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Abstract 

Complex diseases including osteosarcoma (OS) and rheumatoid arthritis 

(RA) require careful disease management. There is a need to update therapeutic 

treatments for these diseases, accommodating a more targeted and structurally 

supportive therapy. The risk of off-target toxicity could be reduced through the use of 

a hydrogel to deliver and anchor a selective peptide-conjugated prodrug (PCP), 

cleavable by an overexpressed protease at the disease site.  

This study investigates the development of novel Hydrogel-PCP systems, 

aiming to selectively release naproxen (NAP) from the PCP component, through 

selective cleavage by matrix metalloproteinase 14 (MMP14), a proteolytic enzyme 

overexpressed within osteosarcoma and rheumatoid arthritis. Collagen-based 

hydrogels were initially functionalised with the photo-active monomer 4-vinylbenzyl 

chloride, prior to drug conjugation and photo-crosslinking under UV light. In light of 

no network formation by various photo-crosslinking methods a change in the 

crosslinking strategy was made. Chemical crosslinking using (4-(4,6-dimethoxy-

1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride) (DMTMM), successfully formed a 

gelatin based hydrogel-NAPPCP system (gel-NAPPCP). The release of NAP from 

gel-NAPPCP was analysed using LCMS after a 72-hour MMP14 recombinant 

enzyme assay was carried out. Cleavage by MMP14 at the Hof-Gly peptide bond in 

NAPPCP, a recognised cleavage site, did not occur, however the release of a NAP 

metabolite was detected at increased concentrations in more acidic conditions, 

providing an alternative for future drug release.  

The DMTMM-induced crosslinking reaction takes place under physiological 

temperatures, allowing the exploration of an injectable in situ network forming gel-

NAPPCP system, which was explored in synthetic bone cavities. Initial investigations 

demonstrate successful gel-NAPPCP hydrogel formation in these cavities, a 

promising step towards a more clinically desirable device compared to surgical 

implantation.  

To conclude, this study provides a proof of concept for future investigations 

to improve MMP14 selective cleavage of NAPPCP in a hydrogel system to selectively 

target osteosarcoma and rheumatoid arthritis, using a clinically relevant delivery 

strategy.  
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1.0 Introduction 

Rheumatoid arthritis and osteosarcoma are complex diseases, often affecting 

the bone around a joint, particularly the knee in osteosarcoma [1] and the wrist in 

rheumatoid arthritis [2]. Whilst rheumatoid arthritis is a disease most commonly 

affecting adults, osteosarcoma occurs most frequently during childhood and 

adolescence. Osteosarcoma (OS) often requires surgery and powerful 

chemotherapy as a treatment, which is known to cause significant side-effects and 

unwanted toxicity to healthy tissues. In contrast rheumatoid arthritis (RA) is an 

autoimmune disease which is often treated by the use of disease-modifying 

antirheumatic drugs, immunosuppressors, for which off-target toxicity can also be 

detrimental [3]. For the treatment of both diseases, improved drug delivery could be 

significantly beneficial in reducing off-target toxicity. Treatment development for both 

diseases, particularly osteosarcoma, has seen very few advances in therapeutic 

treatments for many years. There is a clinical need for new interventions for both OS 

and RA: 

• to reduce unwanted toxicity in healthy tissues 

•  improve efficiency of treatment delivery 

• provide structural support to tissues 

• maintain the therapeutic effect of treatments.  

A major objective of drug delivery in disease therapeutics is the transportation 

of sufficient drug to the disease site, whilst reducing drug exposure to unaffected, 

healthy tissue [4]. By minimising the damage to healthy tissue caused by off-target 

drug toxicity, the therapeutic index is increased [5], allowing for the administration of 

a higher concentration of therapeutic agent (add another supporting reference) [6]. 

There are a wide variety of highly toxic therapeutic drugs, such as several 

chemotherapies, that could be utilised to better target other, less life-threatening 

diseases.  An example of a chemotherapeutic drug which is currently used to treat 

another non-cancerous disease is methotrexate. Methotrexate is a highly effective 

cytotoxic drug used to treat several autoimmune diseases including rheumatoid 

arthritis [7] and Crohn’s disease [8], although the mechanism by which methotrexate 

causes a therapeutic effect in cancer and rheumatoid arthritis is thought to be 

different [9]. Nevertheless, from a toxicological perspective it is crucial to deliver any 

therapeutic agent, particularly non-selective cytotoxic agents, to a disease site in a 

local fashion to reduce the risk of off-target toxicity. Delivery of a drug to the desired 

disease site is achieved through two main strategies, which aim to alter the 
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pharmacokinetic capabilities of the particular drug: The first of these methods 

involves the use of a drug delivery vehicle, such as nanoparticles or hydrogel 

conjugation of the drug to the gel, which release drugs through their own 

physiochemical properties, for example in response to temperature change [10, 11].  

The second method involves covalent modification of the drug, temporarily 

inhibiting the drug’s bioactivity (creating a so-called ‘prodrug’) in order to safely 

deliver it to the disease site [12].  

The prodrug strategy offers several key advantages over the use of a drug 

delivery vehicle, particularly the reduced amount of inert materials left behind after 

drug metabolism and the minimised risk of premature drug release. Both of these 

advantages reduce the metabolic stress on the patient, further increasing the 

therapeutic index of the particular drug administered [13]. Due to the advantages 

prodrugs appear to have over the use of delivery vehicles, it is feasibly unsurprising 

that many more prodrugs have been developed and approved by the US Food and 

Drug Administration (FDA) compared to the delivery vehicle method. A recent 

example is the antibody-drug conjugate polatuzumab vedotin, which in June 2019 

was granted accelerated approval by the FDA for the treatment of adults with 

relapsed/refractory diffuse large B-cell lymphoma (DLBCL) [14].  

This project explores the possibility of combining both drug delivery methods 

to produce a novel, clinically relevant therapeutic treatment. Many complex diseases 

such as cancer or rheumatoid arthritis could benefit significantly from a prodrug, 

loaded onto a drug delivery vehicle, reducing the risk of off-target activation, leading 

to unwanted toxicity. Peptide-drug conjugates (also known as peptide-conjugated 

prodrugs) offer a selective drug release strategy through the exploitation of an 

overexpressed proteolytic enzyme within the disease site and have demonstrated 

increased drug therapeutic index. Peptide-conjugated prodrugs (PCPs) are generally 

delivered intravenously (as they would be degraded in stomach acid if administered 

orally), with little control surrounding how they reach the target site. Conjugating a 

PCP to a hydrogel network, before either implanting or injecting the hydrogel to act 

as a delivery vehicle would anchor the selective prodrug in place at the disease site, 

further limiting the risk of unwanted toxicity. Hydrogels are 3-dimensional polymer 

matrices with unique properties, one of which is the similar consistency to connective 

tissue, allowing them to act as tissue scaffolds, to promote processes including bone 

regeneration [15], as well as many being biodegradable [16, 17]. 
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A novel system such as the one described here, is clinically desirable, for the 

treatment of rheumatoid arthritis, as it provides a selective and localised drug delivery 

system, through a completely biodegradable tissue support network. There are two 

possible delivery routes applicable to the gel system proposed: implantation and 

delivery by injection (Figure 1.1.) 

 

Figure 1.1. Commonly used clinical delivery routes. Delivery strategies versus 

proposed Hydrogel-PCP delivery strategies. The proposed Hydrogel-PCP 

consists of an active drug (naproxen) conjugated to peptide sequence, 

selective to matrix metalloproteinase 14 (MMP14) cleavage at the Hof-Gly 

peptide bond. The PCP is further conjugated to a collagen-based biopolymer, 

prior to network formation through either UV or chemical crosslinking.  
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1.1 Project Aims and Objectives 

Therapeutic treatments, displaying reduced off-target toxicity are sought after 

for the treatment of complex diseases such as rheumatoid arthritis and 

osteosarcoma. The aim of this proof of concept study is to address the clinical 

requirement of a more targeted therapy to treat osteosarcoma and rheumatoid 

arthritis.  

Naproxen, a non-steroidal anti-inflammatory drug well-known for its’ anti-

tumour effects and treatment of rheumatoid arthritis, will be conjugated to a peptide 

sequence, selective towards the active site of MMP14 to form a naproxen-PCP which 

will be coupled to a collagen-based biopolymer. The hydrogel-system will then be 

assessed for its’ relevance in targeting the diseases: osteosarcoma and rheumato id 

arthritis as well as to outline a possible clinical delivery route for the proposed drug 

delivery system. 

The combination of medicinal chemistry and biomaterials outlined here aims 

to pave a path for new knowledge and direction in the selective toxicology research 

field. This will be achieved by providing a concept for a new, selective device to 

replace the somewhat stagnant therapeutic methods in the treatment of rheumatoid 

arthritis and osteosarcoma, which have seen little advances in therapies in the last 

decade. A series of objectives outlined below, shed light upon the path in which the 

research will follow to achieve the aim of the study.  

 

1.1.1 Project objectives 

1. Synthesise a Hydrogel-PCP system from a collagen-based biopolymer, using UV 

irradiation of a photo-active molecule to induce network formation. 

There are two methods to achieve this objective:  a) Following conjugation of 

the photo-active molecule to free amino groups of the biopolymer, further 

coupling of the selected drug compound will be carried out, prior to UV-induced 

network formation and b) encapsulation of a drug-conjugated biopolymer sample 

within a separate, photo-activate, functionalised biopolymer sample. To 

determine the most suitable degree of functionalisation with the selected photo-

active molecule, a series of reactions will take place at varying molar excesses, 

following which the determination of remaining available amino groups (for drug 

conjugation and photopolymerisation to occur) will take place, before conjugating 

the desired therapeutic drug. 
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2. Using a chemical crosslinker, synthesis a collagen-based Hydrogel-PCP system. 

The use of direct chemical crosslinking removes the need for a photo-active 

molecule and provides an alternative method of forming a hydrogel network, as 

well as providing an alternative delivery route option, i.e. via injection in situ.  

Varying molar excesses of chemical crosslinker will be reacted to assess the 

changes in gelation times to provide insight into a suitable gelation time to support 

the injectable delivery route. The use of DMTMM as a chemical crosslinker, as 

opposed to the traditionally used EDC/NHS will also be explored.  

 

3. Carry out a recombinant enzyme assay to assess initial drug release. 

Necessary to confirm the selective release by MMP14 from the drug-

conjugated hydrogel system. The release profile may require modifications to the 

selected sequence to optimise the release by MMP14. An area to consider is the 

affect the hydrogel may have upon the release profile as MMP14 is a known 

collagen and gelatinase proteolytic enzyme and therefore may favourably cleave 

sites away from the peptide drug-conjugate cleavage site.  

 

4. Perform acid degradation assays on Hydrogel-PCP systems to assess the initial 

drug release.  

Acid degradation studies allow for the confirmation of drug presence within 

the Hydrogel-PCP system, should no selective drug release be observed. This 

would inform which further investigations or modifications to the Hydrogel-PCP 

system may be carried out to attempt to optimise the device.  

 

5. Investigate a possible delivery route of the Hydrogel-PCP system. 

The synthesis of a new therapeutic device requires a clinically viable delivery 

route. Therefore, the investigation into the most suitable delivery route for the 

relevant Hydrogel-PCP, is a necessary objective within this proof of concept 

study. If no viable delivery route can be developed, the Hydrogel-PCP concept 

must be adapted or be proven inadequate to continue investigating. A therapeutic 

agent is not viable if it cannot be safely or efficiently delivered.  
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2.0 Literature review 

This chapter outlines the key aspects of the thesis and reviews the literature 

related to the design of a novel Hydrogel-PCP system. It first discusses peptide-drug 

conjugates and their recent developments within a therapeutic setting. The use of 

hydrogel networks as drug delivery vehicles, to provide localised and controlled drug 

release, are then reviewed. The target diseases, osteosarcoma and rheumatoid 

arthritis are discussed before considering the most suitable attributes for the 

Hydrogel-PCP such as: 

• The biomaterial to form the hydrogel network from 

• The proteolytic enzyme for drug release 

• The active drug to be selectively released from the system. 

The finalised design of the Hydrogel-PCP system and its clinical significance are the 

reviewed. 

 

2.1 Peptide-drug conjugates  

Peptide-drug conjugates (PDCs) are an evolving class of prodrugs, formed 

by the covalent coupling of a specific peptide sequence (often recognised and 

cleaved by a target enzyme) to a drug, possibly via an additional cleavable linker and 

are often used to selectively target tumour cells [18]. The amino acid sequence can 

be adapted to control the physiochemical properties of the drug conjugate as well as 

to accelerate or decelerate the active targeting of a particular receptor or proteolytic 

enzyme present at the tumour site. Therefore, the utilisation of peptides to form a 

prodrug incorporates a substantial degree of functionality into PDCs. The short 

peptide chain length of approximately 8-12 amino acids often seen in PDCs (the 

typical optimal length for enzyme recognition) compliments the method further by 

being readily biodegradable and rarely eliciting any undesirable immunogenic 

response [19]. The variety in amino acid combinations allows for an easily achievable 

preparation of many different PDCs, as well as the manipulation of the sequence 

providing control over conjugate properties such as ionisation and hydrophobicity, 

which influence the bioavailability of PDCs in vitro and in vivo [20]. Peptide-

conjugated prodrugs generally have a low molecular weight, allowing simple 

purification via High-Performance Liquid Chromatography (HPLC) techniques. The 

control of PDC molecular weight and purity is crucial when optimising the 

pharmacokinetics of PDCs. Previous work has demonstrated the importance of the 
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peptide sequence: minor modifications, for example a single amino acid change to 

the peptide sequence of a PDC can cause significant changes to the way the peptide 

conjugate is recognised and metabolised by the target proteolytic enzyme [21]. This 

significant alteration to a PDC’s performance in drug delivery, is not only affected by 

a change in the amino acid sequence but also the drug and linker molecule used. 

Two key areas of PDC research with regards to drug delivery involve 1) The reduction 

of off-target toxicity and 2) self-assembling PDCs. 

 

2.1.1 Using peptide-drug conjugates to reduce unwanted toxicity 

An identified trait amongst more traditional anticancer drugs is their non-

selective nature, often leading to the failure of chemotherapy treatment due to dose-

limiting toxicity, for which the cardiovascular system is a common site for unwanted 

toxicity [22]. The use of PDCs is known to reduce off-target toxicity amongst highly 

toxic chemotherapies whilst also being able to overcome another common issue, 

drug insolubility in water. The conjugation of an anticancer drug to a hydrophilic 

peptide conjugate can increase the solubility of the insoluble drug, allowing for 

greater functionality and safer delivery of the drug itself [20]. In this section a 

commonly used peptide-type, integrin-targeting, is outlined due to the enhancement 

of drug delivery observed.  

Integrin targeted peptide-drug conjugates address the goal of delivering 

anticancer therapeutics to a disease site whilst limiting or avoiding the fallout of off-

target toxicity in healthy tissues. In any treatment, particularly in cancer, the first step 

of interaction between a therapeutic agent and the cell occurs at the cell’s exterior 

surface; this mechanism is an area to be exploited, because of the differences in the 

expression of receptors and/or enzymes on or around tumour cell surfaces compared 

to that of normal tissues. The vast array of overexpressed receptors and enzymes 

found in tumour masses allows for a greater diversity in PDC design, providing a 

more specific and selective targeting platform, tailored to a particular cell type. 

Integrins are a type of regularly targeted and identified receptors, as they are critical 

for physiological development, maintenance and repair of tissues, making them ideal 

receptors for cancerous tissues to overexpress, where they have been associated 

with enhancing cell metastasis and angiogenesis through the cooperation of serine 

proteases and metalloproteases [23, 24].  
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In 2016, Cox et al developed cysteine-knot mini-proteins (knottins) peptide-

drug conjugates, using a variety of drug-linker strategies to highlight an optimal 

conjugate as an effective inhibitor of tumour growth in a series of malignant cell lines, 

by delivering the drug, gemcitabine (GEM) [25]. The group provided evidence 

showing integrin-binding was crucial for potency, the mechanism for cellular 

internalisation is mediated by the integrin (αvβ6) and the GEM payload was 

successfully released intracellularly. This was demonstrated across a wide variety of 

malignant cell lines including U87MG and D270 glioblastoma cell lines, breast MB-

468, ovarian A2780 and pancreatic cell lines BxPC3 and PANC-1 [25].  

The αvβ6 integrin is a receptor involved in cell adhesion and commonly found 

to be overexpressed in cancerous cells compared to healthy cells. Conibear et al 

(2017), synthesised β6 targeting compounds, through solid-phase protein synthesis, 

consisting of integrin-targeting peptides, cytotoxic platinum (IV) prodrugs and 

fluorescent or affinity probes joined with flexible linkers [26]. 

Although several other drug conjugate strategies such as antibody-drug 

conjugates have proven promising for targeted drug delivery, peptide-drug 

conjugates are more readily optimised and modified to improve the targeting 

properties towards cancer cells and other diseased cell types, to develop cleavable 

linkers for the conjugation of therapeutic drugs [27, 28]. Optimisation of the peptide-

drug conjugate allows for control over the targeting, making it more or less selective, 

depending on the balance between therapeutic effect and unwanted toxicity. 

Conibear et al (2017) demonstrated the flexibility of using a PDC design for integrin-

targeted drug delivery using the “Y” structure to form the PDC, oxali-Pt-Y-1 

(oxaliplatin based platinum (IV) prodrug with Y shaped branch scaffold), with a 

versatility allowing each module of the structure to be interchangeable for more 

suitable components depending on the target. An example of this would be the 

adaptation of the peptide conjugate to target alternative integrins other than β6, or 

even other receptor types overexpressed in the targeted disease [26]. The Y shaped 

module design synthesised by Conibear et al (2017) distinguished itself from 

previously discussed antibody-drug conjugates and peptide-drug conjugates [25] due 

to the two targeting peptides incorporated into the PEG27 linkers. The selective uptake  

of oxali-Pt from the oxali-Pt-Y-1 structure from cells was confirmed, as was the 

retention of the cytotoxic activity [26].  

The study by Conibear et al (2017) serves as one example of a new selective 

approach using PDCs to safely deliver a therapeutic agent to a disease site whilst 
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limiting the amount of off-target toxicity by selecting a target release trigger 

overexpressed in the disease site and not in the healthy tissue. This improves the 

therapeutic index of the selected drug, allowing a higher drug dose to be administered 

before the maximum tolerated dose (MTD) is achieved.  

 

2.1.2 Self-assembling peptide-drug conjugates 

Peptide-drug conjugates were initially designed to improve solubility and 

provide functional diversity by taking advantage of short hydrophilic peptides. 

Through research, a tendency for peptide segments to undergo self-aggregation has 

been identified, capitalising on the combination of low molecular weight hydrophobic 

drugs and hydrophilic peptide segments. The use of self-assembling peptides has 

expanded in recent years with regards to drug delivery. Here, the examination of self-

assembling peptides and their use in drug delivery is discussed.  

An important class of drug carriers relies on the use of hydrogels, an area of 

biomaterials with significant drug release capabilities [29-31]. Hydrogels in recent 

years have drawn much interest in their use as drug delivery vehicles, and in their 

early days, the research field focussed on the use of polymer-based hydrogels [32]. 

The research field has now branched out into supramolecular hydrogels too, due to 

the formation of aqueous assemblies of low molecular weight gelators through 

interactions [31, 33]. Supramolecular hydrogels, particularly, peptide-based, possess 

unique characteristics including, biocompatibility, low-toxicity and biodegradability. 

The formation of peptide-based hydrogels can also be initiated due to stimuli 

changes, such as temperature or pH, suggesting a promising alternative to polymeric 

hydrogels. Peptide-based hydrogels have demonstrated significant success in drug 

delivery, an example of which involved the use of self-assembling N-

fluorenylmethoxycarbonyl diphenylalanine to react with positively charged poly-L-

lysine by electrostatic interactions. The self-assembled nanofibers formed helical 

structures similar to fimbrial antigens and showed antigenic activities, serving as a 

vaccine to trigger strong antitumour immune responses without any antigen and 

adjuvant [34]. Activated T cell responses were demonstrated without the addition of 

antigens, leading to the suppression of tumour growth [34]. Furthermore, the 

injectability of the self-assembling peptide-based hydrogels, provides a clinical 

advantage when compared with many polymeric, implantable hydrogel devices, due 

to the less invasive nature of delivery, as well as a reduction in the risk of infection 

and therefore unwanted toxicity. 
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Altunbas and colleagues demonstrated a sustained release of curcumin, an 

anti-inflammatory and anti-tumorigenic compound extracted from turmeric root 

(Curcuma longa), from self-assembling peptides in a non-invasive injectable system 

[35]. One of the more significant areas of the research by Altunbas et al (2011) is the 

insolubility of curcumin in aqueous solutions which often limits the therapeutic uses, 

however encapsulation of curcumin and self-assembling peptide gelation that occurs 

in aqueous, physiological conditions, appears to overcome the curcumin insolubility 

complications.  Research carried out has demonstrated curcumin is capable of 

inducing apoptosis in a variety of cancer cell lines, including MCF-7 and MDA-MB 

cell lines in a time and dose-dependent manner [36]. A 2009 review of curcumin and 

the effects it has upon cancer cell lines describes how it can selectively kill tumour 

cells and not the healthy cells, through the regulation of several cell signalling 

pathways, including but not limited to: cell survival pathway (Bcl-2), tumour 

suppressor pathways (p53 and p21) and the cell-proliferation pathway (c-myc) [37]. 

In relation to the use of self-assembling peptides, Altunbas and colleagues 

demonstrated growth of the human medulloblastoma cell line, DAOY on hydrogels 

not loaded with curcumin, however hydrogels loaded with curcumin inhibited DAOY 

cell growth. Further investigations showed that curcumin, released from the MAX8 

hydrogels was functional, however in hydrogels containing a greater peptide 

concentration there was evidence of decreased cell death, thought to be due to the 

peptide inhibiting curcumin from freely moving through the hydrogel network due to 

hydrophobic interactions resulting in a slowed drug release in higher peptide 

concentrations [35]. These findings demonstrate an area where drug release is not 

only possible using self-assembling peptides as delivery vehicles, but also 

controllable by altering the peptide concentration versus the drug concentration to 

suit the delivery strategy.  

Self-assembling peptides have proven to be strong candidates for drug 

delivery, as the rate of drug release can be controlled. The self-assembling peptide 

hydrogels themselves demonstrate versatility through the variety of applications they 

can be used for including drug delivery [38], tissue engineering [39] and wound 

healing [40]. The advantages of self-assembling peptides when compared to 

polymeric hydrogels appear superior, however the selection of the hydrogel type 

relies heavily upon the specific end-use application. Several polymeric hydrogels 

provide properties similar and, in some cases, superior to those of self-assembling 

peptides, including thermosetting properties, enhanced biodegradability and superior 

mechanical properties. 
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2.2 Hydrogel systems and their use as drug delivery vehicles 

Recently, hydrogels have become an area of focus for delivering anticancer 

treatments due to their wide tunability and cross-linking properties. Hydrogels consist 

of 3-dimensional networks, made up of hydrophilic polymers, cross-linked either by 

physical intra-/inter- molecular attractions or through covalent bonds. Their ability to 

readily absorb water and biological fluids is very much desired in applications such 

as wound healing [41], due to their similar consistency to the extracellular matrix. The 

hydrophilic properties of hydrogels are largely due to the presence of hydrophilic 

moieties, for example carboxyl, amide, amino and hydroxyl groups within the 

polymeric backbone chains [42-44] as well as the presence of crosslinks among 

polymer chains, which prevents the dissolution of the polymer in water. Hydrogels 

were originally used for contact lenses after Wichterle et al developed a poly(2-

hydroxyethyl methacrylate)-based hydrogel over 50 years ago [45]. Research within 

the hydrogel field has progressed considerably since the work of Wichterle et al, 

particularly within the last 20 years. As the field of research has expanded, the variety 

of biomedical applications associated with hydrogels has broadened and now 

includes, but is not limited to, wound healing [46], tissue engineering and drug 

delivery as well as controlled drug release [47]. There are now several types of 

hydrogel, widely used to address these applications; three popular types are 

homopolymer, copolymer and the previously discussed self-assembling peptide 

systems. Both, homo and copolymer hydrogels originate from either synthetic-based 

or biopolymer-based materials, of which the biopolymer-based materials will form the 

basis of this research project. Each of these hydrogel types have advantages and 

disadvantages depending on the type of application desired, for example the self-

assembling peptide-based hydrogels lack covalent bonding [48] and as a result are 

generally mechanically weaker than a crosslinked homo- or copolymer.  

Due to their tissue-like consistency and tuneable characteristics through 

functionalisation of the backbone polymer, hydrogels have become extremely 

popular as tissue engineering scaffolds or drug release devices. As well as their 

tuneable characteristics, a wide range of polymeric biomaterials, from both natural 

and synthetic sources can be used as a starting material. The extensive variety 

allows a hydrogel to have unique properties, such as being magnetic, 

thermosensitive and photo-active, each of which has recently demonstrated a use as 

a delivery vehicle for localised drug delivery. Similarly, to the type of hydrogel 

material, the unique properties required of the hydrogel system depend upon the type 

of application, the delivery of the device and if used for drug delivery desired rate of 
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drug release. Table X indicates some examples of hydrogels used within a variety of 

applications. 
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Type of 

Hydrogel 
Monomer 

Functionalised 

with molecule 
Cross-linker 

Specific reaction 

conditions 
References Applications 

Homopolymer 

Oligo PEG 

fumarate2 

Sodium 

methacrylate 

I2959 
Free-radical 

photopolymerisation 

[49-55] 

Drug delivery, 

wound healing, 

Tissue engineering 

Collagen1 

4VBC 

Gelatin1 

MA 

Agarose1 
Poly(vinyl 

alcohol) 

N,N′-Methylene 

bisacrylamide 

Chitosan1 N/A 
N/A - 

Thermosensitive 

1% lactic acid solution 

and 1.5 ml glycerol in 

distilled water 

Copolymer 

PLGA-PEG-

PLGA2 
N/A 

N/A- 

Thermosensitive 

Tuneable temperature 

of solution-gel transition 

based on concentration 

[56-60] 
Drug delivery, 

wound dressing 
Hyaluronic acid 

and Chitosan1 
N/A N/A 

24 mg/ml carboxymethyl 

chitosan mixed with 60 

mg/ml aldehyde HA 

using a traditional 

double syringe 
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Alginate and 

PEG-diamines2 
N/A Chemical EDC/NHS solution 

Cellulose and 

poly(N-vinyl 

pyrrolidone)1 

N/A Cobalt-60 
Radioactive 

polymerisation 

Self-assembling 

peptide systems 

Heparin3 N/A Chemical 
EDC/sulfo-NHS solution 

and low temperature 

[61-63] 
Tissue regeneration, 

drug delivery 

Multidomain 

peptide chains3 
N/A 

Presence of 

negatively 

charged 

phosphate ions 

Dissolved in deionised 

water containing 298 

mM sucrose at 20 

mg/ml 

D-peptides 

(peptide chains 

containing D-

amino acids)3 

N/A 
N/A-

Thermosensitive 

Self-assembly upon 

cooling to room 

temperature after boiling 

 

Table 2.1. Examples of the variety of hydrogel materials, cross-linking methods and applications present in current literature.  

