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Abstract

In this work we focus on BPS solutions of the gauged O(3) Sigma
model, originally due to Schroers, and use these ideas to study the
geometry of the moduli space. The model has an asymmetry param-
eter 7 breaking the symmetry of vortices and antivortices on the field
equations. It is shown that the moduli space is incomplete both on
the Euclidean plane and on a compact surface. On the Euclidean
plane, the L? metric on the moduli space is approximated for well
separated cores and results consistent with similar approximations for
the Ginzburg-Landau functional are found. The scattering angle of
approaching vortex-antivortex pairs of different effective mass is com-
puted numerically and is shown to be different from the well known
scattering of approaching Ginzburg-Landau vortices. The volume of
the moduli space for general 7 is computed for the case of the round

sphere and flat tori.

The model on a compact surface is deformed introducing a neutral
field and a Chern-Simons term. A lower bound for the Chern-Simons
constant s such that the extended model admits a solution is shown to
exist, and if the total number of vortices and antivortices are different,
the existence of an upper bound is also shown. Existence of multiple
solutions to the governing elliptic problem is established on a compact
surface as well as the existence of two limiting behaviours as K — 0. A
localization formula for the deformation is found for both Ginzburg-
Landau and the O(3) Sigma model vortices and it is shown that it
can be extended to the coalescense set. This rules out the possibility
that this is Kim-Lee’s term in the case of Ginzburg-Landau vortices,

moreover, the deformation term is compared on the plane with the



Ricci form of the surface and it is shown they are different, hence also
discarding that this is the term proposed by Collie-Tong to model

vortex dynamics with Chern-Simons interaction.
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Chapter 1

Introduction

This work is about the geometry of moduli spaces of vortices and antivortices on
a Riemann surface . We are interested mostly in the gauged O(3) Sigma model,
where the fields are represented by a connection A and a section ¢ of a fibre
bundle with fibres diffeomorphic to P!, the Riemann sphere. We say ¢ is a Higgs
field with target the Riemann sphere. Static solutions of the field equations
modulo gauge equivalence form the moduli space of vortices and antivortices,
each solution is determined by the cores of the fields: the preimages of the north
pole (vortex points) and the south pole (antivortex points). It can be proved
the total number of the cores is enumerable and if ¥ is compact, it is finite.
We will assume without loss of generality this is the case, even though ¥ can
be the complex plane. The dynamics of slowly varying fields can be described
by geodesic motion of curves on the moduli space [32] with a metric called the
L? metric. This metric is Kéihler and well understood for the moduli space of
vortices of the Ginzburg-Landau functional, in which case it is known that the
moduli space is a complete metric space and if the ambient surface is compact
the moduli space is also compact, hence of finite volume.

The O(3) Sigma model we will study is asymmetric, vortices and antivortices
have different effective mass, moreover, the existence of two types of cores means
vortices and antivortices cannot coalesce, therefore, a natural question is if the
moduli space is still complete. Another question we address is how the asymmetry
affects the volume of the moduli space. These questions were addressed for the

symmetric case in the reference [45]. The techniques used in the reference however



do not apply in general, we developed analytical tools to extend the results to
the asymmetric case.

Later, we add a Chern-Simons deformation to the model and describe the
change in the dynamics of the fields on the moduli space. The deformation is
tuned by means of a deformation constant x which we assume small. It turns out
that the dynamics of the theory is described by geodesic motion perturbed with
a connection term proportional to k, i.e. a term dependent on the velocity of the
cores. Our model resembles the model of Kim and Lee [26] with the difference
that the target is the sphere and there are two types of cores to consider. It
is well known for several related models with Chern-Simons deformations that
multiple solutions of the field equations occur. We study the problem of existence
and multiplicity of solutions to the field equations of the deformed O(3) Sigma
model, the main result is that even though multiple solutions of the equations can
exist, there is a minimal deformation, such that no matter which configuration
of vortices and antivortices on the moduli space we choose, we can find exactly
one solution close to the undeformed solution of the O(3) Sigma model.

We conclude with a description of the chapters of the thesis.

In chapter 2 we describe the ideas of localization in abstract terms. Our
approach is general and suits equally well Ginzburg-Landau vortices as well as
the O(3) Sigma model, with the benefit that it makes clear what we mean by
adding a Chern-Simons term. We also present analytical results that are common
to other parts of the next chapters.

In chapter 3 we focus on the O(3) Sigma model on the euclidean plane. We
study asymmetric vortex-antivortex pairs, supporting our analysis with numerical
evidence of the behaviour of colliding vortex-antivortex pairs. We compute the
metric on the moduli space of vortex-antivortex pairs numerically and use this
computations to study the scattering of approaching cores. The main result is
theorem 3.14 which says that the moduli space is incomplete.

In chapter 4 we move to a compact ambient surface. The main results are the
incompleteness of the moduli space of vortex-antivortex pairs, theorem 4.15, and
the computation of the volume of the moduli space for the round sphere and for
flat tori in theorem 4.25, confirming a general conjecture by Romao-Speight [45]

in these cases.



Chapter 5 is devoted to the study of Chern-Simons deformations on compact
surfaces. We prove the existence of multiple solutions for small deformations
of the O(3) Sigma model if the number of vortices and antivortices is different
and find bounds for the deformation constant. We also solve the field equations
numerically on the sphere for two configurations of vortices and antivortices at an-
tipodal positions. The main result is theorem 5.18, describing the behaviour of the
solutions to the field equations. We finalise the chapter applying the localization
technique to vortices of the Ginzburg-Landau model and vortices/antivortices of
the O(3) Sigma model, both with a Chern-Simons deformation. We found that
dynamics is deviated from geodesic motion by a connection term consistent with
previous results of Kim-Lee [26] and Collie-Tong [10], and compared our result
with theirs.



Chapter 2

Preliminaries

This chapter is for basic definitions and results of field theory that we will use
in the successive. To study the geometry of the moduli space of vortices we
need several analytical tools, this chapter is intended to be a bridge between field
theory and analysis.

In section 2.1 we introduce the O(3) Sigma model, which will play a central
role all along the thesis.

In section 2.2 we discuss a localization formula for the O(3) Sigma model, we
compute a metric for the moduli space of vortices and antivortices, the L? metric,
and prove that it is Kahler.

Section 2.3 is about the analytic properties of the Taubes equation, this is
the elliptic PDE that guarantees the existence of the moduli space of vortices
and antivortices. Several theorems of analysis are introduced in this section to
keep them collected in the same place for further reference. In subsection 2.3.1
we prove that the solution to the Taubes equation depends differentiably on the
position of the vortices and antivortices.

In section 2.4 we state less known theorems of functional analysis about com-

pact non-linear operators that we will need later.

2.1 Field theory on complex line bundles

In this section we introduce notation and a few facts about P! fibre bundles that

will be required for most of the work.



2.1 Field theory on complex line bundles

Let us start considering a principal U(1) bundle U(1) - P — R x 3, where
> is a Riemann surface. No further assumption on ¥ is needed. Let M be an

n-dimensional manifold, such that there exists a homomorphism
p:U(1) — Aut(M), (2.1)

from the structure group to the group of automorphisms of M. The word auto-
morphism means that if M has an extra structure, for example, if is a symplectic
or Kahler manifold, then p should preserve this structure. Let F' be the fibre
bundle associated to p,

F=RxX)x,M. (2.2)

Recall a connection form on P is a u(1) valued form w on P, such that the
kernel Ker(w) defines the horizontal sub-bundle of T'P. Since U(1) is one dimen-
sional, we can identify w with a regular form. For any local section s, : U, C
R x ¥ — P, the connection is given by a local form A, = s} (w) such that in any
overlap U, NU, # ) there is a transition function 6y, : U, NU, — R satisfying the
condition,

Ay = Ay + dby. (2.3)

U(1) is an abelian group, hence the adjoint representation of the structure

group is trivial, the group of gauge transformations in this case is
G=C*R x X, U(1)). (2.4)

The space of connections &7 is an affine space: for any two connection forms
w,w’ € &, the difference w — w’ determines a unique 1-form A € Q'(R x ¥) such
that if s, : U, — P is a local trivialisation, then s}(w — w’) is the restriction of
A to U,. Therefore o/ is in bijection with Q'(R x X), the space of 1-forms on
R x . Let A = T'F x & be the space of pairs of fields (¢, A), consisting of a
section, ¢ : R x ¥ — F, and a connection form A € Q'(R x X).

The quotient A/G is the configuration space C. If M = S? then p has two
antipodal fixed points, the north and south poles. We choose one that we will
denote as N and call it the north pole. In this setting F is a P! bundle, the
fibres are modelled on the complex projective line. The fact that p represents the

unitary group by rotations of the sphere lets us pull the north pole back into a



2.1 Field theory on complex line bundles

section N : R x ¥ — F. The south pole can also be pulled back into another
section, that we denote by —N, however we must emphasise that F' lacks any
algebraic structure conferring other meaning to the name than a mere notation.
We also denote by X € X(S?) the Killing field generated by p,

d )
X, = o (p (e“) -p) , p €S2 (2.5)
S s=0

A section ¢ : R x ¥ — F is determined completely by the family of maps
¢o : Uy — S? defined for each trivialising neighbourhood U, C R x ¥, if Uap =
Ua NUg # 0, we have

ps(x) = p(exp(iblas(7))) - palr), T € Usp = Us N Up. (2.6)

Since p acts by isometries, we can define the product (N, ¢) using the trivial-

isations: for z € U,,
(N(z),¢(x)) = (N, da(x)). (2.7)
We also define the covariant derivative of ¢ as the section
Dp:RxE—->T(RxX)®¢*(TF) (2.8)
determined by the trivialisations D¢, : U, — T*U, @ T'S? as,
Do = dda — Au @ Xy, (2.9)
where d¢,, : TU, — TF' can be split into its temporal and spatial components,
do, = dt ® O,¢q + ddq, doa(t, ) € T*E ® (¢a(t, )" (TF). (2.10)

Likewise, A, = A% dt + A, where A° € C®(U,) and A,(t,-) € Q' (U,). If we
define

Dipo = 010 — A2 @ X, Doy = ddo — Ay ® Xy, (2.11)
then,

Doy = dt @ Dy + Dy (2.12)



2.1 Field theory on complex line bundles

We introduce a Lorentzian metric as follows. If g denotes a Riemannian
metric in ¥ then the metric in R x X is the product dt? — ¢g. This metric induces
a metric in Q*(R x 3). Recall the curvature form w € Q*(R x X) is given in a
local trivialisation by w = dA, and define the electric and magnetic forms, as
the forms e € Q'(R x ¥) and B € Q*(R x ¥) respectively, such that,

w=dt Ne+ B, (2.13)

and for fixed ¢, e(t,-) € QY(X), B(t,-) € Q*(2).
Although |d¢,| is gauge dependent, at the intersection U,p of any two trivi-
alisation neighbourhoods, |D¢,| = |D¢g|, hence we can define

1D (t, )" = |IDig||* — [[Dg | (2.14)

With all these definitions, we can express the gauged O(3) Lagrangian as,

Lo = 5 (IDe@]* + [lell* = ([IDg]|* + [|BII* + I = (N ¢)[[*)) .~ (2.15)

1
2
where the asymmetry parameter 7 € (—1,1) determines the vaccuum manifold
and if ¥ is non-compact, we must add suitable boundary conditions to ¢ and A
to guarantee convergence of the norms. The O(3) Lagrangian admits Bogomolny
type static solutions in the temporal gauge, in which A% = 0. In this gauge, the

total conserved energy of a time independent pair of fields (¢, A) is

E = (D" + IBI* + [I7 — (N 9)[[*) - (2.16)

N | —

The temporal covariant derivative D4 can be decompose into holomorphic

and anti-holomorphic parts,

Dy=0a4 —|—5A, (2.17)
where in a local holomorphic coordinate chart U, in which ¢ trivialises as ¢, :
U, — S,

6A¢a = % (DA¢04<81) - ¢o¢ X DA(ba(aQ)) ) 5A¢a = % (DA¢04<81) + (boz X DA¢a(82)> >

(2.18)



2.1 Field theory on complex line bundles

We will consider the sets
P=¢'(N), Q=¢"'(=N), (2.19)

which we call the set of vortices and antivortices. The term vortex is of wide
use for the Abelian Higgs model, where it refers to the zeros of the Higgs field.
Both theories, the Abelian Higgs model and the O(3) Sigma model, have simi-
larities, for example the U(1) symmetry of the fields, hence it is natural to refer
to vortices of the O(3) Sigma model, on the other hand, the term antivortex,
which is also used in the literature, stresses the distinction with vortices, since
vortices and antivortices cannot coalesce. We assume that both sets are finite.

In proposition 2.1 we define the Bogomolny equations.

Proposition 2.1. If (¢, A) is a solution of the Bogomolny equations,

0a0 =0, (2.20)
*B = (N,¢) — T, (2.21)

then the pair minimises the energy of the O(3) Lagrangian and the minimum

enerqgy 1s,
E=2r(1—-7)ky +2r(14+7)k_. (2.22)

Proposition 2.1 should be attributed to several authors who proved it for the
different cases. On the plane it was proved by Schroers [50] for 7 = 1 and later for
general 7 in [49]. On a compact manifold for 7 = 0 it was proved by Sibner, Sibner
and Yang [51]. Speight and Romao [45] give another proof which is suitable for

both a compact surface and the euclidean plane, which we adapt.

Proof. We distinguish two cases. Firstly, let us assume that > is compact. We
can choose an open and dense set U C X holomorphic to the unit disc such that
it contains P U Q. Since U is contractible, the restriction F' |y can be trivialised.
In this trivialisation, ¢ is equivalent to a function ¢ : U — S%. Since the action of

U(1) in the sphere is Hamiltonian, we can consider the moment map u : S* — R,

w(p) = (N,p) — 7. (2.23)



2.1 Field theory on complex line bundles

If w denotes the symplectic form in the sphere, then dy = txw. Let us denote
by J: TS* — TS?, J,(v) = x x v the almost complex structure on the sphere.
Recall the basic identity,

(Ju,w) = w(v,w), v,w e T, (2.24)

We will use the Bogomolny trick,

| /\

(||D1<P+JD290||2+H*B MOSOH>
(D1, JDyp) — (xB, o )

(Ovp, J Oa0) + / w(Xy, A10yp — A2019) Vol — (xB, j1o @)
U

1

2

=E+

=E+

:E+/(—go*w—i-A/\d(uogp)—B/\uogp)
U

:E—/U(go*w—i—d(uogo-A)). (2.25)

Note that ¢*w + d(p o ¢ - A) is gauge invariant and can be extended to all of
Y. Introducing spherical coordinates (v, ¢) in S? with o the azimuthal angle, we

define the one form,
w=¢*(do) — A€ Q' (U\PUQ), (2.26)

and note that w is gauge invariant and therefore also extends to ¥ \ P U Q. If
we denote by D, a collection of disjoint e-disks, each one centred at one point
xr € PUQ, then,

[ ordop-an-- [ 9 = [ e
= lim <N,¢)w—T/EB

e—0 oD,
=2m(ky +k_) —2m7(ky — k)

=2r(l —7)ky +2m(1+7)k_.
Hence,

E>2r(1—71)ky+2n(1+7)k_, (2.28)



2.1 Field theory on complex line bundles

and the energy is minimised if (¢, A) is a solution to the Bogomolny equations.
If ¥ instead is the Euclidean plane, we have to assume that D¢, B and p o ¢ are
L? sections of their respective bundles. In this case we can take U = R2, and
most of the proof follows verbatim the previous steps, except that to compute the
integral (2.27) we must suppose that the fields satisfy the boundary condition,
lim ((N,¢) —7) = 0. (2.29)

|z|—o00

]

We started assuming the sets P and Q where finite and found that a pair
(¢, A) of solutions to the Bogomolny equations minimises the static energy. In
the compact case, the assumption about the size of the sets is redundant, the

proof for 7 = 0 found in [51] can be adapted to the asymmetric case.

Proposition 2.2. If (¢, A) is a solution to the Bogomolny equations, then P and
Q are discrete. In particular, if ¥ is compact, these are finite sets. Moreover,
if © € PUQ, then ¢(x) is of finite degree, in the sense that there is a unique
positive integer d such that if v € PUQ and ¢ : U - C, m:V C S? — C, are
holomorphic coordinates about x and ¢(x) with p(x) = w(d(z)) = 0, then there
is a smooth function R : p(U) — w(V') such that,

mogop (2)=2'R(2), Vz e p(U), (2.30)
but R(0) # 0.

Proof. Suppose x € P and ¢, : U, — S? is a local trivialisation in an holomorphic
chart ¢, : U, — C with p,(z) = 0. Let 7_ : §* \ {~N} — C be south pole

stereographic projection and let
Vo =T_0¢a 00, 0a(Us\ Q) — C. (2.31)

Since 7_ is a holomorphic local diffeomorphism, the first Bogomolny equation is

equivalent in these charts to,
- 1
0y, = 5(—A2 + A1i),. (2.32)

If A is smooth, by the 0-Poincare lemma, there exists a smooth function
W : @a(Us \ Q) = C such that dw = 1(—As + Ay4), hence the function e“v), is

10



2.1 Field theory on complex line bundles

holomorphic, d(e“t,) = 0 and the zero set of v, is discrete unless 1, = 0 which
is impossible because it violates the Bogomolny equations. This proves that P is
a discrete set. Since "1}, is holomorphic, the assertion about the degree follows
in these charts and since the degree is an holomorphic invariant, this proves
the claim for any other holomorphic chart. Using the north pole stereographic

projection proves similar claims for Q. O

We say that © € P is the position of a single vortex if the degree is 1 and
similarly for x € Q, if the degree is 1 we say that x is the position of a single
antivortex. We will denote the size of the sets P, Q as ki respectively, where we
count each vortex and antivortex with multiplicity.

For any solution (¢, A) to the Bogomolny equations, we define the function
h:X\PUQ — R,

h = log (%M) . (2.33)

If we define the map ¢, : m_ o0 ¢, : U, — C as in the proof of proposition 2.2,
where ¢, : U, — S? represents ¢ in a local trivialisation U, C ¥\ P U Q, and
7_:S?\{—N} — C is south pole’s stereographic projection, then exp(h) = [, |?
and log, = % + Xat, where the argument function y, : U, — R is gauge
dependent. By equation (2.32),

(—(D1 A3 — By A7) + (D1 A1 + Dy A5)i)
(2.34)

1 1
—ZAUOg%) = 58(—1‘12 + Aqi) =

B~ =

where A is geometer’s laplacian, which in the holomorphic coordinates we are
considering is of the form A = —e™*(9? + 03), where e is the conformal factor

of the metric. Taking the real part of the previous equation, we find,

A= 2sp—2(C "L, (2.35)
= = eh+1 T1. .

If x € PUQ has degree d,, we can extend the definition of h to the core set
P U Q by requiring it to be a solution to [49],

el —1
~Ah =2 (eh — r> AT Y by — AT Y dyds, (2.36)

zeP zeQ

11



2.2 Localization

where §,, is Dirac’s measure concentrated at x. For any test function ¢ € C§°(3),

/Ecpém = p(z). (2.37)

Notice 6, includes the measure on ¥. We will call equation (2.36) the Taubes
equation, as is analogous to the equation studied by Taubes for the Ginzburg-
Landau functional [56]. The Taubes equation as given by (2.36) was also obtained
by Schroers in [49].

2.2 Localization

The idea of a localization formula originates in the work of Strachan [54]. It
was later generalised by Samols [47] and is based on ideas about geodesic ap-
proximation originating in [32]. From his work, Strachan and Samols developed
approximations to the dynamics of the Abelian Higgs model in the moduli space
of static solutions of the field equations, later, Stuart proved in [55] that the
moduli space approximation is correct. The results of Stuart also extended to
other field theories, for example in [12] Demoulini-Stuart proved a moduli space
approximation to the dynamics of the Chern-Simons-Schrodinger model proposed
by Manton in [33]. On the other hand, for some field theories it is possible to
find an explicit formula for a metric on the moduli space governing the dynam-
ics, such that it only depends of local data, i.e., the position of the cores of the
field ¢. Over the time, the localization formula has been refined and extended
to other field theories, e.g. Chern-Simons vortices [10, 25] or Ginzburg-Landau
vortices with electric and magnetic impurities [58]. We can describe in an unified
way the idea behind localization if we introduce the L? metric in the space of
fields modulo gauge transformations. By this we mean the space of sections of
a given U(1) fibre bundle as described on section 2.1. There are several situa-
tions in which this space is finite dimensional, for example for BPS solitons of
the Ginzburg-Landau functional. In this case, there are rigorous proofs of this
fact [56, 60]. We make no assumption on finite dimensionality though, since the
theory can be written in full generality. We restrict the previous field theoretic

setup to the static case and think of A — € as an infinite dimensional principal

12



2.2 Localization

@-bundle [43]. A curve (¢, A) : I — A is said to be differentiable, if for any
x € 3, the curves s — ¢(z), s — As(x), where,

¢s(z) : I — F, Ag(x): I = T,%, (2.38)

are differentiable. For a differentiable curve in field space, the variation is the

pair (d¢, 0A),
5¢: % — ¢*TF, §A € Q'(D), (2.39)

of pointwise derivatives:

so(e) = 1| ula), SA() = 1| A).  (240)

ds|,_, ds|,_,

We will think of the space of variations as the tangent space of A and denote

it as T. If & € G is a gauge transformation, the fields transform as,
e . @, A+ da, (2.41)

where the product ¢ - ¢ is to be understood as the action of e in ¢ via the
representation p. Equation (2.41) defines an action a * (¢, A), of the gauge group
in the space of fields. This action extends naturally to tangent space. By an
abuse in notation, let us denote by X the vector field induced in target space by

this action, then G acts in T as,
ax* (0¢,0A) = (0¢ + aXy, 0A + da). (2.42)

Moreover, the vertical space,
Vig,a) = {(aXy, da) | o € G}, (2.43)

determines a sub-bundle of T whose fibre is in bijection with the Lie algebra G of
gauge transformations [43].

The Riemannian metrics in X and M extend to metrics in the cotangent
bundle 7%} and F' respectively, which on the other hand, extend to a metric
in the space of fields: if (¢, A) € A and (6¢,0A) € Ty,a), the L?-metric is the

13



2.2 Localization

product of metrics induced by the Riemannian structure in the domain and the

target space,
160, A% = 11001225 p) + 10A[IE2(5)- (2.44)

C is the relevant space for applications, as two field configurations differing by a
gauge transformation are regarded as physically the same. In analogy to a finite
dimensional vector bundle, the L2 -metric can be used to split T in a direct sum of
the vertical space V and its orthogonal complement. If the quotient € has a finite
dimensional differentiable structure, this complement can be identified with its
tangent space. This is not necessarily the case, however we can consider that the
orthogonal complement describes tangent vectors to €, whether this space is finite
dimensional or not. Hence, the orthogonal complement describes the dynamics
of curves [(¢s, As)] : I — € with a lift to field space, even if the quotient lacks
regularity.
Given (0¢,0A) € T(4.4), let B € G be the projection onto V(4 4y with respect
to the L? product. If a € G represents another arbitrary vertical vector at (¢, A),
then
((0p — BXy,0A —dPB), (aXy, da)) = 0. (2.45)

Since « is arbitrary, the perpendicularity condition is equivalent to the equa-
tion,

(A+ | Xy|*) B = (Xy4,00) + d*0A, (2.46)

where d* : Q1(2) — Q) is the codifferential, d* = — x dx. What is interesting
about the perpendicularity condition is that it is independent of the theory be-
cause no Lagrangian or functional for the fields was necessary to deduce it. At
the same time, we can talk of kinetic energy in configuration space, at least for
curves [, A] admitting a lift to A. For such a curve, we could define its instant
energy as,

Bl66,64] = 1|66, 54| % (2.47)

We think of the kinetic energy of a dynamic pair (¢, A) of solutions to the field
equations slowly varying in time, as approximated by the energy of the variation
of a static pair of solutions. In this way, we reduce the full theory in spacetime to

variations of the static solutions to the Bogomolny equations. With this point of
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2.2 Localization

view, the components of the gauge potential are curves defined in some interval
I CR,

Ag: I CR— C>®(D), A:TCR—=Q(D). (2.48)

Likewise for the electric and magnetic fields. Let us denote by A’ the subset
of A of solutions of the Bogomolny equations, and by M the quotient space A’/G.

There is a bundle inclusion,
A —— A

l l (2.49)

M——C

and since the Bogomolny equations are gauge invariant, both bundles share the
same vertical space. Therefore, the orthogonal projection onto V is the same.
Example. (Localization of Ginzburg-Landau vortices). A an example we
consider the Ginzburg-Landau functional. In this case the target space is C and
we can think of sections ¢ as complex valued functions R x ¥ — C. As described
above, static fields are the same as pairs (¢, A) of a function ¢ : ¥ — C and a
connection A on a principal bundle U(1) — P — ¥. As it turns out [31], static

configurations in the radiation gauge minimise the energy

1 1
£— 5 (1IDoIR + 31+ 1111 - 6P (2.50)

and satisfy the following Bogomolny equations,

0a¢ =0, (2.51)
*B = %(1 — |9]?). (2.52)

The action of U(1) on the target manifold gives rise to the vector field X, = i¢.
As is well known from the work of Taubes, solutions to the field equations modulo
gauge equivalence are determined by the zeros of ¢, (pi,...,p,). If we let the
zeros vary with respect to a parameter, pi(s), k = 1,...,n, identified as the time

parameter, then the perpendicularity condition is equivalent to,

(A +16P)8 =~ (99! — d') +d* A, (2.53)

15



2.2 Localization

and the projection of the variation on the horizontal subspace of T is,

ot = —igB, At = A—ap. (2.54)
Since the variation is determined by variations of the zeros, if each py is in
the same open and dense holomorphic neighbourhood U,
: O , 0A
¢ =ppr —, A=p,—. 2.55
o (2.55)
In the sequel we make the convention that repeated indices represent sums. If
By, is the projection onto vertical space corresponding to the variation (9,, ¢, 0,, A),
then 8 = py fr. If we denote the pair (¢, A) by ®, the instant energy of a trajec-
tory in the moduli space is therefore,
. 1 .
Blé] = ][4}

1

B §pk Pr <(8pkq>)L7 (aprq))L>A

1

— PP G (256

The coefficients g,,,, determine a metric in the moduli space. Manton pro-
posed an interpretation of this metric in [32]. In our language, the static energy
in the sub-bundle A’ must be preserved by solutions of the Bogomonly equations,
because they are energy minimisers. Thence, E[CD] approximates the energy of
slow moving solutions of the full field equations. Equation (2.56) opens the pos-
sibility to study the dynamics of the full field equations as geodesic motion in a
finite dimensional manifold. It was Samols who proved that this metric depends
only in the first derivatives of ¢ at the zeros [47] of the Higgs field ¢, obtaining
the formula bearing his name on R?,

ds* =7y (Ors +20,bs) dp, dp.., (2.57)

rs

where the coefficients depend on the position of the zeros of ¢, in fact, if h =
log |¢[?, then,

bs = 2az|z:ps<h - 1Og |Z - ps|2)7 (258)

which explains why (2.57) is called a localization formula, in the sense that the

data needed to compute the metric is only local to the position of the zeros of ¢.

t
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2.2 Localization

2.2.1 Localization of BPS solitons of the gauged O(3) Sigma

model

Having discussed localization of Ginzburg-Landau vortices as example, we turn
attention to the gauged O(3) Sigma model and apply the same technique in
detail. Let ¢, : U, — C be a holomorphic chart admitting a trivialisation on
U, such that ¢ is equivalent to a function ¢, : U, — S% As before, let us
define the stereographic projection of ¢, as ¥, = 7_ 0 ¢, 0 ¢, '. In this chart,
Yo = exp(h/2+ ixa) where the function h can be extended to a well defined
gauge invariant function on 3\ P U Q; however, x, is only defined on U, \ PUQ
modulo 2m. If Ug is another holomorphic chart, we can also define a related

function xg in Ug, if the domains overlap, then for all « in the intersection U,g,
X8 = Xa + tap + 270, n € Z, (2.59)

where 6,5 : Uyg — R are transition functions. Therefore dyz = dx, + df,s and
the arguments of the family 1, define a connection on 3\ PUQ which we call dy.
Let (¢, A) : I C R — C be a curve on the space of solutions to the Bogomolny
equations, for each ¢t € I, we denote the core positions of (4(t,-), A(t,-)) as
pi(t) e PUQ, j=1,... . ky + k_. We assume the cores are not intersecting and
each curve p;(t) is differentiable. Given t € I, we choose a gauge such that (¢, A)
is perpendicular to the gauge orbit, by (2.46) choosing this gauge is equivalent to

(, Xp) +d*A =0, (2.60)
By (2.59), (¢, A) defines a function
X:xr — R, (2.61)
where
Yr=UxD)\{t,p;(t) |tel, j=1,.. . ky +k_}. (2.62)

Let n = % + x¢ : X7 — C, then in any holomorphic trivialisation, pba =N Ya,

moreover, by (2.60) and the Taubes equation, on each time slice

S =S\ {p;(t) | j=1,... ks +k_}, (2.63)
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2.2 Localization

7 is a solution to

4eh

A Ty

n. (2.64)

Now we will extend (2.64) to an equation valid on all of I x ¥, not just ¥;. Let
us assume U, is dense and p;(t) € U, for allt € [ and j € {1,..., ks +k_}. For
any given t € I, let 2z;(t) = pa(p;(t)) € C and to simplify notation, let us write
zi(t) as z; since time will play no role in the following. We define the signature
s; € {£1} as,

1, e P,
5; = bi (2.65)
1, pj < Q

By proposition 2.2, there is a smooth function R, : C — C such that,

kt+k—

Ya(2) = J] z=2)"Ra(z), 2€C\pa(PUQ), (2.66)

j=1
where the remainder also satisfies R, (z;) # 0. Whence,

ks ko
h(ea'(2)) = Y sjloglz = z* + ha(2), (2.67)

Jj=1

where hy @ C\ po(PUQ) — R is smooth. Since the chart is holomorphic,
the metric can be written as e**)|dz|?> and the Laplacian as A = —4e~9,0..

Therefore, as distributions,
Alog |z — zj|* = —dme 14, (2.68)

Recall the volume form of the surface in holomorphic coordinates is Vol =
i/2eMdz A dz, equation (2.68) means that for any test function ¢ : C — R,

/ log |z — z;|* Ap Vol = —4m p(z;). (2.69)
C

Let z; = zj + 271, we denote by D.(z;) the holomorphic disk |z — z;| < € and

by (r;,0;) polar coordinates centred at z;. Now, we let ¢ vary and compute the
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2.2 Localization

following time derivative,

51 0.) + 32sin(6;
at/10g|2—2j(t)|2A<PV01:/—2 < j cos(0y) + % sin 3)) A Vol
C C

T

. L (zjl cos(6;) + zj2 Sin(Qj)) ApVol
0Je\De(z) Tj

= —47 (2] Ovo(z)) + 25 Dap(25))

= —8mR(2; 0.¢(2)). (2.70)

where we applied the divergence theorem to compute the limit, hence, in the

sense of distributions,
A(Oplog |z — z]*) = 87R (25 0.6,,) = —87R (£ 9-,6,) - (2.71)

For a given trajectory of the cores, the right side of this equation defines
a distribution on X, on the other hand, on the left side is the time derivative
of the singular part of h o p~! from this observation we state formally (i.e.
without considering details about convergence in function spaces) that h must be

a solution to the equation,

—Ah =

4elh, )
T eop T 81 ) s R(%50.,6,,) (2.72)
J

Similarly, for any z; € ¢, (P U Q) there is a small neighbourhood D C C such
that,

¢a T

J

P—3 (%) s <—zjl sin(6;) + 27 cos(@-)) e (2.73)

for some smooth function y, : D — R. For the singular part of this equation we

have,

51 gin(8.) & 32 cos(6.
A( Z; sin( j>r 5 cos( ])) = 27 (_;3]1325% +2J2.al5pj)
J
= —4m 3(2;0.6p,)
= 41 3(£;0.,0p,). (2.74)
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2.2 Localization

Hence, x is a solution to the equation,

4eh

—€h)2 X —+ 47T Z Sj%(é’jazj 5]9]')' (275)

Ay —
oy :

We conclude that n = h/2 + x % is a solution to the equation,

4el .

—An = mn+4ﬂ25jzj 0.0, - (2.76)
J

Equation (2.76) is formal, in order to make sense of it, we have to supplement it

with analytical properties of the solution h to the Taubes equation and in the case

of the plane with proper limiting behaviour at infinity. In the successive chapters

we will address these issues. We assume however the existence of exactly one

solution to (2.76). Under this assumption, the solution is given by the function
n=>Y %0,h (2.77)
J

Note that although each core position z; is defined up to holomorphic coor-
dinates, the right hand side is well defined independently of the chart chosen,
provided the cores are contained in it. With this initial setup, we compute the

localization formula (2.85).

Lemma 2.3. Let ¢ : U C X — C be a holomorphic chart, U open and dense,
such that PUQ C U. Assume the cores are simple, for each p; € PUQ define,

by =2 5|Z:Zj (sjh(p7'(2)) —log |z — z]?), (2.78)

where z = @(x), z; = @(p;). Then the coefficients b; have the symmetries,

9.,b; = 9.,b;, 0,,b; = 0..b;. (2.79)

Proof. For the proof we generalise the argument of Manton and Sutcliffe [31,
pg. 209] given for vortices of the Ginzburg-Landau functional on the Euclidean
plane. Let K = —(A + 4e”(e" 4+ 1)72), by the Taubes equation, s;0..h (no sum-
mation) is a fundamental solution of K,

K(s;0,.h) = —4rds,,. (2.80)
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2.2 Localization

If © # j, 0,;h and 0,k have different singularities and we can integrate by
parts to obtain,

/2 (sjé?zth(siazih) — 5;0,,h K(Sjazjh)) Vol = 0, (2.81)

where the integration by parts involves computing a limit at each singularity, we
omit the details for clarity of the argument.
On the other hand,

/E (5,0, 1 (—47D5,,) — 5,0, 1 (—4mD5,, )) Vol = drt (5,000, h)(pi) — 5:0(0:,1) (p))
= 2ms;s; (0.,b; — 0.,b;) . (2.82)

Therefore, 821.1_)]- = 8Zjl_)i. Since K is a real operator,
K(s;0h.,) = —47d4,,, (2.83)

hence,

/ (5;0.,h K(5:0,,h) — $;0.,h K(s;0.,h)) Vol = —4x / ($;0.,h 06, — 5;0.,h D6, ) Vol
P x

= 27s;s; (Ezjl_)i — 0,,b;).
(2.84)
As in the previous case, we can apply integration by parts to prove that the
first integral is zero. Therefore 0,,b; = Ezjl_)i.
O

We denote by M¥+*- the moduli space of solutions to the Bogomolny equa-

tions with k&, vortices and k_ antivortices.

Theorem 2.4. If p : U C X — C is an open and dense holomorphic chart,
containing the cores of a time varying trajectory (¢, A) : I C R — MF+*= such
that the variation (¢, A) satisfies Gauss’s equation and each core p; € PUQ 1is

simple, then the kinetic energy of the trajectory can be computed as,

ky+k—

t,j=1
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2.2 Localization

where z; = p(p;). Moreover, the quadratic form,
K=2n Z (eA(Zi)(l — SiT)éij + 8zz.bj) dZZ dij, (286)

determines a Kdahler metric in the open and dense set of non intersecting vortices

and antivortices.

Theorem 2.4 was proved for 7 = 0 in [45]. We follow the authors ideas and

extend them to the remaining cases.

Proof. Let D, be a collection of disjoint holomorphic e-disks, each one centred at
one of the cores in (P U Q) and let U. = U \ D.. We will make a calculation
similar to the one done in [31] for the Ginzburg-Landau functional. The energy

of the trajectory can be computed as,

E= (1917 + 14]1?)
. Aeh (%BQ—I—XZ)

— lim =
502 U. (1+eh)?

