
Proof Complexity for Quantified

Boolean Formulas

Judith Clymo

School of Computing

University of Leeds

A thesis submitted for the degree of

Doctor of Philosophy

30th November 2020

mailto:scjc@leeds.ac.uk
https://engineering.leeds.ac.uk/info/20132/school_of_computing
http://www.leeds.ac.uk

Declaration

The candidate confirms that the work submitted is her own, except where work which

has formed part of a jointly authored publication has been included. The contribution

of the candidate and the other authors to this work has been explicitly indicated below.

The candidate confirms that appropriate credit has been given within the thesis where

reference has been made to the work of others.

Some parts of the work presented in this thesis have been published in the following

articles:

Publications in Journals

1. Olaf Beyersdorff and Judith Clymo (2018), Relating size and width in variants of

Q-Resolution, Information Processing Letters.

Refereed Contributions in Conference Proceedings

2. Olaf Beyersdorff, Leroy Chew, Judith Clymo and Meena Mahajan (2019), Short

proofs in QBF expansion, Theory and Applications of Satisfiability Testing.

3. Leroy Chew and Judith Clymo (2019), The equivalences of refutational QRAT,

Theory and Applications of Satisfiability Testing.

4. Leroy Chew and Judith Clymo (2020), How QBF expansion makes strategy ex-

traction hard, Automated Reasoning.

The candidate confirms that the role of the authors in above jointly-authored

publications are as follows:

• Chapters 4 and 5 contain work from 2. I was the main author. The proofs in this

paper were a result of discussions between the authors.

• Chapters 6 and 7 contain work from 3. Chew and I were the main authors. The

proofs in this paper were a result of discussions between the authors.

• Chapter 6 contains work from 4. Chew and I were the main authors. The proofs

in this paper were a result of discussions between the authors.

• Chapter 8 contains work from 1. I was the main author. The proofs in this paper

were a result of discussions between the authors.

This copy has been supplied on the understanding that it is copyright mate-

rial and that no quotation from the thesis may be published without proper

acknowledgement.

©2020 The University of Leeds and Judith Clymo

i

Acknowledgements

First of all I would like to thank my excellent supervisors Olaf Beyersdorff and Bran-

don Bennett. Their direction and encouragement has been hugely valuable throughout

my time as a PhD student. I am also grateful for discussions with collaborators and

others in the research group, including Leroy Chew, Meena Mahajan, Barnaby Martin,

Stefan Dantchev, Joshua Blinkhorn, Luke Hinde and Sarah Sigley.

The School of Computing at Leeds is a vibrant and supportive environment, I have

greatly enjoyed the opportunity to attend lots of interesting talks, assist in teaching

undergraduate classes, and be surrounded by so many impressive researchers.

Several generous people have proof-read various parts of this thesis – thanks to

Noleen, Sam, Petar, Jake, Markus and Luke.

2020 has been a challenging year for everyone. Quite apart from writing a thesis,

I would not have got through the year without the love and kindness of family and

friends. So thank you to my husband, parents and sisters, and to Sarah, the best friend

that anyone could wish for.

ii

Abstract

Quantified Boolean formulas (QBF) extend the propositional satisfiability problem

by allowing variables to be universally as well as existentially quantified. Deciding

whether a QBF is true or false is PSPACE-complete and a wide range of mathematical

and industrial problems can be expressed as QBFs. QBF proof complexity is the

theoretical analysis of algorithmic techniques for solving QBFs.

We make a detailed comparison of the proof systems Q-Res, QU-Res, and ∀Exp + Res

which extend propositional Resolution with different rules for reasoning about univer-

sally quantified variables. We give new simulation and separation results between these

proof systems under two natural restrictions, when the proofs are tree-like, and when

the QBFs have bounded quantifier complexity.

We consider a strong QBF proof system, QRAT, proposed as a universal proof

checking format. We show that, unless P = PSPACE, QRAT does not admit strategy

extraction. This is proved by constructing a family of QBFs that have short QRAT

proofs but whose strategies are hard to compute in general. We also explore why

strategy extraction fails for QRAT, including presenting a restricted version of QRAT

which does admit strategy extraction.

We study two results from propositional proof complexity and their analogues in

QBF proof complexity, showing in both cases how the additional complexity of QBF

solving compared to refuting propositional formulas causes these results to fail in the

QBF setting.

iii

Contents

1 Introduction 1

1.1 Structure and Contributions . 5

2 Logic and Complexity 8

2.1 Computational Complexity . 8

2.2 Propositional Logic . 9

2.3 SAT-Solving Algorithms . 13

2.4 Quantified Boolean Logic . 14

2.5 QBF-Solving Algorithms . 18

3 Proof Systems 21

3.1 Proof Systems for Propositional Tautologies 22

3.2 QBF Proof Systems . 24

3.3 Proof Complexity . 30

4 QBFs with Bounded Quantifier Complexity 33

4.1 Simulating Q-Resolution by Expansion and Resolution 36

4.2 Simulating QU-Resolution by Q-Resolution 47

4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier Com-

plexity . 53

5 Tree-Like Expansion Proofs 59

5.1 Proof Systems as Games . 59

5.2 Separating Tree-Like Expansion From Tree-Like Q-Resolution 61

5.3 Separating Tree-Like Expansion From Stronger Calculi 65

5.4 Short Tree-Like Expansion Proofs for QBFs Based on Thin Circuits . . 68

6 Strategy Extraction in QRAT 72

6.1 Redundancy Properties . 73

6.2 The QRAT Proof System . 76

6.3 Strategy Extraction in QRAT(UR) . 81

iv

CONTENTS

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction . . 86

6.5 Relation to Feasible Interpolation . 93

7 The Equivalence of Refutational QRAT and QRAT+ 97

7.1 The QRAT+ Proof System . 97

7.2 Simulating QRAT+ by QRAT . 99

8 Proof Size and Proof Width In Variants of Q-Resolution 104

8.1 Relating Size and Width Between Two Variants of Q-Resolution 105

8.2 Size and Width for Stronger Proof Systems 109

9 A Complexity Gap for QBF Resolution 115

9.1 Rendering a First-Order Sentence As a Sequence of QBFs 115

9.2 The Exponential Lower Bound . 118

9.3 A Surprising Lower Bound . 121

9.4 The Polynomial Upper Bound . 123

10 Conclusion 126

References 129

v

List of Figures

3.1 An example set of rules for a Frege Proof System. 23

3.2 Rules in the Q-Res Proof System acting on QBF Ψ = ΠΦ. 25

3.3 An unsound refutation of ∀u∃x(x∨u)∧(¬x∨¬u) due to the introduction

of a tautology. 25

3.4 Rules in the LD-Q-Res Proof System acting on QBF Ψ = ΠΦ. 27

3.5 Rules in the ∀Exp + Res Proof System acting on QBF Ψ = ΠΦ. 29

3.6 Known p-simulations between QBF proof systems based on Resolution. 31

4.1 A section of the Q-Res refutation for Theorem 4.0.1. 34

4.2 Duplicating clauses to create an expansion refutation of QBF with prefix

∃w∀u∃xy. 37

4.3 An example of a parity circuit for input of size n. 53

4.4 Relationships between QBF proof systems for formulas with bounded

quantifier complexity. 57

vi

Abbreviations

SAT The propositional satisfiability problem

QBF Quantified Boolean formula

CNF Conjunctive normal form

PCNF Prenex conjunctive normal form

DNF Disjunctive normal form

DAG Directed acyclic graph

DPLL The algorithm of Davis, Putney, Logemann and Loveland

CDCL Conflict driven clause learning

QDPLL QBF version of the DPLL algorithm

QCDCL QBF version of the CDCL algorithm

CEGAR Counterexample guided abstraction refinement

∀-Red Universal reduction

Res Resolution proof system

Frege Frege proof systems

Q-Res Q-Resolution proof system

QU-Res QU-Resolution proof system

∀Exp + Res Expansion and resolution proof system

IR-calc Instantiation and resolution proof system

IRM-calc Instantiation, resolution and merging proof system

LD-Q-Res Long-distance Q-Resolution proof system

LQU+-Res QU-Resolution with long distance resolution

QRAT The QRAT proof system

QRAT(UR) The QRAT proof system with universal reduction

QRAT+ The QRAT+ proof system

f +∀red Propositional proof system f augmented with the universal reduction rule

f +∀Exp Propositional proof system f augmented with the universal expansion rule

vii

Notation

vars(Φ) The set of variables in a formula Φ

∃Ψ The set of existentially quantified variables in QBF Ψ

∀Ψ The set of universally quantified variables in QBF Ψ

lv(x) The level of variable x in the quantifier prefix of a QBF

|Φ| The size of a formula Φ

Φ[f/x] The result of substituting Boolean function f for x throughout Φ

Φ[α] The result of substituting variables in Φ according to the assignment α

Φ|α The result of applying Φ[α] followed by simplification

α(Φ) Φ evaluated under assignment α

α ◦ τ The extension of assignment α by τ

u∗ A merged literal

bαcl The restriction of assignment α to variables with level less that lv(l)

subexpπ(Ψ) The part of the expansion of Ψ used by a proof π

Φ `f C Proof system f can derive C from Φ

|π| The size of a proof π

Sf(Φ) The minimum size of an f-proof of Φ

viii

Chapter 1

Introduction

Proof complexity seeks to understand and analyse the computational resources required

to prove or refute logical statements. Proof complexity is applicable to many different

logics but the majority of research has focused on propositional logic, specifically on

the size of refutations of unsatisfiable propositional formulas.

The Boolean satisfiability problem (SAT) is the problem of deciding whether a

given formula in propositional logic can be satisfied (made to evaluate to true) by any

assignment to the variables. Formulas for which the answer is ‘yes’ have a short and

easily verifiable proof of this – the assignment that causes the formula to evaluate to

true. Therefore, SAT belongs to the complexity class NP, which contains all decision

problems for which ‘yes’ instances can be verified in deterministic polynomial time in

the size of the input. In fact, it was shown by Cook (1971) that SAT is NP-complete,

meaning that any problem in NP can be efficiently expressed as an instance of the SAT

problem.

For propositional formulas with no satisfying assignment to the variables it is not

known whether there always exists a proof of this which can be verified in polynomial

time in the size of the formula. The problem of deciding whether a formula is unsatis-

fiable is coNP-complete, where coNP is the complement of NP and contains all decision

problems for which ‘no’ instances can be verified in deterministic polynomial time.

Instead of supplying an assignment to the variables, a proof that a propositional

formula is unsatisfiable is typically given as a sequence of applications of logical deduc-

tions. A proof system specifies which deductions can be applied and defines a method

for checking the validity of a claimed proof. The proof must always be checkable in

polynomial time in the size of the proof, but the proof may be super-polynomial in the

size of the input.

Cook & Reckhow (1979) gave a precise formal definition of a proof system and

showed an important connection between propositional proof complexity and compu-

1

tational complexity. A proof system is polynomially bounded if the size of the smallest

proof (the number of symbols needed to write it) of any input formula is bounded above

by a polynomial in the size of the input. If there is such a proof system for unsatisfi-

able propositional formulas then we are able to provide proofs of unsatisfiability which

can be verified in polynomial time the size of the formula, meaning that this problem

belongs to NP. It would follow from this that coNP = NP.

A famous open problem in computational complexity is to determine whether NP

contains exactly the same decision problems as P, the class of problems that can be

decided in deterministic polynomial time. Although problems in NP have proofs that

can be verified efficiently, it is not known whether the proof can be found in polynomial

time in the size of the problem instance. It is known that if coNP 6= NP then P 6= NP.

Therefore, a possible approach to gaining insight into this famous open problem of

computational complexity is to study propositional proof systems and find formulas for

which increasingly strong systems require super-polynomial sized proofs.

Quantified Boolean formulas (QBF) extend propositional logic by introducing uni-

versal and existential quantifiers for the Boolean variables. PSPACE is the complexity

class containing all problems that can be decided by a deterministic machine using only

a polynomial amount of memory space in the size of the input. Determining whether

a QBF is true or false is the canonical PSPACE-complete problem. It is easy to show

that NP ⊆ PSPACE, but it is not known whether the inclusion is proper. If there is a

polynomially bounded proof system for QBFs then it follows that NP = PSPACE.

Aside from the possibility of gaining insight into fundamental open problems in

computational complexity, there is another important reason for studying proof com-

plexity. A considerable variety of important problems from mathematics, theoretical

computer science, and industrial settings can be naturally expressed as instances of

SAT. Despite the widely-held expectation that SAT is intractable in the worst case

(i.e. that P 6= NP), research in SAT-solving algorithms has shown impressive progress

in recent years and modern SAT solvers such as Kissat (Biere et al., 2020), Crypto-

MiniSat (Soos et al., 2009), MapleSAT (Liang et al., 2016) and Glucose (Audemard &

Simon, 2018) are able to solve instances with hundreds of thousands of variables.

In industry, SAT solvers are used to solve planning problems in artificial intelli-

gence (Kautz & Selman, 1992) testing and verification (Larrabee, 1992) and resolving

software package dependencies. On the theoretical side, SAT solvers have been applied

to cryptanalysis (Mironov & Zhang, 2006) and have been used to solve longstanding

problems in mathematics (Heule et al., 2016). At the same time, it remains possible

to construct small instances which cannot be solved by any current algorithm in a

reasonable amount of time. A full understanding of what makes an easy or hard SAT

instance currently seems out of reach.

The reasoning steps in SAT-solving algorithms can be modelled by propositional

2

proof systems. In particular, solvers based on the DPLL algorithm (Davis et al., 1962)

and conflict driven clause learning (CDCL) (Marques Silva & Sakallah, 1996) produce

proofs in the Resolution proof system (Res). Proof complexity results can help us to

understand the strengths and limitations of solving algorithms. Lower bounds on the

size of proofs in a system imply lower bounds on the running time of an algorithm which

produces proofs in that system. Similarly, we can study the space requirements of a

proof system, with lower bounds implying lower bounds on memory use of a related

algorithm. It may also be possible to show that a short proof in one proof system

implies the existence of a short proof in another system, or conversely that one system

can prove certain formulas in polynomial-size proofs while proofs of the same formula

are always of exponential size in another system. Results of this kind may indicate which

algorithms are likely to be fastest in general or for some class of formulas. For example,

although SAT solvers based on the DPLL and CDCL algorithms both produce proofs

in Resolution, the DPLL algorithm is only capable of generating tree-like Resolution

proofs. Tree-like Resolution is weaker than general (DAG-like) Resolution, and this is

reflected in the (typically) faster speed of CDCL-based solvers.

Proof complexity research generally ignores any implementation details and the

question of how an algorithm constructs a proof. This is a significant limitation. Upper

bounds on complexity measures for proofs can be understood as indicating what might

be achieved in principle by a given reasoning method. Generally, however, upper bounds

are less useful than lower bounds for understanding algorithms because the ability of

an algorithm to find a proof depends on heuristics, which are not modelled by proof

systems. For the same reason, it is hard for proof complexity to offer any insights

into the effectiveness of SAT-solving algorithms on satisfiable instances. In principle,

any satisfiable instance can be solved in linear time if the heuristics happen to try a

satisfying assignment first (although no heuristic could achieve this for all true formulas

unless P = NP). As a result, propositional proof complexity focuses almost exclusively

on unsatisfiable formulas.

Proving lower bounds in any system is difficult. In 1985 Haken proved a super-

polynomoial lower bound on the size of Resolution refutations of the Pigeonhole Prin-

ciple (Haken, 1985). Other lower bounds followed in the late 1980s (Chvátal & Sze-

merédi, 1988; Urquhart, 1987) using similar methods and Haken’s result was also later

improved to an exponential lower bound (Pitassi et al., 1993). Some general techniques

have now been developed for proving lower bounds on proof size for Resolution and

other propositional proof systems.

Some propositional proof systems, including Resolution (Pudlák, 1997), have a prop-

erty called feasible interpolation which gives a technique for proving proof size lower

bounds from lower bounds in circuit complexity. Pudlák & Impagliazzo (2000) intro-

duced a description of Resolution proofs which allows optimal strategies in a two-player

3

game to be turned into Resolution proof size lower bounds. A connection between the

‘width’ of a proof and its overall size was shown in Ben-Sasson & Wigderson (2001).

This allows lower bounds on proof size to be inferred from lower bounds on proof width,

which can be easier to reason about in some instances. This paper began a program

of research on the interplay between proof size, width and space (Beame et al., 2012;

Ben-Sasson & Nordström, 2011; Beyersdorff & Kullmann, 2014; Bonet & Galesi, 2001)

in Resolution proofs. Despite these techniques and significant efforts towards finding

lower bounds there remain strong propositional proof systems for which no exponential

lower bounds on proof size are known.

The applications for QBF solvers are similar to those for SAT solvers and include

verification (Benedetti & Mangassarian, 2008), model checking (Zhang, 2014), and

planning (Egly et al., 2014). Due to the additional expressiveness given by quantifi-

cation, QBF can encode some problems more succinctly than propositional logic. The

success of modern SAT solvers has encouraged the development of solving algorithms

for extensions of SAT, including QBF. This in turn motivates the definition and study

of QBF proof systems, which model the reasoning used by such algorithms. Since SAT

is a sub-problem of QBF (a QBF in which all variables are existentially quantified is

a SAT instance) every QBF proof system implicitly defines a propositional proof sys-

tem. QBF solvers also take inspiration from SAT solvers and therefore many of them

produce proofs in systems that extend Resolution.

Some QBF solvers, such as QUBE++ (Giunchiglia et al., 2004), GhostQ (Klieber

et al., 2010) and DepQBF (Lonsing & Biere, 2010), are based on extensions of the

DPLL and CDCL algorithms for SAT. Others, such as CAQE (Rabe & Tentrup, 2015),

decompose the QBF into propositional formulas which can be handed to a SAT solver.

RAReQS (Janota et al., 2012) also uses a SAT solver as an oracle to guide a procedure

that incrementally eliminates variables from a QBF.

Creating a QBF proof system from a propositional proof system such as Resolu-

tion requires the addition of rules for reasoning about universally quantified variables.

Although all QBF proof systems based on Resolution coincide in the case when all

variables are existentially quantified they do not all have the same strength in gen-

eral. Several QBF proof systems that extend propositional Resolution for QBFs are

introduced in Chapter 3.

One theme in proof complexity research for QBFs is comparing the strengths of

these closely related systems and finding formulas which have polynomial-size proofs

in one such system and require exponential-size proofs in another.

Some methods for proving lower bounds in propositions Resolution may be lifted

to QBF proof systems. Beyersdorff et al. (2017b) modified the game technique used in

propositional proof complexity and developed a game to be played on a QBF between

a ‘Prover’ and a ‘Delayer’. A false QBF is chosen. The Prover tries to refute the QBF

4

1.1 Structure and Contributions

and so end the game, the Delayer scores points by delaying this. The logarithm of the

score gives the size of a proof in tree-like Q-Res. Similarly, feasible interpolation can be

extended to the QBF setting (Beyersdorff et al., 2017a), allowing for proof size lower

bounds to be derived from circuit complexity lower bounds. In some QBF systems,

lower bounds can be proved by showing that a large number of assignments to the

universally quantified variables need to be considered.

Another important method for proving lower bounds in QBF proof systems is called

strategy extraction (Balabanov & Jiang, 2012; Beyersdorff et al., 2015). A QBF can

be conceptualised as a game between two players, one who controls the existentially

quantified variables and another who controls the universally quantified variables. The

universal player wins the game if the assignments cause the formula to evaluate to false.

The decision about how to make assignments is called a strategy, a winning strategy

for the universal player is one that ensures this player wins every game played on this

QBF. Many QBF proof systems have the property that such a winning strategy can

be efficiently extracted from a proof. In some cases the extracted strategy also has a

restricted form. We may construct a family of QBFs so that the winning strategies

cannot be decided in polynomial time, or cannot be efficiently expressed in the form

required by a certain proof system. It then follows that the proof system cannot have

polynomial-sized proofs for that family of QBFs. Strategy extraction also allows proof

size lower bounds to be derived from circuit complexity lower bounds.

1.1 Structure and Contributions

We begin in Chapters 2 and 3 with some preliminaries, introducing concepts and nota-

tion that will be used throughout this thesis. Chapter 2 defines propositional logic and

quantified Boolean logic, the SAT and QBF problems, and describes solving algorithms

for both. Chapter 3 gives rigorous definitions of a proof system and how proof systems

are compared. We introduce Resolution and several QBF proof systems, we also briefly

review the relationship between proof systems and solving algorithms.

Chapters 4 and 5 are mainly concerned with the QBF proof systems ∀Exp + Res and

Q-Res. These model two different solving paradigms and the systems are known to

be incomparable in general (Beyersdorff et al., 2015; Janota & Marques-Silva, 2015),

meaning that there are QBFs that are provably hard to refute in one system but easy

to refute in the other. We consider two restricted but natural situations in which

∀Exp + Res is strictly stronger than Q-Res. This occurs when the proofs are required to

have a tree-like structure, or when the input QBFs have bounded quantifier complexity

(this will be defined in Chapter 4). The method we use can also be extended to

another proof system, QU-Res. In general, QU-Res is strictly stronger than Q-Res and

incomparable with ∀Exp + Res. The main results of these chapters can be summarised

5

1.1 Structure and Contributions

as follows:

Theorem 1.1.1. ∀Exp+Res p-simulates Q-Res on QBFs with bounded quantifier com-

plexity.

Theorem 1.1.2. Q-Res p-simulates QU-Res on QBFs with bounded quantifier com-

plexity.

Theorem 1.1.3. Tree-like Q-Res p-simulates tree-like QU-Res.

Theorem 1.1.4. Tree-like Q-Res cannot p-simulate tree-like ∀Exp+Res.

Although these three systems are identical to propositional Resolution when re-

stricted to inputs with only existentially quantified variables, it was previously thought

that they demonstrate very different strengths. Showing that the situation in which

QU-Res is stronger than Q-Res, or Q-Res is stronger than ∀Exp + Res, is so tightly de-

fined challenges this view. The results demonstrate the weakness of universal reduction

and universal resolution as ways to reason about universally quantified variables.

Chapters 6 and 7 are concerned with a proof system that is very different from those

explored so far in the thesis. QRAT is a QBF proof system that does not correspond

with any particular solving algorithm but instead is able to model the reasoning of

all current QBF solvers and pre-processing techniques. We study whether QRAT ad-

mits polynomial-time strategy extraction. We find that a version of QRAT which uses

the universal reduction rule from Q-Res (though the system as a whole remains signifi-

cantly stronger than Q-Res) does admit strategy extraction. However, when QRAT uses

a stronger rule for reasoning about universally quantified variables it does not admit

strategy extraction (unless P = PSPACE). We observe that the weaker universal reduc-

tion rule is not able to simulate the universal expansion rule from ∀Exp + Res, whereas

the stronger rule can, and demonstrate a connection between strategy extraction and

universal expansion. In Chapter 7 we consider an extension of QRAT known as QRAT+

and show that the two systems have the same strength. The main results of these

chapters are summarised as follows:

Theorem 1.1.5. QRAT(UR) has polynomial-time strategy extraction on false QBFs.

Theorem 1.1.6. QRAT does not have polynomial-time strategy extraction on false

QBFs unless P = PSPACE.

Theorem 1.1.7. Given any refutational propositional proof system f, if the refutational

QBF proof system f +∀Exp has polynomial-time strategy extraction then f must have

feasible interpolation.

Theorem 1.1.8. QRAT is p-equivalent to QRAT+ on false QBFs.

6

1.1 Structure and Contributions

Finally, Chapters 8 and 9 examine two results of propositional proof complexity

and whether these can be lifted to the QBF situation. In both cases fully lifting the

results to Q-Res is not possible. Chapter 8 considers the famous result of Ben-Sasson &

Wigderson (2001) which relates the maximum width of a clause in a Resolution proof to

the size of the proof. This result is known to fail in Q-Res. We show that the argument

can be partially applied to level-ordered Q-Res, yielding a slightly different result.

Theorem 1.1.9. If the minimum size of a tree-like refutation of QBF Ψ in level-

ordered Q-Res is S, then the minimum width of a tree-like Q-Res refutation is bounded

above by dlog(S) + w(Ψ)e, where w(Ψ) is the maximum width of a clause in Ψ.

In Chapter 9 we study an interesting result from Riis (2001). This states that

under a natural translation from first-order formulas to propositional logic, the size of

Resolution proofs depends on whether the first-order formulas have any models. We

give a translation from first-order formulas to QBF and show that the result applies in

∀Exp + Res, but provide a counter-example for Q-Res. For φ a first-order formula and

Φn a QBF representing the (false) statement that there is a model for φ of size n, we

have:

Theorem 1.1.10. If φ has an infinite model but no finite model, then any tree-like

∀Exp+Res or Q-Res refutations of the QBFs {Φn}n∈N have size 2Ω(n).

Theorem 1.1.11. If φ has no models then the QBFs {Φn}n∈N have tree-like refutations

in ∀Exp+Res of size nO(1).

Theorem 1.1.12. There is a first-order formula φ with no models but for which tree-

like Q-Res refutations of the QBFs {Φn}n∈N have size 2Ω(n).

Some of the work in this thesis has appeared in previous publications. Chapters 4

and 5 contain results from Beyersdorff et al. (2019). Chapters 6 and 7 contain results

from Chew & Clymo (2019) and Chew & Clymo (2020). Chapter 8 contains work

from Beyersdorff & Clymo (2018). The simulation of QU-Res by Q-Res for QBFs

with bounded quantifier complexity (Chapter 4) has now been independently proved

by Beyersdorff et al. (2020).

7

Chapter 2

Logic and Complexity

This chapter introduces propositional logic and quantified Boolean logic and their as-

sociated decision problems, explaining their importance as NP-complete and PSPACE-

complete problems respectively. This is followed by an overview of algorithms used to

solve these problems.

2.1 Computational Complexity

Formal Languages Let Σ be a set of symbols. A word w over Σ is a tuple (w1, . . . , wn)

with wi ∈ Σ. The length of a word is the number of symbols it contains and we denote

the set of all finite length words over Σ by Σ∗. A language L over Σ is a subset of Σ∗.

Every language has an associated decision problem: is a given word a member of the

language?

Turing Machines A Turing machine is an abstract model of computation. It consists

of a strip of tape divided into cells on which input, output and any intermediate values

are written, a pointer that moves along the tape and can read or update the contents

of any cell, and a set of states including at least one state to indicate that computation

has been completed. A transition function δ determines, given the current state and

a tape symbol, what the machine should do next. If the transition function allows for

multiple possibilities for this next step then the machine is non-deterministic, otherwise

it is deterministic.

Time and Space Complexity The time and space requirements of a computation

are expressed relative to the size of its input. If the possible inputs for the computation

are specified by a formal language then the input will be a word in this language, so

the size of the input is the length of the word. More generally, the size of an input to

a computation is the number of symbols used to represent it.

8

2.2 Propositional Logic

The time to complete a computation on a given input is the number of steps which

are carried out before the computation terminates. If this is bounded above by a

polynomial function of the size of the input then we say this is a polynomial time com-

putation. A computation is generally considered to be ‘feasible’, ‘efficient’, ‘tractable’

if and only if it can be carried out in polynomial time or less. The space needed to

complete a computation is the amount of tape required during the computation, again

expressed as a function of the size of the input.

Decision problems can be classified according how much time or space a Turing

machine requires to solve them. The class of all decision problems that can be solved

in polynomial time in the size of the input by a deterministic Turing machine is denoted

P. The class of all decision problems that can be solved in polynomial time in the size of

the input by a non-deterministic Turing machine is NP. The class of decision problems

that can be solved using at most polynomially many cells on the tape of a deterministic

Turing machine is PSPACE. For a complexity class C the complexity class coC is the

class of all decision problems whose complement (the same problem with the ‘yes’ and

‘no’ answers switched) is in C. A decision problem D is C-hard every decision problem

in C can be converted into an instance of D in polynomial time. The conversion

procedure is called a reduction. If a decision problem is both C-hard and in C then

it is C-complete. In practice, we do not usually consider Turing machines explicitly

but rather algorithms consisting of basic operations which are known to be efficiently

computable on a Turing machine.

2.2 Propositional Logic

A logic may be considered syntactically, in terms of proofs and a proof system, or

semantically, through the concepts of truth and satisfiability. We begin here with a

semantic approach in which a logic consists of

• a set F of well-formed formulas,

• a class V of possible valuations,

• a satisfiability relation |= over V and F.

For a valuation v ∈ V and formula f ∈ F, if v |= f we say v satisfies f , or v is a

model of f .

Formulas of Propositional Logic The Boolean constants 1 and 0 stand for true

and false respectively. Both 1 and 0 are formulas in propositional logic. We also have a

set of propositional variables, {xi | i ∈ N} (though in practice we may use other letters

9

2.2 Propositional Logic

to stand for propositional variables). Every propositional variable is a propositional

formula.

Further formulas are defined inductively using the connectives ¬, ∧, ∨ to stand for

negation, conjunction and disjunction respectively. Let Φ1 and Φ2 be propositional

formulas, then the following are also propositional formulas:

• ¬Φ1,

• (Φ1 ∧ Φ2),

• (Φ1 ∨ Φ2).

We will focus mainly on formulas using the connectives ∧, ∨ and ¬. Other common

connectives can be defined in terms of these, for example (Φ1 → Φ2) is equivalent to

(¬Φ1 ∨ Φ2) and (Φ1 ↔ Φ2) is equivalent to ((Φ1 → Φ2) ∧ (Φ2 → Φ1)).

For a propositional formula Φ, let vars(Φ) denote the variables that appear in Φ.

A literal is a propositional variable or a negation of a propositional variable.

The size of a formula |Φ| is the number of symbols it contains.

Valuations Let Φ be a propositional formula and x ∈ vars(Φ). Then Φ[f/x] de-

notes the formula that results from substituting every occurrence of x in Φ by the

propositional formula f . In particular, f may be a Boolean constant.

A Boolean assignment to a set X of propositional variables is a mapping from X to

the Boolean constants, α : X → {1, 0}. Φ[α] indicates that we apply the substitution

α(x)/x in Φ for every variable x ∈ X ∩ vars(Φ).

A propositional formula is evaluated by inductively applying the following defini-

tions to sub-formulas:

¬x =

1 if x = 0

0 if x = 1

(x ∧ y) =

1 if x = 1 and y = 1

0 if x = 0 or y = 0

(x ∨ y) =

1 if x = 1 or y = 1

0 if x = 0 and y = 0

If all variables in Φ are substituted with Boolean constants then repeated application

of these definitions will result in the whole formula evaluating to 1 or 0. It may be that

Φ[α] evaluates to 1 or 0 even if some of vars(Φ) are not assigned a value in α.

Two propositional formulas are equivalent if they are defined over the same set

of variables and evaluate to the same truth value under every assignment to those

variables. In particular, the definition of ¬ means that ¬¬Φ is equivalent to Φ, so

10

2.2 Propositional Logic

we will assume that propositional formulas do not contain any double negation. Also,

∧ and ∨ are both associative so we can drop some parenthesis from propositional

formulas without changing the meaning, for example writing (x1 ∨ · · · ∨ xn) instead of

((. . . (x1 ∨x2)∨ · · · ∨xn−1)∨xn). Now we can consider ∧ and ∨ to be arity k operators

for any k ≥ 0. In the case that k = 0 the empty conjunction evaluates to 1 and the

empty disjunction to 0.

If α is not a complete assignment to vars(Φ) then sub-formulas in Φ[α] that do

not evaluate to 1 or 0 can be simplified by applying the following rules, where a is a

propositional formula:

• Replace (a ∨ 0) or (0 ∨ a) by a,

• Replace (a ∧ 1) or (1 ∧ a) by a,

• Replace ¬¬a by a.

If we make substitutions according to α in Φ and simplify the result we say Φ is

restricted by α, denoted Φ|α. If the result of restricting by α is a Boolean constant b

we can write α(Φ) = b and say that Φ evaluates to b under assignment α. It is often

convenient to denote an assignment α by the set of literals which evaluate to 1 under α.

An extension of α : X → {1, 0} to a set of variables Y with X ⊆ Y is an assignment

α′ : Y → {1, 0} such that for every x ∈ X, α′(x) = α(x). Let α and τ be two

assignments. Then σ = α ◦ τ is an assignment such that σ(x) = α(x) if α(x) is defined,

and otherwise σ(x) = τ(x) (if this is defined). We say α has been extended by τ .

Satisfiability An assignment α is a model of Φ, written α |= Φ, if α(Φ) = 1. Al-

ternatively we can say that α satisfies Φ. If α is an assignment to a set of variables

X ⊆ vars(Φ) and α satisfies Φ then also every extension of α to vars(Φ) satisfies Φ.

A formula Φ is satisfiable if there exists a Boolean assignment α on (any subset of)

vars(Φ) such that α satisfies Φ. A formula is a tautology if every Boolean assignment

to vars(Φ) satisfies Φ.

Conjunctive Normal Form Let l be a literal and x a variable. If l = x or l = ¬x
the we write var(l) = x. If l = x then l̄ = ¬x and if l = ¬x then l̄ = x. A clause is a

disjunction of literals. A cube is a conjunction of literals.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses.

Similarly a formula in disjunctive normal form (DNF) is a disjunction of cubes. The

values of Φ ? Φ and Φ are equal for ? ∈ {∨,∧}. Together with the commutativity of

∧ and ∨ this allows us to consider a clause as a set of literals and a CNF as a set of

clauses, which is sometimes notationally convenient.

11

2.2 Propositional Logic

Every propositional formula is equivalent to (i.e. has the same models as) a formula

in CNF and to a formula in DNF. Further, every propositional formula can be converted

into a propositional formula in CNF in polynomial time and with at most polynomial

increase in size (Tseitin, 1968). The CNF may contain new variables which were not

in the original formula but it is satisfiable if and only if the original formula is.

Boolean Circuits A formula in propositional logic can be represented by a tree in

which each leaf is associated with a variable or constant and all other nodes with one of

¬, ∨ or ∧. This idea can be generalised to a directed acyclic graph, which allows sub-

formulas to be used as input for more than one subsequent node. Such a graph defines

a Boolean circuit. The size of a circuit is the number of nodes it contains, and its depth

is the maximum number of edges in a path from a leaf to the root. The leaf nodes are

the inputs to the circuit, non-leaf nodes are called gates, the root is the output. The

function represented by the output is the function that the circuit computes.

Circuit complexity studies which Boolean functions can be efficiently expressed as

Boolean circuits with a certain structure. For example, ACi contains functions that can

be represented by circuits with size nO(1) and depth O(logi(n)), where each node can

have an unbounded number of inputs. Thus AC0 contains all constant depth circuits

of polynomial size.

2.2.1 The Boolean Satisfiability Problem

The Boolean satisfiability problem (SAT) asks whether there exists any model for a

given propositional formula. It is the decision problem associated with the language of

satisfiable propositional formulas and belongs to the class NP. Given assignment α and

formula Φ it is straightforward to check in polynomial time in the size of Φ whether α

is a model of Φ by evaluating Φ[α] according to the definitions given above. However,

since the number of possible assignments to a formula may be exponential in the size of

the formula, it is not efficient to exhaustively check all assignments in order to decide

whether a formula is satisfiable.

As well as belonging to NP, SAT is the canonical NP-complete problem. Because

all other problems in NP can be be reduced to an instance of SAT, finding an algorithm

to efficiently solve SAT would show that all problems in NP can be solved efficiently. In

practice, also, it means that efforts put in to building SAT-solving algorithms pay off

in many different domains. Deciding whether a propositional formula is unsatisfiable

(UNSAT) is coNP-complete. It is conjectured that coNP 6= NP.

12

2.3 SAT-Solving Algorithms

2.3 SAT-Solving Algorithms

DPLL The Davis Putnam Logemann Loveland algorithm (DPLL) (Davis & Putnam,

1960; Davis et al., 1962) is a simple algorithm for deciding formulas in propositional

logic. The input formula Φ must be in CNF. Each clause can be represented as a set of

literals and the formula itself as a set of clauses. The algorithm performs a backtrack-

ing search through possible assignments to the variables, as shown in Algorithm 2.3.

The depth-first search begins by selecting a literal which is assigned 1 and the formula

Algorithm 1 DPLL Algorithm

function Assign(Φ, l)

return {C \ {l̄} | C ∈ Φ, l /∈ C}

function UnitPropagate(Φ)

while Φ contains unit clause {l} do

Φ← Assign(Φ, l)
return Φ

function PureLiteral(Φ)

while Φ contains pure literal l do

Φ← Assign(Φ, l)
return Φ

function DPLL(Φ)

Φ←UnitPropagate(Φ)

Φ←PureLiteral(Φ)

if Φ = {} then return 1

if {} ∈ Φ then return 0

Select some literal l in Φ

Φ← Assign(Φ, l)

if DPLL(Φ) = 1 then return 1

Φ← Assign(Φ, l̄)

if DPLL(Φ) = 1 then return 1

return 0

simplified accordingly. If the formula evaluates to true then we have identified a satis-

fying assignment. If the formula does not evaluate to either true or false then another

variable is selected and assigned a value. If the formula evaluates to false under the

current assignment then the algorithm backtracks to try an alternative value for one of

the previously assigned variables. The search creates a tree of possible assignments. If

all assignments are searched without finding a satisfying assignment then the formula

is unsatisfiable.

The search is augmented with two procedures which identify literals that can be

13

2.4 Quantified Boolean Logic

assigned without branching. These are called unit propagation and pure literal elimi-

nation. A unit clause is a clause containing a single literal. If a literal l appears in a

unit clause then unit propagation extends the current assignment with {l}. Literal l is

pure in Φ if l appears in Φ but l̄ does not. If l is pure in Φ then pure literal elimination

extends the current assignment with {l}.

CDCL Conflict driven clause learning (CDCL) was introduced by Marques Silva &

Sakallah (1996) and has been an important advancement in SAT-solving algorithms. It

uses the same principle as DPLL, first selecting a literal to assign and then using unit

propagation to make further implied assignments. While making these assignments,

CDCL maintains an implication graph which records for every literal assigned by unit

propagation which previous assignments were responsible for this (i.e. which other

literals were in the clause that has become unit). When unit propagation forces some

variable to be assigned both 0 and 1 this creates a conflict. A new clause is learnt

from the implication graph by taking the negation of the assignments that led to x and

¬x becoming unit. The new clause records that this combination of assignments must

never occur simultaneously in a satisfying assignment. The algorithm then backtracks

and the new clause is added to the formula. Unlike in DPLL, the backtracking is

non-chronological, so several decisions may be undone. The choice of which variable

assignment to switch is determined by which decisions caused the conflict.

By learning from failed assignments, CDCL is able to reduce the number of branches

which must be explored in the assignment tree. Since a large number of new clauses

may be generated in this way it is usually not possible to keep all of them due to

memory limitations, so solvers implementing this algorithm employ heuristics to score

learnt clauses, with only those judged most valuable being retained.

2.4 Quantified Boolean Logic

Formulas of Quantified Boolean Logic All propositional formulas are also quan-

tified Boolean formulas (QBF). In addition, the quantifiers ∀ and ∃ are available, and

whenever Ψ is a QBF so are ∀xΨ and ∃xΨ, for x a Boolean variable.

Valuations and Satisfiability ∀xΨ evaluates to true under the same assignments

as Ψ[0/x]∧Ψ[1/x], and ∃xΨ evaluates to true under the same assignments as Ψ[0/x]∨
Ψ[1/x]. A QBF can be transformed in to a propositional formula by repeatedly applying

these identities from the innermost sub-formulas until no quantifiers remain. A QBF

is satisfied by an assignment if the propositional formula generated by this method is

satisfied by the assignment. A QBF is true if the propositional formula generated in this

14

2.4 Quantified Boolean Logic

way is a tautology. If x does not appear in Ψ then ∀xΨ and ∃xΨ are both equivalent

to Ψ, so we can assume that only the variables that appear in Ψ are quantified over.

Bound and Free Variables For QBF QxΨ with Q ∈ {∀,∃}, we say that Q is a

quantifier binding x and Ψ is the scope of Qx. If Q = ∃ then x is existentially quantified,

if Q = ∀ then x is universally quantified. ∃Ψ is the set of all existentially quantified

variables in Ψ, ∀Ψ is the set of universally quantified variables in Ψ. It is convenient

also to say that a literal l is existentially (resp. universally) quantified if var(l) = x and

x is existentially (resp. universally) quantified.

If a variable x appears in QBF Ψ without being in the scope of any quantifier

binding x then we say this occurrence of x is free, or that x appears free in Ψ. A QBF

is closed if it has no free variables.

