y. Jin et al. 2019) and the adoption of a social media platform in Hungary

(Lengyel et al. 2020). Stochastic differential equations can be thought of as a continuous-

time equivalent of autoregressive models in which the slope of a model is regressed on its

current value (and other covariates) (Oud et al. 2012).

Additional statistical methods included were the gravity model, exploratory spatial data

analysis and statistical comparison of observed network properties to those in a random

network. Gravity models relate interactions between populations (which could be thought

of as vertices) to their size and the amount of separation between them (G. Sun et al.

2017). This separation can be representative of geographical or network space, or other

properties. G. Sun et al. (2017) also includes linguistic and cultural similarity, for exam-

ple. Exploratory spatial data analysis was used to investigate correlations of children’s

activity types within geographical space (within a classroom) and within a social space (if

children who frequently interact take part in the same activity types) (X. Li and Griffin

2013). Jacoby et al. (2012) directly compared a network property derived from shark

movement through a network of habitat patches to a distribution of this property from

10000 randomly generated networks representing shark movement.

Papers that used network analysis methods to summarise network properties aggregated

observations of temporal networks into time windows, in each of which network properties

were summarised (S. Chen, Ilany, et al. 2015; S. Cheng et al. 2018; Jacoby et al. 2012;

C. Liu et al. 2018; S. Liu et al. 2018; X. Wang et al. 2016; Wanzenböck and Piribauer

2018; W. Zhang, Z. Tian, et al. 2019). Some papers used methods dealing with clusters

or communities within networks. Analyses pertaining to these features included summary

statistics describing the degree of clustering within a network (S. Chen, Ilany, et al. 2015),

community detection or clustering of network vertices based on connections between them
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(C. Liu et al. 2018; X. Wang et al. 2016) and community search, which identifies the

community or cluster to which a particular vertex belongs. There are a variety of clustering

algorithms used in these papers, both hierarchical and partitional (C. Liu et al. 2018; X.

Wang et al. 2016) The community search algorithm proposed takes account of movement

of vertices in the network over time – this is discussed in more detail in Section 2.6.4 (Y.

Fang et al. 2019).

One paper used an unusual approach to summarising flow (within time windows) through

a very densely connected network that was difficult to summarise and visualise: vector

coarse graining (W. Zhang, Z. Tian, et al. 2019). This method used an algorithm to

determine the dominant direction of flow in to and out of each vertex, which reduced the

information that needed to be displayed.

Two papers used a process to assign trips or calculate potential paths through a network

based on constraints and activity schedules. In one paper this was used as part of a

stochastic simulation and the expected time to complete the trip was also calculated

(Abdelghany et al. 2001). In the other, a set of potential routes through a public transport

network was generated based on an origin, destination, time budget and the current state

of the transport network (S. Cheng et al. 2018).

Most papers approached visualising spatio-temporal information by aggregating data into

time windows and plotting static network maps, which can leave out important temporal

features that occur between snapshots. Some papers included more unusual or novel

methods for visualising spatio-temporal networks. These include alluvial diagrams to

visualise temporal clustering (C. Liu et al. 2018) and spatio-temporal link segmentation

(T. Li and Liao 2016). These are discussed in more detail in Section 2.6.4.

2.6 Discussion

2.6.1 Context

The papers included covered a range of research questions across a broad variety of subject

areas, ranging from more traditional applications of network methods such as transport

and social networks to areas such as epidemiology and history. Networks often provided a

context for analyses to be carried out in, for example, they were used to describe rivers and
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other ecological settings in which animal or plant species completed life cycles (Neeson et

al. 2012) and to describe an urban area in an epidemic model (Perez and Dragicevic 2009).

The integrated approach of analysing individuals in the context of their environment,

which may be represented as a network, allows for the impact of the changing environment

on individual behaviour and vice versa (Anderson and Dragicevic 2018; Anderson and

Dragićević 2018; Carlsson and Kindvall 2001; Neeson et al. 2012).

In the papers included, network structures appear in several different forms. Many papers

use networks to represent tangible structures, for example, public and road transport

networks, river networks and electrical supply networks (Neeson et al. 2012; Neto et al.

2016; Perez and Dragicevic 2009). These often determine the possible paths of movement

of units of interest, for example vehicles in a transport network. In some such papers,

information at the level of the actors moving through the network was also included, for

example, in agent-based models simulating the movement of lamprey and their larvae

through a river network.

Another tangible form of network that appeared in the papers is boundary sharing of

geographical areas (Dubin 2009). Often this is included with a view to describing spatial

proximity of areas but can be thought of as including areas as vertices with shared bound-

aries forming edges between them. Many papers using spatial panel data models included

this form of correlation to allow ‘spill-over effects’, i.e. influence of one geographical area

on its neighbours and vice versa (Parent and LeSage 2010). Using a stochastic analysis,

Semboloni (2000) used geographical ‘cells’ as an alternative representation of space to

simulate the growth of an urban area and its road network. Cells had a network vertex at

their centre and could potentially be connected to all adjacent cells by edges. The model

advanced in discrete time steps. At each of these steps, rules were used to determine: 1)

whether a road was built along an edge, becoming permanently fixed in the model and

2) if a new cell was generated in the centre of a road connecting two existing cells. The

propagation of these components influenced each other and lead to the growth of a cluster

of cells and roads representing an urban area (Semboloni 2000).

Some papers used network structures to represent non-physical structures – particularly

this included connections made between network components by some communication or

interactive behaviour between them. For example, connections made by social contact
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(Carter et al. 2020; Han et al. 2019), economic trading activity (S. Liu et al. 2018), or con-

nection through the internet or telephone system (Ramachandran et al. 2007a; Ramachan-

dran et al. 2007b). In these networks, the network components are often performing some

kind of activity, behaving in certain ways or physically moving to generate connections.

For example, S. Chen, Ilany, et al. (2015) investigated the spatial distribution of social

interactions among cows, which could move around a large pen and come into close contact

with each other in different areas. S. Liu et al. (2018) examined the properties of trade

networks between China and Arab States, investigating the properties and subgroups of

networks formed by trade relations between different countries in different periods.

2.6.2 Question

The reviewed papers addressed all the different question types outlined in Section 2.4.

Forecasting questions were the most commonly addressed and were mostly used in trans-

port literature, making up over half of this subject area. Other subjects covered by

forecasting aims were communications, economics and sociology. Predicting traffic speed

and flow in transport networks is a common analysis aim and it is not surprising that

forecasting questions made up a large proportion of the aims of transport papers.

Many papers asked hypothetical-type research questions or aimed to describe the struc-

ture of a network. Both of these types of questions were posed in papers from most of

the different subject areas with only sociology, geography and history not including a hy-

pothetical scenario, and epidemiology and geography not including papers that described

network structure.

Papers in geography only aimed to quantify the relationships between variables and history

papers only aimed to describe the structure of a network. Epidemiology papers only dealt

with hypothetical scenarios to do with infection spread (Anderson and Dragićević 2020a;

Iotti et al. 2017; Mateus-Anzola et al. 2019; Perez and Dragicevic 2009).

2.6.3 Methods

Different methods were generally used to address different types of questions. Stochas-

tic simulations lend themselves well to ‘what if?’ scenarios, and this type of aim was

almost exclusively addressed by this type of method. For example, Neeson et al. (2012)
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used a stochastic model to represent the life cycle and movement of lamprey and their

larvae through river systems. They used this simulation with different hypothetical river

network structures to investigate the effect of river network structure on the movements

and spatial distribution of lampreys. Other topics investigated using hypothetical scenar-

ios included invasive species management (Albers et al. 2018), economic behaviour (Neto

et al. 2016), infection dynamics (Perez and Dragicevic 2009) and traffic movement (Xu

and Z. Gao 2009). Papers with aims involving hypothetical scenarios often included in-

put information at several different network levels. They frequently included information

about a hypothetical setting, for example network component properties or whole-network

structure, with information governing behaviour of lower level agents, for example actor

movement through a network or the formation of network edges or vertices. This led to

some papers, like Neeson et al. (2012), including information about the whole network as

an input, which was not seen in papers with other types of aims.

Exploring and describing the structure of systems was often carried out using network

analysis methods, most commonly with a discrete-time specification. Frequently, infor-

mation about networks over time was aggregated into discrete time periods and network

properties for these time periods were calculated (S. Chen, Ilany, et al. 2015; S. Cheng

et al. 2018; Jacoby et al. 2012; C. Liu et al. 2018; S. Liu et al. 2018; X. Wang et al. 2016;

Wanzenböck and Piribauer 2018; W. Zhang, Z. Tian, et al. 2019). Some papers also went

on to use statistical methods to explore these network properties or relate them to other

variables (addressing a different type of aim) (Han et al. 2019; Jacoby et al. 2012). Visual

analyses were also used to describe the structure of network systems. These were most

frequently used as part of a discrete-time network analysis, but one paper used only visual

analysis to describe the spread of a particular method of schooling across Spain (Caruso

2007). Two other papers also introduced novel visualisation methods to describe temporal

properties of a network (T. Li and Liao 2016; G. Sun et al. 2017).

Papers investigating the relationships between variables mostly used statistical methods.

Often the aim of these analyses did not directly involve a network but required network

relationships between units of analysis to be accounted for. For example, Basile et al.

(2018) examined the relationship between export diversification and economic development

in countries, accounting for the effect of the properties of each country on their neighbours
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(i.e. countries with whom they share a border). This paper used a spatial dynamic panel

data model which was a common type of statistical model in the papers reviewed. Other

types of analyses included stochastic differential equations (Y. Jin et al. 2019; Lengyel et

al. 2020) exploratory spatial data analysis with social weights (X. Li and Griffin 2013) and

the correlation of temporal profiles of vertex properties with local land use information

(C. Liu et al. 2018).

Forecasting questions were addressed in the papers by stochastic, statistical and machine

learning methods. Of the 29 forecasting papers, 26 aimed to predict traffic flow, speed

or movement through various transport networks (Abdelghany et al. 2001; L. Chen et al.

2020; T. Cheng et al. 2014; Diao et al. 2019; S. Fang et al. 2019; Feng et al. 2020; Ferenc

et al. 2016; S. Guo et al. 2019; He et al. 2020; G. Jin et al. 2020; G. Li et al. 2020; W. Li

et al. 2021; Z. Li et al. 2020; Lin et al. 2020; Ou et al. 2020; Peng et al. 2020; Qu et al.

2020; B. Sun et al. 2021; K. Tian et al. 2020; B. Yang et al. 2020; Yao et al. 2019; C. Zhang

et al. 2019; X. Zhang et al. 2019; Z. Zhang et al. 2019; Zheng et al. 2020; F. Zhou et al.

2020), with the remaining three predicting electricity prices, cellular (telephone) network

traffic, and adoption of a new social media platform (Burnett and X. Zhao 2017; Lengyel

et al. 2020; N. Zhao et al. 2020). Machine learning methods were the most commonly

used for forecasting aims, and also went unused in papers with other aims. They focused

on deep learning methods such as graph convolutional neural networks (Diao et al. 2019;

S. Guo et al. 2019; Yao et al. 2019). A number of papers aimed to capture dynamic

spatial relationships between network locations, including many of the machine learning

papers and T. Cheng et al. (2014) who introduced a variant of the STARIMA model with

a dynamic spatial weight matrix that depended on current traffic conditions.

2.6.4 Time

Discrete or continuous specification

A large majority of papers used analyses that treated time as a series of discrete steps.

The number and size of these steps varied considerably between papers. Papers using

stochastic simulation methods often tended to use many small time steps, whereas discrete-

time network analyses tended to use data aggregated into a few much larger time periods.

The majority of the statistical models included used discrete time specifications.
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There were four papers that dealt with time in a continuous specification. Abdelghany et

al. (2001) used a stochastic simulation with discrete time steps but also incorporated some

continuous-time information. This was in the form of travel times between two points in

the system, estimated for a particular agent at a specific time. The travel time depended

on the current state of the network at the departure time.

It is possible for stochastic simulations to use continuous-time information. Stochastic

simulations often move time forward in discrete steps with transition probabilities be-

tween states defined for steps of a constant size (P. Jones 2017). For example, a simple

Markov chain with four possible states (A, B, C and D) is defined by a set of 16 transition

probabilities. For each state A-D, these describe the probability of changing to state A, B,

C or D after one time step (P. Jones 2017). A continuous-time Markov process is specified

differently and allows the time between state changes to vary continuously, rather than

being restricted to a whole number of time steps. This defines the transition between

states in two ways: the probability of transitioning at time t (after entering the current

state) and the probabilities of the transition being to each of the other possible states

(Liggett 2010). The difference between the specification of time in these models can be

thought of in the following terms: continuous-time Markov processes answer the question

“when did the state change take place?” whereas discrete-time Markov chains check the

state at regular intervals and answer “has the state change occurred yet?”.

While the specification of continuous-time in a Markov process is not overly complex, the

example above is extremely simple. Agent-based models and microsimulations are far

more complex stochastic simulations. If the time intervals for the stochastic simulation

are very small, the difference between the answers to the questions “when did the state

change take place?” and “has the state change occurred yet?” may be extremely small. In

cases such as these, adding a further layer of complexity to an already complex simulation

may not provide enough benefit to be justified.

Y. Fang et al. (2019) used a continuous-time approach to spatial aware community search.

Community search algorithms aim to find the community or cluster to which a particular

vertex of interest in a network belongs, based on the structure of the network surrounding

it. Spatial aware community search includes information on the geographical location

of vertices, as well as the edges that connect them (Y. Fang et al. 2019). This process
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aims to identify a community for a vertex in which all vertices satisfy a minimum degree

requirement (i.e. all have more than a certain number of connections) and the spatial

circle containing all the vertices is minimised (Y. Fang et al. 2019). In Y. Fang et al.

(2019), network of connections and location of vertices can change over time. At each

change, the community for a specific vertex may change. Y. Fang et al. (2019) describes

an algorithm that approximates running a spatial aware community search algorithm at

every change to the network or location of vertices, resulting in a list of all communities

to which a vertex of interest belonged within a given time period. While the approach

here aims to treat time continuously (i.e. identify new communities at each change, rather

than at set intervals), the outcome is aggregated over the time period of interest, so does

not give an indication of how community membership changes over time (Y. Fang et al.

2019).

Lengyel et al. (2020) and Y. Jin et al. (2019) made use of stochastic differential equations to

describe and predict changes in networks or populations existing within network structures.

Stochastic differential equations relate the slope or change in a variable to its value an

other covariates at a given time (Meredith and Tisak 1990). They can be used as a

continuous-time alternative to autoregressive models but can be complex to specify and

interpret (Niezink et al. 2019).

Discrete-time models may be easier to specify than continuous-time models. The division

of time into a discrete variable makes it easier to specify non-parametric temporal variation

in properties and also in model parameters – for example, localised (L)-STARIMA allows

the spatial weight matrix to vary over time (T. Cheng et al. 2014). However, in reality time

functions in a continuous fashion – it can be broken down into infinitely small intervals.

When applying discrete-time models, we must aggregate observations into time windows.

The effect of this is most noticeable where data are measured irregularly in time, rather

than following a strict schedule. In this case, to aggregate data into discrete time intervals

means we lose some accuracy and detailed information in our measurements of time (J.

Freeman 1989; Weiss 1984). Aggregation of data into temporal units can mask high

frequency temporal variation (J. Freeman 1989). It has also been shown that aggregation

can mask lower-frequency variation in autoregressive integrated moving average models

(Rossana and Seater 1995). Aggregation can result in biased results from autoregressive
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models which may fail to capture the temporal dynamics of the process of interest. (de

Haan-Rietdijk et al. 2017; Hwang 2000).

For any analysis using discrete time intervals, the length of these intervals must be cho-

sen. Ideally, this decision would be based on pre-existing knowledge of the process being

analysed, but where data are measured regularly this interval is often dictated by the mea-

surement interval (J. Freeman 1989). When using secondary data, there is no possibility

of choosing this interval before data collection. It has been demonstrated that periodic-

ity and autocorrelation parameters change in response to the size of temporal intervals

(Hawawini 1978; Hwang 2000). If the intervals reflect the measurement process more than

the processes of analytical interest, they may be less adept at investigating them (Comber

and Wulder 2019). In addition, several papers have identified that systematic sampling

over time can introduce bias to results from autoregressive models, in a similar way to

temporal aggregation (W. Wei 1981; Weiss 1984).

While continuous-time models can be difficult to fit and specify, including time as a contin-

uous variable would circumvent these issues by allowing temporal processes to be specified

independently to measurement intervals and any temporal unit choices, and remove the

need for temporal aggregation. This may allow them to better reflect the processes of

interest.

Visualisation of temporal properties

Visualisation is often an important way of communicating information and can greatly

aid its interpretability. Most of the papers that visualised information about temporally

dynamic networks did so using a series of snapshots – images of the network at different,

cross-sectional time points. This is a useful and easily interpretable way of showing network

evolution, however, it does exclude a large amount of information available about the

network – that from any time between the snapshots shown – in the same way that

discrete-time network analysis does (Blonder, Wey, et al. 2012).

Several papers used different methods to visualise temporally dynamic properties of net-

works. G. Sun et al. (2017) aimed to visualise the diffusion of information across a social

network over time and space. To this end, it introduced a new visualisation tool, ‘Social-

Wave’, that aimed to combine spatial and temporal visualisations. This tool produced
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a multipaneled ‘dashboard’ showing the static spatial network diagrams for several time

snapshots and temporal trends of a whole-network property in a different plot. The net-

work diagrams included a method for visualising common words associated with the topic

of interest at each location – this combined word clouds and modified circular bar charts

(G. Sun et al. 2017). These particular methods, however, still visualised spatial and tem-

poral patterns separately.

Z. Zhang et al. (2019) created a three-dimensional visualisation of the predicted speed

on different road segments in a network over time. This visualisation was confined to

only a ring road (a loop structure), rather than a more complex network, but still some

information for particular segments was obscured. This highlights one of the shortcomings

of this type of three-dimensional spatio-temporal visualisation method: it often results in

obscured information for parts of the space or network of interest.

C. Liu et al. (2018) used an alluvial diagram to show changes in the community structure

of a network of rail stations over one day. This is the same type of diagram used in

Figures 2.2 and 2.4. In C. Liu et al. (2018), data were aggregated into hourly periods and

community detection was carried out for each hour. The alluvial diagram colours ‘flows’

by their cluster in the first time period and shows how proportions of stations belonging

to each initial cluster move between different clusters in the subsequent hours. This gives

an overview of changes in the number of clusters over time and helps identify communities

that remain fairly constant throughout the whole day.

T. Li and Liao (2016) introduced another visualisation tool that aimed to enable visualisa-

tion to temporally dynamic edge properties. This was carried out using ‘link segmentation’

in which the links drawn to represent edges in a static network graph were divided into

time segments. Each segment was coloured to represent the value of an edge property

at a given time. To represent multiple edge properties at the same time, segments were

further subdivided, with each subdivision representing one property. This paper shows

an interesting and potentially useful visualisation idea, but it has some shortcomings. In

a spatial context, it is likely that the length of edges of links in a network diagram with

vary. This means that when these are segmented, the scale for a unit of time will differ

for different edges. This may make comparing temporal patterns between different edges

difficult. In addition, the subdivision of each link segment to represent multiple properties
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is carried out in the same axis as the temporal link segmentation. This may produce

further confusion if it is not clear whether a boundary between segments separates two

time segments or two different properties during the same time segment.

Colak et al. (2013) also includes an alternative representation of temporal properties of

network edges. In this case, the paper monitors the traffic volume on different road

segments in a stochastic simulation of the movement of vehicles through a road network.

Each road segment has a particular capacity and the paper defines congestion as occurring

when a road reaches 80% capacity. Instead of showing the whole temporal pattern of traffic

volume for each road segment in a map of the network or showing traffic volume for each

segment at different time points, Colak et al. (2013) represents the time at which congestion

occurs for each road segment on the map using different colours. Defining a specific feature

of the temporal pattern of traffic volume for each road segment that is of interest, i.e. when

traffic volume reaches 80% of capacity, produces a single piece of numeric information that

can be represented simply, interpreted easily and that provides information of interest

about the temporal properties of network components. An approach that focuses on a

specific event of interest as part of a temporal pattern may encourage researchers to fix

specific aims for analyses before carrying them out – this may discourage practices like p-

hacking which are associated with a lack of clear research aim (Head et al. 2015; Simmons

et al. 2011).

All of the visualisations of spatio-temporal properties discussed here used discrete repre-

sentations of time. Note however that the method in Colak et al. (2013) could be used

to represent the results of continuous-time models. Only two papers, discussed in Section

2.6.4, used continuous representations of time in analysis.

2.7 Summary

This review has identified that analyses of spatio-temporal networks appear in many sub-

ject areas – networks can be used to represent a large range of processes and systems

with different applications. A variety of different methods were used, mostly to address

different types of questions.

Overwhelmingly, the analyses in the reviewed papers specified time in a discrete form,
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with only two papers including continuous-time information. Using discrete-time analyses

requires the specification of time steps of a certain length by the researcher – this is an

important choice and should reflect the underlying process being examined to avoid intro-

ducing bias with too long or too short time steps (Comber and Wulder 2019; J. Freeman

1989). However, often the time steps are chosen based on the data measurement scheme,

or irregularly measured data are aggregated into discrete temporal units which introduces

additional bias (J. Freeman 1989; W. Wei 1981; Weiss 1984). There are continuous-time

models that could potentially be used in spatio-temporal network context, for example,

multilevel models or stochastic differential equations, but these did not appear in the re-

viewed papers. Future work should explore the application of continuous-time models to

spatio-temporal networks as they provide a more realistic representation of the continuous

nature of time and remove the need for temporal aggregation or choosing of temporal unit

lengths.

Visualisation of spatio-temporal networks was mostly conducted using a series of ‘snapshot’

static network maps at discrete time intervals. Some papers introduced novel visualisa-

tions, but these were not always clear to understand. One paper visualised the timing of

an ‘event’ or ‘pattern feature’ which produced a concise and clear plot (Colak et al. 2013).

This approach may be a useful method for simplifying visualisation of spatio-temporal

patterns and may encourage the focus of analyses on a particular question, discouraging

practices such as p-hacking that are associated with a lack of clear analysis aims (Head

et al. 2015; Simmons et al. 2011).
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Overview of Continuous-Time

Longitudinal Analysis Methods

3.1 Introduction

This chapter describes a range of models used in epidemiological and geographical lit-

erature with the aim of capturing temporal patterns of variables observed repeatedly in

individuals, objects, or systems. For example, these methods may be used to study growth

patterns (over time) in a group of children. In this situation, the children are the units of

observation and each child’s growth pattern would be the summary temporal pattern of

interest. In a network, the temporal pattern of interest may be the summary pattern of

a variable associated with a network edge (for example, flow), or it may be the summary

pattern of the properties of a network vertex (for example, the number of passengers in a

rail station).

An overview of each method is included, along with a discussion of some strengths and

weaknesses. The methods examined are multilevel models, methods that condition on the

outcome, latent growth curve modelling, functional data analysis and stochastic differen-

tial equations. Further investigation into the methods that condition on the outcome is

outlined in Chapter 6.

These methods are all capable, or presented as being capable, of examining time as a

continuous variable. Most of the papers examining spatio-temporal networks identified
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in Chapter 2 used methods that treated time as a series of discrete steps. However,

in reality, time is a continuous process, that may be broken down into infinitely small

units. Analysing time as a discrete variable circumvents many of the challenges with

parameterising complex continuous temporal patterns. However, if observations are not

measured at strict intervals, then it is necessary to aggregate into discrete time windows

(J. Freeman 1989), resulting in a loss of information and accuracy that could affect model

results, as discussed in Section 2.6.4 (de Haan-Rietdijk et al. 2017; Hwang 2000; Rossana

and Seater 1995; W. Wei 1981; Weiss 1984).

3.2 Multilevel models

3.2.1 Single level regression models

Regression models are a common tool for statistical analysis. They are used to quantify

the relationship between two variables, potentially while controlling for one or more other

variables (Wolf and Best 2014a).

For example, to model temporal patterns of growth in children, one might use data on the

height of ten children, measured in centimetres eight times between the ages of four and

15 years. A simple regression model for height regressed on age for these data might be

specified as in Equation 3.1.

hi = β0 + β1ti + εi

εi ∼ N(0, θ2), i.i.d.

(3.1)

In this model, each observation is indexed by i. hi represents height and ti represents the

age of the child for each observation. β0 is the intercept term. This represents the average

value of height at age 0. It is possible to transform the data so β0 represents the average

height at a different age by recentring ti – this would be useful in this case as age zero

is not included in the data. We may centre ti (and set the model intercept) at age 4, by

subtracting 4 years from each age recorded. β0 would then tell us the average height of a

child aged 4 years old (Wolf and Best 2014a).

β1 is the coefficient for height. This tells us how much height increases on average, for
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each unit increase in age (Wolf and Best 2014a). For example, if β1 is equal to 4, this

means the children grow an average of 4cm per year. In this model, the increase in height

over time is set to be a straight line – in reality perfect linear growth is very unlikely,

as children do not grow at a constant rate. It is possible to fit more complex models to

account for this – these will be discussed in Section 3.2.4.

The final term, εi, is the residual term for observation i. This is the residual difference

between the height predicted by the model at age ti and the observed height hi (Wolf

and Best 2014a). The residual term captures all possible reasons why the model did

not perfectly predict height, including all exogenous causes of height, random variation,

imperfect measurement, and imperfect model fit. A number of assumptions are made

about the residual terms for a robust single level regression model: they follow a normal

distribution with mean zero, the standard deviation of this distribution is not related to

age, and each residual term is independent of all other residual terms (Wolf and Best

2014c). The abbreviation i.i.d. indicates that the residual terms are independent and

identically distributed, that is, they are unrelated to each other and all from the same

distribution.

In order to examine the temporal patterns of a variable in some unit of observation (e.g.

individuals), that variable must be measured repeatedly for each unit. However, repeated

measurements within the same unit of observation will not be independent, since repeated

measures within the same unit will be more similar to each other than to measurements

outside that unit. Therefore, the assumption of independent residual terms made by

simple regression methods does not hold for data containing repeated measures within the

same unit (Ugrinowitsch et al. 2004). Using simple regression methods to analyse such

data results in underestimation of the standard errors of parameter estimates, resulting

in misleadingly small uncertainty for each estimate (Ugrinowitsch et al. 2004). In these

cases, we should use a modified regression modelling approach to account for the similarity

of repeated measures within observational units.

3.2.2 Basic multilevel models

Multilevel models are a type of regression model that accounts for clustering of observa-

tions, making it a useful tool for modelling temporal patterns within observational units.
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This is achieved by grouping the data into a hierarchical structure so that the repeated

measurements within each unit of observation are grouped into unit-level ‘clusters’ (Gold-

stein 2011). Parameters for the model can be allowed to vary randomly between the

clusters (units of observation), with one set of residuals recording the deviation of the

mean parameter for one unit of observation from the overall estimated mean parameter

for all units. A second set of residuals record the deviation of each observed measurement

from the estimated value for their particular observational unit (Goldstein 2011). The

simplest form of multilevel model that could be specified for these data is known as a

‘random intercept model’ (Goldstein 2011). This allows the intercept of the model (β0)

to vary randomly between units. This model is outlined in Figure 3.1 and Equation 3.2,

with the fixed effects and random effects grouped by parenthesis for clarity.

hij = (β0 + β1tij) + (u0j + ε0ij)

u0j ∼ N(0, θ2u0
), i.i.d.

ε0ij ∼ N(0, θ2ε0), i.i.d.

(3.2)

In our example, j in Equation 3.2 represents an index for each child and i an index for

each measurement within each child. The overall intercept is represented by β0, and each

child’s average deviation from this intercept is represented by the residual term u0j . The

slope is fixed to the same value, β1, for each child. Finally, all additional deviation between

the height predicted for child j at age tij and the observed height hij is represented by

the residual εij . This model allows for correlation between observations for the same child

due to them having a higher or lower average height than other children, but not due to

them having a different growth rate. To allow for this, we can also allow the slope to

vary between children by adding a residual term for the age coefficient, β1, as detailed in

Equation 3.3 (Goldstein 2011).
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Figure 3.1: Graphical representation of a random intercept model

hij = (β0 + β1tij) + (u1jtij + u0j + ε0ij)

u1j ∼ N(0, θ2u1
), i.i.d.

u0j ∼ N(0, θ2u0
), i.i.d.

ε0ij ∼ N(0, θ2ε0), i.i.d.

(3.3)

In this model the growth rate for each child is comprised of two parts: β1, which represents

the average growth rate for all children; and u1j , which represents the difference between

child j’s growth rate and the average growth rate for all children. This allows observations

for the same child to be correlated with each other due to them having a higher or lower

average height than other children and a higher or lower growth rate than other children.
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3.2.3 More complex multilevel models

Multiple levels

The multilevel models above include a relatively simple situation where measurements

of height are clustered within individual observational units, in this case children. This

model assumes that the observational units are themselves independent of each other.

This would not hold, for example, if some of the children were siblings. In cases like this,

further levels can be added to the multilevel model to allow clustering of the observational

units within higher level groups (Goldstein 2011). In the example above, observations

would be grouped within children and some children would be grouped together within

mothers. Level 0 represents the measurements of height, level 1 represents the individual

children and level 2 represents the mothers shared by siblings. Such a model would be

specified as in Equation 3.4. The index i represents each observation within each child,

j, within each mother, k. The average intercept and slope are represented by β0 and β1.

Random variation from the average intercept and slope associated with different mothers

is captured in the coefficients v0 and v1, respectively. Random variation associated with

the child is captured in coefficients u0 and u1. ε represents observation level residuals.

hijk = (β0 + β1tijk) + v1ktijk + u1jktijk + v0k + u0jk + ε0ijk

v1k ∼ N(0, θ2v1
), i.i.d.

v0k ∼ N(0, θ2v0
), i.i.d.

u1jk ∼ N(0, θ2u1
), i.i.d.

u0jk ∼ N(0, θ2u0
), i.i.d.

ε0ijk ∼ N(0, θ2ε0), i.i.d.

(3.4)

This type of nested model is capable of capturing random variation where individuals

belong to only one group at each level. Observations of height for the same child are

allowed to covary due to them having an average height higher or lower than other children,

and a growth rate higher or lower than other children. Observations of height for different

children with the same mother (siblings) are also allowed to covary due to the siblings

having a higher or lower average height than children of other mothers and a growth rate
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higher or lower than children of other mothers.

Cross-classified models

In some situations, the clusters or groups that observations fall into do not have a clear

hierarchy. Continuing with the example of measuring the height of children over time,

we may wish to group children within residential areas and schools. Schools may contain

children from various areas and areas may contain children who attend different schools.

This means that areas and schools do not simply fit into a nested heirarchy in the same

way as children and mothers do. Models that deal with this type of clustering are called

cross-classified models (Fielding and Goldstein 2006; Goldstein 1994). Specifying this type

of model involves the inclusion of random effects associated with both school and area, as

shown in Equation 3.5.

hijkl = (β0 + β1tijkl) + z1ltijkl + v1ktijkl + u1jkltijkl + z0l + v0k + u0jkl + ε0ijkl

z1l ∼ N(0, θ2z1), i.i.d.

z0l ∼ N(0, θ2z0), i.i.d.

v1k ∼ N(0, θ2v1
), i.i.d.

v0k ∼ N(0, θ2v0
), i.i.d.

u1jkl ∼ N(0, θ2u1
), i.i.d.

u0jkl ∼ N(0, θ2u0
), i.i.d.

ε0ijkl ∼ N(0, θ2ε0), i.i.d.

(3.5)

Here k indexes area and l schools; i indexes observations within children, j. There are

random intercept and slope coefficients associated with school (z0, z1), area (v0, v1) and

child (u0, u1). In this model, observations of height are allowed to covary if:

1. They are for the same child – the child can have an average height higher or lower

than other children and a growth rate higher or lower than other children.

2. They are from different children who share the same school – the school can have an

average height higher or lower than other schools and a growth rate higher or lower

than other schools.
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3. They are from different children who share the same neighbourhood – the neigh-

bourhood can have an average height higher or lower than other neighbourhoods

and a growth rate higher or lower than other neighbourhoods.

Some observations from different children will share a school and a neighbourhood and

these will covary more strongly than observations that just share a school or neighbour-

hood.

Complex residual structures

The models listed in the previous sections all specify that residuals at each level follow a

normal distribution with mean zero and variance to be estimated by the model (Browne,

Draper, et al. 2002; Goldstein 2011). This variance is typically specified to be constant

with respect to the explanatory variables in the model (homoskedastic) and residuals for

each observation are typically assumed to be independent (Browne, Draper, et al. 2002;

Goldstein 2011). It is possible, however, to relax these assumptions by specifying that the

model residuals follow a model of their own. One common method for this is to set the

variance of residuals to follow a function of time – this introduces heteroskedasticity into

the model (Browne, Draper, et al. 2002). Another common specification is that residuals

follow a temporal autoregressive structure within observational units, for example, the

residual for the current observation of height of a child specified to be a function of the

previous measurement and the time elapsed since the previous measurement (R. Jones

and Boadi-Boateng 1991). This allows observations that are closer in time to be more

similar to each other than observations further apart, which also reflects the underlying

data generating process. In addition, covariance of residuals (for example, those describing

random effects) can be constrained to be related to some relationship between different

units of observation – for example, random coefficients can be allowed to covary according

to the spatial proximity of observational units (Besag, York, et al. 1991).

3.2.4 Multilevel models fit parametric shapes

The multilevel models described above fit linear temporal patterns. These are patterns

represented by a straight line on a graph of height, for example, over time. Multilevel

models can be used to fit more complex shapes, but they must be specified in a paramet-

ric form. One option to fit more complex shapes is to use polynomial terms. Polynomial
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terms allow the outcome variable to be related to some function of time, for example, time

squared or cubed (Wolf and Best 2014b). Polynomial terms can be included in models to

build up curvilinear patterns, but their flexibility is somewhat limited because they are

restricted to a fixed set of curve shapes. Another alternative is to use fractional polynomi-

als. Fractional polynomial models can include logarithmic terms and non-integer powers

(for example, time1.5) and provide increased flexibility compared to standard polynomial

terms (Royston and Altman 1994).

A further option is to use spline functions. Spline functions divide the time-axis into a

series of sections. One or, occasionally, several functions (of the same form with different

parameters) are specified that take, for example, a polynomial form in these sections and

a value of zero elsewhere. The polynomial curves are combined to form a continuous

function with a large amount of flexibility (Perperoglou et al. 2019). There are a range of

different types of spline functions – some of these are discussed in more detail in Section

3.6.1 and Section 4.2.5.

When the relationship between time and an outcome is specified in a polynomial and/or

spline form, the coefficients become difficult to interpret and relate to a ‘real-world’ mean-

ing. This means that although these models may fit the data better, they can be extremely

hard to interpret and explain, especially to non-statistical audiences.

3.2.5 Estimating multilevel models

In statistical programming packages, simple regression models are often estimated using

maximum likelihood estimation. This is a maximisation process that attempts to identify

the set of parameters with the highest likelihood of being correct given the observed data

and model parameterisation (Browne and Draper 2006). This approach can be used to

fit multilevel models, but the maximisation process may fail to converge on a maximum

likelihood if the model is too complex, e.g. with cross-classified models.

A common alternative approach is to use Bayesian Markov chain Monte Carlo (MCMC)

estimation procedures. Bayesian estimation has different aims to frequentist statistics.

While a frequentist approach aims to estimate the ‘true’ population parameter from a small

sample, Bayesian estimation does not assume there is one ‘true’ population parameter, but

a distribution specifying what parameter values are most probable. Bayesian estimation
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processes aim to estimate this distribution based on model specification, data provided and

prior beliefs about the data, specified in the form of prior distributions for each parameter

in the model (Zyphur and Oswald 2015). Many algorithms for Bayesian estimation focus

on the probability distributions for parameter values, conditional on the other parameter

values (Zyphur and Oswald 2015). They work through a series of samples of parameter

values. In each sampling iteration, the value sampled is conditional on values of other

parameters in the previous sample (S. Geman and D. Geman 1984; Zyphur and Oswald

2015). The first sample is taken from the prior distributions for each parameter. After a

chain of many samples has been taken, a number of samples from later in the chain (after

a ‘warm-up’ or ‘burn-in’ period) are used to estimate the distribution properties of each

parameter (Zyphur and Oswald 2015). Multiple chains with different starting values can

be sampled.

There are a range of different algorithms for choosing the next sample in a chain, given the

current sample, for example Gibbs sampling (S. Geman and D. Geman 1984; Zyphur and

Oswald 2015) or No-U-Turn sampling (Hoffman and Gelman 2014). The choice of sampling

algorithm may influence the number of iterations before a chain converges on a stable

distribution – if this number is reduced the estimation procedure will be quicker. Often,

however, the choice of programming environment will determine the sampling algorithm

used. There are a range of programs capable of estimating multilevel models using MCMC

procedures: MLWin, MPlus, JAGS, BUGS and STAN (Bürkner 2017; Lunn et al. 2009; L.

Muthén and B. Muthén 2010; Plummer 2003; Rabash et al. 2020; Stan Development Team

2019). Each of these has different capabilities in terms of sampling procedure specification,

which will thus influence their usefulness when particular model structures need to be

specified. MCMC estimation techniques are not limited to use in multilevel models and

are frequently used with other modelling strategies.

3.3 Models conditional on the outcome

A number of analysis methods used in the literature attempt to characterise individual ex-

posure trajectories and relate them to a later outcome, but inadvertently capture ‘average

patterns’ for levels of the outcome variable, i.e. conditional on the outcome (Færch et al.

2013; Hulsegge et al. 2017; Oka et al. 2017; Tabák et al. 2009; Tu, Tilling, et al. 2013).
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This is problematic because individual trajectories are no longer being modelled, though

this is not often realised. Modelling the exposure variable conditional on the outcome also

goes against the natural order of events in time and makes it impossible to interpret the

results as a cause and effect. The resulting modelled ‘trajectories’ are often interpreted

as patterns of the exposure that lead to (i.e. cause) certain outcome values; however, as

detailed below, they constitute nothing more than a series of cross-sectional analyses, i.e.

a series of correlations, that derive their existence conditional on each outcome value, and

therefore cannot be interpreted as either ‘trajectories’ or causes of the outcome.

A common graphical analysis involves dividing the data into two groups based on the

outcome value; for example, high and low outcome levels. The average exposure values

within these two groups are then plotted for each time point at which the exposure was

measured (Barker et al. 2005; Færch et al. 2013). This does not use information about

individual patterns of the exposure but instead analyses the exposure at each time point

separately, generating a series of cross-sectional analyses. This series of analyses cannot

be viewed as summarising each individual pattern and therefore cannot be interpreted

as a longitudinal pattern of the exposure that leads to (i.e. causes) certain outcome

levels (Tu, Tilling, et al. 2013). An equivalent statistical analysis to the z-score plots

might be to plot a bivariate correlation between each measurement occasion and the

outcome, or the regression coefficient from the model of the outcome on each measurement

occasion (perhaps additionally accounting for earlier measurements). In either event, this

is explicitly conducting a series of cross-sectional procedures; plotting either the resulting

correlations or regression coefficients from each separate evaluation of the outcome for

each exposure measurement, does not yield a summary of individual exposure patterns

(Tu, Tilling, et al. 2013).

Multilevel models are also sometimes used in a way that conditions on the outcome,

with the aim of accounting for clustering of measurements within individuals. (Goldstein

2011). While multilevel models can be correctly used to characterise patterns of the

exposure for individuals (Howe et al. 2013), some analyses include the outcome variable

as a covariate when modelling the exposure, along with an outcome-time interaction term

(Barker et al. 2005; Færch et al. 2013; Oka et al. 2017; Tabák et al. 2009). In addition to

reversing the flow of time in this regression approach, the interaction term stratifies the
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data into groups based on the outcome value, which is another form of conditioning on

the outcome – the same procedure and hence the same problem when plotting the average

exposure values in outcome groups. This method, therefore, also cannot be interpreted

as generating a pattern of the individual exposures that cause certain outcome values, as

it does not represent longitudinal individual pattern characteristics that emerge ahead of

the outcome occurring. Problems with this methodology have not been discussed in depth

in the literature and are investigated in more detail in Chapter 6.