+ |A> ] Vol, (2.87)

by the first of the Bogomolny equation, 0y = %<—A2 + Ayi)1, on the other hand,
o = wg(%h + xi), hence,

1
A=dy— 3 x dh, (2.88)
which implies,
. . 1 .
|A]? = |dx|* — (dx, *dh) + Z|*dh|2' (2.89)

Integrating by parts,

/|d>’<|2\/01:/ dx A *dy
:/ X*dx+/ X A Vol
U, €

46hX2
- cxdy — [ —2 Vol 2.90
/mx X /UE<1+6h>2 o (2.90)
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2.2 Localization

Proceeding in a similar way, we obtain a second pair of equations,

/ (dx, *dh) Vol = /6 . x dh, (2.91)

|dh|? Vol = —/

. . 4 h1,2
b x dih —/ A o) (2.92)
aD. v, (

U. L4eh)2

Substituting into the equation for the energy, we obtain,

1 1. .
E=——lim (x*dx+>'<dh+—h*dh)

2 e—0 8D, 4
_ Ly A LA 2.93
——561_{% . X * 3 ) (2.93)

where we have used the time derivative of equation (2.88) to simplify the energy.
Since € — 0, the only terms that contribute to the energy are the singular terms.
We will compute each of these terms at the respective core. For any z; € p(PUQ),
let D.(z;) be the € holomorphic disk centred at this point. If € is small, for

z € D.(z;) we have the approximations,

. 31 0:) + 32sin(0;

i _25j (Zj COS< j)T Z] Sln( J)) +Rh<2), (294)
J

Y=, ( y ointly) & 2 oo ”)) Ry(2), (2.95)
J

for some residual smooth functions R, and R,. We also expand A in polar

coordinates centred at z;j,
A=A, drj + Agr; do;, (2.96)
where,
A, = Ay cos(8;) + Ay sin(6;), Ag = — A, sin(8;) + Ay cos(6;). (2.97)
The singular terms in the energy integral contribute as,

(—73]1» sin(0;) + 23 COS(Hj)) A, edb,
€

lim v x A= —s; lim
e—0 8Dg(2]) e—0 DE(ZJ)
= 7s;(2) Aa(z)) — 27 Ai(%))

= 5,3 (5 (Ai(z) = As(2)1)) (2.98)
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2.2 Localization

and

zj cos(0;) + 27 sin(6;)

€

lim hA= —2s; lim (
0Dc(z;)

e—0 aDE (Z]) e—0

= —27s; (z'l» Ag(zj) — 5 Al(zj)>
=275, S ( (Al(zj) As(2)) z)) , (2.99)

) A9€d9

Therefore, the energy of a moving pair is,

kptk_

E—x Z 5,3 ( <A1 2) — A2(zj)z’)). (2.100)
By equations (2.88) and (2.77),
L 1 AN
A1 — AQZ = (81)( -+ 582}1) — (82)( — iﬁlh) ]

1.\ . 1. ..
=0 (ﬁh—xz> 1+ O (éh—xz)

= 2i 0,7
=2i) % 0.0.h. (2.101)
J

In a small neighbourhood of any z;, we have the asymptotic expansion,

_ 1- 1.
sih(¢7'(2)) =log|z — 2> + a; + 50 (2 — zj) + 0 (z—7%j)

+¢ (2 — ) +dj |z — 5" +¢; (- 7)° (2.102)
+0(l%)-
Hence,
d; = lim 9.9.(s;h(p7}(2)) — log|z — z*)
Z—rzj
1
= b tim (M9 (o7 (2)) ~ log |z — =)
Z‘)ZJ
= — (25)
28]6 zh—>Hzlj (eh 1+7‘)
1
—EeA(Zf) (1 —s;7) (2.103)
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2.2 Localization

and since 0.0,, log |z — z;|? = 0 for any z # 2;,

— 1—- -
8z(azkh)(zj) =3§j <§8zkbj — dj 5]k> . (2104)

Hence,

k
— (1= -
= 27‘(‘2 §R (ZJ Zk <§8zkbj - d](sjk))
g,k

=T Z Did ((GA(ZJ)(l - SJ‘T)(;j]C + gzkgj) Zj Z_k)
g,k

e (5 2 SR
J

=7 ) R (M (L= 55705 + 0:,be) 2 %) - (2.105)
7,k

The last equation is a consequence of the symmetry . by = @,ﬁj. Also by
this symmetry, (2.85) is a real quantity and therefore coincides with (2.105) as
expected, since E represents the kinetic energy of a trajectory on the moduli
space. To prove that the metric is Kahler we must prove that the induced form,

w = mi Z (eA(Zj)(l — 8;T)0j% + 0,by,) dzj A dzy, (2.106)
j.k
is closed. For the following computation, we employ lemma 2.3 and the fact that

each term ) (1 — s;7) dz; A dZy, is closed,

dw =i Y (0,0, b dzy Adzy N dZg + 0:,0:, 2, A%y N dzy A dZ)

7,8,t

=i Y (0:,0:,by dzy A dz, A dZ, — 0.,0., b, dZ, N dZ, A dz,)

r,8,t
=i Y (0:,0:,b dz Adz N dZ, = 0.,0.,b, A%, A dZ, A dz)

7,8,
=m0 Y (0:,0:,bsdz A dz, A dZ — 0.,0.,b,dZ A dZ, A dz,)

7,8,
= 27 <Z 9.,0., by dzy A dz, A d58>

7,8,t
=0, (2.107)
where the last sum is zero by the commutativity of the mixed derivatives. O
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2.3 The governing elliptic problem

2.3 The governing elliptic problem

Equation (2.36) is the governing elliptic problem. Once h is determined, the
Bogomolny equations determine B and then A and ¢ up to gauge equivalence.
We let,

F:RSR V:R— R,
et —1 4et (2.108)

Note that V' = F’ and that F' and all of its derivatives are bounded functions,
moreover, if g = log ((1 — 7)(1 + 7)7'), then F satisfies the following properties,

F(p) =0, (2.109)
F'(u) > 0, (2.110)
F(t) <0, t <, (2.111)
F(t) >0, t>p, (2.112)
and,
1F[le ) + 11+ e )WViliom + e (e = )7 V|l <o00. (2.113)

If P or Q is non-empty, there exists exactly one function h € C*°(R?\ P U Q)
[17], such that,

—Ah=F(h)+4r Y 6z —p)—4r ) Sx—q), lim h=p,  (2.114)

Tr|—0o0
pe?P qeQ o]

moreover, for any € € (0, 1), there exist positive constants C' = C(€) and R = R(e)
such that

|h<x>—u|s0exp(—§¢<1—ﬂ><1—e>|x|), P> R (2115)

Therefore, in the euclidean plane, there exists a unique solution to the Taubes
equation. For a compact surface, existence of a solution to the Taubes equation
was proved for 7 = 0 in [51]. We will prove that this is also the case for 7 # 0 in

chapter 4.

26



2.3 The governing elliptic problem

In this section we prove that solutions to the Taubes equation depend smoothly
on vortex positions. Recall Sobolev’s space W*? is the completion of the space

of C§° functions compactly supported with respect to Sobolev’s norm,

k 1/p
[lpllwrr = (ZHV%H&) , (2.116)
=0

where Vip € (T*X)®7 is the jth exterior covariant derivative. We denote the

space W*?2 as H*. This is a Hilbert space with the product,

k

(0. ) = > (Vo V/ih)1a. (2.117)

Jj=0

For the inner product in L? we omit the subindex if is clear from the context
that we refer to L? functions.

In the sequel, we will use some results of analysis that we quote here for
further reference. The proofs are standard and can be found in the literature, for

example in [15] and [13].

Theorem 2.5 (Banach-Alaoglu). Let X be a Banach space, then the closed unit
ball of the dual X* is compact with respect to the weak-* topology.

Theorem 2.6 (Rellich-Kondrachov). If Q is a an open bounded Lipschitz domain
of R", 1 <p<mn, p= n"Tpp, then WYP(Q) is continuously embedded in LP" (Q)
and compactly embedded in L1(Q) for any 1 < g < p*.

If Q is a compact manifold of dimensionn, k > 1, k—n/p >1—n/q, then the

embedding WkP C Wh4 4s completely continuous.

That the embedding W*? C W' is completely continuous is equivalent to
claiming that any bounded sequence of functions in W*? has a subsequence con-
verging in W%, In practice, we will use the Rellich-Kondrachov theorem to
guarantee that given a bounded sequence of W' functions either on a compact

surface or on an open bounded subset of R?, we can find a subsequence convergent

in LP.
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2.3 The governing elliptic problem

Theorem 2.7 (Sobolev’s embedding). If Q2 is either R"™ or a bounded domain of

with Lipschitz boundary of a compact Riemannian manifold of dimension n, and
ifk>1,1<p<qg<ooandac€ (0,1] are such that,

1k

L_E__rra (2.118)

p n n

then we have the continuous embedding WP (Q) C C™(Q).

Theorem 2.8 (Lax-Milgram). If B : H x H — R is a continuous bilinear form

i a Hilbert space H and there is a positive constant o such that,
| B(u, u)| > o |ul?, (2.119)
then, for any u € H there is a unique v € H, such that,
B(v,z) = (u,x) Vo € . (2.120)
Moreover,
loll < = Jlul (2121)
v —||wl]- .
e’
The proof can be found in [15, p. 83].

Theorem 2.9 (Schauder’s estimates). If Q' € Q are open sets of any manifold
M, f € H¥Q) and u € HY(Q) is a weak solution to the equation

Ayu = f, (2.122)
then u € H*2(QY) and
[[ul |2y < C (| Fllmn@) + lulliz@) (2.123)

for some constant C = C(k,Q,Q). In a compact manifold M, we also have the

estimate,
u— e < C 1l (2.124)
for some constant C' = C(k,Q,Q'), where u = ﬁ J,, wVol is the trace of u.

Given a pair of open sets €2, € on a topological space, the notation ' € 2
means Y C Q.
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2.3 The governing elliptic problem

2.3.1 Smooth parametric dependence of h

The moduli space can be identified with (E’” x Yk-\ Ak+7k_) /Sk, % Si_, where
Ay, x_ is the big fat diagonal of intersecting vortices and antivortices and the
product of symmetric groups Sy, X Si_ act permuting the components of Yh+ x
Y#-. Let us focus in the open and dense subset of non-overlapping cores. We
can identify this space with ¥+ x X%\ Ay, , . We aim to prove that in this

subspace, h depends smoothly on the positions of the cores.

Lemma 2.10. Let X be either the plane or a compact surface. If V€ C*(%), is
a non-negative smooth function with only finite zeros, such that if ¥ is the plane,
limy, 0 V(2) € (0,1], and all the derivatives V¥V are bounded, then for any

r > 0, Schrodinger’s operator,
A+V HT(E) - H(D), (2.125)
18 a Hilbert space isomorphism.

Proof. By the hypothesis on the potential function V', the operator A + V is
continuous. Let us define the bilinear form B : H' x H' — R and the linear
functional A : H' — R such that,

B(u,v) = (Vu, Vv) + (Vu,v),

2.126
A(“) = <b7 u>7 ( )

where b € H". By the Cauchy-Schwarz inequality, A and B are continuous.

Firstly, we claim B is coercive, i.e., there is a positive constant « such that,
allullf < B(u,u). (2.127)

Let Q be either the compact surface ¥ or an open disk Dg(0) C R? such that
there is a constant a € (0, 1] for which V(z) > a > 0 if z € R? \ . In the latter
case,

||VU’H%,2(R2\Q) + ‘|V1/2U||i2(m2\9) = a||uH2H1(]R2\Q)‘ (2.128)

Assume towards a contradiction the existence of a sequence {u,} C H'(),
such that

(2.129)

S
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2.3 The governing elliptic problem

By the Banach-Aloglu theorem, we can assume u,, — u, in H(Q), and by the
Rellich theorem, we can assume the strong convergence u,, — u, in L*(Q). Since
B(uy, u,) — 0,

IVuglliz@) — 0, (2.130)

hence u, is constant almost everywhere, because by the strong convergence in L?

and the convergence,
(i, w)mr (@) = [t i () (2.131)

we deduce (Vu,, Vu)iz@q) — HVu*HiQ(Q), but (Vu,, Vuy)iz@ — 0, hence

Vu, = 0 almost everywhere. On the other hand,
VY2 [120) = O, (2.132)

and V is positive except for a finite set, thence u, = 0. We conclude u,, — 0 in
H'(Q), but this is a contradiction because each u,, has unit norm. Therefore, there
is a positive constant a’ such that if u € H'(Q2), then B(u,u) > a'||u|[}q,)- If X is
compact we conclude B is coercive. If ¥ is the plane, let us take o« = min(a, a’).
If u € HY(R?),

B(u,u) > allulfs g +@llullfog > allulfige.  (2133)
Secondly, we prove the basic inequality,
llullgr+2 < C (A 4+ V) ullar, (2.134)

where u € H"*? is arbitrary. If ¥ is compact this is by Schauder’s estimates
and coercivity of B. If ¥ is the plane, we first prove the inequality for ¢ € C§°.

Assume r = 0, by coercivity,
el < C A + V)l (2.135)
We know in this case ||V2p||L2 = ||Ap]|Lz [15, Thm. 9.9], hence,

lellie < C (A + V)gpllia + 192 12)

= C (A + V)l + [1A¢ll2)

< C (A + V)gllie + [lelhz)

< Cll(A+ V) |ee. (2.136)
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2.3 The governing elliptic problem

Let ¢ = (A +V) ¢ € Cg°. Given the test function ¢, 9;¢ is a solution to the

problem,

By hypothesis, the derivatives of the potential are bounded. Applying the
previous bound to Vi,

IVellae < CII(A+ V) V|12
< C(IVYllez + e VV]|L2)

< C([[9[lar + [lelle2)
< C([(A+V)ellm)- (2.138)

We apply this argument recursively. Having found bounds for ¢ and V¢ up

to some 7,

lpllur+s < [l + [Vl |+
< C(I(A+ V) @llar + (A + V) @)
<C ||(A + V) ()0||Hr+1. (2.139)

Thus, for all » > 0 there is a constant C' such that for any ¢ € Cg°,
lollur+> < C A+ V) @lfnr. (2.140)

Since Cg° is dense in H" and (A 4 V') is continuous, we conclude (2.134) is
also valid on the plane.

Thirdly, we prove (A + V') is surjective. By the Lax-Milgram theorem, for
any b € H" there is a unique u € H', such that B(u,v) = A(v) for all v € H'.

This function is a weak solution of the equation,
(A+V)u=nb. (2.141)

If ¥ is compact, elliptic regularity implies u is a strong solution in H™ ().
We prove this is also the case on the plane. Let ¢ € C§° and denote by ¢ the

weak solution to the equation,

(A+V)p =1 (2.142)

31



2.3 The governing elliptic problem

Elliptic regularity and Sobolev’s embedding imply ¢ is a strong solution in
C°. Notice ¢ € H™™2 Vr > 0 because our previous argument can still be applied
to show (2.140) holds. Let {¢,,} C C§° be a sequence of test functions converging
to b in H". For each v, let ¢, € C* be a strong solution of the elliptic problem.
By (2.140) {¢,} is a Cauchy sequence in H"™2, thus there is u € H™*2 such that
©n — u. By continuity of A+ V', u € H"*? is a strong solution of (2.141).

Finally, (2.134) implies A+ V is injective. By the open mapping theorem, the

inverse is also continuous and the operator is an isomorphism. O

For a compact manifold in general, we can estimate the norm of solutions to

linear problems,

Proposition 2.11. If M is a compact Riemannian manifold of dimension n,
—A s the Laplace-Beltrami operator of the metric, a,b € L*(M) are functions
such that a is non-negative and bounded with positive integral | 1 @ Vol, then the

problem,
—Au = au+b, (2.143)

has exactly one solution u € H*(M). Moreover, there is a positive constant C'(a)
such that,
|l < K |[bl]2, (2.144)

where the constant K (a) depends on the bound for a and [, a Vol.

If n = 2,3, by Sobolev’s embedding, u € C°(M), in general, we only have
u € H*(M) unless we know a and b have more regularity. This problem has been

studied for different conditions on the coefficients in the references [41, 42].

Proof. We will prove the existence of solutions to the linear problem and conti-
nuity on the datum as an application of the Lax-Milgram theorem.

Let X be the subspace of HY(M) of functions of zero average,

xz{ueH%M)‘/ quzO}. (2.145)
M
H'(M) can be decomposed as

H'(M)=XoR. (2.146)
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2.3 The governing elliptic problem

Finding a solution to equation (2.143) is equivalent to find (ug,c) € X & R,
such that

—Auy = aug+ac+b. (2.147)
By the divergence theorem, the constant is
— b) Vol
¢= fM}auo\t 1) i (2.148)
4 @ Vo
(2.143) is equivalent to finding uy € X such that
a- augy + b) Vol
—Awug = aug+ b — fM} ;Vol ) (2.149)
M
Let us define the operators A : X x X - R, B: X — R, as
1
A = (du,d - Vol - Vol 2.150
(u,v) = (du, dv) + (au,v) fMaVol/Mau o /Mcw ol, ( )

B(v):m/M(a-/MbVol—b-/MaVol) v Vol. (2.151)

Equation (2.149) can be rewritten in variational form as the problem of finding
ug € X, such that for any v € X,

A(ug,v) = B(v). (2.152)
B is bounded and A continuous because a, b € L?(M). By Cauchy-Schwartz’s
inequality,
[ vl < 1l 1 aule (2153)
hence,

1 2
A = ||dul|?s + —<— 2\/1-/ Vol — / Vol
(u,u) = || u“L2+fMaV01 (/Mau 0 Ma o ( Mau 0

|
— ldul|2, 2 2 2

e+ g (Vs IVl — (0.0
> [|dul[7. (2.154)

By Poincaré’s inequality, there is a positive constant «, such that

o|lullipn < lldulff> < Alu, ). (2.155)
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2.3 The governing elliptic problem

Therefore, there exists a unique solution u € H' (M) to (2.143). By standard
elliptic regularity estimates, u € H?(M). By the Lax-Milgram theorem,
o [,,aVol

a~/ bVol—b-/ a Vol
M M
By equation (2.148),

1
< 2 - 2 b Vol
= T (el ol + | [ 430

Therefore, u is bounded in H!(M) by,

1

[uol[m < (2.156)

L2

) . (2.157)

i < S (i 1) foles (2.158)
~ [y aVol \ [,, aVol ’

for some suitable constant C. By the elliptic estimate we conclude v € H*(M)

and since a is bounded,

|ulln2 < K ([|Aul[e2 + [|ul]r2)
< K ([lavol|rz + [[b]|r2 + [Juollr2)
< K ([|uollrz + [|bl]r2)
< K |]b]|2. (2.159)

where the constant K was renamed from one inequality to the following. O]

We prove smooth dependence on parameters by the implicit function theorem.
If ¥ = R?, we define,

1 (1 P ) 4 (2.160)
Ve = — 10 T 9 | c— — P .
& z — cf? 9 (1+ |z — o?)?

then
—Av, = g, +4mé(z — ¢). (2.161)

If ¥ is compact, we rely on the existence of Green’s function [2]. This is a

smooth symmetric function G : ¥ x ¥\ A — R, such that,

—A,G(z,y) =0, — %, /EG(:c,y)Volx = 0. (2.162)
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2.3 The governing elliptic problem

Notice that we have chosen the oposite sign for G(z,y) with respect to [2]. In

this case, we define,

ve = 41 G(z, ¢). (2.163)

Given tuples p = (p1,...,Pk, ), 4 = (¢1,--.,q,_) of non intersecting vortices
and antivortices, let

c= (P, Phy Q1 -5 Q) € B (2.164)

v = Z 5jVc; - (2.165)
J
{Zg Sj9c; s Y= RQu
g =

2.166
—%(l@r —k_), ¥ compact. ( )

Let h=h—v— 1, then the Taubes equation is equivalent to its regularised
counterpart,
~Ah=F(h+v+pu) —g. (2.167)

If ¥ is the euclidean plane, we add the boundary condition,

lim h=0. (2.168)
|| —00
Theorem 2.12. Let p = (p1,..., 0k, ), A4 = (q1,-..,q_) be sequences of non-
intersecting simple cores in %, either a compact surface or the Fuclidean plane.
Let us denote by h(x;p,q) the solution to the Taubes equation for this configu-
ration. For any families U, C X, r=1,... k., Vs C X, s=1,...,k_, of open
neighbourhoods on ¥ such that U, NVy = 0, let W = (U,U,.) | J(UsV5), then the

restriction
he (B\W) x, U, x, Vs > R, (2.169)
18 smooth.

Proof. Consider the function

1

f(T):m7

reR, (2.170)
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2.3 The governing elliptic problem

this function has the property that it and all of its derivatives are dominated by

r~* as r — oo. This guarantees that,

g€ H'(R*),  Vr>0. (2.171)

and that as a function R*" — H"(R?), g varies smoothly. We note that in the

plane, the function
Ve ‘513' B 6’2
1+ |z —c*

and all of its derivatives are bounded, and that e and e« have no common zeros

e (2.172)

if p and q have no common elements. In the compact case, it is known that for
fixed y, G(z,y) has a singularity at y, however, locally in any open disk D,.(y) of

smaller radius than the injectivity radius, G(z,y) has the asymptotic expansion,

G(z,y) = % log (d(x,y)) + G(x,y), Vz € D,(y), (2.173)

where d(z,y) is the Riemannian distance and G(z, ) is a smooth function defined
on the disk. Hence e is also smooth and well defined on ..

In any case, F'(u+v+ u) € H'(X) for any u € H'(X). Let AY = ¥F+ x 3k \
Aj, k_, then the function,

ASXH(S) S (D), (pagu)s Flutv+p)—g  (2174)
is smooth. Therefore, the operator
Tu=Au+F(u+v+pu) —g, u € H2(%), (2.175)

is a well defined, smooth operator AY x H'*2(2) — H"(X). If h is a solution to
the regularised Taubes equation, then 9; T : H"** — H" is the operator,

(0;T) 6u = (A + V(h+ v+ p)) du, (2.176)
where as a function of ¥,
V)=V (E Yot u) cCr (2.177)

is a positive function whose zero set is PUQ and if ¥ is R?, has the property that

limyg e V(2) = (1—72). By lemma 2.10, ;T is an isomorphism, by the implicit
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2.3 The governing elliptic problem

function theorem, the mapping (p,q) — h is smooth as a map AY — H"(X). By
Sobolev’s embedding, it is also smooth as a map AY — C"2(X) for all r > 2.
Hence, it depends smoothly on (p,q). Finally, since the solution to the Taubes
equation is u = h 4+ v + 1, we have that for any neighbourhood W of P U Q, the
restriction u : ¥\ W — R depends smoothly on the cores. ]

Corollary 2.13. Let U be either an open and dense subset of the compact surface
Y. or the euclidean plane. In any holomorphic chart ¢ : U — C containing
the cores, the localization formula (2.85) can be extended continuously to the

coincidence set.

Proof. For any given core p; € U, let z; = ¢(p;) € C. We assume each p; is
simple and that all the z; are contained in a bounded domain D C C. This
assumption is superfluous for the Euclidean plane but for a compact surface is
necessary for the existence of a smooth function H : D x D — R such that for

any z,w € D,
1
Glp ' (2). ¢! (w)) = o~ log |z — w| + H(z,w). (2.178)
T

Assume without loss of generality s; = s5, to prove the result it is enough to
show that for any pair of indices i,j € {1,...,ky +k_}, lim, ., 0. bi(z) ex-
ists, where z = (z1,..., 2k, 4x_). In the following computation, we denote by
ho() = hlp~1(2), Golz,0) = Gle1(2), 97 (W), hol2) = hlp~1(2)) the local
representation of the functions,

by =20.—, (s hp(2) — log|z — z]?)
= 2521% (47r Gy(z,2) —log |z — z,|2) + 87 Z siskngw(zi, 2k) + 2s; gzﬁ(zz, z)
ki

= &7 5ZH¢(zi, zi) + 8w Z sisk@G@(zi, 2r) + 2s; Ejzg,(zi, z), (2.179)
ki

where 0, refers to the derivative with respect to the first variable in each term.

Hence,

0.,b; = 87 8Zj52H¢(zi, zi) + 8w Z siskazﬁZG@(zi, 2k) + 28; 8Zj52f~zw(z,-, z).
ki
(2.180)
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2.3 The governing elliptic problem

The functions 8Zj5ZH@(zi, z;) and (9zj52f~1¢(zi, z) vary continuously with (z;,z),
whence, the limits,

lim 0.,0,H,(z, ), lim &Z].B(p(zi,z), (2.181)

Z1—292 21—22

both exist. In the above sum, if i # 1 and k£ # 1, or if either ¢ = 1 or k = 1 and
the other is not index 2, the limit

lim 0,,0.Gy (2, zk) (2.182)

Z21—>22

exists because G is smooth away of the diagonal set of X x 3. Finally, if {i, k} =

{1,2}, we can assume without loss of generality i = 1, k = 2, to compute,

— = 1
lim 0,,0.Gy(21,2) = lim 0,,0.—, <§ log |z — 2| + H¢(z,z2))

Z1—22 Z1—22

= lim azjngcp(thQ)

2122

= 0.,0.Hy(22, 22). (2.183)

Therefore, lim,, ., 8Zj bi(z) exists, implying the localization formula can be

extended to the coincidence set. O

In later applications we will also focus on vortices of the Ginzburg-Landau
functional, in this case, the governing elliptic problem is the orginal Taubes equa-

tion,

—Ah=e"—1+47 ) 4, (2.184)

If ¥ is the euclidean plane, we add the condition lim|, . h = 0. In both
cases, we know that there exists a solution h to the Taubes equation for any
configuration p of points. On the plane this is proved in [56] whereas in a compact
surface 3 the proof can be found in [61]. As for the O(3) Sigma model, given a
configuration p = (p1, ..., p,) of cores, if we define h such that h = h+wp, then h
is the unique solution of the regularized Taubes equation for the Ginzburg-Landau

functional,

—Ah =Mt —1— g, (2.185)
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2.3 The governing elliptic problem

where the functions vp, gp are defined either as in equation (2.160) if ¥ is the
euclidean plane or v, is defined as in equation (2.160) and g, is the constant
function 47n|%| " if ¥ is compact.

Mimicking the proof of theorem 2.12, we prove the following proposition.

Proposition 2.14. Let p € X" be a sequence of points on a Riemann surface
either compact or the euclidean plane. If ¥ is compact assume n € Z" satisfies

Bradlow’s bound for vortices of the Ginzburg-Landau functional,
drn < |X|. (2.186)

Let h : ¥ x " — R be such that lNL(:p;p) 1s the unique solution to equa-
tion (2.185) with data p, then h is a smooth function of x and the data.

Proof. As in the proof of theorem 2.12, we define an operator T : X" x H™+? — H",
such that,

T(p,u) =Au+e"™ —1— gp, (2.187)

and observe that as in the proof of the theorem, this operator is smooth. More-

over, the derivative 9, T : H*2 — H" at (p, h) is,
8, T(6u) = (A + ") u. (2.188)

We notice the potential V(z) = e’ and all the derivatives are bounded
functions. If ¥ is compact, this is because V is smooth and if the surface is R2,
this is becuase e’ has this property, as shown in the proof of theorem 2.12 and
because h, the solution to the Taubes equation, and all of their derivatives decay
exponentially as |z| — co. Hence, h = h — v, and the derivatives are continuous
bounded functions. By lemma 2.10, 9, T is an isomorphism. By the implicit
function theorem, for any p € X" and any r > 2, there is a neighbourhood
U C X" of p, such that the map p — iL(ZE, p) is smooth as a function U — H" 2.
By Sobolev’s embedding, h(z) is of class C” as a function ¥ x U — R. Since
differentiability is a local property, this implies h is of class C” on ¥ x X" for any

r > 0. Therefore h is smooth. O
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2.4 Topological methods

2.4 Topological methods

We finalize this chapter with a brief exposition of some results of analysis that
we will use to prove existence of solutions to the elliptic problem on compact
manifolds in chapters 4 and 5. Both methods are attributable to Leray and
Schauder. Our exposition will be short and will focus on the results we need.
Details can be found in the books [8] and [11]. Recall a subset of a topological

space is precompact if the closure is compact.

Definition 2.15. Let X,Y be Banach spaces and Q0 C X. A continuous map

T :Q =Y 1s compact if it maps bounded subsets of ) to precompact subsets of
Y.

As a caveat, in [11] compact operators are called completely continuous.

Theorem /Definition 2.16. Let Q@ C X be an open and bounded subset of a real
Banach space, T : Q — X compact and y & (I — T)(0R). For each admisible
triple (T,Q,y), there is a unique integer deg(I — T,Q,y) € Z, with the following

properties:
1. deg(I,Q,y) =1 fory € Q.

2. deg(I—T,Q,y) =deg(I —T,Q4,y) +deg(I —T,Qs,y) whenever Qy, Qy are
disjoint open subsets of 2 such that y & (I — T)(2\ (2, UQy)).

3. Homotopy invariance: deg(I — H(t,-),Q,y(t)) is independent of t € [0,1]
whenever H : [0,1] x Q — X is compact, y : [0,1] — X is continuous and
y(t) & (I — H(t,-))(9€) on [0,1].

4. General homotopy invariance: Let © C [0,1] X X be bounded and open in
[0,1] x X with ©;, = {x € X : (t,v) € ©}. If H : © — X is compact and
y :[0,1] = X is continuous with y(t) ¢ (I — H(t,-))(00y) for all t € [0, 1],
then deg(I — H(t,-), 0, y(t)) is independent of t.

deg(I —T,9,y) is Leray-Schauder’s degree. It can be proved [11, Thm. 8.2]
that deg(I — T,9Q,y) # 0 implies (I — T)"*(y) # 0. As an application of this
concept, there is the following result of Schéfer [48],

40



2.4 Topological methods

Theorem 2.17. Let T : X — X be compact. Then the following alternative
holds:

1. x — AT (z) = 0 has a solution for every X € [0,1], or
2. S={rxeX:3xe€0,1]st.x — AT(x) = 0} is unbounded.

For a linear operator, alternative 1 always holds by choosing the solution x = 0,
however, for non-linear operators this is not always the case. A proof of the
theorem can be found in [8, Cor. 1.1.18]. In general, computing the degree is a
difficult task. Suppose zq € (I — T)!(y) isolated, then w is the only solution
of the equation z — T'(z) = y in some disk D, (z(). By homotopy invariance,
deg(I — T, D.(x¢),y) is independent of € for 0 < € < €.

Definition 2.18. With the previous assumptions, the index of an isolated solution

xg to the equation x — T(x) =y is
ind(I —T,x,y) =deg(l —T,D(x0),y), (2.189)
where € > 0 is any sufficiently small radius.

If T is compact and differentiable at xy, then T"(zy) is a compact linear

operator. We state the following theorems,

Theorem 2.19 (Leray-Schauder). If T': Q@ C X — X is compact and differ-
entiable at xo and if I — T (xq) is injective, then ind(I — T, zo,y) = £1. More

precisely,

ind(I — T, x,y) = ind(I —T"(x0), zo, y)
= (-1%  B=)_m). (2.190)

A>1
The sum is taken over all eigenvalues X > 1 of T'(x¢) and m(\) is the algebraic

multiplicity of \.

Definition 2.20. An operator H(A\,xz), H : R x X — X, is continuous in A
uniformly with respect to x in balls in X if for any given ball B C X and for any
€ > 0, there is a § > 0 such that |Ao — \1| < 0 implies |H (o, z) — H(A,x)| < €
for all z € B.
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2.4 Topological methods

The following theorem can be found in [8, Thm. 1.3.3].

Theorem 2.21. Let H : R x X — X be such that for all A\ € R the map
H(\,-) : X — X is compact and H(\ x) is continuous in A uniformly with
respect to x in balls in X (definition 2.20). Let (Ao, x0) be a solution of the

equation
x—H(\z)=0. (2.191)
Suppose W C X s an open, bounded set such that xo € U and,
1. for fized Ay there is no other solution in U,
2. deg(I — H(Xo,-),U,0) # 0.

Then there exist two connected and closed sets (=continua) €T C [Ag, 00) X X
and €~ C (—o00, \g] X X of solutions of (2.191) with (\g, o) € CT NEC~. For €

one of the following two alternatives hold:
1. C* is unbounded or,
2. Ctn({ Ao} x (X \U)) #0.
The same alternatives hold for C~.

The hypotesis on H implies the restriction to bounded subsets of R x X is
compact. The definition of compact operator on the reference is slightly different,
however, it is not difficult to go through the proof and adapt it to our current
definition.

We conclude the section mentioning that several results related to theorem 2.21

can be found in the literature. A good survey of related applications is [40].

42



Chapter 3

Asymmetric vortex-antivortex

systems in the euclidean plane

In this chapter we study the moduli space of vortex-antivortex pairs on the eu-
clidean plane in detail. Our approach will be analytical and numerical. To un-
derstand the geometry of the moduli space, we need to analyse the properties of
the Taubes equation in the critical case when a vortex and an antivortex collide.

In section 3.1, we study the space of vortex-antivortex pairs, the main result
is that it is incomplete. To prove this theorem, we find bounds for A, the solution
to the Taubes equation in several lemmas in subsection 3.1.1.

In section 3.2, we develop an asymptotic approximation for the L? metric of
vortex-antivortex pairs in the centre of mass frame, and complement it with the
point source formalism in subsection 3.2.1, in which we approximate the fields
linearising the field equations. The main result is the Lagrangian (3.214) which
confirms the asymptotic formula obtained previously. In subsection 3.2.2, we find
another asymptotic aproximation for the metric, this time for small ¢, the main
result is equation (3.269).

In section 3.3 we approximate the L? metric numerically, using the data found
by numerical methods to study the scattering of vortex-antivortex pairs in sub-
section 3.3.1 and in this way testing our approximations of the previous section.

Finally, in section 3.4 we study Ricci magnetic geodesics. These curves are of
mathematical interest, there are a few results about the relation between exten-

sibility of them and completeness of the underlying space, as the moduli space of
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vortex-antivortex pairs is incomplete, the question of whether or not it is complete
in the Ricci magnetic sense is interesting in its own.

In order to start, let us note that on R? any fibre bundle is trivial, therefore
we can consider sections on the target manifold as pairs (¢, A) of a function
¢ : R* - S* and a 1-form A € Q!'(R?). Since the Lagrangian is isometrically
invariant, by Noether’s theorem there will be conserved currents. In the Euclidean
case, the conserved quantities are the total energy, E, the linear and angular
momenta. We already know how to compute the energy. For the remaining
constants of motion note that the Laplacian is invariant under the action of the
group of isometries of the plane, E(2) = R? x O(2), which is a Lie group of
dimension three. If h(z;p,q) : R* \ (P U Q) — R is the solution to the Taubes

equation, and v € E(2) acts in p and q component-wise, this implies,

h(z;vp,vq) = h(y 'z; p, q). (3.1)

Lemma 3.1. Let ¢ = (c1,...,ck, k) be a sequence of cores, ordered such that
the first ki are the vortices. Let b; be the coefficients defined in lemma 2.3. If

yr = ax + B, a,z, 8 € R?, la| =1, is an orientation preserving isometry, then

b(7¢) = ab(c). (3.2)

If v is the orientation reversing generator, yx =T, we have,

b;(€) = bj(c). (3.3)

Proof. After some algebraic manipulation and the chain rule,

b; (7€) = 20yere, (s7h(z;7vC) — log |z — v¢5]?)
= 2523:7@ (th(fyilx; C) - lOg ”yilx - Cj|2)
= 2 0p=, (sjh(z; c) —log|z — Cj|2) [ )
+ 205, (sjh(z;¢) —log |z — ¢j|?) Dperye (7 1)

=20, (s;h(z;c) — log |z — ¢;]?)

ol +

= abj(c), (3.4)
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where we used the fact that v~!z is holomorphic and « unitary to simplify the

result of the chain rule. For the second identity we proceed analogously,

b;(C) = 204z, (sjh(z;€) — log |x — &)
= 20,-¢, (s;h(T;c) — log |T — ¢;]?)
=20,—, (s;h(z;c) —log|z — ¢;]°)

= bj(c). (3.5)

[l

As a consequence of the lemma, the coefficients b; are translation invariants:

if X is the Killing field generated by a one parameter family of isometries ,, then
Lxbj(c) = apb;(c), (3.6)

where £ x denotes the Lie derivative. If y,x = x + sb is a one parameter family

of translations, then ay = 0, on the other hand,

X = Z (b0, +00,,) (3.7)

Letting b = 1 and b = 7, we obtain,

Doy Y b= Db = 0eb; =0, (3.9)
k k k
- (9cjbk - 2501@5]' = Z@ckbj = 0 (310)
k k

Therefore, ), by is constant. Repeating this argument with the one-parameter

family of rotations v, x = e**z, we find that X = >IN (ck Oc, — T gck), thence,

> (ckOep =T 0e,) by = by. (3.11)

k
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Summing over j, we find,

Zb _ZZ Ck Ck C’C Ck Z Ck: Cl Ck Ck Zb =0, 312)

k

since ) b; is constant. This result is analogous to the similar result obtained
by Samols for vortices of the Ginzburg-Landau functional in [47]. As a conse-
quence of this symmetry we have the following proposition about conservation of

momentum.

Proposition 3.2. The total conserved momentum of a vortex-antivortex system

with cores at position c 1s,

P+ Pyi=2r Y (1-s;7)¢;, (3.13)
J

where s; = s, is the sign function determining the type of the core.

Proof. By lemma 3.1 the translation group acts isometrically on the moduli space.
Hence for any b € C the fields, X = >, (b3,, + bd,,) are Killing fields and the
product

B, ={¢,X) (3.14)

is constant along geodesic trajectories and corresponds to the projection of mo-

mentum on the b direction. If K denotes the Kéhler metric, equation (2.86),

by =R (K(¢, X))

—_

= (K(e.x) +K(e X))

(K(¢, X) + K(X,¢))

— N~ N

=5 D Ky (X5 + Xid). (3.15)
.3

On the other hand, K5 = 27 ((1 — s;7)d;; + O,,b;). Note that by the invariance

of the coefficients b;, we have,

D by (6X;+ X)) =b Y éd, (Z bj) +by (éj Zacibj> =
©,] 7 J J %

(3.16)
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Hence,

Py=7) (1—s7)(¢ib+bE). (3.17)

If we let b =1 and b =7 we get the momentum in the direction of the real an

imaginary axes are the real and imaginary parts of the vector,
2 > (1 —s;7) ¢y (3.18)
J

O
Proposition 3.3. The angular momentum of a vortex-antivortex system 1is,
¢ =w(c,¢), (3.19)
where w € Q?(R?) is the Kdhler form of the metric.

