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Abstract

In this work we focus on BPS solutions of the gauged O(3) Sigma

model, originally due to Schroers, and use these ideas to study the

geometry of the moduli space. The model has an asymmetry param-

eter τ breaking the symmetry of vortices and antivortices on the field

equations. It is shown that the moduli space is incomplete both on

the Euclidean plane and on a compact surface. On the Euclidean

plane, the L2 metric on the moduli space is approximated for well

separated cores and results consistent with similar approximations for

the Ginzburg-Landau functional are found. The scattering angle of

approaching vortex-antivortex pairs of different effective mass is com-

puted numerically and is shown to be different from the well known

scattering of approaching Ginzburg-Landau vortices. The volume of

the moduli space for general τ is computed for the case of the round

sphere and flat tori.

The model on a compact surface is deformed introducing a neutral

field and a Chern-Simons term. A lower bound for the Chern-Simons

constant κ such that the extended model admits a solution is shown to

exist, and if the total number of vortices and antivortices are different,

the existence of an upper bound is also shown. Existence of multiple

solutions to the governing elliptic problem is established on a compact

surface as well as the existence of two limiting behaviours as κ→ 0. A

localization formula for the deformation is found for both Ginzburg-

Landau and the O(3) Sigma model vortices and it is shown that it

can be extended to the coalescense set. This rules out the possibility

that this is Kim-Lee’s term in the case of Ginzburg-Landau vortices,

moreover, the deformation term is compared on the plane with the



Ricci form of the surface and it is shown they are different, hence also

discarding that this is the term proposed by Collie-Tong to model

vortex dynamics with Chern-Simons interaction.
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Chapter 1

Introduction

This work is about the geometry of moduli spaces of vortices and antivortices on

a Riemann surface Σ. We are interested mostly in the gauged O(3) Sigma model,

where the fields are represented by a connection A and a section φ of a fibre

bundle with fibres diffeomorphic to P1, the Riemann sphere. We say φ is a Higgs

field with target the Riemann sphere. Static solutions of the field equations

modulo gauge equivalence form the moduli space of vortices and antivortices,

each solution is determined by the cores of the fields: the preimages of the north

pole (vortex points) and the south pole (antivortex points). It can be proved

the total number of the cores is enumerable and if Σ is compact, it is finite.

We will assume without loss of generality this is the case, even though Σ can

be the complex plane. The dynamics of slowly varying fields can be described

by geodesic motion of curves on the moduli space [32] with a metric called the

L2 metric. This metric is Kähler and well understood for the moduli space of

vortices of the Ginzburg-Landau functional, in which case it is known that the

moduli space is a complete metric space and if the ambient surface is compact

the moduli space is also compact, hence of finite volume.

The O(3) Sigma model we will study is asymmetric, vortices and antivortices

have different effective mass, moreover, the existence of two types of cores means

vortices and antivortices cannot coalesce, therefore, a natural question is if the

moduli space is still complete. Another question we address is how the asymmetry

affects the volume of the moduli space. These questions were addressed for the

symmetric case in the reference [45]. The techniques used in the reference however
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do not apply in general, we developed analytical tools to extend the results to

the asymmetric case.

Later, we add a Chern-Simons deformation to the model and describe the

change in the dynamics of the fields on the moduli space. The deformation is

tuned by means of a deformation constant κ which we assume small. It turns out

that the dynamics of the theory is described by geodesic motion perturbed with

a connection term proportional to κ, i.e. a term dependent on the velocity of the

cores. Our model resembles the model of Kim and Lee [26] with the difference

that the target is the sphere and there are two types of cores to consider. It

is well known for several related models with Chern-Simons deformations that

multiple solutions of the field equations occur. We study the problem of existence

and multiplicity of solutions to the field equations of the deformed O(3) Sigma

model, the main result is that even though multiple solutions of the equations can

exist, there is a minimal deformation, such that no matter which configuration

of vortices and antivortices on the moduli space we choose, we can find exactly

one solution close to the undeformed solution of the O(3) Sigma model.

We conclude with a description of the chapters of the thesis.

In chapter 2 we describe the ideas of localization in abstract terms. Our

approach is general and suits equally well Ginzburg-Landau vortices as well as

the O(3) Sigma model, with the benefit that it makes clear what we mean by

adding a Chern-Simons term. We also present analytical results that are common

to other parts of the next chapters.

In chapter 3 we focus on the O(3) Sigma model on the euclidean plane. We

study asymmetric vortex-antivortex pairs, supporting our analysis with numerical

evidence of the behaviour of colliding vortex-antivortex pairs. We compute the

metric on the moduli space of vortex-antivortex pairs numerically and use this

computations to study the scattering of approaching cores. The main result is

theorem 3.14 which says that the moduli space is incomplete.

In chapter 4 we move to a compact ambient surface. The main results are the

incompleteness of the moduli space of vortex-antivortex pairs, theorem 4.15, and

the computation of the volume of the moduli space for the round sphere and for

flat tori in theorem 4.25, confirming a general conjecture by Romão-Speight [45]

in these cases.
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Chapter 5 is devoted to the study of Chern-Simons deformations on compact

surfaces. We prove the existence of multiple solutions for small deformations

of the O(3) Sigma model if the number of vortices and antivortices is different

and find bounds for the deformation constant. We also solve the field equations

numerically on the sphere for two configurations of vortices and antivortices at an-

tipodal positions. The main result is theorem 5.18, describing the behaviour of the

solutions to the field equations. We finalise the chapter applying the localization

technique to vortices of the Ginzburg-Landau model and vortices/antivortices of

the O(3) Sigma model, both with a Chern-Simons deformation. We found that

dynamics is deviated from geodesic motion by a connection term consistent with

previous results of Kim-Lee [26] and Collie-Tong [10], and compared our result

with theirs.
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Chapter 2

Preliminaries

This chapter is for basic definitions and results of field theory that we will use

in the successive. To study the geometry of the moduli space of vortices we

need several analytical tools, this chapter is intended to be a bridge between field

theory and analysis.

In section 2.1 we introduce the O(3) Sigma model, which will play a central

role all along the thesis.

In section 2.2 we discuss a localization formula for the O(3) Sigma model, we

compute a metric for the moduli space of vortices and antivortices, the L2 metric,

and prove that it is Kähler.

Section 2.3 is about the analytic properties of the Taubes equation, this is

the elliptic PDE that guarantees the existence of the moduli space of vortices

and antivortices. Several theorems of analysis are introduced in this section to

keep them collected in the same place for further reference. In subsection 2.3.1

we prove that the solution to the Taubes equation depends differentiably on the

position of the vortices and antivortices.

In section 2.4 we state less known theorems of functional analysis about com-

pact non-linear operators that we will need later.

2.1 Field theory on complex line bundles

In this section we introduce notation and a few facts about P1 fibre bundles that

will be required for most of the work.
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2.1 Field theory on complex line bundles

Let us start considering a principal U(1) bundle U(1) → P → R × Σ, where

Σ is a Riemann surface. No further assumption on Σ is needed. Let M be an

n-dimensional manifold, such that there exists a homomorphism

ρ : U(1)→ Aut(M), (2.1)

from the structure group to the group of automorphisms of M . The word auto-

morphism means that if M has an extra structure, for example, if is a symplectic

or Kähler manifold, then ρ should preserve this structure. Let F be the fibre

bundle associated to ρ,

F = (R× Σ)×ρM. (2.2)

Recall a connection form on P is a u(1) valued form ω on P , such that the

kernel Ker(ω) defines the horizontal sub-bundle of TP . Since U(1) is one dimen-

sional, we can identify ω with a regular form. For any local section sa : Ua ⊂
R×Σ→ P , the connection is given by a local form Aa = s∗a(ω) such that in any

overlap Ua ∩Ub 6= ∅ there is a transition function θab : Ua ∩Ub → R satisfying the

condition,

Ab = Aa + dθab. (2.3)

U(1) is an abelian group, hence the adjoint representation of the structure

group is trivial, the group of gauge transformations in this case is

G = C∞(R× Σ, U(1)). (2.4)

The space of connections A is an affine space: for any two connection forms

ω, ω′ ∈ A , the difference ω−ω′ determines a unique 1-form A ∈ Ω1(R×Σ) such

that if sa : Ua → P is a local trivialisation, then s∗a(ω − ω′) is the restriction of

A to Ua. Therefore A is in bijection with Ω1(R × Σ), the space of 1-forms on

R × Σ. Let A = ΓF × A be the space of pairs of fields (φ,A), consisting of a

section, φ : R× Σ→ F , and a connection form A ∈ Ω1(R× Σ).

The quotient A/G is the configuration space C. If M = S2, then ρ has two

antipodal fixed points, the north and south poles. We choose one that we will

denote as N and call it the north pole. In this setting F is a P1 bundle, the

fibres are modelled on the complex projective line. The fact that ρ represents the

unitary group by rotations of the sphere lets us pull the north pole back into a
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2.1 Field theory on complex line bundles

section N : R × Σ → F . The south pole can also be pulled back into another

section, that we denote by −N , however we must emphasise that F lacks any

algebraic structure conferring other meaning to the name than a mere notation.

We also denote by X ∈ X(S2) the Killing field generated by ρ,

Xp =
d

ds

∣∣∣∣
s=0

(
ρ
(
eis
)
· p
)
, p ∈ S2. (2.5)

A section φ : R × Σ → F is determined completely by the family of maps

φα : Uα → S2 defined for each trivialising neighbourhood Uα ⊂ R × Σ, if Uαβ =

Uα ∩ Uβ 6= ∅, we have

φβ(x) = ρ(exp(iθαβ(x))) · φα(x), x ∈ Uαβ = Uα ∩ Uβ. (2.6)

Since ρ acts by isometries, we can define the product 〈N, φ〉 using the trivial-

isations: for x ∈ Uα,

〈N(x), φ(x)〉 = 〈N, φα(x)〉. (2.7)

We also define the covariant derivative of φ as the section

Dφ : R× Σ→ T ∗(R× Σ)⊗ φ∗(TF ) (2.8)

determined by the trivialisations Dφα : Uα → T ∗Uα ⊗ TS2 as,

Dφα = dφα −Aα ⊗Xφα , (2.9)

where dφα : TUα → TF can be split into its temporal and spatial components,

dφα = dt⊗ ∂tφα + dφα, dφα(t, ·) ∈ T ∗Σ⊗ (φα(t, ·))∗(TF ). (2.10)

Likewise, Aα = A0
α dt+Aα, where A0

α ∈ C∞(Uα) and Aα(t, ·) ∈ Ω1(Uα). If we

define

Dtφα = ∂tφα − A0
α ⊗Xφα , Dφα = dφα − Aα ⊗Xφ, (2.11)

then,

Dφα = dt⊗Dtφα + Dφα. (2.12)

6



2.1 Field theory on complex line bundles

We introduce a Lorentzian metric as follows. If g denotes a Riemannian

metric in Σ then the metric in R×Σ is the product dt2− g. This metric induces

a metric in Ω2(R × Σ). Recall the curvature form ω ∈ Ω2(R × Σ) is given in a

local trivialisation by ω = dAα and define the electric and magnetic forms, as

the forms e ∈ Ω1(R× Σ) and B ∈ Ω2(R× Σ) respectively, such that,

ω = dt ∧ e+B, (2.13)

and for fixed t, e(t, ·) ∈ Ω1(Σ), B(t, ·) ∈ Ω2(Σ).

Although |dφα| is gauge dependent, at the intersection Uαβ of any two trivi-

alisation neighbourhoods, |Dφα| = |Dφβ|, hence we can define

||Dφ(t, ·)||2 = ||Dtφ||2 − ||Dφ||2. (2.14)

With all these definitions, we can express the gauged O(3) Lagrangian as,

LO(3) =
1

2

(
||Dtφ||2 + ||e||2 − (||Dφ||2 + ||B||2 + ||τ − 〈N, φ〉||2)

)
, (2.15)

where the asymmetry parameter τ ∈ (−1, 1) determines the vaccuum manifold

and if Σ is non-compact, we must add suitable boundary conditions to φ and A

to guarantee convergence of the norms. The O(3) Lagrangian admits Bogomolny

type static solutions in the temporal gauge, in which A0
α = 0. In this gauge, the

total conserved energy of a time independent pair of fields (φ,A) is

E =
1

2

(
||Dφ||2 + ||B||2 + ||τ − 〈N, φ〉||2

)
. (2.16)

The temporal covariant derivative DA can be decompose into holomorphic

and anti-holomorphic parts,

DA = ∂A + ∂A, (2.17)

where in a local holomorphic coordinate chart Uα in which φ trivialises as φα :

Uα → S2,

∂Aφα =
1

2
(DAφα(∂1)− φα ×DAφα(∂2)) , ∂Aφα =

1

2
(DAφα(∂1) + φα ×DAφα(∂2)) ,

(2.18)
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2.1 Field theory on complex line bundles

We will consider the sets

P = φ−1(N), Q = φ−1(−N), (2.19)

which we call the set of vortices and antivortices. The term vortex is of wide

use for the Abelian Higgs model, where it refers to the zeros of the Higgs field.

Both theories, the Abelian Higgs model and the O(3) Sigma model, have simi-

larities, for example the U(1) symmetry of the fields, hence it is natural to refer

to vortices of the O(3) Sigma model, on the other hand, the term antivortex,

which is also used in the literature, stresses the distinction with vortices, since

vortices and antivortices cannot coalesce. We assume that both sets are finite.

In proposition 2.1 we define the Bogomolny equations.

Proposition 2.1. If (φ,A) is a solution of the Bogomolny equations,

∂Aφ = 0, (2.20)

∗B = 〈N, φ〉 − τ, (2.21)

then the pair minimises the energy of the O(3) Lagrangian and the minimum

energy is,

E = 2π(1− τ) k+ + 2π(1 + τ) k−. (2.22)

Proposition 2.1 should be attributed to several authors who proved it for the

different cases. On the plane it was proved by Schroers [50] for τ = 1 and later for

general τ in [49]. On a compact manifold for τ = 0 it was proved by Sibner, Sibner

and Yang [51]. Speight and Rõmao [45] give another proof which is suitable for

both a compact surface and the euclidean plane, which we adapt.

Proof. We distinguish two cases. Firstly, let us assume that Σ is compact. We

can choose an open and dense set U ⊂ Σ holomorphic to the unit disc such that

it contains P ∪ Q. Since U is contractible, the restriction F |U can be trivialised.

In this trivialisation, φ is equivalent to a function ϕ : U → S2. Since the action of

U(1) in the sphere is Hamiltonian, we can consider the moment map µ : S2 → R,

µ(p) = 〈N, p〉 − τ. (2.23)
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2.1 Field theory on complex line bundles

If ω denotes the symplectic form in the sphere, then dµ = ιXω. Let us denote

by J : TS2 → TS2, Jx(v) = x × v the almost complex structure on the sphere.

Recall the basic identity,

〈J v, w〉 = ω(v, w), v, w ∈ TxS2. (2.24)

We will use the Bogomolny trick,

0 ≤ 1

2

(
||D1ϕ+ J D2ϕ||2 + ||∗B − µ ◦ ϕ||2

)
= E + 〈D1ϕ, J D2ϕ〉 − 〈∗B, µ ◦ ϕ〉

= E + 〈∂1ϕ, J ∂2ϕ〉+

∫
U

ω(Xϕ, A1∂2ϕ− A2∂1ϕ) Vol− 〈∗B, µ ◦ ϕ〉

= E +

∫
U

(−ϕ∗ω + A ∧ d(µ ◦ ϕ)−B ∧ µ ◦ ϕ)

= E−
∫
U

(ϕ∗ω + d (µ ◦ ϕ · A)) . (2.25)

Note that ϕ∗ω + d(µ ◦ ϕ ·A) is gauge invariant and can be extended to all of

Σ. Introducing spherical coordinates (ϑ, %) in S2 with % the azimuthal angle, we

define the one form,

$ = ϕ∗(d%)− A ∈ Ω1(U \ P ∪ Q), (2.26)

and note that $ is gauge invariant and therefore also extends to Σ \ P ∪ Q. If

we denote by Dε a collection of disjoint ε-disks, each one centred at one point

x ∈ P ∪ Q, then,∫
U

(ϕ∗ω + d (µ ◦ ϕ · A)) = −
∫

Σ\P∪Q
d(〈N, φ〉$)− τ

∫
Σ

B (2.27)

= lim
ε→0

∫
∂Dε
〈N, φ〉$ − τ

∫
Σ

B

= 2π(k+ + k−)− 2πτ(k+ − k−)

= 2π(1− τ) k+ + 2π(1 + τ) k−.

Hence,

E ≥ 2π(1− τ) k+ + 2π(1 + τ) k−, (2.28)

9



2.1 Field theory on complex line bundles

and the energy is minimised if (φ,A) is a solution to the Bogomolny equations.

If Σ instead is the Euclidean plane, we have to assume that Dφ, B and µ ◦ φ are

L2 sections of their respective bundles. In this case we can take U = R2, and

most of the proof follows verbatim the previous steps, except that to compute the

integral (2.27) we must suppose that the fields satisfy the boundary condition,

lim
|x|→∞

(〈N, φ〉 − τ) = 0. (2.29)

We started assuming the sets P and Q where finite and found that a pair

(φ,A) of solutions to the Bogomolny equations minimises the static energy. In

the compact case, the assumption about the size of the sets is redundant, the

proof for τ = 0 found in [51] can be adapted to the asymmetric case.

Proposition 2.2. If (φ,A) is a solution to the Bogomolny equations, then P and

Q are discrete. In particular, if Σ is compact, these are finite sets. Moreover,

if x ∈ P ∪ Q, then φ(x) is of finite degree, in the sense that there is a unique

positive integer d such that if x ∈ P ∪ Q and ϕ : U → C, π : V ⊂ S2 → C, are

holomorphic coordinates about x and φ(x) with ϕ(x) = π(φ(x)) = 0, then there

is a smooth function R : ϕ(U)→ π(V ) such that,

π ◦ φ ◦ ϕ−1(z) = zdR(z), ∀z ∈ ϕ(U), (2.30)

but R(0) 6= 0.

Proof. Suppose x ∈ P and φα : Uα → S2 is a local trivialisation in an holomorphic

chart ϕα : Uα → C with ϕα(x) = 0. Let π− : S2 \ {−N} → C be south pole

stereographic projection and let

ψα = π− ◦ φα ◦ ϕ−1
α : ϕα(Uα \ Q)→ C. (2.31)

Since π− is a holomorphic local diffeomorphism, the first Bogomolny equation is

equivalent in these charts to,

∂ψα =
1

2
(−A2 + A1i)ψα. (2.32)

If A is smooth, by the ∂-Poincare lemma, there exists a smooth function

w : ϕα(Uα \ Q) → C such that ∂w = 1
2
(−A2 + A1i), hence the function ewψα is

10



2.1 Field theory on complex line bundles

holomorphic, ∂(ewψα) = 0 and the zero set of ψα is discrete unless ψα ≡ 0 which

is impossible because it violates the Bogomolny equations. This proves that P is

a discrete set. Since ewψα is holomorphic, the assertion about the degree follows

in these charts and since the degree is an holomorphic invariant, this proves

the claim for any other holomorphic chart. Using the north pole stereographic

projection proves similar claims for Q.

We say that x ∈ P is the position of a single vortex if the degree is 1 and

similarly for x ∈ Q, if the degree is 1 we say that x is the position of a single

antivortex. We will denote the size of the sets P, Q as k± respectively, where we

count each vortex and antivortex with multiplicity.

For any solution (φ,A) to the Bogomolny equations, we define the function

h : Σ \ P ∪ Q→ R,

h = log

(
1− 〈N, φ〉
1 + 〈N, φ〉

)
. (2.33)

If we define the map ψα : π− ◦ φα : Uα → C as in the proof of proposition 2.2,

where φα : Uα → S2 represents φ in a local trivialisation Uα ⊂ Σ \ P ∪ Q, and

π− : S2 \{−N} → C is south pole’s stereographic projection, then exp(h) = |ψα|2

and logψα = h
2

+ χαi, where the argument function χα : Uα → R is gauge

dependent. By equation (2.32),

−1

4
∆(logψα) =

1

2
∂(−A2 + A1i) =

1

4
(−(∂1A2 − ∂2A1) + (∂1A1 + ∂2A2)i) ,

(2.34)

where ∆ is geometer’s laplacian, which in the holomorphic coordinates we are

considering is of the form ∆ = −e−Λ(∂2
1 + ∂2

2), where eΛ is the conformal factor

of the metric. Taking the real part of the previous equation, we find,

−∆h = −2 ∗B = 2

(
eh − 1

eh + 1
+ τ

)
. (2.35)

If x ∈ P ∪ Q has degree dx, we can extend the definition of h to the core set

P ∪ Q by requiring it to be a solution to [49],

−∆h = 2

(
eh − 1

eh + 1
+ τ

)
+ 4π

∑
x∈P

dxδx − 4π
∑
x∈Q

dxδx, (2.36)

11



2.2 Localization

where δx is Dirac’s measure concentrated at x. For any test function ϕ ∈ C∞0 (Σ),∫
Σ

ϕ δx = ϕ(x). (2.37)

Notice δx includes the measure on Σ. We will call equation (2.36) the Taubes

equation, as is analogous to the equation studied by Taubes for the Ginzburg-

Landau functional [56]. The Taubes equation as given by (2.36) was also obtained

by Schroers in [49].

2.2 Localization

The idea of a localization formula originates in the work of Strachan [54]. It

was later generalised by Samols [47] and is based on ideas about geodesic ap-

proximation originating in [32]. From his work, Strachan and Samols developed

approximations to the dynamics of the Abelian Higgs model in the moduli space

of static solutions of the field equations, later, Stuart proved in [55] that the

moduli space approximation is correct. The results of Stuart also extended to

other field theories, for example in [12] Demoulini-Stuart proved a moduli space

approximation to the dynamics of the Chern-Simons-Schrödinger model proposed

by Manton in [33]. On the other hand, for some field theories it is possible to

find an explicit formula for a metric on the moduli space governing the dynam-

ics, such that it only depends of local data, i.e., the position of the cores of the

field φ. Over the time, the localization formula has been refined and extended

to other field theories, e.g. Chern-Simons vortices [10, 25] or Ginzburg-Landau

vortices with electric and magnetic impurities [58]. We can describe in an unified

way the idea behind localization if we introduce the L2 metric in the space of

fields modulo gauge transformations. By this we mean the space of sections of

a given U(1) fibre bundle as described on section 2.1. There are several situa-

tions in which this space is finite dimensional, for example for BPS solitons of

the Ginzburg-Landau functional. In this case, there are rigorous proofs of this

fact [56, 60]. We make no assumption on finite dimensionality though, since the

theory can be written in full generality. We restrict the previous field theoretic

setup to the static case and think of A → C as an infinite dimensional principal

12



2.2 Localization

G -bundle [43]. A curve (φs, As) : I → A is said to be differentiable, if for any

x ∈ Σ, the curves s 7→ φs(x), s 7→ As(x), where,

φs(x) : I → F, As(x) : I → TxΣ, (2.38)

are differentiable. For a differentiable curve in field space, the variation is the

pair (δφ, δA),

δφ : Σ→ φ∗TF, δA ∈ Ω1(Σ), (2.39)

of pointwise derivatives:

δφ(x) =
d

ds

∣∣∣∣
s=0

φs(x), δA(x) =
d

ds

∣∣∣∣
s=0

As(x). (2.40)

We will think of the space of variations as the tangent space of A and denote

it as T. If α ∈ G is a gauge transformation, the fields transform as,

eiα · φ, A+ dα, (2.41)

where the product eiα · φ is to be understood as the action of eiα in φ via the

representation ρ. Equation (2.41) defines an action α ∗ (φ,A), of the gauge group

in the space of fields. This action extends naturally to tangent space. By an

abuse in notation, let us denote by X the vector field induced in target space by

this action, then G acts in T as,

α ∗ (δφ, δA) = (δφ+ αXφ, δA+ dα). (2.42)

Moreover, the vertical space,

V(φ,A) = {(αXφ, dα) | α ∈ G} , (2.43)

determines a sub-bundle of T whose fibre is in bijection with the Lie algebra G of

gauge transformations [43].

The Riemannian metrics in Σ and M extend to metrics in the cotangent

bundle T ∗Σ and F respectively, which on the other hand, extend to a metric

in the space of fields: if (φ,A) ∈ A and (δφ, δA) ∈ T(φ,A), the L2-metric is the

13



2.2 Localization

product of metrics induced by the Riemannian structure in the domain and the

target space,

||(δφ, δA)||2A = ||δφ||2L2(Σ,F ) + ||δA||2L2(Σ). (2.44)

C is the relevant space for applications, as two field configurations differing by a

gauge transformation are regarded as physically the same. In analogy to a finite

dimensional vector bundle, the L2-metric can be used to split T in a direct sum of

the vertical space V and its orthogonal complement. If the quotient C has a finite

dimensional differentiable structure, this complement can be identified with its

tangent space. This is not necessarily the case, however we can consider that the

orthogonal complement describes tangent vectors to C, whether this space is finite

dimensional or not. Hence, the orthogonal complement describes the dynamics

of curves [(φs, As)] : I → C with a lift to field space, even if the quotient lacks

regularity.

Given (δφ, δA) ∈ T(φ,A), let β ∈ G be the projection onto V(φ,A) with respect

to the L2 product. If α ∈ G represents another arbitrary vertical vector at (φ,A),

then

〈(δφ− βXφ, δA− dβ), (αXφ, dα)〉 = 0. (2.45)

Since α is arbitrary, the perpendicularity condition is equivalent to the equa-

tion, (
∆ + |Xφ|2

)
β = 〈Xφ, δφ〉+ d∗δA, (2.46)

where d∗ : Ω1(Σ)→ Ω0(Σ) is the codifferential, d∗ = − ∗ d∗. What is interesting

about the perpendicularity condition is that it is independent of the theory be-

cause no Lagrangian or functional for the fields was necessary to deduce it. At

the same time, we can talk of kinetic energy in configuration space, at least for

curves [φs, As] admitting a lift to A. For such a curve, we could define its instant

energy as,

E[δφ, δA] =
1

2
||(δφ⊥, δA⊥)||2A. (2.47)

We think of the kinetic energy of a dynamic pair (φ,A) of solutions to the field

equations slowly varying in time, as approximated by the energy of the variation

of a static pair of solutions. In this way, we reduce the full theory in spacetime to

variations of the static solutions to the Bogomolny equations. With this point of

14



2.2 Localization

view, the components of the gauge potential are curves defined in some interval

I ⊂ R,

A0 : I ⊂ R→ C∞(Σ), A : I ⊂ R→ Ω1(Σ). (2.48)

Likewise for the electric and magnetic fields. Let us denote by A′ the subset

of A of solutions of the Bogomolny equations, and by M the quotient space A′/G.

There is a bundle inclusion,

A′ A

M C

(2.49)

and since the Bogomolny equations are gauge invariant, both bundles share the

same vertical space. Therefore, the orthogonal projection onto V is the same.

Example. (Localization of Ginzburg-Landau vortices). A an example we

consider the Ginzburg-Landau functional. In this case the target space is C and

we can think of sections φ as complex valued functions R×Σ→ C. As described

above, static fields are the same as pairs (φ,A) of a function φ : Σ → C and a

connection A on a principal bundle U(1) → P → Σ. As it turns out [31], static

configurations in the radiation gauge minimise the energy

E =
1

2

(
||Dφ||2 + ||B||2 +

1

4
||1− |φ|2||2

)
(2.50)

and satisfy the following Bogomolny equations,

∂Aφ = 0, (2.51)

∗B =
1

2
(1− |φ|2). (2.52)

The action of U(1) on the target manifold gives rise to the vector fieldXφ = iφ.

As is well known from the work of Taubes, solutions to the field equations modulo

gauge equivalence are determined by the zeros of φ, (p1, . . . , pn). If we let the

zeros vary with respect to a parameter, pk(s), k = 1, . . . , n, identified as the time

parameter, then the perpendicularity condition is equivalent to,

(∆ + |φ|2)β = − i
2

(
φφ̇† − φ̇φ†

)
+ d∗Ȧ, (2.53)
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2.2 Localization

and the projection of the variation on the horizontal subspace of T is,

φ̇⊥ = φ̇− iφβ, Ȧ⊥ = Ȧ− dβ. (2.54)

Since the variation is determined by variations of the zeros, if each pk is in

the same open and dense holomorphic neighbourhood U ,

φ̇ = ṗk
∂φ

∂pk
, Ȧ = ṗk

∂A

∂pk
. (2.55)

In the sequel we make the convention that repeated indices represent sums. If

βk is the projection onto vertical space corresponding to the variation (∂pkφ, ∂pkA),

then β = ṗk βk. If we denote the pair (φ,A) by Φ, the instant energy of a trajec-

tory in the moduli space is therefore,

E[Φ̇] =
1

2
||Φ̇⊥||2A

=
1

2
ṗk ṗr

〈
(∂pkΦ)⊥, (∂prΦ)⊥

〉
A

=
1

2
ṗkṗr gpkpr . (2.56)

The coefficients gpkpr determine a metric in the moduli space. Manton pro-

posed an interpretation of this metric in [32]. In our language, the static energy

in the sub-bundle A′ must be preserved by solutions of the Bogomonly equations,

because they are energy minimisers. Thence, E[Φ̇] approximates the energy of

slow moving solutions of the full field equations. Equation (2.56) opens the pos-

sibility to study the dynamics of the full field equations as geodesic motion in a

finite dimensional manifold. It was Samols who proved that this metric depends

only in the first derivatives of φ at the zeros [47] of the Higgs field φ, obtaining

the formula bearing his name on R2,

ds2 = π
∑
rs

(δrs + 2 ∂rbs) dpr dps, (2.57)

where the coefficients depend on the position of the zeros of φ, in fact, if h =

log |φ|2, then,

bs = 2∂z|z=ps(h− log |z − ps|2), (2.58)

which explains why (2.57) is called a localization formula, in the sense that the

data needed to compute the metric is only local to the position of the zeros of φ.

�
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2.2 Localization

2.2.1 Localization of BPS solitons of the gauged O(3) Sigma

model

Having discussed localization of Ginzburg-Landau vortices as example, we turn

attention to the gauged O(3) Sigma model and apply the same technique in

detail. Let ϕα : Uα → C be a holomorphic chart admitting a trivialisation on

Uα such that φ is equivalent to a function φα : Uα → S2. As before, let us

define the stereographic projection of φα as ψα = π− ◦ φα ◦ ϕ−1
α . In this chart,

ψα = exp(h/2 + iχα) where the function h can be extended to a well defined

gauge invariant function on Σ \ P ∪ Q; however, χα is only defined on Uα \ P ∪ Q
modulo 2π. If Uβ is another holomorphic chart, we can also define a related

function χβ in Uβ, if the domains overlap, then for all x in the intersection Uαβ,

χβ = χα + θαβ + 2πn, n ∈ Z, (2.59)

where θαβ : Uαβ → R are transition functions. Therefore dχβ = dχα + dθαβ and

the arguments of the family ψα define a connection on Σ\P∪Q which we call dχ.

Let (φ,A) : I ⊂ R → C be a curve on the space of solutions to the Bogomolny

equations, for each t ∈ I, we denote the core positions of (φ(t, ·), A(t, ·)) as

pj(t) ∈ P ∪ Q, j = 1, . . . , k+ + k−. We assume the cores are not intersecting and

each curve pj(t) is differentiable. Given t ∈ I, we choose a gauge such that (φ̇, Ȧ)

is perpendicular to the gauge orbit, by (2.46) choosing this gauge is equivalent to

〈φ̇, Xφ〉+ d∗Ȧ = 0. (2.60)

By (2.59), (φ,A) defines a function

χ̇ : ΣI → R, (2.61)

where

ΣI = (I × Σ) \ {(t, pj(t)) | t ∈ I, j = 1, . . . k+ + k−} . (2.62)

Let η = ḣ
2

+ χ̇i : ΣI → C, then in any holomorphic trivialisation, ψ̇α = η ψα,

moreover, by (2.60) and the Taubes equation, on each time slice

Σt = Σ \ {pj(t) | j = 1, . . . , k+ + k−} , (2.63)
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2.2 Localization

η is a solution to

−∆η =
4eh

(1 + eh)2
η. (2.64)

Now we will extend (2.64) to an equation valid on all of I×Σ, not just ΣI . Let

us assume Uα is dense and pj(t) ∈ Uα for all t ∈ I and j ∈ {1, . . . , k+ + k−}. For

any given t ∈ I, let zj(t) = ϕα(pj(t)) ∈ C and to simplify notation, let us write

zj(t) as zj since time will play no role in the following. We define the signature

sj ∈ {±1} as,

sj =

{
1, pj ∈ P,

−1, pj ∈ Q.
(2.65)

By proposition 2.2, there is a smooth function Rα : C→ C such that,

ψα(z) =

k++k−∏
j=1

(z − zj)sjRα(z), z ∈ C \ ϕα(P ∪ Q), (2.66)

where the remainder also satisfies Rα(zj) 6= 0. Whence,

h(ϕ−1
α (z)) =

k++k−∑
j=1

sj log |z − zj|2 + hα(z), (2.67)

where hα : C \ ϕα(P ∪ Q) → R is smooth. Since the chart is holomorphic,

the metric can be written as eΛ(z)|dz|2 and the Laplacian as ∆ = −4e−Λ∂z∂̄z.

Therefore, as distributions,

∆ log |z − zj|2 = −4π e−Λδzj . (2.68)

Recall the volume form of the surface in holomorphic coordinates is Vol =

i/2 eΛ dz ∧ dz, equation (2.68) means that for any test function ϕ : C→ R,∫
C

log |z − zj|2 ∆ϕVol = −4π ϕ(zj). (2.69)

Let zj = z1
j + z2

j i, we denote by Dε(zj) the holomorphic disk |z − zj| < ε and

by (rj, θj) polar coordinates centred at zj. Now, we let t vary and compute the
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2.2 Localization

following time derivative,

∂t

∫
C

log |z − zj(t)|2 ∆ϕVol =

∫
C
−2

(
ż1
j cos(θj) + ż2

j sin(θj)

rj

)
∆ϕVol

= lim
ε→0

∫
C\Dε(zj)

−2

(
ż1
j cos(θj) + ż2

j sin(θj)

rj

)
∆ϕVol

= −4π (ż1
j ∂1ϕ(zj) + ż2

j ∂2ϕ(zj))

= −8π<(żj ∂zϕ(zj)). (2.70)

where we applied the divergence theorem to compute the limit, hence, in the

sense of distributions,

∆(∂t log |z − zj|2) = 8π<
(
żj ∂zδpj

)
= −8π<

(
żj ∂zjδpj

)
. (2.71)

For a given trajectory of the cores, the right side of this equation defines

a distribution on Σ, on the other hand, on the left side is the time derivative

of the singular part of h ◦ ϕ−1, from this observation we state formally (i.e.

without considering details about convergence in function spaces) that ḣ must be

a solution to the equation,

−∆ḣ =
4ehḣ

(1 + eh)2
+ 8π

∑
j

sj<(żj ∂zjδpj) (2.72)

Similarly, for any zj ∈ ϕα(P ∪ Q) there is a small neighbourhood D ⊂ C such

that,

χ̇ = =

(
ψ̇α
ψα

)
= −sj

(−ż1
j sin(θj) + ż2

j cos(θj)

rj

)
+ χ̃α, (2.73)

for some smooth function χ̃α : D → R. For the singular part of this equation we

have,

∆

(−ż1
j sin(θj) + ż2

j cos(θj)

rj

)
= −2π

(
−ż1

j∂2δpj + ż2
j∂1δpj

)
= −4π=(żj∂zδpj)

= 4π=(żj∂zjδpj). (2.74)
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2.2 Localization

Hence, χ̇ is a solution to the equation,

−∆χ̇ =
4eh

(1 + eh)2
χ̇+ 4π

∑
j

sj=(żj∂zjδpj). (2.75)

We conclude that η = ḣ/2 + χ̇ i is a solution to the equation,

−∆η =
4eh

(1 + eh)2
η + 4π

∑
j

sj żj ∂zjδpj . (2.76)

Equation (2.76) is formal, in order to make sense of it, we have to supplement it

with analytical properties of the solution h to the Taubes equation and in the case

of the plane with proper limiting behaviour at infinity. In the successive chapters

we will address these issues. We assume however the existence of exactly one

solution to (2.76). Under this assumption, the solution is given by the function

η =
∑
j

żj ∂zjh. (2.77)

Note that although each core position zj is defined up to holomorphic coor-

dinates, the right hand side is well defined independently of the chart chosen,

provided the cores are contained in it. With this initial setup, we compute the

localization formula (2.85).

Lemma 2.3. Let ϕ : U ⊂ Σ → C be a holomorphic chart, U open and dense,

such that P ∪ Q ⊂ U . Assume the cores are simple, for each pj ∈ P ∪ Q define,

bj = 2 ∂
∣∣
z=zj

(
sjh(ϕ−1(z))− log |z − zj|2

)
, (2.78)

where z = ϕ(x), zj = ϕ(pj). Then the coefficients bj have the symmetries,

∂zibj = ∂zjbi, ∂zibj = ∂zjbi. (2.79)

Proof. For the proof we generalise the argument of Manton and Sutcliffe [31,

pg. 209] given for vortices of the Ginzburg-Landau functional on the Euclidean

plane. Let K = −(∆ + 4eh(eh + 1)−2), by the Taubes equation, si∂zih (no sum-

mation) is a fundamental solution of K,

K(si∂zih) = −4π∂δpi . (2.80)
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2.2 Localization

If i 6= j, ∂zih and ∂zjh have different singularities and we can integrate by

parts to obtain,∫
Σ

(
sj∂zjhK(si∂zih)− si∂zihK(sj∂zjh)

)
Vol = 0, (2.81)

where the integration by parts involves computing a limit at each singularity, we

omit the details for clarity of the argument.

On the other hand,∫
Σ

(
sj∂zjh (−4π∂δpi)− si∂zih (−4π∂δpj)

)
Vol = 4π

(
sj∂(∂zjh)(pi)− si∂(∂zih)(pj)

)
= 2πsjsi

(
∂zjbi − ∂zibj

)
. (2.82)

Therefore, ∂zibj = ∂zjbi. Since K is a real operator,

K(si∂hzi) = −4π∂δzi , (2.83)

hence,∫
Σ

(
sj∂zjhK(si∂zih)− si∂zihK(sj∂zjh)

)
Vol = −4π

∫
Σ

(
sj∂zjh ∂δpi − si∂zih ∂δpj

)
Vol

= 2πsjsi (∂zjbi − ∂zibj).
(2.84)

As in the previous case, we can apply integration by parts to prove that the

first integral is zero. Therefore ∂zibj = ∂zjbi.

We denote by Mk+,k− the moduli space of solutions to the Bogomolny equa-

tions with k+ vortices and k− antivortices.

Theorem 2.4. If ϕ : U ⊂ Σ → C is an open and dense holomorphic chart,

containing the cores of a time varying trajectory (φ,A) : I ⊂ R → Mk+,k−, such

that the variation (φ̇, Ȧ) satisfies Gauss’s equation and each core pi ∈ P ∪ Q is

simple, then the kinetic energy of the trajectory can be computed as,

E = π

k++k−∑
i,j=1

(
eΛ(zi)(1− siτ)δij + ∂zibj

)
żi żj, (2.85)
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2.2 Localization

where zj = ϕ(pj). Moreover, the quadratic form,

K = 2π

k++k−∑
i,j=1

(
eΛ(zi)(1− siτ)δij + ∂zibj

)
dzi dzj, (2.86)

determines a Kähler metric in the open and dense set of non intersecting vortices

and antivortices.

Theorem 2.4 was proved for τ = 0 in [45]. We follow the authors ideas and

extend them to the remaining cases.

Proof. Let Dε be a collection of disjoint holomorphic ε-disks, each one centred at

one of the cores in ϕ(P ∪ Q) and let Uε = U \ Dε. We will make a calculation

similar to the one done in [31] for the Ginzburg-Landau functional. The energy

of the trajectory can be computed as,

E =
1

2

(
||ψ̇||2 + ||Ȧ||2

)
= lim

ε→0

1

2

∫
Uε

4eh
(

1
4
ḣ2 + χ̇2

)
(1 + eh)2

+ |Ȧ|2
 Vol, (2.87)

by the first of the Bogomolny equation, ∂ψ = 1
2
(−A2 +A1i)ψ, on the other hand,

∂ψ = ψ ∂(1
2
h+ χi), hence,

A = dχ− 1

2
∗ dh, (2.88)

which implies,

|Ȧ|2 = |dχ̇|2 − 〈dχ̇, ∗dḣ〉+
1

4
|∗dḣ|2. (2.89)

Integrating by parts,∫
Uε

|dχ̇|2 Vol =

∫
Uε

dχ̇ ∧ ∗dχ̇

=

∫
∂Uε

χ̇ ∗ dχ̇+

∫
Uε

χ̇∆χ̇Vol

= −
∫
∂Dε

χ̇ ∗ dχ̇−
∫
Uε

4ehχ̇2

(1 + eh)2
Vol. (2.90)
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Proceeding in a similar way, we obtain a second pair of equations,∫
Uε

〈dχ̇, ∗dḣ〉Vol =

∫
∂Dε

χ̇ dḣ, (2.91)∫
Uε

|∗dḣ|2 Vol = −
∫
∂Dε

ḣ ∗ dḣ−
∫
Uε

4ehḣ2

(1 + eh)2
Vol. (2.92)

Substituting into the equation for the energy, we obtain,

E = −1

2
lim
ε→0

∫
∂Dε

(
χ̇ ∗ dχ̇+ χ̇ dḣ+

1

4
ḣ ∗ dḣ

)
= −1

2
lim
ε→0

∫
∂Dε

(
χ̇ ∗ Ȧ− 1

2
ḣ Ȧ

)
, (2.93)

where we have used the time derivative of equation (2.88) to simplify the energy.

Since ε→ 0, the only terms that contribute to the energy are the singular terms.

We will compute each of these terms at the respective core. For any zj ∈ ϕ(P∪Q),

let Dε(zj) be the ε holomorphic disk centred at this point. If ε is small, for

z ∈ Dε(zj) we have the approximations,

ḣ = −2sj

(
ż1
j cos(θj) + ż2

j sin(θj)

rj

)
+Rh(z), (2.94)

χ̇ = −sj
(−ż1

j sin(θj) + ż2
j cos(θj)

rj

)
+Rχ(z), (2.95)

for some residual smooth functions Rh and Rχ. We also expand Ȧ in polar

coordinates centred at zj,

Ȧ = Ȧr drj + Ȧθ rj dθj, (2.96)

where,

Ȧr = Ȧ1 cos(θj) + Ȧ2 sin(θj), Ȧθ = −Ȧ1 sin(θj) + Ȧ2 cos(θj). (2.97)

The singular terms in the energy integral contribute as,

lim
ε→0

∫
∂Dε(zj)

χ̇ ∗ Ȧ = −sj lim
ε→0

∫
Dε(zj)

(−ż1
j sin(θj) + ż2

j cos(θj)

ε

)
Ȧr εdθj

= πsj(ż
1
j Ȧ2(zj)− ż2

j Ȧ1(zj))

= −πsj=
(
żj

(
Ȧ1(zj)− Ȧ2(zj) i

))
(2.98)
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and

lim
ε→0

∫
∂Dε(zj)

ḣ Ȧ = −2sj lim
ε→0

∫
∂Dε(zj)

(
ż1
j cos(θj) + ż2

j sin(θj)

ε

)
Ȧθ ε dθj

= −2πsj

(
ż1
j Ȧ2(zj)− ż2

j Ȧ1(zj)
)

= 2πsj =
(
żj

(
Ȧ1(zj)− Ȧ2(zj) i

))
, (2.99)

Therefore, the energy of a moving pair is,

E = π

k++k−∑
j=1

sj=
(
żj

(
Ȧ1(zj)− Ȧ2(zj) i

))
. (2.100)

By equations (2.88) and (2.77),

Ȧ1 − Ȧ2 i =

(
∂1χ̇+

1

2
∂2ḣ

)
−
(
∂2χ̇−

1

2
∂1ḣ

)
i

= ∂1

(
1

2
ḣ− χ̇ i

)
i+ ∂2

(
1

2
ḣ− χ̇ i

)
= 2i ∂zη

= 2i
∑
j

żj ∂z∂zjh. (2.101)

In a small neighbourhood of any zj, we have the asymptotic expansion,

sjh(ϕ−1(z)) = log |z − zj|2 + aj +
1

2
bj (z − zj) +

1

2
bj (z − zj)

+ cj (z − zj)2 + dj |z − zj|2 + cj (z − zj)2

+ O(|zj|3).