Prenex Conjunctive Normal Form In a prenex QBF all quantification is done

outside of the propositional connectives. As such, it consists of two parts and we write

Ψ = ΠΦ. Π is called the quantifier prefix, with Π = Q1x1Q2x2 . . .Qnxn with Qi ∈ {∀,∃}
and xi ∈ vars(Φ) for each i. Φ is called the matrix and is a propositional formula with

no quantifiers. If Φ is also a CNF then Ψ is in prenex conjunctive normal form (PCNF).

Given a PCNF ΠΦ, a sub-sequence Π′ of Π that is also in the form of a quantifier prefix

is called a sub-prefix of Π. In other words, Π′ consists of a subset of the variables that

appear in Π, all quantified as they are in Π and in the same order.

An arbitrary QBF can be transformed into a PCNF with at most polynomial in-

crease in the size of the formula by first moving the quantifiers to the beginning using

the identities that ¬∃Ψ = ∀¬Ψ and ¬∀Ψ = ∃¬Ψ, and then applying the Tseitin trans-

formation to the matrix. When moving the quantifiers to the beginning of the QBF

some variables may need to be renamed to avoid conflicts. A new variable that is in-

troduced by this transformation must be placed carefully in the prefix so that it does

not appear earlier than (to the left of) any of the variables used to define it. The new

variables are all existentially quantified. Example 2.4.1 demonstrates how the transfor-

mation works for a simple QBF. The formula generated by this transformation is true

if and only if the original formula is true.

Example 2.4.1. The QBF

∃x∀u(x ∨ u) ∧ ∀u∃x(x ∨ ∃y(u ∧ y))

is not in prenex conjunctive normal form. The variables must be renamed according to

the scope of the quantifiers. Variable x in (x∨u) is not the same variable as the x which

appears in (x ∨ ∃y(u ∧ y)) because they occur in the scope of two different quantifiers.

First we rename all variables to remove this ambiguity:

∃x1∀u1(x1 ∨ u1) ∧ ∀u2∃x2(x2 ∨ ∃y1(u2 ∧ y1)).

15

2.4 Quantified Boolean Logic

Now the quantifiers can all be moved to the front of the formula:

∃x1∀u1∀u2∃x2∃y1(x1 ∨ u1) ∧ (x2 ∨ (u2 ∧ y1)).

Finally a Tseitin variable t1 = (u2 ∧ y1) is introduced to transform the matrix to CNF,

any new variables must be existentially quantified and are added to the prefix after any

variables that appear in their definition. We can also modify the notation to indicate

the blocks of variables in the quantifier prefix:

∃x1∀u1, u2∃x2, y1, t1(x1 ∨ u1) ∧ (x2 ∨ t1) ∧ (t1 ∨ ¬u2 ∨ ¬y1) ∧ (¬t1 ∨ u2) ∧ (¬t1 ∨ y1).

The order in which variables are assigned in the quantifier prefix is important, and

in general changing the order changes the meaning of the QBF and whether it is true or

false. However, it is sound to switch the order of two variables that appear adjacent in

the quantifier prefix and with the same quantifier type. Because of this it is natural to

consider the quantifier prefix as consisting of blocks of adjacent variables that have the

same quantifier type. Then we write the prefix as Π = Q1X1 . . .QkXk where Qi ∈ {∀, ∃},
Qi 6= Qi+1, and Xi are disjoint sets of variables. For a variable x ∈ Xi we say x belongs

to level i of the prefix, and write lv(x) = i. If l is a literal and var(l) = x ∈ Xi then

we can also write lv(l) = i. We use the standard comparison operators (<, ≤ etc.) to

compare the levels of variables in a prefix. If it is not clear from the context then the

quantifier prefix being considered is added as a subscript, for example ≤Π.

2.4.1 Extending the Satisfiability Problem to QBF

For a QBF that has free variables we could choose to ask whether the formula is satis-

fiable (effectively considering the free variables as existentially quantified), or whether

the formula is true (treating the free variables as universally quantified). We will re-

strict our attention to closed QBFs, so every variable is explicitly quantified, and ask

whether the QBF is true or false.

The set of true QBFs is a language whose associated decision problem is PSPACE-

complete, i.e. all other decision problems in PSPACE can be reduced to deciding the

truth of some QBF. This decision problem also has SAT as a special instance since de-

ciding whether a propositional formula Φ is satisfiable is identical to deciding whether

∃x1∃x2 . . . ∃xnΦ is true, where x1 . . . xn are all the variables in Φ. Similarly, the lan-

guage of false QBFs defines a PSPACE-complete decision problem with UNSAT as a

special instance. More generally, for any constant k the problem of deciding the truth

of a PCNF with (at most) k blocks in the quantifier prefix is complete for the kth level

of the Polynomial Hierarchy. A PCNF whose first block of variables is existentially

(resp. universally) quantified and which has k quantifier blocks in total is in Σb
k (resp.

Πb
k), and deciding such a QBF is Σp

k-complete (resp. Πp
k-complete). The Polynomial

Hierarchy is the union of the complexity classes Σp
k and Πp

k for all k.

16

2.4 Quantified Boolean Logic

2.4.2 Game Semantics for QBF

A natural way of interpreting a QBF is as a game between one player who assigns

values to the universally quantified variables and another player who assigns values to

the existentially quantified variables. The two players take turns making assignments

to variables according to the order of variables in the quantifier prefix. Playing over

QBF Q1X1 . . .QnXn Φ in the ith round of the game the player responsible for the Qi

quantified variables assigns values to variables in Xi.

The universal player wins the game if Φ evaluates to false after all the assignments

have been made, the existential player wins if Φ evaluates to true. A QBF is false if

and only if the universal player is able to play in such a way that the formula is always

made to evaluate to false, regardless of the assignments made by the existential player.

Similarly, the QBF is true if and only if the existential player can ensure that they are

able to win every game regardless of the behaviour of the universal player. For a closed

QBF one or other of the players must be able to guarantee a win.

A strategy for the universal player on QBF ΠΦ is a set of Boolean functions (or

circuits), one for each universally quantified variable u. The function for u specifies

how u will be assigned during the game and must depend only on variables earlier than

(to the left of) u in Π, respecting the idea that when u is being decided the universal

player cannot know what choices will be made in future turns. Similarly, a strategy

for the existential player is a set containing a Boolean function for each existentially

quantified variable, with each function depending only on variables that appear earlier

in the quantifier prefix.

It is sufficient to consider functions whose input is restricted to variables with the

opposite quantifier type to the variable whose strategy is being computed. For universal

variable u in QBF ΠΦ a Herbrand function σu is a function from assignments to the

existential variables prior to u in Π to a Boolean value. If σ is a collection of Herbrand

functions σu for all universal variables u then σ is a strategy for ΠΦ and in general a

strategy for the universal player may be expressed as a collection of Herbrand functions.

Skolem functions are defined analogously for the existentially quantified variables, and

a set of Skolem functions is an existential strategy. If a strategy for one player ensures

that they always wins games on ΠΦ, however the other player makes assignments, then

it is called a winning strategy. A closed QBF is true if and only if there is a winning

strategy for the existential player, it is false if and only if there is a winning strategy

for the universal player.

Substituting the Skolem functions from a winning existential strategy into the orig-

inal QBF yields a tautology. Similarly, substituting Herbrand functions from a winning

universal strategy into the QBF results in an unsatisfiable propositional formula.

17

2.5 QBF-Solving Algorithms

2.5 QBF-Solving Algorithms

QDPLL and QCDCL Both the DPLL and CDCL algorithms can be extended to

act on QBF ΠΦ in prenex conjunctive normal form, the QDPLL algorithm is outlined

in Algorithm 2.

In both cases, the algorithm is modified to enable reasoning about universally quan-

tified variables as well as existentially quantified variables. When a decision literal l

is chosen to be assigned it must be the case that var(l) is in the outermost block of

the quantifier prefix of all the variables that are currently unassigned. Then, if l is

universally quantified, the algorithm returns true if both Φ|{l} and Φ|{l̄} are found to

be true in the recursive call. For l existentially quantified only one of the restricted

formulas must be true.

The definition of a unit clause is modified to any clause containing a single exis-

tentially quantified literal l and any number of universally quantified literals, provided

that lv(l) < lv(u) for all universally quantified u in the clause. Pure literal elimination

assigns a literal l to 1 if l is existentially quantified and pure in Φ, or assigns l to 0 if l

is universally quantified and pure in Φ. Clause learning can be applied as in the propo-

sitional case to improve the efficiency of the search and, symmetrically, the algorithm

also learns cubes (conjuncts of literals) to record assignments that cause the formula

to be satisfied.

The requirement that the decision variable must be in the outermost quantifier

block can sometimes be relaxed. The reason for this requirement can be understood

in terms of the two-player game model of a QBF: a player should not know what their

opponent will do in future turns when making a decision about how to play in this turn.

The strategy for a variable can only depend on earlier variables for the same reason.

However, the strategy for a variable need not depend on every variable that is earlier

in the prefix. If we can show that a variable does not depend on the assignments to any

earlier unassigned variables then it can be used as the next decision variable. The QBF

solver DepQBF (Lonsing & Biere, 2010) uses dependency schemes (Samer & Szeider,

2009; Slivovsky & Szeider, 2015), a method for calculating variable dependencies and,

as a result, can sometimes make sound assignments to variables that would not be

allowed by the basic QDPLL algorithm. The QBF solver QUTE uses a technique called

dependency learning (Peitl et al., 2019) to achieve a similar effect. This approach begins

by assuming that variables can be assigned in any order. A conflict is resolved according

to the QCDCL algorithm, but because the variables have been assigned out of order it

may not be possible to derive a new learned clause. In this case, the algorithm instead

learns about some variable dependency and so gradually restricts the order in which

variables can be assigned.

18

2.5 QBF-Solving Algorithms

Algorithm 2 QDPLL Algorithm

function Assign(Φ, l)

return {D | D = C \ {l̄}, C ∈ Φ, l /∈ C}

function UnitPropagate(ΠΦ)

. {l ∨ C} is unit if all u ∈ C are universally quantified and lv(u) >Π lv(l)

while Φ contains unit clause {l ∨ C} do

Φ← Assign(Φ, l)
return Φ

function PureLiteral(ΠΦ)

while Φ contains pure literal l do

if l is existentially quantified in Π then

Φ← Assign(Φ, l)

else if l is universally quantified in Π then

Φ← Assign(Φ, l̄)
return Φ

function QDPLL(ΠΦ)

Φ←UnitPropagate(ΠΦ)

Φ←PureLiteral(ΠΦ)

if Φ = {} then return 1

if {} ∈ Φ then return 0

Select some literal l in Φ with lv(l) ≤Π lv(x) for all x ∈ Φ

Φ1 ← Assign(Φ, l)

Φ0 ← Assign(Φ, l̄)

if l is existentially quantified then

return (QDPLL(ΠΦ1) = 1) ∨ (QDPLL(ΠΦ0) = 1)

else if l is universally quantified then

return (QDPLL(ΠΦ1) = 1) ∧ (QDPLL(ΠΦ0) = 1)

19

2.5 QBF-Solving Algorithms

Algorithm 3 CEGAR Algorithm

function Solve(QXΨ)

if Ψ is a propositional formula then

if Q = ∃ then return SAT(Ψ)

else return SAT(¬Ψ)

Σ← {}
while True do

if Q = ∃ then Θ←Prenex(
∧
τ∈Σ Ψ|τ)

else Θ←Prenex(
∨
τ∈Σ Ψ|τ)

α← Solve(QXΘ)

if α = NULL then return NULL

α← {l | l ∈ α ∧ var(l) ∈ X}
τ ←Solve(Ψ|α)

if τ = NULL then return α

Σ← Σ ∪ {τ}

CEGAR Solving An alternative approach to QBF solving is based on a paradigm

called Counter-Example Guided Abstraction Refinement (CEGAR). This recursive al-

gorithm attempts to find assignments to each block of the quantifier prefix in order,

it is described in Algorithm 3. The function Prenex(Ψ) converts Ψ into prenex form.

For QBF Ψ the algorithm suggests a candidate assignment α to the outermost block

then checks whether Ψ|α is true or false by a recursive call. The base case is han-

dled by a SAT solver that is able to return a satisfying assignment, if one exists. If

the current block of variables is existentially (resp. universally) quantified and Ψ|α
returns false (resp. true) with assignment τ to the next block of variables then τ is

a counter-example to α. The algorithm then seeks a new assignment to the current

block of variables which satisfies (resp. falsifies) Φ|τ . The process continues until some

assignment to the outermost block is found for which no counter-example can be gen-

erated, or the set of counter-examples means that no new candidate assignment to the

outermost block exists.

20

Chapter 3

Proof Systems

Definition 3.0.1. (Cook & Reckhow, 1979) Let Σ and Σ0 be alphabets and Γ a

language over Σ. A proof system for Γ is a polynomial-time computable function f

: Σ∗0 → Σ∗ such that the range of f is Γ.

The function that defines a proof system can be thought of as a proof checking

algorithm. If the input to the algorithm is a valid proof according to this proof system

then the output is the member of Γ which is proved, so π is an f-proof of γ ∈ Γ if and

only if f(π) = γ. The requirement that f must be computable in polynomial time is

required to ensure that it is feasible to check that a reputed proof is indeed valid.

Let rng(f) denote the range of function f. A proof system according to the definition

above is complete since Γ ⊆ rng(f), thus every member of Γ must have at least one

valid f-proof. We also require that only members of Γ can have valid proofs according

to the system f, which is guaranteed by Γ ⊇ rng(f).

Line Based Proof Systems We will define propositional and QBF proof systems

using more intuitive definitions that specify inference rules which may be used in a

proof. It is straightforward to define a proof checking algorithm from the set of permit-

ted rules and we will informally refer to the rules themselves as the proof system. In a

line-based proof system the proof π is a sequence of lines L1 . . . Lm. For every i ≤ m,

either Li is derived from L1 ∧ . . . ∧ Li−1 using an inference rule, or Li is introduced

using an axiom rule.

Such a proof can also be viewed as a directed acyclic graph (DAG) with a vertex for

each of L1, . . . , Lm and an edge from Li to Lj if and only if Li is used as a premise in

the rule that derives Lj . When thinking of a proof as a graph it is natural to refer to the

premises used in a derivation step as parents and the derived line as their child. There

is a path in π from Li to Lj if there exists a sub-sequence La1 , . . . , Lan with Li = La1
and Lj = Lan such that there is an edge in π from Lai to Lai+1 for all i = 1, . . . n− 1.

21

3.1 Proof Systems for Propositional Tautologies

In some cases we will require the graph induced by a proof to be tree-like, and refer

to tree-like proof systems if this restriction is imposed. If there is no such requirement

then the proof or proof system may be called DAG-like.

According to the formal definition of a proof system, the size of a proof π is the

number of symbols required to write it, however in line based proof systems it is more

convenient to consider the number of lines to be the size of a proof: for π = L1, . . . , Lm,

|π| = m. The implicit assumption is that the number of lines in a proof is always

asymptotically greater than the length of individual lines.

3.1 Proof Systems for Propositional Tautologies

A proof system is implicationally complete if any semantic implication of a set of

statements Θ can be derived by rules in that system. A proof system is refutationally

complete if it is able to derive 0 or an immediate contradiction (typically the empty

clause, denoted ⊥) from an inconsistent set of statements, that is a set of statements

whose conjunction is not satisfiable. In practice, refutational completeness is sufficient

to show that an implication holds because in propositional logic if Θ∧¬C is inconsistent

then Θ implies C. We write Θ `f C to indicate that proof system f is able to derive C

from Θ. The subscript is omitted when the proof system under consideration is clear

from the context.

Proving that a formula belongs to the language of propositional tautologies is equiv-

alent to showing that the negation of that formula is unsatisfiable and therefore we

focus on refutational proof systems. In this context, we will use the words ‘proof’ and

‘refutation’ interchangeably.

Given a satisfiable propositional formula Φ there is an assignment α to the variables

of Φ such that α(Φ) = 1. The assignment is a witness that the formula is satisfiable,

and it is possible to confirm in polynomial time (in the size of Φ) that it does in fact

satisfy Φ, though it may not be possible to find the witness in polynomial time. Given

an unsatisfiable propositional formula we would like to find a proof, which will act as

a witness of unsatisfiability.

The Resolution Proof System for Propositional Logic A famous and well-

studied proof system for propositional logic is Resolution (Res) (Davis & Putnam, 1960;

Robinson, 1965). Resolution is refutationally complete, so that from any unsatisfiable

CNF formula there is a Resolution derivation of the empty clause.

Resolution is a line-based system with one axiom rule and one inference rule. Every

line Li is either a clause from the formula being refuted, or is derived by the resolution

rule from two other lines Lj , Lk ∈ π where j, k < i.

22

3.1 Proof Systems for Propositional Tautologies

Axioms x1 → (x2 → x1) (¬(¬x1))→ x1

(x1 → (x2 → x3))→ ((x1 → x2)→ (x1 → x3))

Modus Ponens x1 (x1 → x2)
x2

Figure 3.1: An example set of rules for a Frege Proof System.

The Resolution proof system uses only the resolution rule and an axiom rule. The

axiom rule allows any clause from the formula being refuted to be introduced into the

proof. The resolution rule allows the following inference, where x is called the pivot

and (C ∨D) the resolvent.

C ∨ x D ∨ ¬x
C ∨D

Frege Systems A powerful class of propositional proof systems are known as Frege

systems. The exact rules can vary without affecting the power of the system (Cook

& Reckhow, 1979; Reckhow, 1976), provided that they are sound and implicationally

complete, so it is common to take Modus Ponens (see Figure 3.1) as the only inference

rule. Frege systems are line based proof systems so a Frege proof of Φ is a sequence of

lines L1, . . . , Lm such that Lm = Φ and every line is a propositional formula which was

added according to an axiom rule or inference rule. For example, the axiom rule

x1 → (x2 → x1)

allows the line (Φ1 → (Φ2 → Φ1)) for any propositional formulas Φ1 and Φ2. Modus

Ponens allows inferences of the following form

x1 (x1 → x2)
x2

so that if we already have lines in the proof Li = Φ1 and Lj = (Φ1 → Φ2), where Φ1

and Φ2 are propositional formulas, then we can add the line Φ2 to the proof. In order

to make derivations from a set of assumptions A we also allow that any member of A

can be added as a line in the proof, and we have a refutational proof system by deriving

⊥ from a set of assumptions.

Extension Variables Both Resolution and Frege proof systems can be made more

powerful by allowing extension variables, that is the introduction of new variables not

yet present in the proof. Specifically, in Extended Frege it is permitted to introduce a

23

3.2 QBF Proof Systems

line (v ↔ p1) for v a new variable not in the proof or in p1, and p1 a propositional

formula. In Extended Res we can introduce a new variable v defined by v ↔ ¬(x1∧x2),

which adds three new clauses, (¬v ∨ ¬x1 ∨ ¬x2), (v ∨ x1), (v ∨ x2). In both cases, the

extension variables allow the system to work with abbreviations of formulas.

Circuit Frege Extended Frege can be thought of as a Frege system in which lines are

Boolean circuits rather than formulas. This idea can be extended by defining the set

of proof systems C-Frege, which are Frege systems in which each line is a member of

the circuit class C.

3.2 QBF Proof Systems

A propositional proof system such as Resolution is sound on QBFs but not complete. To

extend a propositional proof system so that it is a complete system for QBFs additional

rules are introduced for reasoning about the universally quantified variables. Two ways

of doing this are universal reduction (∀-Red) and universal expansion. We begin by

introducing Q-Res, which lifts propositional Resolution to the QBF setting by the

addition of universal reduction, and then describing some extensions and restrictions of

it. Next, the proof systems ∀Exp + Res and IR-calc will be introduced. ∀Exp + Res uses

universal expansion to reason about universally quantified variables, IR-calc generalises

∀Exp + Res and Q-Res. These proof systems are all refutational systems and assume

that the QBF to be refuted is in prenex conjunctive normal form.

Q-Resolution and Universal Reduction The universal reduction rule was first

introduced for the proof system Q-Res (Kleine Büning et al., 1995) and is based on

the observation that if a clause C in QBF Ψ = ΠΦ contains a universal literal u with

lv(u) > lv(x) for all existential literals x ∈ C then u can be removed from C without

changing the truth value of the formula.

Although Buning et al. stated the inference rules so that universal reduction was

incorporated into the resolution rule, more commonly they are stated separately as in

Figure 3.2. The systems given by the two definitions are equivalent (formally, they are

p-equivalent. See Section 3.3).

In propositional Resolution it is permitted, though unhelpful, to introduce tautol-

ogous clauses either as an axiom or as the result of a resolution step. In Q-Res the

introduction of tautologies is explicitly forbidden, either by the Axiom rule or by the

resolution rule. This is because tautologous clauses could make the proof system un-

sound, as demonstrated in Figure 3.3 where the empty clause is derived from a true

QBF.

24

3.2 QBF Proof Systems

Axiom

C ∈ Ψ is not a tautology. C

Resolution

(C ∨D) is not a tautology, x ∈ ∃Ψ. C ∨ x D ∨ ¬x
C ∨D

∀-Reduction

u ∈ ∀Ψ. For all x ∈ ∃Ψ ∩ C, lv(x) <Π lv(u). C ∨ u
C

Figure 3.2: Rules in the Q-Res Proof System acting on QBF Ψ = ΠΦ.

x ∨ u ¬x ∨ ¬u
u ∨ ¬u
u
⊥

Figure 3.3: An unsound refutation of ∀u∃x(x ∨ u) ∧ (¬x ∨ ¬u) due to the introduction

of a tautology.

The universal reduction rule is most easily understood via the game semantics of

QBF. Suppose that u is quantified at level i in the prefix. During round i the universal

player must decide how to assign u. In clause (C ∨ u) every existential variable has

been assigned before round i, as well as universal variables at earlier levels. In order

to win the game, the universal player only needs to ensure that one clause is falsified.

If at round i the clause (C ∨ u) is not already satisfied then the universal player can

certainly make it evaluate to false by assigning the remaining literals (which are all

universal) to be false. Therefore, if the formula ΠΦ∧ (C ∨ u) is to be made to evaluate

to true then the clause (C ∨ u) must be satisfied before round i, regardless of the value

which is eventually assigned to u, which is to say that C must be made to evaluate to

true.

It is worth noting here that the meaning of universal reduction is within the context

of a whole QBF, not just the single clause. The rule cannot be correctly stated without

reference to the quantifier prefix. Additionally, if we considered a QBF with just a

single (non-tautologous) clause including universally quantified literal u, Π(C ∨ u), it

would always be valid to infer ΠC regardless of where u appears in Π. This is because

ū does not appear in the formula so it cannot be beneficial to the universal player to

ever play so that u is made true. This reasoning is called pure literal elimination and

is used in QBF solvers as a pre-processing and in-processing step. However, it is not

sound in general to remove an arbitrary universal literal from any clause.

While a Q-Res proof is generally expressed as a sequence of clauses introduced as

an axiom or derived by one of the inference rules, it can alternatively be represented

as a sequence of QBFs, which justifies the understanding of universal reduction in the

25

3.2 QBF Proof Systems

context of a whole formula. The refutation L1 . . . Lm of ΠΦ in the usual formulation is

equivalent to Ψ1 . . .Ψm where Ψ1 = ΠΦ (or, strictly, ΠΦ with any tautologous clauses

removed) and Ψi = Ψi−1 ∪ Li. Then Ψi−1 |= Ψi (since the proof system is sound) and

⊥ ∈ Ψm, so clearly Ψm is false.

Universal reduction can alternatively be stated as allowing the substitution of 0 or 1

for universal literal u in a clause (C∨u) provided that lv(u) > lv(x) for all existentially

quantified x ∈ C. This definition can be further generalised to allow universal reduction

to be applied in expressions which are not clauses.

QU-Resolution The simplest extension of Q-Resolution is QU-Resolution (QU-Res),

introduced by Van Gelder (2012), which allows the pivot of a resolution step to be

universally quantified. The other rules are unchanged.

Long Distance Q-Resolution As shown in Figure 3.3, allowing a resolution step

to derive a clause that contains opposing universal literals is not sound in general.

However, it is sound to use the resolution rule with two clauses that contain opposing

universal literals u and ¬u provided that the pivot variable x occurs earlier in the prefix

than u.

Informally, the reason this is sound can be understood again in terms of the game

semantics of QBF. Suppose we have two clauses, (C ∨ u ∨ x) and (D ∨ ¬u ∨ ¬x) with

lv(x) < lv(u). Because it is impossible to satisfy both x and ¬x simultaneously, we

know that either (C ∨ u) or (D ∨ ¬u) must be satisfied. Equally, it is certain that one

of x or ¬x must be true. Since the universal player can make their assignment to u

after seeing how x is assigned, they could choose to assign u so that the literal made

true belongs to the same clause as the literal of x which was made true. Whether this

is the best thing for the universal player to do depends on the rest of the formula and

the rest of the game, but instead of forbidding the resolution step we can allow the

derivation of (C ∨D ∨ u∗), where u∗ stands in for the formula ((x ∨ u) ∧ (¬x ∨ ¬u)).

As the proof progresses, the function being represented by u∗ will change, but the

idea is that u could be chosen in a way that causes this hidden function to evaluate to

false. If during the proof we derive a clause (C ∨u∗) where lv(u) > lv(x) for all x ∈ ∃Ψ

then we know the formula Ψ is true only if either C is made true or the function hidden

in u∗ is made true. The rules of the proof system ensure that it is always possible

for the universal player to make u∗ false, and all of the other variables u∗ implicitly

depends on are assigned earlier in the game than u. Therefore if C does not evaluate to

true by the time u is being assigned then the universal player should assign u to make

u∗ evaluate to false.

The rules of Long Distance Q-Resolution (LD-Q-Res) are shown in Figure 3.4. Notice

that it is not possible to perform a resolution step on pivot x if the two clauses both

26

3.2 QBF Proof Systems

Axiom

C ∈ Ψ is not a tautology. C

Resolution

(C ∨D) is not a tautology, x ∈ ∃Ψ.

U = {u∗| var(u) ∈ vars(U1)}

C ∨ U1 ∨ x D ∨ U2 ∨ ¬x
C ∨D ∨ U

vars(U1) = vars(U2). If var(u) ∈ vars(U1) then u ∈ ∀Ψ and lv(x) <Π lv(u).

u ∈ U1 if and only if ū ∈ U2.

∀-Reduction

u ∈ ∀Ψ. For all x ∈ ∃Ψ ∩ C, lv(x) < lv(u). C ∨ u
C

C ∨ u∗
C

Figure 3.4: Rules in the LD-Q-Res Proof System acting on QBF Ψ = ΠΦ.

contain u∗ where lv(u) < lv(x). Without this restriction the system would be unsound,

for example it would be possible to refute the true QBF ∃x∀u∃y (x ∨ u ∨ y) ∧ (¬x ∨
¬u ∨ y) ∧ (¬x ∨ u ∨ ¬y) ∧ (x ∨ ¬u ∨ ¬y). LD-Q-Res was introduced in Zhang & Malik

(2002).

LQU+-Res further extends LD-Q-Res by allowing resolution pivots to be universal.

However, the pivot cannot be a merged literal u∗.

Adding Universal Reduction to Other Propositional Systems The universal

reduction rule (defined as substitution of a Boolean value to a universally quantified

literal) can be added to a line-based propositional proof system to create a QBF proof

system. For a propositional proof system f the corresponding QBF proof system is

denoted f +∀red. For example, Res +∀red is identical to QU-Res.

Universal Expansion with Resolution Instead of using universal reduction to

reason about universally quantified variables we can augment Resolution with universal

expansion. Recall that ∀uΨ is semantically equivalent to Ψ[0/u]∧Ψ[1/u]. This conjunct

can be returned to PCNF by renaming variables in each part and moving the quantifiers

to the front. Expansion of universal variables decreases the number of quantifiers and

keeps the formula in PCNF but at the cost of introducing more variables and increasing

the size of the formula. In fact, the size of the formula can grow exponentially in the

number of universally quantified variables.

Once all universal variables have been expanded the resulting propositional formula

can be refuted using Resolution. The full expansion may not be required in this refu-

tation. Therefore, the problem of exponential growth due to expanding the universal

variables may be partially mitigated by expanding the formula more carefully.

For a QBF Ψ = ∀X1∃X2 . . . ∃XnΦ where each Xi is a set of variables, expanding

the block X1 with assignments α1, . . . , αm (which need not be all possible assignments

27

3.2 QBF Proof Systems

to X1) gives a QBF

∃X2 . . . ∃Xn Φ|α1 ∧ · · · ∧ ∃X2 . . . ∃Xn Φ|αn

which is implied by Ψ. We could prenex this formula completely, but instead only the

copies of X2 are brought to the front:

∃Xα1
2 . . . Xαm

2 ∀X3 . . . ∃Xn Φ|α1 [Xα1
2 /X2] ∧ · · · ∧ ∀X3 . . . ∃Xn Φ|αm [Xαm

2 /X2].

Then the universal variables in each of the sub-QBFs can also be expanded in the

same way. Delaying the prenexing in this way means that each sub-QBF can have

different assignments used in the expansion of later blocks of universals, which reduces

the total size of the expanded formula. At the end of this expansion process we have

a propositional formula which is a sub-formula of the full expansion of Ψ. If there

is a Resolution refutation of this propositional formula then there is clearly also a

Resolution refutation of the fully expanded formula, which has the same truth value

as the original QBF. Therefore, we have a QBF proof system which consists of an

expansion stage followed by a resolution stage.

Let A be the number of distinct complete assignments to the universal variables

that were used to generate the partially expanded formula. Then the size of the par-

tially expanded formula is A × |Ψ|. A is bounded above by the size of the Resolution

refutation. Therefore, if the Resolution refutation is polynomial-sized in the size Ψ

then the whole proof, including the expansion phase, is polynomial-sized.

The rules of the proof system ∀Exp + Res (Janota & Marques-Silva, 2015) are shown

in Figure 3.5. The expansion phase is not shown explicitly but is reflected in the new

variables that are introduced. When an axiom is used in the refutation the existential

literals must be annotated with some universal assignment α that does not satisfy the

universal literals in that clause, and the universal literals are removed. This shows that

the clause was taken from the part of the expanded formula that corresponds to the

assignment α. An existential literal l is annotated with the part of α that relates to

variables earlier than l in the quantifier prefix of Ψ. The relevant part of the assignment

is denoted bαcl, so bαcl = {u | u ∈ α, lv(u) < lv(l)} for l an existential literal and α

a universal assignment. Variables with different annotations are different propositional

variables and cannot be resolved together.

IR-calc A strengthening of ∀Exp + Res, IR-calc (Beyersdorff et al., 2014) also uses uni-

versal annotations on the existentially quantified literals, but these can be added lazily

through the proof. When an axiom is introduced, the literals are annotated with the

partial universal assignment that exactly negates the universal literals in that clause.

Resolution steps are still limited to pivots with exactly matching annotations, and an-

notations can be extended by the instantiation rule. Given a clause of annotated literals

28

3.2 QBF Proof Systems

Axiom

C ∈ Φ. α a full assignment to variables in ∀Ψ.

α(C) 6= 1. bαcl = {u | u ∈ α, lv(u) <Π lv(l)}
{lbαcl |l ∈ ∃Ψ ∩ C}

Resolution
C ∨ xα D ∨ ¬xα

C ∨D

Figure 3.5: Rules in the ∀Exp + Res Proof System acting on QBF Ψ = ΠΦ.

C already in the proof (the annotations need not all be the same), the instantiation

rule allows to introduce {lα◦bτcl | lα ∈ C} for any (partial) universal assignment τ .

IRM-calc IR-calc can be further generalised by allowing annotations which are not

strictly assignments but allow universal variable u to take the special value ∗. This is

exactly analogous to the special literals u∗ in LD-Q-Res, and the special annotations

are introduced by merging literals with opposing annotations during a resolution step.

Adding Universal Expansion to Other Propositional Systems As with ∀-Red,

universal expansion can be added to a line-based propositional proof system to create

a QBF proof system. We start with a propositional proof system f and prenex QBF

Ψ = ΠΦ that we wish to refute. Let α be a full assignment to all universally quantified

variables and let l be an existentially quantified literal.

Definition 3.2.1. (Beyersdorff et al., 2016a) The refutational QBF proof system

f +∀Exp allows the introduction of axiom {lbαcl | l ∈ ∃Ψ ∩ C} for any C ∈ Φ such

that C does not evaluate to 1 under α. The inference rules are those of f, with any

variables with non-matching annotations treated as different variables by f.

An f +∀Exp refutation π of ΠΦ therefore consists of a propositional f proof of a

sub-conjunction of the full expansion. The part of the full expansion of Ψ used by π is

denoted subexpπ(Ψ).

Level Ordered QBF Proofs All of the QBF proof systems introduced so far may

additionally be required to produce level-ordered proofs. The idea applies whenever

derivation steps can be associated with a level of the quantifier prefix of the input QBF.

In the case of a resolution step, the associated level is the level of the pivot variable.

Definition 3.2.2. Let f be a QBF proof system based on resolution and π an f-

refutation of ΠΦ. Then π is level-ordered if and only if every resolution step in π obeys

the following rule: if the derivation derives C and has pivot x then lv(x) ≥Π lv(y) for

all y ∈ C.

29

3.3 Proof Complexity

Restricting a Proof In a line-based propositional or QBF proof system each line Li

is a propositional formula or QBF. Therefore we can extend the notion of restricting

a formula by an assignment and define the restriction of a proof. For a proof π =

L1 . . . Lm the restriction of π by an assignment α is denoted π|α and is equal to

L1|α . . . Lm|α.

3.3 Proof Complexity

Given a proof system f for language Γ and some γ ∈ Γ, Sf(γ) is the minimum size

of a valid f-proof of γ. Formally, Sf(γ) = min{|π| | f(π) = γ}. A proof system f is

polynomially bounded if there exists a polynomial p(n) such that for any γ ∈ Γ it holds

that Sf(γ) ≤ p(|γ|).
The claim that there exists a polynomially bounded proof system that recognises

unsatisfiable propositional formulas is equivalent to the claim that coNP = NP. Thus,

proving that there is no such system would imply that P 6= NP. To show that some

proof system is not polynomially bounded we find an infinite sequence γi of members

of Γ such that there is no polynomial p(n) with Sf (γi) ≤ p(|γi|).
In addition to considering the sizes of proofs in one system we can compare the

strength of two proof systems for the same language.

Definition 3.3.1. For two proof systems f and g, f simulates g if there exists a polyno-

mial p(n) such that for every γ ∈ Γ and every g-proof πg of γ there is an f-proof πf of

γ such that |πf | ≤ p(|πg|). If, in addition, πf can be constructed from πg in polynomial

time, then f p-simulates g. If f p-simulates g and g p-simulates f then the two systems

are said to be p-equivalent.

Alternatively, we may show a separation between two systems by constructing a

sequence γi of members of Γ and a sequence of f-proofs πif of γi for which there is no

polynomial p(n) with Sg(γi) ≤ p(|πif |). If we have separating examples to show that f

is not simulated by g and g is also not simulated by f then we say the two systems are

incomparable.

Several simulation and separation results are known between the QBF proof systems

described above. Some of these results are summarised in Figure 3.6. Solid lines

indicate that the upper system p-simulates the lower system. Dotted lines indicate

that the systems are incomparable.

3.3.1 Strategy Extraction

Recall that if a closed QBF is false then there is a winning strategy for the universally

quantified variables. The strategy is a Boolean function for each universally quantified

30

3.3 Proof Complexity

IRM-calc

IR-calc

∀Exp + Res

LQU+-Res

QU-ResLD-Q-Res

Q-Res

Tree-like Q-Res Level-ordered Q-Res

Figure 3.6: Known p-simulations between QBF proof systems based on Resolution.

variable u that takes as input the assignments made to variables earlier than u in the

prefix and outputs a Boolean value. Together the functions represents the universal

response to each existential assignment which ensures that the formula evaluates to

false.

In order to show that a QBF is false it is sufficient to provide a proof in a sound

proof system. However, it may also be desirable to find the winning universal strategy

explicitly. A proof system f is said to admit strategy extraction if it is possible to

construct a winning universal strategy σ for Ψ from an f-proof π of Ψ in polynomial

time in the size of π.

For some proof systems it is possible to show not only that a strategy can be

extracted but that they can always be expressed as circuits from some class C of poly-

nomial size in |π|. In particular, given a proof in the system C-Frege +∀red it is possible

to extract universal strategies in C (Beyersdorff et al., 2016a). Q-Res and QU-Res admit

strategy extraction and the strategies can be expressed as circuits in AC0 (Balabanov

& Jiang, 2012; Beyersdorff et al., 2015).

If a proof system has strategy extraction this also provides a method for creating

lower bounds for that system. Given a proof system from which it is possible to extract

circuits in C we construct a QBF such that a universal variable has a unique winning

strategy that cannot be expressed by polynomial-size circuits in C. Then this formula

cannot have polynomial-size proofs in the given proof system.

3.3.2 Using Proof Systems to Understand Algorithms

From the trace of a SAT solver implementing the DPLL algorithm it is possible to

construct in polynomial time a tree-like Resolution refutation which corresponds to

the tree of assignments made during the search (Beek, 2006). In this sense, tree-

like Resolution can be said to p-simulate the DPLL algorithm. Similarly, the trace

of a solver implementing the CDCL algorithm for an unsatisfiable formula can be

used to efficiently generate a (not necessarily tree-like) Resolution refutation (Beame

et al., 2004). Further, it has been shown that CDCL-based SAT solvers can p-simulate

Resolution under some assumptions (Pipatsrisawat & Darwiche, 2011). For example,

31

3.3 Proof Complexity

the solver is required to restart often and must retain learnt clauses correctly.

For QBFs the situation is not so simple. Solvers based on QDPLL can generate

tree-like Q-Res proofs (Giunchiglia et al., 2006), but QCDCL does not correspond to

Q-Res as neatly as CDCL does to propositional Resolution. Two issues arise: firstly,

variable assignment decisions must be made according to the order of the quantifier

prefix. In the worst case this could mean that the generated proofs are level-ordered,

which is a significant limitation on Q-Res. Janota (2016) showed that QCDCL-based

solvers cannot p-simulate even tree-like Q-Res as a result of this restriction. In the other

direction, the unit propagation procedure does allow some assignments to be made ‘out

of order’ compared to the quantifier prefix. Clauses are considered unit which contain

universally quantified literals at a higher level than the single existentially quantified

literal in the clause. As a result, the proof which is produced from analysing a conflict

clause may contain tautologous clauses due to resolution steps corresponding to unit

propagation having opposing universal literals in the two parent clauses. This is not

permitted in Q-Res but is possible in LD-Q-Res. The trace of a QCDCL solver can be

expressed as an LD-Q-Res proof but QCDCL solvers are clearly much weaker than full

LD-Q-Res. As such, we can say QCDCL is “related to” Q-Res, but the exact relation-

ship between the algorithm and proof systems is not clearly understood. To further

complicate matters, it is common to use pre-processing tools, such as Bloqqer (Biere

et al., 2011) and HQSpre (Wimmer et al., 2017), which include a wide range of rea-

soning techniques that cannot all be easily expressed in a Q-Res or even LD-Q-Res

proof. The proof system ∀Exp + Res was introduced to model the solver RAReQS (Jan-

ota & Marques-Silva, 2015) which is based on an algorithm similar to that shown in

Algorithm 3 after it was observed that traces from this algorithm could not easily be

converted to Q-Res proofs.

32

Chapter 4

QBFs with Bounded Quantifier

Complexity

The proof systems ∀Exp + Res, Q-Res, QU-Res and LD-Q-Res model different ways to lift

propositional Resolution to QBF. They all act on QBFs in prenex conjunctive normal

form (PCNF) and, when used to refute formulas containing only existentially quantified

variables, all four systems are equivalent to propositional Resolution. However they

employ different techniques for reasoning about universally quantified variables.

An ∀Exp + Res proof is a propositional Resolution proof acting on (a part of) the

formula that is obtained when the universally quantified variables have been eliminated

through universal expansion. Universally quantified variables appear in the proof only

as labels for the new existentially quantified variables that are introduced in the ex-

pansion phase.

The other proof systems considered in this chapter act on clauses from the origi-

nal QBF containing both existentially and universally quantified literals. Resolution

is augmented with rules for reasoning about universally quantified variables that can

be applied throughout the proof. Most importantly, all of Q-Res, QU-Res and LD-Q-

Res use universal reduction to remove universally quantified variables from a clause.

QU-Res generalises Q-Res by allowing resolution steps on universally as well as existen-

tially quantified variables. LD-Q-Res introduces the concept of long-distance resolution

steps, in which the clauses being resolved may contain conflicting universally quantified

literals. The precise rules of each of these systems are given in Section 3.2.