Proof. Conservation of angular momentum corresponds to the action of SO(2) on
the moduli space. Let X =i ), (ck&;k —Ck 5%) be the Killing field generating

the action of SO(2), the conserved angular momentum is,

(= (¢, X)
_ %(K(',X) +K(X, &)
=i Z — 55) Oji, + acjbk) (=¢j + ¢ a))
_ w(c7c>' (3.20)

]

It is convenient to express the dynamics of vortex-antivortex systems in the

centre of mass frame. Let us define,

1
€= (I =7kt + (14 7)k- S57)¢5, (3.21)

M=2r(1-7)k*+2r(1+ T)k : (3.22)
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M is the total mass and C' the centre of mass of the system as determined by
conservation of momentum and energy. Let us define the variables £; € R? such
that,

C; = C—i—g] (323)

Let m; = 2m(1 — s;7) be the effective mass of a core, then }_;m; §; = 0. Note
that this linear combination is invariant under the action of Sy, x Sj_ on the

moduli space, where S, is the symmetric group of order n, hence it determines a
well defined subspace J\/[g*’k’ C MF+k= where C = 0.

Proposition 3.4. Let Ky be the restriction of the Kahler metric to M'g*’k’, then,
K = M|dC|?* + Ko.

Proof. This is a consequence of translation invariance, let m; = 27 (1 — s;7) be

the mass of the core at c¢;,
K=Y m;[dC +d&|* + 21 ) 0.,b; (dC + d&;) (dC + dE;). (3.24)
i i\

The first terms can be split into
M|dC* + 2R (@ Zmid@) + Y mldg* = MIAC]? + ) mildé[?, (3.25)

and the second terms can be split as,

27 (Z(]dCP +d€;dC) - Debj+dC Y dE D> Db+ Zacibjd_gjd@)
7 A 7 %,

J
=21 Y 0.,b;dE;d&;, (3.26)
4,J
where the first two terms cancelled because the coefficients b; are translation
invariant. Substituting back into the formula for K we conclude the claim of the

proposition. ]

As a consequence, the moduli space decomposes in a product of Kahler man-
ifolds,
MEek- o R2 5 MEHF (3.27)
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3.1 The moduli space of vortex-antivortex pairs

such that the metric splits in a trivial flat metric in R? and the nontrivial restric-
tion to M,*"* . This splitting was first observed by Samols [47] for vortices in
the Abelian Higgs model. M§+’k‘ is the space of vortices and antivortices with
fixed centre of mass. Given the decomposition of the metric in the moduli space,

the energy and angular momentum in the centre of mass frame are,

B = K6, (3.28)
0 =w(E€), (3.29)

where K and w are the Kéahler metric and Kéahler form of ambient space at

52 (617 cee 7€k++k,)-

3.1 The moduli space of vortex-antivortex pairs

In this section we focus on the moduli space of vortex-antivortex pairs on Eu-
clidean space and extend the analysis done by Romao-Speight in [45] for 7 = 0.
We focus on the non trivial part of the metric in the submanifold My" = R2\ {0},

of pairs with centre of mass at the origin. Let
b(z) = by(z, —x), r e R". (3.30)

By the invariance of the coefficient b; with respect to conjugation, b is a real
function. Let us assume ¢; is the vortex position, introducing (e, ) coordinates

such that ¢; — ¢y = 2ee, we have,
bi(c1,ca) = e“b(e). (3.31)

Recall by + by = 0 and 01b; + 0-b; = 0, then the restriction of the metric to
M s,

go = Qe) (de* + 2do?), (3.32)

where the conformal factor is,

€

Q) = 2r (2(1 _ )4 % di (eb(e))) | (3.33)
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3.1 The moduli space of vortex-antivortex pairs

3.1.1 The singularity at ¢ =0

In this section we study the limiting behaviour of solutions to the Taubes equation
for vortex-antivortex pairs as € — 0. We aim to prove bounds for h. in order to
estimate the length of radial geodesics and finalize proving that the moduli space
of vortex-antivortex pairs is incomplete. We start defining the following constant

and functions,

1—7 el —1 2(p+1) €

= F(t)=2—— Vilt) = ——5- 3.34
1—|—7" M() u6t+17 M() ([Let+1)2 ( )

7

If hr(z, €, —e) is the solution to the Taubes equation with a vortex at position
(€,0) and an antivortex at (—e,0), let us define the function h. such that hy =
he + . To express the Taubes equation in a convenient way, we make the change

of variable,
= (1—7%)"Y2g, (3.35)

under this change of variable, the position of a vortex or antivortex is (+¢,0) =
(£(1 — 72)7%2¢,0). By an abuse of notation, we still denote by z coordinates
in the rescaled Euclidean plane and by (+e¢,0) the positions of the cores. With

these definitions, the Taubes equation is equivalent to,
—Ahe = F,(he) + 416 — 4mo_, (3.36)
together with the constraint,

lim h, = 0. (3.37)

|z|—o0

Let u be the solution to the Taubes equation for the Ginzburg-Landau func-
tional [56],

—Au = ¢e" — 1+ 47wy, (3.38)

Yang proves in [60] that u < 0. For the following results, we will assume 7 € [0, 1),
the case 7 < 0 being similar. Repeating the argument of Yang, the function

ue(z) = u(x — €) is a sub-solution of A, i.e. u. < 0 and

—Aue > F,(u), v € R?\ {e, —¢}. (3.39)
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3.1 The moduli space of vortex-antivortex pairs

On the other hand, the function —u_, = —u(x + €) is a super-solution: it is

positive and
—A(—u_e) < F,(—u_e), r € R?\ {e, —¢}. (3.40)
By the maximum principle,
ue(z) < he(z) < —u_c(x), € R*\ {¢, —¢}. (3.41)

Lemma 3.5. For any 0 € (0,1) there exist two constants C(0) and R(0) such
that

lu(z)| < Ce U0l Vu(z)| < Ce -9l |x| > R. (3.42)
In particular, ||ul|L, < oo for any p > 0.

Proof. That u and its derivatives decay exponentially fast at infinity can be found
in the literature, for example in [23, 56], here we adapt a proof of Yang for solu-
tions of the elliptic problem of the O(3) Sigma model in the symmetric case [59,
Lemma 8.3]. Since lim;| v = 0, we linearise (3.38) about u = 0 in a neigh-

bourhood of infinity to obtain,
—Au = f(x)u, |z| > R. (3.43)

where f(x) is a function such that f(z) — 1 as |z| — co. Let us introduce the

comparison function
w(z) = Ce 179l lz| > R, (3.44)

where C'(§) and R(6) are positive constants yet to be determined. The Laplacian
of this function is —Aw = (1—4¢) (1 — ¢ — |z|~") w. Choosing R sufficiently large,

we can guarantee that

f@) > (1=05) (1 _5— i) | (3.45)
hence,

—A(u—w) > f(z)(u —w), (3.46)
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3.1 The moduli space of vortex-antivortex pairs

for |z] > R. Let us choose C' big enough for the continuous function v — w to be
negative at the boundary |z| = R. Since u(z) — w(z) — 0 as |z| — oo, by the
maximum principle u(z) < w(x) for all |x| > R. Since (3.43) is linear, we can
apply the same argument to —u. Choosing the bigger of each pair of constants
(C, R) the decay rate of u is proved.

For the decay rate of Vu, we know that u € H" for all » > 2 [56], in particular,
Vu — 0 as |z| — oo. Linearising in a neighbourhood of infinity, Vu is a solution

to the equation,
—A (Vu) = f(x) Vu, (3.47)

for some function f(x) such that f(z) — 1 as |z| — 0. We can apply the same
argument as before to obtain the exponential decay estimate of Vu. To prove the
assertion about the L? norm of u, note that |ulP also decays exponentially fast
at infinity for any p > 0 and since the singularity at x = 0 is logarithmic and

limyg| 0 || (log|z|)? = 0, the integral

2 00
|ulP dx = / / |ul? r dr dO (3.48)
R? o Jo

is convergent. []

For any R > 0 and ¢y > 0, if |z| > R and € < €y, by the triangle inequality
|z £ €| > R—¢. As a consequence of this observation and Lemma 3.5, we have

the following corollary,

Corollary 3.6. For any § € (0,1) and ¢y > 0, there exists constants C(6), and
R(0,€), such that if € < €y and |z| > R,

|ure(z)] < C e 10kl Vs (z)] < Ce -9kl (3.49)

We also have the following uniform bounds, valid for any p > 0,

[|RellLe < |[—u—e — uel[rr
< u—ef|te + |ue||Le (3.50)
= 2 ||l (3.51)
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3.1 The moduli space of vortex-antivortex pairs

Let us introduce the functions,

o() = —log (1+£2), o(t) = ﬁ £ 0. (3.52)

and let v. = v(|z — €|) —v(|z + €]), ge = g(|z — €]) — g(]z + €]). We have the norm

estimates,

)Hva (353)
lee. (3.54)

[1gellLe < 2119 (|
[[vel[Lo < 2Jv (|

Each of the functions |v|?, |g.|P is pointwise convergent to zero. Therefore,

. 1
lim [|ge||L» = 0, p> =, (3.55)
e—0 2

lim [[v[|e» = 0, p> L (3.56)

Let us define BE = h. — v.. Then l~16 is a solution to the regularised Taubes

equation,
—~Ahe = F, (v + he) — ge. (3.57)

From now onwards, we will use the same variable C' to denote a positive
constant, independent of €, that can change from one inequality to the following.
By our estimates for the p norm of A, and v., he is uniformly bounded in L? for

p> 1.
Lemma 3.7. Let €g > 0 be an arbitrary positive constant, ||he||m < C for e < €.

Proof. Since h, is uniformly bounded on L2, we aim to show that ||Vh.||.2 is also
bounded if € < €. We have,

IVhd[f2 = = (Fu(ve + ho), he) + (g, he),
= —(Fu(he), he) + (ge he),
< [(Fu(he), el + 1lgellea [l 2
< [(Fulhe), he)| + C, (3.58)
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3.1 The moduli space of vortex-antivortex pairs

where (-,-) is the L? product. It remains to show (F,(hc),hc) is uniformly
bounded. Let § € (0,1) be any given number, by corollary 3.6, there are positive
constants R, C' such that if |z| > R and € < ¢,

|he(x)| < |u(z —€) — u(z + €] (3.59)
< Ce 9l (3.60)

Hence, there is another constant, such that,
Fu(h) < Ce 079k g > R, (3.61)
Let U be the exterior of the disk Dg(0), by the previous bound,
[(Fu(he), hed |y < 1Fu(hllzw) [1ellzw) < O lle” ey, (3.62)

since h, is uniformly bounded on L2. On the other hand, F , 1s a bounded function,

hence,

[(Fu(he) ) (o) < N1Fu(he)llz@pon |l l2mr0)) < C. (3.63)
This concludes the proof that (F),(h), h) is bounded on L2, O
Proposition 3.8. lim._, ||Be||L2 =0.

Proof. Let h, = iLen be any sequence such that ¢, — 0. By lemma 3.7 {ﬁn}
is bounded on H!, hence, by the Banach-Alaoglu theorem, after passing to a
subsequence if necessary, there is a function h. € H! such that h,, — h, weakly on
H! and by the Rellich-Kondrashov theorem, after passing to another subsequence
if necessary, we can assume that for any bounded domain D, h,, — h, strongly
on L*(D). We will assume without further notice that domains are bounded and
their boundaries have at least Lipschitz regularity. Let ¢ € C}(R?) and let D be

a domain containing the support of ,

<(p, h*>H1 = lim <g0, hn>H1
= lim (Vip, VA, )12 + lim (¢, h,)
h

n /L2
= lim (p, Aizn)Lz + lim (@, hy )12
= —lim (@, F(vp + hn) — gn)12 + (0, ha)1o. (3.64)
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3.1 The moduli space of vortex-antivortex pairs

The last equation because the convergence by — hy is strong on bounded

domains and ¢ is compactly supported. Consequently,
(Ve, Vi = —lim (¢, (v, + hy) — go)re. (3.65)

By the mean value theorem, we have the estimate,
1B (00 + ) = BBy < C (Ilonlliaw) + lon = Bullizo) ) - (3.66)

Therefore, F,(v, + hy) = F,(h,) and g, — 0 strongly on L*(D), thence h, is

a weak solution of the equation,
—Ah, = E,(h,). (3.67)

By elliptic regularity %, is a strong solution and by the maximum principle
h. = 0.

Let D be any other domain, our previous argument shows that any sequence
h,, has a convergent subsequence ﬁnj — 0 on L?(D). Therefore for any domain
D, hme_)oHiLEHLz(D) = 0. Now we prove that limHOHiLHLz = 0, to this end, let
p > 0 and let us take R > 0 such that

p
||ullL2@®2\DR(0)) < 5 (3.68)

Let €y be small enough such that |x &+ €| > R for all € < ¢y and || > 2R. In this

situation we have,

[[hellLe@2\Dar(0)) < [|tellL2®2\DoR(0)) T+ |[U—c|lL2®2\D2 (0))
< 2[|ullr2®2\pr(0))
<p. (3.69)

On the other hand, there exists €; such that if € < ¢y, then,
Pel L2y r(0)) < Py (3.70)
taking ¢ = min(e, €1), we conclude that
Rz < 2p,  Ve<é€ (3.71)

and the limit lim€_>0||iL€||L2 = 0 holds. O
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3.1 The moduli space of vortex-antivortex pairs

Since h, — 0 strongly as € — 0, by the mean value theorem as in the proof of

the proposition, we have,
lin || (v + )2 = 0. (3.72)
Moreover,
ARz < [ Fu(ve + he)lee + 119l ez (3.73)

since both terms on the right side of the inequality converge to 0, we have the

limit
ll_r% [|Ahe||L2 = 0. (3.74)

Lemma 3.9. Let D be any domain on the plane, the restrictions he|p and Vhe|p

converge uniformly to 0.

Proof. 1If we take any pair of domains D € D', by Schauder’s estimates,
[1Bellsey < CUIAR 2@ + [[hell2en), (3.75)

which implies A, — 0 in H2(D) as e — 0. By Sobolev’s embedding, we have that
for any domain, lim,_, ﬁe = 0 uniformly. Let p > 2 be any real number and let izn
be any sequence of functions such that €, — 0. Since the convergence is uniform

on D, we can apply the dominated convergence theorem to obtain,
||iLn||Lp(@) — 0, HF(Un + fNLn)HLp(D) —0 (3.76)
and since the sequence is arbitrary, we conclude the limits,
i [[A2e] | () = 0, lim || F'(ve + he)lLr(p) = 0, (3.77)

are valid for any domain. In particular, both limits are valid for the domain D’
of equation (3.75). By Schauder’s estimates HiLGH\NQ,p(D) — 0 as € — 0 and by
Sobolev’s embedding,

lin [[] |1 (p) = 0. (3.78)

[]
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3.1 The moduli space of vortex-antivortex pairs

Proposition 3.10. The convergence he — 0 is uniform on R2.

Proof. Recall
el < [hel + [od] < Ju(e =€) = ulz + ) + [u(lz —e]) = v(lz + ). (3.79)

Let R > 0 be any large positive constant, such that the estimates of lemma 3.5
hold for § = % If || > 2R and € < R, then |z £+ €| > R. We can apply the mean
value theorem to obtain the estimate

[v(Jz =€) = v(|z + €|)| = [log (1 + |z — €[ ) —log (1 + |z + €| 7*)]

1
< 2 ||93—e|_2 — |x+e|_2|

i 46‘331’
R |z — €f?|x + €|?
B de (z1 + ¢€) 42
| R2 |z — €|z e R2|x — 2|z + €|?
de  4e?
< 25+ (3.80)

Likewise, there is some £ in the linear segment joining x — € to x + € such that,
lu(z — €) — u(z + €)| = 2|0u(€) e] < 2Ce 28 e < 2Ck, (3.81)

where we have used lemma 3.5. We conclude that h. — 0 uniformly on R2\Dz(0),

but by lemma 3.9, A, also converges uniformly on D(0). O

Recall Poincare’s constant of a domain D is the best constant C,(D) such

that for any zero average function v : D — R,
) < Cp[[Vulliam). (3.82)
Lemma 3.11. Let a : R? — [0, M) be a continuous function, such that
1. For some convex domain D with diameter d < w/M, [, aVol >0,
2. a 1is positive on 1 = R?*\ D.
If m = infga > 0, the bilinear form

B:H'xH' —= R, B(u,v) = (Vu, V)12 + (u, av)re, (3.83)
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3.1 The moduli space of vortex-antivortex pairs

15 coercive with coercivity constant,

, JpaVol 1 —2d 1 a
0 1 E 1= 2Y vol]. (3.84
s @ mm (m’ "Vol(D) ' 1+ Cp(D)’ Vol(D) /gja( i) Vol |- (380

Proof. We aim to prove the existence of a positive constant a such that for any
u € H,

ullf @ < B(u, u), (3.85)
Let ov; = min(m, 1), in the exterior € of the given domain,
lul[f oy a1 < [|Vullfeq) + (u, au)rzo). (3.86)

On the other hand, any u € H'(D) can be decomposed as ug + u, where ug is
of zero average on D and u € R, hence, uy is orthogonal to @ in H! (D). Coercivity

in D is equivalent to find a positive constant as such that,

(1110l s o) + 7 VoI(D) ) s < [ Vto] By + (a, )i

+ 2u <6L, uO>L2(D) + EQ <CL, 1>L2(D)a (387)

or equivalently,

((a, L)r2(py — a2 VOI(D)) ? + 2 {(a, Uo)r2(0) U+ (1 — ) ||Vu0||iz(@
+ (a, ug)r2) — aal|uol[f2mmy > 0. (3.88)

For this is quadratic inequality on u to hold regardless of u, the leading coef-
ficient with respect to w must be positive and the discriminant of the quadratic
must be non-positive, from these two conditions we deduce the following restric-

tions:

<CL, 1>L2(D) o fD CLVOI
Vol(D) ~ Vol(D)

ay < (3.89)

<CL, U0>%2(@) S ((a, 1>L2(D) — OKQVOI(‘D))
(1= a2) [[Vuolago) + (@, )z — aaluol Fn)) - (3.90)
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3.1 The moduli space of vortex-antivortex pairs

We claim the existence of a positive constant «s such that the second restric-

tion is independent of ug. To this end, let us divide this inequality by M,

<%’u0>i2(®) = (<%’ 1>L2(®) a %V01(®)>

1—ay 9 a Qo 9
(S5 19l + (57 ), = Selluolin ) - (390

By Cauchy-Schwarz,

<%’ u0>;(®) < ‘ % i?(@) HUOH?P(D)' (3.92)
Notice that,
2
H% L2(D) = <%’ 1>L2(D) - %Vol(@), (3.93)
if and only if
1 a

On the other hand, the inequality

1—ay a o)
ol < (2572 1l + (70 ), = 2 Muallo)) (399

is equivalent to,

a (6]
ol ooy = {52 18) gy + 37 Nl oo < 57 V0l (3.96)

By Poincare’s inequality and the bound 0 < a/M < 1,

a Qi Qo
luollEacoy = {7 08y 37 PollEzcey < (14 57) HeollEeco

(0
g(1+ﬁﬁc;mmd@@y (3.97)

For the right side of this inequality to be lesser than (1 — as)/M, we require,

1-MC,

) (3.98)

Qo <
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3.1 The moduli space of vortex-antivortex pairs

Since D is convex, we know by a result of Payne and Weinberger [44] that
C, < d/m. Since d/m < 1/M implies MC, < 1 and
1 — Md _1-MG,

™

1+C, = 1+C,

(3.99)

it is enough to require sy < ( — %1) (14 C,)~" to obtain the final bound.
Defining o < min(ay, ag), we prove coercivity with a constant as stated in the

lemma. ]

Lemma 3.12. For any ¢y > 0, there is a positive constants C(€y), such that for

all € < €,

2
[|gel[Lr < Ce, P>z, (3.100)
[lve||lLz < Cellogel, (3.101)
||vel|L» < CeP, p>1p#2 (3.102)

Proof. Let us rewrite g,

B 4 4
e TS P S PES
CA(lr e =z —e?) 2+ |z + P+ |z —€]?)
- (1+ |z +€2)” (1 + |z — ¢?)?
_ 16exy (24 |z + €l + |z —€]?)

o+ ot (L5 o =Py R
and let us take R > €g. If 2 = R?\ Dy(0),
lgelle( < 16€ || 22 2+ 2(j2] + R)) (3.104)
- 1+ (lz| - R)?)" Lo(Q)

The norm on the right decay as |z|™ as |x| — oo, hence is convergent for
p > 2/5. On the other hand, we have,

19l ler@aeon < 16€ |21 (2+ 2(12] + B)*)|| Lo (3.105)

Thence ||g||rr < Ce if € < R. For v, we follow several steps, dividing the

plane in subregions where we can have control of the logarithmic singularities.
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3.1 The moduli space of vortex-antivortex pairs

We start with an algebraic rearrangement,

1 -2
ve(x) = log <—+ [z +¢ >

1+ |z —¢€|2
|z + €72 — |z — €| 2
=1 1
og< * 1+ |z —€2
dexy
=log(1— . 3.106
(1 ) (3.106)

Let R > 2¢, be a large positive constant such that if || > R and € < R/2,

we have the approximation,

4€|561’

€ = 0 2
[ve(z)] |z 4+ €]2(1 + |z —€]?) +0(€)
Acl| (3.107)
i 2 . .
(lel = 5)" (14 (]2 = 5)?)
v, is bounded in 2 = R? \ Dg(0) by a function of order |z|~3, hence,
T1
||Ve|rr) < 4e H 5 , (3.108)
(2] =) (1 + (2l = ) |10

for any p > 1. On the other hand,

ol = ) = v(lz + eDlltraioy < |[10g(1 + [+ ef2) = Dog(1 + | = )| 0
+ |log(|z — €f?) — log(|z + 6|2)HLP(DR(O)) . (3.109)

For the first term, the difference can be bounded as,

[[log(1 + |2+ ¢*) —log(1 + | — €l)|| o0 < o+ €l = |2 = €| 5,0

< Aellz1| g0
< 4eR (v B2, (3.110)

For the second term, we proceed in two steps. Firstly, let us consider the
annulus 2¢ < |z| < R and note that,

2

log|z — €|* — log|z + €|* = log (3.111)

2
1—5‘ — log
x

14 =
i
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3.1 The moduli space of vortex-antivortex pairs

Let A(R,2¢) = Dg(0) \ Do (0) be the given annulus, with A(1/(2¢),1/R)
defined accordingly. We make the change of variables ' = 1/x and compute,

Hlog |*T - 6|2 - IOg |I + €|2‘ ‘LP(A(RQE)) = H(log |1 - 6“T/|2 - IOg |1 + ESL’/|2) |l’/|72| ‘LP(A(I/(
<2 |[(|1 = ea')? = |1 + 2’ |?) |2

2¢),1/R))
—2
’ }LP(A(I/(Ze),l/R))

< 8e [ 1217 (3.112)

1/(2€),1/R)) *
The last norm can be computed exactly, we found that,
v (log (£)) 7 p=2

/1—1 .
H 2] HLP(A(1/(26),1/R)) = A 2 o P ) (3.113)
|p—2‘1/P y P # .

2p=2 = Rp—2
Secondly, we use the inequality |z| < |z £ €| + €, which can be obtained by an

application of the triangle inequality. With this inequality at hand,

Hlog(!m - 6’2) — log(|z + 6’2)HLP(]D)2€([))) < H10g<|$ - 6‘2)’|Lp(]])2€(0)) + HIOg(‘x + €|2)HLP(D2€(O))
< 2|[log [2/*[| Lop,. o - (3.114)

The last norm can also be computed,

) 6y/me (log*(3€) — log(3€) + %)1/2 , p=2,
|[log || HLP(Dge(O)) =\ e [ oo b ou g \ VP (3.115)
2 (f—Zlog(?)e) ure du) ) p 7é 2.
In the last integral, e™" dominates u”, hence
elloge] p=2,
1og 22| .0y < € N (3.116)
P p#2,

where the constant is independent of e.

Taking into account all the regions in which we divided the plane, we find that
the dominant term is € [log ¢| for p = 2 and €?/? in other case. This concludes the
proof of the lemma. O

Proposition 3.13. For any domain neighbourhood D of the origin, there is an
€0 > 0 such that,

mgx\@lﬁe(x)] < Cer, (3.117)

for all € < €.
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3.1 The moduli space of vortex-antivortex pairs

Proof. We start defining a family of potentials a. which approximate V(v + ile)
as € — 0. If @ # +e, there is a & () such that | (z)| < ’ve(@ + ﬁe(x)’ and,

Fu(ve(@) + he(2)) = Vi(&(@)) (ve() + he(w)). (3.118)

Let a. = V,(&.), this is a positive function such that if v.(x) + he(z) # 0,

_ Fu(ve(2) + he(2))
a.(z) = o)+ he(z) (3.119)

hence a, is continuous in the complement of the zeros of v, + h.. Moreover, if x

is in the set of zeros of v, + he,

lim a(z) = lim F(ve(x) +~716(:c))
T—T0 ‘ T—T0 Ue($)+h€<$)

= V,(0) = a.(xo), (3.120)

since & (xg) = 0 because &, is bounded by |v. + ize| and v, + h. — 0 as x — .

Hence, a. is a continuous function on R?\ {#€} which we can extend contin-
uously to e, because ), and h. are bounded functions and v, diverges to 400
at the poles +e, hence, lim, ,+. a.(x) = 0. Redefining a. as this extension, notice
that it determines a family of bounded non-negative, continuous functions, each
of them with only two zeros at the vortex-antivortex positions. Let D’ be a con-
vex domain neighbourhood of the origin, with diameter d < w/M for some strict
upper bound M of V,,. Pointwise, each & (z) — 0 as e — 0, hence we also have
the convergence a.(z) — 2(u+ 1)~' as € — 0. By the dominated convergence
theorem,

2
Vol —» —=|D/|, 3.121
| acvol = = (3121)

a 2 2
G - . .
//ae (1 M)Vol—> o (1 M(1+u)>| | (3.122)

Let Q = R\ D', m, = infq a, and let us assume ¢, is small enough for ¢ € D’

provided € < ¢y. We know that v, + he — 0 uniformly in €2, hence,

. o = 2
ll_r)% me = 11_{% lgf VN<U€ + he) = m (3123)

By lemma 3.11, the potentials a. define coercive continuous bilinear functions
H!' x H! — R, such that

Ce HﬁeHgll < HVi%H?ﬂ + {ac he, 716> (3.124)
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3.1 The moduli space of vortex-antivortex pairs

Let,

1 1 1 2
o g = ——— (1— —) (3.125)

m=——, = —
w1 41 w1 M(p+1)

if we select a positive constant C' > 0 such that,

1 Md
C' < min (m, 1, aq, HC—pET'D/)’ Oéz) , (3126)

then according to lemma 3.11 we can use C' as a common coercivity constant for

all the potential functions a. with € < €. Therefore,

HViLeHi? = _<FM(U€ + ile), ;Le> + (e, ile) = —(ac - (ve + ;%)7 iLE> + <gevil€>'

(3.127)
If we apply the uniform coercivity constant, we obtain the bound,
Cllhellfn < [IVhel[f2 + (ache, he)
= _<aevea iLe> + <967 Be>
< G (J[oel 2 + [1gel[e2) ||hellez, (3.128)

where we have used Cauchy-Schwarz and the fact that the set {a. : € < e} is
uniformly bounded. From this inequality, we deduce the existence of a positive

constant C, such that,
mac ([[flli, [9hlliz) < € (e + lgelee) (3129)
Applying lemma 3.12 we infer the existence of another constant, such that,
[|vellrz + [1gel |2 < C'eloge, (3.130)
for € < €. By the elliptic estimates and Sobolev’s embedding,
hellco@y < Cillhel |2y < Cs (||Aﬁe||L2(®) - ||]~16||L2(®)> . (3.131)
Since,

|1 ARe|lL2(0) = llac (ve + ho)llL2p) < C <||Ue||L2(®> + ||ﬁe||L2(®)> : (3.132)
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3.1 The moduli space of vortex-antivortex pairs

we apply lemma 3.12 again and the estimate for the L? norm of h. we have
obtained to deduce that,

el lcogpy < Cellog(e)], € < e (3.133)

We use this estimate and Sobolev’s embedding again to estimate the supre-

mum of &;h. at D. If p > 2, we have,
relloroy < Calldllwasm) < Co (18R luogoy + bl o)) - (3.134)
Again by lemma 3.12 and the previous estimate on the C° norm of he,

AR Loy + [hel oy < Hlac (v + he)lluey + 19ellre) + el L)
<C <||Ue||LP(D) + el froy + ||ge||LP(D)>
< C (7 +elloge| - | D[P +¢)
< e (3.135)

Since asymptotically € |loge| < €27 as e — 0. Therefore, ||9;hc||cowy < C €/

if € is small. O

Going back to the original, undilated coordinates z € R?, we can state the

following theorem,

Theorem 3.14. The moduli space J\/[(l)’l 18 an incomplete metric space, such that

geodesic discs centred at the singular point € = 0 have finite area.

In comparison, the moduli space of vortices for the Ginzburg-Landau func-
tional is complete, as can be seen in the results of Strachan [54] who studied
geodesic motion on hyperbolic space or Samols [47] on the euclidean plane. In-
completeness of the moduli space was expected by previous results of Romao-
Speight, who conjectured an asymptotic logarithmic approximation to (e) for
small € at 7 =0 [45].

Proof. We will prove that My" is incomplete exhibiting a curve of finite length
reaching the singularity at e = 0. Let us take any radial geodesic parametrized

as

Yo : (0, 0] = My, Yo(€) = ee®. (3.136)
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3.1 The moduli space of vortex-antivortex pairs

By Cauchy-Schwarz, the length of this curve is bounded since,

€0 €0 1/2
(= / Qe)/? de < /* ( / Q(e) de) . (3.137)
0 0

We will prove that the energy, and therefore the length, is finite. Recall the

interaction coefficient is given by

ble) =2 0|,_, (he(w) —log |z — 6]2)

=20|,_. (ﬁe(x) +o(|lz+e]) —log (1+ |z —€’) + ,u>
~ 8€ 2

Let b(€) = 201hc(€) + 8€e(1 4 4¢?)~!, we have,

/050 Qe) de = 27 /0 201 — 72) + % % (eb(e)) de
=4n(1 — %) ey + 27 /60 1d (el;(e)) de

o € de

= 4n(1 =72 o + 27 (B(eo) - 115%5(6) + / %ﬁ) de) ., (3.139)

where we have used integration by parts in the last equation. Let us assume ¢q

is so small we can use the estimate in proposition 3.13,

“ 2 7 -1 “ alile(ﬁ)
Qe)de = 4m(1 — 7°) €9 + 27b(eo) + 8mtan™ (2¢y) + 4w ——de
0 0 €

16 0

<4m(1—7%) € + 8mtan™' (269) + MOQ +C eﬁ/p + / er U de
1 + 4eg 0
16

< 4m(1— %) e + Smtan~" (260) + — 0 + CEXP, (3.140)
1 + 4eg

Therefore, the energy is finite, hence, the length of the geodesic is also finite,

moreover, the length is bounded by,

<2 (5-7)"" e+ Cq. (3.141)

66



3.2 Asymptotic approximation at large separation

For the area of a disk, we have a similar calculation,

Vol(Dp(0)) = 27 / ") e de

=472 (1 — %) R* 4+ 47*Rb(R)
32m2 R?
1+ 4R?
32m2 R?
1+4R?

<4m®’(1 -1 R*+ + 872 R 0y he(€)

<An?(1- TR+ +CRYE. (3.142)

]

Samols compared the area of small disks on the moduli space for the Ginzburg-
Landau functional with the area of a cone with deficit angle m. Recall each
vortex /antivortex has effective mass 27(1  7) respectively, in the centre of mass
coordinates, the reduced mass of the vortex-antivortex system is (1 —72), hence,
if we normalize (3.142) dividing by the reduced mass, we find that the first term
in the upper bound is 47 R?, the area of a right circular cone of radius R and
deficit angle 37/2. The second and third terms in the upper bound are far from
optimal, because they do not depend on 7 and the third term is of order smaller
than 2, however, the conjectured asymptotics of the conformal factor for small
€ (3.269) leads us to also conjecture that the first term in the upper bound is the
first term of an approximation to Vol(Dg(0)) for small R.

3.2 Asymptotic approximation at large separa-
tion

If the cores are separated by a large distance, it is plausible to assume that the
interactions are so weak, that in the neighbourhood of any of them, they can be
described by the solution corresponding to one vortex plus a small perturbation
term due to the interactions. We use this idea to approximate dynamics in the
moduli space for well separated vortices. For Ginzburg-Landau vortices this was
done by Speight in [52] and Manton-Speight in [39]. We start finding Hedgehog

solutions to the Bogomolny equations. Let us assume that there are exactly N
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3.2 Asymptotic approximation at large separation

vortices at the origin. We will use the Ansatz,

¢ = (sin(f) cos(NO), sin(f)sin(NE), cos(f)),

A = Na(r)do, (3.143)

which assumes circular symmetry of the field equations. This Ansatz was used
before by Schroers to study solutions of the U(1)-gauged O(3) Sigma model for
7 =1 [50]. The energy density of this static configuration is,

e (N(a —21T) sin(f)

) + (1 —cos(f))”. (3.144)

For these fields to represent N vortices at the origin with finite energy, we
add the boundary conditions,

f(0) =0, a(0) =0, lim f =cos™ ', lim a = 1. (3.145)

r—00 r—00
With this Ansatz, the Bogomolny equations reduce to the system of ODEs,

£ =Y = 1ysin(p), @ = 1 (cos(f) 7). (3.146)

r

Unfortunately, we cannot extend these equations to the origin, instead, we
select a small initial value § and perturb the Bogomolny equations to lowest

order in 9. We found that to lowest order,

£(6) = adV, a(8) = 52, (3.147)

2N

then we used « as a shooting parameter. In practice, we chose 6 = 1078 and
for the boundary condition at infinity, we selected r,, = 10 except for the last
7, for which ro, = 20. We took r as infinity and shot until (f(r«),a(r))
satisfied the boundary condition, as in the paper of Speight [52]. We used the
solver solve_ivp of the scientific library SciPy with default parameters. Internally,
it uses the Runge-Kutta method of order 5(4), which controls the error using a
local extrapolation and uses a quartic interpolation polynomial to compute the
solution at the preconfigured set of points shown in Figure 3.1.

If (¢,a) is the solution to the Bogomolny equations with N vortices at the

origin and parameter 7 and we invert the orientation of the sphere, selecting
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3.2 Asymptotic approximation at large separation

— 17=0.909
-=- 1=0.682
—-= 7=0.454
----- T=0.227
= 1=0.000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 3.1: Magnetic field and energy density of hedgehog solutions for positive
values of 7. The graphs show how as 7 grows, the energy and magnetic field

weaken.
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3.2 Asymptotic approximation at large separation

—n as the north pole, it is not difficult to see that (¢, —a) is also a solution to
the Bogomolny equations, this time with parameter —7 and N antivortices at
the origin, hence the qualitative properties of an antivortex hedgehog are the
same, except that to a 7-vortex corresponds a —7 antivortex and to a B (vortex)
magnetic field corresponds a —B (antivortex) magnetic field.

Assuming there is only one core at the origin, the solution to the Taubes
equation, h, is also radial, and away of the origin, is a solution to the equation,

d*h  1dh e —1
_—t =2 — = 0. 3.148
dr2+rd7’ (eh+1+7) ( )

For small 7, h has the asymptotic behaviour & = +1In(r?) and for big r, it ap-
proaches log (}jr—:) Linearizing about the limit at infinity, we have the equation,

d*h  1dh o .

W‘I‘;%—(l—T Yh =0, rlg&h—(). (3.149)
If we make the change of variables 7' = (1 — 72)"/2 7, then the function h(r’) is a
solution to the modified Bessel equation,

&h 1dh .

+———h=0, lim h = 0. (3.150)

dr’2 v’ dr’ 00

whose general solution is a linear combination of modified Bessel’s function of
first and second kind, Jy and Ky. Since Jy diverges at infinity, we deduce the

approximation,

h(r) = log (%) +qKo (1 — 7)) (3.151)

The constant g has to be determined numerically, as in the approximation done
for Ginzburg-Landau vortices [52]. We found this constant for several values of
7 by solving the Bogomolny equations as explained above, with this data, we
computed the pairs (Ko((1—7%)!/27),h(r)) and fitted a least squares line as a
model, whose slope was gq. We tested visually and by means of the coefficient
of determination R? the goodness of fit of the model to the data, finding on
average R? = 0.9985, meaning the linear model explained 99.85% of the data,

hence the fit was good. The dependence of the constant ¢ on 7 can be seen in
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3.2 Asymptotic approximation at large separation

—0.909

—0.682

—0.454

—0.227

0

0.227

0.454

0.682

0.909

—1.2457

—1.5414

—1.7921

—2.0321

—2.271

—2.5134

—2.7568

—2.9784

—3.2504

Table 3.1: Constant ¢ for different values of 7 for a vortex at origin in Euclidean

space. For an antivortex, ¢ has positive sign.

—1.25 1
—1.50 A
—1.75 A
—2.00 A
q —2.25 A
—2.50 A
—2.75 1
—3.00 1

—3.25 1

0.00 0.25 0.50 0.75 1.00

T

-1.00 -0.75 -0.50 -0.25

Figure 3.2: Dependency of the parameter ¢ on the asymmetry 7 of the vortex.