1 Denotes biopolymer-based hydrogels 

2 Denotes synthetic-based hydrogels 

3 Denotes self-assembling peptide systems 
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Using hydrogels as delivery vehicles for therapeutic drugs, enables greater 

therapeutic doses to be administered, as well as a reduced risk of off-target toxicity 

which, as discussed earlier, is a major clinical drawback within disease treatments, 

particularly anticancer treatments. In this section, three key varieties of hydrogels will 

be discussed alongside current literature, to aid in the selection of a suitable hydrogel 

material and type for the design of a novel Hydrogel-PCP system in Chapter 2.3.4. 

 

2.2.1 Thermosensitive hydrogels 

The use of thermosensitive hydrogels as drug delivery vehicles has become 

increasingly popular, particularly the lower critical solution temperature (LCST) gels. 

This is due to their ability to appear in a liquid polymer form at room temperatures, 

however upon being implanted or exposed to physiological temperatures they stiffen 

to become more gel-like, forming a hydrogel network [64]. Their liquid state at room 

temperature allows drugs to be mixed with them, which are loaded onto the hydrogels 

in response to temperature increase. An advantage of using a thermosensitive 

hydrogel is the removal of a chemical stimuli which is usually required to trigger the 

release of a drug from its vehicle. Drug diffusion from thermosensitive gels can play 

a crucial role in drug release [65].The process of liquid to gel is also reversible which 

allows thermosensitive hydrogels to be easily implanted and removed from the target 

site [66, 67]. An example of a thermosensitive hydrogel used in drug delivery is the 

triblock copolymer composed of poly(D,L-lactic-co-glycolic acid) (PLGA) and 

polyethylene glycol (PEG) also known as PLGA-PEG-PLGA. Some advantages of 

this copolymer are its simplistic design, which does not require organic solvents for 

either its synthesis or purification, and that the polymer is also biodegradable and 

biocompatible. From a drug delivery perspective, the PLGA-PEG-PLGA hydrogel can 

deliver both hydrophilic and hydrophobic drugs, has little systemic toxicity, and has 

been widely used as a cancer drug delivery vehicle [68]. In 2001, Zentner et al used 

PLGA-PEG-PLGA to deliver paclitaxel to tumour sites - controlling the release for up 

to 50 days, whilst demonstrating minimal drug release in healthy tissue [60]. More 

recently this gel has been used in a co-delivery study of 3 commonly used anticancer 

drugs, doxorubicin (DOX), cisplatin (CDDP) and methotrexate (MTX) for the 

treatment of osteosarcoma. As with many other cancer therapeutic drugs, DOX, 

CDDP and MTX are non-selective and highly cytotoxic agents which are linked to off 
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target toxicity [69-71]. Therefore, the need to safely deliver these drugs is key and 

has been demonstrated by Ma et al [59].  

Ma et al, using a 20 wt.% PLGA-PEG-PLGA hydrogel, due to its appropriate 

sol-gel transition temperature and gelation time, loaded DOX, CDDP and MTX and 

assessed the in vitro drug release [59]. MTX and DOX demonstrated an initial fast 

release for 2 days after administration, before a sustained release over 10 days. 

CDDP however, exhibited 70% release in the first 2 days, thought to be due to its 

enhanced solubility and reduced substitution of Cl⁻ ion activity [72].  

 

The group’s in vitro study indicated the hydrogel demonstrated 

cytocompatibility in both the osteosarcoma cell lines (Saos-2 and MG-63) as well as 

the normal tissue cell line (L929). Cytotoxicity was assessed using an MTT assay, 

which exhibited enhanced cytotoxicity on Saos-2 and MG-63 cell lines when the 

hydrogels were co-loaded with all three drugs. In vivo, it was shown by Ma and 

colleagues that drug-loaded PLGA-PEG-PLGA hydrogels demonstrated increased 

tumour inhibition efficacies for up to 16 days, compared to treatments with free drugs. 

It must also be noted that in this study, co-loaded hydrogels exhibited greater 

antitumour effects than hydrogels loaded with a single drug [59].  

In terms of reducing off-target toxicity, which as previously stated is a key 

objective in selective methods of treatment, Ma et al also assessed systemic toxicity 

effects. During the in vivo study, body weight checks were carried out, which 

indicated low systemic toxicity was associated with this method of localised treatment 

due to no significant weight loss shown in the mice [59]. 

To further assess the off-target toxicity, H&E stains were also carried out on 

the organs of sacrificed mice including, liver, heart, kidney and spleen. No obvious 

abnormalities were shown by the H&E staining, suggesting no off-target toxicity 

during the study, due to the localised methods of treatment [59].  

The study by Ma et al serves as a key example of enhanced delivery and 

sustained antitumour effects which can be achieved using thermosensitive hydrogels 

as delivery vehicles for anticancer drugs. Of course, there are various other 

thermosensitive hydrogels which could be used, for example the PECT based 

hydrogels [73] and anticancer drugs such as paclitaxel and docetaxel [74, 75]. 
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2.2.2 Magnetic hydrogels 

Magnetic hydrogels are another variation of hydrogels used for several 

applications, including drug delivery. A common nanoparticle used to give the 

hydrogels their magnetic characteristics is a magnetic iron oxide nanoparticle 

(MION). Due to their unique properties, small size, low toxicity, availability as well as 

their detection and separation techniques, to mention a few, MIONs make ideal 

compounds to be used in the production of nanoparticles. Another reason as to why 

MIONs are commonly used is that they can be coated in a wide range of materials 

[76] such as polymers, for example PEG, which can form hydrogels through surface 

initiated photopolymerisation. The release of therapeutic drugs coupled to these 

magnetic hydrogels can be carried out by passing alternating magnetic fields (AMF) 

through them. The AMF causes an increase in temperature of the hydrogel, leading 

to an increased rate of diffusion of the drug. A 2012 study by Meenach et al 

demonstrated the efficacy of paclitaxel, that was delivered by PEG-iron oxide 

hydrogel nanocomposites, was increased when temperatures reached hyperthermic 

levels (41-45⁰C) in A549 lung carcinoma cells [77]. 

A key advantage of using MIONs to deliver therapeutic drugs is by pulsating 

the hydrogels using AMF, which provides controlled bursts of drug release to the 

target area. There are several ways in which research groups have used MIONs to 

benefit their drug delivery hydrogel vehicles either by using the technique alone or 

combining it with another type of hydrogel such as a thermosensitive hydrogel [78]. 

A recent paper has demonstrated the use of magnetic and pH responsive K-

carrageenan/chitosan complexes for the controlled release of methotrexate (MTX) 

[79]. It was shown that a greater quantity of MTX could be loaded onto the hydrogels 

with a higher magnetic content, thought to be due to the high surface area of the 

nanoparticles, as well as methotrexate’s favourable interactions with hydroxyl groups 

of magnetite [80]. In terms of the magnetic hydrogels, drug release at different pHs 

was identified. It was found that MTX at a pH level of 5.3 released approximately 50% 

of the total MTX within the first 4hrs after administration, with the rest being released 

at a sustained rate over the next 48hrs. However, at a pH of 7.4, approximately 68% 

of the administered MTX was released over the initial 4hrs, and the majority of the 

remaining released over the next 7hrs [79]. 

This study provided the concept for the delivery of MTX, and potentially other 

therapeutic drugs, using magnetic and pH responsive hydrogels which could be 

applied to other types of hydrogel in the future. The Mahdavinia et al study also 
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compliments research carried out by other groups such as that by Davaran et al in 

2014 who used poly(NIPAAm-MAA-VP) magnetic (Fe₃O₄) hydrogel nanocomposites 

as an effective carrier for targeting in drug delivery systems as an anticancer 

treatment method [81]. Similarly to the work of Meenach et al (2012), Davaran and 

colleagues observed increased drug release at 40⁰C in acidic conditions compared 

to 37⁰C, however drug release was assessed in basic conditions at 37⁰C which may 

have also affected the drug release [81]. 

All in all, the use of magnetic hydrogels and the varying degree of drug release 

at different pHs have displayed impressive results in their use as anticancer drug 

delivery vehicles. 

2.2.3 Photopolymerisation hydrogels 

The increasingly popular use of photo-active molecules to functionalise the 

desired biomaterial can provide control over the network architecture as well as the 

mechanical and swelling properties. The photo-crosslinking strategies have been 

applied to the formation of synthetic polymer systems where their tunability and 

biocompatibility have been reported in detail [82-84]. Photo-activated hydrogels have 

been used for a variety of applications including the generation of on-demand H₂O₂ 

in cell culture [85], tissue engineering [86] and localised drug delivery [87]. However, 

the use of solely photo-activated hydrogels in drug delivery as opposed to a hybrid-

type hydrogel is relatively new, particularly where the use of harmful UV light to form 

the hydrogel is avoided [88]. 

In 2012, Bakó and colleagues synthesised a methacrylated PGA (MPGA) 

based hydrogel via free radical polymerisation in a photoinitiator-supplemented PBS 

solution containing 30% w/w of MPGA. Metronidazole, was loaded as a drug onto 

the hydrogel, and the release rate was assessed by immersing the MPGA loaded 

gels in PBS and HPLC of the supernatant at regular time intervals[87].  

The release measurements were carried out in five parallel experiments to 

ensure reliable data. Bakó et al (2012) found that drug release was primarily ruled by 

the hydrogel swelling behaviour due to the rapid increase of swelling in the first two 

hours, which prompted the initial burst effect. After 2 hours, the rate of drug released 

remained at a sustained level for the next 6 hours. It must be noted that release 

profiles were carried out by Bakó et al in in vitro conditions only, where mixing speeds 

and the amount on medium was increased [87]. Therefore, drug release would likely 

be slower when tested in in vivo or ex vivo environments. 
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During the toxicological assessment, when compared with PGA, the MPGA 

polymer exhibited no notable differences in either an MTT or LDH assay. For both 

polymers, the cytotoxicity did not exceed 4%, and was therefore deemed non-toxic. 

The MPGA hydrogels were also analysed and again were shown to be non-toxic. In 

the hydrogel form, the LDH assay demonstrated cytotoxicity levels of 3.82% and the 

MTT assay results were 104.2%, indicating no cell toxicity [87].  

These results provide strong evidence for the use of MPGA and the potential 

for other solely photo-activated hydrogels in drug delivery due to their non-toxic 

nature. Another key point that must be noted, is the use of blue dental light, as 

opposed to UV light to induce hydrogel network formation, which has become a 

greater sought-after method of forming hydrogels due to the unwanted radiation 

associated with UV light, combine with the ability to induce network formation in situ, 

for example in the mouth during dental procedures.   

There is a limited amount of research involving the use of photo-crosslinked 

hydrogels for the delivery of anticancer drugs. In 2010, Dadsetan et al synthesised 

oligo (poly(ethylene glycol) fumarate) (OPF) hydrogels modified with sodium 

methacrylate (SMA), through photopolymerisation under UV light [51]. The group 

loaded DOX onto hydrogels by incubating the gel discs in 1 ml of aqueous DOX at 

varying concentrations at 37°C. It was demonstrated that non-SMA modified OPF 

hydrogels showed greater initial burst release of DOX as well as an overall amount 

released during the 15-day assay. The higher the SMA content the lower the release 

seen over 15 days; however, release could have continued for a greater period of 

time, which was not assessed in this study. Over the 15 days, in non-SMA modified 

OPF hydrogels, 100% of the loaded DOX was released whereas the HG-SMA50 

exhibited 57% DOX release and the HG-SMA300 (high density charged hydrogels), 

just 20% [51]. This sustained release, may be more advantageous when targeting 

certain cancers, as recent studies have shown a lower, more sustained release can 

provide greater control over the cancer growth, prolonging the tumour progression 

time [89]. 

In terms of cell toxicity however, Dadsetan and colleagues demonstrated that 

although the release of DOX was lower, the cell toxicity was significant in the 

osteosarcoma cell line MG63, with the maximum killing effect at DOX concentrations 

greater than 1 μg/ml. The group also showed the toxicity between hydrogels loaded 

with DOX versus hydrogels without DOX loading. As expected in hydrogels lacking 

DOX, the MG63 cells maintained their viability, indicating the non-toxic nature of the 
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hydrogels, whereas the DOX loaded hydrogels exhibited significant toxicity with 

minimal cell survival over three days [51]. 

 

2.2.4 Overcoming solubility complications 

Another challenge that many anticancer drugs, such as paclitaxel, face is the 

insolubility in aqueous environments [90]. Insolubility poses real obstacles in terms 

of the delivery of a therapeutic agent, not only in cancer but all forms of therapeutic 

treatments [91]. This is because if a drug is insoluble then it cannot be readily 

administered by intravenous methods or dissolved to couple to a vehicle. The use of 

hydrogels has shown significant progress in recent times for the delivery of 

hydrophobic, insoluble drugs [92-94]. Various techniques  have been applied towards 

overcoming the insolubility of anticancer drugs using hydrogels, from peptide 

nanofibers [94] to the complete encapsulation of the therapeutic agents in micelles 

[95]. In 2016 Li et al designed and synthesised injectable multidomain peptide (MDP) 

hydrogels, which contain a hydrophobic binding pocket. The MDP consists of a 

peptide made of alternating hydrophilic and hydrophobic amino acids with charged 

residues at both termini. In aqueous solutions, this design allows hydrophobic side-

chains to aggregate, forming a peptide dimer. Several peptide dimers form a further 

sequester of hydrophobic residues from contact with the surrounding aqueous 

solutions [94]. Interestingly, Li and colleagues were able to alter the release profile of 

the loaded drugs, by increasing the amount of drug encapsulated within the formed 

nanofibers. It was demonstrated, that the greater the encapsulation of the anticancer 

drug SN-38, the slower the release profile, showing 60% total drug release over 8 

days in the most encapsulated hydrogel (K2(SL)3SA(SL)2K2). The other two loaded 

hydrogels tested by Li et al demonstrated more than 90% release of SN-38 in the 

initial 24 hours [94]. Another anticancer drug which was assessed, daunorubicin, 

exhibited short term drug release (95% release over the initial 4 hours) from the 

hydrogels, irrespective of the encapsulation. The group also demonstrated the drug 

release of anti-inflammatory (diflunisal and etodolac) and antibiotic drugs 

(levofloxacin and norfloxacin), which could be used as combinational therapies when 

treating certain diseases [94].  

The work reported by Li et al is just one example of the use of hydrogels to 

overcome the inconvenience of delivering insoluble therapeutic drugs in an ever-

growing field of research [95-97]. By using hydrogels to deliver both soluble and 

insoluble drugs, unlike liquid-based drug carriers, hydrogels can remain within the 
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disease site, which enables the localised targeting of a drug, reducing the amount of 

off-target toxicity [98, 99]. 

To summarise, hydrogels are useful vehicles for the delivery of drugs to a 

target site requiring therapeutic treatment, as their tuneable properties allow for a 

wide variety of applicable characteristics to suit a range of environments, whilst 

reducing the risk of unwanted off-target toxicity. The unique tailoring of hydrogel 

characteristics, result in finely tuned properties, selected to be specific towards the 

end use requirements of the material.  
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2.3 Targeted diseases and Hydrogel-PCP system component selection 

Peptide drug conjugates, also known as peptide-conjugated prodrugs (PCP), 

are a sequence of peptides, covalently coupled to a drug with a view of delivering the 

conjugated drug to a target site for release in a localised area to improve the drug 

efficiency or reduce unwanted off-target toxicity [20]. There are several means of 

achieving drug release from a PCP, two methods involve 1) a localised, passive 

release from the natural break down of the biodegradable PCP and 2) a selective 

release, targeting an overexpressed enzyme in the disease, or condition the drug is 

aimed at treating. The latter of these methods requires a protecting endcap to avoid 

any unwanted metabolism of the peptide chain, whilst the middle section of the chain 

being selective to an active site of an overexpressed proteolytic enzyme [100]. Many 

diseases require pathological changes to promote symptoms, of which, enzymes 

often play a key role, whether that involves an up or down regulation of enzyme 

expression. Overexpression of these enzymes makes them ideal targets to exploit 

when using PCPs to target the disease [101]. Peptide-conjugated prodrugs also 

begin to address the complication of delivery of insoluble drugs, which particularly in 

diseases such as cancer, appear to be the more successful therapeutic treatments 

[102]. However, PCPs are not the only way to overcome insolubility, or deliver a drug 

for a localised treatment, as previously discussed, hydrogels are also useful delivery 

vehicles. The careful selection of the base material used for the hydrogel, could allow 

PCPs to be conjugated to the polymer, enhancing the localised delivery of a drug, 

particularly if the PCP was used as a selective release mechanism by targeting an 

overexpressed proteolytic enzyme to cleave and release the therapeutic drug in the 

disease tissue whilst reducing the release to normal tissue [103, 104]. Selection of a 

suitable hydrogel base material is necessary depending upon the intended delivery 

site. For example, where a disease occurs in a site under mechanical pressures such 

as within a joint, the hydrogel base material would also be required to withstand 

similar levels of mechanical stress, although the selected material cannot be too rigid, 

as between a joint the gel would need to be fluid and move, as cartilage, the 

connective tissue between joints does. Using hydrogels to deliver a selective PCP 

could provide a tissue support network whilst administering a therapeutic agent to the 

affected area.  

For the purposes of this study two different diseases were selected as 

possible treatment targets; these were osteosarcoma and rheumatoid arthritis, which 

both require clinical interventions to provide a more targeted therapeutic strategy. 
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2.3.1 Osteosarcoma – overview of cancer 

Collectively, cancer is a leading cause of death worldwide and was 

responsible for approximately 9.6 million deaths during 2018 according to the World 

Health Organisation. Cancer occurs as the result of a mutation which causes the 

rapid division of abnormal cells, able to grow beyond their usual boundaries by 

evading apoptosis and acquiring limitless replicative potential. Evading apoptosis is 

one of 6 hallmarks of cancer published by Hanahan and Weinberg in 2000 [105], 

describing 6 common traits that oversees the transformation from healthy cell to 

cancerous (malignant) cell (Figure 2.1.).  

 

Figure 2.1. Hallmarks of cancer. The majority of cancers acquire the same set 

of functional capabilities during development through a range of mechanical 

strategies. 

 

Cancer Hallmark – Growth signal self-sufficiency: The ability of cancer cells 

to generate their own growth signals reduces the dependence on stimulation from 

their healthy tissue microenvironment. In normal cells, the majority of soluble 

mitogenic growth factors (GF) are produced by one cell type, which in turn stimulates 

the proliferation of another, however cancer cells acquire the ability to synthesise 

their own GFs which they are responsive to, allowing the establishment of a positive 

feedback cycle, often referred to as autocrine stimulation [105]. As well as producing 
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their own GFs, certain types of cancer cells overexpress growth factor cell surface 

receptors, usually tyrosine kinase [106]. The overexpression of GF receptors may 

lead to hypersensitive responses to moderate levels of GF which would not normally 

trigger proliferation. For example, the human epidermal growth factor receptor 4 

(HER4) is overexpressed in osteosarcoma and promotes cell survival and 

chemoresistance [107].  

Cancer Hallmark – antigrowth signal insensitivity: Whilst becoming self-

sufficient in the production of their own growth factors, cancer cells also become 

unresponsive towards antigrowth signals. Antigrowth signals work through two 

mechanisms, 1) forcing cells out of an active proliferative state and into a quiescent 

(G0) state or 2) by permanently relinquishing their proliferation potential by being 

induced into postmitotic states [105]. For cancer cells to thrive, antiproliferative 

signals must be evaded, often through the disruption of the retinoblastoma protein 

(pRb) pathway. When in a hypophosphorylated state, pRb prevents cell proliferation 

by sequestering and altering the function of E2 Transcription Factors (E2F), 

controlling the expression of genes required for progression from G1 to S phase 

during the cell cycle [108]. Cancer cells disrupt the pRb pathway, leading to the 

liberation of E2F, allowing cell proliferation to occur irrespectively of antigrowth factor 

signals which would ordinarily prevent advancement through the G1 phase of the cell 

cycle.  

Cancer Hallmark – Evading apoptosis: The rate of cell proliferation is not the 

only factor governing the expansion of tumour cell populations, the rate of cell attrition 

which is mostly represented by programmed cell death, apoptosis also plays a part. 

Apoptosis is monitored by stimuli indicating whether a cell should live or die and is 

usually triggered by the mitochondria in response to proapoptotic signals, releasing 

cytochrome C [109]. The Bcl-2 family of proteins regulate mitochondrial cell death 

signalling through several proapoptotic (Bax, Bak, Bid, Bim) and antiapoptotic (Bcl-

2, Bcl-XL and Bcl-W) proteins, as well as the p53 tumour suppressor gene which 

induces apoptosis in response to DNA damage, leading to the upregulation of Bax 

expression to stimulate the release of cytochrome C from mitochondria. Evading 

apoptosis is a crucial trait for cancer cells to acquire in order to form a tumour mass. 

Evidence to support this consensus can be seen in a paper by Liu et al (2018), where 

RACK1 (receptor of activated protein kinase C 1) was overexpressed, leading to the 

facilitation of Bcl-2 expression and the restraint of Bim expression, in turn causing 

increased chemoresistance towards cisplatin [110], a chemotherapeutic drug 
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interfering with DNA replication within the cell leading to apoptosis induction [111], 

causing the prevention of apoptosis. 

Cancer Hallmark – limitless replicative potential: The three previously 

described hallmarks, all involve the uncoupling of a healthy cell’s natural growth 

program from signals within the environment. Although cells can provide themselves 

with growth signals and evade apoptosis, studies have indicated that this is not 

always sufficient enough to ensure expansive tumour growth. Cells managing to 

evade apoptosis still require the ability of limitless replicative potential, allowing them 

to continually divide above the usual 60-70 doublings seen in various normal human 

cell types. In healthy cells chromosomal telomeres, comprised of some thousands of 

repeats of 6 base pairs (bp) sequence elements become 50-100bp shorter upon each 

cell division, thus allowing the counting of cell generations to be possible. The loss of 

telomeric DNA from the ends of the chromosome at each cell cycle replication is due 

to the inability of DNA polymerases to fully replicate the 3’ ends of chromosomal DNA 

during the S phase of the cell cycle [112]. Over the course of successive replication 

cycles, the erosion of telomeres ultimately causes them to lose their ability to protect 

the ends of the chromosomal DNA. Once unprotected, chromosomal ends fuse 

leading to karyotypic disarray associated with crisis, resulting in the death of the 

affected cell [112, 113]. Telomere maintenance is observed in many malignant cells 

[114], the majority of which do so through the upregulation of the telomerase enzyme, 

lengthening the telomeric DNA [115]. Mechanisms causing the upregulation of 

telomerase often revolve around a mutation within the core promotor region of the 

telomerase reverse transcriptase (TERT), which is an essential molecule for the 

catalytic activity of telomerase [116]. These mutations increase TERT transcriptional 

activity by creating de novo consensus binding motifs for E-twenty-six (ETS) 

transcription factors [117], leading to limitless replicative potential.  

 

Cancer Hallmark – Sustained angiogenesis: The nutrients supplied to a tissue 

region are vital to cellular function and survival. Once a tissue is developed, the 

growth of new blood vessels – angiogenesis – is carefully regulated as cells lack the 

intrinsic ability to promote blood vessel growth. In order for a cell mass to progress 

to a larger size, to provide the essential oxygen and nutrients it requires, neoplasia’s 

must develop angiogenic capabilities [118, 119].  

The ability to induce and sustain angiogenesis is discretely acquired during 

tumour development by an “angiogenic switch” from vascular quiescence. Hanahan 
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and Folkman showed three transgenic mouse models acquired angiogenic 

capabilities, activated in mid-stage lesions, before the appearance of full-blown 

tumours [118]. The switch is activated by changing the balance of angiogenesis 

inducers and inhibitors. A common strategy involves altering gene transcription. 

Many tumours are shown to have increased vascular endothelial growth factor 

(VEGF) compared to normal tissue [118, 120, 121]. Another is the downregulation of 

endogenous inhibitors such as thrombospondin-1, which can be caused by a loss of 

p53 function [122], commonly seen in many tumours. Proteolytic enzymes such as 

MMP14 (matrix metalloproteinase-14) are also shown to promote angiogenesis and 

inhibit apoptosis by mediating VEGF in a variety of cornea [123] and breast 

carcinomas [124]. 

Cancer Hallmark – Tissue invasion and metastasis: The complex processes 

of invasion and metastasis enables cancer cells to escape the primary tumour site 

and colonise a new site within the body where, space and nutrients do not initially 

limit the metastasised tumour growth. Extracellular proteins play crucial roles in 

tumour metastasis, degrading the extracellular matrix (ECM) allowing migration and 

invasion to occur. Matrix metalloproteinases (MMPs) are a well-researched family of 

proteins for their roles in tumour metastasis and the acquisition of other cancer 

hallmarks. In oral squamous cell carcinoma, the transcription factor, Snail (SNAI1) 

upregulates MMP2 and MMP9, initiating epithelial-mesenchymal transition (EMT) 

[125]. Epithelial-mesenchymal transition is the process by which epithelial cells lose 

their cell polarity and cell-cell adhesion, achieving cell invasive and migratory 

characteristics. A widely observed cell-to-environment change in cancer involves E-

cadherin, a homotypic cell-to-cell interaction molecule expressed in epithelial cells. 