The proof systems Q-Res and ∀Exp + Res are known to be incomparable. There

are families of QBFs that have polynomial-size refutations in one system, but require

exponential-size refutations in the other (Beyersdorff et al., 2015; Janota & Marques-

Silva, 2015). As such we would not expect QCDCL-based solver to consistently outper-

form those based on quantifier expansion, or vice versa, but would instead anticipate

33

.

¬ei ∨ c2i D2i ui ∨ c2i

¬ui ∨ c2i−1 D2i−1 ∨ ¬ei D2i−1 ∨ un ei ∨ c2i−1

D2(i−1) ∨ ¬ei ∨ ¬ui D2(i−1) ∨ en ∨ ui

D2(i−1) ∨ ¬ei D2(i−1) ∨ ei

D2(i−1)

.

Figure 4.1: A section of the Q-Res refutation for Theorem 4.0.1.

that solvers implementing the two paradigms should show complementary strengths.

QU-Res and LD-Q-Res are strictly stronger than Q-Res. Both systems p-simulate Q-Res

and there are families of QBF with polynomial-size proofs in either QU-Res or LD-Q-Res

but which require exponential-size proofs in Q-Res. The two systems are incomparable

to each other and to ∀Exp + Res. We begin by recalling the QBFs that separate Q-Res

from ∀Exp + Res.

Theorem 4.0.1. (Janota & Marques-Silva, 2015) There exists a family of QBFs with

polynomial-size Q-Res refutations but requiring exponential-size refutations in ∀Exp+Res.

Proof Sketch. Consider the following QBF.

Ψn = ∃e1∀u1∃c1c2 . . . ∃ei∀ui∃c2i−1c2i . . . ∃en∀un∃c2n−1c2n

D2n ∧
n∧
i=1

(ei ∨ c2i−1) ∧ (¬ei ∨ c2i) ∧ (¬ui ∨ c2i−1) ∧ (ui ∨ c2i)

where Di = (¬c1 ∨ . . . ∨ ¬ci).
The size of Ψn is linear in n. There are n existentially quantified variables ei, n

universally quantified variables ui, and 2n existentially quantified variables ci. To see

why Ψn is false, consider each pair of variables ei and ui. The winning strategy for the

universal player is to assign ui = ei (note that for each i, ei appears before ui in the

quantifier prefix). When ei = 1 it is necessary to make c2i = 1 in order to satisfy the

clause (¬ei∨c2i). According to the strategy, ui = 1 also, and so we require c2i−1 = 1 to

satisfy the clause (¬ui∨ c2i−1). Similarly, when ei = 0 it is necessary to make c2i−1 = 1

to satisfy the clause (ei ∨ c2i−1). According to the strategy, ui = 0 and so we require

c2i = 1 in order to satisfy the clause (ui∨ c2i). Playing according to this strategy forces

all c2i = 1 and c2i−1 = 1 for all i. Clearly this creates a contradiction with the clause

D2n, which states that at least one of the variables c1, . . . , c2n must equal 0.

34

A part of the Q-Res refutation of Ψn is shown in Figure 4.1. This demonstrates

how D2(i−1) is derived from D2i in a constant number of proof steps. We begin with

the long clauses D2n and derive D2(i−1) for each i = n, . . . , 1. D0 is the empty clause,

which has been derived in linearly many steps in n.

Any refutation in ∀Exp + Res must have exponential size in n because there are

exponentially many possible assignments to the universally quantified variables and all

of these assignments are relevant and must appear somewhere in the proof.

First consider the expansion on u1. Ψn is equivalent to ∃e1Φu1 ∧ Φ¬u1 , where

Φu1 =∃c1c2∃e2∀u2∃c3c4 . . . ∃en∀un∃c2n−1c2n

D2n ∧ (e1 ∨ c1) ∧ (¬e1 ∨ c2) ∧ (c1)
n∧
i=2

(ei ∨ c2i−1) ∧ (¬ei ∨ c2i) ∧ (¬ui ∨ c2i−1) ∧ (ui ∨ c2i)

Φ¬u1 =∃c1c2∃e2∀u2∃c3c4 . . . ∃en∀un∃c2n−1c2n

D2n ∧ (e1 ∨ c1) ∧ (¬e1 ∨ c2) ∧ (c2)
n∧
i=2

(ei ∨ c2i−1) ∧ (¬ei ∨ c2i) ∧ (¬ui ∨ c2i−1) ∧ (ui ∨ c2i)

Since Φu1 is satisfiable when e1 = 0, and Φ¬u1 is satisfiable when e1 = 1, we know

that both parts of the conjunction are necessary to find a contradiction. Φu1 is unsat-

isfiable when e1 = 1 since both c1 = 1 and c2 = 1 are forced by unit clauses. After

renaming of variables, Φu1 [1/c1, 1/c2] is equivalent to the formula Ψn−1. It therefore

follows that both assignments to u2 are necessary to refute it, using an identical argu-

ment. The same reasoning applies to Φ¬u1 , which must be unsatisfiable when e1 = 0

but requires both assignments to u2 in order to prove this.

Continuing to expand Ψn in this way we see that all assignments to the universal

variables must be considered in any ∀Exp + Res refutation of Ψn.

The QBFs used to separate ∀Exp + Res from Q-Res express a contradiction about a

circuit for calculating the parity of n input bits. They are discussed in Section 4.3.1

and Chapter 5.

Despite knowing that ∀Exp + Res and Q-Res are incomparable in general, we can still

discover restricted situations in which one system simulates the other. The restriction

may be on the type of QBFs considered or on the proof systems themselves. For

example, Janota and Marques-Silva also showed that ∀Exp + Res p-simulates tree-like

Q-Res, and (general, DAG-like) Q-Res p-simulates level-ordered ∀Exp + Res. It does

not hold that ∀Exp + Res can p-simulate level-ordered Q-Res, since the Q-Res refutation

35

4.1 Simulating Q-Resolution by Expansion and Resolution

of formulas Ψn in Theorem 4.0.1 is level-ordered. We show in Chapter 5 that Q-Res

cannot p-simulate tree-like ∀Exp + Res.

In this chapter we consider families of QBFs of bounded quantifier complexity, which

express exactly all problems from the Polynomial Hierarchy and so cover a wide range

of application scenarios. In this case, we show that the relationship between these proof

systems is significantly simplified: Q-Res and QU-Res are p-equivalent, and they are

p-simulated by ∀Exp + Res. The proof is constructive, building an ∀Exp + Res refutation

from a Q-Res or QU-Res refutation. The construction increases in complexity as the

number of blocks in the quantifier prefix increases, finally reaching an exponential

separation for QBFs with an unbounded number of quantifier blocks (as expected).

We also discuss how this result may offer a partial explanation for the observation that

“the performance of solvers based on different solving paradigms substantially varies on

classes of PCNFs defined by their numbers of alternations” (Lonsing & Egly, 2018a).

Our construction provides an alternative proof that tree-like Q-Res is p-simulated by

(tree-like) ∀Exp + Res and newly demonstrates that tree-like Q-Res and tree-like QU-

Res are p-equivalent. LD-Q-Res remains incomparable to ∀Exp + Res for QBFs with

bounded quantifier complexity, which we demonstrate with a separating example.

4.1 Simulating Q-Resolution by Expansion and

Resolution

In this section we consider only ∀Exp + Res and Q-Res. Section 4.2 broadens the simu-

lation to QU-Res.

Recall that a PCNF consists of a quantifier prefix and a quantifier free formula in

CNF. When two variables appear next to each other in the quantifier prefix and have

the same quantifier type then their relative order does not affect whether the QBF

is true or false. Therefore it is convenient to think of the quantifier prefix as sets or

blocks of variables which appear consecutively and are quantified in the same way. We

are interested in PCNFs for which the number of these blocks is bounded above by a

constant, although the number of variables may not be.

Definition 4.1.1 (Bounded Quantifier Complexity). A family of PCNFs has bounded

quantifier complexity if there exists some constant k such that every member has at

most k blocks in its quantifier prefix.

We begin by considering a naive approach to constructing an ∀Exp + Res refutation

from a Q-Res refutation. We will show that, in general, this may lead to an exponential

increase in the size of the refutation. We then go on to show how the blow-up can be

avoided by a more careful, but conceptually similar, method.

36

4.1 Simulating Q-Resolution by Expansion and Resolution

⊥

¬ww

¬w ∨ ¬uw ∨ u

¬w ∨ ¬y¬u ∨ y
w ∨ ¬y u ∨ y

x ∨ y

¬x ∨ ¬u¬x ∨ u

⊥

¬ww

¬ww

¬w ∨ ¬y1/uy1/u

w ∨ ¬y0/u y0/u

x1/u ∨ y1/ux0/u ∨ y0/u

¬x1/u¬x0/u

Figure 4.2: Duplicating clauses to create an expansion refutation of QBF with prefix

∃w∀u∃xy.

Suppose we have a Q-Res refutation π of an arbitrary PCNF Ψ. The natural way

to transform a clause in the Q-Res refutation into a clause in an ∀Exp + Res refutation

is similar to how axioms are instantiated in ∀Exp + Res. For a clause C in the Q-Res

refutation, define a complete assignment α to the universally quantified variables of

Ψ that does not satisfy C. All universal literals are removed from C since they are

falsified under α. Each existentially quantified literal x ∈ C is replaced by xbαcx (recall

that bαcx indicates the restriction of α to those variables that appear before x in the

quantifier prefix of Ψ). By applying this transformation to every clause in π we might

hope to produce a refutation in ∀Exp + Res.

The problem with this approach is that the resolution steps in the refutation which

results from this modification are not valid in ∀Exp + Res. The rules of ∀Exp + Res require

that in every resolution step the pivot literals have exactly the same annotation. It may

be impossible to find suitable annotations for each clause in the given Q-Res refutation

that respect this restriction. This can be demonstrated with a simple example.

Consider the Q-Res refutation shown in Figure 4.2. The clause (x ∨ y) is resolved

once with a clause containing universal literal u, and separately with another clause

containing ¬u. It is not possible to define a single annotation for x in (x ∨ y) so that

both of these steps are valid in ∀Exp + Res. The clause (¬x ∨ u) must become (¬x0/u)

because the annotation to x must falsify the universal literal u in the clause. Similarly,

(¬x ∨ ¬u) must become (¬x1/u). In order to annotate (x ∨ y) with both 0/u and 1/u

we could duplicate the clause, as shown in the right-hand part of Figure 4.2. After this

clauses has been duplicated it is straightforward to create a valid ∀Exp + Res refutation

from the Q-Res refutation.

If (x ∨ y) had occurred part way through a Q-Res proof then its entire derivation

would need to be copied, not only the clause itself, once with 0/u in the annotation,

and again with 1/u. Every time a clause in the proof is used in multiple resolution steps

37

4.1 Simulating Q-Resolution by Expansion and Resolution

that require conflicting annotations, a similar duplication of the sub-proof deriving that

clause would be necessary. Since this may apply to many clauses in the refutation, the

overall effect could be an exponential increase in the proof size. For example, applying

this procedure to the formulas Ψn from Theorem 4.0.1 does result in a valid ∀Exp + Res

proof but with an exponential increase in size.

Notice that the duplication of clauses is only necessary in proofs that re-use clauses

in separate resolution steps, i.e. that have a DAG-like structure. This intuitively demon-

strates why we have a simulation in the tree-like systems. More significantly, we will

now show that if attention is restricted to QBFs that have a constant number of quan-

tifier blocks, then we can construct an ∀Exp + Res refutation from a Q-Res refutation

without an exponential increase in size.

Recall that a Q-Res proof is a sequence of clauses, not necessarily unique, and

induces a directed acyclic graph (DAG) by the inference relationship. Our aim is to

construct from a Q-Res proof of Ψ a sequence of new Q-Res proofs of Ψ, the last of

which can be readily turned into a valid ∀Exp + Res proof of Ψ. We show how the size

of the final proof depends on the size of the initial proof and the number of blocks in

the quantifier prefix of Ψ.

4.1.1 Expanding a Q-Resolution proof

We start with some observations regarding Q-Res which allow us to make simplifying

assumptions about the structure of a Q-Res proof.

First, we assume that universal reduction is carried out as early as possible in any

refutation in Q-Res, since no proof step can be prevented by first removing trailing

universal literals from the parent clauses. For the same reason we assume that the

innermost block of variables in a PCNF is existentially quantified.

If a clause is used in a universal reduction step then it is not used in any resolution

step, since this would delay a possible universal reduction on that path. Therefore, all

possible universal reduction steps for a clause are carried out consecutively, without

branching.

Where a Q-Res refutation contains consecutive universal reduction steps these may

be re-ordered arbitrarily without affecting any other part of the proof.

Literals removed in consecutive universal reduction steps cannot be complementary,

since they must all appear together in the clause prior to the sequence of universal

reductions.

As a result, consecutive universal reduction steps can be treated as a single action.

For the remainder of this section let π = L1 . . . Lm be a Q-Res refutation of PCNF

Ψ = Q1X1 . . .QkXk Φ and let i be some index in {1, . . . , k} with Qi = ∀.

38

4.1 Simulating Q-Resolution by Expansion and Resolution

Definition 4.1.2. Universal reduction at level i is the derivation

C ∪ U
C

where all u ∈ U are universally quantified with i = minu∈U (lv(u)), for all x ∈ C,

lv(x) < i. If y ∈ C is universally quantified then there exists x ∈ C existentially

quantified and with lv(x) > lv(y).

Definition 4.1.3. Let C and P be two clauses in π. C is i-connected to P if there is

a path La1 . . . Lan in the DAG induced by π, with La1 = C and Lan = P , such that no

member of La1 . . . Lan is derived by universal reduction at any level j ≤ i.

Definition 4.1.4. The level i derivation of a clause P in π, denoted π(P, i), is the sub-

sequence of π ending at P and containing exactly those clauses which are i-connected

to P .

Intuitively, consider an arbitrary clause P in the refutation π and, starting from

this clause, walk towards the leaves according to the DAG induced by π. Every node

visited is an ancestor of P and all ancestors of P are visited, so this is the section

of π required to derive P . Next, we discard any node that is the result of universal

reduction at some level j ≤ i or that could only be reached in the walk via such a node.

What remains is the level i derivation of P . For the construction that follows we are

interested in the level i derivations of every clause that immediately precedes universal

reduction at some level j ≤ i.

Definition 4.1.5. Piπ is the set of clauses that are parents of a universal reduction step

at any level j ≤ i in π, together with ⊥ at the root of π.

Any two clauses that both appear in the same level i derivation will not contain

complementary universal literals u and ¬u for any u ∈ Xi. We will use the level i

derivation of universal reduction steps at level i to identify and then isolate sections

of the proof for which there is an assignment to Xi that does not satisfy any clause

in that section. This assignment is used as a partial annotation for these clauses and

the proof section converts to ∀Exp + Res easily. By applying the same method to each

universally quantified block of the quantifier prefix of Ψ we will construct a proof that

can be fully annotated in way that is consistent with the rules of ∀Exp + Res.

Definition 4.1.6 (Level i Expansion of π). We begin with a Q-Res refutation π and

apply the following construction.

Let P be a clause in Piπ. Find π(P, i), and copy this section of the proof. The

original clauses are not discarded until later. Each clause C ∈ π(P, i) generates a new

identical clause C ′. Suppose clause B is a parent of C in π. If B′ exists then B′ is a

parent of C ′, otherwise let B be a parent of C ′.

39

4.1 Simulating Q-Resolution by Expansion and Resolution

P has a unique child in π which will now be derived from P ′ instead of P .

Repeat this process for each member of Piπ. The clauses are ordered so that for each

C ∈ π, C is derived before any copies of C. In addition, if clause A is derived before C

in π then every copy of A is also derived before C (and all of its copies). This ensures

that the parent(s) of a proof step always appear before the clause they are used to derive.

Among copies of the same clause, assume an ordering based on the order in which the

universal reduction steps occur in π.

Clauses from the original refutation which no longer have any children (because

copies of that clause are used for every derivation it was involved in) are removed. The

result is the level i expansion of π, written ei(π).

We now make some simple observations about ei(π).

Lemma 4.1.7. The level i derivations of clauses in Piei(π) are disjoint.

Proof. The clauses copied for P ∈ Piπ are exactly the level i derivation of P ′ ∈ Piei(π).

Lemma 4.1.8. ei(π) is a Q-Res refutation of Ψ.

Proof. Every derivation is an exact copy of a derivation in π, and the imposed ordering

respects the order of derivations.

Lemma 4.1.9. ei(π) and π have the same number of universal reduction steps at all

(universal) levels j ≤ i.

Proof. A clause which is the result of a universal reduction step at level j ≤ i does

not belong to the level i derivation of any P ∈ Piei(π), by definition, so will never be

copied. The parent of the reduction step is copied exactly once and the original is

discarded.

Lemma 4.1.10. Every clause in ei(π) is either the result of universal reduction at

some level j ≤ i or belongs to the level i derivation of some P ∈ Piei(π).

Proof. Suppose for a contradiction that C is the last clause in ei(π) which does not

belong to the level i derivation of any P ∈ Piei(π) and is not derived by universal

reduction at any level j ≤ i.
Let D be a child of C. If D was derived by universal reduction at some level

j ≤ i then C is in Piei(π) and is therefore in its own level i expansion, contradicting

the assumption. Suppose D was derived by resolution or reduction at any level greater

than i. If D belongs to the level i derivation of some P ∈ Piei(π) then by definition so

does C, but if it does not then C was not the last such clause in the proof, so we have

a contradiction.

The final line of the proof is ⊥ which belongs to its own level i derivation.

40

4.1 Simulating Q-Resolution by Expansion and Resolution

Lemma 4.1.11. The parent and child of any proof step in ei(π) cannot belong to level

i derivations of different members of Piei(π). The two parents of a resolution step in

ei(π) cannot belong to level i derivations of different members of Piei(π).

Proof. For any P ∈ Piei(π), the clauses of the level i derivation of P were all copied for

the same clause from π. Therefore, other than P itself they cannot be used to derive

any clause that does not also belong to the level i derivation of P .

P derives a clause by universal reduction at level j ≤ i, therefore this clause cannot

be in any level i derivation.

If C is in the level i derivation of P for some P ∈ Piei(π) and its parent B is not,

then B is the result of a universal reduction step at some level j ≤ i and so cannot be

included in the level i derivation of any clause.

Lemma 4.1.12. The size of ei(π) is at most |π|2.

Proof. If there are s universal reduction steps at level j ≤ i then each clause in π may

be copied up to s+ 1 times. Therefore the size of the level i expansion of π is at most

|π| · (s+ 1). Clearly s < |π|.

Since the level i expansion of a Q-Res refutation is itself a Q-Res refutation, we can

apply the process iteratively for different values of i. We will expand the proof for each

universal level, starting from the innermost.

Although the level i expansion may square the size of the proof in the worst case,

when our proofs are tree-like each clause is copied at most once, and if a clause is copied

then the original is deleted, the proof does not grow at all. This holds for all levels so

the proof remains the same size and tree-like when expanded for every universal level

even without the assumption of bounded alternation.

Definition 4.1.13. The complete expansion of π is denoted E(π) and defined as

E(π) =

e1(e3 . . . (ek−1(π))) if Q1 = ∀,

e2(e4 . . . (ek−1(π))) if Q1 = ∃.

Intermediate stages are labelled πj (where Qj = ∀), so that

πj = ej(πj+2) = ej(ej+2 . . . (ek−1(π))).

The observations we made about the level i expansion of π lift easily to the full

expansion of π.

Lemma 4.1.14. E(π) is a Q-Res refutation of Ψ.

Proof. This follows from repeated application of Lemma 4.1.8.

41

4.1 Simulating Q-Resolution by Expansion and Resolution

Lemma 4.1.15. The number of universal reduction steps at level j ≤ i in πi+2 equals

the number of universal reduction steps at level j ≤ i in π.

Proof. This follows from repeated application of Lemma 4.1.9.

Lemma 4.1.16. |E(π)| ≤ |π|(1+k)/2.

Proof. The argument proceeds by a simple induction on the number of universal levels

that have been expanded, showing that for every level ` with Q` = ∀, the size of π` is

no greater than |π|(1+(k+1−`))/2.

Let s be the number of universal reduction steps in π. Then, following Lemma 4.1.12,

|πk−1| ≤ |π| · (s+ 1) ≤ |π|2 ≤ |π|1+(k+1−(k−1))/2.

Assume the hypothesis for k − 1, . . . , i+ 2. Since πi+2 has the same number of universal

reduction steps as π at all levels j ≤ i (Lemma 4.1.15), we have that

|πi| ≤ |πi+2| · (s+ 1) ≤ |π|1+(k+1−(i+2))/2 · |π| ≤ |π|1+(k+1−i)/2.

Since E(π) is either π1 (if Q1 = ∀) or π2 (if Q1 = ∃), we have that

|E(π)| ≤ max{|π|1+k/2, |π|1+(k−1)/2}.

In summary, E(π) is a Q-Res refutation whose size is polynomial in the size of π

whenever the refuted formula had bounded quantified complexity. In constructing E(π)

we have identified sections of the original refutation which do not contain any opposing

universally quantified literals. These sections are defined using the position of universal

reduction steps in π and may overlap in π. By copying sections of π we have created

a Q-Res refutation consisting of sub-derivations which contain no opposing universally

quantified literals and do not overlap. These derivations are connected together by the

universal reduction steps.

We will proceed to show that E(π) can be turned into an ∀Exp + Res refutation in

a very natural way.

4.1.2 Annotating the Expanded Proof

We introduce a system of labelling clauses in the proofs πi with partial assignments

to the universally quantified variables of Ψ. Eventually, every clause in E(π) will be

associated with a complete assignment to the universal variables.

Definition 4.1.17. For a clause P ∈ Piπi the assignment αPi sets variables in Xi that

are also in P so that P is not satisfied, and sets all other variables in Xi to 0.

42

4.1 Simulating Q-Resolution by Expansion and Resolution

Lemma 4.1.18. Let P ∈ Piπi. Then αPi does not satisfy any C ∈ πi(P, i).

Proof. C ∈ πi(P, i), so by construction there is a path between C and P that does not

include any clause derived by universal reduction at level j ≤ i. Therefore any level

i literal u ∈ C also appears in every clause along this path, including in P , so any

assignment to variables of Xi that does not satisfy P also will not satisfy C.

Immediately after generating πi from πi+2 add the following labels: For each P ∈
Piπi , label all clauses in πi(P, i) with αPi . Any clause in πi that is not in a level i

derivation of some P ∈ Piπi does not contain any literal at level i by Lemma 4.1.10,

so is not satisfied by any assignment to level i variables. Label these clauses with the

assignment setting all level i variables to 0.

In subsequent expansions, clauses are copied with their labels. This means that

all clauses in πi will be labelled with a complete assignment to all levels greater than

or equal to i, and that E(π) will have all clauses labelled with a complete assignment

to the universal variables in Ψ. No clause is labelled twice (Lemma 4.1.7). Finally

we show that these labels on the clauses of E(π) can become the annotations of an

∀Exp + Res refutation.

Lemma 4.1.19. In πi let clause B be a parent of clause C, and let ` ≥ i with Q` = ∀.
If both B and C contain any existentially quantified literal belonging to a level greater

than ` (not necessarily the same literal), then B and C are both labelled with the same

assignment for level `. Similarly, if C is derived by resolution and its two parents A

and B both contain any existentially quantified literal belonging to a level greater than

`, then A and B are labelled with the same assignment for level `.

Proof. For any universal level ` > i assume that the result holds for refutation πi+2 and

recall that every derivation in πi is an exact copy of a derivation in πi+2. Labels are

copied with clauses, so the result also holds for πi. For the base case where i = k − 1,

πi+2 does not exist but we begin instead with π. There is no universal level ` > k − 1.

For level i consider the labels given to the parent B and child C of a proof step

in πi.

• If either clause does not belong to some πi(P, i) then it is the result of universal

reduction at a level j ≤ i (Lemma 4.1.10) and so it does not contain any existential

literal with level greater than i.

• If both B and C are in πi(P, i) then they are both labelled with αPi .

• It is not possible for B and C to belong to level i derivations of different clauses

in Piπi (Lemma 4.1.11).

43

4.1 Simulating Q-Resolution by Expansion and Resolution

We reason identically about the two parents of a resolution step. The two clauses

cannot be in different level i derivations (Lemma 4.1.11), and if either is not in a

level i derivation then it contains no existential literals at any level greater than i

(Lemma 4.1.10).

4.1.3 The Simulation

We have seen that every clause in E(π) can be associated with a complete assignment

to the universally quantified variables. To create an ∀Exp + Res proof from E(π), we

label each clause with an assignment to the universally quantified variables, as above,

and use the clause labels to generate annotations for the existentially quantified literals.

By construction, the assignment given in a clause label does not satisfy that clause.

The universally quantified literals are removed from clause C and every existentially

quantified literal x ∈ C is given as its annotation the restriction of the clause label to

the level of x. Lemma 4.1.19 shows that the annotations are consistent between parent

and child, that the annotations of the pivot literals match, and that any existentially

quantified literal appearing in both parents of a resolution step will have the same

annotation. The main result now follows easily.

Theorem 4.1.20. Let Ψ be a QBF with k blocks in the quantifier prefix and π a Q-Res

refutation of Ψ. Then there is an ∀Exp+Res refutation of Ψ of size at most |π|1+k/2.

Proof. From π, generate the Q-Res refutation E(π) of Ψ and label the clauses of E(π)

as described in Section 4.1.2. The assignment given in a clause label does not satisfy

that clause. Remove all universally quantified literals from clauses of E(π) and replace

all existentially quantified literals with annotated literals. An existentially quantified

literal x in a clause C with label α is replaced by the annotated literal xbαcx . Universal

reduction steps are now meaningless and can be removed. Resolution steps remain,

acting on annotated literals with matching annotations (Lemma 4.1.19). The leaves

of E(π) were all copies of leaves in π, i.e. clauses from Ψ, so the leaves of the con-

structed ∀Exp + Res refutation are annotated versions of those same clauses from Ψ.

This gives a valid ∀Exp + Res refutation of Ψ constructed from the Q-Res refutation.

By Lemma 4.1.16, the new refutation has size at most |π|1+k/2.

The cost of transforming a DAG-like Q-Res refutation into an ∀Exp + Res refutation

by this construction depends on the quantifier complexity. We can now demonstrate

that ∀Exp + Res is strictly stronger than Q-Res for DAG-like proofs, when restricted to

QBFs of bounded quantifier complexity.

44

4.1 Simulating Q-Resolution by Expansion and Resolution

Theorem 4.1.21. For each k ≥ 3, ∀Exp+Res p-simulates Q-Res on Σb
k formulas, but

the reverse simulation does not hold, and there are Σb
3 formulas providing an exponential

separation.

Proof. The simulation is given by Theorem 4.1.20 and the exponential separation is

known from Beyersdorff et al. (2015) in which is a family of Σb
3 formulas (QParityn)

are shown to have polynomial size ∀Exp + Res refutations but require exponential size

Q-Res refutations.

From Theorem 4.1.20 it also follows that on QBFs with polylogarithmic quanti-

fier blocks, ∀Exp + Res simulates Q-Res with only a quasi-polynomial blow-up in proof

size. Thus the separating examples with polynomial-size Q-Res refutations but requir-

ing exponential-size refutations in ∀Exp + Res necessarily have super-polylogarithmic

quantifier complexity.

We also observe that for QBFs with only one or two quantifier levels Q-Res and

∀Exp + Res are p-equivalent. Since we always assume the innermost block to be existen-

tially quantified, and both systems are clearly equivalent to propositional Resolution

when restricted to propositional formulas, we only need to check the case of Πb
2 formu-

las.

Lemma 4.1.22. Q-Res and ∀Exp+Res are p-equivalent on Πb
2 formulas.

Proof. Consider a QBF of the form ∀U∃XΦ(U,X), where X and U are blocks of vari-

ables and Φ is a CNF. We first show that in an ∀Exp + Res refutation of ∀U∃XΦ(U,X),

every existentially quantified literal has the same annotation. This will be used to

transform it into a Q-Res refutation.

We proceed by induction on the derivation depth.

Induction Hypothesis: For every clause in an ∀Exp + Res refutation with depth

at most d in the DAG all the literals in that clause have the same annotation.

Base Case: In every axiom clause (depth 0), every literal is in block X and receives

the same annotation in the variables of Y .

Inductive Step: In order to perform a resolution step, the annotations need to

match exactly. This means, under our induction hypothesis, that all the literals in each

of the two parent clauses must have the same annotation. Since the literals which are

resolved must have the same annotation it follows that all the literals in the resolvent

also have the same annotation.

We therefore conclude that every clause has the same annotation on all its literals;

furthermore since child clauses inherit their parents’ annotations, all annotations are

the same across all the clauses in the proof.

We can now transform this directly into a Q-Res proof, keeping the resolution steps

the same, however our axioms now contain universal literals. The universal literals

45

4.1 Simulating Q-Resolution by Expansion and Resolution

will never create a tautology, because they are all falsified by the same assignment.

Universally quantified literals which do not actually appear in the axiom clauses can

be removed, this is easily propagated through the proof. After performing all of the

resolution steps we have a clause containing only universally quantified literals, which

are removed by universal reduction.

For the converse, we observe that all universal reduction steps must happen at

the end of a Q-Res refutation of ∀U∃XΦ(U,X). If any one literal can be removed by

universal reduction we must have a clause containing no existentially quantified literals

so we can derive ⊥. The clause P immediately preceding these universal reduction steps

is not a tautology, since Q-Res does not permit tautologies. We take an assignment to

U that falsifies P . This assignment does not satisfy any clause in the refutation so it

can be used throughout a similar ∀Exp + Res refutation.

4.1.4 Empirical Observations Relating Solver Performance and

Quantifier Complexity

We have shown that ∀Exp + Res strictly p-simulates Q-Res for all QBFs with bounded

quantifier complexity, and that the degree of the polynomial increases with the number

of quantifier blocks. There are formulas with bounded quantifier complexity for which

there exist ∀Exp + Res proofs which are exponentially smaller than the smallest Q-Res

proof. Although there may also be formulas with bounded quantifier complexity for

which have smaller Q-Res proofs than ∀Exp + Res proofs, the difference in size is limited

according to the p-simulation. We may therefore anticipate that solvers which produce

∀Exp + Res proofs could have an advantage (on average) over solvers which produce Q-

Res proofs, especially when the number of quantifier alternations is low and therefore

the degree of the polynomial is small. If so, we would also anticipate that this advantage

decreases as the number of quantifier alternations increases.

Lonsing & Egly (2018a) present an empirical study of the effect of quantifier com-

plexity on the performance of QBF solvers from QBFEVAL17 (Pulina & Seidl, 2017).

They sought to highlight the negative impact on solver development of biased bench-

mark sets, noting a tendency to over-represent problems with low quantifier complexity.

Their experiments showed that solvers based on QCDCL often perform most strongly,

in comparison to other solvers, on instances with many quantifier blocks. Conversely,

the solvers based on universal expansion were generally most effective on instances with

few quantifier blocks.

The relationship between proof complexity results and solver performance is not at

all straightforward. From a theoretical point of view, if a proof system f p-simulates

another system g then we say f is stronger than g. However, when assessing the

performance of solving algorithms, it is usually more relevant to directly compare the

46

4.2 Simulating QU-Resolution by Q-Resolution

amount of time required to decide a QBF. Further, proof complexity intentionally

ignores implementation details and the question of how easily an algorithm can find

a given proof. Despite these difficulties in relating theoretical and empirical results,

it is interesting to observe that in this case there is a correlation between the two.

QCDCL is the solving paradigm most closely related to Q-Res, and expansion solving

to ∀Exp + Res. As such, the observation that QCDCL solvers perform relatively well on

formulas with many quntifier alternations, and expansion solvers perform more strongly

on formulas with few quantifier alternations, aligns with the result given here.

4.2 Simulating QU-Resolution by Q-Resolution

In general, Q-Res cannot p-simulate QU-Res. The examples showing the separation

are from Kleine Büning et al. (1995). Polynomial-size QU-Res refutations were given

in Van Gelder (2012). We recall the formulas here and sketch the short QU-Res refu-

tations.

KBKFn = ∃x0, x1,0, x1,1∀u1∃x2,0, x2,1∀u2 . . . ∃xi,0, xi,1∀ui . . . ∃xn,0, xn,1∀un∃t1 . . . tn
(¬x0) ∧ (x0 ∨ ¬x1,0 ∨ ¬x1,1)

∧
n−1∧
i=1

(xi,0 ∨ ui ∨ ¬xi+1,0 ∨ ¬xi+1,1) ∧
n−1∧
i=1

(xi,1 ∨ ¬ui ∨ ¬xi+1,0 ∨ ¬xi+1,1)

∧ (xn,0 ∨ un ∨ ¬t1 ∨ · · · ∨ ¬tn) ∧ (xn,1 ∨ ¬un ∨ ¬t1 ∨ · · · ∨ ¬tn)

∧
n∧
i=1

(ui ∨ ti) ∧
n∧
i=1

(¬ui ∨ ti).

The formulas have a total of 2n+1 existentially quantified x variables, n universally

quantified u variables and n existentially quantifier t variables. To see that the KBKF

formulas are indeed false, consider the universal strategy which sets ui = 1 when either

xi,0 = 0 or xi,1 = 0. To satisfy the clauses in the first line we require either x1,0 = 0

or x1,1 = 0. Now, when playing according to the suggested strategy, the second line

ensures that one of xi,0 = 0 or xi,1 = 0 for each i, which finally leads to the need to

make ti = 0 for some i. This in turn leads to the requirement that ui = 0 and ui = 1,

creating a contradiction.

Theorem 4.2.1. (Van Gelder, 2012) The formulas KBKFn have polynomial-size QU-

Res refutations.

Proof Sketch. For each i = 1, . . . , n derive (ti) from (¬ui ∨ ti) and (ui ∨ ti) by universal

resolution. After this, the formula can be refuted without further universal resolution

steps. In linearly many resolution steps we derive (xn,0∨un) and (xn,1∨¬un), universal

reduction then derives (xn,0) and (xn,1). A similar sequence of steps derives (xi,0) and

47

4.2 Simulating QU-Resolution by Q-Resolution

(xi,1) for decreasing values of i until finally we can derive (x0) which is resolved with

(¬x0) to complete the proof.

Kleine Büning et al. (1995) proved that KBKFn require exponential-size refutations

in a restricted version of Q-Res, the result was generalised in Beyersdorff et al. (2015)

to show that they require exponential-size refutations in unrestricted Q-Res and in

∀Exp + Res.

In KBKFn the number of blocks in the quantifier prefix is linear in the size of

the formula. We show that this is necessary by demonstrating that the construction

from Section 4.1 can be modified to act on a QU-Res refutation. This shows that

∀Exp + Res p-simulates QU-Res for QBFs with bounded quantifier complexity. This

modified construction transforms the QU-Res refutation into a Q-Res refutation which

can then be easily annotated so it also shows that Q-Res p-simulates QU-Res for QBFs

with bounded quantifier complexity. Since QU-Res trivially p-simulates Q-Res we now

have that the two systems are p-equivalent in this case.

As before, there is no increase in the size of a tree-like refutation undergoing

the transformation so we also prove that tree-like QU-Res and tree-like Q-Res are

p-equivalent.

During the construction we will introduce some weakening proof steps. These al-

low extra literals to be added into a clause provided that doing so does not create a

tautology. Allowing weakening does not strengthen any of the proof systems we are

considering here. We will show that a refutation of a QBF in QU-Res with weakening

can be transformed into a refutation in Q-Res with weakening and then into a refutation

in ∀Exp + Res, and that there is at most a polynomial increase in the proof size when

the quantifier complexity of the QBF is bounded above by a constant.

Definition 4.2.2. Let f be a proof system in {∀Exp+Res, Q-Res, QU-Res}. Let W be

a set of literals. The system f with weakening allows a proof step of the form

C
C ∪W

and if f allows the derivation of clause C by any proof step then f with weakening allows

clause C ∪W to be derived by the same proof step with weakening. In all cases C ∪W
must not be a tautology.

It is simple to prove that for a proof system f ∈ {∀Exp + Res, Q-Res, QU-Res} a proof

in f with weakening can be converted into a proof in f (without weakening) with no

increase in proof size. Wherever weakening is used we instead make the same derivation

without weakening. This may cause subsequent proof steps to include weakening but

otherwise the proof is unchanged. Repeating this allows any weakening to be pushed

towards the root of the proof until none remains.

48

4.2 Simulating QU-Resolution by Q-Resolution

Let π = L1 . . . Lm be a refutation of PCNF Ψ = Q1X1 . . .QkXkΦ in QU-Res with

weakening and let i be an index with Qi = ∀.
First, Definitions 4.1.3, 4.1.4 and 4.1.6 are modified. Previously we sought sub-

derivations of π ending at clause P and which did not contain any universal reduction at

level i. We now also require that these sub-derivations contain no universal resolution

on a level i pivot, but instead of excluding the clauses derived by these universal

resolution steps entirely we enforce that the sub-derivation will contain exactly one

parent of the proof step. The intention is, as before, to define sections of the proof

which can be consistently annotated. Then we observe that if the sub-derivation ends

with a universal reduction that removes any level i literals we don’t need to remove

any of these universal literals by resolution in this part of the proof.

Definition 4.2.3. Let C and P be clauses in π. C is iα-connected to P if there is a

sub-sequence La1 . . . Lan of π such that

• La1 = C,

• Lan = P ,

• α is a complete assignment to the variables in Xi,

• α does not satisfy P ,

• For all ` ∈ {2 . . . n}

– La`−1
is a parent of La` in π,

– La` is not derived by universal reduction at any level j ≤ i,

– If La` is derived by universal resolution with pivot variable in Xi then α does

not satisfy La`−1
.

Because α is a complete assignment to Xi there is exactly one parent of any universal

resolution step with pivot in level i that is not satisfied by α.

Definition 4.2.4. Given a level i assignment α, π(P, iα) is the sub-sequence of π

ending at clause P and containing exactly those clauses iα-connected to P .

By construction, π(P, iα) contains no universal resolution steps with a pivot in Xi,

and no clauses in π(P, iα) are satisfied by α. A clause in π(P, iα) that is derived by

universal resolution in π has only one parent in π(P, iα). If we attempted to derive the

clause only from the parent in π(P, iα) this is not a valid QU-Res proof step but would

have the form

C1 ∨ u
C1 ∨ C2

49

4.2 Simulating QU-Resolution by Q-Resolution

where the addition of variables in C2 is allowed by weakening, but the removal of u from

the clause is not permitted in any QU-Res rule. The proof section π(P, iα) is defined so

that none of the clauses contain ū. When copying the proof sections, we ensure that

every clause copied from π(P, iα) does contain u. As a result, it is possible to remove

one parent from each universal resolution step with pivot in Xi, and use weakening

instead. The definition of ei(π) is updated to use iα-connection instead of i-connection.

Otherwise the idea is identical to that of Definition 4.1.6.

Definition 4.2.5 (Modified Level i Expansion of π). For every P ∈ Piπ define α so

that it does not satisfy P and all variables in Xi that do not appear in P are assigned

to 0.

If C ∈ π(P, iα) then define C ′ = C ∪ {l | l̄ ∈ α}.
Let B be a parent (in π) of C ∈ π(P, iα). Then B′ is a parent of C ′, if it exists. If

B′ does not exist and C was not derived by universal resolution on a pivot in Xi then

B is a parent of C ′.

The clauses of the new proof are ordered so that clause C appears before any of the

clauses generated from C. If clause A appears before C in π then A and every clause

generated by A must occur before C in the modified proof. Among copies of the same

clause assume an ordering based on the order in which the universal reduction steps

occurred in π.

The clause D derived from P is instead derived from P ′ (by universal reduction at

level i). P ′ may contain additional literals that were not in P but these are all from Xi

and are removed in the universal reduction step that derives D.

The result of this procedure applied to QU-Res proof π for universal level i is de-

noted e′i(π).

We need to show that the result of this construction is a valid QU-Res proof (with

weakening). Then it can be applied for each level of the prefix.

Lemma 4.2.6. e′i(π) does not contain any tautologies.

Proof. By definition the clauses in π(P, iα) are not satisfied by α, so adding in the level

i literals which evaluate to 0 under α cannot introduce tautologies. Newly generated

clauses only differ from clauses in the original proof by the addition of universally

quantified literals that are falsified by α.

We can also observe that these additional universal literals do not block any reso-

lution or universal reduction step so every proof step in e′i(π) is valid in QU-Res with

weakening.

50

4.2 Simulating QU-Resolution by Q-Resolution

Lemma 4.2.7. If π is a refutation in QU-Res with weakening then so is e′i(π).