For an antivortex ¢ is positive, the pattern is reversed and ¢ increases with 7.

figure 3.2. It is interesting to note that the graph suggests ¢ depends linearly
with 7, this is unexpected since ¢ is not well understood even for the Ginzbug-
Landau functional, where there is an argument by David Tong [57] proposing an
explanation for the value of ¢ based on string theory, but otherwise, the value of
the constant is only known numerically and it is not clear whether such argument
can be extended to the O(3) Sigma model. The computed values of ¢ are also
displayed in table 3.1. For 7 = 0, the value of mg was computed by Romao-
Speight [45, p. 23] as —7.1388, as can be seen in table 3.1, we found a value of
mq = —7.1346, in agreement with the known data.

Let us consider an antivortex at position —2e for big €. The antivortex per-

turbs h in a neighbourhood of the origin, since the separation is large, we can
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3.2 Asymptotic approximation at large separation

assume that this is a small perturbation of the Hedgehog solution. Let hg be the
single vortex solution at the origin. If hy is a small perturbation of hy caused by
the antivortex in a neighbourhood of the origin, h; is a solution to the lineariza-

tion of the Taubes equation,

4€h0 hl

—Ahy = ——
T (14 eho)?

(3.152)

The singularity at origin is carried by hy and since the operator in equa-
tion (3.152) if free of singularities, hy extends smoothly to the origin. Expanding
in Fourier series h;, we find,

o0

1
h = ho + §f0(r) + Z (fn(r) cos(nd) + g, (r)sin(nd)) . (3.153)
n=1
The functions f,(r) and g,(r) are solutions to the equation
1 4eho 2
fn+=f - (e— + n—Z) fn=0, (3.154)
r r

(14 eho)?

and since h; is well defined at r = 0, to lowest order we have f,(r) = «,r",

gn = Bn r.
To compute the coefficient by, we note that hy = logr? + ho(r), where the
regular part ho is a smooth function. Since log r? is the fundamental solution of

Laplace’s equation on the plane, by (3.148), ho is a solution to the equation

dQ}Nlo 1 1 dil(] 9 (eho —1 )

dr? r dr

=0, (3.155)

hence,

Oyho(r) = hY(r) D,

eho —1 n
—r (2 (6h0+1 +r) —h0>. (3.156)

The function e has no singularity at the origin, moreover it is smooth, hence,

0,ho(0) = lim d,hy(r) = 0. (3.157)

r—00
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3.2 Asymptotic approximation at large separation

h is symmetric with respect to the line joining the two cores. These are located

on the real axis, hence h(x) = h(Z) which translates into
2 0], (h—logr?) = &i],_y (h —logr?) = . (3.158)

We conclude that b; = a;. To compute the nontrivial coefficient in the metric
of the moduli space, we note that for large r, f; is a solution to the modified

Bessel equation,
" 1 / 2 1
! ’I“fl 1—724 = fi =0, (3.159)

from here we can follow the computation done in [39] for Ginzburg-Landau vor-
tices, the analysis is the same in the coordinate system ' and the conclusion is
that the coeflicient b; for a pair of distant vortices is,

bi(e) = %q1q2 (1-7) "k (20-79)"). (3.160)

By translation invariance, b(€) = by(¢), for b the nontrivial term in the con-
formal factor of the metric in the reduced moduli space. Using the properties of
Bessel’s functions given in equation (3.268), we find that at large separation the

conformal factor can be approximated as,
Ofe) =2m(1- %) (2= q Ko (2 (1= 79) ") ). (3.161)

From this formula we observe the conformal factor vanishes at 7 = 1, this can be
understood because the effective mass of a vortex or antivortex is 27(157), hence
as 7 — £1, most of the kinetic energy of a vortex-antivortex pair is concentrated
at one of the cores which in the limit coincides with the centre of mass. Hence, by
the decomposition of the L? metric in the centre of mass frame, proposition 3.4,

one would expect this vanishing of the conformal factor.

3.2.1 The point-source formalism

Consider a single vortex or anti-vortex at origin, labelled 1, up to a local triv-
ialization, the Higgs field is a map ¢ : U C R x R? — S? with coordinates
(o, 1, 2) = (X1, X2, X3). In the south pole projection, this field is equivalent
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3.2 Asymptotic approximation at large separation

to ¥(xg, 1, 29) = (X1/(1 + X3), Xo/(1 4+ X3)). We can choose a local gauge, the
real gauge, in which 1 is real, or going back to the sphere, ¢ is constrained to
the intersection circle of S* with the plane X, = 0. Since the field has nontrivial
winding, this gauge choice can be made only with exception of the core positions
[39]. We aim to calculate a linear approximation to the field and vector potential
far from the core, in which case we can make this assumption. It will be conve-
nient to work in spherical coordinates, such that the Higgs field is parameterised
as ¢ = (sin(yp), 0, cos(p)), with ¢ the azimuthal angle. In this gauge, the spherical

covariant derivatives are
D,¢ = 0,0 — A,sin(p) es. (3.162)

In this section, we aim to show that if we have a collection of cores, vortices and
antivortices well separated among each other, we can approximate the dynamics
of the system as if at each core position there were a scalar monopole point-source
and a magnetic dipole. For large r, the field approaches the vacuum manifold,
perturbatively we can approximate ¢ as (sin(¢ 4+ ¥s0), 0,c08(¢ + @ )), Where
Voo = cos (1) and ¢ is small. Keeping linear terms in ¢, we can make the

approximation,

D,¢ = (co8(¢o0) Oup, — Au(sin(oe) + €08(¢o0) ), — sin(9oo) dup) . (3.163)

Retaining terms up to quadratic order, far from the vortex position, the La-

grangian density is approximately linear, corresponding to a non interacting field,

1 1 1 1
L free = éaugp oMy — 3 sinQ(gooo) o ZFWFW + 3 sin2(gooo) A AR (3.164)

This is the Lagrangian density of two independent fields, whose extremals

(p, A) satisfy the real Klein-Gordon and Proca equations,

(O + sin®(¢se)) = 0, (3.165)
(O + sin*(pa)) Ay = 0,0"A,, (3.166)
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3.2 Asymptotic approximation at large separation

where [ = 0? + A is the D’Alambertian operator. We add a source term,
Lsource = po — JuA", (3.167)

to the free Lagrangian density, in order to match the expected behaviour at

infinity of the fields, as in [52]. Therefore, the perturbed field equations are,

(O +sin*(ps)) 0 = p, (3.168)
(O + sin®*(poo)) Ay = ju + 0,0" A, (3.169)

Taking the divergence of the second equation, we find that,
(O + sin®(poo)) 0" A, = "), + D" A, (3.170)
hence, sin?(p.,) O A, = O"j, and we infer,

(O + sin®(pe0)) Ay = i + 0,0" . (3.171)

sin?(uo)
The sourced field equations of ¢ and A represent two massive fields of mass

sin(¢e) = V1 — 72. In the real gauge, south pole stereographic projection of ¢
is 1 = ¢1/(1 + ¢3), hence, since ¢ is small,

SIN (oo ) + €08(Psc)

= , 3.172
v 1+ cos(peo) — sin(peo) @ ( )
moreover, to first order we have,
in(on 1
= Sinlee) (3.173)

1 + cos(¢Poo) 1+ cos(¢uo) 14

On the other hand, if we fix one core and consider the field at a large distance
from it but larger to the other cores, we have the approximation v = exp (%ho),
where hy is the solution to the radial Taubes equation, given by equation (3.151).

To first order we have,

o= (i72) (ot

__ Sin(pw) (

14 cos(pe0)

(3.174)

1+ %qlKo (sin(peo) 7‘)) .
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3.2 Asymptotic approximation at large separation

Hence, the asymptotic expansion of ¢ is,
Y= %sin(gpoo) Ko (sin(¢eo) 1) - (3.175)

We are interested in static fields, in this case, the field equations reduce to

the static Klein-Gordon equation with a mass term,

(Atsin?(pu)) 9= po (At sin2(p)) Ay = Ju+ —5— 0,84, (3.176)
We have,

Dip = Opp — Apn X ¢ = Opp - (cos(p)ey — sin(p)es) — Agsin(p) eq,  (3.177)

and
¢ X (Oa¢p — Aam X ¢) = (sin(p)e; + cos(p)es) (3.178)
X (Oagp - cos(p)er — Agsin(p) e — Doy - sin(p)es)
(3.179)

= Aysin(ip) cos(p)er + Do - €3 — Agsin®(p)es.  (3.180)
In the gauge Ay = 0 the first Bogomolny equation is,
(O + Agsin(ip)) (cos(p)e; — sin(p)es) + (020 — Arsin(p)) ea =0,  (3.181)
which is equivalent to,

O1p + Agsin(p) =0, Oap — Ay sin(p) = 0. (3.182)
In a region far from the core position, these equations can be linearized as

01 + sin(peo)As = 0, Oap — sin(poo) A1 = 0. (3.183)
In the gauge Ay = 0 if the fields are static we have,

Jo + 900" 3, = 0. (3.184)

sin? (o)
For the spatial components, note that
1

) = S

(82 @, —81 gO) (3185)
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3.2 Asymptotic approximation at large separation

Introducing a fictitious unit vector k perpendicular to the plane in the positive
orientation of R? and defining A = (A, A;), the spatial part of the linearized
potential can be related to the Higgs field with the vector equation,

A= —; k x V. (3.186)
Sin(peo)

To make our deduction of the point-source approximation, we will work in
space-time coordinates; to this end, in this section we denote space-time coordi-
nates as x and space coordinates as X.

The static field equation of ¢ is,
(A +sin® po.) p = p. (3.187)
Green’s function for the static Klein-Gordon equation is Ko(|x|),
(A+1) Ko(|x]) = 2md(x). (3.188)
Substituting the asymptotic approximation to ¢ we found,

(A + sin? 9000) 0= %Sin(g&oo) (A + sin? 9000) Ko(sin(poo) 1)

= 17 sin® (o) 0(5in((Pog) X)
= i sin(peo) 6(x), (3.189)

where in the last inequality we have used that for any constant ¢, §(cx) = ¢=26(x).
This suggests that the physics of a static vortex, seen far from the core is equiv-
alent to a particle with charge ¢;7sin(p.), therefore we define the one vortex

source term,

p = q7sin(ps) 0(xX). (3.190)
Applying the operator (A + sin? p) to A, we find,
1
(A+Sin2<poo)A =——kxV (A+Sin2gooo) ©
sin (o)
= —qmk x Vi(x). (3.191)

On the other hand, let us assume that the current is static, in the sense that
jo = 0. From (3.176), we have that A satisfies the equation,

(A +sin® poo)A = j — V(V-j). (3.192)

sin® (o)
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3.2 Asymptotic approximation at large separation

Thence,
sin?(pue)j — V(V - j) = —qusin?(po) k X VI(x). (3.193)

Taking the divergence of this equation we find that V - j is a solution in the

sense of distributions, to the equation,
(A +sin® o)V - j = 0. (3.194)

We know that V-j is also a strong solution in R*\ {0}. It is sensible to assume
that V - j is an L? solution to this equation. Under this assumption, by elliptic
regularity V - j is smooth in the plane and since sin® ¢ is in the resolvent set of
geometers’ Laplacian, V - j = 0. Therefore, the current is conserved and we have

that the core behaves as a magnetic dipole generated by a point current,
j=—qarnk x Vi(x). (3.195)
We will need later space-time coordinates, we define,

jstatic - (O,J) s (3196)

as the space-time point current in the lab frame.

Having calculated expressions for the charge and current of the point particle
approximation, we can calculate the interaction potential of a pair of vortices.
For this, it is necessary to calculate the interaction Lagrangian, which is obtained

as
Lint = /Lcross diL‘, (3197)

where L., are the cross terms of Lfree + Lgource in a superposition of two
pairs of fields (¢, Ag), with sources (pg,jx). For a pair of cores, the interaction

Lagrangian reduces to [52]

Lint = /,01902 - j,Sl)A’é) dx. (3.198)

We aim to calculate the interaction Lagrangian for any number of separated

moving cores whose separations are large. Let us consider a core moving slowly
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3.2 Asymptotic approximation at large separation

in the laboratory frame and let £ be the coordinates on space-time with respect
to this frame, which has coordinates z. If the vortex is moving at constant speed
u in the direction of x; with respect to the lab frame, the coordinate change on

tangent space at x is [4],

§o = ’Y(U) (on - U$1),
& =y(u) (—uzg+ 1), (3.199)

52 = Tog,

where y(u) = (1 — u?)~'/? is the Lorentz contraction factor and the speed is
relative to the speed of light, |u| < 1. Our aim is to write the charge and
magnetic dipole of the moving core as seen in the laboratory frame. If the velocity
with respect to the lab frame is not along the z; axes, we can always rotate the
coordinates before and then boost in the x; direction. In the rest frame, the core is
static, and therefore the charge density at large separation from their neighbours
is p(&) = qmsin(pe) 6(§). Since we are interested in the infinitesimal behaviour
of the charge, we can take zy = 0 in the Lorentz transformations relating rest

and laboratory frames,

p(&) = qmsin(pe) (v 71 €1 + T2 €2)

1
= — g sin(pe) 6(X). (3.200)
gl
If the speed is much slower than the speed of light, v~! can be approximated
as
1
7wy4:1—§u?+omﬂ. (3.201)

Discarding higher order terms in u, the instantaneous charge density of a
slowly moving vortex is

p(x) = qmsin(ps) (1 — %) d(x). (3.202)

If the core is at an arbitrary position y(t) and u = y(t) is the speed of the
moving core, we conclude the charge density as seen in the laboratory frame is,

-2

p = qm sin(pso) <1 — ‘%) I(x—y). (3.203)
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3.2 Asymptotic approximation at large separation

For an observer in an inertial frame, a slowly moving core y(t) has the four-

current,

Jo=qrkxy -Vix—y),
: " . (3.204)
Jj=qr (kxV+(kxy)y - V+kx¥)ix—y).

(3.204) was computed by Speight for Ginzburg-Landau vortices, details of the
computation can be found in [39, egs. (3.20) (3.21)], for the O(3) Sigma model,
the calculation is the same, except for the factor of 7 coming from our conventions
on the constant q.

Since current is conserved, the components A, of the gauge potential are

solutions to the equation,
(O + sin*(¢e0)) Ay = Jiu- (3.205)
If we define the primed coordinate system,
2’ = sin(ps) T, (3.206)
and fields,
F@) = plsin(pe) M), AL@) = Asin(pe) @), (3:207)

with sources,
P (") = sin(pee) 72 p(sin(po) " 2'),

-/ / . -2 . . -1 7 (3208)
Jo(@") = sin(po) % Ju(sin(pos) " '),
then ¢, A, are solutions to the equations,
O +1)¢ =0,
(3.209)

(O+1)A, =7,
Since dy /dt = dy'/dt', defining ¢’ = qmsin(ps), by (3.203),

.12

p=d (1 - %) o(x"—y'), (3.210)

whereas by (3.204),
Jo=qkxy - Vix -y,

. o ) (3.211)
i=qd (“kxV+&kxy)y -V +kxj)ox —y).
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3.2 Asymptotic approximation at large separation

In the primed coordinate system, equations (3.209)-(3.211) are the same as
those found in the asymptotic approximation of Ginzburg-Landau vortices by
Speight and Manton, with the only exception that vortices and antivortices carry
constants ¢ of different values. Hence, by [52, Eq. (3.46)], for a pair of cores at
positions labelled x;, Xa,

4145
Line = — 1; %5 — X4 |? Ko(|x5, — x|)

= —% 7 sin®(Poo ) Xy — -k Ko(sin(peo) [x2 — x1]).

(3.212)

Recall m, = 2mw(1 + s,7) is the effective mass of a core at position x,., where
s, = £1 is the sign of the core, we conclude that if the cores are at large separation

and moving slowly, their dynamics can be approximated by the Lagrangian,

my, . qrqs . . . .
L=>" 5 %2 =) ki sin? (00 )%, — X2 Ko (sin(poo )X — Xs) . (3.213)
r T#S

For a vortex-antivortex pair at large separation, if M = my + mgy, X =

mi
M

relative to the centre of mass, the Lagrangian becomes,

X1+ 47 X is the centre of mass of the pair and x; —x, = 2 ee? are coordinates

M 2 )
L= 5 IX|? + ( mj\}mg — q1 G2 sin? (o) Ko (28in((p00) e)) (6% + €26%)

= % X[P+ (1= (2 — @12 Ko(2(1 — 72)1/2 €)) (€ + €20%).  (3.214)

If we get rid of the centre of mass term, we find that the conformal factor in

the reduced moduli space is again as in equation (3.161).

3.2.2 Approximating the conformal factor in a neighbour-
hood of the singularity

In this section we aim to derive an asymptotic approximation to the conformal

factor for small €, we do so finding the limit of the regular part of h./e as € — 0,

where h, is the solution to the Taubes equation with vortex at ¢ and antivortex

at —e and then we prove the convergence is uniform in disks centred at the origin.
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3.2 Asymptotic approximation at large separation

Let us consider (¢,6) coordinates, we know h. depends smoothly on € and the

function 0.h is a solution of the equation,
—(A -+ V<h6>) &he = 471'81(56 -+ 47'('81(5,6. (3215)

If p = log((1—7)(147)7") is the limit value of h, as |z] — oo, we know that as
¢ — 0, the potential function V' (h.) converges pointwise to V() = 1 —172 € (0,1]
and uniformly outside of any neighbourhood of the origin. We also know each
O.he decays exponentially fast as |z| — co. Without loss of generality we assume
7 = 0 from now onwards. As the fundamental solution of the screened Poisson

equation
—(A+1)G = 6, (3.216)

with convergence G — 0 as |z| — oo, is (27)~! Ky(|z]), if we denote by exp(if.)

the argument of z F ¢, the function,

I{6 =2 (81K0(|Z — E|> + 81K0(|Z + E|)) s

(3.217)
= —2(cos() K1(|z — €]) + cos(6_.) K1(|z + €])),
is the fundamental solution of the equation,
—(A+1)H. = 47016, + 4w 6. (3.218)
By (3.215) and (3.218),

(A+V(h)) (Oche — He) = (1 =V (h,)) H.. (3.219)

Denoting by f * g convolution on the plane,
Oche — Ho = — ((1 = V(he)) He) * G, (3.220)

where G, is Green’s function of the operator —(A + V(h.)). We aim to prove
|0.he — H.| — 0 uniformly on the plane. To do this, we will use the concept of a
doubling measure and prove a few common properties for the family of potentials
V(he).

A measure v is called doubling if there exists a constant C' > 0, such that for

any z € C and r > 0,

v(Dog(z)) < Cuv(Dg(2)). (3.221)
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3.2 Asymptotic approximation at large separation

Suppose D C R? is a measurable set with respect to the euclidean metric, we
define,

v (D) = /D V(ho)Vol. (3.222)

Given ¢y > 0, we will prove the existence of a uniform constant C; such
that (3.221) holds for any € € (0, ¢y) and a uniform constant 6 > 0, such that,

v (Dy(2)) > 6 (3.223)

for any € € (0, ¢), then, by a result of Christ [9, Thm. 1.13] there are a function
o : R? — R*, a distance function p : R? x R? — R induced by a Riemannian
metric dp?, and constants C, ~ all of them depending only on Cy, such that,

log(20(21) /|21 — 22]), |21 — 22| < 0(2),

ep(—rp(z ) -zl 2 o), Y

Ge(21,22)| < C {

and p(z1, z9) > ¢|z1 — 23| for some constant ¢ depending on ¢ but not on Cjy.
If he = he + log|z — €| — log|z + €|, we know that for any e > 0, there are
constants Cy, Cy, such that for any z € C and € € (0, €),

Cy < ehe < Oy, (3.225)

hence,

4C1 |z — €]z + €|? 4Cs)z — €)?|z + €|?

< Vi(he) < . 3.226
(Chlz —€l?+ |z +€?) — (he) < (Calz — € + |z + €]?)? ( )
Hence, there is a constant C' > 0 independent of ¢ such that,
1 4]y — 2 2 4]y — 2 2
|z — €|z + €] <V(h) < C |z — €|*|z + €] (3.227)

C(lz—eP+]z+e)? = (lz — el> + [z + €?)?’
this implies the potential V' (h.) induces a doubling measure if and only if

4]z — €|?|z + €|?
(2 = €el> + |z +€?)*

V.= (3.228)

does.
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3.2 Asymptotic approximation at large separation

Lemma 3.15. Let M € (0,1), then V."1([0, M]) consists of two connected com-

ponents, whose boundaries are the circles centred at (1 — M)~"?¢ of radii
MY2(1 — M)~/
Proof. Let w = (z — €)(z 4 €)%, if V.(2) = M, then,
AJwl?
Sl EE— 5 3.229
(w2 + 17 8229
this equality implies,
2 2
|w|® — A1 |lw| +1=0. (3.230)
The roots of this equation are,
1
re= (11— M)Y?). (3.231)
If z = x + y1, for each root, the equation
z—€
= 3.232
cte|l O ® ( )
determines the circles
1+r?
2> — 2¢ ( f) v+ =0, (3.233)
1—ry
of centres
1+7ri Fe
= = 3.234
" 6(1—@) (1= M2 R
and squared radii
R =lesf? — &
2
= € — 62
1-M
Meé?
= i 3.235
T (3.235)
Mobius transformations map circles onto circles and z = € is mapped to w = 0,
while z = —¢ is mapped to w = oo, where for both points 4|w|*(|w|* +1)72 = 0,
hence the disks |z — ¢.| < 7y are the connected components of V,([0, M]). O
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3.2 Asymptotic approximation at large separation

Lemma 3.16. V; defines a doubling measure.

Proof. Assume otherwise towards a contradiction, then there exists a sequence
{(2n,7)} such that,

fDan(zn) ‘/1 |dZ|2

After passing to a subsequence if necessary, we can assume (z,, 1,) — (24, 74) €

(3.236)

C x [0, 0], where z, could be the point at infinity, meaning |z,| — co. Through
the proof we will consider a fixed but arbitrary constant M € (0,1). If z, € C we
consider four cases:

Case . If 0 < 7, < 00, by the dominated convergence theorem,

fDan(zn) ‘/1 |dZ|2 — fDQT* (2+) ‘/1 |dZ|2
fDm(Zn) Vi |dz|? fDT*(Z*) Vi |dz|?
hence (3.236) is not possible.

Case IL. If r, = oo, by lemma 3.15, there is an R > 0 such that Vi(z) > M
for |z| > R. Let Q,, =Dy, (2,) \Dg(0). For n sufficiently large €,, # 0, moreover,

(3.237)

o VildzlP gy drr? 4
Jou o < T _ T S (3.238)
[Vl = M9, = M2~ 1By, (za) A Da(O))

Case III. If r, = 0 and z, # £1, by the mean value theorem for integrals,

fﬂ)%(zn) Vi |dz|? . 47T1r% fDan(ZH) Vi |dz|? .
since each averaged integral converges to ‘71(2*) #0.
Case IV. If z, = +1, assume without loss of generality z, = 1, let R € (0,1/2)

be any constant, for n large enough, the disk D, (z,) is contained in Dg(1), then
there is a constant C'(R), such that for any z € Dg(1),

4, (3.239)

1 ~
e lz =1 < Vi(2) < Oz — 1, (3.240)

the function |z — 1]? defines a doubling measure because it is a non negative

polynomial [62], implying for large n the quotient

fDan(Zn) ‘/1 |dz|2

- (3.241)
fDrn(Zn) ‘/1 |dZ|2
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3.2 Asymptotic approximation at large separation

is bounded.
Therefore, if (3.236) holds, |z,| — oco. If r, — 1o for ry € [0,00), for n large
the disk Dy, (2,) is in the exterior of the disk Dx(0), hence V; € [M, 1], and
fDan(zn) "71 |dZ|2 4

_ <= (3.242)
fDM(Z”) Vi |dz|? M

Finally, if r,, — oo, we can apply the same argument as in Case II to deduce
that (3.236) is not possible. This concludes all the possibilities for the sequence

and proves the lemma. O

If we define the change of variable z = ew, by lemma 3.16 we have,

¥ v 2
Jouwo Ve 4z Jouyyej0 V2 101 <
Jo Veldel? [y, oy V1 duwl?

where C' is independent of €, proving the following corollary.

C, (3.243)

Corollary 3.17. For any €y > 0, there is a constant Cy such that (3.221) holds
for any € € (0, ¢€).

Lemma 3.18. For any €y > 0, there is a constant § > 0 such that

/ V. >0, (3.244)
D1(z)

forall z € C, e € (0,¢).

Proof. Pick M € (0,1) such that 7o = MY2(1 — M)~'/2¢, satisfies 2r2 < 1. By
lemma 3.15 there are two disks Dy, Dy of radius r < rg such that in the exterior
of the disks V. > M. The complement Q = () \ (D; U Ds) is non empty for

any z € C and it has bounded area,

Q| > 7 —2|Dy| > 7 (1—2r), (3.245)
hence,
[ vz [ Vs
D1 (z) Q
> M (1—2r3). (3.246)
Selecting any 6 < M 7 (1 — 2r2) proves the lemma. O]
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3.2 Asymptotic approximation at large separation

Therefore, for any p > 2, there is a constant C' > 0 such that,
|Gl < C, Ve € (0, ¢€), (3.247)

let us choose any p > 2 and let p, = p(p — 1)~ be Holder’s conjugate of p, by
(3.220) and Holder’s inequality,

0che — He| < |[(1 =V (he))Hel[Lo+ [|Gel[1r
< O (|1 = V(h)Ei(|2 — €)oo
+[(1 = V(R ) K1 (|2 + €])||e-)- (3.248)
Lemma 3.19.
lim [[(1 =V (he)) Ki(]z = €])[r,, =0, (3.249)

and a similar statement holds for Ky(|z + €|).

Proof. Let w = z — ¢, then,

(1 =V (he)) Ki(|z — €])

b= [ = Vs ) il du
(3.250)

the function K;(|w]) is in LP* for any p, < 2, and (1 =V (h.(w+¢))) is a bounded

function converging pointwise to 0, by the dominated convergence theorem,
/ (1 =V (he(w + €)))* Ki(|w])P* |dw|* — 0, (3.251)
R2

this proves the lemma for K;(|z — €|), for Ki(|z + €|) the proof is analogous. [

By (3.248), |0che — He| — 0 uniformly on the plane as e — 0. Note that the

function
H = (1= 7" Hy oy (1= 7)1 |2]), (3.252)

is the fundamental solution to

—(A+ (1 —72)) HT = 47 0,6 + 47 010 _. (3.253)

87



3.2 Asymptotic approximation at large separation

All the previous lemmas extend straightforwardly to conclude for any 7 €
(—1,1), the convergence |h, — H]| — 0 uniform on the plane. Let us define the

function

1 1—71
==(h-1 —€el?+1 21 254
f. 6( og |z — €| +log|z + €] og1+7>, (3.254)

For this function at 7 = 0, Roméao and Speight conjectured in [45], the uniform

limit f. — f. where for general 7, f, is a solution to the problem,

—(A+1—72)f. = —4(1 — 72 % (3.255)
lm £ =0, (3.256)
lim £, =0. (3.257)

The equation for f, can be solved exactly, for 7 = 0, they found,

fo= 42 (1= |2 Ko (J2]))

2]
— 4 cos(0) (% - Klqzy)) | (3.258)

If we define,
fl(z) =1 =) f((1=7)"22), (3.259)

then fT is the conjectured limit for general 7.

Numerical evidence suggests C'' uniform convergence as can be seen in Fig-
ure 3.3. In the next proposition, we prove that in fact, the convergence is uniform
at least in C°(Dx(0)) for any disk centred at the origin.

Proposition 3.20. For any R > 0, f. — fT uniformly on Dg(0).

Proof. Let
1—7

he = h—log|z — ¢ + log |z + ¢|* — log :
IL+71

(3.260)

we know £ is smooth with respect to both z and € and k. — 0 in C1(Dg(0)) as
e — 0. Let € > 0 be a given positive number, by the mean value theorem, for any

z there is another ¢ € (0, ¢) that may depend on z, such that,

fo(2) = Bchelo(2), (3.261)
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3.2 Asymptotic approximation at large separation
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Figure 3.3: Top. Real profile of the functions h. —log(1 —7)(1+7)"! converging

uniformly to 0 on the real axis. Bottom. Real profile of the functions f. on the

real axis and the conjectured asymptotic limit. In both cases, 7 = 0.33
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3.2 Asymptotic approximation at large separation

hence, to prove the statement it is sufficient to show that 8.h — fT uniformly

on Dx(0). Since,

2 cos(6,) N 2cos(0_¢)

dche = Oche + : (3.262)
|z — €] |z + €|
the convergence,
- 2cos(f.) 2cos(f_.
Och, — HT — Coi( ) _2eosld) (3.263)
|z — € |z + €|
is uniform in Dg(0). Let,
. 1
fT(z) = 2cos(0) (m — (1 =HY2 K (1 - 1H)Y? \z|)> , (3.264)

{7 is a continuous function defined on the compact set D r(0), hence, it is equicon-

tinuous, moreover, note that,

cos(f.)  cos(0_) ~ -
HT +2 =f(z— T 3.265
Y e ) R AR P ACHE N CE )
since fT is equicontinuous, on Dg(0) we have the uniform convergence,
lim (f7(z =€) + fT(z +€)) = 2f7(2) = fI(2). (3.266)
By (3.263) and (3.266) dh, — f7 uniformly on Dg(0) as claimed. This con-
cludes the proof of the proposition. n

Numerics together with proposition 3.20 suggest we can extend our claim
about uniform convergence to higher order derivatives. In the following, we as-
sume the asymptotic expansion,

1—7
147’
is also valid for derivatives of h.. With this expression, it is possible to derive an

he = efT +loglz — €|> — log|z + ¢|® + log (3.267)

asymptotic approximation to the conformal factor for small € as well.
Using the identities

1
K(/] - _K17 Ki - _KO - x—lKl, (3268)

and defining v = (1—172)'/2

to shorten the notation, we obtain the approximation
Qe) = 4m® (1 + 2 ((2 — v) Ko(ve) — veK,(ve))), (3.269)

valid for small e.
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3.3 Numerical approximation to the metric

3.3 Numerical approximation to the metric

To approximate the conformal factor numerically, we define h=h-— log |z — €|*+

log |z + €|?. h is the solution of the regularised equation,

2,0 2
. — |z + N 1—
—Ah =2 (|x i 2+ €l —|—T> : lim h =log T (3.270)
+ T

|z + €|2eh + |2 + ¢

Since h is symmetric with respect to the z; axis, the regularised Taubes equa-
tion was solved with an over-relaxation method on the domain —10 < z; < 10,
0 < x9 < 10. The domain was discretized with a square grid of size 0.1 as in [47].
The initial condition was taken as a superposition of an approximated vortex and

an antivortex as,

ho = log(p*(Ry)) — log(RY) —log(p*(R-)) + log(R}) —log(n),  (3.271)
where p = tanh(0.6r), Ry is the distance of a point in the grid to e and p =
1-7)1+7)".
The non-trivial term in the metric was computed as,

L eb(e)) = - (dni(e)) (3.272)

€

Figure 3.4 shows the conformal factor for various values of 7. Motivated by the

asymptotic approximations, conformal factor data was interpolated by a curve
Q= A+ BKy(2e). (3.273)

The interpolation showed to explain 99% — 96% of the data, depending on the
value of 7. As can be seen in the figure, the metric flattens as 7 — 1, preserving
the singularity at the origin.

Figure 3.5 shows the short and long range approximations to the conformal
factor for the symmetric case and for 7 = 0.909. As can be seen in the figure, the
approximations are consistent with the data, with the long range approximation
slightly better in the range of € that the Taubes equation was solved.

Figure 3.6 shows the Gaussian curvature computed from the conformal factor,

1 d d
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3.3 Numerical approximation to the metric

—— T =0.000

50 - — 17 =0.227

—— T =0.454
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Figure 3.4: Conformal factor of the metric for some values of 7. The graph shows
that as 7 increases from 0, the metric flattens, maintaining its singularity at the

origin.
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3.3 Numerical approximation to the metric

As can be seen in figure 3.6, the curvature diverges to oo as € — 0, while on
the other hand, for large €, it is negative and decays exponentially fast to 0 as
€ — 00. The moduli space can be realised as an embedded surface in R3, we used
proposition 2.3 of [21] to compute the embedding shown in figure 3.7.

Assuming the asymptotic approximations for large and small €, total Gaussian

curvature can be shown to be zero, since total curvature is,

27 /000 K(e)eQe)de = —m (e g((;)) ) (3.275)
By (3.161), lim o Q(€) = 47(1 — 72), while
Q' = dn(1 — )P K1 (2(1 — 72)1 %), (3.276)

hence lim,_,., € ' Q7! = 0 since K, decays exponentially. For small ¢, we know
Q) diverges as |loge| according to (3.269) while €Y remains bounded, since
diverges as €71, then lim. e Q7! = 0. By (3.275) the total Gaussian curvature
in My is 0.

3.3.1 Scattering

In this section we study the scattering of vortex-antivortex pairs in the centre of
mass frame. In the centre of mass frame, total momentum is zero and the system

preserves energy and angular momentum. For a trajectory on (e, ) coordinates,
1 . .
E= EQ(E) (62 + €20%), 0= Q(e) 0. (3.277)
Hence, €(t) is a solution to the autonomous system,

I9F 2 1/2
e:(——g ). (3.278)

Equation (3.278) yields a necessary condition for the existence of closed geodesics,

if ¢ is the radial position of a closed geodesic,

2E Q(e) et = (% (3.279)
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3.3 Numerical approximation to the metric

50 A

40 A

30 1

20 1

10 A

Figure 3.5: Short and long range approximation to the conformal factor for the
symmetric case and a highly asymmetric configuration. The graph shows how

the approximations fit the numerical data in these cases.

2l T=0.000
T=0.227
3 T=0.454
T=0.682
v 2] T=0.909
1_
0_
0.0 0j2 Oj4 OjG 018 1.0

Figure 3.6: Curvature of the conformal factors
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3.3 Numerical approximation to the metric

0 ///\

_3 -
_4 -
—— 7=10.000
5 ] T =0.909
-4 -3 2 -1 0 1 2 3 4

Figure 3.7: The image shows the profile of the moduli space as an embedded
revolution surface in R3. The data shows that the moduli spaces embed as flat

disks at infinity, with infinite gaussian curvature at the origin.

however, the right hand side of equation (3.278) is not differentiable at €, and

therefore the fundamental theorem of existence and uniqueness of solutions of

ordinary differential equations is not applicable and (3.279) is not sufficient.
Based on our calculations, we assume for large separations 2¢, the conformal

factor is approximately constant,
Qoo = 4m(1 — 77), (3.280)

Suppose on the centre of mass frame a vortex moves from very far on the
left with initial speed v parallel to the z-axis towards an antivortex. Hence the
antivortex seems to move from far on the right towards the vortex with initial
speed v = (1 — 7)(1 + 7)"'v. We define our impact parameter a as the distance
of the instantaneous initial trajectory of the vortex to the z-axis as shown in the
following diagram.

The total energy and angular momentum of the system are,

E = - Q% {=Qyav. (3.281)
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3.3 Numerical approximation to the metric

Figure 3.8: Scattering geometry with respect to the centre of mass.

Energy and angular momentum relate as,

1

E—_-_"
2 Qoa?’

(3.282)

and if we assume 0 depends implicitly on time as a function (¢€), we have,

o 0 ¢
de ¢ c@EQe - @)V (3.289)

The total deviation angle of the trajectory, Af, from the initial time to €y,

at the moment of minimum approach of the pair, therefore is,

& de
AG=— / o (3.284)
€mi 0 e2

As for a classical mechanical system, we define the deflection angle as [16],

O =7r+2A0. (3.285)
To compute €,,;, we used a secant method to solve the equation
Qle) e — Qo a® = 0. (3.286)

Then we used the numerical library scipy to compute the integral based on
the approximation Q. In practice, we chose a small de and a value €,,,, for which
our data showed the conformal factor was almost constant. Then we computed

the integral,

€max d
Ab; :_/ - (3.287)
€mint+0€ € < Qe 1)

Qooa?

96



3.3 Numerical approximation to the metric

and added the result to

o0 ade s (62 _ a2)1/2
Ay = — _ade 7 t (e 2\ .