Coupling between cells via E-cadherin bridges allows the transmission of antigrowth 

signals [126]. Function of E-cadherin is lost in many epithelial cancers by 

mechanisms including the mutational inactivation of E-cadherin genes, 

transcriptional repression or proteolysis of the extracellular cadherin domain [126]. 

  



29 

 

2.3.2 Osteosarcoma – the disease 

Osteosarcoma (OS) is the most common type of bone cancer and commonly 

arises in children and adolescence. The 5-year survival rate of localised 

osteosarcoma is approximately 80%, however those with metastatic osteosarcoma 

have a significantly lower survival rate. Survival rates in the decade leading to 2009 

have shown little increase, suggesting a need for new treatment options [127, 128]. 

The disease itself is a malignant, abnormal growth of osteoblasts usually originating 

from the metaphysis of long bones and are known to metastasise early on in their 

progression, of which a usual metastatic site is the lungs (pulmonary metastases). 

Lung metastases osteosarcoma patients have poor prognosis, and a 5-year survival 

rate of approximately 30% according to the 2019 study by Huang et al [129] despite 

having surgery and chemotherapy treatments.  

The exact cause of osteosarcoma remains unknown, however defects in pRb 

and p53 genes play key roles in the development of OS. Mutations in pRb gene are 

observed in a high percentage of osteosarcoma and small cell lung carcinomas. In 

patients carrying germline Rb mutations, osteosarcoma is the second most common 

cancer type, with greater than 70% of cases demonstrating a molecular change or 

mutation at the Rb locus [130, 131]. Similarly, p53 plays a variety of different roles 

within the development of OS as p53 regulates the cell cycle, apoptosis and cell 

differentiation [132]. In human patients with Li-Fraumeni syndrome, an autosomal 

dominant hereditary disorder linked to germline mutations of the p53 tumour 

suppressor gene, OS is reported to occur more frequently [133, 134]. It is 

unsurprising that mutations in p53 lead to cellular acquisition of several key cancer 

hallmarks in osteosarcoma, of which mesenchymal stem cells and preosteoblasts 

have been identified as the cellular origin of OS [135, 136]. 

The diagnosis of OS involves radiological investigations including but not 

limited to: x-ray, CT scans and MRI scans. Radiological investigations suggest 91% 

appear in the metaphyseal areas of long bone, of which almost 50% of 

osteosarcomas occur around the knee [137]. After complete history, clinical 

examinations and imaging have been carried out, a biopsy is used to confirm the 

diagnosis and reveal the specific type and grade of the tumour [137]. Open incisional 

biopsies are performed through small incisions and have a major advantage of 

providing adequate quantities of tissue for histopathology, immunohistochemistry 

and genetic studies. However, open biopsies require more time and risk 

contamination of normal tissues during the surgical procedure. Closed method 
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biopsies, particularly percutaneous core needle biopsies have advanced significantly 

to become a safe and accurate method for diagnosing bone tumours. A Jamshidi 

needle is used to take multiple cores from a representative region of the tumour and 

is a less extensive and less time-consuming outpatient procedure, carried out under 

local anaesthesia with minimal soft tissue trauma and less contamination of normal 

tissue by tumour cells [137, 138]. Several research groups support core needle 

biopsies as it provides sufficient sample for diagnosis with minimal complications 

[139-141]. As suggested by the American Joint Committee on Cancer, a 4 grade 

system is used for osteosarcoma, with grades 1 and 2 considered as “low-grade” and 

grades 3 and 4 “high-grade” [142]. This is supported by the World Health 

Organisation which groups the grades into a two tier system (low and high-grade) 

[143]. Low-grade osteosarcoma is considered to be non-metastatic, whereas high-

grade is of a higher risk of metastasis, where chemotherapy tends to be mandatory 

in patients with a high grade diagnosis [144]. 

Current treatments for osteosarcoma include neoadjuvant chemotherapy, 

followed by surgery to remove the primary tumour and any evident metastatic 

disease, followed by further chemotherapy after surgery [145]. The most accepted 

chemotherapeutic for osteosarcoma is methotrexate (at very high doses), a DNA 

synthesis disrupting agent which irreversibly competitively inhibits dihydrofolate 

reductase (DHFR) which catalyses the oxidation of folates (Figure 2.2.). DHFR 

inhibition prevents the production of thymidylate in DNA synthesis, leading to cell 

proliferation arrest and eventually apoptosis or autophagy  [146]. Methotrexate is 

administered with a leucovorin rescue which is an antidote to methotrexate and 

replenishes depleted tetrahydrofolate stores, a mainstay treatment of OS 

chemotherapy [146]. Combinational chemotherapy between MTX and other drugs 

such as doxorubicin are used to improve survival rates compared to MTX alone [147-

149]. Other treatments of OS include non-steroidal anti-inflammatory drugs which are 

widely used to reduce pain and inflammation, but are also toxic to certain cancers 

[150]. Several sarcomas, including osteosarcoma express cyclooxygenase-2 (COX-

2) [151, 152]. Non-steroidal anti-inflammatory drugs significantly inhibit COX-2 at a 

therapeutic dose, making them possible treatments for OS [153]. 

 

 

 



31 

 

 

Figure 2.2. Structural similarities between methotrexate and folic acid. 

Methotrexate (left) and folic acid (right). 

 

There is a crucial need for clinical intervention with regards to osteosarcoma 

treatments. The current medical therapy for this disease has seen little change for 

the last 50 years and still relies heavily on the aforementioned chemotherapy-

surgery-chemotherapy strategy [154]. Ignoring the non-selective and invasive nature 

of the current treatment, the need for improved treatment deliveries are required to 

improve patient welfare. Chemotherapy is plagued with side-effects including but not 

limited to: hair loss, nausea, fatigue and anaemia, all of which can contribute to an 

already unpleasant illness. New, more selective means of targeting OS are required 

and in recent years there have been several promising developments such as the 

study carried out by Shan et al (2020) which locally delivered methotrexate and 

alendronate in a controlled manner, using an injectable thermosensitive hydrogel as 

a delivery vehicle [155]. Shan et al observed inhibited tumour growth, as well as a 

reduction in bone destruction and lung metastasis caused by OS using the injectable 

delivery device [155]. The use of a hydrogel to deliver a novel therapeutic treatment 

is advantageous in complex disease such as osteosarcoma and rheumatoid arthritis 

where the drugs commonly required for treatment are often capable of causing 

severe off-target toxicity. By selectively releasing the therapeutic agent in a localised 

manner, the off-target toxicity can be reduced, limiting the side effects of 

chemotherapy as well as damage to healthy tissues around the disease site. 

As described, cancers require a set of characteristics in order to achieve 

immorality, evade apoptosis and invade tissues and therefore the up or down 

regulation of particular cellular components must occur, for example enzyme 
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expressions. Often a tumour overexpresses the matrix metalloproteinase (MMP) 

family of enzymes, to achieve tissue invasion due to their ability to degrade the 

extracellular matrix and involvement in angiogenesis [156-158]. The exploitation of 

overexpressed proteolytic enzymes could pave the way for a new, selective 

therapeutic osteosarcoma treatment using a PCP delivery strategy. The use of a 

PCP, particularly if a chemotherapeutic agent were to be conjugated, would allow for 

a safer delivery route to the tumour site, minimising the risk of off-target toxicity and 

damage to healthy tissues. As previously described in Section 2.2, hydrogels are 

another suitable delivery strategy to target osteosarcoma and could be implanted at 

the time of surgery or injected for in situ network formation to administer therapeutic 

drugs to the tumour site. The advantages of a selective and localised administration 

of a chemotherapeutic drug such as MTX improves the therapeutic index of the 

particular drug, allowing for a higher dose, or prolonged drug administration to be 

administered whilst maintaining the same or lower toxicity to healthy tissues.  
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2.3.3 Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a long-term disease affecting joints, caused by 

an autoimmune disorder, however the exact cause remains unclear. Approximately 

80% of patients carry the epitope of the HLA-DRB1*04 cluster [159]. Rheumatoid 

arthritis usually arises during productive years of adulthood (between 20-40 years of 

age). According to the World Health Organisation, prevalence varies between 0.3 

and 1% and is more common in women and developed countries, and within 10 years 

of onset over 50% of patients are unable to carry out full-time work [160]. Warm, 

swollen and painful joints are amongst the most common symptoms of RA, as well 

as stiffness in joints, particularly after periods of rest. These symptoms are a result 

of inflammation around the joint and over time this inflammation leads to the erosion 

and damaging of the joint surface, for example cartilage degradation [161]. 

Inflammation occurs within the synovial membrane, the innermost part of the joint, 

which is normally a thin layer, a few cells thick [162]. 

Various immune modulators (cytokines and effector cells) as well as signalling 

pathways are involved in the pathophysiology of RA [163]. Pro-inflammatory 

cytokines such as IL-6 and TNF-α are involved in RA pathogenesis, playing dominant 

roles including, B and T cell proliferation, increased MMP and cytokine release [164] 

as well as osteoporosis [165] and cardiovascular disease promotion [166]. Tissue 

degradation is associated with the accumulation of several cell populations within the 

synovial membrane and the formation of a proliferating pannus. These cell 

populations include, macrophages, both T and B lymphocytes and dendritic cells 

[167]. The space where cartilage and pannus meet is occupied predominantly by 

macrophages and fibroblast-like synoviocytes (FLS) which have the potential to 

secrete proteolytic enzymes of which matrix metalloproteinases and cathepsin 

mRNA are expressed from the earliest stages of RA [168]. The FLSs synthesis of 

MMPs triggers the disassembly of type-II collagen (cartilage) networks, leading to the 

alteration of glycosaminoglycan content and water retention directly causing 

biomechanical dysfunction [169]. Endogenous enzyme inhibitors, such as tissue 

inhibitors of metalloproteinases (TIMPs) have failed to reverse the destructive 

cascade and articular cartilage has limited regenerative potential. These ultimately 

lead to the destruction of surface cartilage and the appearance of joint-space 

narrowing [159, 169]. 

Treatment of RA commonly involves the use of disease-modifying anti-

rheumatic drugs (DMARDs) or non-steroidal anti-inflammatory drugs (NSAIDs) either 
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separately or in combination with each other. Of the disease-modifying anti-

rheumatic drugs, methotrexate is the first choice due to its ability to overcome the 

immune cells attacking joints. The prodrug, sulfasalazine is another common choice 

of DMARD used to treat RA. Routine choices of NSAID to be prescribed to treat 

rheumatoid arthritis include ibuprofen and naproxen. Oral medication or injections 

are the most common forms of treatment for RA; however, these are non-selective 

and potentially expose healthy tissue to off-target toxicity, particularly where 

methotrexate is used.  

Rheumatoid arthritis, like osteosarcoma, requires an updated therapeutic 

strategy, to enhance the targeted delivery of treatments. The novel Hydrogel-PCP 

described here, addresses the clinically relevant needs of RA with regards to 

treatment, through the suggestion of a novel system to selectively deliver therapeutic 

treatments in a localised manner to reduce off-target toxicity. Various hydrogel 

therapies for rheumatoid arthritis have been researched [170], particularly hyaluronic 

acid (HA) based hydrogels [171]. Hyaluronic acid is major component of synovial fluid 

and cartilage and has been used to deliver therapeutic treatments, whilst protecting 

cells and anatomical structures against mechanical stress. Kim et al (2011), 

synthesised tyramine modified HA, injectable hydrogels which during crosslinking 

encapsulated the anti-inflammatory drug, dexamethasone [172]. Sustained release 

of dexamethasone was accomplished up to a month after delivery in in vitro and in 

vivo assessments.  

More selective release methods could be applied to treat RA such as the 

exploitation of the overexpressed proteolytic enzymes within the synovial membrane 

to actively release a therapeutic drug from a peptide conjugate. This differs from the 

approaches by researches such as Kim et al, as drug release is dependent upon a 

proteolytic enzyme overexpressed within the disease site and lower levels in healthy 

tissue, limiting the risk of off-target drug release. Similarly, the hydrogel system 

proposed here, could serve structural support network, to alleviate pain caused by 

mechanical stresses within the joint. The selection of a hydrogel base material with 

a similar consistency to cartilage, for example HA or type I collagen with implantable 

delivery applications could be implanted at the site of cartilage degradation to provide 

a supporting structure around the joint to relieve bone erosion [173]. Furthermore, 

the implanted hydrogel may be subject to degradation by cartilage degrading 

enzymes more favourably over cartilage, leading to the indirect protection of 

remaining cartilage within the affected areas.  
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2.3.4 Biomaterial selection for hydrogel network formation 

The selection of a hydrogel base material is reliant on the intended use of the 

hydrogel itself. In terms of OS and RA, a suitable selection would be a hydrogel 

material which mimics the consistency and appearance of connective tissue, given 

that RA treatment is required at the site of cartilage degradation and most 

osteosarcoma tumours occur along the edge of a long bone. Examples of hydrogel 

types, previously discussed (Table 2.1.), demonstrate a selection of hydrogels which 

may be suitable for the creation of the Hydrogel-PCP system. Previous work by 

colleagues within the research group have outlined the use of type I atelocollagen 

and its tuneable characteristics when functionalised with the photo-active molecule 

4-vinylbenzyl chloride (4VBC), making a collagen-based material a suitable 

candidate for the selected biomaterial [52, 174]. Other biomaterials include 

Polyethylene Glycol (PEG) and Hyaluronic Acid (HA), both of which are well 

researched. PEG is an artificial polymer and is thought to be the ‘gold standard’ of 

artificial matrices [175]. An advantage of artificial biopolymers over natural networks 

is the bioactive functionalities, including cell adhesive sequences and growth factors 

which can be implemented into precise densities whilst controlling substrate 

mechanical properties independently [176]. Properties of PEG that make it a 

desirable polymer, for example its intrinsic low-protein adsorption properties, reduced 

inflammatory profile and safe in in vivo conditions, not to mention the variety of 

different crosslinking strategies including both chemical and covalent crosslinking 

[175]. The controllable properties as well as the use of PEG as a drug delivery gel by 

research groups such as Ashley et al (2013) [177] would make PEG a strong 

selection as the biomaterial for the Hydrogel-PCP system, if not for one crucial 

disadvantage, the non-biodegradable nature of PEG [178]. For the design of the 

Hydrogel-PCP system, a biodegradable polymer is required to produce an as 

minimally invasive clinical delivery strategy as possible, if a non-biodegradable 

polymer was used, further surgery to remove the implanted polymer after treatment 

would be required, providing another invasive procedure and an increased risk of 

infection.  

The role of HA and collagen-derived biopolymers in bone regeneration and 

connective tissue, particularly in RA and Osteosarcoma, as well as their naturally 

biodegradable nature makes them ideal candidates as the building block to use in 

the Hydrogel-PCP system.  
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Hyaluronic acid is a biopolymer, synthesised by a class of integral membrane 

proteins called hyaluronan synthases which lengthen HA by adding D-glucuronic acid 

and N-acetyl-D-glucosamine to the polysaccharide backbone [179]. The naturally 

occurring HA is a crucial component of articular cartilage and has been reported to 

have beneficial effects on inflammatory arthritis, although this is biphasic. Roth et al 

(2005) found that HA therapies had anti-inflammatory effects and showed inhibition 

of cartilage degradation in early chronic phases, however in late chronic disease 

stages, HA promoted cartilage damage and joint swelling [180]. This could be 

overlooked depending on the type of drug delivered by the Hydrogel-PCP system, 

however HA also lacks free amino groups, instead containing only free carboxylic 

groups, hydroxyl groups and acetyl groups (Figure 2.3.). 

 

 

Figure 2.3. Structure of hyaluronic acid. Repeating chains of D-glucuronic acid 

and N-acetyl-D-glucosamine containing free carboxylic groups (-COOH), 

hydroxyl groups (-OH) and acetyl (-CH3CO) groups. 

 

Due to the nature of the peptide-conjugated prodrug synthesised here, the C-

terminal is free to react with a free amino group on the selected biopolymer backbone. 

In HA a linker would be required to conjugate the PCP, which could significantly alter 

the rate of drug cleavage by the chosen proteolytic target enzyme. For this reason, 

combine with the biphasic treatment of HA in inflammatory arthritis, HA was deemed 

unsuitable for use as the backbone biomaterial in the Hydrogel-PCP system. 

Collagen is one of the most abundant proteins within the human body and 

due to the unique molecular organisation, it is a commonly used material for 
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regenerative medicine [181] and wound healing [182]. The collagen superfamily 

contains 28 members and have a common structural feature, a triple helix which 

ranges from most of the structure (approximately 96% in type I collagen) to less than 

10% of the structure (collagen XII) [183]. The triple helix consists of three polypeptide 

chains, known as α chains which can be identical to form homotrimers (collagen II – 

[α1(II)]3) or different to form heterotrimers (collagen IX – [α1(IX), α2(IX), α3(IX)]). 

Sequences of the triple helices are comprised of Gly-X-Y repeats, X and Y frequently 

being proline and 4-hydroxyproline, respectively. The most abundant collagens are 

the fibrillar types (I, II, III, V and XI) and their extensive cross-linking capabilities 

provide mechanical strength that is needed for high stress tissue such as cartilage, 

bone and skin [184]. The mechanical properties of fibril-forming collagens are 

dependent on their cross-linking which can include 1) disulphide bonds (type III for 

example); 2) the Nε(γ-glutamyl) lysine isopeptide [185]; 3) reducible, mature cross-

links by the lysyl oxidase pathway and 4) advanced glycation end products [183, 186]. 

Lysyl-mediated crosslinking takes place at the intra- and intermolecular levels 

between collagen molecules and involves lysine, hydroxylysine and histidine 

residues belonging to either the same or different types of collagens [187]. 

Crosslinking of collagen is tissue-specific as opposed to type-specific, however 

collagen can be functionalised or crosslinked artificially to form a hydrogel with unique 

characteristics. 

Aside from being able to absorb large amounts of water and exudate as well 

as resist mechanical pressures, collagen hydrogels are enzymatically degradable by 

MMP activity, a family of enzymes overexpressed in OS and RA. The partially 

hydrolysed form of collagen, gelatin also makes a suitable selection for use as a 

hydrogel base material, of which photo-activated gelatin methacryloyl hydrogels have 

been used in the tissue engineering of cartilage constructs [188]. Due to being 

degraded collagen, gelatin can vary in molecular size significantly, characterised by 

the “bloom”. Generally, a high bloom gelatin is between 225-300g (molecular mass 

ranging between 50,000 and 100,000 Da), and consists of longer polypeptide chains, 

most similar to collagen. Gelatin is also capable of reforming the triple helix structure 

of collagen in a reversible manner when chilled or heated (above 37°C), allowing the 

gelatin biopolymer to auto-crosslink at room temperature through non-covalent 

bonding (Figure 2.4.). 
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Figure 2.4. Degradation of the collagen triple helix structure to form gelatin 

strands which when chilled are capable of reforming the triple helical structure 

through non-covalent crosslinking. 

 

The delicate nature of the novel study proposed here, requires a thorough 

understanding of the selected base material, which the research group has expertise 

in , e.g. with respect to the design of collagen and collagen-derived materials, holding 

the patent for collagen-derived 4VBC functionalised biopolymers [189]. This 

expertise will prove invaluable in the hypothesis that both collagen and high bloom 

gelatin would be ideal materials to use as a hydrogel base layer in OS and RA 

targeting, due to the degree of tuning and versatility through a variety of applications 
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[53, 190, 191] as well as the biodegradability due to enzymatic breakdown [192]. The 

PCP coupling to collagen or gelatin is also made simple by the repeating chains of 

amino acids within the biomaterials, particularly free amino lysine groups [193, 194]. 

The free amino lysine groups make ideal targets for peptide conjugation to the tail 

end of the PCP due to a free carboxylic group which can be activated using a 

carbodiimide reaction. 

The readily available nature of gelatin and the similarities it shares with 

collagen, makes both collagen and gelatin suitable choices to be used initially, with 

one to be excluded, should it become no longer viable as a hydrogel material for the 

Hydrogel-PCP system.  

 

2.3.5 Proteolytic enzyme targeting for drug release 

Many disease pathologies require changes in the regulation of inter and 

extracellular contributors such as cytokines and proteolytic enzymes, in order to drive 

the disease forward [195, 196]. Enzymes play major roles in several biological 

processes, in particular cell multiplication, collagen synthesis and turnover, wound 

repair and the removal of dead tissue debris following inflammation and digestion 

[197-199]. A family of proteins, known as proteolytic enzymes, lyse chains of proteins 

to carry out a range of functions. The super family can be further divided into 

exopeptidases, which target protein termini and endopeptidases which target sites 

within a protein [200]. For the nature of this study exopeptidases cannot be targeted 

due to each end of the peptide-conjugate being occupied, either by drug or hydrogel 

biomaterial, endopeptidases however, can be targeted for drug release. 

Endopeptidases account for various catalytic mechanisms, and within this group are 

endopeptidases such as: cysteine proteases, serine proteases, metalloproteases 

and more [201-203]. Each group of proteolytic enzymes contribute to a range of 

biological processes. In order for the Hydrogel-PCP system to be fully biodegradable 

the hydrogel itself, made of collagen or gelatin, must be accessible to collagenase 

and gelatinase proteolytic enzymes and as a result targeting one of these enzymes 

for drug release would be a suitable selection, if they are overexpressed in the target 

diseases. Of these proteolytic enzymes there are two families, metalloproteinases 

[204] and selected papain-like cysteine proteases [205], which are able to cleave the 

triple helical region of fibril-forming collagen, causing the unwinding and degradation 

of the collagen structure. Of these cysteine proteases cathepsins K and L are known 

to attack the triple helix of fibril-forming collagen [206]. Both Cathepsin K and L are 
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overexpressed in RA [207], where cathepsin K is linked to radiological destruction 

[208] and is overexpressed in some saos-2 osteosarcoma cells [209]. 

Peptide-conjugated prodrugs can release the active drugs through non-

selective degradation by several proteolytic enzymes, or through selective cleavage 

by one specific enzyme. The selective method of drug release involves the protected 

end of the peptide chain through the use of an endcap, whilst the middle section of 

the peptide chain is a specific and recognisable sequence to the particular target 

enzyme for cleavage and the initiation of drug release. In order to begin tailoring a 

peptide sequence specific to the recognition site of the targeted proteolytic enzyme, 

the enzyme must be selected. Overexpressed proteolytic enzymes within the 

targeted disease serve as a significant starting point for the selection of the enzyme. 

Ideally it is most suitable that the intended target enzyme is overexpressed in disease 

tissue but not the healthy surrounding tissue. As outlined, MMPs appear to be 

overexpressed in both osteosarcoma and rheumatoid arthritis, as well as possessing 

collagenase and gelatinase activity, therefore MMPs would make an ideal family of 

enzymes to select the target enzyme from.  

Matrix Metalloproteinases (MMPs) are a family of calcium-dependant zinc-

containing endopeptidases and are involved in the degradation of extracellular matrix 

(ECM) proteins [210, 211]. Due to their wide range of activity across a vast range of 

biological processes including: angiogenesis [212], wound healing [211], collagen 

turnover in development [213] and innate immune responses [214], it is unsurprising 

they are overexpressed in many diseases, particularly cancers (Figure 2.5.). 
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Figure 2.5. Expression of MMP mRNA in human cell lines. Modified from the 

2010 study by Atkinson et al. MT-MMPs are elevated in human preclinical 

tumour models. Expression of MMP mRNA in human cell lines grown in 

vitro (A) and as xenografts in vivo (B) as measured by quantitative RT-PCR. 

Expression values after normalization to 18S-rRNA and are gene specific. 

Classification of expression levels was determined from the CT of each gene 

as either very high (CT ≤ 25), high (CT = 26-30), moderate (CT = 31-35), low (CT = 

36-39), or not detected (CT = 40); see key for colour scheme. (C) Immunoblot 

of MT1-MMP protein expression in HT1080 and MCF7 tumour models [103]. 

 

The MMP family can be further divided into two, secreted and membrane 

bound, however they are also often divided based on their substrate specificity and 

basic domain structure, for example collagenases, gelatinases and membrane type-

MMPS (MT-MMPs). Many MMPs are activated from their pro- state allowing their 

proteolytic activity to proceed. The membrane type 1-MMP (MT1-MMP) also known 

as MMP14 is a key regulator of several crucial MMPs in collagen and gelatin turnover. 
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MMP14 is activated intracellularly by the Golgi apparatus and once activated at the 

cell surface, pro-MMP2 and pro-MMP13 are activated [215]. The MMPs which 

MMP14 activates, namely MMP2 and MMP13, have been demonstrated to play 

crucial roles in several diseases including cancer and rheumatoid arthritis [215-219]. 

Due to the crucial role played in activating key cancer and RA disease progression 

MMPs, MMP14 is an ideal target for the cleavage of the PCP peptide sequence. 

Furthermore, the expression and involvement of MMP14 within RA and OS makes it 

a key driver in the pathogenesis of both diseases, rather than solely an activator of 

disease-progressing enzymes [220-222]. In rheumatoid arthritis MMP14 has been 

identified as the key collagenolytic enzyme for invasion into the matrix from synovial 

cells [222] and is also linked to the degradation of other matrix components in 

cartilage such as aggrecan [223].  

In osteosarcoma cell lines, Kajita et al (2001) demonstrated the promotion of 

cell migration regulated by MMP14 by cleaving CD44H and releasing it from the cell 

surface in MG-63 cells, triggering and enhancing cell motility. Expression of only 

MMP14 or CD44H on the cell surface demonstrated no improved cell motility, 

suggesting MMP14 increases cell migration through the processing of CD44H [224]. 

Another tumour promoting role that MMP14 is involved, is tumour angiogenesis. 

Down regulation of MMP14 has shown the inhibition of angiogenesis by interfering 

with α2β1 receptor activity, negatively impacting osteosarcoma progression [225, 

226]. Osteosarcoma tissues expressing high MMP14 levels are found interact with 

collagen alpha-2 (I) encoded by the COL1A2 gene [227]. Gene expression levels 

between osteosarcoma and normal bone tissue revealed MMP14 as one of the most 

significantly upregulated genes [228]. 