Proof. Every derivation in e′i(π) is based on a derivation in π except for the case of a

newly created clause that was previously derived by universal resolution at level i. In

this case, the clause is now derived from a single parent, which was also generated for

the same clause P from Piπ. Therefore both clauses contain all the literals assigned 0

by α. The derivation

C1 ∪ {u} C2 ∪ {ū}
C1 ∪ C2

has been replaced by

C1 ∪ {l | l̄ ∈ α}
C1 ∪ C2 ∪ {l | l̄ ∈ α}

which is a pure weakening step.

For C ∈ π(P, iα), C ′ only differs from C in universal literals at level i that are

falsified by α. Any parent of C ′ cannot contain any of the literals satisfied by α

because either it belongs to π(P, iα) or it was derived by universal reduction at level

j ≤ i so cannot contain any literals from level i. Therefore the extra literals in C ′ do

not block the proof step used to derive it. The pivot variable is the same as the pivot

used in deriving C.

The ordering of clauses in e′i(π) respects the ordering of derivations. The result

follows from this together with Lemma 4.2.6.

Lemma 4.2.8. e′i(π) contains no universal resolution steps with pivot in Xi.

Proof. Every clause in e′i(π) is either derived by universal reduction at level j ≤ i or is

newly generated for a clause in π(P, iα) for some P ∈ Piπ (by a simple modification of

Lemma 4.1.10). For any such P , π(P, iα) contains no universal resolution steps with

pivot in Xi.

As before, observe that no new universal reduction steps at level j ≤ i are introduced

in constructing e′i(π). We expand π from the inner-most to outer-most universal levels

in Ψ.

Definition 4.2.9. The modified complete expansion of π is denoted E′(π) and is defined

as

E′(π) =

e′1(e′3 . . . (e
′
k−1(π))) if Q1 = ∀,

e′2(e′4 . . . (e
′
k−1(π))) if Q1 = ∃.

Intermediate stages are labelled π′j (where Qj = ∀), so that

π′j = e′j(π
′
j+2) = e′j(e

′
j+2 . . . (e

′
k−1(π))).

51

4.2 Simulating QU-Resolution by Q-Resolution

Lemma 4.2.10. E′(π) is a refutation of Ψ in Q-Res with weakening.

Proof. E′(π) is a QU-Res refutation by Lemma 4.2.7 but contains no universal resolution

at any level by repeated application of Lemma 4.2.8. All derivation steps in E′(π) are

based on derivations in π or are weakening steps deriving a clause that was previously

derived by universal resolution. Therefore it is a proof in Q-Res with weakening.

Lemma 4.2.11. |E′(π)| ≤ |π|1+k/2.

Proof. The proof is identical to Lemma 4.1.16.

The weakening can be removed from E′(π) without increase in proof size and we

can easily annotate the clauses to reach an ∀Exp + Res proof.

The annotation of clauses proceeds as before, in fact it is simpler because we added

universal literals into the clauses as part of the expansion stage. The only clauses that

do not contain a literal for every variable in Xi are those which are derived by universal

reduction at some level j ≤ i, so the universal literals in each clause are sufficient to

define the annotation which will be applied to every existentially quantified literal in

that clause. The equivalent of Lemma 4.1.18 is immediate from the construction of

e′i(π) and Lemma 4.2.6.

Theorem 4.2.12. Let Ψ be a QBF with k blocks in the quantifier prefix and π a QU-

Res refutation of Ψ. Then there is a Q-Res refutation and an ∀Exp+Res refutation of

Ψ, each of size at most |π|1+k/2.

Proof. From π, generate the Q-Res refutation E′(π) of Ψ as described above. This has

size at most |π|1+k/2.

To generate the ∀Exp + Res refutation from E′(π) observe that for every clause

C ∈ E′(π), if x ∈ C is existentially quantified, then C contains exactly one literal of

every universally quantified u with lv(u) ≤ lv(x). Each x ∈ C is annotated with the

assignment that does not satisfy the universal literals of C, and the universal literals

are then removed from C. It is straightforward to observe that the annotations must

obey the rules of ∀Exp + Res, and clearly this proof also has size at most |π|1+k/2.

Theorem 4.2.13. For every k, Q-Res and QU-Res are p-equivalent on Σb
k formulas.

For every k, ∀Exp+Res p-simulates QU-Res on Σb
k formulas but the reverse simulation

does not hold for k ≥ 3, and there are Σb
3 formulas providing an exponential separation.

Proof. The simulation follows from the construction given above, and the separation

between ∀Exp + Res and QU-Res is again given by the QParityn formulas. By definition

QU-Res can p-simulate Q-Res.

52

4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier
Complexity

Theorem 4.2.14. Tree-like ∀Exp+Res and tree-like Q-Res p-simulate tree-like QU-Res.

Proof. In the case of tree-like QU-Res no clause needs to be copied twice during the

construction of e′i(π) and so there is no increase in proof size at each quantifier level.

Therefore the restriction to formulas with bounded quantifier complexity is not re-

quired.

4.3 Long Distance Q-Resolution for QBFs with Bounded

Quantifier Complexity

4.3.1 QBFs Based on Parity

The QBFs QParityn were introduced in Beyersdorff et al. (2015). The formulas are

parameterised by a natural number n and express the claim that, given a set of Boolean

inputs {xi}ni=1, the parity of the number of 1s in {xi} is different from z for all choices

of z ∈ {0, 1}.
Figure 4.3 shows a parity circuit. Each ti calculates the exclusive or of ti−1 and xi,

(denoted ti−1⊕xi), which is true when exactly one of ti−1 and xi is true. Equivalently,

each ti calculates the parity of x1 . . . xi, so that tn ≡ Parity(x1, . . . , xn).

t0

0
t1

⊕

x1

t2

⊕

x2

ti−1

⊕

xi−1

ti

⊕

xi

ti+1

⊕

xi+1

tn

⊕

xn

Figure 4.3: An example of a parity circuit for input of size n.

The formulas are false due to the addition of a universally quantified variable z, and

the requirement that tn = ¬z. The matrix is falsified whenever z = Parity(x1, . . . , xn).

The QBFs are given as

QParityn = ∃x1 . . . ∃xn∀z∃t0 . . . ∃tn

(z ∨ tn) ∧ (¬z ∨ ¬tn) ∧ (¬t0) ∧
n∧
i=1

(ti = ti−1 ⊕ xi)

where each (ti ≡ ti−1 ⊕ xi) is expressed by the four clauses

(¬ti−1 ∨ xi ∨ ti), (ti−1 ∨ ¬xi ∨ ti), (ti−1 ∨ xi ∨ ¬ti), (¬ti−1 ∨ ¬xi ∨ ¬ti).

The QParityn formulas are known to require exponential-size refutations in Q-Res,

but have polynomial-size LD-Q-Res refutations. This provides a separation between Q-

Res and LD-Q-Res on formulas with only three quantifier blocks. Since LD-Q-Res is an

53

4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier
Complexity

extension of Q-Res it is immediate to see that LD-Q-Res p-simulates Q-Res, so LD-Q-Res

is strictly stronger than Q-Res, including on QBFs with bounded quantifier complexity.

The QParityn formulas also have polynomial-size ∀Exp + Res refutations, and can

be modified so that they remain easy for ∀Exp + Res but are hard for LD-Q-Res (Bey-

ersdorff et al., 2015). The short LD-Q-Res refutations of QParityn iteratively derive

clauses (ti∨z∗) and (¬ti∨z∗) for decreasing i, which finally allows resolution with (¬t0)

and universal reduction to derive the empty clause. The refutation relies on the fact

that z does not appear in the four clauses expressing (ti ≡ ti−1 ⊕ xi). In the modified

formulas, (¬ti−1 ∨ xi ∨ ti) is replaced with (¬ti−1 ∨ xi ∨ ti ∨ z) ∧ (¬ti−1 ∨ xi ∨ ti ∨ ¬z),
and similarly for the other clauses in (ti ≡ ti−1 ⊕ xi), for each i. The short refuta-

tions are no longer possible. In particular, it is not possible to resolve (¬ti ∨ z∗) with

(¬ti−1 ∨ xi ∨ ti ∨ z) since z appears before ti in the quantifier prefix.

We will now modify the QParityn formulas in a different way so that they require

exponential-size refutations in ∀Exp + Res but still have polynomial-size LD-Q-Res refu-

tations. This shows that when restricted to QBFs with bounded quantifier complexity

LD-Q-Res and ∀Exp + Res remain incomparable, as in the general case.

4.3.2 Modified Parity Formulas

In the original QParityn formulas there is only one universal variable z. The universal

variable z must be set to the parity of the xi variables in order for the formula to evaluate

to false. We modify the formulas so that there is a universal variable zi for every node

of the circuit in Figure 4.3 (or equivalently, for each existentially quantified ti). We

add clauses to express that if ti = ¬zi then the next node in the circuit, ti+1, is no

longer constrained to be the parity of ti and xi+1. As a result, if any of the zi are not

set to equal Parity(x1, . . . , xi) then the remaining t variables are unconstrained and

the formula is easily satisfied. However, the formula as a whole remains false, with

a unique strategy for the universal player: each universal variable zi must calculate

Parity(x1, . . . , xi) in order for the formula to evaluate to false.

To refute QParityn using ∀Exp + Res, the formula is first expanded by substituting

both 0 and 1 for z, which causes it to double in size, and this expanded formula is

refuted with a polynomial-sized Resolution refutation. For the modified formulas, an

∀Exp + Res refutation will need to consider every assignment to the zi variables, which

gives exponentially many different annotations in the parameter n. This is because

of the requirement to set zi depending on the value of Parity(x1, . . . , xi). Due to

these exponentially many annotations, it follows that the refutation itself must be of

exponential size.

The QBFs QParityn have polynomial-size refutations in LD-Q-Res, we will show

that the same technique also gives polynomial-size refutations of the modified formulas

54

4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier
Complexity

QParityn-ld. The QBFs are defined as

QParityn-ld = ∃x1 . . . xn∀z1 . . . zn∃t0 . . . tn
(zn ∨ tn) ∧ (¬zn ∨ ¬tn) ∧ (¬t0) ∧ (t1 = t0 ⊕ x1)

∧
n∧
i=2

(ti−1 = ¬zi−1) ∨ (ti = ti−1 ⊕ xi)

where (ti−1 = ¬zi−1) ∨ (ti = ti−1 ⊕ xi) is expressed by the four clauses

(¬ti−1∨xi∨ti∨¬zi−1), (ti−1∨¬xi∨ti∨zi−1), (ti−1∨xi∨¬ti∨zi−1), (¬ti−1∨¬xi∨¬ti∨¬zi−1).

Lemma 4.3.1. The formulas QParityn-ld have polynomial-sized refutations in LD-

Q-Res.

Proof. We will derive (ti ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ zi) and (¬ti ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ ¬zi) for

i = n− 1, . . . , 1. For i = n we begin with the clauses (zn ∨ tn) and (¬zn ∨ ¬tn) from

the input formula.

(¬ti−1 ∨ ¬xi ∨ ¬ti ∨ ¬zi−1) (ti ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ zi)
1.

(¬ti−1 ∨ ¬xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ zi ∨ ¬zi−1)

(¬ti−1 ∨ xi ∨ ti ∨ ¬zi−1) (¬ti ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ ¬zi)
2.

(¬ti−1 ∨ xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ ¬zi ∨ ¬zi−1)

(ti−1 ∨ xi ∨ ¬ti ∨ zi−1) (ti ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ zi)
3.

(ti−1 ∨ xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ zi ∨ zi−1)

(ti−1 ∨ ¬xi ∨ ti ∨ zi−1) (¬ti ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ ¬zi)
4.

(ti−1 ∨ ¬xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ ¬zi ∨ zi−1)

These resolution steps are all permitted in LD-Q-Res because the two parent clauses

do not contain any of the same zi variables.

Next, we resolve on xi the results of lines 1 and 2, and the results of lines 3 and

4. Because xi appears before any of the z variables in the quantifier prefix this is

permitted in LD-Q-Res even though the clauses contain the opposing literals of zi and

both contain z∗n, . . . , z
∗
i+1. These resolution steps introduce z∗i .

(¬ti−1 ∨ ¬xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ zi ∨ ¬zi−1) (¬ti−1 ∨ xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ ¬zi ∨ ¬zi−1)

(¬ti−1 ∨ z∗n ∨ · · · ∨ z∗i ∨ ¬zi−1)

(ti−1 ∨ xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ zi ∨ zi−1) (ti−1 ∨ ¬xi ∨ z∗n ∨ · · · ∨ z∗i+1 ∨ ¬zi ∨ zi−1)

(ti−1 ∨ z∗n ∨ · · · ∨ z∗i ∨ zi−1)

55

4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier
Complexity

Finally, we have (¬t1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ ¬z1) and (t1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ z1), and derive

the empty clause (⊥) as follows:

(t0 ∨ x1 ∨ ¬t1) (t1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ z1)

(t0 ∨ x1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ z1)

(t0 ∨ ¬x1 ∨ t1) (¬t1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ ¬z1)

(t0 ∨ ¬x1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ ¬z1)

(t0 ∨ x1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ z1) (t0 ∨ ¬x1 ∨ z∗n ∨ · · · ∨ z∗2 ∨ ¬z1)

(t0 ∨ z∗n ∨ · · · ∨ z∗1) (¬t0)

(z∗n ∨ · · · ∨ z∗1)

⊥

Now we will show that every possible assignment to the zi variables is required

in the ∀Exp + Res refutation. Since each axiom can only contain a single annotation,

and the size of the formula is linear in the number of zi variables, this shows that the

number of axiom clauses required in the refutation is exponential in the size of the

formula.

Lemma 4.3.2. QParityn-ld require exponential-size refutations in ∀Exp+Res.

Proof. Let α be an arbitrary assignment to the zi variables. We will show that the

propositional formula that results from expanding QParityn-ld for every assignment

except α is satisfiable. Therefore the ∀Exp + Res refutation must use clauses annotated

with α, but since α is chosen arbitrarily it follows that all 2n possible annotations are

required in the ∀Exp + Res refutation.

For any choice of α, a satisfying assignment must have t0 = 0. Set x1 = α(z1) and

xi = α(zi−1)⊕ α(zi) for every i ≥ 2. It follows that α(zi) = Parity(x1, . . . , xi).

Let τ be any assignment to the zi variables that is different from α. Let j be the

minimum index such that τ(zj) 6= α(zj).

For each choice of τ we need to satisfy (zn ∨ tn), (¬zn ∨ ¬tn), and (t1 = t0 ⊕ x1),

and for every i ∈ {1, . . . n− 1} the clauses representing (ti = ¬zi) ∨ (ti+1 = ti ⊕ xi+1).

Some of these are satisfied during the expansion by the choice of τ , the rest must be

satisfied by the choice of values for the tτi variables.

If τ(zi) = 1 then the two clauses containing zi are satisfied, so we have the annotated

clauses (¬tτi ∨ xi+1 ∨ tτi+1) and (¬tτi ∨ ¬xi+1 ∨ ¬tτi+1). If τ(zi) = 0 then the two clauses

containing ¬zi are satisfied, leaving (tτi ∨ ¬xi+1 ∨ tτi+1) and (tτi ∨ xi+1 ∨ ¬tτi+1).

Set tτ0 = 0 and for i ∈ {1, . . . , j} set tτi = tτi−1 ⊕ xi = Parity(x1, . . . , xi). Now the

clause (t1 = t0 ⊕ x1) and whichever two clauses remain for i − 1 under assignment τ ,

are all satisfied by this choice of ti.

56

4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier
Complexity

∀Exp + Res

QU-Res

LD-Q-Res

Q-Res

Figure 4.4: Relationships between QBF proof systems for formulas with bounded quan-

tifier complexity.

Observe that tτj = Parity(x1, . . . , xj) = α(zj) 6= τ(zj).

If j = n and τ(zn) = 1 then (zn ∨ tn) was satisfied during the expansion and we are

left with (¬tτn) which is satisfied. Similarly if τ(zn) = 0 both of (zn∨tn) and (¬zn∨¬tn)

are satisfied, so all clauses in the part of the expansion relating to τ are satisfied and

we are done.

If j < n then for i > j we will assign tτi = ¬τ(zi) (and already we have tτj = ¬τ(zj).

If τ(zi) = 0 then the clauses which remain for i under τ both contain tτi . If τ(zi) = 1

they both contain ¬tτi . These are now all satisfied for i ≥ j, and whichever of (tτn) and

(¬tτn) remains must likewise be satisfied.

For every choice of τ 6= α we have made assignments to the variables tτi which

ensure that all clauses belonging to the part of the expanded formula relating to τ are

satisfied. Therefore the expanded formula which doesn’t include any clauses relating to

α is true, and to refute QParityn-ld in ∀Exp + Res we must require some clause that

is annotated with α. Since α was chosen arbitrarily it follows that it is only possible

to refute QParityn-ld if all annotations appear in the refutation. There are 2n such

assignments, so the refutation must contain at least 2n clauses. The formula itself

contains only O(n) clauses, thus the size of the refutation is exponential in the size of

the formula.

Theorem 4.3.3. LD-Q-Res and ∀Exp+Res are incomparable on QBFs with bounded

quantifier complexity.

Proof. Lemmas 4.3.1 and 4.3.2 show that ∀Exp + Res cannot p-simulate LD-Q-Res on a

family of QBFs with 3 quantifier blocks. The converse is shown in Beyersdorff et al.

(2015).

The results of this chapter allow us to simplify part of the diagram of p-simulations

and separations from Figure 3.6 in Chapter 3 in the case of QBFs with bounded quan-

tifier complexity. Our new results are summarised in Figure 4.4. Solid lines indicate

that the upper system p-simulates the lower system. Dotted lines indicate that the

systems are incomparable. Double lines indicate that the systems are p-equivalent.

57

4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier
Complexity

Conclusion

The results presented here demonstrate proof-theoretic advantages of ∀Exp + Res over

Q-Res when quantifier complexity is bounded. We have shown that wherever a Q-Res

refutation can be generated for a problem with fixed number of quantifier alterna-

tions there is also an ∀Exp + Res refutation with only a polynomial increase in size.

The converse does not hold, as demonstrated by the QParity formulas. The cost

of transforming a DAG-like Q-Res proof into an ∀Exp + Res proof by this construction

depends on the number of quantifier alternations. However for tree-like proofs we can

do the transformation while keeping the size the same, no matter what the number of

quantifier alternations.

The construction can be extended to also show that QU-Res is simulated by both

Q-Res and ∀Exp + Res for QBFs with a fixed number of quantifier alternations or if the

proofs are required to be tree-like.

In Janota & Marques-Silva (2015), a family of formulas demonstrated that ∀Exp + Res

cannot simulate Q-Res. These formulas had short proofs in Q-Res and required expo-

nential size proofs in ∀Exp + Res. Our results explain some necessary conditions for

such an example. Firstly, the number of quantifier levels must not be bounded above

by a constant. Secondly, the short Q-Res proofs must be DAG-like. The clause re-use

and the increasing number of quantifier levels also have to come together in a specific

way.

The simulation becomes less efficient as the number of alternations increase, and we

have noted the correlation between this result and empirical observations regarding the

effect of quantifier alternations on solver performance. While this connection between

the theoretical and empirical results is interesting we also recognise that the proof

systems ∀Exp + Res and Q-Res greatly simplify the QBF solving algorithms. Because

of unit-propagation in QCDCL solving, sometimes the proofs are better represented in

the LD-Q-Res proof system, which is not simulated by ∀Exp + Res even for QBFs with

bounded quantifier complexity. In addition, QBF solvers sometimes use dependency

schemes (Lonsing & Biere, 2010), which are not taken into account here.

The specific advantage of ∀Exp + Res over Q-Res and QU-Res does not imply that

proof systems using universal reduction are generally weak. For example the systems

Frege +∀red and Extended Frege +∀red (Beyersdorff et al., 2016a) are very strong

systems, and finding lower bounds for them is equivalent to solving major open problems

in circuit complexity or propositional proof complexity (Beyersdorff & Pich, 2016).

58

Chapter 5

Tree-Like Expansion Proofs

In the previous chapter we showed that ∀Exp + Res is strictly stronger than Q-Res

when acting on QBFs with bounded quantifier complexity. This chapter considers a

restriction on the proof system, instead of restricting the input QBFs. We show that

Q-Res cannot p-simulate tree-like ∀Exp + Res, firstly showing formulas that separate

tree-like ∀Exp + Res from tree-like Q-Res, then formulas to separate tree-like ∀Exp + Res

from general (DAG-like) Q-Res, LD-Q-Res and even LQU+-Res.

We use Prover-Delayer games to model the proof systems, with strategies in the

games implying upper or lower bounds on proof size.

5.1 Proof Systems as Games

As well as characterising the QBF satisfiability problem as a game between two players,

we can also describe some proof systems as games. This can be useful in allowing concise

arguments for upper and lower bounds on proof size in these systems. We will use games

that characterise the size of proofs in tree-like Resolution and tree-like Q-Res, the rules

of which are given here with a brief explanation of how to determine proof size from

strategies for the two players.

Characterising Tree-Like Resolution A game for finding lower bounds on the size

of tree-like Resolution refutations was introduced in Pudlák (2000); Pudlák & Impagli-

azzo (2000), and later refined to also yield upper bounds in Beyersdorff et al. (2013) and

to also characterise hardness for satisfiable formulas in Beyersdorff & Kullmann (2014).

We use here the game of Beyersdorff et al. (2013), which is played on an unsatisfiable

CNF Φ. There are two players: the Prover aims to make Φ evaluate to false, and since

Φ is unsatisfiable they must be able to succeed eventually; the Delayer scores points

while the game is ongoing, and aims to maximise their score.

59

5.1 Proof Systems as Games

The game proceeds in rounds through which an assignment to the variables of Φ is

built up. During each round:

1. The Prover queries some variable x which is not currently assigned a value,

2. The Delayer responds with weights p0 and p1, both at least 0, and with p0+p1 = 1,

3. The Prover chooses a value b ∈ {0, 1} to assign to x and the Delayer scores log(1
pb

)

points.

The game ends when the current assignment falsifies any clause in Φ. If the Delayer

chooses pb = 1 they force x to be assigned the value b and score 0 points in that round.

In a tree-like Resolution proof image a walk along a path which starts at the root and

proceeds towards the leaves. Each node in the tree is associated with a clause, which

in turn corresponds to a partial assignment that falsifies that clause. A resolution step

with pivot x corresponds to extending the assignment by either x or ¬x, depending on

which parent is chosen as the next node in the walk.

This gives an intuitive idea of how the game and proof tree are related. Points

scored by the Delayer under optimal strategies for the two players are related to the

size of the proof tree not explored due to the assignment which was made in that round.

When these ideas are formalised, we have the following theorems (Beyersdorff et al.,

2013):

Theorem 5.1.1. If Φ has a tree-like Resolution proof of size at most S then there is a

Prover strategy such that the Delayer scores at most log(dS2 e) points.

Theorem 5.1.2. If Φ has shortest tree-like Resolution proof of size S then there is a

Delayer strategy such that the Delayer scores at least log(dS2 e) points.

Since ∀Exp + Res is a Resolution proof on annotated variables we can use the Prover-

Delayer game to prove bounds on the size of tree-like proofs in this system.

Characterising Tree-Like Q-Resolution The above game was modified in Bey-

ersdorff et al. (2017b) to describe tree-like Q-Res refutations. The Prover must be able

to forget assignments – this can be allowed in the Resolution game but is not necessary

– and the game must be extended to describe universal reduction steps.

Through the game the players are building an assignment to the variables of a

PCNF Ψ. Each round consists of the following stages:

1. The Prover sets universal variables. Any universally quantified variable u can

be assigned a value providing that all existentially quantified variables x with

lv(x) > lv(u) are currently unassigned,

60

5.2 Separating Tree-Like Expansion From Tree-Like Q-Resolution

2. The Delayer can declare an assignments for any existentially quantified variables

that are currently unassigned,

3. The Prover queries an existentially quantified variable x which is not currently

assigned,

4. The Delayer responds with weights p0 and p1, both at least 0 with p0 + p1 = 1,

5. The Prover selects a value b ∈ {0, 1} to assign to x and the Delayer scores log(1
pb

)

points,

6. The Prover can forget any assignments.

Again, the game ends when some clause in Ψ is falsified by the current assignment.

Resolution steps in the proof correspond to the assignments made to existentially

quantified variables, as before, and the points scored represent the size of the tree

not being explored because of this choice. Universal reduction is represented by the

Prover’s choice of assignments to universally quantified variables. There is no branching

on these values, and no points are scored by the Delayer. The following theorems are

from (Beyersdorff et al., 2017b).

Theorem 5.1.3. If Ψ has a tree-like Q-Res refutation of size at most S then there is

a Prover strategy such that the Delayer scores at most log(dS2 e points.

Theorem 5.1.4. If Ψ has shortest tree-like Q-Res refutation of size S then there is a

Delayer strategy such that the Delayer scores at least log(dS2 e points.

We now use these games to give upper and lower bounds in tree-like Q-Res and

tree-like ∀Exp + Res to demonstrate separations between the two systems.

5.2 Separating Tree-Like Expansion From Tree-Like

Q-Resolution

From Janota & Marques-Silva (2015) we know that tree-like ∀Exp + Res p-simulates

tree-like Q-Res. We show that this simulation is strict by constructing a sequence of

QBFs with polynomial-size tree-like proofs in ∀Exp + Res but requiring exponential-size

proofs in tree-like Q-Res.

Let [n] = {1, . . . , n} and let R be a ternary relation. Let Ψn := ∀x∃y∀zR(x, y, z)

where x, y, and z take values in [n]. Then we can define QBFs Θn expressing the

contradiction that there is some interpretation of the relation R so that Ψn and ¬Ψn

are both true.

A general method for expressing first-order formulas as a sequence of QBFs is

discussed in Chapter 9, where we also generalise the proof of Lemma 5.2.2. The formula

61

5.2 Separating Tree-Like Expansion From Tree-Like Q-Resolution

Θn has n Boolean variables for each variable in Φn corresponding to the n possible

values for this variable.

Θn = ∃i,j,k∈[n]Ri,j,k∀x1 . . . xn∃y1 . . . yn∃u1 . . . un∀v1 . . . vn∃w1 . . . wn

(y1 ∨ · · · ∨ yn) ∧ (u1 ∨ · · · ∨ un) ∧ (w1 ∨ · · · ∨ wn) (5.1)

∧
∧

i,j,k∈[n]

(Ri,j,k ∨ ¬xi ∨ ¬yj ∨
∨

i′∈[n],i′ 6=i

xi′) (5.2)

∧
∧

i,j,k∈[n]

(¬Ri,j,k ∨ ¬ui ∨ ¬vj ∨ ¬wk ∨
∨

j′∈[n],j′ 6=j

vj′) (5.3)

Lemma 5.2.1. The formulas Θn require exponential-size proofs in tree-like Q-Res.

Proof. We state a strategy for the Delayer and show that it guarantees a score of Ω(n)

points before the formula is made false, for any Prover strategy. Let x = a denote that

xa = 1 and xi = 0 for all i 6= a are in the current assignment, and let xa ← 1 denote

that xa = 1 is added to the current assignment.

The Delayer will always declare assignments (scoring no points) according to the

following rules, if it is possible to do so:

1. If x = a and yb = 1 then Ra,b,c ← 1 for all c,

2. If x = a and Ra,b,c = 0 for some b, c then yb ← 0,

3. If x = a then ua ← 0,

4. If ua = 1, v = b and wc = 1 then Ra,b,c ← 0,

5. If ua = 1, v = b and Ra,b,c = 1 then wc ← 0,

6. If Ra,b,c = 1 for any b, c then ua ← 0.

Assignments are made according to these rules until no further rule can be applied.

For any other existentially quantified variable that is queried the Delayer will respond

with equal weights for both assignments, and will score one point whichever choice the

Prover makes.

Together, these rules make it impossible to falsify the clauses in lines 5.2 and 5.3

of Θn. Recall that the Prover may not assign values to universally quantified variables

without first forgetting any assignments to existentially quantified variables that appear

later in the prefix.

Rule 3 ensures that there is no conflict between rules 1 and 4 and no other rules

could be in conflict. Rules 1 and 2 ensure that clauses in 5.2 are never falsified. If

rule 6 can be applied then it will ensure clauses in 5.3 are not falsified, and if it is not

62

5.2 Separating Tree-Like Expansion From Tree-Like Q-Resolution

possible to apply this rule (because ua = 1 already) then rules 4 and 5 will together

ensure these clauses will not be falsified. Therefore Θn will become false by violating

one of the clauses in line 5.1. Now we show that whichever of these clauses is made

false the Delayer must have scored Ω(n) points in the game.

Suppose that the game ends with wi = 0 for all i ∈ [n]. For each wi, either the

variable was set by a Prover choice, giving one point to the Delayer, or it was forced

to take the value 0 by rule 5. In the latter case, to force the assignment of wc we must

already have ua = 1, v = b and Ra,b,c = 1 for some a and b. A different R variable is

required for each value of c. It is not possible that Ra,b,c was forced by rule 1, since

rule 3 ensures that we cannot have x = a and ua = 1 simultaneously. Therefore,

whenever rule 1 is invoked, we cannot have ua = 1 and so rule 6 ensures that ua = 0 is

forced, violating our assumption that ua = 1 and rule 5 can be applied. Consequently,

Ra,b,c must have been assigned by a Prover choice and this earlier choice has already

given one point to the Delayer. The Delayer has scored at least one point for each wi

that is assigned 0, giving a total of at least n points if the game ends by violating the

clause (w1 ∨ · · · ∨ wn).

Suppose instead that the game ends with yi = 0 for all i ∈ [n]. Each yi may have

been set through a Prover choice, giving the Delayer one point. Alternatively, if some

yb was forced by rule 2 then x = a and Ra,b,c = 0 for some c. We require a different R

variable for each value of b, and it may have been assigned by a Prover choice (scoring

one point) or by rule 4. In the latter case, since wc = 1 is required and no rule may force

this the Delayer must have scored one point for this assignment. The value of v cannot

be changed without forgetting all wi and therefore each application of rule 4 requires

a new query on some wi. The Delayer therefore scores at least one point for each yi

that is assigned 0, giving a total of at least n points if the game ends by violating the

clause (y1 ∨ · · · ∨ yn).

If the game ends with ui = 0 for all i ∈ [n] then each variable may have been

assigned by a Prover choice (scoring one point) or by either rule 3 or rule 6. Rule 3

can only be used to force one variable since a reassignment of x requires forgetting the

current assignments to all ui. If rule 6 was used then Ra,b,c may have been assigned

by a Prover choice (scoring one point) or by rule 1, in which case yb must have been

assigned by a Prover choice since no rule could force yb = 1. There must be a new

query made for each value of a because all yi are forgotten when any xi is changed.

The Delayer scores one point for all but one ui that is assigned 0, giving a total of at

least n− 1 points if the game ends by violating the clause (u1 ∨ · · · ∨ un).

In any case, the Delayer scores Ω(n) points by the end of the game, which implies

that tree-like Q-Res refutations of Θn require size 2Ω(n).

63

5.2 Separating Tree-Like Expansion From Tree-Like Q-Resolution

Lemma 5.2.2. The formulas Θn have polynomial-size proofs in tree-like ∀Exp+Res.

Proof. A proof in ∀Exp + Res is simply a Resolution proof, so we use the Prover-Delayer

game for Resolution and show that there is a Prover strategy which limits the points

scored by the Delayer by the end of the game.

We begin by showing that, for any annotation α, some uαi can be assigned 1 (or the

game ends) for O(log(n)) points. The Prover queries each uαi for i ∈ [n] in turn until

one of them has been assigned 1. For i < n, given weights p0 and p1 for uαi the Prover

will set uαi = 1 if p1 ≥ 1
n−i+1 and set uαi = 0 otherwise.

Suppose that following this strategy results in the assignment uαa = 1, with a < n.

Now no uαi for i > a will be queried, so no points are scored for these variables. All

uαi for i < a were assigned 0 so in each case p1 <
1

n−i+1 . Since p0 + p1 = 1 therefore

p0 >
n−i
n−i+1 and the Delayer scores at most log(n−i+1)− log(n−i) for this assignment.

For i = a we have that p1 ≥ 1
n−a+1 and the Delayer scores at most log(n− a+ 1). The

total score is at most

log(n− a+ 1) +

a−1∑
i=1

log(n− i+ 1)− log(n− i),

which simplifies to log(n).

In the case that all uαi for i < n are assigned 0 the Delayer has scored at most∑n−1
i=1 log(n − i + 1) − log(n − i), giving a total of log(n). For the final query on

uαn−1 the Prover simply makes the assignment that gives Delayer the least score, which

ensures this assignment gives at most 1 point. Either the game ends because all uαi
have been assigned 0, or we have some a such that uαa = 1, and in either case the

Delayer has scored at most log(n) + 1 points. The same argument obviously applies to

the sets of variables yαi and wαi .

Now the Prover strategy is very simple and is shown in Algorithm 4. The notation

x = a in an annotation means that the annotation includes 0/xi for all i 6= a and 1/xa.

The Prover seeks values a, b, and c with ux=1
a = 1, yx=a

b = 1 and wx=1,v=b
c = 1. The

Delayer scores at most 3(log(n) + 1) through these queries. The game may end with

a failure to assign one of a, b or c a value, violating a clause from 5.1. Otherwise the

Prover can query Ra,b,c, which gives a maximum of one more point to the Delayer. If

Ra,b,c = 0 then the clause (Ra,b,c ∨ ¬yx=a
b) is made false, if Ra,b,c = 1 then the clause

(¬Ra,b,c ∨ ¬ux=1
a ∨ ¬wx=1,v=b

c) is made false. The tree-like Resolution proof on the

expanded formula has size O(n3).

Consequently, tree-like ∀Exp + Res is strictly stronger than tree-like Q-Res.

64

5.3 Separating Tree-Like Expansion From Stronger Calculi

Algorithm 4 Prover Strategy

function QueryExistential(x, α)

for i← 1 to n− 1 do

Query Delayer on xαi for weights p0, p1

if p1 ≥ 1
n−i+1 then xαi ← 1; return i

else xαi ← 0

Query Delayer on xαn for weights p0, p1

if p1 ≥ 1
2 then xαn ← 1; return n

else xαn ← 0

a← QueryExistential(u, {x = 1})
b← QueryExistential(y, {x = a})
c← QueryExistential(w, {x = 1, v = b})
Query Delayer on Ra,b,c and choose the value that gives the Delayer the least score.

Theorem 5.2.3. Tree-like ∀Exp+Res p-simulates tree-like Q-Res, but tree-like Q-Res

does not simulate ∀Exp+Res, and there are QBFs providing an exponential separation.

Proof. It is known from (Janota & Marques-Silva, 2015) that tree-like ∀Exp + Res p-

simulates tree-like Q-Res. The QBFs Θn and Lemmas 5.2.1 and 5.2.2 show that the

converse cannot hold.

5.3 Separating Tree-Like Expansion From Stronger

Calculi

Even when Q-Res is not restricted to tree-like proofs it still cannot simulate tree-like

∀Exp + Res. To show this we recall the formulas QParityn from Section 4.3.1. The

formulas are known to have short proofs in ∀Exp + Res, the refutations inductively

derive clauses (t
1/z
i ∨ ¬t0/zi) and (¬t1/zi ∨ t0/zi) for each i, which for i = n generates a

contradiction with the axioms (t
0/z
n) and (¬t1/zn). This refutation requires the re-use of

derived clauses and would have exponential size if it was expanded to have the structure

of a tree. We now show that there are short proofs in tree-like ∀Exp + Res as well.

Theorem 5.3.1. QParityn have polynomial-size tree-like ∀Exp+Res proofs.

Proof. We expand out all the clauses of QParityn based on the two settings to the

single universal variable z and use the Prover-Delayer game for Resolution. The Prover

strategy is given in Algorithm 5.

For the four unit clauses, if the Delayer does not declare the values then the Prover

65

5.3 Separating Tree-Like Expansion From Stronger Calculi

Algorithm 5 Prover Strategy

i = 0, j = n.

The Prover queries the variables of the unit clauses ¬t0/z0 ,¬t1/z0 , t
0/z
n ,¬t1/zn . The

Delayer is forced to satisfy these clauses or get a constant score.

while j − i > 1 do

k ← b i+j2 c.
The Prover queries the variable t

1/z
k .

The Prover chooses the value that gives the Delayer the least score.

The Prover queries the variable t
0/z
k .

The Prover chooses the value that gives the Delayer the least score.

if t
0/z
k = t

1/z
k then i← k else j ← k

The Prover now queries xj , and chooses the value that gives the Delayer the least

score.

. The game ends here because t
0/z
i = t

1/z
i , t

0/z
j 6= t

1/z
j , and for c ∈ {0, 1}, there are

clauses expressing t
c/z
j ≡ xj ⊕ tc/zi .

can choose whichever value gives the least score. The Delayer scores a maximum of

four points and if any of the unit clauses are falsified then the game ends.

The main idea is to notice that both of t
0/z
0 and t

1/z
0 must have the same assignment,

but t
0/z
n and t

1/z
n must have different assignments. The Prover uses a binary search to

find the value of i such that t
0/z
i and t

1/z
i are assigned the same value but t

0/z
i+1 and

t
1/z
i+1 have opposite values. Since xi+1 is not annotated, the same value must be used in

both t
0/z
i+1 = t

0/z
i ⊕ xi+1 and t

1/z
i+1 = t

1/z
i ⊕ xi+1. Both statements are required to hold,

but the right hand sides are equal and the left hand sides are not. The binary search

to find i takes dlog(n)e rounds and the Delayer can score at most 2 points per round,

hence a total score of at most 2dlog(n)e. It follows that there are tree-like ∀Exp + Res

refutations with size O(n2).

QParityn are known to be hard for Q-Res and QU-Res based on a strategy extrac-

tion argument. Balabanov & Jiang (2012) showed that both systems admit strategy

extraction and the strategies which are extracted from the proofs can be efficiently

expressed in a restricted form which they call a Right-First-And-Or formula. These

formulas belong to AC0, the class of Boolean functions expressible by polynomial-size

constant depth circuits. It is not possible to compute the parity function using such

a circuit, Parity/∈ AC0. The QBFs QParityn have a single universally quantified

variable z whose unique winning strategy is the parity of the n existentially quantified

variables which appear prior to z in the quantifier prefix. The QBFs have linear size in

n. If Q-Res (or QU-Res) was able to refute this formula with a polynomial-size proof (in

the size of the formula) then we would also be able to extract a strategy for z that had

66

5.3 Separating Tree-Like Expansion From Stronger Calculi

polynomial size in the size of the proof, and therefore the strategy is also of polynomial

size in n. The strategy would give a circuit in AC0 for computing Parity, but this

is known to be impossible. Therefore, Q-Res and QU-Res cannot have polynomial-size

refutations of the QParityn formulas.

There are short proofs of QParityn in extensions of Q-Res, but the formulas can

be modified slightly to give QBFs that are also hard for these systems (Beyersdorff

et al., 2015). Specifically, the following QBFs are hard for LD-Q-Res and LQU+-Res

respectively. For LD-Q-Res the modification is to duplicate clauses and insert z in one

copy and ¬z in the other.

QParityLDQn := ∃x1 . . . ∃xn∀z∃t0 . . . ∃tn
(tn ∨ z) ∧ (¬tn ∨ ¬z) ∧ (¬t0 ∨ z) ∧ (¬t0 ∨ ¬z)

∧
n∧
i=1

(ti = ti−1 ⊕ xi ∨ z) ∧
n∧
i=1

(ti = ti−1 ⊕ xi ∨ ¬z)

where (ti = ti−1 ⊕ xi ∨ l) is expressed by the four clauses

(¬ti−1 ∨ xi ∨ ti ∨ l), (ti−1 ∨ ¬xi ∨ ti ∨ l), (ti−1 ∨ xi ∨ ¬ti ∨ l), (¬ti−1 ∨ ¬xi ∨ ¬ti ∨ l).

The full universal expansion of this formula is identical to the full universal expansion

of QParityn, so the Prover strategy in Algorithm 5 can be used for QParityLDQn

without modification and again proves the existence of short tree-like ∀Exp + Res proofs

for these formulas. Although there is a polynomial-sized refutation of QParityn in LD-

Q-Res, the modified formulas QParityLQDn require exponential-sized LD-Q-Res proofs.

This shows that LD-Q-Res cannot simulate tree-like ∀Exp + Res.

For LQU+-Res we further modify the formulas with a duplicate universal variable.