The result of our computations can be seen on figure 3.10. The deflection
angle is negative, hence a vortex-antivortex pair behaves as a pair of attractive
point particles, however, we would not expect bound orbits because as the impact
parameter decreased, the angle also decreased until reaching a minimum, then is
started growing again. The behaviour of the scattering angle can be explained
based on the approximation (3.273). We assume €2 is a monotonous, decreasing
function, such that,

) 2 Qo (3.289)
Q(e) = —C'loge, e << 1.
where C' > 0 is some constant, and such that there are positive constants C, Cs

such that,
—C; <Q(e)e <0, 0<Q'(e)e? < Cy. (3.290)
Note that the approximation Q) and the asymptotic approximations for small

and large € are consistent with these assumptions. Since for small e,

d

T (Q() ) = (@(e) e +20(e) ¢ > 0, (3.201)

with these assumptions, there is a continuous bijection between small impact

parameters a and solutions €,,;, to the equation,
Qe) € = Qy a’. (3.292)

If we use the approximation €2 instead of €, this is actually a global bijection

valid for any a > 0. We aim to show that,

lim Af = —g, (3.293)

a—0

where Af is the integral (3.284). From now onwards we denote €y, as m to

shorten the following computations. With the change of variables u = ¢/m, the
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3.3 Numerical approximation to the metric

integral transforms into,

A= — / du o
Loy, (Q(m-u)m2u2 . 1)

Qoo a2

& du
__ / - - (3.294)
Loy ( é’g:nz;) u? — 1)

where in the last step we used (3.284). By (3.289), for any v > 1, we have
pointwise convergence,

Qlm, -
lim (m - u)

lm =y = b (3.295)

To compute the integral by the dominated convergence theorem, we need to
exhibit a function integrable in [1,00) and bigger than each of the functions in
the integrand of (3.294). To this end, let us define the function

~ Q(m - u)
flu) = Oy u? -1, (3.296)
as a short cumputation shows,
iy o, mE(m)
f1)y=2+ ) (3.297)
(u) = L (2Q(m - u) +4m QY (m - w) u+m* Q" (m - u) u?) . (3.298)

Q(m)

Assume f”(u) > 0 for any w > 1. By Taylor’s theorem, for any u > 1, there
is some & € (1,u), such that

flu) = f/(1) (u—=1)+ %f”(&)(u —1)*> f()(u—-1). (3.299)

Since f’(1) > 2 for any m > 0, we deduce,

/°° du B /°° du
1oy, <Q(m~u) u2 — 1) 1/2 1 U f(u)1/2

Q(m)
/OO du
Lou(u—1)12

<

(3.300)

SRR
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3.3 Numerical approximation to the metric

Hence, by the dominated convergence theorem,

. ) < du
_ / T dw
N L ou(u?—1)12
7
- _= 301
57 (3.301)
provided f”(u) is non-negative, or equivalently by (3.298), if
2Q(z) + 42 (z) + 2°Q" (z) > 0, (3.302)

for all x > 0. By the asymptotic properties of 2, we know this is the case for
small and large x, which shows it is sensible to assume this is the case, at least
for not very large 7, as figure 3.9 shows.

Therefore, the total deflection satisfies,

llmO =7 +2 lir% Af =0, (3.303)
a—

a—0

as shown in figure 3.10. Finally, equation (3.300) shows Af > —m/+/2 at least

up to some 7, hence, the data suggests the lower bound,
0> —(1 —V2)r~ —74.5°, (3.304)

as can be seen in the figure.

Scattering at large separation

We also approximated the scattering angle of a vortex-antivortex pair at large
separation with the method Manton and Speight [39]. Suppose z(s) is a geodesic
in Cartesian coordinates, with initial position x(0), such that a = x2(0) is very
big, z1(0) < 0 and the initial velocity is ©(0) = vJ;. The geodesic equation for
Ty 1S /

iyt (63:2 - 2+ x%)) —0. (3.305)

Since a is big, the metric is almost flat across the trajectory of the geodesic,

the small deflection in the x5 axis is caused by the small correction on &5 due to
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3.3 Numerical approximation to the metric

25 -
20 -
—— 0.000
15 —— 0.227
—— 0.454
1o — 0.682
—— 0.909
5 .
0 .
0 1 2 3 4 5 6 7 8

Figure 3.9: The graph shows the function 2Q(z) + 4z () + 22Q"(z) for various
values of 7, where Q(z) = A Ko(22)+ B, and the coefficients A, B are chosen such
that interpolates the values of {2 computed solving Taube’s equation. The data
shows equation (3.302) is expected to hold for 7 up to some value 7y,.x, implying

the deflection angle converges to 0 as the impact parameter decreases.
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3.3 Numerical approximation to the metric

the conformal factor derivative. To leading order, €2 is constant but we take ¢
varying as in the long range approximation.
@ 1 2\1/2 2\1/2

—(1 =712 K1 (2(1 — 7%)'/2¢). (3.306)
20 2

We approximate x5 and @7 as constants, &5 as a small number, such that the
leading order term for s is,

Q’ av?

For big a the deflection is small, the deviation angle can be approximated as

Aty

The difference in i is,
[e ] QI 2 o0 Q/
Adry :/ E%ds - cw/ S, (3.309)
Hence,
a * K1(2(1 — 722 ¢
0= 5(1 — )2 q10 / 1A p ) >dZU1. (3.310)

Recall € = (a? + 22)"/? and let us make the change of variables
u=(1-71%)"2, a; = (1 - 73", (3.311)

The deflection angle is

K1 (2 (a? + u?)'/?)
:—Q1Q2/ (@ + )2 du (3.312)
092 1/2
e 2 / Ko(2 (a2 + u?)/)du (3.313)

The last integral was calculated in [39], using their result, the deflection angle

is,

d (m T
O = qIfQ da (5 exp(—2a7)) = Q192 1 exp(—2a,). (3.314)
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3.4 Ricci magnetic geodesic motion

The constant ¢, ¢ is negative, hence, the geodesic are slightly deflected towards
the origin, which indicates a vortex-antivortex pair behaves as a pair of attractive
particles in the long distance approximation. On figure 3.10 we can see the large
distance approximation fits the scattering data for the symmetric case. Since
© — 0 as a — 0, the fact that for large a, © is negative explains the existence of

a minimum negative deflection as seen in figure 3.10.

3.4 Ricci magnetic geodesic motion

The metric on M1 (R?) can be split isometrically in a product with one flat term
isometric to R?, the centre of mass coordinate. Since this term is flat, in the
reduced moduli space we have that the global Ricci tensor coincides with the
Ricci tensor as a Riemann surface. Therefore, the Ricci form in Mé’l(Rz) is the

restriction of the global Ricci form to the centre of mass frame,
p=KedeNdb, (3.315)

where K is the Gauss curvature of the reduced moduli space. Interaction of
vortices with a magnetic field can be modelled by means of Ricci magnetic
geodesics, abbreviated RMGs. RMGs on the moduli space were introduced for
the Ginzburg-Landau model with a Chern-Simons term by Collie and Tong [10],
who proposed that the Ricci form was the magnetic form of the Chern-Simons
term. Later, mathematical properties of RMGs were investigated by Krusch-
Speight on hyperbolic space [28]. Although in our case RMG dynamics is not
physically motivated, these curves are of mathematical interest: Krusch-Speight
conjectured that geodesic completeness and RMG completeness were equivalent
until Algahtani-Speight found examples of incomplete surfaces which are RMG
complete [1]. A curve v is a Ricci magnetic geodesic if there is a constant scalar
A such that,

Vii = M), (3.316)

where 1,0 = p(%, -) is the interior product. Unlike geodesic flow, RMG trajectories

are speed dependent, with changes in initial speed being reflected in the constant
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3.4 Ricci magnetic geodesic motion
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Figure 3.10: Above. Deflection angle at 7 = 0 and asymptotic approximation.

Below. Comparison of the deflection angle for different values of 7.
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3.4 Ricci magnetic geodesic motion

A. On a surface of revolution, RMG equations are determined by the Lagrangian,

Sl ape A€V
L—2Q(e +60)+2 q 6. (3.317)

This is a conservative Lagrangian symmetric with respect to translations in time
and rotations of space, therefore, RMG trajectories on the reduced moduli space

preserve energy and angular momentum,

Ll e o oy A e
E—2Q(6 + €°0%), €—Qe€+2Q.

(3.318)

Eliminating 0 from these equations, a RMG is a solution to the first order equa-
tion,
1,
E= B Qe + Vers, (3319)

where the effective potential is defined as,

1 e\ 2
= — . .32
Veis = 595 <£ A m) (3.320)

Figure 3.11 shows Vg for several values of 7 = 0. Data confirms V sy — 0o

as € — 0, consistently with the asymptotic approximation to the conformal factor,
likewise, for € — 0o, V.sr — 0 since  — Q. and ' — 0. The effective potential
can be seen in figure 3.11, the shape depends on the relative value of £/\. A large

computation reveals

—1 e A (XY €2 O 394
/ — _ — —
IT 2630 (é A29) (2 ( o )”g (H 29)) (3.321)

by virtue of the asymptotic approximations, both € and €2Q)” are bounded

functions, while Q is positive and bounded below, hence for given \ if |¢| is large,
Vs is a positive decreasing function.

In this case RMGs are all unbounded curves. If £ is not very large, Vs has
relative extrema, giving rise to both unbounded and bounded trajectories orbiting
around the singularity at ¢ = 0. By equations (3.318) and (3.320), trajectories
for which E = Vs at constant ¢, are circular if V.s¢(ep) # 0 or constant if

Vesr(€o) = 0. If the perturbation is around a zero of Vs, the angular velocity
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3.4 Ricci magnetic geodesic motion

Figure 3.11: Typical types of effective potentials for 7 = 0 (description in text).
In the three cases, A = 1, in the second case, V.fy — 0 as € — oo although is not

apparent in the figure because of the scale.

alternates sign, the pattern is as seen on the bounded curves on the first row of
figure 3.12. If the perturbation is around a local minimum of V.¢; which is not a
zero, the angular velocity keeps the same sign and gives rise to the patterns seen
on the second row of the figure.

As numerics show, the moduli space is RMG complete, even though it is
geodesically incomplete, because the divergence of Vs at the origin prevents
RMGs of hitting the singularity.
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3.4 Ricci magnetic geodesic motion

i

Figure 3.12: RMGs for 7 = 0 (Description in text).
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Chapter 4

Asymmetric vortex-antivortex

pairs on a compact surface

In this chapter we study vortex-antivortex systems on a compact surface. We
aim to prove that the moduli space is incomplete and to compute the volume
of the moduli space for the round sphere and flat tori. On a general compact
domain, the problem of the statistical mechanics of Ginzburg-Landau vortices
was addressed by Manton [37] and by Manton-Nasir [38]. As shown in [37], it
can be described if we know the volume of the moduli space. For the abelian
O(3) Sigma model however, the problem of the volume of the moduli space is
constrained by the fact that vortices and antivortices cannot coalesce, however,
computing the volume is necessary for the partition function of a gas of BPS
vortices [37, 38, 45]. There is a conjectured formula for the volume by Speight
and Romao that depends on topological data, the volume of the domain, 7 and
the size of the sets P, Q) of core positions [45]. The content of the chapter is as
follows.

In section 4.1, we prove that the Taubes equation has exactly one solution for
any 7 € (—1,1).

The main result of section 4.2 is theorem 4.15 which asserts that the moduli
space of vortex-antivortex pairs is incomplete. We prove the theorem after proving
several lemmas necessary to bound the derivatives of solutions to the Taubes

equation.
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4.1 Existence of vortices

In section 4.3 we compute the volume of the moduli space of vortex-antivortex
pairs for the round sphere and flat tori and compare our results with the conjec-

ture.

4.1 Existence of vortices

In this section we will prove the existence of solutions to the Taubes equation on
a compact surface. In [51] Sibner-Signer-Yang proved existence and uniqueness
of solutions of the gauged O(3) Sigma model on a compact manifold for 7 = 0.

We prove the following generalisation of their results.

Theorem 4.1. On any compact Riemann surface there exists exactly one solution

u to the Taubes equation (2.36), provided the condition

1+7 1-—

-
SISl <k ko< 5 (4.1)

holds. Moreover, u is of class C? except for the core positions.

We prove the theorem at the end of the section. The inequality (4.1) is a
Bradlow type restriction [3], constraining the relative number of vortices and
antivortices on a compact surface. It arises naturally from the second Bogomolny

equation (2.21), since the total magnetic flux is,

2n(ky — k) = / B
_/Z<N,¢>v01—7|z|, (4.2)

where N is the north pole section on the target sphere and hence (N, ¢) € [—1, 1],
it follows that (4.1) is a necessary condition for a pair (¢, A) of a field and a
connection to be a solution to the Bogomolny equations.

We will define the function F': R — R,

F(t)=2(i:+r>, (4.3)

and the constant,
F*®° =2(+1 +71), (4.4)
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4.1 Existence of vortices

in order to simplify notation in the proof of theorem 4.1. Let us define F : R — R

as the function,

Fo(t)ZZ(et_lJrr)JrM

et +1 |2
4et
=—— —(C 4.5
where the constant C is,
4
Co=2(1-71)— E(l@r — k). (4.6)

For a given configuration of non-coalescent vortices, recall the function v :
Y — R U {+£oc}, defined on equation (2.165), if u is the solution of the Taubes
equation, and we define h=u-— v, then the regularized Taubes equation on a

compact surface, equation (2.167), is equivalent to,
—Ah = Fy(v+h). (4.7)

Equation (4.7) shows why Bradlow’s bound is necessary: If a smooth solution

exists, by the divergence theorem a necessary condition for Cj is,

1 4 ev—i—fz

Co = — _
’ 1X] Js evth 41

Vol € [0,4], (4.8)

Bradlow’s bound is equivalent to (4.8). Let

X = {ueﬂl(Z) : /EuVolz()} (4.9)

be the subspace of Sobolev’s space H! (X)) of functions of zero average. Since 3 is

compact, H'(X) can be decomposed as
H(Z) =X R (4.10)

Any h € H'(X) can be decomposed as a pair (u,¢) € X xR, such that h = u+¢c.

Hence, u is a solution to the equation,

—Au = Fy(v+u+@é). (4.11)
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4.1 Existence of vortices

We will use Leray-Schauder theory to prove existence of solutions to the
Taubes equation as in the proof of Sibner et al. [51] for 7 = 0. Given h € X, the
function

¢ / Fy(v+ h + ¢) Vol, (4.12)
¥

is a well defined, monotonous, continuous function. By Bradlow’s bound, there

exists a unique number ¢ such that

/Fo(v+7z+6) Vol = 0. (4.13)
b

Lemma 4.2. The function € : X — R, (3(71) = ¢ 15 weakly sequentially continuous
i X.

Proof. We will highlight the steps different from [51] in the general case. If
h, — hgo in X, then h, is a bounded sequence in X, and by the Rellich lemma,
after passing to a sub-sequence if necessary, we can assume h, — ho in L? for
p>1. Letc¢, = 6(ﬁn), Co = é(ﬁo) and assume towards a contradiction that ¢,
does not converge to ¢y. In this case we can assume the existence of a constant
€o such that,

|én — Co| > €0, (4.14)

for all n. We claim the sequence {¢,} is bounded. Assume the contrary, after

passing to a sub-sequence if necessary, we can assume the limit ¢, — oco. Let K

be any bound for Fy. By Egorov’s theorem [30] and the strong convergence in

L?, there exists a measurable set . and a constant K, such that |3, < eK 1,

the sequence h,, converges uniformly to ho in ¥ \ ¢ and ]Bn| < K.in ¥\ 2.
On the one hand, the equality

/ Fy(v + &, + hy) Vol = —/ Fy(v + &, + hy,) Vol, (4.15)
T\ Se ;
implies,
/ Fo(v + &, + hy) Vol| <ee, (4.16)
\Z
and on the other hand, by monotony of Fj,
/ Fo(v + &, — K.) Vol < / Fo(v + & + i) Vol. (4.17)
T\ T\Z.
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4.1 Existence of vortices

Taking the limit as n — oo, from these two equations we have,
(F> — Co)(|1X] — |2¢]) <e. (4.18)
Hence,
(F>* — Cy)|X| < e+ K|X| < 2, (4.19)

a contradiction since € is arbitrary. A similar argument shows ¢, is bounded
below. Therefore, ¢, is a bounded sequence of real numbers. By the Bolzano-
Weierstrass theorem, we can assume towards a contradiction ¢, — ¢, but ¢ # ¢
by (4.14). Let

o =

/ Fy(v + ho + &) Vol
Y

>0, (4.20)

bearing in mind the definition of iLn,

o =

/ Fo(v + ho + &) — Fy(v 4 hy + &,) Vol
¥

<sup {F'(0)} - (6=l [+ Cllho — hallo - [B172) = 0. (4.21)
teR
Hence a = 0, a contradiction. Therefore (4.14) is false and ¢é, — ¢&. This

proves the lemma. O]

Let us consider the operator T': X — X, mapping each h € X to the weak
solution H € X of the equation

—AH = Fy(v+ ¢+ h). (4.22)

Given that [;, Fy(v+ &+ h) Vol = 0, existence of a weak H' solution to (4.22)
is a well established analysis fact [2, Thm. 4.7], moreover, any two weak solutions
to the equation differ by a constant, by taking H € X we guarantee it is unique.

Recall a compact operator is an operator that maps bounded sequences to
sequences with convergent subsequences. We aim to use Schéfer’s alternative,

theorem 2.17, to prove T has a fixed point.

Lemma 4.3. The operator T : X — X is compact in the strong topology of X as
a subspace of H'(X).
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4.1 Existence of vortices

Proof. Let {ﬁn} C X be a bounded sequence, after passing to a subsequence if
necessary, we can assume Bn — Bo in X and strongly in L. Let H,, = Tﬁn, n >0,

by lemma 4.2 ¢, — ¢g. Moreover,

IV, = Vol = [ (H, = Ho) A(H, = Ho) Vol
- /E(Hn — Hy) (F(v 48+ ) — F(o+ 3 + ﬁo)) Vol
< sup {F'()} /E (yen—aoy + |ﬁn—ﬁoy) |\H,, — Hy| Vol

teR

< sup {F/(0)} (1 — éol - [ + [l = ol |u2) ||, — Holle
te

(4.23)

The last inequality is a consequence of the Cauchy-Schwarz inequality. By the

Poincaré inequality, there are constants C7, C5 such that
|H,, — Hollm < Ci|én — éo| + Cal|hn — hollz — 0. (4.24)
This proves compactness of T ]
Let us consider the set
S:{i}ex:ate[o,us.t.i}:t.TB}. (4.25)
If h € S, then it is a solution of the equation,
Ah = tFy(v+ &+ h), (4.26)

where ¢ = C(h) was defined on lemma 4.2.

By the Cauchy-Schwarz inequality,
[V Fal2 = (he, Al) < C/|ﬁt|\/ol < OS2 ||| (4.27)
b
By the Poincaré inequality we conclude the existence of a constant C' such that

||| < C. (4.28)
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4.2 Incompleteness of the moduli space

Proof of Theorem 4.1. Since S is bounded, by Schéfer’s alternative there is a
fixed point hof T. Let h = h+ ¢, where ¢ = 6(71), then h is a weak solution
to the regularised Taubes equation. By the elliptic estimates h is also a strong
solution in H2. We follow a bootstrap argument to prove h € C?: By Sobolev’s
embedding we know h is continuous, hence h € L? for any p > 1. By (4.7) and
the elliptic estimates h € W2? for some p > 2, once more by Sobolev’s embedding
h € C'. Let u = h + v, the derivative dh € T(T*Y) is a weak solution of the
linearized equation,
~Adh = (eu4+1)2 dh + @%1)2 dv. (4.29)
The potential function e“(e* + 1)~2 is continuous and with zeros of the same
order than the singularities of dv at the cores, hence A(dh) € L?, p > 2. Since
dh is continuous, it is also an L? form. By the elliptic estimates and Sobolev’s
embedding we conclude h € C2. Since F is monotonous, h is unique by the strong
maximum principle. Finally, u is the necessarily unique solution to the Taubes

equation. 0

4.2 Incompleteness of the moduli space

In [45] Roméao and Speight prove that the moduli space of symmetric vortex-
antivortex pairs on the sphere is incomplete. In this section we extend their
result to general 7 on a compact manifold. In order to prove this, we find bounds
for the derivatives 0., Vh, on a holomorphic chart, where the cores are at positions

21, z9. Let = log (1 —7)—log (14 7), first we prove a pair of technical lemmas.

Lemma 4.4. Let A be the diagonal set of ¥ x ¥ and let {x,} C MY (X) be a
sequence such that x, — x € A in the product metric. Let h,, be the solution
of the reqular Taubes equation corresponding to each X, then h, — p in H' and

hp, — p strongly in L2

Proof. Let v, = vy, for each point x,, in the given sequence. Let us decompose
each solution to the regular Taubes equation as Bn = U, + ¢, € XBR. We claim

the sequence {¢,} is bounded. Assume towards a contradiction ¢, — oco. Notice
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4.2 Incompleteness of the moduli space

that in the vortex-antivortex case the functions F' and Fj coincide. We know
that,

—Au, = F(up + ¢, + vy). (4.30)
By the standard elliptic estimates, there is a constant C' such that
lun|lmz < Cl|Auy||Lz. (4.31)

Since F is a bounded function, {u,} is bounded in H? and by Sobolev’s em-
bedding also in CV.

Assume x = (x,, z,) and notice that,
lv(2)| = 47| G (2, x1,) — G2, T9y)|, (4.32)

where x,, = (%1, %2,), since G(z,y) is continuous away of the diagonal set,

vn(z) — 0 for x # x., whence, we also have the convergence,
F(uy + ¢, +vy) = 2(1 4 71), (4.33)

pointwise almost everywhere. Applying the dominated convergence theorem and
equation (4.30),

/F(un—i—én+vn)\/01:0—>2(1+7’)|Z|, (4.34)
>

a contradiction. If ¢, — —oo a similar argument holds. Therefore the sequence
of averages ¢, is bounded, implying {iLn} is bounded in C°. Hence, the sequence

is also bounded in L? for any positive p. By the elliptic estimate
allir < C (11 8%nllz + [1nliz ) (4.35)

{h,} is also bounded in H!. By the Alaoglu and Rellich theorems, after passing
to a subsequence if necessary, we can assume h, — h, € H! and strongly in L2.
We claim that h, is the constant function pu. To see this, let ¢ € H. From the

regularized Taubes equation we have,

<ﬁn’ 90>H1 - <l~1na §0>L2 + <Vian V@)L%

= (hn, @)1z + (Ahn, )12
= <}~ln7 90>L2 - <F(}Nln + Un)7 90>L2- (436)
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4.2 Incompleteness of the moduli space

Since h,, — h, strongly in L2, after passing to a subsequence if necessary, we
can assume h,, — h, pointwise almost everywhere. By the weak convergence of B
in H!, together with the strong convergence in L? and the dominated convergence

theorem,

(ha, o)t = lim (hy,, @)
= lim(hn, p)12 — Hm(F (hy, 4 vn), @)12
= (hy, ©)12 — (F(hy), ©)12. (4.37)

From this equation, we infer
(Vh, Vo)rz = —(F(h.), o). (4.38)
Therefore, h, is a weak solution to the equation
—Ah, = F(h,). (4.39)

By elliptic regularity, h, is also a strong solution, and by the maximum prin-
ciple, h, is constant since F' is an increasing function. Since the only zero of F
is at t = u, we conclude h, = p. If ﬁnk is any subsequence of h,, this argument
shows it has a subsequence weakly converging to p in H* and strongly in L2, the

claim of the lemma follows. O

Lemma 4.5. h, — u strongly in WP for any positive p.

Proof. We will prove that any subsequence of h,, has another subsequence con-
verging to u in WP, implying the lemma. To simplify notation, we denote sub-
sequences of h, by the same symbol. From the previous lemma, by, — 1 strongly
in L2. After passing to a subsequence if necessary, we can assume that h, — W
pointwise almost everywhere. We apply the dominated convergence theorem to
deduce the limit,

|AR||Le = [[F(hn + vn)l[Le = [|[F ()] | = 0. (4.40)
If p = 2, by the standard elliptic estimates, there is a constant C', such that,

Vi — pal [ < C (HAEHHLQ + [ — ulle) 0. (4.41)
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By Sobolev’s embedding, hy, — p uniformly in C°, hence also in L? for any

positive p. We apply one more time the elliptic estimate,
o = pllwzs < € (ARl + [1Fn = pllis ) = 0. (4.42)
m

As a consequence of this lemma and Sobolev’s embedding, we have the con-

vergence,
A — pller — 0, (4.43)

for any arbitrary sequence {x,} C M"!(X), such that x,, — x € A. This proves

the following corollary,

Corollary 4.6. The limit,

lim Hfz(x;xl,xg) - u)

d(z1,22)—0

=0 4.44
I (144

holds, where d(xy,x5) is the Riemannian distance in X.

Let ¥4 = (¥ x X) \ A endowed with the product metric. As differentiable
manifolds, M"! and Y% are equivalent. In what follows, we will consider h as
a function ¥ x ¥4 — R. Let U C X be an open and dense subset and let
p : U — V C C be a holomorphic chart. In what follows we denote points on
the surface as x and points on C as z, so z = ¢(z) for z € U. We also assume
vortices and antivortices are both located in U, such that up to a holomorphic
chart, b : ¥ x V2 = R, where V2 = V2\ Ay and Ay C C? is the diagonal set.

On this chart partial derivatives 8ijz are well defined functions
0.,h: x VR — C. (4.45)

We denote the covariant derivative and Laplacian with respect to the first
variable by V and A and emphasize that the metric on V£ is the push forward of
the metric induced by the surface. Our aim is to estimate the rate at which the

second derivatives vazjh grow as a sequence z, € V2 diverges to the diagonal
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4.2 Incompleteness of the moduli space

set. This will allow us to prove that the moduli space is incomplete. Since, A

and 0., commute, az]ﬁ is the solution to the elliptic problem,
—A0;;h =V (h)0.,h + s; V() 0.,v;, (4.46)

where vj(z) = 47 G(z, 7' (z;)). Let dj(z) = d(x,z;), x; = ¢ (2;), we know
there is a uniform constant C, such that the derivative of Green’s function is
bounded [2],

C
IVoG(z, 25)| < R

J

C
VG, z)| < 7

J

(4.47)

where V(@ is the covariant derivative with respect to the second variable. Recall
in holomorphic coordinates the metric is e**)|dz|?, hence, if z; is restricted to a

bounded domain,

C
10.,v5| < dme M) VoG, 07 (7)) < R (4.48)
J
Lemma 4.7. For any positive constant Cy, there is another constant C, such
that, for all x,xy, x5 € U,
di
—= <
Cidi+d3 —
d;d3 < 2
(C1d3 + d3)? ~ dyo’

where {d;,dy} = {di,d2} and d12 = d(x1, z2).

(4.49)

(4.50)

Proof. By the triangle inequality and Cauchy-Schwarz,
dig < dy +dy < C(d? + d2)V?, (4.51)

on the other hand, any two norms in a finite dimensional vector space are equiv-

alents, hence, there is another constant such that,
(&2 +d})'\? < C(Cyd? + d3)'?, (4.52)

from these two inequalities we obtain the first claim of the lemma. For the second
claim, it is enough to prove that the inequality
dyd3

C
— < — 4.53
@2+ BP (453)
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4.2 Incompleteness of the moduli space

holds, the remaining case being equivalent to this one after relabelling d; and ds.

Let us note that since,
1
didy < 3 (d} + d3) < C(Crd} + ), (4.54)

is sufficient to prove that,

do C

- < 4.55
OB+ &S (4.55)

If dy < dy, by the triangle inequality we have,

dydyy < dydy + d3
<di+d;
< C(Cydi + d3), (4.56)

hence (4.55). On the other hand, if d; < dy, repeating the previous step, we find
that

didyy < C(Chdi + d3), (4.57)

this inequality, together with (4.49) and the triangle inequality, implies,

d2 dl d12 C
< + < —.

(4.58)

In any case, we conclude that equation (4.50) holds. O

Lemma 4.8. There is a constant C such that for any pair of distinct points
x1,Ty € X,

m%@piwwm@gga (4.59)

Proof. We cover ¥ with a finite cover of metric disks Dg, /2(p;) such that R; <
0, where 0 is the injectivity radius of the metric and for each disk there is a
holomorphic chart ¢; : U; — C, Dg,(p;) C U;. Let R = min{R;}, for any pair
of distinct points x1, 29 € X, such that d(x, z2) < R/2, there is a disk such that
1, Ty € Dp,(p;). For any disk in the cover, let R} be a positive radius, such that,

0i(2) —i(p;)l < Bj,  Va € Dg(p;). (4.60)
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Let z; = ¢;(p;) and let us denote by Dpg:(2;) C C the holomorphic disk of
radius R} centred at z;. For any small € > 0 there are continuous functions
G, - Dpiye(2j) X Dpy1e(2;) = R such that if z1, 2 € Dg, (p)),

Glan,2) = 5108 lg(1) = 93(@)] + Gilos@). es(a)). (461)

If exp A;(2) is the conformal factor of the metric in the chart ¢;, let

M; = max {eAJ(zW L2 € DR;(zj)} :
(4.62)
m; = min {eAf(Z)ﬂ Dz € DR;(zj)},

and M = max; {M;}, m = min; {m;}. Since each Dg,(p;) is geodesically convex,

for any x1, x5 € Dg, (p;),
mpj(x1) = j(@2)| < d(w1, m2) < M |p;(21) — @j(x2)]. (4.63)
Taking the log of this inequality we find a positive constant such that,

| d(1,12) —log [p;(71) — @j(x2)] | < C, (4.64)

whenever z1, 75 € Dg, (p;). Since each function G is continuous in the compact

set Dp(z;), we find another constant such that,

1
’G(I’l,fﬂg) ~ 5 log d(z1,x2)

- (oglyon) — ey = 1og dlon.am) + Gyl y(oa)| < €. (469

This proves the inequality whenever d(z1, z2) < R/2. Since G and the distance

function are continuous on the compact set,

{(xl,@) EX XY ¢ d(ay,zs) > g} , (4.66)

we can find a second constant satisfying the inequality whenever d(z1,x2) > R/2.

Taking the maximum of both constants concludes the lemma. O]

Lemma 4.9. Let D be any bounded domain on C. For any p > 0, there is a
constant C, independent of z1, 29 € D, 21 # 23 such that, if x; = ¢~ *(z;),

C

pIERNE (4.67)

IV (h)0z,v5[r <
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4.2 Incompleteness of the moduli space

Proof. By lemma 4.8, there is a constant, such that for all x,y € ¥, x # y,
1
'G(:L’,y) ~ 5 log d(x,y)‘ <C. (4.68)
i

Hence,

4evrev2eh

v1i~z v2 )2
(evrel + ev2)

A2dZ et 1

<(C|—————
(die" + d3)* d;

[V (h)0x;v5] = < : (4.69)

Zj 'Uj

where the constant depends on D. Since his uniformly bounded on ¥, there are

constants C, C', such that by lemma 4.7.

_C¢
- d(l’l, 1'2) ’

S 1

- 4.70
(diCy + d3)* d; (4.70)

[V (R)O.,v;| < C"

this inequality implies the claim. O

The proof of the lemma depends only on properties of Green’s function, we
could repeat the proof of lemma 4.9 using Vwv; instead of 0.,v; to prove for any
given domain D C C the existence of a constant, independent of 21, 2o € D , such
that,

C

h Ay < —r. 4.71
||V( )VUJHL = d(fl,l'g) ( 7 )

In the next lemmas we prove that the bilinear form,
BiH xH SR, B(6,0) = (Vo, V)& + V()6 dhe,  (472)

is coercive with a uniform coercivity constant.

Lemma 4.10. IfV, : ¥ — R is a sequence of continuous, uniformly bounded
functions converging pointwise to the continuous function Vi, and ¢, — ¢, in L2,
then

Vo, d2)12 = (Vi @212 (4.73)

Proof. We have,

[(Va, dnre = (Vi, 9)12] < [(Vay 0 — 000z | + (Vi — Vi, @012, (4.74)
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4.2 Incompleteness of the moduli space

Since the functions V,, are uniformly bounded, there is a constant C' such that,

|<Vm ¢121 - ¢3>L2| < C <|¢n - ¢*|7 ’¢n + ¢*’>L2

by the convergence ¢, — ¢, in L2, we obtain the limit

(Vo 0 = ¢¥)12| = 0. (4.76)

n

Since there is a constant C' such that the functions (V,, — V.)¢? are bounded
by the measurable function C'¢? and V,, — V, — 0 pointwise, by the dominated

convergence theorem,

(Vi = Vi, ¢2)12] = 0. (4.77)

Therefore,
[(Vas dr2 = (Va, @2)12] = 0, (4.78)
concluding the proof of the lemma. O

Lemma 4.11. There is a positive constant C, independent of (x1,x2) € X4, such
that for any ¢ € HY,

Cllgllin < B¢, 9). (4.79)

Proof. By the bilinearity of B, it is sufficient to prove the lemma assuming
||¢||lm: = 1. Let us assume towards a contradiction the statement is false, in
this case there is a sequence (¢,,x,) C H' x 34, with ||¢,|[m = 1, such that,

B(¢n; ¢n) = [[VoullLz + (Va, dr)r2 = 0, (4.80)

where V,, = V(h,,) is the potential function determined by h,,, the solution to the

Taubes equation with data x,. Since the functions V,, are non-negative,
IV énllL2 — 0, (Va, $)r2 — 0. (4.81)

Passing to a subsequence if necessary, we can assume ¢, — ¢, in H' and
Y

strongly in L? and x,, — X, in 3 x ¥. Since the functions

e Y xR (4.82)
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4.2 Incompleteness of the moduli space

are continuous and h,, varies continuously with the initial data, if x, & A, we have
the uniform convergence V,, — Vi, = V(h,.), where h, is the solution to the Taubes
equation determined by x,. On the other hand, if x, € A, we know that iLn —
in C'!, hence, we have pointwise convergence V,, — V, = 4exp(u)(exp(p) + 1)72

In any case, by our previous lemma,

<VTL7 ¢2>L2 — <VI<7 ¢2>L27 (483)

but this limit is zero, hence ¢, = 0 almost everywhere and ¢,, — 0 in H! strongly,

a contradiction. O

Proposition 4.12. Let D C V be any bounded domain. There is a positive
constant C (D), such that

~ C ~ C
10:,h[|cr < T and IVA][er < a0 (4.84)

12 12

for all 21,z € D with z, # z, where h(z) = h(z;0 7 (1), 0™ (22)) and dyy =
d(l’l,l'g).

Proof. azjﬁ is a solution to the equation
—A8, h =V (h)9,,h+ s;V(h)9.,v;. (4.85)
By lemma 4.11, there is a positive constant C independent of 21, z5, such that

Cr ol < IVllLz + (V(R) ¢, d)re, (4.86)

for all € H'. Asin the proof of lemma 4.9, a second uniform constant, dependent

on D, can be found such that,

C
IV (R)0., 05|12 < d—2. (4.87)

12

By the Lax-Milgram theorem, we obtain the bound,

~ C

where C' = Cy/Cy. Now we follow a recursive argument: by Schauder’s es-

timates, ||82jiLHH2 is also bounded by C'dj, for some constant C. By Sobolev’s
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4.2 Incompleteness of the moduli space

embedding, there is another constant such that ||8Zjl~z\|co is also bounded by
Cdyy. Thence, for any given p > 2,

~ C
|10z, h|r < o (4.89)
12
By the elliptic estimates,
10:; hllwee < C (/A8 Al + [[A]|1r)
< C([IV(Rh)0:,hlue + [V (h)D:,v5]|Le + 110, [Lr)
C
< —, 4.90
< (4.90)

for the last inequality we have used that the function V'(¢) is bounded. Sobolev’s

embedding implies the claimed bound,

. C
10 Bller < o (4.91)

This argument is also valid for VA, because it is a solution to the elliptic

problem,
—A(Vh) = V(h)Vh+ V(h)(Vv, — Vuy), (4.92)
and the upper bound
C
VRVl < = (4.93)
12

also holds. O

For latter application, we need to translate this estimate to a holomorphic

chart.

Lemma 4.13. Let o : U C ¥ — V C C be a holomorphic chart and let D be a
geodesically convex neighbourhood such that D C U, there is a positive constant
C, such that for all z1, zy € p(D),

Clzr — 22| < d(p™'(21), 0 (22))- (4.94)
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Proof. The conformal factor is a continuous positive function on V and (D) is

compact, hence there is a constant C' > 0, such that for all z € p(D),
C? < M, (4.95)

Since D is geodesically convex, for any pair z1, 22 € @(D), there is a curve
v : [0,1] = @(D) joining 21 to 2y such that ¢! o~ is a minimizing geodesic

joining p~!(z1) to ¢ 1(22), hence,

1 1
¢ [hlas< [ Vs = de e ) (099
0 0
By the triangle inequality,

|Zl - Z2| =

1 1
/ 7’3 / 4 ds, (4.97)
0 0

yielding the result. [l

The advantage of the holomorphic chart is that it makes computations possi-
ble, on the other hand, the Riemannian distance is a geometric invariant defined
globally on the surface and better suited to prove analytical properties of the
solutions to the Taubes equation. For the next lemma, notice that if 3; x s
is a product of Riemmann surfaces, for any function f : ¥; x ¥ — C in local

coordinates ¢; : U; — C, ¢;(z;) = zj,
Opy 0o f = Doy f A2t @ d2? € QPO(D) x ). (4.98)
In the product metric, dz' and dz? are orthogonal, hence,
100, 0y f| = 102y 2, f1 d2"] |d2°]. (4.99)

Lemma 4.14. For any holomorphic chart p : U C ¥ — V C C and any geodesi-
cally convex neighbourhood D such that D C U, there is a constant C > 0 such
that, for all z1, 2z € (D), z1 # 2,

C
0.,01(21, 22)| <

(4.100)

where the coefficient by appearing in the metric of M1 () is defined as in (2.78).
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Proof. If 21, 2y € (D), there is a smooth function o : (D) x ¢(D) x (D) — R,

such that for all triples z, z1, 2o of points in the domain with z; # 2z,

v(p1(2)) = log|z — 21|? —log |z — z|* + 0(2, 21, 22). (4.101)

bi(z1,22) =2 5}Z121 (h(¢™(2)) —log |z — 2z1*)
=20| _ (¢ (=
2006 ()i (1), (3)) — — 282021, 21, 2),

Z1 — 2o
(4.102)

)
)

) —log |z — 2> + 0(z, 21, 22))

where 0, refers to complex derivatives with respect to the first entry. In the
following calculation we denote h(¢ ™" (21): ¢ (21), o " (22)) by h and ©(z1, 21, 22)

by v, whence,

0,1 = 2 (azézﬁ 0, 8,h+0,0,5+ 0., 53@)

eA(z1) 5 B _ 3 3
=2 <— 5 Ayh + 0,0,,h + 0,0.0 + azlazﬁ)

A(z1) - _ _
=9 (6 5 F(h)+ 0.0,,h + 0,0.0 + 821@6) ) (4.103)

Since ¢(D) is compact, A(z1) and the last two terms are bounded functions on
(D) by continuity. Since function F(t) is also bounded, we conclude the same
statement for the first term. For the second term, if z = ¢~ !(2) and x; = ¢~ !(2;),

we have by lemma 4.13 and proposition 4.12,

9.0, h| = erED/219.0, bl |dz|
= 10,02, h(21, 07 (1), 0 (22))]
<_¢
- d(.fl, ZL’Q)
< Y (4.104)
|21 — 22
Therefore the lemma is proved. O

Theorem 4.15. The moduli space is incomplete. There is a Cauchy sequence
{x,} € MYY(X) such that x, — x € A as a sequence in ¥ x 2.
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Proof. Let ¢ : U C ¥ — C be an holomorphic chart defined on an open and
dense neighbourhood U. Let z; € C be chosen such that p=!(s2), 0 < s < 1is
contained in a geodesically convex neighbourhood of ¢~1(0). Let us define the

curve,
v:(0,1] — CA&, v(s) = (s 21,0). (4.105)

Let 2(s) = sz; and let o, 'y(s) = (o~ 1(z(s)), = 1(0)), be the push forward of

the curve v to the moduli space, hence,
04150 = (P (1 = 7) + 02, b1) |2, (4.106)

where we denote by -5 the norm of vectors in 7,1 Mb!.