(2.102)

Hence,

dj = lim
z→zj

∂z∂z(sjh(ϕ−1(z))− log|z − zj|2)

=
1

4
lim
z→zj

(−eΛ(z)∆)(sjh(ϕ−1(z))− log |z − zj|2)

=
1

2
sj e

Λ(zj) lim
z→zj

(
eh − 1

eh + 1
+ τ

)
= −1

2
eΛ(zj) (1− sjτ) (2.103)
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2.2 Localization

and since ∂z∂zk log |z − zj|2 = 0 for any z 6= zj,

∂z(∂zkh)(zj) = sj

(
1

2
∂zkbj − dj δjk

)
. (2.104)

Hence,

E = π
∑
j

sj=

(
ṗj · 2i

∑
k

żk ∂z(∂zkh)
∣∣
z=zj

)

= 2π
∑
j,k

<
(
żj żk

(
1

2
∂zkbj − djδjk

))
= π

∑
j,k

<
((
eΛ(zj)(1− sjτ)δjk + ∂zkbj

)
żj żk

)
= π

∑
j,k

<
((
eΛ(zj)(1− sjτ)δjk + ∂zjbk

)
żj żk

)
. (2.105)

The last equation is a consequence of the symmetry ∂zjbk = ∂zkbj. Also by

this symmetry, (2.85) is a real quantity and therefore coincides with (2.105) as

expected, since E represents the kinetic energy of a trajectory on the moduli

space. To prove that the metric is Kähler we must prove that the induced form,

ω = πi
∑
j,k

(
eΛ(zj)(1− sjτ)δjk + ∂zjbk

)
dzj ∧ dzk, (2.106)

is closed. For the following computation, we employ lemma 2.3 and the fact that

each term eΛ(zj)(1− sjτ) dzj ∧ dzk is closed,

dω = πi
∑
r,s,t

(
∂zt∂zrbs dzt ∧ dzr ∧ dzs + ∂zt∂zrzs dzt ∧ dzr ∧ dzs

)
= πi

∑
r,s,t

(
∂zt∂zrbs dzt ∧ dzr ∧ dzs − ∂zt∂zrbs dzt ∧ dzs ∧ dzr

)
= πi

∑
r,s,t

(
∂zt∂zrbs dzt ∧ dzr ∧ dzs − ∂zt∂zsbr dzt ∧ dzr ∧ dzs

)
= πi

∑
r,s,t

(
∂zt∂zrbs dzt ∧ dzr ∧ dzs − ∂zt∂zrbs dzt ∧ dzr ∧ dzs

)
= −2π=

(∑
r,s,t

∂zt∂zrbs dzt ∧ dzr ∧ dzs

)
= 0, (2.107)

where the last sum is zero by the commutativity of the mixed derivatives.
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2.3 The governing elliptic problem

2.3 The governing elliptic problem

Equation (2.36) is the governing elliptic problem. Once h is determined, the

Bogomolny equations determine B and then A and φ up to gauge equivalence.

We let,

F : R→ R,

F (t) = 2

(
et − 1

et + 1
+ τ

)
,

V : R→ R+,

V (t) =
4et

(1 + et)2
.

(2.108)

Note that V = F ′ and that F and all of its derivatives are bounded functions,

moreover, if µ = log ((1− τ)(1 + τ)−1), then F satisfies the following properties,

F (µ) = 0, (2.109)

F ′(µ) > 0, (2.110)

F (t) < 0, t < µ, (2.111)

F (t) > 0, t > µ, (2.112)

and,

||F ||L∞(R) + ||(1 + e−t)V ||L∞(R) + ||e−t(et − 1)−1V ′||L∞(R) <∞. (2.113)

If P or Q is non-empty, there exists exactly one function h ∈ C∞(R2 \ P ∪ Q)

[17], such that,

−∆h = F (h) + 4π
∑
p∈P

δ(x− p)− 4π
∑
q∈Q

δ(x− q), lim
|x|→∞

h = µ, (2.114)

moreover, for any ε ∈ (0, 1), there exist positive constants C = C(ε) and R = R(ε)

such that

|h(x)− µ| ≤ C exp

(
−1

2

√
(1− τ 2)(1− ε)|x|

)
, |x| ≥ R. (2.115)

Therefore, in the euclidean plane, there exists a unique solution to the Taubes

equation. For a compact surface, existence of a solution to the Taubes equation

was proved for τ = 0 in [51]. We will prove that this is also the case for τ 6= 0 in

chapter 4.

26



2.3 The governing elliptic problem

In this section we prove that solutions to the Taubes equation depend smoothly

on vortex positions. Recall Sobolev’s space Wk,p is the completion of the space

of C∞0 functions compactly supported with respect to Sobolev’s norm,

||ϕ||Wk,p =

(
k∑
j=0

||∇kϕ||pLp

)1/p

, (2.116)

where ∇jϕ ∈ (T ∗Σ)⊗j is the jth exterior covariant derivative. We denote the

space Wk,2 as Hk. This is a Hilbert space with the product,

〈ϕ, ψ〉Hk =
k∑
j=0

〈∇jϕ,∇jψ〉L2 . (2.117)

For the inner product in L2 we omit the subindex if is clear from the context

that we refer to L2 functions.

In the sequel, we will use some results of analysis that we quote here for

further reference. The proofs are standard and can be found in the literature, for

example in [15] and [13].

Theorem 2.5 (Banach-Alaoglu). Let X be a Banach space, then the closed unit

ball of the dual X∗ is compact with respect to the weak-* topology.

Theorem 2.6 (Rellich-Kondrachov). If Ω is a an open bounded Lipschitz domain

of Rn, 1 ≤ p < n, p∗ = np
n−p , then W1,p(Ω) is continuously embedded in Lp

∗
(Ω)

and compactly embedded in Lq(Ω) for any 1 ≤ q < p∗.

If Ω is a compact manifold of dimension n, k > l, k−n/p > l−n/q, then the

embedding Wk,p ⊂Wl,q is completely continuous.

That the embedding Wk,p ⊂ Wl,q is completely continuous is equivalent to

claiming that any bounded sequence of functions in Wk,p has a subsequence con-

verging in Wl,q. In practice, we will use the Rellich-Kondrachov theorem to

guarantee that given a bounded sequence of W1,p functions either on a compact

surface or on an open bounded subset of R2, we can find a subsequence convergent

in Lp.
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2.3 The governing elliptic problem

Theorem 2.7 (Sobolev’s embedding). If Ω is either Rn or a bounded domain of

with Lipschitz boundary of a compact Riemannian manifold of dimension n, and

if k > l, 1 ≤ p < q <∞ and α ∈ (0, 1] are such that,

1

p
− k

n
= −r + α

n
, (2.118)

then we have the continuous embedding Wk,p(Ω) ⊂ Cr,α(Ω).

Theorem 2.8 (Lax-Milgram). If B : H ×H → R is a continuous bilinear form

in a Hilbert space H and there is a positive constant α such that,

|B(u, u)| ≥ α||u||2, (2.119)

then, for any u ∈ H there is a unique v ∈ H, such that,

B(v, x) = 〈u, x〉 ∀x ∈ H. (2.120)

Moreover,

||v|| ≤ 1

α
||u||. (2.121)

The proof can be found in [15, p. 83].

Theorem 2.9 (Schauder’s estimates). If Ω′ b Ω are open sets of any manifold

M , f ∈ Hk(Ω) and u ∈ H1(Ω) is a weak solution to the equation

∆Mu = f, (2.122)

then u ∈ Hk+2(Ω′) and

||u||Hk+2(Ω′) ≤ C
(
||f ||Hk(Ω) + ||u||L2(Ω)

)
, (2.123)

for some constant C = C(k,Ω,Ω′). In a compact manifold M , we also have the

estimate,

||u− u||Hk+2 ≤ C ||f ||Hk , (2.124)

for some constant C = C(k,Ω,Ω′), where u = 1
|M |

∫
M
uVol is the trace of u.

Given a pair of open sets Ω′, Ω on a topological space, the notation Ω′ b Ω

means Ω′ ⊂ Ω.
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2.3 The governing elliptic problem

2.3.1 Smooth parametric dependence of h

The moduli space can be identified with
(
Σk+ × Σk− \∆k+,k−

)
/Sk+ × Sk− , where

∆k+,k− is the big fat diagonal of intersecting vortices and antivortices and the

product of symmetric groups Sk+ × Sk− act permuting the components of Σk+ ×
Σk− . Let us focus in the open and dense subset of non-overlapping cores. We

can identify this space with Σk+ × Σk− \ ∆k+,k− . We aim to prove that in this

subspace, h depends smoothly on the positions of the cores.

Lemma 2.10. Let Σ be either the plane or a compact surface. If V ∈ C∞(Σ), is

a non-negative smooth function with only finite zeros, such that if Σ is the plane,

lim|x|→∞ V (x) ∈ (0, 1], and all the derivatives ∇kV are bounded, then for any

r ≥ 0, Schrodinger’s operator,

∆ + V : Hr+2(Σ)→ Hr(Σ), (2.125)

is a Hilbert space isomorphism.

Proof. By the hypothesis on the potential function V , the operator ∆ + V is

continuous. Let us define the bilinear form B : H1 × H1 → R and the linear

functional A : H1 → R such that,

B(u, v) = 〈∇u,∇v〉+ 〈V u, v〉,
A(u) = 〈b, u〉,

(2.126)

where b ∈ Hr. By the Cauchy-Schwarz inequality, A and B are continuous.

Firstly, we claim B is coercive, i.e., there is a positive constant α such that,

α ||u||2H1 ≤ B(u, u). (2.127)

Let Ω be either the compact surface Σ or an open disk DR(0) ⊂ R2 such that

there is a constant a ∈ (0, 1] for which V (x) ≥ a > 0 if x ∈ R2 \ Ω. In the latter

case,

||∇u||2L2(R2\Ω) + ||V 1/2u||2L2(R2\Ω) ≥ a||u||2H1(R2\Ω). (2.128)

Assume towards a contradiction the existence of a sequence {un} ⊂ H1(Ω),

such that

||un||H1(Ω) = 1, B(un, un) ≤ 1

n
. (2.129)
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2.3 The governing elliptic problem

By the Banach-Aloglu theorem, we can assume un ⇀ u∗ in H1(Ω), and by the

Rellich theorem, we can assume the strong convergence un → u∗ in L2(Ω). Since

B(un, un)→ 0,

||∇un||L2(Ω) → 0, (2.130)

hence u∗ is constant almost everywhere, because by the strong convergence in L2

and the convergence,

〈un, u∗〉H1(Ω) → ||u∗||2H1(Ω), (2.131)

we deduce 〈∇un,∇u∗〉L2(Ω) → ||∇u∗||2L2(Ω), but 〈∇un,∇u∗〉L2(Ω) → 0, hence

∇u∗ = 0 almost everywhere. On the other hand,

||V 1/2un||L2(Ω) → 0, (2.132)

and V is positive except for a finite set, thence u∗ = 0. We conclude un → 0 in

H1(Ω), but this is a contradiction because each un has unit norm. Therefore, there

is a positive constant a′ such that if u ∈ H1(Ω), then B(u, u) ≥ a′||u||2H1(Ω). If Σ is

compact we conclude B is coercive. If Σ is the plane, let us take α = min(a, a′).

If u ∈ H1(R2),

B(u, u) ≥ a||u||2H1(R2\Ω) + a′||u||2H1(Ω) ≥ α||u||2H1(R2). (2.133)

Secondly, we prove the basic inequality,

||u||Hr+2 ≤ C ||(∆ + V )u||Hr , (2.134)

where u ∈ Hr+2 is arbitrary. If Σ is compact this is by Schauder’s estimates

and coercivity of B. If Σ is the plane, we first prove the inequality for ϕ ∈ C∞0 .

Assume r = 0, by coercivity,

||ϕ||H1 ≤ C ||(∆ + V )ϕ||L2 . (2.135)

We know in this case ||∇2ϕ||L2 = ||∆ϕ||L2 [15, Thm. 9.9], hence,

||ϕ||H2 ≤ C (||(∆ + V )ϕ||L2 + ||∇2ϕ||L2)

= C (||(∆ + V )ϕ||L2 + ||∆ϕ||L2)

≤ C (||(∆ + V )ϕ||L2 + ||ϕ||L2)

≤ C ||(∆ + V )ϕ||L2 . (2.136)
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2.3 The governing elliptic problem

Let ψ = (∆ + V )ϕ ∈ C∞0 . Given the test function ϕ, ∂jϕ is a solution to the

problem,

(∆ + V ) ∂jϕ = ∂jψ − ∂jV ϕ. (2.137)

By hypothesis, the derivatives of the potential are bounded. Applying the

previous bound to ∇ϕ,

||∇ϕ||H2 ≤ C ||(∆ + V )∇ϕ||L2

≤ C (||∇ψ||L2 + ||ϕ∇V ||L2)

≤ C (||ψ||H1 + ||ϕ||L2)

≤ C (||(∆ + V )ϕ||H1). (2.138)

We apply this argument recursively. Having found bounds for ϕ and ∇ϕ up

to some r,

||ϕ||Hr+3 ≤ ||ϕ||Hr+2 + ||∇ϕ||Hr+2

≤ C(||(∆ + V )ϕ||Hr + ||(∆ + V )ϕ||Hr+1)

≤ C ||(∆ + V )ϕ||Hr+1 . (2.139)

Thus, for all r ≥ 0 there is a constant C such that for any ϕ ∈ C∞0 ,

||ϕ||Hr+2 ≤ C ||(∆ + V )ϕ||Hr . (2.140)

Since C∞0 is dense in Hr and (∆ + V ) is continuous, we conclude (2.134) is

also valid on the plane.

Thirdly, we prove (∆ + V ) is surjective. By the Lax-Milgram theorem, for

any b ∈ Hr there is a unique u ∈ H1, such that B(u, v) = A(v) for all v ∈ H1.

This function is a weak solution of the equation,

(∆ + V )u = b. (2.141)

If Σ is compact, elliptic regularity implies u is a strong solution in Hr+2(Σ).

We prove this is also the case on the plane. Let ψ ∈ C∞0 and denote by ϕ the

weak solution to the equation,

(∆ + V )ϕ = ψ. (2.142)
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2.3 The governing elliptic problem

Elliptic regularity and Sobolev’s embedding imply ϕ is a strong solution in

C∞. Notice ϕ ∈ Hr+2 ∀r ≥ 0 because our previous argument can still be applied

to show (2.140) holds. Let {ψn} ⊂ C∞0 be a sequence of test functions converging

to b in Hr. For each ψn let ϕn ∈ C∞ be a strong solution of the elliptic problem.

By (2.140) {ϕn} is a Cauchy sequence in Hr+2, thus there is u ∈ Hr+2 such that

ϕn → u. By continuity of ∆ + V , u ∈ Hr+2 is a strong solution of (2.141).

Finally, (2.134) implies ∆+V is injective. By the open mapping theorem, the

inverse is also continuous and the operator is an isomorphism.

For a compact manifold in general, we can estimate the norm of solutions to

linear problems,

Proposition 2.11. If M is a compact Riemannian manifold of dimension n,

−∆ is the Laplace-Beltrami operator of the metric, a, b ∈ L2(M) are functions

such that a is non-negative and bounded with positive integral
∫
M
aVol, then the

problem,

−∆u = au+ b, (2.143)

has exactly one solution u ∈ H2(M). Moreover, there is a positive constant C(a)

such that,

||u||H2 ≤ K ||b||L2 , (2.144)

where the constant K(a) depends on the bound for a and
∫
M
aVol.

If n = 2, 3, by Sobolev’s embedding, u ∈ C0(M), in general, we only have

u ∈ H2(M) unless we know a and b have more regularity. This problem has been

studied for different conditions on the coefficients in the references [41, 42].

Proof. We will prove the existence of solutions to the linear problem and conti-

nuity on the datum as an application of the Lax-Milgram theorem.

Let X be the subspace of H1(M) of functions of zero average,

X =

{
u ∈ H1(M)

∣∣∣∣ ∫
M

uVol = 0

}
. (2.145)

H1(M) can be decomposed as

H1(M) = X⊕ R. (2.146)
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2.3 The governing elliptic problem

Finding a solution to equation (2.143) is equivalent to find (u0, c) ∈ X ⊕ R,

such that

−∆u0 = au0 + a c+ b. (2.147)

By the divergence theorem, the constant is

c =
−
∫
M

(au0 + b) Vol∫
M
aVol

. (2.148)

(2.143) is equivalent to finding u0 ∈ X such that

−∆u0 = au0 + b−
a ·
∫
M

(au0 + b) Vol∫
M
aVol

. (2.149)

Let us define the operators A : X× X→ R, B : X→ R, as

A(u, v) = 〈du, dv〉+ 〈au, v〉 − 1∫
M
aVol

∫
M

auVol ·
∫
M

avVol, (2.150)

B(v) =
1∫

M
aVol

∫
M

(
a ·
∫
M

bVol− b ·
∫
M

aVol

)
· vVol. (2.151)

Equation (2.149) can be rewritten in variational form as the problem of finding

u0 ∈ X, such that for any v ∈ X,

A(u0, v) = B(v). (2.152)

B is bounded and A continuous because a, b ∈ L2(M). By Cauchy-Schwartz’s

inequality, ∣∣∣∣∫
M

auVol

∣∣∣∣ ≤ ||√a||L2 ||
√
au||L2 , (2.153)

hence,

A(u, u) = ||du||2L2 +
1∫

M
aVol

(∫
M

au2 Vol ·
∫
M

aVol−
(∫

M

auVol

)2
)

= ||du||2L2 +
1∫

M
aVol

(
||
√
au||2L2 ||

√
a||2L2 − 〈a, u〉2L2

)
≥ ||du||2L2 . (2.154)

By Poincaré’s inequality, there is a positive constant α, such that

α ||u||2H1 ≤ ||du||2L2 ≤ A(u, u). (2.155)
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Therefore, there exists a unique solution u ∈ H1(M) to (2.143). By standard

elliptic regularity estimates, u ∈ H2(M). By the Lax-Milgram theorem,

||u0||H1 ≤ 1

α
∫
M
aVol

∣∣∣∣∣∣∣∣a · ∫
M

bVol− b ·
∫
M

aVol

∣∣∣∣∣∣∣∣
L2

. (2.156)

By equation (2.148),

|c| ≤ 1∫
M
aVol

(
||a||L2 · ||u0||L2 +

∣∣∣∣∫
M

bVol

∣∣∣∣) . (2.157)

Therefore, u is bounded in H1(M) by,

||u||H1 ≤ C∫
M
aVol

(
||a||2L2∫
M
aVol

+ ||a||L2 + 1

)
||b||L2 , (2.158)

for some suitable constant C. By the elliptic estimate we conclude u ∈ H2(M)

and since a is bounded,

||u||H2 ≤ K (||∆u||L2 + ||u||L2)

≤ K (||au0||L2 + ||b||L2 + ||u0||L2)

≤ K (||u0||L2 + ||b||L2)

≤ K ||b||L2 . (2.159)

where the constant K was renamed from one inequality to the following.

We prove smooth dependence on parameters by the implicit function theorem.

If Σ = R2, we define,

vc = − log

(
1 +

1

|x− c|2

)
, gc = − 4

(1 + |x− c|2)2 , (2.160)

then

−∆vc = gc + 4πδ(x− c). (2.161)

If Σ is compact, we rely on the existence of Green’s function [2]. This is a

smooth symmetric function G : Σ× Σ \∆→ R, such that,

−∆xG(x, y) = δy −
1

|Σ|
,

∫
Σ

G(x, y)Volx = 0. (2.162)
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Notice that we have chosen the oposite sign for G(x, y) with respect to [2]. In

this case, we define,

vc = 4π G(x, c). (2.163)

Given tuples p = (p1, . . . , pk+), q = (q1, . . . , qk−) of non intersecting vortices

and antivortices, let

c = (p1, . . . , pk+, q1, . . . , qk−) ∈ Σk++k− , (2.164)

v =
∑
j

sjvcj . (2.165)

g =

{∑
j sjgcj , Σ = R2,

− 4π
|Σ|(k+ − k−), Σ compact.

(2.166)

Let h̃ = h − v − µ, then the Taubes equation is equivalent to its regularised

counterpart,

−∆h̃ = F (h̃+ v + µ)− g. (2.167)

If Σ is the euclidean plane, we add the boundary condition,

lim
|x|→∞

h̃ = 0. (2.168)

Theorem 2.12. Let p = (p1, . . . , pk+), q = (q1, . . . , qk−) be sequences of non-

intersecting simple cores in Σ, either a compact surface or the Euclidean plane.

Let us denote by h(x; p,q) the solution to the Taubes equation for this configu-

ration. For any families Ur ⊂ Σ, r = 1, . . . , k+, Vs ⊂ Σ, s = 1, . . . , k−, of open

neighbourhoods on Σ such that Ur ∩ Vs = ∅, let W = (∪rUr)
⋃

(∪sVs), then the

restriction

h :
(
Σ \W

)
×r Ur ×s Vs → R, (2.169)

is smooth.

Proof. Consider the function

f(r) =
1

(1 + r2)2
, r ∈ R, (2.170)
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this function has the property that it and all of its derivatives are dominated by

r−4 as r →∞. This guarantees that,

g ∈ Hr(R2), ∀r ≥ 0. (2.171)

and that as a function R2n → Hr(R2), g varies smoothly. We note that in the

plane, the function

evc =
|x− c|2

1 + |x− c|2
, (2.172)

and all of its derivatives are bounded, and that evp and evq have no common zeros

if p and q have no common elements. In the compact case, it is known that for

fixed y, G(x, y) has a singularity at y, however, locally in any open disk Dr(y) of

smaller radius than the injectivity radius, G(x, y) has the asymptotic expansion,

G(x, y) =
1

2π
log (d(x, y)) + G̃(x, y), ∀x ∈ Dr(y), (2.173)

where d(x, y) is the Riemannian distance and G̃(x, y) is a smooth function defined

on the disk. Hence evc is also smooth and well defined on Σ.

In any case, F (u+ v+ µ) ∈ Hr(Σ) for any u ∈ Hr(Σ). Let ∆Σ = Σk+ ×Σk− \
∆k+,k− , then the function,

∆Σ× Hr(Σ)→ Hr(Σ), (p,q, u) 7→ F (u+ v + µ)− g, (2.174)

is smooth. Therefore, the operator

Tu = ∆u+ F (u+ v + µ)− g, u ∈ Hr+2(Σ), (2.175)

is a well defined, smooth operator ∆Σ× Hr+2(Σ)→ Hr(Σ). If h̃ is a solution to

the regularised Taubes equation, then ∂h̃T : Hr+2 → Hr is the operator,

(∂h̃T) δu = (∆ + V (h̃+ v + µ)) δu, (2.176)

where as a function of Σ,

V (x) = V
(
h̃+ v + µ

)
∈ Cr (2.177)

is a positive function whose zero set is P∪Q and if Σ is R2, has the property that

lim|x|→∞ V (x) = (1−τ 2). By lemma 2.10, ∂h̃T is an isomorphism, by the implicit
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function theorem, the mapping (p,q) 7→ h̃ is smooth as a map ∆Σ→ Hr(Σ). By

Sobolev’s embedding, it is also smooth as a map ∆Σ → Cr−2(Σ) for all r ≥ 2.

Hence, it depends smoothly on (p,q). Finally, since the solution to the Taubes

equation is u = h̃+ v + µ, we have that for any neighbourhood W of P ∪ Q, the

restriction u : Σ \W → R depends smoothly on the cores.

Corollary 2.13. Let U be either an open and dense subset of the compact surface

Σ or the euclidean plane. In any holomorphic chart ϕ : U → C containing

the cores, the localization formula (2.85) can be extended continuously to the

coincidence set.

Proof. For any given core pj ∈ U , let zj = ϕ(pj) ∈ C. We assume each pj is

simple and that all the zj are contained in a bounded domain D ⊂ C. This

assumption is superfluous for the Euclidean plane but for a compact surface is

necessary for the existence of a smooth function H : D × D → R such that for

any z, w ∈ D,

G(ϕ−1(z), ϕ−1(w)) =
1

2π
log |z − w|+H(z, w). (2.178)

Assume without loss of generality s1 = s2, to prove the result it is enough to

show that for any pair of indices i, j ∈ {1, . . . , k+ + k−}, limz1→z2 ∂zjbi(z) ex-

ists, where z = (z1, . . . , zk++k−). In the following computation, we denote by

hϕ(z) = h(ϕ−1(z)), Gϕ(z, w) = G(ϕ−1(z), ϕ−1(w)), h̃ϕ(z) = h̃(ϕ−1(z)) the local

representation of the functions,

bi = 2 ∂z=zi
(
si hϕ(z)− log|z − zi|2

)
= 2 ∂z=zi

(
4π Gϕ(z, zi)− log |z − zi|2

)
+ 8π

∑
k 6=i

sisk∂zGϕ(zi, zk) + 2si ∂zh̃(zi, z)

= 8π ∂zHϕ(zi, zi) + 8π
∑
k 6=i

sisk∂zGϕ(zi, zk) + 2si ∂zh̃ϕ(zi, z), (2.179)

where ∂z refers to the derivative with respect to the first variable in each term.

Hence,

∂zjbi = 8π ∂zj∂zHϕ(zi, zi) + 8π
∑
k 6=i

sisk∂zj∂zGϕ(zi, zk) + 2si ∂zj∂zh̃ϕ(zi, z).

(2.180)
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2.3 The governing elliptic problem

The functions ∂zj∂zHϕ(zi, zi) and ∂zj∂zh̃ϕ(zi, z) vary continuously with (zi, z),

whence, the limits,

lim
z1→z2

∂zj∂zHϕ(zi, zi), lim
z1→z2

∂zj h̃ϕ(zi, z), (2.181)

both exist. In the above sum, if i 6= 1 and k 6= 1, or if either i = 1 or k = 1 and

the other is not index 2, the limit

lim
z1→z2

∂zj∂zGϕ(zi, zk) (2.182)

exists because G is smooth away of the diagonal set of Σ×Σ. Finally, if {i, k} =

{1, 2}, we can assume without loss of generality i = 1, k = 2, to compute,

lim
z1→z2

∂zj∂zGϕ(z1, z2) = lim
z1→z2

∂zj∂z=z1

(
1

2π
log |z − z2|+Hϕ(z, z2)

)
= lim

z1→z2
∂zj∂zHϕ(z1, z2)

= ∂zj∂zHϕ(z2, z2). (2.183)

Therefore, limz1→z2 ∂zjbi(z) exists, implying the localization formula can be

extended to the coincidence set.

In later applications we will also focus on vortices of the Ginzburg-Landau

functional, in this case, the governing elliptic problem is the orginal Taubes equa-

tion,

−∆h = eh − 1 + 4π
∑
i

δpi . (2.184)

If Σ is the euclidean plane, we add the condition lim|x|→∞ h = 0. In both

cases, we know that there exists a solution h to the Taubes equation for any

configuration p of points. On the plane this is proved in [56] whereas in a compact

surface Σ the proof can be found in [61]. As for the O(3) Sigma model, given a

configuration p = (p1, . . . , pn) of cores, if we define h̃ such that h = h̃+vp, then h̃

is the unique solution of the regularized Taubes equation for the Ginzburg-Landau

functional,

−∆h̃ = eh̃+vp − 1− gp, (2.185)
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2.3 The governing elliptic problem

where the functions vp, gp are defined either as in equation (2.160) if Σ is the

euclidean plane or vp is defined as in equation (2.160) and gp is the constant

function 4πn|Σ|−1 if Σ is compact.

Mimicking the proof of theorem 2.12, we prove the following proposition.

Proposition 2.14. Let p ∈ Σn be a sequence of points on a Riemann surface Σ

either compact or the euclidean plane. If Σ is compact assume n ∈ Z+ satisfies

Bradlow’s bound for vortices of the Ginzburg-Landau functional,

4π n ≤ |Σ|. (2.186)

Let h̃ : Σ × Σn → R be such that h̃(x; p) is the unique solution to equa-

tion (2.185) with data p, then h̃ is a smooth function of x and the data.

Proof. As in the proof of theorem 2.12, we define an operator T : Σn×Hr+2 → Hr,

such that,

T (p, u) = ∆u+ eu+vp − 1− gp, (2.187)

and observe that as in the proof of the theorem, this operator is smooth. More-

over, the derivative ∂uT : Hr+2 → Hr at (p, h̃) is,

∂uT(δu) = (∆ + eh̃+vp) δu. (2.188)

We notice the potential V (x) = eh̃+vp and all the derivatives are bounded

functions. If Σ is compact, this is because V is smooth and if the surface is R2,

this is becuase evp has this property, as shown in the proof of theorem 2.12 and

because h, the solution to the Taubes equation, and all of their derivatives decay

exponentially as |x| → ∞. Hence, h̃ = h− vp and the derivatives are continuous

bounded functions. By lemma 2.10, ∂uT is an isomorphism. By the implicit

function theorem, for any p ∈ Σn and any r ≥ 2, there is a neighbourhood

U ⊂ Σn of p, such that the map p 7→ h̃(x; p) is smooth as a function U → Hr+2.

By Sobolev’s embedding, h̃(x) is of class Cr as a function Σ × U → R. Since

differentiability is a local property, this implies h̃ is of class Cr on Σ×Σn for any

r ≥ 0. Therefore h̃ is smooth.
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2.4 Topological methods

2.4 Topological methods

We finalize this chapter with a brief exposition of some results of analysis that

we will use to prove existence of solutions to the elliptic problem on compact

manifolds in chapters 4 and 5. Both methods are attributable to Leray and

Schauder. Our exposition will be short and will focus on the results we need.

Details can be found in the books [8] and [11]. Recall a subset of a topological

space is precompact if the closure is compact.

Definition 2.15. Let X, Y be Banach spaces and Ω ⊂ X. A continuous map

T : Ω → Y is compact if it maps bounded subsets of Ω to precompact subsets of

Y .

As a caveat, in [11] compact operators are called completely continuous.

Theorem/Definition 2.16. Let Ω ⊂ X be an open and bounded subset of a real

Banach space, T : Ω → X compact and y 6∈ (I − T )(∂Ω). For each admisible

triple (T,Ω, y), there is a unique integer deg(I − T,Ω, y) ∈ Z, with the following

properties:

1. deg(I,Ω, y) = 1 for y ∈ Ω.

2. deg(I−T,Ω, y) = deg(I−T,Ω1, y) + deg(I−T,Ω2, y) whenever Ω1, Ω2 are

disjoint open subsets of Ω such that y 6∈ (I − T )(Ω \ (Ω1 ∪ Ω2)).

3. Homotopy invariance: deg(I − H(t, ·),Ω, y(t)) is independent of t ∈ [0, 1]

whenever H : [0, 1] × Ω → X is compact, y : [0, 1] → X is continuous and

y(t) 6∈ (I −H(t, ·))(∂Ω) on [0, 1].

4. General homotopy invariance: Let Θ ⊂ [0, 1] × X be bounded and open in

[0, 1] × X with Θt = {x ∈ X : (t, x) ∈ Θ}. If H : Θ → X is compact and

y : [0, 1]→ X is continuous with y(t) 6∈ (I −H(t, ·))(∂Θt) for all t ∈ [0, 1],

then deg(I −H(t, ·),Θt, y(t)) is independent of t.

deg(I − T,Ω, y) is Leray-Schauder’s degree. It can be proved [11, Thm. 8.2]

that deg(I − T,Ω, y) 6= 0 implies (I − T )−1(y) 6= ∅. As an application of this

concept, there is the following result of Schäfer [48],
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2.4 Topological methods

Theorem 2.17. Let T : X → X be compact. Then the following alternative

holds:

1. x− λT (x) = 0 has a solution for every λ ∈ [0, 1], or

2. S = {x ∈ X : ∃λ ∈ [0, 1] s.t. x− λT (x) = 0} is unbounded.

For a linear operator, alternative 1 always holds by choosing the solution x = 0,

however, for non-linear operators this is not always the case. A proof of the

theorem can be found in [8, Cor. I.1.18]. In general, computing the degree is a

difficult task. Suppose x0 ∈ (I − T )−1(y) isolated, then x0 is the only solution

of the equation x − T (x) = y in some disk Dε0(x0). By homotopy invariance,

deg(I − T,Dε(x0), y) is independent of ε for 0 < ε < ε0.

Definition 2.18. With the previous assumptions, the index of an isolated solution

x0 to the equation x− T (x) = y is

ind(I − T, x0, y) = deg(I − T,Dε(x0), y), (2.189)

where ε > 0 is any sufficiently small radius.

If T is compact and differentiable at x0, then T ′(x0) is a compact linear

operator. We state the following theorems,

Theorem 2.19 (Leray-Schauder). If T : Ω ⊂ X → X is compact and differ-

entiable at x0 and if I − T ′(x0) is injective, then ind(I − T, x0, y) = ±1. More

precisely,

ind(I − T, x0, y) = ind(I − T ′(x0), x0, y)

= (−1)β, β =
∑
λ>1

m(λ). (2.190)

The sum is taken over all eigenvalues λ > 1 of T ′(x0) and m(λ) is the algebraic

multiplicity of λ.

Definition 2.20. An operator H(λ, x), H : R × X → X, is continuous in λ

uniformly with respect to x in balls in X if for any given ball B ⊂ X and for any

ε > 0, there is a δ > 0 such that |λ2 − λ1| < δ implies |H(λ2, x) −H(λ1, x)| < ε

for all x ∈ B.
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2.4 Topological methods

The following theorem can be found in [8, Thm. I.3.3].

Theorem 2.21. Let H : R × X → X be such that for all λ ∈ R the map

H(λ, ·) : X → X is compact and H(λ, x) is continuous in λ uniformly with

respect to x in balls in X (definition 2.20). Let (λ0, x0) be a solution of the

equation

x−H(λ, x) = 0. (2.191)

Suppose U ⊂ X is an open, bounded set such that x0 ∈ U and,

1. for fixed λ0 there is no other solution in U,

2. deg(I −H(λ0, ·),U, 0) 6= 0.

Then there exist two connected and closed sets (=continua) C+ ⊂ [λ0,∞)×X
and C− ⊂ (−∞, λ0]×X of solutions of (2.191) with (λ0, x0) ∈ C+ ∩ C−. For C+

one of the following two alternatives hold:

1. C+ is unbounded or,

2. C+ ∩ ({λ0} × (X \ U)) 6= ∅.

The same alternatives hold for C−.

The hypotesis on H implies the restriction to bounded subsets of R × X is

compact. The definition of compact operator on the reference is slightly different,

however, it is not difficult to go through the proof and adapt it to our current

definition.

We conclude the section mentioning that several results related to theorem 2.21

can be found in the literature. A good survey of related applications is [40].
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Chapter 3

Asymmetric vortex-antivortex

systems in the euclidean plane

In this chapter we study the moduli space of vortex-antivortex pairs on the eu-

clidean plane in detail. Our approach will be analytical and numerical. To un-

derstand the geometry of the moduli space, we need to analyse the properties of

the Taubes equation in the critical case when a vortex and an antivortex collide.

In section 3.1, we study the space of vortex-antivortex pairs, the main result

is that it is incomplete. To prove this theorem, we find bounds for hε, the solution

to the Taubes equation in several lemmas in subsection 3.1.1.

In section 3.2, we develop an asymptotic approximation for the L2 metric of

vortex-antivortex pairs in the centre of mass frame, and complement it with the

point source formalism in subsection 3.2.1, in which we approximate the fields

linearising the field equations. The main result is the Lagrangian (3.214) which

confirms the asymptotic formula obtained previously. In subsection 3.2.2, we find

another asymptotic aproximation for the metric, this time for small ε, the main

result is equation (3.269).

In section 3.3 we approximate the L2 metric numerically, using the data found

by numerical methods to study the scattering of vortex-antivortex pairs in sub-

section 3.3.1 and in this way testing our approximations of the previous section.

Finally, in section 3.4 we study Ricci magnetic geodesics. These curves are of

mathematical interest, there are a few results about the relation between exten-

sibility of them and completeness of the underlying space, as the moduli space of
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vortex-antivortex pairs is incomplete, the question of whether or not it is complete

in the Ricci magnetic sense is interesting in its own.

In order to start, let us note that on R2 any fibre bundle is trivial, therefore

we can consider sections on the target manifold as pairs (φ,A) of a function

φ : R2 → S2 and a 1-form A ∈ Ω1(R2). Since the Lagrangian is isometrically

invariant, by Noether’s theorem there will be conserved currents. In the Euclidean

case, the conserved quantities are the total energy, E, the linear and angular

momenta. We already know how to compute the energy. For the remaining

constants of motion note that the Laplacian is invariant under the action of the

group of isometries of the plane, E(2) ∼= R2 o O(2), which is a Lie group of

dimension three. If h(x; p,q) : R2 \ (P ∪ Q) → R is the solution to the Taubes

equation, and γ ∈ E(2) acts in p and q component-wise, this implies,

h(x; γp, γq) = h(γ−1x; p,q). (3.1)

Lemma 3.1. Let c = (c1, . . . , ck++k−) be a sequence of cores, ordered such that

the first k+ are the vortices. Let bj be the coefficients defined in lemma 2.3. If

γx = αx+ β, α, x, β ∈ R2, |α| = 1 , is an orientation preserving isometry, then

bj(γc) = α bj(c). (3.2)

If γ is the orientation reversing generator, γx = x, we have,

bj(c) = bj(c). (3.3)

Proof. After some algebraic manipulation and the chain rule,

bj(γc) = 2 ∂x=γcj

(
sjh(x; γc)− log |x− γcj|2

)
= 2 ∂x=γcj

(
sjh(γ−1x; c)− log |γ−1x− cj|2

)
= 2 ∂x=cj

(
sjh(x; c)− log |x− cj|2

)
∂x=γc(γ

−1x)

+ 2 ∂x=cj

(
sjh(x; c)− log |x− cj|2

)
∂x=γc(γ−1x)

= 2 ∂x=cj

(
sjh(x; c)− log |x− cj|2

) 1

α

= α bj(c), (3.4)
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where we used the fact that γ−1x is holomorphic and α unitary to simplify the

result of the chain rule. For the second identity we proceed analogously,

bj(c) = 2 ∂x=cj

(
sjh(x; c)− log |x− cj|2

)
= 2 ∂x=cj

(
sjh(x; c)− log |x− cj|2

)
= 2 ∂x=cj

(
sjh(x; c)− log |x− cj|2

)
= bj(c). (3.5)

As a consequence of the lemma, the coefficients bj are translation invariants:

if X is the Killing field generated by a one parameter family of isometries γs, then

LXbj(c) = ȧ0 bj(c), (3.6)

where LX denotes the Lie derivative. If γsx = x + sb is a one parameter family

of translations, then ȧ0 = 0, on the other hand,

X =
∑
k

(
b ∂ck + b ∂ck

)
, (3.7)

Letting b = 1 and b = i, we obtain,∑
k

(
∂ck + ∂ck

)
bj(c) = 0,

∑
k

(
∂ck − ∂ck

)
bj(c) = 0. (3.8)

Hence,
∑

k ∂ck bj =
∑

k ∂ckbj = 0. Applying the symmetries of the coefficients,

∂cj
∑
k

bk =
∑
k

∂cjbk =
∑
k

∂ckbj = 0, (3.9)

∂cj
∑
k

bk =
∑
k

∂cjbk =
∑
k

∂ckbj =
∑
k

∂ckbj = 0. (3.10)

Therefore,
∑

k bk is constant. Repeating this argument with the one-parameter

family of rotations γs x = es i x, we find that X = i
∑

k

(
ck ∂ck − ck ∂ck

)
, thence,∑

k

(
ck ∂ck − ck ∂ck

)
bj = bj. (3.11)
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Summing over j, we find,∑
j

bj =
∑
j

∑
k

(
ck ∂ck − ck ∂ck

)
bj =

∑
k

(
ck ∂ck − ck ∂ck

)
·
∑
j

bj = 0, (3.12)

since
∑

j bj is constant. This result is analogous to the similar result obtained

by Samols for vortices of the Ginzburg-Landau functional in [47]. As a conse-

quence of this symmetry we have the following proposition about conservation of

momentum.

Proposition 3.2. The total conserved momentum of a vortex-antivortex system

with cores at position c is,

P1 + P2 i = 2π
∑
j

(1− sjτ) ċj, (3.13)

where sj = scj is the sign function determining the type of the core.

Proof. By lemma 3.1 the translation group acts isometrically on the moduli space.

Hence for any b ∈ C the fields, X =
∑

k(b ∂ck + b ∂ck) are Killing fields and the

product

Pb = 〈ċ, X〉 (3.14)

is constant along geodesic trajectories and corresponds to the projection of mo-

mentum on the b direction. If K denotes the Kähler metric, equation (2.86),

Pb = < (K(ċ, X))

=
1

2

(
K(ċ, X) + K(ċ, X)

)
=

1

2
(K(ċ, X) + K(X, ċ))

=
1

2

∑
i,j

Kij

(
ċiXj +Xiċj

)
. (3.15)

On the other hand, Kij = 2π ((1− siτ)δij + ∂cibj). Note that by the invariance

of the coefficients bj, we have,

∑
i,j

∂cibj
(
ċiXj +Xiċj

)
= b

∑
i

ċi∂ci

(∑
j

bj

)
+ b
∑
j

(
ċj
∑
i

∂cibj

)
= 0.

(3.16)
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Hence,

Pb = π
∑
i

(1− siτ)(ċi b+ b ċi). (3.17)

If we let b = 1 and b = i we get the momentum in the direction of the real an

imaginary axes are the real and imaginary parts of the vector,

2π
∑
j

(1− sjτ) ċj. (3.18)

Proposition 3.3. The angular momentum of a vortex-antivortex system is,

` = ω(c, ċ), (3.19)

where ω ∈ Ω2(R2) is the Kähler form of the metric.

Proof. Conservation of angular momentum corresponds to the action of SO(2) on

the moduli space. Let X = i
∑

k

(
ck∂ck − ck ∂ck

)
be the Killing field generating

the action of SO(2), the conserved angular momentum is,

` = 〈ċ, X〉

=
1

2
(K(ċ, X) + K(X, ċ))

= πi
∑
j,k

((
(1− sj) δjk + ∂cjbk

)
(−ċj ck + cj ċk)

)
= ω(c, ċ). (3.20)

It is convenient to express the dynamics of vortex-antivortex systems in the

centre of mass frame. Let us define,

C =
1

(1− τ)k+ + (1 + τ)k−

∑
j

(1− sjτ)cj, (3.21)

M = 2π (1− τ)k+ + 2π (1 + τ)k−, (3.22)
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M is the total mass and C the centre of mass of the system as determined by

conservation of momentum and energy. Let us define the variables ξj ∈ R2 such

that,

cj = C + ξj. (3.23)

Let mj = 2π(1−sjτ) be the effective mass of a core, then
∑

jmj ξj = 0. Note

that this linear combination is invariant under the action of Sk+ × Sk− on the

moduli space, where Sn is the symmetric group of order n, hence it determines a

well defined subspace M
k+,k−
0 ⊂Mk+,k− where C = 0.

Proposition 3.4. Let K0 be the restriction of the Kähler metric to M
k+,k−
0 , then,

K = M |dC|2 + K0.