QParityLQUn := ∃x1 . . . ∃xn∀z1, z2∃t0 . . . ∃tn
(tn ∨ z1 ∨ z2) ∧ (¬tn ∨ ¬z ∨ ¬z2) ∧ (¬t0 ∨ z1 ∨ z2) ∧ (¬t0 ∨ ¬z1 ∨ ¬z2)

∧
n∧
i=1

(ti = ti−1 ⊕ xi ∨ z1 ∨ z2) ∧
n∧
i=1

(ti = ti−1 ⊕ xi ∨ ¬z1 ∨ ¬z2)

where (ti = ti−1 ⊕ xi ∨ l1 ∨ l2) is expressed by the four clauses

(¬ti−1∨xi∨ti∨l1∨l2), (ti−1∨¬xi∨ti∨l1∨l2), (ti−1∨xi∨¬ti∨l1∨l2), (¬ti−1∨¬xi∨¬ti∨l1∨l2).

The full expansion of QParityLQUn is identical to that of QParityLDQn except that

any variable annotated by 0/z in QParityLDQn is now annotatied with 0/z1, 0/z2, and

similarly any variable that was previously annotated with 1/z is now annotated with

1/z1, 1/z2. Since this just amounts to a relabelling of variables it immediately follows

that an equivalent ∀Exp + Res refutation can be used. Consequently, we see that there

are formulas which require exponential-sizes proofs in unrestricted LQU+-Res but have

polynomial-sized proofs in tree-like ∀Exp + Res.

67

5.4 Short Tree-Like Expansion Proofs for QBFs Based on Thin Circuits

Corollary 5.3.2. LQU+-Res cannot p-simulate tree-like ∀Exp+Res, and there are QBFs

providing an exponential separation.

5.4 Short Tree-Like Expansion Proofs for QBFs Based

on Thin Circuits

The proof method shown above for QParityn formulas can be extended to other QBFs

based on Boolean circuits with a constant bound on the number of incoming edges to

each gate. We assume, without loss of generality, that each gate has at most two

incoming edges.

Definition 5.4.1. Let C be a Boolean circuit over variables x1, . . . , xn, with gates

g1, . . . , gm, each of which computes a Boolean function. The output gate is gm.

The set of variables X = {x1, . . . , xn} contains the input variables of C. To con-

struct Q-C we define a second set of variables T = {t1, . . . , tm}. The variable tj corre-

sponds to gate gj of C.

Q-C = ∃X∀z∃T (z ∨ tm) ∧ (¬z ∨ ¬tm) ∧
S∧
j=1

[tj is consistent with gate gj]

The statement [tj is consistent with gate gj] depends on tj and at most two other

variables in X ∪ T , which correspond to the inputs of gate gj . It can therefore be

written as a short CNF formula. For example, if gk = gi ∧ xj then we add clauses

(tk ∨ ¬ti ∨ ¬xj), (¬tk ∨ ti), (¬tk ∨ xj). If gj = ¬gi then we add clauses (tj ∨ ti) and

(¬tj ∨ ¬ti) (recall that the combination of ∧ and ¬ is sufficient to construct circuits

computing any Boolean function). The size of Q-C is O(m), where m is the number of

gates in the circuit C. In particular, if C is polynomial-sized in n, then so is Q-C.

The clauses (z ∨ tm) and (¬z ∨ ¬tm) require that the output of the final gate gm

has the opposite value from z. Since the ti variables appear after z in the quantifier

prefix this means that the assignment to z forces a particular assignment for tm, which

is equivalent to fixing the output of the circuit, i.e. the value of C(x1, . . . , xn). The

QBF Q-C therefore expresses the contradiction ∃x1 . . . xn∀z [z 6= C(x1, . . . , xn)].

It is known that QBFs of this form have short refutations in ∀Exp + Res (see Propo-

sition 5.4.2). We will further show that there are short refutations for this family of

formulas in tree-like ∀Exp + Res.

68

5.4 Short Tree-Like Expansion Proofs for QBFs Based on Thin Circuits

Proposition 5.4.2 (Proposition 28 in Beyersdorff et al. (2015)). For every family of

polynomial-size circuits {Cn}, the QBF family {Q-Cn} has polynomial-size proofs in n

in DAG-like ∀Exp+Res.

Proof (sketch). Fix a circuit Cn and let m be the number of gates it contains. We prove

by induction on i ∈ [m] that t
0/z
i = t

1/z
i .

Since the input X variables are outermost in the prefix they are never annotated in

the ∀Exp + Res proof. Resolution on variables in X is sufficient to show the base case,

that t
0/z
1 = t

1/z
1 .

For the inductive step, assume we have clauses stating that t
0/z
j = t

1/z
j for j < i.

The inputs to gate gi are in {gj | j < i} ∪ X, and we have axiom clauses expressing

the consistency requirements for t
0/z
i and t

1/z
i , so it is possible to derive t

0/z
i = t

1/z
i in

a short proof fragment.

From t
0/z
m = t

1/z
m , resolution with the unit clauses t

0/z
m and ¬t1/zm derives the empty

clause.

This proof reuses the derivations of t
0/z
j = t

1/z
j for all steps relating to any gate which

has gj as an input. Such reuse of derived clauses is not permitted in tree-like ∀Exp + Res.

Instead, we generalise the binary search Prover strategy idea from Theorem 5.3.1. The

technique works because the circuits underlying the QBFs have small “width”. As long

as C has polynomial length p(n) and constant “width” bounded by b, the Prover can

use binary search to devise a strategy where the Delayer scores at most c log(p(n)) for

some constant c and hence the proof size is at most p(n)c which is polynomial in n.

Further, if we relax our desire for polynomial-size proofs to just quasi-polynomial

size we can allow circuits with non-constant width. The restriction of poly-logarithmic

width results in quasi-polynomial size proofs.

The following definition allows us to make this intuition more formal.

Definition 5.4.3 (Layered Circuits, and Circuit Width). A circuit is layered if its

gates can be partitioned into disjoint sets Si for 1 ≤ i ≤ `, such that for each i, and for

each gate in layer Si, all its inputs are either input variables or the outputs of gates in

Si−1. The output gate is in the final layer S`.

The width of a layered circuit is the maximum number of gates in any layer;

width(C) = max{|Si| | i ∈ `]}.

Theorem 5.4.4. Let C be a layered circuit of size m and width w, and let Q-C be the

corresponding QBF. Then Q-C has a proof, in tree-like ∀Exp+Res, of size mO(w).

Proof. Consider the expanded CNF obtained from Q-C. Let U be the set of t0/z

variables and V be the set of t1/z variables, while the set of variables X remains

without any annotation. Let the clauses expressing that each variable ti is consistent

69

5.4 Short Tree-Like Expansion Proofs for QBFs Based on Thin Circuits

Algorithm 6 Prover Strategy in Theorem 5.4.4

i = 0, j = `.

The Prover queries the variables t
0/z
m and t

1/z
m of Wl. The Delayer is forced to satisfy

the unit clauses or get a constant score.

The Prover queries the variables of W0, and chooses the values that give the Delayer

the least score.

while j − i > 1 do

k ← b(i+ j)/2c.
while some t variables in Wk are unassigned do

The Prover queries an unassigned t
0/z
a in Wk.

The Prover chooses the value that gives the Delayer the least score.

The Prover queries the variable t
1/z
a .

The Prover chooses the value that gives the Delayer the least score.

Prover queries all remaining X variables in Wk.

Prover chooses the values that give the Delayer the least score.

if t
0/z
b 6= t

1/z
b for some pair of variables in Wk then j ← k else i← k.

. Once j − i = 1, the game ends in a contradiction witnessed by the variables

corresponding to some gate at layer j.

with the computation of gate gi be denoted F (X,T). Following expansion we have two

copies of these clauses – one in which all variables in T are annotated with 0/z and one

in which the variables of T are annotated with 1/z. This CNF is denoted G(X,U, V),

with

G(X,U, V) = F (X,U) ∧ F (X,V) ∧ t0/zm ∧ ¬t1/zm

A proof in (tree-like) ∀Exp + Res that Q-C is false is a proof in (tree-like) Resolution

that the CNF G(X,U, V) is unsatisfiable.

Let the number of layers in C be ` where ` ≤ m.

Let W` be the set of (annotated) variables corresponding to the output gate, i.e.

W` = {t0/zm , t
1/z
m }. For i ∈ [`], let Wi−1 ⊆ X ∪U ∪ V be the variables feeding into gates

at layer i of C. Note that W0 ⊆ X.

The Prover uses binary search to identify a layer j such that there is a pair of

variables t
0/z
b and t

1/z
b in Wj which are assigned different values, but with all pairs of

variables t
0/z
a and t

1/z
a in Wj−1 having the same values assigned. The strategy is given

in Algorithm 6.

There are variables t
0/z
b 6= t

1/z
b in Wj , but for all ta variables in Wj−1, t

0/z
a = t

1/z
a .

Furthermore all X variables in Wj−1 are assigned some value. So t
0/z
b 6= t

1/z
b must cause

a contradiction with the copies of the clauses expressing consistency of gate gb with its

inputs.

70

5.4 Short Tree-Like Expansion Proofs for QBFs Based on Thin Circuits

For every layer i where the Prover queries variables from Wi, there are at most 4w

variables to query, and this is the maximum score for the Delayer on Wi. The Prover

looks at no more than dlog `e sets Wi. Since ` ≤ m it follows that there are tree-like

∀Exp + Res proofs of size mO(w).

Corollary 5.4.5. Suppose {Cn} is a family of layered circuits with width bounded

by a constant. Then the family of QBFs Q-Cn has polynomial-size proofs in tree-like

∀Exp+Res.

Conclusion

For tree-like systems it was already known that ∀Exp + Res p-simulates Q-Res. In this

chapter we have shown that the converse is not true and even DAG-like Q-Res cannot

p-simulate tree-like ∀Exp + Res. The separation given by the QParityn formulas is

in some sense optimal since two quantifier alternations is the least possible number of

alternations to have separating formulas between these systems.

We have shown that the Q-C formulas, which can give lower bounds in QCDCL

style systems (Beyersdorff et al., 2016a), are easy for tree-like ∀Exp + Res when the

circuits have a specific structure. The false Q-C formulas are also Σb
3 so we have found

a class of separating formulas which all have the minimum quantifier complexity needed

to separate Q-Res and ∀Exp + Res.

71

Chapter 6

Strategy Extraction in QRAT

As well as deciding whether a given QBF is true or false, QBF algorithms usually also

provide a proof. The proof is checked against the rules of a sound proof system and

acts as a verification that the result given by the solver is correct. The QRAT proof

system (Heule et al., 2014b) is sufficiently strong to simulate the reasoning steps of all

current QBF solvers and pre-processors and so offers a standard format for solvers to

output proofs, both for true and false QBFs.

In many settings it is also desirable to find functions that witness whether a QBF

is true or false. If a QBF is true then there must exist functions for the existentially

quantified variables that certify this. The functions represent a winning strategy for

the existential player on this QBF and are called Skolem functions. When Skolem

functions witnessing the truth of a QBF are substituted into the matrix of the formula

this yields a tautologous propositional formula.

Similarly, if a QBF is false then there must exist certifying functions for the uni-

versally quantified variables, representing a winning strategy for the universal player,

which are called Herbrand functions. When Herbrand functions witnessing the falsity

of a QBF are substituted into the matrix of the formula the result is an unsatisfiable

propositional formula.

QBFs are useful to model a wide variety of problems and the Herbrand or Skolem

functions may correspond to, for example, a piece of code in a program synthesis

problem, a feasible plan in robotic planning, or an example showing that a system or

plan is unsafe. The ability to efficiently extract Skolem or Herbrand functions from a

proof is called strategy extraction.

Many QBF proof systems which use the universal reduction rule are known to have

polynomial time strategy extraction (Balabanov & Jiang, 2011; Egly et al., 2013). For

QBF systems with universal expansion some strategy extraction results are known using

a different technique (Beyersdorff et al., 2015; Goultiaeva et al., 2011).

72

6.1 Redundancy Properties

QRAT is able to simulate both the universal reduction and expansion rules and

uses an exponentially stronger form of propositional reasoning than resolution. With

this power it has been shown to simulate a number of different QBF proof systems,

including LD-Q-Res and ∀Exp + Res (Kiesl & Seidl, 2019; Kiesl et al., 2017).

Strategy extraction on a universal checking format like QRAT would allow a work-

flow in which a proof is extracted from a solver in the standard format, verified and

then the Skolem/Herbrand functions that give the winning strategy are derived from

that proof. This avoids having to extract strategies directly from solvers while they are

running, which may affect performance.

Conversely, the property of strategy extraction can actually provide a source of

weakness in QBF proof systems. As we have seen, for example, Q-Res can always

extract strategies as bounded depth circuits so QBFs with winning strategies that

cannot be expressed in small bounded depth circuits necessarily have large Q-Res proofs.

This is a similar argument to the proof size lower bound technique based on feasible

interpolation (Kraj́ıček, 1997; Pudlák, 1997) in which if a propositional proof system

can extract Craig interpolants (Craig, 1957a) in polynomial time then super-polynomial

interpolant size lower bounds become super-polynomial proof size lower bounds.

Heule et al. (2014a) showed that Skolem functions to certify that a QBF is true

can be extracted in polynomial time from a QRAT proof. In this chapter we show that

Herbrand functions may be extracted from proofs in a restricted version of refutational

QRAT, but that it is not possible in general to efficiently extract Herbrand functions

certifying falsity from proofs in unrestricted QRAT (unless P = PSPACE). This is shown

by demonstrating that there are short QRAT proofs of formulas that have PSPACE-hard

strategies. Thus we show an asymmetry between the refutation of false QBF and proof

of true QBF in the QRAT system. We demonstrate that this is due to the presence

of universal expansion steps which manifest from the powerful reduction rules in the

full QRAT proof system. The proof system ∀Exp + Res also uses universal expansion

but allows polynomial time strategy extraction (Beyersdorff et al., 2015). We end the

chapter by strengthening a connection previously explored in Beyersdorff et al. (2017a)

between strategy extraction and feasible interpolation.

We begin by introducing redundancy properties which are then used to define the

QRAT proof system.

6.1 Redundancy Properties

Definition 6.1.1 (Redundant Clause). Let Φ be a propositional formula in CNF and

let C be a clause. Suppose Φ is satisfiable if and only if Φ∪{C} is satisfiable. Then we

say C is redundant in Φ. Similarly, for a closed QBF Ψ = ΠΦ in PCNF, clause C is

redundant in ΠΦ when ΠΦ and Π′Φ ∪ {C} have the same truth value, where Π and Π′

73

6.1 Redundancy Properties

are identical except that Π′ may contain additional variables from C that do not appear

in Φ.

A redundancy property defines a set of pairs (Φ, C) where C is redundant in Φ.

The simplest redundancy property is Tautology (T). If a clause C is a tautology then

for some variable x, C contains both x and ¬x. C is true under any assignment to the

variables so its inclusion or exclusion cannot affect the overall truth value of a formula

in CNF.

In general, deciding whether a clause in a propositional formula is redundant is

coNP-hard, but there are several useful redundancy properties that can be checked

in polynomial time. These form the basis of many QBF solving and pre-processing

techniques. We define three further redundancy properties for propositional formulas:

Asymmetric Tauology (AT), Resolution Tautology (RT) and Resolution Asymmetric

Tautology (RAT). RAT will then be extended in the next section for QBFs and form

the basis of the QRAT proof system.

Definition 6.1.2. If C is a clause, then C̄ is the conjunction of unit clauses containing

the negations of the literals in C. That is, if C = (l1∨· · ·∨ ln) then C̄ = (l̄1)∧· · ·∧(l̄n).

Recall that unit propagation is defined by the procedure shown in Algorithm 7. We

denote that the clause D can be derived by unit propagation applied to Φ by Φ `1 D.

Unit propagation is a polynomial-time procedure.

Algorithm 7 Unit Propagation

function UnitPropagate(Φ)

while Φ contains unit clause {l} do

Φ← {C \ {l̄} | C ∈ Φ, l /∈ C}

return Φ

Definition 6.1.3 (Asymmetric Tautology). Clause C is an asymmetric tautology with

respect to CNF Φ if Φ ∧ C̄ `1 ⊥.

Observation 6.1.4. If clause C is an asymmetric tautology with respect to CNF Φ

then Φ ∪ {C} and Φ have the same models.

Proof. Let α be an assignment such that α |= Φ. Let n be the number of literals in C.

Since C is an asymmetric tautology with respect to Φ there is a sequence of assignments

τ0, . . . , τm generated through unit propagation. τ0 = {}, and τi = τi−1 ∪{li}, where for

i = 1, . . . , n we have (li) ∈ C̄, and for i = n+ 1, . . .m there is some clause (D ∨ li) ∈ Φ

with D falsified by τi−1.

Since unit propagation must derive the empty clause we know that Φ is not satisfied

by τm, so τm disagrees with α on the assignment of some variable i.e. there exists some

74

6.1 Redundancy Properties

literal l ∈ τm such that l̄ ∈ α. Let j be the minimum index such that τj disagrees with

α.

For every literal l ∈ τj either (l) ∈ C̄ or (D ∨ l) ∈ Φ with D falsified by τj−1. In

the latter case, since we assume that τj−1 agrees with α, and α cannot falsify a clause

in Φ, it follows that l ∈ α. Therefore there exists some (l) ∈ C̄ (i.e. l̄ ∈ C) with l̄ ∈ α,

and so α |= C.

The redundancy properties T and AT can be generalised by considering the re-

solvents of a clause: if all of the resolvents of clause C on literal l are (asymmetric)

tautologies with respect to a CNF Φ then C is also redundant with respect to Φ.

Definition 6.1.5 (Resolution Tautology). Clause C is a resolution tautology with re-

spect to CNF Φ if either C is a tautology or C contains a literal l such that for every

clause D ∈ Φ with l̄ ∈ D the resolvent of C and D on l (i.e. C \ {l} ∪ D \ {l̄}) is a

tautology.

The properties AT and RT recognise different redundancies.

Example 6.1.6.

C0 = (x1 ∨ x2 ∨ x5)

C1 = (¬x1 ∨ x2)

C2 = (¬x2 ∨ ¬x3)

C3 = (x2 ∨ x3)

C4 = (x1 ∨ ¬x3)

C5 = (x1 ∨ x4)

C6 = (¬x4 ∨ ¬x5)

C4 is an asymmetric tautology: τ = {¬x1, x3}, clause C5 adds x4, then C6 adds

¬x5, and C0 adds x2. τ = {¬x1, x3, x4,¬x5, x2} falsifies clause C2.

C4 is not a resolution tautology because the only resolvent on x1 is (x2 ∨ ¬x3) and

the only resolvent on x3 is (x1 ∨ x2), neither of which is a tautology.

Definition 6.1.7 (Resolution Asymmetric Tautology (RAT)). Clause C is a resolution

asymmetric tautology with respect to CNF Φ if either C is an asymmetric tautology or

C contains a literal l such that for every clause D ∈ Φ with l̄ ∈ D the resolvent of C

and D on l is an asymmetric tautology. We say C has RAT on l with respect to Φ.

RAT generalises the both the resolution tautology and asymmetric tautology prop-

erties. Any clause which is a resolution tautology or asymmetric tautology with respect

to a formula Φ also has RAT with respect to Φ, but the converse does not hold.

Example 6.1.8.

C0 = (x1 ∨ x2)

C1 = (¬x1 ∨ x3)

C2 = (x2 ∨ ¬x3)

C3 = (x1 ∨ x3)

75

6.2 The QRAT Proof System

C3 has RAT on x3, but is not as resolution tautology or asymmetric tautology. Resolving

with C2 gives (x1∨x2). This is not a tautology, but it is an asymmetric tautology (since

it is already in the formula).

The RAT property does not necessarily preserve models but does preserve satisfia-

bility.

Observation 6.1.9. If clause C has RAT with respect to CNF Φ then Φ ∪ {C} and

Φ are satisfiability equivalent.

We can prove a slightly more general statement, showing that any model preserving

redundancy property can be lifted by considering also the resolution environment of

the redundant clause.

Observation 6.1.10. Let P be a redundancy property that preserves models, Φ a CNF

and C a clause. If C contains a literal l such that C \ {l}∪D \ {l̄} has property P with

respect to Φ for every D ∈ Φ with l̄ ∈ D, then Φ ∪ {C} is satisfiable if any only if Φ is

satisfiable.

Proof. If Φ has no models then also Φ ∪ {C} has no models. Let α |= Φ. If α is a

model of C then we are done. Otherwise, since all C \ {l} ∪D \ {l̄} have property P,

also α |= C \ {l}∪D \ {l̄} for all D ∈ Φ with l̄ ∈ D. Since α does not satisfy C, α must

satisfy all D \ {l̄}. Let α′ be identical to α except that l evaluates to true. Now Φ is

still satisfied because all the clauses that contain l̄ are satisfied by other variables, and

C is satisfied by l.

We can think of a clausal refutation of a CNF as a sequence of steps that progres-

sively add redundant clauses to the formula until the empty clause can be added. For a

QBF the notion of redundancy also considers the quantifier prefix, but we can similarly

characterise a clausal refutation as adding redundant clauses until the empty clause is

added, and a clausal proof of truth as removing redundant clauses until we have the

empty formula. The RAT property is used as the basis of the RAT proof system with

practical applications in proof checking for SAT solvers. Extending the RAT property

to QBF provides the basis for the QRAT proof system.

It was shown in Heule et al. (2014a) that Skolem functions witnessing the truth of

true QBFs can be extracted in polynomial time from a QRAT proof. Here we investigate

the extraction of Herbrand functions from QRAT refutations.

6.2 The QRAT Proof System

The QRAT system uses some inference rules that are lifted directly from propositional

reasoning, and others that depend on the QRAT property specific to QBFs. For these

we must take the order of variables in the quantifier prefix into account.

76

6.2 The QRAT Proof System

Definition 6.2.1 (Outer Clause, Outer Resolvent). Let ΠΦ be a closed PCNF and let

C be a clause not in Φ. Let Π′ be a prefix including the variables of C and Φ such

that Π is a sub-prefix of Π′ that contains the variables of Φ only. Suppose C contains

a literal l. Consider all clauses D in Φ with l̄ ∈ D. The outer clause OD of D is

OD = {k ∈ D | lv(k) ≤Π lv(l), k 6= l̄}.

The outer resolvent R(C,D,Π, l) is defined as C∪OD when l is existentially quantified,

and C \ {l} ∪OD when l is universally quantified.

As stated, the definition of OD assumes that l appears in Π. It is possible for C to

contain variables that are not included in ΠΦ, however in this case there are no D ∈ Φ

with l̄ ∈ D and so no outer clauses OD need to be defined.

Definition 6.2.2 (Quantified Implied Outer Resolvent (QIOR)). Clause C has prop-

erty QIOR on literal l with respect to PCNF ΠΦ if l ∈ C and Φ |= R(C,D,Π, l) for

all D ∈ Φ with l̄ ∈ D.

The following two theorems are proved in Heule et al. (2017).

Theorem 6.2.3. Let ΠΦ be a closed PCNF and let C be a clause not in Φ. Let Π′ be a

prefix including the variables of C and Φ such that Π is a sub-prefix of Π′ that contains

the variables of Φ only. If C has QIOR on an existentially quantified literal l ∈ C with

respect to ΠΦ then ΠΦ and Π′Φ ∧ C have the same truth value.

Theorem 6.2.4. Let ΠΦ be a closed PCNF and let C be a clause not in Φ. If (C ∨ l)
has QIOR on universally quantified literal l with respect to ΠΦ then ΠΦ ∧ (C ∨ l) and

ΠΦ ∧ C have the same truth value.

Because it is hard to check whether Φ |= R(C,D,Π, l) we instead use unit propa-

gation to define the QRAT property.

Definition 6.2.5 (Quantified Resolution Asymmetric Tautology(QRAT)). Clause C

has QRAT on literal l with respect to PCNF ΠΦ if C contains the literal l and Φ `1

R(C,D,Π, l) for every clause D ∈ Φ with l̄ ∈ D.

This is equivalent to requiring that the outer resolvent of C and D on l is an

asymmetric tautology for all D ∈ Φ with l̄ ∈ D.

A QRAT proof begins with a PCNF ΠΦ that is then edited throughout the proof by

satisfiability preserving rules. New conjuncts can be added and clauses can be altered

or deleted. Some rules are based on the whole current status of the QBF and not only

on a feature of the clause being modified. A refutation ends when the empty clause

has been added to the formula, for a true QBF a proof ends when the matrix is empty.

We now state the rules from Heule et al. (2014b) that define the QRAT proof system.

77

6.2 The QRAT Proof System

Definition 6.2.6 (Asymmetric Tautology Addition (ATA)). Let ΠΦ be a closed PCNF

and let C be a clause not in Φ. Let Π′ be a prefix including the variables of C and Φ

such that Π a sub-prefix of Π′ that contains the variables of Φ only. We can make the

following inference when C is an asymmetric tautology with respect to Φ.

ΠΦ (ATA)
Π′Φ ∧ C

The QRAT proof system is defined so that Π′Φ ∧ C replaces ΠΦ.

Definition 6.2.7 (Asymmetric Tautology Elimination (ATE)). Let Π′Φ be a closed

PCNF and let C be a clause not in Φ. Let Π be a prefix including the variables of C

and Φ such that Π′ is a sub-prefix of Π that contains the variables of Φ only. We can

make the following inference when C is an asymmetric tautology with respect to Φ.

ΠΦ ∧ C (ATE)
Π′Φ

ATA and ATE are sound by Observation 6.1.4.

Definition 6.2.8 (Quantified Resolution Asymmetric Tautology Addition (QRATA)).

Let ΠΦ be a closed PCNF and let C be a clause not in Φ. Let Π′ be a prefix including

the variables of C and Φ such that Π a sub-prefix of Π′ that contains the variables of Φ

only. We can make the following inference when C has QRAT with respect to ΠΦ on

an existentially quantified literal l.

ΠΦ (QRATA on l)
Π′Φ ∧ C

Correctness follows from Theorem 6.2.3. QRATA allows new variables to be intro-

duced that were not in the initial prefix, and so allows us to add extension variables

(as defined in Section 3.1). Although ATA also allows new variables to be introduced

it is not sufficiently powerful to introduce extension variables in general.

Example 6.2.9. Suppose we want to add extension variable t that is equivalent to

(¬x ∨ ¬y). First add clause (¬x ∨ ¬y ∨ ¬t) quantifying t with higher level than x and

y. This can be added with QRATA on ¬t. Because t does not occur in any other clause

the condition is vacuously satisfied.

The two other clauses (x∨t) and (y∨t) can also be added via QRATA on t. The only

clause D that has to be checked is (¬x ∨ ¬y ∨ ¬t). The outer clause OD = (¬x ∨ ¬y)

so we need to show unit propagation on Φ ∧ C̄ ∧ x ∧ y derives the empty clause for

C = (x∨ t) and C = (y∨ t). Since C̄ therefore includes (¬x) or (¬y) (respectively) this

is immediate.

78

6.2 The QRAT Proof System

Definition 6.2.10 (Quantified Resolution Asymmetric Tautology Elimination (QRATE)).

Let Π′Φ be a closed PCNF and let C be a clause not in Φ. Let Π be a prefix including

the variables of C and Φ such that Π′ a sub-prefix of Π that contains the variables of Φ

only. We can make the following inference when C has QRAT with respect to ΠΦ on

an existentially quantified literal l.

ΠΦ ∧ C (QRATE on l)
Π′Φ

Again, correctness follows from Theorem 6.2.3.

Definition 6.2.11 (Quantified Resolution Asymmetric Tautology Universal (QRATU)).

Let ΠΦ∧(C∨l) be a closed PCNF. Let Π′ be a sub-prefix of Π that contains the variables

of Φ and C only. If l is universally quantified in Π and C has QRAT with respect to

ΠΦ on l then we can make the following inference.

ΠΦ ∧ (C ∨ l)
(QRATU on l)

Π′Φ ∧ C
Correctness of QRATU follows from Theorem 6.2.4.

Definition 6.2.12 (Extended Universal Reduction (EUR)). Let ΠΦ ∧ (C ∨ l) be a

closed PCNF. Let Π′ be a sub-prefix of Π that contains the variables of Φ and C only.

Let l be a universally quantified literal. Consider extending C by

C ← C ∪ {k ∈ D | lv(k) >Π lv(l) or k = l̄}

where D ∈ Φ is any clause with some p ∈ C and p̄ ∈ D such that lv(p) >Π lv(l).

Continue extending C in this way until we reach a fixed point, denoted ε.

We can make the following inference when l̄ /∈ ε.

ΠΦ ∧ (C ∨ l)
(EUR)

Π′Φ ∧ C
EUR encompasses the universal reduction rule (∀-Red) used in Q-Res but EUR is

strictly stronger than ∀-Red because it uses a dependency scheme from Slivovsky &

Szeider (2014). The procedure C ← C ∪ {k ∈ D | lv(k) >Π lv(l) or k = l̄} finds every

clause that can be reached from C via resolution steps with pivot variable later in

the quantified prefix than l. Suppose that Π′Φ ∧ C is false. Then there is a winning

universal strategy witnessing the fact, and we can play according to this strategy until

var(l). Now the remaining formula must be false, so there is a Q-Res refutation of

it. Suppose that the clause C, restricted according to the assignments made so far, is

used in this Q-Res refutation. Then all the other clauses used in the refutation can be

reached via resolution steps with pivot variable later in the quantified prefix than l. If

none of these clauses contain l̄ then clearly the universal player can assign l to be false

79

6.2 The QRAT Proof System

and the restricted QBF remains false. As a result, l could be added into the clause C

without affecting the truth of the restricted formula. If, on the other hand, C is not

used in the Q-Res refutation of the restricted QBF, then C can be modified without

affecting the refutation at all, so the QBF remains false. Since the same argument

holds for any restricted QBF reached by playing according to any winning universal

strategy, we can conclude that when Π′Φ ∧ C is false and l̄ /∈ ε then also ΠΦ ∧ (C ∨ l)
is false.

While refutational QRAT works perfectly well with the standard universal reduc-

tion rule, Extended Universal Reduction is used because it allows QRAT to simulate

expansion steps used in QBF pre-processing. Note that this is the only pre-processing

rule that required the Extended Universal Reduction rule. In principle, QRAT could be

augmented with any sound dependency scheme used as the basis of its reduction rule.

Definition 6.2.13 (Clause Deletion). Let Π′Φ be a closed PCNF and let C be a clause

not in Φ. Let Π be a prefix containing all the variables in both Φ and C such that

Π′ is a sub-prefix of Π which contains the variables of Φ only. In refutational QRAT

clauses may be arbitrarily deleted without checking if they conform to a rule. This is

not permitted in satisfaction QRAT.

ΠΦ ∧ C
Π′Φ

Because some of the rules consider every clause contained in Φ, clause deletion may

not be superficial. A clause may need to be deleted in order for EUR to be performed,

for example. Similarly for QRATA and QRATU on l, the property considers all other

clauses that contain the complimentary literal l̄.

The rules of QRAT together are refutationally complete and simulate Extended

Q-Res (Q-Res with the addition of extension variables). Because refutational QRAT

permits arbitrary clause deletion the other rules for clause deletion, QRATE and ATE,

are not necessary. Without Clause Deletion, QRAT is a sound and complete system for

proving true QBF. When checking a QRAT proof of satisfiability it is only necessary to

check the lines which remove clauses by QRATE and ATE.

A Weaker Version of QRAT

Let QRAT(X) be QRAT with the EUR rule replaced by reduction rule X. This means

that the standard QRAT is given by QRAT(EUR). An alternative would be to use the

universal reduction rule from Q-Res, which allows

ΠΦ ∧ (C ∨ l)
(∀-Red)

ΠΦ ∧ C
for universally quantified l whenever lv(l) > lv(x) for all existentially quantified x in

C. We call this simplest version QRAT(UR).

80

6.3 Strategy Extraction in QRAT(UR)

EUR is not essential to the underlying techniques of QRAT and QRAT(UR) can still

simulate the main pre-processing techniques except for universal expansion. In addition

EUR is not required to simulate Extended Q-Res as this can be done with the simpler

reduction rule. Extension clauses are added using QRATA on the extension variable,

resolution uses ATA, and the universal reduction rule is the same in QRAT(UR) and

Extended Q-Res.

We now come to the first main result of this chapter: refutational QRAT(UR) has

strategy extraction.

6.3 Strategy Extraction in QRAT(UR)

In order to show that QRAT(UR) has polynomial-time strategy extraction on false QBFs

we will inductively compute a winning universal strategy for formulas at each step of

the QRAT(UR) proof, starting from the final proof step.

For the inductive step we need to construct a winning strategy σ for the formula

prior to some proof step from σ′, a known winning strategy for the formula after

that proof step. We prove that this is possible for each derivation rule in refutational

QRAT(UR) (i.e. ATA, QRATA, QRATU, ∀-Red, Clause Deletion). The strategy σ is

composed of Herbrand functions σu for each universal variable u. A Herbrand function

σu for QBF ΠΦ takes as input an assignment to existentially quantified variables x

with lv(x) ≤Π lv(u) and outputs 0 or 1, an assignment for u.

Definition 6.3.1. Let Ψ = ΠΦ be a closed PCNF and let σ be a universal strategy

for Ψ. Let τ∃ be an assignment to the existentially quantified variables of Ψ and τ

an extension of τ∃ to all of the variables of Ψ. Then τ is consistent with σ if for all

universally quantified u in Ψ we have that τ(u) = σu(τ∃).

In σu(τ∃) only the assignments to variables earlier than u in the prefix are actually

relevant, the later part of the assignment does not affect the output of σu.

Lemma 6.3.2. If Π′Φ ∧C is derived from ΠΦ by ATA, and σ′ is a winning universal

strategy for Π′Φ ∧ C, then we can construct a winning universal strategy σ for ΠΦ.

Proof. Clause C is added by ATA so Φ ∧ C̄ `1 ⊥. Therefore, any assignment that

falsifies C also falsifies Φ.

σ′ is a strategy that ensures Π′Φ ∧ C is falsified given any existential assignment.

Let τ∃ be an assignment to the existential variables and τ its extension consistent with

the Herbrand functions of σ′. We know that τ falsifies Φ or C since σ′ is a winning

strategy for Π′Φ∧C. But if τ falsifies C then, since C is an asymmetric tautology with

respect to Φ, also τ falsifies Φ.

81

6.3 Strategy Extraction in QRAT(UR)

Let σ = σ′ except that if Π 6= Π′ then any existential input variable that does not

appear in Φ can be restricted in σ to 0 or 1 arbitrarily (there is a winning strategy for

either assignment, so we just pick one). If a universal variable is in Π′ but not Π it

will have no effect on the outcome of the game for ΠΦ and there is no strategy for this

variable in σ.

Every assignment consistent with σ falsifies Φ so σ is a winning universal strategy

for ΠΦ.

Lemma 6.3.3. If Π′Φ∧C is derived from ΠΦ by QRATA, and σ′ is a winning universal

strategy for Π′Φ ∧ C, then we can construct a winning universal strategy σ for ΠΦ.

Proof. C contains some existential literal l such that for every D ∈ Φ with l̄ ∈ D and

outer clause OD, Π′Φ∧ C̄ ∧ ŌD `1 ⊥. For notational convenience we split C into three

parts: the literals before l in the prefix, those after l in the prefix, and l itself. We

define

A = {k ∈ C | k 6= l, lv(k) ≤Π lv(l)},

B = {k ∈ C | lv(k) >Π lv(l)}.

Therefore C = (A ∨ l ∨B) and

Π′Φ ∧ Ā ∧ l̄ ∧ B̄ ∧ ŌD `1 ⊥,

and the derivation to be considered is rewritten.

ΠΦ (QRATA on l)
Π′Φ ∧ (A ∨ l ∨B)

Initially we assume Π = Π′. Let u be a universally quantified variable in Π. If

lv(u) <Π lv(l) then σu = σ′u. If lv(u) >Π lv(l) then it is necessary to consider two cases

(we don’t need to consider lv(u) = lv(l) since l is existentially quantified).

Let τ∃ be an assignment to the existentially quantified variables and let τ denote

the extension of τ∃ consistent with σ′.

σu(τ∃) =

σ′u(τ ′∃) if τ(A ∨ l) = 0, but for every clause D with l̄ ∈ D

if OD is the outer clause of D then τ(OD) = 1

where τ ′∃ differs from τ∃ only on variable l

such that l is satisfied by τ ′∃,

σ′u(τ∃) otherwise.

Both (A ∨ l) and OD only contain literals whose level is no greater than lv(l), and

lv(u) > lv(l) so σu only depends on variables from earlier levels in the quantifier prefix

as required.

82

6.3 Strategy Extraction in QRAT(UR)

We need to show that σ actually falsifies ΠΦ. Now consider an assignment τ which

is consistent with σ. We will show that τ(Φ) = 0. σ and σ′ are identical for variables

earlier than l in Π′, so for these variables τ is also consistent with σ′.

Suppose that τ satisfies A, then τ(A∨ l) = 1 so for all u with lv(u) > lv(l) we have

σu(τ∃) = σ′u(τ∃). Therefore σ and σ′ are identical. Because τ is consistent with σ′ we

know it falsifies Π′Φ∧ (A∨ l∨B). Since we have assumed τ satisfies A it cannot falsify

(A ∨ l ∨B) and instead τ falsifies ΠΦ.

Now suppose that τ falsifies A but satisfies the outer clauses of every D with l̄ ∈ D.

Consider an assignment to the existentially quantified variables only which, for these

variables, is identical to τ except that l evaluates to true. Call this assignment τ ′∃. Let

τ ′ be the extension of τ ′∃ which is consistent with σ′. The assignments τ ′ and τ must

be identical on all variables earlier than l in Π′. Since τ ′ satisfies (A∨ l∨B) (because l

is true in τ ′) it must falsify some clause in Φ. Now modifying τ ′ so that l evaluates to

false cannot satisfy any additional clauses in Φ since, by assumption, the outer clauses

of all D with l̄ ∈ D are already satisfied. Under σ all universal variables occurring after

l in the prefix are assigned according to σ′ as if l were made true. This will falsify some

clause in Φ regardless of which value is actually assigned to l.

If τ falsifies A but also falsifies the outer clause OD of some clause D with l̄ ∈ D
then we know that the responses from σ here are defined to be identical to the original

σ′, and either τ falsifies Φ or τ falsifies (A ∨ l ∨ B). Since Π′Φ ∧ Ā ∧ l̄ ∧ B̄ ∧ ŌD `1 ⊥
and τ falsifies OD, it follows that if τ falsifies (A ∨ l ∨B) then Φ is also falsified by τ .

If in fact Π 6= Π′ then Π′ contains more variables than Π. To obtain strategies for

the variables in Π we first construct the strategies as above, assuming prefix Π′, then

fix these as in Lemma 6.3.2 to not include the variables missing from Π. Existentially

quantified variables not in Π are restricted in σ to 0 or 1 arbitrarily. Universally

quantified variables not in Π simply have their strategies removed from σ.

Example 6.3.4. Consider a QBF with prefix ∃abcl∀u and matrix Φ = (a ∨ b ∨ ¬u) ∧
(¬b ∨ u) ∧ (b ∨ l ∨ u) ∧ (b ∨ ¬l ∨ u), and clause (a ∨ c ∨ l ∨ ¬u).

The only clause that contains ¬l in Φ is (b ∨ ¬l ∨ u), so the only outer clause we

need to consider is (b). ∃abcl∀u Φ ∧ ¬b ∧ ¬a ∧ ¬c ∧ ¬l ∧ u `1 ⊥ so QRATA is possible

on l.

A winning strategy for the universal player after the new clause is added is to play

u to 1 if and only if a, c and l are all 0. In our strategy extraction we derive the strategy

prior to when QRATA is used.

• If any of a, c, l are 1, we can continue to set u to 0 and falsify some clause in Φ

not containing ¬u.

• If a, b, c, l are all 0, we falsify the only outer clause (b) thus we know via unit

83

6.3 Strategy Extraction in QRAT(UR)

propagation some other clause (here (a ∨ b ∨ ¬u)) will be falsified if we continue

to falsify (a ∨ c ∨ l ∨ ¬u) by setting u to 1. We keep playing the old strategy for

this reason.

• If a, c, l are all 0 and b is 1, setting u to 1 no longer works as it only falsifies the

added clause, we instead see what happens when l is flipped to 1. The strategy

now says to set u to 0, and this leads to falsifying clause (¬b ∨ u).

Lemma 6.3.5. If Π′Φ∧C is derived from ΠΦ∧(C∨ l) by QRATU, and σ′ is a winning

universal strategy for Π′Φ ∧ C, then we can construct a winning universal strategy σ

for ΠΦ ∧ (C ∨ l).

Proof. The rule QRATU removes universal literal l from (C ∨ l). As before, it is useful

to have notation for sub-clauses of C containing the variables prior to and later than l in

the prefix. Let A = {k ∈ C | k 6= l, lv(k) ≤Π lv(l)}, and B = {k ∈ C | lv(k) >Π lv(l)}
so that (C ∨ l) = (A ∨ l ∨B).