The involvement of MMP14 in both osteosarcoma and rheumatoid arthritis 

makes it a suitable target for sequencing a peptide-drug conjugate for the selective 

release of the chosen active drug. Involvement aside, the selection of a suitable 

proteolytic enzyme still requires a long and careful process to ensure the optimal 

targeting sequence is selected. As a result, MMP14 provides a further indication that 

it would make a suitable target enzyme, as we have previously targeted MMP14 for 

the release of the previously discussed chemotherapeutic drug, methotrexate [21], 

working alongside the research group behind the vascular disrupting agent PCP, 

ICT2588 [103, 229]. The process of honing a peptide sequence suitable to a target 

enzyme is a long process, of which the recognition can be significantly altered as a 

result of a minor change in the sequence. Therefore, due to the pivotal roles played 
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in both OS and RA, combined with the previous work, carried out with colleagues 

from the University of Bradford, UK, providing a starting sequence for our Hydrogel-

PCP system, MMP14 makes an ideal enzyme to target for the selective and localised 

release of a chosen drug from a hydrogel support structure.  

 

2.3.6 Selection of an active drug to release from a Hydrogel-PCP system 

To treat a disease such as rheumatoid arthritis (RA) or osteosarcoma, a 

therapeutic agent is often required. There are a variety of drugs that could be selected 

to treat either of these diseases including, methotrexate (MTX) which is a well-known 

and researched drug for the treatment of both diseases. At first glance, MTX appears 

an ideal candidate for the selection of a therapeutic, particularly due to MTX 

containing, free, natural carboxylic acid groups (-COOH). The advantage of a free 

carboxylic group on a drug removes the need to use a linker compound when 

coupling the drug to a peptide-conjugate, which may cause unintended reductions in 

enzyme targeting and cleavage. Methotrexate however, contains two free carboxylic 

groups, which may cause complications when conjugating the MTX-prodrugs to a 

hydrogel, as the side-chain free carboxylic group in MTX’s structure may conjugate 

rather than the desired alpha -COOH. 

The nature of the novel system, proposed here relies on research from two 

scientific fields, which if successful opens up a new therapeutic direction for a variety 

of diseases. With this in mind, methotrexate, although a renowned first line treatment 

for both OS and RA, may not be the most suitable selection to prove such a delicate 

concept. Furthermore, the theory of using a peptide-conjugated prodrug delivery 

system is that, any disease overexpressing a proteolytic enzyme can be targeted to 

release the selected drug, once a selective sequence is established for the particular 

proteolytic enzyme. This can be achieved by adjusting the peptide-conjugate 

sequence to suit the binding site of the target enzyme.  As a result, the selection of a 

drug, is not intended to be a drug specific to a particular disease (but should still show 

significant evidence for treatment of both OS and RA), rather, one that is applicable 

to several diseases, such as a non-steroidal anti-inflammatory drug (NSAIDs) for 

example naproxen (NAP) [230, 231]. Inflammation plays a key role in a wide range 

of diseases, of which both acute and chronic inflammation have been linked to many 

different diseases [232]. Therefore, the use of NSAIDs in the design of a peptide-

conjugated prodrug hydrogel delivery system enables its’ usage across a broad 

spectrum of diseases and conditions, that are not solely limited to RA and 
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osteosarcoma. Furthermore, from a toxicological perspective, the links between 

NSAIDs and the occurrence of peptic ulcers leave room for the alternative delivery of 

NSAIDs to reduce the risk of off-target toxicity [233, 234]. 

There is growing evidence for the use of NSAIDs in the treatment of several 

cancers [235-237]. The majority of NSAIDs work through the inhibition of 

cyclooxygenase (COX), a key biological mediator in processes such as inflammation 

and cancer progression [238] and research has shown the overexpression of COX-

2 in the progression of RA and OS [239, 240]. There are several viable choices of 

NSAIDs to apply to the Hydrogel-PCP system such as ibuprofen, aspirin and 

naproxen, all of which possess a free -COOH group (Figure 2.6.). Naproxen, a 

commonly used NSAID for the treatment of RA is a longer acting drug than ibuprofen 

and aspirin and has been shown to have therapeutic effects for RA treatment when 

other NSAIDs have proven in-effective [241]. In terms of osteosarcoma, naproxen is 

proven by Correia et al, to have a dose-dependent therapeutic effect [242]. Correia 

and colleagues found naproxen blocked cell proliferation in MG-63 osteosarcoma cell 

lines as well as elevated levels of autophagosomes in cells treated with naproxen. 

An increase in apoptotic cells was also found suggesting the mechanism of action of 

the drug is through autophagy [242] which is in line with cells treated with another 

NSAID, meloxicam [243]. 

 

 

Figure 2.6. Chemical structure of naproxen, ibuprofen and aspirin. Possible 

non-steroidal anti-inflammatory drugs (NSAIDs) to use as the drug warhead in 

the peptide-conjugated prodrug design, due to the single carboxylic acid group 

each possess.  

 

Due to the longer lasting effects and the therapeutic effects upon both RA and 

OS, naproxen was selected to be the active drug warhead for the Hydrogel-PCP 

system. The non-selective effect naproxen possesses makes it an ideal option to 

make more selective and reduce the risk of gastric ulcers by providing an alternative 
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delivery route and making the release selective to further reduce any unwanted 

toxicity. Furthermore, the suggested drug release strategy could be made applicable 

to several other diseases, making the selection of a NSAID an ideal choice due to 

the vast variety of diseases displaying inflammation.  
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2.4 Hydrogel-PCP design and clinical application 

Therapeutic agents, particularly those with cytotoxic effects often require 

alterations to administer them more safely, whether this be through antibody drug 

conjugation [244], peptide drug conjugation [245] or the use of a delivery vehicle such 

as hydrogels [246] or micelles [247]. By combining two of these drug delivery 

methods the therapeutic index of the delivered agent could be further increased. The 

use of PCPs, coupled to hydrogels, forms a unique delivery system, which in a 

localised and selective manner releases a therapeutic drug, whilst providing 

structural support to a variety of tissues, depending on the hydrogel design. The 

release of the active drug from the anchored PCP, exploits the overexpression of the 

targeted proteolytic enzymes in the diseases selected to focus the design of the 

therapeutic system around, osteosarcoma and rheumatoid arthritis.  

 

2.4.1 Study design 

The proof of concept study centres around the design of a novel Hydrogel-

PCP, of which each system component is tailored to the intended disease targets, 

RA and OS, whilst maintaining the applicability to other diseases exhibiting 

inflammatory symptoms. Outlined in this sub chapter, is the design of the carefully 

constructed Hydrogel-PCP therapeutic system.  

The selected drug, naproxen is coupled to a peptide-conjugate, via its’ free -

COOH group to form a PCP. The peptide-conjugate is made up of a sequence of 8-

12 amino acids with a glycine-homophenylalanine (Hof-Gly) bond towards the centre 

of the sequence which is the site cleavable by MMP14, as previously shown by Gill 

et al [229]. Each of the remaining 6-10 amino acids are carefully selected to either 

aid MMP14 recognition or to freely dissociate once cleavage of the peptide-conjugate 

occurs and the amino acid ends become deprotected. Ordinarily, the PCP would 

possess an endcap, however the conjugation of the conjugate-tail to the collagen or 

gelatin hydrogel backbone, enables the hydrogel itself to serve as an endcap to the 

PCP component. The tuneable hydrogel system component provides structural 

support within RA, with an implantable device to take on the consistency of cartilage 

and in OS, the ability to withstand mechanical stress from cancerous effects such as 

inflammation and increased tumour mass [248, 249]. Therefore, the Hydrogel-PCP 

system is made up of naproxen, conjugated to a peptide-conjugate selective towards 

MMP14, coupled to a biopolymer material (collagen or gelatin), prior to induced 
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network formation and crosslinking to synthesise a hydrogel-naproxen PCP (Figure 

2.7.). 

 

Figure 2.7. The hydrogel-naproxen PCP system. Designed to be selectively 

cleaved, at the Hof-Gly peptide bond, by MMP14 to trigger the release of 

naproxen from the PCP component. Naproxen-PCP (NAPPCP), conjugated to 

free amino lysine groups of a collagen-based biopolymer is crosslinked to form 

a Hydrogel-NAPPCP. 

 

2.4.2 Clinical significance 

The outlined proof of concept study, suggests the local and selective release 

of an active therapeutic drug from a tissue scaffold support network anchored at the 

disease site. The verdict of whether to use a localised drug delivery treatment should 

be based upon clinical findings and therapeutic responses recorded in literature 

[250]. However, a proof of concept study, lacks concrete therapeutic evidence that 

the delivery system is suitable for the clinical application and therefore must use 

related literature and assess whether the desired end product is considered to be a 

clinically more desirable delivery method than current clinical options.  

Naproxen as a drug is widely shown to have therapeutic effects across a 

variety of diseases including RA and OS as previously discussed [251]. Considering 

the link between NSAIDs and peptic ulcers due to their inhibition of the COX-2 

isoform [252, 253], of which naproxen is considered to be a higher risk NSAID for 

causing peptic ulceration [234]. The undesirable toxic side effect of naproxen could 

be avoided through the use of a naproxen-based PCP. The proposed MMP14 
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targeting PCP strategy has shown promising results, albeit using an alternative drug 

warhead, demonstrating no increase in von Willebrand’s factor (vWf), a clinical 

marker of cardiotoxicity, compared to the selected drug alone, when using the PCP 

component [229]. As discussed in Chapter 2.2, drug-loaded hydrogels have exhibited 

low signs of off-target toxicity when targeting cancers. The loading of a drug to a 

hydrogel is less secure than the physical conjugation to the hydrogel itself, 

demonstrating a further safety measure employed in the Hydrogel-PCP system 

proposed here.  

Naproxen is a strong candidate for the treatment due to the reduced risk of 

thromboembolic cardiovascular events in RA and anti-tumour effects in OS, on top 

of the anti-inflammatory properties naproxen is normally used for [242, 254, 255]. 

Containing a single -COOH group, allows for straightforward coupling of naproxen to 

a peptide conjugate, temporarily disabling naproxen, allowing safer delivery to a 

disease site. The use of a naproxen-based Hydrogel-PCP system to target RA and 

OS provides a novel therapeutic strategy that if successful, could be simply adapted 

to target any disease overexpressing MMP14, using any drug that could be 

substituted for naproxen, such as methotrexate or ibuprofen.  

The alternative delivery route for naproxen combined with the reduced toxicity 

shown in the use of a PCP, as well as the structural support a hydrogel provides, 

suggests a strong argument for enhanced clinical relevance compared to current 

measures used. Delivery of the Hydrogel-PCP system relies upon one of two 

strategies to be investigated here: firstly, the surgical implantation of a readily formed 

Hydrogel-PCP system to administer therapeutic effects to the target disease and the 

surgical wound and secondly, an injectable system which undergoes in situ 

crosslinking to form a Hydrogel-PCP system within the disease area, bypassing the 

need for surgical implantation.  
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Chapter 3 

Photo-activated biopolymer hydrogels 
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3.0 Photo-activated biopolymer hydrogels. 

The purpose of this chapter is to investigate the formation of UV cured, 

collagen-based Hydrogel-PCP systems. Initial functionalisation of free amino lysine 

groups of collagen-based biopolymers with the photo-active molecule 4-vinylbenzyl 

chloride (4VBC) is carried out. Collagen-based materials, both native and 

functionalised undergo EDC/NHS-induced conjugation of a model drug, sulfasalazine 

(and later the synthesised naproxen peptide-conjugated prodrug). All 

functionalisation of biopolymers is assessed using a TNBS and/or a ninhydrin 

colorimetric assay.  

Two UV-induced crosslinking strategies are carried out to form 

photopolymerised collagen-based drug-conjugated hydrogel networks:  

• Dual functionalised collagen-based materials with 4VBC and drug 

• Encapsulation of a drug-conjugated collagen sample within a 4VBC-

functionalised collagen sample. 

Analysis of drug release by MMP14 selective cleavage was carried out by High 

Performance Liquid Chromatography (HPLC). 

 

3.1 Introduction 

 A wide variety of hydrogel materials and crosslinking methods are already 

well established and provide a broad range of unique characteristics, allowing them 

to be used for many different applications [47, 256, 257] whether that be magnetic 

hydrogels or releasing a substance in response to pH change, for instance. Ultraviolet 

free radical crosslinking is just one example of a well-established crosslinking 

strategy. Chemical crosslinking is another well-established strategy which can induce 

network formation in a variety of materials including gelatin biopolymers [258, 259]. 

Development of these hydrogel systems has begun to branch out into other 

scientific fields to produce selective drug delivery vehicles, whether that be in 

response to an external stimulus or through other means such as enzymatic activity. 

Examples of these hydrogel systems include, but are not limited to: 

hydrogel/micelles, so-called ‘nanogels’, thermo-responsive and magnetic hydrogels 

[260, 261]. The selectivity of these systems has demonstrated a reduction in 

associated drug-toxicity and has begun to overcome other complications associated 

with hydrogel-drug delivery facets, including solubility issues. Photo-crosslinking is a 
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thoroughly researched method enabling gel network formation, so that visible light 

can now be used to induce in situ gel formation, further improving the clinical 

relevance of this method in local applications [262]. The application of UV-cured gel 

networks for drug delivery has been extensively researched to provide a localised 

release of drugs from the network gels [263], limiting the need for alternative, 

potentially more toxic means of drug delivery. Highly selective release strategies 

have been investigated in UV-cured hydrogel systems, for example, the glucose-

sensitive release of metronidazole by the widening of hydrogel pores to control drug 

release [264].  

Previous research into the establishment of collagen and collagen-derived 

UV-cured hydrogel systems with the photo-active molecule 4-vinylbenzyl chloride 

(4VBC) [52, 174] has provided sufficient evidence to suggest it for the use as a 

selective and localised drug delivery vehicle. The programmable macroscopic 

properties, which can be obtained through 4VBC UV-crosslinking, have shown the 

formation of biocompatible collagen systems leading to a variety of unique hydrogel 

characteristics based on the degree of functionalisation of the collagen biopolymer 

[52, 265]. The strong platform of a tuneable, UV-curable hydrogel that is capable of 

taking on the consistency of connective tissue could be further strengthened by the 

addition of another novel unit, an MMP14 responsive peptide-conjugated prodrug, to 

accomplish localised, MMP responsive and highly selective drug release from the gel 

network in diseases such as rheumatoid arthritis and osteosarcoma. Peptide-

conjugated prodrugs (PCPs) allow for a selective release in diseased tissues by the 

cleavage of the peptide-conjugate through the activity of a specific overexpressed 

proteolytic enzyme [229, 266]. 

Selectivity in drug release plays a key role in the reduction of off-target toxicity 

[267]. Cancer is an example of a disease where the reduction of off-target toxicity is 

vital. Chemotherapies are extremely effective in killing cancerous cells; however, the 

crucial drawback is that chemotherapies are also lethal to healthy tissue, causing a 

reduction in the amount of therapeutic drug which can be administered. Selective 

methods of delivering therapeutic alternatives to traditional chemotherapy, such as 

the peptide drug-conjugates, nanoparticles and immunotherapy have become focus 

points in recent years due to their ability to reduce off-target toxicity and increase the 

therapeutic index of a particular treatment [103, 268], allowing for a greater dose to 

be administered before unacceptable levels of off-target toxicity are reached. These 

selective methods still require the successful delivery and anchoring or containment 
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within a disease site, which can pose challenges. An example of this could be seen 

in osteosarcoma, a disease that often effects children and adolescents where 

collagen turnover is accelerated to keep up with the demand of bone development. 

In the study by Sartorio et al, the levels of bone Gla protein (BGP), a marker of 

osteoblast function, for healthy children were over 3 times that of healthy adults [269], 

demonstrating increased bone development. The selected target enzyme, Matrix 

metalloproteinase-14 plays a key role in collagen turnover and is overexpressed in 

healthy tissues during bone development [270-272] making it vital that the risk of off-

target drug activation is minimised when using an MMP14 selective release strategy. 

Using a hydrogel drug delivery strategy as proposed here, could anchor the prodrug 

in place at the disease site allowing for overexpressed MMP14 within the disease site 

to release the therapeutic drug, minimising contact with healthy MMP14 expressing 

tissues, that would occur if the Naproxen Peptide-Conjugated Prodrug (NAPPCP) 

was administered intravenously. It is therefore crucial to synthesis a hydrogel 

network, capable of supporting drug coupling or loading for long enough to 

successfully implant or deliver the hydrogel at the disease site. 

 

The work described in this chapter investigates the potential of synthesising 

a UV crosslinked 4VBC-functionalised collagen or gelatin biopolymer network, 

conjugated with a naproxen-PCP, as well as the assessment of the selective release 

capabilities by MMP14 cleavage. This novel approach aims to link two evolving 

scientific fields, which have the potential to vastly accelerate one another, to form 

highly selective, localised therapies with a delivery application that is of clinical 

relevance. 
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3.2 Materials  

All materials used that would not commonly be found in laboratories are 

listed below (Table 3.1.) with supplier information. All specialist equipment used is 

also detailed with supplier information (Table 3.2.).  

 

Table 3.1. Materials and reagents used. 

Material / Reagent Supplier 
Product 
Number / 

Code 

CAS 
Number 

Additional 
Information 

(H-Tyr(tBu)-2-ClTrt) 
Resin 

Novabiochem 856066 N/A 
5g, sub at 
filling: 0.76 
mmole/g 

1-(3-
Dimethylaminopropyl)-

3-ethylcarbodiimide 
hydrochloride, EDC 

Alfa Aesar A10807 
25952-53-

8 
25g 

2-Hydroxy-4’-(2-
hydroxyethoxy)-2-

methylpropiophenone, 
I2959 

Sigma 
Aldrich 

1002444239 
106797-

53-9 
50g 

2-Mercaptoethanol, 
BME 

Sigma 
Aldrich 

101684197 60-24-2 100ml 

4-vinylbenzyl chloride 
Sigma 
Aldrich 

101952539 1592-20-7 100ml 

Acetic Acid 
Fluka 

Analytical 
45740 64-19-7 1l 

Acetone 
Fisher 

Chemical 
A/0560117 67-64-1 2.5l 

Birjj-35 
Sigma 
Aldrich 

1001606014 9002-92-0 100ml 

Calcium Chloride Alfa Aesar 12316 
10043-52-

4 
1kg 

Dichloromethane 
Fisher 

Chemical 
D/1850/17 75-09-2 2.5l 

Diethyl Ether 
Fisher 

Chemical 
D/2400117 60-29-7 2.5l 

Diethyl Ether 
Sigma 
Aldrich 

102050220 60-29-7 1l 

Dimethyl Sulfoxide 
Sigma 
Aldrich 

101921134 67-68-5 500ml 
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Dimethylformamide 
Fisher 

Chemical 
D/3840/17 68-12-2 2.5l 

DMTMM Fluorochem 045163 3945-69-5 25g 

Ethanol 
VWR 

Chemicals 
20821.365 64-17-5 5l 

Fmoc-Arg(Pbf)-OH Activotec N/A 
154445-

77-9 
100g 

Fmoc-Cit-OH Fluorochem N/A 
133174-

15-9 
25g 

Fmoc-Gly-OH Activotec FLG-01 
29022-11-

5 
100g 

Fmoc-Hof-OH Fluorochem N/A 
132684-

59-4 
10g 

Fmoc-Leu-OH Activotec FLL-01 
35661-60-

0 
100g 

Fmoc-Ser(tBu)-OH Novabiochem 852019 
71989-33-

8 
25g 

Fmoc-Tyr(tBu)-OH Activotec FLY-01 
71989-38-

3 
100g 

Gelatin, Type A 
MP 

Biomedicals 
901771 9000-70-8 100g 

Hydrochloric Acid 
6mol/l 

VWR 
Chemicals 

2611.5000 7647-01-0 5l 

Synthetic bone Sawbone 1522-05 N/A 40PCF 

Matrix 
Metalloproteinase 14 

Biovision 8009-10 N/A 10µg 

Methanol 
Fisher 

Chemical 
M/4056/17 67-56-1 2.5l 

Methanol 
VWR 

Chemicals 
20846.361 67-56-1 5l 

N,N-Diisopropyl 
Ethylamine 

AGTC 
Bioproducts 

AGBC7012 7087-68-5 1l 

Naproxen 
Sigma 
Aldrich 

PHR104 
22204-53-

1 
500mg 

N-
Hydroxysuccinimide, 

NHS 
Alfa Aesar A10312 6066-82-6 100g 
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Ninhydrin Alfa Aesar A10409 485-47-2 25g 

N-Methylpyrrolidone 
AGTC 

Bioproducts 
AGBC7006 872-50-4 2.5l 

O-(1H-6-
Chlorobenzotriazole-

1-yl)-1,1,3,3-
Tetramethyluronium 

Hexafluorophosphate 

Activotec N/A 
330646-

87-9 
100g 

Picrylsulfonic acid 
solution, TNBS 

Sigma 
Aldrich 

1002507883 2508-19-2 10ml 

Piperidine 
Sigma 
Aldrich 

101085663 110-89-4 1l 

Rhodamine B Alfa Aesar A13572 81-88-9 50g 

Sodium Bicarbonate Alfa Aesar A170005 144-55-8 500g 

Sodium Hydroxide Alfa Aesar B24414 1310-73-2 500g 

Sulfasalazine 
LKT 

Laboratories 
S8247 599-79-1 50g 

Triethylamine 
Sigma 
Aldrich 

101513370 121-44-8 1l 

Trifluoroacetic Acid Fluorochem 001271 76-05-1 2.5kg 

Triisopropylsilane 
Sigma 
Aldrich 

101650254 6485-79-6 50g 

Tris/HCl, 1M solution, 
pH 7.5 

Affymetrix 22639 1 LT N/A 

1l 

Lot: 
4217732 

Tween20 
VWR 

Chemicals 
663684B 9005-64-5 500ml 

Type I Atelocollagen 
Collagen 
Solutions 

FS22006 N/A 
6mg/ml 

1l 
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Table 3.2. Equipment information. 

Equipment Supplier Model 
Additional 

Information 

Benchtop Centrifuge 
Thermo 
Scientific 

Heraeus 
Megafuge 16R 

 

Floor Standing 
Centrifuge 

Beckman 
Coulter 

Avanti J-26 XP  

Liquid 
Chromatography-

Mass Spectrometer 

Waters 
Alliance 

2695 Separation Module 

996 PDA Detector 

Micromass ZQ Mass Detector 

Z3818, 250 x 
2.1 mm 

Hichrom RPB 
microbore column, 
HICHROM-250AM 

OD Plate Reader 
Thermo 
Scientific 

3001 Varioskan Flash 

Peptide Synthesiser Biotage Syro I 
Fully automated 
parallel peptide 

synthesiser 

Rheometer Anton Paar MCR302  

Shaking Incubator 
Thermo 
Scientific 

MAXQ4450  

Spectrophotometer Jenway 6305  

Unstirred Water Bath Clifton N/A Heats up to 100°C 

UV Lamp Spectroline CM-10 
UVL-16 EL Series 

UV Lamp 

Water Purification 
System 

Elga 
Purelab Option 

Q DV-25 
 

 



57 

 

3.3 Methods 

3.3.1 Functionalisation of biopolymer’s lysine amine groups with 4-vinylbenzyl 

chloride 

Gelatin – High strength gelatin (~250g BLOOM) was dissolved in 10% w/v 

PBS solution for 2 hours at 60⁰C. 1% v/v of Tween20 was added to the mixture, 

followed by triethylamine and finally 4-vinylbenzyl chloride at the desired molar 

excess and left to stir for 6-8 hours at 40⁰C. For example, to functionalise 10g gelatin 

with a 25 molar excess of 4VBC: 10g gelatin is dissolved in 100 ml PBS and left to 

stir at 60⁰C for 2 hours. Once full dissolved 1 ml (1% v/v) Tween20 is added to the 

solution, followed by 8.822 ml TEA and 8.914 ml 4VBC (calculated using the following 

equation, with a 25 molar excess) and left to stir at 40⁰C for 6-8 hours.  

 

𝐵𝑖𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟(𝑔) × 𝑚𝑜𝑙(𝐿𝑦𝑠) × 𝑀𝑜𝑙𝑎𝑟𝐸𝑥𝑐𝑒𝑠𝑠 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

(𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 × 𝑀𝑊)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
= 𝑉𝑜𝑙𝑢𝑚𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑚𝑙) 

where MW is the molecular weight. 

The reaction solution was then precipitated in ethanol (up to 10-fold volume 

excess of the reaction mixture) for 5 hours, before being drained and placed in an 

incubator to dry. 

Atelocollagen – Pepsin-extracted type I bovine atelocollagen (AC, 6 mg/ml) 

was diluted to 3 mg/ml with 10mM HCl, followed by neutralisation to a pH of 7.4. 

Tween20 (at 1% v/v), triethylamine and 4-vinylbenzyl chloride were added using the 

above equation as demonstrated in gelatin, and left to stir for 24 hours at room 

temperature. Following this, the reaction solution was precipitated by stirring in up to 

a 10-fold volume excess of ethanol for 24 hours before being centrifuged at 11,000 

rpm for 45 minutes, after which the biopolymer was collected and dried at room 

temperature. 

The dry substances were stored at room temperature prior to quantification 

of the degree of functionalisation of the reacted biopolymers. 
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3.3.2 Determination of free amino groups occupied after functionalisation 

Two colorimetric assays, TNBS and ninhydrin [273, 274], commonly used for 

the determination of amino groups in proteins were employed to assess the degree 

of functionalisation of AC. Both TNBS and ninhydrin have recently both exhibited 

correlations with 1H-NMR spectroscopy when carried out to assess the 

characterisation of reacted collagen-based [275]. Therefore, the selection of TNBS 

and ninhydrin assays was made to determine the molar content of free lysine groups 

in both native and reacted pepsin-solubilised AC samples, allowing the indirect 

quantification of F to be calculated.  

 

3.3.2.1 Trinitrobenzenesulfonic acid assay 

Determination of occupied free amino lysine groups (degree of 

functionalisation, F) of collagen or gelatin, after coupling of 4VBC was carried out 

using a Trinitrobenzenesulfonic (TNBS) colorimetric assay as per [273]. Briefly, 11 

mg reaction sample was placed into vials before adding 1 ml 4% NaHCO3 and 1 ml 

0.5% of TNBS solution. Blank control vials initially contained 1 ml of 4% NaHCO3 and 

3 ml HCL (6M).  

Samples were incubated at 40⁰C, under shaking for 4 hours, prior to 3 ml HCL 

being added to the reaction vials and 1 ml of 0.5% TNBS solution added to the blank 

control before shaking at 60°C for a further hour. All vials were then left to cool at 

room temperature before the addition of 5 ml water to each vial. Unreacted TNBS 

was removed with diethyl ether (3 x 20 ml washes). Next, 5 ml of aqueous phase was 

aliquoted out and heated for 15 minutes to remove any remaining diethyl ether. 