Proof. This is a consequence of translation invariance, let mi = 2π (1 − si τ) be

the mass of the core at ci,

K =
∑
i

mi |dC + dξi|2 + 2π
∑
i,j

∂cibj (dC + dξi) (dC + dξj). (3.24)

The first terms can be split into

M |dC|2 + 2<

(
dC

∑
i

midξi

)
+
∑
i

mi|dξi|2 = M |dC|2 +
∑
i

mi|dξi|2, (3.25)

and the second terms can be split as,

2π

(∑
j

(|dC|2 + dξjdC) ·
∑
i

∂cibj + dC
∑
i

dξi ·
∑
j

∂cibj +
∑
i,j

∂cibjdξjdξci

)
= 2π

∑
i,j

∂cibj dξjdξi, (3.26)

where the first two terms cancelled because the coefficients bj are translation

invariant. Substituting back into the formula for K we conclude the claim of the

proposition.

As a consequence, the moduli space decomposes in a product of Kähler man-

ifolds,

Mk+,k− ∼= R2 ×M
k+,k−
0 , (3.27)
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3.1 The moduli space of vortex-antivortex pairs

such that the metric splits in a trivial flat metric in R2 and the nontrivial restric-

tion to M
k+,k−
0 . This splitting was first observed by Samols [47] for vortices in

the Abelian Higgs model. M
k+,k−
0 is the space of vortices and antivortices with

fixed centre of mass. Given the decomposition of the metric in the moduli space,

the energy and angular momentum in the centre of mass frame are,

E =
1

2
K(ξ̇, ξ̇), (3.28)

` = ω(ξ, ξ̇), (3.29)

where K and ω are the Kähler metric and Kähler form of ambient space at

ξ = (ξ1, . . . , ξk++k−).

3.1 The moduli space of vortex-antivortex pairs

In this section we focus on the moduli space of vortex-antivortex pairs on Eu-

clidean space and extend the analysis done by Romão-Speight in [45] for τ = 0.

We focus on the non trivial part of the metric in the submanifold M
1,1
0
∼= R2\{0},

of pairs with centre of mass at the origin. Let

b(x) = b1(x,−x), x ∈ R+. (3.30)

By the invariance of the coefficient b1 with respect to conjugation, b is a real

function. Let us assume c1 is the vortex position, introducing (ε, θ) coordinates

such that c1 − c2 = 2εeiθ, we have,

b1(c1, c2) = eiθb(ε). (3.31)

Recall b1 + b2 = 0 and ∂1b1 + ∂2b1 = 0, then the restriction of the metric to

M
1,1
0 is,

g0 = Ω(ε) (dε2 + ε2dθ2), (3.32)

where the conformal factor is,

Ω(ε) = 2π

(
2(1− τ 2) +

1

ε

d

dε
(εb(ε))

)
. (3.33)
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3.1 The moduli space of vortex-antivortex pairs

3.1.1 The singularity at ε = 0

In this section we study the limiting behaviour of solutions to the Taubes equation

for vortex-antivortex pairs as ε → 0. We aim to prove bounds for hε in order to

estimate the length of radial geodesics and finalize proving that the moduli space

of vortex-antivortex pairs is incomplete. We start defining the following constant

and functions,

µ =
1− τ
1 + τ

, Fµ(t) = 2
et − 1

µ et + 1
, Vµ(t) =

2(µ+ 1) et

(µ et + 1)2
. (3.34)

If hT (x, ε,−ε) is the solution to the Taubes equation with a vortex at position

(ε, 0) and an antivortex at (−ε, 0), let us define the function hε such that hT =

hε +µ. To express the Taubes equation in a convenient way, we make the change

of variable,

x′ = (1− τ 2)−1/2 x, (3.35)

under this change of variable, the position of a vortex or antivortex is (±ε′, 0) =

(±(1 − τ 2)−1/2 ε, 0). By an abuse of notation, we still denote by x coordinates

in the rescaled Euclidean plane and by (±ε, 0) the positions of the cores. With

these definitions, the Taubes equation is equivalent to,

−∆hε = Fµ(hε) + 4πδε − 4πδ−ε, (3.36)

together with the constraint,

lim
|x|→∞

hε = 0. (3.37)

Let u be the solution to the Taubes equation for the Ginzburg-Landau func-

tional [56],

−∆u = eu − 1 + 4πδ0, (3.38)

Yang proves in [60] that u < 0. For the following results, we will assume τ ∈ [0, 1),

the case τ < 0 being similar. Repeating the argument of Yang, the function

uε(x) = u(x− ε) is a sub-solution of hε, i.e. uε < 0 and

−∆uε ≥ Fµ(uε), x ∈ R2 \ {ε,−ε} . (3.39)
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On the other hand, the function −u−ε = −u(x + ε) is a super-solution: it is

positive and

−∆(−u−ε) ≤ Fµ(−u−ε), x ∈ R2 \ {ε,−ε} . (3.40)

By the maximum principle,

uε(x) < hε(x) < −u−ε(x), x ∈ R2 \ {ε,−ε} . (3.41)

Lemma 3.5. For any δ ∈ (0, 1) there exist two constants C(δ) and R(δ) such

that

|u(x)| ≤ C e−(1−δ) |x|, |∇u(x)| ≤ C e−(1−δ) |x|, |x| > R. (3.42)

In particular, ||u||Lp <∞ for any p > 0.

Proof. That u and its derivatives decay exponentially fast at infinity can be found

in the literature, for example in [23, 56], here we adapt a proof of Yang for solu-

tions of the elliptic problem of the O(3) Sigma model in the symmetric case [59,

Lemma 8.3]. Since lim|x|→∞ u = 0, we linearise (3.38) about u = 0 in a neigh-

bourhood of infinity to obtain,

−∆u = f(x)u, |x| ≥ R. (3.43)

where f(x) is a function such that f(x) → 1 as |x| → ∞. Let us introduce the

comparison function

w(x) = C e−(1−δ) |x|, |x| ≥ R, (3.44)

where C(δ) and R(δ) are positive constants yet to be determined. The Laplacian

of this function is −∆w = (1−δ) (1− δ − |x|−1)w. Choosing R sufficiently large,

we can guarantee that

f(x) > (1− δ)
(

1− δ − 1

|x|

)
, (3.45)

hence,

−∆(u− w) > f(x)(u− w), (3.46)
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for |x| > R. Let us choose C big enough for the continuous function u−w to be

negative at the boundary |x| = R. Since u(x) − w(x) → 0 as |x| → ∞, by the

maximum principle u(x) < w(x) for all |x| ≥ R. Since (3.43) is linear, we can

apply the same argument to −u. Choosing the bigger of each pair of constants

(C,R) the decay rate of u is proved.

For the decay rate of ∇u, we know that u ∈ Hr for all r ≥ 2 [56], in particular,

∇u→ 0 as |x| → ∞. Linearising in a neighbourhood of infinity, ∇u is a solution

to the equation,

−∆ (∇u) = f(x)∇u, (3.47)

for some function f(x) such that f(x) → 1 as |x| → 0. We can apply the same

argument as before to obtain the exponential decay estimate of ∇u. To prove the

assertion about the Lp norm of u, note that |u|p also decays exponentially fast

at infinity for any p > 0 and since the singularity at x = 0 is logarithmic and

lim|x|→0 |x| (log |x|)p = 0, the integral∫
R2

|u|p dx =

∫ 2π

0

∫ ∞
0

|u|p r dr dθ (3.48)

is convergent.

For any R > 0 and ε0 > 0, if |x| > R and ε < ε0, by the triangle inequality

|x± ε| > R − ε0. As a consequence of this observation and Lemma 3.5, we have

the following corollary,

Corollary 3.6. For any δ ∈ (0, 1) and ε0 > 0, there exists constants C(δ), and

R(δ, ε0), such that if ε < ε0 and |x| > R,

|u±ε(x)| ≤ C e−(1−δ)|x|, |∇u±ε(x)| ≤ C e−(1−δ)|x|. (3.49)

We also have the following uniform bounds, valid for any p > 0,

||hε||Lp ≤ ||−u−ε − uε||Lp

≤ ||u−ε||Lp + ||uε||Lp (3.50)

= 2 ||u||Lp . (3.51)
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Let us introduce the functions,

v(t) = − log (1 + t−2), g(t) =
4

(1 + t2)2
, t > 0. (3.52)

and let vε = v(|x− ε|)−v(|x+ ε|), gε = g(|x− ε|)−g(|x+ ε|). We have the norm

estimates,

||gε||Lp ≤ 2 ||g(|x|)||Lp , (3.53)

||vε||Lp ≤ 2 ||v(|x|)||Lp . (3.54)

Each of the functions |vε|p, |gε|p is pointwise convergent to zero. Therefore,

lim
ε→0
||gε||Lp = 0, p >

1

2
, (3.55)

lim
ε→0
||vε||Lp = 0, p > 1. (3.56)

Let us define h̃ε = hε − vε. Then h̃ε is a solution to the regularised Taubes

equation,

−∆h̃ε = Fµ(vε + h̃ε)− gε. (3.57)

From now onwards, we will use the same variable C to denote a positive

constant, independent of ε, that can change from one inequality to the following.

By our estimates for the p norm of hε and vε, h̃ε is uniformly bounded in Lp for

p > 1.

Lemma 3.7. Let ε0 > 0 be an arbitrary positive constant, ||h̃ε||H1 ≤ C for ε < ε0.

Proof. Since h̃ε is uniformly bounded on L2, we aim to show that ||∇h̃ε||L2 is also

bounded if ε < ε0. We have,

||∇h̃ε||2L2 = −〈Fµ(vε + h̃ε), h̃ε〉+ 〈gε, h̃ε〉,
= −〈Fµ(hε), h̃ε〉+ 〈gε, h̃ε〉,
≤ |〈Fµ(hε), h̃ε〉|+ ||gε||L2 ||h̃ε||L2

≤ |〈Fµ(hε), h̃ε〉|+ C, (3.58)
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where 〈·, ·〉 is the L2 product. It remains to show 〈Fµ(hε), h̃ε〉 is uniformly

bounded. Let δ ∈ (0, 1) be any given number, by corollary 3.6, there are positive

constants R, C such that if |x| > R and ε < ε0,

|hε(x)| ≤ |u(x− ε)− u(x+ ε)| (3.59)

≤ C e−(1−δ)|x|. (3.60)

Hence, there is another constant, such that,

Fµ(hε) ≤ C e−(1−δ)|x|, |x| ≥ R. (3.61)

Let U be the exterior of the disk DR(0), by the previous bound,

|〈Fµ(hε), h̃ε〉|L2(U) ≤ ||Fµ(hε)||L2(U) ||h̃ε||L2(U) ≤ C ||e−(1−δ)|x|||L2(U), (3.62)

since h̃ε is uniformly bounded on L2. On the other hand, Fµ is a bounded function,

hence,

|〈Fµ(hε), h̃ε〉|L2(DR(0)) ≤ ||Fµ(hε)||L2(DR(0)) ||h̃ε||L2(DR(0)) ≤ C. (3.63)

This concludes the proof that 〈Fµ(hε), h̃ε〉 is bounded on L2.

Proposition 3.8. limε→0 ||h̃ε||L2 = 0.

Proof. Let h̃n = h̃εn be any sequence such that εn → 0. By lemma 3.7
{
h̃n

}
is bounded on H1, hence, by the Banach-Alaoglu theorem, after passing to a

subsequence if necessary, there is a function h̃∗ ∈ H1 such that h̃n ⇀ h̃∗ weakly on

H1 and by the Rellich-Kondrashov theorem, after passing to another subsequence

if necessary, we can assume that for any bounded domain D, h̃n → h̃∗ strongly

on L2(D). We will assume without further notice that domains are bounded and

their boundaries have at least Lipschitz regularity. Let ϕ ∈ C1
0(R2) and let D be

a domain containing the support of ϕ,

〈ϕ, h̃∗〉H1 = lim 〈ϕ, h̃n〉H1

= lim 〈∇ϕ,∇h̃n〉L2 + lim 〈ϕ, h̃n〉L2

= lim 〈ϕ,∆h̃n〉L2 + lim 〈ϕ, h̃n〉L2

= − lim 〈ϕ, Fµ(vn + h̃n)− gn〉L2 + 〈ϕ, h̃∗〉L2 . (3.64)
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The last equation because the convergence h̃n → h̃∗ is strong on bounded

domains and ϕ is compactly supported. Consequently,

〈∇ϕ,∇h̃∗〉L2 = − lim 〈ϕ, Fµ(vn + h̃n)− gn〉L2 . (3.65)

By the mean value theorem, we have the estimate,

||Fµ(vn + h̃n)− Fµ(h̃∗)||L2(D) ≤ C
(
||vn||L2(D) + ||h̃n − h̃∗||L2(D)

)
. (3.66)

Therefore, Fµ(vn + h̃n)→ Fµ(h̃∗) and gn → 0 strongly on L2(D), thence h̃∗ is

a weak solution of the equation,

−∆h̃∗ = Fµ(h̃∗). (3.67)

By elliptic regularity h̃∗ is a strong solution and by the maximum principle

h̃∗ = 0.

Let D be any other domain, our previous argument shows that any sequence

h̃n has a convergent subsequence h̃nj → 0 on L2(D). Therefore for any domain

D, limε→0||h̃ε||L2(D) = 0. Now we prove that limε→0||h̃||L2 = 0, to this end, let

ρ > 0 and let us take R > 0 such that

||u||L2(R2\DR(0)) <
ρ

2
. (3.68)

Let ε0 be small enough such that |x± ε| > R for all ε < ε0 and |x| > 2R. In this

situation we have,

||h̃ε||L2(R2\D2R(0)) < ||uε||L2(R2\D2R(0)) + ||u−ε||L2(R2\D2R(0))

≤ 2||u||L2(R2\DR(0))

< ρ. (3.69)

On the other hand, there exists ε1 such that if ε < ε1, then,

||h̃ε||L2(D2R(0)) < ρ, (3.70)

taking ε′ = min(ε0, ε1), we conclude that

||h̃ε||L2 < 2ρ, ∀ε < ε′ (3.71)

and the limit limε→0||h̃ε||L2 = 0 holds.
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Since h̃ε → 0 strongly as ε→ 0, by the mean value theorem as in the proof of

the proposition, we have,

lim
ε→0
||Fµ(vε + h̃ε)||L2 = 0. (3.72)

Moreover,

||∆h̃ε||L2 ≤ ||Fµ(vε + h̃ε)||L2 + ||gε||L2 , (3.73)

since both terms on the right side of the inequality converge to 0, we have the

limit

lim
ε→0
||∆h̃ε||L2 = 0. (3.74)

Lemma 3.9. Let D be any domain on the plane, the restrictions h̃ε|D and ∇h̃ε|D
converge uniformly to 0.

Proof. If we take any pair of domains D b D′, by Schauder’s estimates,

||h̃ε||H2(D) ≤ C(||∆h̃ε||L2(D′) + ||h̃ε||L2(D′)), (3.75)

which implies h̃ε → 0 in H2(D) as ε→ 0. By Sobolev’s embedding, we have that

for any domain, limε→0 h̃ε = 0 uniformly. Let p > 2 be any real number and let h̃n

be any sequence of functions such that εn → 0. Since the convergence is uniform

on D, we can apply the dominated convergence theorem to obtain,

||h̃n||Lp(D) → 0, ||F (vn + h̃n)||Lp(D) → 0 (3.76)

and since the sequence is arbitrary, we conclude the limits,

lim
ε→0
||h̃ε||Lp(D) = 0, lim

ε→0
||F (vε + h̃ε)||Lp(D) = 0, (3.77)

are valid for any domain. In particular, both limits are valid for the domain D′

of equation (3.75). By Schauder’s estimates ||h̃ε||W2,p(D) → 0 as ε → 0 and by

Sobolev’s embedding,

lim
ε→0
||h̃ε||C1(D) = 0. (3.78)
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Proposition 3.10. The convergence h̃ε → 0 is uniform on R2.

Proof. Recall

|h̃ε| ≤ |hε|+ |vε| ≤ |u(x− ε)− u(x+ ε)|+ |v(|x− ε|)− v(|x+ ε|)| . (3.79)

Let R > 0 be any large positive constant, such that the estimates of lemma 3.5

hold for δ = 1
2
. If |x| > 2R and ε < R, then |x± ε| > R. We can apply the mean

value theorem to obtain the estimate

|v(|x− ε|)− v(|x+ ε|)| =
∣∣log (1 + |x− ε|−2)− log (1 + |x+ ε|−2)

∣∣
≤ 1

R2

∣∣|x− ε|−2 − |x+ ε|−2
∣∣

=
4ε |x1|

R2 |x− ε|2|x+ ε|2

=

∣∣∣∣ 4ε (x1 + ε)

R2 |x− ε|2|x+ ε|2
− 4ε2

R2 |x− ε|2|x+ ε|2

∣∣∣∣
≤ 4ε

R5
+

4ε2

R6
. (3.80)

Likewise, there is some ξ in the linear segment joining x− ε to x+ ε such that,

|u(x− ε)− u(x+ ε)| = 2 |∂1u(ξ) ε| ≤ 2Ce−
1
2
|ξ| ε ≤ 2Cε, (3.81)

where we have used lemma 3.5. We conclude that h̃ε → 0 uniformly on R2\DR(0),

but by lemma 3.9, h̃ε also converges uniformly on DR(0).

Recall Poincare’s constant of a domain D is the best constant Cp(D) such

that for any zero average function u : D→ R,

||u||L2(D) ≤ Cp ||∇u||L2(D). (3.82)

Lemma 3.11. Let a : R2 → [0,M) be a continuous function, such that

1. For some convex domain D with diameter d < π/M ,
∫
D
aVol > 0,

2. a is positive on Ω = R2 \D.

If m = infΩ a > 0, the bilinear form

B : H1 × H1 → R, B(u, v) = 〈∇u,∇v〉L2 + 〈u, av〉L2 , (3.83)
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is coercive with coercivity constant,

0 < α < min

(
m, 1,

∫
D
aVol

Vol(D)
,

1− M d
π

1 + Cp(D)
,

1

Vol(D)

∫
D

a
(

1− a

M

)
Vol

)
. (3.84)

Proof. We aim to prove the existence of a positive constant α such that for any

u ∈ H1,

||u||2H1 α ≤ B(u, u), (3.85)

Let α1 = min(m, 1), in the exterior Ω of the given domain,

||u||2H1(Ω) α1 ≤ ||∇u||2L2(Ω) + 〈u, au〉L2(Ω). (3.86)

On the other hand, any u ∈ H1(D) can be decomposed as u0 + u, where u0 is

of zero average on D and u ∈ R, hence, u0 is orthogonal to u in H1(D). Coercivity

in D is equivalent to find a positive constant α2 such that,(
||u0||2H1(D) + u2 Vol(D)

)
α2 ≤ ||∇u0||2L2(D) + 〈a, u2

0〉L2(D)

+ 2u 〈a, u0〉L2(D) + u2 〈a, 1〉L2(D), (3.87)

or equivalently,(
〈a, 1〉L2(D) − α2 Vol(D)

)
u2 + 2 〈a, u0〉L2(D) u+ (1− α2) ||∇u0||2L2(D)

+ 〈a, u2
0〉L2(D) − α2||u0||2L2(D) ≥ 0. (3.88)

For this is quadratic inequality on u to hold regardless of u, the leading coef-

ficient with respect to u must be positive and the discriminant of the quadratic

must be non-positive, from these two conditions we deduce the following restric-

tions:

α2 <
〈a, 1〉L2(D)

Vol(D)
=

∫
D
aVol

Vol(D)
. (3.89)

〈a, u0〉2L2(D) ≤
(
〈a, 1〉L2(D) − α2Vol(D)

)(
(1− α2) ||∇u0||2L2(D) + 〈a, u2

0〉L2(D) − α2||u0||2L2(D)

)
. (3.90)
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We claim the existence of a positive constant α2 such that the second restric-

tion is independent of u0. To this end, let us divide this inequality by M ,

〈 a
M
, u0

〉2

L2(D)
≤
(〈 a

M
, 1
〉

L2(D)
− α2

M
Vol(D)

)
(

1− α2

M
||∇u0||2L2(D) +

〈 a
M
, u2

0

〉
L2(D)

− α2

M
||u0||2L2(D)

)
. (3.91)

By Cauchy-Schwarz,〈 a
M
, u0

〉2

L2(D)
≤
∣∣∣∣∣∣ a
M

∣∣∣∣∣∣2
L2(D)

||u0||2L2(D) . (3.92)

Notice that, ∣∣∣∣∣∣ a
M

∣∣∣∣∣∣2
L2(D)

≤
〈 a
M
, 1
〉

L2(D)
− α2

M
Vol(D), (3.93)

if and only if

α2 ≤
1

Vol(D)

∫
D

a
(

1− a

M

)
Vol. (3.94)

On the other hand, the inequality

||u0||2L2(D) ≤
(

1− α2

M
||∇u0||2L2(D) +

〈 a
M
, u2

0

〉
L2(D)

− α2

M
||u0||2L2(D)

)
(3.95)

is equivalent to,

||u0||2L2(D) −
〈 a
M
, u2

0

〉
L2(D)

+
α2

M
||u0||2L2(D) ≤

1− α2

M
||∇u0||2L2(D). (3.96)

By Poincare’s inequality and the bound 0 ≤ a/M < 1,

||u0||2L2(D) −
〈 a
M
, u2

0

〉
L2(D)

+
α2

M
||u0||2L2(D) ≤

(
1 +

α2

M

)
||u0||2L2(D)

≤
(

1 +
α2

M

)
Cp ||∇u0||2L2(D). (3.97)

For the right side of this inequality to be lesser than (1− α2)/M , we require,

α2 <
1−M Cp

1 + Cp
. (3.98)
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Since D is convex, we know by a result of Payne and Weinberger [44] that

Cp ≤ d/π. Since d/π < 1/M implies MCp < 1 and

1− Md
π

1 + Cp
≤ 1−M Cp

1 + Cp
, (3.99)

it is enough to require α2 <
(
1− Md

π

)
(1 + Cp)

−1 to obtain the final bound.

Defining α ≤ min(α1, α2), we prove coercivity with a constant as stated in the

lemma.

Lemma 3.12. For any ε0 > 0, there is a positive constants C(ε0), such that for

all ε ≤ ε0,

||gε||Lp ≤ Cε, p >
2

5
, (3.100)

||vε||L2 ≤ Cε |log ε|, (3.101)

||vε||Lp ≤ Cε2/p, p > 1, p 6= 2, (3.102)

Proof. Let us rewrite gε,

gε(x) =
4

(1 + |x− ε|2)2 −
4

(1 + |x+ ε|2)2

=
4 (|x+ ε|2 − |x− ε|2) (2 + |x+ ε|2 + |x− ε|2)

(1 + |x+ ε|2)2 (1 + |x− ε|2)2

=
16 εx1 (2 + |x+ ε|2 + |x− ε|2)

(1 + |x+ ε|2)2 (1 + |x− ε|2)2 (3.103)

and let us take R > ε0. If Ω = R2 \ DR(0),

||gε||Lp(Ω) ≤ 16 ε

∣∣∣∣∣∣∣∣x1 (2 + 2(|x|+R)2)

(1 + (|x| −R)2)4

∣∣∣∣∣∣∣∣
Lp(Ω)

. (3.104)

The norm on the right decay as |x|−5 as |x| → ∞, hence is convergent for

p > 2/5. On the other hand, we have,

||gε||Lp(DR(0)) ≤ 16 ε
∣∣∣∣x1

(
2 + 2(|x|+R)2

)∣∣∣∣
Lp(DR(0))

. (3.105)

Thence ||gε||Lp ≤ Cε if ε < R. For vε we follow several steps, dividing the

plane in subregions where we can have control of the logarithmic singularities.
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We start with an algebraic rearrangement,

vε(x) = log

(
1 + |x+ ε|−2

1 + |x− ε|−2

)
= log

(
1 +
|x+ ε|−2 − |x− ε|−2

1 + |x− ε|−2

)
= log

(
1− 4εx1

|x+ ε|2(1 + |x− ε|2)

)
. (3.106)

Let R > 2ε0 be a large positive constant such that if |x| ≥ R and ε < R/2,

we have the approximation,

|vε(x)| = 4ε|x1|
|x+ ε|2(1 + |x− ε|2)

+ O(ε2)

≤ 4ε|x1|(
|x| − R

2

)2 (
1 + (|x| − R

2
)2
) . (3.107)

vε is bounded in Ω = R2 \ DR(0) by a function of order |x|−3, hence,

||vε||Lp(Ω) ≤ 4ε

∣∣∣∣∣
∣∣∣∣∣ x1(
|x| − R

2

)2 (
1 + (|x| − R

2
)2
)∣∣∣∣∣
∣∣∣∣∣
Lp(Ω)

, (3.108)

for any p > 1. On the other hand,

||v(|x− ε|)− v(|x+ ε|)||Lp(DR(0)) ≤
∣∣∣∣log(1 + |x+ ε|2)− log(1 + |x− ε|2)

∣∣∣∣
Lp(DR(0))

+
∣∣∣∣log(|x− ε|2)− log(|x+ ε|2)

∣∣∣∣
Lp(DR(0))

. (3.109)

For the first term, the difference can be bounded as,∣∣∣∣log(1 + |x+ ε|2)− log(1 + |x− ε|2)
∣∣∣∣

Lp(DR(0))
≤
∣∣∣∣ |x+ ε|2 − |x− ε|2

∣∣∣∣
Lp(DR(0))

≤ 4ε ||x1||Lp(DR(0))

≤ 4εR
(
π R2

)1/p
. (3.110)

For the second term, we proceed in two steps. Firstly, let us consider the

annulus 2ε ≤ |x| ≤ R and note that,

log|x− ε|2 − log|x+ ε|2 = log
∣∣∣1− ε

x

∣∣∣2 − log
∣∣∣1 +

ε

x

∣∣∣2 . (3.111)
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Let A(R, 2ε) = DR(0) \ D2ε(0) be the given annulus, with A(1/(2ε), 1/R)

defined accordingly. We make the change of variables x′ = 1/x and compute,∣∣∣∣log |x− ε|2 − log |x+ ε|2
∣∣∣∣

Lp(A(R,2ε))
=
∣∣∣∣(log |1− εx′|2 − log |1 + εx′|2

)
|x′|−2

∣∣∣∣
Lp(A(1/(2ε),1/R))

≤ 2
∣∣∣∣(|1− εx′|2 − |1 + εx′|2

)
|x′|−2

∣∣∣∣
Lp(A(1/(2ε),1/R))

≤ 8ε
∣∣∣∣ |x′|−1

∣∣∣∣
Lp(A(1/(2ε),1/R))

. (3.112)

The last norm can be computed exactly, we found that,

∣∣∣∣ |x′|−1
∣∣∣∣

Lp(A(1/(2ε),1/R))
=


√

2π
(
log
(
R
2ε

))1/2
, p = 2,

4
|p−2|1/p

∣∣∣ ε2

2p−2 − εp

Rp−2

∣∣∣1/p , p 6= 2.
(3.113)

Secondly, we use the inequality |x| ≤ |x± ε|+ ε, which can be obtained by an

application of the triangle inequality. With this inequality at hand,∣∣∣∣log(|x− ε|2)− log(|x+ ε|2)
∣∣∣∣

Lp(D2ε(0))
≤
∣∣∣∣log(|x− ε|2)

∣∣∣∣
Lp(D2ε(0))

+
∣∣∣∣log(|x+ ε|2)

∣∣∣∣
Lp(D2ε(0))

≤ 2
∣∣∣∣log |x|2

∣∣∣∣
Lp(D3ε(0))

. (3.114)

The last norm can also be computed,

∣∣∣∣log |x|2
∣∣∣∣

Lp(D3ε(0))
=

6
√
π ε
(
log2(3ε)− log(3ε) + 1

2

)1/2
, p = 2,

π1/p

2

(∫∞
−2 log(3ε)

up e−u du
)1/p

, p 6= 2.
(3.115)

In the last integral, e−u dominates up, hence

∣∣∣∣log |x|2
∣∣∣∣

Lp(D3ε(0))
≤ C

ε |log ε| p = 2,

ε2/p p 6= 2,
(3.116)

where the constant is independent of ε.

Taking into account all the regions in which we divided the plane, we find that

the dominant term is ε |log ε| for p = 2 and ε2/p in other case. This concludes the

proof of the lemma.

Proposition 3.13. For any domain neighbourhood D of the origin, there is an

ε0 > 0 such that,

max
D
|∂1h̃ε(x)| ≤ Cε2/p, (3.117)

for all ε < ε0.
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3.1 The moduli space of vortex-antivortex pairs

Proof. We start defining a family of potentials aε which approximate Vµ(vε + h̃ε)

as ε→ 0. If x 6= ±ε, there is a ξε(x) such that |ξε(x)| ≤
∣∣∣vε(x) + h̃ε(x)

∣∣∣ and,

Fµ(vε(x) + h̃ε(x)) = Vµ(ξε(x))(vε(x) + h̃ε(x)). (3.118)

Let aε = Vµ(ξε), this is a positive function such that if vε(x) + h̃ε(x) 6= 0,

aε(x) =
Fµ(vε(x) + h̃ε(x))

vε(x) + h̃ε(x)
, (3.119)

hence aε is continuous in the complement of the zeros of vε + h̃ε. Moreover, if x0

is in the set of zeros of vε + h̃ε,

lim
x→x0

aε(x) = lim
x→x0

Fµ(vε(x) + h̃ε(x))

vε(x) + h̃ε(x)
= Vµ(0) = aε(x0), (3.120)

since ξε(x0) = 0 because ξε is bounded by |vε + h̃ε| and vε + h̃ε → 0 as x→ x0.

Hence, aε is a continuous function on R2 \ {±ε} which we can extend contin-

uously to ±ε, because Fµ and h̃ε are bounded functions and vε diverges to ±∞
at the poles ±ε, hence, limx→±ε aε(x) = 0. Redefining aε as this extension, notice

that it determines a family of bounded non-negative, continuous functions, each

of them with only two zeros at the vortex-antivortex positions. Let D′ be a con-

vex domain neighbourhood of the origin, with diameter d < π/M for some strict

upper bound M of Vµ. Pointwise, each ξε(x) → 0 as ε → 0, hence we also have

the convergence aε(x) → 2(µ + 1)−1 as ε → 0. By the dominated convergence

theorem, ∫
D′
aεVol→ 2

1 + µ
|D′|, (3.121)∫

D′
aε

(
1− aε

M

)
Vol→ 2

1 + µ

(
1− 2

M(1 + µ)

)
|D′|. (3.122)

Let Ω = R2\D′, mε = infΩ aε and let us assume ε0 is small enough for ±ε ∈ D′

provided ε ≤ ε0. We know that vε + h̃ε → 0 uniformly in Ω, hence,

lim
ε→0

mε = lim
ε→0

inf
Ω
Vµ(vε + h̃ε) =

2

µ+ 1
. (3.123)

By lemma 3.11, the potentials aε define coercive continuous bilinear functions

H1 × H1 → R, such that

Cε ||h̃ε||2H1 ≤ ||∇h̃ε||2L2 + 〈aε h̃ε, h̃ε〉. (3.124)
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3.1 The moduli space of vortex-antivortex pairs

Let,

m =
1

µ+ 1
, α1 =

1

µ+ 1
, α2 =

1

µ+ 1

(
1− 2

M(µ+ 1)

)
, (3.125)

if we select a positive constant C > 0 such that,

C < min

(
m, 1, α1,

1− M d
π

1 + Cp(D′)
, α2

)
, (3.126)

then according to lemma 3.11 we can use C as a common coercivity constant for

all the potential functions aε with ε ≤ ε0. Therefore,

||∇h̃ε||2L2 = −〈Fµ(vε + h̃ε), h̃ε〉+ 〈gε, h̃ε〉 = −〈aε · (vε + h̃ε), h̃ε〉+ 〈gε, h̃ε〉.
(3.127)

If we apply the uniform coercivity constant, we obtain the bound,

C ||h̃ε||2H1 ≤ ||∇h̃ε||2L2 + 〈aεh̃ε, h̃ε〉
= −〈aεvε, h̃ε〉+ 〈gε, h̃ε〉
≤ C2 (||vε||L2 + ||gε||L2) ||h̃ε||L2 , (3.128)

where we have used Cauchy-Schwarz and the fact that the set {aε : ε ≤ ε0} is

uniformly bounded. From this inequality, we deduce the existence of a positive

constant C, such that,

max
(
||h̃ε||L2 , ||∇h̃ε||L2

)
≤ C (||vε||L2 + ||gε||L2) (3.129)

Applying lemma 3.12 we infer the existence of another constant, such that,

||vε||L2 + ||gε||L2 ≤ C ε |log ε|, (3.130)

for ε ≤ ε0. By the elliptic estimates and Sobolev’s embedding,

||h̃ε||C0(D) ≤ C1||h̃ε||H2(D) ≤ C2

(
||∆h̃ε||L2(D) + ||h̃ε||L2(D)

)
. (3.131)

Since,

||∆h̃ε||L2(D) = ||aε (vε + h̃ε)||L2(D) ≤ C
(
||vε||L2(D) + ||h̃ε||L2(D)

)
, (3.132)
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3.1 The moduli space of vortex-antivortex pairs

we apply lemma 3.12 again and the estimate for the L2 norm of h̃ε we have

obtained to deduce that,

||h̃ε||C0(D) ≤ Cε|log(ε)|, ε ≤ ε0. (3.133)

We use this estimate and Sobolev’s embedding again to estimate the supre-

mum of ∂1h̃ε at D. If p > 2, we have,

||h̃ε||C1(D) ≤ C1||h̃ε||W2,p(D) ≤ C2

(
||∆h̃ε||Lp(D) + ||h̃ε||Lp(D)

)
. (3.134)

Again by lemma 3.12 and the previous estimate on the C0 norm of h̃ε,

||∆h̃ε||Lp(D) + ||h̃ε||Lp(D) ≤ ||aε (vε + h̃ε)||Lp(D) + ||gε||Lp(D) + ||h̃ε||Lp(D)

≤ C
(
||vε||Lp(D) + ||h̃ε||Lp(D) + ||gε||Lp(D)

)
≤ C

(
ε2/p + ε |log ε| · |D|1/p + ε

)
≤ C ε2/p. (3.135)

Since asymptotically ε |log ε| ≤ ε2/p as ε→ 0. Therefore, ||∂1h̃ε||C0(D) ≤ C ε2/p

if ε is small.

Going back to the original, undilated coordinates x ∈ R2, we can state the

following theorem,

Theorem 3.14. The moduli space M
1,1
0 is an incomplete metric space, such that

geodesic discs centred at the singular point ε = 0 have finite area.

In comparison, the moduli space of vortices for the Ginzburg-Landau func-

tional is complete, as can be seen in the results of Strachan [54] who studied

geodesic motion on hyperbolic space or Samols [47] on the euclidean plane. In-

completeness of the moduli space was expected by previous results of Romão-

Speight, who conjectured an asymptotic logarithmic approximation to Ω(ε) for

small ε at τ = 0 [45].

Proof. We will prove that M
1,1
0 is incomplete exhibiting a curve of finite length

reaching the singularity at ε = 0. Let us take any radial geodesic parametrized

as

γθ : (0, ε0]→M
1,1
0 , γθ(ε) = ε eiθ. (3.136)
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3.1 The moduli space of vortex-antivortex pairs

By Cauchy-Schwarz, the length of this curve is bounded since,

` =

∫ ε0

0

Ω(ε)1/2 dε ≤ ε
1/2
0

(∫ ε0

0

Ω(ε) dε

)1/2

. (3.137)

We will prove that the energy, and therefore the length, is finite. Recall the

interaction coefficient is given by

b(ε) = 2 ∂1|x=ε

(
hε(x)− log |x− ε|2

)
= 2 ∂1|x=ε

(
h̃ε(x) + v(|x+ ε|)− log

(
1 + |x− ε|2

)
+ µ
)

= 2 ∂1h̃ε(ε) +
8ε

1 + 4ε2
− 2

ε
. (3.138)

Let b̃(ε) = 2 ∂1h̃ε(ε) + 8 ε(1 + 4ε2)−1, we have,∫ ε0

0

Ω(ε) dε = 2π

∫ ε0

0

2(1− τ 2) +
1

ε

d

dε
(εb(ε)) dε

= 4π(1− τ 2) ε0 + 2π

∫ ε0

0

1

ε

d

dε

(
εb̃(ε)

)
dε

= 4π(1− τ 2) ε0 + 2π

(
b̃(ε0)− lim

ε→0
b̃(ε) +

∫ ε0

0

b̃(ε)

ε
dε

)
, (3.139)

where we have used integration by parts in the last equation. Let us assume ε0

is so small we can use the estimate in proposition 3.13,∫ ε0

0

Ω(ε) dε = 4π(1− τ 2) ε0 + 2πb̃(ε0) + 8π tan−1 (2ε0) + 4π

∫ ε0

0

∂1h̃ε(ε)

ε
dε

≤ 4π(1− τ 2) ε0 + 8π tan−1 (2ε0) +
16πε0

1 + 4ε20
+ C

(
ε

2/p
0 +

∫ ε0

0

ε
2
p
−1 dε

)
≤ 4π(1− τ 2) ε0 + 8π tan−1 (2ε0) +

16πε0
1 + 4ε20

+ Cε
2/p
0 . (3.140)

Therefore, the energy is finite, hence, the length of the geodesic is also finite,

moreover, the length is bounded by,

` ≤ 2π
(
5− τ 2

)1/2
ε0 + C ε

1/p
0 . (3.141)
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3.2 Asymptotic approximation at large separation

For the area of a disk, we have a similar calculation,

Vol(DR(0)) = 2π

∫ R

0

Ω(ε) ε dε

= 4π2 (1− τ 2)R2 + 4π2R b̃(R)

≤ 4π2 (1− τ 2)R2 +
32π2R2

1 + 4R2
+ 8π2R∂1h̃ε(ε)

≤ 4π2 (1− τ 2)R2 +
32π2R2

1 + 4R2
+ C R1+ 2

p . (3.142)

Samols compared the area of small disks on the moduli space for the Ginzburg-

Landau functional with the area of a cone with deficit angle π. Recall each

vortex/antivortex has effective mass 2π(1∓ τ) respectively, in the centre of mass

coordinates, the reduced mass of the vortex-antivortex system is π(1−τ 2), hence,

if we normalize (3.142) dividing by the reduced mass, we find that the first term

in the upper bound is 4πR2, the area of a right circular cone of radius R and

deficit angle 3π/2. The second and third terms in the upper bound are far from

optimal, because they do not depend on τ and the third term is of order smaller

than 2, however, the conjectured asymptotics of the conformal factor for small

ε (3.269) leads us to also conjecture that the first term in the upper bound is the

first term of an approximation to Vol(DR(0)) for small R.

3.2 Asymptotic approximation at large separa-

tion

If the cores are separated by a large distance, it is plausible to assume that the

interactions are so weak, that in the neighbourhood of any of them, they can be

described by the solution corresponding to one vortex plus a small perturbation

term due to the interactions. We use this idea to approximate dynamics in the

moduli space for well separated vortices. For Ginzburg-Landau vortices this was

done by Speight in [52] and Manton-Speight in [39]. We start finding Hedgehog

solutions to the Bogomolny equations. Let us assume that there are exactly N
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3.2 Asymptotic approximation at large separation

vortices at the origin. We will use the Ansatz,

φ = (sin(f) cos(Nθ), sin(f) sin(Nθ), cos(f)),

A = Na(r) dθ,
(3.143)

which assumes circular symmetry of the field equations. This Ansatz was used

before by Schroers to study solutions of the U(1)-gauged O(3) Sigma model for

τ = 1 [50]. The energy density of this static configuration is,

E =

(
N(a− 1) sin(f)

2r

)2

+ (τ − cos(f))2 . (3.144)

For these fields to represent N vortices at the origin with finite energy, we

add the boundary conditions,

f(0) = 0, a(0) = 0, lim
r→∞

f = cos−1 τ, lim
r→∞

a = 1. (3.145)

With this Ansatz, the Bogomolny equations reduce to the system of ODEs,

f ′ =
N

r
(a− 1) sin(f), a′ =

r

N
(cos(f)− τ). (3.146)

Unfortunately, we cannot extend these equations to the origin, instead, we

select a small initial value δ and perturb the Bogomolny equations to lowest

order in δ. We found that to lowest order,

f(δ) = α δN , a(δ) =
1− τ
2N

δ2, (3.147)

then we used α as a shooting parameter. In practice, we chose δ = 10−8 and

for the boundary condition at infinity, we selected r∞ = 10 except for the last

τ , for which r∞ = 20. We took r∞ as infinity and shot until (f(r∞), a(r∞))

satisfied the boundary condition, as in the paper of Speight [52]. We used the

solver solve ivp of the scientific library SciPy with default parameters. Internally,

it uses the Runge-Kutta method of order 5(4), which controls the error using a

local extrapolation and uses a quartic interpolation polynomial to compute the

solution at the preconfigured set of points shown in Figure 3.1.

If (φ, a) is the solution to the Bogomolny equations with N vortices at the

origin and parameter τ and we invert the orientation of the sphere, selecting
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3.2 Asymptotic approximation at large separation
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Figure 3.1: Magnetic field and energy density of hedgehog solutions for positive

values of τ . The graphs show how as τ grows, the energy and magnetic field

weaken.
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3.2 Asymptotic approximation at large separation

−n as the north pole, it is not difficult to see that (φ,−a) is also a solution to

the Bogomolny equations, this time with parameter −τ and N antivortices at

the origin, hence the qualitative properties of an antivortex hedgehog are the

same, except that to a τ -vortex corresponds a −τ antivortex and to a B (vortex)

magnetic field corresponds a −B (antivortex) magnetic field.

Assuming there is only one core at the origin, the solution to the Taubes

equation, h, is also radial, and away of the origin, is a solution to the equation,

d2h

dr2
+

1

r

dh

dr
− 2

(
eh − 1

eh + 1
+ τ

)
= 0. (3.148)

For small r, h has the asymptotic behaviour h = ± ln(r2) and for big r, it ap-

proaches log
(

1−τ
1+τ

)
. Linearizing about the limit at infinity, we have the equation,

d2ĥ

dr2
+

1

r

dĥ

dr
− (1− τ 2)ĥ = 0, lim

r→∞
ĥ = 0. (3.149)

If we make the change of variables r′ = (1− τ 2)1/2 r, then the function ĥ(r′) is a

solution to the modified Bessel equation,

d2ĥ

dr′2
+

1

r′
dĥ

dr′
− ĥ = 0, lim

r′→∞
ĥ = 0. (3.150)

whose general solution is a linear combination of modified Bessel’s function of

first and second kind, J0 and K0. Since J0 diverges at infinity, we deduce the

approximation,

h(r) = log

(
1− τ
1 + τ

)
+ qK0

(
(1− τ 2)1/2r

)
. (3.151)

The constant q has to be determined numerically, as in the approximation done

for Ginzburg-Landau vortices [52]. We found this constant for several values of

τ by solving the Bogomolny equations as explained above, with this data, we

computed the pairs
(
K0((1− τ 2)1/2 r), h(r)

)
and fitted a least squares line as a

model, whose slope was q. We tested visually and by means of the coefficient

of determination R2 the goodness of fit of the model to the data, finding on

average R2 = 0.9985, meaning the linear model explained 99.85% of the data,

hence the fit was good. The dependence of the constant q on τ can be seen in
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3.2 Asymptotic approximation at large separation

τ −0.909 −0.682 −0.454 −0.227 0 0.227 0.454 0.682 0.909

q −1.2457 −1.5414 −1.7921 −2.0321 −2.271 −2.5134 −2.7568 −2.9784 −3.2504

Table 3.1: Constant q for different values of τ for a vortex at origin in Euclidean

space. For an antivortex, q has positive sign.
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Figure 3.2: Dependency of the parameter q on the asymmetry τ of the vortex.

For an antivortex q is positive, the pattern is reversed and q increases with τ .

figure 3.2. It is interesting to note that the graph suggests q depends linearly

with τ , this is unexpected since q is not well understood even for the Ginzbug-

Landau functional, where there is an argument by David Tong [57] proposing an

explanation for the value of q based on string theory, but otherwise, the value of

the constant is only known numerically and it is not clear whether such argument

can be extended to the O(3) Sigma model. The computed values of q are also

displayed in table 3.1. For τ = 0, the value of πq was computed by Romão-

Speight [45, p. 23] as −7.1388, as can be seen in table 3.1, we found a value of

πq = −7.1346, in agreement with the known data.