3.4 Latent growth curve models

Latent growth curve models are used particularly to describe patterns of longitudinal

variables over time, for example, patterns of weight throughout childhood (Bollen and

Curran 2005). The longitudinal variable under consideration must be split into a series of

cross-sectional variables – one for each time it was measured (Meredith and Tisak 1990).

For example, if the longitudinal variable is weight measured at birth and at ages 1, 2, and

3 years, four weight variables would be used: birth weight, weight at aged 1 year, weight

at aged 2 years and weight at aged 3 years. The longitudinal variable is represented as

a function of two or more continuous latent summary variables that together describe

the shape of the growth curve (Meredith and Tisak 1990). These might be, for example,

intercept and slope variables. These represent the same concepts as the intercept and

slope in a standard linear regression model, but the values are allowed to vary between

individuals; the intercept represents individual values of the longitudinal variable when

time is equal to zero (or at a different time point if this is chosen) and the slope represents

how much the longitudinal variable increases or decreases for one unit of time (Bollen and

Curran 2005). Latent growth curve models, therefore, can be mathematically equivalent to

multilevel models (regression models that account for grouping of data) under appropriate

assumptions, but this excludes the use of some particularly flexible forms of the latent

growth curve model (Johnson 2014; Tu, D’Aiuto, et al. 2009).

Time need not be included in latent growth curve models as a variable in the traditional

sense. Instead it may be used to inform factor loadings that specify the effect of the latent

variables on each of the longitudinal variable measures (Bollen and Curran 2005; Tu,

D’Aiuto, et al. 2009). For example, if weight from birth to three years is the longitudinal
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variable and an intercept and slope variable are included, linear growth can be specified

by making the factor loadings from slope to each weight measure equal to the time each

measure was taken. This model is represented in Figure 3.2 in the form of a path diagram.

In path diagrams for structural equation modelling, measured variables are represented in

boxes and latent variables in ovals or circles. Arrows between them show regression models,

with the outcome at the point of the arrow. Bidirectional arrows indicate covariance

between two variables. The effect of the intercept is set to one for all variables and a

residual term also makes up each longitudinal measure. This means that a measurement

for individual i at time t is represented by the sum of that individual’s intercept value,

that individual’s slope value multiplied by t and that individual’s residual term value at

time t. This can be represented in Equation 3.6, which is analogous in form to that for a

simple linear regression model (Bollen and Curran 2005; Johnson 2014).

wit = β0i + β1it+ εit (3.6)

Figure 3.2: Structural equation modelling diagram showing a latent growth curve model

Here t refers to time, wit refers to weight for individual i at a time t, β0i refers to the value

of the intercept variable for individual i, β1i refers to the value of the slope variable for

individual i, and εit refers to the error term for individual i at a time t. By default, latent
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growth curve models typically allow the intercept and slope variables to covary with one

another (Byrne and Crombie 2003). In addition, covariance between the residual terms

over time can be introduced to represent further autocorrelation of repeated measures or

clustering of individuals within a higher level structure, such as within geographical areas

(Bollen and Curran 2005). A second variable may also be included in a further part of

the model, for example an exposure variable may be allowed to affect the slope variable,

or an outcome variable may be a function of it (Tu, D’Aiuto, et al. 2009).

Factor loadings can be changed to some function of time to represent differently shaped

growth curves. For example, quadratic growth could be represented by introducing a

second slope variable. Factor loadings for the effect of this on each weight measurement

would be set to the square of each measurement time (Meredith and Tisak 1990). This

can be extended to include splines and other more complex non-linear structures (Bollen

and Curran 2005). Latent growth curve models can also be specified so that they estimate

a value for some of the factor loadings included, providing two or more are specified as

anchor points (Meredith and Tisak 1990). The estimated factor loadings represent the

estimated time at which a measurement would have been taken if it were to fit the linear

pattern set by the anchor points, i.e. the model ‘fits’ a linear relationship with respect

to the latent slope parameter, but this linear relationship is stretched or compressed in

terms of the ‘time’ between the anchor point and other variables in order to emulate a

nonlinear change pattern in linear time. Thus, the time depicted by a factor loading may

differ from the time at which the measurement was actually taken, and this difference

indicates the amount of deviation from a linear trajectory (Bollen and Curran 2005). This

can be used to represent nonlinear patterns of a longitudinal measure without need for

complex parameterisation. This type of model has been given various names: shape-factor

(Sterba 2014), freed-loading (Bollen and Curran 2005), completely or fully latent (Aber

and McArdle 1991; Meredith and Tisak 1990), unspecified (Duncan et al. 2006) or latent-

basis latent growth curve model (Grimm et al. 2011). In this thesis, it will be referred to

as a latent-basis latent growth curve model.

As described above, latent growth curve models require the division of a longitudinal

measure into separate cross-sectional variables (Meredith and Tisak 1990). Often, the

assumption is made that these measurements were taken at the same time for all individ-
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uals and that the intervals between successive measurements are equal for all individuals,

even if successive intervals vary (Aydin et al. 2014). In reality, this is rarely the case.

For example, in a longitudinal cohort study, a measurement schedule might be specified

to be the same for all individuals, but the timing of the actual measurements might vary

somewhat around the proposed schedule. This results in wave data, where measurement

times are grouped around the times specified by the schedule. It may be that the time

interval between each measurement is approximately the same for each individual in the

study, for example, if each individual is measured annually, but on different dates to oth-

ers. Where such intervals are not identically-spaced across all individuals, some error is

introduced, though – depending on the patterning – this need not lead to bias. Such

variation in measurement intervals between individuals will be referred to as interval het-

erogeneity. Data may also be collected in a fashion that has no measurement schedule,

where intervals vary for every pair of measurements for most if not all individuals in the

study. For example, routinely collected data from medical records. This will be referred to

as irregularly measured data in which there is no grouping of measurement times as seen

in wave data. Interval heterogeneity associated with wave data and irregularly measured

data may be respectively considered as more modest and more severe forms of sampling

time variation.

Latent growth curve models have been adapted to deal with sampling time variation, and

this has been implemented in a range of software (L. Muthén and B. Muthén 2010; Neale et

al. 2003). The process involves the use of definition variables which specify factor loadings

at each measurement for each individual, rather than requiring them to remain the same

for all (Bollen and Curran 2005; Mehta and West 2000; Neale et al. 2003). However,

descriptions of this have been limited to simple parameterisations of latent growth curve

models (Mehta and West 2000). It has been suggested that it would not be possible to

fit a latent-basis latent growth curve model on data with sampling time variation as this

would require estimation of too many parameters (Blozis, Conger, et al. 2007). However

Sterba (2014), describes the process of fitting latent-basis latent growth curve models with

individually varying time-points, which can be accounted for using definition variables as

factor loadings (Bollen and Curran 2005; Sterba 2014).

When latent-basis latent growth curve models are used, the estimated factor loadings de-
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note the time at which a measurement would have been taken, were it to fall on the linear

pattern specified by the two points with fixed factor loadings. When the estimated factor

loading differs from the real measurement time, this indicates a departure from linearity

(Bollen and Curran 2005). Sterba (2014) describes the use of latent-basis latent growth

curve models with individual varying measurement times by using a variant parameter-

isation of the latent-basis model which is outlined in Figure 3.3. The observed data are

grouped into time windows throughout the observation period – data within each time

window is represented as a variable. The factor loadings for these variables, which would

normally be completely freely estimated as part of a latent-basis model, are split into the

sum of two parts: a) the real measurement time and b) the departure from linearity for

each loading. Part (a) remains fixed while part (b) is estimated. To adapt this to a model

with individually varying time scores, part (a) may be specified by a definition variable,

and part (b) is estimated while constrained to be the same across all individuals. The

anchor loadings may also be specified by definition variables. This allows the estimation of

a latent-basis model with individually varying time scores without increasing the number

of parameters estimated (Sterba 2014).

The author states that this model can only be used with wave data, which would limit its

applicability when analysing routinely collected data, for example. However, a footnote

refers to a simulation study that examined the effects on the results from this model when

examining the degree of variation of measurement times within windows of grouped data

points, and suggests that only a small amount of bias was incurred even when measurement

windows overlapped. No further information about this simulation is included in the paper

(Sterba 2014). While this model is an exciting development in the application of latent-

basis latent growth curve models to data with sampling time variation, the assumption

that all departures from linearity are constant within each wave may be unrealistic, as it

seems reasonable to expect departures from linearity to vary at the different observation

times recorded for different individuals within waves. Keeping this departure constant

within each wave does not allow for this and may result in a poorly fitting model for some

observational units.

While latent growth curve models with no latent-basis component treat time as a contin-

uous variable, the departures from linearity in a latent-basis latent growth curve model
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Figure 3.3: Structural equation modelling diagram showing a latent-basis model that
accounts for sampling time variation. The variables T0−4 are definition variables repre-
senting the measurement times and the variables δ1 and δ2 are the estimated departures
from linearity.

do not follow any function of continuous time – they are non-parametric. Therefore, while

latent growth curve models could be used to analyse temporal patterns while treating time

as a continuous variable, latent-basis latent growth curve models do not strictly do this –

it would not be possible to interpolate between observations from a latent-basis model, as

departures from linearity are not generally known, except at each observation point.

3.5 Autoregressive latent trajectory models

There are a number of extensions to latent growth curve models that can be used to

represent exposure patterns. Autoregressive latent trajectory models can be used to take

account of autoregressive structures in the repeated exposure measurements not captured

by the latent parameter variables in standard latent growth curve models, e.g. serial

autocorrelation (Bollen and Curran 2004). Autoregressive models are a type of model

commonly used for time series data that models each successive observation as a function

of the previous observation, plus some residual term. Autoregressive latent trajectory

models incorporate this autoregressive structure into the observed variables of the latent
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growth curve model as described in Figure 3.4 (Bollen and Curran 2004). The arrows

between each successive weight measurement describe the autoregressive structure. Note

that the first weight measurement is not, as in the latent growth curve model in Figure 3.2,

a function of the latent slope and intercept variables, but correlated with them. This treats

the initial measurement of weight as pre-determined which ensures that the autoregressive

component of the model is separated from the effect of the latent slope and intercept

variables, and the two parts are not conflated (Bollen and Curran 2004).

Figure 3.4: Structural equation model of an autoregressive latent trajectory model

3.6 Functional data analysis

Functional data analysis, aims to represent individual repeated measures within a dataset

in a ‘functional form’ i.e. as a model equation. This method uses a series of ‘basis func-

tions’ as a starting point for these representations. Individual patterns are described by

linear combinations of the basis functions that best fit their data (Ramsay and Silverman

1997). The form of basis functions and the length and number of periods for which they

are positive must be chosen by the user. This method can capture complex curves in lon-

gitudinal data, but the functional form may not have such a clear interpretation as latent

parameter variables in latent growth curve model, for example (Ramsay and Silverman
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1997). The functional representations of data produced by functional data analysis can be

used to study in depth variation in functions between observational units, departures of

measured data from the functional forms, or further analysed using methods such as func-

tional regression and functional principle components analysis (J.-L. Wang et al. 2016).

Functional data analysis often makes use of derivative functions as a method of displaying

variation in functions that might not be apparent without undergoing this transformation

(Ramsay and Silverman 1997).

3.6.1 Basis functions

There are a range of possible basis functions used in functional data analysis, each suitable

for different purposes. The choice of basis function is a key aspect of functional data

analysis – basing this choice on the characteristics of the data is likely to lead to a better

representation of the functions of interest (Malaba et al. 2017; Ramsay and Silverman

1997). Two commonly used basis functions are Fourier basis systems and b-spline basis

systems.

Fourier basis systems are suitable for capturing functions with a periodic element, for

example, seasonal patterns in temperature at weather stations over a number of years

(Ramsay and Silverman 1997). They include a series of sine and cosine functions of

decreasing period (Ramsay and Silverman 1997). The periodicity of the functions can

be chosen by the user. Fourier basis systems perform best when used to capture stable

functional forms with limited local departures from the regular periodic shape (Ramsay

and Silverman 1997).

Spline basis systems are suitable for capturing non-periodic patterns. Spline basis func-

tions include a series of polynomial functions that are positive in a short section of the

observation period and equal to zero in the rest (Perperoglou et al. 2019; Ramsay and

Silverman 1997). The length and number of the positive sections is defined using a series

of ‘knots’. The order of the polynomials must also be chosen, for example, whether they

are quadratic, cubic or quartic. At each knot, the polynomials and their derivatives (up to

a certain order) must join smoothly (by taking equal values at the knots that join them)

(De Boor 2001). The number of derivatives that must join smoothly is the order of the

polynomials minus two. For example, if the polynomials chosen are of order four (cubic),
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then the first and second derivatives must join smoothly (De Boor 2001).

B-spline basis systems are a popular form of spline basis. Rather than being positive only

in between two knots, b-spline basis functions overlap. For a b-spline basis system of order

n, each basis function is positive over a maximum of n adjacent intervals between knots,

with a reduced number of intervals covered by functions at the tail ends of the basis system

(De Boor 2001; Perperoglou et al. 2019). At the ends of the basis system, instead of placing

a single knot, a b-spline basis system places n knots (De Boor 2001; Perperoglou et al.

2019). Placing multiple knots at a single point makes the spline function discontinuous

(De Boor 2001; Perperoglou et al. 2019). For, example, if two knots are placed in one

location in a cubic spline system, the second derivative of the spline function will no

longer be continuous at this knot location. Placing n knots means that the spline function

itself is no longer continuous, meaning that it does not extend continuously beyond the

boundaries of the data (De Boor 2001; Perperoglou et al. 2019).

The choice of knot positions is important in accurately capturing the functional form of

the data. A common choice is equally spaced knots, but this can cause problems if data are

not equally spaced (for example, throughout time) as coefficients for some spline functions

will be estimated using very little data (Ramsay and Silverman 1997). Alternatively,

knots can be placed based on the location of observations. For example, if observations

are made at different time points, they might be placed at the quartiles or quintiles of

the observed time points. This includes an equal number of measurements for each spline

section (Ramsay and Silverman 1997). Knots can also be placed based on underlying

knowledge of the data generating process of a system, for example, when a particular

event that affects the observed data is expected to occur (Ramsay and Silverman 1997).

3.6.2 Analysing functional data

Once a basis system is chosen, the linear combination of basis functions to best fit the

data for each observational unit is computed (De Boor 2001; Perperoglou et al. 2019;

Ramsay and Silverman 1997). This can be done using several methods, for example, by

applying roughness penalties or through least squares estimation (De Boor 2001; Ramsay

and Silverman 1997). It is possible to fit models to the residuals estimated along with the

smooth functions to allow for heteroskedasticity or residual autocorrelation (J.-L. Wang
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et al. 2016).

The coefficients from functional data analysis do not necessarily carry a real-world in-

terpretation. However, functional data can be further analysed using methods such as

functional linear regression or functional principle components analysis (Locantore et al.

1999; J.-L. Wang et al. 2016). These methods seek to examine the variation in functions

between observational units and how this relates to some exposure characteristic(s). In

addition, analyses that allow similarity in functional data curves associated with spatial

proximity have been developed. For example, Delicado et al. (2010) present an analysis

in which an average functional curve of temperature for a country is calculated based on

a number of functional data curves at weather stations, taking into account their spatial

locations.

3.7 Stochastic differential equations

Stochastic differential equations are a type of model used to analyse temporal patterns of

properties. They have been described as the “continuous time version of autoregressive

models for time series” (Niezink et al. 2019). Autoregressive models describe the relation-

ship between pairs of sequential observations in a time series. This is inherently linked

to the time difference between the two observations which means that coefficients from

the model are specific to the time steps between observations observed (or chosen, if data

are aggregated). This reduces the extent to which models with different intervals can be

compared (Niezink et al. 2019; Voelkle et al. 2012).

Stochastic differential equations are based on ordinary differential equations. In particular

they use differential equations that, for a property x at time t (x(t)), regress the first

derivative of x(t) with respect to time (dx(t)dt ) on the current value of x(t) and other

potential covariates of interest, represented in Equation 3.7 by b (Niezink et al. 2019).

dx(t)

dt
= ax(t) + b (3.7)

The solution to an ordinary differential equation of this type is a function (or set of
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functions) of time, x(t), that satisfy the relationship specified by the coefficients a and b.

Stochastic differential equations also include a stochastic error term which adds random

variation around a function like that in equation 3.7. The error term is defined by a

Weiner process at the level of X(t), which differs from the distribution-based error terms

found in multilevel models (Bjork 2004; Evans 2013). The Weiner process is a continuous-

time stochastic process in which the difference between two realisations of the process

at two different times, W (t2) − W (t1), is an independent random draw from a normal

distribution with mean zero and variance a function of the time difference between the

realisations (Evans 2013). In Equation 3.8 this is represented by W (t). The Weiner process

cannot be differentiated with respect to time, hence the altered representation Equation

3.8 compared to the previous Equation 3.7. The first line of Equation 3.8 shows a simple,

informal representation of the second line.

dX(t) = [aX(t) + b]dt+ gdW (t)

X(t) = X(0) +

∫ t

0
[aX(u) + b]du+

∫ t

0
gdW (u)

(3.8)

The result of including the stochastic error term means that X(t) is now a random variable

and there are many potential realisations of the model in Equation 3.8 (Bjork 2004; Niezink

et al. 2019). The expected value of X(t) at a given time is equal to the solution of the

underlying ordinary differential equation (Niezink et al. 2019). One advantage of stochastic

differential equations is the relatively interpretable (compared to spline models) ‘real-

world’ meaning of their coefficients. The interpretation of Equation 3.8 would be that

for a small interval δt, X(t) changes by an amount equal to an independent random

draw from the distribution N([aX(t) + b]δt, g2δt) (Niezink et al. 2019). Like multilevel

models, stochastic differential equations can be modified to include autocorrelation effects

for temporal property patterns associated with multiple observational units (Niezink et al.

2019). They can also include random effects (Ditlevsen and De Gaetano 2005).

Stochastic differential equations do not directly model the relationship between time and

X(t). It has been suggested that this reflects a belief that time does not directly cause

change but can be used as in index to represent change over time that is caused by other
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processes. However, the solution to a stochastic differential equation does still involve

a function of time, X(t), as an expected value, which is in many ways analogous to the

temporal functions underlying multilevel models and functional data analysis which model

a ‘true’ function with additional error.

Notably, the relationship between the value of the function X(t) and its differential (dX(T )
dt )

remains constant over time unless the stochastic differential equation explicitly includes

time-varying covariates. In many cases this means that if the value of X(t) is the same at

two different times, the slope of X(t) will also be the same at these two times. This limits

the flexibility of the temporal patterns captured by stochastic differential equations.

3.8 Summary

This chapter has outlined a range of methods that aim to analyse temporal patterns for

multiple observational units with continuous time specifications. Ultimately, this project

aims to apply continuous-time methods to analyse temporal patterns of observational

units within a network structure. Multilevel models appeared to be suitable candidates

for modelling continuous temporal patterns, particularly when extending this to a network

context due to their ability to account for complex variance structures. Estimation of

multilevel models, however, can be time consuming and the results can be difficult to

interpret and relate to a real-world context. Care must also be taken when using multilevel

models for repeated measures data. Methods that condition on the outcome, including

the use of multilevel models in a way that conditions on the outcome, have a fundamental

issue in their failure to properly address their purported aim. This problem has not

been extensively discussed or explored in the literature and should be addressed (Tu and

Gilthorpe 2010; Tu, Tilling, et al. 2013) – hence a deeper discussion and analysis of issues

with these methods is included in Chapter 6. They would not be capable of capturing

continuous temporal patterns of network properties.

While simple latent growth curve models are able to treat time as a continuous variable

(Sterba 2014), the most flexible form of this model, the latent-basis latent growth curve

model, does not strictly treat time as a continuous variable; non-parametric ‘stretching’

of the time-axis to produce deviations from linear patterns results in the model only being

defined at discrete, observed time points.
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Like multilevel models, functional data analysis is capable of capturing complex curves

using spline functions. It is possible to model residual structures to account for temporal

dependence, and further analyses of the functions can investigate spatial patterns (R.

Jones and Boadi-Boateng 1991). However, the software for easily fitting complex residual

and covariance structures is much more established in the field of multilevel modelling.

Stochastic differential equations provide an interesting way of modelling changes over time

while aiming to shift the focus of an analysis away from functions of time and towards

the generation process underlying the data. While stochastic differential equations and

functional data analysis both present potentially useful methods for modelling continuous

temporal patterns, multilevel models were chosen as the focus for further investigation in

this thesis due to their ability to include spatial covariation in random coefficients and the

wide availability of software to fit complex covariance structures (Besag, York, et al. 1991).

The details of multilevel model application in this context and approaches to producing

interpretable summaries are discussed in Chapter 4.
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Methods

4.1 Introduction

Chapter 3 outlined a range of methods for analysing temporal patterns of variables within

individuals and other units of observation, for example growth curves within children. Of

these, the most suitable method for application to spatio-temporal networks was multilevel

models. This chapter outlines a multilevel model that can be applied to model continuous

temporal patterns of edge properties in a spatio-temporal network. This is discussed in

the context of an example application: modelling ‘flow’ of passengers between stations in

a rail network. The rail stations are represented by vertices in a network and the direct

connections (rail lines) between stations represented by edges. ‘Flow’ is an abstract edge

property, used purely for illustrative purposes, that varies over time giving some indication

of the rate at which passengers are travelling along an edge (between stations).

4.2 Multilevel model for edge properties in a directed spatio-

temporal network

4.2.1 Requirements for the model

The aim of a multilevel model for patterns of flow along edges of a rail network is to capture

temporal patterns of flow for each edge. Temporal patterns for different edges will be

correlated with each other due to spatial and network relations between edges. Successive

measurements of flow for each edge will be correlated due to temporal proximity. Models
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for the temporal patterns of flow should account for the spatial, temporal and network

structure of the data.

4.2.2 Model specification

The specification of the proposed model for temporal patterns of flow in a rail network is

described in Equation 4.1 in which from and to index the origin and destination stations,

respectively, for edges in the network; t refers to the time at which each measurement was

made; bn(t) refers to the value of basis function n at time t; k refers to the number of

basis functions specified; ei,from,to represents the residual term for the ith observation for

a particular edge; u represents aspatial random effects, indexed by origin or destination

station (and basis function for un); v represents spatial random effects following an intrinsic

Gaussian conditional autoregressive (CAR) distribution, indexed by origin and destination

station (and basis function for vn); α represents the coefficient for the autoregressive

residual structure estimated by the model and wi the independent residual term in this

structure.

yi = β0,from,to +
k∑

n=1

βn,from,tobn(ti) + ei,from,to

β0,from,to = β0 + u0,from + u0,to + v0,from + v0,to

βn,from,to = βn + un,from + un,to + vn,from + vn,to

ei,from,to =
αei−1,from,to

ti − ti−1 + 1
+ wi,from,to

(4.1)

4.2.3 Spatial structure

Each edge is indexed by its origin and destination stations. A random intercept coefficient

is included for each station, as an origin and destination, along with a random coefficient for

each basis function in a spline function – see Section 3.2.4 (Goldstein 1994). This allows

edges with the same origin to be more similar to each other than edges with different

origin stations. The same applies to destination stations. This accounts to some extent

for similarities between edges with similar origins and destinations in the network.

Each random coefficient is formed of a spatial and aspatial component. The spatial com-
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ponent allows edges with origin and destination stations geographically close to each other

to have similar coefficients. The spatial random effects are set to follow an intrinsic CAR

distribution (Besag, York, et al. 1991). This uses a spatial weight matrix to specify the

relationships between stations. The CAR distribution allows the random effects coeffi-

cients to covary based on these relationships – where two locations are near each other,

the weight matrix should specify that the coefficients are more similar. A spatial weight

matrix is a matrix with numbers of rows and columns equal to the number of locations

of interest. Each row summarises the relationships of one location with all others (Du-

bin 2009). This might be represented as a binary presence or absence of a relationship,

or by continuous weights indicating the strength of each relationship. A spatial weight

matrix can be specified in different ways, with two major approaches being ‘neighbour’ or

‘contiguous’ relations, and distance-based relationships (Dubin 2009).

Neighbour or contiguous relationships are based on the sharing of boundaries between

locations. They are easy to construct when the locations are areas, for example counties

within a country, or if they are point locations forming a lattice. Two areas are deemed

neighbours if they share a boundary (Dubin 2009). Contiguity relations between points

in a lattice can be specified in several ways. For example, adjacent points within rows

or columns might be considered neighbours, or diagonally adjacent points, or both (Du-

bin 2009). Often contiguity relations specify only the binary presence or absence of a

relationship between locations.

If point locations are of interest and they are not spread in a lattice, a weighting scheme

based on distance might be used (Dubin 2009). Normally, one expects the strength of

correlations between locations to decrease with distance (Tobler 1970). Therefore, we

must specify the weights as some function that decreases with distance. Two common

functions are inverse distance ( 1
distance) and negative exponential distance (e(−a×distance)

where a is some constant) (Dubin 2009).

It is possible to specify relationships in this way for all pairs of locations, but sometimes

we wish to include a cut-off point outside of which we consider two points to have zero

relationship (Browne and Draper 2006) This may be because we have information about

the underlying processes that suggests there will be no relationship beyond a certain

distance. Two common ways to do this are by including a maximum set number of the
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nearest neighbours for each location (k-nearest neighbours) or by including a distance cut

off – if the distance between two points exceeds the cut off, the spatial weight is set to

zero (Browne and Draper 2006). Unlike using a distance cut off, the k-nearest neighbours

approach does not guarantee a symmetric weight matrix – for example, one point may be

included as a nearest neighbour of another point that is not included in its own list of

nearest neighbours. This makes the nearest neighbour approach unsuitable for the CAR

distribution, as the weight matrix specifying relationships for this must be symmetric (A.

Thomas et al. 2014).

The random effects associated with the intrinsic CAR distribution are restricted such

that they must sum to zero (A. Thomas et al. 2014). If any station in the network is

considered not spatially related to any others, no random coefficient is produced from the

CAR distribution – this is why an additional aspatial component is included in this model,

to account for any geographically isolated stations (A. Thomas et al. 2014).

4.2.4 Temporal autocorrelation

Temporal autocorrelation between successive measurements within each edge is specified

using autocorrelated residual structures. The residuals in the models represent the depar-

ture of each observation from the estimated model function. In this model, a first order

temporal autocorrelation structure is specified. This means that the model residual for a

given observation is a function of the previous model residual value, plus some random

variation (Steele 2008). In this case, the autoregressive function specifies that the effect

of the previous residual value on the current one is inversely proportional to the time

difference between them plus one (adding one allows simultaneous measurements).

4.2.5 Spline structure

Spline structures were previously discussed in Sections 3.2.4 and 3.6.1. Multilevel models

use parametric representations of the relationships between variables, which can make

capturing complex temporal patterns difficult. One way to capture complicated shapes

parametrically is to use spline functions which split the time-axis into sections, each of

which is modelled with a parametric spline function (De Boor 2001). When splines are

included in a model, a basis function must be chosen. This includes the choice of the

type of spline, the number of sections to divide the time-axis into and where the divisions,
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which are called knots, occur. After this, a coefficient for each spline in the basis function

is estimated as part of the model.

There are a range of different types of spline functions: for example, b-splines, natural

cubic splines, smoothing splines. B-splines were described in section 3.6.1 in relation to

functional data analysis. Natural cubic splines are a series of cubic polynomials joined at

knots points. Both the splines and their first and second derivatives are constrained to

be continuous over these knot points (De Boor 2001). Natural cubic splines also satisfy

another condition – at the knots at the tail ends of the spline system, the second derivative

of the cubic splines must be equal to zero (Perperoglou et al. 2019). This reduces erratic

behaviour of splines at these boundaries which is common in b-splines (Perperoglou et al.

2019).

The choice of knot positions for splines is important as it partially determines the shape

and fit of a spline function. Including more knots can lead to a more closely fitting spline

function that is capable of capturing more complex or ‘wiggly’ patterns, but will make the

model harder to estimate as more parameters are included (Ramsay and Silverman 1997).

This is especially the case where random effects are included for the spline coefficients.

There are automatic knot selection procedures available for single-level spline models, but

so far no procedures for multilevel models have been identified (Yeh et al. 2020; Yuan

et al. 2013; S. Zhou and Shen 2001).

Some spline functions additionally include a smoothing parameter to control their be-

haviour. For natural cubic and b- splines, the ‘smoothness’ of the function produced

(whether it fits the data very closely and is very ‘wiggly’ or whether it is very smooth) de-

pends on the number and placement of knots (Ramsay and Silverman 1997). Splines with

a smoothing parameter reduce the importance of this choice by including an additional

parameter to control smoothness (Perperoglou et al. 2019). Penalised splines (p-splines)

are an example of this type of construction.

While smoothing splines such as p-splines reduce the importance of knot placement, for

b-splines and natural cubic splines, the value of each spline at each observed time point can

be calculated before model fitting, and then each spline can be added to the model as one

would include any other variable – for these splines estimation of the model coefficients

can then proceed as normal which is convenient. For penalised splines, the smoothing
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parameter is integral to the estimation process, which can introduce extra complications

when estimating models with penalised splines (Perperoglou et al. 2019).

In the following chapters, b-splines were chosen as the basis of the model specified in

Section 4.2.2. As discussed later in Section 4.3, performing calculus on the resulting

individual level models forms an important aspect of producing interpretable results from

models with coefficients that do not necessarily hold a real-world meaning. While b-

splines can behave in a more erratic way than natural cubic splines at the boundaries of

the spline function, the R package ‘splines2’ provides a method for producing derivatives

and integrals of different orders with b-splines, which made the process outlined in Section

4.3 more convenient to complete (W. Wang and Yan 2020).

4.2.6 Software and estimation procedure

Due to the complexity of the model, Bayesian estimation procedures were selected over

maximum likelihood estimation which often struggles to converge on accurate estimates,

if at all, in the presence of complex variance structures. The abilities of several software

packages for modelling complex structures were investigated, including OpenBUGS, JAGS,

STAN, MLWin and MPlus (Bürkner 2017; Carpenter et al. 2017; Lunn et al. 2009; L.

Muthén and B. Muthén 2010; Plummer 2003; Rabash et al. 2020; Stan Development

Team 2019). Of these, only OpenBUGS was capable of fitting temporally autocorrelated

residuals and spatially correlated random effects (A. Thomas et al. 2014). Therefore, this

package was chosen for model fitting.

OpenBUGS uses the BUGS engine to estimate the models – this uses a Gibbs sampling

routine to sample parameter estimates. Gibbs sampling is a Markov chain Monte Carlo

estimation procedure based on the conditional distributions of each parameter to be esti-

mated. The conditional distribution of a parameter is the probability distribution of that

parameter given (i.e. conditional on) the values of all other parameters (S. Geman and

D. Geman 1984; Zyphur and Oswald 2015). Gibbs sampling produces a series of sets of

parameter estimates. For each of these, the parameter values are estimated conditional on

the values of all other parameters at the previous step. There are alternative Markov chain

Monte Carlo estimation processes for fitting Bayesian models, some of which are faster

than Gibbs sampling, meaning that they take fewer samples to converge on the posterior
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distribution of each parameter (Hoffman and Gelman 2014). However, as OpenBUGS

was the only software with the facility to fit spatially autocorrelated random effects, these

could not be used for the model in Section 4.2.2.

The result of the BUGS estimation is a number of posterior parameter samples representing

the posterior parameter distributions which can be summarised using summary statistics.

If a point estimate of parameters is required, the mean value of the distributions can

be taken (Zyphur and Oswald 2015). 95% credible intervals can be calculated using the

2.5th and 97.5th quantiles of the distributions. These give an indication of the spread of

the posterior distribution for a parameter, and a range of values it is most likely to take

(Zyphur and Oswald 2015).

4.3 Interpretable summaries of multilevel models for spatio-

temporal networks

The model in section 4.2.2 can be used to capture temporal patterns of flow for individual

edges in a spatio-temporal network. These patterns of edge properties are represented as

a spline function. Interpreting the coefficients of spline models does not always provide a

real-world or easily understood meaning. In addition, visualising the temporal patterns

of flow for all edges in a potentially large network typically would produce cluttered and

unreadable graphs, especially if trying to incorporate spatial dimensions.

4.3.1 Temporal pattern features

Colak et al. (2013) presented, on a map of a transport network, the timing of a specific

event, defined as a specific feature extracted from a stochastic model of road congestion.

This approach to choosing a specific aspect of interest of a temporal pattern lead to the

production of a relatively uncluttered graph with a clearly interpretable real-world mean-

ing. The uncluttered nature of this graph does rely on the structure (density, spatial

configuration) of the network, but overall a graph containing one numeric piece of infor-

mation per edge is less cluttered than one attempting to display a temporal pattern for

each edge.

To simplify their interpretation, various pattern features can be extracted from the func-
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tions specifying continuous temporal patterns of flow along network edges. These could

then be mapped or further analysed. For example, similar to Colak et al. (2013), the

timing of when flow reaches a certain value can be extracted. Alternatively, the timing

of particular shapes in the function, regardless of the flow value at that time could be

derived. For example, calculus could be used to extract maxima and minima or the slope

of the function at any time point. These would be calculated by differentiating the flow

function fitted for each edge. The derivative produced represents the slope of the flow

function for a given edge over time. Where the slope is equal to zero, the flow function is

either undergoing a change in direction – this represents either a minimum or maximum

– or a ‘saddle point’ where the slope of the function momentarily reaches zero but the

value of the function is not extreme (John 2009; Thompson 1919). The minimum and

maximum would represent the times of day at which the fewest or most passengers are

flowing through a particular edge on the network, respectively. The slope itself gives an

indication of how quickly the number of passengers is changing. This information could

be used to consistently define the start and end of a ‘rush period’ where the number of

passengers begins increasing rapidly at the start of the rush period, or stops decreasing

rapidly at the end of it. This could give a good indication of how long edges in different

parts of the network are exposed to high travel demand.

4.3.2 Continuous whole-network properties

While extracting pattern features for each edge reduces the requirement to represent tem-

poral patterns in a data visualisation, summarising whole-network properties would reduce

the requirement to represent spatial variation. Many complex network properties are esti-

mated using edge weight information (Newman 2003). Flow (or any edge property) might

be thought of as an edge weight. Given a continuous temporal function of flow for each

edge, we are able to calculate continuous temporal functions for a range of whole-network

properties. For example, weighted edge density, or clustering coefficients (Horvath 2011;

Saberi et al. 2017). These continuous functions could be used to clearly represent how

network properties change over time, and to extract whole-network properties at any time

point. If measurements of edge properties like flow are not made at regular intervals, and

the same time for all edges, this would not be possible without modelling patterns of flow

for each edge unless the data were aggregated.
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4.3.3 Estimation of uncertainty

It is relatively easy to calculate point estimates for pattern features and a single function for

continuous-time whole-network properties using mean parameter estimates from posterior

parameter distributions. It is important to present these estimates with a representation

of uncertainty, as we would with 95% confidence intervals for a frequentist analysis or with

posterior parameter distribution summary statistics for Bayesian estimation.

For each sampled set of posterior parameters produced during the estimation process,

there will be corresponding sample pattern features and a corresponding continuous whole-

network property function. If all sample pattern features are extracted from the models

using each set of parameter estimates, we produce a posterior pattern feature distribution.

This can be summarised in much the same way as the parameters themselves, using

quantiles of the posterior distribution to represent a 95% credible interval. If a continuous

whole-network property function is calculated for each set of parameter estimates, this

set of functions can be used to summarise the posterior distribution of the whole-network

property at particular time points. This could be represented, for example, as a mean

whole-network property function of time with a set of simultaneous 95% credible intervals.

Note that if simultaneous credible intervals are calculated, the quantiles of the posterior

distribution used to generate the intervals must be adjusted for multiple testing (Francisco-

Fernández and Quintela-del-Ŕıo 2016).

4.4 Simulations to assess model performance

Ideally, we want models to estimate parameters, pattern features and/or continuous tem-

poral whole-network properties with accuracy and precision. Accurate estimates are unbi-

ased – that is, they do not systematically under- or over-estimate parameter values (Porta

2014). Precise estimates show a small amount of random variation around the parameter

values (Porta 2014). For example, the posterior parameter distribution might be very

narrow if an estimate is precise, but wide if it is not.

If we wish to assess accuracy, it is important to know the true parameter value or parameter

distribution we are estimating, in order to compare estimates to it. One way to do this

is to use simulated data which is generated with known underlying values. If a series
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of simulated datasets with the same underlying values are generated and analysed, we

can calculate the degree of bias for each dataset and use this to estimate the mean bias

of our analysis method (Morris et al. 2019). We can also investigate the precision of

our estimates in the context of known information about the dataset (Rasmussen et al.

1998). The use of simulations is a common method to assess performance of statistical

models. However, it only assesses this performance in a specific set of circumstances.

While this is important in investigating the performance of measures when assumptions

required by certain models are broken, it does not produce general results regarding model

performance and so performance of models in the face of many different circumstances

should be evaluated (Morris et al. 2019).

Simulation studies also tend to view model assessment from a frequentist viewpoint –

identifying the difference between estimated parameter values and the underlying ‘true’

parameter values used to simulate the data (Morris et al. 2019). This is not an ideal method

for analysing the performance of truly Bayesian methods. However, while Bayesian esti-

mation tools are being used in this situation, the analysis conducted is not following a true

Bayesian philosophy, as such. The prior distributions specified (when the model is applied

in 7) are loose and do not provide much information about prior knowledge or beliefs. It

is common practice for this approach to be used when applying complex multilevel models

because Bayesian estimation tools perform far better than traditional frequentist methods,

for example likelihood-based methods, when estimating them (Browne and Draper 2006).

When evaluating methods through simulation, the simulated parameter value is compared

to the estimated parameter value for each simulation. The mean and spread of the distri-

bution of this measure across all simulations gives an indication of the amount of bias in

parameter estimates (Bland and Altman 1999). The appropriateness of 95% confidence in-

terval widths can be estimated by identifying what percentage of them cover the simulated

value – one would expect this to be 95% (Rasmussen et al. 1998).

In the simulations in Chapter 8, the posterior distribution of each parameter is of interest

as well as the point estimates of parameters calculated from them. We must compare

the posterior distribution to point values for simulated parameters in each simulation.

To do this, the location of the simulated parameter value in the posterior distribution

was calculated as a z-score. Across all simulations we would expect these measures to
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form a distribution with mean zero and standard deviation one. This process aims to

assess whether the simulated parameter value is likely to be from the same distribution as

the posterior parameter distribution and gives us an indication of whether the estimated

posterior distributions for parameters are accurate in their location and appropriately

precise in terms of their spread.

This approach is also useful for assessing individual-level parameters – in the process used

to simulate data these parameters vary randomly (in a process analogous to a random

effects model) and only population parameters relating to these random effects are specified

as an input. This means the simulated parameter values for a given observational unit

will vary between simulations considerably, and an estimate of accuracy and precision

that is not affected by this is required. Details of the generation of simulated data for the

purposes of analysing the models discussed in Section 4.2.2 is discussed in Chapter 5.

4.5 Summary

This chapter outlines a continuous-time, cross-classified multilevel model that can be used

to model temporal patterns of edge properties in a sptio-temporal network. Also described

in Section 4.3 is a process for simplifying the results from this model, by extracting tem-

poral pattern features or by generating temporal patterns of whole-network properties.

In Chapters 7 and 8 these methods will be applied to spatio-temporal network data and

tested using simulations.

71



Chapter 5

Data

5.1 Introduction

This chapter introduces data used throughout this project to test and assess the per-

formance of methods outlined in Chapter 4. First, the development of a longitudinal

simulation tool to generate simulated data representing patterns of edge properties asso-

ciated with a spatio-temporal network is outlined. Then, details of real data associated

with the London Underground rail network from Transport for London Open Data are

introduced.

5.2 Simulated data – development of a longitudinal simula-

tion tool

To use Monte Carlo simulations to test the accuracy and precision of a method, we must

simulate data with known properties that we aim to recover by modelling it (Morris et al.