Finally, 15 ml water was added, before the absorbance was measured at 346nm, and 

the degree of functionalisation calculated.  

𝑚𝑜𝑙(𝐿𝑦𝑠)

𝑔(𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛/𝑔𝑒𝑙𝑎𝑡𝑖𝑛)
=  

2 ×  𝐴346 × 0.02

(1.46 ×  104)  ×  𝑏 ×  𝑥
 

𝐹 = 1 − 
𝑚𝑜𝑙(𝐿𝑦𝑠)Funct. Collagen

𝑚𝑜𝑙(𝐿𝑦𝑠)𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛
 

where A346 is the absorbance at 346nm, 0.02 is the volume (in litres) of the final 

sample solution, 1.46x10-4 equates to the molar absorption coefficient for 2,4,6-

triniitrophenol lysine (M-1cm-1), b is the path length (1 cm) and the sample weight (g) 

is defined as x. 
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3.3.2.2 Ninhydrin assay  

Further confirmation of the number of functionalised free amino groups, and 

degree of functionalisation, was accomplished using a ninhydrin assay [274, 275], 

which was also used to assess the extent of drug conjugation, as the drug was 

expected to be coupled to the remaining free lysine groups after 4VBC 

functionalisation. 

First, a calibration curve was established by preparing a molar range between 

0 and 5x10-06 mol·g−1, derived from a glycine stock solution, before being made up to 

4 ml with water. An 8% w/v ninhydrin solution was prepared in DMSO and 1 ml of 

ninhydrin solution was added to each sample vial, giving a total of 5 ml per vial. 

Samples were reacted at 95 ⁰C for 15 minutes, before being cooled on ice and 1 ml 

of ethanol added to halt the reaction. The addition of ethanol made a total dilution of 

6-fold for each sample. The absorbance was measured at 570nm and plotted against 

the glycine molar content.  

The linear region of the calibration curve (Figure 3.1.), ranging between 

2.0x10-06 and 4.5x10-06 mol·g−1 was used to accurately determine the occupation of 

free amino lysine groups, providing an accurate measurement within the linear 

region, as confirmed with the TNBS assay.  
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Figure 3.1. Ninhydrin calibration curve. Isolated linear region of a ninhydrin 

assay calibration curve, demonstrating the region at which the quantity of free 

amino groups can be accurately determined with in a biopolymer. 

 

Functionalised samples were prepared as described; however, 10 mg of 

sample was weighed out and 4 ml water added prior to the addition of 1 ml ninhydrin 

solution, before following the protocol and plotting the absorbance onto the calibration 

curve to determine the degree of functionalisation between samples.  

 

3.3.3 Drug conjugation via 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 

hydrochloride/N-hydroxysuccinimide reaction 

The EDC/NHS activation of drug carboxylic groups was carried out with 

varying molar ratios with respect to the free lysine mol·g−1 of the biopolymer the drug 

was conjugated to, similar to the method of 4VBC functionalisation (Chapter 3.3.1). 

Initial conjugation reactions were carried out with sulfasalazine (SSZ), a readily 

available drug compound with a single carboxylic acid group, prior to the conjugation 

y = (4x106)x - 7.8358 

R2 = 0.9991 



61 

 

with naproxen and naproxen peptide-conjugated prodrugs, which were less readily 

available (Figure 3.2.).  

 

 

Figure 3.2. Structural differences between study drugs. Sulfasalazine (red), 

naproxen (blue) and the naproxen peptide-conjugated prodrug (NAPPCP). 

 

Drugs were dissolved in minimal DMSO, before the addition of EDC and NHS 

to the solution, and left to react for 1 hour at room temperature (Figure 3.3.). The 

volume of DMSO required to dissolve the drug is not sufficient to significantly 

negatively impact the coupling reaction, after which the coupled biopolymer is dried 

and washed, removing the DMSO used to initially dissolve the drug. Following this 

reaction, 2-Mercaptoethanol (BME) was added and reacted for 15 minutes to quench 

any unreacted EDC, before adding the activated drug solution to a dissolved solution 

of biopolymer and left to react at the conditions required to dissolve the respective 

biopolymer. Once reacted, gelatin drug-conjugated biopolymers were precipitated for 

5 hours in a 10-fold volume excess of ethanol, collected and then air dried. 

Atelocollagen drug-conjugated biopolymers were also placed in 10-fold volume 

excess of ethanol, however were stirred for 24 hours, prior to centrifugation at 11,000 

rpm for 45 minutes and air drying.  
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Figure 3.3. EDC/NHS-induced drug coupling to biopolymers. Coupling of 

naproxen (blue) or sulfasalazine (red) to a collagen-based biopolymer via 

EDC/NHS reactions to activate drug carboxylic groups before mixing with the 

biopolymer solution to readily react with free amino lysine groups.  
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3.3.4 Synthesis of UV-cured biopolymer networks 

4VBC-Functionalised atelocollagen or gelatin products were dissolved at 

fixed concentrations of 0.8 wt.% and 10 wt.% respectively in 10mM HCl (pH 2.1), 

containing 1% I2959 photoinitiator. To prepare 1% I2959 solutions, I2959 was 

dissolved at 60°C for 3 hours. The dissolved polymer solutions were cast onto 24 

well plates at known masses, and irradiated by UV light (346nm, 8mW cm-2) for 30 

minutes on both the top and bottom sides. The UV-cured hydrogel networks were 

carefully removed from the well plates and washed with diH2O, prior to washing in 

ascending ethanol concentrations and air drying before storing.  

 

3.3.5 Synthesis of peptide-conjugated naproxen prodrug 

The synthesis of peptide-conjugated naproxen prodrugs was carried out by 

automated means. Peptide conjugates were synthesised onto H-Tyr (tBu)-2-(ITrt) 

resin at a substitution value of 0.76 mmoles/g, prepared by swelling in DMF for 20 

minutes. The resin was washed and shaken in 40% piperidine/DMF for 3 minutes to 

deprotect the Fmoc protecting group from the previous amino acid in the sequence. 

This step was repeated a further 2 times with drainage of the piperidine/DMF after 

each cycle. The calculated amino acids in the coupling sequence and HCTU mass 

(2.5 equivalents) were mixed and dissolved in the minimum amount of DMF 

(calculated by the synthesiser) and were loaded into the synthesiser with the 

calculated quantities added for each coupling cycle, of which 3 cycles occurred for 

each new amino acid addition. Alongside the amino acid and HCTU, DIPEA/NMP 

were added to improve coupling efficiency. Each amino acid coupling cycle was 

intermittently shaken for 15 minutes, before being drained and repeated until 3 cycles 

had occurred. After the third coupling reaction, the resin and sample vessel were 

washed 3 times with DMF. The deprotection and coupling stages were then repeated 

until all of the amino acids and naproxen were added, with the drug coupling step 

being manually input into the automated synthesiser.  

Once naproxen was coupled, the resin was thoroughly washed initially in 

DMF, followed by methanol and finally dichloromethane, before being dried under 

vacuum overnight. Conventional cleavage was carried out next to remove the 

sidechain protecting groups and release the compound from the resin, by preparing 

a 2 ml cleavage ‘cocktail’ containing 95:2.5:2.5 TFA:triisopropysilane:water. The 

cleavage cocktail was added to the peptide conjugate, which was left to stand for 4 



64 

 

hours with gentle agitation hourly (using a glass pipette to blow air over the solution 

to disturb the resin beads). The cocktail, containing peptide conjugate and resin was 

transferred into a sintered glass funnel and a minimal quantity of TFA was added to 

completely dissolve the compound in order to maximise the amount filtered. The 

filtrate was collected in a round bottomed flask and the solvent was evaporated in a 

rotary evaporator, to leave the peptide conjugate behind. The peptide was triturated 

with cold diethyl ether and washed a further 3 times in the glass sintered funnel. The 

peptide remained in the funnel, and was dissolved in 95% acetic acid before 

collection in another round bottomed flask. The flask was then rotated in a dewer 

bowl containing dry ice and acetone to form a frozen shell around the inside of the 

flask to increase surface area prior to overnight freeze drying. 

 

3.3.6 LCMS confirmation of peptide-conjugated prodrug synthesis 

Confirmation and analysis of successful peptide-conjugated prodrug 

synthesis was carried out using an LCMS method. A HICHROM RPB column 25cm 

x 2.1mm (HICHROM-250AM) was used. The flow rate used during each LCMS cycle 

was 0.30 ml/min, with a gradient method beginning with 90% mobile phase A (9:1 

water:methanol, containing 0.1% formic acid) and 10% mobile phase B (1:9 

water:methanol, containing 0.1% formic acid) and increasing linearly to 95% mobile 

phase B over 40 minutes (Table 3.3.). The detection method used was the tracking 

of absorbance at 330 nm, a peak absorbance for naproxen (the drug used in the 

synthesis of the peptide-conjugated prodrug) [276].  

 

Table 3.3. Methodology of gradient changes throughout LCMS and HPLC 

cycles. 

Time (min) Mobile Phase A (%) Mobile Phase B (%) Flow Rate (ml/min) 

0.00 90.0 10.0 0.30 

40.00 5.0 95.0 0.30 

41.00 90.0 10.0 0.30 

50.00 90.0 10.0 0.30 
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3.3.7 MMP14 recombinant enzyme assay 

To confirm drug release from the hydrogel networks, an MMP14 recombinant 

enzyme assay was carried out. Briefly, an MMP reaction buffer consisting of: 50 mM 

Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM CaCl2 and 0.025% Brijj-35 was prepared. 

Recombinant MMP14 was reconstituted in MMP reaction buffer and dry hydrogels 

were also swollen in MMP reaction buffer. In a 12 well plate well, containing a swollen 

hydrogel sample, a calculated quantity of enzyme was added (0.5 µg enzyme to 10 

µM of drug on the gel) and made up to 3 ml with MMP reaction buffer. The reaction 

was incubated at 37°C for 3 days. At the end of the reaction, hydrogels were blotted 

and left to dry at room temperature and the remaining MMP reaction buffer solution 

was collected and centrifuged at 10,000 g for 5 minutes before removing the 

supernatant. The pellet was re-dissolved in a known volume of methanol prior to 

analysis by HPLC or LCMS.  

Alongside the MMP14 recombinant assay, acid degradation of hydrogels was 

also performed. Briefly, hydrogel samples were left submerged in 3 ml of 6 M HCl at 

37°C until the hydrogel had fully dissolved, at which point 6 M NaOH was added to 

neutralise the acidic conditions. Samples were spun down on a centrifuge at 10,000 

g for 5 minutes before discarding the supernatant and collecting the pellet as 

described in the above.  

 

3.3.8 HPLC drug release analysis 

HPLC analysis of MMP reaction buffer was carried out, following the same 

methodology, as that used during the LCMS peptide-conjugated prodrug 

confirmation (Table 3.3.), using the same column, a HICHROM RPB column 25cm x 

2.1mm (HICHROM-250AM), again with a 0.30 ml/min flow rate. Again, detection 

method used was the tracking of absorbance at 330nm. 
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3.4 Results and Discussion 

3.4.1 Functionalised biopolymers synthesis and UV inducible network formation 

concept 

Following reaction with 4VBC, the degree of functionalisation (F), 

representing the coupling of photo-active molecules to the AC backbone was 

determined. The reaction of AC with 4VBC monomers occurs through lysine-initiated 

nucleophilic substitution causing the consumption of free amino acid groups, as well 

as the coupling of 4-vinylbenzyl residues.  

The overall content of primary lysine groups in native gelatin 

(2.53·10−4 mol·g−1) and atelocollagen (3.03·10−4 mol·g−1) was recorded via TNBS 

assay and results proved to be similar to values reported in literature (Table 3.4.)  

[275, 277]. In AC, both colorimetric methods demonstrated a comparable decrease 

in amino groups molar content for 4VBC, and drug conjugates (Table 3.5.). Coupling 

of 4VBC to atelocollagen biopolymers, exhibited in Table 3.5. are in line with previous 

reports [278], 1H-NMR was not carried out due to sample complications in 4VBC-

functionalised AC of overlapping AC species [275].  

 

Table 3.4. Functionalisation of gelatin with 4-vinylbenzyl chloride. Degree of 

functionalisation (F) measured in the 4VBC-reacted gelatin product via TNBS 

assay (n=3). Gelatin was reacted with 4-vinylbenzyl chloride (4VBC) at a range 

of molar excesses. 

Sample ID Amine Groups / mol·g−1 (x 10−4) F / % 

Native 2.53 ± 0.07 N/A 

Gel4VBC8 1.58 ± 0.08 37 ± 3 

Gel4VBC10 1.34 ± 0.05 47 ± 2 

Gel4VBC15 1.16 ± 0.07 54 ± 3 

Gel4VBC25 0.83 ± 0.06 67 ± 2 

 

The functionalisation of gelatin with 4VBC and drug conjugates were carried 

out prior to similar methods of functionalisation in AC due to the ready availability of 

gelatin and comparable chemical composition and molar content lysine. For 

conceptual purposes, a 25-molar excess of 4VBC was reacted with gelatin as the 

initial functionalisation, proceeded by a further coupling of 1 molar excess of 

sulfasalazine (SSZ) to the remaining free lysine groups. Functionalisation of gelatin-

4VBC25 was confirmed via TNBS only (Table 3.4.), due to the limitations of the 
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ninhydrin assay being unable to measure the amount of free lysine groups accurately 

below 1.9·10−4 mol·g−1 (i.e. below 25% functionalisation in gelatin and 37% 

functionalisation in AC). Although the ninhydrin assay is limited in accurately 

quantifying the full range of functionalisation, the ninhydrin assay allows for the 

quantification of coupling with compounds displaying similar peak absorbance to the 

one of TNBS (346 nm), e.g. naproxen [279]. The ninhydrin assay releases a 

chromophore with a peak absorbance wavelength of 570 nm, which is far away from 

the absorbance peak of TNBS (346 nm). Therefore, if the desired degree of 

functionalisation of the selected biopolymer with a particular compound is within the 

linear region of the ninhydrin calibration curve then an accurate quantification of free 

amino groups can be calculated and thus the functionalisation can be determined.  

Further coupling of SSZ via an EDC/NHS reaction was carried out, resulting 

in a pale orange biopolymer colour, as opposed to the off-white appearance of 

gel4VBC. The orange colour remained after several washes, indicating the 

successful coupling of SSZ. The ninhydrin assay could not be used to confirm drug 

presence, due to the high degree of functionalisation of 4VBC and the SSZ peak 

absorbance of 359 nm [280] which overlaps with the TNBS peak absorbance. 

Therefore, the degradation of gel4VBC25 and gel4VBC-SSZ in acid was carried out 

and the absorbance measured at 359nm, the peak absorbance of SSZ. The results 

showed little absorbance in the degraded gel4VBC, however in gel4VBC-SSZ a 

significantly higher absorbance reading was recorded compared to the control, 

further suggesting the successful coupling of SSZ to gel4VBC25, as SSZ was the 

only alteration to gel4VBC. As the coupling of compounds to gelatin served as a 

concept only, the results of the successful coupling were not quantified or displayed, 

however the EDC/NHS coupling method was later confirmed by ninhydrin and acid 

degradation, indicating successful coupling of SSZ.  

Crosslinking of gel4VBC under ultraviolet light in the presence of I2959, a 

method widely used in research [281-283], confirmed the formation of 3-dimensional 

insoluble polymer matrices. The network formation via UV crosslinking of gel4VBC-

SSZ was not initially carried out, as the purpose of gel4VBC-SSZ was to confirm 

whether drug coupling to a 4VBC functionalised biopolymer was possible.  

Following successful dual functionalisation of gelatin biopolymers, dual 

functionalisation of AC was attempted at varying molar excesses, (Table 3.5.). All 

col4VBC samples were photo-crosslinked in I2959, with col4VBC10 forming a weak 

gel which upon handling breaks down, likely due to the lower degree of 
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functionalisation, resulting in less covalent bonding during crosslinking. Due to the 

fragile nature of handling col4VBC10 it was excluded from the study as it is unlikely 

the gel would withstand the mechanical pressures within an RA target environment 

(within the synovial membrane). Col4VBC25 yielded an approximate 17% 

functionalisation of free amino lysine groups, whereas col4VBC40 and col4VBC50 

yielded around 30% 35% respectively, as demonstrated by TNBS.  Due to the 

coupling of SSZ to col4VBC requiring a ninhydrin assay to confirm and quantify 

degree of drug functionalisation, col4VBC40 and col4VBC50 were removed from this 

study as the maximum degree of functionalisation that can be accurately determined 

using the ninhydrin assay in AC is 35%. Another justification for the exclusion of three 

of the col4VBC excesses is that col4VBC25 is widely characterised and col4VBC25 

hydrogels provide sufficient enough structural support [52, 174], ignoring the potential 

added structural support provided by drug conjugation. Further functionalisation of 

col4VBC25 was carried out by conjugating the model drug SSZ to the remaining 

2.51·10−4 mol·g−1 lysine amino groups at a 1 molar excess. The retrieved product was 

analysed using the ninhydrin assay, whereby the results fell within the nonlinear 

region of the ninhydrin calibration curve (which in AC occurs above 35% 

functionalisation) and were therefore excluded. It can however be noted that a further 

18% of the total AC free lysine groups were occupied after SSZ drug conjugation, 

proving a successful drug conjugation. A separate sample of AC was also reacted 

with a 1 molar excess of SSZ to estimate the approximate degree of functionalisation 

(Table 3.5.).  
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Table 3.5. Degree of functionalisation in atelocollagen. Quantification of amino 

group molar content and degree of functionalisation (F) in atelocollagen 

products (n=3) following either 4VBC, SSZ or NAPPCP coupling. Degree of 

Functionalisation was calculated using an overall molar amino content of 3.03 

x 10-4 mol·g-1 in native AC, demonstrated by TNBS and Ninhydrin assays.  

1 Denotes F calculated using TNBS native free Lys figure. 

2 Denotes F calculated using Ninhydrin native free Lys figure. 

Sample ID 

Amine Groups / mol·g−1 (x 10−4) 

F / % 

TNBS Ninhydrin 

Native AC 3.03 ± 0.05 3.03 ± 0.02 N/A 

Col4VBC10 2.69 ± 0.10 2.58 ± 0.19 12 ± 3 1 

Col4VBC25 2.49 ± 0.02 2.51 ± 0.14 17 ± 1 1 

Col4VBC40 2.11 ± 0.02 N/A 30 ± 1 1 

Col4VBC50 1.99 ± 0.03 N/A 34 ± 1 1 

ColSSZ1 N/A 1.96 ± 0.002 34 ± 0.1 2 

ColNAPPCP1 N/A 1.97 ± 0.001 35 ± 0.02 2 

 

The resulting col4VBC25-SSZ, as well as col4VBC25 were reacted 

separately at a collagen concentration of 0.8 wt.% in 1% I2959 solution made up with 

10mM HCl as described in Chapter 3.3.4 in accordance with previous research [52, 

275]. The 0.8 wt.% of AC was used compared to the 10 wt.% used in gelatin solutions 

[284] due to the larger molecular weight and lower solubility of AC with respect to 

gelatin. Network formation of col-4VBC25 occurred as expected (Figure 3.5.), 

however, unexpectedly no network formation was observed in the col4VBC25-SSZ 

samples, suggesting no crosslinking could take place after drug conjugation. 
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Figure 3.4. Confirmation of network formation of col4VBC25 hydrogel. UV 

irradiation A) Dry hydrogel for storage and B) wet, swollen hydrogel. 

 

As a result, UV crosslinking was attempted in the previously synthesised 

gel4VBC25-SSZ, as well as the previously successful network forming gel4VBC as 

a control, following the 10 wt.% in 1% I2959 solution methods described previously. 

Similarly, to the col4VBC25-SSZ no network formation was observed in the drug 

conjugated sample, yet successful network formation resulted in the gel4VBC25 

mixture. A theory for the absence of network formation by UV irradiation in drug 

conjugated-4VBC25 biopolymers, may be due to a shielding effect, often seen in 

peptide conjugation. An example of this would be the recent research by El-Sayed et 

al who conjugated dextran to arginine deiminase (ADI), causing a fortification effect, 

resulting in an increased resistance to proteolysis by proteinase K and trypsin at the 

ADI recognition sites [285]. This may have occurred when SSZ was coupled to the 

4VBC25 biopolymers, shielding remaining lysine groups from photo-activated 4VBC, 

thus preventing UV-induced network formation.  

To confirm whether the lack of network formation via UV crosslinking was due 

to SSZ alone, the focus drug, naproxen peptide-conjugated prodrug (NAPPCP), was 

synthesised to assess the possibility of dual functionalisation of a biopolymer with 

4VBC and NAPPCP. 
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3.4.2 Confirmation of peptide-conjugated prodrug synthesis 

Synthesis of naproxen peptide conjugated prodrug (Figure 3.5.) products 

produced consistent yields with purity in excess of 80% (Figure 3.6.), due to three 

cycles of peptide and drug coupling. A purity of over 80% was deemed acceptable 

for the proof of concept study carried out here, due to the detectable quantities which 

could be identified during the release phase of the study. The predicted molecular 

weight of NAPPCP was 1288.47 g·mol−1 (C65H85N13O15), The exact mass of the 

compound was 1287.63 g·mol−1. Fragmentation of NAPCP and the relevant mass 

per charge as seen through mass spectrometry (exact mass) were also calculated 

(Table 3.6.). 

Previous works in peptide synthesis, involving two amino acid coupling 

cycles, required purification after synthesis of the PCP prodrugs, of similar sized 

sequence chains [21]. The decision to employ 3 coupling cycles per amino acid and 

drug was made to reduce the need for HPLC purification after synthesis. As 

mentioned for the proof of concept a purity of >80% was deemed to be acceptable. 

Many coupling reactions yield a higher rate of coupling, if a higher equivalents ratio 

is used. The addition of a third coupling reaction further increases the equivalents 

ratio, resulting in a higher percentage of successful couplings and therefore, a lower 

percentage of unsuccessful couplings which in turn may couple to the next amino 

acid in the sequence, leading to impurities in the final sample. This is a similar 

concept to the increased degree of functionalisation of a biopolymer observed after 

reactions at a higher molar excess of functionalising compound.  

Prior to conjugating the newly synthesised NAPCP, LCMS was carried out to 

confirm the successful synthesis of the prodrug by identifying the doubly charged 

species of the compound (644.89 m/z) (Figure 3.6.).  

 

 

Figure 3.5. Molecular structure of the Naproxen Peptide-Conjugated Prodrug.  
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Figure 3.6. LCMS confirmation of naproxen-peptide conjugated prodrug. 

Identification of NAPPCP - photo diode array absorbance spectrum at 330 nm 

(top); mass Spectrometry for peak at 7.46 mins, showing a doubly charged 

species of MW 644.89 consistent with the desired product (bottom). Purity in 

excess of 80% as shown by the lack peaks (other than NAPPCP), large enough 

to display a peak area. 

 

 

Table 3.6. Naproxen Peptide-Conjugated Prodrug Fragments. Fragmentation of 

Naproxen Peptide-Conjugated Prodrug (NAPPCP), single, double and triple 

charged ions, as observed by mass spectrometry. 

NAPPCP Fragment Sequence MH MH2+ MH3+ 

NAP-Arg-Ser-Cit-Gly-Hof-Tyr-Leu-Tyr 1287.63 644.82 430.21 

NAP-Arg-Ser-Cit-Gly-Hof-Tyr-Leu 1123.58 562.79 375.53 

NAP-Arg-Ser-Cit-Gly-Hof-Tyr 1010.50 506.25 337.83 

NAP-Arg-Ser-Cit-Gly-Hof 847.43 424.72 283.48 

NAP-Arg-Ser-Cit-Gly 686.35 344.18 229.83 

NAP-Arg-Ser-Cit 629.33 315.67 210.78 

NAP-Arg-Ser 472.24 237.12 157.41 

NAP-Arg 385.21 193.61 128.40 

NAP 230.09 - - 
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The peptide-conjugate sequence of NAPPCP which is modelled from another 

peptide-conjugated prodrug known in literature as ICT2588, a PCP for the vascular 

disrupting agent azademethylcolchicine, was developed by a research team at the 

University of Bradford, UK [103, 229]. The proteolytic cleavage site of the peptide-

conjugate lies between homophenylalanine (Hof) and glycine (Gly) and is recognised 

by membrane-type matrix metalloproteinase 1 (MT-MMP1), or MMP14 [229]. 

Permission to use this particular peptide-conjugate sequence significantly increased 

the possibility of developing a selective and localised drug-conjugated biopolymer 

and proving the initial concept. This is due to the sensitivity surrounding the synthesis 

of a peptide-conjugated prodrug, the alteration of a single amino acid can vastly alter 

the rate of conjugate cleavage in the presence of MMP14 and increase potential for 

other proteases to cleave it in non-target tissues, therefore the ability to use an 

already recognised sequence provides a greater possibility of successful MMP14 

cleavage, when the NAPPCP is conjugated to a biopolymer. 

 

3.4.3 Synthesis and UV network formation of NAPPCP conjugated col-4VBC25 

As the primary aim of this study was to conjugate a naproxen peptide-

conjugated prodrug to a biopolymer, sulfasalazine was employed as a model drug to 

confirm initial conjugation was possible. Using sulfasalazine, conjugation to 

biopolymers, via an EDC/NHS reaction was confirmed, however UV initiated network 

formation subsequently failed. Therefore, using minimal quantities required, the 

conjugation of NAPPCP to col4VBC25 was carried out in an attempt to successfully 

UV crosslink a drug conjugated-4VBC25 biopolymer. The decision to trial NAPPCP 

conjugation in AC as opposed to gelatin, was made to significantly reduce the 

quantity of naproxen peptide-conjugated prodrug required to obtain a peptide-drug 

conjugated hydrogel.  