Let us consider an antivortex at position −2ε for big ε. The antivortex per-

turbs h in a neighbourhood of the origin, since the separation is large, we can
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3.2 Asymptotic approximation at large separation

assume that this is a small perturbation of the Hedgehog solution. Let h0 be the

single vortex solution at the origin. If h1 is a small perturbation of h0 caused by

the antivortex in a neighbourhood of the origin, h1 is a solution to the lineariza-

tion of the Taubes equation,

−∆h1 =
4eh0 h1

(1 + eh0)2
. (3.152)

The singularity at origin is carried by h0 and since the operator in equa-

tion (3.152) if free of singularities, h1 extends smoothly to the origin. Expanding

in Fourier series h1, we find,

h = h0 +
1

2
f0(r) +

∞∑
n=1

(fn(r) cos(nθ) + gn(r) sin(nθ)) . (3.153)

The functions fn(r) and gn(r) are solutions to the equation

f ′′n +
1

r
f ′n −

(
4eh0

(1 + eh0)2
+
n2

r2

)
fn = 0, (3.154)

and since h1 is well defined at r = 0, to lowest order we have fn(r) = αn r
n,

gn = βn r
n.

To compute the coefficient b1, we note that h0 = log r2 + h̃0(r), where the

regular part h̃0 is a smooth function. Since log r2 is the fundamental solution of

Laplace’s equation on the plane, by (3.148), h̃0 is a solution to the equation

d2h̃0

dr2
+

1

r

dh̃0

dr
− 2

(
eh0 − 1

eh0 + 1
+ τ

)
= 0, (3.155)

hence,

∂xh̃0(r) = h̃′0(r) ∂x r

=
1

2
h̃′0(r) eiθ

= r

(
2

(
eh0 − 1

eh0 + 1
+ τ

)
− h̃′′0

)
. (3.156)

The function eh0 has no singularity at the origin, moreover it is smooth, hence,

∂xh̃0(0) = lim
r→∞

∂xh̃0(r) = 0. (3.157)
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3.2 Asymptotic approximation at large separation

h is symmetric with respect to the line joining the two cores. These are located

on the real axis, hence h(x) = h(x) which translates into

2 ∂x|x=0

(
h− log r2

)
= ∂1|x=0

(
h− log r2

)
= α1. (3.158)

We conclude that b1 = α1. To compute the nontrivial coefficient in the metric

of the moduli space, we note that for large r, f1 is a solution to the modified

Bessel equation,

f ′′1 +
1

r
f ′1 −

(
1− τ 2 +

1

r2

)
f1 = 0, (3.159)

from here we can follow the computation done in [39] for Ginzburg-Landau vor-

tices, the analysis is the same in the coordinate system x′ and the conclusion is

that the coefficient b1 for a pair of distant vortices is,

b1(ε) =
1

2
q1q2

(
1− τ 2

)1/2
K1

(
2
(
1− τ 2

)1/2
ε
)
. (3.160)

By translation invariance, b(ε) = b1(ε), for b the nontrivial term in the con-

formal factor of the metric in the reduced moduli space. Using the properties of

Bessel’s functions given in equation (3.268), we find that at large separation the

conformal factor can be approximated as,

Ω(ε) = 2π(1− τ 2)
(

2− q1q2K0

(
2
(
1− τ 2

)1/2
ε
))

. (3.161)

From this formula we observe the conformal factor vanishes at τ = ±1, this can be

understood because the effective mass of a vortex or antivortex is 2π(1∓τ), hence

as τ → ±1, most of the kinetic energy of a vortex-antivortex pair is concentrated

at one of the cores which in the limit coincides with the centre of mass. Hence, by

the decomposition of the L2 metric in the centre of mass frame, proposition 3.4,

one would expect this vanishing of the conformal factor.

3.2.1 The point-source formalism

Consider a single vortex or anti-vortex at origin, labelled 1, up to a local triv-

ialization, the Higgs field is a map φ : U ⊂ R × R2 → S2 with coordinates

φ(x0, x1, x2) = (X1, X2, X3). In the south pole projection, this field is equivalent
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3.2 Asymptotic approximation at large separation

to ψ(x0, x1, x2) = (X1/(1 +X3), X2/(1 +X3)). We can choose a local gauge, the

real gauge, in which ψ is real, or going back to the sphere, φ is constrained to

the intersection circle of S2 with the plane X2 = 0. Since the field has nontrivial

winding, this gauge choice can be made only with exception of the core positions

[39]. We aim to calculate a linear approximation to the field and vector potential

far from the core, in which case we can make this assumption. It will be conve-

nient to work in spherical coordinates, such that the Higgs field is parameterised

as φ = (sin(ϕ), 0, cos(ϕ)), with ϕ the azimuthal angle. In this gauge, the spherical

covariant derivatives are

Dµφ = ∂µφ− Aµ sin(ϕ) e2. (3.162)

In this section, we aim to show that if we have a collection of cores, vortices and

antivortices well separated among each other, we can approximate the dynamics

of the system as if at each core position there were a scalar monopole point-source

and a magnetic dipole. For large r, the field approaches the vacuum manifold,

perturbatively we can approximate φ as (sin(ϕ + ϕ∞), 0, cos(ϕ + ϕ∞)), where

ϕ∞ = cos−1(τ) and ϕ is small. Keeping linear terms in ϕ, we can make the

approximation,

Dµφ = (cos(ϕ∞) ∂µϕ,−Aµ(sin(ϕ∞) + cos(ϕ∞)ϕ),− sin(ϕ∞) ∂µϕ) . (3.163)

Retaining terms up to quadratic order, far from the vortex position, the La-

grangian density is approximately linear, corresponding to a non interacting field,

Lfree =
1

2
∂µϕ∂

µϕ− 1

2
sin2(ϕ∞)ϕ2 − 1

4
FµνF

µν +
1

2
sin2(ϕ∞)AµA

µ. (3.164)

This is the Lagrangian density of two independent fields, whose extremals

(ϕ,A) satisfy the real Klein-Gordon and Proca equations,

(�+ sin2(ϕ∞))ϕ = 0, (3.165)

(�+ sin2(ϕ∞))Aµ = ∂µ∂
νAν , (3.166)

74



3.2 Asymptotic approximation at large separation

where � = ∂2
t + ∆ is the D’Alambertian operator. We add a source term,

Lsource = ρϕ− jµAµ, (3.167)

to the free Lagrangian density, in order to match the expected behaviour at

infinity of the fields, as in [52]. Therefore, the perturbed field equations are,

(�+ sin2(ϕ∞))ϕ = ρ, (3.168)

(�+ sin2(ϕ∞))Aµ = jµ + ∂µ∂
νAν . (3.169)

Taking the divergence of the second equation, we find that,

(�+ sin2(ϕ∞)) ∂µAµ = ∂µjµ +�∂νAν , (3.170)

hence, sin2(ϕ∞) ∂µAµ = ∂µjµ and we infer,

(�+ sin2(ϕ∞))Aµ = jµ +
1

sin2(ϕ∞)
∂µ∂

νjν . (3.171)

The sourced field equations of ϕ and A represent two massive fields of mass

sin(ϕ∞) =
√

1− τ 2. In the real gauge, south pole stereographic projection of φ

is ψ = φ1/(1 + φ3), hence, since ϕ is small,

ψ =
sin(ϕ∞) + cos(ϕ∞)ϕ

1 + cos(ϕ∞)− sin(ϕ∞)ϕ
, (3.172)

moreover, to first order we have,

ψ =
sin(ϕ∞)

1 + cos(ϕ∞)
+

1

1 + cos(ϕ∞)
ϕ. (3.173)

On the other hand, if we fix one core and consider the field at a large distance

from it but larger to the other cores, we have the approximation ψ = exp
(

1
2
h0

)
,

where h0 is the solution to the radial Taubes equation, given by equation (3.151).

To first order we have,

ψ =

(
1− τ
1 + τ

)1/2 (
1 +

q1

2
K0

(
(1− τ 2)1/2 r

))
=

sin(ϕ∞)

1 + cos(ϕ∞)

(
1 +

1

2
q1K0 (sin(ϕ∞) r)

)
.

(3.174)
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3.2 Asymptotic approximation at large separation

Hence, the asymptotic expansion of ϕ is,

ϕ =
q1

2
sin(ϕ∞)K0 (sin(ϕ∞) r) . (3.175)

We are interested in static fields, in this case, the field equations reduce to

the static Klein-Gordon equation with a mass term,

(∆ + sin2(ϕ∞))ϕ = ρ, (∆ + sin2(ϕ∞))Aµ = jµ +
1

sin2(ϕ∞)
∂µ∂

νjν . (3.176)

We have,

Dkφ = ∂kφ− Ak n× φ = ∂kϕ · (cos(ϕ)e1 − sin(ϕ)e3)− Ak sin(ϕ) e2, (3.177)

and

φ× (∂2φ− A2 n× φ) = (sin(ϕ)e1 + cos(ϕ)e3) (3.178)

× (∂2ϕ · cos(ϕ)e1 − A2 sin(ϕ) e2 − ∂2ϕ · sin(ϕ)e3)
(3.179)

= A2 sin(ϕ) cos(ϕ)e1 + ∂2ϕ · e2 − A2 sin2(ϕ) e3. (3.180)

In the gauge A0 = 0 the first Bogomolny equation is,

(∂1ϕ+ A2 sin(ϕ)) (cos(ϕ)e1 − sin(ϕ)e3) + (∂2ϕ− A1 sin(ϕ)) e2 = 0, (3.181)

which is equivalent to,

∂1ϕ+ A2 sin(ϕ) = 0, ∂2ϕ− A1 sin(ϕ) = 0. (3.182)

In a region far from the core position, these equations can be linearized as

∂1ϕ+ sin(ϕ∞)A2 = 0, ∂2ϕ− sin(ϕ∞)A1 = 0. (3.183)

In the gauge A0 = 0 if the fields are static we have,

j0 +
1

sin2(ϕ∞)
∂0∂

νjν = 0. (3.184)

For the spatial components, note that

(A1, A2) =
1

sin(ϕ∞)
(∂2 ϕ,−∂1 ϕ). (3.185)
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3.2 Asymptotic approximation at large separation

Introducing a fictitious unit vector k perpendicular to the plane in the positive

orientation of R3 and defining A = (A1, A2), the spatial part of the linearized

potential can be related to the Higgs field with the vector equation,

A = − 1

sin(ϕ∞)
k×∇ϕ. (3.186)

To make our deduction of the point-source approximation, we will work in

space-time coordinates; to this end, in this section we denote space-time coordi-

nates as x and space coordinates as x.

The static field equation of ϕ is,

(∆ + sin2 ϕ∞)ϕ = ρ. (3.187)

Green’s function for the static Klein-Gordon equation is K0(|x|),

(∆ + 1) K0(|x|) = 2πδ(x). (3.188)

Substituting the asymptotic approximation to ϕ we found,(
∆ + sin2 ϕ∞

)
ϕ =

q1

2
sin(ϕ∞)

(
∆ + sin2 ϕ∞

)
K0(sin(ϕ∞) r)

= q1π sin3(ϕ∞) δ(sin(ϕ∞) x)

= q1π sin(ϕ∞) δ(x), (3.189)

where in the last inequality we have used that for any constant c, δ(cx) = c−2δ(x).

This suggests that the physics of a static vortex, seen far from the core is equiv-

alent to a particle with charge q1π sin(ϕ∞), therefore we define the one vortex

source term,

ρ = q1π sin(ϕ∞) δ(x). (3.190)

Applying the operator (∆ + sin2 ϕ∞) to A, we find,(
∆ + sin2 ϕ∞

)
A = − 1

sin(ϕ∞)
k×∇

(
∆ + sin2 ϕ∞

)
ϕ

= −q1π k×∇δ(x). (3.191)

On the other hand, let us assume that the current is static, in the sense that

j0 = 0. From (3.176), we have that A satisfies the equation,

(∆ + sin2 ϕ∞)A = j− 1

sin2(ϕ∞)
∇ (∇ · j) . (3.192)
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3.2 Asymptotic approximation at large separation

Thence,

sin2(ϕ∞) j−∇ (∇ · j) = −q1π sin2(ϕ∞) k×∇δ(x). (3.193)

Taking the divergence of this equation we find that ∇ · j is a solution in the

sense of distributions, to the equation,

(∆ + sin2 ϕ∞)∇ · j = 0. (3.194)

We know that ∇·j is also a strong solution in R2\{0}. It is sensible to assume

that ∇ · j is an L2 solution to this equation. Under this assumption, by elliptic

regularity ∇ · j is smooth in the plane and since sin2 ϕ∞ is in the resolvent set of

geometers’ Laplacian, ∇ · j = 0. Therefore, the current is conserved and we have

that the core behaves as a magnetic dipole generated by a point current,

j = −q1π k×∇δ(x). (3.195)

We will need later space-time coordinates, we define,

jstatic = (0, j) , (3.196)

as the space-time point current in the lab frame.

Having calculated expressions for the charge and current of the point particle

approximation, we can calculate the interaction potential of a pair of vortices.

For this, it is necessary to calculate the interaction Lagrangian, which is obtained

as

Lint =

∫
Lcross dx, (3.197)

where Lcross are the cross terms of Lfree + Lsource in a superposition of two

pairs of fields (ϕk,Ak), with sources (ρk, jk). For a pair of cores, the interaction

Lagrangian reduces to [52]

Lint =

∫
ρ1ϕ2 − j(1)

µ Aµ(2) dx. (3.198)

We aim to calculate the interaction Lagrangian for any number of separated

moving cores whose separations are large. Let us consider a core moving slowly
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3.2 Asymptotic approximation at large separation

in the laboratory frame and let ξ be the coordinates on space-time with respect

to this frame, which has coordinates x. If the vortex is moving at constant speed

u in the direction of x1 with respect to the lab frame, the coordinate change on

tangent space at x is [4],

ξ0 = γ(u) (x0 − ux1),

ξ1 = γ(u) (−ux0 + x1),

ξ2 = x2,

 (3.199)

where γ(u) = (1 − u2)−1/2 is the Lorentz contraction factor and the speed is

relative to the speed of light, |u| < 1. Our aim is to write the charge and

magnetic dipole of the moving core as seen in the laboratory frame. If the velocity

with respect to the lab frame is not along the x1 axes, we can always rotate the

coordinates before and then boost in the x1 direction. In the rest frame, the core is

static, and therefore the charge density at large separation from their neighbours

is ρ(ξ) = q π sin(ϕ∞) δ(ξ). Since we are interested in the infinitesimal behaviour

of the charge, we can take x0 = 0 in the Lorentz transformations relating rest

and laboratory frames,

ρ(ξ) = q π sin(ϕ∞) δ(γ x1 e1 + x2 e2)

=
1

γ
q π sin(ϕ∞) δ(x). (3.200)

If the speed is much slower than the speed of light, γ−1 can be approximated

as

γ(u)−1 = 1− 1

2
u2 + O(u4). (3.201)

Discarding higher order terms in u, the instantaneous charge density of a

slowly moving vortex is

ρ(x) = qπ sin(ϕ∞)

(
1− u2

2

)
δ(x). (3.202)

If the core is at an arbitrary position y(t) and u = ẏ(t) is the speed of the

moving core, we conclude the charge density as seen in the laboratory frame is,

ρ = qπ sin(ϕ∞)

(
1− ẏ2

2

)
δ(x− y). (3.203)
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3.2 Asymptotic approximation at large separation

For an observer in an inertial frame, a slowly moving core y(t) has the four-

current,
j0 = qπ k× ẏ · ∇δ(x− y),

j = qπ (−k×∇+ (k× ẏ) ẏ · ∇+ k× ÿ) δ(x− y).
(3.204)

(3.204) was computed by Speight for Ginzburg-Landau vortices, details of the

computation can be found in [39, eqs. (3.20) (3.21)], for the O(3) Sigma model,

the calculation is the same, except for the factor of π coming from our conventions

on the constant q.

Since current is conserved, the components Aµ of the gauge potential are

solutions to the equation,

(�+ sin2(ϕ∞))Aµ = jµ. (3.205)

If we define the primed coordinate system,

x′ = sin(ϕ∞)x, (3.206)

and fields,

ϕ′(x′) = ϕ(sin(ϕ∞)−1 x′), A′µ(x′) = Aµ(sin(ϕ∞)−1 x′), (3.207)

with sources,
ρ′(x′) = sin(ϕ∞)−2 ρ(sin(ϕ∞)−1 x′),

j′µ(x′) = sin(ϕ∞)−2 jµ(sin(ϕ∞)−1 x′),
(3.208)

then ϕ′, A′µ are solutions to the equations,

(�′ + 1)ϕ′ = ρ′,

(�′ + 1)A′µ = j′µ.
(3.209)

Since dy/dt = dy′/dt′, defining q′ = qπ sin(ϕ∞), by (3.203),

ρ′ = q′
(

1− ẏ′2

2

)
δ(x′ − y′), (3.210)

whereas by (3.204),

j′0 = q′ k× ẏ′ · ∇′δ(x′ − y′),

j′ = q′ (−k×∇′ + (k× ẏ′) ẏ′ · ∇′ + k× ÿ′) δ(x′ − y′).
(3.211)
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3.2 Asymptotic approximation at large separation

In the primed coordinate system, equations (3.209)-(3.211) are the same as

those found in the asymptotic approximation of Ginzburg-Landau vortices by

Speight and Manton, with the only exception that vortices and antivortices carry

constants q of different values. Hence, by [52, Eq. (3.46)], for a pair of cores at

positions labelled x1, x2,

Lint = −q
′
1q
′
2

4π
|ẋ′2 − ẋ′1|2K0(|x′2 − x′1|)

= −q1q2

4
π sin2(ϕ∞) |ẋ2 − ẋ1|2K0(sin(ϕ∞) |x2 − x1|).

(3.212)

Recall mr = 2π(1 + srτ) is the effective mass of a core at position xr, where

sr = ±1 is the sign of the core, we conclude that if the cores are at large separation

and moving slowly, their dynamics can be approximated by the Lagrangian,

L =
∑
r

mr

2
|ẋr|2 −

∑
r 6=s

qrqs
4

π sin2(ϕ∞)|ẋr − ẋs|2K0 (sin(ϕ∞)|xr − xs|) . (3.213)

For a vortex-antivortex pair at large separation, if M = m1 + m2, X =
m1

M
x1 +m2

M
x2 is the centre of mass of the pair and x1−x2 = 2 εeiθ, are coordinates

relative to the centre of mass, the Lagrangian becomes,

L =
M

2
|Ẋ|2 +

(
2m1m2

M
− q1 q2 π sin2(ϕ∞)K0(2 sin(ϕ∞) ε)

)
(ε̇2 + ε2θ̇2)

=
M

2
|Ẋ|2 + (1− τ 2) π

(
2− q1 q2K0(2(1− τ 2)1/2 ε)

)
(ε̇2 + ε2θ̇2). (3.214)

If we get rid of the centre of mass term, we find that the conformal factor in

the reduced moduli space is again as in equation (3.161).

3.2.2 Approximating the conformal factor in a neighbour-

hood of the singularity

In this section we aim to derive an asymptotic approximation to the conformal

factor for small ε, we do so finding the limit of the regular part of hε/ε as ε→ 0,

where hε is the solution to the Taubes equation with vortex at ε and antivortex

at −ε and then we prove the convergence is uniform in disks centred at the origin.
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3.2 Asymptotic approximation at large separation

Let us consider (ε, θ) coordinates, we know hε depends smoothly on ε and the

function ∂εh is a solution of the equation,

−(∆ + V (hε)) ∂εhε = 4π∂1δε + 4π∂1δ−ε. (3.215)

If µ = log((1−τ)(1+τ)−1) is the limit value of hε as |z| → ∞, we know that as

ε→ 0, the potential function V (hε) converges pointwise to V (µ) = 1− τ 2 ∈ (0, 1]

and uniformly outside of any neighbourhood of the origin. We also know each

∂εhε decays exponentially fast as |z| → ∞. Without loss of generality we assume

τ = 0 from now onwards. As the fundamental solution of the screened Poisson

equation

−(∆ + 1)G = δ0, (3.216)

with convergence G→ 0 as |z| → ∞, is (2π)−1K0(|z|), if we denote by exp(iθ±ε)

the argument of z ∓ ε, the function,

Hε = 2 (∂1K0(|z − ε|) + ∂1K0(|z + ε|)) ,

= −2 (cos(θε)K1(|z − ε|) + cos(θ−ε)K1(|z + ε|)),
(3.217)

is the fundamental solution of the equation,

−(∆ + 1)Hε = 4π∂1δε + 4π∂1δ−ε. (3.218)

By (3.215) and (3.218),

(∆ + V (hε)) (∂εhε −Hε) = (1− V (hε))Hε. (3.219)

Denoting by f ∗ g convolution on the plane,

∂εhε −Hε = − ((1− V (hε))Hε) ∗Gε, (3.220)

where Gε is Green’s function of the operator −(∆ + V (hε)). We aim to prove

|∂εhε −Hε| → 0 uniformly on the plane. To do this, we will use the concept of a

doubling measure and prove a few common properties for the family of potentials

V (hε).

A measure ν is called doubling if there exists a constant C > 0, such that for

any z ∈ C and r > 0,

ν(D2R(z)) ≤ C ν(DR(z)). (3.221)
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3.2 Asymptotic approximation at large separation

Suppose D ⊂ R2 is a measurable set with respect to the euclidean metric, we

define,

νε(D) =

∫
D

V (hε)Vol. (3.222)

Given ε0 > 0, we will prove the existence of a uniform constant Cd such

that (3.221) holds for any ε ∈ (0, ε0) and a uniform constant δ > 0, such that,

νε(D1(z)) > δ (3.223)

for any ε ∈ (0, ε0), then, by a result of Christ [9, Thm. 1.13] there are a function

% : R2 → R+, a distance function ρ : R2 × R2 → R induced by a Riemannian

metric dρ2, and constants C, γ all of them depending only on Cd, such that,

|Gε(z1, z2)| ≤ C

{
log(2%(z1)/|z1 − z2|), |z1 − z2| ≤ %(z),

exp(−γρ(z1, z2)), |z1 − z2| ≥ %(z),
(3.224)

and ρ(z1, z2) ≥ c |z1 − z2| for some constant c depending on δ but not on Cd.

If h̃ε = hε + log|z − ε| − log|z + ε|, we know that for any ε0 > 0, there are

constants C1, C2, such that for any z ∈ C and ε ∈ (0, ε0),

C1 ≤ eh̃ε ≤ C2, (3.225)

hence,

4C1|z − ε|2|z + ε|2

(C1|z − ε|2 + |z + ε|2)
≤ V (hε) ≤

4C2|z − ε|2|z + ε|2

(C2|z − ε|2 + |z + ε|2)2
. (3.226)

Hence, there is a constant C > 0 independent of ε such that,

1

C

4|z − ε|2|z + ε|2

(|z − ε|2 + |z + ε|2)2
≤ V (hε) ≤ C

4|z − ε|2|z + ε|2

(|z − ε|2 + |z + ε|2)2
, (3.227)

this implies the potential V (hε) induces a doubling measure if and only if

Ṽε =
4|z − ε|2|z + ε|2

(|z − ε|2 + |z + ε|2)2
, (3.228)

does.
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3.2 Asymptotic approximation at large separation

Lemma 3.15. Let M ∈ (0, 1), then Ṽ −1
ε ([0,M ]) consists of two connected com-

ponents, whose boundaries are the circles centred at ±(1 − M)−1/2ε of radii

M1/2(1−M)−1/2ε.

Proof. Let w = (z − ε)(z + ε)−1, if Ṽε(z) = M , then,

4|w|2

(|w|2 + 1)2
= M, (3.229)

this equality implies,

|w|2 − 2

M1/2
|w|+ 1 = 0. (3.230)

The roots of this equation are,

r± =
1

M1/2
(1± (1−M)1/2). (3.231)

If z = x+ y i, for each root, the equation∣∣∣∣z − εz + ε

∣∣∣∣ = r±, (3.232)

determines the circles

|z|2 − 2ε

(
1 + r2

±

1− r2
±

)
x+ ε2 = 0, (3.233)

of centres

c± = ε

(
1 + r2

±

1− r2
±

)
=

∓ε
(1−M)1/2

(3.234)

and squared radii

R2
± = |c±|2 − ε2

=
ε2

1−M
− ε2

=
Mε2

1−M
. (3.235)

Mobius transformations map circles onto circles and z = ε is mapped to w = 0,

while z = −ε is mapped to w =∞, where for both points 4|w|2(|w|2 + 1)−2 = 0,

hence the disks |z − c±| ≤ r± are the connected components of Ṽε([0,M ]).
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3.2 Asymptotic approximation at large separation

Lemma 3.16. Ṽ1 defines a doubling measure.

Proof. Assume otherwise towards a contradiction, then there exists a sequence

{(zn, rn)} such that, ∫
D2rn (zn)

Ṽ1 |dz|2∫
Drn (zn)

Ṽ1 |dz|2
→∞ (3.236)

After passing to a subsequence if necessary, we can assume (zn, rn)→ (z∗, r∗) ∈
C× [0,∞], where z∗ could be the point at infinity, meaning |zn| → ∞. Through

the proof we will consider a fixed but arbitrary constant M ∈ (0, 1). If z∗ ∈ C we

consider four cases:

Case I. If 0 < r∗ <∞, by the dominated convergence theorem,∫
D2rn (zn)

Ṽ1 |dz|2∫
Drn (zn)

Ṽ1 |dz|2
→

∫
D2r∗ (z∗)

Ṽ1 |dz|2∫
Dr∗ (z∗)

Ṽ1 |dz|2
, (3.237)

hence (3.236) is not possible.

Case II. If r∗ = ∞, by lemma 3.15, there is an R > 0 such that Ṽ1(z) ≥ M

for |z| ≥ R. Let Ωn = Drn(zn) \DR(0). For n sufficiently large Ωn 6= ∅, moreover,∫
D2rn (zn)

Ṽ1 |dz|2∫
Drn (zn)

Ṽ1 |dz|2
≤ 4πr2

n

M |Ωn|
=

4πr2
n

M(πr2
n − |Drn(zn) ∩ DR(0)|)

→ 4

M
. (3.238)

Case III. If r∗ = 0 and z∗ 6= ±1, by the mean value theorem for integrals,∫
D2rn (zn)

Ṽ1 |dz|2∫
Drn (zn)

Ṽ1 |dz|2
= 4

1
4πr2n

∫
D2rn (zn)

Ṽ1 |dz|2
1
πr2n

∫
Drn (zn)

Ṽ1 |dz|2
→ 4, (3.239)

since each averaged integral converges to Ṽ1(z∗) 6= 0.

Case IV. If z∗ = ±1, assume without loss of generality z∗ = 1, let R ∈ (0, 1/2)

be any constant, for n large enough, the disk D2rn(zn) is contained in DR(1), then

there is a constant C(R), such that for any z ∈ DR(1),

1

C
|z − 1|2 ≤ Ṽ1(z) ≤ C |z − 1|2, (3.240)

the function |z − 1|2 defines a doubling measure because it is a non negative

polynomial [62], implying for large n the quotient∫
D2rn (zn)

Ṽ1 |dz|2∫
Drn (zn)

Ṽ1 |dz|2
(3.241)
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3.2 Asymptotic approximation at large separation

is bounded.

Therefore, if (3.236) holds, |zn| → ∞. If rn → r0 for r0 ∈ [0,∞), for n large

the disk D2rn(zn) is in the exterior of the disk DR(0), hence Ṽ1 ∈ [M, 1], and∫
D2rn (zn)

Ṽ1 |dz|2∫
Drn (zn)

Ṽ1 |dz|2
≤ 4

M
. (3.242)

Finally, if rn →∞, we can apply the same argument as in Case II to deduce

that (3.236) is not possible. This concludes all the possibilities for the sequence

and proves the lemma.

If we define the change of variable z = εw, by lemma 3.16 we have,∫
D2r(z)

Ṽε |dz|2∫
Dr(z) Ṽε |dz|

2
=

∫
D2r/ε(z/ε)

Ṽ1 |dw|2∫
Dr/ε(z/ε)

Ṽ1 |dw|2
< C, (3.243)

where C is independent of ε, proving the following corollary.

Corollary 3.17. For any ε0 > 0, there is a constant Cd such that (3.221) holds

for any ε ∈ (0, ε0).

Lemma 3.18. For any ε0 > 0, there is a constant δ > 0 such that∫
D1(z)

Ṽε > δ, (3.244)

for all z ∈ C, ε ∈ (0, ε0).

Proof. Pick M ∈ (0, 1) such that r0 = M1/2(1 −M)−1/2ε0 satisfies 2r2
0 < 1. By

lemma 3.15 there are two disks D1, D2 of radius r < r0 such that in the exterior

of the disks Ṽε ≥ M . The complement Ω = D1(z) \ (D1 ∪D2) is non empty for

any z ∈ C and it has bounded area,

|Ω| ≥ π − 2 |D1| ≥ π (1− 2r2
0), (3.245)

hence, ∫
D1(z)

Ṽε |dz|2 ≥
∫

Ω

Ṽε |dz|2

≥M π (1− 2r2
0). (3.246)

Selecting any δ < M π (1− 2r2
0) proves the lemma.
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3.2 Asymptotic approximation at large separation

Therefore, for any p ≥ 2, there is a constant C > 0 such that,

||Gε||Lp < C, ∀ε ∈ (0, ε0), (3.247)

let us choose any p > 2 and let p∗ = p (p − 1)−1 be Hölder’s conjugate of p, by

(3.220) and Hölder’s inequality,

|∂εhε −Hε| ≤ ||(1− V (hε))Hε||Lp∗ ||Gε||Lp

≤ C (||(1− V (hε))K1(|z − ε|)||Lp∗
+ ||(1− V (hε))K1(|z + ε|)||Lp∗ ). (3.248)

Lemma 3.19.

lim
ε→0
||(1− V (hε))K1(|z − ε|)||Lp∗ = 0, (3.249)

and a similar statement holds for K1(|z + ε|).

Proof. Let w = z − ε, then,

||(1− V (hε))K1(|z − ε|)||p∗Lp∗ =

∫
R2

(1− V (hε(w + ε)))p∗ K1(|w|)p∗ |dw|2,

(3.250)

the function K1(|w|) is in Lp∗ for any p∗ < 2, and (1−V (hε(w+ ε))) is a bounded

function converging pointwise to 0, by the dominated convergence theorem,∫
R2

(1− V (hε(w + ε)))p∗ K1(|w|)p∗ |dw|2 → 0, (3.251)

this proves the lemma for K1(|z − ε|), for K1(|z + ε|) the proof is analogous.

By (3.248), |∂εhε −Hε| → 0 uniformly on the plane as ε → 0. Note that the

function

Hτ
ε = (1− τ 2)1/2H(1−τ2)1/2ε((1− τ 2)1/2 |z|), (3.252)

is the fundamental solution to

−(∆ + (1− τ 2))Hτ
ε = 4π ∂1δε + 4π ∂1δ−ε. (3.253)
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3.2 Asymptotic approximation at large separation

All the previous lemmas extend straightforwardly to conclude for any τ ∈
(−1, 1), the convergence |hε −Hτ

ε | → 0 uniform on the plane. Let us define the

function

fε =
1

ε

(
h− log |z − ε|2 + log |z + ε|2 − log

1− τ
1 + τ

)
, (3.254)

For this function at τ = 0, Romão and Speight conjectured in [45], the uniform

limit fε → f∗ where for general τ , f∗ is a solution to the problem,

−(∆ + 1− τ 2) f∗ = −4(1− τ 2)
z1

|z|2
, (3.255)

lim
|z|→∞

f∗ = 0, (3.256)

lim
|z|→0

f∗ = 0. (3.257)

The equation for f∗ can be solved exactly, for τ = 0, they found,

f∗ = 4
z1

|z|2
(1− |z|K1(|z|))

= 4 cos(θ)

(
1

|z|
−K1(|z|)

)
. (3.258)

If we define,

f τ∗ (z) = (1− τ 2)1/2 f∗((1− τ 2)1/2 z), (3.259)

then f τ∗ is the conjectured limit for general τ .

Numerical evidence suggests C1 uniform convergence as can be seen in Fig-

ure 3.3. In the next proposition, we prove that in fact, the convergence is uniform

at least in C0(DR(0)) for any disk centred at the origin.

Proposition 3.20. For any R > 0, fε → f τ∗ uniformly on DR(0).

Proof. Let

ĥε = h− log |z − ε|2 + log |z + ε|2 − log
1− τ
1 + τ

, (3.260)

we know ĥ is smooth with respect to both z and ε and ĥε → 0 in C1(DR(0)) as

ε→ 0. Let ε > 0 be a given positive number, by the mean value theorem, for any

z there is another ε′ ∈ (0, ε) that may depend on z, such that,

fε(z) = ∂εĥε|ε′(z), (3.261)
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3.2 Asymptotic approximation at large separation
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Figure 3.3: Top. Real profile of the functions h̃ε− log(1− τ)(1 + τ)−1 converging

uniformly to 0 on the real axis. Bottom. Real profile of the functions fε on the

real axis and the conjectured asymptotic limit. In both cases, τ = 0.33
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3.2 Asymptotic approximation at large separation

hence, to prove the statement it is sufficient to show that ∂εĥε → f τ∗ uniformly

on DR(0). Since,

∂εĥε = ∂εhε +
2 cos(θε)

|z − ε|
+

2 cos(θ−ε)

|z + ε|
, (3.262)

the convergence, ∣∣∣∣∂εĥε −Hτ
ε −

2 cos(θε)

|z − ε|
− 2 cos(θ−ε)

|z + ε|

∣∣∣∣→ 0 (3.263)

is uniform in DR(0). Let,

f̃ τ (z) = 2 cos(θ)

(
1

|z|
− (1− τ 2)1/2K1((1− τ 2)1/2 |z|)

)
, (3.264)

f̃ τ is a continuous function defined on the compact set DR(0), hence, it is equicon-

tinuous, moreover, note that,

Hτ
ε + 2

(
cos(θε)

|z − ε|
+

cos(θ−ε)

|z + ε|

)
= f̃ τ (z − ε) + f̃ τ (z + ε), (3.265)

since f̃ τ is equicontinuous, on DR(0) we have the uniform convergence,

lim
ε→0

(f̃ τ (z − ε) + f̃ τ (z + ε)) = 2 f̃ τ (z) = f τ∗ (z). (3.266)

By (3.263) and (3.266) ∂ĥε → f τ∗ uniformly on DR(0) as claimed. This con-

cludes the proof of the proposition.

Numerics together with proposition 3.20 suggest we can extend our claim

about uniform convergence to higher order derivatives. In the following, we as-

sume the asymptotic expansion,

hε = εf τ∗ + log|z − ε|2 − log|z + ε|2 + log
1− τ
1 + τ

, (3.267)

is also valid for derivatives of hε. With this expression, it is possible to derive an

asymptotic approximation to the conformal factor for small ε as well.

Using the identities

K ′0 = −K1, K ′1 = −K0 −
1

x1

K1, (3.268)

and defining ν = (1−τ 2)1/2 to shorten the notation, we obtain the approximation

Ω(ε) = 4πν2 (1 + 2 ((2− ν)K0(νε)− νεK1(νε))) , (3.269)

valid for small ε.
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3.3 Numerical approximation to the metric

3.3 Numerical approximation to the metric

To approximate the conformal factor numerically, we define h̃ = h− log |x− ε|2 +

log |x+ ε|2. h̃ is the solution of the regularised equation,

−∆h̃ = 2

(
|x− ε|2eh̃ − |x+ ε|2

|x+ ε|2eh̃ + |x+ ε|2
+ τ

)
, lim

|x|→∞
h̃ = log

1− τ
1 + τ

. (3.270)

Since h̃ is symmetric with respect to the x1 axis, the regularised Taubes equa-

tion was solved with an over-relaxation method on the domain −10 ≤ x1 ≤ 10,

0 ≤ x2 ≤ 10. The domain was discretized with a square grid of size 0.1 as in [47].

The initial condition was taken as a superposition of an approximated vortex and

an antivortex as,

h̃0 = log(ρ2(R+))− log(R2
+)− log(ρ2(R−)) + log(R2

+)− log(µ), (3.271)

where ρ = tanh(0.6r), R± is the distance of a point in the grid to ±ε and µ =

(1− τ)(1 + τ)−1.

The non-trivial term in the metric was computed as,

d

dε
(ε b(ε)) =

d

dε

(
ε∂1h̃(ε)

)
. (3.272)

Figure 3.4 shows the conformal factor for various values of τ . Motivated by the

asymptotic approximations, conformal factor data was interpolated by a curve

Ω̂ = A+BK0(2ε). (3.273)

The interpolation showed to explain 99%−96% of the data, depending on the

value of τ . As can be seen in the figure, the metric flattens as τ → 1, preserving

the singularity at the origin.

Figure 3.5 shows the short and long range approximations to the conformal

factor for the symmetric case and for τ = 0.909. As can be seen in the figure, the

approximations are consistent with the data, with the long range approximation

slightly better in the range of ε that the Taubes equation was solved.

Figure 3.6 shows the Gaussian curvature computed from the conformal factor,

K = − 1

2εΩ

d

dε

(
ε
d

dε
log Ω

)
. (3.274)
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3.3 Numerical approximation to the metric
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Figure 3.4: Conformal factor of the metric for some values of τ . The graph shows

that as τ increases from 0, the metric flattens, maintaining its singularity at the

origin.
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3.3 Numerical approximation to the metric

As can be seen in figure 3.6, the curvature diverges to ∞ as ε → 0, while on

the other hand, for large ε, it is negative and decays exponentially fast to 0 as

ε→∞. The moduli space can be realised as an embedded surface in R3, we used

proposition 2.3 of [21] to compute the embedding shown in figure 3.7.

Assuming the asymptotic approximations for large and small ε, total Gaussian

curvature can be shown to be zero, since total curvature is,

2π

∫ ∞
0

K(ε) εΩ(ε) dε = −π
(
ε

Ω′(ε)

Ω(ε)

)∣∣∣∣∞
0

. (3.275)

By (3.161), limε→∞Ω(ε) = 4π(1− τ 2), while

Ω′ = 4π(1− τ 2)3/2q1q2K1(2(1− τ 2)1/2ε), (3.276)

hence limε→∞ εΩ′Ω−1 = 0 since K1 decays exponentially. For small ε, we know

Ω diverges as | log ε| according to (3.269) while εΩ′ remains bounded, since Ω′

diverges as ε−1, then limε→0 εΩ′Ω−1 = 0. By (3.275) the total Gaussian curvature

in M
1,1
0 is 0.

3.3.1 Scattering

In this section we study the scattering of vortex-antivortex pairs in the centre of

mass frame. In the centre of mass frame, total momentum is zero and the system

preserves energy and angular momentum. For a trajectory on (ε, θ) coordinates,

E =
1

2
Ω(ε) (ε̇2 + ε2θ̇2), ` = Ω(ε) ε2 θ̇. (3.277)

Hence, ε(t) is a solution to the autonomous system,

ε̇ =

(
2E

Ω
− `2

Ω2ε2

)1/2

. (3.278)

Equation (3.278) yields a necessary condition for the existence of closed geodesics,

if ε0 is the radial position of a closed geodesic,

2E Ω(ε0) ε20 = `2, (3.279)
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3.3 Numerical approximation to the metric
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Figure 3.5: Short and long range approximation to the conformal factor for the

symmetric case and a highly asymmetric configuration. The graph shows how

the approximations fit the numerical data in these cases.
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Figure 3.6: Curvature of the conformal factors
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3.3 Numerical approximation to the metric
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 = 0.909

Figure 3.7: The image shows the profile of the moduli space as an embedded

revolution surface in R3. The data shows that the moduli spaces embed as flat

disks at infinity, with infinite gaussian curvature at the origin.

however, the right hand side of equation (3.278) is not differentiable at ε0 and

therefore the fundamental theorem of existence and uniqueness of solutions of

ordinary differential equations is not applicable and (3.279) is not sufficient.

Based on our calculations, we assume for large separations 2ε, the conformal

factor is approximately constant,

Ω∞ = 4π(1− τ 2), (3.280)

Suppose on the centre of mass frame a vortex moves from very far on the

left with initial speed v parallel to the x-axis towards an antivortex. Hence the

antivortex seems to move from far on the right towards the vortex with initial

speed v′ = (1− τ)(1 + τ)−1v. We define our impact parameter a as the distance

of the instantaneous initial trajectory of the vortex to the x-axis as shown in the

following diagram.

The total energy and angular momentum of the system are,

E =
1

2
Ω∞ v

2, ` = Ω∞ a v. (3.281)
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3.3 Numerical approximation to the metric

x

a

v

v′

C.M.

Figure 3.8: Scattering geometry with respect to the centre of mass.

Energy and angular momentum relate as,

E =
1

2

`2

Ω∞a2
, (3.282)

and if we assume θ depends implicitly on time as a function θ(ε), we have,

dθ

dε
=
θ̇

ε̇
=

`

ε (2E Ω ε2 − `2)1/2
. (3.283)

The total deviation angle of the trajectory, ∆θ, from the initial time to εmin,

at the moment of minimum approach of the pair, therefore is,

∆θ = −
∫ ∞
εmin

dε

ε
(

Ω ε2

Ω∞a2
− 1
)1/2

. (3.284)

As for a classical mechanical system, we define the deflection angle as [16],

Θ = π + 2 ∆θ. (3.285)

To compute εmin we used a secant method to solve the equation

Ω(ε) ε2 − Ω∞ a
2 = 0. (3.286)

Then we used the numerical library scipy to compute the integral based on

the approximation Ω̂. In practice, we chose a small δε and a value εmax for which

our data showed the conformal factor was almost constant. Then we computed

the integral,

∆θ1 = −
∫ εmax

εmin+δε

dε

ε
(

Ω ε2

Ω∞a2
− 1
)1/2

, (3.287)
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3.3 Numerical approximation to the metric

and added the result to

∆θ2 = −
∫ ∞
εmax

a dε

ε (ε2 − a2)1/2
= −π

2
+ arctan

(
(ε2max − a2)1/2

a

)
. (3.288)

The result of our computations can be seen on figure 3.10. The deflection

angle is negative, hence a vortex-antivortex pair behaves as a pair of attractive

point particles, however, we would not expect bound orbits because as the impact

parameter decreased, the angle also decreased until reaching a minimum, then is

started growing again. The behaviour of the scattering angle can be explained

based on the approximation (3.273). We assume Ω is a monotonous, decreasing

function, such that,
Ω(ε) ≥ Ω∞,

Ω(ε) ≈ −C log ε, ε << 1.
(3.289)

where C > 0 is some constant, and such that there are positive constants C1, C2

such that,

−C1 ≤ Ω′(ε) ε < 0, 0 < Ω′′(ε) ε2 ≤ C2. (3.290)

Note that the approximation Ω̂ and the asymptotic approximations for small

and large ε are consistent with these assumptions. Since for small ε,

d

dε
(Ω(ε) ε2) = (Ω′(ε) ε+ 2 Ω(ε)) ε > 0, (3.291)

with these assumptions, there is a continuous bijection between small impact

parameters a and solutions εmin to the equation,

Ω(ε) ε2 = Ω∞ a
2. (3.292)

If we use the approximation Ω̂ instead of Ω, this is actually a global bijection

valid for any a > 0. We aim to show that,

lim
a→0

∆θ = −π
2
, (3.293)

where ∆θ is the integral (3.284). From now onwards we denote εmin as m to

shorten the following computations. With the change of variables u = ε/m, the
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3.3 Numerical approximation to the metric

integral transforms into,

∆θ = −
∫ ∞

1

du

u
(

Ω(m·u)m2 u2

Ω∞ a2
− 1
)1/2

= −
∫ ∞

1

du

u
(

Ω(m·u)
Ω(m)

u2 − 1
)1/2

, (3.294)

where in the last step we used (3.284). By (3.289), for any u ≥ 1, we have

pointwise convergence,

lim
m→0

Ω(m · u)

Ω(m)
= 1. (3.295)

To compute the integral by the dominated convergence theorem, we need to

exhibit a function integrable in [1,∞) and bigger than each of the functions in

the integrand of (3.294). To this end, let us define the function

f(u) =
Ω(m · u)

Ω(m)
u2 − 1, (3.296)

as a short cumputation shows,

f ′(1) = 2 +
mΩ′(m)

Ω(m)
(3.297)

f ′′(u) =
1

Ω(m)

(
2 Ω(m · u) + 4mΩ′(m · u)u+m2 Ω′′(m · u)u2

)
. (3.298)

Assume f ′′(u) ≥ 0 for any u ≥ 1. By Taylor’s theorem, for any u > 1, there

is some ξ ∈ (1, u), such that

f(u) = f ′(1) (u− 1) +
1

2
f ′′(ξ)(u− 1)2 > f ′(1)(u− 1). (3.299)

Since f ′(1) > 2 for any m > 0, we deduce,∫ ∞
1

du

u
(

Ω(m·u)
Ω(m)

u2 − 1
)1/2

=

∫ ∞
1

du

u f(u)1/2

<
1√
2

∫ ∞
1

du

u (u− 1)1/2

=
π√
2
. (3.300)
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3.3 Numerical approximation to the metric

Hence, by the dominated convergence theorem,

lim
a→0

∆θ = − lim
m→0

∫ ∞
1

du

uf(u)1/2

= −
∫ ∞

1

du

u (u2 − 1)1/2

= −π
2
, (3.301)

provided f ′′(u) is non-negative, or equivalently by (3.298), if

2Ω(x) + 4xΩ′(x) + x2Ω′′(x) ≥ 0, (3.302)

for all x > 0. By the asymptotic properties of Ω, we know this is the case for

small and large x, which shows it is sensible to assume this is the case, at least

for not very large τ , as figure 3.9 shows.