2019). It is also important to be able to vary these properties and the data structure to

test modelling methods in different circumstances – this will help identify situations in

which the models do not perform well. A simulation function was developed to produce

longitudinal data for multiple observational units with the option to include spatial loca-

tions or origin-destination data, along with appropriate covariance structures that reflect

the data generating process assumed.
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5.2.1 Requirements for a simulation function

Measurement schemes

Temporal data are available from a number of different sources: they may be collected

specifically for an experimental or observational study (Albert 1999; Golding 2004), or

secondary data such as electronic health records may be used (Herrett et al. 2015). It is

normally not possible to continuously measure data, and so often repeated measurements

of a longitudinal variable are taken. There are several different attributes which can

describe the structure of these measurements, and these can govern which analysis methods

are suitable for a given dataset. These include:

• Length of follow up – the length of time over which repeated measures of the variable

are taken.

• Frequency of measurements – the amount of time between each measurement taken.

• Number of measurements – whether different individuals have the same number of

measurements in the study or not (Fitzmaurice and Ravichandran 2008).

• Measurement simultaneity – whether all individuals are measured at the same time

or not (Fitzmaurice and Ravichandran 2008).

• Between observational unit measurement interval heterogeneity – whether the in-

tervals between measurements differ between individuals (Pullenayegum and Lim

2016).

• Within observational unit measurement interval heterogeneity – whether the inter-

vals between measurements vary within individuals (Pullenayegum and Lim 2016).

Figure 5.1 shows examples of how the last three of these attributes – measurement simul-

taneity, between observational unit interval heterogeneity, and within observational unit

interval heterogeneity – can interact to produce different measurement schemes. Some po-

tential combinations are not possible: if there is between individual measurement interval

heterogeneity, for instance, measurements cannot also be simultaneous. Variation in these

three attributes is usually caused by the adoption of a particular measurement scheme.

Measurement schemes may be categorised into three types: regular, wave and irregular.

Regular measurement schemes usually follow a strict measurement schedule with no vari-
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Figure 5.1: Visualisation of different properties describing measurement schemes

ation in measurement times between individuals (Hidas and Wagner 2004). These often

result in between observational unit homogeneity in measurements and sometimes within

observational unit homogeneity, especially if measurements are taken automatically by a

sensor or similar device.

Wave measurement schemes often have a schedule, but there may be variation in the mea-

surement times around this, such that the data collection takes place in a series of waves

(Van Wissen and Meurs 1989). This may occur, for example, in a temporal healthcare

study where participants are called back for examination every three months, but the

dates of examinations may vary slightly due to their availability. This often results in

between observational unit measurement interval heterogeneity.

Irregular measurement schemes do not follow a schedule, so measurements occur with no

specific pattern throughout the time period (Pullenayegum and Lim 2016). This may

occur if measurements are taken when an event occurs, for example, information about

journeys taken on public transport collected when each journey takes place. Datasets

with these measurement schemes may also be created by combining several datasets with

differing measurement schemes. This often results in between and within observational

unit measurement interval heterogeneity. The timing of measurements may be almost

completely random, for example measurements of seismic events, but some event-driven
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measurements may be distributed unevenly throughout time, for example if measurements

are taken when passengers check into a rail system there will probably be more measure-

ments during rush hour commuting periods. In some cases, the timing of the measurements

may be related to their value.

It is important to be able to test the effect of different measurement schemes on perfor-

mance of statistical models. Therefore, it is necessary for a simulation tool to be able

to produce varied measurement schemes, including regular, irregular and wave data, and

with control over the six attributes listed above.

Pattern flexibility

The ability of a model to recover a temporal pattern might be affected by the complexity of

the pattern itself. Temporal patterns can vary greatly in complexity, from simple straight

lines to complex curves (Cole et al. 2010) and patterns that might involve step changes

(Matthews et al. 2016) or discontinuities (Howe et al. 2013). It is important for a simulation

tool to be able to produce a large range of different patterns with varying degrees of

flexibility in order to test models under varied circumstances. As discussed in Section

4.4, simulations only test the performance of methods in specific circumstances. Testing

a large number of circumstances with abstract patterns provides a wide view of a model’s

capability, but it may be more important to be able to link simulated circumstances to

real situations where the model might be used. Having a large degree of control over the

temporal patterns is therefore key to making sure simulations reflect real situations as

much as possible.

It is also important to have a degree of control over the variation in patterns between

observational units in the data. For some processes, we would expect temporal patterns

to follow a similar shape for all observational units. For example, in childhood growth, we

expect the majority of children to grow relatively slowly before teenage years, go through

a ‘growth spurt’ of fast growth, and then slow the speed of growth until they remain the

same size (Cole et al. 2010). However, there will likely be some variation in the exact shape

of these patterns between observational units – these can be thought of as transformations

of a growth function as shown in Figure 5.2. A larger child will have a greater mean size,

which can be represented by a y-axis translation of the growth curve. Some children may

75



5.2 Chapter 5

have later growth spurts than others, resulting in the growth curve being translated along

the x-axis. Some children may grow less in the same growth spurt period as others, which

can be represented by a scale or stretch transformation in the y-axis. A longer growth

spurt period might be described as a scale or stretch transformation in the x-axis. It

would be useful for a simulation function to be able to produce variation in some of these

pattern properties between individual observational units.

Figure 5.2: Different possible transformations of a growth function

Correlation structures

When repeated measurements are made to record temporal patterns for a number of

different observational units, it is expected that measurements within observational units

will not be completely independent (Fitzmaurice and Ravichandran 2008). That is, they

will be more similar to each other, than to measurements for a different observational unit.
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This phenomenon is called autocorrelation (or in some domains clustering or interference).

In addition to this, measurements closer to each other in time are also likely to be more

similar than measurements farther apart in time. This is referred to as temporal autocor-

relation (Fitzmaurice and Ravichandran 2008).

Correlation between individual observational units may also occur as a result of placement

in space. According to Tobler’s first law of Geography, “near things are more related than

distant things” (Tobler 1970). The distance between two objects can be defined in a

number of ways, however. For example, distance may be measured as Euclidian distance,

travel time using a certain mode or transport, or as the number of edges traversed between

two network nodes (Apparicio et al. 2008; Newman 2018). Spatial clusters or communities

may also exist, for example, of people living in a certain district, or people with travel

patterns between the same two areas (Gesler 1986; Zhu and D. Guo 2014).

It would be useful for a simulation tool to produce data with some of the types of temporal,

spatial or network autocorrelation, though to capture the full range of possibilities would

be extremely challenging. It would be useful for the strength of these correlations to be

variable, to test how models cope with different data structures.

Individual level knowns

While many studies aim to capture population level information from a model, some

studies may seek to examine the properties of subgroups or individual observational units.

In Chapter 4, the model specified can be used to examine information at any of these three

levels. It would be useful for a simulation tool to have known individual level parameters

describing the observational unit level temporal patterns and subgroup level parameters

(if subgroups are included), as well as known population level parameters, in order to

examine the recovery of information at all levels of the data. However, it is important

to note that attempting to predict or interpolate information at an individual level is not

likely to yield precise results – statistical methods predict expected values for groups of

individuals (either at the whole population level or in subgroups) and results drawn at the

level of an individual unit of observation from a model such as that in Section 4.2.2 are

based on this individual belonging to two groups (origin and destination stations), each

of which have an average expected value (Wilkinson et al. 2020). This means the results

77



5.2 Chapter 5

are likely to lack precision at this individual level, however, it is still of importance for a

simulation tool to be able to assess this effect.

5.2.2 Potential approaches

Hidden Markov chains

Markov chains can be used to construct time series data. At each time point, an observa-

tional unit is assigned a state out of a finite set of states. The state of the observational

unit at the next time point depends on the probabilities of transitioning from the cur-

rent state to any other available states (P. Jones and P. Smith 2018). These transition

properties depend only on the current state, not any previous states, which gives rise to

the Markov property, or ‘memorylessness’ (P. Jones and P. Smith 2018). The structure

of a Markov chain system can be visualised using a phase diagram, such as Figure 5.3.

This represents the state of traffic on a road which can be congested or free-flowing. The

diagram shows the states in ovals with transition probabilities attached to the arrows be-

tween them. When in a free-flowing state, there is a 0.6 probability of the state at the

next time step also being free-flowing, and a smaller probability of the road becoming

congested by this time. If congested, the road is much more likely (probability equal to

0.8) to be congested at the next time step. There is only a 0.2 probability of the road

becoming free-flowing by the next observation time. Figure 4.3 also shows the transition

matrix for the system shown – this matrix defines the Markov chain by detailing transition

probabilities between all possible pairs of states (P. Jones and P. Smith 2018).

Figure 5.3: Transition diagram and matrix for a Markov chain representing the state of
traffic on a road
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Markov chains normally advance forwards in equal, discrete time steps, but continuous-

time Markov processes can be described. These normally include two random processes

for each state transition – a decay function (often exponential) describing the probability

distribution for when the next state transition will occur from the current state, and

transition probabilities for what the next state will be (Liggett 2010); both depend on the

current state.

Transition probabilities in Markov chains can be allowed to depend on time, as well as the

current state. Where this is the case, the Markov chain is said to be non- or in-homogenous

(P. Jones and P. Smith 2018). The transition matrix may vary discretely over time or each

transition probability may be defined as a continuous function of time.

The states in Markov chains could be thought of as various values of a categorical variable;

however, these processes can also be used to simulate continuous variables in time series

using hidden Markov chains (McLachlan and Peel 2000). In a hidden Markov chain, each

observational unit moves between different states as described above. For each measure-

ment in time, however, the state an observational unit is in determines the distribution

from which a continuous variable is sampled (McLachlan and Peel 2000). This produces

a series of samples from continuous distributions at different points in time, with the

added complexity of moving between different states/sample distributions at different

time points. The sampled continuous variables could be treated as absolute values, but

also as differences between the current value and next measurement.

An initial approach to simulation was developed based on a non-homogenous hidden

Markov chain process. This was intended to represent growth of individual observational

units (for example, growth in the weight of children) through three ‘growth phases’: initial

slow growth, growth spurt, steady state. State transition probabilities depended on the

current state and time, following a function of time with limits zero and one. At each

observation time, the amount of growth since the last observation was sampled from a

distribution that depended on the current state. The phase diagram for this process is

shown in Figure 5.4. The code for this is contained in Appendix B.

Figure 5.5 shows data produced by this hidden Markov chain process for 15 observational

units, with the phase of each observation indicated. This initial approach was able to

produce complex patterns through the inclusion of three phases. It could be extended
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Figure 5.4: A hidden Markov chain process to simulate a three-phase growth curve

to produce measurement time variation and potentially extended to create clusters of

similar chains (for example, with differing transition probabilities). The process produces

autocorrelation within each observational unit, as change (growth) values are added to

the previous value, meaning observed size is dependent on previous value. However, the

degree of autocorrelation is not specified explicitly and depends on the distributions from

which observations of growth are sampled. Additionally, while we know the average value

of change for each growth phase (an average growth rate parameter) we do not have other

known parameters, such as mean size. The known underlying parameters are also not at

the individual observation level but known at the population level.

An attempt to develop a stochastic simulation process with a known individual level mean

value, but still based on change to ensure autocorrelation, was developed using code in

Appendix B.

In this data simulation process, each observational unit has a known average value selected

from a normal distribution. Each is then assigned an initial value. Each successive change

value is sampled from a different distribution depending on whether the previous value was

above, below or equal to the desired average for each observational unit. If the previous

value was above the average, the change value was sampled from a negative log normal

distribution. If the previous value was below the average, the change value was sampled
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Figure 5.5: Three phase growth curves generated by the hidden Markov chain in Figure
5.4

from a positive log normal distribution. If the previous value was equal to the average,

the change value was sampled from a normal distribution. This produced data such as

that shown in Figure 5.6.

The simulation produced a series of random observations which generally had an average

within one unit of the specified average for each observational unit. The performance of

this process could potentially be enhanced by including information from more than one

previous measurement to give an indication of the ‘current’ average value achieved. This

would represent a departure from the hidden Markov chain process, which specifies that

the current value only depends on the one prior. The simulation process used to generate

these data means that only the mean and degree of random variation could be specified

– the change for each observation (and therefore other parameters such as average slope)

depends on this parameter and therefore cannot be specified separately.

A process such as this could be used to generate data within each phase of a hidden

Markov process similar to that described earlier. One advantage of this approach is that

is produces data based only on previous values in time and does not account for future

values. The stochastic simulation approach reflects the nature of real-life data generation,
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Figure 5.6: Data generated from a potential simulation process using a known average
value for each observational unit

which is likely to truly be based on stochastic processes (Oud et al. 2012). However, there

are some attributes listed in Section 5.2.1 that would be difficult to specify when simulating

data using a hidden Markov chain approach. The strength of autocorrelation would be

difficult to directly specify when constructing a hidden Markov chain simulation tool. It

would also be hard to specify a range of other parameters not used in the construction

of the process, such as individual level mean, slope or residual variation, particularly as

many of these different parameters are highly related to each other. Additionally, it is

hard to produce more complex patterns within a phase, for example, a curved temporal

pattern. With these limitations, it is probable that a simulation tool based on a hidden

Markov chain process would fall short of the requirements discussed earlier.

82



Chapter 5 5.2

Hierarchical structure

An alternative approach to stochastic simulations was considered: one based on mathe-

matical functions with random error added. This method of simulation would allow the

user to specify a variety of different parameters of interest simultaneously, and in the form

that they would likely be estimated by the statistical models under investigation.

The parameters would describe a known function underlying the simulated data, around

which random error would be generated. A hierarchical structure would allow some varia-

tion in the ‘true’ function for individual observational units, which could be specified and

recorded (Goldstein 2011). This variation could be structured in clusters, such that true

functions for individual observational units are more similar within clusters than between

them (Goldstein 2011).

To produce phases, similar to the first simulation in this chapter, a function was developed

that included two continuous-time functions, joined by a step change. The basic structure

of each function is specified, and the mean and amplitude are allowed to vary between

observational units. The timing of the step change between functions is also allowed to

vary between observational units. The distribution that the random variation follows

can be specified, thereby tuning the autocorrelation structure. In addition, observational

units can be grouped into specified or randomly selected clusters or subgroups with known

average properties. Each cluster has a different average mean, amplitude and step change

time for the functions, around which individual level means, amplitudes and step changes

are sampled for relevant observational units.

Observed data can then be generated by adding random error to these known individual

level functions at specified time points. Different measurement schemes can be generated

by specifying or randomly sampling the times at which these observations occur. Temporal

autocorrelation can be specified when sampling random error by using a multivariate

normal distribution. Spatial autocorrelation can also be incorporated similarly if location

information for each observational unit is specified or randomly generated. The layering

of autocorrelation structures – temporal, spatial and cluster-based – allows fine tuning of

the data generated which helps the user to tailor the complexity to match many applied

contexts.
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As well as including random variation between observational units, capacity to include a

fixed effect of a third variable (with one value for each observational unit) on the amplitude

of the first temporal function (before the step change) was included. The third variable

must be generated separately before using the simulation function.

This function simulation approach allows for much greater specification of some parameters

that a hidden Markov chain process would not (not easily, at least): known individual level

continuous-time information, known spatial and temporal autocorrelation, fixed effects,

and known subgroup level information. Having known individual level functions means

that the value of the function at any time, or information about ‘features’ of it (e.g.

maxima and minima) can be calculated easily.

However, the data generation process, with a function or relationship underlying observed

data matches more closely how data are analysed than necessarily how they are generated

– in reality, individual level data are generated through some sort of stochastic process

like growth and only emulate following an underlying ‘function’ through some aspects of

determinism operating within the stochastic processes driving data generation (Oud et al.

2012). This means that the hierarchical method of simulating data may be considered

more of a departure from real data generation processes than the hidden Markov chain

method, but its similarity to the models being used to analyse it is convenient for the

purposes of testing them. For this reason, a hierarchical structure was chosen for the

construction of a simulation tool.

5.3 Simulation tool function

5.3.1 Function process

The function simulate.trajectory simulates longitudinal data for one variable for a se-

ries of individual observational units. The data takes the form of a pattern or trajectory

with two sections joined by a step change. The two sections can take a range of forms pa-

rameterised in terms of time. Individual parameters for trajectories are randomly sampled

from a population distribution and recorded so they are known. A first order temporal

autocorrelation structure can be specified for within-individual error terms. Spatial groups

can be specified, either for a point location or origin-destination data, and the mean pa-
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rameter values are free to differ randomly between groups, and randomly vary between

observational units within them to form clustered data. Between individual error correla-

tions can also be specified. Measurement times can be sampled to fall regularly, in waves

or to be completely irregular.

The process the function uses to achieve these aims is outlined in the flow chart in Figure

5.7 which is duplicated in a larger size in Appendix C. Code, required libraries, arguments,

function output and common warning messages for the simulation function are available

in Appendix B.

5.3.2 Example of use

Figure 5.8 shows example data simulated for 50 individuals over 30 time points. Code

for this simulation is shown in Appendix B. The first function section follows a log(time)

curve and the second follows a cos(time)× time curve. The coefficients for these are from

a lognormal distribution with parameters 1 and 0.1 and normal distribution with param-

eters 1 and 0.5, respectively. Individual step change times are chosen from a uniform

distribution spanning between times 10 and 20 and the step change value is chosen from

a normal distribution with mean -100 and standard deviation 3. While error terms are

normally distributed, individual level error standard deviations are chosen from a lognor-

mal distribution. Adjacent measurements within individuals have an error correlation of

0.5. Simultaneous measurements for different individuals have an error correlation of 0.5.

Measurements are taken irregularly, 10 times for each individual.

5.3.3 Limitations

Several limitations have been identified for this specific function approach to simulating

longitudinal data. Firstly, a step change must be specified for the distribution to run. As

the first and second section slope parameters (at the individual level) are randomly selected

from orthogonal distributions, the function cannot be manipulated to follow exactly the

same shape throughout the full measurement period, but the step change can be set to

have a value of 0 for all individuals by specifying a distribution with no variation. It would

also be possible to discard data on one side of the step change if desired, or to specify the

location of the change after the sampling period. If the latter of these two options is used,

some warnings are produced as plots of the distances from the step change and average 2
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Figure 5.7: Flow diagram describing the processes underlying the simulation function. A
large scale version is available in Appendix C
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Figure 5.8: Example data generated by the simulation function

inputs cannot be produced. If the step change is required to occur at the same time for all

individuals (for example, to represent an external event), a distribution with no variation

may be specified for this time.

Secondly, two parameter values must be specified for each distribution involved, which

excludes distributions with other numbers of parameters, such as the exponential distri-

bution (R Core Team 2020b).

5.4 Real data – Oyster card sample, Transport for London

open data

While simulated data can be constructed with a complex structure and random error, it

still often represents an ideal situation, as the level of complexity underlying the generation

of real data cannot feasibly be matched. While there is no way of using real data to assess

the accuracy of methods, it is important to provide illustrative applications of new methods
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methods to real data, on which they are ultimately intended to be used. This provides

some information about how computationally intensive they are to apply and, for example,

whether the estimation process performs adequately in the presence of the complexity of

real data.

Common applications of network analysis are encountered in transport studies. For ex-

ample, evaluation of road networks, rail networks or public bike-sharing systems (Bagchi

and White 2005; Hidas and Wagner 2004). Transport systems with different structures

will likely produce data with different structures. For example, in a public bike system

where bikes are ridden between docking stations, or a rail system with a ‘tap-in-tap-out’

card system, it is easy to record the origin and destination of individual journeys made by

users (Bagchi and White 2005). For car travel through a road network, there is no cen-

tral system that automatically collects this information and it is more difficult to collect

individual origin-destination trip data about a large volume of trips (Hidas and Wagner

2004). Information about traffic flow through car networks might therefore be collected in

different ways, for example, a sensor system may count the number of cars on a particular

road segment at a given time of day, or the speed of traffic flow (Hidas and Wagner 2004).

Traffic flow counts, if automatic, are likely to occur at regular intervals, whereas origin-

destination information about trips will be recorded at irregular intervals, whenever each

trip occurs (Hidas and Wagner 2004).

Even though data from both public bike sharing systems and rail systems may be in the

form of individual trips, the transport systems themselves have different structures. In

a public bike sharing system, users are free to cycle along any route from their origin to

destination whereas, in a rail system, a fixed range of movement along railway lines is

in place (Bagchi and White 2005). This means that while, for both networks, a graph

structure can be used to represent pairs of origin and destination stations for trips, rail

systems contain additional network structure describing the railway line connections. This

means that vertices and edges in a rail network have additional network-related properties

beyond summarising trip information.

While there are a range of datasets available related to transport, one potential advantage

of continuous-time methods is their inherent ability to deal with irregular measurement

intervals. Trip data from public transport systems, that is measured whenever a trip
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occurs, exhibit this structure and therefore would be ideal for testing continuous-time

models. The existence of a fixed underlying network gives rail network data interesting

properties to examine; for example, how the number or type of connections from a railway

station relate to patterns of passenger flow to or from that station. These properties

provided a useful basis for including fixed effects in some simulations. The data chosen

concerned journeys in the Transport for London Oyster Card system. This included three

separate datasets:

• A 5% sample of Oyster Card journeys for one week in November 2009 (Transport

for London 2020b).

– This includes all types of journeys using Oyster Cards (the tap-in-tap-out pay-

ment system for Transport for London) – bus, Underground rail, Overground

rail, Docklands Light Railway and some National Rail services.

• The locations of London Underground Stations (Transport for London 2020a)

– Locations were provided using longitude and latitude coordinates. Some sta-

tions were missing, these were added using information from Google maps.

• The rail network connections and zone information for each station in the London

Underground

– These data were collected by hand from a September 2009 London Underground

Map (Transport for London 2009b) for rail connections and a December 2009

London Underground Map (Transport for London 2009a) for zone information

(the September 2009 Map did not include Zone information).

5.4.1 Data Structure

Oyster Card Sample

The Oyster Card data consisted of a 5% random sample of all journeys recorded on Oyster

Cards within one (unspecified) week in November 2009. 2623487 journeys were recorded

in total. The information recorded about each journey is detailed in Table 5.1.
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Variable Variable meaning Possible values

downo Number referring to day of the

week

Integer 1-7 (1 refers to Sunday)

daytype Day of the week Sun, Mon, Tue, Wed, Thu, Fri,

Sat

SubSystem Transport system used LUL, NR, LRC, DLR, HEX,

LTB, TRAM

(London Underground, National

Rail, London Overground, Dock-

lands Light Railway, Heathrow

Express (Train), London Trans-

port Buses, Trams).

Combinations of 2 or 3 subsys-

tems are separated by ‘/’

StartStn Origin Station Name or ‘Un-

started’

Character

EndStation Destination Station Name or

‘Unfinished’

Character

EntTime ‘Tap-in’ time (journey start

time)

4-digit numeric

EntTimeHHMM ‘Tap-in’ time (journey start

time)

HH:MM time

ExTime ‘Tap-out’ time (journey end

time)

4-digit numeric, for all bus jour-

neys this is set to midnight as no

tapping-out takes place

EXTimeHHMM ‘Tap-out’ time (journey end

time)

HH:MM time, for all bus jour-

neys this is set to midnight as no

tapping-out takes place

ZVPPT Zone restrictions for any loaded

tickets (Oyster cards can be

used on a pay-as-you-go system

or by pre-loading travel cards)

Code consisting of a letter and

four digits.

Letter: B/Z – Bus or Zone

First two digits: 01-04
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Variable Variable meaning Possible values

Second two digits: 02-10

If following the letter Z, digits

indicate the two zones bounding

the area in which journeys must

take place

‘—–’ indicates no travelcard

loaded

‘0’ indicates no restriction, e.g.

for the Freedom Pass ticket

JNYTYP Type of payment (Oyster cards

can be used on a pay-as-you-go

system or by pre-loading travel

cards)

TKT, PPY, MIX

(Ticket i.e. travel card pre-

loaded onto Oyster Card, pay per

use, MIX appears to indicate a

travelcard is loaded but a fare

has been applied, for example, if

travel has occurred outside zones

covered by the travelcard)

DailyCapping Whether the fare was capped

(a daily cap, dependent on the

zones used, is applied to journey

fares)

Y/N (Yes or No)

FFare Full fare applied in pence Numeric

DFare Discounted fare applied in pence,

for example if daily cap is applied

Numeric

RouteID Bus route ID (if a bus journey) Numeric or ‘XX’ for non-bus

journeys

FinalProduct Method used to pay (Oyster

cards can be used on a

pay-as-you-go system or by

pre-loading travel cards)

PAYG

LUL Travelcard-7 Day

LUL Travelcard-1 Month

LUL Travelcard-Period

LUL Travelcard-Annual
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Variable Variable meaning Possible values

LUL Travelcard-Annual

LUL Travelcard-Time Not Cap-

tured

Freedom Pass (Elderly)

Freedom Pass (Disabled)

Bus & Tram Pass-1 Month

Bus & Tram Pass (Child Free)

Bus & Tram Pass-7 Day

Bus & Tram Pass – B&T

Discount-7 Day

Bus & Tram Pass – B&T

Discount-1 Month

Bus & Tram Pass-Annual

Bus & Tram Pass-Period

Bus & Tram Pass – B&T

Discount-Period

Staff Pass – Staff Nominee

Staff Pass – Bus Operator

Staff Pass – Bus Operator Nom-

inee

Staff Pass – Staff Retired includ-

ing LCB

Tfl Travel – Free

Table 5.1: Variables in Oyster Card data

Transport for London Station Locations

Information about the location of 302 Transport for London Stations was available as a

KML file, the variables in which are detailed in Table 5.2. Not all stations were included

– this is discussed below.
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Variable Variable meaning Possible values

Name Station Name Character string

Description Station Address (Name, London
Underground Ltd., Street, Lon-
don, Postcode)

Character String

Geometry Longitude and latitude of station Numeric vector of length three:
longitude, latitude, 0

Table 5.2: Variables in Transport for London station location data

Rail network connections

Data about 305 Transport for London Stations were collected from the London Under-

ground maps from September and December 2009. The September map was published

at the most recent date before the Oyster Card sample dates (November 2009) and this

was used to collect information about railway connections. The September map did not

include zone information, so this was collected from the December 2009 map. The variable

details are shown in Table 5.3. The full dataset is available in the Online Appendix and

scanned copies of the maps are shown in Appendix D.

Variable Variable meaning Possible values

ID ID number of each station Integer

Name Station Name Character string

Zone Fare zone of station according to
2010 Underground Map

Integer

Neighbours ID of all stations directly linked
by London Underground Rail
line, according to 2009 London
Underground Map, separated by
underscore

Character formed of integers sep-
arated by underscores

Table 5.3: Variables collected describing London Underground network connections

Initially, stations were assigned a numeric ID in alphabetical order. These IDs were added

as annotations for stations on scanned copies of the maps. For each station, the ID number

of all stations directly connected by a London Underground line (without passing through

any other stations and not including Docklands Light Railway or Overground lines, on the

September 2009 map) were recorded, separated by an underscore character, in a string.

This gave a compact version of the adjacency matrix describing the London Underground

network. For each station, the fare zone in which it was located for the December 2009 map

was recorded. Stations located in two fare zones (indicated on the maps) were recorded as

belonging to the lowest numbered fare zone (e.g. a station in zones 2 and 3 was recorded as
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zone 2). In this case, zone location was used only to select a subset of the data to analyse

as an example application, so this variable does not form part of any models. Using R, the

compact adjacency information was expanded into a full adjacency matrix. This should

be symmetric as the connections are undirected (Newman 2018). Checking if the matrix

was symmetric was used to check for errors in manual data collection.

Linking Datasets

Linkage of the three datasets was carried out by matching station names. There were three

stations not included in the location data (Heathrow Terminal 5, London City Airport and

Wood Lane) – these were added using longitude and latitude information collected from

Google Maps. Shepherd’s Bush Market was not explicitly included in location data, but

two Shepherd’s Bush stations (‘Central’ and ‘Hammersmith and City’) were included –

these were taken to refer to the lines running through Shepherd’s Bush Station (Central

line) and Shepherd’s Bush Market (Hammersmith and City line). Therefore, the loca-

tion and name of ‘Shepherd’s Bush Hammersmith and City’ were changed to represent

Shepherd’s Bush Market station.
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Chapter 6

Analysing trajectories of a

longitudinal exposure: A causal

perspective on common methods

in lifecourse research

Citation: Gadd SC, Tennant PWG, Heppenstall AJ, Boehnke JR, Gilthorpe MS (2019)

Analysing trajectories of a longitudinal exposure: A causal perspective on common meth-

ods in lifecourse research. PLoS ONE 14(12): e0225217. https://doi.org/10.1371/journal.

pone.0225217

This chapter completes the second aim of the thesis - to identify continuous time methods

suitable for analysis of spatio-temporal networks. In Chapter 3, methods that condition

on the outcome when analysing temporal patterns of variables were discussed. There

are a number of papers in the literature, particularly within lifecourse epidemiology, that

use these methods. For example, Oka et al. (2017) investigate ‘trajectories’ of plasma

glucose levels over nine years before type-2 diabetes diagnosis using a multilevel model

with time-diabetes interaction term. Sabia et al. (2017) use a similar model when studying

‘trajectories’ of physical activity in the years before participants in a cohort study did or

did not develop dementia. Various papers take the approach of plotting z-scores over

time (Bhargava et al. 2004; J. Eriksson et al. 2000; J.G. Eriksson et al. 2003), including
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Forsén et al. (2004) and Barker et al. (2005) which both plot z-scores of body mass index,

weight and height throughout childhood in individuals who later experience coronary heart

disease.

While methods that condition on the outcome have been mentioned elsewhere in the

literature (Tu and Gilthorpe 2010; Tu, Tilling, et al. 2013), no evidence to show the

biased inferences they lead to has been produced. This paper produces evidence to show

this and therefore eliminates methods that condition on the outcome from those suitable

for analysing spatio-temporal networks.

6.1 Abstract

Longitudinal data is commonly analysed to inform prevention policies for diseases that

may develop throughout life. Commonly methods interpret the longitudinal data as a

series of discrete measurements or as continuous patterns. Some of the latter methods

condition on the outcome, aiming to capture ‘average’ patterns within outcome groups,

while others capture individual-level pattern features before relating these to the outcome.

Conditioning on the outcome may prevent meaningful interpretation. Repeated measure-

ments of a longitudinal exposure (weight) and later outcome (glycated haemoglobin levels)

were simulated to match three scenarios: one with no causal relationship between growth

rate and glycated haemoglobin; two with a positive causal effect of growth rate on gly-

cated haemoglobin. Two methods that condition on the outcome and one that did not

were applied to the data in 1000 simulations. The interpretation of the two-step method

matched the simulation in all causal scenarios, but that of the methods conditioning on the

outcome did not. Methods that condition on the outcome do not accurately represent a

causal relationship between a longitudinal pattern and outcome. Researchers considering

longitudinal data should carefully determine if they wish to analyse longitudinal data as

a series of discrete time points or by extracting pattern features.

6.2 Introduction

Lifecourse data comprise longitudinal data (repeated measurements) that span some or

all of life. Analyses of lifecourse data are popular for informing preventative policies to

improve population health and wellbeing (World Health Organisation 2015). For example,

118



Chapter 6 6.2

temporal patterns of growth (recorded in repeated measures of weight) throughout child-

hood might be related to risk of type-2 diabetes by age 40 years to target preventative

measures at those with certain ‘high risk patterns’. To do this effectively, results from

analyses must truly reflect a relationship between patterns of growth and diabetes. This

may not be the case for some commonly used lifecourse methods.

Repeated measurements of a longitudinal exposure, such as weight throughout infancy,

are usually correlated with each other, a phenomenon known as autocorrelation (Littell

Ramon et al. 2000). Therefore, they do not satisfy the requirement for independence of

observations needed for many common statistical analyses (Davidian and Giltinan 1995).

Methods for capturing and analysing longitudinal exposures typically aim to describe

how different patterns of the exposure (e.g. rate of adolescent weight growth) relate

to the outcome. Alternatively, some methods aim to identify specific times or ‘critical

periods’ during which the (causal) effect of the exposure is especially strong, or estimate

the cumulative effect over multiple exposure times (A. Smith, Hardy, et al. 2016; A. Smith,

Heron, et al. 2015).

Generalised methods (g-methods), such as marginal structural models, and methods that

explicitly examine “lifecourse hypotheses” offer the most obvious solution to achieving

these objectives, given their theoretical foundation within an explicit causal framework

(A. Smith, Hardy, et al. 2016; A. Smith, Heron, et al. 2015). G-methods are however

very rarely utilised in applied research, perhaps due to perceived complexity (Naimi et al.

2017). Simpler and more common methods are less likely to incorporate causal thinking;

focusing instead on estimating non-causal associations that are consequently less useful

for informing policies and interventions (Glass et al. 2013; Russo 2012).

With the aid of simulations, this paper explains how lack of causal thinking in analyses

of longitudinal exposures in relation with later-life outcomes can lead to interpretational

biases. Methods that can lead to these biases are compared to an alternative approach

that avoids them. This alternative method, however, is not suitable for all situations;

other methods, such as g-methods, would be necessary in the presence of time-varying

confounding, which is not examined in this paper.
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6.3 Methods

Data were simulated to represent the illustrative example of weight measured yearly from

birth until age 2 years (the exposure) and diabetes diagnosed at age 40 years (the outcome)

from percentage glycated haemoglobin (HbA1c) (Barker et al. 2005). This is analogous

to routinely-collected health data or data from birth cohorts. Three illustrative scenarios

with different causal structures were simulated matching the directed acyclic graphs in Fig

6.1. Each arrow specifies a direct causal relationship between variables. The absence of

an arrow means there is no direct causal relationship, but there may still be a correlation.

In Scenario A, birthweight causes HbA1c and there is no causal effect of growth rate on

HbA1c. In Scenario B weight1 directly causes HbA1c and growth rate indirectly causes

HbA1c through weight1. In Scenario C weight2 directly causes HbA1c and growth rate

indirectly causes HbA1c through weight2. For ease of illustration, confounding (by e.g.

genetics or in utero nutrition) was represented by a single unmeasured common cause of

birthweight and growth (U).

1000 datasets comprising 1000 observations were simulated using R 3.4.3; exceeding the

number required to achieve >99% accuracy for the parameters of interest (Burton et al.

2006). Simulation code is available in the S1 Appendix. Each directed acyclic graph was

converted into a covariance matrix of the weight and HbA1c variables using the parame-

ters in Table 6.1 and standardised path coefficients in Fig 6.1. Data were simulated with

multivariate normal distributions. Linear growth was simulated for ease of interpretation.

HbA1c was dichotomised into a binary variable at the National Institute for Health and

Care Excellence threshold for diagnosing type-2 diabetes (HbA1c >6.5%) (National In-

stitute for Health and Care Excellence 2016). The mean and standard deviation (SD) of

simulated weight values, along with the correlation of each weight measure with HbA1c,

were averaged across all simulations with 2.5th and 97.5th centiles depicting empirical 95%

confidence intervals (CIs).

Variable Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c (%)

Mean 4 8 12 5.8
Standard deviation 2 2 2 1

Table 6.1: Parameters of latent variables and error terms used to simulate data in Section
6.3. The path diagram used to generate observed variables from these is shown in Fig 6.1.

Data were analysed using three methods: Z-score plots, multilevel models (outcome as
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Figure 6.1: Directed acyclic graph showing the structure of causal relationships between
variables in simulated scenarios A, B and C. Growth represents the growth rate of an
individual and is not simulated or measured in the scenario. U is an unknown and un-
measured variable. The age in years at which known variables are measured is shown in
subscript.
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covariate), and multilevel models (two-step). Z-score plots are a simple, graphical approach

that aims to identify exposure patterns that lead to an outcome (Barker et al. 2005; Tu,

Tilling, et al. 2013). Weight at each age was standardised into z-scores using the time-

specific sample mean and SD (National Institute for Health and Care Excellence 2016).

The mean z-scores in those who did and did not develop diabetes were then plotted at

each age and connected. Z-score plots are often viewed and interpreted as ‘patterns’ of

weight that ‘lead to’ the outcome (Tu and Gilthorpe 2010). The plots presented show

mean values from all simulations, with 2.5th and 97.5th centiles depicting empirical 95%

CIs.

The multilevel model (outcome as covariate) analysis involved fitting multi-level models of

weight over time, with covariates for age, diabetes status, and an age-diabetes interaction

term, defined by the following equations (where i indexes observations and j individuals):

weightij = β0j + β1timeij + β2diabetesj + β3timeij ∗ diabetesj + εij

β0 = γ0 + u0j

β1 = γ1 + u1j

var
u0j
u1j =

 θ2u0 θu01

θu01 θ2u1


(6.1)

Intercept and age coefficients were free to vary randomly between individuals. Age was

centred at one year (Blozis and Cho 2008; Mehta and West 2000). A first order autocorre-

lated error structure was specified to account for the effect of each weight measure on the

subsequent. Multilevel models like this are typically interpreted from the coefficient of the

interaction term; for example, a positive interaction between diabetes and time would be

interpreted as meaning that an increased growth rate leads to diabetes. Coefficients for

these interaction terms were recorded over the 1000 simulations to obtain a median and

empirical 95% CIs.

The multilevel model (two-step) approach involved fitting two models, defined by the

following equations (where i indexes observations and j individuals):
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weightij = β0j + β1timeij + εij

β0 = γ0 + u0j

β1 = γ1 + u1j

var

u0j
u1j

 =

 θ2u0 θu01

θu01 θ2u1


(6.2)

log

(
P (diabetes)

1 − P (diabetes)

)
= β3β1 + ε

ε ∼ N(0, θ2ε

(6.3)

The first (Eq 6.2) was a multilevel model of weight by age, with a first order autocorrelated

error structure, to estimate growth as depicted in each directed acyclic graph in Fig 6.1.

The intercept and age coefficients were permitted to vary randomly across individuals

and age was centred. The individual-level age coefficients were recorded, representing

individuals’ growth rates. In the second step (Eq 6.3), a logistic regression model was

fitted with diabetes as the outcome, the age coefficient (growth rate) as the exposure, and

a birthweight covariate to condition for its confounding influence (Shrier and Platt 2008).

The exponentiated model coefficients represent the change in odds of developing diabetes

for each increase of 0.1kg/year (selected due to the small growth rate). Coefficients greater

than one suggest that higher growth rates lead to diabetes. Coefficient point estimates for

the growth rate exposure were recorded to obtain a median and empirical 95% CI from

the 2.5th and 97.5th centiles over the 1000 simulations. All multilevel models were fitted

using R package ‘nlme’ (Pinheiro et al. 2018).

Any errors from the multilevel model (outcome as covariate) and multilevel model (two-

step), such as failure to converge, were recorded, and the estimates from these datasets

were discarded.
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6.4 Results

One dataset for each of scenarios A and B, and 20 datasets in scenario C were discarded

due to models failing to converge. The mean and SD of weight at each time, averaged

across all remaining simulations for each scenario are shown in Tables 6.2, 6.3 and 6.4,

along with mean correlations of each weight measure with HbA1c. In scenario A, there

was a large positive correlation at birth, decreasing to a small positive correlation at age 1,

and a small negative correlation at age 2. In scenario B, there was a near-zero correlation

at birth, increasing to a large positive correlation at age 1, and decreasing to a small

positive correlation at age 2. In scenario C, there is a small negative correlation at birth,

increasing to a small positive correlation at age 1, and a large positive correlation at age

2.

Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c40 (%)

Mean 95%CI Mean 95%CI Mean 95%CI Mean 95%CI

Mean 4.003 3.879, 4.129 8.003 7.889, 8.133 11.997 11.863, 12.117 5.800 5.737, 5.862
SD 2.000 1.910, 2.093 1.998 1.910, 2.090 2.000 1.911, 2.092 0.999 0.955, 1.043
Correlation with HbA1c 0.699 0.664, 0.729 0.029 -0.033, 0.091 -0.105 -0.167, -0.044 1

Table 6.2: Summary of simulated variables in Scenario A. 95%CI represents 95% empirical
confidence intervals.

Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c40 (%)

Mean 95%CI Mean 95%CI Mean 95%CI Mean 95%CI

Mean 4.001 3.870, 4.124 7.999 7.876, 8.127 11.997 11.885, 12.118 5.801 5.741, 5.859
SD 2.000 1.912, 2.088 2.000 1.917, 2.084 1.999 1.915, 2.09 1.000 0.956, 1.044
Correlation with HbA1c 0.027 -0.034, 0.088 0.699 0.666, 0.731 0.229 0.169, 0.283 1

Table 6.3: Summary of simulated variables in Scenario B. 95%CI represents 95% empirical
confidence intervals.

Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c40 (%)

Mean 95%CI Mean 95%CI Mean 95%CI Mean 95%CI

Mean 3.997 3.873, 4.113 8.003 7.882, 8.122 12.001 11.875, 12.122 5.801 5.738, 5.861
SD 2.001 1.919, 2.087 2.000 1.911, 2.087 2.003 1.915, 2.101 1.001 0.959, 1.047
Correlation with HbA1c -0.106 -0.166, -0.043 0.229 0.167, 0.288 0.700 0.666, 0.731 1

Table 6.4: Summary of simulated variables in Scenario C. 95%CI represents 95% empirical
confidence intervals.

The z-score plots for each scenario are shown in Fig 6.2. In scenario A, the diabetic group

has a much higher weight at birth and the points on the graph are far apart, and far from

the overall mean (zero). The points converge over time until they meet, cross and begin

to diverge between age 1 and 2 years. By age 2, the diabetic group have a lower mean

weight z-score than the non-diabetic group. In scenario B, the points are close to the

overall mean at birth, diverging substantially at age 1, before converging back towards the

mean at age 2; the diabetic group always has a higher mean weight z-score than the non-
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diabetic group. In scenario C, the diabetic group starts with a slightly lower birthweight

than the non-diabetic group, but the z-score increases over time, while the non-diabetic

group decreases, leading to a large difference at age 2.

Results from the multilevel models (outcome as covariate) are in Table 6.5 and Fig 6.3,

which show the model-fitted regression lines and true mean weight values for the diabetic

and nondiabetic groups at each time point. The model values do not always fit well

with the mean values (see especially scenario B in Fig 6.3B) because the models were

constrained to linearity (because growth was simulated to be linear for simplicity), but the

mean values in each outcome group change nonlinearly. In all scenarios, the coefficient

of age is positive, confirming that weight increases from birth to age 2. For scenario A,

the negative age-diabetes interaction term and shallower slope of increasing weight in the

diabetes group (Fig 6.3A) suggests that those who developed diabetes grew slightly slower

than those who did not develop diabetes. In scenario B, the small positive age-diabetes

interaction term and slightly steeper slope (Fig 6.3B) suggests that those who developed

diabetes grew slightly faster than those who did not develop diabetes. In scenario C, the

large positive diabetes-age interaction term and steeper slope (Fig 6.3C) suggests that

those who developed diabetes grew substantially faster than those who did not develop

diabetes.

Scenario A Scenario B Scenario C

Parameter Mean 95% CI Mean 95% CI Mean 95% CI

Diabetes 0.729 0.566, 0.900 1.070 0.899, 1.25 0.939 0.769, 1.111
Age 4.327 4.223, 4.430 3.914 3.807, 4.021 3.670 3.563, 3.767
Diabetes*Age -1.372 -1.572, -1.166 0.340 0.133, 0.573 1.375 1.166, 1.573
Intercept 7.823 7.737, 7.911 7.740 7.655, 7.821 7.770 7.690, 7.862
Intercept variance 0.481 0.348, 0.601 0.503 0.127, 0.816 0.099 0.000, 0.255
Age Variance 0.680 0.547, 0.799 0.897 0.714, 1.08 0.567 0.000, 0.711
Residual Variance 1.770 1.710, 1.836 1.727 1.54, 1.849 1.840 1.778, 1.908
Constant-Age Covariance 0.973 0.894, 0.988 0.268 0.02, 0.845 -0.729 -0.957, 0.579
Autocorrelation parameter 0.120 0.069, 0.169 0.042 -0.118, 0.134 0.160 0.119, 0.196

Table 6.5: Average parameter estimates from multilevel models of weight (outcome as
covariate).

Results from the multilevel models (two-step) are shown in Table 6.6. In scenario A, the

odds ratio for growth rate was 1.000 (95% empirical CI: 0.943, 1.057), suggesting that the

odds of diabetes were unaffected by growth rate. In scenario B, the odds ratio was 1.194

(95% empirical CI: 1.122, 1.316), suggesting that the odds of diabetes increased modestly

with increasing growth rate. In scenario C, the odds ratio was 1.679 (95% empirical
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Figure 6.2: Z-score plots of weight from birth to age 2 years for scenarios A, B and C.
Dotted lines show the group diagnosed with diabetes at age 40 and dashed those without
a diagnosis. Error bars show empirical 95% confidence intervals.
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Figure 6.3: Fitted weight values from multilevel models (outcome as covariate) and aver-
age mean weight values for scenarios A, B and C. Dotted lines (fitted values) and circular
points (average mean weight values) represent fitted values for the group with a diabetes
diagnosis at age 40. Dashed lines (fitted values) and triangular points (average mean
weight values) represent those without a diagnosis. The grey ribbon represents an empir-
ical 95% confidence band around the fitted values.
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CI: 1.477, 2.191), suggesting the odds of diabetes increased substantially with increasing

growth rate.

Scenario A Scenario B Scenario C
Parameter Mean 95% CI Mean 95% CI Mean 95% CI
Growth rate 1.000 0.943, 1.057 1.194 1.122, 1.316 1.679 1.477, 2.191
Weight0 2.000 2.060, 2.745 1.000 1.149, 1.429 2.000 1.339, 2.265
Constant 6.030x10−03 3.654x10−04,

9.185x10−02
9.309x10−05 1.659x10−06,

1.291x10−03
2.221x10−11 2.552x10−16,

7.591x10−09

Table 6.6: Average parameter estimates from the logistic regression model of diabetes
status on weight growth rate. Growth rate was estimated using a multilevel model of
weight over age (agnostic to the outcome, diabetes status)

6.5 Discussion

In Scenario A, we simulated no causal effect of growth rate on the risk of developing

diabetes; Birthweight causes HbA1c, but any pattern of growth thereafter is irrelevant.

Neither the z-score plot nor the multilevel model (with the outcome as a covariate) reflect

this and would be erroneously ‘interpreted’ as showing that slower growth leads to diabetes.

Conversely, the coefficient from the two-step multilevel model correctly implies no effect

of growth rate on diabetes risk.

In scenario B, we simulated that weight1 caused diabetes, which could be interpreted as

growth causing HbA1c through weight1. The z-score plot however suggests that faster

growth up to age 1 and slower growth thereafter leads to diabetes. This does not reflect

the causal relationship simulated, where higher growth only increased the risk of diabetes

by increasing weight at age 1. Both the multilevel model (with the outcome as a covariate)

and the two-step multilevel model reflect this more closely, suggesting that higher growth

rates caused diabetes.

In scenario C, we simulated that weight2 caused diabetes, which could again be interpreted

as growth causing HbA1c through weight2 (and indirectly through weight1). Here, the

results from all three methods correctly suggest that higher growth rate cause diabetes.

The z-score plots (and common interpretation thereof) only reflected the simulated truth

in one of the three scenarios, revealing this is not a reliable approach for examining the

causal effect of a longitudinal exposure on a distal outcome. This is because average

weight z-scores at each time point are explicitly calculated and presented within groups of
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the outcome. By inappropriately conditioning on the outcome in an attempt to examine

‘average patterns’ of weight associated with diabetes, the method actually examines cross-

sectional associations between weight and the outcome at each time point. This problem

remains even if only one group (e.g. those with diabetes) is considered. The value of

each mean z-score (e.g. weight) has no obvious causal meaning; instead, it reflects the

size of the cross-sectional correlation between the exposure and the outcome at each time

point. Because the standardisation process fixes the scale, time points with the strongest

cross-sectional correlations will always appear most different, and those with the weakest

correlations will always appear most similar. For example, in Scenario A, there was a

strong positive correlation between birthweight and diabetes due to the causal effect of

birthweight, and weaker correlations at ages 1 and 2 years as the contribution of birth-

weight to weight decreased. This is reflected by the z-score plot in Fig 6.2; the mean

weight z-scores values are farthest apart at birth and coverage over time. In scenarios B

and C, the strongest correlations are at ages 1 and 2 years respectively; the corresponding

z-scores plots are likewise farthest apart at these time points. The absolute value of each

time point z-score should not therefore be joined or compared to the z-score values at

other time points because the ‘patterns’ that appear have no causal meaning and do not

represent individual growth trajectories.

Inappropriate conditioning on the outcome also affects multilevel models where the out-

come is included as a model covariate. The consequences are not identical to the z-score

plot because the scale has not been fixed by standardisation and the correlation pattern

is assumed to follow a specific parametric shape. In our example, the linearity constraint

introduced misfit between the modelled regression lines and the mean weight values (Fig

6.3). In Scenario B this meant the model failed to highlight that the largest cross-sectional

correlation between weight and diabetes occurred at age 1 year, and this explains the dif-

ference in interpretation with the corresponding z-score plot. In scenarios A and C, models

were similar enough to the average weight values to provide similar interpretations. Had we

simulated nonlinear growth, however, the linearity constraint would likely have introduced

further differences in interpretation compared with the z-score plot.

The multilevel model (two-step) approach is more robust than the other approaches be-

cause it does not involve conditioning on the outcome. Instead, exposure patterns are
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modelled and only in the second step are these related to the outcome. This approach

genuinely treats the exposure as a longitudinal variable and should therefore be strongly

favoured over approaches that condition on the outcome whenever there is an interest in

the causal interpretation of a longitudinal exposure pattern. This method is not, however,

without limitations.

First, because the second step of the multilevel model (two step) approach treats the

unobserved growth rate estimates as fully observed, it underestimates the standard er-

rors (and confidence intervals), even when attempts are made to address this (Sayers et

al. 2017). Alternative latent variable methods, like latent growth curve models, growth

mixture models, and autoregressive latent trajectory models, which retain the latent, or

unobserved, nature of the pattern features avoid this problem.

Second, two-step multilevel models and their constructed latent variable alternatives can

still present some interpretational challenges from a causal inference perspective. By sum-

marising the effect of multiple measurements that span a period into one or more average

feature(s), such as growth rate, the causal contributions of each individual measurement

occasion is lost, as too are any corresponding ‘critical’ period effects (Ben-Shlomo and Kuh

2002). This places such methods in contrast to g-methods, where the focus is explicitly on

estimating the causal effect of the exposure as measured at each time point. Whether the

underlying feature (e.g. growth) or the individual measure (e.g. weight at age 1) are the

‘true’ cause cannot be distinguished statistically because they are simply different ways of

describing the same information. In scenarios B and C, for instance, both ‘growth rate’

and the individual measures of weight at ages 1 and 2 years respectively appear to cause

diabetes. Changing either would therefore change the risk of diabetes, and neither can

be described as more or less responsible. The choice of whether to analyse a longitudinal

exposure as a series of discrete measures or a summary feature (e.g. growth rate) may

therefore be down to philosophical and/or contextual preferences regarding the question(s)

posed. That said, since many pattern features like ‘growth rate’ span several measure-

ment intervals, they are susceptible to time-varying confounding by any variables that

are simultaneously caused by earlier measures while causing later measures, i.e. so-called

intermediate confounders. In such situations, there may be no alternative to g-methods,

which are currently unique for their compatibility with intermediate confounding (Naimi
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et al. 2017).

It is important to note that, for illustrative purposes, this paper presents a simplified

scenario in which there are no competing events or loss to follow up, both of which would

be present in reality. Any differential loss to follow up or occurrence of competing events

would (further) bias the results from all three methods examined in this paper (Howe et al.

2013).

6.5.1 Recommendations

Methods that condition on the outcome are not appropriate for examining the causal

relationship between patterns of a longitudinal exposure and a later outcome, as they

only describe the cross-sectional correlations at each time point. The apparent ‘patterns’

that are observed have no causal interpretation and should not be interpreted as individual

exposure trajectories that cause the outcome.

Alternative analytical strategies should seek to describe features of the exposure agnos-

tic to the outcome, whether explicitly in two separate models or implicitly using latent

variable methods. Researchers should however carefully consider whether pattern features

or discrete measures are more appropriate, useful and/or interpretable ways to capture a

specific ‘exposure’ in a specific context. If interested in the effect of exposures at specific

‘critical’ points in time then alternative methods are recommended (A. Smith, Hardy,

et al. 2016; A. Smith, Heron, et al. 2015).

If a pattern feature is truly of interest, researchers should think very carefully about which

pattern feature(s) are of interest before analysis. In the absence of a single, distinct and

clearly identifiable causal feature it is tempting to consider summarising the ‘average’

of exposure ‘trajectories’ for individuals with different outcomes by conditioning on the

outcome, but this risks highly misleading results. A longitudinal exposure – or pattern

thereof – that spans a long period may be conflated with intermediate confounding and

thus fail to describe the true causal process of interest. Features that occur at specific

time periods that have a tangible real-world meaning may be best suited to the methods

recommended, such as two-step multilevel models.
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6.6 Conclusion

This paper explains how longitudinal data analyses that inappropriately condition on the

outcome may lead to biased inferences about how exposure patterns affect later outcomes.

Methods such as z-score plots and multilevel models with the outcome as a covariate do

not create causally meaningful exposure ‘patterns’ and, as our simulations show, can be

highly misleading.

In lifecourse research, or whenever interested in the causal relationship between a longitu-

dinal exposure and later outcome, we recommend avoiding methods that inappropriately

condition on the outcome in favour of methods that capture patterns a priori, although

the potential influence of intermediate confounding should be carefully considered.
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Simplifying the interpretation of

continuous-time models for

spatio-temporal networks

Citation: Gadd SC, Comber A, Gilthorpe MS, Suchak K, Heppenstall AJ (2021) Simpli-

fying the interpretation of continuous time models for spatio-temporal networks. Journal

of Geographical systems.

This chapter illustrates the application of the model specified in Chapter 4 and addresses

the third aim of the thesis: to develop (and communicate) an analytical procedure to apply

continuous-time models to a spatio-temporal network and simplify their interpretation.

Here, the model is applied to both simulated and real data describing a rail network.

Whole-network functions of average speed over time are produced and the relationship

between origin station centrality and the maximum delay passengers experience during

the day for each origin-destination pair in the network is examined. The simulated data

in this chapter are generated using the simulation tool from Chapter 4.

7.1 Abstract

Autoregressive and moving average models for temporally dynamic networks treat time

as a series of discrete steps which assumes even intervals between data measurements and

can introduce bias if this assumption is not met. Using real and simulated data from the
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London Underground network, this paper illustrates the use of continuous-time multilevel

models to capture temporal trajectories of edge properties without the need for simul-

taneous measurements, along with two methods for producing interpretable summaries

of model results. These included extracting ‘features’ of temporal patterns (e.g. max-

ima, time of maxima) which have utility in understanding the network properties of each

connection and summarising whole-network properties as a continuous function of time

which allows estimation of network properties at any time without temporal aggregation

of non-simultaneous measurements.

Results for temporal pattern features in the response variable were captured with reason-

able accuracy. Variation in the temporal pattern features for the exposure variable was

underestimated by the models. The models showed some lack of precision. Both model

summaries provided clear ‘real-world’ interpretations and could be applied to data from a

range of spatio-temporal network structures (e.g. rivers, social networks). These models

should be tested more extensively in a range of scenarios, with potential improvements

such as random effects in the exposure variable dimension.

Keywords: Spatio-temporal data, hierarchical modelling, networks, multilevel modelling.

7.2 Introduction

Network or graph structures, like that shown in Figure 7.1, are commonly used to represent

connections or relationships between objects, places or individuals. They are typically cast

such that the objects are represented by vertices (or nodes) and connected by edges (or

arcs). They have been shown to be useful for examining and simulating transport systems

(Angeloudis and Fisk 2006; Austwick et al. 2013), river networks (Erős et al. 2011), social

connections (Scott 1988) and many other systems. Properties can be assigned to edges

and vertices to indicate, for example, the amount of traffic flowing through a transport

route or the geographical location of vertices.

Many networks change dynamically over time and understanding the temporal patterns

of edge and vertex properties could provide useful insight to researchers and planners. In

public transport, such information could be used to help target activities and resources.

For example, identifying the optimum times to close different parts of the network for
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Figure 7.1: Example of a simple, directed network graph with three vertices (A, B and C)
and four directed connections (A to B, A to C, C to A, C to B). Vertices could represent,
for example, railway stations, and arrows the journeys of passengers between origin and
destination stations.

maintenance while minimising disruption to passengers; or finding the most useful times

and locations to add new services to reduce overcrowding within specific cost constraints.

Several structures have been developed for such analyses including time-aggregated net-

works which represent temporally dynamic networks as a series of static graphs capturing

temporal snapshots or windows (Blonder and Dornhaus 2011). These approaches sum-

marise the temporal dynamics, but there can be aggregation problems when discretising

events, for example when measurements of properties for different edges are not simultane-

ous. In contrast, time-ordered networks show connections between vertices as a continuous

function of time, but generally focus on the binary presence or absence of a connection,

rather than continuous network property values like traffic flows (Blonder and Dornhaus

2011). A range of machine learning methods have been successfully applied in this area, for

example for traffic flow prediction (Ke et al. 2017). Although machine learning methods

are often easier to implement than statistical methods and impose fewer restrictions (for

example, on error distributions), this paper specifically examines statistical methods as

they more easily allow us to use prior knowledge of a process to inform modelling, which
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can be important when making inferences (Comber and Wulder 2019).

Models based on Space-Time Autoregressive Integrated Moving Average (STARIMA) have

been developed for predicting traffic conditions in road networks (T. Cheng et al. 2011;

T. Cheng et al. 2014; Pfeifer and Deutsch 1980). STARIMA models capture spatial and

temporal autocorrelation using moving average and autoregressive terms. Spatial rela-

tionships are specified using a weight matrix that indicates the influence of other locations

on any given location (Pfeifer and Deutsch 1980) which can be based on distances or

other spatial relationships like network structures (Ermagun and Levinson 2018). Tempo-

ral autoregressive and moving average processes divide time into discrete temporal units

(often reflecting the sampling intervals in the data). Measurements at set numbers of

temporal units before a given observation are included as covariates to inform analysis.

N-dimensional (N) STARIMA and localised (L) STARIMA were developed specifically for

use in road networks where the nature of spatial autocorrelation within the network may

vary over time, for example reflecting changes in the traffic flow through the network (T.

Cheng et al. 2011; T. Cheng et al. 2014). NSTARIMA uses an alternative spatial weight

matrix that accounts for the distance between two locations and the speed of traffic at

both locations, with the result that the matrix changes over time in response to changes

in traffic speeds (T. Cheng et al. 2011). LSTARIMA additionally accounts for spatial

heterogeneity by allowing spatial weight matrices to differ across locations at a given time

(T. Cheng et al. 2014).

The spatial weight matrices in NSTARIMA and LSTARIMA approaches are typically

based on road network distances (as well as speed) but their formulation could potentially

be modified to reflect different types of network structures. Research in stream networks

has employed modelling strategies that do not frequently appear in the analysis of trans-

port networks. For example, geostatistical models with covariance structures reflecting

both Euclidian and hydrologic distances (distances along the river network, accounting

for flow direction) have been constructed to predict fish populations (Peterson and Ver

Hoef 2010; Ver Hoef and Peterson 2010). These models, based on moving average pro-

cesses, allow error terms to covary with each other according to these metrics and could be

extended to additionally account for a temporal dimension (Peterson and Ver Hoef 2010;

Ver Hoef and Peterson 2010). Other research has employed multilevel models (also known
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as mixed models or mixed effects models) with continuous-time autoregressive error struc-

tures to account for temporal autocorrelation to predict sediment concentrations at sites

in stream networks (Leigh et al. 2019). Multilevel models are hierarchical models and are

capable of modelling temporal patterns of variables for many individuals or objects (Gold-

stein 2011). Their flexible error structure allows them to capture complex data generation

processes, such as those with spatial, temporal or network autocorrelation. These models

treat time as a continuous variable, so can be used to interpolate or predict (with a level

of uncertainty) at any given time point, rather than only at set intervals.

While STARIMA-based methods are useful for examining spatio-temporal data, treating

time continuously is an advantage over treating it as a series of discrete lags, as the

latter may not capture the temporal dynamics of the process of interest, in this case the

continuous evolution of transport networks (Comber and Wulder 2019). Continuous-time

models allow measurement intervals to vary between and within locations, in contrast to

STARIMA and similar models that use discrete time lags which assume that measurement

intervals do not vary across time or with location (i.e. between edges in the model). Data

frequently do have varying measurement intervals, for example, when data collection is

not an automated process (e.g. manual traffic counts), when measurements from several

systems (e.g. different traffic camera networks, or traffic cameras and manual traffic

counts) are combined, or when measurements are made at the timing of an irregular

event (e.g. ‘tap in’ and ‘tap out’ train systems). In such cases, autoregressive models,

like STARIMA, require aggregation of data into temporal units. This aggregation and

information loss can bias the results of the models, meaning they may fail to capture the

temporal dynamics of the process being examined (de Haan-Rietdijk et al. 2017; Huang

et al. 2010).

If data are systematically sampled at regular time intervals, no aggregation is required. In

this case, however, the size of temporal units in a discrete-time model is often determined

by the sampling interval in the data (J. Freeman 1989). Parameters relating to periodicity

and autocorrelation have been shown to change in response to the size of the temporal unit

chosen (Hawawini 1978; Huang et al. 2010; W. Wei 1981). This means they may reflect

the sampling intervals more than the processes underlying the data, which makes them

less adept at investigating these processes (Comber and Wulder 2019). Both systematic
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sampling and temporal aggregation have been shown to introduce bias to results from

autoregressive models (J. Freeman 1989; Hawawini 1978; Rossana and Seater 1995; W. Wei

1981; Weiss 1984). High frequency variation is masked by aggregation due to averaging or

summing multiple data measurements in one temporal unit (J. Freeman 1989). It has also

been shown that low-frequency variation (on a much longer time scale than the temporal-

unit) is masked when autoregressive integrated moving average (ARIMA) models are fitted

to aggregated data (Rossana and Seater 1995). If time is treated continuously, rather than

a series of discrete units, autocorrelation or periodic processes can be specified in the model

independent of the sampling intervals, allowing them to reflect the processes underlying

the data, and the masking of variation due to temporal aggregation is avoided.

As suggested by Leigh et al. (2019), multilevel models with spatial and temporal autocor-

relation terms could be applied to network data to model continuous temporal patterns

of edge or vertex properties, such as traffic flow patterns for different routes in a road

network. The results from such models, however, can be difficult to interpret. This is

because coefficient estimates from complex models aiming to capture complicated tempo-

ral patterns (such as those including polynomial terms of spline functions) do not have

clear ‘real-world’ interpretations (Stimson et al. 1978). In addition, many visual repre-

sentations of temporal patterns within complex networks can be overcrowded and hence

present similar difficulties in extracting anything but very general patterns (Aigner et al.

2007). Important information from the models is thus hard to identify and communicate.

This study proposes methods for analysing continuous temporal patterns of edge properties

in networks that can summarise and present the results in a more interpretable way, with

appropriate estimates of uncertainty. Multilevel models are applied to capture continuous

temporal patterns of each edge property and two methods for simplifying the interpretation

of multilevel models are then illustrated. The first involves extracting information about

temporal pattern features for each edge in the network. These are specific parts of temporal

patterns that are of end-user interest. The second method involves constructing a model of

the continuous temporal patterns of whole-network properties using representations of flow

patterns for each edge. As both methods are based on interpolation, processes to calculate

95% credible intervals representing uncertainty are also described. The calculation and

extraction of continuous temporal network patterns and properties, along with uncertainty
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parameters are, to the best of our knowledge, new to this field and potentially have a

wide range of applications in transport geography. These methods are applied to real and

simulated case studies. The former is based on ‘tap in’ and ‘tap out’ data from the London

Underground System. The latter includes similar data simulated for a subsection of the

London Underground System to provide a comparison of method performance without

the difficulties associated with real data, such as regions of sparse measurements. The

edge property modelled is the time taken for London Underground users to complete their

journeys. This example extracts the time and extent of the longest delay for each origin-

destination pair and calculates a single function representing the average speed of journeys

across the whole network.

7.3 Methods

7.3.1 Data

Oyster card data sample

An example analysis was carried out on a dataset of Oyster Card journeys available from

Transport for London Open Data. Oyster Cards are used as a payment system for the

Transport for London Network, which includes bus and rail journeys throughout the city.

There are three interlinked rail systems in London: the London Underground, Docklands

Light Railway and London Overground, with the former covering the largest area and

number of stations. The rail systems are divided into zones to denote fare differences.

These range from zone 1 being the most central, to zone 9 being the farthest from the city

centre.

The dataset includes origin-destination information for a 5% random sample of all journeys

taken for one week in November 2009. The origin-destination data were combined with

station locations, also available from Transport for London Open Data, data detailing the

structure of the rail network, compiled from the September 2009 London Underground

Map, and data detailing the zones of the Underground stations, compiled from the De-

cember 2009 London Underground Map (the September 2009 map did not include zone

information). For this analysis, journeys taking place on Wednesday with an origin and

destination station on the London Underground in zones 1 or 2 were considered. Journeys
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taking place between 14:00 and 21:00 were considered to investigate network properties

associated with the afternoon rush hour. Restrictions on the zones were to limit the com-

putational intensity of this illustrative analysis. For each journey, the time taken to travel

from origin to destination was recorded – this was chosen over journey counts as an out-

come for the analysis because journey counts in a sample of the original data will be very

different to those occurring in reality, but the records of time taken to travel will not be

changed.

Simulated data

A simulated dataset was used in addition to the real dataset. This was included to

provide an example free of the difficulties associated with real data, such as time periods

with sparse measurements. Comparing this to results from the real data may give some

indication of why and how method performance changes in real circumstances. In addition,

while a single simulation cannot fully assess the accuracy and precision of results, a scenario

with a known ‘truth’ does give some indication of them. A smaller network was used in

the simulation to aid visualisation of the results for illustrative purposes. Twelve stations

from North West Central London were selected to form the simulated data. This area

was chosen to include large variation in the degree of stations, based on the London

Underground infrastructure, as this was included as a fixed effect in the simulation. Data

representing the time taken for journeys made at different times during a 24-hour period

were simulated for connections between each origin and destination pair in the network

(132 edges total). Each edge had 50 simulated journeys – this is a much larger number than

in the real data and was intended to provide an ‘ideal’ scenario with many measurements

recorded throughout the range of the data.

Each edge had a known function representing its temporal pattern of flow. The patterns

were based on well-known daily commuting patterns in which peaks of public transport

use occur in the morning and evening. The largest delays were set to correspond to these

times. Stations with a larger number of connections in this subsection of the London

Underground Network had a larger difference between their shortest and longest journey

times, on average. The data had a hierarchical structure, allowing random variation in

flow along an edge according to its origin and destination station. Journey times recorded

for each edge were allowed to covary according to the distance between their origin and
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destination stations.

7.3.2 Data analysis

Both real and simulated data were analysed using the same approach. The first aim of the

analyses was to identify for each connection recorded in the network the time of day at

which the journey from origin to destination takes the longest (time of maximum delay).

These features were chosen for this example as they are simple to extract and have an

unambiguous interpretation, but similar processes could be used to extract a wide range

of features. In the real data, this aimed to estimate the time of maximum delay during

the afternoon, and whether this aligned with the evening peak in transport use. This

might be considered the time at which there is most congestion, or the most delay for the

journey. The difference between the expected time to complete a journey at this time of

maximum delay and the minimum expected journey length in the observation period were

calculated to represent the size of maximum delay. The second aim of the analysis was

to identify the time of day at which journey speed is the slowest, on average, across the

network. The information from both these aims could be used, for example, to plan the

location and timing of crowd control measures in tube stations, to ease congestion, or the

timing of rail services to reduce delays.

Analyses were carried out using R version 3.6.3 (R Core Team 2020a) and OpenBUGS

(Lunn et al. 2009). This work was undertaken on ARC3, part of the High-Performance

Computing facilities at the University of Leeds, UK. The code for analysis of real data

and simulations are available as supplementary material.

Modelling temporal flow patterns

Multilevel models were chosen to model temporal patterns of flow because their hierarchi-

cal structure accounts for the similarity between origin-destination pairs sharing stations.

The model was fitted using a Markov chain Monte Carlo (MCMC) estimation procedure

with Gibbs sampling algorithm (S. Geman and D. Geman 1984), since MCMC procedures

are typically more effective than maximum likelihood methods at estimating models with

complex correlation structures (Browne and Draper 2006). This is a Bayesian estimation

procedure which, instead of aiming to estimate a single set of ‘true’ parameter values,

produces a series of samples of model parameters from a joint posterior distribution that
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represents how likely different parameter values are believed to be. This distribution is

based on the data provided, model specification and prior distributions representing beliefs

about parameters prior to data collection (Heck and S. Thomas 2015).

A cross-classified multilevel structure (Goldstein 1994) grouped observations by both their

origin and destination stations (Bürkner 2017). Error terms within origin-destination pairs

followed a temporal autoregressive structure. The degree to which an error term was af-

fected by its predecessor depended on the time difference between measurements. Time

was represented on the minute scale and offset by one minute to allow for simultaneous

journeys. To capture spatial autocorrelation, random effects related to origin and desti-

nation stations were divided into two parts – a aspatial component and a component with

an intrinsic conditional autoregressive (CAR) prior. The CAR prior allows random effects

(random intercepts and slopes) for different stations to covary based on a weight matrix

specifying their spatial relations (Besag, York, et al. 1991). In this case, weights were set

to zero for distances greater than or equal to two kilometres. For distances less than this,

the weight was set to 2000 metres minus distance (in metres). Weights were scaled to

have a standard deviation of one. An inverse distance weight matrix was considered but

this led to difficulties with model convergence, leading to the choice of the linear matrix.

A cut-off was chosen as spatial correlation between stations is likely to be driven in part

by their serving passengers arriving from a similar area. Most passengers arrive at Under-

ground stations on foot, therefore the cut-off of two kilometres for spatial correlation was

chosen to represent a reasonably short walk. Distances were calculated using the haversine

formula (Xiao 2016).

To capture more complex temporal patterns, the model was based on a cubic b-spline basis

function. B-splines were chosen as a basis function due to their flexibility, but also their

mathematical convenience: unlike penalised splines which require specific optimisation

algorithms, the value of each b-spline basis for each observation can be calculated before

model estimation and incorporated as a covariate (Perperoglou et al. 2019). Functions to

calculate b-spline derivatives in the ‘splines2’ R package also allowed easy calculation of

pattern features (such as the time of longest journey) when using b-splines, as detailed later

(W. Wang and Yan 2020). The data included were only from a short time span and did not

have any periodic patterns. Therefore, splines that are intended for capturing periodicity,
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such as Fourier basis systems, were not used in this analysis (Ramsay and Silverman 1997).

Some epidemiological papers that fit spline models to extract pattern features use linear

splines, instead of cubic splines (Howe et al. 2013). This simplifies a smooth continuous

temporal pattern to a series of joined straight lines (a ‘broken stick’) which may be useful

in some circumstances. However, the extraction of the pattern features chosen in this

example relied upon using calculus to obtain the rate of change of flow (at a maximum

or minimum point, the rate of change is zero). A simplified ‘broken stick’ model does not

capture temporal variation in rate of change, as the splines are straight between each knot

point, and was therefore unsuitable for this application.

In the absence of penalisation, the number of knots and their placement for b-spline

bases can substantially affect model results (Perperoglou et al. 2019). Automatic knot

placement procedures are available, but these are mostly aimed at single-level regression

models (Dung and Tjahjowidodo 2017; Yeh et al. 2020). Results from these may not be

applicable to multilevel models, as they consider all the data as one group, rather than in

individual clusters. Knot placement may be chosen visually based on the location of very

changeable areas in the data – placing more knots in these locations will capture these

areas with more accuracy (Holmes and Mallick 2003). However, the changeable areas for

these data varied considerably between different origin-destination flows – placing many

knots in one time period may mean that origin-destination flows with their longest journey

times outside of this period will be captured with less accuracy than within. Instead of

visual or automatic knot placement, forty models with different knot placements were

tested. The knot placements considered were: a) even placement of knots along the time-

axis and b) placement of knots at quantiles of the time distribution in the data (to account

for uneven distribution of measurements throughout time). Each of these was tested with

1 to 20 internal knots. The model with the lowest Deviance Information Criterion was

chosen, as this criterion balances measures of both model fit and parsimony (Spiegelhalter

et al. 2002). This resulted in the use of three knots at quantiles for the real data and 19

evenly spaced knots for the simulation.

Time was centred on the grand mean, as this can improve the precision of parameter

estimates (Paccagnella 2006). The model structure is described in Equation 7.1, in which

from and to index the origin and destination stations, respectively, for edges in the net-
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work; t refers to the time at which each measurement was made; basisn(t) refers to the

value of basis function n at time t; Nbasis refers to the number of basis functions specified;

ei,from,to represents the error term for the ith observation for a particular edge; u repre-

sents aspatial random effects, indexed by origin or destination station (and basis function

for un); v represents spatial random effects following an intrinsic CAR distribution, in-

dexed by origin and destination station (and basis function for vn); and a represents the

coefficient for the autoregressive error structure estimated by the model.

journeytimei,from,to = β0,from,to +
Nbasis∑
n=1

βn,from,tobasisn(ti) + ei,from,to

β0,from,to = β0 + u0,from + u0,to + v0,from + v0,to

βn,from,to = βn + un,from + un,to + vn,from + vn,to

ei,from,to = aei−1,from,to/(ti − ti−1 + 1)

(7.1)

As previously mentioned, an intrinsic CAR prior distribution was specified for spatial ran-

dom effects in the intercept (β0) and basis (βn) coefficients. The CAR normal distribution

was used which constrains random effects to follow a Gaussian distribution. The intrinsic

CAR distribution sets a random effect of zero for any stations with no neighbours (in this

case, no other stations within two kilometres) (A. Thomas et al. 2014). For this reason, an

additional random effect with no spatial structure, following a normal distribution with

mean zero, was specified for the intercept and basis coefficients. Otherwise these stations

would have no random effects, and just the fixed coefficients β0 and βn. The prior dis-

tribution for the precision (inverse variance) of the spatial and aspatial random effects

were also set as a gamma distribution with shape and rate both equal to two. When

converted to a prior distribution for the standard deviation of these random effects, this

gives the most probable standard deviation as 1.41 with a low probability (<0.01) of a

standard deviation greater than five. As a positive autoregressive structure was expected

for these data, the prior distribution for the autocorrelation parameter a followed a trun-

cated gamma distribution, allowing only positive values between zero and one. The initial

value was set to 0.5, in this middle of this range.

Initial values for all other parameters and priors for fixed coefficients were taken from
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posterior distributions of a model run without the temporal autoregressive structure in the

error terms included. This model ran with uninformative priors for fixed coefficients (Besag

and Kooperberg 1995) and output a normally distributed posterior. CAR distributions

can be sensitive to the initial values set for precision parameters (A. Thomas et al. 2014),

so a sensitivity analysis was carried out for the simulated data in which different initial

values were set for the first (non-temporally autoregressive) model. The effect of these

changes on results was minimal and can be seen in the supplementary material. The first

model was run with four chains of 4000 iterations with 3000 burn-in. The second was run

with four chains of 20000 iterations with 19000 burn-in, leaving 4000 posterior samples to

describe posterior distributions.

Extracting pattern features

To carry out the set aims, two pattern features were extracted: the time of maximum delay

and the maximum delay. Similar methods could be used to capture alternative features.

For example, the length of periods during which journey time is extended beyond a certain

amount, or the time at which journey times are increasing the fastest.

Maxima and minima can be defined as the point at which the slope of a function is

equal to zero. These can be identified by calculating the derivative of the model function,

which represents the slope, and finding the times at which it is equal to zero (Soetaert

and Herman 2009). The maximum point with the highest value of the un-differentiated

function was selected as the time of maximum delay and maximum journey length. If

there were multiple points where the derivative function was equal to zero, the minimum

point with the lowest value was selected as the minimum journey length. Otherwise,

an optimisation function may be used to estimate the minimum journey length, and the

difference between this and the maximum journey length recorded as the maximum delay

(R Core Team 2020a). This would be the case if the function only changed direction once

during the observation period.

The mean value of sampled parameters was used to specify a model function for each

origin-destination pair. This was used to extract point estimates for the pattern features.

To estimate uncertainty in pattern features, maxima and minima were also extracted (for

each origin-destination pair) for all 4000 sampled parameter sets produced by the MCMC
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estimation procedure. This results in corresponding sets of maxima for each edge for these

posterior samples. Quantiles of the time and journey length of these maxima were used

to represent 95% credible intervals for time of maximum delay and extent of delay.

The relationship between the extracted pattern features and the vertex closeness (for

real data) or vertex degree (for simulated data) of their origin and destination stations

was visualised (L. Freeman 1978). This aimed to investigate the relationship between

the centrality of a station in the London Underground infrastructure network and the

maximum delay for journeys beginning or ending at it.

To compare simulated and real values for pattern features, the differences between sim-

ulated and modelled values were calculated. To assess agreement between modelled and

simulated values, the Bland-Altman method was used to calculate the mean bias and

limits of agreement, along with 95% confidence intervals, from these differences (Bland

and Altman 1999). In addition, the Spearman’s rank correlation coefficient was calculated

to identify if the ranking of origin-destination pairs by simulated and modelled pattern

features was similar.

Estimating continuous temporal network properties

As well as using calculus to extract pattern features from model equations, the equations

can also be converted into continuous temporal functions describing properties of the

network. In this example, it might be useful to look at the average speed of passengers

moving through the network over time to identify times of day when journeys are much

slower than usual. To calculate the average speed, s, from the time taken to complete a

number of journeys over distance d, at a single point in time, T , we used Equation 7.2,

where n indexes each origin-destination connection and t the time.

s =

∑n
i=1(dn/Tn,t)

n
(7.2)

When evaluating this equation, journey times for journey i at timepoint t could be substi-

tuted with temporal functions of journey time for each origin-destination pair. This would

generate a continuous temporal function representing the average speed in the network.
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Simultaneous 95% credible intervals were generated at five time points along the function

by calculating quantiles of the values of all the functions specified by posterior parameter

samples at these time points. The quantiles were adjusted for multiple testing using the

Bonferroni correction.

Although the temporal function for average speed calculated in this illustration has a very

specific meaning, this principle concept of temporally dynamic network properties could

be extended to other summary information, if it is usefully interpretable. For example,

if functions representing the amount of passenger flow were calculated, a range of more

conventional network properties could be calculated: weighted edge density (Horvath 2011)

could be calculated to represent the passenger load on a network, relative to the number

of possible connections, over time; vertex centrality could be calculated to identify when

certain stations act as transport hubs (by having high flow connections to many other

stations) (Opsahl, Agneessens, et al. 2010); or weighted clustering coefficients could be

used to identify the extent to which the transport network is divided into communities

of stations that people tend not to travel between, and if this varies at different times

(Opsahl and Panzarasa 2009).

7.4 Results

Figure 7.2 shows a map of the London Underground network. The subsection used in

simulations is shown in Figure 7.3.

7.4.1 Real data

There were 27085 journeys from the sample data that took place in the study period

chosen. Table 7.1 summarises network properties for both the London Underground in-

frastructure (that is shown in Figure 7.2) and the network formed by connections between

origin-destination pairs recorded during the observation period in the real data. For the

London Underground Infrastructure, edge density is low, suggesting that the network is

sparsely connected. Closeness, the centrality measure used in Table 7.1, represents how

close (in terms of geodesic distance) each vertex is to others in the network (L. Freeman

1978). The whole-network centrality indicates whether centrality is concentrated in just

a small number of vertices, or reasonably evenly distributed throughout the network. In
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Figure 7.2: Map of zones 1 and 2 of the London Underground network. Zone 1 is shaded
in grey. The area used to generate simulated data is outlined with a red dashed line.

this example, the value is low, suggesting most vertices have a similar centrality in this

network, without large variation. This corresponds to the degree distribution in Figure

7.4, where most of the vertices in the network have the same degree (two).

Property Value

London Underground Infrastructure
Number of vertices 118
Network centrality (closeness) 0.14
Edge density 0.02
Mean shortest path length 7.11

Journey connections recorded
Number of vertices 118
Network centrality (closeness) 0.47
Edge density 0.48

Table 7.1: Table showing the network properties of the section of London Underground in-
frastructure in zones 1 and 2 and the (directed, unweighted) network formed of connections
made between these stations by passengers during the study period.