By Lemma 4.14 there is a constant C, such that,
C C

< 2 -
T

19, by (4.107)

Since the conformal factor is a continuous positive function defined on the

whole plane, there is another constant, also denoted C', such that,

1. C
[P e < 75 (4.108)

Let £]7y, a,b] be the arc-length of the segment 7|f4, a,b € (0,1), there is another
constant, also denoted by C| such that,

b
thnatl = [l iheds < COV2 - 0¥, (4.109)
whence,
(o, (b), oy ty(a)) < C (B2 = a'?). (4.110)

This inequality shows if {s,} C (0,1] is any converging sequence s, — 0, the

new sequence,
Xn = @, (sn) € MM(D), (4.111)

is Cauchy, however v is continuous which implies x,, — (¢ 1(0),p~1(0)) € Agx.

Therefore, the moduli space is incomplete. O
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4.3 The volume of the moduli space

4.3 The volume of the moduli space

We conclude this chapter computing the volume of the moduli space M () for
the round sphere and flat tori. As it will turn out, the existence of a Lie group
of isometries will play an important role in the calculations. Symmetries were
studied for their relation to conservation laws in a Schrodinger-Chern-Simons
model by Manton and Nasir in [36], for the Riemann sphere, symmetries of the
coefficients of the L? metric for vortices of a non-relativistic Chern-Simons model
were treated by Romao [46]. We follow similar ideas for asymmetric vortices of
the O(3) Sigma model. There is a general conjecture for the volume of the moduli

space by Romao-Speight [45], which can be stated as follows,

Conjecture 4.16 (The volume conjecture). Given a compact Riemann surface

Y of genus g and total area |X|, let,
Jy =2r(1F 7)|2| — drn? (ks — k),
K:I: = :F27T27
then the total volume of the moduli space MF+*- (%) is,
9

- (g 27 21Jko Jo [(in
Va0 () = 32 S HZ 0 — (ko — 31

=0

For ¥ = S?%,,un4, they corroborated it for a vortex-antivortex pair and 7 = 0.
We aim to confirm the conjecture on the round sphere and flat tori for vortex-

antivortex pairs and general 7.

4.3.1 The Riemann sphere

On the round sphere, the three dimensional Lie group of orthogonal transfor-
mations, O(3), acts by isometries. The vortex equations are invariant under
isometric actions on the domain, if J : ¥ — 3 is an isometry and wu is the solution
of the Taubes equation with vortex set P and antivortex set (), then uw o J is the
solution with data J=*(P), I71(Q). We will make use of this symmetry to obtain

conservation laws for the non-trivial coefficients b; and an explicit formula in the

127



4.3 The volume of the moduli space

subspace of vortices and antivortices located at antipodal positions. This formula
will lead us to the volume formula. We will prove the following theorem,
Recall the conformal factor of the sphere of radius R in a stereographic pro-

jection chart with coordinate z is,

0= 4—}%22. (4.112)
(1+[2)

We can give an explicit description of the coefficients in the metric in the
case of only k. coincident vortices or k_ coincident antivortices. By rotational
symmetry, the function u depends only on the chordal distance to either the
vortex or antivortex [34], the coefficients b in this case are,

2k 2y

by = ———27=_
R EERE

(4.113)

The proof relies on the rotational symmetry of the configuration and is anal-
ogous to the proof for n coincident Ginzburg-Landau vortices on the sphere that

can be found in [37]. With this identity at hand, we prove the following theorem,

Theorem 4.17. The volume of the moduli space M*+° (S?) is,

k
(4m2r2 (20 -7) - %))

k! ’
and the volume of M%*~(S?) can be obtained from equation (4.114) by changing

Vol (MM0(S?)) = (4.114)

7 into —7. For a vorter-antivortex pair, the volume of M (S?) is

Vol (MM(S?)) = (872R?)* (1 —72). (4.115)

For k; = 0 or k— = 0 we follow ideas of Manton-Nasir [38], as their proof relies
on the topology of the symmetric product (S?) /Sy, Sy being the N symmetric
group, and can be adapted easily to vortices of the O(3) Sigma model of the same
type. For the case k; = k_ = 1, we extend the proof given by Romao-Speight [45,
Thm. 5.2] for the symmetric case. For general 7 we no longer have the symmetry
(21,22) > (29,21), instead, we complement the symmetries induced by SO(3)
in the moduli space with the symmetry (z, z2) — (Z1,%2) to deduce a suitable

formula for the volume of a general Kihler metric on S%.
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k., vortices of the same type

If there are k. vortices on S? and no antivortices, the moduli space is isomorphic to
P the complex projective space of dimension &, [34]. The subspace M§+’O(S2) C
MF+9(S?) of k. coincident vortices on the other hand is isomorphic to P!, and can
be parametrized with the coordinate z, of the coincident vortices. By equation
(4.113) we know how to compute the coefficient b, in ME+"(S?),

2k+Z+
by = ———. 4.116
+ 1+ |Z+|2 ( )
The metric in ME+°(S?) therefore is,
ds* = 2k, m ((1 — 7))+ 8&) |dzy |2
0zy
=kym <2(1 —7) - %) Q|dz,|?, (4.117)

as can be seen, the metric is a multiple of the round metric, hence, the volume
of MEHY(S?) is,

k
4 R%ky (2(1 —7) — R%) : (4.118)
this volume is k£, times the volume of the generating cycle in P!,
2 P2 ks
AR (2(1 —T)— ﬁ) . (4.119)

The total volume of the moduli space therefore is,

(872R%(1 — 1) — 42k, )™

Vol (M*+0(S%)) = : (4.120)
k!
the proof of the volume formula in M%*-(S?) is analogous,
2p2(1 A2k k-
Vol (M- (S?)) = Br R (1+7)—dmk) (4.121)

k_!

The moduli space of vortex-antivortex pairs

In general, there is no explicit expression for the coefficients b; of the metric if the

cores are at general position, however, we can deduce from the invariance of the
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4.3 The volume of the moduli space

Taubes equation under the action of O(3) several constraints on the coefficients
due to symmetry. Before doing so, we need a general lemma that will also be

necessary for flat tori in the next section.

Lemma 4.18. Let ¢ : U C ¥ — V C C be a holomorphic chart, containing
the core set Z of a point in the moduli space MV (X). For any bounded domain
D CV, such that Z C ¢~ (D), there are continuous functions l;j :Dx D — C,
J =1,2, such that:

1. If (Z) = {21, 22}, where z; (22) is the vortex (antivortex),

—9s. -
2 4 hi(z1, 2), (4.122)

bj(21,22) = e

where bj, j = 1,2, are the non-trivial coefficients in the L* metric, defined

m lemma 2.5.

lim  b;(z1,2) = 0. (4.123)

‘Z1—Z2|—)0
Proof. On ¢~1(D), Green’s function can be written as

1 ~
Gla1,22) = o log|ip(21) — p(2)| + Gla1, 22), (4.124)

with a smooth regular part G : ¢~ *(D) x ¢~ 1(D) — R. Therefore, the solution

h to the Taubes equation can be written as

h(w; 21, T) = h(z; 71, 22) + log [o(x) — (z1)|? = log [o(x) — (2)|* + T(w; 71, 2),
(4.125)

where
O(x; 21, 19) = 47 Gz, 21) — 47 G(x, 23), (4.126)

and iz(m, T1,T3) can be extended in C! to the coincidence set w1 = 3 by corol-
lary 4.6. Denoting (s~ (2); ¢~ (21), 91 (22)) and (g~} (2); 9} (1), 9 (22)) as
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4.3 The volume of the moduli space

h, h, etcetera,
bj(21,22) = 20|.—., (s, h — log|z — z)
— 25,2:4 <sji~z —log|z — 2| + sjﬁ)

-9 _ -
25 — Rk
) 55 ~
= b; 4.127
5=, Thi (4.127)

where the regular part Bj is continuous in D x D. This proves the first state-

ment. The second statement is a consequence of corollary 4.6 and the fact that
by (4.126),

lim 9., (0(p~(2); 07 (21), ¢ ' (22))) = 0. (4.128)

‘Z1—22|—)0

]

Suppose v : Uy € C — Uy C C is a holomorphic change of coordinates in
ambient space, such that z; € U for all cores. There are pairs of corresponding
coefficients bs(z1,...,2,), 0.(2],...,2),) in each of the charts. Let 2/ = v(z),

2. = 7v(2x), as in [46], we have the transformation rule

1 ~1
! /
no ()

Manton and Nasir noted in [35] that equation (4.129) is similar to the trans-
formation rule for the Levi-Civita connection on S? and resembles the topological
nature of the coefficients b;. In the sphere, the group of isometries is large, in the
sense that it is a Lie group, and each of this isometries induces a holomorphic
change of coordinates on the moduli space. We exploit this remark to prove the

following lemmas.

Lemma 4.19. In the projective chart, the coefficients b; satisfy the identities,

> @z+Zb+ b)) =C, (4.130)
k
>z €R, (4.131)
k

for some constant C. For a vortex-antivortex pair, C' = 0.
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4.3 The volume of the moduli space

Romao deduced similar identities for vortices of a modified Chern-Simons

model on the sphere in [46], employing the action of SO(3) on the moduli space.

Proof. Let us consider a rotation v : S? — S2. In a stereographic projection

chart, v can be represented as a Mobius transformation,

az+0b
Z) = ——, 4.132
(e) = (1.132)
for some coefficients a,b € C, such that |a* 4 [b|*> = 1. Since v : C\ {a/b} —
C\ { —a/ Z_)} is a holomorphic change of coordinates, a rotation of the core positions

in the sphere reads,
W, = (—bz; + a)2b; — 2b(—bz; + a). (4.133)

Invariance of the solutions to the Taubes equation under the group of isome-

tries means that the vector fields generated by SO(3) in the moduli space by

erated by the 1-parameter families of matrices,

o) = cos (%) —isin (%) _ [ cos (
Ux(e) < (2) 2 ) Uy (B) (
0

) —sin

) COS (

&

diagonally acting on the cores’ positions are Killing fields. These fields are gen-
—4sin sin (

§))
‘ ) (4.134)
UZ(’V) = <60 o3 > )

a, 3,7 € R. We can compute conservation equations corresponding to the gen-

N [@ @

o

erators of the Lie algebra su(2). These equations correspond to conservation of
angular momentum in the moduli space. The generating Killing fields in the
moduli space are,
i -
Ex = 5 Z(’ij - 1)62]' - (25 - 1)&47

J

1
& =3 > (2 +1)0., + (25 + 1)0s,, (4.135)
J

é.Z = —ZZZJE)ZJ —Ejﬁgj.

J
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4.3 The volume of the moduli space

By (4.133), the Lie derivatives of the coefficients are,

Le by =i(Z;0; + 1),
Lgybj — Zjbj —|— 1, (4136)
ngbj - —Zb]

Hence the coefficients b; satisfy the identities,

1
5 D (3 = 1o b; — (F — 1Dsb; =2 + 1 (4.137)
k
1
-3 > (2 + 10 + (3 + 1)0:,0; = 250, + 1, (4.138)
k
Z Zkazkbj — zk@kbj = bj. (4139)
k

Recall the coefficients b; have the symmetries,

0.,b; = 05,0, 95.b; = 0:,by. (4.140)
Hence,

> (2f = 1), b — (7 — 1)0s,bp = 2(Z;b; + 1), (4.141)

k
D (2 4 1) b + (75 + 10z, b = —2(2;b; + 1), (4.142)

k
Z Zk&zjgk — Zkégjbk = bj. (4143)

k

Adding equations (4.141) and (4.142) and also subtracting and conjugating

the same pair of equations,

Z 2202 by, + 0s,by = 0, (4.144)

Z 0., by + 220, by = —2(2;b; + 1). (4.145)
k

From these two equations, we deduce,

0, ) (22 + Zby + by) = 0, 0z, Y (22 +Ziby + by) = 0, (4.146)
k k

133



4.3 The volume of the moduli space

hence 3, (22 + Z2by, + by,) is constant.
Equation (4.143) implies,

k

From this equation and its conjugate, ), (2kbk — zkgk) is constant, but this
quantity must be zero when all the vortices and antivortices are located on the

real line. Therefore,

> Zub € R (4.148)
k

Finally, for a vortex-antivortex pair at positions z4+ = e, we have by (e, —¢) €
R and by (4.130),

C

b — b_(e,—€) = —. 4.149
+(67 6) + (67 6) 1+ €2 ( )

By lemma 4.18, there are continuous functions by : R — R such that,

1 -
bi(e, —e) = F- + by (e), (4.150)
and lim,_,q Ei(e) = 0, hence,
lim(b (6, ) + b (e, ~) = Im(bo () +5_() = 0. (4.151)
Therefore, C' = 0 for a vortex-antivortex pair.

m

Let S4 be the diagonal in the product S? x S?. The orthogonal group acts
diagonally on the moduli space M!(S?) = (S? x §?) \ S4 by isometries. We can
always assume there is a projective chart such that the pair is located with the

vortex at z; = € and the antivortex at zo = —e. From (4.130) and the fact that

bj(e, —€) = b;(e, —€), (4.152)

we conclude,
bi(€, —€) + by(e, —€) = 0. (4.153)

The L? metric in M"!(S?) is Kéhler and invariant under the diagonal action

of O(3), given any pair (21, z2) € MY(S?), we can always find a rotation of S?
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4.3 The volume of the moduli space

such that in south pole stereographic projection, z; = €, zo = —e. In this way,

we have a diffeomorphism,
(S* x §%)\ S3 = (0,1] x SO(3), (4.154)
hence, the moduli space can be parametrized as (0, 1] x SO(3).

Lemma 4.20. Let g be a Kdhler metric in S* x S* such that if o € O(3) and
(21, 20) € S* x S?, then the action

0% (21,22) = (0% 21,0 % 239), (4.155)

is by isometries. Let Ey = 0. and let E; € s0(3) be the left invariant vector field
corresponding to rotations with respect to the j-th coordinate axis in R3. Then

there exists a function
A:(0,1] - R, (4.156)

and a real constant ¢ such that in the parametrization (4.154),

1—¢ 1,2 14 ¢ 212 1dA 012 2/ 32
0= (155 0 TSR - 12 (0 + )

c 0_2 e(l—¢€) 3
+m(0’0’ —f-WJU s (4157)

where o* € T*((0,1] x SO(3)) is the co-vector dual to Ey, k=0, ...,3. For this

metric, the volume is,

Vol (S? x §%) = 4n*lim A(e)* — 7. (4.158)

e—0

Proof. This lemma is similar to [45, Prop. 5.1], but for 7 # 0, the swapping map
(21, 22) —> (29, 1) is no longer a symmetry of the metric, instead, we consider the
action of orientation reversing isometries of the sphere on the moduli space.

A general symmetric bilinear form in 7°((0,1) x SO(3)) invariant under the

diagonal SO(3) action, will be a linear combination
A,0"0°, (4.159)

with A,s = Ag.. Let g(€) = (¢, —¢), € € (0,1]. Denoting by (X,Y, Z) coordinates

in R3 the basis F; can be represented in the canonical embedding of S? as the
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4.3 The volume of the moduli space

unit sphere in R? as

_ 2
By = (§1+ 65)3 <8X1 afg) —4(1 +€€2)2 (_a(; - 822) , (4.160)
El:_;zz (0?/1 +a?/2)’ (4.161)
2
" _11; (6’)8(1 " 8;9(2) 1 ?:EQ (_6(;1 T 3822> : (4.162)
B (8?/1 B ai) ' (4.163)

A short calculation yields,

1 — €2
1+ €2

1
JEy=-E;, JE = Es, (4.164)
€

where J is the pseudo-complex structure on T'((S? x S§?) \ S&). If the metric is

Kahler, we deduce,

1—e2\?
A03 = A12 = O, A33 = €2A00, All = (1 + 62) A22. (4165)

Let C : S? — S? be the reflection map Y + —Y on the X Z plane. C acts on

o as follows,
C* o’ = o°, C*ol = o, C*o? = o2, C*o3 = —0°. (4.166)
From reflection invariance we further obtain,
Aot = Agg = 0. (4.167)
Let A= Agy, B = (1+ €2)72 Ay, then the metric is,
g=A((0")?+€(*)?)+B((1—€)*(6")+ (1 +€)*(0%)?)
+ Agp 0%0? + Ajzoto®. (4.168)

If w=g(J-,-) is the Kéahler form of the metric, then

1+ ¢
1 — €2

1
w=eA"NP+ (1 - )Bo' No? + -A3d° Aot — Az’ Ao®, (4.169)
€
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4.3 The volume of the moduli space

provided €Ay = (1 + €%)(1 — €)1 Ay3, to account for skew-symmetry of w. The
SO(3) valued forms o, 02, 03, are related by do! = —0? A 03 and cyclic permu-
tations of this identity. Kahler forms are closed. For w this is true provided the

coefficients in (4.169) are solutions to the equations,

d 1 d
€A = e (1—€YB), EAIS =7 (eAo2) - (4.170)

Regularity of the metric as ¢ — 1 implies lim,;(1 — €*)B(e) = 0. From the
second equation in (4.170) and the algebraic relation of the coefficients A3, Ago,

we infer

C

= — 4.171
1+ e’ (4.171)

Aoz

for some real constant c. Redefining the function (1 — ¢*)B as A(e), the metric
has the form (4.157). Since [g,, o' Ao Ao® =8 [45] and

/1 A=) g 1, (4.172)

(14 €2)3 8

for this metric, the volume form is

2 1— 2

Vol = — AA’—}—M de Aot No® Ao (4.173)
(14 €2)3

After integration, the total volume of the metric is

Vol (S? x §%) = 4n®lim A(e)* — *r°. (4.174)
e—0

Applying lemma 4.20 to the L? metric, we obtain,

Lemma 4.21. The L? metric on MY (S?) has the structure provided by Lemma 4. 20,
with

4R? 9
A:2ﬂ(1+€2—6b1—2R —1>, (4175)
c = 8TR*r. (4.176)
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4.3 The volume of the moduli space

Proof. To compute the constant ¢, we calculate g (Fo, Fy). Tangent vectors FEy,

FE, in projective coordinates (21, 20) € S* x S? with respect to the south pole are,

0 0 14 €2 0 0
Fh=—— — Ey = + . 4.1
07 dx,  Oxy’ 2 2 (8x1 8x2) (4.177)

where 2z = x1 + 1y,. Thence,

1+¢ 0 9 0 0
Ey, Esy) = -
g( 0, 2) 9 9 (axl Oxy’ 0x; * ax2)

_1+€2
2

8[)1 81)2 (%1 abQ
21 [ Q(1 — 01— it e A e
T ( ( + T> ( T> * 821 * 821 822 822)

(4.178)
To simplify (4.178), we use the symmetries of the coefficients b;, lemma 4.19,

0 0 1 d i 0 0
3 (a5 a5h) =32 gl 053 (5~ 3%)

j -

1d 1
= §E(b1 +by) + Z(bl + by)
— 0. (4.179)
Hence,
STR*T
Ey, Es) = 4.1
g( 0, 2) 1+€2 ( 80)
and consequently ¢ = 8mR*7. Let us compute g(Ey, Fy),
0 o 0 0
Eo, Ey) = - .
g( 0 0) g ((9.7:1 8%’27 8$1 6372)
0 0 0 0
=27 | Q1 Q1 — —b — —by— —b+—0by ).
’N( ( +7—)+ ( T)+8211 8212 8221+822 2)
(4.181)
Again by symmetry,
0 0 ldb;, 1
Oy 9y L 4.182
0z1 7 0z 7 2 de +2€j ( )
Hence,
S8R? db; 1
Eoy . By) =21 ——+ —+ - . 4.1
g( 05 0) T ((1+€2)2 + de + Ebl) ( 83)
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4.3 The volume of the moduli space

Comparing (4.183) and (4.157),

1dA 8R? db; 1
iy V1 Rl B 4.184
€ de 7T<(1—1—62)2+al6+61)’ ( )
Solving this equation, we find,
81 R?
A= e 27meby + const. (4.185)

From the regularity condition lim._,; A(¢) = 0 used to compute the formula
for the volume of the moduli space and the explicit formula (4.113) for b; in the

antipodal case, the constant is

const. = —2m(2R* + 1). (4.186)
Therefore,
4R? 9
A=2rm 1+52_€b1_2R —-1]). (4.187)
m
We claim that
11_{% eby = —1 (4.188)

as can be seen numerically in figure 4.2 for the symmetric case in the unit sphere.

For a vortex-antivortex pair,

0 1
bl(E, —6) =2 % he - E (4189)

Since h, — pin Ct as € — 0,
limeb; (e, —€) = —1. (4.190)
e—0
Applying lemmas 4.20 and 4.21, the volume of the moduli space is
Vol (MML($?)) = (872R?)* (1 — 72). (4.191)

Notice that another way to express the volume is as 47%(1 — 72)Vol(S?), which
corresponds to the volume of a product of spheres, each factor weighted by 27 (1+
7), the effective mass of a core, hence, it is expected that as 7 — +£1, the volume

vanishes, because of the negligible weight of one of the factors.
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7=0.00, R =1.00

0.81

0.6 9

0.4+

0.24

0.04

-0.8
—0.9 -
-1.0
-1.1
-1.2

~134 ¥

0.0 02 0.4 06 0.8 10
o/m

7=0.71, R =1.00

—1.7 4

]
]
1
1
]
]
-1.8 H

~1.9 4

-2.04

2.1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: Three views of the declination data of h, the regular part of the
solution to the Taubes equation, for three different values of the asymmetry
parameter 7 on the unit sphere. Top. Vortex and antivortex are symmetric,
with the same effective mass. Middle and bottom. The antivortex becomes
more massive. We solved from ¢ = 1 down to 0.05 in steps of 0.05, except that
for 7 = 0.5, the computation stopped at € = .20 due to algorithm divergence. As

e — 0 the data shows how h,. flattens as expected.
140



4.3 The volume of the moduli space

7=0.00,R=1.0

—0.75 A

—0.80

—0.85 A

eb

—0.90 A1

—0.95 1

—1.00 A

0.2 0.4 0.6 0.8 1.0

R=1.0,t=0.4

h lower

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X

Figure 4.2: Top. Real profile of eb in the symmetric case. The limit
lim. .oeb = —1 is apparent in the numerical data. Bottom. Real profile of
a vortex-antivortex pair located at 4+¢ on the real axis of the extended complex
plane for several values of €. In both cases, the domain is the unit sphere, the
bottom plot shows the behaviour of the real profile of h as e — 0 in the south
pole of the domain. The dashed horizontal line is log ((1 — 7)(1+7)7!). The
data shows how the regular part of the solution to the Taubes equation converges

to this constant value as the pair collides at the north pole.
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4.3 The volume of the moduli space

4.3.2 Flat tori

In this section we compute the volume of the moduli space for a flat tori, to
this end, we extend the coefficients b, in the L? metric to a global object and
relate it to the volume of M (T?) in lemma 4.22. Consider a holomorphic chart
¢ : U C T? — C on an open and dense set U, with coordinates z = p(x), x € U.
Let us define,

by = b;dz € QOUV(U x U)\ Ap). (4.192)

In general by is only well defined on a chart, however, flat tori admit at-
lases such that the holomorphic changes of coordinates are translations. Since
translations have trivial second derivatives, by (4.129) by extends to a global
form b € QOY(MU(T?)). By the symmetries of the coefficients b;, this form is
holomorphic, as the following short calculation shows in coordinates:

Oby =Y _0.b;dz' NdZ
i\j
== 0.b;dz \dZ
i\j
= —0by, (4.193)
hence, dby = 0.

To compute the volume of flat tori, we will use the (1,1)-form 0b to define
another form in the moduli space which is more convenient for calculations. Let
IT; : T? x T? — T? be the canonical projection map onto the j-th factor of the
product. Let us define the form

wo =21 (1 — 7) I} wye + 27 (1 + 7) 115 wre. (4.194)

The Kahler form on the moduli space can be written as,

w = wy + i db € AVH(MM(T?)). (4.195)
Notice that,
Vol = L A
ol = 5 wAw
2
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4.3 The volume of the moduli space

where Voly = wo Awyp is the restriction of the volume form in the product T? x T?

to the moduli space.

Lemma 4.22. Let A, be the e-tubular neighbourhood of the diagonal set of T? x T?

for small €. The volume of the moduli space can be computed as,

Vol(M*(T?)) = 4r%(1 — 72) Vol(T?)?

2
+lim (m' wo A Db — b A 8b) . (4.197)
=0 S22\ A, 2
Proof.
Vol(M(T?)) = lim Vol
€0 Jr2,2\A,
2
= / Voly + lim (m' wo A Db — =9 A (%) .
T2 x T2 =0 Jr2xT2\A, 2
(4.198)
On the other hand,
Vol = 47%(1 — 72) I} w2 A T wrpe. (4.199)

Applying Fubini and the change of variables theorems,

2
/ Voly = 47%(1 — 72) (/ w']r2) = 47%(1 — 7%)Vol(T?)?. (4.200)

T2 x T2 T2
This concludes the proof of the lemma. O]

According to lemma 4.22, to compute the volume of M!"!(T), we must compute

the two non-trivial terms in (4.197).

Lemma 4.23. Let 7 : C — T2 be the canonical covering map and let R C C
be an open parallelogram such that w|g : R — T? is a bi-holomorphism onto its
image and U = 7|g(R) is open and dense. On the local coordinates 7| : U — R,

there 1s a constant ¢ € C such that for any pair of different points 21,z € R,

bl(Zl, 22) + bQ(Zl, 22) = C, (4201)
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Proof. If J: T?> — T? is an isometry, the Taubes equation is invariant under J,
h(J(z);I(x1),I(xe)) = h(x; 21, 22), (4.202)

z, 21,29 € T? @1 # x5. By construction, there is a v € C such that J, =
poJop Hz) =z+wvfor z € o(I"1(U)NU). For small v, the translation J, maps
a neighbourhood, not necessarily connected, N C R of x; and x5 into R. This

implies b; has the symmetries,
bj(z1 +v, 20 +v) = bj(21, 22), (4.203)
v small. Hence,
0.,bj + 0.,b; = 0,,b; + 0.,b; = 0. (4.204)

Applying the symmetries of the coefficients b,,

., (b1 + by) = 0.,b; + 9.,b; = 0. (4.205)

Similarly,
9., (by + b)) = 0. (4.206)
Hence by + by is constant on the connected neighbourhood R. O

Proposition 4.24. In a flat torus T?, for the (1,1) form 0b we have,
9b A Ob = 0. (4.207)

Proof. We apply the previous lemma to prove the proposition. By lemma 4.23,
there is an open and dense set U C T? and a chart ¢ : U — R C C, R an open
parallelogram, such that in this local coordinates b; + by is a constant. Denoting

points in R as z;, a direct calculation shows,

bU N 8bU = (b2 GZI b1 — bl 8Z162) le A le N dgg
+ (—bg GZle + by 6Z2b2) dzy N dzg N\ dZs
= —C 8z1 bQ le VAN d21 VAN dzg - CaZle dil A d22 A dzg. (4208)

Since b; and by add to a constant,
8[)[] VAN 8[)[] = —C (8228Z1 bQ + 8Z1 622 b1> le A dzl A ng N d22 = 0. (4209)

Since U is dense, we conclude 0b A 0b = 0. O]
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By this proposition and lemma 4.22, to compute the volume of the moduli

space, we have to integrate wg A 0b.

Theorem 4.25. For a flat torus T?, the volume of the moduli space is,
Vol(M5H(T?)) = 47%(1 — 7%) Vol(T?)? + 167° Vol (T?). (4.210)

Notice that the first term of the formula is similar to the case of the sphere (4.191),
however, the second term is new, bearing in mind the volume conjecture, 4.16,
one can argue the extra term is related to the genus of the base surface, however,
it is not clear how to relate our computation to this fact and the relation is open

to future work.
Proof. Let,
T?(e) = (T? x T?) \ A, (4.211)
wi=Mwp,  j=1,2 (4.212)
and let k be the complementary index of j, such that {j, k} = {1,2}. By Fubini’s

theorem,

/ wo A Ob =21 Z(l — §;T) / / 1;0b | wre, (4.213)
T2 (0 - 2 \JT2\De(r))

where for any given z; € T?, 1 : T?> — T? x T? is the inclusion of the torus as

the k-th factor of the product anchored at ;. Since b is well defined globally,

/ 1;0b = / b = —/ Lib, (4.214)
T2\De(z;) OT?\De (x5) 0D ()

where we always orient a submanifold by the outward pointing normal. Let
¢ : U — C be a holomorphic chart defined on an open and dense set U. If
z; € U, for small €, D.(z;) C U. Assume j = 1, k = 2, in the chart,

(0™ 1) 15b = bodz. (4.215)

If 21 = p(z1) and D(z;) C C is a bounded domain and neighbourhood of z,
by lemma 4.18,

— — + b2(21, ZQ), 29 € D(Zl). (4216)
21 — R2
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4.3 The volume of the moduli space

If D(2;) = ¢(De(x;)), by Cauchy’s residue theorem,

dz - -
/ ES —2/ — Z_ +/ ba(21, 2)dz = 4mi +/ ba(z1, 2)dz.
ODe (1) dD.(z1) 7 — %1 8D (z1) D (z1)

(4.217)

If j =2, k=1, we find a similar result,

/ b = 4mi +/ b1 (2, 22)dZ. (4.218)
D, (x2) 0D (22)

Since l;k is a continuous function in a neighbourhood of each z; € C,

lim b dz = 0. (4.219)

Hence, since U is dense in T?,

lime_m/ / 1;Ob | w2 = —4miVol(T?)
T2 \ J T2\Dc(z;)
- %/ lim€_>0 (/ 6k> €A(Zj)d2j VAN dij
C 0De(z5)

= —4miVol(T?). (4.220)

Finally,
/ wo A Ob =27 Z(l — sz)lime_m/ (/ LZ@b) Wr2.
M1 (T2) - 12 \ JT2\D. (=)
=27 Z(l — 5;7) (—4miVol(T?))
J

= —167%4 Vol(T?). (4.221)

By lemma 4.22, we conclude the volume formula. O]
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Chapter 5

Chern-Simons deformations of

vortices

In this chapter we consider Chern-Simons deformations of vortices of the O(3)
Sigma model and of the Abelian Higgs model. We will consider deformations
relying on a deformation constant x. There are several results in the literature
about existence of solutions to the field equations, for both types of models.

In section 5.1 we address existence and uniqueness of solutions to the field
equations for deformations of the O(3) Sigma model. On the plane, Han and
Nam prove in [19] that the field equations admit a solution up to some upper
and lower bound for . If there are only vortices or antivortices, Han and Song
prove in [20] existence of solutions for any k. On a flat torus, Chae-Nam [5] and
Chiacchio-Ricciardi prove [7] the existence of a bound on the constant for the ex-
istence of solutions as well as the existence of multiple solutions if the number of
vortices and antivortices on the surface is different. We extend the technique used
by Flood and Speight in [14] for Chern-Simons deformations of the Abelian Higgs
model to show the existence of a minimal deformation constant, independent of
the position of the vortices, if the surface is compact. We know from chapter 4
that for k = 0, the moduli space is incomplete, imposing some technical diffi-
culties in the techniques used for deformations of the Abelian Higgs model. In
subsection 5.1.1, we show that on a compact surface, small deformations of the

solution to the Taubes equation vary smoothly with x. In subsection 5.1.2, we
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5.1 Chern-Simons deformations of the O(3) Sigma model

show the existence of a positive lower bound for ||, independent of the posi-
tion of the cores. In subsection 5.1.3 we focus on the unbalanced case where the
number of vortices and antivortices differ and show that the possible constants s
for which the field equations admit a solution are bounded. By means of several
bounds in the norm of solutions to the governing elliptic problem, we show the
existence of multiple solutions in subsection 5.1.4. We finalize in subsection 5.1.5
with numerical evidence on the sphere supporting a conjecture about the exis-
tence of solutions to the field equations for any s if the number of vortices and
antivortices coincide.

In section 5.2 we study low energy dynamics of both the Abelian Higgs and the
O(3) Sigma model vortices with a Chern-Simons deformation. The results dis-
cussed in section 5.1 guarantee this is a well posed problem for small k. Previous
work in this direction includes the models by Kim-Lee [25] and by Collie-Tong [10]
for deformations of Abelian vortices. From the work of Alqahtani-Speight [1] we
know the model of Kim-Lee cannot extend to the coincidence set. We show our
formula can be extended and compare it with the model of Collie-Tong for de-
formations of Abelian vortices, showing that our computation leads to different
dynamics for pairs of vortices on the plane.

In subsection 5.2.1 we introduce the Maxwell-Higgs-Chern-Simons model, as
we will see, the introduction of a Chern-Simons term in the field equations induces
a connection term affecting the dynamics in moduli space. In subsections 5.2.2
and 5.2.3 we find the localization formula (5.215) for this term and compare it
with the Collie-Tong connection. In subsection 5.2.4 we show how to extend our
arguments to include the O(3) Sigma model. Finally, in subsection 5.2.5, we show
that the connection term can be extended to coalescence points, in the case of

the O(3) Sigma model, provided the cores are of the same type.

5.1 Chern-Simons deformations of the O(3) Sigma

model

Recall the construction of the O(3) Lagrangian (2.15) in section 2.1. To the pair
(¢, A) of a field and a connection, we add an additional neutral field N € C*° ()
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5.1 Chern-Simons deformations of the O(3) Sigma model

and to avoid a name collision, in this chapter we denote the north pole section as

n, so that we modify the O(3) Lagrangian as,
1 .
Low.cs = 5 <|!Dt¢!|2 +lel* +IN[[? = (IIDo]]* + | BI* + |[aN|?
HIEN + 7 — @3] + ||[NX|[7)) . (5.1)

where ¢35 is the gauge invariant product (n,¢) and X, is defined in a local trivi-

alization ¢, : U, — S? as the section such that,
Xy, = €3 X bu. (5.2)
We add a Chern-Simons term to the Lagrangian,

Les = = ({a, xe) + (ag, *B)) . (5.3)

DO | —

This Chern-Simons term is not gauge invariant, however, any two gauge re-
lated terms differ by a divergence. The product is the L? product induced in
the exterior algebra by the metric in ¥X. With this notation, the Kim-Lee-Lee
Lagrangian [27] is,

L = Logycs + £Lcs. (5.4)

For the Abelian Higgs model, there are two ways to introduce a Chern-Simons
term in the theory, one is due to Jackiew-Lee-Weinberg [22] and the other to
Lee-Lee-Min [29]. In the first case, the connection term is replaced by a Chern-
Simons term and the potential term is replaced by a sextic potential that admits
a set of Bogomolny equations. It is known that several difficulties arise to study
solutions to this model [14]. For the second model, the extension to Chern-Simons
deformations of the O(3) Sigma model given in (5.4) is well established, yet the
model has only being explored for compact tori due to the difficulties that non-
compactness of the moduli space impose. We address those difficulties in this
section, let us start considering variations with respect to ag yielding the Gauss

law,

d*e = —(Dip, Xy) + K * B, (5.5)

where d* = — * dx is the codifferential. Instead of computing the field equations

by the variational method, we note that these equations admit the use of the
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5.1 Chern-Simons deformations of the O(3) Sigma model

Bogomolny trick. Assume Gauss’s law holds, the total energy of a tuple (¢, A, N)

is,

E= <||Dt¢|l2+ [lell” + [IN1I” + [|Dg|[* + || BII® + [|dN | ?