Therefore, the total deflection satisfies,

lim
a→0

Θ = π + 2 lim
a→0

∆θ = 0, (3.303)

as shown in figure 3.10. Finally, equation (3.300) shows ∆θ > −π/
√

2 at least

up to some τ , hence, the data suggests the lower bound,

Θ > −(1−
√

2)π ≈ −74.5◦, (3.304)

as can be seen in the figure.

Scattering at large separation

We also approximated the scattering angle of a vortex-antivortex pair at large

separation with the method Manton and Speight [39]. Suppose x(s) is a geodesic

in Cartesian coordinates, with initial position x(0), such that a = x2(0) is very

big, x1(0) � 0 and the initial velocity is ẋ(0) = v ∂1. The geodesic equation for

x2 is

ẍ2 +
Ω′

Ω

(
ε̇ẋ2 −

x2

2ε
(ẋ2

1 + ẋ2
2)
)

= 0. (3.305)

Since a is big, the metric is almost flat across the trajectory of the geodesic,

the small deflection in the x2 axis is caused by the small correction on ẋ2 due to

99



3.3 Numerical approximation to the metric

0 1 2 3 4 5 6 7 8

0

5

10

15

20

25

0.000
0.227
0.454
0.682
0.909

Figure 3.9: The graph shows the function 2Ω̂(x) + 4xΩ̂′(x) +x2Ω̂′′(x) for various

values of τ , where Ω̂(x) = AK0(2x)+B, and the coefficients A, B are chosen such

that Ω̂ interpolates the values of Ω computed solving Taube’s equation. The data

shows equation (3.302) is expected to hold for τ up to some value τmax, implying

the deflection angle converges to 0 as the impact parameter decreases.
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3.3 Numerical approximation to the metric

the conformal factor derivative. To leading order, Ω is constant but we take Ω′

varying as in the long range approximation.

Ω′

2Ω
=

1

2
(1− τ 2)1/2q1q2K1(2(1− τ 2)1/2ε). (3.306)

We approximate x2 and ẋ1 as constants, ẋ2 as a small number, such that the

leading order term for ẍ2 is,

ẍ2 =
Ω′

2Ω

av2

ε
. (3.307)

For big a the deflection is small, the deviation angle can be approximated as

Θ =
∆ẋ2

v
. (3.308)

The difference in ẋ2 is,

∆ẋ2 =

∫ ∞
−∞

Ω′

2Ω

av2

ε
ds = av

∫ ∞
−∞

Ω′

2Ω ε
dx1. (3.309)

Hence,

Θ =
a

2
(1− τ 2)1/2q1q2

∫ ∞
−∞

K1(2(1− τ 2)1/2 ε)

ε
dx1. (3.310)

Recall ε = (a2 + x2
1)1/2 and let us make the change of variables

u = (1− τ 2)1/2x1, aτ = (1− τ 2)1/2a. (3.311)

The deflection angle is

Θ =
aτ
2
q1q2

∫ ∞
−∞

K1(2 (a2
τ + u2)1/2)

(a2
τ + u2)1/2

du (3.312)

= −q1q2

4

d

daτ

∫ ∞
−∞

K0(2 (a2
τ + u2)1/2)du (3.313)

The last integral was calculated in [39], using their result, the deflection angle

is,

Θ = −q1q2

4

d

daτ

(π
2

exp(−2aτ )
)

= q1q2
π

4
exp(−2aτ ). (3.314)
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3.4 Ricci magnetic geodesic motion

The constant q1q2 is negative, hence, the geodesic are slightly deflected towards

the origin, which indicates a vortex-antivortex pair behaves as a pair of attractive

particles in the long distance approximation. On figure 3.10 we can see the large

distance approximation fits the scattering data for the symmetric case. Since

Θ→ 0 as a→ 0, the fact that for large a, Θ is negative explains the existence of

a minimum negative deflection as seen in figure 3.10.

3.4 Ricci magnetic geodesic motion

The metric on M1,1(R2) can be split isometrically in a product with one flat term

isometric to R2, the centre of mass coordinate. Since this term is flat, in the

reduced moduli space we have that the global Ricci tensor coincides with the

Ricci tensor as a Riemann surface. Therefore, the Ricci form in M
1,1
0 (R2) is the

restriction of the global Ricci form to the centre of mass frame,

ρ = K εdε ∧ dθ, (3.315)

where K is the Gauss curvature of the reduced moduli space. Interaction of

vortices with a magnetic field can be modelled by means of Ricci magnetic

geodesics, abbreviated RMGs. RMGs on the moduli space were introduced for

the Ginzburg-Landau model with a Chern-Simons term by Collie and Tong [10],

who proposed that the Ricci form was the magnetic form of the Chern-Simons

term. Later, mathematical properties of RMGs were investigated by Krusch-

Speight on hyperbolic space [28]. Although in our case RMG dynamics is not

physically motivated, these curves are of mathematical interest: Krusch-Speight

conjectured that geodesic completeness and RMG completeness were equivalent

until Alqahtani-Speight found examples of incomplete surfaces which are RMG

complete [1]. A curve γ is a Ricci magnetic geodesic if there is a constant scalar

λ such that,

∇γ̇ γ̇ = λ (ιγ̇ρ)], (3.316)

where ιγ̇ρ = ρ(γ̇, ·) is the interior product. Unlike geodesic flow, RMG trajectories

are speed dependent, with changes in initial speed being reflected in the constant
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Figure 3.10: Above. Deflection angle at τ = 0 and asymptotic approximation.

Below. Comparison of the deflection angle for different values of τ .
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3.4 Ricci magnetic geodesic motion

λ. On a surface of revolution, RMG equations are determined by the Lagrangian,

L =
1

2
Ω(ε̇2 + ε2θ̇2) +

λ

2

(
εΩ′

Ω

)
θ̇. (3.317)

This is a conservative Lagrangian symmetric with respect to translations in time

and rotations of space, therefore, RMG trajectories on the reduced moduli space

preserve energy and angular momentum,

E =
1

2
Ω (ε̇2 + ε2θ̇2), ` = Ω ε2θ̇ +

λ

2

εΩ′

Ω
. (3.318)

Eliminating θ̇ from these equations, a RMG is a solution to the first order equa-

tion,

E =
1

2
Ωε̇2 + Veff , (3.319)

where the effective potential is defined as,

Veff =
1

2ε2 Ω

(
`− λ εΩ′

2 Ω

)2

. (3.320)

Figure 3.11 shows Veff for several values of τ = 0. Data confirms Veff →∞
as ε→ 0, consistently with the asymptotic approximation to the conformal factor,

likewise, for ε→∞, Veff → 0 since Ω→ Ω∞ and Ω′ → 0. The effective potential

can be seen in figure 3.11, the shape depends on the relative value of `/λ. A large

computation reveals

V′eff =
−1

2ε3Ω

(
`− λεΩ′

2Ω

)(
λ

2

(
ε2Ω′′

Ω
− 3

ε2 Ω′2

Ω2

)
+ 2`

(
1 +

εΩ′

2Ω

))
, (3.321)

by virtue of the asymptotic approximations, both εΩ′ and ε2Ω′′ are bounded

functions, while Ω is positive and bounded below, hence for given λ if |`| is large,

Veff is a positive decreasing function.

In this case RMGs are all unbounded curves. If ` is not very large, Veff has

relative extrema, giving rise to both unbounded and bounded trajectories orbiting

around the singularity at ε = 0. By equations (3.318) and (3.320), trajectories

for which E = Veff at constant ε0 are circular if Veff (ε0) 6= 0 or constant if

Veff (ε0) = 0. If the perturbation is around a zero of Veff , the angular velocity
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3.4 Ricci magnetic geodesic motion

Figure 3.11: Typical types of effective potentials for τ = 0 (description in text).

In the three cases, λ = 1, in the second case, Veff → 0 as ε→∞ although is not

apparent in the figure because of the scale.

alternates sign, the pattern is as seen on the bounded curves on the first row of

figure 3.12. If the perturbation is around a local minimum of Veff which is not a

zero, the angular velocity keeps the same sign and gives rise to the patterns seen

on the second row of the figure.

As numerics show, the moduli space is RMG complete, even though it is

geodesically incomplete, because the divergence of Veff at the origin prevents

RMGs of hitting the singularity.
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3.4 Ricci magnetic geodesic motion

Figure 3.12: RMGs for τ = 0 (Description in text).
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Chapter 4

Asymmetric vortex-antivortex

pairs on a compact surface

In this chapter we study vortex-antivortex systems on a compact surface. We

aim to prove that the moduli space is incomplete and to compute the volume

of the moduli space for the round sphere and flat tori. On a general compact

domain, the problem of the statistical mechanics of Ginzburg-Landau vortices

was addressed by Manton [37] and by Manton-Nasir [38]. As shown in [37], it

can be described if we know the volume of the moduli space. For the abelian

O(3) Sigma model however, the problem of the volume of the moduli space is

constrained by the fact that vortices and antivortices cannot coalesce, however,

computing the volume is necessary for the partition function of a gas of BPS

vortices [37, 38, 45]. There is a conjectured formula for the volume by Speight

and Romão that depends on topological data, the volume of the domain, τ and

the size of the sets P , Q of core positions [45]. The content of the chapter is as

follows.

In section 4.1, we prove that the Taubes equation has exactly one solution for

any τ ∈ (−1, 1).

The main result of section 4.2 is theorem 4.15 which asserts that the moduli

space of vortex-antivortex pairs is incomplete. We prove the theorem after proving

several lemmas necessary to bound the derivatives of solutions to the Taubes

equation.
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4.1 Existence of vortices

In section 4.3 we compute the volume of the moduli space of vortex-antivortex

pairs for the round sphere and flat tori and compare our results with the conjec-

ture.

4.1 Existence of vortices

In this section we will prove the existence of solutions to the Taubes equation on

a compact surface. In [51] Sibner-Signer-Yang proved existence and uniqueness

of solutions of the gauged O(3) Sigma model on a compact manifold for τ = 0.

We prove the following generalisation of their results.

Theorem 4.1. On any compact Riemann surface there exists exactly one solution

u to the Taubes equation (2.36), provided the condition

−1 + τ

2π
|Σ| < k+ − k− <

1− τ
2π
|Σ| (4.1)

holds. Moreover, u is of class C2 except for the core positions.

We prove the theorem at the end of the section. The inequality (4.1) is a

Bradlow type restriction [3], constraining the relative number of vortices and

antivortices on a compact surface. It arises naturally from the second Bogomolny

equation (2.21), since the total magnetic flux is,

2π(k+ − k−) =

∫
Σ

B

=

∫
Σ

〈N, φ〉Vol− τ |Σ|, (4.2)

where N is the north pole section on the target sphere and hence 〈N, φ〉 ∈ [−1, 1],

it follows that (4.1) is a necessary condition for a pair (φ,A) of a field and a

connection to be a solution to the Bogomolny equations.

We will define the function F : R→ R,

F (t) = 2

(
et − 1

et + 1
+ τ

)
, (4.3)

and the constant,

F±∞ = 2(±1 + τ), (4.4)
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4.1 Existence of vortices

in order to simplify notation in the proof of theorem 4.1. Let us define F0 : R→ R
as the function,

F0(t) = 2

(
et − 1

et + 1
+ τ

)
+

4π(k+ − k−)

|Σ|

=
4et

et + 1
− C0, (4.5)

where the constant C0 is,

C0 = 2(1− τ)− 4π

|Σ|
(k+ − k−). (4.6)

For a given configuration of non-coalescent vortices, recall the function v :

Σ → R ∪ {±∞}, defined on equation (2.165), if u is the solution of the Taubes

equation, and we define h̃ = u − v, then the regularized Taubes equation on a

compact surface, equation (2.167), is equivalent to,

−∆h̃ = F0(v + h̃). (4.7)

Equation (4.7) shows why Bradlow’s bound is necessary: If a smooth solution

exists, by the divergence theorem a necessary condition for C0 is,

C0 =
1

|Σ|

∫
Σ

4 ev+h̃

ev+h̃ + 1
Vol ∈ [0, 4], (4.8)

Bradlow’s bound is equivalent to (4.8). Let

X =

{
u ∈ H1(Σ) :

∫
Σ

uVol = 0

}
(4.9)

be the subspace of Sobolev’s space H1(Σ) of functions of zero average. Since Σ is

compact, H1(Σ) can be decomposed as

H1(Σ) = X⊕ R. (4.10)

Any h ∈ H1(Σ) can be decomposed as a pair (u, c̃) ∈ X×R, such that h = u+c̃.

Hence, u is a solution to the equation,

−∆u = F0(v + u+ c̃). (4.11)
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4.1 Existence of vortices

We will use Leray-Schauder theory to prove existence of solutions to the

Taubes equation as in the proof of Sibner et al. [51] for τ = 0. Given h̃ ∈ X, the

function

c 7→
∫

Σ

F0(v + h̃+ c) Vol, (4.12)

is a well defined, monotonous, continuous function. By Bradlow’s bound, there

exists a unique number c̃ such that∫
Σ

F0(v + h̃+ c̃) Vol = 0. (4.13)

Lemma 4.2. The function C : X→ R, C(h̃) = c̃ is weakly sequentially continuous

in X.

Proof. We will highlight the steps different from [51] in the general case. If

h̃n ⇀ h̃0 in X, then h̃n is a bounded sequence in X, and by the Rellich lemma,

after passing to a sub-sequence if necessary, we can assume h̃n → h̃0 in Lp for

p ≥ 1. Let c̃n = c̃(h̃n), c̃0 = c̃(h̃0) and assume towards a contradiction that c̃n

does not converge to c̃0. In this case we can assume the existence of a constant

ε0 such that,

|c̃n − c̃0| ≥ ε0, (4.14)

for all n. We claim the sequence {c̃n} is bounded. Assume the contrary, after

passing to a sub-sequence if necessary, we can assume the limit c̃n →∞. Let K

be any bound for F0. By Egorov’s theorem [30] and the strong convergence in

Lp, there exists a measurable set Σε and a constant Kε, such that |Σε| < εK−1,

the sequence h̃n converges uniformly to h̃0 in Σ \ Σε and |h̃n| ≤ Kε in Σ \ Σε.

On the one hand, the equality∫
Σ\Σε

F0(v + c̃n + h̃n) Vol = −
∫

Σε

F0(v + c̃n + h̃n) Vol, (4.15)

implies, ∣∣∣∣∫
Σ\Σε

F0(v + c̃n + h̃n) Vol

∣∣∣∣ ≤ ε, (4.16)

and on the other hand, by monotony of F0,∫
Σ\Σε

F0(v + c̃n −Kε) Vol ≤
∫

Σ\Σε
F0(v + c̃n + h̃n) Vol. (4.17)
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4.1 Existence of vortices

Taking the limit as n→∞, from these two equations we have,

(F∞ − C0)(|Σ| − |Σε|) ≤ ε. (4.18)

Hence,

(F∞ − C0)|Σ| ≤ ε+K|Σε| < 2ε, (4.19)

a contradiction since ε is arbitrary. A similar argument shows c̃n is bounded

below. Therefore, c̃n is a bounded sequence of real numbers. By the Bolzano-

Weierstrass theorem, we can assume towards a contradiction c̃n → c̃, but c̃ 6= c̃0

by (4.14). Let

α =

∣∣∣∣∫
Σ

F0(v + h̃0 + c̃) Vol

∣∣∣∣ > 0, (4.20)

bearing in mind the definition of h̃n,

α =

∣∣∣∣∫
Σ

F0(v + h̃0 + c̃)− F0(v + h̃n + c̃n) Vol

∣∣∣∣
≤ sup

t∈R
{F ′(t)} ·

(
|c̃− c̃n| · |Σ|+ C ||h̃0 − h̃n||0 · |Σ|1/2

)
→ 0. (4.21)

Hence α = 0, a contradiction. Therefore (4.14) is false and c̃n → c̃0. This

proves the lemma.

Let us consider the operator T : X → X, mapping each h̃ ∈ X to the weak

solution H ∈ X of the equation

−∆H = F0(v + c̃+ h̃). (4.22)

Given that
∫

Σ
F0(v+ c̃+ h̃) Vol = 0, existence of a weak H1 solution to (4.22)

is a well established analysis fact [2, Thm. 4.7], moreover, any two weak solutions

to the equation differ by a constant, by taking H ∈ X we guarantee it is unique.

Recall a compact operator is an operator that maps bounded sequences to

sequences with convergent subsequences. We aim to use Schäfer’s alternative,

theorem 2.17, to prove T has a fixed point.

Lemma 4.3. The operator T : X→ X is compact in the strong topology of X as

a subspace of H1(Σ).
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4.1 Existence of vortices

Proof. Let {h̃n} ⊂ X be a bounded sequence, after passing to a subsequence if

necessary, we can assume h̃n ⇀ h̃0 in X and strongly in L2. Let Hn = T h̃n, n ≥ 0,

by lemma 4.2 c̃n → c̃0. Moreover,

||∇Hn −∇H0||2L2 =

∫
Σ

(Hn −H0) ∆(Hn −H0) Vol

=

∫
Σ

(Hn −H0)
(
F (v + c̃n + h̃n)− F (v + c̃0 + h̃0)

)
Vol

≤ sup
t∈R
{F ′(t)}

∫
Σ

(
|c̃n − c̃0|+ |h̃n − h̃0|

)
|Hn −H0|Vol

≤ sup
t∈R
{F ′(t)}

(
|c̃n − c̃0| · |Σ|1/2 + ||h̃n − h̃0||L2

)
||Hn −H0||L2 .

(4.23)

The last inequality is a consequence of the Cauchy-Schwarz inequality. By the

Poincaré inequality, there are constants C1, C2 such that

||Hn −H0||H1 ≤ C1|c̃n − c̃0|+ C2||h̃n − h̃0||L2 → 0. (4.24)

This proves compactness of T .

Let us consider the set

S =
{
h̃ ∈ X : ∃ t ∈ [0, 1] s.t. h̃ = t · T h̃

}
. (4.25)

If h̃ ∈ S, then it is a solution of the equation,

∆h̃ = tF0(v + c̃+ h̃), (4.26)

where c̃ = C(h̃) was defined on lemma 4.2.

By the Cauchy-Schwarz inequality,

||∇h̃t||2L2 = 〈h̃t,∆h̃t〉 ≤ C

∫
Σ

|h̃t|Vol ≤ C |Σ|1/2 ||h̃t||L2 . (4.27)

By the Poincaré inequality we conclude the existence of a constant C such that

||h̃t||H1 ≤ C. (4.28)
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4.2 Incompleteness of the moduli space

Proof of Theorem 4.1. Since S is bounded, by Schäfer’s alternative there is a

fixed point h̃ of T . Let h = h̃ + c̃, where c̃ = C(h̃), then h is a weak solution

to the regularised Taubes equation. By the elliptic estimates h is also a strong

solution in H2. We follow a bootstrap argument to prove h ∈ C2: By Sobolev’s

embedding we know h is continuous, hence h ∈ Lp for any p ≥ 1. By (4.7) and

the elliptic estimates h ∈W2,p for some p > 2, once more by Sobolev’s embedding

h ∈ C1. Let u = h + v, the derivative dh ∈ Γ(T ∗Σ) is a weak solution of the

linearized equation,

−∆ dh =
4 eu

(eu + 1)2
dh+

4 eu

(eu + 1)2
dv. (4.29)

The potential function eu(eu + 1)−2 is continuous and with zeros of the same

order than the singularities of dv at the cores, hence ∆(dh) ∈ Lp, p > 2. Since

dh is continuous, it is also an Lp form. By the elliptic estimates and Sobolev’s

embedding we conclude h ∈ C2. Since F is monotonous, h is unique by the strong

maximum principle. Finally, u is the necessarily unique solution to the Taubes

equation.

4.2 Incompleteness of the moduli space

In [45] Romão and Speight prove that the moduli space of symmetric vortex-

antivortex pairs on the sphere is incomplete. In this section we extend their

result to general τ on a compact manifold. In order to prove this, we find bounds

for the derivatives ∂zj∇hε on a holomorphic chart, where the cores are at positions

z1, z2. Let µ = log (1− τ)− log (1 + τ), first we prove a pair of technical lemmas.

Lemma 4.4. Let ∆ be the diagonal set of Σ × Σ and let {xn} ⊂ M1,1(Σ) be a

sequence such that xn → x ∈ ∆ in the product metric. Let h̃n be the solution

of the regular Taubes equation corresponding to each xn, then h̃n ⇀ µ in H1 and

h̃n → µ strongly in L2.

Proof. Let vn = vxn for each point xn in the given sequence. Let us decompose

each solution to the regular Taubes equation as h̃n = un + c̃n ∈ X⊕R. We claim

the sequence {c̃n} is bounded. Assume towards a contradiction c̃n →∞. Notice
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4.2 Incompleteness of the moduli space

that in the vortex-antivortex case the functions F and F0 coincide. We know

that,

−∆un = F (un + c̃n + vn). (4.30)

By the standard elliptic estimates, there is a constant C such that

||un||H2 ≤ C||∆un||L2 . (4.31)

Since F is a bounded function, {un} is bounded in H2 and by Sobolev’s em-

bedding also in C0.

Assume x = (x∗, x∗) and notice that,

|vn(x)| = 4π|G(x, x1n)−G(x, x2n)|, (4.32)

where xn = (x1n, x2n), since G(x, y) is continuous away of the diagonal set,

vn(x)→ 0 for x 6= x∗, whence, we also have the convergence,

F (un + c̃n + vn)→ 2(1 + τ), (4.33)

pointwise almost everywhere. Applying the dominated convergence theorem and

equation (4.30), ∫
Σ

F (un + c̃n + vn) Vol = 0→ 2(1 + τ)|Σ|, (4.34)

a contradiction. If c̃n → −∞ a similar argument holds. Therefore the sequence

of averages c̃n is bounded, implying {h̃n} is bounded in C0. Hence, the sequence

is also bounded in Lp for any positive p. By the elliptic estimate

||h̃n||H2 ≤ C
(
||∆h̃n||L2 + ||h̃n||L2

)
, (4.35)

{h̃n} is also bounded in H1. By the Alaoglu and Rellich theorems, after passing

to a subsequence if necessary, we can assume h̃n ⇀ h∗ ∈ H1 and strongly in L2.

We claim that h∗ is the constant function µ. To see this, let ϕ ∈ H1. From the

regularized Taubes equation we have,

〈h̃n, ϕ〉H1 = 〈h̃n, ϕ〉L2 + 〈∇h̃n,∇ϕ〉L2 ,

= 〈h̃n, ϕ〉L2 + 〈∆h̃n, ϕ〉L2

= 〈h̃n, ϕ〉L2 − 〈F (h̃n + vn), ϕ〉L2 . (4.36)
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4.2 Incompleteness of the moduli space

Since h̃n → h∗ strongly in L2, after passing to a subsequence if necessary, we

can assume h̃n → h∗ pointwise almost everywhere. By the weak convergence of h̃n

in H1, together with the strong convergence in L2 and the dominated convergence

theorem,

〈h∗, ϕ〉H1 = lim 〈h̃n, ϕ〉H1

= lim〈h̃n, ϕ〉L2 − lim〈F (h̃n + vn), ϕ〉L2

= 〈h∗, ϕ〉L2 − 〈F (h∗), ϕ〉L2 . (4.37)

From this equation, we infer

〈∇h∗,∇ϕ〉L2 = −〈F (h∗), ϕ〉L2 . (4.38)

Therefore, h∗ is a weak solution to the equation

−∆h∗ = F (h∗). (4.39)

By elliptic regularity, h∗ is also a strong solution, and by the maximum prin-

ciple, h∗ is constant since F is an increasing function. Since the only zero of F

is at t = µ, we conclude h∗ = µ. If h̃nk is any subsequence of h̃n, this argument

shows it has a subsequence weakly converging to µ in H1 and strongly in L2, the

claim of the lemma follows.

Lemma 4.5. h̃n → µ strongly in W2,p for any positive p.

Proof. We will prove that any subsequence of h̃n has another subsequence con-

verging to µ in W2,p, implying the lemma. To simplify notation, we denote sub-

sequences of h̃n by the same symbol. From the previous lemma, h̃n → µ strongly

in L2. After passing to a subsequence if necessary, we can assume that h̃n → µ

pointwise almost everywhere. We apply the dominated convergence theorem to

deduce the limit,

||∆h̃n||Lp = ||F (h̃n + vn)||Lp → ||F (µ)||Lp = 0. (4.40)

If p = 2, by the standard elliptic estimates, there is a constant C, such that,

||h̃n − µ||H2 ≤ C
(
||∆h̃n||L2 + ||h̃n − µ||L2

)
→ 0. (4.41)
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4.2 Incompleteness of the moduli space

By Sobolev’s embedding, h̃n → µ uniformly in C0, hence also in Lp for any

positive p. We apply one more time the elliptic estimate,

||h̃n − µ||W2,p ≤ C
(
||∆h̃n||Lp + ||h̃n − µ||Lp

)
→ 0. (4.42)

As a consequence of this lemma and Sobolev’s embedding, we have the con-

vergence,

||h̃n − µ||C1 → 0, (4.43)

for any arbitrary sequence {xn} ⊂M1,1(Σ), such that xn → x ∈ ∆. This proves

the following corollary,

Corollary 4.6. The limit,

lim
d(x1,x2)→0

∣∣∣∣∣∣h̃(x;x1, x2)− µ
∣∣∣∣∣∣
C1(Σ)

= 0, (4.44)

holds, where d(x1, x2) is the Riemannian distance in Σ.

Let Σ2
∆ = (Σ × Σ) \ ∆ endowed with the product metric. As differentiable

manifolds, M1,1 and Σ2
∆ are equivalent. In what follows, we will consider h̃ as

a function Σ × Σ2
∆ → R. Let U ⊂ Σ be an open and dense subset and let

ϕ : U → V ⊂ C be a holomorphic chart. In what follows we denote points on

the surface as x and points on C as z, so z = ϕ(x) for x ∈ U . We also assume

vortices and antivortices are both located in U , such that up to a holomorphic

chart, h̃ : Σ × V 2
∆ → R, where V 2

∆ = V 2 \∆V and ∆V ⊂ C2 is the diagonal set.

On this chart partial derivatives ∂zj h̃ are well defined functions

∂zj h̃ : Σ× V 2
∆ → C. (4.45)

We denote the covariant derivative and Laplacian with respect to the first

variable by ∇ and ∆ and emphasize that the metric on V 2
∆ is the push forward of

the metric induced by the surface. Our aim is to estimate the rate at which the

second derivatives ∇∂zj h̃ grow as a sequence zn ∈ V 2
∆ diverges to the diagonal
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4.2 Incompleteness of the moduli space

set. This will allow us to prove that the moduli space is incomplete. Since, ∆

and ∂zj commute, ∂zj h̃ is the solution to the elliptic problem,

−∆∂zj h̃ = V (h)∂zj h̃+ sj V (h) ∂zjvj, (4.46)

where vj(x) = 4π G(x, ϕ−1(zj)). Let dj(x) = d(x, xj), xj = ϕ−1(zj), we know

there is a uniform constant C, such that the derivative of Green’s function is

bounded [2],

|∇G(x, xj)| <
C

dj
, |∇2G(x, xj)| <

C

dj
, (4.47)

where ∇2G is the covariant derivative with respect to the second variable. Recall

in holomorphic coordinates the metric is eΛ(z)|dz|2, hence, if zj is restricted to a

bounded domain,

|∂zjvj| ≤ 4πe−Λ(zj) |∇2G(x, ϕ−1(zj))| <
C

dj
. (4.48)

Lemma 4.7. For any positive constant C1, there is another constant C, such

that, for all x, x1, x2 ∈ U ,

d2
12

C1d2
1 + d2

2

≤ C, (4.49)

djd
2
k

(C1d2
1 + d2

2)2
≤ C

d12

, (4.50)

where {dj, dk} = {d1, d2} and d12 = d(x1, x2).

Proof. By the triangle inequality and Cauchy-Schwarz,

d12 ≤ d1 + d2 ≤ C (d2
1 + d2

2)1/2, (4.51)

on the other hand, any two norms in a finite dimensional vector space are equiv-

alents, hence, there is another constant such that,

(d2
1 + d2

2)1/2 ≤ C (C1d
2
1 + d2

2)1/2, (4.52)

from these two inequalities we obtain the first claim of the lemma. For the second

claim, it is enough to prove that the inequality

d1d
2
2

(C1d2
1 + d2

2)2
≤ C

d12

, (4.53)
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4.2 Incompleteness of the moduli space

holds, the remaining case being equivalent to this one after relabelling d1 and d2.

Let us note that since,

d1d2 ≤
1

2
(d2

1 + d2
2) ≤ C (C1d

2
1 + d2

2), (4.54)

is sufficient to prove that,

d2

C1d2
1 + d2

2

≤ C

d12

. (4.55)

If d2 ≤ d1, by the triangle inequality we have,

d2d12 ≤ d1d2 + d2
2

≤ d2
1 + d2

2

≤ C (C1d
2
1 + d2

2), (4.56)

hence (4.55). On the other hand, if d1 ≤ d2, repeating the previous step, we find

that

d1d12 ≤ C (C1d
2
1 + d2

2), (4.57)

this inequality, together with (4.49) and the triangle inequality, implies,

d2

C1d2
1 + d2

2

≤ d1

C1d2
1 + d2

2

+
d12

C1d2
1 + d2

2

≤ C

d12

. (4.58)

In any case, we conclude that equation (4.50) holds.

Lemma 4.8. There is a constant C such that for any pair of distinct points

x1, x2 ∈ Σ, ∣∣∣∣G(x1, x2)− 1

2π
log d(x1, x2)

∣∣∣∣ ≤ C. (4.59)

Proof. We cover Σ with a finite cover of metric disks DRj/2(pj) such that Rj <

δ, where δ is the injectivity radius of the metric and for each disk there is a

holomorphic chart ϕj : Uj → C, DRj(pj) ⊂ Uj. Let R = min {Rj}, for any pair

of distinct points x1, x2 ∈ Σ, such that d(x1, x2) < R/2, there is a disk such that

x1, x2 ∈ DRj(pj). For any disk in the cover, let R′j be a positive radius, such that,

|ϕj(x)− ϕj(pj)| < R′j, ∀x ∈ DRj(pj). (4.60)
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4.2 Incompleteness of the moduli space

Let zj = ϕj(pj) and let us denote by DR′j
(zj) ⊂ C the holomorphic disk of

radius R′j centred at zj. For any small ε > 0 there are continuous functions

G̃j : DR′j+ε
(zj)×DR′j+ε

(zj)→ R such that if x1, x2 ∈ DRj(pj),

G(x1, x2) =
1

2π
log |ϕj(x1)− ϕj(x2)|+ G̃j(ϕj(x1), ϕj(x2)). (4.61)

If exp Λj(z) is the conformal factor of the metric in the chart ϕj, let

Mj = max
{
eΛj(z)/2 : z ∈ DR′j

(zj)
}
,

mj = min
{
eΛj(z)/2 : z ∈ DR′j

(zj)
}
,

(4.62)

and M = maxj {Mj}, m = minj {mj}. Since each DRj(pj) is geodesically convex,

for any x1, x2 ∈ DRj(pj),

m |ϕj(x1)− ϕj(x2)| ≤ d(x1, x2) ≤M |ϕj(x1)− ϕj(x2)|. (4.63)

Taking the log of this inequality we find a positive constant such that,

| d(x1, x2)− log |ϕj(x1)− ϕj(x2)| | ≤ C, (4.64)

whenever x1, x2 ∈ DRj(pj). Since each function G̃j is continuous in the compact

set DR′j
(zj), we find another constant such that,∣∣∣∣G(x1, x2)− 1

2π
log d(x1, x2)

∣∣∣∣ =∣∣∣∣ 1

2π
(log |ϕj(x1)− ϕj(x2)| − log d(x1, x2)) + G̃j(ϕj(x1), ϕj(x2))

∣∣∣∣ ≤ C. (4.65)

This proves the inequality whenever d(x1, x2) < R/2. SinceG and the distance

function are continuous on the compact set,{
(x1, x2) ∈ Σ× Σ : d(x1, x2) ≥ R

2

}
, (4.66)

we can find a second constant satisfying the inequality whenever d(x1, x2) ≥ R/2.

Taking the maximum of both constants concludes the lemma.

Lemma 4.9. Let D be any bounded domain on C. For any p > 0, there is a

constant C, independent of z1, z2 ∈ D, z1 6= z2 such that, if xj = ϕ−1(zj),

||V (h)∂zjvj||Lp ≤
C

d(x1, x2)
. (4.67)
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Proof. By lemma 4.8, there is a constant, such that for all x, y ∈ Σ, x 6= y,∣∣∣∣G(x, y)− 1

2π
log d(x, y)

∣∣∣∣ ≤ C. (4.68)

Hence,

|V (h)∂zjvj| =

∣∣∣∣∣ 4ev1ev2eh̃

(ev1eh̃ + ev2)2
∂zjvj

∣∣∣∣∣ ≤ C

∣∣∣∣∣ 4d2
1d

2
2 e

h̃

(d2
1e
h̃ + d2

2)2

1

dj

∣∣∣∣∣ , (4.69)

where the constant depends on D. Since h̃ is uniformly bounded on Σ, there are

constants C, C1, such that by lemma 4.7.

|V (h)∂zjvj| ≤ C

∣∣∣∣ d2
1d

2
2

(d2
1C1 + d2

2)2

1

dj

∣∣∣∣ ≤ C

d(x1, x2)
, (4.70)

this inequality implies the claim.

The proof of the lemma depends only on properties of Green’s function, we

could repeat the proof of lemma 4.9 using ∇vj instead of ∂zjvj to prove for any

given domain D ⊂ C the existence of a constant, independent of z1, z2 ∈ D , such

that,

||V (h)∇vj||Lp ≤
C

d(x1, x2)
. (4.71)

In the next lemmas we prove that the bilinear form,

B : H1 × H1 → R, B(φ, ψ) = 〈∇φ,∇ψ〉2L2 + 〈V (h)φ, ψ〉L2 , (4.72)

is coercive with a uniform coercivity constant.

Lemma 4.10. If Vn : Σ → R is a sequence of continuous, uniformly bounded

functions converging pointwise to the continuous function V∗, and φn → φ∗ in L2,

then

〈Vn, φ2
n〉L2 → 〈V∗, φ2

∗〉L2 . (4.73)

Proof. We have,

|〈Vn, φ2
n〉L2 − 〈V∗, φ2

∗〉L2| ≤ |〈Vn, φ2
n − φ2

∗〉L2|+ |〈Vn − V∗, φ2
∗〉L2|. (4.74)
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Since the functions Vn are uniformly bounded, there is a constant C such that,

|〈Vn, φ2
n − φ2

∗〉L2 | ≤ C 〈|φn − φ∗|, |φn + φ∗|〉L2

≤ C ||φn − φ∗||L2 ||φn + φ∗||L2 , (4.75)

by the convergence φn → φ∗ in L2, we obtain the limit

|〈Vn, φ2
n − φ2

∗〉L2| → 0. (4.76)

Since there is a constant C such that the functions (Vn − V∗)φ2
∗ are bounded

by the measurable function Cφ2
∗ and Vn − V∗ → 0 pointwise, by the dominated

convergence theorem,

|〈Vn − V∗, φ2
∗〉L2| → 0. (4.77)

Therefore,

|〈Vn, φ2
n〉L2 − 〈V∗, φ2

∗〉L2 | → 0, (4.78)

concluding the proof of the lemma.

Lemma 4.11. There is a positive constant C, independent of (x1, x2) ∈ Σ2
∆, such

that for any φ ∈ H1,

C||φ||2H1 ≤ B(φ, φ). (4.79)

Proof. By the bilinearity of B, it is sufficient to prove the lemma assuming

||φ||H1 = 1. Let us assume towards a contradiction the statement is false, in

this case there is a sequence (φn,xn) ⊂ H1 × Σ2
∆, with ||φn||H1 = 1, such that,

B(φn, φn) = ||∇φn||2L2 + 〈Vn, φ2
n〉L2 → 0, (4.80)

where Vn = V (hn) is the potential function determined by hn, the solution to the

Taubes equation with data xn. Since the functions Vn are non-negative,

||∇φn||L2 → 0, 〈Vn, φ2
n〉L2 → 0. (4.81)

Passing to a subsequence if necessary, we can assume φn ⇀ φ∗ in H1 and

strongly in L2 and xn → x∗ in Σ× Σ. Since the functions

evj : Σ× Σ→ R (4.82)
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are continuous and h̃n varies continuously with the initial data, if x∗ 6∈ ∆, we have

the uniform convergence Vn → V∗ = V (h∗), where h∗ is the solution to the Taubes

equation determined by x∗. On the other hand, if x∗ ∈ ∆, we know that h̃n → µ

in C1, hence, we have pointwise convergence Vn → V∗ ≡ 4 exp(µ)(exp(µ) + 1)−2.

In any case, by our previous lemma,

〈Vn, φ2
n〉L2 → 〈V∗, φ2

∗〉L2 , (4.83)

but this limit is zero, hence φ∗ = 0 almost everywhere and φn → 0 in H1 strongly,

a contradiction.

Proposition 4.12. Let D ⊂ V be any bounded domain. There is a positive

constant C(D), such that

||∂zj h̃||C1 ≤ C

d12

, and ||∇h̃||C1 ≤ C

d12

, (4.84)

for all z1, z2 ∈ D with z1 6= z2, where h̃(x) = h̃(x;ϕ−1(z1), ϕ−1(z2)) and d12 =

d(x1, x2).

Proof. ∂zj h̃ is a solution to the equation

−∆∂zj h̃ = V (h)∂zj h̃+ sjV (h)∂zjvj. (4.85)

By lemma 4.11, there is a positive constant C1 independent of z1, z2, such that

C1 ||φ||2H1 ≤ ||∇φ||2L2 + 〈V (h)φ, φ〉L2 , (4.86)

for all φ ∈ H1. As in the proof of lemma 4.9, a second uniform constant, dependent

on D, can be found such that,

||V (h)∂zjvj||L2 ≤ C2

d12

. (4.87)

By the Lax-Milgram theorem, we obtain the bound,

||∂zj h̃||H1 ≤ C

d12

, (4.88)

where C = C2/C1. Now we follow a recursive argument: by Schauder’s es-

timates, ||∂zj h̃||H2 is also bounded by C d−1
12 for some constant C. By Sobolev’s
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embedding, there is another constant such that ||∂zj h̃||C0 is also bounded by

C d−1
12 . Thence, for any given p > 2,

||∂zj h̃||Lp ≤
C

d12

. (4.89)

By the elliptic estimates,

||∂zj h̃||W2,p ≤ C (||∆∂zj h̃||Lp + ||h̃||Lp)
≤ C (||V (h)∂zj h̃||Lp + ||V (h)∂zjvj||Lp + ||∂zj h̃||Lp)

≤ C

d12

, (4.90)

for the last inequality we have used that the function V (t) is bounded. Sobolev’s

embedding implies the claimed bound,

||∂zj h̃||C1 ≤ C

d12

. (4.91)

This argument is also valid for ∇h̃, because it is a solution to the elliptic

problem,

−∆(∇h̃) = V (h)∇h̃+ V (h)(∇v1 −∇v2), (4.92)

and the upper bound

||V (h)∇vj|| ≤
C

d12

(4.93)

also holds.

For latter application, we need to translate this estimate to a holomorphic

chart.

Lemma 4.13. Let ϕ : U ⊂ Σ → V ⊂ C be a holomorphic chart and let D be a

geodesically convex neighbourhood such that D ⊂ U , there is a positive constant

C, such that for all z1, z2 ∈ ϕ(D),

C |z1 − z2| ≤ d(ϕ−1(z1), ϕ−1(z2)). (4.94)
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Proof. The conformal factor is a continuous positive function on V and ϕ(D) is

compact, hence there is a constant C > 0, such that for all z ∈ ϕ(D),

C2 ≤ eΛ(z). (4.95)

Since D is geodesically convex, for any pair z1, z2 ∈ ϕ(D), there is a curve

γ : [0, 1] → ϕ(D) joining z1 to z2 such that ϕ−1 ◦ γ is a minimizing geodesic

joining ϕ−1(z1) to ϕ−1(z2), hence,

C

∫ 1

0

|γ̇| ds ≤
∫ 1

0

eΛ/2|γ̇| ds = d(ϕ−1(z1), ϕ−1(z2)). (4.96)

By the triangle inequality,

|z1 − z2| =
∣∣∣∣∫ 1

0

γ̇

∣∣∣∣ ≤ ∫ 1

0

|γ̇| ds, (4.97)

yielding the result.