For the journey connections, the network centrality and edge density are higher. This

suggests a more (but not highly) saturated network, with more of the possible connections

between stations made; and more variation in closeness between vertices, with a small
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Figure 7.3: Map of the section of the London Underground network used to generate
simulated data.

number of stations being closely connected to many other stations, but most being more

distantly connected. The degree distribution for this network, which is directed, is divided

into in and out degrees, for connections ending at and starting at each station, respec-

tively. This is shown in Figure 7.5. The range of these values is much larger than that

for the infrastructure network, which is expected – people are likely to use the London

Underground network to make journeys beyond immediately connected stations. Both

degree distributions show a slight right skew, with slightly more low than high values;

however, the average in and out degree are both high values. This suggests that for each

station, passengers travel from/to a diverse range of origins/destinations.

Summary of pattern features

Table 7.2 summarises the pattern features extracted from the real data. The results here

suggest that the distribution of times of maximum delay is centred around 17:47. This is

close to what was expected from these data – many commuters will be travelling home

from work at this time in the evening rush hour, so delays to travel might be expected due

to congestion. The size of the delays themselves are not very large, with a mean maximum
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Figure 7.4: Vertex degree distribution for the London Underground infrastructure network.

delay value of just under seven minutes. The credible intervals for both these results are

very wide on average. This suggests that the estimates here are not very precise, and

there is a lot of uncertainty in this model.

Relationship with vertex centrality

Figure 7.6 shows the relationship of maximum delay with vertex centrality (based on the

Underground network infrastructure) of origin and destination stations. There appears to

be a negative relationship between centrality and the maximum delay value, particularly

for lower values of centrality. This suggests that journeys from stations with fewer close

connections to other stations, for example, those further from the city centre and serving

fewer different lines, are likely to experience longer delays to their journeys at the time of

maximum delay.

Continuous function of average speed

Figure 7.7 shows the graph of average speed throughout the network during the measure-

ment period, along with 95% CIs. The credible intervals for this function are extremely

153



7.4 Chapter 7

Figure 7.5: Vertex degree distribution for the network formed of connections made between
London Underground stations in the Oyster card data. Panel A shows in-degree and panel
B shows out-degree.

wide at the end of the time period. Throughout the time period, average journey speeds

range from approximately 12.5 and 19 kilometres per hour, with the slowest speeds be-

tween 17:30 and 18:30. This timing corresponds to the mean time of maximum delay

identified in Table 7.2.

Name Mean SD

Time of maximum delay (hours)
Modelled 17:47 1.588
95% CI width 4.542 1.473

Maximum delay (minutes)
Modelled 6.790 3.999
95% CI width 11.947 4.465

Table 7.2: Table showing the mean and standard deviation of modelled time of maximum
delay and maximum delay and their 95% credible intervals (CIs) for sample Oyster card
data.

7.4.2 Simulated data

Table 7.3 summarises network properties for the London Underground infrastructure used

in this simulation. The edge density for this network is small, suggesting that the graph
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Figure 7.6: Relationship between origin station centrality and maximum delay values for
origin-destination pairs in the Oyster card data sample.

is sparsely connected. Whole-network centrality is also relatively low, suggesting most

vertices have a similar centrality in this network, without large variation. This is in line

with the degree distribution in Figure 7.8 which shows that all stations in this network

have a degree between one and five.

Property Value

Number of vertices 12
Network centrality (closeness) 0.37
Edge density 0.18
Mean shortest path length 2.71

Table 7.3: Table showing the network properties of the section of London Underground
infrastructure used to generate simulated data.

In this simulation, connections were generated between all possible pairs of origin and

destination stations, so the graph representing these connections is saturated.

Summary of pattern features

Table 7.4 summarises simulated pattern features and those extracted from models of sim-

ulated data. For both time of maximum delay and maximum delay, the models recovered
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Figure 7.7: Continuous temporal function of average journey speed across the whole net-
work with 95% credible intervals.

mean values very close to those simulated, with a difference of approximately four minutes

in time of maximum delay and under one second in maximum delay.

For both features, the standard deviation in pattern feature values was smaller in the mod-

elled than simulated values, indicating the full variation in these values between individuals

was not being captured by the models. The difference between modelled and simulated

standard deviations is much larger for the time of maximum delay (22.02 minutes versus

1.3 minutes for maximum delay).

The precision of estimates for maximum delay is also much greater than that for time

of maximum delay. The mean credible interval width of maximum delay is just over

six minutes, with a standard deviation of under 30 seconds; however, the mean credible

interval for time of maximum delay has a width of approximately two hours eight minutes,

with larger variation between individuals (standard deviation of one hour 46 minutes).
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Figure 7.8: Vertex degree distribution for the section of the London Underground infras-
tructure network used to generate simulated data.

Relationship with simulated values

Figures 7.9 and 7.10 the relationship between simulated pattern features and the differ-

ence between modelled and simulated values along with Bland-Altman estimates of mean

bias and 95% limits of agreement. These plots indicate whether the simulated value of

maximum delay or time of maximum delay is related to the amount which the model over-

or under-estimates its value. For both pattern features, there is a negative correlation,

indicating that lower values are overestimated and higher underestimated. This relation-

ship appears to be much stronger and linear for time of maximum delay – this is likely to

be the cause of the underestimation of standard deviation for this feature. For maximum

delay, the simulated values are split into four groups – this is a result of the fixed effects

of origin vertex degree on this feature. The relationship here is not clearly linear, with the

largest delay values being estimated more accurately than the second largest group.

The mean bias in estimates of maximum delay was 0.372 minutes (95% confidence interval

-0.019, 0.764) with upper and lower 95% limits of agreement 4.862 minutes (95% confidence

interval 4.156, 5.497) and -4.081 minutes (95% confidence interval -4.752, -3.411). This
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Name Mean SD

Time of maximum delay (hours)
Simulated 15:31 1.063
Modelled 15:35 0.696
Modelled - Simulated 0.067 1.177
95% CI width 2.134 1.767

Maximum delay (minutes)
Simulated 18.282 11.216
Modelled 18.682 9.911
Modelled - Simulated 0.340 2.270
95% CI width 6.289 0.447

Table 7.4: Table showing the mean and standard deviation of simulated and modelled
time of maximum delay and maximum delay. The differences between simulated and
modelled values are also summarised, along with the width of the 95% credible intervals
(CIs) associated with estimates.

suggests that there is a small positive bias in the modelled estimates of maximum delay

(less than 24 seconds). The limits of agreement suggest that 95% of differences between

simulated and modelled values would fall between -4 minutes 5 seconds and +4 minutes

52 seconds.

The mean bias in estimates of time of maximum delay was 0.065 hours (95% confidence

interval -0.138, 0.268) This suggests that on average, the time of maximum delay is esti-

mated 3.9 minutes late by the models. The upper and lower 95% limits of agreement were

2.375 (95% confidence interval 2.027-2.723) and -2.244 (95% confidence interval -2.592,

-1.897). This suggests that 95% of differences between simulated and modelled values

would fall between -2 hours 15 minutes and +2 hours 23 minutes.

The Spearman’s rank correlation coefficient for modelled and simulated values for max-

imum delay was 0.872 (95% CI 0.706 to 0.947). This is a relatively high correlation

coefficient showing a high, but not perfect, level of agreement between the ranking of dif-

ferent journeys by their modelled and simulated journey times. For the time of maximum

delay, the degree of agreement is much lower, with a weak Spearman’s rank correlation

coefficient of 0.168 (95% CI -0.284 to 0.559). This suggests that modelled estimates of

time of maximum delay do not correspond well to the simulated values.

Relationship with vertex degree

Figure 7.11 shows the relationship of simulated and modelled maximum delay with vertex

degree. The overall pattern of the relationship is similar between the two graphs, which
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Figure 7.9: Relationship between over or underestimation of time of maximum delay by
models and the simulated time of maximum delay. Horizontal lines show mean bias (solid)
and 95% limits of agreement (dashed) with 95% confidence intervals.

suggests that the models capture the relationship between origin station degree and max-

imum delay accurately. There are some small differences in the distributions of simulated

and modelled maximum delay values for each degree group, particularly for the lowest

degree stations, where the distribution of modelled maximum delay has a higher median

value and larger spread than the simulated values.

Continuous function of average speed

Figure 7.12 shows temporal functions of average speed throughout the network, along

with 95% CIs, including both the simulated function and that extracted from models.

The credible interval widths for this function are relatively narrow across most of the

range of the data, with wider credible intervals at each end of the data, and before 5:00.

The shape of the average speed function follows the simulated function reasonably well,

but there are some discrepancies between the two. In most of the range of the model the

speed is underestimated by a small amount, with the simulated function sitting outside

the credible interval. The two areas with the largest bias are before 5:00, where the model
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Figure 7.10: Relationship between over or underestimation of maximum delay by models
and the simulated maximum delay. Horizontal lines show mean bias (solid) and 95% limits
of agreement (dashed) with 95% confidence intervals.

underestimates average speed substantially and fails to capture the peak in the simulated

average speed function, and after 21:00, where the underestimation of average speed is

more pronounced than in the rest of the function. B-splines can be unstable at the limits

of their range, which likely explains the large credible intervals at the limits of the graph

and may be a factor contributing to the biased estimates near these areas (Perperoglou

et al. 2019).

7.5 Discussion

This paper illustrates a method to examine spatio-temporal variation in network properties

in an easily interpretable way. The properties were modelled using continuous-time models,

in this case multilevel models, including both spatial and temporal autocorrelation.

Coefficients from models like those in this example can be difficult to interpret, so the

results were simplified in two ways: through extracting pattern features and estimating

continuous temporal network properties. Information about pattern features and contin-
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Figure 7.11: Relationship between degree of origin station and the simulated (panel A)
and modelled (panel B) maximum delay for origin-destination pairs in the simulated data.

uous temporal network properties was easy to interpret with a clear ‘real-world’ meaning.

In this case, these were the times of day at which users experienced the longest delays

to journeys for each origin-destination pair and the length of these delays, along with a

function representing the average journey speed over time for the whole network. The

results were easily translated into interpretable summaries that address the aims of the

illustrative analyses. The relationship between the pattern features and network proper-

ties was easy to display. It would also be possible for the relationship between pattern

features and network or spatial information to be modelled or mapped.

The major challenge that arose when fitting these models was parameterising them in a

form that allowed efficient estimation by the Bayesian sampling algorithm. Cross-classified

models are often difficult to estimate, requiring long burn-in periods and often producing

poor mixing. An alternative parameterisation of these models that involves including fixed

effects (β0 and βn in equation 7.1) as the mean value of the aspatial random effects (uo and

un in equation 7.1), rather than fixing their mean to zero has been suggested to improve

mixing (Browne and Draper 2006). However, results from models with this parameteri-
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Figure 7.12: Simulated (dashed red line) and modelled (solid black line) temporal functions
of average journey speed across the whole simulated network, with 95% credible intervals.

sation differ substantially from those with separate fixed and random effects, resulting in

large underestimation of the temporal function of average speed for the simulated data.

Incorporating temporal autocorrelation in error terms also proved difficult. The initial ap-

proach used was to specify the outcome variable as a deterministic function of two models

– one for the mean value and one for the error term. This meant that model fit criteria

could not be estimated. An alternative, equivalent parameterisation that expressed the

previous error term as a function of the fixed effects was used as an alternative (Congdon

2014). This is outlined in the supplementary material code. The long burn-in period and

complexity of this model meant that estimation with OpenBUGS was slow. Alternative

Bayesian estimation software, such as JAGS (Plummer 2003) or Stan (Carpenter et al.

2017), might provide more efficient and faster estimation; however, these do not currently

have the option to specify CAR spatial distributions for random effects, as in the present

example. The model used in this example did not include network autocorrelation, but

it would be possible to include this using a similar method to the spatial autocorrelation

terms (Freni-Sterrantino et al. 2018).
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The methods for simplifying and displaying these results rely on interpolation and calcu-

lus and, as such, could not easily be applied to discrete-time models, such as STARIMA,

which rely on autoregressive or moving average structures (T. Cheng et al. 2011; T. Cheng

et al. 2014). Treating time as a continuous variable means that the models are inherently

equipped to deal with variation in measurement times and intervals between measure-

ments, whereas methods using discrete time lags assume measurements take place at these

evenly spaced intervals. This means that the applicability of the methods in this example

extends to spatio-temporal network data with uneven measurement intervals (e.g. those

not collected automatically or those from combined datasets). Continuous-time models

also avoid aggregation of data into discrete temporal units, and do not require systematic

sampling. Both processes have been shown to introduce bias in autoregressive models and

to reduce the flexibility with which temporal autocorrelation parameters and periodicity

can be specified (J. Freeman 1989; Hawawini 1978; Rossana and Seater 1995; W. Wei

1981; Weiss 1984).

The use of discrete time lags does have some advantages: it easily allows for the use of

time-varying spatial weight matrices, as in LSTARIMA and NSTARIMA (T. Cheng et al.

2011; T. Cheng et al. 2014). In the model used for this example, spatial correlations

remain constant across time and temporal autocorrelations are constant across space.

The MCMC estimation procedure used to fit models in this paper provided an ideal solu-

tion to derive estimates of uncertainty for pattern features and continuous temporal edge

density. In addition, estimation of complex hierarchical models, such as the one in this

example, is often difficult when using maximum likelihood estimation or other frequentist

procedures. However, Bayesian results can be more difficult to explain and communicate

than those from frequentist, which is somewhat at odds with the use of pattern features

to summarise temporal variation in an interpretable way. An alternative method of rep-

resenting uncertainty in multilevel models could be confidence bands; however, these were

not used as they only represent uncertainty in the response variable (journey time), so

could not capture uncertainty in time of maximum delay.

Bayesian estimation is also affected by the choice of prior distributions used when esti-

mating model parameters. These represent prior beliefs and information the researcher

has about the process underlying the data, translated into distributions that parameters
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are expected to follow. This can make estimation of these models extremely difficult,

compared to frequentist models or machine learning techniques which require less con-

sideration of the underlying processes. However, having more input into the model and

parameter specification could be seen as an advantage – a further opportunity to ensure

models reflect known information about the process they are examining, which can help

to make more informed inferences (Comber and Wulder 2019).

While spatio-temporal networks in different settings come with their own specific con-

textual nuances, the principle of the methods illustrated in this paper (using a transport

network) could be applied to a range of settings by modifying model specification as ap-

propriate. This could include, but is not limited to, ecological or social networks.

7.5.1 Accuracy and precision of results

In capturing the maximum delay pattern feature, the model showed reasonable accuracy;

for the simulated data, the mean maximum delay was very close to the simulated value,

and the standard deviation only underestimated by under 1.5 minutes. The mean bias

and range values of the 95% limits of agreement were small for this feature, suggesting

good correspondence between the simulated and modelled values. The rank correlation

between simulated and modelled values was also relatively high, suggesting the ordering

of simulated and modelled maximum delay for origin and destination stations is similar.

Time of maximum delay was not captured with the same degree of accuracy. The mean

value extracted from models of simulated data was close to the known mean, and the mean

value recovered from the real data reflected expected commuting patterns. The mean bias

for time of maximum delay was also low – around four minutes. However, for the simulated

data, the standard deviation in time of maximum delay was underestimated, suggesting

that the full variation in these values is not being captured. The limits of agreement

for this feature spanned a large range (over two hours either side of zero. This suggests

that for many origin-destination pairs, the modelled time of maximum delay does not

correspond well with the simulated value. Figure 7.8 revealed that for origin-destination

pairs with earlier times of maximum delay, the model overestimated values, and vice versa

for later times.

These results suggest that, while this model is effective at capturing pattern features in
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terms of the outcome variable (e.g. maximum delay), pattern features in the exposure

variable were not sufficiently captured. This may be because no random effects in this

axis were explicitly included in the model, and it relied on the flexibility of spline functions

to capture different times of maximum delay. Including an exposure variable random effect

would be possible and is an approach sometimes used in models for childhood growth (Cole

et al. 2010). It is also possible that including prior distributions with much higher values

for the standard deviation of random effects would capture more of the variation in the

time of maximum delay.

The precision of model estimates for the real data analysis was low, with credible intervals

for both maximum delay and time of maximum delay spanning large ranges. For the

simulated data, the model was also imprecise in capturing time of maximum delay, but

the credible intervals for maximum delay were much smaller than in the real data model.

The continuous temporal function of average speed also had wide credible intervals towards

the ends of the range of the data for both simulated and real data analyses. Some of the

uncertainty in the average speed functions may be due to instability of b-spline functions

towards the end of their range. This uncertainty could possibly be reduced by using

natural splines as an alternative – these have additional constraints and are less erratic at

the boundaries of the data (Perperoglou et al. 2019).

The lack of precision for pattern features and the average speed function in the real

data may be related to small numbers of observations for some origin-destination pairs,

particularly given the complexity of the model used. The data are also unevenly distributed

throughout time, with most observations concentrated at commuting times. This may

leave gaps in the data, or time periods with sparse information to inform the model,

increasing uncertainty in these areas (Kim et al. 2011). In this example, only a small

sample of the real journey data was available, which may exacerbate this problem by

making areas with very sparse data more likely as there are fewer observations overall.

Using the full dataset could improve precision but would also increase the running time

of the model (models for the real data ran in 17.5 hours with four parallel chains, models

for simulated data ran in 20.7 hours with no parallelisation). Imbalance of data in the

exposure variable is likely to present a problem for many different analyses that use data

relating to individual journeys, as they do not occur randomly throughout time (Sperrin et
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al. 2017). More extensive simulations could be carried out to investigate the computational

cost of fitting the specified models to data of different sizes and with different degrees of

imbalance.

For the simulated data, the function of average speed underestimated the simulated value

along its range. Mostly this was by a small amount, but before 5:00 the difference reached

almost one kilometre per hour. This larger difference may indicate poor model fit in

this region, perhaps suggesting that the spline knot specification is not ideal. Automatic

knot selection procedures for splines focus on single level, rather than multilevel, models

(Dung and Tjahjowidodo 2017; Yeh et al. 2020). Therefore, for this analysis, a range of

spline knot points were tested, and the one with the lowest Deviance Information Criterion

was chosen. Visual examination was not used, as the large number of individual origin-

destination trajectories to be fitted made this infeasible. As a result, the knot point

specifications included evenly spaced knots or knots spaced at the quantiles of the data;

specifications did not reflect areas of changeability in the data where it may be advisable

to include more knots (Holmes and Mallick 2003). In the area where average journey speed

is substantially underestimated, there is a relatively sharp peak in the data. It is possible

that including more knot points in this area would improve the accuracy with which this

peak was captured. In practice, it is advisable to consider both model fit information (such

as Deviance Information Criterion) and prior knowledge about the underlying processes in

the data to inform knot point selection, for example, by positioning more knots at times

where more changeability in trajectories is expected (Holmes and Mallick 2003).

For the real data, the function of average speed is particularly jagged towards the end of

the time period (after 20:00). The average function of journey time is smooth, as well as

the sum of all individual journey time functions. However, individual level functions of

journey times are more erratic in after 20:00 due to the low density of data in this period.

When these functions are used as denominators in ratios (as in the equation for average

speed), their peaks and troughs are exaggerated, producing much more jagged individual

functions. This means that the sum and average of speeds no longer necessarily follow

a smooth function. This is particularly noticeable in the period after 20:00 due to the

erratic behaviour of individual origin-destination functions in this region and is likely to

contribute to the wide credible intervals in this period.

166



Chapter 7 7.6

For both the real and simulated data, a clear relationship between vertex closeness or

degree and maximum delay was captured. In the simulated data, the results matched the

simulated relationship closely. In the real data, the relationship between closeness and

maximum delay is the opposite to the simulated data. The negative relationship between

origin vertex closeness and maximum delay suggests that more ‘well-connected’ stations

experience smaller delays to journeys. This could be due to a number of reasons: journeys

starting at less well-connected stations may have fewer train services running, resulting

in more waiting time between scanning an Oyster Card and leaving the origin station;

more changes may be needed for journeys from these stations, as they are less likely to

be connected to as many London Underground lines as stations with high closeness; the

journeys from these stations, which are likely to lie towards the edges of the network, may

be longer, and so small delays may compound over a larger time period; or systems to

reduce delays may already be in place for stations with higher closeness, because they

serve many London Underground lines or are in the city centre.

7.6 Conclusion

This paper illustrates the use of multilevel models to capture continuous temporal pat-

terns of delays in a transport network. Two methods were demonstrated for simplifying

the reporting and interpretation of results: extraction of temporal pattern features in or-

der to examine variation in temporal patterns in relation to local network properties; and

calculation of functions representing continuous temporal patterns of whole-network prop-

erties to examine changes in the use of the whole-network over time. Both the methods

rely on interpolation, of which uncertainty is a key feature. Methods for estimating this

uncertainty, based on MCMC estimation procedures, were also described.

Models recovered some pattern features accurately, but precision was low for the real

data example, possibly because of regions of data sparsity or model specification. Further

work that examines the effect of more complex data structure and model specification

on the accuracy and precision of methods is therefore warranted. While the application

of this model to real data was a fairly complex approach and presented challenges in

terms of parameterisation and computational intensity, the results are ultimately simple

to interpret and to analyse further, demonstrating the potential utility of this method for
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examining spatio-temporal network data with inconsistent measurement intervals.
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Chapter 8

The utility of multilevel models for

continuous-time feature selection

of spatio-temporal networks

This chapter addresses the final aim of the thesis: to evaluate the accuracy and precision

of the analytical procedure proposed in Chapters 4 and 7. This is achieved through a

simulation experiment where the maximum delays in journeys between origin-destination

pairs in the rail network are recovered. The simulations in this chapter are generated using

the simulation tool from Chapter 4.

8.1 Abstract

Many models for the analysis of spatio-temporal networks specify time as a series of dis-

crete steps. This either requires evenly spaced measurement times or the aggregation of

data into measurement windows. This can lead to the introduction of bias. An alternative

is to use continuous-time models, for example, multilevel models. Models capturing com-

plex spatio-temporal variation are often difficult to visualise and interpret. This can be

addressed by simplifying the results, for example by extracting ‘features’ of interest (such

as maxima or minima) of temporal patterns associated with different network connections.

This paper uses simulation to evaluate the accuracy and precision with which b-spline-

based multilevel models (a flexible form of continuous-time model that can easily capture
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complex variation associated with a spatio-temporal network structure) capture the timing

and extent of maximum delays to journeys made between pairs of stations in a small

railway network.

On average models captured the timing and extent of maximum delay with small bias, but

there was evidence of overestimation and underestimation of low and high values of these

features, respectively. This systematic bias may have partially caused the undercoverage

of credible intervals for the pattern features. Alternative model specifications – specifically

to capture x-axis random variation, for example – should be considered in future work.

8.2 Introduction

Geographers are often interested in investigating the movement of people between or

around cities. This typically involves public transport or other transport networks. Trans-

port systems can be described by a series of connections, made by travel, between a set of

locations. These connections between locations can be represented in the form of a net-

work or graph (Newman 2018). For example, Y. Yang et al. (2019) used spatio-temporal

networks to represent a public bicycle sharing system; T. Cheng et al. (2011) represented

a road system as a spatio-temporal network when predicting traffic counts; and S. Chen,

Claramunt, et al. (2014) represented a metropolitan rail system as a spatio-temporal net-

work when studying accessibility.

Networks involve objects or locations represented as vertices connected by edges. For

example, a rail network may include stations as vertices and edges where the stations

are connected by railway lines. Each vertex and edge might be assigned properties, for

example, a station might have a set capacity for people awaiting trains, or a railway line

might have a speed limit (Newman 2003). Edges can be bidirectional or unidirectional. In

the latter case, an edge between two vertices only specifies a connection in one direction;

for example, trains may be able to travel from station A to station B, but not in reverse

(Newman 2003).

Networks are used across a range of disciplines, for example: in studies of the social

connections between people (X. Li and Griffin 2013); ecological networks, including animal

interactions and river network settings (Anderson and Dragićević 2018; Neeson et al. 2012);
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transport networks (Abdelghany et al. 2001); or economic trade networks (S. Liu et al.

2018). Some networks (e.g. transport, trade and ecological) have a spatial aspect, where

vertices are in specific locations. Many networks also have a temporal aspect, where the

network connections or the properties of edges and vertices change over time (Blonder,

Wey, et al. 2012). When such properties change over time it may be of interest to model

them, for prediction or causal inference purposes.

When analysing such spatio-temporal networks, it is important to account for the influ-

ence of temporal and spatial correlations on the processes of interest (Dubin 1998). Many

models that aim to do this incorporate time as a series of discrete steps, rather than a

continuous variable (T. Cheng et al. 2014). This limits the models to evaluating temporal

properties of network objects at discrete time points, making it more challenging to use

them for predictions or inferences at any time between these discrete points. As such, the

length of these discrete time steps is of great importance and must be chosen carefully.

Steps of an inappropriately large length can mask intermediate temporal variations in the

data (J. Freeman 1989; Weiss 1984). However, the choice of the length of time steps is

often predetermined by the frequency of measurements in the data generating process;

if measurements are taken every ten minutes, for example, time steps shorter than this

cannot be used (J. Freeman 1989). If data are not measured simultaneously for different

network objects, or at regular intervals, data must be aggregated into common, regular

time intervals for analysis (J. Freeman 1989; Hwang 2000). While this allows for some

degree of choice in the length of the time steps (though still limited by the frequency

of measurements), aggregation can also bias inference as it introduces error in the mea-

surement times of observations, which many statistical models assume to be error-free

(J. Freeman 1989; Hwang 2000). While discrete-time models have been used to great

advantage in the context of spatio-temporal network analysis, it may be possible to avoid

some of the issues outlined here by using continuous-time models (Niezink et al. 2019; Oud

et al. 2012). Multilevel (or mixed effects) spline models are capable of modelling complex

temporal patterns of properties for multiple observational units (Goldstein 2011). These

models are able to account for spatial and temporal correlations among objects and could

potentially be used to model temporal patterns of properties for a set of objects in a

network (Besag, York, et al. 1991).
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Interpreting information regarding spatio-temporal networks is also difficult – the inclu-

sion of multiple dimensions (i.e. two-dimensional space and time) makes visualisation

challenging. T. Li and Liao (2016) developed an interesting solution to the visualisation

of temporal patterns of edge properties – each edge was divided into a number of time

segments which were coloured to indicate the value of some property during each time

window. For multiple properties on one edge, each time segment was further subdivided

into smaller coloured sections. This method has some shortcomings – first, time is still

treated as a discrete variable made of a series of time steps; second, the length of each

edge in the network can be expected to differ, so time is not represented on a consistent

scale across the network. This may confuse interpretations from the visualisation when

comparing temporal patterns of properties between edges of different lengths. Subdivision

of time segments to represent multiple properties occurs in the same dimension as the

division into time segments. This may make it appear as if each property is measured at a

different time. Furthermore, if edges overlap, as they may for dense networks, some time

periods of interest will be obscured for certain edges.

Colak et al. (2013) represented changes in temporal properties of network edges in a

different manner, in the context of a road traffic network. This involved focusing on a

feature of the temporal pattern that constituted an event of interest. In this case, this

was the time at which each edge (road segment) in the network reached 80% of capacity,

thought to be the threshold at which ‘congestion’ exists. The authors represented this

feature of the temporal pattern of edge properties in a map of the network with each edge

coloured to indicate the time at which it reached 80% capacity. Including only one feature

of the patterns of interest helps simplify the visualisation and reduces issues associated

with temporal scales and overlapping edges. While less information is included than in the

proposal by T. Li and Liao (2016), the visualisation answers a specific research question

– i.e. when congestion occurs for each edge in the network. Having a specific question of

interest is important in developing an appropriate analysis based on prior knowledge of

the processes concerned and for avoiding some problematic practices such as ‘p-hacking’

(Head et al. 2015).

The specification of time in Colak et al. (2013) was discrete, yet pattern features for

properties of individual edges or vertices can still be recovered from continuous-time mul-
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tilevel models. This process often involves the use of calculus to extract features – such as

minima, maxima, and slopes of a model – once fitted to the data (Gadd, Comber, et al.

2021). However, the accuracy and precision with which multilevel models can capture

these features is unknown.

Assessing the performance of statistical methods can be carried out using algebraic results

or repeated simulation and analysis of data (Morris et al. 2019). Unlike finding algebraic

results regarding model performance, simulations only represent model performance in a

specific situation, but they are often easier to conduct where algebraic solutions are difficult

(or impossible) to produce and can be used to explore how changes in data structure, for

example, can affect models (Morris et al. 2019). In addition, framing a simulation in a

tangible example can aid understanding of the results describing model performance.

This paper aims to use simulations to evaluate the accuracy and precision with which

continuous-time multilevel models recover features of temporal patterns of edge properties

in a spatio-temporal network context. In particular, this paper focuses on the extraction

of maxima from temporal patterns of journey lengths (the time taken to travel between a

pair of stations) in a rail network as this measure has potential practical uses in identifying

times and locations with very large delays in a rail network.

8.3 Methods

This section first outlines the process of generating simulated data associated with a spatio-

temporal rail network, based on a real dataset and with known properties. This is followed

by specification of the continuous-time multilevel model and process used to extract pat-

tern features (maximum journey length, time of maximum and maximum delay). Finally,

the methods used to compare the estimated temporal pattern features to the simulated

values in order to assess accuracy and precision are outlined.

The ability of models to recover maxima was tested on simulated data representing journey

lengths between pairs of rail stations over the course of a day (Gadd, Comber, et al. 2021).

A series of simulated datasets with known underlying values were generated and analysed.

The accuracy with which models recover these underlying values can then be assessed by

investigating the difference between simulated and modelled values (Bland and Altman
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1999). The relationship between estimated uncertainty and simulated values was examined

to assess precision. Simulations are a simple way of assessing model performance in specific

circumstances, for example, with specific data structures and were chosen here as a way

of assessing one such circumstance (Morris et al. 2019).

8.3.1 Data

Simulated data were based on a small section of the London Underground network compris-

ing 12 stations, shown in Figure 8.1 (Transport for London 2009a; Transport for London

2009b). This area was chosen as it included stations with a range of numbers of connec-

tions – some being very well connected, like King’s Cross and Euston, and some with few

connections, like Mornington Crescent and Goodge Street.

For each of the 132 origin-destination pairs in the network, data representing the length of

time taken to complete 50 journeys at random times in one 24-hour period were generated.

Each origin-destination pair had a ‘true’ underlying function of journey lengths over the

24-hour period, all based on the function shown in Figure 8.2. This function is intended

to represent increased congestion, resulting in longer journey lengths due to waiting for

trains and making slower changes, during a morning and afternoon rush hour.

There was random variation in the intercept and amplitude of this function between each

origin-destination pair. Two pairs sharing an origin or destination were more similar than

pairs with no shared stations.

The observed journey lengths were allowed to vary randomly around the ‘true’ function

for each origin-destination pair. This random variation was allowed to covary based on

temporal and spatial proximity (of origin and destination stations) of the observations.

Some variation in the amplitude of temporal patterns of journey lengths was introduced

in relation to the properties of origin stations for each origin-destination pair. Journeys

from stations with more connections (a higher degree) had greater changes between the

shortest and longest journey lengths (a larger amplitude), resulting in larger maximum

delays for these stations. This is intended to reflect that these stations may become busier

during rush hours than smaller stations, leading to more congestion and delay. This

‘fixed’ variation was included in the simulation process, but information was not retained

for analysis – this is intended to represent latent or underlying subgroups in data that we
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Figure 8.1: Map of the area of the London Underground network used to simulate data
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Figure 8.2: Basic function used to simulate temporal patterns of journey lengths

do not have information about and to test the model’s ability to cope with this situation.

An example set of simulated data is shown in Figure 8.3. Data were simulated using R

(R Core Team 2020a), code for simulation and analysis is available in the Supplementary

Material.

8.3.2 Model

The journey lengths for each origin-destination pair were modelled over time using a

multilevel model with a b-spline basis. Multilevel models were chosen because of their

ability to model continuous temporal functions of properties for multiple observational

units (origin-destination pairs), and their ability to incorporate complex random structures

to account for spatial, temporal and network covariance of observations (Besag, York, et

al. 1991; Goldstein et al. 1994). A b-spline basis comprises a series of functions that

take a positive value in part of the range of the data and are equal to zero elsewhere.

When estimating a model with a b-spline basis, the linear combination of these functions

that best fits the data is estimated (Perperoglou et al. 2019). B-splines were chosen over

alternatives, such as penalised splines, because they are mathematically convenient; the
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Figure 8.3: Example of simulated dataset representing temporal patterns of journey
lengths between different origin and destination stations

value of each b-spline basis function can be pre-calculated for each observed measurement

time and included in the model as a covariate, which is not the case for splines where a

smoothing parameter must be estimated (Perperoglou et al. 2019).

The model (shown in Equation 8.1) for journey length (yi,from,to) included an intercept

(β0,from,to), coefficients (βn,from,to) for each of k basis functions (fn(ti)) that make up the

b-spline basis and an error term (ei,from,to).

yi,from,to = β0,from,to +

k∑
n=1

βn,from,tofn(ti) + ei,from,to

β0,from,to = β0 + u0,from + u0,to + v0,from + v0,to

βn,from,to = βn + un,from + un,to + vn,from + vn,to

ei,from,to =
aei−1,from,to

(ti − ti−1 + 1)

(8.1)

The values of the intercept and all coefficients for each edge were allowed to vary ran-
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domly between origin-destination pairs. This random variation was split into parts (lines

two and three of Equation 8.1): aspatial random variation associated with the origin ver-

tex (u0,from); aspatial random variation associated with the destination vertex (u0,to);

spatial random variation associated with the origin vertex (v0,from); and spatial random

variation associated with the destination vertex (v0,to). The aspatial random variation was

constrained to follow a normal distribution with mean zero. The spatial random variation

was set to follow an intrinsic Gaussian conditional autoregressive (CAR) distribution such

that random effects associated with spatially close vertices would be more highly corre-

lated than spatially distant ones (Besag, York, et al. 1991). This constrains the random

effects to sum to zero. Having random effects associated with both the origin and desti-

nation stations meant that edges sharing an origin or destination vertex are likely to be

more alike than those without a shared vertex.

In addition to the random effects, the error term in the model (ei,from,to) was set to follow

a first order continuous-time autoregressive structure to account for temporal autocorrela-

tion of observations. This is detailed on the fourth line of Equation 8.1: the ith error term

for a given origin-destination pair (ei,from,to) is a function of the previous error term for

this origin-destination pair (ei−1,from,to), multiplied by an autoregressive coefficient (a),

divided by the time difference between the two observations plus one (ti− ti−1 +1 (the ad-

dition of one is to account for potential simultaneous observations)), plus a random error

term, wi,from,to, that is constrained to follow a normal distribution with mean zero. This

means that the random variation for each pair of subsequent observations is correlated,

with the extent of this correlation decreasing if the time difference between them increases

(Goldstein et al. 1994).

The number of basis functions and the range in which each one is positive is specified using

a series of knot points. The specification of these knot points was chosen separately for

each known simulated pattern. Automatic knot point selection procedures are available for

single level spline models (Yeh et al. 2020; Yuan et al. 2013). However, as no such procedure

has been identified for a multilevel context, a selection of 40 possible knot placements were

tested and the knot placement resulting in the lowest Deviance Information Criterion (a

model fit criterion for Bayesian estimation) was chosen. The number of knots in the

possible specifications ranged from one to 20, with knots either evenly spaced over time
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or placed at evenly spaced quantiles of the distribution of observations over time. Placing

knots at equal spaces along the time-axis and at quantiles of the data distribution are

common knot placement strategies (Ramsay and Silverman 1997). An alternative method

is to place more knots at times where curvature in temporal patterns is high (Holmes and

Mallick 2003; Ramsay and Silverman 1997). In this case, equally spaced knot placement

strategies were chosen as the areas of high curvature will vary between origin-destination

pairs. Using quantiles guarantees that all splines cover an equal number of observations,

meaning estimates for all spline coefficients are supported by the same amount of data

even if data are not evenly distributed (Howe et al. 2013; Ramsay and Silverman 1997).

In this simulation, we expect data to be distributed evenly along the time-axis. The knot

specification chosen was 19 knots spaced evenly along the time-axis.

Models were fitted using a Bayesian Markov chain Monte Carlo estimation procedure in

R and OpenBUGS (Lunn et al. 2009; R Core Team 2020a; Sturtz et al. 2005; A. Thomas

et al. 2014). OpenBUGS is a modelling program that uses Markov chain Monte Carlo

estimation (with a Gibbs sampling algorithm) to fit complex model structures (S. Geman

and D. Geman 1984). This was chosen as Bayesian estimation methods are generally

more effective at estimating complex model structures than maximum likelihood methods.

OpenBUGS was chosen as alternative Bayesian engines did not have the capability to fit

spatially correlated random effects (L. Muthén and B. Muthén 2010; Plummer 2003; Stan

Development Team 2019). Bayesian estimation aims to estimate a probability distribution

for model parameters, rather than a set of point values, and produces a series of posterior

parameter samples. This is based on the model specification, data and prior distributions

provided. Prior distributions represent current beliefs about which values are most likely

for each parameter (Heck and S. Thomas 2015). In this case, loose priors that do strongly

indicate any prior beliefs were specified as this is not an analysis intended to fully reflect

Bayesian thinking, but rather one in which Bayesian estimation tools are the most suitable.

Initially, models with loose priors proved difficult to estimate, even with the aid of this tool.

To aid estimation, models were initially run without the first order temporal autoregressive

error structure included. This produced a set of posterior distributions that could be

included as prior distributions for some parameters in the full model. As recommended

when using intrinsic CAR random effects, the fixed effects parameters (β0 and βn in

184



Chapter 8 8.3

Equation 8.1) were set to follow a flat prior in this model (Besag, York, et al. 1991; A.

Thomas et al. 2014). The precision parameter for random effects distributions was set to

follow a gamma prior distribution with shape and rate equal to two. The starting value for

the precision parameter was set to one and starting values for fixed effects were sampled

from a standard normal distribution. The initial model was run with four chains of 4000

iterations each, 3000 of which were discarded as model burn-in. This produced parameter

distributions (to be used as priors in the final model) that allowed the final model (with

temporally autocorrelated errors) to be consistently estimated with a low percentage of

convergence failures (defined here as when the model estimation process failed to complete)

in the simulations.

The posterior distributions for fixed effects from this initial model were used as priors

and to choose starting values in the final model. The autocorrelation parameter was set

to follow a gamma distribution with shape and rate equal to one, truncated at zero and

one as positive autocorrelation was expected. The starting parameter was set to 0.5.

The initial values and distributions for random effects precision parameters remained the

same as the initial model. The final model was run with four chains of 20000 iterations

each, 19000 of which were discarded as model burn-in. The remaining 4000 samples of

parameter estimates provided empirical posterior distributions for each parameter and

pattern feature from which means and 95% credible intervals were derived to compare

with the known simulated values.

8.3.3 Comparison with simulated values

1000 simulations were generated, and the temporal patterns of edge properties analysed

using the multilevel model specified above. The first derivative of the model for each

individual edge was calculated to extract the maximum journey length, the time of this

maximum, and the range of the function (the difference between the maximum and mini-

mum) during the 24-hour period (Gadd, Comber, et al. 2021). The range of the function

corresponds to the maximum delay that passengers experience travelling between a par-

ticular pair of stations. Extracting the pattern features was completed using mean model

coefficients for each origin-destination pair to extract a point estimate. It was then re-

peated with coefficients from each of 4000 posterior samples. This generated posterior

distributions of the maximum journey length, delay and time (with one value for each
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posterior sample) from which quantiles could be taken to represent 95% credible intervals.

For each origin-destination pair, the maximum journey length, maximum time and max-

imum delay were recorded, along with the width of the 95% credible interval. The simu-

lated and modelled maximum journey length, maximum time and maximum delay were

compared. Whether the credible intervals for these pattern features included the pattern

features from the simulated temporal patterns was recorded. The simulated maximum

journey length, time and delay was also converted into a z-score based on the mean mod-

elled value and 95% credible interval for each feature. If the posterior distributions from

which the 95% credible intervals are calculated are normally distributed, and the 95%

credible intervals are of an appropriate width then we would expect the distribution of

these z-scores to follow a standard normal distribution.

This work was undertaken on ARC3, part of the High-Performance Computing facilities

at the University of Leeds, UK. Code for simulation and analysis of data is included as

Supplementary Material.