KN +7 = g5l + |INXy]|*) - (5.6)

N

Let us define the quadratic form,

1 y 3
Q=3 (D6 = N Xyl +[le = AN | + || V]2 +|[+B + 5N + 7 = 65]1*) +118a]*
(5.7)

where d4¢ is the (0,1) component of D¢ with respect to the almost complex
structures of ¥ and the target S2. We can simplify Q as follows,

Q =B~ (Ded, NXy)  (e,dN) + (B, kN + 7 — 0u) + 8a0]P° — 51 D0]

=B~ {{Dig, Xo) + e — 5 B,N) + (+B,7 — 65) + 1|01 ~ 5 IDg”

- 1

=B+ (xB,7 = ¢s) + [10aI* — 5| DSII", (5.8)

where we have used Gauss’s law in the second equation.

Since,
D¢ = D¢ + a9, (5.9)
we deduce,
Loy e 1 2

Q=F+ (xB,7 = s) + 510401 — 51104911 (510

Consider a trivialization ¢ : 7~ (U) — U x S?, such that 1o ¢(z) = (z, ¢(z)),
where gz~5 : U — S? and U is an open, simply connected, dense set such that
Z = ¢3'(£1) C U. Assume in this chart the connection is represented by a
form a € QY(U), let § : S* \ {#n} — R be the azimuthal angle on the sphere,
Romao and Speight show in [45] that there is a well defined, gauge invariant form

£eQYX\ Z), such that on U,

§=¢3-(a—¢do). (5.11)
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5.1 Chern-Simons deformations of the O(3) Sigma model

A short computation in local coordinates shows

% (|0a0* = [049|?) = dé — T B+ (1 — ¢3) B, (5.12)

N | —

hence,
Q-p- [ (&-rD)
=E—Q2r(1—71)ky =27 (1+7)k_), (5.13)

where the last integral was also computed in [45]. Therefore, as for the O(3)

Sigma model without deformation,
E>2r(1—7)ky =27 (14 7)k_, (5.14)

with equality if and only the following Bogomolny equations are satisfied,

N =0, (5.15)

e = dN, (5.16)
Didp = NX,, (5.17)
0a¢ =0, (5.18)
*B = —(kN +7—(n,¢)). (5.19)

Since equation (5.18) holds, by the result [51, p. 8] of Sibner et al., Z is finite,
moreover, if we consider a holomorphic chart ¢ : U C ¥ — V C C about ¢ € Z,
and a trivialisation ¢ : 71 (U) — U x S, such that 1 o ¢|; = (id, ¢), then the
degree of the map ¢ o etV — C at ©(c) is independent of the holomorphic
coordinates chosen, as for the O(3) Sigma model. We call this the degree of the
section ¢ at c. As in the O(3) Sigma model, we define the sets P = ¢3'(1),
Q = ¢3'(—1) of vortices and antivortices and denote by ky = |P|, k_ = |Q| the
size of the core sets, counted with multiplicity, where a core ¢ is repeated as many
times as the degree of ¢(c). If we choose the gauge ay = —N, the fields become
stationary: ¢ = @ = 0. Defining the function u : ¥ \PUQ — R,

u=log (1_%), (5.20)
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5.1 Chern-Simons deformations of the O(3) Sigma model

from the Bogomolny equations and the Gauss’s law, we find that (u, N) is a

solution to the elliptic problem,

—AuzZ(/@N—l—T—l—

) —1—47725 —47TZ(5q,

pep 4se (5.21)
eV — 4et
—AN =k | KN +7+ + ‘ N,
ev 4+ 1 (eu + 1)2

As a consequence of the second equation, if K = 0, N = 0 and the equation
for u reduces to the elliptic problem of the abelian O(3) Sigma model, in which
case we know that there exists exactly one solution, provided Bradlow’s bound
holds. Given a set of disjoint divisors D = (P, @), we define

k(D) =sup{k > 0 | there exists a solution of the field equations}. (5.22)

This is a non-negative number we aim to prove that satisfies the inequality,
inf {k,(D) | D € MF+* -} > 0. (5.23)

Moreover, if |k, — k_| > 0 and Bradlow’s bound is fulfilled, it will turn out

that the supremum
sup {k.(D) | D € M*+* 1} (5.24)

is bounded and for small but positive x, there are two solutions to the field
equations, one close to the solution (ug,0) of BPS solitons and another with
arbitrarily large norm, in a sense to be defined on the following sections. Similar

statements hold for negative .

5.1.1 Small deformations of s

In this section we prove that small deformations of the solution Ay to the Taubes
equation vary smoothly with x. In order to do this, we will define a suitable
operator and use it together with the implicit function theorem. Recall for any
holomorphic chart ¢ : U C ¥ — C and bounded domain D C C, there is a
smooth function G : p~*(D) — R such that if =,y € ¢~ 1(D),

Gz, ) = 5 log (@) ~ wl0)] + G, y), (5.25)
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5.1 Chern-Simons deformations of the O(3) Sigma model

Hence, for the functions,

vc:47rz G(z,¢), c=(c1,...,Cr), (5.26)

e’ varies smoothly with c. We denote by A, ,_ the (k4, k_) diagonal of YR+ x
Y*-. The space of solutions of the elliptic problem at x = 0 is the moduli space
of asymmetric vortices and antivortices described on Chapter 2. We define the

function
v : MEF- 5 C°(3R), v(p,q) = vp — Vg, (5.27)

where C*(%, R) means the set of smooth functions, except at a finite set of points

at which we have divergences to £oo. If F': R — R is the function

et —1
5.28
et_|_1+7’ ( )

F(t) =

then solving equation (5.21) is equivalent to finding a pair of functions (h, N)
such that,

Ah +2(kN + F(v + b)) + %(m k=0, (5.29)
AN + Kk (kN 4+ F(v+ h)) 4+ 2F'(v+ h) N = 0. (5.30)

We introduce the potential function V' (t) = 2F’(t) such that, if (p,q) €
ME++="h € H" and v = v(p, q), then,

4evp+vq+h

V(v+h) = (5.31)

(evp—l—h + 6”(1)2 .

As shown in the proof of Theorem 2.12, by equation (2.173) the functions e»,
e¥a are smooth and vary smoothly with (p,q). We observe that the spaces H",
r > 2, are algebras, a prove can be found in [14] where Flood and Speight use
this result to prove that e is a smooth function H" — H", the claim follows
because e is the limit of the absolutely converging power series > >~ h™/n!l. As
a consequence, V(v + h) € H". Likewise, F'(v+ h) € H" if h € H". For any given
pair of disjoint sets P, @), let us define the operator,

T:RxH xH — H2x H 2 (5.32)
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5.1 Chern-Simons deformations of the O(3) Sigma model

T(k,h,N) = (Ah+2(I€N+F(U+h)) + %(m —k_), (5.33)
AN+ k(KN + F(v+h))+V(v+h)N) (5.34)

T is a smooth mapping between Hilbert spaces. For any given h € H", r > 2,

we define the operator
L:H — H 2 L=A+V(v+h). (5.35)
The derivative of the restriction
T|:H x H — H 2 x H"?, T|(h, N) = T(0,h, N), (5.36)
at a point (h,0) is dT|p0 = L @ L.

Lemma 5.1. For any set of core points (p,q) in the moduli space, the operator
L is a Hilbert space isomorphism H" — H"~2.

Proof. By Sobolev’s embedding, h € C°(X), hence V' > 0 is a continuous function
which is only zero at the finite set P U Q. By Lemma 2.10, for any v € H" 2
there is exactly one ¢ € H? such that,

Ly = 1, (5.37)

but by Schauder’s estimates,

el < C(l|Ap]lur—2 + [[el]L2) (5.38)

for some constant C', hence ¢ € H" and L is a bijective bounded operator. By
the open mapping theorem, L~ is also continuous, hence bounded and the claim
follows. [

Proposition 5.2. Assume Bradlow’s bound holds, then there is a positive con-
stant ko(P, Q) such that if |k| < ko, the elliptic problem (5.21) has a solution.
Moreover, for any open neighbourhood U of PUQ, the restriction of the solutions
(h,N) to ¥\ U varies smoothly with k.
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5.1 Chern-Simons deformations of the O(3) Sigma model

Proof. Let hy € H" be the solution of equation (5.29) with k = N = 0, i.e. hyg
is the solution to the regularised Taubes equation of the abelian Sigma model,
since T(0, ho,0) = (0,0), by the implicit function theorem, there is an interval
(—Ko, ko) such that the map,

(—Ko, ko) D Kk +> (K, hy, Ny) € (=Ko, ko) x H" x H", (5.39)

is smooth and T(k, h,, N,;) = (0,0). Therefore, each pair (h,, N,) is a solution to
the regular elliptic problem (5.29), (5.30) in H" x H". By a bootstrap argument,
each (hy, N,) is in H* x H* for any k > r. Hence, by Sobolev’s embedding,
(hy, Ni) is smooth, moreover, the function u, = v + h, varies smoothly as a
function of k and (p,q) if p;, g, € U are such that p; # ¢ for each vortex and

antivortex position. O

Thus if k is small, there is a family of solutions to the field equations close to
the BPS soliton determined by hy, in the sense that (h, — hg, N,) is small in the
H" x H" norm for any r > 0.

5.1.2 A positive gap for x.(D)

By proposition 5.2, k.(D) > 0 for any distribution of the divisors. On this
section we will prove the existence of a positive lower bound for ., indepen-
dent of the core positions. Thus, localization of vortex-antivortex systems makes
sense globally for small deformations « of the BPS model as is for the case of
Ginzburg-Landau vortices [14], even though in this case the moduli space should
be incomplete as is the case for the BPS model at k = 0. We prove several
technical lemmas first, in order to find bounds for the norm of T’, the derivative

of the operator defined in the previous section.

Lemma 5.3. The solutions h of equation (5.29) with k = 0 are uniformly bounded
on H2.

Proof. Let,
1
c(h) = - / hVol, (5.40)
IS
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5.1 Chern-Simons deformations of the O(3) Sigma model

be the average of h on ¥. h — ¢ is orthogonal to the kernel of A, Schauder’s

estimates in this case give,
[1h = cllu2 < C||AR|L2, (5.41)

where we denote by C' a positive constant, independent of the function h. The

function F(t) is bounded, hence

Ah = —2F(v + h) — %(m k) (5.42)
is uniformly bounded in L2. Therefore, the set of functions {h — ¢} is bounded
in H? and by Sobolev’s embedding also in C°(X). We claim that the averages are
also bounded. Assume otherwise towards a contradiction. Let A = h — ¢, then
there are sequences vy, hn, ¢, such that len| — o0. Suppose ¢, — oo, and let
(P> an) € MF+F= be the points defining v,,. Since ¥ is compact, we can assume
the convergence (Pn, a,) — (Px, Q) € XF+ x X*-. We have pointwise convergence
Uy, — Uy = Up, — Vg, , except possibly at points on the surface which are in p, and

q. if there is any. Since the functions h,, are uniformly bounded, we also have,
2F (Un + h + ) — 2(1 + 1), pointwise a.e. (5.43)

By the dominated convergence theorem,
/ 2F (v, 4 hy 4 ¢,)Vol = 2(1 4 7)|3, (5.44)
b

but by the divergence theorem,

47

/ 2F (v, + hy + ¢,) Vol = —/ (Ah + 5 (ky — k;_)> Vol = —4n(ky —k_),
s s

(5.45)
and this contradicts Bradlow’s bound. If ¢, — —oo the same argument gives
another contradiction. Therefore the set of averages {c(h)} is bounded. The

lemma follows. [

Lemma 5.4. For any € > 0 there is a positive constant C(¢€), such that for any
set of divisors and any h € H? with ||h||g2 < €,

(V(v+h), )2 > C. (5.46)
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5.1 Chern-Simons deformations of the O(3) Sigma model

Proof. We will omit the subindex in the product (V1) since it is clear that we
refer to L2(X). The potential is a non negative function, hence (V (v + h),1) > 0.
Assume towards a contradiction the existence of sequences {v,}, {h,}, where
||hn|lqz < € and with vortices and antivortices at positions p,,, q,, such that for

the sequences of potentials,

we have (V;,,1) — 0. As in the previous lemma, we can assume p,, — p. € L5+
and q, — q. € X*- together with pointwise convergence v,, — v,, except possibly
at points z € X belonging to the set of coordinates of p, or q.. Let Cy > 0 be

Sobolev’s constant, such that,
[Allco(s) < CollA][u2- (5.48)

Hence,
0 < (V(Jup,| + g, | + Coe). 1) < (Vi 1) — 0. (5.49)

On the other hand, V (|vp, | + |vq, | + Coe€) is a sequence of bounded functions

converging pointwise to the continuous function V(|vp,| + |vq.| + Coe). By the
dominated convergence theorem,

(V(lvp.| + |vq.| + Co€), 1) =0, (5.50)
a contradiction. O

Given any pair (D,h) € MF+*~ x H", r > 2, the potential V(v + h) is a
non negative continuous function such that 0 < (V(v+h),1). If ¢ € L2 by
Lemma 2.10, there is exactly one ¢ € H? such that,

(A+V(v+h))e =1, (5.51)

and a positive constant C’, independent of V(v + h), ¢ and 1, such that,

c’ V(v + h)|[}2
[l < Vvt h),1) ( (V(v+h),1)

V4R + 1) ol (552
We let the point in the moduli space vary in order to define the operator,

L MM < H? — B(H?,L?), L(p,q,h) =L,  (5.53)
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5.1 Chern-Simons deformations of the O(3) Sigma model

where L = A 4+ V(v + h) was defined previously. £ is a continuous map such
that each £(p, q, h) is invertible. Since inversion of bounded invertible operators

is continuous, the map
L MR- x H? — B(L? H?), L'(p,q,h) =L7", (5.54)
is also continuous.
Lemma 5.5. Given € > 0, let Q = M**= x B(0) and let,
Cule) = sup [|£1], (5.55)
then C, s finite.

Proof. By lemma 5.4, there is a constant C(€) such that (V (v + h),1) > C for
any (D,h) € Q. If o = L', with ||¢||rz2 = 1 by (5.52) we have the bound

e
el < = <% + |27 + 1) : (5.56)

By Schauder’s estimates,

lellnz < C ([|Ap]lL2 + [[ol]L2)
=C([I-V(v+h)e + Yz + [l¢l|2)
<, (5.57)

where the last constant is not necessarily equal to the first one. Therefore,
1L ]a|] < C, hence C, < C. O

For given k, let us define T, | : H2xH? — L?x L? as the restriction Ty|(h, N) =
T(k, h, N), then we have,

AT =L@L+ T, (5.58)
where,
(W, N') = (%N’, KN + gV(U FR 4+ V(0 + h)Nh’) . (5.59)
Since V'(t) and V (¢) have range [0, 1],
K
0 N < 2+ Ve + (5 N0 ) W (5i0)
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5.1 Chern-Simons deformations of the O(3) Sigma model

By Cauchy-Schwarz,

1/2

1T < (K22 + |K])? + (k]/2 + |IN]12)7) (5.61)

We use lemma 5.3 and choose €y such that ||ho||u2 < € for any solution (hq, 0)
of equation (5.29) with k = 0. We also take the constant C,(ey) of lemma 5.5

€ = 111.11 € )y 7 . 5.62

Proposition 5.6. For any set of divisors D € NMF+F-

. 1
k(D) > emin {1, L1 1O T max (1L 7] 57 } : (5.63)

Proof. For |k| <€, ||h]|L2 < € and ||N||r2 < €, we have,

1 < 1
20, = 2[[(LeL) ||’

||T]| < (5.64)
hence, as in the proof of Lemma 5 in [14], we can conclude that dT\,| is invertible,

independently of the point in the moduli space and
[1(dTx]) 7| < 2C.. (5.65)

If x(k) = (hs, N,) is the curve of solutions to equations (5.29),(5.30), guaran-
teed to exist by proposition 5.2, then by the implicit function theorem, this curve
can be extended whenever dT,| is invertible at x(x). This is the case if |k| < €
and [|h|], || N]| < €. So, for any D € M**~let ko > 0 be the right end of the
maximal interval [0, k9) on which this curve can be extended. Either ko > ¢, or

there exists a k; with |r;| < k. < € such that ||x(k)||lu2xuz > ex;'. In the later

case,
||>.C/11||H2><H2 - ‘|(dTﬂ|X(H))_laHT|(n1,x(F»1))||H2xH2
< 20*‘|anT‘(m,x(m))HL2><L2- (566)
But,
8, T = (2N, 26N + F(v + h)), (5.67)
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5.1 Chern-Simons deformations of the O(3) Sigma model

hence,

10xTle2xrz < 2/[N[ee + 2|l Nl + sup {|F]} [5]2
< 2¢(1 4 €) + max {1 7} |S|Y/2 (5.68)

Therefore, either ko > € or

€
> .
0= 90, (2¢(1 + €) + max {1 £ 7} |2[1/2)

(5.69)

Since k4(D) > ko we conclude the claimed lower bound. O

5.1.3 The unbalanced case

In this section we assume k. # k_. In this case the family of deformation con-
stants is bounded, contrasting with the euclidean case, where there are examples
for which the elliptic problem can be solved for any « [6]. We will prove the exis-
tence of multiple solutions of the field equations, the first step will be to describe
the possible limit points of sequences (hy,, kK, Ny, ) as k, — 0.

It will be convenient to redefine the neutral field as follows. Let N’ = kNN,

equation (5.30) can be rewritten as,
AN'+ (* +2F' (v + h)) N' + k*F(v + h) = 0. (5.70)
Proposition 5.7. If |k, — k_| > 0, k(D) is uniformly bounded,

max {1 F 7} |2\ '/
(D) < .
re(D) < ( o ks — k_|
Proof. Let z be such that N'(z) = ming N’ and likewise, let T be such that
N'(7) = maxy, N'.
Let us denote F(v(z) + h(z)) as F(z). Likewise, we denote F'(v(x) + h(x))

(5.71)

as F'(z).
By the maximum principle,
k*F(z) k*F(T)
- < N(@) < ———"—. 5.72
pay 7 R G 7 (5:72)
Since F'(z) > 0, we conclude the uniform bounds,
—(1+7) <N <(1-71). (5.73)
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5.1 Chern-Simons deformations of the O(3) Sigma model

From equations (5.29) and (5.70) we obtain,

2

4
AN’ — % (Ah + ’%’(m - k_)) +2F' (v + h)N'=0. (5.74)

Integrating this equation,
=21k (ky — k_) + 2(F'(v+ h), N') = 0. (5.75)

Using the fact that F” is a positive function bounded by 1/2 and the uniform

bound for N’,
/ !/
7T(kf+—k_> 27T|k+—k_|

]
As a consequence of this proposition, we have the following lemma,

Lemma 5.8. If |k —k_| > 0, and (hs, N].) denotes a solution to the pair of
equations (5.29), (5.70) with deformation parameter k, for any p > 2 there is a

uniform constant C(p), such that,
[ = e(hue) llwzs + [[ Nyl lwze < C, (5.77)
where c(h,) is the average of h, on the surface.

Proof. We will assume the constant C' can change from one line to the next.
Since k, is bounded, from (5.70) we have a uniform bound for the norm of N’ in
Sobolev’s space,

I|AN[|» < C. (5.78)

By Calderon-Sygmund theory, this implies,
IN"[lwze < C([[AN"]|Lr + [[N']|Le) < C. (5.79)

Similarly, from (5.29) we deduce the existence of an upper bound for the set
{h. — c(h,)} in WP, O

If we fix any p > 2, Sobolev’s theory says that the embedding W27 — C*(%)

is continuous, thence there exists a constant independent of x, such that,

he — clh)lor + [|N']|er < C. (5.80)
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Let (hy, N}) denote a sequence of solutions to the elliptic equations (5.29)-
(5.70) with a corresponding sequence of parameters {x,}. We are interested in
describing the behaviour of these solutions as x, — 0. Although the sequence
(h — ¢(h), N") is uniformly bounded in C' we cannot rule out the possibilities
c(h,) — £oo. In the following lemmas we deal with the three cases arising on

this analysis.

Lemma 5.9. If (h,, N} is a sequence of solutions to the elliptic equations (5.29)-
(5.70) with parameters k, — 0 such that the sequence is bounded in H' x H', then
for any p > 2 the sequence converges to (hg,0) strongly in WP x WP where hy

15 the solution to the reqularized Taubes equation.
In particular, this means the convergence is uniform in C* x C*.

Proof. By the Banach-Alaoglu theorem, for any subsequence (hy,, N, ), after
passing to another subsequence if necessary, we can assume (hy,,, N;, ) — (h., N])
weakly in H! x H! and by the Rellich-Kondrachov lemma, strongly in L? x L2,
Let (u,w) € H' x H, equations (5.29) - (5.70) can be expressed in weak form as,

A7
<v%vm»+<muN@+F@+wW»+Eﬂ%+—h»>:a

(5.81)
(Vw, VNT’%) + <w, (/@ik +2F'(v+ hy,)) N;Lk + mik F(v+ hnk)> =0.
Weak convergence in W' plus strong convergence in L? imply
(Vu,Vhy,, ) — (Vu,Vhy), (Vw, VN, ) = (Vw, VN]). (5.82)

After passing to another subsequence if necessary, we can assume h,, — h.

pointwise almost everywhere. By the dominated convergence theorem,
(1 F(0+ hoy)) = (1, F(v + h), (5.83)

and simmilarly for w. Therefore, (h., N]) is a weak solution to the equations,

47
3]
AN, +2F'(v+ h,) N, =0. (5.85)

Ah, +2(N.+ Fv+h,))+ = (ky —k_) =0, (5.84)
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5.1 Chern-Simons deformations of the O(3) Sigma model

Ellipticity guarantees the solution is in fact strong, hence, by the usual elliptic
estimates, (h., N) € H? x H? and the solution is continuous. This together

*

with (5.85) implies V] = 0. Therefore (5.84) is the regularised Taubes equation,
whose unique solution is h, = hy.

Since any subsequence of (h,, N|) can be refined to a convergent subsequence
to (ho,0) in L? x L?, we obtain the limit,

In particular, N/, — 0 in L2, this limit and the boundedness of the functions
F(t) and F'(t) imply by means of equation (5.70) the limit,

|AN!||g2 — 0. (5.87)

Hence, by the usual combination of Schauder’s estimates and Sobolev’s em-

bedding, we find two constants such that,
INlleo < Gy [Nl < Co (IAN s + [N [i2) = 0. (5.88)
Whereas by equation (5.29),
—A(hy, —ho) =2N] +2(F(v+ hy,) — F(v+ hy)). (5.89)
Note that by the mean value theorem, for any = ¢ Z,
F(u(z) + ha(@)) = F(v(2) + ho(x)) = F'(§) (ha(x) — ho(x)), (5.90)
for some ¢ between h,,(z) and ho(x), whereas for z € Z,
F(v(x) + hy(z)) — F(v(z) + ho(z)) =0, (5.91)

since F(v(z) + hy(z)) = F(v(z) + ho(x)) = £1 4+ 7 in this case, hence, there is a
constant C' > 0, such that,

|F'(v+ hyp) — F(v+ ho)| < C|hy, — hol, (5.92)
by (5.89) and (5.92),

AR, = ho)[lL2 < 2[[Nyllez + 2[|[F (v + hy) — F(v + ho) |12
< C(|INollez + [[7en = hol12). (5.93)
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5.1 Chern-Simons deformations of the O(3) Sigma model

We deduce ||A(h, — ho)||r2 — 0. Repeating the elliptic estimate argument

we find,
[Py = hol[z — 0, (5.94)

and consequently also h,, — hg in C°(X). Finally, we follow a bootstrap argument.
Knowing the convergence (h,,, N!) — (hg, 0) is uniform in C°, we can repeat the
previous computations for the norm of the Laplacian, this time in the L” norm

and deduce the claimed limit. ]

In case (h,, N}) is not bounded, necessarily {c(h,)} has a subsequence diverg-

ing to £o0o. We consider each possibility in the following lemma.

Lemma 5.10. If {(h,, N})} is a sequence of solutions to equations (5.29) (5.70)
such that Kk, — 0 and c(h,) — 0o, and if p > 2 is a fixed but otherwise arbitrary

constant, the following limit holds,

[, — c(h) [lw2r + [N, — ag|[w2e — 0, (5.95)
where
21 (ko — k_
= —1—7— % (5.96)

and the condition ky — k_ < 0 is necessary. Similar statements hold if ¢(h,) —

—o00, where the constant a in this case 1is,

21 <k+ - k',)
o =1-7——F (5.97)
X
and the condition ki — k_ > 0 is necessary.

Proof. We proceed as in lemma 5.9. Let h, = h, — c(hy), we consider a subse-
quence (ﬁnk, N;.). By lemma 5.8, after passing to another subsequence if nec-
essary, we can assume (i, , N}, ) — (h, N') weakly in H' x H' and strongly in

L2 x L2. Repeating the argument of lemma 5.9, this time using the fact that

¢(hy,) = 00, we find (h,, N!) is a strong solution to the equations,

- 4
Ah*+2(N;+1+r)+E7r|(k+—k_) =0, (5.98)

AN’ = 0.
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Since N/ is in the kernel of the Laplacian, it has to be a constant function «.
By a bootstrap argument, h. is smooth. To determine the constant, we integrate

equation (5.98) by means of the divergence theorem and find,

2
a= —1—T—|E7r|(k+—k‘_), (5.99)

and,
Ah, = 0. (5.100)

Since each ﬁn has zero average the same holds for iL*, therefore ﬁ* =0.
We follow once more the pattern of lemma 5.9 to conclude strong convergence
(Ttng, N, ) — (0,@) in L? x L? and deduce that for any p > 2,

1 nl w2 + [N}, = a|lw2r — 0. (5.101)
Finnally, by (5.73),
—(14+7)<a<l-r, (5.102)
hence,
2m
—(1+7) < —(1+T)—@(k‘+—k_), (5.103)

implying k, < k_. It is clear these arguments can be rearranged for the case
c(hy) — —oc. O

Lemmas 5.9, 5.10 thus prove the following proposition.

Proposition 5.11. If{(h,, N})} is a sequence of solutions to equations (5.29) (5.70)
such that k, — 0, the only possible limit points are (ho,0) and (0,a4), for oy
defined on lemma 5.10. If {(h,, N},)} has a bounded (unbounded) subsequence,
then (ho,0) ((0,ax)) is a limit point.

5.1.4 Existence of multiple solutions

In this section we prove the existence of multiple solutions to the field equations
using theorem 2.21. In order to do this, we define an operator ® satisfying the

hypothesis of the theorem trough a series of technical lemmas.
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5.1 Chern-Simons deformations of the O(3) Sigma model

Lemma 5.12. For any 0 < kg < k«(D) and p > 2, the set {(hs, N.) | K > Ko} is
bounded in WP x WP,

Proof. Assume otherwise towards a contradiction. If (h,, N}) is an unbounded
sequence, by lemma 5.8 we can suppose c(h,) — £oo depending on the sign of
ky — k_. Without loss of generality, let us assume ky — k_ > 0. In this case
c(hyp) — —oo by lemma 5.10. Since {x,} is bounded, we can assume k,, — k, # 0.
Let hy, = hy, — c(hy), going through the steps of the proof of lemma 5.9, we deduce

the existence of a strong limit (h,, N/) — (h., N.) in W?P x W2?_ such that

(hs«, N.) is a solution to the problem,

(A+ RN+ K2 (-147)=0, (5.104)
. 2
Ah, + 2N] + 2 (—1+r+|%|(k+—k_)) = 0. (5.105)

By elliptic regularity the pair (h,, N.) is smooth. Since k2 > 0, integrating

the first equation, we obtain,
(N, 1)+ (=1+7)|X| =0. (5.106)
Integrating the second equation, we have,
(NLDY + (=147) |12 +27(ky — k) =0. (5.107)
Hence 27 (ky — k_) = 0, a contradiction. O

We will prove the existence of multiple solutions to the field equations in the
unbalanced case, which can be seen in figure 5.2 on the right column, adapting
the argument from [18] which relies on Leray-Schauder’s degree.

We define the operators,

L=(-A—A-A=X),  &u(hN)=(fulh,N),gu(h N)),  (5.108)
where

fo(hyN) =2(N + F(v+h)) + l%(m — k) — Ah, (5.109)

gu(h, N) = (K + 2F'(v + h))N + *F (v + h) — AN, (5.110)

and A is a positive constant. Recall a continuous non-linear map 7' : X — Y of
Banach spaces is said to be compact if it maps any bounded subset A C X to a

precompact set TA C Y,
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Lemma 5.13. The operator ® : [0, x,] x H2 x H? — L? x L? such that ®(k,-,-) =

d,. is continuous.

Proof. We show the component functions f. and g, are continuous as follows.

Notice,

|| fiez (R, N2) = fioy (ha, Ni)||rz2 < 2[|N2 — Nif[rz + 2[|F7(§) (ha — hu)|[re + A[lhe — ha[re
< C([[N2 = Nillez + [|h = Iu]|12), (5.111)

where ¢ is well defined almost everywhere. For g, we have,

1915 (2, N2) = gy (B, Ni)||e2 < [[63 Ny — w7 Ny |r2
+ |83 F (v + h2) = k] F(v + )2
+ 2||No F'(v + ho) — Ny F' (v + hy)||12
+ A || Ny — Nyl|re
< |w3 = #7[ || Nalle2 + &7 [[N2 — Ny ||r:
|65 — &1[[|F (v + ho)|[z + &7 [|F(0 + ho) — F(v+ hy)l[ra
2||(Ng — Ny) F'(v + h)||re
+2[|Ny (F'(v + hg) — F'(v + b)) |r.2
+ A || Ny — Ny||re. (5.112)
F(v + hg) and F'(v + hy) are uniformly bounded by a constant independent
of hsy. Also, there exist functions &, n well defined except at core positions, such
that,
F(0+ h) P-4 )| = [F(€) (b — )| < Clhs —la],  (5.113)
[F'(v + ha) = F'(v 4 ha)| = [F"(n) (hy = h1)| < C'|ha — . (5.114)
By Sobolev’s embedding, Ny is continuous and the norm || Ny||co is controlled
by ||N1]||u2, hence,
[N (F' (v + ha) = F'(v + b))z < |[Nafleo [[F' (0 + ha) = F'(v + ha)||r2
< C|Mlnz [[he = halr2. (5.115)

Hence, there is a constant C, independent of (x;, hj, N;), such that,

195 (hay No) = g, (P1, N1z < C (|85 — K3] (1 + || No|12)
[Ny = Nillez (1+ #7) + [[h2 — ha |2 (87 + [[Ni]]2)). (5.116)

167



5.1 Chern-Simons deformations of the O(3) Sigma model

(5.111) and (5.116) prove the component functions are continuous. O

Proposition 5.14. The operator T = L7 0 ® : [0, k,] x H? x H> — H? x H? is

compact.

Proof. By the Cauchy-Schwarz inequality and the standard elliptic estimates, if
u, f € L?, and

(A4+Nu=f (5.117)

in the weak sense, then u € H? and there is a constant C, independent of (u, f)
such that,

ullez < C|f]]L2- (5.118)

This shows (A + \)~! : L2 — H? is continuous, therefore L is also continuous
and by lemma 5.13 also T'. If T'(k, h, N) = (u,w), then we have,

(A+Nu=—f, (A+ N w=—g,. (5.119)

Let A C [0,k.] x H? x H? be bounded and closed and let R > 0 be suffi-
ciently large such that if (k,h, N) € A, then ||h||lgz + ||N||lgz < R. If {(un, w,)}
is a sequence in T(A), such that (u,,w,) = T(kn, hn, N,) for (kn, hn, N,) €
A, we can find a subsequence (u,,,w,,) such that x, — k' € [0,k and
(s Np) = (B, Ny) weakly in H' x H' and strongly in L? x L2 By equa-
tions (5.111) and (5.116) and the fact that {N,} is bounded in H?, the sequence
{®(Kny, Py Ny )} is Cauchy in L2 x L2, By (5.119), {(tun,,w,,)} is Cauchy in
H? x H?, therefore convergent in T'(A). O

By this proposition, for any bounded open set  C H? x H? such that (I —
L~ 'o®,)71(0) & 09, the degree

deg(I — L' o®,,0,0), (5.120)

is well defined and a homotopical invariant for s restricted to any subinterval
[a,b] C [0, k4] such that,

(I -Lto®,)1(0) ¢ 0Q VK € [a,b]. (5.121)

Notice (h,N) € (I — L7 o ®,)71(0) if and only if it is a solution to the
governing elliptic problem, (5.29), (5.70).
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Lemma 5.15. For any ball B C H? x H? and for any € > 0, there is a § > 0 such
that for any (h,N) € B, |ke — k1| < 0 implies |T(ka,h, N) — T(k1,h, N)| < €.

It is said that the operator T is continuous in x uniformly with respect to
(h, N) in balls in H? x H?

Proof. In order to prove the lemma, it is sufficient to consider balls centred at
the origin. Let R > 0, and (h, N) € Bg(0). If (u,w) = L™' o ®(k, h, N), then
u and w are solutions to (5.119). Let (uj,w;) = L™' o ®(k;,h,N), j = 1,2,
then u; = uy because f,;(h, N) is independent of k. For w;, by (5.116) there is a
constant C' = C'(R) independent of (h, N), such that,

Gy (B, N) — g, (B, N)||12 < C'|kg — k1] (5.122)
By (5.119),

IV (wz = wi)|[f2 + A|we — willf2 = —{(w2 — w1), gy (hy N) = gy (b, N))
< lwz — w2 - [[gey (R N) = giy (hy N)|J12
(5.123)

Whence, there exists another constant, independent of (h, N), such that,
|lwy —wi[le> < C'lge, (hy N) = gi, (hy N)||12- (5.124)
By Schauder’s estimates,

|lwa — wi[z < C ([[A(wz — w1)l[2 + [Jwz — wi[r2)
< C(|gra(hs N) = gy (B N) 12 + (A 4+ 1) [[wa — wi[r2)
< Cgny (R N) = gy (hy N |12
< O|k3 — K3l (5.125)

Therefore, ||(ug, ws) — (u1,w1)||pzxpz — 0 uniformly as ko — K. O

If 0 < Ko < K«(D), we know by lemma 5.12 that there exists an R > 0 such
that for any k € [k, k«(D)] the solution to equations (5.29), (5.70) is in the
interior of the disk D(0, R) C H? x H2. Since for any € > 0 there is no solution
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to the equations for k.(D) + €, by the homotopy invariance of the degree, we

conclude,
deg;s(I— L' o®,,D(0, R),0) =0, K € [Ko, k«(D)]. (5.126)

By proposition 5.2 we know there is a neighbourhood U of (hg,0) such that
for k small enough, there is exactly one solution (h,, N!) to equations (5.29) and
(5.70) in U and this solution varies smoothly in H? x H? with k.

Lemma 5.16. |ind(/ —7(0,-,-), (ho,0),0)| = 1.
Proof. At k =0, the derivative of ®q at (hg,0) has components,
Fo(ho, 0) - (6h,6N) = 2 (6N + F'(v + ho) 6h) — Adh, (5.127)
9o(ho,0) - (6h,6N) =2 F'(v + hg) 6N — AdN. (5.128)
The operator L™ is linear, hence, the derivative of Ty = T'(0, -, ) at (hg, 0) is,
T4 (ho,0) = L™ o @ (hy,0). (5.129)

If (0h,0N) € Ker(! — T{(ho,0)), then (6h,0N) is the solution to the elliptic
problem,

—~AGh =28N + 2 F'(v+ hy) 6h, (5.130)
—AGSN = 2F'(v+ hg) SN. (5.131)

By lemma 2.10, the operator A + 2 F'(v + hg) : H> — L? is an isomorphism.
Therefore, 6h = 6N = 0. By theorem 2.19,

ind(I — T(0,-,-), (ho,0),0) = %1, (5.132)

where the sign depends on the multiplicities of the eigenvalues A\ > 1 of I —
Ty (ho, 0). O

Proposition 5.17. There is a kg > 0 such that, if 0 < k < kg, equations (5.29),(5.70)
have ezxactly two continuous families of solutions. As k — 0 one of the families
is convergent to (ho,0), the solution to of the regularised Taube’s equation and
the second family is such that (h, — c¢(hy),N.) — (0,ax) and c(h,) — Foo,
where az and the sign of the divergence depend on the sign of ky — k_ as in
lemma 5.10. Moreover, for any R > 0, there is a k' > 0 such that if 0 < kK < K/,

then ||(he, Nio)||lazxmz > R for at least one pair of solutions to the equations.
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Proof. Proposition 5.14, and Lemma 5.15 show T satisfies the hypotesis of theo-
rem 2.21. By proposition 5.2, there exists kg € (0, k] and an open bounded set
U C H? x H? of (hg,0) such that the restriction of (h,, N,) to U varies smoothly
with k € [0, ko). By lemma 5.16, if diam(U) is small, deg(! — 7(0,-,-),U,0) # 0
and there is no other solution for x = 0 in U. By theorem 2.21, there is a
connected closed set € C [0, x,] x H? x H?, such that (0,hg,0) € € and either
€ is unbounded or € N ({0} x (H? x H2\ U)) # 0. Since for k = 0 there is
only one solution to equations (5.29) (5.70), we rule out the second possibil-
ity. As k. < oo, by lemma 5.12 there is a second family (h,, N,) of solutions
to the equations, such that s, — 0 and [|(hw, Ni)||n2xuz — oo. By propo-
sition 5.11, (0,a4) is a limit point. In order to prove the last claim, assume
towards a contradiction, the existence of R > 0 and a sequence x,, — 0 such that
| (hw,, — ho, N, )||n2xnz < R for all solutions with parameter x,. By lemma 5.9,
the set of solutions {(h,, Ni) | ||(hs — ho, Nx)|| = R} can not accumulate at k = 0.
Let kg > 0 be such that if ||(hy — ho, Ns)||lu2xnz = R, then k > kg and let us

choose n such that x,, < kg. Consider the relatively open set,

V ={(k,h,N) €[0,r] x H x H* | ||(h — ho, N)||m2xnz > R, 0 < £ < K} NC.
(5.133)

V' is not empty because there is a divergent sequence in C with deformation
parameter converging to 0, we claim V' is also closed, because if {(pt, hn, Np)} C
V has an accumulation point (pi, hs, Ni), then (p.,hs, N,) € € because this
set is closed. At the same time, ||(h. — ho, Ni)||lm2xuz > R and 0 < p. < Ry,
Since ||(hs — ho, NVi)||p2xnz = R implies p. > kg, we can discard this case. If
py = 0 then (hy, N,) = (hg,0) which is impossible. If p. = k,, then we also have
||(hs — ho, Ni)||m2xnz < R, which is absurd. Therefore (p, he, Ni) € V and this

set is open and closed. Since C is connected, V = C. A contradiction. O
In view of this proposition, we can define ke(D) as the supremum,
ke(D) =sup{r >0 | (k, hy, Ni;) € C}. (5.134)

Proposition 5.17 shows ke is actually a maximum, moreover, since the set of
solutions for which (h,, N,) € U is contained in €, the same lower bound for k.
is also valid for ko. We summarise the results of this section in the following

theorem.
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Theorem 5.18. Let (k, ¢y, Ax, Nx) be a solution of the Bogomolny equations of
the BPS soliton equations with Chern-Simons deformation constant k. Assume
ki —k_ # 0 and Bradlow’s bound is satisfied, then the following properties hold,

1. k is bounded by a constant independent of the position of the divisors as

given in proposition 5.7,

2. If k 1s small, for each divisor there are at least two gauge inequivalent

families of solutions to the Bogomolny equations.