The previously discussed, drug conjugation to col4VBC25 via the ninhydrin 

assay can only be accurately quantified if drug conjugation is below 18% of the AC 

total amino lysine groups. Therefore, as with sulfasalazine, a sample of AC was 

conjugated to NAPPCP at a 1 molar excess to determine the degree of 

functionalisation of AC. It was expected that the degree of functionalisation with SSZ 

and NAPPCP would be similar due to both compounds being readily reactive and 

only containing a single carboxylic group. The degree of functionalisation of AC with 

NAPPCP was calculated to be 35% (Table 3.5.) therefore it can be deduced that the 

total degree of functionalisation of col4VBC25 with NAPPCP was between 18 and 
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52%. The reason of synthesising col4VBC25-NAPPCP was to confirm whether or not 

successful UV induced network formation was possible following UV irradiation and 

if so alternative means of accurately quantifying the degree of functionalisation by 

NAPPCP were to be explored.  

Following the successful coupling of NAPPCP to col4VBC25, UV induced 

crosslinking was carried out. As observed in both col4VBC25-SSZ and gel4VBC25-

SSZ, col4VBC25-NAPPCP also exhibited no network formation in response to UV 

light in the presence of I2959 photoinitiator, despite the col4VBC25 control 

successfully forming a network. To confirm the photoinitiator batch was not a 

contributing factor to the lack of drug-conjugated network formation, an alternative 

batch was used in a repeat of the UV curing, with the same results obtained. Due to 

the NAPPCP-conjugated col4VBC25 sample also failing to form a hydrogel network, 

the possibility of molecular shielding seems a likely explanation for the unexpected 

lack of UV-induced network formation. 

Ordinarily, UV irradiation generates free radicals causing the 4VBC molecule, 

to react with other strands of the AC or gelatin polymer, increasing the concentration 

of coupled strands, leading to a network formation as the coupled strands interact 

and react with other strands as well as other 4VBC molecules on the same strand 

(Figure 3.7.) [52, 286].  

 

 

Figure 3.7. UV-induced Crosslinking of collagen-based biopolymers. Following 

4VBC functionalisation collagen-based biopolymers were crosslinked in the 

presence of I2959 photoinitiator. 

 

In the presence of a conjugated drug, it is thought the network formation due 

to UV-induced photoinitiation is blocked by a shielding effect, caused by the 

conjugation of the drug molecule. The specific type of shielding is thought to be due 
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to the steric hinderance of the molecules, which is known to slow chemical reactions 

due to the blocking of nucleophilic attacking molecules, in this case the free radicals 

created from UV irradiation. It could be said that the degree of functionalisation of 

4VBC on gelatin is considerably larger (67%) than that of the coupled SSZ, however 

the size and structure of SSZ may be sufficient enough to considerably slow the 

reaction enough to appear as though no crosslinking was possible. To assess this 

samples were left overnight under UV light, which again exhibited no gel formation, 

over 12 times longer than the previous methods state. Steric shielding is shown to 

play roles within free radical reactions of nitroxide  [287-289]. It is likely that steric 

shielding is the explanation behind the lack of gel formation in the presence of UV 

irradiated free radical molecules, however whether complete gel formation is 

prevented or the reaction is significantly slowed remains unclear. 

As a result of the inability of col4VBC25-NAPPCP to form hydrogel networks 

under UV light, an alternative method of forming a NAPPCP conjugated biopolymer-

based hydrogel was investigated. 

 

3.4.4 UV crosslinking photo-active biopolymers to encapsulate drug-conjugated 

biopolymers 

The utilisation of hydrogels for drug delivery often occurs by one of two 

methods 1) drug conjugation directly onto the hydrogel, the initial strategy proposed 

here, and 2) drug loading onto a hydrogel network [177, 290]. A method of drug 

loading involves the encapsulation of a drug within a hydrogel network [291]. Loading 

of a drug onto a hydrogel network, has a major flaw compared to a conjugation 

approach, in that, the drug has an increased chance of diffusing out of the hydrogel 

away from the target site, thus increasing the potential of off-target toxicity. Unless 

the loading of a drug is controlled by stimuli such as temperature or pH, a drug, if 

small enough, has the potential to diffuse out of the gel network.  

The inability to synthesise a UV networked drug-conjugated col4VBC 

hydrogel, forced an alternative approach. This approach involved the 

functionalisation of two separate samples of AC, one functionalised with 4VBC at a 

25-molar excess, as previously described and the other, a drug conjugated AC 

sample (colNAPPCP). The two samples were mixed and UV crosslinked. Successful 

network formation was observed indicating the ability to encapsulate a colNAPPCP 

material within the network of col4VBC25 during the UV curing process to form 
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col4VBC25encap-NAPPCP (Figure 3.8.). The formation of a UV irradiated, drug-

encapsulating hydrogel is in line with related literature where alternative drugs have 

been loaded onto a variety of photo-crosslinked hydrogels [292, 293], namely the 

work by Cao et al (2014). Cao et al encapsulated bone morphogenic protein-loaded 

nanoparticles within a gelatin-based photopolymerisable hydrogel, to deliver a 

sustained growth factor release to increase the rate of bone regeneration [294]. 

 

 

Figure 3.8. Confirmation of successful network formation of encapsulated 

hydrogels. Hydrogel network of col4VBC25 encapsulating either colSSZ or 

colNAPPCP A-B) colSSZ and C-D) colNAPPCP. Left side of figure depicts the 

encapsulated hydrogels in their dry state, whereas the right side shows the 

swollen state of the hydrogels.  
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Using a hydrogel as a drug delivery vehicle serves several key purposes, 

including a localised delivery, a selective form of release, whether by stimuli or other 

means and a greater drug therapeutic index. If encapsulating (a type of loading) a 

drug within a gel network decreases off-target toxicity compared to the drug alone, 

the drug requires a method of keeping it loaded to the gel, otherwise diffusion of the 

active drug may occur prematurely. In efforts to reduce the risk of premature 

diffusion-induced drug release, the NAPPCP prodrug was conjugated to a separate 

sample of AC prior to encapsulation. It was expected that by conjugating to AC, it 

would prevent NAPPCP from diffusing out of the gel network due to the gel network 

consisting of functionalised AC as well as the molecular size of AC (approximately 

300kDa), being significantly larger than the prodrug alone. 

 

3.4.5 MMP14 selective recombinant enzyme assay 

After the successful formation col4VBC25encap-NAPPCP hydrogels, the 

release of NAP from the NAPPCP component, which relies on the selective cleavage 

by the proteolytic enzyme MMP14 was assessed using recombinant MMP14. 

Cleavage of the peptide-conjugate triggers drug release [295] leading to the 

deprotection of the peptide chain ends, allowing the remaining 4 amino acids to be 

easily metabolised and removed from naproxen to release the drug in an active state 

[103, 229]. The selection of a recombinant MMP14 assay over an ex vivo biological 

assay using homogenised tissue overexpressing MMP14 was pursued to confirm 

cleavage of the peptide-conjugate occurs through MMP14 activity. The recombinant 

enzyme demonstrates that MMP14, the target enzyme is capable of cleaving 

NAPPCP between the Hof-Gly peptide bond. In an ex vivo assay of this type it would 

not be possible to identify which specific enzyme was cleaving the prodrug. Due to 

the nature of the study, proving the concept for the release of the active drug, 

naproxen from the hydrogel-NAPPCP system, was thought to be the priority over, the 

assessment of the drug’s half-life and breakdown after the initial release.  

HPLC analysis of the MMP14 recombinant assay buffer was carried out to 

assess the release of the NAPPCP cleavage metabolite (NAP-Arg-Ser-Cit-Gly) into 

the reaction buffer (Figure 3.9.) from within the hydrogel network.  
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Figure 3.9. HPLC spectra (absorbance chromatograms at 330 nm) of reaction 

buffer for MMP14 recombinant assay. Assessment of the release of naproxen 

metabolites from a col4VBC25encap-NAPPCP hydrogel network: pink: 

naproxen drug control, cyan: col4VBC25encap-NAPPCP gel, green: col4VBC25 

control, blue: col4VBC25encap-NAPPCP gel repeat, and black: reaction buffer 

negative control.  

 

Unexpectedly no expected naproxen containing compound metabolite peaks 

were detected in the col4VBC25ecap-NAPPCP samples, suggesting no release of 

NAP metabolites from the hydrogel networks. The naproxen control sample was 

calculated to be the maximum possible concentration of NAP on gel, within the 

reaction buffer, and the detection limits of the HPLC was <0.1µM, further suggesting 

no cleavage by MMP14 took place due to the high sensitivity of the HPLC equipment. 

To confirm the unsuccessful cleavage by MMP14, col4VBC25 and col4VBC25encap-

NAPPCP networks were separately degraded in 6M HCl prior to preparation to 

analyse the sample solution in HPLC (Figure 3.10.) 
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Figure 3.10. HPLC analysis of acid degradation assay (absorbance 

chromatograms at 330 nm). Green: naproxen drug control, blue: 

col4VBCencap-NAPPCP and black: col4VBC25 control.  

 

As observed in the MMP14 recombinant assay, acid degradation produced 

no traces of naproxen-based compounds. An initial theory for this was the instability 

of NAPPCP occurring once conjugated to the AC biopolymer, or during the UV-

crosslinking process. Ultraviolet light could have some effects upon the NAPPCP 

component as well as the collagen itself. In collagen, under UV light research has 

demonstrated an increased viscosity, compared to native collagen, thought to be due 

to the formation of intermolecular crosslinks via tyrosine dimers, shown by the 

production of blue fluorescence, with a peak of approximately 350nm [296]. A more 

recent study has shown UV irradiation of tyrosine and phenylalanine (and likely 

homophenylalanine) produces free radical residues that crosslink collagen fibres 

[297, 298]. In the case of the NAPPCP it is unlikely that subsequent crosslinking 

between tyrosine and other aromatic amino acid components of collagen occurred 

as this would result in the conjugation of NAPPCP to collagen during the photo-

crosslinking process, anchoring naproxen to the hydrogel network. Given that the 

HPLC is capable of detecting concentrations of NAP <0.1µM, if any naproxen was 

present it is likely it would have been detected, when the gel was fully degraded in 

acid.  

Tyrosine - an amino acid within the NAPPCP prodrug, is shown to be 

irradiated by UV light [299] shown to result in the inactivation of enzymes [300] which 

in NAPPCP, may have broken the peptide conjugate, releasing NAPPCP within the 

crosslinking solution, which when subsequently washed would allow the naproxen-

metabolite to freely diffuse out through a hydrogel pore. These findings indicate the 

absence of colNAPPCP within the network prior to the start of the MMP14 
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recombinant assay which could only be explained by the unexpected diffusion of 

colNAPPCP or NAPPCP metabolites containing NAP from the col4VBC25 network 

during the washing and hardening phases after hydrogel formation. The wash step 

is a crucial step which cannot be avoided post-UV crosslinking, due to the acidic 

conditions required to initially dissolve col4VBC25 as well as the free radicals 

produced during network formation, which would not be safe to deliver into the 

disease site. Due to the remnants of the crosslinking solution mixture (and 

encapsulated colNAPPCP) remaining within the newly formed encapsulating 

hydrogel, when the wash step takes place it is possible that the dissolved 

colNAPPCP or NAP-based metabolites are washed out as it diffuses and mixes into 

the solution the hydrogel is washed with, in turn exhibiting no naproxen peaks on the 

HPLC spectra.   

 

3.5 Conclusions 

Photo-active 4VBC, collagen-based hydrogels appear to lack the ability to 

support drug attachment, observed in the inability of dual functionalised collagen and 

gelatin biopolymers to undergo UV-induced photo-crosslinking. The unexpected 

ability of colNAPPCP to remove itself from the encapsulating hydrogel further 

demonstrated photo-crosslinking 4VBC is not a suitable method to support a 

Hydrogel-PCP system. As a result, alternative approaches must be taken in order to 

synthesise a collagen-derived hydrogel delivery vehicle capable of delivering and 

anchoring NAPPCP at its’ intended site.  
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Chapter 4 

Chemically crosslinked biopolymer hydrogels 
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4.0 Chemically crosslinked biopolymer hydrogels 

Here, the exploration into an alternative crosslinking strategy, to synthesise a 

more clinically relevant Hydrogel-PCP is undertaken. Chemical crosslinking by 

DMTMM, is employed to crosslink NAPPCP-conjugated gelatin, under physiological 

conditions. Initial assessments of gel-NAPPCP hydrogel properties are carried out 

through assessments of: 

• Gel content 

• Swelling ratio 

• Gelation kinetics 

• Rheology. 

The release of naproxen, by MMP14 cleavage of the peptide-conjugate, as well as 

acid degradation, was analysed by Liquid Chromatography Mass Spectrometry 

(LCMS). Finally, preliminary investigations into a less invasive and more clinically 

desirable delivery strategy, injection, are carried out under physiological conditions. 

 

4.1 Introduction 

Extensive research into UV-curable gel networks, and their potential for drug 

delivery has been carried out, however UV-curing did not prove a suitable method to 

enable full solution gelation and the formation of mechanically competent covalently 

crosslinked hydrogel networks. Another widely investigated crosslinking method for 

medical therapies, is chemical crosslinking which has produced an alternative range 

of unique characteristics. Whereas UV-cured hydrogels often have the ability to 

withstand higher temperatures or greater mechanical pressure [301], chemically 

crosslinked hydrogels have the potential to be crosslinked in a crosslinking solution, 

without the need of an alternative source, such as a UV light, which in some 

environments is not possible without invasive surgery, i.e. deep within tissue or bone 

constructs. This feature alone, is a clinically desirable property, as in many cases the 

need for an invasive implantation can be substituted for an injectable form, which 

gels in situ, of which, several research groups have investigated the potential of these 

alternative hydrogels in a range of biomedical applications [302, 303]. Chemical 

crosslinking has a range of crosslinkers available, dependant on the polymer 

backbone used, for example a biopolymer such as gelatin, a carbodiimide reaction, 

activating free carboxylic groups to readily react with the free amino groups of gelatin, 

chemically crosslinking the polymer.  
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In some research areas, the use of hybrid hydrogels has arisen, enabling the 

modulation of microscale hydrogel properties as well as incorporating the tailoring of 

drug or gene delivery capabilities [304]. In 2015 a study by Qu et al demonstrated 

the use of a thermo-responsive hybrid hydrogel for the delivery of DOX in breast 

cancer through the incorporation of gold nanorods into the hydrogel itself [305]. 

However, there is still much potential for a solely chemically crosslinked hydrogel 

system that delivers a selective and localised drug delivery system whilst acting as a 

support network, when necessary.  

The decision to exclude the AC biopolymer material at this stage of the 

research was made due to greater accessibility towards gelatin amino lysine groups 

when conjugating our peptide-conjugated prodrugs. When collagen is degraded, the 

triple-helix is broken into randomised, more linear coils known as gelatin. The degree 

of denaturation is relative to the amount of triple-helical structures, with lower 

amounts found in gelatin compared with collagen [306, 307].  The process of collagen 

denaturation into gelatin is attributed to hydrogen bonds and covalent crosslinks 

which break endothermically and exothermically, respectively [308]. The collapse of 

the triple helix, which is necessary to stabilise the collagen fibril ultrastructure [309] 

occurs, resulting in the unfolding and fragmentation of collagen, leaving 

functionalisation sites more accessible for conjugation of NAPPCP. The ratio of drug 

conjugated to the gelatin biopolymer, a 1 molar ratio to free amino groups, as 

previously used in AC, is no longer necessary to achieve the same degree of 

functionalisation, because of the increased lysine accessibility in gelatin. This is 

supported by the degree of functionalisation achieved in collagen versus the degree 

of functionalisation obtained in gelatin after 4VBC (at a 25-molar excess) 

functionalisation 17% ± 1 and 67% ± 2, respectively (Table 3.4. and 3.5.). 

A revised strategy was employed after the previously discussed, 

unsuccessful coupling and loading of naproxen conjugated PCPs (NAPPCP) to 

collagen or gelatin UV-cured hydrogels. The revised strategy aims to chemically 

crosslink a drug conjugated form of the collagen-derived biopolymer, gelatin. The 

original aim of the study hoped the UV-curing method would bypass the non-selective 

delivery of naproxen by surgically implanting the NAPPCP-conjugated hydrogel 

network to lower the risk of off-target toxicity, as previously discussed. This chapter, 

focuses around the proposed concept surrounding: gelatin-NAPPCP chemically 

crosslinked hydrogels under physiological conditions and the drug release profile of 

naproxen. The change from photo-crosslinking to chemical crosslinking, as well as 
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the change in material streamlines the hydrogel synthesis procedure, both in the 

number of steps required and the time taken. Three steps are required in the photo-

crosslinking method: monomer attachment, prodrug conjugation and UV curing, all 

of which, in collagen takes approximately 5-6 days if all materials are to hand, and in 

gelatin the same method takes roughly 3 days. On the other hand, the chemical 

crosslinking method in gelatin requires, prodrug conjugation followed by chemical 

crosslinking and takes 2 days to synthesis a Hydrogel-PCP. Therefore, the increased 

efficiency of the procedural change, works in favour of the production of a Hydrogel-

PCP system. The new strategy also covalently couples the drug to the biopolymer 

which is in turn crosslinked, preventing the drug from escaping from the hydrogel 

after the crosslinking process, as observed in the UV-curing encapsulation 

experiments.  

 

4.1.1 Delivery route – implantation versus injection 

Drug development requires a suitable delivery route, tailored to the disease 

target. Common routes of delivery include: oral, transdermal, intravenous (IV), 

implantation and injection [310]. The most popular of these is oral delivery, however, 

many drugs are unsuitable via oral delivery due to compliance issues of the patient 

or degradation in acidic conditions within the stomach. These complications can be 

bypassed using IV delivery as an alternative. A disadvantage of IV is the need for a 

healthcare professional to administer the treatment. Similarly, transdermal delivery 

overcomes many oral delivery routes, yet it comes with further disadvantages. Few 

drug compounds possess the necessary properties, for example: good solubility, low 

molecular weight and high partition coefficient [311], required to pass through the 

outer barrier of the skin.  

With these disadvantages, as well as the lack of localised delivery none of 

oral, IV or transdermal drug deliveries were selected to investigate as possible 

delivery routes for the novel Hydrogel-PCP system. Implantation of the Hydrogel-

PCP was initially hypothesised to be the more suitable delivery route, due to the 

crosslinking method originally used. Photo-crosslinking requires light; therefore, an 

injectable device would not be suitable when targeting deep tissue disease such as 

osteosarcoma or rheumatoid arthritis. The major disadvantage of implantation is the 

invasive procedure it requires, increasing the risk of toxicity through infection. 

Collagen-based hydrogels however, are biodegradable [312], and once implanted 

would not require surgery to remove the device. The device could also be implanted 



85 

 

at the time of tumour removal in osteosarcoma [313] removing the need for a second 

surgical procedure.  

The change in direction from the original crosslinking methodology, prompted 

a revision of the clinical delivery route. By using a chemical crosslinker, network 

formation can be triggered and the treatment administered, before the formation of 

the hydrogel network, without the need for an external activator (such as UV light). 

This allows the injectable delivery route, a non-invasive procedure, to be explored. 

As well as implanted hydrogels, injectable hydrogels are able to provide localised 

and selective drug release, with an added advantage of no required surgery. This is 

key in providing a more clinically desirable delivery route. The injectable method also 

allows for recurring treatments at regular intervals, where necessary, and unlike the 

implanted delivery, the injectable route could be administered at key sites to provide 

structural support to surrounding tissues [314, 315]. An example of this would be the 

site of cartilage degradation, between a joint in rheumatoid arthritis, helping to 

prevent bone erosion [316]. 

The revised crosslinking strategy provides a more clinically desirable 

therapeutic device, capable of in situ gelation to selectively release naproxen in a 

localised manner at a disease site, whilst acting as a tissue support structure (Figure 

4.1.). 
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Figure 4.1. Injection delivery strategy. Gel-NAPPCP system, injected between 

the rheumatic joints, at the site of cartilage degradation, where in situ chemical 

crosslinking occurs to form a gel-NAPPCP hydrogel with a cartilage-like 

consistency. Structural support is provided by the hydrogel, whilst selectively 

releasing the anti-inflammatory drug, naproxen, through the cleavage of the 

peptide-conjugated sequence by MMP14. 

 

 

Here, initial findings suggest the potential for the use of an injectable PCP-

conjugated hydrogel as a suitable delivery vehicle for selectively released naproxen 

by proteolytic MMP14 cleavage. Further work is however required to optimise 

crosslinking potential and the efficiency of drug release by MMP14.  
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4.2 Materials 

All non-conventional research materials and equipment information is listed 

in Chapter 3.2 (Table 3.1. and 3.2.). 

 

4.3 Methods 

4.3.1 Synthesis and confirmation of naproxen peptide-conjugated prodrug 

Peptide-conjugated prodrug synthesis and confirmation of successful 

synthesis, followed the same methods as described in Chapters 3.3.5 and 3.3.6. 

 

4.3.2 Drug conjugation to native biopolymer material 

Naproxen and naproxen peptide-conjugated prodrugs were coupled to free 

amino lysine groups of gelatin biopolymers through EDC/NHS activation of free drug 

carboxylic groups (-COOH). The coupling drug was dissolved in minimal DMSO 

before molar ratio-dependent quantities of EDC and NHS were added to the solution 

and stirred for 1 hour at room temperature. Again, the volume of DMSO required to 

dissolve the drug is not sufficient enough to significantly impact the coupling reaction 

after which the compound is dried and washed, removing the DMSO used to initially 

dissolve the drug. The excess EDC was quenched by the addition of 2-

Mercaptoethanol for 15 minutes before adding the solution to a 10% w/v solution of 

gelatin containing 10% v/v DMSO/PBS to prevent drug precipitation which was found 

to gradually occur in 100% PBS over the reaction time of 24 hours whilst stirring at 

40°C. The resulting solution was precipitated in a 10-fold volume excess of ethanol 

for 5 hours, before collection and air drying of the drug-conjugated gelatin biopolymer 

occurred.  

 

4.3.3 Confirmation of drug conjugation to gelatin biopolymers 

Confirmation of successful drug-conjugation was carried out using the 

previously validated Ninhydrin methodology described in Chapter 3.3.2.2. 
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4.3.4 Chemically-induced gelatin network formation and gelation kinetics 

After the successful conjugation of naproxen-based drugs to gelatin 

biopolymers, drug-conjugated and gelatin samples were dissolved separately at 10 

w/v ratio in PBS solution at 40°C, before placing the solution in a 37°C incubator 

under stirring and the addition of DMTMM at a 2 molar ratio to remaining free amino 

lysine groups and dissolving for 5 minutes in a screw top vial. Once dissolved and 

mixed, the solution was plated out into well plates and left to gel at 37°C for 30 

minutes to ensure total gelation had occurred (Figure 4.2.). After gelation, the 

resulting hydrogels were washed in 50% ethanol to remove unreacted activators and 

drug-conjugations and left to air dry.  

 

Figure 4.2. Chemical crosslinking of gelatin using DMTMM crosslinker. DMTMM 

activation of gelatin carboxylic groups, before reaction with free amino lysine 

groups of other gelatin strands, resulting in the formation of a hydrogel 

network. 

 

Gelation kinetics were prepared in the same way, except the crosslinking 

solution was removed from stirring and left to crosslink at 37°C instead of being plated 

into well plates, allowing the samples to be angled to confirm liquid to solid transition 

progress, at given timepoints. Briefly, 0.5g sample was dissolved in 5 ml PBS at 40°C 

until completely dissolved. Gelatin control samples were mixed with a minimal 

amount of rhodamine to dye the gels pink to show the gelation clearly. Once 

completely dissolved, DMTMM fixed molar excesses were added (calculated using 

the equation in Chapter 3.3.1) and stirred at 37°C. At 5-minute time intervals, the 

mixture was held at approximately 45° to assess whether gelation had occurred. The 

time at which the solution no longer flowed was deemed to be the time of network 

formation.  
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4.3.5 Quantification of swelling ratio and gel content 

Dry chemically crosslinked samples (n = 4) of known mass (md) from both 

gelatin-only and gel-NAPPCP hydrogels were individually incubated in 5 ml of 50mM 

Tris HCl (pH 7.5), 150mM NaCl, 5mM CaCl2 and 0.025 wt.% Brijj-35 (MMP reaction 

buffer) at room temperature for 24 h. The swelling ratio (SR) was caluculated using 

the equation: 

𝑆𝑅 = 
𝑚𝑠 − 𝑚𝑑

𝑚𝑑
× 100 

where mₛ is the mass of the DMTMM-crosslinked sample equilibrated in MMP 

reaction buffer (swollen sample) and md is the dry mass of sample. 

Gel content was measured to assess the overall proportion of the covalent 

hydrogel network, insoluble in MMP reaction buffer. Dry chemically crosslinked 

samples (n=4) of known mass (md: 40 mg – 50 mg) were incubated in 3 ml of MMP 

reaction buffer for 3 days. MMP reaction buffer and a 3 day time scale were selected, 

to allow comparisons between gel content before and after the drug release assay to 

be made, to assess the stability of the network within the presence of MMP14. 

Resulting samples were air dried and weighed. The gel content (G) was calculated 

by the equation: 

𝐺 =
𝑚1

𝑚𝑑
× 100 

Where m1 is the dry mass of the collected sample. 

 

4.3.6 Rheological assessments 

Rheological assessments involved amplitude and frequency sweeps on both 

gelatin-control and gelatin-NAPPCP conjugated hydrogels. Amplitude sweeps of 

newly formed hydrogels (n=4) were measured by a modular compact rotational 

rheometer from Anton Paar, at a fixed frequency of 1 rad·s-1 at time interval increases 

of shear strain %. During the Frequency sweeps, frequency was increased, whilst the 

shear strain remained at a constant percentage of 10%, to accommodate the linear 

viscoelastic region of both gel sets. Both assessments were carried out at 

physiological temperatures (37°C) and a parallel plate (Ø=8 mm) was used to apply 

the shear force, with a plate gap of 1.8mm. Storage (G’) and Loss (G”) modulus 

values were recorded throughout the sweeps.  
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4.3.7 MMP14-Selective Recombinant Enzyme Assay 

MMP14 recombinant enzyme assay carried out as described in Chapter 3.3.7 

and analysed as described in Chapter 3.3.6 using the same methods used to confirm 

naproxen peptide-conjugated prodrug synthesis. 