ΠΦ ∧ (A ∨ l ∨B)
(QRATU on l)

Π′Φ ∧ (A ∨B)

For every clause D ∈ Φ with l̄ ∈ D and outer clause OD, it holds that

Π′ Φ ∧ Ā ∧ B̄ ∧ ŌD `1 ⊥.

We have a winning universal strategy σ′ for Π′Φ ∧ (A ∨ B) and we will use this to

construct a winning strategy σ for ΠΦ ∧ (A ∨ l ∨B). Let u be a universally quantified

variable in Π. If var(l) 6= u then σu = σ′u. If var(l) = u and u does not appear in Π′

then σu = a, where a ∈ {0, 1} falsifies l.

Otherwise, if var(l) = u, for each assignment to the existentially quantified variables

τ∃ prior to u in Π we need to define the output of σu. Let τ denote the extension of τ∃

consistent with σ′.

σu(τ∃) =

a if τ(A) = 0, but for every clause D with l̄ ∈ D

if OD is the outer clause of D then τ(OD) = 1

where a ∈ {0, 1} is such that setting u to a falsifies l,

σ′u(τ∃) otherwise.

The definition ensures that the decision for how to assign u depends only on variables

whose level is no greater than u.

We need to show that σ actually falsifies ΠΦ∧ (A∨ l ∨B). Let τ be an assignment

that is consistent with σ. Other than the assignment to var(l) we know that τ is also

consistent with σ′.

84

6.3 Strategy Extraction in QRAT(UR)

If τ satisfies A then τ is also completely consistent with σ′ so it must also falsify

Φ ∧ (A ∨B). Since τ satisfies A, there is some clause in Φ that τ falsifies.

If τ falsifies A but satisfies the outer clauses of all D with l̄ in D then it may be

that τ is not consistent with σ′ on var(l). We observe that there is an assignment τ ′

consistent with σ′ which is identical to τ except possibly on var(l), which is assigned

by τ so that l is falsified. Therefore τ ′ satisfies all the outer clauses and modifying τ ′ so

that l evaluates to false (i.e. to τ) cannot satisfy any additional clauses in Π′Φ∧(A∨B).

Since σ′ is a winning strategy, τ ′ falsifies Π′Φ ∧ (A ∨ B). If τ ′ falsifies a clause in Φ

then τ falsifies the same clause. If τ ′ falsifies (A ∨B) then τ falsifies (A ∨ l ∨B).

If τ falsifies A, and for some D with l̄ ∈ D the outer clause OD of D is also falsified,

then τ is fully consistent with σ′, so it falsifies either Φ or (A ∨ B). If τ falsifies some

clause in Φ then we are done. If τ falsifies (A ∨ B) then τ falsifies OD ∨ (A ∨ B) so it

must also falsify Φ since Π′Φ ∧ Ā ∧ B̄ ∧ ŌD `1 ⊥ by the condition for QRATU.

Lemma 6.3.6. (Balabanov & Jiang, 2012) If Π′Φ ∧ C is derived from ΠΦ ∧ (C ∨ l)
by universal reduction, and σ′ is a winning universal strategy for Π′Φ∧C, then we can

construct a winning universal strategy σ for ΠΦ ∧ (C ∨ l).

Proof. The universal reduction rule removes l from clause (C ∨ l) where lv(x) ≤Π lv(l)

for every literal x ∈ C.

ΠΦ ∧ (C ∨ l)
(∀-Red)

Π′Φ ∧ C
Let σu = σ′u when var(l) 6= u. If var(l) = u and u does not appear in Π′ then σu = a

where a ∈ {0, 1} falsifies l. Otherwise, if var(l) = u then for each assignment τ∃ to the

existential variables let τ be the extension of τ∃ consistent with σ′ and let σu be defined

as follows.

σu(τ∃) =

a if τ(C) = 0

where a ∈ {0, 1} is such that setting u to a falsifies l,

σ′u(τ∃) otherwise

This deviates from σ′ exactly when C is falsified, and always falsifies (C ∨ l) in that

case. So Φ ∧ (C ∨ l) is always falsified under σ.

Lemma 6.3.7. If Π′Φ is derived from ΠΦ ∧C by clause deletion, and σ′ is a winning

universal strategy for Π′Φ, then we can can construct a winning universal strategy σ

for ΠΦ ∧ C.

Proof. Clause deletion allows to derive Π′Φ from ΠΦ∧C. We simply let σu = σ′u. Since

σ′ always falsifies a clause from Φ then also σ will falsify a clause from Φ.

85

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction

Theorem 6.3.8. QRAT(UR) has polynomial-time strategy extraction on false QBFs.

Proof. We inductively show that we can compute a winning strategy σ on the current

formula ΠΦ during our steps of QRAT(UR). This strategy can be constructed as a

circuit with polynomial size in the length of the QRAT(UR) proof of ΠΦ and consists

of Herbrand functions σu for each of the universal variables u in the formula, taking as

input existentially quantified variables from earlier blocks in the quantifier prefix.

We work backwards in the proof. Initially (i.e. at the end of the proof) we have the

empty clause in the formula so any universal strategy is winning. Therefore in the base

case we take a strategy that sets all universal variables to 0.

For the inductive steps we construct a new strategy σ for ΠΦ based on σ′ for Π′Φ′,

which is possible by Lemmas 6.3.2, 6.3.3, 6.3.5, 6.3.6, 6.3.7. The circuits σu constructed

for ATA and clause deletion steps are no larger than σ′u. For universal reduction we

have one copy of σ′u and a circuit to check whether C is satisfied. For QRATU we need

a circuit to determine if A and each of the outer clauses are satisfied. The result of

this together with the output of σ′u determines the final value for u. For QRATA a

new circuit is added to decide whether (A ∨ l) and the outer clauses are satisfied. The

output of this is used to possibly change the input to σ′u, which can be achieved with

a small sub-circuit. Crucially, only one copy of σ′u is needed. On reaching the first line

of the proof we have a strategy for the initial formula which can be constructed as a

polynomial-size circuit, giving us strategy extraction.

6.4 Unrestricted Refutational QRAT Does Not Have

Strategy Extraction

So far we have considered the restricted version of QRAT which allows universal re-

duction (∀-Red) but not extended universal reduction (EUR). In this section we will

turn out attention to the unrestricted version of QRAT and show that polynomial-time

strategy extraction is not possible in this system. Together these results clearly point

to EUR as the reason that QRAT lacks strategy extraction. We further demonstrate

that the ability to perform universal expansion is key.

We begin by constructing formulas that have short refutations in QRAT but may

require a large strategy for one of the universal variables. The idea is to use the con-

junction of a QBF and its negation (the negated formula is defined over new variables).

This gives rise to pairs of variables in the conjunction, and in each pair one variable is

existentially quantified and the other is universally quantified.

Recall that we can conceptualise a QBF as a two player game with one player

responsible for making assignments to the existentially quantified variables and the

other responsible for making assignments to the universally quantified variables. As-

86

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction

signments are made in the order of the quantifier prefix. Then the negation of a QBF

can be thought of as representing the same game as the original, but with the role of

the players switched.

We interleave the prefixes of the original QBF and its negation so that each exis-

tential assignment is made before the associated universal assignment. Only one of the

conjuncts needs to be made false so a simple winning strategy for the universal player

is to always copy the associated existential assignments. The situation is analogous

to forcing the existential player to play against themselves, and requiring them to win

from both positions.

The easy winning strategy is essential for the short proofs, but despite the guar-

anteed win, it is PSPACE-hard in the worst case to find out which game the universal

player wins prior to playing because this depends on the exact choices made by the

existential player throughout the game. Modifying the formulas with an extra universal

variable that requires the calculation of who wins generates a family of QBFs that have

a large universal strategy but still retain short QRAT proofs. As we will see, a single

universal expansion or EUR step allows us to return to the previous easy problem.

6.4.1 Duality Formulas

In this section we will define formulas that represent the conjunction of a QBF and

its negation, and show how a short QRAT proof can be uniformly obtained for these

formulas.

Let X be a set of variables X = {x1, . . . , x2n}. ΠΦ(X) is a QBF where Π is a prefix

binding all variables in X. More specifically, Π = ∀x1∃x2∀x3 . . . ∃x2n and Φ(X) is a

CNF in the variables X.

We also define a second set of 2n variables X ′ = {x′1, . . . , x′2n} and an alternative

prefix Π′ = ∃x′1∀x′2∃x′3 . . . ∀x′2n. The QBF ΠΦ(X)∧Π′¬Φ(X ′) is necessarily false for any

choice of CNF Φ(X). However this QBF is not in PCNF, which many proof systems,

including QRAT, require.

The formula ¬Φ(X ′) can be transformed into a CNF Φ̄(X ′, T) by the use of Tseitin

variables T = {tK | K ∈ Φ(X)}. We overload the ′ notation:

• For a literal l if l = xi then l′ = x′i and if l = ¬xi then l′ = ¬x′i,

• For each clause K ∈ Φ(X) we denote the corresponding clause in Φ(X ′) as K ′ so

that K ′ =
∨
l∈K l

′.

The CNF Φ̄(X ′, T) is required to be true precisely when Φ(X ′) is false. First,

introduce clauses stating that Tseitin variable tK is true if and only if clause K ′ is

satisfied. Then Φ(X ′) is false if and only if at least one tK is false, so we will also add

a clause specifying that this must hold.

87

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction

Therefore Φ̄(X ′, T) contains the following clauses:

• (¬tK ∨K ′) for each clause K in Φ(X),

•
(
l̄′ ∨ tK

)
for each literal l in K,

•
(∨

K∈Φ(X) ¬tK
)

.

Next the QBF is put into prenex form so that all of the variables (including the

Tseitin variables) are quantified together before both Φ(X) and Φ̄(X ′, T). We place

every universal variable to the right of its existential version. The auxiliary T variables

must be placed at the end of the prefix and are existentially quantified. Thus, from

any PCNF Ψ = ΠΦ we generate a formula Duality(ΠΦ) which encodes in PCNF the

claim that both Ψ and its negation are true.

Duality(ΠΦ) = ∃x′1∀x1∃x2∀x′2 . . . ∃x′2n−1∀x2n−1∃x2n∀x′2n∃T Φ(X) ∧ Φ̄(X ′, T)

6.4.2 Short proofs of Duality Formulas

The technique for showing that the Duality formulas have short proofs is inspired by a

result in Beyersdorff et al. (2018). The authors demonstrate short Frege +∀red proofs

of a family of QBFs that take a representation of a graph and state that there is a

k-clique (Clique) and also that there is no k-clique (Co-Clique). The short proofs

exploit the fact that the Co-Clique part of the formula was structured in a similar

way to the Clique part.

We generalise this approach to give short proofs of the Duality formulas. We will

first give a sketch proof of how this is done using Frege +∀red rules to provide intuition

for the argument before describing the steps of the QRAT refutation in detail.

Frege +∀red is simply a propositional Frege system augmented with the ∀-Red rule

for removing universally quantified variables by allowing the substitution of a Boolean

value for universally quantified u in any previously derived line where lv(u) > lv(x) for

all existentially quantified x in the proof line.

The clauses in Duality(ΠΦ) state
∧
K (tK ↔ K ′),

∨
K ¬tK and

∧
K where clause

K ′ is identical to clause K with all instances of xi replaced with x′i (for all i). From

an assumption
∧2n
i=1 (xi ↔ x′i) we can find a contradiction in polynomially many Frege

steps. We give an outline of the derivation.

∨
K ¬tK

∧
K

∧
K (tK ↔ K ′)

∧2n
i=1 (xi ↔ x′i)∧

K (tK ↔ K)∧
K tK

⊥

88

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction

Therefore we conclude that
∨2n
i=1 ¬(xi ↔ x′i).

Now, starting from the variables quantified innermost in the prefix, we perform

universal reduction on all universally quantified x′2j and x2j−1. The first universal

reduction step sets x′2n to 0, and we substitute this into
∨2n
i=1 ¬(xi ↔ x′i).

¬(x2n ↔ 0) ∨
2n−1∨
i=1

¬(xi ↔ x′i)

This simplifies to

x2n ∨
2n−1∨
i=1

¬(xi ↔ x′i).

Reduction can also be done by substituting 1 for x′2n, which simplifies to

¬x2n ∨
2n−1∨
i=1

¬(xi ↔ x′i).

We can resolve these two disjunctions together and conclude
∨2n−1
i=1 ¬(xi ↔ x′i).

Now x2n−1 is the innermost universally quantified variable. The same sequence

of steps is applied for each universal variable in reverse level order and leads to a

contradiction which completes the proof.

This idea also works in QRAT and the short refutations we construct have a uniform

structure. These refutations do not use EUR. The ∀-Red rule is sufficient.

Theorem 6.4.1. Given a formula Duality(ΠΦ) we can construct a polynomial-size

QRAT(UR) refutation of Duality(ΠΦ).

Proof. Let |K| be the number of literals in clause K ∈ Φ. We have that |Duality(ΠΦ)| ≥
|Φ| ≥ ΣK∈Φ|K|. Recall ΠΦ has 2n variables.

Extension Variables The refutation begins by using QRATA (Definition 6.2.8) to

introduce an extension variable eqxi for each xi ∈ X. Each eqxi is existentially quanti-

fied and is introduced to the prefix so that

• lv(eqxi) > lv(xi) and lv(eqxi) > lv(x′i),

• lv(eqxi) < lv(xj) and lv(eqxi) < lv(x′j) for every j > i.

This is possible since both xi and x′i appear before xj and x′j in the quantifier prefix

whenever j > i.

For each xi ∈ X use QRATA to add four clauses:

• (¬xi ∨ x′i ∨ ¬eqxi),

• (xi ∨ ¬x′i ∨ ¬eqxi),

89

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction

• (¬xi ∨ ¬x′i ∨ eqxi),

• (xi ∨ x′i ∨ eqxi).

Recall that adding a clause by QRATA requires that we have an existential literal l in

the new clause C such that Φ ∧ C̄ ∧ ŌD `1 ⊥ for all D with l̄ ∈ D. For the first two

clauses this is vacuously satisfied with l = ¬eqxi since eqxi does not appear positively

anywhere in the formula.

To add the third and fourth clauses let l = eqxi and consider the two outer clauses

(¬xi ∨ x′i) and (xi ∨ ¬x′i). The QRATA condition is satisfied for (¬xi ∨ ¬x′i ∨ eqxi)

because xi ∧ x′i ∧ xi ∧ ¬x′i `1 ⊥ and xi ∧ x′i ∧ ¬xi ∧ x′i `1 ⊥, and similarly for the final

clause.

For each of the original 2n variables in ΠΦ we have added four clauses of constant

size. Following O(n) steps the formula has increased in length by O(n) characters.

Non Equivalence of X and X ′ The next three steps are equivalent to those in the

derivation of
∨2n
i=1 ¬(xi ↔ x′i) in the sketch proof above. By ATA (definition 6.2.6) we

derive:

• (
∨2n
i=1 ¬eqxi ∨ tK ∨ l̄) for every K ∈ Φ(X) and every l ∈ K.

For every such l we already have clauses (l̄∨ l′∨¬eqvar(l)) and (l̄′∨ tK) in Φ. The

condition for ATA is satisfied since

2n∧
i=1

eqxi ∧ ¬tK ∧ l ∧ (l̄ ∨ l′ ∨ ¬eqvar(l)) ∧ (l̄′ ∨ tK) `1 ⊥.

• (
∨2n
i=1 ¬eqxi ∨ tK) for every K ∈ Φ(X).

The condition for ATA is satisfied since

2n∧
i=1

eqxi ∧ ¬tK ∧
∧
l∈K

(

2n∨
i=1

¬eqxi ∨ tK ∨ l̄) ∧K `1 ⊥.

• (
∨2n
i=1 ¬eqxi).

The condition for ATA is satisfied since

2n∧
i=1

eqxi ∧
∧

K∈Φ(x)

(

2n∨
i=1

¬eqxi ∨ tK) ∧
∨

K∈Φ(X)

¬tK `1 ⊥.

Each clause has O(n) literals and there are at most |Φ| clauses of each type. In O(|Φ|)
proof steps the formula has increased in length by O(n|Φ|).

90

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction

Removing the Universal Variables Finally, we want to derive (
∨j−1
i=1 ¬eqxi) for

j = 2n . . . 1 (thus j = 1 means that we have derived the empty clause). Assuming that

we already have (
∨j
i=1 ¬eqxi) we can use ATA to add:

• (
∨j−1
i=1 ¬eqxi ∨ xj ∨ x

′
j).

For every xi we have clause (xi ∨ x′i ∨ eqxi). The ATA condition is satisfied since

j−1∧
i=1

eqxi ∧ ¬xj ∧ ¬x
′
j ∧ (xj ∨ x′j ∨ eqxj) ∧

j∨
i=1

¬eqxi `1 ⊥.

• (
∨j−1
i=1 ¬eqxi ∨ ¬xj ∨ ¬x

′
j).

For every xi we have (¬xi ∨ ¬x′i ∨ eqxi) and the ATA condition is satisfied since

j−1∧
i=1

eqxi ∧ xj ∧ x
′
j ∧ (¬xj ∨ ¬x′j ∨ eqxj) ∧

j∨
i=1

¬eqxi `1 ⊥.

In clauses (
∨j−1
i=1 ¬eqxi ∨ xj ∨ x

′
j) and (

∨j−1
i=1 ¬eqxi ∨ ¬xj ∨ ¬x

′
j), whichever of xj

and x′j is universally quantified is innermost in Π by the construction of Duality(ΠΦ)

and the decision of where to introduce the variables eqxi in the prefix. Without loss

of generality, assume x′j is universally quantified so we can use universal reduction to

derive clauses (
∨j−1
i=1 ¬eqxi ∨ xj) and (

∨j−1
i=1 ¬eqxi ∨ ¬xj), then ATA allows to add the

resolvent (
∨j−1
i=1 ¬eqxi).

For each of the 2n variables from Φ there are five proof steps in this final part of the

refutation, each introducing a new clause of size O(n), and in total the formula has in-

creased in length by O(n2). The whole refutation therefore has size O(|Duality(ΠΦ)|2).

6.4.3 Making Strategies Hard

The formulas Duality(ΠΦ) have short winning strategies for the universal player, namely

to always play so that xi = x′i. By construction one or other of Φ(X) or Φ̄(X ′, T) will be

falsified, but which sub-formula is falsified depends on the existential assignments. We

know also that one of ΠΦ(X) or Π′Φ̄(X ′, T) is false and so has a winning strategy for the

universal player. Deciding which sub-formula is false is PSPACE-hard and the winning

strategy for the false formula could be much more complicated than the strategy for

Duality(ΠΦ). We introduce formulas exploiting this hardness.

Select(ΠΦ) = ∀u Q ∃T Φu(X) ∧ Φ̄¬u(X ′, T)

where Φu(X) =
∧

K∈Φ(X)

(K ∨ u) and Φ̄¬u(X ′, T) =
∧

K∈Φ̄(X′,T)

(K ∨ ¬u)

and Q = ∃x′1∀x1∃x2∀x′2 . . . ∃x′2n−1∀x2n−1∃x2n∀x′2n

91

6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction

When u = 1, all clauses in Φu(X) are satisfied, and the literal ¬u is removed from

every clause in Φ̄¬u(X ′, T), so that we’re left with Φ̄(X ′, T). Similarly, when u = 0 we

are left with Φ(X). Therefore, the winning strategy for the universal player requires

knowing which of Φ(X) and Φ̄(X ′, T) is false.

6.4.4 Short Proofs of Select Formulas in QRAT

We use the formulas Select(ΠΦ) to show that refutational QRAT does not have strategy

extraction under a widely accepted complexity assumption.

Theorem 6.4.2. QRAT has polynomial-size uniform proofs of Select(ΠΦ) for any QBF

ΠΦ.

Proof. The first step in the proof is to use Extended Universal Reduction (EUR) to

remove u from all clauses in Φu(X) and ¬u from all clauses in Φ̄¬u(X ′, T). Using EUR

to reduce l in C requires that l̄ does not appear in ε, the fix-point of the procedure

given in Definition 6.2.12. In other words, there is no inner resolution path between

any clauses containing the removed literal and its negation. We can only add literals

to the set used to build ε from clauses that share variables in common with the current

set of literals. However, u and ¬u appear in sections of the formula that have no other

variables in common. As a result we can always reduce u (and ¬u) in Select(ΠΦ).

Having performed these (polynomially many) EUR steps the formula is identical to

Duality(ΠΦ), which is uniformly refuted as in Theorem 6.4.1.

Theorem 6.4.3. Refutational QRAT does not admit strategy extraction unless P =

PSPACE.

Proof. Given a QBF ΠΦ, with Π a prefix and Φ a propositional formula in the vari-

ables of Π, create the formula Select(ΠΦ). Theorem 6.4.2 allows to find a refutation of

Select(ΠΦ) in polynomial time. Suppose QRAT has polynomial-time strategy extrac-

tion. Then a winning strategy for the universal player can be efficiently extracted from

the proof of Select(ΠΦ).

Since u is outermost in the prefix a winning strategy must give u a constant value, it

may not depend on any existentially quantified variables. If the strategy sets u = 0 then

all clauses in Φ̄¬u(X ′, T) are immediately satisfied. Because it was a winning universal

strategy we know that the remaining formula, after assigning u to 0 throughout, is still

false and the remaining strategy witnesses this. Therefore, the rest of the extracted

strategy is a winning universal strategy for ΠΦ, showing that ΠΦ is false.

Similarly, if the strategy sets u = 1 then it must be the case that Φ̄¬u(X ′, T) is false

and so, by construction, ΠΦ is true.

From Theorem 6.4.2 and the assumption that QRAT has polynomial-time strategy

extraction we have constructed a decision procedure that is able to decide whether

92

6.5 Relation to Feasible Interpolation

an arbitrary QBF is true or false in polynomial time. Deciding a QBF is a PSPACE-

complete problem, so we have shown that if refutational QRAT has strategy extraction

then P = PSPACE.

In fact, the full power of EUR is not required. QRAT(UR) is capable of refuting the

formulas Duality(ΠΦ), and the initial EUR step can be replaced by universal expansion

of u, producing a formula equivalent to Duality(ΠΦ) with renamed variables. Even

QBF solvers whose underlying proof system uses universal reduction to handle univer-

sally quantified variables often employ a pre-processing stage that includes universal

expansion. The Select(ΠΦ) formulas show that a single initial expansion step may

be sufficient to prevent strategy extraction. We now explore the connection between

universal expansion, strategy extraction, and feasible interpolation further.

6.5 Relation to Feasible Interpolation

The results of the previous section indicate that expansion steps may prevent strategy

extraction. However there are proof systems and solvers that admit strategy extraction

despite using universal expansion (for example, ∀Exp + Res). It is therefore clear that

other rules in the proof system must play a role in determining whether or not strategy

extraction is possible.

In Theorem 6.4.3, strategy extraction in QRAT for the formulas Select(ΠΦ) implies

the ability to efficiently decide the truth of ΠΦ. We can think of the strategy for u as a

circuit deciding between ΠΦ and ¬(ΠΦ). In propositional logic the efficient extraction

of these deciding circuits from a proof is a well studied technique known as feasible

interpolation, and the circuit itself is called an interpolant.

Given a true propositional implication Φ1(P,Q)→ Φ2(P,R) (or, equivalently, a false

conjunction Φ1(P,Q)∧¬Φ2(P,R)), Craig’s interpolation theorem (Craig, 1957b) states

that there is an interpolant C(P) in only the joint variables P . Given an assignment

to P , the circuit C(P) indicates which of Φ1(P,Q) and ¬Φ2(P,R) is false. Feasible

interpolation is a property of proof systems. A proof system has feasible interpolation

(Kraj́ıček, 1997; Pudlák, 1997) if and only if there is a polynomial time procedure that

takes a proof of Φ1(P,Q)→ Φ2(P,R) as an input and extracts an interpolating circuit

C(P). The definition is easily lifted to the QBF setting.

Definition 6.5.1. Let Φ be a false QBF of the form ∃PΠ1Π2 Φ1(P,Q) ∧ Φ2(P,R),

where P , Q and R are disjoint sets of variables, Π1 is a quantifier prefix containing

the variables in Q, and Π2 is a quantifier prefix containing the variables in R. An

interpolant for Φ is a Boolean circuit C such that for every Boolean assignment α to

the variables of P , C(α) = 0 implies that ∃PΠ1Φ1(P,Q) is false and C(α) = 1 implies

that ∃PΠ2Φ2(P,R) is false. A QBF proof system f has feasible interpolation if there

93

6.5 Relation to Feasible Interpolation

is a polynomial time procedure that, given an f refutation π of Φ (in the required form

given above), returns an interpolant for Φ.

In Beyersdorff et al. (2017a) feasible interpolation was linked to strategy extraction

by adding an extra universal variable with similarities to Section 6.4.3 and how the

Select formulas are created from the Duality formulas. This connection allows us to

express a necessary condition for efficient strategy extraction in QBF proof systems

which allow universal expansion.

Theorem 6.5.2. Given any propositional refutation system f, if the refutational QBF

proof system f +∀Exp has polynomial-time strategy extraction then f must have feasible

interpolation (provided refutations of f work independently of the variable names).

Proof. Suppose f +∀Exp has strategy extraction and we have an f-refutation π of

Φ1(P,Q) ∧ Φ2(P,R) with P,Q,R disjoint sets of variables. We will show that we

can find an interpolant in polynomial time.

We consider the following QBF

∃P∀u∃Q∃R(Φ1(P,Q) ∨ u) ∧ (Φ2(P,R) ∨ ū).

We can refute this formula in f +∀Exp using π. Expansion gives us

(Φ1(P,Q0/u) ∨ 0) ∧ (Φ2(P,R0/u) ∨ 1) ∧ (Φ1(P,Q1/u) ∨ 1) ∧ (Φ2(P,R1/u) ∨ 0)

but this immediately simplifies to

Φ1(P,Q0/u) ∧ Φ2(P,R1/u).

We can now refute this using π with the annotated variables from Q0/u in place

of variables from Q, and the annotated variables from R1/u in place of variables from

R. The provision that refutations work independently of variables names is important

here as one could define f to be a pathological proof system that disallowed steps using

variables named as in R0/u, but allowed them named as in R.

We can then extract a strategy for u as a circuit in the variables P . However this

circuit is also an interpolant for Φ1(P,Q) ∧ Φ2(P,R).

It would also be valuable to identify sufficient conditions for strategy extraction

related to feasible interpolation. ∀Exp + Res has strategy extraction via a technique of

restricting the proof to find a universal response to any existential assignment. The out-

ermost block of existentially quantified variables are assigned in the ∀Exp + Res proof.

In the restricted proof the assignments corresponding to the outermost block of univer-

sally quantified variables must be all the same and this indicates the correct universal

94

6.5 Relation to Feasible Interpolation

assignment to use in this case. The proof is repeatedly restricted in this way until a

complete set of universal responses is found and the formula is falsified.

The “reading off” which clauses actually contribute to the proof for a given as-

signment is a weak form of feasible interpolation and so we can say we have strategy

extraction for f +∀Exp whenever refutational proof system f satisfies two conditions.

Note that because of Theorem 6.5.2 feasible interpolation is implied by these two con-

ditions (although this can be shown without Theorem 6.5.2). The extraction technique

is inspired by the one used in Goultiaeva et al. (2011), but here we use it for expansion

systems.

Theorem 6.5.3. f +∀Exp has strategy extraction whenever the following two conditions

hold.

1. From an f refutation π of Φ one can extract in polynomial time an f refutation

πα of Φ|α for any assignment α with |πα| ≤ |π|,

2. From an f refutation π1 of Φ1(Q) ∧ Φ2(R), where Q and R share no common

variables, one can extract in polynomial time an f refutation π2 of either Φ1(Q)

or Φ2(R) with |π2| ≤ |π1|.

Proof. Suppose we have a closed prenex QBF Ψ = ∃X∀YΠΦ where Π is a prefix in

variables Z and Φ is a propositional matrix with variables in X,Y and Z. Suppose

also that we have an f +∀Exp refutation π of Ψ. This is equivalent to an f proof π′ of

subexpπ(Ψ), the subset of the full expansion of Ψ used by π.

We will show that under conditions 1 and 2 we have a polynomial time procedure

that takes any assignment α to X and outputs a response µ in Y and an f +∀Exp

refutation of ΠΦ|α,µ.

From π′ we can extract in polynomial time an f refutation π′α of subexpπ(Ψ)|α (by

condition 1). Every clause in subexpπ(Ψ)|α is available by the axiom rule in an f +∀Exp

refutation of ∀YΠΦ|α. Therefore, π′α gives an f +∀Exp refutation πα of ∀YΠΦ|α.

Now we find the response to α in universal variables Y = {y1 . . . ym}. We start with

a response c to y1 and find an f +∀Exp refutation of ∀y2 . . . ymΠΦ|α,c/y1 , showing that

the proof does not increase in size. Then we can repeat this for each variable of Y in

turn.

Let µi be a Boolean assignment to variables {y1, . . . , yi−1} for i with 1 ≤ i ≤
m. Let πi be an f +∀Exp refutation of the QBF ∀yi . . . ymΠΦ|α,µi . The variables of

subexpπi(∀yi . . . ymΠΦ|α,µi) can be partitioned into Z0/yi = {zα | z ∈ Z,α(yi) = 0} and

Z1/yi = {zα | z ∈ Z,α(yi) = 1}. This completely partitions the variables because yi is

leftmost in the prefix.

C ∈ subexpπi(ΠΦ)|α,µi cannot mix variables Z0/yi and Z1/yi since the axiom rule

substitutes one or the other everywhere in C. Therefore we can re-write

95

6.5 Relation to Feasible Interpolation

subexpπi(∀yi . . . ymΠΦ|α,µi) as Φ1(Z0/yi)∧Φ2(Z1/yi) with f refutation π′i (based on the

f +∀Exp refutation πi).

We define a new partial assignment µi+1 with µi+1(yj) = µi(yj) for 1 ≤ j < i. Con-

dition 2 allows us to extract from π′i an f refutation π′i+1 of either Φ1(Z0/yi) or Φ2(Z1/yi)

in polynomial time. If Φ1(Z0/yi) is refuted then let µi+1(yi) = 0 and otherwise let

µi+1(yi) = 1. Then π′i+1 becomes an f +∀Exp refutation πi+1 of ∀yi+1 . . . ymΠΦ|α,µi+1

since subexpπi+1
(∀yi+1 . . . ymΠΦ|α,µi+1) is equal to either Φ1(Z0/yi) or Φ2(Z1/yi). Con-

dition 2 guarantees |π′i+1| ≤ |π′i| so |πi+1| ≤ |πi| as well.

Once we get to µm we have a complete assignment to Y and a guarantee that the

restricted QBF ΠΦ|α,µm is false by the f +∀Exp refutation πm, with |πm| ≤ |π|.
We can repeat this procedure for every universal block and we end up with the false

proposition ⊥ and since our proofs are non-increasing in size in each step we guarantee

this can be done in a polynomial time procedure.

Conclusion

In this chapter we have shown, perhaps surprisingly, that refutational QRAT does not

have polynomial-time strategy extraction (provided P 6= PSPACE), demonstrating an

important asymmetry between the refutational and satisfaction versions of the proof

system. Strategy extraction is often desirable in practice and our result shows that

it may not be possible to create a general efficient tool for extracting strategies from

QRAT traces output by solvers. We have shown that the difficulty of extracting strate-

gies is related to a combination of the strength of the underlying propositional proof

system and the type of universal reasoning employed. In particular, when QRAT’s ex-

tended universal reduction rule is weakened to the universal reduction rule from Q-Res

we have the proof system QRAT(UR), which we have shown does admit strategy ex-

traction. Although most modern QBF solvers use universal expansion, at least during

pre-processing, this will only prevent strategy extraction from the generated proofs if

other strong inference steps are used.

96

Chapter 7

The Equivalence of Refutational

QRAT and QRAT+

Lonsing & Egly (2018b) introduced an improvement to the QRAT proof system which

generalises the properties that allow a clause to be recognised as redundant. Both the

RAT and QRAT properties use unit propagation, which is a polynomial-time procedure

and may equally be applied to both universally and existentially quantified variables.

In the QBF setting, universal reduction is another common way of reasoning specifically

about the universally quantified variables, and it can also be carried out in polynomial

time. Therefore, Lonsing’s and Egly’s definition of QRAT+ replaces inferences `1 based

on unit propagation with `1∀, where `1∀ is an inference using a combination of unit

propagation and universal reduction.

To maintain soundness of the proof system when reasoning with universal reduction

it is necessary to take the quantifier prefix into account. The usual requirement that

universal reduction may only remove a universally quantified literal u from a clause if

lv(u) > lv(x) for all existentially quantified x in the clause applies. In addition to this,

universal reduction is restricted to literals with a higher level than any literal in the

clause being checked for redundancy.

In the first section of this chapter we define the requirement on `1∀ and the QRAT+

proof system precisely. We then go on to show that, although QRAT+ can make infer-

ences which are not possible in QRAT, the two systems are p-equivalent for refutations.

7.1 The QRAT+ Proof System

In the following definitions, let ΠΦ be a closed PCNF and let C be a clause not in Φ.

Let Π′ be a prefix containing the variables of Φ and C such that Π is a sub-prefix of Π′

containing the variables of Φ only.

97

7.1 The QRAT+ Proof System

Definition 7.1.1. Let x be a variable in Π′ and let Qx be its quantifier. The abstraction

of Π′ with respect to C, denoted Π′Abs(C), is the quantifier prefix obtained from Π′ by

setting Qx = ∃ whenever lv(x) ≤ maxl∈C(lv(l)). If lv(x) > maxl∈C(lv(l)) then Qx is

unchanged.

Definition 7.1.2 (Quantified Asymmetric Tautology (QAT)). C is a quantified asym-

metric tautology with respect to ΠΦ if and only if

Π′Abs(C) Φ ∧ C̄ `1∀ ⊥.

The reason for modifying the quantifier prefix is simply to prevent universal reduc-

tion steps on universal literals with level less than the maximum level of any literal in

C. Without this restriction it would not be sound to assume that any clause C with

Π′ Φ ∧ C̄ `1∀ ⊥ is redundant, as the following example shows.

Example 7.1.3. Let

ΠΦ = ∀u1∃x1∀u2∃x2 (u1 ∨ x1) ∧ (ū1 ∨ x̄1) ∧ (u2 ∨ x2) ∧ (ū2 ∨ x̄2).

Φ is true with the strategy that sets x1 ← ū1 and x2 ← ū2. Let C = (x1 ∨ x2). If

universal reduction is allowed at any level then from Π Φ ∧ C̄ we can derive (u1) by

unit propagation and then ⊥ by universal reduction. However, C cannot be redundant

with respect to ΠΦ since ΠΦ ∧ C is false.

Now all of the rules from QRAT can be redefined to use quantified asymmetric

tautologies in place of asymmetric tautologies.

Definition 7.1.4 (ATA+). If C is a quantified asymmetric tautology with respect to

ΠΦ then we can make the following inference.

ΠΦ (ATA+)
Π′Φ ∧ C

The definitions for QRATA and QRATU are similarly updated to use the QRAT+

property in place of the QRAT property.

Definition 7.1.5 (QRAT+). Clause C has QRAT+ on literal l in QBF ΠΦ if and only

if (C ∨OD) is a quantified asymmetric tautology with respect to ΠΦ for all D ∈ Φ with

l̄ ∈ D, where OD is the outer clause of D with respect to l, OD = {k ∈ D | lv(k) ≤Π′

lv(l), k 6= l̄}.

Definition 7.1.6 (QRATA+). If C has QRAT+ with respect to ΠΦ on an existentially

quantified literal l then we can make the following inference.

ΠΦ (QRATA+ on l)
Π′Φ ∧ C

98

7.2 Simulating QRAT+ by QRAT

Definition 7.1.7 (QRATU+). If C has QRAT+ with respect to ΠΦ on a universally

quantified literal l then we can make the following inference.

ΠΦ ∧ (C ∨ l)
(QRATU+ on l)

Π′Φ ∧ C
Lonsing and Egly do not differentiate between a refutational and satisfaction QRAT+.

Here we focus on the refutational case where clauses can be deleted arbitrarily. Refuta-

tional QRAT+ therefore consists of ATA+, QRATA+, QRATU+, Extended Universal

Reduction (EUR) and clause deletion. EUR and clause deletion are not changed in

QRAT+.

7.2 Simulating QRAT+ by QRAT

The main idea of the proof is to explicitly derive in QRAT some of the intermediate

steps used in the `1∀ inferences of QRAT+. In particular, the clauses immediately

preceding a universal reduction step in the `1∀ procedure are derived as part of the

main proof and the universal reduction can then also be carried out in the main proof.

An example from Lonsing & Egly (2018b) serves as a simple illustration of how this

method works.

Example 7.2.1. Let Φ = ∀u1, u2∃x1, x2∀u3∃x3
∧7
i=0Ci where

C0 = (¬u2 ∨ ¬x1 ∨ ¬x2)

C1 = (¬u1 ∨ ¬x1 ∨ x2)

C2 = (u1 ∨ x1 ∨ ¬x2)

C3 = (u2 ∨ x1 ∨ x2)

C4 = (¬x1 ∨ ¬x2 ∨ x3)

C5 = (u3 ∨ ¬x3)

C6 = (¬x1 ∨ x2 ∨ ¬x3)

C7 = (¬u3 ∨ x3)

Both u1 and u2 can be removed by QRATU+ but not by QRATU.

In Φ, C0 has QRAT+ on ¬u2. The only clause containing u2 is C3 and the outer

clause is empty. Unit propagation of x1 and x2 (from C̄0) allows us to derive x3

(from C4) then we use this to derive u3 (from C5) which is then removed by universal

reduction. Therefore we can replace C0 by C0\{¬u2}.
This is not possible by QRATU, however it is possible to derive C = (¬x1∨¬x2∨u3)

by ATA since Φ ∧ C̄ `1 ⊥. We have unit propagation on x1 and x2 as before, then use

x3 to derive u3 which does not need to be removed by universal reduction because we can

use unit propagation with ¬u3 instead to derive the empty clause. Once C is derived

we can remove u3 by universal reduction to reach the target clause.

Now there are no clauses containing ¬u2 we can remove u2 from C3 because the

condition for QRATU is vacuously satisfied. A similar argument applies to u1 in C1

and C2.

99

7.2 Simulating QRAT+ by QRAT

Lemma 7.2.2. ATA+ is p-simulated by refutational QRAT(UR).

Proof. As before, ΠΦ is a PCNF and let C be a clause not in Φ. Let Π′ be a prefix

including the variables of C and Φ, and Π a sub-prefix of Π′ containing the variables

of Φ. ATA+ derives Π′Φ∧C from ΠΦ when Π′Abs(C) Φ∧ C̄ `1∀ ⊥. However it may not

be the case that Π′Φ ∧ C̄ `1 ⊥ because we may have used a universal reduction step

(potentially multiple times).

The idea is that we break the single ATA+ step into several ATA and EUR steps.

The parts of the `1∀ inference that use unit propagation can be easily replicated in

QRAT, so we focus on the parts of this inference that use universal reduction by explic-

itly deriving the clauses immediately prior to each universal reduction step during the

QAT procedure.

Label these clauses Li with the index i indicating the order in which they are derived

(i.e. Li is derived before Lj in the `1∀ procedure if and only if i < j). In clause Li the

literal pi is removed in the universal reduction step.

By considering the parts of the inference that use only unit propagation, we know

that

1. Φ ∧ C̄ `1 L1,

2. Φ ∧
∧
j<i Lj\{pj} ∧ C̄ `1 Li, for each i > 1,

3. Φ ∧
∧
i Li\{pi} ∧ C̄ `1 ⊥.

The conditions on reduction in QRAT+ ensure that lv(pi) ≥ lv(x) for all x ∈ Li,
and also that lv(pi) ≥ lv(x) for all x ∈ C because we are using the modified prefix

Π′Abs(C) when making inferences by `1∀ so that every variable at a lower level than any

variable in C is existentially quantified.

Induction Hypothesis: We can learn (C∨Li\{pi}) from Π′ Φ∧
∧
j<i(C∨Lj\{pj})

in a short proof using only ATA and universal reduction steps.

Base Case: We know Φ∧ C̄ `1 L1 so Π′ Φ∧ C̄ ∧ L̄1 `1 ⊥ and we can add (C ∨L1)

via ATA. Now p1 can be removed by universal reduction since lv(p1) ≥Π′ lv(x) for all

x ∈ C ∪ L1. We have learnt (C ∨ L1 \ {p1}) in two proof steps.