The advantage of the holomorphic chart is that it makes computations possi-

ble, on the other hand, the Riemannian distance is a geometric invariant defined

globally on the surface and better suited to prove analytical properties of the

solutions to the Taubes equation. For the next lemma, notice that if Σ1 × Σ2

is a product of Riemmann surfaces, for any function f : Σ1 × Σ2 → C in local

coordinates ϕj : Uj → C, ϕj(xj) = zj,

∂x1∂x2f = ∂z1z2f dz
1 ⊗ dz2 ∈ Ω(2,0)(Σ1 × Σ2). (4.98)

In the product metric, dz1 and dz2 are orthogonal, hence,

|∂x1∂x2f | = |∂z1,z2f | |dz1| |dz2|. (4.99)

Lemma 4.14. For any holomorphic chart ϕ : U ⊂ Σ→ V ⊂ C and any geodesi-

cally convex neighbourhood D such that D ⊂ U , there is a constant C > 0 such

that, for all z1, z2 ∈ ϕ(D), z1 6= z2,

|∂z1b1(z1, z2)| ≤ C

|z1 − z2|
, (4.100)

where the coefficient b1 appearing in the metric of M1,1(Σ) is defined as in (2.78).
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4.2 Incompleteness of the moduli space

Proof. If z1, z2 ∈ ϕ(D), there is a smooth function ṽ : ϕ(D)×ϕ(D)×ϕ(D)→ R,

such that for all triples z, z1, z2 of points in the domain with z1 6= z2,

v(ϕ−1(z)) = log |z − z1|2 − log |z − z2|2 + ṽ(z, z1, z2). (4.101)

Hence,

b1(z1, z2) = 2 ∂̄
∣∣
z=z1

(h(ϕ−1(z))− log |z − z1|2)

= 2 ∂̄
∣∣
z=z1

(h̃(ϕ−1(z))− log |z − z2|2 + ṽ(z, z1, z2))

= 2 ∂̄zh̃(ϕ−1(z1);ϕ−1(z1), ϕ−1(z2))− 2

z̄1 − z̄2

+ 2 ∂̄zṽ(z1, z1, z2),

(4.102)

where ∂̄z refers to complex derivatives with respect to the first entry. In the

following calculation we denote h̃(ϕ−1(z1);ϕ−1(z1), ϕ−1(z2)) by h̃ and ṽ(z1, z1, z2)

by ṽ, whence,

∂z1b1 = 2
(
∂z∂̄zh̃+ ∂z1 ∂̄zh̃+ ∂z∂̄zṽ + ∂z1 ∂̄zṽ

)
= 2

(
−e

Λ(z1)

2
∆Σh̃+ ∂̄z∂z1h̃+ ∂z∂̄zṽ + ∂z1 ∂̄zṽ

)
= 2

(
eΛ(z1)

2
F (h) + ∂̄z∂z1h̃+ ∂z∂̄zṽ + ∂z1 ∂̄zṽ

)
. (4.103)

Since ϕ(D) is compact, Λ(z1) and the last two terms are bounded functions on

ϕ(D) by continuity. Since function F (t) is also bounded, we conclude the same

statement for the first term. For the second term, if x = ϕ−1(z) and xj = ϕ−1(zj),

we have by lemma 4.13 and proposition 4.12,∣∣∣∂̄z∂z1h̃∣∣∣ = eΛ(z1)/2
∣∣∣∂̄z∂z1h̃∣∣∣ |dz|

= |∂̄x∂z1h̃(x1, ϕ
−1(z1), ϕ−1(z2))|

≤ C

d(x1, x2)

≤ C

|z1 − z2|
. (4.104)

Therefore the lemma is proved.

Theorem 4.15. The moduli space is incomplete. There is a Cauchy sequence

{xn} ⊂M1,1(Σ) such that xn → x ∈ ∆ as a sequence in Σ× Σ.
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Proof. Let ϕ : U ⊂ Σ → C be an holomorphic chart defined on an open and

dense neighbourhood U . Let z1 ∈ C be chosen such that ϕ−1(sz1), 0 ≤ s ≤ 1 is

contained in a geodesically convex neighbourhood of ϕ−1(0). Let us define the

curve,

γ : (0, 1]→ C2
∆, γ(s) = (s z1, 0). (4.105)

Let z(s) = sz1 and let ϕ−1
∗ γ(s) = (ϕ−1(z(s)), ϕ−1(0)), be the push forward of

the curve γ to the moduli space, hence,

|ϕ−1
∗ γ̇|2M = (eΛ(z)(1− τ) + ∂z1b1) |z1|2, (4.106)

where we denote by |·|M the norm of vectors in Tϕ−1
∗ γ(s)M

1,1.

By Lemma 4.14 there is a constant C, such that,

|∂z1b1| ≤
C

|z|
=

C

s |z1|
. (4.107)

Since the conformal factor is a continuous positive function defined on the

whole plane, there is another constant, also denoted C, such that,

|ϕ−1
∗ γ̇|M ≤

C

s1/2
. (4.108)

Let `[γ, a, b] be the arc-length of the segment γ|[a,b], a, b ∈ (0, 1), there is another

constant, also denoted by C, such that,

`[γ, a, b] =

∫ b

a

|ϕ−1
∗ γ̇|M ds ≤ C(b1/2 − a1/2), (4.109)

whence,

d(ϕ−1
∗ γ(b), ϕ−1

∗ γ(a)) ≤ C (b1/2 − a1/2). (4.110)

This inequality shows if {sn} ⊂ (0, 1] is any converging sequence sn → 0, the

new sequence,

xn = ϕ−1
∗ γ(sn) ∈M1,1(Σ), (4.111)

is Cauchy, however γ is continuous which implies xn → (ϕ−1(0), ϕ−1(0)) ∈ ∆Σ.

Therefore, the moduli space is incomplete.

126



4.3 The volume of the moduli space

4.3 The volume of the moduli space

We conclude this chapter computing the volume of the moduli space M1,1(Σ) for

the round sphere and flat tori. As it will turn out, the existence of a Lie group

of isometries will play an important role in the calculations. Symmetries were

studied for their relation to conservation laws in a Schrodinger-Chern-Simons

model by Manton and Nasir in [36], for the Riemann sphere, symmetries of the

coefficients of the L2 metric for vortices of a non-relativistic Chern-Simons model

were treated by Romão [46]. We follow similar ideas for asymmetric vortices of

the O(3) Sigma model. There is a general conjecture for the volume of the moduli

space by Romão-Speight [45], which can be stated as follows,

Conjecture 4.16 (The volume conjecture). Given a compact Riemann surface

Σ of genus g and total area |Σ|, let,

J± = 2π(1∓ τ)|Σ| − 4π2(k± − k∓),

K± = ∓2π2,

then the total volume of the moduli space Mk+,k−(Σ) is,

Vol(Mk+,k−(Σ)) =

g∑
l=0

g!(g − l)!
(−1)ll!

∏
σ=±

g∑
jσ=l

(2π)2lJkσ−jσσ Kjσ−l
σ

(jσ − l)!(g − jσ)!(kσ − jσ)!
.

For Σ = S2
round, they corroborated it for a vortex-antivortex pair and τ = 0.

We aim to confirm the conjecture on the round sphere and flat tori for vortex-

antivortex pairs and general τ .

4.3.1 The Riemann sphere

On the round sphere, the three dimensional Lie group of orthogonal transfor-

mations, O(3), acts by isometries. The vortex equations are invariant under

isometric actions on the domain, if I : Σ→ Σ is an isometry and u is the solution

of the Taubes equation with vortex set P and antivortex set Q, then u ◦ I is the

solution with data I−1(P ), I−1(Q). We will make use of this symmetry to obtain

conservation laws for the non-trivial coefficients bj and an explicit formula in the
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subspace of vortices and antivortices located at antipodal positions. This formula

will lead us to the volume formula. We will prove the following theorem,

Recall the conformal factor of the sphere of radius R in a stereographic pro-

jection chart with coordinate z is,

Ω =
4R2

(1 + |z|2)2 . (4.112)

We can give an explicit description of the coefficients in the metric in the

case of only k+ coincident vortices or k− coincident antivortices. By rotational

symmetry, the function u depends only on the chordal distance to either the

vortex or antivortex [34], the coefficients b± in this case are,

b± = − 2k±z±
1 + |z±|2

. (4.113)

The proof relies on the rotational symmetry of the configuration and is anal-

ogous to the proof for n coincident Ginzburg-Landau vortices on the sphere that

can be found in [37]. With this identity at hand, we prove the following theorem,

Theorem 4.17. The volume of the moduli space Mk+,0 (S2) is,

Vol
(
Mk+,0(S2)

)
=

(
4π2R2

(
2 (1− τ)− k+

R2

))k+
k+!

, (4.114)

and the volume of M0,k−(S2) can be obtained from equation (4.114) by changing

τ into −τ . For a vortex-antivortex pair, the volume of M1,1 (S2) is

Vol
(
M1,1(S2)

)
=
(
8π2R2

)2 (
1− τ 2

)
. (4.115)

For k+ = 0 or k− = 0 we follow ideas of Manton-Nasir [38], as their proof relies

on the topology of the symmetric product (S2)N/SN , SN being the N symmetric

group, and can be adapted easily to vortices of the O(3) Sigma model of the same

type. For the case k+ = k− = 1, we extend the proof given by Romão-Speight [45,

Thm. 5.2] for the symmetric case. For general τ we no longer have the symmetry

(z1, z2) 7→ (z2, z1), instead, we complement the symmetries induced by SO(3)

in the moduli space with the symmetry (z1, z2) 7→ (z1, z2) to deduce a suitable

formula for the volume of a general Kähler metric on S2
∆.
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k+ vortices of the same type

If there are k+ vortices on S2 and no antivortices, the moduli space is isomorphic to

Pn, the complex projective space of dimension k+ [34]. The subspace M
k+,0
0 (S2) ⊂

Mk+,0(S2) of k+ coincident vortices on the other hand is isomorphic to P1, and can

be parametrized with the coordinate z+ of the coincident vortices. By equation

(4.113) we know how to compute the coefficient b+ in M
k+,0
0 (S2),

b+ = − 2k+z+

1 + |z+|2
. (4.116)

The metric in M
k+,0
0 (S2) therefore is,

ds2 = 2k+π

(
(1− τ)Ω +

∂b+

∂z+

)
|dz+|2

= k+π

(
2(1− τ)− k+

R2

)
Ω|dz+|2, (4.117)

as can be seen, the metric is a multiple of the round metric, hence, the volume

of M
k+,0
0 (S2) is,

4π2R2k+

(
2(1− τ)− k+

R2

)
, (4.118)

this volume is k+ times the volume of the generating cycle in P1,

4π2R2

(
2(1− τ)− k+

R2

)
. (4.119)

The total volume of the moduli space therefore is,

Vol
(
Mk+,0(S2)

)
=

(8π2R2(1− τ)− 4π2k+)
k+

k+!
, (4.120)

the proof of the volume formula in M0,k−(S2) is analogous,

Vol
(
M0,k−(S2)

)
=

(8π2R2(1 + τ)− 4π2k−)
k−

k−!
. (4.121)

The moduli space of vortex-antivortex pairs

In general, there is no explicit expression for the coefficients bj of the metric if the

cores are at general position, however, we can deduce from the invariance of the
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Taubes equation under the action of O(3) several constraints on the coefficients

due to symmetry. Before doing so, we need a general lemma that will also be

necessary for flat tori in the next section.

Lemma 4.18. Let ϕ : U ⊂ Σ → V ⊂ C be a holomorphic chart, containing

the core set Z of a point in the moduli space M1,1(Σ). For any bounded domain

D ⊂ V , such that Z ⊂ ϕ−1(D), there are continuous functions b̃j : D ×D → C,

j = 1, 2, such that:

1. If ϕ(Z) = {z1, z2}, where z1 (z2) is the vortex (antivortex),

bj(z1, z2) =
−2 sj
z̄1 − z̄2

+ b̃j(z1, z2), (4.122)

where bj, j = 1, 2, are the non-trivial coefficients in the L2 metric, defined

in lemma 2.3.

2.

lim
|z1−z2|→0

b̃j(z1, z2) = 0. (4.123)

Proof. On ϕ−1(D), Green’s function can be written as

G(x1, x2) =
1

2π
log |ϕ(x1)− ϕ(x2)|+ G̃(x1, x2), (4.124)

with a smooth regular part G̃ : ϕ−1(D) × ϕ−1(D) → R. Therefore, the solution

h to the Taubes equation can be written as

h(x;x1, x2) = h̃(x;x1, x2) + log |ϕ(x)− ϕ(x1)|2 − log |ϕ(x)− ϕ(x2)|2 + ṽ(x;x1, x2),

(4.125)

where

ṽ(x;x1, x2) = 4π G̃(x, x1)− 4π G̃(x, x2), (4.126)

and h̃(x;x1, x2) can be extended in C1 to the coincidence set x1 = x2 by corol-

lary 4.6. Denoting h(ϕ−1(z);ϕ−1(z1), ϕ−1(z2)) and h̃(ϕ−1(z);ϕ−1(z1), ϕ−1(z2)) as
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h, h̃, etcetera,

bj(z1, z2) = 2 ∂|z=zj (sj h− log|z − zj|)

= 2 ∂z=zj

(
sjh̃− log|z − zk|+ sj ṽ

)
=

−2

zj − zk
+ 2 sj∂|z=zj(h̃+ ṽ)

=
−2 sj
z1 − z2

+ b̃j, (4.127)

where the regular part b̃j is continuous in D × D. This proves the first state-

ment. The second statement is a consequence of corollary 4.6 and the fact that

by (4.126),

lim
|z1−z2|→0

∂|z=zj
(
ṽ(ϕ−1(z);ϕ−1(z1), ϕ−1(z2))

)
= 0. (4.128)

Suppose γ : U1 ⊂ C → U2 ⊂ C is a holomorphic change of coordinates in

ambient space, such that zk ∈ U1 for all cores. There are pairs of corresponding

coefficients bs(z1, . . . , zn), b′s(z
′
1, . . . , z

′
n) in each of the charts. Let z′ = γ(z),

z′k = γ(zk), as in [46], we have the transformation rule

b′j =
1

γ′j
bj −

γ′′j(
γ′j
)2 . (4.129)

Manton and Nasir noted in [35] that equation (4.129) is similar to the trans-

formation rule for the Levi-Civita connection on S2 and resembles the topological

nature of the coefficients bj. In the sphere, the group of isometries is large, in the

sense that it is a Lie group, and each of this isometries induces a holomorphic

change of coordinates on the moduli space. We exploit this remark to prove the

following lemmas.

Lemma 4.19. In the projective chart, the coefficients bj satisfy the identities,∑
k

(2 zk + z2
k bk + bk) = C, (4.130)∑

k

zkbk ∈ R, (4.131)

for some constant C. For a vortex-antivortex pair, C = 0.
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Romão deduced similar identities for vortices of a modified Chern-Simons

model on the sphere in [46], employing the action of SO(3) on the moduli space.

Proof. Let us consider a rotation γ : S2 → S2. In a stereographic projection

chart, γ can be represented as a Möbius transformation,

γ(z) =
az + b

−bz + a
, (4.132)

for some coefficients a, b ∈ C, such that |a|2 + |b|2 = 1. Since γ : C \
{
a/b
}
→

C\
{
−a/b

}
is a holomorphic change of coordinates, a rotation of the core positions

in the sphere reads,

b′j = (−bzj + a)2bj − 2b(−bzj + a). (4.133)

Invariance of the solutions to the Taubes equation under the group of isome-

tries means that the vector fields generated by SO(3) in the moduli space by

diagonally acting on the cores’ positions are Killing fields. These fields are gen-

erated by the 1-parameter families of matrices,

UX(α) =

(
cos
(
α
2

)
−i sin

(
α
2

)
−i sin

(
α
2

)
cos
(
α
2

) ) , UY (β) =

(
cos
(
β
2

)
− sin

(
β
2

)
sin
(
β
2

)
cos
(
β
2

) ) ,
UZ(γ) =

(
e−i

γ
2 0

0 ei
γ
2

)
,

(4.134)

α, β, γ ∈ R. We can compute conservation equations corresponding to the gen-

erators of the Lie algebra su(2). These equations correspond to conservation of

angular momentum in the moduli space. The generating Killing fields in the

moduli space are,

ξX =
i

2

∑
j

(z2
j − 1)∂zj − (z2

j − 1)∂zj ,

ξY = −1

2

∑
j

(z2
j + 1)∂zj + (z2

j + 1)∂zj ,

ξZ = −i
∑
j

zj∂zj − zj∂zj .

(4.135)
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By (4.133), the Lie derivatives of the coefficients are,

LξXbj = i(zjbj + 1),

LξY bj = zjbj + 1,

LξZbj = −ibj.

(4.136)

Hence the coefficients bj satisfy the identities,

1

2

∑
k

(z2
k − 1)∂zkbj − (z2

k − 1)∂zkbj = zjbj + 1 (4.137)

−1

2

∑
k

(z2
k + 1)∂zkbj + (z2

k + 1)∂zkbj = zjbj + 1, (4.138)∑
k

zk∂zkbj − zk∂zkbj = bj. (4.139)

Recall the coefficients bj have the symmetries,

∂zkbj = ∂zjbk, ∂zkbj = ∂zjbk. (4.140)

Hence, ∑
k

(z2
k − 1)∂zjbk − (z2

k − 1)∂zjbk = 2(zjbj + 1), (4.141)∑
k

(z2
k + 1)∂zjbk + (z2

k + 1)∂zjbk = −2(zjbj + 1), (4.142)∑
k

zk∂zjbk − zk∂zjbk = bj. (4.143)

Adding equations (4.141) and (4.142) and also subtracting and conjugating

the same pair of equations,∑
k

z2
k∂zjbk + ∂zjbk = 0, (4.144)∑

k

∂zjbk + z2
k∂zjbk = −2(zjbj + 1). (4.145)

From these two equations, we deduce,

∂zj
∑
k

(2zk + z2
kbk + bk) = 0, ∂z̄j

∑
k

(2z̄k + z2
kbk + bk) = 0, (4.146)

133



4.3 The volume of the moduli space

hence
∑

k(2z̄k + z2
kbk + bk) is constant.

Equation (4.143) implies,

∂zj
∑
k

(
zkbk − zkbk

)
= 0. (4.147)

From this equation and its conjugate,
∑

k

(
zkbk − zkbk

)
is constant, but this

quantity must be zero when all the vortices and antivortices are located on the

real line. Therefore, ∑
k

zkbk ∈ R. (4.148)

Finally, for a vortex-antivortex pair at positions z± = ±ε, we have b±(ε,−ε) ∈
R and by (4.130),

b+(ε,−ε) + b−(ε,−ε) =
C

1 + ε2
. (4.149)

By lemma 4.18, there are continuous functions b̃± : R→ R such that,

b±(ε,−ε) = ∓1

ε
+ b̃±(ε), (4.150)

and limε→0 b̃±(ε) = 0, hence,

lim
ε→0

(b+(ε,−ε) + b−(ε,−ε)) = lim
ε→0

(b̃+(ε) + b̃−(ε)) = 0. (4.151)

Therefore, C = 0 for a vortex-antivortex pair.

Let S2
∆ be the diagonal in the product S2 × S2. The orthogonal group acts

diagonally on the moduli space M1,1(S2) ∼= (S2 × S2) \ S2
∆ by isometries. We can

always assume there is a projective chart such that the pair is located with the

vortex at z1 = ε and the antivortex at z2 = −ε. From (4.130) and the fact that

bj(ε,−ε) = bj(ε,−ε), (4.152)

we conclude,

b1(ε,−ε) + b2(ε,−ε) = 0. (4.153)

The L2 metric in M1,1(S2) is Kähler and invariant under the diagonal action

of O(3), given any pair (z1, z2) ∈ M1,1(S2), we can always find a rotation of S2
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such that in south pole stereographic projection, z1 = ε, z2 = −ε. In this way,

we have a diffeomorphism,

(S2 × S2) \ S2
∆
∼= (0, 1]× SO(3), (4.154)

hence, the moduli space can be parametrized as (0, 1]× SO(3).

Lemma 4.20. Let g be a Kähler metric in S2 × S2 such that if o ∈ O(3) and

(z1, z2) ∈ S2 × S2, then the action

o ∗ (z1, z2) = (o ∗ z1, o ∗ z2), (4.155)

is by isometries. Let E0 = ∂ε and let Ej ∈ so(3) be the left invariant vector field

corresponding to rotations with respect to the j-th coordinate axis in R3. Then

there exists a function

A : (0, 1]→ R, (4.156)

and a real constant c such that in the parametrization (4.154),

g = A

(
1− ε2

1 + ε2
(σ1)2 +

1 + ε2

1− ε2
(σ2)2

)
− 1

ε

dA

dε

(
(σ0)2 + ε2(σ3)2

)
+

c

1 + ε2

(
σ0σ2 +

ε(1− ε2)

1 + ε2
σ1σ3

)
, (4.157)

where σk ∈ T ∗((0, 1]× SO(3)) is the co-vector dual to Ek, k = 0, . . . , 3. For this

metric, the volume is,

Vol
(
S2 × S2

)
= 4π2 lim

ε→0
A(ε)2 − c2π2. (4.158)

Proof. This lemma is similar to [45, Prop. 5.1], but for τ 6= 0, the swapping map

(z1, z2) 7→ (z2, z1) is no longer a symmetry of the metric, instead, we consider the

action of orientation reversing isometries of the sphere on the moduli space.

A general symmetric bilinear form in T ((0, 1)× SO(3)) invariant under the

diagonal SO(3) action, will be a linear combination

Arsσ
rσs, (4.159)

with Ars = Asr. Let q(ε) = (ε,−ε), ε ∈ (0, 1]. Denoting by (X, Y, Z) coordinates

in R3, the basis Ej can be represented in the canonical embedding of S2 as the
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unit sphere in R3 as

E0 =
2(1− ε2)

(1 + ε2)2

(
∂

∂X1

− ∂

∂X2

)
− 4

ε

(1 + ε2)2

(
− ∂

∂Z1

− ∂

∂Z2

)
, (4.160)

E1 = −1− ε2

1 + ε2

(
∂

∂Y1

+
∂

∂Y2

)
, (4.161)

E2 = −1− ε2

1 + ε2

(
∂

∂X1

+
∂

∂X2

)
+

2ε

1 + ε2

(
− ∂

∂Z1

+
∂

∂Z2

)
, (4.162)

E3 =
2ε

1 + ε2

(
∂

∂Y1

− ∂

∂Y2

)
. (4.163)

A short calculation yields,

JE0 =
1

ε
E3, JE1 =

1− ε2

1 + ε2
E2, (4.164)

where J is the pseudo-complex structure on T ((S2 × S2) \ S2
∆). If the metric is

Kähler, we deduce,

A03 = A12 = 0, A33 = ε2A00, A11 =

(
1− ε2

1 + ε2

)2

A22. (4.165)

Let C : S2 → S2 be the reflection map Y 7→ −Y on the XZ plane. C acts on

σk as follows,

C∗σ0 = σ0, C∗σ1 = −σ1, C∗σ2 = σ2, C∗σ3 = −σ3. (4.166)

From reflection invariance we further obtain,

A01 = A23 = 0. (4.167)

Let A = A00, B = (1 + ε2)−2A22, then the metric is,

g = A
(
(σ0)2 + ε2(σ3)2

)
+B

(
(1− ε2)2 (σ1)2 + (1 + ε2)2 (σ2)2

)
+ A02 σ

0σ2 + A13 σ
1σ3. (4.168)

If ω = g(J·, ·) is the Kähler form of the metric, then

ω = εAσ0 ∧ σ3 + (1− ε4)B σ1 ∧ σ2 +
1

ε
A13 σ

0 ∧ σ1 − 1 + ε2

1− ε2
A13 σ

2 ∧ σ3, (4.169)
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provided εA02 = (1 + ε2)(1− ε2)−1A13, to account for skew-symmetry of ω. The

SO(3) valued forms σ1, σ2, σ3, are related by dσ1 = −σ2 ∧ σ3 and cyclic permu-

tations of this identity. Kähler forms are closed. For ω this is true provided the

coefficients in (4.169) are solutions to the equations,

εA = − d

dε

(
(1− ε4)B

)
,

1

ε
A13 =

d

dε
(εA02) . (4.170)

Regularity of the metric as ε → 1 implies limε→1(1 − ε4)B(ε) = 0. From the

second equation in (4.170) and the algebraic relation of the coefficients A13, A02,

we infer

A02 =
c

1 + ε2
, (4.171)

for some real constant c. Redefining the function (1 − ε4)B as A(ε), the metric

has the form (4.157). Since
∫
SO(3)

σ1 ∧ σ2 ∧ σ3 = 8π2 [45] and∫ 1

0

ε (1− ε2)

(1 + ε2)3
dε =

1

8
, (4.172)

for this metric, the volume form is

Vol = −
(
AA′ +

c2ε(1− ε2)

(1 + ε2)3

)
dε ∧ σ1 ∧ σ2 ∧ σ3. (4.173)

After integration, the total volume of the metric is

Vol
(
S2 × S2

)
= 4π2 lim

ε→0
A(ε)2 − c2π2. (4.174)

Applying lemma 4.20 to the L2 metric, we obtain,

Lemma 4.21. The L2 metric on M1,1(S2) has the structure provided by Lemma 4.20,

with

A = 2π

(
4R2

1 + ε2
− ε b1 − 2R2 − 1

)
, (4.175)

c = 8πR2τ. (4.176)
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Proof. To compute the constant c, we calculate g (E0, E2). Tangent vectors E0,

E2 in projective coordinates (z1, z2) ∈ S2× S2 with respect to the south pole are,

E0 =
∂

∂x1

− ∂

∂x2

, E2 =
1 + ε2

2

(
∂

∂x1

+
∂

∂x2

)
. (4.177)

where zk = xk + iyk. Thence,

g (E0, E2) =
1 + ε2

2
g

(
∂

∂x1

− ∂

∂x2

,
∂

∂x1

+
∂

∂x2

)
=

1 + ε2

2
2π

(
Ω(1 + τ)− Ω(1− τ) +

∂b1

∂z1

+
∂b2

∂z1

− ∂b1

∂z2

− ∂b2

∂z2

)
(4.178)

To simplify (4.178), we use the symmetries of the coefficients bj, lemma 4.19,∑
j

(
∂

∂z1

bj −
∂

∂z2

bj

)
=

1

2

∑
j

d

dε
bj(ε,−ε)−

i

2

∑
j

(
∂

∂y1

bj −
∂

∂y2

bj

)
=

1

2

d

dε
(b1 + b2) +

1

2ε
(b1 + b2)

= 0. (4.179)

Hence,

g(E0, E2) =
8πR2τ

1 + ε2
(4.180)

and consequently c = 8πR2τ . Let us compute g(E0, E0),

g(E0, E0) = g

(
∂

∂x1

− ∂

∂x2

,
∂

∂x1

− ∂

∂x2

)
= 2π

(
Ω(1 + τ) + Ω(1− τ) +

∂

∂z1

b1 −
∂

∂z1

b2 −
∂

∂z2

b1 +
∂

∂z2

b2

)
.

(4.181)

Again by symmetry,

∂

∂z1

bj −
∂

∂z2

bj =
1

2

dbj
dε

+
1

2ε
bj. (4.182)

Hence,

g(E0, E0) = 2π

(
8R2

(1 + ε2)2
+
db1

dε
+

1

ε
b1

)
. (4.183)
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Comparing (4.183) and (4.157),

−1

ε

dA

dε
= 2π

(
8R2

(1 + ε2)2
+
db1

dε
+

1

ε
b1

)
, (4.184)

Solving this equation, we find,

A =
8πR2

1 + ε2
− 2πεb1 + const. (4.185)

From the regularity condition limε→1A(ε) = 0 used to compute the formula

for the volume of the moduli space and the explicit formula (4.113) for b1 in the

antipodal case, the constant is

const. = −2π(2R2 + 1). (4.186)

Therefore,

A = 2π

(
4R2

1 + ε2
− εb1 − 2R2 − 1

)
. (4.187)

We claim that

lim
ε→0

εb1 = −1 (4.188)

as can be seen numerically in figure 4.2 for the symmetric case in the unit sphere.

For a vortex-antivortex pair,

b1(ε,−ε) = 2
∂

∂x

∣∣∣∣
z=ε

hε −
1

ε
. (4.189)

Since hε → µ in C1 as ε→ 0,

lim
ε→0

ε b1(ε,−ε) = −1. (4.190)

Applying lemmas 4.20 and 4.21, the volume of the moduli space is

Vol
(
M1,1(S2)

)
=
(
8π2R2

)2
(1− τ 2). (4.191)

Notice that another way to express the volume is as 4π2(1 − τ 2)Vol(S2), which

corresponds to the volume of a product of spheres, each factor weighted by 2π(1±
τ), the effective mass of a core, hence, it is expected that as τ → ±1, the volume

vanishes, because of the negligible weight of one of the factors.
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Figure 4.1: Three views of the declination data of h̃ε, the regular part of the

solution to the Taubes equation, for three different values of the asymmetry

parameter τ on the unit sphere. Top. Vortex and antivortex are symmetric,

with the same effective mass. Middle and bottom. The antivortex becomes

more massive. We solved from ε = 1 down to 0.05 in steps of 0.05, except that

for τ = 0.5, the computation stopped at ε = .20 due to algorithm divergence. As

ε→ 0 the data shows how h̃ε flattens as expected.
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Figure 4.2: Top. Real profile of εb in the symmetric case. The limit

limε→0 εb = −1 is apparent in the numerical data. Bottom. Real profile of

a vortex-antivortex pair located at ±ε on the real axis of the extended complex

plane for several values of ε. In both cases, the domain is the unit sphere, the

bottom plot shows the behaviour of the real profile of h̃ as ε → 0 in the south

pole of the domain. The dashed horizontal line is log ((1− τ)(1 + τ)−1). The

data shows how the regular part of the solution to the Taubes equation converges

to this constant value as the pair collides at the north pole.
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4.3.2 Flat tori

In this section we compute the volume of the moduli space for a flat tori, to

this end, we extend the coefficients bq in the L2 metric to a global object and

relate it to the volume of M1,1(T2) in lemma 4.22. Consider a holomorphic chart

ϕ : U ⊂ T2 → C on an open and dense set U , with coordinates z = ϕ(x), x ∈ U .

Let us define,

bU = bj dz̄
j ∈ Ω(0,1)((U × U) \∆U). (4.192)

In general bU is only well defined on a chart, however, flat tori admit at-

lases such that the holomorphic changes of coordinates are translations. Since

translations have trivial second derivatives, by (4.129) bU extends to a global

form b ∈ Ω(0,1)(M1,1(T2)). By the symmetries of the coefficients bj, this form is

holomorphic, as the following short calculation shows in coordinates:

∂̄bU =
∑
i,j

∂̄zibj dz̄
i ∧ dz̄j

= −
∑
i,j

∂̄zjbi dz̄
j ∧ dz̄i

= −∂̄bU , (4.193)

hence, ∂̄bU = 0.

To compute the volume of flat tori, we will use the (1, 1)-form ∂b to define

another form in the moduli space which is more convenient for calculations. Let

Πj : T2 × T2 → T2 be the canonical projection map onto the j-th factor of the

product. Let us define the form

ω0 = 2π (1− τ) Π∗1 ωT2 + 2π (1 + τ) Π∗2 ωT2 . (4.194)

The Kähler form on the moduli space can be written as,

ω = ω0 + πi ∂b ∈ Λ1,1(M1,1(T2)). (4.195)

Notice that,

Vol =
1

2
ω ∧ ω

= Vol0 + πi ω0 ∧ ∂b−
π2

2
∂b ∧ ∂b, (4.196)

142



4.3 The volume of the moduli space

where Vol0 = 1
2
ω0∧ω0 is the restriction of the volume form in the product T2×T2

to the moduli space.

Lemma 4.22. Let ∆ε be the ε-tubular neighbourhood of the diagonal set of T2×T2

for small ε. The volume of the moduli space can be computed as,

Vol(M1,1(T2)) = 4π2(1− τ 2) Vol(T2)2

+ lim
ε→0

∫
T2×T2\∆ε

(
πi ω0 ∧ ∂b−

π2

2
∂b ∧ ∂b

)
. (4.197)

Proof.

Vol(M1,1(T2)) = lim
ε→0

∫
T2×T2\∆ε

Vol

=

∫
T2×T2

Vol0 + lim
ε→0

∫
T2×T2\∆ε

(
πi ω0 ∧ ∂b−

π2

2
∂b ∧ ∂b

)
.

(4.198)

On the other hand,

Vol0 = 4π2(1− τ 2) Π∗1 ωT2 ∧ Π∗2 ωT2 . (4.199)

Applying Fubini and the change of variables theorems,∫
T2×T2

Vol0 = 4π2(1− τ 2)

(∫
T2

ωT2

)2

= 4π2(1− τ 2)Vol(T2)2. (4.200)

This concludes the proof of the lemma.

According to lemma 4.22, to compute the volume of M1,1(T), we must compute

the two non-trivial terms in (4.197).

Lemma 4.23. Let π : C → T2 be the canonical covering map and let R ⊂ C
be an open parallelogram such that π|R : R → T2 is a bi-holomorphism onto its

image and U = π|R(R) is open and dense. On the local coordinates π|−1
R : U → R,

there is a constant c ∈ C such that for any pair of different points z1, z2 ∈ R,

b1(z1, z2) + b2(z1, z2) = c, (4.201)
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Proof. If I : T2 → T2 is an isometry, the Taubes equation is invariant under I,

h(I(x); I(x1), I(x2)) = h(x;x1, x2), (4.202)

x, x1, x2 ∈ T2, x1 6= x2. By construction, there is a v ∈ C such that Iϕ =

ϕ◦ I◦ϕ−1(z) = z+v for z ∈ ϕ(I−1(U)∩U). For small v, the translation Iϕ maps

a neighbourhood, not necessarily connected, N ⊂ R of x1 and x2 into R. This

implies bj has the symmetries,

bj(z1 + v, z2 + v) = bj(z1, z2), (4.203)

v small. Hence,

∂z1bj + ∂z2bj = ∂̄z1bj + ∂̄z2bj = 0. (4.204)

Applying the symmetries of the coefficients bj,

∂zj(b1 + b2) = ∂̄z1 b̄j + ∂̄z2 b̄j = 0. (4.205)

Similarly,

∂̄zj(b1 + b2) = 0. (4.206)

Hence b1 + b2 is constant on the connected neighbourhood R.

Proposition 4.24. In a flat torus T2, for the (1, 1) form ∂b we have,

∂b ∧ ∂b = 0. (4.207)

Proof. We apply the previous lemma to prove the proposition. By lemma 4.23,

there is an open and dense set U ⊂ T2 and a chart ϕ : U → R ⊂ C, R an open

parallelogram, such that in this local coordinates b1 + b2 is a constant. Denoting

points in R as zj, a direct calculation shows,

bU ∧ ∂bU = (b2 ∂z1b1 − b1 ∂z1b2) dz1 ∧ dz̄1 ∧ dz̄2

+ (−b2 ∂z2b1 + b1 ∂z2b2) dz̄1 ∧ dz2 ∧ dz̄2

= −c ∂z1b2 dz1 ∧ dz̄1 ∧ dz̄2 − c ∂z2b1 dz̄1 ∧ dz2 ∧ dz̄2. (4.208)

Since b1 and b2 add to a constant,

∂bU ∧ ∂bU = −c (∂z2∂z1b2 + ∂z1∂z2b1) dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 = 0. (4.209)

Since U is dense, we conclude ∂b ∧ ∂b ≡ 0.
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By this proposition and lemma 4.22, to compute the volume of the moduli

space, we have to integrate ω0 ∧ ∂b.

Theorem 4.25. For a flat torus T2, the volume of the moduli space is,

Vol(M1,1(T2)) = 4π2(1− τ 2) Vol(T2)2 + 16π3 Vol(T2). (4.210)

Notice that the first term of the formula is similar to the case of the sphere (4.191),

however, the second term is new, bearing in mind the volume conjecture, 4.16,

one can argue the extra term is related to the genus of the base surface, however,

it is not clear how to relate our computation to this fact and the relation is open

to future work.

Proof. Let,

T2(ε) = (T2 × T2) \∆ε, (4.211)

ωj = Π∗jωT2 , j = 1, 2, (4.212)

and let k be the complementary index of j, such that {j, k} = {1, 2}. By Fubini’s

theorem,∫
T2(ε)

ω0 ∧ ∂b = 2π
∑
j

(1− sjτ)

∫
T2

(∫
T2\Dε(xj)

ι∗k∂b

)
ωT2 , (4.213)

where for any given xj ∈ T2, ιk : T2 ↪→ T2 × T2 is the inclusion of the torus as

the k-th factor of the product anchored at xj. Since b is well defined globally,∫
T2\Dε(xj)

ι∗k∂b =

∫
∂T2\Dε(xj)

ι∗kb = −
∫
∂Dε(xj)

ι∗kb, (4.214)

where we always orient a submanifold by the outward pointing normal. Let

ϕ : U → C be a holomorphic chart defined on an open and dense set U . If

xj ∈ U , for small ε, Dε(xj) ⊂ U . Assume j = 1, k = 2, in the chart,

(ϕ−1)∗ι∗2b = b2dz̄. (4.215)

If z1 = ϕ(x1) and D(z1) ⊂ C is a bounded domain and neighbourhood of z1,

by lemma 4.18,

b2 =
2

z1 − z2

+ b̃2(z1, z2), z2 ∈ D(z1). (4.216)

145



4.3 The volume of the moduli space

If Dε(zj) = ϕ(Dε(xj)), by Cauchy’s residue theorem,∫
∂Dε(x1)

ι∗2b = −2

∫
∂Dε(z1)

dz

z − z1

+

∫
∂Dε(z1)

b̃2(z1, z)dz = 4πi+

∫
∂Dε(z1)

b̃2(z1, z)dz.

(4.217)

If j = 2, k = 1, we find a similar result,∫
∂Dε(x2)

ι∗1b = 4πi+

∫
∂Dε(z2)

b̃1(z, z2)dz. (4.218)

Since b̃k is a continuous function in a neighbourhood of each zj ∈ C,

lim
ε→0

∫
∂Dε(zj)

b̃k dz = 0. (4.219)

Hence, since U is dense in T2,

limε→0

∫
T2

(∫
T2\Dε(xj)

ι∗k∂b

)
ωT2 = −4πiVol(T2)

− i

2

∫
C
limε→0

(∫
∂Dε(zj)

b̃k

)
eΛ(zj)dzj ∧ dzj

= −4πiVol(T2). (4.220)

Finally,∫
M1,1(T2)

ω0 ∧ ∂b = 2π
∑
j

(1− sjτ)limε→0

∫
T2

(∫
T2\Dε(xj)

ι∗k∂b

)
ωT2 .

= 2π
∑
j

(1− sjτ)
(
−4πiVol(T2)

)
= −16π2 iVol(T2). (4.221)

By lemma 4.22, we conclude the volume formula.
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Chapter 5

Chern-Simons deformations of

vortices

In this chapter we consider Chern-Simons deformations of vortices of the O(3)

Sigma model and of the Abelian Higgs model. We will consider deformations

relying on a deformation constant κ. There are several results in the literature

about existence of solutions to the field equations, for both types of models.

In section 5.1 we address existence and uniqueness of solutions to the field

equations for deformations of the O(3) Sigma model. On the plane, Han and

Nam prove in [19] that the field equations admit a solution up to some upper

and lower bound for κ. If there are only vortices or antivortices, Han and Song

prove in [20] existence of solutions for any κ. On a flat torus, Chae-Nam [5] and

Chiacchio-Ricciardi prove [7] the existence of a bound on the constant for the ex-

istence of solutions as well as the existence of multiple solutions if the number of

vortices and antivortices on the surface is different. We extend the technique used

by Flood and Speight in [14] for Chern-Simons deformations of the Abelian Higgs

model to show the existence of a minimal deformation constant, independent of

the position of the vortices, if the surface is compact. We know from chapter 4

that for κ = 0, the moduli space is incomplete, imposing some technical diffi-

culties in the techniques used for deformations of the Abelian Higgs model. In

subsection 5.1.1, we show that on a compact surface, small deformations of the

solution to the Taubes equation vary smoothly with κ. In subsection 5.1.2, we
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5.1 Chern-Simons deformations of the O(3) Sigma model

show the existence of a positive lower bound for |κ|, independent of the posi-

tion of the cores. In subsection 5.1.3 we focus on the unbalanced case where the

number of vortices and antivortices differ and show that the possible constants κ

for which the field equations admit a solution are bounded. By means of several

bounds in the norm of solutions to the governing elliptic problem, we show the

existence of multiple solutions in subsection 5.1.4. We finalize in subsection 5.1.5

with numerical evidence on the sphere supporting a conjecture about the exis-

tence of solutions to the field equations for any κ if the number of vortices and

antivortices coincide.

In section 5.2 we study low energy dynamics of both the Abelian Higgs and the

O(3) Sigma model vortices with a Chern-Simons deformation. The results dis-

cussed in section 5.1 guarantee this is a well posed problem for small κ. Previous

work in this direction includes the models by Kim-Lee [25] and by Collie-Tong [10]

for deformations of Abelian vortices. From the work of Alqahtani-Speight [1] we

know the model of Kim-Lee cannot extend to the coincidence set. We show our

formula can be extended and compare it with the model of Collie-Tong for de-

formations of Abelian vortices, showing that our computation leads to different

dynamics for pairs of vortices on the plane.

In subsection 5.2.1 we introduce the Maxwell-Higgs-Chern-Simons model, as

we will see, the introduction of a Chern-Simons term in the field equations induces

a connection term affecting the dynamics in moduli space. In subsections 5.2.2

and 5.2.3 we find the localization formula (5.215) for this term and compare it

with the Collie-Tong connection. In subsection 5.2.4 we show how to extend our

arguments to include the O(3) Sigma model. Finally, in subsection 5.2.5, we show

that the connection term can be extended to coalescence points, in the case of

the O(3) Sigma model, provided the cores are of the same type.

5.1 Chern-Simons deformations of the O(3) Sigma

model

Recall the construction of the O(3) Lagrangian (2.15) in section 2.1. To the pair

(φ,A) of a field and a connection, we add an additional neutral field N ∈ C∞(Σ)
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5.1 Chern-Simons deformations of the O(3) Sigma model

and to avoid a name collision, in this chapter we denote the north pole section as

n, so that we modify the O(3) Lagrangian as,

LO(3),CS =
1

2

(
||Dtφ||2 + ||e||2 + ||Ṅ ||2 −

(
||Dφ||2 + ||B||2 + ||dN ||2

+||κN + τ − φ3||2 + ||NXφ||2
))
, (5.1)

where φ3 is the gauge invariant product 〈n, φ〉 and Xφ is defined in a local trivi-

alization φα : Uα → S2 as the section such that,

Xφα = e3 × φα. (5.2)

We add a Chern-Simons term to the Lagrangian,

LCS =
1

2
(〈a, ∗e〉+ 〈a0, ∗B〉) . (5.3)

This Chern-Simons term is not gauge invariant, however, any two gauge re-

lated terms differ by a divergence. The product is the L2 product induced in

the exterior algebra by the metric in Σ. With this notation, the Kim-Lee-Lee

Lagrangian [27] is,

L = LO(3),CS + κLCS. (5.4)

For the Abelian Higgs model, there are two ways to introduce a Chern-Simons

term in the theory, one is due to Jackiew-Lee-Weinberg [22] and the other to

Lee-Lee-Min [29]. In the first case, the connection term is replaced by a Chern-

Simons term and the potential term is replaced by a sextic potential that admits

a set of Bogomolny equations. It is known that several difficulties arise to study

solutions to this model [14]. For the second model, the extension to Chern-Simons

deformations of the O(3) Sigma model given in (5.4) is well established, yet the

model has only being explored for compact tori due to the difficulties that non-

compactness of the moduli space impose. We address those difficulties in this

section, let us start considering variations with respect to a0 yielding the Gauss

law,

d∗e = −〈Dtφ,Xφ〉+ κ ∗B, (5.5)

where d∗ = − ∗ d∗ is the codifferential. Instead of computing the field equations

by the variational method, we note that these equations admit the use of the
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5.1 Chern-Simons deformations of the O(3) Sigma model

Bogomolny trick. Assume Gauss’s law holds, the total energy of a tuple (φ,A,N)

is,

E =
1

2

(
||Dtφ||2 + ||e||2 + ||Ṅ ||2 + ||Dφ||2 + ||B||2 + ||dN ||2

+||κN + τ − φ3||2 + ||NXφ||2
)
. (5.6)

Let us define the quadratic form,

Q =
1

2

(
||Dtφ−N Xφ||2 + ||e− dN ||2 + ||Ṅ ||2 + ||∗B + κN + τ − φ3||2

)
+ ||∂̄Aφ||2,

(5.7)

where ∂̄Aφ is the (0, 1) component of Dφ with respect to the almost complex

structures of Σ and the target S2. We can simplify Q as follows,

Q = E− 〈Dtφ,NXφ〉 − 〈e, dN〉+ 〈∗B, κN + τ − φ3〉+ ||∂̄Aφ||2 −
1

2
||Dφ||2

= E− 〈 〈Dtφ,Xφ〉+ d∗e− κ ∗B,N〉+ 〈∗B, τ − φ3〉+ ||∂̄Aφ||2 −
1

2
||Dφ||2

= E + 〈∗B, τ − φ3〉+ ||∂̄Aφ||2 −
1

2
||Dφ||2, (5.8)

where we have used Gauss’s law in the second equation.