3. There are an € > 0 and kg > 0 such that, if |k| < kKo there is exactly
one gauge equivalence class (K, ¢w, A, Ni) of solutions to the Bogomolny

equations, such that

th_h0’|Cl+HNnHCl < €. (5135)

Outside any closed neighbourhood U of the core set P U Q, this family of

solutions varies smoothly with k.

4. For any neighbourhood U of the core set, we have the following property:
For any € > 0, there is a k' > 0, such that if |k| < K, there is a solution

(K, O, Aw, Nii) to the Bogomolny equations, such that
H(bnglHCq(Z\U)—i_HN/{_aiHCl <€, (5136)

where the signs chosen and the constant ay depend on the sign of the dif-

ference ky — k_ as defined on lemma 5.10.

5.1.5 Symmetric deformations on the sphere

In this section we study the deformation constant in the sphere. It is known that
in the Euclidean plane, there is a solution to the elliptic problem for any s € R.
Hence, the existence of an upper bound for x, in a compact surface is a nontrivial
task. We will suppose all the vortices are located at the north pole of the domain
sphere, and all the antivortices at the south pole. We choose trivialisations ¢ :
Ur — S? at Ux = S?\{(0,0,F1)}, which stereographically project from the south
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or north pole respectively, as ¢y : Ux — C. This projections are related by a

gauge transformation, which by spherical symmetry is,

ezn@

. zeU.NU_. (5.137)

P+ =
QD_

Whereas for the connection, if it is represented locally by a. € Q' (Us.),

a; =a_ +ndb, relU,NU_. (5.138)

Stereographic coordinates in the domain sphere will be denoted accordingly

e =rye*. Hence, z,o_ = 1in U, NU_ and 6, = —0_. We choose the ansatz,

P+ = f:i:(T:I:>eiki9i ar = ai(ri) d@i, (5139)

which is justified by the equivariant rotational symmetry of the problem. Com-
patibility of the fields then requires n = k. — k_. The Bogomolny equations

reduce to a system of ODES which we aim to integrate,

, 1
f:l: = ;(ki$ai)fi, (5140)
aly = rQ(r)Bx, (5.141)

1" 4f:%:Nﬂ: 1 /

where,
4R?
Qr) = ——— )
1) = (5.143)

By =— (mNi+Ti1:F ) (5.144)

1+ f2

We solved the Bogomolny equations in the punctured disk D (0) \ {0} adding

the compatibility conditions,

OO =1 a()+a(l)=n

! (5.145)
Ni() = N_(1),  NL(1) = —N'(1),
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5.1 Chern-Simons deformations of the O(3) Sigma model

together with the lowest order approximation to the fields at r = 0,

fr = qer’s 40 (rft) (5.146)
po = [~ (et rE1F Gg) w00, koo (5.147)
4+ — .

—(kpr + 7 1F2)+ 0O(r), ky #0,

ax = 2BLR*r* + O(r?), (5.148)

4¢3 pt

Ny =0T (=B + i) Br?+00°), ka0, (5.149)

ps — kB R22 + 0(r), ks #0.

To find the initial stable solution, we used the shooting method in the interval
[0, 1] for a small value § > 0. Given initial conditions Z = (¢4, q—, p+,p—) for the

parameters, we solved the Bogomolny equations and defined a map M : R* — R*,

Z s (Fo(D)f-(1) — Lag (1) +a-(1) = n, Ny (1) = N_(1), N,(1) + N'.(1)),
(5.150)

whose zero determines suitable initial conditions for a solution to the Bogomolny
equations compatible at the boundary of the disk. Next, we applied the pseudo-
arclength continuation method, as described in [14]. Given initial data (kg, Zp) €

R®, we sought a nearby point (k, Z) such that,

Z() . (Z — Z()) + I.{O (l{ - lio) = 58, (5151)

for a small positive constant ds. We restricted ourselves to positive x and solved
the Bogomolny equation in the vortex-antivortex case and the case ky = 2,
k_ = 0. We solved both cases on a sphere of radius 2. The results can be seen
on Figure 5.1. We found that for the vortex-antivortex case, the data suggests
k is unbounded. This would be the case if for all the solutions, the function
h = log f? have bounded average. If rotationally symmetric solutions are unique,
invariance of Taube’s equation under isometries of the sphere implies the average
is actually zero. Therefore, we conjecture x unbounded for this configuration of
cores’ on the sphere. On the (2,0) case, arclength continuation started growing
fairly quickly until it reached a maximum value and started decreasing towards
zero as expected. In Figure 5.2 on the right column can be seen the two limiting

solutions of theorem 5.18. At Kk = 0 we obtained the solution to the Taubes
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| k+ =1, k_=1
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0.0 0.5 1.0 1.5 2.0
K

Figure 5.1: Comparison of the electrostatic energy in the balanced and unbal-
anced cases. The existence of two types of solutions if k. # k_ is evident from
the graph, while the energy also suggests uniqueness of the solution (h,, N,) for

each & in the balanced case.

equation as expected and a limiting solution, as the averages of h diverged towards
infinity, the gauge invariant component ¢3 of the Higgs field ¢ started converging
to constant 1, in other words, ¢ converged to the north pole section, while kN

converged to the expected limit

a_ =" (5.152)

5.2 Dynamics of the moduli space of Ginzburg-

Landau vortices with a Chern-Simons term

In section 5.1 we proved the existence of a minimum constant k.;, such that
regardless of core positions on the moduli space M¥+*-(3) of vortices and an-
tivortices of the U(1)-gauged O(3) Sigma model with a Chern-Simons deforma-

tion, there exists a solution to the Bogomolny equations close to the solution at
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Figure 5.2: Snapshots of solutions to the Bogomolny equations on the sphere
along the declination angle ©. The radius was set to R = 2. Left. Vortex-
antivortex case. Right. Two vortices at north pole and no antivortices. The

asymmetry parameter was set to 7 = 0.
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k = 0. This result extends similar claims for the Ginzburg-Landau model ob-
tained in [14] and justifies the possible existence of a localization formula similar
to the one obtained in section 2.2.1 for BPS solitons of the gauged O(3) Sigma
model, with the addition of a term dependent on the Chern-Simons constant k.
In this section we apply the general framework of section 2.2 to compute the
extra k term in the localization formula. As the calculations are similar for both
models, we compute a localization formula for each one and finalise discussing
about the extension of our formula to the coincidence set.

Previous work on the subject for the Ginzburg-Landau functional includes
models of Kim-Min and Kim-Lee [24, 25], where the authors considered a related
model with a different type of the Chern-Simons interaction, [26], where Kim and
Lee analysed the dynamics of the Ginzburg-Landau model with a neutral field
on the plane and [10] where Collie and Tong addressed motion on the moduli
space of abelian vortices in the presence of a magnetic field and concluded that
the extra Chern-Simons term in the localization formula is the Ricci form of the
metric on the reduced moduli space. Later, in [1] Alqahtani and Speight showed
that the deformation term of Kim-Lee cannot extend to the coincidence set of
modulli space, whereas the term from Collie-Tong can, and thus Kim-Lee and

Collie-Tong deformations of the Abelian Higgs model are different.

5.2.1 The Maxwell Higgs Chern Simons model

We work on a Riemann surface Y that can be either compact or the Euclidean
plane. The setup is as in section 2.2. We assume the existence of a principal
bundle,

Ul)—-P—>RxX (5.153)

and denote by p the representation of U(1) as isometries of the complex plane,
p:U(1) = Aut(C). (5.154)

Let FF = (R x ¥) x, C be the hermitian bundle associated to p. We fix the

metric in R x X as the product

dt* — g, (5.155)
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where ¢ denotes the Riemannian metric in ¥. Let D be the connection induced

by p,
D:TF T (ROT'S)@TF). (5.156)

Given ¢ € I'F, in a local trivialisation this is the map
Do =dp —iA® o. (5.157)
As in section 5.1, we add a neutral scalar field,
N e C*(R x %). (5.158)

It will be convenient to make the division of space and time explicit, we
denote by D¢ € C*(R x X) the time component of D¢ and from now onwards
dp : R — I(T*E®TF) will be the spatial component of d¢ as a function of time.
The spatial component of @qﬁ, denoted by Do, is

Dp:R =T (T*"S@TF), Do =dp —iAR ¢, (5.159)
The Maxwell-Higgs Lagrangian is,
L —1(||1)¢>||2+|| 2 L IN|2 = | Do) — ||B]]2 — ||dN]||?
wa = 5 (1D el + [INIIF = [|Dol|” = [|B|I° = [|dN]]
_<]-aU>7

the norms and the product in the Lagrangian are in the L? sense. The potential

function U is given by,

U==(-2sN+1—|¢]>)° + %quay?. (5.160)

o

We add a Chern-Simons term to the Lagrangian,

Los = % (1A, %e) + (Ao, #B)) (5.161)

the Maxwell-Higgs-Chern-Simons Lagrangian is,

L= Lyy+ kLcs. (5162)
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As for the O(3) Sigma model, the Chern-Simons term is not gauge invariant,
however if two gauge potentials differ by a gauge transformation, the correspond-
ing Lagrangians will differ by a total divergence, hence they will yield the same
field equations. If ¥ is compact, A and Ay are only defined locally, however, we
can always choose an open and dense subset of ¥, diffeomorphic to the unit disk
by the Riemann mapping theorem, in which the connection is trivializable. In
any case, the Lagrangian is well defined up to gauge equivalence. Variating L

with respect to Ay, Gauss’s law is,
de = —(Dp,i¢) + k * B. (5.163)
In terms of the gauge potential this is the same as,
— (A +|9*) Ag = 2%, (qs(z;* — ¢*q‘s> —d*"A+ K xB. (5.164)
Let T  and V' be the kinetic and potential energy of the fields,

1 .
T = S(I1D:@l1” + llell* + [IN][%),

1 (5.165)
V=5 (IDG[I* + 1B + [[dN]]*) + (1, U),
the total conserved energy of the fields is
E=T+YV, (5.166)

If 3 is the Euclidean plane, we assume the following convergence at infinity,

A A e H' (Q4(R?), Ay, N € H' (R?), (5.167)
N,¢ € L*(R?), |l‘im lp(x)|> = 1. (5.168)

Let 04¢ be the projection of D¢ in the sub-space (1,0) of the complexification
of the bundle 7% ® T'F, in local coordinates,

(D1¢p + i Dap) . (5.169)

N | —

dag =
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We apply the Bogomolny trick to obtain a set of equations obeyed by the
fields,
0 <5 (D6 — iNGI + | V[ + || ~dN + el

2 —
) + |[0a0]?

N | —

+|[*B — = (—26N + 1 — [¢]")

1
2

_ B (D,6,iNG) — (N, e) — %(*B, “2eN 41— |o])
— 1
B0l — 2ol
— B (N,—xdse+ (Do, id) — i+ B) —%<*B,1)

1 = 1
+ 0B, |6 + 110491 — 51D

=FE —nm. (5.170)
To obtain the last equation, we discarded several divergences and used Gauss’s
law and the identity,
B |¢* = [0a0* — |0a0). (5.171)
We also used that,
/ B = 2nm, n € Z. (5.172)
b

If 3 is compact, this is due to the fact that B is the curvature of the line bundle

F, in the case that ¥ is the Euclidean plane, this comes from the assumptions

of decaying of the gauge potential at infinity and the nontrivial winding of A at

the circle at infinity. Hence, a set of fields ® = (¢, N, A) € A, is a minimal with
energy

E =nm, (5.173)

provided it satisfies the Bogomolny equations,

N =0, (5.174)

e =dN, (5.175)
Dip = iN g, (5.176)
0a0 =0, (5.177)
*B = % (—26N +1—|¢]?). (5.178)
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From equations (5.175), (5.176) and Gauss’s law, N is a solution to the elliptic
problem,
(A+[¢*) N =k *B. (5.179)

If ® is a solution to the Bogomolny equations and Gauss’s law, by conservation

of Energy and the Bogomolny equations,
L:2T+/<;LCS—E:g<AO+N,*B>—mr. (5.180)

If we take the radiation gauge, Ay = —N, ® is an extremal of the Lagrangian.
The solution is stationary by the Bogomolny equations. Hence ® is a solution to

the field equations.

5.2.2 Low energy dynamics with a Chern-Simons term

To apply the low energy approximation, we will work in the space A’ of fields & =
(N, ¢, fl) which are solutions to the Bogomolny equations. We have two models of
the moduli space, the O(3) Sigma model, for which localization was discussed on
section 2.2 and the Ginzburg-Landau model, studied by Samols on the plane [47].
The Bogomolny equations for both soliton types have a similar structure, allowing
to compute the contribution to the L? metric by the Chern-Simons term in both
models. In this section, we do so and compute the energy contribution for the
space of solutions to the Bogomolny equations A’, our computation will be valid
in both cases. In the next section we specialise into the MHCS moduli space
and later extend our result to the O(3) Sigma model. Given ® € A’, the formal
tangent space TgA’ is the space of solutions to the linearization of the Bogomolny
equations at ®. We introduce the L2 metric on TpA’ induced by the metrics in

> and target space. We have the inclusion
G s TopA', a€9G s (N, ep, A+da) € ToA, (5.181)

defining the vertical bundle ¥ — V — A’. Suppose @, : R — A’ is a differentiable
curve in A’, meaning that as a function in an open dense set U C ¥, R x U —
R x F x QY(U) is differentiable. Let us define § = Ay + N, by Gauss’s law
and (5.179), ( is a solution to

(A+1ol?) 8= —% ((Mﬁ* - d%) +d*A. (5.182)
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Equation (5.182) means 3 is the orthogonal projection of ® onto V. Recall in
A’ the energy is conserved. By the Bogomolny equations energy is given by the
expression,

1
E =5 ([INg[[* + ||dN[*) +V = n. (5.183)

As in section 2.2, we assume variations of fields in A’ are good approximations
to slowly moving vortices. We work perturbatively in the deformation parameter.

Assume £ is small, by equation (5.179),
N =k N, + O(r?). (5.184)
Discarding terms of order x? and a divergence, the kinetic energy of a field
b e A is,
7 = 2 (/16" — NI + | A* — an|P)
= & (1P + A4 + NG + [lan] ) (5.185)
For the Chern-Simons term we have,
Les = % ((A, se) + (Ag, >|<B>>
_ % ((A %A — o) + {do,B))
- %(A, xA) + (A, xB) (5.186)
To first order in k, the Lagrangian can be approximated as,
L'=T -V +kLcg
= 2 (1P +1AHE) + NI + 1N — i + 5 (A, #A) + 5 (Ao, <B)

= SUIGH P+ LAHP) = w4 (5, 5B) + 5 (A, 54),
(5.187)

where we discarded another divergence and used (5.179). Let us introduce

the kinetic and connection terms, K, Qy : T/A” — R, defined as,
1. . 1 .
K= LR+ 1A, = (BB 4 pad), Gass)

in geometric terms, K plays the role of a metric on tangent space, on the other

hand, 2 is a connection, deviating the motion of the fields from geodesic motion,
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as will be evident in the next subsection when we obtain a formula for this term.

Therefore, the effective Lagrangian at low energy is,
Lepr = K + Q. (5.189)

K is gauge invariant and if k = 0, it is the kinetic energy term in the Samols
approximation to Ginzburg-Landau theory or the kinetic energy term computed
in section 2.2. However if Kk # 0, this term does not render the same energy
as the extra k term in the Bogomolny equations deforms the fields. Although
2y is gauge dependent because of the [ factor, L.sy determines the dynamics
in a gauge invariant way, because any gauge transformation contributes a total

divergence.

5.2.3 A formula for the connection term

In this section we focus on the Maxwell-Higgs-Chern-Simons model. Let P C X
be the set of zeros of ¢. We assume the zeros are simple. If the energy of a
solution to the Bogomolny equations is nm, there are n vortices on Y. We work
in a chart ¢ : U — C defined on an open and dense subset U C ¥ and assume
that P C U. We denote by z = ¢(z) points on C and assume the metric takes
the form

g = e (d2f +dz3), z € C. (5.190)

Since U is contractible, the restriction F|y is trivial. Let U’ = U \ P, we
define the fields h, x € C>*(U’), n € C*>°(U’,C), such that,
h

. h
b = e3tix, n=3+ix (5.191)

As for the O(3) Sigma model x is only well defined modulo 27, however,
h, n and dy are well defined functions on U’. Since the zeros of ¢ are simple,

for any p € P there is a coordinate neighbourhood U, and a smooth function

¢p € C(U,, C\ {0}), such that,

¢(z) = (p(z) = p() $z),  z €U (5.192)
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Let rp = log |o(z) — ¢ (p)l, 0, = Arglp(z) — ¢(p)), v € Uy = Up \{p}, we have
local expansions,

h(x) = log TZQ, + in(ac), X = 0,(x) + Xp(2), (5.193)

where the regular parts are functions ﬁp, Xp € C=(U,). Locally, by (5.177) the

gauge potential can be expressed in terms of dx and dh,
A=dy— % « dh. (5.194)
Hence in U’, h and y satisfy the equations,
Ah=2xDB, Ax =d"A. (5.195)
By Gauss’s law, on U’ we have the following relation between § and Yy,
(A+10P) X = (A+[0P) 5. (5.196)

Note that 8 is a smooth function defined on U whereas x has divergences
at vortex positions. Let D, denote a collection of small € geodesic disks, each
one centred at one vortex position. The orientation in each geodesic disk given
by the outward unit normal. Let U, = U \ D, be the surface with the holes
left by removing the disks. The orientation of OU, is given by the outward unit
normal and if ¥ is the euclidean plane, we assume the fields 5 and N converge
fast enough at infinity. Using Green’s second identity and discarding divergences

in the following integral, we find,
< [ 8B = [ 8+ loP)N
b b
— [@+1o75-N
b
T 2y v .
1%KJA+W)XN

= lim/i/ xB + lim (—=x *dN + N x dy). (5.197)

e—0 e—0 oD,
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On the other hand,

A/\A:A/\dX—%A/\*dh

o1 1d
AN+ = (dy A rdh =« div A xdh 1d(A/\>x<dh)
- XWX 2 2 dt

(A A xdh)

1 . 1d
= 2ANdX —dx AdX + Jdh A dh— 5= (AN xdh)

S 1/, 1d
= 24 A di +d () — 7 (hdh) — 5 (A xdh)
1d

. . , 1/
= 2B — 24 (YA) +d (Ydx) — 7 (hdh) — 5o (AAsdh).  (5.198)

Discarding the time derivative, we find,

/ ANA=2lim [ B+ lim (QXA ~ xdy + —hdh) . (5.199)
n e—0 U. 4

e—0 oD,

Thence,

QM:n/ﬁB—E/A/\A
b)) 2 U

— lim (—x xdN + N # dy — kXA + Sxdy — fhdh) . (5.200)
e—0 oD, 2 8

If a € QY(U,), in local, polar coordinates at U,

—sin6, p1 + cos ), ps

a = apdry + agrpdl,, 0, =
p

(5.201)

where for a time varying point, p(s), in local coordinates @.p = p1 01 + pe 02. We

deduce,

lim b, = — (a1 (p) p1 + 2(p) Pa) - (5.202)
e—0 aﬂ)g(p)

Let M’ € M be the open subset of non coalescent vortices, which we can
identify with the set,

{1y on) €57 [ pj #prif j#k}. (5.203)
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We define the projector,
Hj M — C, Hj(p) =Dpj. (5204)

Thence,

115%;/6@6%) 0,, o = —ng: (I, P, (5.205)

where (-, -) is the pairing of the pullback of a with the tangent vector p € T,M'.

In equation (5.200), all the regular parts of the forms will converge to zero as
e — 0, thus, the only terms to consider are the singular parts. We compute those
singular parts in the following equations,

lim X(—*dN—ﬁA):limZ/ Op;(— % AN — K A)
: oD

e—0 ) e—0
€ J
= —m Y (II;(~ xdN — kA),p). (5.206)
J

We also have,

lim [ N *dy=lim / N xdf,,
=0 Jp, eﬁozj: e (py) P()
. Z/ N (— sin Gpm D) + cos Hp(].) p(j)g) "
=1 PG)”
0T Jomeeg)) € ’
(5.207)

where we denote p; as p(; to avoid confusion with the role of both subindexes.

Taylor’s expansion of N(z) in a neighbourhood V' of a point p is,

N(z) = N(p) + 01(N o 0~ )(¢(p)) rp cos b, + 2(N 0 0~ 1)(p(p)) p sin by, + O(ry),

(5.208)
forz € V. Let N, = Noy ™ : U — R, thence,
i —sin#, p; + cos b, p ) )
i [ (SRR g, (0, o)+ N ) )
e—0 aDe(p) €
(5.209)
We conclude,
lim [ Nxdy=mY (I(xdN),p). (5.210)

e—0 D, ]
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Similarly, for the term hdh at p € P we have,

h=—2 <cos(0p)p1 ha Sin(9p>p2) + Oy, dh = 2dry
T'p T'p

+ dh,. (5.211)

Discarding the integrals of regular parts,

; cos(B,,.. )P + sin(b,,.. )P .
lim hdh = _ZIimZ/ ( ( p<g>)P(J)1 ( p(J))p(j)2) dh,
i 7 ODe(p(j))

e—0 oD, e—0 €
= —2lim / A1 (hp,y 0 @ )((p())) - sin® Oy, - By
TN JaDe(pgy)

(5.212)
For the x dy term we have,
X = 0, + 0iXp, dx = db, + dx,. (5.213)
We deduce the remaining integral is,
lim xdx = lim / (xdb,. + xdx,.)
=0 Jom, e—0 z]: ODe(p;) Pj Dj
= lim / i Xp; + by, + XdXp,
H@Zj: oDe(r;) Ok, 4% )
=73 (205, (1) — (T (d%,,) . 1)) - (5.214)
J

Collecting all the pieces, we find the following expression for the connection
on the moduli space,
K

2

K
— X

; dizpj)+mat>zpj(pj)). (5.215)

Qe =73 (105 (24N + kA = 5 di,
J

Because of this term, motion of a set of vortices on the moduli space deviates

from geodesic motion according to a force given by the two form,
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A=) (115 (24 dN + 1B - T dhy, ) + K0, ()
J
=7y (H;f (2 6> % N — 2B + kB — g(—zB)) + 1 drYy, (pj))
J
— Y <—%HjB +dor%,, (pj)) . (5.216)
J

To simplify this equation, we used (5.179) and (5.194). if z; = ©(p;), X, =
Xp; © o~ ! are local expression on the chart, discarding higher order terms in x,

from (5.178) we find,
* « (K z K 2
kICB = 1T; (5(1 — |p)?) 2Pzt A d22> = §€A( 7 dzjl- A dzj?. (5.217)

Hence,

1
dQy = kT E (—ZeA(Z)dz} A dzj2 + d(?t)zzj(zj)) ) (5.218)
J

To obtain an explicit formula for the remaining terms do, X, (z;), we will work
to lowest order in k. From (5.178) and (5.195), h and N are solutions to the

following system of equations in the sense of distribution,

~Ah =e" —1+42kN +4r Z Op; » (5.219)

J
AN = "N — 5(1 —eh), (5.220)

Let (ho, No) be the solution to this system at x = 0, we know Ny = 0 by
the Julia-Zee theorem [53] and hy is the solution to the Taubes equation for the

Ginzburg-Landau functional [56],

—Ahg=€" —1+47) 5, (5.221)

J

if (Oxh, 0,N) is the next order solution at x = 0, then in U’,

—Ad.h = e"0,h, (5.222)

|
—AQN = MON — S + ge’maﬁh. (5.223)
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We make the assumption (9.h, 9, N) € L? x L2, in this case elliptic regularity

implies these are smooth functions, hence d.h = 0 and to lowest order,
(A+e) 0N = % (5.224)
Therefore 0, N # 0, moreover,
h = hy + O(K?), N = k0,.N + O(r?). (5.225)

For the remaining of the argument, we will assume h is the solution to the
Taubes equation without further notice. We can get and explicit formula for
the nontrivial term in (5.218) introducing complex coordinates on M’. If we
consider the singularity of h at p;, we have the following equations in the sense

of distributions,

— (A +€") 8.,h = 47 96, — (A +€") 0.,h = 47 85, (5.226)
Let .
n = 55 + 19X, (5.227)
from (5.196) and (5.193), we deduce,
n=Y p;jo.h+iB (5.228)
J
We can expand h in a neighbourhood of each p; € P as in the O(3) Sigma
model,
1 —
h= lOgTJQ- + a; + 5 (bj (Z — Zj) + bj(E — Ej)) + O(’f’?) (5229)
Hence,

0% (ps) = S (- Dby, () +

S ((Z q'jazjai> — %b_z> + 8. (5.230)
J

So far, we have not used our gauge freedom in A’, we can do so now and

discard the 3 term to ease the final expression of the computation. Let us define

the complex form w,,

1_ A 1-
We = Z (@jai — §bi 5ij) dz) = da — 557 (5.231)

1,J
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where,

0= Zdzi ® 0,,, a= Zai, b= Zgi dz', (5.232)

)

The imaginary part of w, is the nontrivial term in €2y,

_ 1, - —
A (we) = S (dw,) =S (aaa -3 (9b + ab)) . (5.233)
The coefficients b; have the symmetries,
Ei = azbj; 52].51' == azibj; (5234)

proved in [31] by Manton-Sutcliffe for the Euclidean plane. The proof can be
adapted to compact manifolds and is essentially the same as the proof of lemma 2.3.

Whence,

ob =0, b= —0b. (5.235)

Hence 0b € A%(U,iR). Since a is real, it is also valid that dda € A%(U,iR).

Hence, the curvature induced by the Chern-Simons term is written locally as,
dQ = —kKi ! Z MDA A dZ 4 D0a + lﬁb (5.236)
M 8 Z 2 . .

To lowest order, the metric is the L? metric,

ds* =m Z (26, +20,,b;) d2' dz. (5.237)

i?j

whose symplectic form is [31, p. 212],
i 2; % =7
wo = o <§ AES 2t A dF 26b> . (5.238)

Therefore, the Chern-Simons curvature in M’ is related to the symplectic form
of the L? metric by,

K 1 N . o
dQy = — W0 — K <_§ ; AES det N dE 88a) : (5.239)
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Comparing with the Collie-Tong connection

With our choice of notation, Collie and Tong proposed for vortices of the Abelian
Higgs model [10] that d2y = kp, where p is the Ricci form of the metric in the
moduli space, then properties of the dynamics of vortices with a Chern-Simons
interaction term were studied by Krusch-Speight [28] and Algahtani-Speight [1]
in all cases assuming the dynamics is modified by the Ricci form, however, little is
known in the literature about how good the Ricci form approximation is. We do
not compare the dynamics of the Collie-Tong proposal with the connection term
found due to lack of time, the problem remains open for future work, instead,
if we consider (5.239), we can see the connection term is not the Ricci form in
the case of the moduli space M?(R?) of the MHCS model. For a pair (2, 23) of
non-coalescent abelian vortices in R?, define centre of mass coordinates (Z, W),
such that 2y = Z + W, 2o = Z — W, W = e¢e*, then the metric in the open and

dense subset of non-coalescent vortices is,
g2 =2ndZ dZ + f(€) (dé* + €* db?), (5.240)

where the conformal factor is,

F(e) = 2 (1 + % %(d}(e))) | (5.241)

and the coefficient b(e) is defined as b(e) = b (e, —¢). In centre of mass coordinates,

p=1i00log\/|grz2|
=400 log f(e)
— —K(e) f(e) ede A db, (5.242)

the Ricci form is,

where, K (¢€) is the Gaussian curvature of the subspace of vortex pairs with Z = 0,

1 d [ d
K= “%f(0) de (6£10g f(e)) . (5.243)

On the other hand, by (5.239),

Ay = —gdeAdE— gf(e) ede A dO

1 — 1 =
— KT <—ZdZ/\dZ+%rdr/\d6’+aaa) . (5.244)
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On the plane, (h, N), the solution to equations (5.219)-(5.220), is invariant
under isometries. For small £ and small perturbations of (hg,0), where hg is
the solution to the Taubes equation for the Abelian Higgs model, the result of
Flood-Speight [14] shows the existence of exactly one solution (h, N) to the field
equations on a compact surface. It is sensible to assume the same statement holds

on the plane, this implies a is invariant under isometries of R?, hence,

0,04+ 05,0 =0, 0,0 + 0,,a = 0. (5.245)
From these equations, we deduce,
Oa = 0,,adz* + 0.,adz* = —0,,a (dz* — dz*). (5.246)

Likewise,
00a = —(0,,0,,adz" + 0,,0,,adz*) A (dz* — dz")
= 0,,0,,a (dz* — dz') A (d2? — d2Y)
=2i0,,0.,a-ede A db. (5.247)

Let a(e) = a(e, —e¢), isometric invariance of a implies,

= 1 d da
L Pl 24

021010 4e de (6 de) (5:248)
Going back to equation (5.244), we find,

K1

dQy = — dZ NdZ

2d, - 1d da
iy (1+g%(eb(e))—ga <e%)) ede Ndf. (5.249)

Equation (5.249) shows dfy # kp, since p has no dZ A dZ component.

5.2.4 Chern-Simons localization on the O(3) Sigma model

We can adapt our previous arguments to the O(3) Sigma model with some minor
adjustments. Most of our previous deduction follows without change, since the
Bogomolny equations have the same structure, except for the algebraic formula

of xB. Gauss’s law in this case has to be replaced as in section 5.1. In this case,
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the projection (3 of a solution ® € A’ to the static Bogomolny equations onto
vertical space is a solution to equation (2.46), which for variations of the core

positions is,
(A +|X4*) B = (6, Xp) + d*A, (5.250)

In this case at each core p; € P U (@, we have to take into consideration the
sign function s;, otherwise our computation on sections 5.2.2, 5.2.3 follow the

same pattern and we find that for non-coalescent vortices, to first order in k,
A = KT Y 5 (—%HjB + dOy Xy, (pj)>
J
= 3 sy (GIGRN 7 (1,6) + 01, 1))
J
= KT Z (—i(l — 5;7) M) d2d A dF 4 s d@tf(zj(zj)) : (5.251)
J

To deduce a formula for the second term in the sum, we know by section 5.1
that for £ = 0, the only solution to the governing elliptic problem is (hg, 0) where
hg is the solution to the Taubes equation for the O(3) Sigma model. As is shown
in equation (2.77), n can be computed from the derivatives of h, in accordance
to (5.228). If we recall equation (2.102), we find for any small holomorphic
neighbourhood U; of p; € PUQ, z; = ¢(p;),

~ 1 _ L
hpj ((,O(ZL')) = Sj (Ij + § Sj (bj (Z — Zj) + bj (Z — Z])) + O(’I“?) (5252)
Comparing with (5.229), we deduce,
. : I+,
Sjatij (p]) = <Z zi@Ziaj — 5 b]' Zj) . (5253)

By lemma 2.3, b has the same symmetries than for Ginzburg-Landau solitons,

therefore,

1 A R 1
dQy = —KkT 1 Z (Z(l — 8;T) M) 420 A dZ + 00 a + 5 Ob) ) (5.254)

J
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5.2.5 Extending to the coalescence points

In the previous sections we developed two formulae for the extra term in a local-
ization formula of vortices in a model with a Chern-Simons term. We assumed x
small and found two related formulae on M’, the open and dense subspace of the
moduli space of non-coalescent vortices. To extend df2 to the coalescence points
means to study the limit of the formula as any pair of vortices, (of the same type
for deformations of the O(3) Sigma model) coalesce, meaning as d(p;, px) — 0 for
p; # pr and pj, py vortices of the same type. Let us consider first the O(3) Sigma
model. Let h € C*(%) be the regular part of h, theorem 2.12 shows h depends
smoothly on vortex positions as long as vortices and antivortices do not coalesce.
Recall in section 2.3 we defined smooth functions v; : £\ {p;} — R, such that,

h=Y s;jv;+h. (5.255)
J

In the compact case, we assume P U Q) C U, U an open and dense subset of
the surface in which a holomorphic chart ¢ : U — C is defined. Let D C C be
a bounded domain containing ¢(P U Q). Since each v; is a constant multiple of
Green’s function, there is a smooth function v : D x D — R such that for any
zeD,

W(gp”(z)) =log|z — zj\Q + 0(z, 2;). (5.256)
Thus,

Sia; = Z sjlog|z; — z)* + Z s;0(25, 2) + h(o(2)), (5.257)
J# J

and,

s;b; =20, (Z sjlog|z — z|* + Z s;0(z, 2;) + fL(go_l(z))> (z)

JFi J

=> - 25 L9 > s 0.0(2, %) + 20.h(z). (5.258)
J

A TR
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Hence, for non-coalescent cores at D,

00a = Z si8; 00 0(z2;, z1) + Z 5: 00 h(z),
[N 4

(5.259)
0b=20 <Z <sisj526(2j, zi) + si&j@ﬁ(zi)) d?) :
i

If z € D is such that for a fixed pair of indices j, k, the vortices at z;, 2
are of the same type and both converge to z, equation (5.259) implies the limit
limy,, ., |0 d€y exists and is unique, in fact, it corresponds to solving the regu-
larised Taubes equation with configuration p such that p; = pr = ¢ 1(2).

For Ginzburg-Landau vortices the same argument is valid, it is simpler, since
in this case all the vortices are of the same type and we can take s, = 1 for all
the cores. In this case we arrive to an algebraic expression similar to (5.259) and
apply proposition 2.14 to conclude df2y can also be extended to the coalescence

points.
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Chapter 6

Conclusion

In this work we focused on geometric models of vortices and antivortices of the
O(3) Sigma model. We emphasised the geometric nature of the interaction of a
vortex-antivortex pair on the moduli space.

We were able to prove that the L? metric in the moduli space is incomplete
both on the euclidean plane and on a compact surface. We also analysed the
dynamical properties of the interaction on the plane, focusing on scattering of
vortex-antivortex pairs.

We also computed the volume of the moduli space on spheres and flat tori,
corroborating the work of Speight and Romao who conjectured a formula for the
volume of the moduli space for a general surface.

The fact that the moduli space is incomplete imposed some technical difficul-
ties on the proofs, that we overcame by analysing the behaviour of solutions to
the Taubes equations in the collision of a vortex and an antivortex.

Finally, we added a Chern-Simons interaction term to our model and applied
the geodesic approximation ideas to determine the extra term in the metric of
the moduli space for small perturbations due to the interaction. Our analysis
indicates that the extra term can be extended to the coincidence set.

Some questions remain opened, representing an opportunity for future work.
The short range approximation formula for the metric on the space of vortex-
antivortex pairs of the euclidean plane relies on uniform convergence of the family
he /€, as € — 0, where h. is the regular part of the Taubes equation. Numerical

evidence suggests this conjecture is true. Should it be the case, we would be able
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to prove formally that the Gaussian curvature of My (R?) diverges as € — 0 as
expected from the numerical evidence and we could also justify analytically the
effective potential of Ricci magnetic geodesics. The equivalent conjecture for a
compact surface would allow to compute the volume formula for a general surface,
where we no longer have the extra symmetries that we used for the task.

In conclusion, geometric ideas to study field theory originated in the realm of
superconductivity with the Ginzburg-Landau functional at critical coupling, but
they have proved to be fruitful in a broader context. In particular, for asymmetric
vortex-antivortex systems of the O(3) Sigma model, where with these ideas one

can understand dynamics from a geometric point of view.
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