Inductive Step: By the induction hypothesis we have Π′Φ∧
∧
j<i(C∨Lj\{pj}). For

each j < i, clearly (C∨Lj\{pj})∧C̄ `1 Lj\{pj}. We also know that Φ∧
∧
j<i Lj\{pj}∧

C̄ `1 Li. Joining these unit propagation inferences together gives that Π′Φ∧
∧
j<i(C ∨

Lj\{pj}) ∧ C̄ ∧ L̄i `1 ⊥. We learn (C ∨ Li) and can remove pi via universal reduction

since lv(pi) ≥Π′ lv(x) for all x ∈ C ∪ Li.
Now we have learnt all the clauses (C ∨ Li\{pi}). These new clauses allow us to

derive C via ATA. From Π′Φ ∧
∧
i(C ∨ Li\{pi}) ∧ C̄ we can derive each Li\{pi} using

unit propagation, and we know that these together with Φ and C̄ are sufficient to derive

100

7.2 Simulating QRAT+ by QRAT

⊥ by unit propagation. Hence Π′Φ ∧
∧
i(C ∨ Li\{pi}) ∧ C̄ `1 ⊥ and we can add C via

ATA.

Finally, the clauses Li and Li \ {pi} are removed using clause deletion so we finish

with Π′Φ ∨ C as required.

Similar arguments show that other rules in the QRAT+ refutation system can also

be simulated by QRAT.

Lemma 7.2.3. If C has QRAT+ in ΠΦ on l then for every clause D ∈ Φ with l̄ ∈ D,

the outer resolvent C ∪ {k ∈ D | lv(k) ≤Π lv(l), k 6= l̄} can be added to ΠΦ via a

sequence of polynomial size iterations of ATA and universal reduction.

Proof. Let RD denote the outer resolvent C ∪ {k ∈ D | lv(k) ≤Π lv(l), k 6= l̄}. We have

that Π′Abs(C)Φ ∧ R̄D `1∀ ⊥ for every D ∈ Φ with l̄ ∈ D. Let us fix some D and prove

we can derive RD via ATA and universal reduction steps. Since D is fixed we drop the

subscript and let R = RD.

Label the clauses immediately prior to universal reduction steps in the `1∀ procedure

as Li (in order, so the first one derived is L1) with the literal pi to be removed.

We know that

1. Φ ∧ R̄ `1 L1,

2. Φ ∧
∧
j<i Lj \ {pj} ∧ R̄ `1 Li, for each i > 1,

3. Φ ∧
∧
i Li \ {pi} ∧ R̄ `1 ⊥.

Induction Hypothesis: We can learn (R ∨ Li\{pi}) in a short proof using only

ATA and universal reduction steps.

Base Case: We need to add (R∨L1) via ATA, we have that Π′Φ∧ R̄∧ L̄1 `1 ⊥ and

therefore we can add (R ∨ L1) by ATA. We now need to reduce p1. QRAT+ requires

that lv(pi) ≥Π′ lv(x) for any literal x ∈ L1∪C. Recall that R contains only literals with

level less than or equal to l. Since l belongs to C we therefore have that lv(pi) ≥Π′ lv(x)

for any literal x ∈ R. Therefore it is valid to derive (R ∨ L1 \ {p1}) from (R ∨ L1) by

universal reduction.

Inductive Step: By the induction hypothesis we have Π′Φ ∧
∧
j<i(R ∨ Lj\{pj})

and want to add R ∨ Li via ATA.

For each j < i, (R ∨ Lj\{pj}) ∧ R̄ `1 Lj\{pj}, and Φ ∧
∧
j<i Lj\{pj} ∧ R̄ `1 Li.

Together these give the derivation Π′Φ ∧
∧
j<i(R ∨ Lj\{pj}) ∧ R̄ ∧ L̄i `1 ⊥. We can

therefore learn (R∨Li). As before the conditions of QRAT+ and the fact that R is an

outer resolvent mean that lv(pi) ≥Π′ lv(x) for any literal x ∈ Li∪C∪R, so (R∨Li\{pi})
is derived from (R ∨ Li) by universal reduction.

101

7.2 Simulating QRAT+ by QRAT

For all i we have derived (R ∨ Li\{pi}). Φ ∧
∧
i(R ∨ Li\{pi}) ∧ R̄ `1 Li\{pi} for

every i, and Φ∧
∧
i Li\{pi}∧R̄ `1 ⊥ so we can add R by ATA. Finally, the intermediate

clauses R ∨ Lj\{pj} are removed by the clause deletion rule.

Lemma 7.2.4. The QRATA+ step is p-simulated by refutational QRAT(UR).

Proof. The QRATA+ step derives Π′Φ ∧C from ΠΦ when C has QRAT+ on existen-

tially quantified l with respect to ΠΦ.

For each D ∈ Φ with l̄ ∈ D with OD the outer clause of D, then we can add

(C ∨ OD) via a short proof using ATA and universal reduction rules by Lemma 7.2.3.

We can continue adding outer resolvents by this method to Φ even after one or more has

already been added since the rules ATA and universal reduction used in Lemma 7.2.3

are not prohibited by the presence of additional clauses.

Now that we have all (C ∨ OD) for every D we need to derive C. This is done by

QRATA on l. Let Ω be the set of all outer clauses OD. Then QRATA requires for each

OD that Π′Φ∧
∧
O∈Ω(C ∨O)∧ C̄ ∧ ŌD `1 ⊥. This is clearly true since we can directly

refute the clause (C ∨OD) using C̄ ∧ ŌD in each case.

Once we have derived C we can freely delete all clauses from
∧
O∈Ω(C ∨O).

Lemma 7.2.5. The QRATU+ step is p-simulated by refutational QRAT(UR).

Proof. The QRATU+ step derives Π′Φ ∧ C from ΠΦ ∧ (C ∨ l) where C has QRAT+

on universal literal l on ΠΦ.

Let Ω = {OD | OD is the outer clause of some clause D ∈ Φ with l̄ ∈ C}. Add

(O∨C) for every O ∈ Ω (by Lemma 7.2.3). Now we require that Φ∧ (
∧
O∈Ω(C ∨O))∧

C̄ ∧ ŌD ` ⊥ for each D with l̄ ∈ D. In each case a (C ∨ O) clause is refuted directly

by C̄ ∧ ŌD. This allows to use QRATU to replace Π′Φ ∧
∧
O∈Ω(C ∨O) ∧ (C ∨ l) with

Π′Φ∧
∧
O∈Ω(C ∨O)∧C. We can then freely delete all clauses from

∧
O∈Ω(C ∨O).

Putting these lemmas together we see that any refutation in QRAT+ can be trans-

formed in polynomial time into a refutation in QRAT.

Theorem 7.2.6. Refutationally, QRAT is p-equivalent to QRAT+.

Proof. A QRAT+ proof is a sequence of ATA+, QRATA+, QRATU+, EUR and clause

deletion rules. This can be simulated by a QRAT proof, in other words a sequence of

ATA, QRATA, QRATU, EUR and deletion steps. EUR and deletion rules remain the

same in both systems. In Lemma 7.2.2 we showed that ATA+ steps are simulated by

ATA and universal reduction steps, in Lemma 7.2.4 we showed that QRATA+ steps

are simulated by ATA, QRATA and universal reduction steps and in Lemma 7.2.5 we

showed that QRATU+ steps are simulated by ATA, QRATU and universal reduction

steps. We can simulate universal reduction steps by EUR so we can do all this in

102

7.2 Simulating QRAT+ by QRAT

refutational QRAT. By definition QRAT is p-simulated by QRAT+ also, therefore they

are p-equivalent.

Conclusion

Although QRAT+ enables some inferences to be made more efficiently than in QRAT it

does not offer an exponential improvement compared to QRAT in the case of refutations.

For satisfaction QRAT, a simulation is made more difficult since clauses added into

the formula to simulate `1∀ inferences cannot be removed using the arbitrary clause

deletion rule. Since the definition of both the QRAT and QRAT+ properties considers

all clauses in the formula it is possible that the presence of additional clauses could block

future proof steps. Even in the refutational case, the use of QRAT+ instead of QRAT

is still beneficial in providing a more succinct proof and arguably better modelling the

practice of QBF solvers, in which universal reduction steps are carried out alongside

unit propagation to simplify the formula between the main reasoning steps.

103

Chapter 8

Proof Size and Proof Width In

Variants of Q-Resolution

Since one aim of proof complexity is to prove lower bounds on the size of proofs, we

are especially interested in general methods for doing so. A successful approach in

propositional proof complexity is based on a famous result of Ben-Sasson & Wigderson

(2001).

Proof size is arguably the most important measure in proof complexity. Lower

bounds on proof size in Resolution imply lower bounds on the running time of SAT

solvers using the CDCL algorithm. The width of a Resolution proof is the maximum

number of literals in any clause in the proof. If we know that a formula has a Resolution

proof with small width then we can search for proofs with only narrow clauses, which

reduces the search space and so bounds running time.

An upper bound on Resolution width w implies an upper bound of O(nw) on the

proof length (where n is the number of variables in the formula, without repetition) due

to the possible number of distinct clauses of width at most w. There are also k-CNFs

(CNFs with all clauses containing k literals) with width w refutations in Resolution

and requiring proofs of size nΩ(w) (Atserias et al., 2014).

The result of Ben-Sasson and Wigderson showed that whenever a short Resolution

refutation exists, a narrow refutation can be constructed from it. Conversely, if every

refutation of some family of formulas must contain a clause with large width, then

no short refutation can exist. This relationship has been an important technique for

proving lower bounds on Resolution proof length. Previously known lower bounds were

re-derived using this method, simplifying the argument.

We would like to use the same technique in QBF proof complexity, but unfortunately

Beyersdorff et al. (2016b) showed that it does not lift to the new context. This chapter

adds to their investigation by showing that the original argument can be lifted to QBF

104

8.1 Relating Size and Width Between Two Variants of Q-Resolution

refutations in level-ordered Q-Res and relates the proof size in that system to the width

of Q-Res refutations. However this holds only for the tree-like systems. We also show

negative results for the stronger systems of QU-Res and LD-Q-Res, thus answering a

question of Beyersdorff et al. (2016b).

8.1 Relating Size and Width Between Two Variants of

Q-Resolution

We begin with some definitions. Recall that the size of a Q-Res proof π is written |π|
and is the number of clauses in π (equivalently, the number of nodes in the associated

tree or DAG).

Let Ψ be a formula in CNF or PCNF.

Definition 8.1.1. The size of deriving a clause C from Ψ in proof system f, denoted

Sf(Ψ ` C), is the minimum size of any f-proof of C from Ψ.

We drop the subscripts indicating the proof system under consideration if it is

already clear from the context.

Definition 8.1.2. The width of a clause C is written w(C) and is the number of

existentially quantified literals it contains.

Definition 8.1.3. The width of Ψ is the maximum width over all clauses in Ψ and is

denoted w(Ψ).

Definition 8.1.4. The width of a derivation π is the maximum width of any clause

contained in π.

Definition 8.1.5. The width of deriving a clause C from Ψ in proof system f is written

wf(Ψ ` C) and is the minimum width of any derivation of C from Ψ in f.

Given a CNF Φ, Ben-Sasson & Wigderson (2001) showed that for tree-like propo-

sitional Resolution w(Φ ` ⊥) ≤ w(Φ) + log(S(Φ ` ⊥)) and for DAG-like Resolution,

w(Φ ` ⊥) ≤ w(Φ) + O(
√
n log(S(Φ ` ⊥))) where n is the number of variables in Φ.

The result does not claim that all short proofs are narrow, but that whenever a short

proof exists there must also exist a narrow proof of the same formula. We focus here

on the tree-like case and show that the same proof can be applied to a level-ordered

Q-Res refutation, but that the constructed proof may not remain level-ordered. First

we examine the reason that the initial proof must be level-ordered.

Suppose we have a Resolution refutation of some propositional formula Φ. The final

step in the proof resolves x and ¬x. So we also have a derivation of x from Φ (and

also a derivation of ¬x from Φ), that is, Φ implies x (and ¬x). A crucial part of the

105

8.1 Relating Size and Width Between Two Variants of Q-Resolution

argument rests on the observation that this derivation of x can be easily transformed

into a refutation of Φ|¬x, by simply restricting the proof by the assignment {¬x}. This

does not hold in general in Q-Res, even in the tree-like case. Indeed, it is possible to

have a Q-Res derivation from Ψ to u, a universal variable not at the outermost level in

the prefix, where Ψ|¬u is not even false.

We begin with some observations about level-ordered Q-Res.

Definition 8.1.6. For a Q-Res proof π an alternative measure of size is the number of

lines in π which were not derived by universal reduction, denoted by ||π||.

Observe that if π is a derivation from Ψ, |π| ≤ ||π|| × |Ψ| because each clause

introduced as an axiom or by a resolution step can be followed by at most one universal

reduction step for each universally quantified variable in Ψ. It follows that if ||π|| is

polynomially-bounded in |Ψ| then so too is |π|.
Recall the definition of level-ordered Q-Res.

Definition 8.1.7. Let π be a Q-Res-refutation of Ψ = ΠΦ. Then π is level-ordered

if for every resolution step (C∨x) (D∨¬x)
(C∨D) in π we have that lv(y) ≤Π lv(x) for all

y ∈ C ∪D.

We will additionally assume that universal reduction steps are carried out as early

as possible and in reverse level order. This cannot increase the number of non-reduction

proof steps, though it may increase the number of universal reduction steps. The level

of a proof step is the level of the pivot. It is straightforward to check that for level-

ordered derivations the pivot of the final proof step can be assumed to have maximum

level in the proof.

We now show that it is possible to restrict level-ordered proofs to create a new proof

as required, which will allow the original construction to be lifted to the new situation.

Lemma 8.1.8. Let u be a universally quantified literal in the outermost quantifier block

of PCNF Ψ = ΠΦ, and let π be a Q-Res derivation of u from Ψ, then π|ū is a Q-Res

refutation of Ψ|ū. If π is level-ordered or tree-like these properties are maintained in

π|ū.

Proof. For u outermost and universally quantified, π can only contain one of u or ū.

To see why this is true, suppose π derives u and consider the final clause in π that

contains ū, (C ∨ ū). Clearly u /∈ C. This clause must be used in a universal reduction

step deriving C, which is only possible if there are no existentially quantified literals

in the clause, since var(u) is assumed to be in the outermost block of Π. Universal

reduction can never introduce new literals into a clause so C cannot be an ancestor

of any clause containing u. Consequently, if π derives u then ū does not appear in π.

It follows that no clause D ∈ π is satisfied by the assignment {ū}, so if D ∈ π then

106

8.1 Relating Size and Width Between Two Variants of Q-Resolution

D|ū ∈ π|ū. Any proof step in π that did not have u as pivot still applies in the restricted

proof. If C ∈ π is derived by universal reduction on u then the parent and child of this

step are identical in the restricted proof so the latter can be removed.

Lemma 8.1.9. Let x be an existentially quantified literal in PCNF Ψ, and π a Q-Res

derivation of x from Ψ, then π|x̄ is a refutation of Ψ|x̄ in Q-Res with weakening. If π

is level-ordered or tree-like these properties are maintained in π|x̄.

Proof. Suppose C ∈ π is derived by universal reduction from (C∨u). Then either both

of these clauses contain x̄ or neither of them do, so if C|x̄ is in π|x̄ then it is derived by

universal reduction from (C|x̄ ∨ u).

Suppose C is derived by resolution on some pivot other than x. If either parent

contains x̄ then so does C. So if C|x̄ is in π|x̄ then so are the restrictions of both its

parents, and C|x̄ is derived by resolution on the same pivot.

If (C ∨D) is derived by resolution on x from (C ∨ x) and (D ∨ ¬x) then the latter

clause does not appear in π|x̄. However, (C ∨ x)|x̄ = C so (C ∨D) can be derived by

weakening from C in π|x̄.

The weakening steps can be removed without increase in proof size or width and

without affecting the level-ordered and tree-like properties of the proof.

Lemma 8.1.10. Let Ψ be a PCNF, C a clause, and x an existentially quantified

literal in the outermost quantifier block of Ψ. In Q-Res, if w(Ψ|x̄ ` C) ≤ W then also

w(Ψ ` C ∨ x) ≤W + 1.

Proof. Let π be a Q-Res derivation of C from Ψ|x̄ with width W . Add x into every

clause of π. Initial clauses may be obtained by weakening. If C is derived by resolution

from A and B then (C ∨x) can be derived from (A∨x) and (B∨x) (and neither clause

contained x̄). If C is derived by universal reduction from A then (C ∨ x) is derived by

universal reduction from (A∨x), and since x is outermost it cannot block the reduction

step. The width of the derivation is increased by 1.

For universally quantified u the same argument applies but the width of the deriva-

tion is not increased since only existentially quantified literals contribute to the width

of a clause. Therefore if w(Ψ|ū ` C) ≤W then also w(Ψ ` C ∨ u) ≤W .

Lemma 8.1.11. Let Ψ be a PCNF and x an existentially quantified literal in the

outermost quantifier block of Ψ. In Q-Res, if w(Ψ|x̄ ` ⊥) ≤ W − 1 and w(Ψ|x `
⊥) ≤ W then w(Ψ ` ⊥) ≤ max{W,w(Ψ)}. For u a universally quantified literal, if

w(Ψ|ū ` ⊥) ≤W then w(Ψ ` ⊥) ≤W .

Proof. If x is existentially quantified then since w(Ψ|x̄ ` ⊥) ≤W − 1 we have also that

w(Ψ ` x) ≤ W by Lemma 8.1.10. Resolve x with every clause in Ψ containing x̄, the

107

8.1 Relating Size and Width Between Two Variants of Q-Resolution

resulting collection of clauses are exactly those in the matrix of Ψ|x, and from these

we can derive ⊥ in width W . The total width of the derivation is max{W,w(Ψ)}. If

u is universally quantified then (u) can be derived in width W and universal reduction

derives ⊥. The total width of the derivation is W .

We can now state the relation between width in Q-Res and size in level-ordered

Q-Res.

Theorem 8.1.12. wQ(Ψ ` ⊥) ≤ w(Ψ) + dlog(SL(Ψ ` ⊥))e, where Q is Q-Res and L

is level-ordered tree-like Q-Res and Ψ is a PCNF.

Proof. We begin with a level-ordered refutation π of Ψ. Let r = dlog(SL(Ψ ` ⊥))e,
therefore SL(Ψ ` ⊥) ≤ 2r. If r = 0 then the empty clause is in Ψ, so wQ(Ψ ` ⊥) = 0

and we are done.

Otherwise the last step of the proof may be a universal reduction x
⊥ or a resolution

step x ¬x
⊥ . The pivot x belongs to the outermost quantifier block that appears in

the proof, since the proof is level ordered. Re-ordering the proof to ensure that this

is the case cannot increase the number of axiom or resolution steps in the proof. Let

S̄L(Ψ ` ⊥) denote the minimum number of non-reduction steps in a refutation of Ψ,

which clearly must be less than SL(Ψ ` ⊥). We will prove inductively that wQ(Ψ `
⊥) ≤ w(Ψ) + dlog(S̄L(Ψ ` ⊥))e.

In the case of universal reduction, consider πx, the derivation of x. Then πx|¬x is a

level-ordered refutation of Ψ|¬x by Lemma 8.1.8. By induction on the number of vari-

ables in Ψ we have that wQ(Ψ|¬x ` ⊥) ≤ w(Ψ|¬x) + dlog ||πx|¬x||e. By Lemma 8.1.11,

Ψ ` ⊥ has the same width as the restricted proof, and w(Ψ|¬x) = w(Ψ), so the result

follows.

In the case of resolution being the last step, consider πx and π¬x, the level-ordered

derivations of x and ¬x. By Lemma 8.1.9 we have that πx|¬x is a level-ordered refutation

of Ψ|¬x and π¬x|x is a level-ordered refutation of Ψ|x, and ||π|| = ||πx|| + ||π¬x|| + 1.

Without loss of generality, ||πx|| ≤ 2r−1 so by induction on r, there is a (possibly not

level-ordered) proof with wQ(Ψ|¬x ` ⊥) ≤ w(Ψ|¬x) + r − 1 ≤ w(Ψ) + r − 1, and by

induction on the number of variables in Ψ, wQ(Ψ|x ` ⊥) ≤ w(Ψ|x) + r ≤ w(Ψ) + r.

Since x is outermost, by Lemma 8.1.11 we can use these two refutations to construct a

refutation of Ψ with width at most w(Ψ) + r and the result follows.

In the proof of Theorem 8.1.12, we begin with a small level-ordered proof and con-

struct another proof from it which has small width. However, during the construction,

the proof loses the level-ordered property. It is not possible in general to construct a

level-ordered proof with small width.

108

8.2 Size and Width for Stronger Proof Systems

Proposition 8.1.13. There is a family of QBFs Φn with constant width and O(n)

variables such that S(Φn ` ⊥) = O(n) and w(Φn ` ⊥) = Ω(n) in tree-like level-ordered

Q-Res.

Proof. Consider the following family of formulas:

Φn = ∃x1 . . . xn∀z∃a1 . . . an, y0 . . . yn

(¬y0) ∧ (yn) ∧
∧
i∈[n]

(¬xi) ∧ (z ∨ ai) ∧ (yi−1 ∨ ¬ai ∨ xi ∨ ¬yi) .

All clauses are needed to refute Φn. Any level-ordered proof must carry out all res-

olution steps on yi variables before resolving on xi variables, and it is simple to ver-

ify that doing so must result in a clause that contains all xi variables. There is a

short tree-like level-ordered refutation which collapses (yi−1 ∨ ¬ai ∨ xi ∨ ¬yi) together

to (¬a1 ∨ . . . ∨ ¬an ∨ x1 ∨ . . . ∨ xn), then resolves this with all (z ∨ ai), removes z and

finally refutes
∧
i∈[n] (¬xi) ∧ (x1 ∨ . . . ∨ xn), all of which takes linear size.

Theorem 8.1.12 also cannot be lifted to general level-ordered Q-Res. A crucial part

of the argument in the propositional case is to carefully select the next variable to use

in restricting the refutation, but it is not possible in general to ensure that this variable

belongs to a particular level of the prefix.

8.2 Size and Width for Stronger Proof Systems

It is left open in Beyersdorff et al. (2016b) whether the mainly negative picture regarding

the size width relationship applies to stronger proof systems as well. We first recall their

counter-example for Q-Res and then show that simple modifications to this example,

inspired by Balabanov et al. (2014), can be used to lift the example to QU-Res and

LD-Q-Res.

We use a family of QBFs introduced in Janota & Marques-Silva (2015). First we

sketch the intuitive meaning of these formulas, showing why they are false, and then

define the QBFs formally.

Given a grid of squares with n rows and columns, suppose that each square must be

coloured either black or white so that either there is a row containing all black cells or

there is a column containing all white cells. This is easily achieved. However, suppose

instead that an adversary intervenes after all the cells have been coloured and specifies

which of the two conditions should hold. It is not possible to colour the grid so that

there is both a fully black row and a fully white column, so the adversary is always

able to observe which condition cannot be satisfied and make an impossible request.

109

8.2 Size and Width for Stronger Proof Systems

This situation can be encoded in the following QBFs.

∃x1
1 . . . x

1
n x

n
1 . . . x

n
n ∀z ∃a1 . . . an, b1 . . . bn

n∧
i,j=1

(
xji ∨ z ∨ ai

)
∧

n∧
i,j=1

(
¬xji ∨ ¬z ∨ bj

)
(8.1)

∧ (¬a1 ∨ · · · ∨ ¬an) ∧ (¬b1 ∨ · · · ∨ ¬bn) (8.2)

The xji variables indicate the colouring of the grid. There are n2 such variables. If

xji = 1 then cell (i, j) is coloured black, otherwise it is coloured white. If ai = 0 then

row i is selected. Similarly, bj = 0 selects column j. The universal variable z chooses

whether the row or column condition will be tested. Since z can always be selected to

make the choice of either ai or bj impossible, the QBF is false.

Modifications of these formulas show that the size-width relation does not hold for

tree-like Q-Res, QU-Res and LD-Q-Res.

Proposition 8.2.1 (Beyersdorff et al. (2016b)). There is a family of false QBFs Ψn

over O(n2) variables, such that w(Ψn) = 3 and in tree-like Q-Res S(Ψn ` ⊥) = nO(1),

and w(Ψn ` ⊥) = Ω(n).

Proof. Consider the following family of formulas.

Ψn = ∃x1
1 . . . x

1
n x

n
1 . . . x

n
n∀z∃a1 . . . an, b1 . . . bn, p0 . . . pn, q0 . . . qn

n∧
i,j=1

(
xji ∨ z ∨ ai

)
∧

n∧
i,j=1

(
¬xji ∨ ¬z ∨ bj

)
(8.3)

∧ ¬p0 ∧
n∧
i=1

(pi−1 ∨ ¬ai ∨ ¬pi) ∧ pn (8.4)

∧ ¬q0 ∧
n∧
j=1

(qj−1 ∨ ¬bj ∨ ¬qj) ∧ qn (8.5)

There are O(n2)-size tree-like Q-Res refutations, given by the following procedure:

• Collapse the clauses in (8.4) and (8.5) to (¬a1 ∨ · · · ∨ ¬an) and (¬b1 ∨ · · · ∨ ¬bn).

This takes O(n) steps.

• For each j use the clauses (xji ∨ z ∨ ai) together with (¬a1 ∨ · · · ∨ ¬an) to derive

(xj1∨ . . .∨x
j
n∨ z), then remove z by universal reduction (requiring O(n) steps for

each j). From (xj1 ∨ . . . ∨ x
j
n) and the clauses (¬xji ∨ ¬z ∨ bj) derive (bj ∨ ¬z) in

O(n) steps for each j.

• The n clauses of the form (bj ∨ ¬z) together with (¬b1 ∨ · · · ∨ ¬bn) are used to

derive ¬z, taking O(n) steps. Finally we use universal reduction to reach the

empty clause.

110

8.2 Size and Width for Stronger Proof Systems

To show that any valid Q-Res refutation must be wide we show that the clause

immediately following the first universal reduction step in any refutation of Ψn has

width Ω(n).

Without loss of generality assume the first universal reduction step in the refutation

removes z. Observe that any clause C in the proof that contains z must have some

clause (xji ∨ z ∨ ai) as an ancestor. Therefore, along the path between this clause and

the first universal reduction of z the literal ai must be removed by resolution. The only

clauses in Ψn containing ¬ai are those in (8.4), so the clause (pi−1 ∨ ¬ai ∨ ¬pi) must

also be in the sub-derivation of C. But now also pi−1 and ¬pi need to be removed

before we can perform universal reduction. In this way every clause of (8.4) is required

in the sub-derivation of the clause immediately preceding the first universal reduction

step and so also ¬ai appears in this sub-derivation for every value of i.

Since ai appears positively only in clauses in (8.3), which also contain xji , it is

necessary to also include n of these clauses in the sub-derivation, all of which contribute

a different xji literal. Whenever xji appears negatively it is alongside ¬z. By assumption,

the sub-derivation cannot include any universal reduction step and therefore also cannot

include any clause that contains ¬z. So every xji in the sub-derivation must be positive,

and there can be no resolution steps to remove them. This demonstrates that prior

to the first universal reduction step we must have a clause that contains at least n

different xji literals in any valid Q-Res refutation of Ψn.

Proposition 8.2.2. There is a family of false QBFs Ψ′n over O(n2) variables, such

that w(Ψ′n) = 3 and in tree-like QU-Res S(Ψ′n ` ⊥) = nO(1), and w(Ψ′n ` ⊥) = Ω(n).

Proof. We modify Ψn to Ψ′n by adding another universal variable z′ at the same level

as z and replacing (8.3) with

n∧
i,j=1

(xji ∨ z ∨ z
′ ∨ ai) ∧

n∧
i,j=1

(¬xji ∨ ¬z ∨ ¬z
′ ∨ bj).

The size O(n2) refutation of Ψn is extended to a refutation of Ψ′n by performing

a universal reduction step on z′ immediately after any universal reduction step on z.

Except between each such pair of universal reduction steps this ensures that z′ appears

in exactly the same clauses as z throughout the proof, and similarly ¬z and ¬z′ always

appear together. Any resolution step that could be blocked by z′ in Ψ′n would already

have been blocked by z in Ψ, so the proof remains valid.

The duplication of the universal variable also ensures that universal resolution can-

not result in narrower proofs compared to Q-Res. This is simply because we have

ensured that whenever a universal literal appears in a clause C of Ψ′n, its complement

appears only in clauses which also conflict with C on another universal variable, which

serves to prevent the use of universal resolution early in the proof.

111

8.2 Size and Width for Stronger Proof Systems

Any derived clause must contain all of the universal variables from its parents

unless it is derived by universal reduction or universal resolution. Therefore universal

resolution is forbidden before a universal reduction step has occurred, until this point

we may only use existential resolution. The argument above readily applies to show

that the clause immediately following the first universal reduction step in any refutation

of Ψ′n must have width Ω(n).

The idea of duplicating universal variables can be applied to any formula to prevent

universal resolution steps. This allows us to infer a lower bound for QU-Res from any

lower bound for Q-Res.

Proposition 8.2.3. Let Ψ = ΠΦ be a closed PCNF and define Ψ′ = Π′Φ′ so that

clause C ′ ∈ Φ′ if and only if there is a clause C ∈ Φ with C ′ = C ∪ {u′ | u ∈ C}.
Π is a sub-prefix of Π′ and for every universally quantified variable u in Π there is a

universally quantified variable u′ in Π′ with lv(u′) = lv(u). Given a QU-Res refutation

π′ of Ψ′ there is a Q-Res refutation π of Ψ such that |π| ≤ |π′| and w(π) ≤ w(π′).

Proof. π′ is a sequence of clauses L1, . . . , Lm. Let u be a universally quantified literal in

Ψ. We begin by finding the first clause Li in π′ which contains exactly one of u and u′.

Without loss of generality we will assume Li contains u but not u′. Before this point

no universal resolution on u′ was possible because u and ¬u appear in all clauses with

u′ and ¬u′ and therefore prevent the resolution step. It follows that Li was derived by

universal reduction on u′.

Modify π′ by inserting L2
i = Li \ {u} immediately after Li. Any subsequent clauses

that were derived from Li are instead derived from L2
i . No proof step can be blocked.

If a clause was derived from Li by universal resolution with u as the pivot then it can

now be derived by weakening from L2
i , otherwise it can be derived from L2

i using the

same derivation step as before. No clause in Li+1, . . . , Lm has Li as a parent, so the

same argument applies to show that the next clause to contain only one of u and u′

was derived by universal reduction. Again, add a second universal reduction.

Having applied this process to the whole proof the only clauses that contain u but

not u′ (or vice versa) are immediately preceding a universal reduction step and are

not used in any other proof step. It follows that no universal resolution on u or u′ is

possible in the whole proof. Repeating this construction for all universally quantified

variables in Ψ′ we generate a proof of Ψ′ which contains no universal resolution steps. To

construct π simply remove every instance of u′ for every universally quantified variable

u ∈ Ψ. The additional universal reduction steps are also removed so |π| ≤ |π′|. No new

existentially quantified variables were introduced into any clause so w(π) ≤ w(π′).

In particular, the formulas defined in Theorem 4.0.1 in Chapter 4 have short (DAG-

like) Q-Res refutations but require proofs with large width. As stated in Chapter 4 the

112

8.2 Size and Width for Stronger Proof Systems

formulas themselves contain a wide clause. They can easily be modified so that this

clause is broken into several short clauses, in the same way as was done for Ψn above

but any proof must still contain a wide clause. We can construct similar formulas with

small size and large width refutations in QU-Res by doubling the universally quantified

variables as demonstrated in Proposition 8.2.2. This shows that the size-width relation

also fails for general QU-Res (the formulas Ψ′n above cannot be used directly as they

have a quadratic number of variables.)

Proposition 8.2.4. There is a family of false QBFs Ψ′′n over O(n2) variables, such

that w(Ψ′′n) = 3 and in tree-like LD-Q-Res S(Ψ′′n ` ⊥) = nO(1), and w(Ψ′′n ` ⊥) = Ω(n).

Proof. In this case Ψn is modified by replacing the clauses in line (8.2) with

¬y0 ∧
n∧
i=1

(yi−1 ∨ ¬ai ∨ ¬yi ∨ z) ∧ yn ∧ ¬p0 ∧
n∧
j=1

(pj−1 ∨ ¬bj ∨ ¬pj ∨ ¬z) ∧ pn.

This does not affect satisfiability since these clauses were already only relevant under

one or other of the assignments to z. The same O(n2) refutation of the original formula

applies to give the size upper bound, except that we begin by deriving (¬a1∨· · ·∨¬an∨z)
and (¬b1 ∨ . . .¬bn ∨ ¬z) instead of (¬a1 ∨ · · · ∨ ¬an) and (¬b1 ∨ · · · ∨ ¬bn).

For the width lower bound we show that long-distance resolution cannot be used

prior to the first universal reduction step. The only long-distance resolution steps that

could be performed would have some xji variable as the pivot with z and ¬z included

in the two clauses being resolved. If we assume that this long-distance resolution is

occurring before any universal reduction is possible then the derived clause must also

contain some a, b, p or q literal.

Suppose the clause contains ai. In order for the derived clause to form part of the

refutation, ai would need to be removed via resolution at some later point, but before

z∗ can be removed by reduction. This is now impossible. The only input clause that

contains ¬ai also contains z. Inductively, any subsequent clause containing ¬ai must

also contain z because universal reduction is blocked by ¬ai. No such clauses can be

resolved on pivot ai with a clause that contains z∗. Similar arguments apply for all b,

p or q literals.

As a result, no long-distance resolution step can apply before at least one universal

reduction step. Until then we are restricted to standard resolution steps, and so the

clause following the first universal reduction must have width Ω(n), using the argument

of Proposition 8.2.1.

Conclusion

We have demonstrated that the result of Ben-Sasson & Wigderson (2001) can be lifted

to relate two variants of Q-Res, highlighting an interesting relationship between level-

113

8.2 Size and Width for Stronger Proof Systems

ordered and non level-ordered proofs in Q-Res. Removing either the restriction that

the proof must be level-ordered, or the restriction that it must be tree-like, is suffi-

cient to lose the desired behaviour. We have also answered the open question from

Beyersdorff et al. (2016b) regarding extensions of Q-Res, by demonstrating how the

counterexamples may be lifted to these stronger calculi.

114

Chapter 9

A Complexity Gap for QBF

Resolution

The Complexity Gap Theorem (Riis, 2001) considers a translation of a first-order sen-

tence φ to a sequence of false propositional formulas, and states that the complexity of

refuting these propositional formulas in tree-like Resolution depends on whether φ has

any models. The nth member of the sequence of propositional formulas is satisfiable if

and only if φ has a model of size n. When φ has an infinite model but no finite models

then all tree-like Resolution refutations of the related propositional formulas have size

exponential in n. When φ also has no infinite model then there exist polynomial-size

tree-like Resolution refutations of the propositional formulas.

This chapter considers whether the Complexity Gap Theorem holds for QBF exten-

sions of Resolution. We first introduce a method to translate a first-order sentence φ to

a sequence of QBFs. The translation will ensure that the nth member of the sequence

has size polynomial in n, and is true precisely when φ has a model of size n.

We demonstrate that tree-like Q-Res will always require exponential-size refutations

of these QBFs when φ has an infinite model but no finite model. However, unlike the

propositional case, there exist formulas with no models but requiring exponential-size

Q-Res refutations for the sequence of QBFs. In contrast, for tree-like ∀Exp + Res the gap

theorem holds as in the propositional case. In this sense, ∀Exp + Res does not possess

the same deficiency as Q-Res.

9.1 Rendering a First-Order Sentence As a Sequence of

QBFs

We give a method to translate a first-order sentence φ to a family {Φn}n∈N of QBFs.

The method is inspired by the encoding of φ into propositional formulas in conjunctive

115

9.1 Rendering a First-Order Sentence As a Sequence of QBFs

normal form (CNF) previously given in Riis (2001), and is similar to other translations

used to encode QCSP instances as QBF (Gent et al., 2004, 2008). We begin with a

brief review of first-order logic.

A language of first-order logic is defined by a signature consisting of constants,

function symbols, and relation symbols. In Boolean logic we have only two constants, 0

and 1. In first-order logic there are infinitely many constants available. Each function

and relation symbol has some arity ≥ 0. The formulas of first-order logic are then

defined recursively.

• Terms:

– A variable is a term.

– A constant is a term.

– If f is a function of arity k ≥ 0 and t1 . . . tk are terms then f(t1 . . . tk) is a

term.

• Formulas:

– If R is a relation of arity k ≥ 0 and t1 . . . tk are terms then R(t1 . . . tk) is a

formula.

– If t1 and t2 are terms then t1 = t2 is a formula.

– If φ is a formula then ¬φ is a formula.

– If φ and ψ are formulas then (φ ∨ ψ) and (φ ∧ ψ) are formulas.

– If φ is a formula and x a variable then ∃xφ and ∀xφ are formulas.

Given a first-order language L, an interpretation consists of a (possibly infinite)

collection of elements A and a mapping IA from constant symbols in L to members of

A, for each relation R in L there is a relation on A and for each function f in L there

is a function from A to A. Under the usual semantics of {∧,∨,¬,=,∃,∀}, if a formula

φ of L evaluates to true under the interpretation given by M = (A, IA) then we say M

is a model of φ. The size of M is the number of elements in A. If a formula has no

models it is unsatisfiable.

A formula of first-order logic is in prenex normal form if it has a prefix consisting of

quantifiers and the variables bound by them followed by a quantifier free formula. Every

first-order formula is equivalent to a formula in prenex normal form. Without loss of

generality we assume that there are no free variables since a formula containing a free

variable is equivalent to one in which that variable is bound by a universal quantifier

in the leftmost prefix block.

Constants are equivalent to functions of arity 0. It is also possible to remove all

function symbols from a formula and write an equivalent formula using only relation

116

9.1 Rendering a First-Order Sentence As a Sequence of QBFs

symbols, since f(t1, . . . , tk−1) = tk is equivalent to R(t1, . . . , tk) for some relation R.

We therefore assume our first-order formulas have the following form:

φ := Q1x1Qkxk D1(x1 . . . , xk) ∧ . . . ∧Dr(x1, . . . , xk)

with Qj ∈ {∀, ∃}, and where each Dl is a disjunction of relations and their negations:

R1
l (x1, . . . , xk) ∨ . . . ∨Rsl (x1, . . . , xk).

We do not lose significant generality by assuming all extensional relations to be of arity

k and all disjunctions to be of width s.

Given a first-order formula φ in this form, we want to generate a sequence of QBFs

{Φn}n∈N where Φn is true exactly when φ has a model of size n. We are interested

in such sequences where every Φn is false, which are generated by first-order formulas

which have no models or whose only models are infinite.

Each first-order variable x in φ becomes n Boolean variables x1, . . . , xn. If xj is

made true this represents that x is assigned the value j from the n available constants.

We introduce existentially quantified variables associated with a relational predicate

Rml (λ1, . . . , λk) indicating that the tuple (λ1, . . . , λk) is in the relation Rml . In φ a

variable x can only take on one value at a time, and must be given some value. We

introduce clauses so that if any existentially quantified variable is not given exactly one

value the QBF evaluates to false, and if any universally quantified variable is not given

exactly one value then the QBF can be made to evaluate to true.

Let [n] := {1, . . . , n}.
∑

j∈[n] x
j = 1 asserts that precisely one of the variables xj is

true, i.e. it is an abbreviation for
(∨

i∈[n] x
i
)
∧
∧
j 6=i∈[n](¬xi ∨¬xj). We can now define

our sequence of QBFs.

Ψn := ∃λ1,...,λk∈[n]R
1
1(λ1, . . . , λk) . . . R

s
r(λ1, . . . , λk) (9.1)

Q1 x
1
1 . . . x

n
1 . . .Qk x

1
k . . . x

n
k (9.2)∧

{i Qi=∀}

∑
j∈[n]

xji = 1→
∧

l∈[r]λ1,...,λk∈[n]

(xλ11 ∧ . . . ∧ x
λk
k)→ Dl(λ1, . . . , λk) (9.3)

∧
∧

{i Qi=∃}

∑
j∈[n]

xji = 1 (9.4)

where the notation ∃λ1,...,λk∈[n]R
1
1(λ1, . . . , λk) . . . R

s
r(λ1, . . . , λk) indicates that we ex-

istentially quantify over all propositional variables of the form Rml (λ1, . . . , λk) for all

tuples with λ1, . . . , λk ∈ [n].