 

4.3.8 Initial Investigations of Injectable Device and In Situ Gel Formation 

Gelation solutions were prepared as described in Chapter 4.3.4, however 

rather than setting the crosslinking solution in well plates, the solution was taken up 

by syringe, and injected using a 0.3 mm outer diameter needle, into pre-prepared 

cavities of sawbone and left to crosslink under physiological temperatures. The 

resulting gels were photographed to demonstrate anchorage potential of the newly 

formed hydrogels. Similar to the investigation of gelation kinetics, gelatin control 

samples were mixed with a minimal amount of rhodamine to dye the gels pink to 

clearly show swelling within the cavities.   
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4.4 Results and Discussion 

4.4.1 Confirmation of drug conjugation to native biopolymer material 

Native gelatin was reacted with activated carboxylic groups of naproxen 

(NAP) (previously depicted in Figure 3.3.) or Naproxen peptide-conjugated prodrug 

(NAPPCP) compounds, through an EDC/NHS reaction [317]. Coupling of this nature 

occurs through a nucleophilic attack, whereby the free amino groups, for example the 

ones found in lysine react with the activated carboxylic groups of drug compounds.  

Naproxen-conjugated gelatin biopolymers were synthesised and the degree 

of functionalisation with naproxen drug compounds was confirmed for each molar 

ratio sample (Table 4.1.) [275]. The design of the coupling reaction ensured the 

avoidance of unintentional activation of gelatin -COOH groups, evading unwanted 

crosslinking of gelatin during the coupling reaction [318]. Activating the single -COOH 

of NAP and later NAPPCP, before quenching EDC, prevented the activation of gelatin 

-COOH when mixing the separate solutions together.  

Gelatin was first conjugated to naproxen, to act as a guide for NAPPCP 

coupling, molar ratio. As expected, doubling the molar ratio from 0.1 to 0.2, exhibited 

approximately double the degree of functionalisation, from 8% to 17%, however a 

molar ratio of 0.3 showed a degree of functionalisation of just 20%, suggesting 

approximately two thirds of the naproxen reacted with gelatin was successfully 

coupled compared with 80 and 85% in 0.1 and 0.2 molar ratio reactions respectively. 

The molar ratio of 0.2 was employed for gelatin functionalisation with NAPPCP, and 

yielded 17% functionalisation of free amino lysine groups. The selection of the molar 

ratio, 0.2, was made for two key reasons 1) the quantitity of unreacted drug versus 

degree of functionalisation, as the results suggested an almost complete saturated 

degree of functionalisation of this coupling method in our gelatin system was 20% 

and 2) the 17% degree of functionalisation of gel-NAPPCP(0.2) was half that of the 

35% of col-NAPPCP, equating to approximately 3 times the quantity of NAPPCP per 

gelatin hydrogels of equal networking solution mass compared to col-NAPPCP (due 

to the higher wt.% of gelatin used for crosslinking). 
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Table 4.7. Functionalisation of gelatin with naproxen and NAPPCP. Naproxen 

peptide-conjugated prodrugs (n=3) at varying concentrations, confirmed by 

ninhydrin assays, quantifying the unreacted amino groups of gelatin 

biopolymers.  

 

 

The method of conjugating drugs to gelatin, provides a potentially significant 

advantage when attempting to overcome solubility issues of certain drugs in 

physiological solutions. The precipitation and washing steps between the coupling 

and crosslinking stages of hydrogel production, allows various different solutions to 

be used to dissolve drugs. Drugs can be dissolved in dimethyl sulfoxide (DMSO) and 

reacted with EDC/NHS to activate the carboxylic acid groups, before mixing with 

dissolved gelatin solution allowing the drug to stay in solution whilst reacting with free 

amine groups of gelatin, before washing out the DMSO during precipitation.  Dimethyl 

sulfoxide is an aprotic solvent which is often capable of dissolving water insoluble 

therapeutic and toxic agents [319]. However, DMSO has significant penetration 

potential and can be detected in the blood 5 minutes after application to the skin and 

in 20 minutes DMSO can be detected in all organs of the body. Delivery of a drug, 

for example intravenously, requires the drug to be solubilised, however using DMSO 

to dissolve a water insoluble drug so that it can be intravenously administered could 

enhance the penetrative effects of the drug, therefore increasing the risk of off-target 

toxicity as well as causing DMSO-induced side effects including: erythema and in 

some cases systemic symptoms [320, 321]. In relation to drug-conjugation of gelatin 

biopolymers, DMSO allows less water insoluble drugs, for example sulfasalazine 

(SSZ) with a 0.2mg/ml water solubility, and a DMSO solubility of approximately 

30mg/ml, to be dissolved in a high enough concentration (to achieve the desired 

degree of functionalisation) to limit the dilution of a dissolved gelatin solution when 

the two reaction mixtures are combined, without the added complications of 

enhanced drug penetration when delivered into the body in a drug-conjugated 

Sample ID Amine Groups / mol·g−1 (x 10−4) F / % 

Native Gelatin 2.53 ± 0.006 N/A 

Gel-NAP (0.1) 2.34 ± 0.004 8 ± 0.14 

Gel-NAP (0.2) 2.10 ± 0.002 17 ± 0.08 

Gel-NAP (0.3) 2.04 ± 0.003 20 ± 0.11 

Gel-NAPPCP (0.2) 2.08 ± 0.003 18 ± 0.11 
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hydrogel format. Any remaining DMSO is washed off the drug-conjugated biopolymer 

after the coupling reaction, allowing an insoluble drug to be coupled to a delivery 

vehicle precursor, without risking the enhanced risks which the use of DMSO brings. 

 

4.4.2 Chemically-induced gelatin network formation 

Upon successful drug conjugation to gelatin biopolymers, the newly NAP-

conjugated gelatin and gelatin-control biopolymers were reacted separately with 

DMTMM to initiate chemical crosslinking, prior to the crosslinking of the gel-NAPPCP 

biopolymer. Chemical crosslinking, through DMTMM activity was observed in the 

native gelatin control and gelatin-naproxen sample, confirming the formation of drug-

conjugated hydrogels. This agrees with other studies where DMTMM has been used 

to crosslink materials including recombinant human collagen type I [322], whilst also 

been used to ligate amines to modify and form hyaluronan hydrogels [323]. Following 

the successful network formation of both gel-CT and gel-NAP, chemical crosslinking 

of gel-NAPPCP biopolymer occurred (Figure 4.3.).  
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Figure 4.3. Hydrogel network formation by DMTMM-induced chemical 

crosslinking. Gelatin-control A) dry B) wet and gelatin-NAPPCP C) dry and D) 

wet. 

 

The gel-CT hydrogels, appeared paler and more transparent, compared to 

gel-NAPPCP, which when swollen, appeared more clouded and greyer in colour. The 

successful formation of a gel-NAPPCP hydrogel, demonstrates the initial synthesis 

of a PCP-conjugated collagen-derived (gelatin) hydrogel material is possible through 

nucleophilic reactions. Chemical crosslinking enables the formation of gel-NAPPCP 

hydrogels, which when compared to the UV crosslinking strategy, is significant 

progress in proving the concept of providing a selective, localised peptide-conjugated 

prodrug hydrogel delivery system. The conjugation of NAPPCP to the gelatin 

backbone as opposed to an encapsulation method, significantly reduces the risk of 

the NAPPCP eluding the gel network. In an ideal crosslinking reaction, the 2-molar 

excess of DMTMM reacted with free or remaining amino lysine groups of the gelatin-

based biopolymers would occupy every group. We observed from other 

functionalisation reactions that the applied molar ratio with respect to remaining 

amino lysine groups rarely achieves complete occupation (Table 4.1.) [52]. Further 
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ninhydrin assays were carried out on DMTMM chemically crosslinked gel-CT and 

gel-NAPPCP, however due to the low number of remaining lysine groups, falling 

outside of the linear region (Chapter 3.3.2.2) the ninhydrin results were inconclusive 

in determining the exact degree of crosslinking. 

Gelation time of gel-CT and gel-NAPPCP was measured in PBS (Figure 4.4. 

and 4.5. respectively) crosslinking solutions with DMTMM, and repeated 3 times for 

each sample. In both the control and drug conjugated samples, gelation time 

occurred in under 30 minutes and in each replicate gel-NAPPCP gelation times were 

5 minutes faster than that of the gel-CT times and considerably quicker than some 

literature states, which may be due to a difference in crosslinker used [324, 325]. The 

gelation kinetics were repeated at higher volumes (10, 15 and 20 ml total volume) 

with no effect on the network formation times observed, indicating the size of the 

hydrogel produced does not hinder the gelation kinetics, which is unsurprising due to 

the same molar excess of DMTMM crosslinker to free amino lysine groups used, 

under the same conditions. In the initial crosslinking batch, the crosslinking solution 

contained, 10mM HCl pH 2.1, compared to future batches consisting of PBS and it 

was observed that in the presence of acidic conditions the crosslinking time 

approximately doubled, however this was not recorded due to the change in 

crosslinking solution. This result is in line with previous research, demonstrating 

prolonged crosslinking times in acidic conditions [275]. Liang et al observed slower 

gelation times in acidic crosslinking solutions, which is in line with previous work by 

Ratanavaraporn et al (2008) [326]. Native collagen is known to be altered depending 

on factors such as pH, ionic strength and salt concentrations, due to their effect upon 

amino acidic terminations (ionisation), as well as their secondary interactions [275, 

327-329]. Given that the nature of gelatin is degraded and partially hydrolysed 

collagen, it is possible that these variations also occur in gelatin, explaining why the 

differences in gelation times may have been observed between HCl and PBS based 

crosslinking solutions. The change to PBS solution was made in pursuit of the 

possible injectable delivery strategy. The decision to use a 2 molar excess of 

DMTMM with respect to free Lys groups was made as a result of other gelation kinetic 

experiments, using gelatin-only polymers, aiming at injection as the ideal clinical 

delivery route. Other molar ratios of DMTMM used were 0.1, 0.5, 1 and 3, the figures 

for which are not displayed due to the repetition of data. The 0.1 DMTMM molar ratio, 

failed to form a solid gel, instead appearing as a viscous liquid, due to the partial 

network formation that likely occurred. The ratios of 0.5 and 1 formed hydrogels 

however the time taken was considerably longer than that observed in the 2 molar 
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excess experiments, taking 70 and 45 minutes respectively. Using a 3 molar excess 

of DMTMM yielded a hydrogel, in the same time as the 2 molar excess for hydrogels 

(Figure 4.4.). As a result of the varying molar ratios of DMTMM, a 2 molar excess 

was selected as a hydrogel was formed in under 30 minutes which is thought to be a 

suitable enough time to mix and deliver the Hydrogel-PCP system and allow gelation 

to occur with minimal disruption to the patient’s daily routine.  

Unfortunately, gelation kinetics using DMTMM crosslinked gelatin or gelatin-

NAPPCP was not possible using a rheometer. Evaporation of the crosslinking 

solution occurred when attempting gelation kinetics on the rheometer at 37°C, 

despite countering the humidity. A lower temperature to reduce evaporation was 

rejected, due to the auto-crosslinking nature of gelatin below 30-35°C, resulting in 

the reassembly of the triple helical structures [258, 330]. Additionally, a higher 

temperature than 37°C was not assessed either, due to the increased evaporation 

that would be observed, as well as the overall delivery of the Hydrogel-PCP system 

aiming to be an injectable solution, physiological temperatures more relevant than 

higher temperatures and therefore kinetics were assessed at 37°C in a vial-based 

assay. 
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Figure 4.4. Gelation kinetics of chemically crosslinking gel-CT. Mixed with 

phosphate buffer saline and DMTMM crosslinker at A) 5 minutes B) 10 minutes 

C) 15 minutes D) 20 minutes and E) 25 minutes after.  
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Figure 4.5. Gelation kinetics of chemically crosslinking gel-NAPPCP.  Mixed 

with phosphate buffer saline and DMTMM crosslinker at A) 5 minutes B) 10 

minutes C) 15 minutes and D) 20 minutes after. 

 

The decreased crosslinking time of the NAPPCP-conjugated gelatin 

biopolymer, compared to the control gel, provides stronger support of an injectable 

delivery method. Additional support for the injectable delivery route is the ability for 

the system to undergo network formation in physiological conditions. Furthermore, 

the biodegradable nature of the hydrogel system [331], allows for a simple end to 

treatment, without the need to invasively remove the hydrogel network. The formation 

of PCP-conjugated hydrogels, is a crucial step towards obtaining a novel, selective 

and localised drug release, whilst providing structural support within the targeted 

disease site.  
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4.4.3 Assessment of gel content, swelling ratio and rheological properties 

Following the quantification of functionalisation degree, the gel content (GC) 

and swelling ratio (SR) were measured to further assess the structural characteristics 

of the chemically crosslinked gelatin networks. All chemically crosslinked networks 

displayed an average gel content above 90% in MMP reaction buffer (Figure 4.6.). 

Both the gel-CT and gel-NAPPCP showed high gel contents with minor variations 

observed between samples, confirming conjugation of NAPPCPP to gelatin had little 

effect on the GC and resulted in a highly crosslinked network, above the accepted 

criteria of other studies [275].   

 

Figure 4.6. Gel content (GC) chemically crosslinked hydrogels. Gel-CT (96.18 ± 

1.55 %) and gel-NAPPCP (91.11 ± 1.05 %) hydrogels (n=4). A statistical 

difference (p<0.05) between gel-CT and gel-NAPCP gel contents was observed 

using a T-test analysis. 

 

To assess other characteristics NAPPCP coupling may have had upon the 

gel-NAPPCP hydrogel, the swelling ratio (SR) was also determined (Figure 4.7.). The 

conjugation of NAPPCP, again showed little variation in SR compared to gel-CT, 

exhibiting a non-significant decrease in the swelling ratio of gel-NAPPCP. Both 
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hydrogels on averaged swelled to over 900% (9 times) their dry weight. The evidence 

suggests that NAPPCP conjugation to gelatin carries only minor decreases in SR 

when conjugated to gelatin.  

 

Figure 4.7. Swelling Ratio of chemically crosslinked hydrogels. Gel-CT (950.98 

± 43.02 %) and gel-NAPPCP (914.19 ± 33.06 %) hydrogels (n=4), using DMTMM 

as a crosslinking activator. No statistical difference was observed (p>0.05) 

from a T-test statistical analysis, comparing gel-CT and gel-NAPPCP. 

 

The combination of GC and SR provide evidence, suggesting conjugation of 

NAPPCP has little effect on network formation when chemically crosslinked with 

DMTMM, or the ability of the hydrogel to absorb liquid during the swelling process, at 

least when conjugated at a 0.2 molar ratio to free amino lysine groups of gelatin.  

Although the assessment of gel content and swelling ratio demonstrate the retention 

of network formation and swelling properties in NAPPCP conjugated hydrogels, it 

doesn’t confirm whether network formation occurred in the same way, for example 

whether NAPPCP acted as a linker during the crosslinking process or whether it 

played no part in the network formation.  

Gel-CT Gel-NAPPCP

0

200

400

600

800

1000

S
R

 /
w

t 
(%

)



101 

 

To further investigate the potential effects NAPPCP conjugation has, initial 

rheological assessments were employed, namely, amplitude and frequency sweeps. 

Amplitude sweeps were used to assess the percentage shear strain that can be 

exerted on the gel before minor cracks in the network begin to show, unto the point 

at which these cracks result in major network damage, ultimately leading to the 

collapse of the hydrogel network. Gel-CT and gel-NAPPCP samples were assessed 

at a constant frequency of 1 rad·s-1, under increasing shear strain. The loss modulus 

(G”) linear viscoelastic (LVE) region of gel-CT was found to be between 6 and 30% 

shear strain (Figure 4.8.). Comparing this to the LVE region of gel-NAPPCP (9-30% 

shear strain) it can be deduced, gel-NAPPCP is more resilient at than gel-CT, before 

the gel network begins to exhibit minor cracks - the beginning of the LVE region. 

During this time the network remains largely intact, maintaining an overall structure 

as only a small proportion of bonds in the network rupture, whilst the surrounding 

network remains intact. The minor cracks described are a result of internal friction 

during shearing which increases the G” modulus linearly [332]. In Figure 4.8., G” is 

displayed, indicating the loss modulus of the respective hydrogels, as increasing 

shear strain is exerted upon them. The loss modulus was selected to measure the 

LVE region, as gels were put under increasing deformation amplitude until the point 

at which the gels exhibit significant structural damage, causing a plateau of the G” 

curve. G’ was not displayed due to the presence of large fluctuations between each 

sample, however, the amplitude sweep was used to determine the percentage shear 

strain of the LVE region which can be determined from the loss modulus curve.  The 

fluctuations of G’ may be a result of the DMTMM crosslinked gelatin gel’s consistency 

and viscosity allowing the gel to flow in response applied shear strain, however this 

would also be expected to some degree in the loss modulus curve. Further, more in-

depth investigations, once confirmation of selective drug release is achieved, are 

required to investigate the fluctuations observed in the G’ curve. 
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Figure 4.8. Amplitude sweep showing the loss modulus G” LVE region. A) gel-

CT and B) gel-NAPPCP, under constant frequencies of 1 rad·s-1. 
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Conjugation of NAPPCP to gelatin appears to strengthen the hydrogel, 

allowing it to resist greater shear strain force than gelatin control hydrogels before 

the network begins to break. The G” plateau, or the end of the LVE region, observed 

in both hydrogel types occurred at approximately 30% shear strain, at which point it 

can be assumed that the minor cracks had grown to form a continuous macro crack 

running through the samples, causing the gel to break and begin to flow, exhibiting 

total network collapse [333]. Interestingly, although gel-NAPPCP withstood greater 

shear strain before beginning to display network breakage, the point at which total 

network collapse is similar to that of gel-CT suggesting NAPPCP conjugation only 

strengthens the gel at lower shear strain force, and network collapse occurs at the 

same point in both hydrogels.  

The frequency sweeps were carried out at a constant shear strain of 10%, 

within the LVE region of both gel-CT and gel-NAPPCP, and describes the behaviours 

of the gels within the non-destructive deformation range in increasing frequencies 

[334]. At lower frequencies both gel types remained undamaged by the increasing 

frequency, likely due to the vibrations failing to oscillate through the network, causing 

it to remain rigid. At approximately 8 rad·s-1 gel-CT began to crack under the 

vibrational force leading to a total network collapse around 10.5 rad·s-1 (Figure 4.9.). 

Gel-NAPPCP remained intact up until 10 rad·s-1, however once the network began 

to crack, gel-NAPPCP broke down rapidly as the total network collapsed at 11 rad·s-

1. The results of the frequency sweeps suggest, similarly to that observed in the 

amplitude sweep, gel-NAPPCP is capable of withstanding greater force (vibrational 

force in frequency sweeps) before the network begins to crack compared to gel-CT. 

However, the point at which the networks collapse remained approximately equal in 

each of the hydrogel types, indicating gel-NAPPCP is more resistant to lower 

frequencies than gel-CT. 
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Figure 4.9. Frequency sweep showing storage (G’) and loss modulus (G”). A) 

gel-CT and B) gel-NAPPCP, under a constant shear strain of 10%, a value within 

the linear viscoelastic region of both gel types. 
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Overall, the data collected from the gel content, swelling ratio and rheology 

suggests no negative impact from the conjugation of NAPPCP to gelatin occurred, 

for the application the gel-NAPPCP hydrogel would be intended. Conjugation of 

NAPPCP maintains the swelling potential of the hydrogel, allowing it to swell to fill a 

cavity, as well as the network forming potential, when compared to chemically 

crosslinked gelatin control gels. Furthermore, although NAPPCP, fails to enhance the 

maximum gel strength in relation to shear strain and frequency, NAPPCP achieves 

increased resilience to both shear strain and frequencies before initial network 

cracking occurs. The non-detrimental characteristics of NAPPCP conjugation provide 

support for the continuation of research into the novel system. In depth assessments 

into the unique properties of the hydrogel, will however, be delayed until a proof of 

concept to confirm drug release is carried out to avoid lost research time. It remains 

unclear, the role, if any, that NAPPCP plays in DMTMM induced chemical 

crosslinking. That said, the minor enhancements observed from the rheological data 

provide some insight into how functionalisation of biopolymers with PCPs may 

provide beneficial and unique characteristics in the future.  

 

4.4.4 MMP14 selective recombinant enzyme assay 

After the successful network formation of NAPPCP-conjugated gelatin 

biopolymers to form, gel-NAPPCP hydrogels, the drug release capabilities by 

MMP14 were assessed. As previously discussed, the peptide sequence, donated by 

the research team at the University of Bradford, UK is selective to MMP14, a matrix 

metalloproteinase, found overexpressed in multiple diseases due to the key role it 

plays in a variety of cellular functions [335, 336]. MMP14 is shown to selectively 

cleave the peptide sequence at the Hof-Gly peptide bond [229]. A recombinant 

enzyme assay was employed to confirm the release of NAP-based metabolites 

through the activity of MMP14.  

After 72 hours incubation, observational differences were noticeable between 

the gel-CT and gel-NAPPCP assay hydrogels (Figure 4.10.). In the gel-CT gel, the 

reaction buffer showed no visible deposits, whereas in the gel-NAPPCP drug gels 

grey-white specs were visible, indicating initial degradation of the network. In line with 

the observations, the gel-NAPPCP hydrogel appeared to have lost structural integrity 

and had flattened in shape, further indicating the beginning of a collapsed network. It 

is well known that MMP14 degrades various extracellular matrix components, 

including fibrillar collagen types I, II, III and gelatin [337], amongst many other 
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extracellular matrix macromolecules [338]. Gelatin degradation can occur as a result 

of MMP14 activity, either by direct cleavage or through the activation of other 

gelatinase MMPs. The 2013 study by Albrechtsen et al demonstrated activation of 

MMP14 in breast cancer resulted in gelatin degradation, reduced apoptosis and 

increased tumour growth [339]. It was shown that inhibition of MMP14 halts gelatin 

degradation, demonstrating a direct link between MMP14 and gelatin degradation. 

Due to the MMP14 cleavage sites of gelatin, as well as MMP14’s ability to activate 

gelatinase MMPs, there was a risk that MMP14 would be more selective towards the 

gelatin network than the NAPPCP peptide conjugate. However, the gel-CT appeared 

to maintain the structural integrity, remaining of similar shape and size as they did 

prior to the start of the recombinant enzyme assay, indicating MMP14 has little 

cleavage activity upon the DMTMM crosslinked gel-CT gel. 

 

 

Figure 4.10. Photographic depiction of hydrogels after MMP14 assay. The 

deposits and sunken appearance of the A) gel-NAPPCP hydrogel after 72 hours 

in the presence of recombinant MMP14, compared to the structurally intact B) 

gel-CT hydrogel. 
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Initial observations indicated MMP14 more readily attacks the gel-NAPPCP 

hydrogel, compared to the gel-CT, however why this occurs is unclear due to both 

hydrogels consisting largely of gelatin. The addition of the NAPPCP to the 

biopolymer, may alter how network formation occurs, exposing more MMP14 

degradation sites on the gelatin backbone. This remains unlikely due to the 

significantly larger molecular size of gelatin, which can be up to 125 KDa [340] 

compared to that of NAPPCP at approximately 1.3 KDa, however further investigation 

would be required to rule this out as intermolecular forces play key roles in 

biopolymers participating in biological functions such as molecular assembly, self-

assembly and the selectivity of enzymes [341].  

The collection of deposits from the MMP reaction buffer were dissolved in 

methanol and analysed by LCMS to identify any drug release that had occurred. The 

gel-CT, as expected exhibited no naproxen-based metabolites, tracked using the 

photo diode array at 330nm. The NAPPCP prodrug control sample displayed only 

one peak at 7.43 minutes, which was later identified using mass spectrometry (MS) 

as the un-cleaved NAPPCP and unexpectedly no naproxen-based metabolites were 

detected, suggesting no successful cleavage by MMP14 occurred. In the gel-

NAPPCP a small peak around 7.43 minutes was present which is the same elution 

time as the NAPPCP prodrug. Similarly, at 17.33 minutes a metabolite containing 

naproxen eluted which was later confirmed, using MS, to be a mass of 384.43 which 

correlates to the naproxen-arginine metabolites (Figure 4.11.). 

 

 

 

 

 

 



108 

 

 

Figure 4.11. LCMS analysis of MMP14 recombinant assay. Tracking the release 

of naproxen peptide-conjugated prodrug metabolites A) NAPPCP control B) 

gel-CT control gel and C) gel-NAPPCP gel. Confirmation of key peaks 

confirmed by Mass Spectrometry D) 7.43 MS of NAPPCP peak shown by MH2+ 

charged mass and E) 17.28 MS of NAPPCP metabolite peak of MH charged 

mass of NAP-Arg metabolite (384 m/z). 

 

A 

B 

C 

D 

E 



109 

 

The expected metabolite from the MMP14 recombinant enzyme assay was 

NAP-Arg-Ser-Cit-Gly which has an MH mass charge of 686.35 m/z. The metabolite 

observed, NAP-Arg was unexpected and interestingly not observed in the NAPPCP 

control, suggesting coupling NAPPCP to gelatin may enhances the drug release by 

means other than MMP14. NAPPCP showed no successful cleavage by MMP14 at 

the expected scissile bond, as demonstrated by Atkinson et al (2010) [103]. This was 

a possibility, as the conjugated sequence is an MMP14 cleavable sequence for the 

prodrug known as ICT2588, a vascular disrupting agent with an 

azademethylcolchicine drug warhead [103] and as discussed, changing a single 

amino acid or the drug itself can alter the release profile. The substitution of 

azademethylcolchicine for naproxen and the removal of the Fluorescein 

Isothiocyanate (FITC) endcap may have prevented NAPPCP cleavage from 

occurring. Whether the substitution of the drug warhead or removal of the FITC 

endcap has the stabilising effect (or shielding of the cleavage site to MMP14) is 

unknown as altering the endcap also has the potential to change the properties of 

the compound [342]. The removal of the FITC endcap was a necessary step to couple 

NAPPCP to the gelatin biopolymer, as it lacks a free carboxylic group to couple to 

the free amino groups of gelatin. One key difference between the NAPPCP and 

ICT2588 is the position in which the drug warhead is conjugated, in NAPPCP, NAP 

is coupled to the N-terminus of the peptide conjugate, whereas in ICT2588, 

azademethylcolchicine is coupled to the C-terminus, which may impact the rate of 

cleavage by MMP14 (Figure 4.12.). The structure of NAPPCP differs from ICT2588, 

and due to PCPs being 3D structures, it is possible that the expected cleavage site 

is still recognisable but inaccessible to MMP14 because of the altered structure. 