8.4 Results

Across 1000 simulations, 98.5% of models ran successfully with only 15 failing to complete

estimation. Running one simulation with each chain of the multilevel model estimated

in parallel took approximately two days of computing time. The full simulation was run

with other processes running in parallel and took approximately 14 days.

Table 8.1 compares simulated and modelled values for each of the three pattern features:

maximum journey length, maximum time and maximum delay. Maximum journey length

is the maximum time taken to complete a journey between a pair of stations during the

day examined. Maximum time is the time of day at which this maximum journey length

occurred. Maximum delay is the difference between maximum journey length and the

minimum journey length between a pair of stations during the day examined.

Figure 8.4 shows a Bland-Altman plot (Bland and Altman 1999) for the agreement be-

tween simulated and modelled maximum time, including the mean bias and 95% limits

of agreement. Figure 8.5 shows a density plot of the 95% credible interval widths for

estimates of maximum time. Figure 8.6 shows a density plot, with mean and standard
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Feature Maximum
time

Maximum
journey
length

Maximum
delay

Simulated mean (hh:mm:ss, hours) 15:50:49 0.618 0.306
Modelled mean (hh:mm:ss, hours) 15:50:02 0.596 0.294
Simulated SD (hours) 1.117 0.141 0.188
Modelled SD (hours) 0.844 0.106 0.159
Mean 95%CI width (hours) 2.095 0.066 0.089
SD 95% CI width (hours) 1.398 0.007 0.008
Median 95%CI width (hours) 1.90 0.066 0.088
IQR 95% CI width (hours) (1.12,2.57) (0.061,0.071) (0.083,0.093)
Mean bias (hours) -0.013 -0.022 -0.012
95% Limits of agreement (hours) (-2.28,2.22) (-0.154,0.116) (-0.087,0.051)
Mean simulated value as z-score 0.023 1.333 0.532
SD simulated value as z-score 3.598 4.137 1.868
Percentage of real values within CI 59.533 36.174 68.613

Table 8.1: Table summarising and comparing simulated and estimated pattern feature
values. SD = standard deviation, CI = credible interval, hh:mm:ss = hours, minutes,
seconds time format. Mean bias is the mean difference between estimated and simulated
values. 95% Limits of agreement represent limits of the bias we would expect to find in
95% of estimates of each feature.

deviation indicated, of simulated maximum time features as a z-score of the normal dis-

tribution described by the estimated maximum time and 95% credible interval estimates.

Note that this assumes that the posterior distribution of the pattern feature estimates is

normally distributed.

In Figure 8.4, the simulated maximum times are mostly in the afternoon, with the majority

of values falling between approximately 12:00 and 20:00. This reflects the simulated data

we saw in Figure 8.3 and the average pattern in Figure 8.2, where the maxima take

place around the afternoon commuting period. The mean bias is close to zero, suggesting

that estimates of maximum time are, on average, unbiased. However, there is a negative

correlation between simulated maximum time and modelled minus simulated maximum

time. This suggests that maxima taking place early in the time period are being estimated

as later than they are and vice versa. This may indicate that the model is failing to capture

the full amount of variation in maximum times between edges in the network.

The 95% limits of agreement indicate the limits of the bias we would expect in 95% of

estimates of maximum time from these models. These are wide, with a range of just less

than 2.3 hours either side of zero. This indicates that, while the mean bias is small, there

is the potential for individual estimates of maximum time to have considerable inaccuracy.

The 95% credible interval widths of maximum time are also wide: the most common width
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Figure 8.4: Bland-Altman plot showing the relationship between simulated maximum time
and modelled minus simulated maximum time. The density of points is indicated by the
colour of squares in the plot (darker grey equals greater density). The solid line indicates
the mean bias and dashed lines indicated 95% limits of agreement.

is slightly less than 2.5 hours with a large proportion of intervals wider than this. This

indicates that the estimates of maximum time from the model are also imprecise. The

density plot for maximum time credible interval widths does not have a smooth shape but

rather a series of peaks of common credible interval widths. The distance between these

peaks appears to approximately correspond to the distance between knots in the b-spline

basis (1.2 hours, see Supplementary Figure F.1).

If the 95% credible intervals had appropriate coverage, we would expect the distribution

of simulated maximum times as z-scores of their estimated credible intervals to follow a

standard normal distribution with mean zero and standard deviation one. The mean of the

distribution is close to zero, as shown in Table 8.1, but the standard deviation, indicated

by the dashed lines in Figure 8.6, is over 3.5. This suggests that the 95% credible intervals

are too narrow and do not cover the appropriate amount of simulated maximum times.

Table 8.1 shows that the percentage of simulated maximum times contained within the

estimated credible intervals is just below 60%.
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Figure 8.5: Density plot showing the distribution of 95% credible interval (CI) widths for
maximum time estimates.

Figure 8.7 shows the Bland-Altman plot with limits of agreement for simulated and mod-

elled maximum journey length. Figure 8.8 shows the distribution of credible interval

widths for this feature and Figure 8.9 shows the distribution of simulated maximum jour-

ney lengths as a z-score of the credible interval distributions.

The distribution of simulated maximum journey length is multimodal as it contains lower

maximum journey lengths for journeys originating at stations with few connections and

higher values for journeys originating at stations with many connections. This matches

the simulated data. In Figure 8.7 we see a negative correlation between the simulated

maximum journey length and the degree of over- or under-estimation by the models, like

in Figure 8.4. In this case, however, there is a small negative bias in the estimation of

maximum journey length. On average, estimates from the models are 0.022 hours (1.32

minutes) below the simulated maximum journey length. The 95% limits of agreement are

relatively narrow indicating that 95% of estimated maximum journey lengths are biased

by less than 12 minutes in either direction from the true maximum journey length.

95% credible interval widths, shown in Figure 8.8, are also narrower for the maximum

189



8.4 Chapter 8

Figure 8.6: Density plot showing simulated maximum time values as a z-score of the
relevant posterior distributions of estimates for maximum time. The solid line indicates
the mean z-score and the dashed lines one standard deviation either side of the mean.

journey length compared to maximum time with almost all widths being under six min-

utes. However, the results in Figure 8.9 indicate that these may be somewhat too narrow.

The standard deviation of simulated maximum journey lengths as a z-score of the distri-

butions defined by their estimated credible interval widths is over four and the percentage

of simulated values covered by the credible interval is only 36%. This indicates severe

undercoverage of these credible intervals.

Figure 8.10 shows the Bland-Altman plot for simulated and modelled maximum delay with

the distribution of credible interval widths shown in Figure 8.11. Figure 8.12 shows a den-

sity plot of the simulated maximum delay values as z-scores of the distributions described

by their corresponding modelled maximum delay and 95% credible interval estimates.

There are four distinct groups of simulated maximum delays corresponding to the four

different numbers of connections for stations in Figure 8.1. Over all these groups, a

negative correlation between simulated maximum delay and modelled minus simulated

maximum delay is present, similar to the other pattern features observed. However, within
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Figure 8.7: Bland-Altman plot showing the relationship between simulated maximum
journey length and modelled minus simulated maximum journey length. The density of
points is indicated by the colour of squares in the plot (darker grey equals greater density).
The solid line indicates the mean bias and dashed lines indicated 95% limits of agreement.

some individual groups this correlation does not appear so strong. The mean bias is small

and negative (-0.012 hours, less than 45 seconds) and the 95% limits of agreement are

within six minutes either side of zero.

The majority of estimated 95% credible interval width for maximum delay were less than

7.5 minutes wide, however there is still an undercoverage problem with these intervals: 68%

of simulated maximum delays were covered by the estimated credible intervals and the

standard deviation of simulated maximum delay as a z-score of the 95% credible interval

widths is 1.868. The extent of this problem is less, however, than for the other two pattern

features which had wider z-score distributions and lower coverage percentages.

8.5 Discussion

The mean bias for all pattern features was relatively low, with maximum time, maximum

journey length and maximum delay all being slightly underestimated by less than two
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Figure 8.8: Density plot showing the distribution of 95% credible interval (CI) widths for
maximum journey length estimates.

minutes on average. However, for all features, a negative correlation of the simulated

pattern feature and the modelled minus simulated pattern feature was observed. This

suggests that lower values are being overestimated and higher values underestimated.

This may be an indication that the models are not capturing the full extent of variation in

pattern features between observational units. This may partially be due to either a lack of

flexibility in the model which prevents it from capturing more of the range of variability.

Another cause may be shrinkage: this is an effect in which any model will, on average,

predict less variation than is present in the observed data (Copas 1983; Greenland 2000).

This prevents the model from capturing the full range of variation in pattern features

in the data, but it is possible that some changes to the model specification may help to

capture more of the variation.

Firstly, the model included no x-axis random variation and relied upon the flexibility

of the underlying b-spline basis to capture variation between observational units in the

x-axis. There are forms of multilevel models that include an x-axis random effect. For

example, the Super Imposition by Translation And Rotation (SITAR) model is a form of
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Figure 8.9: Density plot showing simulated maximum journey length values as a z-score
of the relevant posterior distributions of estimates for maximum journey length. The solid
line indicates the mean z-score and the dashed lines one standard deviation either side of
the mean.

multilevel model explicitly designed to investigate childhood growth curves (Cole et al.

2010). It includes three random effects: a y-axis random intercept changing the mean size

of a child across the time measured, an x-axis random intercept representing changes in

the timing of when a growth spurt occurs, and a random effect for the velocity of growth.

Incorporating an x-axis effect to this model may help it to capture more of the variation in

maximum time values by allowing horizontal translations of the modelled patterns between

observations units – this reflects the simulation process underlying the data.

Including random effects in the x-axis may present some difficulties in fitting the model

due to increased complexity. Currently, the model code treats the b-spline basis as a

series of fixed variables, the value of which at each observation time is calculated before

estimating the model. This is convenient and represents an advantage of using b-splines

over penalised alternatives. However, if an x-axis random intercept were included, the

b-spline basis would be shifted horizontally for each edge in the network by an amount

estimated by the model. This means that the value of each b-spline basis function at each
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Figure 8.10: Bland-Altman plot showing the relationship between simulated maximum
delay and modelled minus simulated maximum delay. The density of points is indicated
by the colour of squares in the plot (darker grey equals greater density). The solid line
indicates the mean bias and dashed lines indicated 95% limits of agreement.

observation time would depend on a quantity estimated in the model (the x-axis random

effect) and could not be calculated before fitting. Incorporating such a random effect

would likely be possible in OpenBUGS but would be complicated – this would probably

increase computational intensity of the models and make them more difficult to construct.

However, it may be useful to consider alternative model specifications, particularly for

the specification of random effects, that may allow an x-axis random effect to be included

without increased complexity. In this simulation, spatial and aspatial random variation

between observational units was incorporated into the coefficients for each b-spline func-

tion in the model. This aimed to allow variation in the form of the temporal patterns of

journey lengths for each observational unit while allowing observations closer together to

be more similar. This requires estimation of a large number of random effects coefficients.

The coefficients for the b-splines, however, do not have a clear real-world interpretation

(Stimson et al. 1978) so perhaps the incorporation of random effects in these coefficients

does not correspond completely to random variation in the temporal patterns, particu-
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Figure 8.11: Density plot showing the distribution of 95% credible interval (CI) widths
for maximum delay estimates.

larly spatial random variation, in the way we would expect. It may be more useful and

interpretable to fix the b-spline coefficients and include a series of random effects to allow

transformations of the average temporal pattern for each observational unit, for example

including a random y-axis intercept and y-axis scaling factor, similar to the SITAR model

(Cole et al. 2010). This would reduce the number of random effects that needed to be

estimated by the model, allowing for additional x-axis random effects to be included with-

out increasing model complexity, and also mean that the interpretation of these random

effects was clearer – for example, similar coefficients for two observational units would

clearly correspond to similarity in the temporal patterns of journey delays.

This approach, however, may have some shortcomings. The multilevel model in this paper

assumes that the random coefficients for each b-spline are normally distributed (Besag,

York, et al. 1991; Goldstein 2011). As the simulation has incorporated some latent or

underlying groups in the data with different journey delays, the distributions of simulated

maximum delay and maximum journey length are not normally distributed. As the model

used in this example does not directly estimate the random variation in these parameters,
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Figure 8.12: Density plot showing simulated maximum delay values as a z-score of the
relevant posterior distributions of estimates for maximum delay. The solid line indicates
the mean z-score and the dashed lines one standard deviation either side of the mean.

but rather random variation in the ‘abstract’ b-spline coefficients, this does not necessarily

violate this assumption (though it may). However, if random effects more directly related

to these pattern features were included this may more clearly violate these assumptions

and cause the model to perform poorly (Besag, York, et al. 1991; Goldstein 2011). It may

be possible to account for this, for example by using models with latent (unmeasured)

variables included (Kaplan et al. 2009). It is important for researchers to examine data

carefully to see if there are any structures like this. This allows the researcher to attempt

to account for this where necessary.

The mean width of the credible intervals estimated for maximum time were particularly

large in relation to the 24-hour period covered by the data. The majority of credible

intervals in Figure 8.5 are also fairly wide, which means that the estimates from these

models often do not give a particularly precise indication of maximum time. This may not

be adequate if the models were to be used in a real situation, for example, to choose a time

to implement measures to reduce congestion in stations, or times to include more trains

in a timetable. The distribution of credible interval widths in Figure 8.5, unlike those
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for maximum journey length and maximum delay, has a series of local maxima at fairly

regular intervals indicating that there are some credible interval widths that are more

common than others. The distance between these local maxima appears to be similar to

the distance between knot points in the b-spline basis specified for this model (1.2 hours,

see Supplementary Figure F.1). This may indicate that the structure of the temporal

patterns estimated by the models strongly reflects the b-spline knot placements and that

the shape of these patterns is influencing the width of posterior distributions that generate

credible interval estimates. It would be useful for future work to investigate if this is the

case and if alternative model specifications might change this pattern.

In this particular simulation, the simulated pattern has a clear maximum in the 24-hour

period of interest that is far greater than the other local maxima included. However,

it is possible that some temporal patterns may include multiple maxima with a smaller

difference in their values, for example, patterns that include multiple days and have a

periodic nature. It may be that, for patterns with multiple local maxima, the posterior

distribution of maximum time estimates would contain more than one of these maxima,

rather than the maximum with the largest value during the 24-hour period. This may

produce a multimodal posterior distribution of maximum times which will result in a much

wider credible interval than if the distribution is concentrated around a single maximum

in the 24-hour period. While the usual interpretation of a credible interval based on a

multimodal posterior distribution of maximum time would remain accurate, a 95% credible

interval does not give such a precise description of the posterior distribution in this case

and it may be assumed by readers that it is unimodal. It may be useful for future work to

investigate if a multimodal posterior distribution for the maximum time pattern feature

might be produced in certain situations and whether there is a more detailed way to

represent uncertainty when this is the case.

For all the pattern features, even maximum time which had wide credible intervals, the

coverage of credible intervals is far lower than the expected 95%. Coverage is lowest

for maximum journey length and highest for maximum delay. This indicates that the

estimates of uncertainty for the pattern features are not reliable. This could suggest that

the estimated credible intervals are too narrow, or the estimates of maximum journey

length are biased (or a combination of these). There is no clear indication here that the
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estimated credible intervals are too narrow – in fact, relative to the amount of variation

in the real maximum journey length, the credible intervals are relatively wide – but we

cannot rule this out as a cause of the undercoverage of these estimates. Despite the mean

bias estimates being low, there is clearly some bias in the estimation of low and high

values of each pattern feature. This may have contributed to the size of the 95% limits of

agreement for these features which are larger than half the mean credible interval width

for all three pattern features. The size of the 95% limits of agreement in relation to the

credible interval widths means that we would expect more than 5% of the credible intervals

not to cover the simulated maximum journey length, which is indeed the case. Where the

credible interval widths are smaller compared to the 95% limits of agreement, we also see

a decreased coverage. This may indicate that bias does contribute to the undercoverage

of credible intervals. Further work could be carried out to investigate the contributions of

different factors to the undercoverage seen in this simulation study. This would indicate

how best to approach fixing the problem.

8.6 Conclusion

This simulation tested the ability of continuous-time multilevel models to capture maxima

in temporal patterns of edge properties for a spatio-temporal network. Only one scenario

with one data structure was investigated – this particular scenario was chosen to reflect a

real data example to which this model has previously been applied (Gadd, Comber, et al.

2021). Future work testing these models in the presence of different data structures (for

example, the timing of measurements (evenly spaced, balanced/unbalanced, measured in

waves), different degrees of temporal and spatial autocorrelation) should be carried out as

the impact of different scenarios on the model performance should be assessed.

The models were able to capture the maximum time and maximum journey length with a

small mean bias; they tended to overestimate low simulated values and underestimate high

simulated values for both features, leading to biased estimates for individual edges in the

network with low or high maximum times/journey lengths. The extent to which variation

is not fully captured may have contributed to the relatively small proportion of credible

intervals for these pattern features that contain the simulated pattern feature values. In

practice, this means the credible intervals from this model in its current form cannot
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be interpreted as the range of most likely values for the pattern features. Future work

concerning continuous-time multilevel models for temporal patterns of edge properties in

spatio-temporal networks should consider incorporation of an x-axis random intercept and

alternative prior and initial value specifications, which could potentially improve this.
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Discussion

9.1 Introduction

This research has explored the application of continuous-time models to examine temporal

patterns of edge properties in spatio-temporal networks.

Initially, a review was undertaken to identify methods used to analyse spatio-temporal

networks in the recent literature, with a particular focus on the specification of time as

continuous or discrete. Almost all the papers identified in this review used discrete time

specifications, which showed a clear need for investigation into the use of continuous-time

methods for spatio-temporal networks and the challenges of making results from spatio-

temporal network analyses interpretable and accessible to readers.

Purported continuous-time methods established in geography and epidemiology were crit-

ically reviewed in Chapter 3. This chapter identified that a number of these methods are

not as adept at handling continuous time as they initially seem, particularly the most

flexible form of latent growth curve models (Bollen and Curran 2005). This chapter also

highlighted a potential pitfall of temporal data analysis – the practice of conditioning on

the outcome. Little detailed information regarding the issue was found in the literature

and this made clear the need to highlight this issue to discourage people from using this

kind of methodology (Tu, Tilling, et al. 2013). Three potentially useful continuous-time

methods were identified: multilevel models, functional data analysis, and stochastic dif-

ferential equations. Of these, this thesis focused on multilevel models because of the ease

with which they capture complex covariance structures and the wide availability of soft-

204



Chapter 9 9.1

ware for fitting these complex models (Besag, York, et al. 1991; Browne, Draper, et al.

2002; R. Jones and Boadi-Boateng 1991).

Chapter 4 outlined in detail the multilevel model specification whose application to spatio-

temporal network data would be investigated. It also outlined the simplification of results

from these models by the extraction of ‘pattern features’. Pattern features represent events

that can be defined by some part of the temporal pattern, for example, maxima or minima.

In addition, the use of these models to generate continuous temporal functions of network

properties in the presence of data with measurement interval heterogeneity was outlined.

The process outlined in Chapter 4 is, to the best of the author’s knowledge, new to the

geography literature, particularly the generation of continuous-time functions of network

properties. This use of continuous-time multilevel models also fills a gap in the literature

that was identified in Chapter 2. Work containing these models (Chapter 7) has been

accepted for publication as Gadd, Comber, et al. (2021).

Chapter 5 described the data used in the investigation of these methods. Real data from

Transport for London Open Data were introduced, but the focus was the development

of a flexible and widely applicable simulation tool for longitudinal data. Simulating data

can be a complex and difficult process, and the aim of developing such a function was to

provide a relatively simple tool through which longitudinal data could be simulated with a

flexible form and data structure, with known parameters at the population and individual

level, and a pre-specified spatial and/or network dimension. This tool has been made

freely available online and is a useful contribution to the field of temporal or longitudinal

data analysis in which simulations can be used to evaluate methodology.

Chapter 6 included an investigation into the inappropriate interpretation of models and

methods that aim to relate temporal patterns of a variable for individual observational

units to a later, time-invariant outcome. The methods in question attempted to model

and/or interpret temporal patterns conditional on this outcome, which resulted in inap-

propriate inferences of average values of the temporal variable within outcome groups at

different time points as a continuous temporal pattern. This was included because, in an

exploration of the use of continuous-time models to model temporal patterns at an indi-

vidual level, many studies used these methods, particularly within the area of lifecourse

epidemiology (Færch et al. 2013; Hulsegge et al. 2017; Oka et al. 2017; Sabia et al. 2017;
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Shoaff et al. 2017). Little detailed information about this issue has been published to date,

so a simulated example outlining some of the potential shortcomings and misunderstand-

ings that can arise when aiming to model continuous temporal patterns was considered

immportant to encourage researchers to avoid this methodological error when applying

continuous-time models to spatio-temporal networks. To avoid the issue, models aiming

to capture individual observational unit level temporal patterns should be fitted agnostic

to any later outcome. Results from these models, including temporal pattern features

extracted as in Chapters 7 and 8, can then be related to later outcomes. Producing a de-

tailed demonstration of the issues associated with methods that condition on the outcome

is an important contribution to research involving temporal models in any field and has

been published as Gadd, Tennant, et al. (2019).

Chapter 7 provided an example application of the novel analysis approach outlined in

Chapter 4 to both simulated and real data examples. In the examples described, the

models were applied to explore temporal patterns of delays to journeys between different

origin-destination station pairs in a railway network. More generally these models could

be applied to any situation where mapping or correlating events defined by edge or node

property fluctuations in a network with static topology is of interest. For example, the

timing and size of rapid changes in river levels and their relation to weather events in

different locations of the river basin, or the timing of congestion in different parts of a

road traffic network in response to a road blockage (due to an accident, for example) in

different locations.

Chapter 8 included a simulation analysis testing the accuracy and precision with which

the process in Chapter 4 was able to extract features of temporal patterns of network

properties. This identified some shortcomings of the novel approach and provided an

indication of some directions for future research.

9.2 Review of spatio-temporal network methods

Chapter 2 reviewed literature that analysed spatio-temporal networks. Spatio-temporal

networks were found in a wide range of different fields, which highlighted the importance

of suitable analytical methods for these structures. However, a key finding from the

review was that all but four of the eighty plus papers specified time as a discrete variable
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(Abdelghany et al. 2001; Y. Fang et al. 2019; Y. Jin et al. 2019; Lengyel et al. 2020). There

are a range of issues associated with using discrete-time models, not least that they do not

represent the true, continuous nature of time (Oud et al. 2012). The use of discrete time

steps or windows means that data must either be measured regularly and simultaneously

for all observational units or must be aggregated – the process of aggregation has been

shown to introduce bias (de Haan-Rietdijk et al. 2017; Hwang 2000). In addition, the

size of the time steps is a key choice for discrete-time models that must be made based on

knowledge of the process being analysed (Comber and Wulder 2019) – however, when data

are measured regularly, the length of time steps is often predetermined (J. Freeman 1989).

Too long or short a time-step can mask variation in temporal properties (J. Freeman 1989;

Rossana and Seater 1995).

As discrete-time models are subject to this range of issues, the lack of use of continuous-

time models highlighted a key area for further research – the use of continuous-time models

in spatio-temporal networks. This was the key focus of research for this project.

Another additional finding in the review was the difficulties associated with visualising

spatio-temporal network data. Presenting spatio-temporal network information in an in-

terpretable way is difficult. Even static spatial network graphs often suffer from over-

crowding of edges or nodes which can obscure important information (Graser et al. 2017;

Wood et al. 2010); introducing a further dimension and more information to this only

exacerbates the problem. A number of papers aimed to develop new methods or soft-

ware for visualising spatio-temporal networks, but the resulting solutions were not ideal

and sometimes unclear (T. Li and Liao 2016; G. Sun et al. 2017). One spatio-temporal

visualisation did produce a clearly interpretable map in which the timing of key events,

extracted from a spatio-temporal network model, for different edges in the network was

presented (Colak et al. 2013). This was based on a discrete-time model, but did highlight

the importance of simplification of results and focus on a key outcome of interest as ways

to convey information about complex structures clearly.

9.3 Continuous-time models

Chapter 3 provided an overview and critical discussion of a range of continuous-time

models and methods that could potentially be applied to spatio-temporal networks. This
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drew on methods not just from the field of geography, but also on well-established methods

in the field of lifecourse epidemiology.

A number of the methods identified in this chapter are presented as being continuous-

time methods but are actually limited to treating time as a discrete variable. One such

method was the latent-basis latent growth curve model – this is a form of latent growth

curve model where the factor loadings (used to specify the relationship between a latent

slope variable and observed measures of some temporal property, usually set to be equal

to or some function of the measurement times) are allowed to be estimated freely (Bollen

and Curran 2005). This essentially stretches the time-axis of the model allowing latent-

basis latent growth curve models to fit non-parametric shapes. However, the amount

of stretching of this axis is only estimated at the measurement times for the observed

variable, not in between. This means that the latent-basis latent growth curve model

is undefined in between observed measurements which is not conducive to producing a

continuous temporal model of some property.

Another methodology that does not treat time as a continuous variable is conditioning

on the outcome – this was identified as a common pitfall in which analyses included

their outcome variable as a covariate when attempting to examine how the patterns of a

temporal exposure variable may cause it. The aim is to identify ‘average’ patterns, but the

result is a series of average values within each group at discrete time points that cannot

be joined and called a ‘pattern’ or ‘trajectory’. There was limited mention of this issue in

the literature, despite it being a fairly prevalent problem, which highlighted a clear need

for this issue to be addressed in detail to discourage further use of conditioning on the

outcome methods (Tu, Tilling, et al. 2013).

There were three methods identified in Chapter 3 that could be suitable for application

to spatio-temporal networks: multilevel models, functional data analysis and stochastic

differential equations (Goldstein 2011; Ramsay and Silverman 1997; Van Kampen 1976).

For this investigation, multilevel models were chosen due to the wider familiarity and

availability of software for multilevel modelling that can also incorporate both spatial and

temporal covariance structures.

Capturing the variance structures underlying data generation is important when mod-

elling to seek causal understanding. Many standard statistical models make the default
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assumption of independence of observations (Wolf and Best 2014a). In many situations,

including when we have repeated measures of the same observational units, this will not

hold; repeated measures taken within the same observational units are likely to be more

similar to each other than measures made for other observational units (Goldstein et al.

1994). Failure to account for this will result in inappropriate estimates of uncertainty (e.g.

credible or confidence intervals) from analyses (Ugrinowitsch et al. 2004). Estimates of

uncertainty are a key part of the results from an analysis – they provide an indication of

a range of probable values for an effect size and can help us understand if that effect may

be of importance in the real world.

Additionally, results describing the complex variance structure underlying data genera-

tion may be of interest to researchers to address specific research questions that cannot

be elicited from the fixed effects alone – for example, the extent of spatial correlation

between patterns of a variable in observational units may be a key outcome of an investi-

gation. However, estimates of uncertainty and results describing the covariance structure

underlying data will only be useful to researchers if this covariance structure is captured

accurately by the model. This is a complex task – researchers must carefully consider the

data generation processes and knowledge of the system of interest and investigate different

models for covariance structures that may be appropriate (Gilthorpe et al. 2014).

However, it must be acknowledged that multilevel models explicitly describe temporal

patterns as a function of time and, in many contexts, this is not an accurate depiction of

the causal relationships underlying the data generation process. Time itself does not cause

temporal fluctuations in a variable, but rather indexes the underlying processes that do

cause fluctuations in that variable (Oud et al. 2012). Describing temporal patterns of a

variable as a function of time is a simplified representation that is used to consistently ex-

tract temporal features of interest across observational units. An alternative approach that

uses a continuous representation of time is the stochastic differential equation. Stochastic

differential equations describe the rate of change of a variable at a given time as a func-

tion of the observed value of the variable (and potentially other variables) at that time

(Van Kampen 1976). This uses time as an index, to order the variable of interest over

time, rather than as the cause of the variable of interest. The relationship described is

that between the current value of the variable and the rate of change at each instant in
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time, which may be a more appropriate description of the causal processes underlying the

data.

However, extracting pattern features in the manner presented in Chapters 7 and 8 is

essentially a process of interpolation (aiming to simplify interpretation). The specification

of the temporal pattern of the variable of interest as a function of time is used in the process

of extracting pattern features, but is not necessarily of importance to their interpretation –

whether extracted by a multilevel model or a stochastic differential equation, the timing of

a maximum point represents the same ‘event’. When simplification is the goal, we must ask

whether it is necessary to attempt to describe the causal relationships underlying temporal

pattern generation when they are not necessarily of interest as a result. On the other

hand, hypothesised causal relationships between variables often form an important basis

to developing predictive models (Piccininni et al. 2020). If one variable is an important

cause of another, they are likely to be highly correlated; having information on one of two

highly correlated variables is likely to improve predictions of the other. This is likely to also

be the case when interpolating within the range of the data, rather than aiming to generate

out of sample predictions. Attempting to model the causal relationships underlying the

generation of temporal patterns in data could potentially lead to more accurate recovery

of pattern features. These two approaches (modelling the data generation processes and

modelling temporal patterns as a function of time) should be compared in future work.

While it would be interesting to explore the use of stochastic differential equations to carry

out analyses as described in Chapters 7 and 8, there are alternatives to multilevel models

that also define temporal patterns of variables as a function of time. One method that

was identified as potentially useful in Chapter 3 was functional data analysis (Ramsay and

Silverman 1997). Functional data analysis can account for covariance between residuals,

for example temporally autoregressive error structures, and has been used in spatial appli-

cations (Delicado et al. 2010). Functional data analysis also has its main aim in recovering

temporal patterns which is similar to the process of extracting temporal pattern features

outlined in Chapter 4. As part of this, it includes a process called registration which

involves aligning the features of these temporal patterns (Ramsay and Silverman 1997) –

this is, in a sense, akin to including a random x-axis intercept and could be very useful in

extracting temporal pattern features more accurately. The application of functional data
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analysis to spatio-temporal networks should also be explored in future work.

9.4 Continuous-time model specification for spatio-temporal

network data

Chapter 4 introduced the specification of a continuous-time multilevel model that could be

used to capture temporal patterns of edge properties in a spatial network and a process for

simplifying the results to present them in an interpretable way. The process for simplifying

results included the extraction of pattern features, for example maxima, from the temporal

functions similar to Colak et al. (2013). In addition, a novel process to generate continuous-

time functions of whole-network properties was introduced. This method has wide ranging

potential applicability for studying the evolution of network structures in continuous-time.

Calculating network properties at regular discrete time intervals is a common tactic but

it relies on regularly measured data or temporal aggregation of data (Blonder, Wey, et

al. 2012). Producing a continuous-time function using continuous-time models enables

network properties to be estimated at all points in time, including interpolating properties

at times with no observations, in the presence of interval heterogeneity without the process

of aggregation (which can introduce bias (de Haan-Rietdijk et al. 2017; Hwang 2000)).

These models could be applied to wide range of circumstances where temporal patterns

of edge (or node) properties are of interest. Chapter 7 illustrates an application in the

transport sector. In this scenario, the timing and extent of the maximum delays to journeys

recorded for each origin-destination pair in a rail network could be used to identify where

and when to add new rail services to the network timetable in order to reduce delays

as much as possible for the money expended. Other applications could be considered in

other areas, for example, examining the extent and timing of changes in river levels for

different reaches of a river network in response to a rainfall event in the river basin, which

could be used to inform safety warning systems for those taking part in river-based leisure

activities.

9.4.1 Advantages

There are two major advantages of the framework outlined in Chapter 4, regardless of

the type of continuous-time model used to capture temporal patterns. First, the models
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treat time as a continuous variable and, second, the improved interpretability of model

results through the extraction of temporal pattern features and continuous whole-network

property functions. These two factors are heavily linked to each other – the interpolation

in continuous time is necessary to extract pattern features and continuous whole-network

property functions would not be possible if a discrete-time model was used, as these are

only defined at each discrete time step and not in between them. Producing continuous-

time temporal functions of whole-network properties would be difficult without the use

of continuous-time models of observational unit level properties. If data were measured

simultaneously for all observational units within the network being studied, it would be

possible to calculate the whole-network property of interest at each time point and then

model these results over time. However, if the measurements were not simultaneous,

which is likely to be the case in many circumstances, interpolation of the data between

measurements at the observational unit level (using models such as that in Chapter 4) is

necessary before whole-network properties can be calculated at any time point; data from

all observation-units is required to calculate the whole-network properties.

Using a continuous-time model also more accurately represents the real nature of time

(Oud et al. 2012). For all practical purposes, time does not advance in discrete steps but

can be divided into infinitely small units. While a discrete variable, such as the number

of passengers in a tube station, might change at a single instant in time, the world is also

full of continuous variables that change continuously over continuous time periods. For

example, the speed of a car travelling on roads changes continuously as it accelerates and

decelerates, or the temperature inside a London Underground train carriage will change

continuously throughout each day rather than instantaneously increasing by discrete units.

As discussed in more detail in Chapters 2 and 3, continuous-time models can also cope

with unevenly spaced measurement intervals (within and between observational units)

without the aggregation of measurements into time segments. Aggregating measurements

over time essentially changes the time value associated with each observation. Many sta-

tistical models assume that there is no error in the measurement of covariates, only in

the outcome (Wolf and Best 2014c). Introducing error by changing the ‘timestamps’ of

measurements through aggregation clearly violates this assumption. Inappropriate ag-

gregation has been shown to bias inferences from autoregressive models, as discussed in
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Chapter 2, and should be avoided (de Haan-Rietdijk et al. 2017; Hwang 2000; Rossana

and Seater 1995). Continuous-time models provide a convenient way of circumventing this

issue.

The process of simplifying temporal patterns by extracting pattern features is also an

important and potentially useful part of this research. Various attempts to visualise spatio-

temporal network data were identified in Chapter 2. Those that did not simplify temporal

patterns into features were not clear (T. Li and Liao 2016; G. Sun et al. 2017). Including

a large quantity of data with at least three dimensions (two-dimensional space, and time)

is a huge challenge for visualisation, particularly if avoiding the use of animations and

interactive graphs. Visualisations with all these dimensions and associated information

are prone to becoming overcrowded and difficult to read and understand, which results

in no useful information being transmitted to the reader (Graser et al. 2017; Wood et al.

2010). Extracting pattern features gives us just a small number of pieces of information

to map, model or summarise. By condensing a temporal pattern into salient pieces of

information, we do not have to display the time dimension in the data which reduces clutter

in visualisations. Continuous-time functions of whole-network properties also reduce the

dimensions of data we must display – by summarising across the whole network we no

longer have to visualise space, which makes these much easier to display and interpret.

One other potential advantage of considering specific pattern features and network prop-

erties is the focusing of analyses on specific information and outcomes of interest. This

may reduce practices such as p-hacking, which aim to mine the data for a “statistically

significant” result. These practices often produce poor quality research with little con-

sideration of the underlying data generating processes (Head et al. 2015; Simmons et al.

2011). If a researcher is focused on a particular feature of interest, like a pattern feature or

whole-network property, they can tailor the analysis to appropriately reflect the processes

underlying the data generation (Comber and Wulder 2019). Models will never be able

to fully reflect these processes and must compromise on the detail they include and the

parsimony of the model (Box 1987). Even when modelling two different outcomes within

the same system, the processes particularly salient to the generation of these outcomes

may differ; using different model specifications for these two purposes may be the best

modelling strategy.

213



9.4 Chapter 9

9.4.2 Limitations

The novel multilevel model approach introduced in this research thesis has limitations.

The model explicitly included spatial and temporal autocorrelation, using the conditional

autoregressive prior distribution (spatial) and an autoregressive error structure (temporal)

(Besag, York, et al. 1991; Goldstein et al. 1994). However, the model did not include auto-

correlation structures related to the network (geodesic) distances between edges (Newman

2002). It did allow edges that shared an origin or destination station to be more similar

than those that did not, which allows some correlation of observations related to the net-

work structure by allowing journeys with the same origin or destination to be more alike

than journeys without those similarities; as travelling through the origin and destination

stations (after tapping into the London Underground system or before tapping out) con-

stitutes part of the journey length recorded, it is likely that journeys sharing an origin

or destination station will have some similarity – particularly if congestion is occurring

within the station, so this is an important factor that has been accounted for.

However, there are other factors relating to the structure of the London Underground

network itself that may be of importance. Firstly, the distance between stations along

network edges, which could induce spatial autocorrelation in a similar way to geographical

distance, is not accounted for. It would be possible to account for the network distance

between stations, for example, by including an additional random effect with a conditional

autoregressive prior based on weights describing the network topology (Besag, York, et al.

1991; Ermagun and Levinson 2018). However, this would introduce additional complexity

to the model – researchers may wish to consider which model components are of the highest

priority and remove some to increase parsimony. This can improve the estimation of the

model.

Another potentially important factor is whether journeys share the same London Under-

ground lines and are therefore likely to experience similar delays or train speeds. This

would require more detailed work to account for, as there are often several possible routes

between most origin and destination stations in rail networks – this is the case for the

London Underground network. Identifying the most likely route of travel for an origin-

destination pair with a given journey time could potentially include processes such as

identifying all different potential routes, estimating travel times, if possible, and account-
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ing for closures of certain lines or segments of the network at different times (Gordon et al.

2018; Kwan 2013; Nassir et al. 2015). Accounting for the lines used to complete a journey

would require a further multilevel structure to be incorporated into the model – possibly

a multiple membership model where observations of journey lengths can belong to one or

more different train line clusters. In this type of model, the ‘contribution’ of each train

line cluster to a journey length observation is weighted (with the sum of weights equal to

one) – these weights could reflect the proportion of the journey (in distance or time) that

is carried out on each contributing train line (Fielding and Goldstein 2006). Exploring

the application of a model that accounts for the sharing of Underground lines would be

extremely interesting and could potentially provide insight into which lines experience the

worst delays and when.

The project only explores the application of multilevel models to systems with static

network topology and geography, that is, the configuration of nodes and edges in the

network does not change and they cannot move around. This limitation on networks is

realistic in many situations. For example, while rail networks can change, mostly they

do so through the closure or opening of an old or new station, and the construction or

destruction of rail lines. This tends to happen relatively infrequently.

However, in some situations, changes occur more regularly. There may be certain stations

that are closed for part of each day, for example. In other types of networks, like social or

ecological networks, vertices may move through space over time. For example, if connec-

tions between animals are of interest, the animals will be represented by vertices which

will regularly move (S. Chen, Ilany, et al. 2015). In certain places, some river segments

flow only during certain seasons or weather conditions, meaning the topology of stream

networks can change rapidly in a way that might be important to researchers (Peirce and

Lindsay 2015). If topological or geographical changes in networks are considered impor-

tant to the process under consideration, researchers must try and account for them when

modelling the system.

There are discrete-time models for networks that aim to account for temporally dynamic

network topology, for example, LSTARIMA (T. Cheng et al. 2014). This is a space-time

autoregressive moving average model with a dynamic spatial weight matrix specifying the

relationship between edges in a road network that leads to spatial autocorrelation amongst
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traffic conditions. While the road network itself is static, it is expected that the effect of

one segment on another adjacent one will change depending on the traffic conditions.

Thus, traffic conditions at a given time t affect the spatial weight matrix which partially

determines traffic conditions at time t+ 1. The discrete-time specification in LSTARIMA

enables the relatively easy specification of this ‘back-and-forth’ relationship between traffic

conditions and the spatial weight matrix. It may be possible to accommodate changing

network structure in continuous time by jointly modelling the property of interest along

with the evolving network structure over time, but this would be challenging (Ibrahim

et al. 2010; W. Zhang, Leng, et al. 2015).

As a whole, the model specification used in this work is quite complex: it includes spatial,

temporal and network autocorrelation structures and a spline specification to allow time

to be treated as a continuous variable. There is scope for the specification of this model to

be simplified of further complicated depending on the circumstances in which it was used.

Having a more complex model may mean that the covariance structure specified more

closely matches the processes underlying the data - this will result in more appropriate

estimates of uncertainty and potentially a better fitting model (Goldstein 2011; Wolf and

Best 2014a). However, it is not possible to specify a model that completely reproduces all

the processes underlying the data - all models are a simplification of reality (Box 1987).

Simplifying the model further may reduce estimation times and make the models more

widely accessible. However, oversimplification of the covariance structure in the data will

lead to underestimation of uncertainty associated with results (Goldstein 2011; Wolf and

Best 2014a).