By construction, Φn is true just in case φ has a model of size n. If the disjuncts

Dl contain equality relationships between variables then these can be enforced by re-

striction of the λ1, . . . , λk ∈ [n] and if Dl only involve some subset of x1, . . . , xk then

only these need be mentioned in the relevant constraints of line 9.3. We call Boolean

117

9.2 The Exponential Lower Bound

variables of the form Rji (λ1, . . . , λk), which are always existentially quantified in the

outermost block, relational variables.

The quantifier-free part of Φn can be expanded to CNF with polynomial increase in

size. In particular, line 9.3 is not in CNF but simplifies to a set of clauses of the formDl(λ1, . . . , λk) ∨
∨
i∈k
¬xλii ∨

∨
{i|Qi=∀},j 6=λi

xji

9.2 The Exponential Lower Bound

We begin by showing that when φ has infinite models then any tree-like ∀Exp + Res

refutation of Φn has size 2Ω(n). Since ∀Exp + Res p-simulates Q-Res in the tree-like case

the result immediately transfers to Q-Res as well.

We use the game of Beyersdorff et al. (2013) for tree-like Resolution (introduced in

Section 5.1) and state a strategy for the Delayer on any QBF generated through the

above translation where the underlying first-order formula has an infinite model. The

Delayer falsely claims that there is a model of φ of size n and responds to the Prover’s

queries based on information about the real (infinite) models of φ. We will assume,

for notational simplicity, that all constants in the models being considered are called

c1, c2, . . . , and that a model of size n has constants named c1, . . . , cn. The Prover and

Delayer build up an assignment to the variables of the QBF, and these correspond to

statements about the claimed first-order model. If Rml (λ1, . . . , λk) is assigned 1 this is

equivalent to stating that the relation Rml holds for constants cλ1 , . . . , cλk in the model

that the Delayer claims exists for φ.

The remainder of the QBF represents the statement that for every assignment

to the universally quantified variables of φ in c1, . . . , cn there is an assignment to the

existentially quantified variables from c1, . . . , cn so that the constraints in the quantifier

free part of φ hold, given some specific interpretation of the relations. Other than

the relational variables the Prover can query, for an existentially quantified first-order

variable x, any of xj,α where α is an assignment to the universally quantified variables

in the QBF prior to xj . As previously noted, xji = 1 in Φn corresponds to xi = cj

in φ. The annotation α records a (partial) assignment to the universal variables of

φ, provided that it is “well behaved” in the sense that exactly one of the variables

u1, . . . , un evaluates to 1 under α. In this case α indicates the value that u is assigned

in φ. If xj,α is assigned 1 this is equivalent to stating that in the claimed model of φ,

when the universal assignments are made according to α, x is assigned the value cj .

Initially we will assume that α is indeed well behaved and will discuss what happens

otherwise below. The assignment to variables of φ that corresponds to α will be denoted

by α̃. As usual, the annotation can only contain assignments for universal variables

118

9.2 The Exponential Lower Bound

prior to x in the quantifier prefix.

Since there is no model of φ of size n, queries made by the Prover will eventually

reveal a contradiction, with some clause of Φn being falsified. At this point the game

ends, but we seek to show that the Delayer can ensure a score of Ω(n) points before

this happens.

The Delayer’s Strategy

Let M be the set of all models of φ. At any point in the game there is a record of QBF

variables that have been assigned. For xj,α = b in this record (b ∈ {0, 1}) we define

φ(α̃, xj , b) =

φ|α̃,x=cj if b = 1,

(φ|α̃ ∧ x 6= cj) if b = 0.

Let Φ denote the conjunction of all φ(α, xj , b) for the assignments xj,α = b which have

been made so far in the game.

We say that a model M ∈ M agrees with the current state of the game if the

relations hold between the constants of M as specified by assignments to the relational

variables of Φn, and M is a model of Φ. The subset of M that agrees with the current

state of the game is denoted M̃.

We now return to the question of how to handle annotations that are not well

behaved. Suppose we have such an assignment, α so there is some universally quantified

variable u such that either all u1, . . . , un are assigned 0 in α or at least two of them

are assigned 1. Notice that if constraint Dl depends on universally quantified u in

φ then every constraint in Φn that relates to Dl contains (¬uj ∨
∨
j′ 6=j u

j′) for some

j ∈ [n]. ∀Exp + Res works on an expanded formula, and in the part of the expansion for

α all the clauses related to Dl are satisfied. All that remains is the part of Φn relating

to constraints in φ that do not depend on u, and the side conditions specifying that

existentially quantified variables must be given one value. As such, if α is badly behaved

with respect to u we set α̃ to not assign any value to u and work with φ(α̃, xj , b) :=

φ′(α̃, xj , b) where φ′ is φ with all constraints Dl that depend on u removed. The Prover

can’t benefit from making such queries but would always get more information (so

constrain M̃ more) by using a well behaved universal assignment in the annotations.

When the Prover makes a query on a relational variable Rml (λ1, . . . , λk) the Delayer

considers all M ∈ M̃. If all M agree that the relationship Rml holds for constants

cλ1 , . . . , cλk then the Delayer responds with weights p1 = 1, p0 = 0. The Prover is

forced to assign the variable to 1 and the Delayer scores no points. If all M agree that

Rml does not hold for constants cλ1 , . . . , cλk then the Delayer responds with weights

p1 = 0, p0 = 1. Again, the variable assignment is forced and the Delayer scores no

119

9.2 The Exponential Lower Bound

points. If the models disagree then the Delayer responds with weights p1 = 1
2 , p0 = 1

2 .

In this case the Delayer scores one point when the Prover decides the assignment.

When the Prover makes a query on xj,α, again the Delayer considers all M ∈ M̃,

and if they all agree that when the universal variables of φ are set according to α̃ then

x is assigned cj then the Delayer responds with weights p1 = 1, p0 = 0. If all the

models agree that when the universal variables of φ are set according to α̃ then x is

not assigned cj then the Delayer responds with weights p1 = 0, p0 = 1. If the models

disagree then the Delayer responds with weights p1 = 1
2 , p0 = 1

2 and the Delayer scores

one point.

Lemma 9.2.1. Using the strategy described above, the Delayer can only lose the game

by violating a clause stating that for some set of existential variables {xj}nj=1, exactly

one must be set to true.

Proof. Because we are following models that satisfy φ, each such model must satisfy

every clause of the QBF except where the QBF makes a direct statement about the

size of the model. At every stage of the game there remain infinite models that agree

with everything stated so far, and for which x has some value under any universal

assignment in φ, but that value may fall outside of the n elements permitted by the

QBF. The statements that reference the size of the model are those stating that exactly

one variable from each existentially quantified set {xj}nj=1 must be true (i.e. that the

assignment to variable x in the original sentence must correspond to one of the n

elements in the universe). For the same reason, the clause will be violated because all

variables are assigned 0, never because more than one is assigned 1 as no model can

assign multiple values to x.

As a result of this, at least n variables in the QBF must be assigned a value in order

for the Delayer to lose the game, and these variables must between them reference

all n of the elements in the universe. The next idea is that a large proportion of

these n assignments score a point for the Delayer – although perhaps not directly.

Every query in the game on Φn makes reference to some of the n constants in the

claimed model. Queries on relational variables Rml (λ1, . . . , λk) reference the constants

cλ1 , . . . , cλk . Queries on xj,α reference cj and every constant used in α̃.

Lemma 9.2.2. At least n − k of the n constants are referenced in a query for which

the Delayer scores a point.

Proof. For some existentially quantified variable x, the game ends because all of {xj,α}nj=1

are assigned to 0. Then the Prover must query xj,α for all j at some point. Recall that

k is the number of variables in φ and the maximum arity of all relations. The universal

assignment α references k′ < k of the constants, without loss of generality suppose

120

9.3 A Surprising Lower Bound

these are c1, . . . , ck′ . Consider cj for some j > k′. Suppose that nothing assigned by a

Prover choice so far in the game has referenced cj . By construction, there is at least

one infinite model M that agrees with the choices made so far in the game, and this

must assign some value to x given α̃, although this value may be outside of c1, . . . , cn.

However, there is no information from the queries made so far in the game which can

distinguish cj from any other elements in M which have not been referenced in a query

decided by the Prover. In particular cj cannot be distinguished from the constants

outside of c1, . . . , cn. It follows that there must be a model in M̃ in which x is assigned

cj in response to α̃ (by relabelling the constants of M). Therefore, when xj,α is queried,

either cj has already been referenced by a query which scored one point, or else this

query can score one point.

Lemma 9.2.3. The Delayer scores Ω(n) points by the given strategy.

Proof. At least n−k constants must be referenced in a query that scores a point. Each

query can only reference at most k constants. Therefore at least n−k
k points are scored.

k is fixed, it does not depend on n, so this gives Ω(n) points.

Theorem 9.2.4. Let φ be a first-order sentence which has an infinite model but no

finite model. Then any tree-like ∀Exp+Res refutation of QBF Φn, representing the

statement that there is a model for φ of size n, has size 2Ω(n).

The result immediately transfers to tree-like Q-Res as well.

9.3 A Surprising Lower Bound

The Delayer’s strategy above relies on having some model that satisfies φ, so clearly

it cannot apply when φ has no models. If the gap theorem holds then we expect that

when φ has no models there are polynomial-size refutations for the sequence {Φn}n∈N.

This does not hold for Q-Res.

Proposition 9.3.1. Let θ := ∀x∃y∀z∃u∀v∃w R(x, y, z) ∧ ¬R(u, v, w) and {Θn}n∈N
be the sequence of QBFs expressing that θ has a model of size n. Although θ has no

models, any tree-like Q-Res refutation of Θn must have size 2Ω(n).

We have already shown an exponential lower bound on the size of tree-like Q-Res

refutations of Θn in Chapter 5, Lemma 5.2.1. The formulas stated there are slightly

different from those given by our translation in order to make the presentation cleaner,

but the difference is only superficial.

Firstly, the QBFs in Chapter 5 lack any variables corresponding to z in θ, this is

because these variables only appear in clauses where they are innermost and could be

immediately removed by universal reduction in Q-Res. Including these variables does

121

9.3 A Surprising Lower Bound

not affect the argument of Lemma 5.2.1 since the Delayer ensures that all relevant

clauses are satisfied however the z variables are assigned.

Secondly, our translation includes clauses to ensure that no existentially quantified

variable from θ can be assigned more than one value at a time, these do not appear in

the formulas in Chapter 5. Intuitively, if x is existentially quantified in φ we can see

that it would never be in the existential player’s interest to set more than one xi to 1

in Φn anyway since the xi variables only appear positively in the clause (x1 ∨ · · · ∨xn).

We can add a rule which says that as soon as one existential variable is assigned 1

then all other variables in that set are assigned 0, and if all but one are assigned 0 then

the final variable in the set should be assigned 1. This rule will apply when it is not in

conflict with the existing rules.

It is straightforward to check that the game still ends because some existential

variable from θ has not been assigned a value. We need to show that the Prover cannot

use the new rules to reduce the overall score for the Delayer.

Suppose that the game ends with (w1 ∨ · · · ∨ wn) falsified. In the previous round,

without loss of generality, we had w1, . . . , ws assigned to 0 and ws+1, . . . , wn unassigned.

If s = n − 1 then wn is forced to take the value 1. If s = n − 2 then the Prover can

make a query on wn−1 but this simply returns us to the previous situation. In order

to achieve wi = 0 for all i we would need at least two such wi to be assigned 0 in the

same round, before the new rule can be applied. However, it is not possible for a single

Prover query to cause two values of wi to be assigned 0 according to the original rules

and v cannot be assigned while any wi has a value assigned to it. Therefore, the clause

(w1 ∨ · · · ∨wn) cannot be made to evaluate to false without first forgetting the current

assignments to all wi and making new queries which will result in all wi being forced

by the original rules to take the value 0 in a single round.

The same reasoning applies if the game ends by falsifying the clauses (y1 ∨ · · · ∨ yn)

or (u1 ∨ · · · ∨ un).

We also see that although an existentially quantified variable can now be forced to

take the value 1 this never happens for free. Since the most recent assignment of any of

v1, . . . , vn, when all wi were necessarily unassigned, either at least one point has been

scored in order to set some wi to 1 or Ω(n) points have previously been scored in the

game so that all wi
′

for i′ 6= i are forced to take the value 0 which then forces wi to be

assigned 1. Overall the Delayer still gains Ω(n) points during the game.

We have shown in Lemma 5.2.2 that Θn have polynomial-size refutations in ∀Exp + Res.

The idea in this example can be generalised to give a polynomial-size upper bound for

∀Exp + Res refutations whenever φ has no models.

122

9.4 The Polynomial Upper Bound

9.4 The Polynomial Upper Bound

We show that when φ has no models the Prover can use a refutation of φ as a framework

for a polynomial-size refutation in ∀Exp + Res. We will use a refutation of φ, specifically

we assume an analytic tableau refutation. We begin by briefly introducing this proof

method for first-order logic.

The principle is to break φ down into smaller components, creating a tree which

represents it. Each node is labelled with some formula. The nodes of a single branch

represent a conjunction. The different branches of the tree represent a disjunction.

If two modes on a branch are and immediate contradiction (i.e. a formula A and its

negation ¬A) then the formula represented by this branch has been proved false. The

branch is said to be closed. To show that φ is false, every branch of the tableau must

be closed.

The tree is built according to the following rules, each of which allows one or several

nodes to be added as descendants of the current leaves of the tree. New nodes can only

be added at the leaves, and nodes cannot be removed.

• Axiom: A new node can be added to any branch and labelled with a conjunct

from φ.

• And: When a branch contains a node labelled (A ∧ B) a new node labelled A

and/or a new node labelled B can be added to this branch.

• Or: When a branch contains a node labelled (A∨B) we can create two children

of the current leaf of that branch, thus splitting it in two. One of the new nodes

is labelled A and the other is labelled B.

• Universal: When a branch contains a node labelled ∀uA we can add a new

node to this branch labelled A[u′/u] where u′ is a new free variable not in φ or

anywhere in the tableau.

• Existential: When a branch contains a node labelled ∃xA we can add a new

node to this branch labelled A[f(u′1, . . . , u
′
k)/x] where f is a new function symbol

not appearing in φ or anywhere in the tableau and u′i are the free variables in A.

The new function f is a Skolem function for x.

Finally, a unification defines a substitution to the free variables of the tableau such

that every branch contains an immediate contradiction. Each substitution could be a

constant or a Skolem function.

This proof method is complete. If a first-order formula φ is false then there is a

tableau proof of this (although it may not be straightforward to find it). We will assume

that the Prover has access to a tableau refutation of φ.

123

9.4 The Polynomial Upper Bound

Theorem 9.4.1. Let φ be a first-order sentence without any models. Then the sequence

of QBFs {Φn} have polynomial-size tree-like refutations in ∀Exp+Res.

Proof. We use the unification witnessing that φ is false to structure a strategy for the

Prover in the Prover-Delayer game of Beyersdorff et al. (2013). The unification is made

up of substitutions to the free variables by constants or Skolem functions. Each Skolem

function was introduced for some existential variable x from φ and is evaluated for an

assignment to (a subset of) the universal variables of φ that appeared prior to x in the

quantifier prefix.

Consider a line in the unification of the form f(u′1, . . . , u
′
t)/y

′, in which each u′i (and

y′) is a free variable introduced to the tableau in place of universally quantified variable

ui from φ, and f is a Skolem function introduced to the tableau in place of existentially

quantified variable x from φ. If u′i has already appeared earlier in the unification then

it has a value bui ∈ [n] already assigned to it. All other universally quantified variables

in φ that appear before x in the quantifier prefix can be arbitrarily assigned a value.

Let α̃ be the assignment to first-order universally quantified variables prior to x in the

prefix of φ that sets ui = bui if bui is defined and otherwise sets each variable to c1.

Then α is the QBF assignment equivalent to α̃, i.e. if u = cj ∈ α̃ then uj ∈ α and

¬uj′ ∈ α for all j′ 6= j. The Prover queries the value of x with the annotation α.

Because x has been split into x1 . . . xn by the translation to QBF the Prover will in fact

query some or all of the xi,α until one of them is made true. Then all other xi,α would

be forced to false so the Prover can move on to the next assignment in the unification.

Each line from the unification is handled in this way, in order, and the responses

are remembered. Earlier responses can affect later queries by affecting the setting of α.

Once the assignments for the unification have been made the Prover can query re-

lational variables to quickly reach a contradiction. Each branch of the tableau contains

two entries that are directly contradictory under the unification. For each branch in

turn the Prover queries the relation(s) that close the branch using the assignments

determined in the first stage of the game. By construction, any sequence of Delayer

answers results in an immediate contradiction and the QBF is made to evaluate to

false. In particular, some clause in line 9.3 of the generated QBF is falsified.

We need to show that the Delayer scores O(log(n)) points. The number of queries

of the relational variables does not depend on n. For each query the Prover can select

the value that gives Delayer the lowest score so each choice has a maximum value of

1 point (which occurs when p0 = p1 = 1
2). This part gives the Delayer a constant

score. There are also constantly many Skolem functions in the unification. Each of

these requires (up to) n queries to assign a value to an (annotated) existential variable

but we will show that the number of points remains limited to O(log(n)) points.

To assign a value to xα the Prover queries the xi,α in order until one of them is

124

9.4 The Polynomial Upper Bound

assigned 1.

Induction Hypothesis: Immediately after querying xj,α for each value of j =

1, . . . n− 1 the Delayer has either scored log(n) points and some xi,α = 1 or has scored

log(n)− log(n− j) points and all xi,α = 0.

Base Case: The Prover first queries x1,α. The Delayer responds with weights p0

and p1. If p1 ≥ 1
n then set x1,α = 1 so Delayer scores at most log(n) points. Otherwise

set x1,α = 0. In this case p0 >
n−1
n so Delayer scores at most log(n

n−1) points.

Inductive Step: Over xi,α for i = 1, . . . , j Delayer has either scored log(n) points

and some xi,α = 1 or has scored log(n) − log(n − j) points and all xi,α = 0. If some

xi,α = 1 then we are done and Prover does not need to query xj+1,α. Otherwise the

Prover sets xj+1,α = 1 if p1 ≥ 1
n−j . The Delayer scores at most log(n−j) points for this,

giving a total of log(n) points. If p1 <
1

n−j then Prover sets xj+1,α = 0 and Delayer

scores at most log(n−j
n−j−1) points for this, giving a total of log(n) − log(n − (j + 1))

points.

If all xi,α = 0 for i = 1, . . . n− 1 then at the query for xn,α simply choose the value

that gives the Delayer the least score. If xn,α is set to 0 then the game ends. In either

case, the Delayer scores at most 1 point.

In total the Delayer has scored O(log(n)) points, so the proof size is nO(1).

The reason that this approach fails in Q-Res is that the assignments to existentially

quantified variables must be forgotten when resetting the universal assignment, so it is

not possible to remember responses for lines early in the unification and apply them

later. The contradiction from querying relational variables requires that all earlier

responses can be recalled.

Conclusion

We have shown that PCNFs generated from first-order formulas by a natural translation

exhibit a complexity gap in tree-like ∀Exp + Res, but that tree-like Q-Res is unable to

achieve the polynomial upper bound in the case that the first-order formula has no

models. This highlights a weakness in the universal reduction rule which prevents

Q-Res from mimicking the refutation of the first-order proof as is possible in both

∀Exp + Res and when the first-order formula is directly translated into propositional

logic.

125

Chapter 10

Conclusion

The main theme of this thesis has been comparing different approaches to reasoning

about universally quantified variables in QBF proof systems that act on formulas in

prenex conjunctive normal form, and we have demonstrated some consequences of the

relative weakness of universal reduction.

Resolution with Universal Reduction and Expansion Through a careful study

of several QBF systems based on Resolution, we have answered some open questions

and shown some new connections between them. We have also given some theoretical

context for empirically observed behaviour of different QBF solvers. We showed that for

tree-like proofs, Q-Res and QU-Res are p-equivalent, and ∀Exp + Res is strictly stronger

than both. The separating example can be generalised somewhat and also shows that

stronger extensions of Q-Res cannot p-simulate even tree-like ∀Exp + Res.

Similarly when restricted to formulas with bounded quantifier complexity we have

shown that (general, DAG-like) Q-Res and QU-Res are p-equivalent and are p-simulated

by ∀Exp + Res. Prior to this it was known that QU-Res can give polynomial-size proofs

for the formulas KBKFn, which require exponential-size proofs in Q-Res, and it is clear

from the definitions that QU-Res p-simulates Q-Res. The results in this thesis show that

the situation in which universal resolution adds sufficient power for such a separation to

exist is very limited. Not only must the formula have unbounded quantifier complexity,

but also the proof must not be tree-like and the universal resolution steps must interact

in a specific way. Even when such a separation is possible we can make a simple

modification to any formula which has an exponential lower bound for proof size in

Q-Res to create a QBF that is similarly hard for QU-Res. Given these results, we can

see that from a theoretical point of view QU-Res offers minimal advantages over Q-Res.

For QBFs with bounded quantifier complexity we have shown that ∀Exp + Res p-

simulates Q-Res but not LD-Q-Res. This highlights the importance of better under-

standing the relationship between QCDCL solvers and these two proof systems. It

126

would also be interesting to investigate whether these results hold when the proof sys-

tems are augmented with dependency schemes.

It is somewhat surprising to find such a large class of formulas for which ∀Exp + Res

is strictly stronger than Q-Res. Although they are both based on Resolution these two

systems relate to different solving paradigms and were thought to exhibit orthogonal

strengths. Again, the result shows that there are very specific requirements for a

QBF that has short Q-Res proofs but requires large ∀Exp + Res proofs. Whether there

are natural situations in which Q-Res p-simulates ∀Exp + Res is open. It is also open

whether a separation exists between IR-calc and ∀Exp + Res for QBFs with bounded

quantifier complexity. At present the only known formulas with polynomial-size proofs

in IR-calc and requiring exponential-size proofs in ∀Exp + Res have unbounded quantifier

complexity. However, the method used here does not immediately apply.

QRAT and QRAT+ We have shown that the proof system QRAT does not admit

strategy extraction from refutations unless P = PSPACE. This is in contrast to QRAT

proofs of true QBFs, which do admit extraction of Skolem functions. We have also

shown that the cause of this difficulty is the extended universal reduction rule. When

limited to using the standard universal reduction rule then refutational QRAT does

allow extraction of Herbrand functions. Further, simply adding universal expansion

without the full power of extended universal reduction is sufficient to prevent strategy

extraction for QRAT. This shows that strategy extraction is closely linked to the type of

universal reasoning used by a QBF proof system. We have formalised this connection

by showing that a QBF proof system which includes universal expansion can only

have strategy extraction when the underlying propositional proof system has feasible

interpolation. We have also shown that QRAT+, which extends the QRAT rule by

allowing inference by universal reduction as well as unit propagation, does not change

this picture since QRAT+ and QRAT are p-equivalent.

An interesting open question is whether QRAT for true QBFs could be augmented

with some new or stronger rule which would prevent extraction of Skolem functions.

The cause of the asymmetry between the refutational and satisfaction variants of the

proof system is not fully understood, but could be related to the inherent asymmetry

of a CNF representation. Since one purpose of QRAT is to simulate current QBF solv-

ing and pre-processing techniques, which do admit strategy extraction, we could also

investigate a restriction of QRAT which is still able to simulate all of these techniques,

including universal expansion, but without losing strategy extraction, i.e. by restricting

the power of the underlying propositional reasoning.

Applying Propositional Results to QBF Systems We revisited the relationship

between the size and width of proofs in Resolution, lifting existing counter-examples

127

to stronger systems. By carefully showing how the original proof of Ben-Sasson and

Wigderson can be applied to Q-Res we have given some explanation beyond the counter-

examples of why this important result fails to lift to the QBF setting.

Finally, we have show that the complexity gap theorem fails to lift to Q-Res and

that this is directly related to a weakness in universal reduction which is not present

in universal expansion. It is open whether dependency schemes may help to overcome

this, and whether the gap result holds for extensions of Q-Res such as LD-Q-Res.

128

References

Atserias, A., Lauria, M. & Nordström, J. (2014). Narrow proofs may be max-

imally long. In 2014 IEEE 29th Conference on Computational Complexity (CCC),

286–297. 104

Audemard, G. & Simon, L. (2018). On the Glucose SAT solver. International Journal

on Artificial Intelligence Tools, 27, 1840001. 2

Balabanov, V. & Jiang, J.H.R. (2011). Resolution proofs and Skolem functions in

QBF evaluation and applications. In Computer Aided Verification (CAV), 149–164.

72

Balabanov, V. & Jiang, J.H.R. (2012). Unified QBF certification and its applica-

tions. Formal Methods in System Design, 41, 45–65. 5, 31, 66, 85

Balabanov, V., Widl, M. & Jiang, J.H.R. (2014). QBF resolution systems and

their proof complexities. In Theory and Applications of Satisfiability Testing (SAT),

154–169. 109

Beame, P., Kautz, H.A. & Sabharwal, A. (2004). Towards understanding and

harnessing the potential of clause learning. Journal of Artificial Intelligence Research

(JAIR), 22, 319–351. 31

Beame, P., Beck, C. & Impagliazzo, R. (2012). Time-space tradeoffs in resolution:

superpolynomial lower bounds for superlinear space. In ACM Symposium on the

Theory of Computing (STOC), 213–232. 4

Beek, P.V. (2006). Backtracking search algorithms. In Handbook of Constraint Pro-

gramming , 85–134. 31

Ben-Sasson, E. & Nordström, J. (2011). Understanding space in proof complexity:

Separations and trade-offs via substitutions. In Innovations in Computer Science

(ICS), 401–416. 4

Ben-Sasson, E. & Wigderson, A. (2001). Short proofs are narrow - resolution made

simple. Journal of the ACM , 48, 149–169. 4, 7, 104, 105, 113

129

REFERENCES

Benedetti, M. & Mangassarian, H. (2008). QBF-based formal verification: Expe-

rience and perspectives. JSAT , 5, 133–191. 4

Beyersdorff, O. & Clymo, J. (2018). Relating size and width in variants of Q-

resolution. Information Processing Letters, 138, 1–6. 7

Beyersdorff, O. & Kullmann, O. (2014). Unified characterisations of resolution

hardness measures. In Theory and Applications of Satisfiability Testing (SAT), 170–

187. 4, 59

Beyersdorff, O. & Pich, J. (2016). Understanding Gentzen and Frege systems for

QBF. In Logic in Computer Science (LICS). 58

Beyersdorff, O., Galesi, N. & Lauria, M. (2013). A characterization of tree-like

resolution size. Information Processing Letters, 113, 666–671. 59, 60, 118, 124

Beyersdorff, O., Chew, L. & Janota, M. (2014). On unification of QBF

resolution-based calculi. In Mathematical Foundations of Computer Science (MFCS),

81–93. 28

Beyersdorff, O., Chew, L. & Janota, M. (2015). Proof complexity of resolution-

based QBF calculi. In Symposium on Theoretical Aspects of Computer Science

(STACS), 76–89. 5, 31, 33, 45, 48, 53, 54, 57, 67, 69, 72, 73

Beyersdorff, O., Bonacina, I. & Chew, L. (2016a). Lower bounds: From circuits

to QBF proof systems. In ACM Conference on Innovations in Theoretical Computer

Science (ITCS), 249–260. 29, 31, 58, 71

Beyersdorff, O., Chew, L., Mahajan, M. & Shukla, A. (2016b). Are short

proofs narrow? QBF resolution is not simple. In Symposium on Theoretical Aspects

of Computer Science (STACS), 15:1–15:14. 104, 105, 109, 110, 114

Beyersdorff, O., Chew, L., Mahajan, M. & Shukla, A. (2017a). Feasible inter-

polation for QBF resolution calculi. Logical Methods in Computer Science (LMCS),

13 (2). 5, 73, 94

Beyersdorff, O., Chew, L. & Sreenivasaiah, K. (2017b). A game characterisa-

tion of tree-like Q-resolution size. Journal of Computer and System Sciences, 82–101.

4, 60, 61

Beyersdorff, O., Chew, L., Mahajan, M. & Shukla, A. (2018). Understanding

cutting planes for QBFs. Information and Computation, 262, 141–161. 88

130

REFERENCES

Beyersdorff, O., Chew, L., Clymo, J. & Mahajan, M. (2019). Short proofs in

QBF expansion. In Theory and Applications of Satisfiability Testing (SAT), 19–35.

7

Beyersdorff, O., Blinkhorn, J. & Mahajan, M. (2020). Hardness characteri-

sations and size-width lower bounds for QBF resolution. In Symposium on Logic in

Computer Science (LICS), 209–223. 7

Biere, A., Lonsing, F. & Seidl, M. (2011). Blocked clause elimination for QBF. In

Conference on Automated Deduction CADE , 101–115. 32

Biere, A., Fazekas, K., Fleury, M. & Heisinger, M. (2020). CaDiCaL, Kissat,

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In SAT

Competition 2020 , 51–53. 2

Bonet, M.L. & Galesi, N. (2001). Optimality of size-width tradeoffs for resolution.

Computational Complexity , 10, 261–276. 4

Chew, L. & Clymo, J. (2019). The equivalences of refutational QRAT. In Theory

and Applications of Satisfiability Testing (SAT), 100–116. 7

Chew, L. & Clymo, J. (2020). How QBF expansion makes strategy extraction hard.

In Automated Reasoning , 66–82. 7

Chvátal, V. & Szemerédi, E. (1988). Many hard examples for resolution. Journal

of the ACM , 35, 759–768. 3

Cook, S.A. (1971). The complexity of theorem-proving procedures. In Symposium on

Theory of Computing (STOC), 151–158. 1

Cook, S.A. & Reckhow, R.A. (1979). The relative efficiency of propositional proof

systems. The Journal of Symbolic Logic, 44, 36–50. 1, 21, 23

Craig, W. (1957a). Linear reasoning. a new form of the Herbrand-Gentzen theorem.

The Journal of Symbolic Logic, 22, 250–268. 73

Craig, W. (1957b). Three uses of the Herbrand-Gentzen theorem in relating model

theory and proof theory. The Journal of Symbolic Logic, 22, 269–285. 93

Davis, M. & Putnam, H. (1960). A computing procedure for quantification theory.

Journal of the ACM , 7, 210–215. 13, 22

Davis, M., Logemann, G. & Loveland, D.W. (1962). A machine program for

theorem-proving. Communications of the ACM , 5, 394–397. 3, 13

131

REFERENCES

Egly, U., Lonsing, F. & Widl, M. (2013). Long-distance resolution: Proof gen-

eration and strategy extraction in search-based QBF solving. In International Con-

ference on Logic for Programming Artificial Intelligence and Reasoning (LPAR),

291–308. 72

Egly, U., Kronegger, M., Lonsing, F. & Pfandler, A. (2014). Conformant

planning as a case study of incremental QBF solving. In Artificial Intelligence and

Symbolic Computation (AISC), 120–131. 4

Gent, I.P., Nightingale, P. & Rowley, A.G.D. (2004). Encoding quantified CSPs

as quantified Boolean formulae. In European Conference on Artificial Intelligence

(ECAI), 176–180. 116

Gent, I.P., Nightingale, P., Rowley, A.G.D. & Stergiou, K. (2008). Solving

quantified constraint satisfaction problems. Artificial Intelligence, 172, 738–771. 116

Giunchiglia, E., Narizzano, M. & Tacchella, A. (2004). Qube++: An efficient

QBF solver. In Formal Methods in Computer-Aided Design, 201–213. 4

Giunchiglia, E., Narizzano, M. & Tacchella, A. (2006). Clause/term resolution

and learning in the evaluation of quantified Boolean formulas. Journal of Artificial

Intelligence Research (JAIR), 26, 371–416. 32

Goultiaeva, A., Van Gelder, A. & Bacchus, F. (2011). A uniform approach for

generating proofs and strategies for both true and false QBF formulas. In Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 546–553. 72, 95

Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39,

297–308. 3

Heule, M., Seidl, M. & Biere, A. (2014a). Efficient extraction of Skolem functions

from QRAT proofs. In Formal Methods in Computer-Aided Design, 107–114. 73, 76

Heule, M., Seidl, M. & Biere, A. (2014b). A unified proof system for QBF prepro-

cessing. In International Joint Conference on Automated Reasoning (IJCAR), vol.

8562, 91–106, Springer. 72, 77

Heule, M.J., Seidl, M. & Biere, A. (2017). Solution validation and extraction for

QBF preprocessing. Journal of Automated Reasoning , 58, 97–125. 77

Heule, M.J.H., Kullmann, O. & Marek, V.W. (2016). Solving and verifying the

Boolean Pythagorean triples problem via cube-and-conquer. In Theory and Applica-

tions of Satisfiability Testing (SAT), 228–245. 2

132

REFERENCES

Janota, M. (2016). On Q-resolution and CDCL QBF solving. In Theory and Appli-

cations of Satisfiability Testing (SAT), 402–418. 32

Janota, M. & Marques-Silva, J. (2015). Expansion-based QBF solving versus Q-

resolution. Theoretical Computer Science, 577, 25–42. 5, 28, 32, 33, 34, 58, 61, 65,

109

Janota, M., Klieber, W., Marques-Silva, J. & Clarke, E.M. (2012). Solving

QBF with counterexample guided refinement. In Theory and Applications of Satisfi-

ability Testing (SAT), 114–128. 4

Kautz, H.A. & Selman, B. (1992). Planning as satisfiability. In European Conference

on Artificial Intelligence (ECAI). 2

Kiesl, B. & Seidl, M. (2019). QRAT polynomially simulates ∀Exp+Res. In Theory

and Applications of Satisfiability Testing (SAT), 193–202. 73

Kiesl, B., Heule, M.J.H. & Seidl, M. (2017). A little blocked literal goes a long

way. In Theory and Applications of Satisfiability Testing (SAT), 281–297. 73

Kleine Büning, H., Karpinski, M. & Flögel, A. (1995). Resolution for quantified

Boolean formulas. Information and Computation, 117, 12–18. 24, 47, 48

Klieber, W., Sapra, S., Gao, S. & Clarke, E.M. (2010). A non-prenex, non-

clausal QBF solver with game-state learning. In Theory and Applications of Satisfi-

ability Teasting (SAT), 128–142. 4

Kraj́ıček, J. (1997). Interpolation theorems, lower bounds for proof systems and

independence results for bounded arithmetic. The Journal of Symbolic Logic, 62,

457–486. 73, 93

Larrabee, T. (1992). Test pattern generation using Boolean satisfiability. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11,

4–15. 2

Liang, J.H., Oh, C., Ganesh, V., Czarnecki, K. & Poupart, P. (2016). Maple-

COMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB. SAT Competition, 52. 2

Lonsing, F. & Biere, A. (2010). DepQBF: A dependency-aware QBF solver. JSAT ,

7, 71–76. 4, 18, 58

Lonsing, F. & Egly, U. (2018a). Evaluating QBF solvers: Quantifier alternations

matter. In Principles and Practice of Constraint Programming (CP), 276–294. 36,

46

133

REFERENCES

Lonsing, F. & Egly, U. (2018b). QRAT+: generalizing QRAT by a more powerful

QBF redundancy property. In International Joint Conference Automated Reasoning

(IJCAR), 161–177. 97, 99

Marques Silva, J.P. & Sakallah, K.A. (1996). GRASP - a new search algorithm

for satisfiability. In International Conference On Computer Aided Design (ICCAD),

220–227. 3, 14

Mironov, I. & Zhang, L. (2006). Applications of SAT solvers to cryptanalysis of

hash functions. In Theory and Applications of Satisfiability Testing (SAT), 102–115.

2

Peitl, T., Slivovsky, F. & Szeider, S. (2019). Dependency learning for QBF.

Journal of Artificial Intelligence Research, 65, 181–208. 18

Pipatsrisawat, K. & Darwiche, A. (2011). On the power of clause-learning SAT

solvers as resolution engines. Artificial Intelligence, 175, 512–525. 31

Pitassi, T., Beame, P. & Impagliazzo, R. (1993). Exponential lower bounds for

the pigeonhole principle. Computational Complexity , 3, 97–140. 3

Pudlák, P. (1997). Lower bounds for resolution and cutting planes proofs and mono-

tone computations. The Journal of Symbolic Logic, 62, 981–998. 3, 73, 93

Pudlák, P. (2000). Proofs as games. American Math. Monthly , 541–550. 59

Pudlák, P. & Impagliazzo, R. (2000). A lower bound for DLL algorithms for SAT.

In Proc. 11th Symposium on Discrete Algorithms, 128–136. 3, 59

Pulina, L. & Seidl, M. (2017). Competitive evaluation of QBF solvers (2017). http:

//www.qbflib.org/event_page.php?year=2017. 46

Rabe, M.N. & Tentrup, L. (2015). CAQE: A certifying QBF solver. In Formal

Methods in Computer-Aided Design, 136–143. 4

Reckhow, R.A. (1976). On the lengths of proofs in the propositional calculus. Ph.D.

thesis, University of Toronto. 23

Riis, S. (2001). A complexity gap for tree-resolution. Computational Complexity , 10,

179–209. 7, 115, 116

Robinson, J.A. (1965). A machine-oriented logic based on the resolution principle.

Journal of the ACM , 12, 23–41. 22

Samer, M. & Szeider, S. (2009). Backdoor sets of quantified Boolean formulas.

Journal of Automated Reasoning , 42, 77–97. 18

134

http://www.qbflib.org/event_page.php?year=2017
http://www.qbflib.org/event_page.php?year=2017

REFERENCES

Slivovsky, F. & Szeider, S. (2014). Variable dependencies and Q-resolution. In

Theory and Applications of Satisfiability Testing (SAT), 269–284. 79

Slivovsky, F. & Szeider, S. (2015). Quantifier reordering for QBF. Journal of Au-

tomated Reasoning , 459–477. 18

Soos, M., Nohl, K. & Castelluccia, C. (2009). Extending SAT solvers to crypto-

graphic problems. In Theory and Applications of Satisfiability Testing (SAT), 244–

257. 2

Tseitin, G.C. (1968). On the complexity of derivations in propositional calculus. In

A.O. Slisenko, ed., Studies in Mathematics and Mathematical Logic, Part II , 115–

125. 12

Urquhart, A. (1987). Hard examples for resolution. Journal of the ACM , 34, 209–

219. 3

Van Gelder, A. (2012). Contributions to the theory of practical quantified Boolean

formula solving. In Principles and Practice of Constraint Programming , 647–663. 26,

47

Wimmer, R., Reimer, S., Marin, P. & Becker, B. (2017). HQSpre - an effective

preprocessor for QBF and DQBF. In Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), 373–390. 32

Zhang, L. & Malik, S. (2002). Conflict driven learning in a quantified Boolean

satisfiability solver. In International Conference on Computer-Aided Design, 442–

449. 27

Zhang, W. (2014). QBF encoding of temporal properties and QBF-based verification.

In International Joint Conference on Automated Reasoning (IJCAR), 224–239. 4

135

	1 Introduction
	1.1 Structure and Contributions

	2 Logic and Complexity
	2.1 Computational Complexity
	2.2 Propositional Logic
	2.3 SAT-Solving Algorithms
	2.4 Quantified Boolean Logic
	2.5 QBF-Solving Algorithms

	3 Proof Systems
	3.1 Proof Systems for Propositional Tautologies
	3.2 QBF Proof Systems
	3.3 Proof Complexity

	4 QBFs with Bounded Quantifier Complexity
	4.1 Simulating Q-Resolution by Expansion and Resolution
	4.2 Simulating QU-Resolution by Q-Resolution
	4.3 Long Distance Q-Resolution for QBFs with Bounded Quantifier Complexity

	5 Tree-Like Expansion Proofs
	5.1 Proof Systems as Games
	5.2 Separating Tree-Like Expansion From Tree-Like Q-Resolution
	5.3 Separating Tree-Like Expansion From Stronger Calculi
	5.4 Short Tree-Like Expansion Proofs for QBFs Based on Thin Circuits

	6 Strategy Extraction in QRAT
	6.1 Redundancy Properties
	6.2 The QRAT Proof System
	6.3 Strategy Extraction in QRAT(UR)
	6.4 Unrestricted Refutational QRAT Does Not Have Strategy Extraction
	6.5 Relation to Feasible Interpolation

	7 The Equivalence of Refutational QRAT and QRAT+
	7.1 The QRAT+ Proof System
	7.2 Simulating QRAT+ by QRAT

	8 Proof Size and Proof Width In Variants of Q-Resolution
	8.1 Relating Size and Width Between Two Variants of Q-Resolution
	8.2 Size and Width for Stronger Proof Systems

	9 A Complexity Gap for QBF Resolution
	9.1 Rendering a First-Order Sentence As a Sequence of QBFs
	9.2 The Exponential Lower Bound
	9.3 A Surprising Lower Bound
	9.4 The Polynomial Upper Bound

	10 Conclusion
	References