Since,

Dφ = ∂Aφ+ ∂̄Aφ, (5.9)

we deduce,

Q = E + 〈∗B, τ − φ3〉+
1

2
||∂̄Aφ||2 −

1

2
||∂Aφ||2. (5.10)

Consider a trivialization ψ : π−1(U)→ U ×S2, such that ψ ◦φ(x) = (x, φ̃(x)),

where φ̃ : U → S2 and U is an open, simply connected, dense set such that

Z = φ−1
3 (±1) ⊂ U . Assume in this chart the connection is represented by a

form a ∈ Ω1(U), let θ : S2 \ {±n} → R be the azimuthal angle on the sphere,

Romão and Speight show in [45] that there is a well defined, gauge invariant form

ξ ∈ Ω1(Σ \ Z), such that on U ,

ξ = φ3 · (a− φ̃∗dθ). (5.11)
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5.1 Chern-Simons deformations of the O(3) Sigma model

A short computation in local coordinates shows

1

2
∗ (|∂Aφ|2 − |∂̄Aφ|2) = dξ − τ B + (τ − φ3)B, (5.12)

hence,

Q = E−
∫

Σ

(dξ − τB)

= E− (2π (1− τ)k+ − 2π (1 + τ)k−), (5.13)

where the last integral was also computed in [45]. Therefore, as for the O(3)

Sigma model without deformation,

E ≥ 2π (1− τ)k+ − 2π (1 + τ)k−, (5.14)

with equality if and only the following Bogomolny equations are satisfied,

Ṅ = 0, (5.15)

e = dN, (5.16)

Dtφ = NXφ, (5.17)

∂Aφ = 0, (5.18)

∗B = −(κN + τ − 〈n, φ〉). (5.19)

Since equation (5.18) holds, by the result [51, p. 8] of Sibner et al., Z is finite,

moreover, if we consider a holomorphic chart ϕ : U ⊂ Σ→ V ⊂ C about c ∈ Z,

and a trivialisation ψ : π−1(U) → U × S2, such that ψ ◦ φ|U = (id, φ̃), then the

degree of the map φ̃ ◦ ϕ−1 : V → Ĉ at ϕ(c) is independent of the holomorphic

coordinates chosen, as for the O(3) Sigma model. We call this the degree of the

section φ at c. As in the O(3) Sigma model, we define the sets P = φ−1
3 (1),

Q = φ−1
3 (−1) of vortices and antivortices and denote by k+ = |P |, k− = |Q| the

size of the core sets, counted with multiplicity, where a core c is repeated as many

times as the degree of φ(c). If we choose the gauge a0 = −N , the fields become

stationary: φ̇ = ȧ = 0. Defining the function u : Σ \ P ∪Q→ R,

u = log

(
1− φ3

1 + φ3

)
, (5.20)
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5.1 Chern-Simons deformations of the O(3) Sigma model

from the Bogomolny equations and the Gauss’s law, we find that (u,N) is a

solution to the elliptic problem,

−∆u = 2

(
κN + τ +

eu − 1

eu + 1

)
+ 4π

∑
p∈P

δp − 4π
∑
q∈Q

δq,

−∆N = κ

(
κN + τ +

eu − 1

eu + 1

)
+

4eu

(eu + 1)2
N,

(5.21)

As a consequence of the second equation, if κ = 0, N ≡ 0 and the equation

for u reduces to the elliptic problem of the abelian O(3) Sigma model, in which

case we know that there exists exactly one solution, provided Bradlow’s bound

holds. Given a set of disjoint divisors D = (P,Q), we define

κ∗(D) = sup {κ > 0 | there exists a solution of the field equations} . (5.22)

This is a non-negative number we aim to prove that satisfies the inequality,

inf
{
κ∗(D) | D ∈Mk+,k−

}
> 0. (5.23)

Moreover, if |k+ − k−| > 0 and Bradlow’s bound is fulfilled, it will turn out

that the supremum

sup
{
κ∗(D) | D ∈Mk+,k−

}
, (5.24)

is bounded and for small but positive κ, there are two solutions to the field

equations, one close to the solution (u0, 0) of BPS solitons and another with

arbitrarily large norm, in a sense to be defined on the following sections. Similar

statements hold for negative κ.

5.1.1 Small deformations of κ

In this section we prove that small deformations of the solution h0 to the Taubes

equation vary smoothly with κ. In order to do this, we will define a suitable

operator and use it together with the implicit function theorem. Recall for any

holomorphic chart ϕ : U ⊂ Σ → C and bounded domain D ⊂ C, there is a

smooth function G̃ : ϕ−1(D)→ R such that if x, y ∈ ϕ−1(D),

G(x, y) =
1

2π
log |ϕ(x)− ϕ(y)|+ G̃(x, y), (5.25)

152



5.1 Chern-Simons deformations of the O(3) Sigma model

Hence, for the functions,

vc = 4π
∑
i

G(x, ci), c = (c1, . . . , ck±), (5.26)

evc varies smoothly with c. We denote by ∆k+,k− the (k+, k−) diagonal of Σk+ ×
Σk− . The space of solutions of the elliptic problem at κ = 0 is the moduli space

of asymmetric vortices and antivortices described on Chapter 2. We define the

function

v : Mk+,k− → C∞(Σ,R), v(p,q) = vp − vq, (5.27)

where C∞(Σ,R) means the set of smooth functions, except at a finite set of points

at which we have divergences to ±∞. If F : R→ R is the function

F (t) =
et − 1

et + 1
+ τ, (5.28)

then solving equation (5.21) is equivalent to finding a pair of functions (h,N)

such that,

∆h+ 2(κN + F (v + h)) +
4π

|Σ|
(k+ − k−) = 0, (5.29)

∆N + κ (κN + F (v + h)) + 2F ′(v + h)N = 0. (5.30)

We introduce the potential function V (t) = 2F ′(t) such that, if (p,q) ∈
Mk+,k− , h ∈ Hr and v = v(p,q), then,

V (v + h) =
4evp+vq+h

(evp+h + evq)2
. (5.31)

As shown in the proof of Theorem 2.12, by equation (2.173) the functions evp ,

evq are smooth and vary smoothly with (p,q). We observe that the spaces Hr,

r ≥ 2, are algebras, a prove can be found in [14] where Flood and Speight use

this result to prove that eh is a smooth function Hr → Hr, the claim follows

because eh is the limit of the absolutely converging power series
∑∞

n=0 h
n/n!. As

a consequence, V (v + h) ∈ Hr. Likewise, F (v + h) ∈ Hr if h ∈ Hr. For any given

pair of disjoint sets P , Q, let us define the operator,

T : R× Hr × Hr → Hr−2 × Hr−2, (5.32)
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5.1 Chern-Simons deformations of the O(3) Sigma model

T(κ, h,N) =

(
∆h+ 2 (κN + F (v + h)) +

4π

|Σ|
(k+ − k−), (5.33)

∆N + κ (κN + F (v + h)) + V (v + h)N) (5.34)

T is a smooth mapping between Hilbert spaces. For any given h ∈ Hr, r ≥ 2,

we define the operator

L : Hr → Hr−2, L = ∆ + V (v + h). (5.35)

The derivative of the restriction

T| : Hr × Hr → Hr−2 × Hr−2, T|(h,N) = T(0, h,N), (5.36)

at a point (h, 0) is dT|(h,0) = L⊕ L.

Lemma 5.1. For any set of core points (p,q) in the moduli space, the operator

L is a Hilbert space isomorphism Hr → Hr−2.

Proof. By Sobolev’s embedding, h ∈ C0(Σ), hence V ≥ 0 is a continuous function

which is only zero at the finite set P ∪ Q. By Lemma 2.10, for any ψ ∈ Hr−2

there is exactly one ϕ ∈ H2 such that,

Lϕ = ψ, (5.37)

but by Schauder’s estimates,

||ϕ||Hr ≤ C (||∆ϕ||Hr−2 + ||ϕ||L2) , (5.38)

for some constant C, hence ϕ ∈ Hr and L is a bijective bounded operator. By

the open mapping theorem, L−1 is also continuous, hence bounded and the claim

follows.

Proposition 5.2. Assume Bradlow’s bound holds, then there is a positive con-

stant κ0(P,Q) such that if |κ| < κ0, the elliptic problem (5.21) has a solution.

Moreover, for any open neighbourhood U of P ∪Q, the restriction of the solutions

(h,N) to Σ \ U varies smoothly with κ.
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5.1 Chern-Simons deformations of the O(3) Sigma model

Proof. Let h0 ∈ Hr be the solution of equation (5.29) with κ = N = 0, i.e. h0

is the solution to the regularised Taubes equation of the abelian Sigma model,

since T(0, h0, 0) = (0, 0), by the implicit function theorem, there is an interval

(−κ0, κ0) such that the map,

(−κ0, κ0) 3 κ 7→ (κ, hκ, Nκ) ∈ (−κ0, κ0)× Hr × Hr, (5.39)

is smooth and T(κ, hκ, Nκ) = (0, 0). Therefore, each pair (hκ, Nκ) is a solution to

the regular elliptic problem (5.29), (5.30) in Hr ×Hr. By a bootstrap argument,

each (hκ, Nκ) is in Hk × Hk for any k ≥ r. Hence, by Sobolev’s embedding,

(hκ, Nκ) is smooth, moreover, the function uκ = v + hκ varies smoothly as a

function of κ and (p,q) if pj, qk ∈ U are such that pj 6= qk for each vortex and

antivortex position.

Thus if κ is small, there is a family of solutions to the field equations close to

the BPS soliton determined by h0, in the sense that (hκ − h0, Nκ) is small in the

Hr × Hr norm for any r > 0.

5.1.2 A positive gap for κ∗(D)

By proposition 5.2, κ∗(D) > 0 for any distribution of the divisors. On this

section we will prove the existence of a positive lower bound for κ∗, indepen-

dent of the core positions. Thus, localization of vortex-antivortex systems makes

sense globally for small deformations κ of the BPS model as is for the case of

Ginzburg-Landau vortices [14], even though in this case the moduli space should

be incomplete as is the case for the BPS model at κ = 0. We prove several

technical lemmas first, in order to find bounds for the norm of T′, the derivative

of the operator defined in the previous section.

Lemma 5.3. The solutions h of equation (5.29) with κ = 0 are uniformly bounded

on H2.

Proof. Let,

c(h) =
1

|Σ|

∫
Σ

hVol, (5.40)
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5.1 Chern-Simons deformations of the O(3) Sigma model

be the average of h on Σ. h − c is orthogonal to the kernel of ∆, Schauder’s

estimates in this case give,

||h− c||H2 ≤ C||∆h||L2 , (5.41)

where we denote by C a positive constant, independent of the function h. The

function F (t) is bounded, hence

∆h = −2F (v + h)− 4π

|Σ|
(k+ − k−) (5.42)

is uniformly bounded in L2. Therefore, the set of functions {h− c} is bounded

in H2 and by Sobolev’s embedding also in C0(Σ). We claim that the averages are

also bounded. Assume otherwise towards a contradiction. Let h̃ = h − c, then

there are sequences vn, h̃n, cn such that |cn| → ∞. Suppose cn → ∞, and let

(pn,qn) ∈Mk+,k− be the points defining vn. Since Σ is compact, we can assume

the convergence (pn,qn)→ (p∗,q∗) ∈ Σk+×Σk− . We have pointwise convergence

vn → v∗ = vp∗− vq∗ , except possibly at points on the surface which are in p∗ and

q∗ if there is any. Since the functions h̃n are uniformly bounded, we also have,

2F (vn + h̃n + cn)→ 2(1 + τ), pointwise a.e. (5.43)

By the dominated convergence theorem,∫
Σ

2F (vn + h̃n + cn)Vol→ 2(1 + τ)|Σ|, (5.44)

but by the divergence theorem,∫
Σ

2F (vn + h̃n + cn)Vol = −
∫

Σ

(
∆h+

4π

|Σ|
(k+ − k−)

)
Vol = −4π(k+ − k−),

(5.45)

and this contradicts Bradlow’s bound. If cn → −∞ the same argument gives

another contradiction. Therefore the set of averages {c(h)} is bounded. The

lemma follows.

Lemma 5.4. For any ε > 0 there is a positive constant C(ε), such that for any

set of divisors and any h ∈ H2 with ||h||H2 < ε,

〈V (v + h), 1〉L2 ≥ C. (5.46)
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Proof. We will omit the subindex in the product 〈V, 1〉 since it is clear that we

refer to L2(Σ). The potential is a non negative function, hence 〈V (v + h), 1〉 ≥ 0.

Assume towards a contradiction the existence of sequences {vn}, {hn}, where

||hn||H2 < ε and with vortices and antivortices at positions pn, qn, such that for

the sequences of potentials,

Vn = V (vn + hn), (5.47)

we have 〈Vn, 1〉 → 0. As in the previous lemma, we can assume pn → p∗ ∈ Σk+

and qn → q∗ ∈ Σk− together with pointwise convergence vn → v∗, except possibly

at points x ∈ Σ belonging to the set of coordinates of p∗ or q∗. Let C0 > 0 be

Sobolev’s constant, such that,

||h||C0(Σ) ≤ C0 ||h||H2 . (5.48)

Hence,

0 ≤ 〈V (|vpn |+ |vqn|+ C0ε), 1〉 ≤ 〈Vn, 1〉 → 0. (5.49)

On the other hand, V (|vpn|+ |vqn|+C0ε) is a sequence of bounded functions

converging pointwise to the continuous function V (|vp∗| + |vq∗ | + C0ε). By the

dominated convergence theorem,

〈V (|vp∗|+ |vq∗|+ C0 ε), 1〉 = 0, (5.50)

a contradiction.

Given any pair (D, h) ∈ Mk+,k− × Hr, r ≥ 2, the potential V (v + h) is a

non negative continuous function such that 0 < 〈V (v + h), 1〉. If ψ ∈ L2, by

Lemma 2.10, there is exactly one ϕ ∈ H2 such that,

(∆ + V (v + h))ϕ = ψ, (5.51)

and a positive constant C ′, independent of V (v + h), ϕ and ψ, such that,

||ϕ||H1 ≤ C ′

〈V (v + h), 1〉

(
||V (v + h)||2L2

〈V (v + h), 1〉
+ ||V (v + h)||L2 + 1

)
||ψ||L2 . (5.52)

We let the point in the moduli space vary in order to define the operator,

L : Mk+,k− × H2 → B(H2,L2), L(p,q, h) = L, (5.53)
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where L = ∆ + V (v + h) was defined previously. L is a continuous map such

that each L(p,q, h) is invertible. Since inversion of bounded invertible operators

is continuous, the map

L′ : Mk+,k− × H2 → B(L2,H2), L′(p,q, h) = L−1, (5.54)

is also continuous.

Lemma 5.5. Given ε > 0, let Ω = Mk+,k− ×Bε(0) and let,

C∗(ε) = sup
Ω
||L′||, (5.55)

then C∗ is finite.

Proof. By lemma 5.4, there is a constant C(ε) such that 〈V (v + h), 1〉 ≥ C for

any (D, h) ∈ Ω . If ϕ = L′ ψ, with ||ψ||L2 = 1 by (5.52) we have the bound

||ϕ||H1 ≤ C ′

C

(
|Σ|
C

+ |Σ|1/2 + 1

)
. (5.56)

By Schauder’s estimates,

||ϕ||H2 ≤ C (||∆ϕ||L2 + ||ϕ||L2)

= C (||−V (v + h)ϕ+ ψ||L2 + ||ϕ||L2)

≤ C, (5.57)

where the last constant is not necessarily equal to the first one. Therefore,

||L′|Ω|| ≤ C, hence C∗ ≤ C.

For given κ, let us define Tκ| : H2×H2 → L2×L2 as the restriction Tκ|(h,N) =

T(κ, h,N), then we have,

dTκ|(h,N) = L⊕ L + T′, (5.58)

where,

T′(h′, N ′) =
(

2κN ′, κ2N ′ +
κ

2
V (v + h)h′ + V ′(v + h)Nh′

)
. (5.59)

Since V ′(t) and V (t) have range [0, 1],

||T′(h′, N ′)||L2×L2 ≤ (2|κ|+ κ2)||N ′||L2 +

(
|κ|
2

+ ||N ||L2

)
||h′||L2 . (5.60)
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By Cauchy-Schwarz,

||T ′|| ≤
(
κ2(2 + |κ|)2 + (|κ|/2 + ||N ||L2)2)1/2

. (5.61)

We use lemma 5.3 and choose ε0 such that ||h0||H2 < ε0 for any solution (h0, 0)

of equation (5.29) with κ = 0. We also take the constant C∗(ε0) of lemma 5.5

and define

ε = min

{
ε0,

1

2C∗ · (7
2

+ ε0)

}
. (5.62)

Proposition 5.6. For any set of divisors D ∈Mk+,k−,

κ∗(D) ≥ εmin

{
1,

1

2C∗(2ε(1 + ε) + max {1± τ} |Σ|1/2)

}
. (5.63)

Proof. For |κ| < ε, ||h||L2 < ε and ||N ||L2 < ε, we have,

||T′|| < 1

2C∗
≤ 1

2||(L⊕ L)−1||
, (5.64)

hence, as in the proof of Lemma 5 in [14], we can conclude that dTκ| is invertible,

independently of the point in the moduli space and

||(dTκ|)−1|| ≤ 2C∗. (5.65)

If χ(κ) = (hκ, Nκ) is the curve of solutions to equations (5.29),(5.30), guaran-

teed to exist by proposition 5.2, then by the implicit function theorem, this curve

can be extended whenever dTκ| is invertible at χ(κ). This is the case if |κ| < ε

and ||h||, ||N || < ε. So, for any D ∈ Mk+,k− , let κ0 > 0 be the right end of the

maximal interval [0, κ0) on which this curve can be extended. Either κ0 ≥ ε, or

there exists a κ1 with |κ1| < κ∗ < ε such that ||χ̇(κ)||H2×H2 ≥ εκ−1
∗ . In the later

case,

||χ̇κ1||H2×H2 = ||(dTκ|χ(κ))
−1∂κT|(κ1,χ(κ1))||H2×H2

≤ 2C∗||∂κT|(κ1,χ(κ1))||L2×L2 . (5.66)

But,

∂κT = (2N, 2κN + F (v + h)), (5.67)
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hence,

||∂κT||L2×L2 ≤ 2||N ||L2 + 2|κ|||N ||L2 + sup {|F |} |Σ|1/2

≤ 2ε(1 + ε) + max {1± τ} |Σ|1/2. (5.68)

Therefore, either κ0 ≥ ε or

κ0 ≥
ε

2C∗(2ε(1 + ε) + max {1± τ} |Σ|1/2)
. (5.69)

Since κ∗(D) ≥ κ0 we conclude the claimed lower bound.

5.1.3 The unbalanced case

In this section we assume k+ 6= k−. In this case the family of deformation con-

stants is bounded, contrasting with the euclidean case, where there are examples

for which the elliptic problem can be solved for any κ [6]. We will prove the exis-

tence of multiple solutions of the field equations, the first step will be to describe

the possible limit points of sequences (hκn , κnNκn) as κn → 0.

It will be convenient to redefine the neutral field as follows. Let N ′ = κN ,

equation (5.30) can be rewritten as,

∆N ′ + (κ2 + 2F ′(v + h))N ′ + κ2F (v + h) = 0. (5.70)

Proposition 5.7. If |k+ − k−| > 0, κ∗(D) is uniformly bounded,

κ∗(D) ≤
(

max {1∓ τ} |Σ|
2π |k+ − k−|

)1/2

. (5.71)

Proof. Let x be such that N ′(x) = minΣ N
′ and likewise, let x be such that

N ′(x) = maxΣ N
′.

Let us denote F (v(x) + h(x)) as F (x). Likewise, we denote F ′(v(x) + h(x))

as F ′(x).

By the maximum principle,

− κ2F (x)

κ2 + 2F ′(x)
≤ N ′(x) ≤ − κ2F (x)

κ2 + 2F ′(x)
. (5.72)

Since F ′(x) ≥ 0, we conclude the uniform bounds,

−(1 + τ) ≤ N ′ ≤ (1− τ). (5.73)
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From equations (5.29) and (5.70) we obtain,

∆N ′ − κ2

2

(
∆h+

4π

|Σ|
(k+ − k−)

)
+ 2F ′(v + h)N ′ = 0. (5.74)

Integrating this equation,

−2πκ2(k+ − k−) + 2〈F ′(v + h), N ′〉 = 0. (5.75)

Using the fact that F ′ is a positive function bounded by 1/2 and the uniform

bound for N ′,

κ2 =
〈F ′(v + h), N ′〉
π (k+ − k−)

≤ max {1∓ τ} |Σ|
2π |k+ − k−|

. (5.76)

As a consequence of this proposition, we have the following lemma,

Lemma 5.8. If |k+ − k−| > 0, and (hκ, N
′
κ) denotes a solution to the pair of

equations (5.29), (5.70) with deformation parameter κ, for any p ≥ 2 there is a

uniform constant C(p), such that,

||hκ − c(hκ)||W2,p + ||N ′κ||W2,p ≤ C, (5.77)

where c(hκ) is the average of hκ on the surface.

Proof. We will assume the constant C can change from one line to the next.

Since κ∗ is bounded, from (5.70) we have a uniform bound for the norm of N ′ in

Sobolev’s space,

||∆N ′||Lp ≤ C. (5.78)

By Calderon-Sygmund theory, this implies,

||N ′||W2,p ≤ C (||∆N ′||Lp + ||N ′||Lp) ≤ C. (5.79)

Similarly, from (5.29) we deduce the existence of an upper bound for the set

{hκ − c(hκ)} in W2,p.

If we fix any p > 2, Sobolev’s theory says that the embedding W2,p → C1(Σ)

is continuous, thence there exists a constant independent of κ, such that,

||hκ − c(hκ)||C1 + ||N ′||C1 ≤ C. (5.80)
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Let (hn, N
′
n) denote a sequence of solutions to the elliptic equations (5.29)-

(5.70) with a corresponding sequence of parameters {κn}. We are interested in

describing the behaviour of these solutions as κn → 0. Although the sequence

(h − c(h), N ′) is uniformly bounded in C1 we cannot rule out the possibilities

c(hn) → ±∞. In the following lemmas we deal with the three cases arising on

this analysis.

Lemma 5.9. If (hn, N
′
n) is a sequence of solutions to the elliptic equations (5.29)-

(5.70) with parameters κn → 0 such that the sequence is bounded in H1×H1, then

for any p ≥ 2 the sequence converges to (h0, 0) strongly in W2,p×W2,p, where h0

is the solution to the regularized Taubes equation.

In particular, this means the convergence is uniform in C1 × C1.

Proof. By the Banach-Alaoglu theorem, for any subsequence (hnk , N
′
nk

), after

passing to another subsequence if necessary, we can assume (hnk , N
′
nk

)→ (h∗, N
′
∗)

weakly in H1 × H1 and by the Rellich-Kondrachov lemma, strongly in L2 × L2.

Let (u,w) ∈ H1×H1, equations (5.29) - (5.70) can be expressed in weak form as,

〈∇u,∇hnk〉+

〈
u, 2 (N ′nk + F (v + hnk)) +

4π

|Σ|
(k+ − k−)

〉
= 0,

〈∇w,∇N ′nk〉+
〈
w, (κ2

nk
+ 2F ′(v + hnk))N

′
nk

+ κ2
nk
F (v + hnk)

〉
= 0.

(5.81)

Weak convergence in W1 plus strong convergence in L2 imply

〈∇u,∇hnk〉 → 〈∇u,∇h∗〉, 〈∇w,∇N ′nk〉 → 〈∇w,∇N
′
∗〉. (5.82)

After passing to another subsequence if necessary, we can assume hnk → h∗

pointwise almost everywhere. By the dominated convergence theorem,

〈u, F (v + hnk)〉 = 〈u, F (v + h∗)〉, (5.83)

and simmilarly for w. Therefore, (h∗, N
′
∗) is a weak solution to the equations,

∆h∗ + 2 (N ′∗ + F (v + h∗)) +
4π

|Σ|
(k+ − k−) = 0, (5.84)

∆N ′∗ + 2F ′(v + h∗)N
′
∗ = 0. (5.85)
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Ellipticity guarantees the solution is in fact strong, hence, by the usual elliptic

estimates, (h∗, N
′
∗) ∈ H2 × H2 and the solution is continuous. This together

with (5.85) implies N ′∗ ≡ 0. Therefore (5.84) is the regularised Taubes equation,

whose unique solution is h∗ ≡ h0.

Since any subsequence of (hn, N
′
n) can be refined to a convergent subsequence

to (h0, 0) in L2 × L2, we obtain the limit,

||hn − h0||L2 + ||N ′n||L2 → 0. (5.86)

In particular, N ′n → 0 in L2, this limit and the boundedness of the functions

F (t) and F ′(t) imply by means of equation (5.70) the limit,

||∆N ′n||L2 → 0. (5.87)

Hence, by the usual combination of Schauder’s estimates and Sobolev’s em-

bedding, we find two constants such that,

||N ′n||C0 ≤ C1 ||N ′n||H2 ≤ C2 (||∆N ′n||L2 + ||N ′n||L2)→ 0. (5.88)

Whereas by equation (5.29),

−∆(hn − h0) = 2N ′n + 2 (F (v + hn)− F (v + h0)). (5.89)

Note that by the mean value theorem, for any x 6∈ Z,

F (v(x) + hn(x))− F (v(x) + h0(x)) = F ′(ξ) (hn(x)− h0(x)), (5.90)

for some ξ between hn(x) and h0(x), whereas for x ∈ Z,

F (v(x) + hn(x))− F (v(x) + h0(x)) = 0, (5.91)

since F (v(x) + hn(x)) = F (v(x) + h0(x)) = ±1 + τ in this case, hence, there is a

constant C > 0, such that,

|F (v + hn)− F (v + h0)| ≤ C |hn − h0|, (5.92)

by (5.89) and (5.92),

||∆(hn − h0)||L2 ≤ 2 ||N ′n||L2 + 2 ||F (v + hn)− F (v + h0)||L2

≤ C (||N ′n||L2 + ||hn − h0||L2). (5.93)
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We deduce ||∆(hn − h0)||L2 → 0. Repeating the elliptic estimate argument

we find,

||hn − h0||H2 → 0, (5.94)

and consequently also hn → h0 in C0(Σ). Finally, we follow a bootstrap argument.

Knowing the convergence (hn, N
′
n)→ (h0, 0) is uniform in C0, we can repeat the

previous computations for the norm of the Laplacian, this time in the Lp norm

and deduce the claimed limit.

In case (hn, N
′
n) is not bounded, necessarily {c(hn)} has a subsequence diverg-

ing to ±∞. We consider each possibility in the following lemma.

Lemma 5.10. If {(hn, N ′n)} is a sequence of solutions to equations (5.29) (5.70)

such that κn → 0 and c(hn)→∞, and if p ≥ 2 is a fixed but otherwise arbitrary

constant, the following limit holds,

||hn − c(hn)||W2,p + ||N ′n − α+||W2,p → 0, (5.95)

where

α+ = −1− τ − 2π (k+ − k−)

|Σ|
, (5.96)

and the condition k+ − k− < 0 is necessary. Similar statements hold if c(hn) →
−∞, where the constant α in this case is,

α− = 1− τ − 2π (k+ − k−)

|Σ|
, (5.97)

and the condition k+ − k− > 0 is necessary.

Proof. We proceed as in lemma 5.9. Let h̃n = hn − c(hn), we consider a subse-

quence (h̃nk , N
′
nk

). By lemma 5.8, after passing to another subsequence if nec-

essary, we can assume (h̃nk , N
′
nk

) → (h̃∗, N
′
∗) weakly in H1 × H1 and strongly in

L2 × L2. Repeating the argument of lemma 5.9, this time using the fact that

c(hnk)→∞, we find (h̃∗, N
′
∗) is a strong solution to the equations,

∆h̃∗ + 2 (N ′∗ + 1 + τ) +
4π

|Σ|
(k+ − k−) = 0, (5.98)

∆N ′∗ = 0.
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Since N ′∗ is in the kernel of the Laplacian, it has to be a constant function α.

By a bootstrap argument, h̃∗ is smooth. To determine the constant, we integrate

equation (5.98) by means of the divergence theorem and find,

α = −1− τ − 2π

|Σ|
(k+ − k−), (5.99)

and,

∆h̃∗ = 0. (5.100)

Since each h̃n has zero average the same holds for h̃∗, therefore h̃∗ ≡ 0.

We follow once more the pattern of lemma 5.9 to conclude strong convergence

(h̃nk , N
′
nk

)→ (0, α) in L2 × L2 and deduce that for any p ≥ 2,

||h̃n||W2,p + ||N ′n − α||W2,p → 0. (5.101)

Finnally, by (5.73),

−(1 + τ) ≤ α ≤ 1− τ, (5.102)

hence,

−(1 + τ) ≤ −(1 + τ)− 2π

|Σ|
(k+ − k−), (5.103)

implying k+ < k−. It is clear these arguments can be rearranged for the case

c(hn)→ −∞.

Lemmas 5.9, 5.10 thus prove the following proposition.

Proposition 5.11. If {(hn, N ′n)} is a sequence of solutions to equations (5.29) (5.70)

such that κn → 0, the only possible limit points are (h0, 0) and (0, α±), for α±

defined on lemma 5.10. If {(hn, N ′n)} has a bounded (unbounded) subsequence,

then (h0, 0) ((0, α±)) is a limit point.

5.1.4 Existence of multiple solutions

In this section we prove the existence of multiple solutions to the field equations

using theorem 2.21. In order to do this, we define an operator Φ satisfying the

hypothesis of the theorem trough a series of technical lemmas.
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Lemma 5.12. For any 0 < κ0 < κ∗(D) and p ≥ 2, the set {(hκ, N ′κ) | κ > κ0} is

bounded in W2,p ×W2,p.

Proof. Assume otherwise towards a contradiction. If (hn, N
′
n) is an unbounded

sequence, by lemma 5.8 we can suppose c(hn) → ±∞ depending on the sign of

k+ − k−. Without loss of generality, let us assume k+ − k− > 0. In this case

c(hn)→ −∞ by lemma 5.10. Since {κn} is bounded, we can assume κn → k∗ 6= 0.

Let h̃n = hn−c(hn), going through the steps of the proof of lemma 5.9, we deduce

the existence of a strong limit (h̃n, N
′
n) → (h̃∗, N

′
∗) in W2,p ×W2,p, such that

(h̃∗, N
′
∗) is a solution to the problem,

(∆ + κ2
∗)N

′
∗ + κ2

∗ (−1 + τ) = 0, (5.104)

∆h̃∗ + 2N ′∗ + 2

(
−1 + τ +

2π

|Σ|
(k+ − k−)

)
= 0. (5.105)

By elliptic regularity the pair (h̃∗, N
′
∗) is smooth. Since κ2

∗ > 0, integrating

the first equation, we obtain,

〈N ′∗, 1〉+ (−1 + τ)|Σ| = 0. (5.106)

Integrating the second equation, we have,

〈N ′∗, 1〉+ (−1 + τ) |Σ|+ 2π(k+ − k−) = 0. (5.107)

Hence 2π (k+ − k−) = 0, a contradiction.

We will prove the existence of multiple solutions to the field equations in the

unbalanced case, which can be seen in figure 5.2 on the right column, adapting

the argument from [18] which relies on Leray-Schauder’s degree.

We define the operators,

L = (−∆− λ,−∆− λ), Φκ(h,N) = (fκ(h,N), gκ(h,N)), (5.108)

where

fκ(h,N) = 2(N + F (v + h)) +
4π

|Σ|
(k+ − k−)− λh, (5.109)

gκ(h,N) = (κ2 + 2F ′(v + h))N + κ2F (v + h)− λN, (5.110)

and λ is a positive constant. Recall a continuous non-linear map T : X → Y of

Banach spaces is said to be compact if it maps any bounded subset A ⊂ X to a

precompact set TA ⊂ Y ,
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Lemma 5.13. The operator Φ : [0, κ∗]×H2×H2 → L2×L2 such that Φ(κ, ·, ·) =

Φκ is continuous.

Proof. We show the component functions fκ and gκ are continuous as follows.

Notice,

||fκ2(h2, N2)− fκ1(h1, N1)||L2 ≤ 2 ||N2 −N1||L2 + 2 ||F ′(ξ) (h2 − h1)||L2 + λ ||h2 − h1||L2

≤ C (||N2 −N1||L2 + ||h2 − h1||L2), (5.111)

where ξ is well defined almost everywhere. For gκ we have,

||gκ2(h2, N2)− gκ1(h1, N1)||L2 ≤ ||κ2
2N2 − κ2

1N1||L2

+ ||κ2
2 F (v + h2)− κ2

1 F (v + h1)||L2

+ 2 ||N2 F
′(v + h2)−N1 F

′(v + h1)||L2

+ λ ||N2 −N1||L2

≤ |κ2
2 − κ2

1| ||N2||L2 + κ2
1 ||N2 −N1||L2

|κ2
2 − κ2

1| ||F (v + h2)||L2 + κ2
1 ||F (v + h2)− F (v + h1)||L2

2 ||(N2 −N1)F ′(v + h2)||L2

+ 2 ||N1 (F ′(v + h2)− F ′(v + h1))||L2

+ λ ||N2 −N1||L2 . (5.112)

F (v + h2) and F ′(v + h2) are uniformly bounded by a constant independent

of h2. Also, there exist functions ξ, η well defined except at core positions, such

that,

|F (v + h2)− F (v + h1)| = |F ′(ξ) (h2 − h1)| ≤ C |h2 − h1|, (5.113)

|F ′(v + h2)− F ′(v + h1)| = |F ′′(η) (h2 − h1)| ≤ C |h2 − h1|. (5.114)

By Sobolev’s embedding, N1 is continuous and the norm ||N1||C0 is controlled

by ||N1||H2 , hence,

||N1 (F ′(v + h2)− F ′(v + h1))||L2 ≤ ||N1||C0 ||F ′(v + h2)− F ′(v + h1)||L2

≤ C ||N1||H2 ||h2 − h1||L2 . (5.115)

Hence, there is a constant C, independent of (κj, hj, Nj), such that,

||gκ2(h2, N2)− gκ1(h1, N1)||L2 ≤ C (|κ2
2 − κ2

1| (1 + ||N2||L2)

+ ||N2 −N1||L2 (1 + κ2
1) + ||h2 − h1||L2 (κ2

1 + ||N1||2)). (5.116)
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(5.111) and (5.116) prove the component functions are continuous.

Proposition 5.14. The operator T = L−1 ◦ Φ : [0, κ∗] × H2 × H2 → H2 × H2 is

compact.

Proof. By the Cauchy-Schwarz inequality and the standard elliptic estimates, if

u, f ∈ L2, and

(∆ + λ)u = f (5.117)

in the weak sense, then u ∈ H2 and there is a constant C, independent of (u, f)

such that,

||u||H2 ≤ C ||f ||L2 . (5.118)

This shows (∆ + λ)−1 : L2 → H2 is continuous, therefore L is also continuous

and by lemma 5.13 also T . If T (κ, h,N) = (u,w), then we have,

(∆ + λ)u = −fκ, (∆ + λ)w = −gκ. (5.119)

Let A ⊂ [0, κ∗] × H2 × H2 be bounded and closed and let R > 0 be suffi-

ciently large such that if (κ, h,N) ∈ A, then ||h||H2 + ||N ||H2 ≤ R. If {(un, wn)}
is a sequence in T (A), such that (un, wn) = T (κn, hn, Nn) for (κn, hn, Nn) ∈
A, we can find a subsequence (unk , wnk) such that κnk → κ′ ∈ [0, κ∗] and

(hnk , Nnk) → (h∗, N∗) weakly in H1 × H1 and strongly in L2 × L2. By equa-

tions (5.111) and (5.116) and the fact that {Nn} is bounded in H2, the sequence

{Φ(κnk , hnk , Nnk)} is Cauchy in L2 × L2. By (5.119), {(unk , wnk)} is Cauchy in

H2 × H2, therefore convergent in T (A).

By this proposition, for any bounded open set Ω ⊂ H2 × H2 such that (I −
L−1 ◦ Φκ)

−1(0) 6∈ ∂Ω, the degree

deg(I − L−1 ◦ Φκ,Ω, 0), (5.120)

is well defined and a homotopical invariant for κ restricted to any subinterval

[a, b] ⊂ [0, κ∗] such that,

(I − L−1 ◦ Φκ)
−1(0) 6∈ ∂Ω ∀κ ∈ [a, b]. (5.121)

Notice (h,N) ∈ (I − L−1 ◦ Φκ)
−1(0) if and only if it is a solution to the

governing elliptic problem, (5.29), (5.70).
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Lemma 5.15. For any ball B ⊂ H2×H2 and for any ε > 0, there is a δ > 0 such

that for any (h,N) ∈ B, |κ2 − κ1| < δ implies |T (κ2, h,N)− T (κ1, h,N)| < ε.

It is said that the operator T is continuous in κ uniformly with respect to

(h,N) in balls in H2 × H2

Proof. In order to prove the lemma, it is sufficient to consider balls centred at

the origin. Let R > 0, and (h,N) ∈ BR(0). If (u,w) = L−1 ◦ Φ(κ, h,N), then

u and w are solutions to (5.119). Let (uj, wj) = L−1 ◦ Φ(κj, h,N), j = 1, 2,

then u1 = u2 because fκ(h,N) is independent of κ. For wj, by (5.116) there is a

constant C = C(R) independent of (h,N), such that,

||gκ2(h,N)− gκ1(h,N)||L2 ≤ C |κ2 − κ1|2. (5.122)

By (5.119),

||∇(w2 − w1)||2L2 + λ ||w2 − w1||2L2 = −〈(w2 − w1), gκ2(h,N)− gκ1(h,N)〉
≤ ||w2 − w1||L2 · ||gκ2(h,N)− gκ1(h,N)||L2

(5.123)

Whence, there exists another constant, independent of (h,N), such that,

||w2 − w1||L2 ≤ C ||gκ2(h,N)− gκ1(h,N)||L2 . (5.124)

By Schauder’s estimates,

||w2 − w1||H2 ≤ C (||∆(w2 − w1)||L2 + ||w2 − w1||L2)

≤ C (||gκ2(h,N)− gκ1(h,N)||L2 + (λ+ 1) ||w2 − w1||L2)

≤ C ||gκ2(h,N)− gκ1(h,N)||L2

≤ C|κ2
2 − κ2

1|. (5.125)

Therefore, ||(u2, w2)− (u1, w1)||H2×H2 → 0 uniformly as κ2 → κ1.

If 0 < κ0 < κ∗(D), we know by lemma 5.12 that there exists an R > 0 such

that for any κ ∈ [κ0, κ∗(D)] the solution to equations (5.29), (5.70) is in the

interior of the disk D(0, R) ⊂ H2 × H2. Since for any ε > 0 there is no solution
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to the equations for κ∗(D) + ε, by the homotopy invariance of the degree, we

conclude,

degLS(I− L−1 ◦ Φκ,D(0, R), 0) = 0, κ ∈ [κ0, κ∗(D)]. (5.126)

By proposition 5.2 we know there is a neighbourhood U of (h0, 0) such that

for κ small enough, there is exactly one solution (hκ, N
′
κ) to equations (5.29) and

(5.70) in U and this solution varies smoothly in H2 × H2 with κ.

Lemma 5.16. |ind(I − T (0, ·, ·), (h0, 0), 0)| = 1.

Proof. At κ = 0, the derivative of Φ0 at (h0, 0) has components,

f ′0(h0, 0) · (δh, δN) = 2 (δN + F ′(v + h0) δh)− λ δh, (5.127)

g′0(h0, 0) · (δh, δN) = 2F ′(v + h0) δN − λ δN. (5.128)

The operator L−1 is linear, hence, the derivative of T0 = T (0, ·, ·) at (h0, 0) is,

T ′0(h0, 0) = L−1 ◦ Φ′0(h0, 0). (5.129)

If (δh, δN) ∈ Ker(I − T ′0(h0, 0)), then (δh, δN) is the solution to the elliptic

problem,

−∆ δh = 2 δN + 2F ′(v + h0) δh, (5.130)

−∆ δN = 2F ′(v + h0) δN. (5.131)

By lemma 2.10, the operator ∆ + 2F ′(v + h0) : H2 → L2 is an isomorphism.

Therefore, δh = δN = 0. By theorem 2.19,

ind(I − T (0, ·, ·), (h0, 0), 0) = ±1, (5.132)

where the sign depends on the multiplicities of the eigenvalues λ > 1 of I −
T ′0(h0, 0).

Proposition 5.17. There is a κ0 > 0 such that, if 0 < κ < κ0, equations (5.29),(5.70)

have exactly two continuous families of solutions. As κ → 0 one of the families

is convergent to (h0, 0), the solution to of the regularised Taube’s equation and

the second family is such that (hκ − c(hκ), N
′
κ) → (0, α±) and c(hκ) → ∓∞,

where α∓ and the sign of the divergence depend on the sign of k+ − k− as in

lemma 5.10. Moreover, for any R > 0, there is a κ′ > 0 such that if 0 < κ < κ′,

then ||(hκ, Nκ)||H2×H2 > R for at least one pair of solutions to the equations.

170



5.1 Chern-Simons deformations of the O(3) Sigma model

Proof. Proposition 5.14, and Lemma 5.15 show T satisfies the hypotesis of theo-

rem 2.21. By proposition 5.2, there exists κ0 ∈ (0, κ∗] and an open bounded set

U ⊂ H2 ×H2 of (h0, 0) such that the restriction of (hκ, Nκ) to U varies smoothly

with κ ∈ [0, κ0). By lemma 5.16, if diam(U) is small, deg(I − T (0, ·, ·), U, 0) 6= 0

and there is no other solution for κ = 0 in U . By theorem 2.21, there is a

connected closed set C ⊂ [0, κ∗] × H2 × H2, such that (0, h0, 0) ∈ C and either

C is unbounded or C ∩ ({0} × (H2 × H2 \ U)) 6= ∅. Since for κ = 0 there is

only one solution to equations (5.29) (5.70), we rule out the second possibil-

ity. As κ∗ < ∞, by lemma 5.12 there is a second family (hn, Nn) of solutions

to the equations, such that κn → 0 and ||(hκ, Nκ)||H2×H2 → ∞. By propo-

sition 5.11, (0, α±) is a limit point. In order to prove the last claim, assume

towards a contradiction, the existence of R > 0 and a sequence κn → 0 such that

||(hκn − h0, Nκn)||H2×H2 ≤ R for all solutions with parameter κn. By lemma 5.9,

the set of solutions {(hκ, Nκ) | ||(hκ − h0, Nκ)|| = R} can not accumulate at κ = 0.

Let κR > 0 be such that if ||(hκ − h0, Nκ)||H2×H2 = R, then κ > κR and let us

choose n such that κn < κR. Consider the relatively open set,

V =
{

(κ, h,N) ∈ [0, κ∗]× H2 × H2 | ||(h− h0, N)||H2×H2 > R, 0 < κ < κn
}
∩ C.

(5.133)

V is not empty because there is a divergent sequence in C with deformation

parameter converging to 0, we claim V is also closed, because if {(µn, hn, Nn)} ⊂
V has an accumulation point (µ∗, h∗, N∗), then (µ∗, h∗, N∗) ∈ C because this

set is closed. At the same time, ||(h∗ − h0, N∗)||H2×H2 ≥ R and 0 ≤ µ∗ ≤ κn.

Since ||(h∗ − h0, N∗)||H2×H2 = R implies µ∗ > κR, we can discard this case. If

µ∗ = 0 then (h∗, N∗) = (h0, 0) which is impossible. If µ∗ = κn, then we also have

||(h∗ − h0, N∗)||H2×H2 ≤ R, which is absurd. Therefore (µ∗, h∗, N∗) ∈ V and this

set is open and closed. Since C is connected, V = C. A contradiction.