The choice of how complex to make the model specification can only be made based on the

research question at hand and knowledge of the processes underlying the data in question,

however, there are two complex elements of this model that may be particularly impor-

tant. First, the cross-classified random structure in which observations are grouped by

origin and destination stations. This allows patterns of edge properties to be examined

individually for different origin-destination pairs, rather than as an ‘average trajectory’

(which should be discouraged (Gadd, Tennant, et al. 2019)). The inclusion of this hier-

archical structure also accounts for similarity between observations associated with the

same origin or destination stations - this is a key component of the network structure of
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the data and ignoring this would likely result poor estimation of uncertainty (Goldstein

1994). Second, the continuous-time structure of this model is extremely important in al-

lowing for interpolation of pattern features and continuous-time whole network properties

- if these types of measures are useful for the research question, then a continuous-time

model should be considered over a discrete-time alternative. However, in situations where

this is not the focus, it may be appropriate to consider simpler discrete-time models as

an alternative. Researchers should also consider the measurement scheme in the data and

if, in the presence of irregularly measured data, aggregation of measurements into time

windows for discrete-time models may introduce bias (J. Freeman 1989).

9.4.3 Future work

Overall, there are a range of different model types and model specifications that could

potentially form an important part of the framework for analysing spatio-temporal net-

works and interpreting the results from these analyses set out in Chapter 4. Future work

should aim to compare the utility and performance of stochastic differential equations

and functional data analysis with each other and multilevel models in a range of different

situations. Additionally, investigating different specifications of models for the covariance

structure in models should be considered: like any model we cannot expect to fully capture

the covariance structure in the data and we must consider and investigate to what extent

we must incorporate this complexity into our model in order to generate accurate results

with appropriate estimates of uncertainty (Box 1987; Gilthorpe et al. 2014).

Further aspects of model specification that should be investigated are different spatial

and temporal weight specifications and alternative spline basis functions. The model in

Chapters 4, 7 and 8 uses inverse weighting schemes for temporal autocorrelation processes.

This means that the strength of the relationship between two locations or times is inversely

proportional to the distance between them (in space or time) (Dubin 2009). One of the

major issues with this type of weighting scheme is that the inverse weight ( 1
distance) is

undefined when the distance is equal to zero. While this is less likely to be an issue in

space, repeated measures in time may occur simultaneously, especially if they occur when

an event such as the start of a rail journey takes place. To attempt to account for this,

the model simply added a constant (one) to the temporal distances between observations

– preserving the differences between them but meaning all inverse weights were defined.
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This approach was chosen after experimentation with different weighting schemes as it

lead to improved model convergence, but is probably not ideal, and alternative weighting

schemes may provide better model performance. For example, the negative exponential

weighting system which is mentioned in Chapter 4 (Dubin 2009).

Even with an alternative weighting scheme, there may still be issues with simultaneous

measurements – particularly if more than two measurements occur simultaneously, as there

is no clear ordering of these measurements in the temporal autocorrelation structure. Un-

der a first order temporal autocorrelation structure, each measurement only influences

a single subsequent measurement. This means that if three simultaneous measurements

occur, their bivariate correlations would not be equal (arbitrarily ordered, the ‘first’ mea-

surement will be more strongly correlated with the ‘second’ than the ‘third’). It would

probably be expected that three measurements occurring simultaneously would be equally

correlated with one another, and this type of autoregressive structure is not able to reflect

that. Future work should compare model performance, as well as computation time and

ease of estimation, under different weighting schemes. However, the weighting scheme in

any model is a parameterisation choice that should be considered not only in terms of

performance but also knowledge about the underlying data generation process (Comber

and Wulder 2019).

9.5 Simulated data

Chapter 5 outlined the data used in this project. This included real data from Transport

for London Open Data, but the major contribution of this chapter is the longitudinal

simulation tool which was used in Chapters 7 and 8. This tool is a highly flexible R

function for generating repeated measurements of temporal data which can be associated

with a network, locations or origin-destination pairs, and grouped into clusters. The

tool also produces known temporal patterns at the individual, cluster, and population

level, and can incorporate complex error structures. Simulating complex datasets can be

difficult but is often necessary when testing the performance of models or methods. It is

also important for the user to know what they have simulated. Therefore, this simulation

tool is potentially very useful to researchers looking to simulate longitudinal data when

evaluating methods, as it removes some of the time commitment to learning to generate
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the complex structures it can produce.

It is important to note that simulation studies have some shortcomings. In particular, they

can only evaluate the performance of analytical techniques in a specific scenario (Morris

et al. 2019). As only one simulated scenario was included in Chapter 8, we only have

information about the performance of the model in these particular circumstances. It is

of importance that future work addresses a range of different scenarios, testing the ability

of models like that in Chapter 4 to capture different pattern features (step changes, rates

of change, volume of rush hour traffic) from various different pattern shapes (multiple

maxima, different amplitudes, varying complexity) with different data structures (auto-

correlation structures, underlying causal relationships, data measurement schemes).

9.6 Conditioning on the outcome

Chapter 3 identified methods that conditioned on the outcome as a common pitfall in

temporal data analysis, however very little literature outlining this pitfall and discouraging

the use of methods that condition on the outcome could be identified. This highlighted

a clear need for a paper emphasising these issues. The key message of Chapter 6 was

that, when aiming to look at the relationship between temporal patterns of a property

and some later outcome, one should capture information about the patterns agnostic to

this outcome and then relate the two, as opposed to examining patterns conditional on

the outcome variable.

It is possible that the models in this project could be used to capture pattern features

which could then go on to be related to a later outcome in a two-step process. This is an

approach that has been used in epidemiology, for example to relate patterns of childhood

growth to later experience of skin rashes (Aris et al. 2017; M. Gao et al. 2017; Tilling

et al. 2011). In the context of a rail network, such an approach could be used to explore

a variety of aspects of how, when, where or why passengers use certain parts of the rail

network. For example: to investigate the relationship of origin or destination station

locations with peak travel times and peak congestion; to evaluate the effect of measures

taken to reduce congestion on the extent of delays to journeys taken from, to or passing

through a particular station; or to examine the relationship between passenger perceptions

of commuter-period delays and congestion on particular rail lines or stations and the real
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delays and congestion on these lines and stations during commuter periods. Studies like

this could be used to inform decisions about where and when to prioritise making changes

to the rail network infrastructure, rail charges, or public information about the rail network

to improve the transport system on a potentially limited budget.

As this approach of relating patterns to a later outcome is a potential use of the methods in

this project, it was highly important to demonstrate a major potential pitfall in temporal

modelling to discourage it and improve the quality of future research of this type.

9.7 Example application of multilevel models to real and

simulated spatio-temporal network data

Chapter 7 included an example application of the methods in Chapter 4 to a real and

simulated dataset. This included the application of continuous-time multilevel models,

the extraction of pattern features (maximum delays to journeys in a rail network) and the

extraction of continuous-time whole-network properties.

The estimation of pattern features and continuous temporal functions for network prop-

erties formed a key part of providing interpretable results (with estimates of uncertainty)

for these models. The b-spline function on which they are based does not produce inter-

pretable coefficients with a real-world meaning. In addition, the visualisation of temporal

patterns within a two (or more) dimensional space proves difficult, leading to cluttered,

uninterpretable graphs, or a reliance on animation and interactive graphics which are not

accessible to all (Graser et al. 2017; Wood et al. 2010). Chapter 7 includes some visu-

alisations of point estimates of pattern features in relation to network properties of the

railway system under analysis, and some visualisations of temporal network property func-

tions. In the opinion of the author, the temporal pattern features and continuous-time

network property functions have a clear interpretation with a real-world meaning. The

ease of interpretation of a result or measure, however, is subjective – it would be interest-

ing to investigate how easily people from different backgrounds are able to interpret and

understand results from analyses like those in this project, for example through a survey.

It is also important to note that visualisation of this information, in particular temporal

pattern features, is subject to all the usual fallacies and difficulties of presenting other data.
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One aspect of this is the visualisation of uncertainty, particularly with regard to mapping

temporal pattern features. Figure 9.1 shows an example map including only the point

estimates of maximum flow between nodes in a network, without any indication of the

width of the 95% credible interval for this feature. There are some potential solutions to

visualising uncertainty presented in Figures 9.2 and 9.3 – Figure 9.2 includes a second map

showing credible interval widths which would be presented alongside the map with point

estimates; Figure 9.3 includes adding ‘triple stripe’ lines for each edge in the map, with

each line representing the upper limit of the 95% credible interval, the point estimate, and

the lower limit . Both solutions have issues: processing two images together can be difficult

and including three pieces of information for each edge results in a cluttered map. Even

when not attempting to visualise uncertainty alongside pattern feature point estimates,

visualising edge properties in networks without cluttering and potentially obscuring useful

or important information is particularly difficult, and this approach does not attempt to

provide any solutions to this issue (Graser et al. 2017; Wood et al. 2010).

Figure 9.1: Example map of times of maximum flow along edges in a network with no
representation of uncertainty

Chapters 4 and 7 also outlined the use of temporal functions of network properties to gen-

erate continuous temporal functions of whole-network properties, but this was not further
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Figure 9.2: Example map showing the width of 95% credible intervals associated with
maximum flow times in Figure 9.1
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Figure 9.3: Example map of times of maximum flow along edges in a network. Each
edge shows three colours – the point estimate and upper and lower 95% credible interval
bounds.

223



9.7 Chapter 9

investigated in the simulations in Chapter 8. This is a potentially useful and interest-

ing way of summarising spatio-temporal networks over time, and enabling interpolation

of network properties at any time point in the presence of non-simultaneous measure-

ments without the loss of accuracy associated with temporal data aggregation. However,

to investigate how useful this is, the ability of the models to recover temporal functions

of network properties accurately and with appropriate estimates of uncertainty should

be investigated. There are several papers in the literature that test coverage probabili-

ties of confidence bands using simulations. In Francisco-Fernández and Quintela-del-Ŕıo

(2016), for example, confidence bands were constructed using a series of simultaneous

confidence intervals at fixed points along the x-axis of a function. Simultaneous confi-

dence intervals are point-wise confidence intervals spaced along a function and corrected

for multiple testing. To test coverage probabilities, confidence bands were constructed

for a function estimated from 1000 simulated datasets. For each simulation, whether the

simulated function exceeded the bounds of any of the simultaneous confidence intervals

at the fixed points in question was recorded. This was used to calculate the percentage

of confidence bands that fully covered the simulated function (Francisco-Fernández and

Quintela-del-Ŕıo 2016).

This method of generated confidence bands using simultaneous confidence intervals at fixed

points is the same as the process described in Chapter 4. Chapter 4 uses the Bonferroni

correction for multiple testing which tends to result in conservative estimates of uncer-

tainty (wider than necessary for the coverage probability desired) (Francisco-Fernández

and Quintela-del-Ŕıo 2016; Neumann and Polzehl 1998). It would be useful for future

work to evaluate the true coverage probabilities of the simultaneous credible intervals con-

structed in Chapters 4 and 7 and to investigate alternative corrections such as the iterative

procedures presented in Francisco-Fernández and Quintela-del-Ŕıo (2016).

This evaluation of the confidence bands generated from a series of simultaneous confidence

intervals, however, does highlight a potential issue with the interpretation of this approach.

Often papers present a confidence band constructed in this way as a continuous region

along the x- or time-axis of a graph (Francisco-Fernández and Quintela-del-Ŕıo 2016;

Hong et al. 2010; Lenhoff et al. 1999). However, we only have information about the

uncertainty of the estimated function at the locations along this axis where we calculated
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simultaneous confidence intervals. Drawing a line joining these intervals implies that we

have information about uncertainty in locations where we do not. If these lines pass

through an area of sparse data, for example, we expect greater uncertainty (as we do

not have much information) that is not reflected. Perhaps, in a similar way to dealing

with the issues in Chapter 6, it would be prudent for researchers to present simultaneous

confidence intervals as a series of discrete intervals, rather than lines showing continuous

confidence bands. This would highlight the nature of construction of these confidence

bands to readers and give a clear indication of where along the function uncertainty has

(and has not) been estimated in the form of simultaneous credible or confidence intervals.

It would be useful for this potential issue to be investigated in future work, for example, by

reviewing the extent to which confidence bands constructed from simultaneous confidence

intervals are presented in this way and perhaps the density of simultaneous confidence

intervals along the x- or time-axis used to construct them. This may give an indication

of the extent to which this is an issue and provide some insight into whether it should be

further addressed.

9.7.1 Further work

In the modelled temporal patterns of whole-network properties in Chapter 7 we saw par-

ticularly wide credible intervals towards the boundaries of the data. This may be a result

of the erratic behaviour of some of the posterior estimated functions used to define these

intervals. The model specified in this thesis used a b-spline basis to capture complex

curves. This was chosen as b-splines are computationally easy to deal with and were

uncomplicated to implement, allowing focus on fitting the spatial and temporal autocor-

relation structure in the model (Perperoglou et al. 2019). The real and simulated data

used in Chapter 7 spanned only a period of 24 hours and did not show any signs of a

periodic structure. There are a range of alternative spline specifications that could be

used in this situation. Natural cubic splines are discussed in Chapter 4. These are similar

to b-splines, in that they are mathematically convenient (they can be calculated before

fitting the model and incorporated as a covariate), but they include additional constraints

that reduce erratic behaviour towards the boundaries of the data (Perperoglou et al. 2019).

If the erratic behaviour of b-splines is a cause of the wide credible intervals, using a spline

specification that reduces this erratic behaviour may result in narrower credible intervals
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towards the boundaries of the data.

Another alternative group of splines is penalised splines. Penalised splines use an estima-

tion procedure that maximises a likelihood function multiplied by a penalty for ‘roughness’.

For example, p-splines are a type of penalised spline which are based on cubic b-splines with

many, equally spaced knots. The roughness penalty is based on the second order difference

between the model value at these knots which can be thought of as an approximation to

the rate of change or ‘wiggliness’ (Kauermann and Kuhlenkasper 2013). Increasing the

effect of the penalty on the model estimation will increase the smoothness. The use of

a roughness penalty means the shape of the model depends less on knot placement than

when using b-splines or natural cubic splines (Kauermann and Kuhlenkasper 2013). How-

ever, penalised splines use an altered estimation procedure which may make them less

convenient when estimating complex models. It would be interesting to investigate the

use of penalised splines with multilevel models and Bayesian estimation tools.

In a situation with periodic data, alternative basis functions should be considered. The

Fourier basis system is one of these, which was mentioned in Section 3.6.1. A Fourier

basis comprises a series of sine and cosine functions of increasing frequency (Ramsay and

Silverman 1997). Wavelets are another type of basis system that can be used for periodic

data but also capture abrupt changes better than Fourier basis systems. They are made

of oscillatory functions with mean zero that rapidly decay over a fixed period (rather

than the infinite period of Fourier bases) (Ramsay and Silverman 1997; Ullah and Finch

2013). Wavelet functions can be scaled and translated along the time-axis (Ullah and

Finch 2013). Future work should investigate the application of the analysis framework

outlined in Chapter 4 to periodic systems requiring the use of these types of basis system.

9.8 Simulation evaluating performance of multilevel models

with spatio-temporal network data

Chapter 8 used simulations to test the accuracy and precision with which the methods in

Chapter 4 were able to extract temporal pattern features. This used the same scenario as

Chapter 7, but repeated simulations which can be used to provide information on model

performance.

226



Chapter 9 9.8

9.8.1 Model performance

The models in Chapters 7 and 8 were reasonably computationally expensive. In Chapter

8 the data generation, modelling and extraction of pattern features for one simulated

dataset took approximately 48 hours with four parallel model chains and 40 parallel units

calculating pattern features for each of 4000 posterior parameter samples. In Chapter 7,

generation and analysis of simulated data without parallelisation took less than 48 hours.

Processing and analysis of Oyster Card journey data took under 48 hours with four parallel

model chains and a parallel process collecting pattern features and temporal network

property functions from posterior parameter samples. All analyses required the use of a

high performance computing unit which is not universally available and the computational

intensity of this analysis is a disadvantage of the approach, especially when working with

large datasets. The process of extracting posterior distributions for temporal pattern

features was particularly time consuming. It would be interesting to explore the extent

to which this could be sped up by improved coding practices and the use of alternative

programming languages which are less computationally expensive than R, for example

by completing data processing or the extraction of posterior distributions in shell script

(Soundararaj et al. 2019).

The results in Chapter 8 show that the models need some development to improve their

accuracy. While all three pattern features included in this simulation (time of maximum

delay, maximum journey length and maximum delay) were estimated with a reasonably

small mean bias, low values were overestimated and high values underestimated for all

three features. This may be an indication that the models do not capture variation in

pattern features fully.

Credible intervals for time were also wide. Appendix G shows the posterior distributions of

pattern features for all edges for one simulation from the thousand conducted in Chapter

8. While the distributions for maximum journey length and maximum delay appear to

have converged well, the distributions for maximum time are not as smooth and are often

multimodal. This may indicate some poor mixing of the four chains used to estimate the

model for this feature and will likely be an additional contributor to the particularly wide

credible intervals for this feature (Gilks and Roberts 1995).

Across all three pattern features, 95% credible interval coverage was below the expected
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level (95%). This may in part be because of the bias in estimates of low and high values

for each pattern feature, with 95% limits of agreement being greater than twice as wide

as the average credible intervals for two of three pattern features. It is important to re-

evaluate the coverage of the 95% credible intervals calculated as described in Chapter 4 in

a situation where the models perform with little or no systematic bias – this would give a

clearer indication of whether their coverage is appropriate.

Considering an alternative model specification that includes x-axis random effects may

help to capture temporal variation in maximum time and other temporal pattern fea-

tures more fully, and potentially lead to better convergence of the posterior distribution

for this pattern feature and reduced bias for extreme values of the features. However,

incorporating an x-axis random effect adds complexity to the model which may make it

more difficult to estimate. It may be useful to consider an alternative specification of the

random effects, as discussed in Section 8.5. Here it was suggested that, instead of incorpo-

rating random effects into b-spline coefficients which do not have a direct interpretation,

random coefficients that transform the whole temporal function (x- and y-axis translation

and stretching) could be incorporated, similar to the SITAR model specification (Cole

et al. 2010). This may be of use not only in producing a more interpretable and mean-

ingful random structure, but also improving the accuracy with which the model captures

temporal pattern features.

One of the major potential issues with the approach outlined in Chapter 4, and many other

approaches aiming to predict or interpolate properties for individual observational units, is

the aim of predicting information at an individual level from a population model. This is a

reasonably common aim, particularly, for example, in the field of ‘personalised medicine’,

but there are major issues with it. Statistical models, including machine learning models

and discrete-time models mentioned in earlier chapters, estimate average expected values

for the whole population (Wilkinson et al. 2020). In the context of these models, the

expected temporal pattern of a property is estimated for the whole population. This

can also be estimated for groups, but the precision of estimates at any lower level (than

the whole population) is decreased (Wilkinson et al. 2020). The estimates of temporal

patterns at the level of individual edges in Chapters 7 and 8 are comprised of the expected

values for two groups – the origin and destination groups of the edge. This means that
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we cannot necessarily expect models to precisely recover temporal patterns and temporal

pattern features at the level of individual observational units, if these estimates are based

on higher group level information. This is one of the potential reasons we see in Chapter

8 that estimates of observational unit level pattern features are on average unbiased but

biased for low and high values of the pattern features.

9.8.2 Further work

The simulation study in Chapter 8 tests the application of the analysis framework in

only one specific circumstance. If we are to fully understand the potential applications

of the framework outlined in Chapters 4 and 7, we must test its application in a range

of scenarios. This necessarily involves choosing appropriate basis functions to reflect the

underlying data generating processes (for example periodicity), which may differ from

b-splines and explore some of the possibilities outlined in Section 9.7.1.

There is a huge range of different scenarios that need to be tested to understand when it

is useful and appropriate to use a particular method. For this analysis, one particularly

important aspect is the complexity of the temporal patterns that models are attempting to

recover. A ‘wigglier’ pattern will likely be more difficult to capture accurately. In addition,

it is likely that some patterns will include multiple maxima or minima with more similar

values to those in the simulated pattern in Chapter 8. In this scenario, it will be harder

for models to capture the correct maximum across the whole time period and this should

be tested. It is also possible that in this scenario the posterior distribution for the time of

a maximum, estimated by a model, could be distributed bi- or multi-modally if different

posterior parameter sets estimate different local simulated maxima to have the greatest

value within the range of the data. While this is a valid result from the model, summarising

a bi- or multi-modal posterior distribution with 95% credible intervals does not give any

information about the shape of the distribution between the bounds of this interval – most

readers would probably assume the distribution was a wide unimodal distribution.

It would be useful for future work to explore whether this scenario would occur frequently

and how it is best to summarise bi- or multi-modal posterior distributions of pattern

features while balancing simplicity and detailed description. Code for simulations that

test the ability of the model in Chapter 4 to recover the time and value maxima from a
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range of different temporal pattern shapes is available in the Online Appendix. This is

based on abstract scenarios, rather than a realistic hypothetical situation, and includes

24 simulated patterns with different maximum ‘shapes’ (smooth and wide or narrow and

pointed), different numbers of maxima and different pattern amplitudes. This could be

adapted to investigate the possibility of multimodal posterior distributions for pattern

features. This has not been run as part of this research due to heavy computational

demands and therefore time constraints – running one simulation for a single scenario

takes approximately two days, 1000 simulations for a single scenario takes at least two

weeks with a large degree of parallelisation. Running simulations for 24 different scenarios

would likely take almost a year.

Other similar simulations should be carried out to investigate the effect of changing data

structure as well as changes in temporal pattern shapes. In particular, changes to the

extent of temporal and spatial autocorrelation and the data measurement scheme should

be investigated. Measurements in the simulations in Chapter 8 are uniformly distributed

across the study period; however, in real life, measurements of journey lengths will be taken

at the time that the journey is undertaken. People will not take journeys at uniformly

distributed times throughout the day but will be more likely to travel in the morning and

evening commute times, for example. The uneven distribution of measurements through-

out time will affect the model and it is important to investigate the extent of this effect

on the recovery of temporal patterns (Liang et al. 2009; Song et al. 2012). In addition,

simulation studies could be used to investigate the effect of different measurement schemes

such as wave and regular measurements on model performance, when compared to uni-

formly distributed measurements. These measurement schemes are outlined in Chapter 5

and can be simulated using the simulation tool from that chapter. The simulation tool

can also produce data with different temporal and spatial autocorrelation strengths but

has not been extended to include different parameterisations, such as different weighting

schemes, and is thus based mainly on geographical distance.

Future work should also consider another area that this work has not explored: whether it

would be useful to incorporate other variables, as well as time, into the multilevel models

used to extract temporal pattern features. Chapter 6 explains that including covariates in

models for temporal patterns and interpreting the average values over time, with respect
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to these covariates, as a temporal pattern is not a valid interpretation. While this is

true, the incorporation of covariates could be useful in improving the accuracy with which

pattern features are recovered within individual observational units. For example, in the

simulated scenarios in Chapters 7 and 8, there was a latent fixed effect simulated in

the data. A hypothetical unmeasured variable affected the range of the function. Not

accounting for this variable may have led to a violation of some assumptions underlying

the model, particularly that of normally distributed random effects coefficients. This may

have contributed to some of the issues with accuracy and credible interval coverage that

we saw in Chapter 8. If the variable that defined these effects had been hypothetically

measured, incorporating it into the model may have improved fit and potentially overcome

some of the model’s shortcomings. Of course, including more variables and complexity

in a model comes at a cost: decreased degrees of freedom, which can make estimation

more difficult and introduce some bias (Browne and Draper 2000). When modelling any

process, it is never possible to fully capture the highly complex systems that surround

us and generate the data we collect – researchers must strike a balance between model

parsimony and detailed reflection of these complex data generating systems at play in

order to produce a model that is “useful” in the particular situation they are focused on

(Box 1987).

9.9 Conclusion

This research clearly identified a lack of use of continuous-time models in the spatio-

temporal network literature. There are a range of issues with the use of discrete-time mod-

els that have been outlined throughout this thesis, and research into the use of continuous-

time models in this context was identified as an important area. After considering a range

of different possible continuous-time models, a novel approach using multilevel models to

capture temporal patterns of edge properties in a network was introduced. This included

the simplification of results to improve their interpretability by a) extracting temporal

pattern features and b) generating continuous temporal functions of network properties.

In particular, this second approach to simplification was new to the literature.

An example application of these methods to real and simulated data was produced and

the extraction of temporal pattern features was tested using simulations. The simulations
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identified some shortcomings of the approach, but the model has great potential for wide

ranging applications in the many fields that analyse spatio-temporal network structures.

Future work should be carried out to test alternative model specifications and model

performance in different scenarios.

The production of a simulation tool for generating simulated temporal data with a highly

flexible structure was also an important contribution of this project – this could be an im-

portant and useful tool for future work in this area as it simplifies the process of simulating

data from scratch.

There are some caveats to be aware of when analysing temporal data, a key one being

the issue of conditioning on the outcome which was identified as a reasonably common

approach when analysing temporal data in Chapter 3. Chapter 6 included a simulation

that described some of the issues with this approach to discourage its use – this is an

important contribution to the literature as avoiding methods that do not perform as they

purport to is key to ensuring the quality of future analyses and research.

Overall, this research introduces and tests a novel idea with potentially wide-ranging ap-

plications that fills the gap in the spatio-temporal network literature for continuous-time

analyses. Several suggestions for future work have been made, including testing the meth-

ods in different scenarios and with alternative continuous-time models and specifications.

Exploring the interpretability of results through qualitative work could also be an inter-

esting avenue for future development to pursue.
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Francisco-Fernández, M., & Quintela-del-Ŕıo, A. (2016). Comparing simultaneous and

pointwise confidence intervals for hydrological processes. PLOS ONE, 11 (2), e0147505.

Freeman, J. (1989). Systematic sampling, temporal aggregation, and the study of political

relationships. Political Analysis, 1, 61–98.

Freeman, L. (1978). Centrality in social networks conceptual clarification. Social Networks,

1 (3), 215–239.

Freni-Sterrantino, A., Ventrucci, M., & Rue, H. (2018). A note on intrinsic conditional

autoregressive models for disconnected graphs. Spatial and Spatio-temporal Epi-

demiology, 26, 25–34.

Gadd, S., Comber, A., Gilthorpe, M., Suchak, K., & Heppenstall, A. (2021). Simplifying

the interpretation of continuous-time models for spatio-temporal networks. Journal

of Geographical Systems.

Gadd, S., Tennant, P., Heppenstall, A., Boehnke, J., & Gilthorpe, M. (2019). Analysing

trajectories of a longitudinal exposure: A causal perspective on common methods

in lifecourse research. PLOS ONE, 14 (12), e0225217.

Gao, M., Brannstrom, L., & Almquist, Y. (2017). Exposure to out-of-home care in child-

hood and adult all-cause mortality: A cohort study. International Journal of Epi-

demiology, 46 (3), 1010–1017.

Garbin, S., Celegon, E., Fanton, P., & Botter, G. (2019). Hydrological controls on river

network connectivity. Royal Society Open Science, 6 (2).

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, PAMI-6 (6), 721–741.

Gesler, W. (1986). The uses of spatial analysis in medical geography: A review. Social

Science & Medicine, 23 (10), 963–973.

Gilks, W., & Roberts, G. (1995). Strategies for improving MCMC. In W. Gilks, S. Richard-

son, & D. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice. CRC Press.

248



REFERENCES REFERENCES

Gilthorpe, M., Dahly, D., Tu, Y., Kubzansky, L., & Goodman, E. (2014). Challenges

in modelling the random structure correctly in growth mixture models and the

impact this has on model mixtures. Journal of Developmental Origins of Health

and Disease, 5 (3), 197–205.

Glass, T., Goodman, S., Hernán, M., & Samet, J. (2013). Causal inference in public health.

Annual review of public health, 34, 61–75.

Gneiting, T., Genton, M., & Guttorp, P. (2006). Geostatistical space-time models, sta-

tionarity, separability, and full symmetry. In B. Finkenstadt, L. Held, & V. Isham

(Eds.), Statistical methods for spatio-temporal systems. CRC Press.

Golding, J. (2004). The Avon longitudinal study of parents and children (ALSPAC) -

Study design and collaborative opportunities. European Journal of Endocrinology,

151 (Suppl 3), U119.

Goldstein, H. (1994). Multilevel cross-classified models. J Sociological Methods Research,

22 (3), 364–375.

Goldstein, H. (2011). Multilevel statistical models (Fourth edition). Wiley.

Goldstein, H., Healy, M., & Rasbash, J. (1994). Multilevel time series models with appli-

cations to repeated measures data. J Statistics in medicine, 13 (16), 1643–1655.

Gordon, J., Koutsopoulos, H., & Wilson, N. (2018). Estimation of population origin– inter-

change–destination flows on multimodal transit networks. Transportation Research

Part C: Emerging Technologies, 90, 350–365.
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Net-

work

Level

Notes

A. F. Abdel-

ghany, H. S.

Mahmassani and

Y. C. Chiu

2001 Spatial microassignment of

travel demand with activ-

ity trip chains

Transport Prediction Stochastic simu-

lation

Discrete,

Continu-

ous

Hours Partial

city

Actor Actor,

Compo-

nent

Simulation works in steps, but ex-

pected trip time is continuous

H. J. Albers,

K. M. Hall, K.

D. Lee, M. A.

Taleghan and T.

G. Dietterich

2018 The Role of Restoration

and Key Ecological In-

vasion Mechanisms in

Optimal Spatial-Dynamic

Management of Invasive

Species

Ecology, Eco-

nomics

Hypothetical Stochastic simu-

lation

Discrete Unspecified Unspecified Actor Component One of a number of invasive species

management - incorporated ecolog-

ical and economic models for 7 ab-

stract river reaches

T. Anderson and

S. Dragićević

2018 A Geographic Network

Automata Approach

for Modeling Dynamic

Ecological Systems

Ecology Hypothetical Stochastic simu-

lation

Discrete Years Regional Component Whole

network

Insect infestation trees - network

evolution, node (tree) properties

determine whether link made by in-

sects

T. M. Anderson

and S. Dragicevic

2018 Network-agent based

model for simulating the

dynamic spatial network

structure of complex

ecological systems

Ecology Hypothetical Stochastic simu-

lation

Discrete Months Town Actor Component,

Whole

network

Beetles and trees, links are

movemnt of beetle from tree I to j,

trees and beetles both agents

T. Anderson and

S. Dragićević

2020 NEAT approach for test-

ing and validation of

geospatial network agent-

based model processes:

case study of influenza

spread

Epidemiology Hypothetical Stochastic simu-

lation

Discrete Months Partial

city

Component Whole

network

Model validation approach for

ABMS. Influenza spread. Agents

are adults, childs and places

(homes, schools, businesses). Part

of vancouver. 270 days, 6480

time steps (hours). Looks like

model validation includes network

measures.

T. Anderson and

S. Dragićević

2020 Representing complex

evolving spatial networks:

Geographic network

automata

Network

methods

Hypothetical Stochastic simu-

lation

Discrete Abstract Abstract Component Whole

network

Geographic network automata to

represent evolution of networks.

Several examples in different ar-

eas. Transition rules and connec-

tion costs
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work

level

Output

Net-

work

Level

Notes

R. Basile, A.

Parteka and R.

Pittiglio

2018 Export diversification and

economic development: A

dynamic spatial data anal-

ysis

Economics Relationships Statistical model Discrete Years Multi-

country

Component Component Spatial spillover in neighbour rela-

tions was network components. Dy-

namic spatial panel data model

B. Baybeck and

R. Huckfeldt

2002 Urban contexts, spatially

dispersed networks, and

the diffusion of political in-

formation

Sociology Description Statistical model Discrete Months Regional Component Whole

network

Diffusion of information (political).

MLM local net characteristics for

individuals and who they talk to

J. W. Burnett

and X. Zhao

2017 Spatially Explicit Predic-

tion of Wholesale Electric-

ity Prices

Economics Prediction Statistical model Discrete Years Multi-

region

Component Component Predicting electricity prices with

spatial and non-spatial panel data.

Electricity network provides net-

work basis. Spatial autoregressive

model with temporal lag

H. Cai, A. Rah-

man, X. Su and

H. Zhang

2014 A GIS-microscopic simula-

tion approach for optimiz-

ing road barrier placement

and configuration in uni-

versity campus emergency

evacuation

Transport,

Urban plan-

ning

Hypothetical Stochastic simu-

lation

Discrete Hours Partial

city

Actor Component,

Whole

network

Sort of disaster management. Se-

ries of simulations estimating travel

demand based on emergency timing

(on a uni campus) and then opti-

mising placement of road barriers to

get people out. Road network.

A. Carlsson and

O. Kindvall

2001 Spatial dynamics in a

metapopulation net-

work: recovery of a rare

grasshopper Stauroderus

scalaris from population

refuges

Ecology Hypothetical Stochastic simu-

lation

Discrete Years Single

country

Component Component 4 meaures of patchy grasshopper

population over years. Metapop-

ulatrion model - spatial dynamics,

habitat mosaic. Species manage-

ment option conseuences.
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Aim Method Time

specifi-

cation

Time

period

Spatial

Level

Input

Net-

work

level

Output

Net-

work

Level

Notes

N. H. Carter, A.

Baeza and N. R.

Magliocca

2020 Emergent conservation

outcomes of shared risk

perception in human-

wildlife systems

Ecology Hypothetical Stochastic simu-

lation

Discrete Years Regional Component,

Whole-

network

Whole

network

Human wildlife systems (conserva-

tion outcomes). WHISL model

- wildlife human interactions in

shared landscapes. Social network

influence on human response to

encounters. Agent-based model.

Changing landscape and social in-

fluence to test outcome - wildlife

distributions damages and habitat

quality

M. Caruso 2007 Disruptive dynamics: The

spatial dimensions of

the Spanish networks in

the spread of monitorial

schooling (1815-1825)

History, Soci-

ology

Description Visualisation Discrete Years Single

country

Component Whole

network

Visualisation of network of people

involved in monitorial schooling in

spain in history. Written descrip-

tion of process, network maps used

as illustration

S. Chen, A. Ilany,

B. J. White, M.

W. Sanderson

and C. Lanzas

2015 Spatial-Temporal Dynam-

ics of High-Resolution An-

imal Networks: What Can

We Learn from Domestic

Animals?

Ecology Description Discrete network

methods

Discrete Days Small

area

Component Whole

network

Cow interactions in different spa-

tial areas of pen. Looked at net-

work properties at different points

in time from aggregated interac-

tions between cows

L. Chen, K. Han,

Q. Yin and Z.

Cao

2020 GDCRN: Global Diffusion

Convolutional Residual

Network for Traffic Flow

Prediction

Transport Prediction Machine learning Discrete Months Partial

city

Component Component Traffic flow prediction machine

learning. ”Local and global spatio-

temporal dependencies”. Time

slices

T. Cheng, J.

Wang, J. Ha-

worth, B. Hey-

decker and A.

Chow

2014 A Dynamic Spatial Weight

Matrix and Localized

Space-Time Autoregres-

sive Integrated Moving

Average for Network

Modeling

Transport Prediction Statistical model Discrete Months Partial

city

Component Component L-STARIMA dynamic spatial

weight matrix depends on current

traffic conditions.
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cation

Time
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Net-

work

level

Output

Net-

work

Level

Notes

S. Cheng, B. Xie,

Y. Bie, Y. Zhang

and S. Zhang

2018 Measure dynamic individ-

ual spatial-temporal acces-

sibility by public transit:

Integrating time-table and

passenger departure time

Transport Description Discrete network

methods

Discrete Days Citywide Component Component Public transport accessibility based

on current state of network - travel

time for each edge depends on time

of day. Network potential path area

for origin destination and time bud-

get

S. Colak, C. M.

Schneider, P.

Wang and M. C.

Gonzalez

2013 On the role of spatial dy-

namics and topology on

network flows

Transport Hypothetical Stochastic simu-

lation

Discrete Hours Citywide Actor,

Compo-

nent

Component,

Whole

network

Network topology effect on net-

work particle flows and when

reach congestion on differnet links.

Map shows WHEN CONGESTION

REACHED. Very small time inter-

vals of 10sec

Z. L. Diao, X.

Wang, D. F.

Zhang, Y. R. Liu,

K. Xie, S. Y. He

and Aaai

2019 Dynamic Spatial-

Temporal Graph Convolu-

tional Neural Networks for

Traffic Forecasting

Transport Prediction Machine learning Discrete Months Partial

city

Actor Component Graph convolutional neural net-

works modelling dynamic spatial

dependence - related to structural

changes - estimate matrix at differ-

ent times.

H. P. P. Don-

fouet, P. W.

Jeanty and E.

Malin

2018 Analysing spatial

spillovers in corrup-

tion: A dynamic spatial

panel data approach

Economics,

Sociology

Relationships Statistical model Discrete Years Multi-

country

Component Whole

network

Dynamic spatial panel data model -

nearest neighbour relationship ma-

trix

X. H. Fan, X. X.

Li, J. L. Yin and

J. C. Liang

2019 Temporal Characteristics

and Spatial Homogeneity

of Virtual Water Trade: A

Complex Network Analy-

sis

Economics Description Discrete network

methods

Discrete Years Multi-

country

Component Whole

network

Annual network properties of trade

network

S. Fang, Q.

Zhang, G. Meng,

S. Xiang and C.

Pan

2019 GSTnet: Global spatial-

temporal network for traf-

fic flow prediction

Transport Prediction Machine learning Discrete Months Citywide Actor,

Compo-

nent

Component Predicting traffic flow, consider-

ing global and local correlations.

Tested model on taxi GPS, Beijing

bus and Beijing subway.
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Spatial
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Input

Net-

work

level

Output

Net-

work

Level

Notes

Y. Fang, Z.

Wang, R. Cheng,

X. Li, S. Luo, J.

Hu and X. Chen

2019 On Spatial-Aware Com-

munity Search

Sociology Description Continous net-

work methods

Continuous Years Regional Component Component Spatial aware community search for

node that moves, approximate run-

ning SACS at every location change

(in response to event rather than

aggregated)

D. Feng, Z. Wu,

J. Zhang and Z.

Wu

2020 Dynamic Global-Local

Spatial-Temporal Net-

work for Traffic Speed

Prediction

Transport Prediction Machine learning Discrete Months Partial

city,

Regional

Component Component Traffic prediction with global and

local information. Traffic speed

prediction.

S. Ferenc, P.

Tamas, B. Jozsef

and Asme

2016 COMPLEX ANALYSIS

OF THE DYNAMIC

EFFECTS OF CAR POP-

ULATION ALONG THE

TRAJECTORIES

Transport Prediction Stochastic simu-

lation

Discrete Days Citywide Actor Actor Compled model for traffic condi-

tions. Using a model of network

state to look at indiviudal trajecto-

ries and predict accidents.

S. Garbin, E. A.

Celegon, P. Fan-

ton and G. Botter

2019 Hydrological controls on

river network connectivity

Ecology Hypothetical Stochastic simu-

lation

Discrete Abstract Abstract Whole-

network

Component,

Whole

network

Connectivity in river network.

Causes and consequences of

depth dynamics in river networks.

Seasonal probability distro of

streamflows. N rain events per unit

time/area (poisson). Calculate

streamflow pointwise and temporal

and spatial variability is derived.

D. Guo, Y. Zou,

Y. Wu and M. Liu

2013 Altruistic behavior in com-

plex network based on rep-

utation and future expec-

tation

Economics Hypothetical Stochastic simu-

lation

Discrete Unspecified Unspecified Component Whole

network

Economic game to do with neigh-

bour cooperation - neighbours in

grid and allows selection of another

connection not immediately adja-

cent. Evoluton of cooperation over

time, time slice visualisation

274



C
h

a
p

ter
A

Author Year Title Subject

Area

Aim Method Time

specifi-
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Time
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Input

Net-

work

level

Output

Net-

work

Level

Notes

S. N. Guo, Y. F.

Lin, N. Feng, C.

Song, H. Y. Wan

and Aaai

2019 Attention Based Spatial-

Temporal Graph Convolu-

tional Networks for Traffic

Flow Forecasting

Transport Prediction Machine learning Discrete Months Partial

city

Actor Component Traffic flow prediction - attention

based spatio-temporal graph Con-

volutional Neural Network. Cap-

ture dynamic spatio-temporal cor-

relations and spatial patterns and

temporal features. Recent effects,

daily periodic effects, weekly ef-

fects. Frequent time slices - simul-

taneous measurements.

Y. J. Guo, L. C.

Yang and J. Gao

2020 Coordinated Perimeter

Control for Multiregion

Heterogeneous Networks

Based on Optimized

Transfer Flows

Transport Hypothetical Stochastic simu-

lation

Discrete Hours Partial

city

Actor,

Compo-

nent

Actor,

Com-

ponent,

Whole

network

Congestion control. ’perimiter con-

trol strategy’. Testing out method

using simulation in case study.

K. M. Hall, H.

J. Albers, M. A.

Taleghan and T.

G. Dietterich

2018 Optimal Spatial-Dynamic

Management of Stochastic

Species Invasions

Ecology, Eco-

nomics

Hypothetical Stochastic simu-

lation

Discrete Years Unspecified Actor,

Compo-

nent

Component Invasive species management on

stylised river network with spa-

tial heterogeneity, competition and

management actions included in

model. Node = reach of river=

management unit

X. Y. Han, C. S.

Hsieh and S. I. M.

Ko

2019 Spatial Modeling Ap-

proach for Dynamic

Network Formation and

Interactions

Sociology Relationships Statistical model Discrete Years Unspecified Component Component Longitudinal net data and activity

outcomes for high school student

friendship. Waves of network and

general questionnaires. Peer effects

on academic performance (related

to outdegree) Difficulty due to dif-

ferent time periods for 2 question-

naires. Spatial dynamic panel data

model.
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Input

Net-

work

level

Output

Net-

work

Level

Notes

B. He, Z. F. Xu,

Y. J. Xu, J. X. Hu

and Z. W. Ma

2020 Integrating Semantic Zon-

ing Information with the

Prediction of Road Link

Speed Based on Taxi GPS

Data

Transport Prediction Machine learning Discrete Days Citywide Actor Component Predicting traffic speed, global and

local correlations

B. Iotti, A. Anto-

nioni, S. Bullock,

C. Darabos, M.

Tomassini and M.

Giacobini

2017 Infection dynamics on spa-

tial small-world network

models‘

Epidemiology,

Network

methods

Hypothetical Stochastic simu-

lation

Discrete Abstract Unspecified Component Whole

network

Uses infection dynamics as exam-

ple. Model for generating synthetic

network (REDS) with two types fo

rewiring to get small world network.

Shared neighbours and distance in-

fluence connection cost, each node

has finite social energy. Tested in-

fection model.

D. M. P. Jacoby,

E. J. Brooks, D.

P. Croft and D.

W. Sims

2012 Developing a deeper un-

derstanding of animal

movements and spatial

dynamics through novel

application of network

analyses

Ecology Description Discrete network

methods, Statis-

tical model

Discrete Months Small

area

Actor Component Anamial movements through net-

work analysis application. Elec-

tronic tag data on sharks. Loca-

tion defined by detector location

and range, connections are shark

movement. Compared node proper-

ties to random network.

H. Jeong and L.

F. Lee

2020 Spatial dynamic models

with intertemporal opti-

mization: Specification

and estimation

Economics Relationships Statistical model Discrete Years Regional Component Whole

network

Spatial dynamic model - alternative

to traditional SDPD model. Coun-

ties’ public safety spending in North

Carolina - spillover effects consider-

ing ’forward looking’ decision mak-

ing
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Time
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Input

Net-

work

level

Output

Net-

work

Level

Notes

J. Jia, S. Tan, G.

Ji and B. Zhao

2019 Discovering hotspots in

dynamic spatial networks

using mobility data

Network

methods,

Transport

Description Discrete network

methods

Discrete Hours Citywide Actor Component,

Whole

network

Hotspots of dense activity - find

these using mobility data. Edges

have weight sequence for dis-

creteintervals. Hotspots are con-

nected subgraphs with edges that

have been increasingly crowded for

several time intervals. ’Closed

hotspot’ contains all the increas-

ingly crowded edges.

Y. Jin, R. Peng

and J. P. Shi

2019 Population Dynamics in

River Networks

Ecology Description Statistical model Continuous Abstract Abstract Component Component,

Whole

network

River network represented as a

graph, Population moves in a river

network.

G. Y. Jin, Y. Cui,

L. Zeng, H. B.

Tang, Y. H. Feng

and J. C. Huang

2020 Urban ride-hailing de-

mand prediction with

multiple spatiotempo-

ral information fusion

network

Transport Prediction Machine learning Discrete Months,

Years

Citywide Actor Component Predicinting ride hailing demand in

taxis using oroigin destination data.

T. Jovanovic,

R. L. Hale, J.

Gironas and A.

Mejia

2019 Hydrological Functioning

of an Evolving Urban

Stormwater Network

Urban plan-

ning

Description Discrete net-

work methods,

Stochastic simu-

lation

Discrete Years Partial

city

Actor Component,

Whole

network

Event based distributed hydrolog-

ical model. Simulate hydrological

flixes and states in the catchment.

Model outputs analysed as network.

Simulations based on previous rain-

fall data - so simulating changes in

the network based on stuff that ac-

tually happened.

G. M. Kuer-

steiner and I. R.

Prucha

2020 Dynamic Spatial Panel

Models: Networks, Com-

mon Shocks, and Sequen-

tial Exogeneity

Network

methods

Relationships Statistical model Discrete Abstract Abstract Component Whole

network

Time varying spatial weight matri-

ces in dynamic spatial panel data

models - for data with network

structure. No network formation

model.
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cation

Time
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Spatial
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Input

Net-

work

level

Output

Net-

work

Level

Notes

B. Lengyel, E.

Bokanyi, R. Di

Clemente, J.

Kertesz and M.

C. Gonzalez

2020 The role of geography in

the complex diffusion of

innovations

Sociology Prediction,

Description

Discrete network

methods, Sta-

tistical model,

Stochastic simu-

lation

Discrete,

Continu-

ous

Abstract Single

country

Component Whole

network

Social media platform in hungary

2002-2014. Compares a differen-

tial equation to predict adoption of

social media platform in different

towns with an Agent based model.

Y. L. Li, J. T. Bi

and H. J. Sun

2008 Spatial price dynamics:

From complex network

perspective

Economics Hypothetical Stochastic simu-

lation

Discrete Abstract Unspecified Whole

network

Component Spatial price problem. How trade

network structure affects process

when the rules for this problem used

for simulation. Look at changes in

price, when reaches equilibrium and

different community structures.

X. Li and W. A.

Griffin

2013 Using ESDA with social

weights to analyze spa-

tial and social patterns

of preschool children’s be-

havior

Sociology Relationships Statistical model Discrete Months Small

area

Component Component,

Whole

network

Classroom children behaviour. Had

4 social types of behaviour and 15

activities along with a range of lo-

cations. Divided into spatial grid.

Social network interactions noted

for social network autocorrelations.

Exploratory spatial data analysis

with social weights to look at spa-

tial autocorrelation of types of so-

cial behvaiouors and different activ-

ities.

T. Li and Q. Liao 2016 Dynamic networks anal-

ysis and visualization

through spatiotemporal

link segmentation

Network

methods

Description Visualisation Discrete Days Unspecified Component Component Visualising dynamic networks with

spatio-temporal link segmentations.

Links divided according to spatio-

temp dimentsions to avoid anima-

tion. Segments also subdivided in

same axis to show multiple prop-

erties which is kind of confusing.

Time period is discrete. No consis-

tent time unit size
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Time
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Net-

work

level

Output

Net-

work

Level

Notes

G. Li, V. L.

Knoop and H. V.

Lint

2020 Dynamic Graph Filters

Networks: A Gray-box

Model for Multistep

Traffic Forecasting

Transport Prediction Machine learning Discrete Months Partial

city

Component Component Traffic speed prediction

Z. Li, L. Li, Y.

Peng and X. Tao

2020 A Two-Stream Graph

Convolutional Neural Net-

work for Dynamic Traffic

Flow Forecasting

Transport Prediction Machine learning Discrete Months Partial

city,

Regional

Component Component Traffic flow forecasting

W. Li, X. Wang,

Y. Zhang and Q.

Wu

2021 Traffic flow prediction over

muti-sensor data correla-

tion with graph convolu-

tion network

Transport Prediction Machine learning Discrete Months Partial

city

Component Component Traffic flow prediction with machine

learning

H. Lin, R. Bai,

W. Jia, X. Yang

and Y. You

2020 Preserving Dynamic At-

tention for Long-Term

Spatial-Temporal Predic-

tion

Communications,

Network

methods,

Transport

Prediction Machine learning Discrete Months Citywide,

Regional

Actor,

Compo-

nent

Component Machine learning traffic prediction

C. Liu, C. Gao

and Y. Xin

2018 Measuring the diversity

and dynamics of mobility

patterns using smart card

data

Transport Relationships,

Description

Discrete network

methods, Statis-

tical model

Discrete Days Citywide Actor Component,

Whole

network

Smart card trip data. Mobility pat-

terns in week days, diversity for

days. Temporal profile of stations,

correelation with land use. Tem-

poral clusters - network. Alluvial

diagram, hour periods for temporal

clusters.

S. G. Liu, L.

Wang, C. Y. Liu

and I. Destech

Publicat

2018 Visualized Social Network

Analysis on Spatial Dy-

namics of International

Trade between China and

League of Arab States

Economics Description Discrete network

methods

Discrete Years Multi-

country

Component Component,

Whole

network

Trade between China and Arab

States. Looking at density, central-

ity and internal subgroups. Aggre-

gated into discrete periods.
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Time
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Input

Net-

work

level

Output

Net-

work

Level

Notes

X. L. Ma, Y. Li

and P. Chen

2020 Identifying spatiotemporal

traffic patterns in large-

scale urban road networks

using a modified nonneg-

ative matrix factorization

algorithm

Transport Description Discrete network

methods

Discrete Days Partial

city

Component Whole

network

Matrix factorisation produces one

matrix with reduced dimensions

containing temporal information

about global traffic state, and

another matrix describing spatial

structure of traffic state. Cluster-

ing algorithm used to examine the

matrices

J. Mateus-

Anzola, A.

Wiratsudakul, O.

Rico-Chavez and

R. Ojeda-Flores

2019 Simulation modeling

of influenza transmis-

sion through backyard

pig trade networks in a

wildlife/livestock interface

area

Epidemiology Hypothetical Stochastic simu-

lation

Discrete Months Regional Actor,

Compo-

nent

Component,

Whole

network

Pig influenza infections. Farms as

nodes. Backyard pig trade. Dif-

ferent models looking at speed of

spread. Visualised network at dif-

ferent time slices.

J. E. Mendoza-

Cota and V. H.

Torres-Preciado

2019 The impact of regional

remittances on economic

growth in Mexico: a

dynamic space-time panel

approach

Economics Relationships Statistical model Discrete Years Single

country

Component Whole

network

Regional remittances (money gifts)

- impact on economic growth in

Mexico. Spillover effects

T. M. Neeson, M.

J. Wiley, S. A.

Adlerstein and R.

L. Riolo

2012 How river network struc-

ture and habitat availabil-

ity shape the spatial dy-

namics of larval sea lam-

preys

Ecology Hypothetical Stochastic simu-

lation

Discrete Years Unspecified Actor,

Whole

network

Whole

network

Large abstract river basin (49

reaches). Lamprey. How river sys-

tem structure shapes sea lamprey

larvae spatial dynamics - local habi-

tat composition and river network

shape. Models lamprey life cycle

and movement through river system
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work

level

Output

Net-

work

Level

Notes

P. A. Neto, T. L.

Friesz and K. Han

2016 Electric Power Network

Oligopoly as a Dynamic

Stackelberg Game

Economics Hypothetical Stochastic simu-

lation

Discrete Hours Multi-

country

Component Whole

network

Electricity market based on western

European market. Solution of dy-

namic stackelberg game (economic

game). Consumers, market moni-

tor, electricity generators. Network

is electricity network with market

for power at certain nodes. Nodes

have behaviours.

J. Ou, J. Sun,

Y. Zhu, H. Jin,

Y. Liu, F. Zhang,

J. Huang and X.

Wang

2020 STP-TrellisNets: Spatial-

Temporal Parallel Trellis-

Nets for Metro Station

Passenger Flow Prediction

Transport Prediction Machine learning Discrete Days Citywide Actor Component Predicting Metro station passenget

flows. Origin destination flows

O. Parent and J.

P. LeSage

2010 A spatial dynamic panel

model with random ef-

fects applied to commuting

times

Transport Relationships Statistical model Discrete Years Single

country

Component Component Spatial dynamic panel data model.

Spatial spillover of increased high-

way capacity on travel times for

neighbouring location. ”Dynamic

spatial lag panel model”. Travel

time follows state and local spend-

ing.

H. Peng, H.

Wang, B. Du, M.

Z. A. Bhuiyan,

H. Ma, J. Liu, L.

Wang, Z. Yang,

L. Du, S. Wang

and P. S. Yu

2020 Spatial temporal incidence

dynamic graph neural net-

works for traffic flow fore-

casting

Transport Prediction Machine learning Discrete Months Citywide Actor Component Traffic forecasting in network - sub-

way, bus, taxi. Origin-destination

data
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cation

Time

period

Spatial

Level

Input

Net-

work

level

Output

Net-

work

Level

Notes

L. Perez and S.

Dragicevic

2009 An agent-based approach

for modeling dynamics of

contagious disease spread

Epidemiology Hypothetical Stochastic simu-

lation

Discrete Days Partial

city

Actor,

Whole

network

Actor Propagation of communicable dis-

eases using ABM and GIS. Measles

epidemic in urban environment. In-

dividuals as agents with transport

network. Generic infection model

with ABM. Network itself not tem-

poral

G. L. W. Perry

and F. Lee

2019 How does temporal varia-

tion in habitat connectiv-

ity influence metapopula-

tion dynamics?

Ecology Hypothetical Stochastic simu-

lation

Discrete Abstract Abstract Component Whole

network

Network based metapopulastion

model. Persistence of metapopula-

tion.

Y. Qu, Y. Zhu, T.

Zang, Y. Xu and

J. Yu

2020 Modeling Local and Global

Flow Aggregation for Traf-

fic Flow Forecasting

Transport Prediction Machine learning Discrete Days Citywide Actor,

Compo-

nent

Component Traffic flow forecasting with local

and global components.

K. Ramachan-

dran, B. Sikdar

and Ieee

2007 On the stability of the

malware free equilibrium

in cell phones networks

with spatial dynamics

Communications Hypothetical Stochastic simu-

lation

Discrete Unspecified Unspecified Component Whole

network

Malware propagation in mobile

phone networks using 3 spread

methods and movable nodes

(phones). Infection model. Loca-

tion paths/regions with variable

infection rate.

R. Ryser, J.

Haussler, M.

Stark, U. Brose,

B. C. Rall and C.

Guill

2019 The biggest losers: habitat

isolation deconsructs com-

plex food webs from top to

bottom

Ecology Hypothetical Stochastic simu-

lation

Discrete Abstract Abstract Actor,

Compo-

nent

Whole

network

Food web network at each habitat

patch connected in network. Food

web is constant over all patches.
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Aim Method Time

specifi-

cation

Time

period

Spatial

Level

Input

Net-

work

level

Output

Net-

work

Level

Notes

F. Semboloni 2000 The growth of an urban

cluster into a dynamic self-

modifying spatial pattern

Urban plan-

ning

Hypothetical Stochastic simu-

lation

Discrete Abstract Unspecified Component Whole

network

Growth of urban cluster cells and

road network. Looking at land use

and urban morphology. Cell and

road propagation occur seperately

but incluence each other. Cell cen-

troids randomly distributed, new

nodes can change shape of cells

and links between (shared edges).

Shared edge=potential road. Road

cannot be changed once built.

A. Srivastava and

S. M. Salapaka

2020 Simultaneous Facility Lo-

cation and Path Optimiza-

tion in Static and Dynamic

Networks

Network

methods

Prediction,

Description

Discrete network

methods

Discrete Hours Abstract Component Component,

Whole

network

Path optimisation and planning lo-

cation of long distance transport fa-

cilities (not necessarily haulage)

G. Sun, T. Tang,

T. Q. Peng, R.

Liang and Y. Wu

2017 SocialWave: Visual analy-

sis of spatio-temporal dif-

fusion of information on

social media

Communications,

Network

methods,

Sociology

Relationships,

Description

Statistical model,

Visualisation

Discrete Unspecified Unspecified Component Whole

network

Visualise spatio-temporal diffusion

of info on social media. Dy-

namic social gravity model, dis-

tance, language and cultural sim-

ilarity. ”Temporal visualisation”

not totally clear. Tended to be

cross sectional networks and single

properties over time.

B. Sun, D. Zhao,

X. Shi and Y. He

2021 Modeling Global Spatial-

Temporal Graph Attention

Network for Traffic Predic-

tion

Transport Prediction Machine learning Discrete Months Partial

city,

Regional

Component Component Traffic prediction.

K. Tian, J. Guo,

K. Ye and C. Z.

Xu

2020 ST-MGAT: Spatial-

Temporal Multi-Head

Graph Attention Networks

for Traffic Forecasting

Transport Prediction Machine learning Discrete Months Partial

city

Component Component Traffic forecasting
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cation

Time

period
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Input

Net-

work

level

Output

Net-

work

Level

Notes

X. B. Wang, J. P.

Ge, W. D. Wei,

H. S. Li, C. Wu

and G. Zhu

2016 Spatial Dynamics of the

Communities and the Role

of Major Countries in the

International Rare Earths

Trade: A Complex Net-

work Analysis

Economics Description Discrete network

methods

Discrete Years Multi-

country

Component Whole

network

Rare earth trade. Communities -

dynamics of these. Uses unweighted

and weighted networks. Annual

data used for community detection.

I. Wanzenböck

and P. Piribauer

2018 R&D networks and re-

gional knowledge produc-

tion in Europe: Evidence

from a space-time model

Geography Relationships Discrete network

methods, Statis-

tical model

Discrete Years Multi-

country

Component Component Regional knowledge production fol-

lows embeddedness (like central-

ity) and local characteristics in Dy-

namic spatial Durbin model. An-

nual data. First with no spatio-

temporal element then with. Grant

connections ->network ->regional

net properties ->space-time model.

Spatially aggregated into regions

too.

V. J. Wei, R. C.

W. Wong and C.

Long

2020 Architecture-Intact Oracle

for Fastest Path and Time

Queries on Dynamic Spa-

tial Networks

Network

methods

Description Discrete network

methods

Discrete Months Regional Component Component,

Whole

network

Identifying fastest path in network

with changing weights over time.

M. Xu and Z. Y.

Gao

2009 Chaos in a dynamic model

of urban transportation

network flow based on user

equilibrium states

Transport Hypothetical Stochastic simu-

lation

Discrete Abstract Unspecified Component Whole

network

Model to analyse network flow and

estimate number of trips based on

dynamical gravity mode. Esti-

mated trip cost using ”user equilib-

rium network assignment model”.

Variations in O-D flow. Does chaos

exist?

B. Yang, Y.

Kang, H. Li, Y.

Zhang, Y. Yang

and L. Zhang

2020 Spatio-temporal expand-

and-squeeze networks for

crowd flow prediction in

metropolis

Transport Prediction Machine learning Discrete Months Citywide Actor Component Traffic flow prediction (pedestrian)
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Aim Method Time
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cation

Time

period

Spatial

Level

Input

Net-

work

level

Output

Net-

work

Level

Notes

H. X. Yao, X. F.

Tang, H. Wei, G.

J. Zheng, Z. H. Li

and Aaai

2019 Revisiting Spatial-

Temporal Similarity: A

Deep Learning Framework

for Traffic Prediction

Transport Prediction Machine learning Discrete Months Citywide Component Component Traffic prediction with dynamic

spatial dependence. Temporal not

strictly periodic. Novel space-time

dynamic network. Taxi/bike trips.

Aggregated spatially to 1km and 30

mins.

H. C. Yu, Z. X.

Fang, F. Lu, A.

T. Murray, Z. Y.

Zhao, Y. Xu and

X. P. Yang

2019 Massive Automatic Iden-

tification System Sensor

Trajectory Data-Based

Multi-Layer Linkage

Network Dynamics of

Maritime Transport along

21st-Century Maritime

Silk Road

Transport Description Discrete network

methods

Discrete Years Multi-

country

Actor,

Compo-

nent

Component,

Whole

network

Described dynamics of global trade

in silk

W. H. Yu, M. L.

Guan and Z. L.

Chen

2019 Analyzing Spatial Com-

munity Pattern of Network

Traffic Flow and Its Varia-

tions across Time Based on

Taxi GPS Trajectories

Transport Description Discrete network

methods

Discrete Hours Partial

city

Actor,

Compo-

nent

Whole

network

Communities based on Taxi GPS

data at different time points/win-

dows

M. A. Zambrano-

Monserrate,

M. A. Ruano,

V. Ormeño-

Candelario and

D. A. Sanchez-

Loor

2020 Global ecological footprint

and spatial dependence be-

tween countries

Ecology Relationships Statistical model Discrete Years Multi-

country

Component Whole

network

Spillover of ecological footprint be-

tween countries. Dynamic spatial

Durbin Model

C. Zhang, J. J. Q.

Yu and Y. Liu

2019 Spatial-Temporal Graph

Attention Networks: A

Deep Learning Approach

for Traffic Forecasting

Transport Prediction Machine learning Discrete Months Regional Component Component Traffic flow forecasting
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cation

Time

period

Spatial

Level

Input

Net-

work

level

Output

Net-

work

Level

Notes

W. Zhang, Z.

Tian, G. Zhang

and G. Dong

2019 Spatial-temporal charac-

teristics of green travel

behavior based on vector

perspective

Transport Description Discrete network

methods

Discrete Days Citywide Actor Component,

Whole

network

Tiny discrete intervals. Vec-

tor coarse graining of network -

looking at detailed graph at a

coarser/higher level. Extract dom-

inant directional component for in-

flow and outflow of node (if a node

has one weighted edge with w>=

half weighted degree than this is

the DDC). Coarse graining keeps

all DDCs and weights them at 1

and calculated directional degree -

tells us on average how unidirec-

tional flow is for each node on av-

erage. Also include way of defining

temporal window size to use.

X. Z. Zhang,

G. Chen, J. C.

Wang, M. C. Li

and L. Cheng

2019 A GIS-Based Spatial-

Temporal Autoregressive

Model for Forecasting

Marine Traffic Volume of

a Shipping Network

Transport Prediction Statistical model Discrete Years Multi-

country

Actor,

Compo-

nent

Component Traffic forecasting

Z. C. Zhang, M.

Li, X. Lin, Y. H.

Wang and F. He

2019 Multistep speed predic-

tion on traffic networks:

A deep learning ap-

proach considering spatio-

temporal dependencies

Transport Prediction Machine learning Discrete Abstract Partial

city

Actor,

Compo-

nent

Component This one has a 3D graph of speed

over time on different road links.

Unspecified time period of data.

H. Zhang, L.

Zhang, F. Che, J.

Jia and B. Shi

2020 Revealing Urban Traffic

Demand by Constructing

Dynamic Networks with

Taxi Trajectory Data

Transport Description Discrete network

methods

Discrete Hours Citywide Actor,

Compo-

nent

Whole

network

Networks based on flows between

2km square areas constructed for 2

hour time windows.
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cation

Time

period

Spatial

Level

Input

Net-

work

level

Output

Net-

work

Level

Notes

X. Y. Zhao and

Y. X. Pu

2018 The Complex System of

Interprovincial Migration

Flows in China, 1985-2015:

A Spatial Dynamic Panel

Modeling Approach

Geography Relationships Statistical model Discrete Years Single

country

Component Whole

network

Migration in China - impacts of re-

gional characteristics. Spatial dy-

namic panel model for OD flows,

based on gravity model O-D charac-

teristics, distance decay on current

flows and time dependence on self

and neighbouring regions. Annual

data. Origin anddestination effects.

N. Zhao, Z. Ye, Y.

Pei, Y. C. Liang

and D. Niyato

2020 Spatial-Temporal

Attention-Convolution

Network for Citywide

Cellular Traffic Prediction

Communications Prediction Machine learning Discrete Months Citywide Actor Component,

Whole

network

Telephone traffic prediction

L. Zheng, J.

Yang, L. Chen,

D. Sun and W.

Liu

2020 Dynamic spatial-temporal

feature optimization with

ERI big data for Short-

term traffic flow prediction

Transport Prediction Machine learning Discrete Days Citywide Actor,

Compo-

nent

Component Traffic flow prediction

F. Zhou, Q. Yang,

K. Zhang, G. Tra-

jcevski, T. Zhong

and A. Khokhar

2020 Reinforced Spatiotemporal

Attentive Graph Neural

Networks for Traffic Fore-

casting

Transport Prediction Machine learning Discrete Months Regional Component Component Machine learning traffic prediction

Table A.1: Table summarising reviewed papers in Chapter 2
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Listing B.1: R code to generate three-phase growth of several units of observation

#Some "hidden markov chains" to simulate three growth stages of fifteen imaginary things over 30 time units.

#The HMC can move from "INITIAL SLOW GROWTH"->"GROWTH SPURT"->"STEADY STATE" (always starting at "ISG").

#The probability of these transitions increases with time (and those of looping back decrease).

#The current state determines the distribution from which "growth during time period" is sampled.

#This is added to size at the previous time period.

#NB/ In STEADY STATE", "growth during time period" can be negative.

library(ggplot2)

maxt <-30 #set timeframe

obs <-15 #set number of observation units

alldata <-data.frame(cbind(numeric (), numeric (), numeric (), numeric ())) #empty data frame for results

for (i in 1:obs){

#set up vectors to record individual ob unit results

v<-numeric(length=maxt)

inc <-numeric(length=maxt)

cumul <-numeric(length=maxt +1)

v[1] <-1

inc[1] <-rlnorm (1,0,1)

cumul [1] <-0

for (t in 2:maxt){

#set cumulative value from last cumulative value and last growth amount

cumul[t]<-inc[t-1]+ cumul[t-1]

#set transition probabilities that depend on time using logistic curve

p1<-1/(1+ exp(-0.5*(t-13)))

p2<-1/(1+ exp(-1*(t-18)))

#set new state based on transition probability and current state

if (v[t -1]==1){

v[t]<-rbinom(1, 1, p1)+1

}

if (v[t -1]==2){
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v[t]<-rbinom(1,1,p2)+2

}

if (v[t -1]==3){

v[t]<-3

}

#sample growth amount from distro dependent on current state

if (v[t]==1){

inc[t]<-rlnorm (1,0.5 ,1)

}

if (v[t]==2){

inc[t]<-rlnorm (1,2.5 ,1)

}

if (v[t]==3){

inc[t]<-rnorm (1,0,5)

}

}

#set final growth value

cumul[maxt +1] <-inc[maxt]+ cumul[maxt]

if (cumul[maxt +1] <0) {

cumul[maxt +1] <-0 #can ’t be smaller than zero

}

addon <-cbind(c(0: maxt), c(rep(i, maxt +1)), cumul , c(1,v))

#add on to data for other ob units

alldata <-data.frame(rbind(alldata , addon))

}

#plot

colnames(alldata)<-c("time", "id", "size", "stage")

#graph shows individual growth measurements over time with colouring according to growth "stage" simulated

ggplot(data=alldata , aes(x=time , y=size , group=id, colour=as.factor(stage)))+

geom_line()+

geom_point ()+

scale_colour_discrete(name="Growth Stage", labels=c("Initial slow growth", "Growth spurt", "Steady state"))

Listing B.2: R code to generate temporal observations for units of observation with a set average value
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#generates patterns with desired average over time and no big changes

maxt <-30 #set timeframe

obs <-10 #set number of observation units

alldata <-data.frame(cbind(numeric (), numeric (), numeric (), numeric (), numeric (), numeric ())) #empty data frame for results

library(ggplot2)

for (i in 1:obs) {

change <-numeric(length=maxt) #set empty vectors

value <-numeric(length=maxt +1)

average <-rnorm (1,20,7) #set desired average

value [1] <-rnorm(1,average ,3) #set first value on either side of desired average

for (t in 1:maxt){

if(value[t] > average) {

change[t]<-(-1)*rlnorm(1,log (1+ value[t]-average),log (2)) #if above desired average , pick negative value of change

}

if(value[t] < average) {

change[t]<-rlnorm(1,log (1+ average -value[t]),log (2)) #if below desired average pick positive value of change

}

#if value== desired average , simulate change value

if(value[t]== average) {

change[t]<-rnorm (1,0,3) #if = desired average , pick value of change in either direction

}

value[t+1] <-value[t]+ change[t] #add change to previous value to get new value

}

addon <-cbind(c(0: maxt), c(rep(i, maxt +1)), value , c(NA , change), c(average , rep(NA , maxt)), c(mean(value), rep(NA , maxt))

)

alldata <-data.frame(rbind(alldata , addon)) #collect data and combine with other ob units

}

#plot and display

colnames(alldata)<-c("time", "id", "value", "change", "average.input", "average.output")

ggplot(data=alldata , aes(x=time , group=id, colour=as.factor(id)))+

geom_line(aes(y=value))+

geom_point(aes(y=value))+

theme(legend.position="none")
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B.1 Simulation function details

B.1.1 Required libraries

The function simulate.trajectory requires the libraries ggplot2, gridExtra, Matrix, matrixcalc, MASS and dependencies.

B.1.2 Arguments

Argument Form Default Description

n.obs numeric, length=1 1 Number of trajectories to generate (number of

observation units

max.time numeric, length=1 10 Maximum time of window to simulate data in

(minimum is always zero)
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Argument Form Default Description

record.times numeric, length≥1 1:n.measures Two options. For wave measurements, specify

the times at which each wave is centred. Record-

ing times will vary around the specified times.

For irregular measurements, specify the number

of records collected and a uniform distribution

will be used to choose this many recording times

for each trajectory.

record.times.vary numeric, length=1 1 Only required for wave measurements. Stan-

dard deviation for the variation of actual

measurement times around those specified in

record.times.
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Argument Form Default Description

part.1.average character,

3≤length≤4

no default Population distribution of the aver-

age value of the first trajectory sec-

tion. Individual averages will be sampled

from this distribution. Takes the form

distribution, parameter1, parameter2.

Two of part.1.average, part.2.average and

value.step.change must be specified. If all

three are specified, part.2.average is ignored.

part.2.average character,

3≤length≤4

no default Population distribution of the aver-

age value of the second trajectory sec-

tion. Individual averages will be sampled

from this distribution. Takes the form

distribution, parameter1, parameter2.

Two of part.1.average, part.2.average and

value.step.change must be specified. If all

three are specified, part.2.average is ignored.
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Argument Form Default Description

part.1.slope character,

length=3

c("rnorm", "0", "1", "1") Population distribution of the slope param-

eter for the first trajectory section. Indi-

vidual averages will be sampled from this

distribution. Takes the form distribution,

parameter1, parameter2, multiplier. The

multiplier defaults to 1 and can be specified in

terms of t (for time) if a non-linear pattern is

required, for example, specifying t will give a

quadratic curve and t^2 cubic.

part.2.slope character,

length=3

c("rnorm", "0", "1", "1") Population distribution of the slope param-

eter for the second trajectory section. In-

dividual averages will be sampled from this

distribution. Takes the form distribution,

parameter1, parameter2, multiplier. The

multiplier defaults to 1 and can be specified in

terms of t (for time) if a non-linear pattern is

required, for example, specifying t will give a

quadratic curve and t^2 cubic.
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Argument Form Default Description

time.step.change character,

length=3

c("rnorm", "0", "1", "1") Population distribution of the time at which

the step change between trajectory sections

occurs. Individual averages will be sam-

pled from this distribution. Takes the form

distribution, parameter1, parameter2.

value.step.change character,

length=3

no default Population distribution of the average value

of the step change between trajectory sec-

tions. Individual averages will be sampled

from this distribution. Takes the form

distribution, parameter1, parameter2.

Two of part.1.average, part.2.average and

value.step.change must be specified. If all

three are specified, part.2.average is ignored.
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Argument Form Default Description

sd.error character,

length=3

sd.error=c("rlnorm","0.5","0.5") Population distribution of the standard de-

viation of total random error terms for each

individual. Individual averages will be sam-

pled from this distribution. Takes the form

distribution, parameter1, parameter2.

The absolute value of any negative values will

be used.

between.cor numeric, length=1 0 Correlation of error terms between individuals

at the same time point. Must be between -1

and 1.

within.cor numeric, length=1 0 Correlation of error terms within individuals at

adjacent time points. An order 1 autocorre-

lation structure is specified within individuals.

Must be between -1 and 1.

dayreps numeric, length=1 1 Routes can be measured over the time speci-

fied on multiple occasions (for example, different

days). This specifies the number of these occa-

sions.
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Argument Form Default Description

dayreps.cor numeric, length=1 0 Error correlation between data measured at the

same time on the same route on consecutive

days.

fixed.spacegroups Matrix or data

frame with 3 or 6

columns

NULL Specify this if you wish the observations to be in

pre-specified spatial groups. Matrix/data frame

columns specify: Group 1 ID, Group 1 X co-

ordinate, Group 1 Y coordinate, Group 2 ID,

Group 2 X coordinate, Group 2 Y coordinate.

If two groups (6 columns) are specified, origin-

destination data will be produced, if 3 columns

are specified it will not (this will override the

specification of origin.dest). The length of

the matrix/data frame must be equal to n.obs.

fixed.effect.part.1.slope Numeric,

length=n.obs

NULL A vector of values specifying a fixed amount by

which part.1.slope will be multiplied for each

observation unit.

spacegroups numeric, length=1 no default Number of spatial groups or clusters of individ-

uals to be included in the dataset.
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Argument Form Default Description

spacegroups.size numeric, length=1 no default The average deviation of the x and y coordinates

for an individual in a spatial group from its cen-

tre (the distribution of points follows a bivariate

normal distribution, this is the standard devia-

tion of both distributions that comprise this).

origin.dest logical, length=1 FALSE If TRUE, data will be associated with a ’route’

between two spatial points.

area.x numeric, length=1 no default Upper bound for x-coordinates of the centre of

each spatial group. These will be sampled from

a uniform distribution spanning from zero to

this value.

area.y numeric, length=1 no default Upper bound for y-coordinates of the centre of

each spatial group. These will be sampled from

a uniform distribution spanning from zero to

this value.
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Argument Form Default Description

sd.ratio numeric, length=1 0.5 Used to specify the amount of random vari-

ation in parameters within spatial groups.

The standard deviation for this spatial-group-

related variation is specified as a fraction of

the random variation already introduced to the

parameters (the third argument for each of

part.1.average, part.1.slope etc.) If spatial

groups are specified, the random variation in-

troduced in these arguments is between spatial

group variation.
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Argument Form Default Description

sd.ratio.day numeric, length=1 0.5 Used to specify the amount of random varia-

tion in parameters between each dayrep spec-

ified. The standard deviation for this date-

related variation is specified as a fraction of

the random variation already introduced to

the parameters (the third argument for each

of part.1.average, part.1.slope etc.) If

sd.ratio.day is set to zero there will be no ran-

dom variation in parameters or horizontal offset

within spatial groups for different days.

print.plot logical, length=1 TRUE Whether the summary plot is printed.

offset.amount numeric, length=1 0 For specifying a horizontal offset for each spa-

tial group. Each group will be offset by a value

sampled from a normal distribution with mean

0 and standard deviation offset.amount with

some random within-group variation around this

value.

Table B.1: Function arguments for simulation tool
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B.1.3 Output

The function outputs a list containing a maximum of seven elements.

Element Description

data Data frame containing simulated data in long format

simulation.summary Data frame containing variables showing individual input parameters, values expected
from a simulation with no error (given discrete measurement times), and actual parameters
from simulated data.

plot Graphical object containing spaghetti plot of trajectories and differences of average values
and step change values from inputs and expected values. Can be displayed using plot()
function.

section1.function Individual functions specified for first trajectory section (including multiplier)

section2.function Individual functions specified for second trajectory section (including multiplier)

coordinates.info Contains two parts. The first contains central coordinates for each spatial group. The
second contains individual level coordinates and spatial group membership.

group.info Data frame containing information about the average parameter values in spatial and day
groups.

distmat Matrix or list of two matrices detailing the distances between observation units or obser-
vation unit origins and destinations.

Table B.2: Elements of list output of simulation tool function
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B.1.4 Warning messages

Common warning messages include the following:

In max(recordtime[which(recordtime[, i] <= prejumpt[i]), i]) : no non -missing arguments to max; returning -Inf

In min(recordtime[which(recordtime[, i] >= postjumpt[i]), i]) : no non -missing arguments to max; returning Inf

Removed 1 rows containing non -finite values (stat_density).

These occur if wave or irregular sampling is specified and an individual has no recording times either before or after the step change. This means

some summary values cannot be calculated but does not cause any other issues.

Listing B.3: Code used to simulate example data

B <- simulate_trajectory(n.obs=50 , max.time=30, record.times=10, part .1. average=c("rnorm","100", "3"), part .1. slope=c("

rlnorm", "1", "0.1", "log(t)/t") , part .2. slope=c("rnorm", "1", "0.5", "cos(t)") , time.step.change=c("runif","10", "20"

) , value.step.change=c("rnorm"," -100", "3"), sd.error=c("rlnorm","1", "0.5"), between.cor=0.3, within.cor=0.5, dayreps

=1, spacegroups =2, spacegroup.size=1, area.x=30, area.y=30, sd.ratio =0.5, offset.amount =0)
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Appendix C

Large scale flowchart showing the

process underlying the simulation

function in Chapter 5
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Figure C.1: Large size flowchart in from Figure 5.7
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Appendix D

London Underground Maps

September-December 2009
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Figure D.1: Front cover of London Underground Map September 2009
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Figure D.2: Inside of London Underground Map September 2009 - note that fare zones are missing
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Figure D.3: Front cover of London Underground Map December 2009
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Figure D.4: Inside of London Underground Map December 2009 - this was published soon after the September 2009 map with the River Thames
(which had been removed) and fare zones reinstated.
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Appendix E

Supplementary figures and tables

for Chapter 7

Initial tau value 0.0025 0.01 0.04 1 4 100

Time of maximum delay (hours)
Mean Estimate 15:35 15:35 15:35 15:35 15:35 15:35
SD Estimates 0.692 0.69 0.694 0.696 0.694 0.695
Mean CI width 2.142 2.1 2.148 2.134 2.117 2.104
SD CI width 1.813 1.728 1.787 1.767 1.733 1.731

Maximum delay (minutes)
Mean Estimate 18.654 18.654 18.682 18.682 18.68 18.67
SD Estimates 9.909 9.931 9.916 9.911 9.9 9.914
Mean CI width 6.307 6.313 6.295 6.289 6.298 6.297
SD CI width 0.461 0.464 0.455 0.447 0.487 0.492

Table E.1: Table summarising estimates from simulated data of time of maximum delay
and maximum delay for different initial values of tau.
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Chapter E

Figure E.1: Mean bias (black circle) and limits of agreement (red diamond) in estimates
of maximum delay from simulated data according to initial value of tau, with 95% CI.
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Figure E.2: Mean bias (black circle) and limits of agreement (red diamond) in estimates
of time of maximum delay from simulated data according to initial value of tau, with 95%
CI.
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Figure E.3: Spearman’s rank correlation coefficient and 95% confidence interval for rela-
tionship between simulated and modelled values of maximum delay from simulated data
according to initial value of tau.
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Figure E.4: Spearman’s rank correlation coefficient and 95% confidence interval for rela-
tionship between simulated and modelled times of maximum delay from simulated data
according to initial value of tau.
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Appendix F

Supplementary figure for Chapter

8

Figure F.1: Density plot showing 95% credible interval widths for estimates of maximum
time, with the distances between knot points marked as vertical dashed lines.
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Appendix G

Plots of posterior distributions of

pattern features estimated for one

simulated dataset in Chapter 8
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Figure G.1: Posterior distributions of maximum delay estimated for each edge in one simulated dataset

320



C
h

a
p

ter
G

Figure G.2: Posterior distributions of time of maximum delay estimated for each edge in one simulated dataset
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Figure G.3: Posterior distributions of maximum journey length estimated for each edge in one simulated dataset
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