In view of this proposition, we can define κC(D) as the supremum,

κC(D) = sup {κ > 0 | (κ, hκ, Nκ) ∈ C} . (5.134)

Proposition 5.17 shows κC is actually a maximum, moreover, since the set of

solutions for which (hκ, Nκ) ∈ U is contained in C, the same lower bound for κ∗

is also valid for κC . We summarise the results of this section in the following

theorem.
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5.1 Chern-Simons deformations of the O(3) Sigma model

Theorem 5.18. Let (κ, φκ, Aκ, Nκ) be a solution of the Bogomolny equations of

the BPS soliton equations with Chern-Simons deformation constant κ. Assume

k+ − k− 6= 0 and Bradlow’s bound is satisfied, then the following properties hold,

1. κ is bounded by a constant independent of the position of the divisors as

given in proposition 5.7,

2. If κ is small, for each divisor there are at least two gauge inequivalent

families of solutions to the Bogomolny equations.

3. There are an ε > 0 and κ0 > 0 such that, if |κ| < κ0 there is exactly

one gauge equivalence class (κ, φκ, Aκ, Nκ) of solutions to the Bogomolny

equations, such that

||hκ − h0||C1 + ||Nκ||C1 < ε. (5.135)

Outside any closed neighbourhood U of the core set P ∪ Q, this family of

solutions varies smoothly with κ.

4. For any neighbourhood U of the core set, we have the following property:

For any ε > 0, there is a κ′ > 0, such that if |κ| < κ′, there is a solution

(κ, φκ, Aκ, Nκ) to the Bogomolny equations, such that

||φκ3 ∓ 1||C1(Σ\U) + ||Nκ − α±||C1 < ε, (5.136)

where the signs chosen and the constant α± depend on the sign of the dif-

ference k+ − k− as defined on lemma 5.10.

5.1.5 Symmetric deformations on the sphere

In this section we study the deformation constant in the sphere. It is known that

in the Euclidean plane, there is a solution to the elliptic problem for any κ ∈ R.

Hence, the existence of an upper bound for κ∗ in a compact surface is a nontrivial

task. We will suppose all the vortices are located at the north pole of the domain

sphere, and all the antivortices at the south pole. We choose trivialisations φ± :

U± → S2 at U± = S2\{(0, 0,∓1)}, which stereographically project from the south
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or north pole respectively, as ϕ± : U± → C. This projections are related by a

gauge transformation, which by spherical symmetry is,

ϕ+ =
einθ

ϕ−
, x ∈ U+ ∩ U−. (5.137)

Whereas for the connection, if it is represented locally by a± ∈ Ω1(U±),

a+ = a− + ndθ, x ∈ U+ ∩ U−. (5.138)

Stereographic coordinates in the domain sphere will be denoted accordingly

x± = r±e
iθ± . Hence, x+x− = 1 in U+∩U− and θ+ = −θ−. We choose the ansatz,

ϕ± = f±(r±)eik±θ± a± = a±(r±) dθ±, (5.139)

which is justified by the equivariant rotational symmetry of the problem. Com-

patibility of the fields then requires n = k+ − k−. The Bogomolny equations

reduce to a system of ODES which we aim to integrate,

f ′± =
1

r
(k± ∓ a±) f±, (5.140)

a′± = rΩ(r)B±, (5.141)

N ′′± = −Ω(r)

(
κB± −

4f 2
±N±

(1 + f 2
±)2

)
− 1

r
N ′±, (5.142)

where,

Ω(r) =
4R2

(1 + r2)2
, (5.143)

B± = −
(
κN± + τ ± 1∓ 2

1 + f 2
±

)
. (5.144)

We solved the Bogomolny equations in the punctured disk D1(0) \ {0} adding

the compatibility conditions,

f+(1)f−(1) = 1, a+(1) + a−(1) = n,

N+(1) = N−(1), N ′+(1) = −N ′−(1),
(5.145)
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together with the lowest order approximation to the fields at r = 0,

f± = q±r
k± + O

(
rk±+1

)
, (5.146)

B± =

{
−
(
κp± + τ ± 1∓ 2

1+q2±

)
+ O(r), k± = 0,

−(κp± + τ ± 1∓ 2) + O(r), k± 6= 0,
(5.147)

a± = 2B±R
2r2 + O(r3), (5.148)

N± =

{
p± +

(
−κB± +

4q2±p±

(1+q2±)2

)
R2r2 + O(r3), k± = 0,

p± − κB±R2r2 + O(r3), k± 6= 0.
(5.149)

To find the initial stable solution, we used the shooting method in the interval

[δ, 1] for a small value δ > 0. Given initial conditions Z = (q+, q−, p+, p−) for the

parameters, we solved the Bogomolny equations and defined a map M : R4 → R4,

Z 7→ (f+(1)f−(1)− 1, a+(1) + a−(1)− n,N+(1)−N−(1), N ′+(1) +N ′−(1)),
(5.150)

whose zero determines suitable initial conditions for a solution to the Bogomolny

equations compatible at the boundary of the disk. Next, we applied the pseudo-

arclength continuation method, as described in [14]. Given initial data (κ0, Z0) ∈
R5, we sought a nearby point (κ, Z) such that,

Ż0 · (Z − Z0) + κ̇0 (κ− κ0) = δs, (5.151)

for a small positive constant δs. We restricted ourselves to positive κ and solved

the Bogomolny equation in the vortex-antivortex case and the case k+ = 2,

k− = 0. We solved both cases on a sphere of radius 2. The results can be seen

on Figure 5.1. We found that for the vortex-antivortex case, the data suggests

κ is unbounded. This would be the case if for all the solutions, the function

h = log f 2 have bounded average. If rotationally symmetric solutions are unique,

invariance of Taube’s equation under isometries of the sphere implies the average

is actually zero. Therefore, we conjecture κ unbounded for this configuration of

cores’ on the sphere. On the (2, 0) case, arclength continuation started growing

fairly quickly until it reached a maximum value and started decreasing towards

zero as expected. In Figure 5.2 on the right column can be seen the two limiting

solutions of theorem 5.18. At κ = 0 we obtained the solution to the Taubes
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Figure 5.1: Comparison of the electrostatic energy in the balanced and unbal-

anced cases. The existence of two types of solutions if k+ 6= k− is evident from

the graph, while the energy also suggests uniqueness of the solution (hκ, Nκ) for

each κ in the balanced case.

equation as expected and a limiting solution, as the averages of h diverged towards

infinity, the gauge invariant component φ3 of the Higgs field φ started converging

to constant 1, in other words, φ converged to the north pole section, while κN

converged to the expected limit

α− =
3

4
. (5.152)

5.2 Dynamics of the moduli space of Ginzburg-

Landau vortices with a Chern-Simons term

In section 5.1 we proved the existence of a minimum constant κmin such that

regardless of core positions on the moduli space Mk+,k−(Σ) of vortices and an-

tivortices of the U(1)-gauged O(3) Sigma model with a Chern-Simons deforma-

tion, there exists a solution to the Bogomolny equations close to the solution at
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Figure 5.2: Snapshots of solutions to the Bogomolny equations on the sphere

along the declination angle Θ. The radius was set to R = 2. Left. Vortex-

antivortex case. Right. Two vortices at north pole and no antivortices. The

asymmetry parameter was set to τ = 0.
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κ = 0. This result extends similar claims for the Ginzburg-Landau model ob-

tained in [14] and justifies the possible existence of a localization formula similar

to the one obtained in section 2.2.1 for BPS solitons of the gauged O(3) Sigma

model, with the addition of a term dependent on the Chern-Simons constant κ.

In this section we apply the general framework of section 2.2 to compute the

extra κ term in the localization formula. As the calculations are similar for both

models, we compute a localization formula for each one and finalise discussing

about the extension of our formula to the coincidence set.

Previous work on the subject for the Ginzburg-Landau functional includes

models of Kim-Min and Kim-Lee [24, 25], where the authors considered a related

model with a different type of the Chern-Simons interaction, [26], where Kim and

Lee analysed the dynamics of the Ginzburg-Landau model with a neutral field

on the plane and [10] where Collie and Tong addressed motion on the moduli

space of abelian vortices in the presence of a magnetic field and concluded that

the extra Chern-Simons term in the localization formula is the Ricci form of the

metric on the reduced moduli space. Later, in [1] Alqahtani and Speight showed

that the deformation term of Kim-Lee cannot extend to the coincidence set of

modulli space, whereas the term from Collie-Tong can, and thus Kim-Lee and

Collie-Tong deformations of the Abelian Higgs model are different.

5.2.1 The Maxwell Higgs Chern Simons model

We work on a Riemann surface Σ that can be either compact or the Euclidean

plane. The setup is as in section 2.2. We assume the existence of a principal

bundle,

U(1)→ P → R× Σ (5.153)

and denote by ρ the representation of U(1) as isometries of the complex plane,

ρ : U(1)→ Aut(C). (5.154)

Let F = (R × Σ) ×ρ C be the hermitian bundle associated to ρ. We fix the

metric in R× Σ as the product

dt2 − g, (5.155)
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where g denotes the Riemannian metric in Σ. Let D̃ be the connection induced

by ρ,

D̃ : ΓF → Γ ((R⊕ T ∗Σ)⊗ TF ) . (5.156)

Given φ ∈ ΓF , in a local trivialisation this is the map

D̃φ = dφ− iÃ⊗ φ. (5.157)

As in section 5.1, we add a neutral scalar field,

N ∈ C∞(R× Σ). (5.158)

It will be convenient to make the division of space and time explicit, we

denote by Dtφ ∈ C∞(R× Σ) the time component of D̃φ and from now onwards

dφ : R→ Γ(T ∗Σ⊗TF ) will be the spatial component of dφ as a function of time.

The spatial component of D̃φ, denoted by Dφ, is

Dφ : R→ Γ (T ∗Σ⊗ TF ) , Dφ = dφ− iA⊗ φ, (5.159)

The Maxwell-Higgs Lagrangian is,

LMH =
1

2

(
||Dtφ||2 + ||e||2 + ||Ṅ ||2 − ||Dφ||2 − ||B||2 − ||dN ||2

)
− 〈1, U〉,

the norms and the product in the Lagrangian are in the L2 sense. The potential

function U is given by,

U =
1

8

(
−2κN + 1− |φ|2

)2
+

1

2
|Nφ|2. (5.160)

We add a Chern-Simons term to the Lagrangian,

LCS =
1

2

(
〈A, ∗e〉+ 〈Ã0, ∗B〉

)
, (5.161)

the Maxwell-Higgs-Chern-Simons Lagrangian is,

L = LMH + κLCS. (5.162)
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As for the O(3) Sigma model, the Chern-Simons term is not gauge invariant,

however if two gauge potentials differ by a gauge transformation, the correspond-

ing Lagrangians will differ by a total divergence, hence they will yield the same

field equations. If Σ is compact, A and Ã0 are only defined locally, however, we

can always choose an open and dense subset of Σ, diffeomorphic to the unit disk

by the Riemann mapping theorem, in which the connection is trivializable. In

any case, the Lagrangian is well defined up to gauge equivalence. Variating L

with respect to Ã0, Gauss’s law is,

d∗e = −〈Dtφ, iφ〉+ κ ∗B. (5.163)

In terms of the gauge potential this is the same as,

−
(
∆ + |φ|2

)
Ã0 =

1

2i

(
φφ̇† − φ†φ̇

)
− d∗Ȧ+ κ ∗B. (5.164)

Let T and V be the kinetic and potential energy of the fields,

T =
1

2
(||Dtφ||2 + ||e||2 + ||Ṅ ||2),

V =
1

2
(||Dφ||2 + ||B||2 + ||dN ||2) + 〈1, U〉,

(5.165)

the total conserved energy of the fields is

E = T + V, (5.166)

If Σ is the Euclidean plane, we assume the following convergence at infinity,

Ȧ, A ∈ H1
(
Ω1(R2)

)
, Ã0, N ∈ H1

(
R2
)
, (5.167)

Ṅ , φ̇ ∈ L2
(
R2
)
, lim

|x|→∞
|φ(x)|2 = 1. (5.168)

Let ∂Aφ be the projection of Dφ in the sub-space (1, 0) of the complexification

of the bundle T ∗Σ⊗ TF , in local coordinates,

∂Aφ =
1

2
(D1φ+ iD2φ) . (5.169)
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We apply the Bogomolny trick to obtain a set of equations obeyed by the

fields,

0 ≤ 1

2

(
||Dtφ− iNφ||2 + ||Ṅ ||2 + ||−dN + e||2

+

∣∣∣∣∣∣∣∣∗B − 1

2

(
−2κN + 1− |φ|2

)∣∣∣∣∣∣∣∣2
)

+ ||∂Aφ||2

= E − 〈Dtφ, iNφ〉 − 〈dN, e〉 −
1

2
〈∗B,−2κN + 1− |φ|2〉

+ ||∂Aφ||2 −
1

2
||Dφ||2

= E − 〈N,− ∗ d ∗ e+ 〈Dtφ, iφ〉 − κ ∗B〉 −
1

2
〈∗B, 1〉

+
1

2
〈∗B, |φ|2〉+ ||∂Aφ||2 −

1

2
||Dφ||2

= E − nπ. (5.170)

To obtain the last equation, we discarded several divergences and used Gauss’s

law and the identity,

∗B |φ|2 = |∂Aφ|2 − |∂Aφ|2. (5.171)

We also used that, ∫
Σ

B = 2nπ, n ∈ Z. (5.172)

If Σ is compact, this is due to the fact that B is the curvature of the line bundle

F , in the case that Σ is the Euclidean plane, this comes from the assumptions

of decaying of the gauge potential at infinity and the nontrivial winding of A at

the circle at infinity. Hence, a set of fields Φ = (φ,N,A) ∈ A, is a minimal with

energy

E = nπ, (5.173)

provided it satisfies the Bogomolny equations,

Ṅ = 0, (5.174)

e = dN, (5.175)

Dtφ = iNφ, (5.176)

∂Aφ = 0, (5.177)

∗B =
1

2

(
−2κN + 1− |φ|2

)
. (5.178)
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From equations (5.175), (5.176) and Gauss’s law, N is a solution to the elliptic

problem, (
∆ + |φ|2

)
N = κ ∗B. (5.179)

If Φ is a solution to the Bogomolny equations and Gauss’s law, by conservation

of Energy and the Bogomolny equations,

L = 2T + κLCS − E =
κ

2

(
Ã0 +N, ∗B

)
− nπ. (5.180)

If we take the radiation gauge, Ã0 = −N , Φ is an extremal of the Lagrangian.

The solution is stationary by the Bogomolny equations. Hence Φ is a solution to

the field equations.

5.2.2 Low energy dynamics with a Chern-Simons term

To apply the low energy approximation, we will work in the space A′ of fields Φ =

(N, φ, Ã) which are solutions to the Bogomolny equations. We have two models of

the moduli space, the O(3) Sigma model, for which localization was discussed on

section 2.2 and the Ginzburg-Landau model, studied by Samols on the plane [47].

The Bogomolny equations for both soliton types have a similar structure, allowing

to compute the contribution to the L2 metric by the Chern-Simons term in both

models. In this section, we do so and compute the energy contribution for the

space of solutions to the Bogomolny equations A′, our computation will be valid

in both cases. In the next section we specialise into the MHCS moduli space

and later extend our result to the O(3) Sigma model. Given Φ ∈ A′, the formal

tangent space TΦA
′ is the space of solutions to the linearization of the Bogomolny

equations at Φ. We introduce the L2 metric on TΦA
′ induced by the metrics in

Σ and target space. We have the inclusion

G ↪→ TΦA
′, α ∈ G 7→ (N, eiαφ,A+ dα) ∈ TΦA

′, (5.181)

defining the vertical bundle G → V→ A′. Suppose Φs : R→ A′ is a differentiable

curve in A′, meaning that as a function in an open dense set U ⊂ Σ, R × U →
R × F × Ω1(U) is differentiable. Let us define β = Ã0 + N , by Gauss’s law

and (5.179), β is a solution to(
∆ + |φ|2

)
β = − 1

2i

(
φφ̇† − φ†φ̇

)
+ d∗Ȧ. (5.182)
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Equation (5.182) means β is the orthogonal projection of Φ̇ onto V. Recall in

A′ the energy is conserved. By the Bogomolny equations energy is given by the

expression,

E =
1

2

(
||Nφ||2 + ||dN ||2

)
+ V = nπ. (5.183)

As in section 2.2, we assume variations of fields in A′ are good approximations

to slowly moving vortices. We work perturbatively in the deformation parameter.

Assume κ is small, by equation (5.179),

N = κNκ + O(κ2). (5.184)

Discarding terms of order κ2 and a divergence, the kinetic energy of a field

Φ ∈ A′ is,

T =
1

2

(
||φ̇⊥ − iNφ||2 + ||Ȧ⊥ − dN ||2

)
=

1

2

(
||φ̇⊥||2 + ||Ȧ⊥||2 + ||Nφ||2 + ||dN ||2

)
(5.185)

For the Chern-Simons term we have,

LCS =
1

2

(
〈A, ∗e〉+ 〈Ã0, ∗B〉

)
=

1

2

(
〈A, ∗Ȧ− ∗dÃ0〉+ 〈Ã0, ∗B〉

)
=

1

2
〈A, ∗Ȧ〉+ 〈Ã0, ∗B〉 (5.186)

To first order in κ, the Lagrangian can be approximated as,

L′ = T − V + κLCS

=
1

2

(
||φ̇⊥||2 + ||Ȧ⊥||2

)
+ ||Nφ||2 + ||dN ||2 − nπ +

κ

2
〈A, ∗Ȧ〉+ κ 〈Ã0, ∗B〉

=
1

2
(||φ̇⊥||2 + ||Ȧ⊥||2)− nπ + κ 〈β, ∗B〉+

κ

2
〈A, ∗Ȧ〉,

(5.187)

where we discarded another divergence and used (5.179). Let us introduce

the kinetic and connection terms, K,ΩM : TA′ → R, defined as,

K =
1

2
(||φ̇⊥||2 + ||Ȧ⊥||2), ΩM = κ

(
〈β, ∗B〉+

1

2
〈A, ∗Ȧ〉

)
, (5.188)

in geometric terms, K plays the role of a metric on tangent space, on the other

hand, ΩM is a connection, deviating the motion of the fields from geodesic motion,
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as will be evident in the next subsection when we obtain a formula for this term.

Therefore, the effective Lagrangian at low energy is,

Leff = K + ΩM. (5.189)

K is gauge invariant and if κ = 0, it is the kinetic energy term in the Samols

approximation to Ginzburg-Landau theory or the kinetic energy term computed

in section 2.2. However if κ 6= 0, this term does not render the same energy

as the extra κ term in the Bogomolny equations deforms the fields. Although

ΩM is gauge dependent because of the β factor, Leff determines the dynamics

in a gauge invariant way, because any gauge transformation contributes a total

divergence.

5.2.3 A formula for the connection term

In this section we focus on the Maxwell-Higgs-Chern-Simons model. Let P ⊂ Σ

be the set of zeros of φ. We assume the zeros are simple. If the energy of a

solution to the Bogomolny equations is nπ, there are n vortices on Σ. We work

in a chart ϕ : U → C defined on an open and dense subset U ⊂ Σ and assume

that P ⊂ U . We denote by z = ϕ(x) points on C and assume the metric takes

the form

g = eΛ(z)
(
dz2

1 + dz2
2

)
, z ∈ C. (5.190)

Since U is contractible, the restriction F |U is trivial. Let U ′ = U \ P , we

define the fields h, χ ∈ C∞(U ′), η ∈ C∞(U ′,C), such that,

φ = e
h
2

+iχ, η =
ḣ

2
+ iχ̇. (5.191)

As for the O(3) Sigma model χ is only well defined modulo 2π, however,

h, η and dχ are well defined functions on U ′. Since the zeros of φ are simple,

for any p ∈ P there is a coordinate neighbourhood Up and a smooth function

φ̃p ∈ C∞(Up,C \ {0}), such that,

φ(x) = (ϕ(x)− ϕ(p)) φ̃(x), x ∈ Up. (5.192)
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Let rp = log |ϕ(x)− ϕ(p)|, θp = Arg(ϕ(x)−ϕ(p)), x ∈ U ′p = Up \{p}, we have

local expansions,

h(x) = log r2
p + h̃p(x), χ = θp(x) + χ̃p(x), (5.193)

where the regular parts are functions h̃p, χ̃p ∈ C∞(Up). Locally, by (5.177) the

gauge potential can be expressed in terms of dχ and dh,

A = dχ− 1

2
∗ dh. (5.194)

Hence in U ′, h and χ satisfy the equations,

∆h = 2 ∗B, ∆χ = d∗A. (5.195)

By Gauss’s law, on U ′ we have the following relation between β and χ̇,(
∆ + |φ|2

)
χ̇ =

(
∆ + |φ|2

)
β. (5.196)

Note that β is a smooth function defined on U whereas χ̇ has divergences

at vortex positions. Let Dε denote a collection of small ε geodesic disks, each

one centred at one vortex position. The orientation in each geodesic disk given

by the outward unit normal. Let Uε = U \ Dε be the surface with the holes

left by removing the disks. The orientation of ∂Uε is given by the outward unit

normal and if Σ is the euclidean plane, we assume the fields β and N converge

fast enough at infinity. Using Green’s second identity and discarding divergences

in the following integral, we find,

κ

∫
Σ

βB =

∫
Σ

β (∆ + |φ|2)N

=

∫
Σ

(∆ + |φ|2)β ·N

= lim
ε→0

∫
Uε

(∆ + |φ|2) χ̇ ·N

= lim
ε→0

κ

∫
Uε

χ̇B + lim
ε→0

∫
∂Dε

(−χ̇ ∗ dN +N ∗ dχ̇). (5.197)
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On the other hand,

A ∧ Ȧ = A ∧ dχ̇− 1

2
A ∧ ∗dḣ

= A ∧ dχ̇+
1

2
Ȧ ∧ ∗dh− 1

2

d

dt
(A ∧ ∗dh)

= A ∧ dχ̇+
1

2

(
dχ̇ ∧ ∗dh− 1

2
∗ dḣ ∧ ∗dh

)
− 1

2

d

dt
(A ∧ ∗dh)

= 2A ∧ dχ̇− dχ ∧ dχ̇+
1

4
dh ∧ dḣ− 1

2

d

dt
(A ∧ ∗dh)

= 2A ∧ dχ̇+ d (χ̇dχ)− 1

4
d
(
ḣdh

)
− 1

2

d

dt
(A ∧ ∗dh)

= 2χ̇B − 2d (χ̇A) + d (χ̇dχ)− 1

4
d
(
ḣdh

)
− 1

2

d

dt
(A ∧ ∗dh) . (5.198)

Discarding the time derivative, we find,∫
Σ

A ∧ Ȧ = 2 lim
ε→0

∫
Uε

χ̇B + lim
ε→0

∫
∂Dε

(
2χ̇A− χ̇dχ+

1

4
ḣdh

)
. (5.199)

Thence,

ΩM = κ

∫
Σ

βB − κ

2

∫
U

A ∧ Ȧ

= lim
ε→0

∫
∂Dε

(
−χ̇ ∗ dN +N ∗ dχ̇− κχ̇A+

κ

2
χ̇dχ− κ

8
ḣdh

)
. (5.200)

If α ∈ Ω1(Up), in local, polar coordinates at Up,

α = αrdrp + αθrpdθp, θ̇p = −− sin θp ṗ1 + cos θp ṗ2

rp
, (5.201)

where for a time varying point, p(s), in local coordinates ϕ∗ṗ = ṗ1 ∂1 + ṗ2 ∂2. We

deduce,

lim
ε→0

∫
∂Dε(p)

θ̇p α = −π (α1(p) ṗ1 + α2(p) ṗ2) . (5.202)

Let M′ ⊂ M be the open subset of non coalescent vortices, which we can

identify with the set,

{(p1, . . . , pn) ∈ Σn | pj 6= pk if j 6= k} . (5.203)
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We define the projector,

Πj : M′ → C, Πj(p) = pj. (5.204)

Thence,

lim
ε→0

∑
j

∫
∂Dε(pj)

θ̇pj α = −π
∑
j

〈
Π∗jα, ṗ

〉
, (5.205)

where 〈·, ·〉 is the pairing of the pullback of α with the tangent vector ṗ ∈ TpM′.
In equation (5.200), all the regular parts of the forms will converge to zero as

ε→ 0, thus, the only terms to consider are the singular parts. We compute those

singular parts in the following equations,

lim
ε→0

∫
∂Dε

χ̇(− ∗ dN − κA) = lim
ε→0

∑
j

∫
∂Dε(pj)

θ̇pj(− ∗ dN − κA)

= −π
∑
j

〈Π∗j(− ∗ dN − κA), ṗ〉. (5.206)

We also have,

lim
ε→0

∫
Dε
N ∗ dχ̇ = lim

ε→0

∑
j

∫
∂Dε(p(j))

N ∗ dθ̇p(j)

= lim
ε→0

∑
j

∫
∂Dε(p(j))

N

(− sin θp(j) ṗ(j)1 + cos θp(j) ṗ(j)2

ε

)
dθp(j) ,

(5.207)

where we denote pj as p(j) to avoid confusion with the role of both subindexes.

Taylor’s expansion of N(x) in a neighbourhood V of a point p is,

N(x) = N(p) + ∂1(N ◦ ϕ−1)(ϕ(p)) rp cos θp + ∂2(N ◦ ϕ−1)(ϕ(p)) rp sin θp + O(r2
p),

(5.208)

for x ∈ V . Let Nϕ = N ◦ ϕ−1 : U → R, thence,

lim
ε→0

∫
∂Dε(p)

N

(
− sin θp ṗ1 + cos θp ṗ2

ε

)
dθp = π (−∂2Nϕ(ϕ(p)) ṗ1 + ∂1Nϕ(ϕ(p)) ṗ2) .

(5.209)

We conclude,

lim
ε→0

∫
Dε
N ∗ dχ̇ = π

∑
j

〈
Π∗j(∗dN), ṗ

〉
. (5.210)
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Similarly, for the term ḣdh at p ∈ P we have,

ḣ = −2

(
cos(θp)ṗ1 + sin(θp)ṗ2

rp

)
+ ∂th̃p, dh =

2drp
rp

+ dh̃p. (5.211)

Discarding the integrals of regular parts,

lim
ε→0

∫
∂Dε

ḣdh = −2 lim
ε→0

∑
j

∫
∂Dε(p(j))

(
cos(θp(j))ṗ(j)1 + sin(θp(j))ṗ(j)2

ε

)
dh̃p

= −2 lim
ε→0

∑
j

∫
∂Dε(p(j))

(
−∂1(h̃p(j) ◦ ϕ

−1)(ϕ(p(j))) · sin2 θp(j) · ṗ(j)2

+∂2(h̃p(j) ◦ ϕ
−1)(ϕ(p(j))) · cos2 θp(j) · ṗ(j)1

)
dθp(j)

= 2π
∑
j

〈
Π∗j(∗dh̃p(j)), ṗ

〉
.

(5.212)

For the χ̇ dχ term we have,

χ̇ = θ̇p + ∂tχ̃p, dχ = dθp + dχ̃p. (5.213)

We deduce the remaining integral is,

lim
ε→0

∫
∂Dε

χ̇dχ = lim
ε→0

∑
j

∫
∂Dε(pj)

(χ̇dθpj + χ̇dχ̃pj)

= lim
ε→0

∑
j

∫
∂Dε(pj)

(
∂tχ̃pj · dθpj + χ̇dχ̃pj

)
= π

∑
j

(
2 ∂tχ̃pj(pj)− 〈Π∗j

(
dχ̃pj

)
, ṗ〉
)
. (5.214)

Collecting all the pieces, we find the following expression for the connection

on the moduli space,

ΩM = π
∑
j

(
Π∗j

(
2 ∗ dN + κA− κ

2
dχ̃pj −

κ

4
∗ dh̃pj

)
+ κ∂tχ̃pj(pj)

)
. (5.215)

Because of this term, motion of a set of vortices on the moduli space deviates

from geodesic motion according to a force given by the two form,
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dΩM = π
∑
j

(
Π∗j

(
2d ∗ dN + κB − κ

4
d ∗ dh̃pj

)
+ κ d∂tχ̃pj(pj)

)
= π

∑
j

(
Π∗j

(
2 |φ|2 ∗N − 2κB + κB − κ

4
(−2B)

)
+ κ d∂tχ̃pj(pj)

)
= κπ

∑
j

(
−1

2
Π∗jB + d∂tχ̃pj(pj)

)
. (5.216)

To simplify this equation, we used (5.179) and (5.194). if zj = ϕ(pj), χ̃zj =

χ̃pj ◦ ϕ−1 are local expression on the chart, discarding higher order terms in κ,

from (5.178) we find,

κΠ∗jB = Π∗j

(κ
2

(1− |φ|2) eΛ(z)dz1 ∧ dz2
)

=
κ

2
eΛ(zj) dz1

j ∧ dz2
j . (5.217)

Hence,

dΩM = κπ
∑
j

(
−1

4
eΛ(z)dz1

j ∧ dz2
j + d∂tχ̃zj(zj)

)
. (5.218)

To obtain an explicit formula for the remaining terms d∂tχ̃zj(zj), we will work

to lowest order in κ. From (5.178) and (5.195), h and N are solutions to the

following system of equations in the sense of distribution,

−∆h = eh − 1 + 2κN + 4π
∑
j

δpj , (5.219)

−∆N = ehN − κ

2
(1− eh), (5.220)

Let (h0, N0) be the solution to this system at κ = 0, we know N0 = 0 by

the Julia-Zee theorem [53] and h0 is the solution to the Taubes equation for the

Ginzburg-Landau functional [56],

−∆h0 = eh0 − 1 + 4π
∑
j

δpj , (5.221)

if (∂κh, ∂κN) is the next order solution at κ = 0, then in U ′,

−∆∂κh = eh0∂κh, (5.222)

−∆∂κN = eh0∂κN −
1

2
+
κ

2
eh0∂κh. (5.223)
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We make the assumption (∂κh, ∂κN) ∈ L2×L2, in this case elliptic regularity

implies these are smooth functions, hence ∂κh ≡ 0 and to lowest order,(
∆ + eh0

)
∂κN =

1

2
. (5.224)

Therefore ∂κN 6= 0, moreover,

h = h0 + O(κ2), N = κ ∂κN + O(κ2). (5.225)

For the remaining of the argument, we will assume h is the solution to the

Taubes equation without further notice. We can get and explicit formula for

the nontrivial term in (5.218) introducing complex coordinates on M′. If we

consider the singularity of h at pj, we have the following equations in the sense

of distributions,

−
(
∆ + eh

)
∂zjh = 4π ∂δpj , −

(
∆ + eh

)
∂zjh = 4π ∂δpj . (5.226)

Let

η =
1

2
ḣ+ iχ̇, (5.227)

from (5.196) and (5.193), we deduce,

η =
∑
j

ṗj ∂zjh+ iβ. (5.228)

We can expand h in a neighbourhood of each pj ∈ P as in the O(3) Sigma

model,

h = log r2
j + aj +

1

2

(
bj (z − zj) + bj(z − zj)

)
+ O(r2

j ). (5.229)

Hence,

∂tχ̃pi(pi) = =
(
q̇ · ∂qh̃pi(pi)

)
+ β

= =

((∑
j

q̇j∂zjai

)
− 1

2
bi żi

)
+ β. (5.230)

So far, we have not used our gauge freedom in A′, we can do so now and

discard the β term to ease the final expression of the computation. Let us define

the complex form ωc,

ωc =
∑
i,j

(
∂zjai −

1

2
bi δij

)
dzj = ∂a− 1

2
b, (5.231)
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where,

∂ =
∑
i

dzi ⊗ ∂zi , a =
∑
i

ai, b =
∑
i

bi dz
i, (5.232)

The imaginary part of ωc is the nontrivial term in ΩM,

d= (ωc) = = (dωc) = =
(
∂∂a− 1

2

(
∂b+ ∂b

))
. (5.233)

The coefficients bi have the symmetries,

∂zjbi = ∂zibj, ∂zjbi = ∂zibj, (5.234)

proved in [31] by Manton-Sutcliffe for the Euclidean plane. The proof can be

adapted to compact manifolds and is essentially the same as the proof of lemma 2.3.

Whence,

∂b = 0, ∂b = −∂b. (5.235)

Hence ∂b ∈ Λ2(U, iR). Since a is real, it is also valid that ∂∂a ∈ Λ2(U, iR).

Hence, the curvature induced by the Chern-Simons term is written locally as,

dΩM = −κπi

(
1

8

∑
i

eΛ(zi)dzi ∧ dzi + ∂∂a+
1

2
∂b.

)
(5.236)

To lowest order, the metric is the L2 metric,

ds2 = π
∑
i,j

(
eΛ(zi)δij + 2∂zibj

)
dzi dzj. (5.237)

whose symplectic form is [31, p. 212],

ω0 =
iπ

2

(∑
i

eΛ(zi)δij dz
i ∧ dzj + 2∂b

)
. (5.238)

Therefore, the Chern-Simons curvature in M′ is related to the symplectic form

of the L2 metric by,

dΩM = −κ
2
ω0 − κπi

(
−1

8

∑
i

eΛ(zi)δij dz
i ∧ dzj + ∂∂a

)
. (5.239)
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Comparing with the Collie-Tong connection

With our choice of notation, Collie and Tong proposed for vortices of the Abelian

Higgs model [10] that dΩM = κρ, where ρ is the Ricci form of the metric in the

moduli space, then properties of the dynamics of vortices with a Chern-Simons

interaction term were studied by Krusch-Speight [28] and Alqahtani-Speight [1]

in all cases assuming the dynamics is modified by the Ricci form, however, little is

known in the literature about how good the Ricci form approximation is. We do

not compare the dynamics of the Collie-Tong proposal with the connection term

found due to lack of time, the problem remains open for future work, instead,

if we consider (5.239), we can see the connection term is not the Ricci form in

the case of the moduli space M2(R2) of the MHCS model. For a pair (z1, z2) of

non-coalescent abelian vortices in R2, define centre of mass coordinates (Z,W ),

such that z1 = Z +W , z2 = Z −W , W = ε eiθ, then the metric in the open and

dense subset of non-coalescent vortices is,

gL2 = 2π dZ dZ + f(ε) (dε2 + ε2 dθ2), (5.240)

where the conformal factor is,

f(ε) = 2π

(
1 +

1

ε

d

dε
(εb̃(ε))

)
, (5.241)

and the coefficient b̃(ε) is defined as b̃(ε) = b1(ε,−ε). In centre of mass coordinates,

the Ricci form is,

ρ = i ∂∂̄ log
√
|gL2|

= i ∂∂ log f(ε)

= −K(ε) f(ε) εdε ∧ dθ, (5.242)

where, K(ε) is the Gaussian curvature of the subspace of vortex pairs with Z = 0,

K = − 1

2εf(ε)

d

dε

(
ε
d

dε
log f(ε)

)
. (5.243)

On the other hand, by (5.239),

dΩM = −κ
2
iπ dZ ∧ dZ − κ

2
f(ε) εdε ∧ dθ

− κπ i
(
−1

4
dZ ∧ dZ +

i

2
r dr ∧ dθ + ∂̄∂a

)
. (5.244)
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On the plane, (h,N), the solution to equations (5.219)-(5.220), is invariant

under isometries. For small κ and small perturbations of (h0, 0), where h0 is

the solution to the Taubes equation for the Abelian Higgs model, the result of

Flood-Speight [14] shows the existence of exactly one solution (h,N) to the field

equations on a compact surface. It is sensible to assume the same statement holds

on the plane, this implies a is invariant under isometries of R2, hence,

∂z1a+ ∂z2a = 0, ∂̄z1a+ ∂̄z2a = 0. (5.245)

From these equations, we deduce,

∂a = ∂z1a dz
1 + ∂z2a dz

2 = −∂z1a (dz2 − dz1). (5.246)

Likewise,

∂̄∂a = −(∂̄z1∂z1a dz̄
1 + ∂̄z2∂z1a dz̄

2) ∧ (dz2 − dz1)

= ∂̄z1∂z1a (dz̄2 − dz̄1) ∧ (dz2 − dz1)

= 2 i ∂̄z1∂z1a · ε dε ∧ dθ. (5.247)

Let ã(ε) = a(ε,−ε), isometric invariance of a implies,

∂̄z1∂z1a =
1

4ε

d

dε

(
ε
dã

dε

)
. (5.248)

Going back to equation (5.244), we find,

dΩM = −κπ i
4

dZ ∧ dZ̄

− κπ

2

(
1 +

2

ε

d

dε
(ε b̃(ε))− 1

ε

d

dε

(
ε
dã

dε

))
ε dε ∧ dθ. (5.249)

Equation (5.249) shows dΩM 6= κρ, since ρ has no dZ ∧ dZ̄ component.

5.2.4 Chern-Simons localization on the O(3) Sigma model

We can adapt our previous arguments to the O(3) Sigma model with some minor

adjustments. Most of our previous deduction follows without change, since the

Bogomolny equations have the same structure, except for the algebraic formula

of ∗B. Gauss’s law in this case has to be replaced as in section 5.1. In this case,
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the projection β of a solution Φ ∈ A′ to the static Bogomolny equations onto

vertical space is a solution to equation (2.46), which for variations of the core

positions is,

(∆ + |Xφ|2) β = 〈φ̇, Xφ〉+ d∗Ȧ, (5.250)

In this case at each core pj ∈ P ∪ Q, we have to take into consideration the

sign function sj, otherwise our computation on sections 5.2.2, 5.2.3 follow the

same pattern and we find that for non-coalescent vortices, to first order in κ,

dΩM = κπ
∑
j

sj

(
−1

2
Π∗jB + d∂tχ̃pj(pj)

)
= κπ

∑
j

sj

(
1

2
Π∗j(∗(κN + τ − 〈n, φ〉)) + d∂tχ̃pj(pj)

)
= κπ

∑
j

(
− i

4
(1− sjτ) eΛ(zj) dzj ∧ dzj + sj d∂tχ̃zj(zj)

)
. (5.251)

To deduce a formula for the second term in the sum, we know by section 5.1

that for κ = 0, the only solution to the governing elliptic problem is (h0, 0) where

h0 is the solution to the Taubes equation for the O(3) Sigma model. As is shown

in equation (2.77), η can be computed from the derivatives of h, in accordance

to (5.228). If we recall equation (2.102), we find for any small holomorphic

neighbourhood Uj of pj ∈ P ∪Q, zj = ϕ(pj),

h̃pj(ϕ(x)) = sj aj +
1

2
sj
(
bj (z − zj) + bj (z − zj)

)
+ O(r2

j ). (5.252)

Comparing with (5.229), we deduce,

sj∂tχ̃pj(pj) = =

(∑
i

żi∂ziaj −
1

2
bj żj

)
. (5.253)

By lemma 2.3, b has the same symmetries than for Ginzburg-Landau solitons,

therefore,

dΩM = −κπ i
∑
j

(
1

4
(1− sjτ) eΛ(zj) dzj ∧ dzj + ∂∂ a+

1

2
∂b

)
. (5.254)
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5.2.5 Extending to the coalescence points

In the previous sections we developed two formulae for the extra term in a local-

ization formula of vortices in a model with a Chern-Simons term. We assumed κ

small and found two related formulae on M′, the open and dense subspace of the

moduli space of non-coalescent vortices. To extend dΩM to the coalescence points

means to study the limit of the formula as any pair of vortices, (of the same type

for deformations of the O(3) Sigma model) coalesce, meaning as d(pj, pk)→ 0 for

pj 6= pk and pj, pk vortices of the same type. Let us consider first the O(3) Sigma

model. Let h̃ ∈ C∞(Σ) be the regular part of h, theorem 2.12 shows h̃ depends

smoothly on vortex positions as long as vortices and antivortices do not coalesce.

Recall in section 2.3 we defined smooth functions vj : Σ \ {pj} → R, such that,

h =
∑
j

sj vj + h̃. (5.255)

In the compact case, we assume P ∪ Q ⊂ U , U an open and dense subset of

the surface in which a holomorphic chart ϕ : U → C is defined. Let D ⊂ C be

a bounded domain containing ϕ(P ∪ Q). Since each vj is a constant multiple of

Green’s function, there is a smooth function ṽ : D × D → R such that for any

z ∈ D,

vj(ϕ
−1(z)) = log |z − zj|2 + ṽ(z, zj). (5.256)

Thus,

siai =
∑
j 6=i

sj log |zj − zi|2 +
∑
j

sj ṽ(zj, zi) + h̃(ϕ(zi)), (5.257)

and,

sibi = 2 ∂z

(∑
j 6=i

sj log |z − zj|2 +
∑
j

sj ṽ(z, zj) + h̃(ϕ−1(z))

)
(zi)

=
∑
j 6=i

2sj
zi − zj

+ 2
∑
j

sj ∂zṽ(zj, zi) + 2 ∂zh̃(zi). (5.258)
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Hence, for non-coalescent cores at D,

∂∂ a =
∑
i,j

sisj ∂∂ ṽ(zj, zi) +
∑
i

si ∂∂ h̃(zi),

∂ b = 2∂

(∑
i,j

(
sisj∂zṽ(zj, zi) + siδij∂zh̃(zi)

)
dzi

)
.

(5.259)

If z ∈ D is such that for a fixed pair of indices j, k, the vortices at zj, zk

are of the same type and both converge to z, equation (5.259) implies the limit

lim|zj−zk|→0 dΩM exists and is unique, in fact, it corresponds to solving the regu-

larised Taubes equation with configuration p such that pj = pk = ϕ−1(z).

For Ginzburg-Landau vortices the same argument is valid, it is simpler, since

in this case all the vortices are of the same type and we can take sp = 1 for all

the cores. In this case we arrive to an algebraic expression similar to (5.259) and

apply proposition 2.14 to conclude dΩM can also be extended to the coalescence

points.
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Chapter 6

Conclusion

In this work we focused on geometric models of vortices and antivortices of the

O(3) Sigma model. We emphasised the geometric nature of the interaction of a

vortex-antivortex pair on the moduli space.

We were able to prove that the L2 metric in the moduli space is incomplete

both on the euclidean plane and on a compact surface. We also analysed the

dynamical properties of the interaction on the plane, focusing on scattering of

vortex-antivortex pairs.

We also computed the volume of the moduli space on spheres and flat tori,

corroborating the work of Speight and Rõmao who conjectured a formula for the

volume of the moduli space for a general surface.

The fact that the moduli space is incomplete imposed some technical difficul-

ties on the proofs, that we overcame by analysing the behaviour of solutions to

the Taubes equations in the collision of a vortex and an antivortex.

Finally, we added a Chern-Simons interaction term to our model and applied

the geodesic approximation ideas to determine the extra term in the metric of

the moduli space for small perturbations due to the interaction. Our analysis

indicates that the extra term can be extended to the coincidence set.

Some questions remain opened, representing an opportunity for future work.

The short range approximation formula for the metric on the space of vortex-

antivortex pairs of the euclidean plane relies on uniform convergence of the family

h̃ε/ε, as ε → 0, where h̃ε is the regular part of the Taubes equation. Numerical

evidence suggests this conjecture is true. Should it be the case, we would be able
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to prove formally that the Gaussian curvature of M1,1
0 (R2) diverges as ε → 0 as

expected from the numerical evidence and we could also justify analytically the

effective potential of Ricci magnetic geodesics. The equivalent conjecture for a

compact surface would allow to compute the volume formula for a general surface,

where we no longer have the extra symmetries that we used for the task.

In conclusion, geometric ideas to study field theory originated in the realm of

superconductivity with the Ginzburg-Landau functional at critical coupling, but

they have proved to be fruitful in a broader context. In particular, for asymmetric

vortex-antivortex systems of the O(3) Sigma model, where with these ideas one

can understand dynamics from a geometric point of view.
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[43] Ákos Nagy. The Berry Connection of the Ginzburg-Landau Vortices. Com-

munications in Mathematical Physics, 350(1):105–128, 2 2017. ISSN 0010-

3616. doi: 10.1007/s00220-016-2701-0. URL http://link.springer.com/

10.1007/s00220-016-2701-0. 13

[44] L. E. Payne and H. F. Weinberger. An optimal poincaré inequality for convex
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