At this time, it is not possible to know which, or to what extent the 

modifications of ICT2588 to form NAPPCP had upon the MMP14 recognition and 

proteolytic activity of the Hof-Gly cleavage site. Structural analysis and sequence 

modifications could enhance the MMP14 activity around the cleavage site in the 

future to increase the rate of drug release, as even a single amino acid change can 

drastically alter the recognition by MMP14 [343]. Cleavage may also be possible 

through an alternative MMP or protease, which could be identified using an ex vivo 

assay or a series of recombinant enzyme assays against a panel of MMPs, which 

may allow selective release using an alternative proteolytic enzyme target.  
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Figure 4.12. Structural differences between A) ICT2588 and B) NAPPCP. 

Demonstrating the active drug components (blue) are coupled to alternative 

ends of the peptide conjugate with azademethylcolchicine coupled to the C-

terminus and naproxen coupled to the N-terminus. The N-terminus of ICT2588 

is occupied by the FITC endcap (red).  

 

The NAP-Arg metabolite, released from gel-NAPPCP, confirms the release 

of naproxen from the hydrogel network, although this metabolite was unexpected, 

even more so due to the metabolite being undetectable in the NAPPCP drug control 

sample. MMP14 may be responsible for the cleavage between Arg and Ser in gel-

NAPPCP, but not in the NAPPCP drug control due to a key difference between the 

two structures; gel-NAPPCP contains the gelatin biopolymer network as an endcap 

which as previously discussed can alter the release profile of a drug. It was initially 

hypothesised that NAPPCP conjugation to gelatin, or the crosslinking process, 

causes a previously inaccessible MMP14 cleavage site to become accessible, 

however this theory is doubtful because the degradation of gel-NAPPCP and gel-CT 

hydrogels in 6M HCl (and no MMP14 presence) exhibited the NAP-Arg metabolite in 

a higher quantity compared to the MMP14 enzyme assay (Figure 4.13.). 

A 

B 



111 

 

 

Figure 4.13. Acid degradation analysis using LCMS. A) gel-NAPPCP B) gel-CT 

and C) using MS to identify the peak located at 17.34 minutes in gel-NAPPCP, 

identified as NAP-Arg.  

 

The release of the NAP-Arg metabolite observed in both the gel-NAPPCP 

MMP14 recombinant assay and the acid degradation assay indicate that release of 

the metabolite from the hydrogel network is unlikely to have occurred through 

enzymatic cleavage as first thought. The most likely explanation as to why, in both 

MMP14 recombinant assays carried out (Collagen, Chapter 3.4.5 and Gelatin, here) 

it appeared no cleavage of the NAPPCP occurred at the known MMP14 cleave site 

(Hof-Gly) was initially attributed to the inactivity of the supplied MMP14 enzyme itself. 

This however is ruled out by the delivery of the active MMP14 arriving with 

confirmation of activity as well as internal investigations of the active enzyme using 

an ICT2588 variant peptide, donated by the University of Bradford, UK, cleaving at 

the Hof-Gly cleave site as expected. The spectra of the confirmed cleavage were 

requested not to be displayed due to ongoing research surrounding variants of the 

ICT2588 prodrug.  

A theory which would support the presence of NAP-Arg in both the MMMP14 

recombinant enzyme assay and acid degradation but not in the NAPPCP drug 

B 

A 

C 
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control, is that conjugation of NAPPCP to gelatin and/or network formation by 

DMTMM causes the NAPPCP component to become unstable and degrade 

naturally. Testing this theory would be possible through a series of gel content-like 

assays, on both gel-NAPPCP biopolymer and gel-NAPPCP hydrogels, by 

synthesising and submerging both the biopolymer and hydrogel forms at varying time 

points after synthesis, in weak acid or ethanol so not to degrade the gelatin, before 

neutralising and analysing through LCMS to assess changes in NAP-Arg metabolite 

vs NAPPCP or NAP-only peaks. If instability of NAPPCP is affected by conjugation 

or network formation, it would be expected that increasing quantities of NAP-Arg or 

NAP-metabolites would be observed as time went on. Due to the lack of cleavage of 

the NAPPCP drug itself, resources would be more suited towards optimising the 

cleavage by MMP14, to continue to develop a selective and localised drug release. 

The degradation theory however, poses another potential release strategy for the 

hydrogel network. A greater peak area was observed in the acid degradation of 1.76 

times compared to the MMP14 recombinant enzyme assay, indicating acidic 

conditions further contributes to release of NAP-Arg.  

Another, likely possibility is that the conjugation of NAPPCP, partially hinders 

the chemical crosslinking process, so that acidic degradation or MMP14 cleavage 

became more favourable in the gel-NAPPCP hydrogel compared to the gel-CT, 

causing the degradation of gelatin. This would account for the increased gel-

NAPPCP debris observed after the MMP14 recombinant assay, as MMP14 would 

have more accessibility to degrade the gelatin network, releasing NAP-Arg as a 

result.  

The NAP-Arg metabolite identified may have also occurred as a result of 

crosslinking in PBS solution, due to the guanidium group of arginine carrying a 

positive charge under physiological conditions [344, 345] and therefore may readily 

have reacted with DMTMM activated carboxylic groups on the gelatin biopolymer 

leading to NAPPCP acting as a linker within the crosslinking process. Armstrong et 

al (2016) discuss the hydrogen bonding potential between the Arg guanidinium group 

is satisfied by oxygen hydrogen bond acceptors of the carboxylate (-COO-) containing 

amino acids, which is the same method by which DMTMM activated -COOH groups 

to enable chemical crosslinking [346]. This would cause NAPPCP to be conjugated 

both at the tyrosine end chain -COOH and the arginine guanidium side chain. Drug 

release would then rely on two cleavage locations on the peptide-conjugate as 

opposed to one, making this theory less probable, considering MMP14, the only 
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proteolytic enzyme present in the MMP reaction buffer appears to not cleave 

NAPPCP at the previously shown cleavage site. Furthermore, if successful cleavage 

of both sites were to occur, evidence of this would likely be observed in the NAPPCP 

spectra and would be expected in larger quantities, than that detected in the gel-

NAPPCP MMP14 recombinant enzyme assay. The small peak of NAPPCP detected 

in gel-NAPPCP is likely due to MMP14 degradation of the hydrogel network which 

appeared to have collapsed under visual observations (Figure 4.10.). Alternative, 

future sequences could exclude the use of Arg to eliminate the possible risk of 

crosslinking at the Arg guanidium site. 

It is possible that, NAPPCP acting as a linker during network formation, may 

have indirectly caused the observed collapse in the network, if MMP14 attacked the 

gelatin biopolymer around the NAPPCP linker regions, causing NAPPCP to elute, 

identified as a small peak of NAPPCP and NAP-Arg, which may occur as a result of 

natural break down once the sequence is deprotected. The observed network 

collapse of the gel-NAPPCP hydrogel is further supported by the gel content carried 

out on the MMP14 recombinant enzyme assay gels (Figure 4.14.). No statistical 

difference was found in the gel content of gel-CT hydrogels before and after the 

MMP14 recombinant assay, which supports the findings displayed in Figure 4.10. 

demonstrating an intact network. On the other hand, from the observations, the Gel-

NAPPCP network appeared to collapse over the 3-day assay and as a result a 

decrease of 15.42% was observed in gel content, which was found to be statistically 

significant. The significant reduction in gel content could be a result of the 

hypothesised steric hinderance of the coupled NAPPCP, preventing total chemical 

crosslinking by DMTMM, instead catering for a physical crosslinking of the hydrogel. 

This method has been observed in a study by Yu et al (2020) where they overcame 

polymer low grafting degree of functional groups and steric hinderance by designing 

a novel hydrogel through non-covalent interactions [347]. It is possible that non-

covalent crosslinking of gelatin (which is capable of auto-crosslinking) occurred as a 

result of inhibited chemical crosslinking because of steric hinderance. Over several 

days in solution with MMP14 the gel-NAPPCP hydrogel may breakdown due to MMP 

attack, but also naturally as a result of the weaker non-covalent bonds present, 

unable to support a swollen structure. This could be investigated by comparing the 

gel content of auto-crosslinked gelatin hydrogels with DMTMM crosslinked gels, over 

a several days in solution to assess the changes in GC. The non-significant change 

observed earlier in the swelling ratios support the theory of steric hinderance. 

Ordinarily, a more crosslinked hydrogel swells less than a less crosslinked hydrogel 
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because of a more tightly compact network preventing large amounts of solution from 

expanding the network. The hydrophobicity of the aromatic rings within the NAPPCP 

prodrug, may prevent additional swelling by repelling water from the network, thus 

reducing the swelling ratio [348].  
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Figure 4.14. Gel content carried out on gel-CT and gel-NAPPCP hydrogels. A) 

after 3-day MMP14 recombinant enzyme assay and B) table exhibiting 

percentage values of gel content before and after the assay. Statistical analysis 

between gel-CT and gel-NAPPCP hydrogels before and after were compared 

using a T-test. No significant difference was observed between the gel-CT 

hydrogels, however a statistical difference in gel-NAPPCP was observed, 

between before and after samples. 
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Gel content in the gel-CT remains consistent with the content observed prior 

to the MMP14 recombinant enzyme assay, however gel-NAPPCP exhibited a 15.4% 

decrease in gel content on average, suggesting a sixth of the network had collapsed 

or being degraded. The decreased gel content confirms the start of network collapse 

within the gel-NAPPCP hydrogel, however if MMP14 were responsible for this 

collapse, a more decreased gel content for gel-CT would have been expected, 

however NAPPCP conjugation may cause MMP14 cleavage sites on the gelatin 

biopolymer to become more recognisable for cleavage. The network collapse may 

be due to instability of the NAPPCP prodrug acting as a linker molecule in part, during 

the crosslinking process. This theory would require further assessment of the 

structural integrity of the network to confirm the presence of NAPPCP as a partial 

linker within the gel network, combine with the previously discussed time-dependent 

stability assessment of the gel-NAPPCP biopolymer and hydrogels. The decrease in 

gel content following the assay may be attributed to secondary interactions 

established between the NAPPCP and the gelatin biopolymer and/or other NAPPCP 

compounds, however future investigations are necessary to confirm which of the 

theories is correct, if any.  

 

4.4.5 Investigating the clinical delivery route – injectability  

Clinically, the advantage of being able safely and effectively deliver 

therapeutic agents via non-invasive means is crucial when developing a new 

therapeutic treatment. In some instances, surgery is a necessary feat, for example 

the implantation of stents, or the removal of a tumour mass that it is too higher risk to 

leave in place and reduce with chemo/radio therapy. However, where possible, the 

use of surgery as a therapy should be avoided, particularly in drug delivery. If a drug 

can only be delivered to the site of disease by surgical implantation, the risk of 

disease site toxicity, through infection significantly increases [349]. Many drugs can 

be delivered by non-surgical means, including taking drugs orally or by intravenous 

methods. It is not possible to deliver every therapeutic drug via these methods, as 

part of, or whole drugs, such as the tail of peptide-conjugated prodrugs would be 

degraded by stomach acid if taken orally. Similarly, not all drugs can be delivered 

intravenously, for example, using the NAPPCP or a methotrexate-PCP (MTXPCP) to 

target osteosarcoma, activation and release is triggered by MMP14 cleavage, which 

is overexpressed in some off-target healthy regions, due to MMP14 involvement in 

bone development and regulation [18]. Therefore, intravenously delivering a drug 
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similar to MTXPCP which has the potential to release the cytotoxic MTX at a high 

concentration within healthy tissue, away from the osteosarcoma site, from a clinical 

perspective is not viable. A need for a selective, localised and non-invasive method 

of drug delivery is clinically appealing for the more complex drug deliveries, as well 

as those where efficacy can be improved. The hydrogel system established here has 

the potential to selectively release a drug whilst remaining anchored at the disease 

site. 

There are two obvious delivery strategies for the gel-NAPPCP hydrogel 

system 1) surgical implantation and 2) network mixture injection. The biodegradable 

nature of collagen and collagen-derived hydrogels remain stable, as a support 

network for approximately 7-10 days within the body and therefore initial implantation 

of a hydrogel system would be suitable as part of a surgical procedure such as 

removing an osteosarcoma mass. This method however, would not be viable as a 

long-term therapy because surgery every 7 to 10 days, to provide continued drug 

release is not possible, due to time it takes for surgical wounds to heal after surgery 

which would take two to six weeks if implanted during an arthroscopy [350]. Also, the 

surgical implantation again would not be an effective strategy in diseases that often 

do not require surgery, including rheumatoid arthritis (RA). The second delivery 

strategy, the injection of a network mixture, allows for a non-invasive drug delivery 

system and at a more frequent rate, weekly or fortnightly perhaps, although this would 

depend on the drug dosage conjugated to the hydrogel. The advantage of an in situ 

network formation enables a straight forward delivery route and due to the 

consistency of the gelatin-based hydrogel network, being similar to that of cartilage 

and other connective tissues, structural support could be provided in several 

diseases including RA, where cartilage degradation occurs and MMP14 

overexpression can be observed [351]. The chemically crosslinked nature of the gel-

NAPPCP hydrogels, allows network formation to occur under physiological 

conditions within 20-25 minutes, once mixed with the DMTMM crosslinker. Therefore, 

the injectable delivery system wouldn’t be hindered by long network formation times, 

relying on the patient resting for prolonged periods of time post-injection to allow 

gelation to occur. A question to be answered in future research is whether or not the 

crosslinking reaction is toxic to cells, however DMTMM is shown to be a non-toxic 

compound [352], and therefore the components involved in crosslinking all possess 

low levels of toxicity and therefore can be hypothesised that the crosslinking reaction 

should be safe. 
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Although shorter gelation times of a hydrogel are an advantage, gelation to 

fill a cavity or anchor themselves within the disease environment is critical to avoid 

potential gelation within a healthy tissue environment as this could lead to, no drug 

release or unwanted off-target toxicity due to the release of the drug within healthy 

tissues, naturally expressing MMP14. To investigate the anchorage potential of 

gelation, cavities were created within solid sawbone pieces to replicate femur bone 

ends, where cartilage degradation would be most prevalent in RA, and network 

forming mixtures injected into the cavity to gel under physiological conditions. Both 

gel-CT and gel-NAPPCP network forming mixtures underwent successful chemical 

crosslinking with DMTMM in sawbone cavity holes (Figure 4.15.), however only gel-

CT was displayed due to clarity of the newly formed hydrogel sample, as the control 

was dyed using rhodamine. Both hydrogel types, 25 minutes after cavity injection 

were able to be stood vertically on end and turned upside (not displayed), remaining 

intact, anchored within both cavity hole shapes.  

 

 

Figure 4.15. Gelation of gelatin-control hydrogels in polyurethane synthetic 

bone. Crosslinked with DMTMM under physiological conditions A) horizontal 

image of cavities prior to network forming mixture injection B) horizontal image 

of cavities 25 minutes post network forming mixture injection and C) vertical 

image of cavities 25 minutes post network forming mixture injection. 

Polyurethane synthetic bone (40PCF). 
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The consistency when handling the hydrogels within the cavities, compared 

to those conventionally formed in a well plate, appeared the same, as did the 

anchoring; when turned vertically or upside-down the hydrogels remained firmly 

anchored in place, with no indication of leaking out of the cavity.  

After observing gel anchoring within cavities, anchoring through the sawbone 

was investigate to give an indication of how gelation might occur within a joint (Figure 

4.16.). Gelation through the sawbone was observed in both the control and NAPPCP 

conjugated hydrogels, providing further evidence for the theory of in situ network 

formation to anchor a PCP-conjugated hydrogel within a disease site.  
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Figure 4.16. Hydrogel gelation through polyurethane synthetic bone tunnel 

cavity. Gelatin-control A) front-facing B) side profile and gelatin-NAPPCP C) 

back-facing and D) side profile. 

 

The results demonstrate the clinical delivery potential for an injectable, in situ 

crosslinking hydrogel to provide a selective and localised release of a therapeutic 

drug to lower the risk of unwanted off-target toxicity within the body. An injectable 

strategy enables a non-invasive delivery route that is applicable to a broad range of 

diseases that can be reached by injectable means. The concept of using an injectable 

hydrogel to anchor a peptide-conjugated prodrug at a disease site and provide 

structural support where needed, is a novel approach, one that requires further work 

to confirm the suitability of the delivery approach, with regards to the diversity of the 

hydrogel anchoring ability in different tissue types.  



121 

 

4.5 Conclusions 

Drug delivery can play a major role in the amount of associated off-target 

toxicity of a therapeutic drug, reduced by controlling the release, activation of a 

prodrug, or by changing the physical delivery method, i.e. orally or localised injection. 

Here, successful gel-NAPPCP hydrogels were synthesised using a DMTMM 

chemical crosslinker, capable of crosslinking in physiological conditions within 

sawbone cavities. The release of NAP triggered by MMP14, appeared unsuccessful 

however release of a NAP-Arg metabolite was observed in both the recombinant 

enzyme and acid degradation assays. Future work is required to develop the 

selective NAP release triggered by MMP14 cleavage.  
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Chapter 5 

Final Discussions 
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5.0 Final Discussions 

The thesis describes the fusion of two well researched scientific fields, 

biomaterials and medicinal chemistry to propose the concept of a selective and 

localised form of drug delivery. Biomaterials design as a research field has shown 

advances in tissue scaffolding and regenerative medicine in recent years [353-355], 

whereas medicinal chemistry has demonstrated key alternatives to current 

therapeutics aiming to reduce toxicity associated with certain disease treatments, 

leading to improved clinical success [356]. It is therefore unsurprising that the 

combination of structural tissue support and less toxic therapeutic agents would be 

desirable and advantageous when treating diseases such as rheumatoid arthritis or 

osteosarcoma. The study aimed to prove the concept of peptide-conjugated prodrugs 

coupled to a biopolymer which then undergoes network formation (crosslinking) to 

produce a hydrogel system with selective means of releasing the drug component.  

The initial network formation strategy focused around the UV-induced 

network formation due to the wealth of knowledge obtained through previous work 

within the research group into collagen and the 4VBC molecule, not to mention the 

patent that the University of Leeds, UK currently holds on collagen and collagen 

derived photo-active functionalised polymers [189]. Although the project focused, 

initially around collagen and collagen-derived biopolymers (4VBC functionalised and 

UV crosslinked) which were in used studies as previous work [52, 275], this project 

differed, as it took the previously characterised collagen-derived biopolymers and 

applied them towards using them as therapeutic drug delivery systems whilst 

incorporating a novel peptide-conjugated prodrug. The novelty of the system 

described here, sheds new light on the therapeutic stalemate RA and OS have seen 

in recent years and aims to bring forward new therapies which provide tissue support 

in the form of a selective drug release hydrogel system. 

The results showed that collagen and gelatin biopolymers, when sequentially 

coupled to a drug and the photo-active molecule, 4-vinylbenzyl chloride (4VBC), do 

not lead to network formation, by UV crosslinking. It is hypothesised that this is due 

to molecular shielding (prodrug-induced steric hinderance), preventing the 

combination of free radical-propagation chains of the 4VBC-functionalised 

biopolymer. The method of UV crosslinking would have been a desirable system, 

allowing for efficient curing methods, whilst including the possibility to cure in situ 

whilst implanting the system, allows for an enhanced variety of cavities or areas to 

be filled prior to curing, enabling increased delivery accuracy compared to injectable 
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methods. Injectable methods, as previously discussed have more significant 

advantages including minimally invasiveness and reduced risk of infection. The 

advantage of using a peptide-conjugated prodrug (PCP) is that it could be applied to 

any disease, overexpressing a proteolytic enzyme, with changes to the peptide-

conjugated sequence made to make it selectively recognisable by the new target 

enzyme [357]. This allows for a wide variety of different diseases to be targeted, 

drugs that can be administered and polymer materials that can be used, which all 

together provide a unique and tailored therapeutic approach to many disease 

conditions.  

After the unexpected inability to form a PCP-conjugated hydrogel system, the 

encapsulation of col-NAPPCP within a crosslinked network of col4VBC25 was 

carried out and successful network formation was accomplished following UV 

irradiation. However, it appeared that the col-NAPPCP molecules impregnated in the 

4VBC-functionalised collagen network diffused out of the system following sample 

incubation in aqueous environment. This was confirmed when complete acid 

degradation of the col4VBC25encap-NAPPCP showed no naproxen-based peaks 

during HPLC analysis.  

The change in strategy from a photo-crosslinked Hydrogel-PCP system to a 

chemically crosslinked system was therefore employed in light of the potential 

prodrug-induced steric hinderance effect during UV irradiation preventing 

combination of free radical propagating chains and successful biopolymer network 

formation. By chemically crosslinking the biomaterial, the use of a photo-active 

molecule was no longer necessary, allowing NAPPCP to be conjugated directly onto 

a biomaterial as the suspected steric shielding was no longer present. Gelatin was 

deployed as the frontline material to synthesis a Hydrogel-PCP system from, using 

the chemical crosslinker DMTMM, due to the increased ease of functionalisation 

discussed previously. The successful conjugation of NAPPCP to gelatin was 

confirmed using a ninhydrin assay prior to network formation. The success of network 

formation under physiological temperatures, accomplished the key objective for the 

proof of concept study by synthesising a Hydrogel-PCP system that was capable of 

undergoing network formation in physiological conditions. Further, initial investigative 

assessments were carried out, including gel content and swelling ratio as well as 

rheology, comparing the gel-NAPPCP with a gelatin control gel. The results of the 

hydrogel properties investigated, displayed no significant detrimental effects from the 

coupling of NAPPCP to gelatin, further supporting the suggestion of a Hydrogel-PCP 
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system. The decision to carry out rheology and other investigative experiments on 

the chemically crosslinked systems and not the UV-crosslinked systems was due to 

resources available at the time of each development. The collagen-based UV-

crosslinked systems produced finite quantities of conjugated PCP systems, of which 

the MMP14 enzyme assay was deemed more crucial to assess over the investigative 

experimental work. The MMP14 assay was a critical step in the aims of the study, 

demonstrating the release of NAP from the hydrogel system. if the collagen-based 

systems had demonstrated drug release from the hydrogels, a larger quantity of drug-

conjugated biopolymer would have been synthesised to allow further investigative 

work to be carried out. The lack of drug release from collagen systems at a crucial 

stage in the research project favoured the change in crosslinking method, to establish 

a Hydrogel-PCP system, as opposed to carrying out characterisation of a hydrogel 

system which would require further modifications, likely altering the characteristics 

which would have already been investigated, thus using up the finite resources at 

hand.  

Following the investigative analysis, drug release was assessed in an MMP14 

recombinant enzyme assay. No cleavage between the Hof-Gly site was detected 

using LCMS, however a NAP-Arg metabolite was released from the structure. It is 

unlikely that MMP14 is responsible for the release of NAP-Arg, as the NAPPCP-only 

control did not produce the NAP-Arg metabolite, however conjugation to gelatin may 

allow MMP14 to target the Arg-Ser site. Although the attempt to confirm drug release 

through MMP14 cleavage, appeared to fail, the overall results of the project are 

promising as the peptide-conjugate sequence is known to be cleaved by MMP14 

[229], therefore suggesting that slight alterations to the peptide sequence are 

required to accommodate the change in active drug used. Furthermore, acidic 

conditions appeared to display larger quantities of the NAP-Arg metabolite, 

suggesting potential for an alternative selective release strategy, triggered in 

response to a decrease in pH [358, 359].  

 

Another key aspect of the project was the establishment of a delivery strategy 

for the proposed Hydrogel-PCP system to address the needs of RA and OS, whilst 

being as minimally invasive as possible. Many well researched diseases already 

have established therapeutic treatments to cure them, however therapies for more 

complex diseases such as RA, focus around managing the disease. Some, but not 

all of these therapeutic treatments could be further enhanced by either: alternative 
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drug delivery routes or the alteration of the treatment compound to reduce the chance 

of unwanted off-target toxicity, for example using a prodrug. Osteosarcoma and 

rheumatoid arthritis are two complex diseases requiring clinical intervention to 

improve the therapeutic index of current treatments.  

The development and approval of any new treatment must be clinically viable, 

a treatment is null and void if significant systemic toxicity is associated or the 

therapeutic cannot be delivered effectively [360]. Cytotoxic or chemotherapeutic 

drugs in particular, are therapeutic agents where reducing off-target toxicity is crucial 

[361]. This can be achieved by reducing the administered dose, which may result in 

a less effective treatment, limiting the spread of the therapy, either by anchoring it at 

the treatment site or making the treatment more selective [98, 362]. Another area to 

consider is the delivery strategy, even the most effective treatments won’t gain 

approval if the clinical delivery route is not viable and safe.  

Here, the proof of concept study addressed the key areas which oppose a 

new therapeutic strategy by combining several research fields to suggest the release 

of a selective therapeutic prodrug, anchored at the disease site by a tissue support 

structure, delivered by injectable means, negating the need to surgically implant the 

device. No proof of concept study of this nature produces a finalised therapeutic 

product, however, the progress made here paves the way for future studies to adapt 

and fine-tune the novel Hydrogel-PCP concept to produce an effective therapeutic 

system.  

The particular concept in this study demonstrated its’ clinical potential by 

being able to temporarily disable the active drug through conjugation of a peptide 

sequence, as well as being injectable as part of an in situ forming tissue scaffold. 

Furthermore, by bypassing the oral administration of naproxen, off-target toxicity, 

peptic ulceration - a common side effect of prolonged NSAID treatments, may be 

avoidable. The drug release profiling, requires further work, however the initial aims 

as well as a delivery route have been achieved. Overall, the described study lays the 

foundations for future work across a vast variety of diseases, through the alteration 

of a peptide-conjugate sequence, to target and exploit the overexpression of 

proteolytic enzymes within the disease.  

As the study developed the versatility of the system was further highlighted, 

demonstrating the potential to incorporate the system into several future study 

designs, not only using PCPs but to investigate other selective release methods such 

as in pH responsive, but also, using a peptide-conjugate as an anchoring chain to 
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the hydrogel. This diversifies the variety of diseases that could be targeted using a 

Hydrogel-PCP system. The research focussed heavily around meeting the clinical 

needs of OS and RA, as both diseases require updated therapeutic treatments. 

Osteosarcoma, in the form of more targeted treatments displaying reduced off-target 

toxicity and reduced patient side-effects. Whereas RA requires a localised and 

selective drug delivery within a structural support network, reducing the risk of bone 

erosion. Both of these disease treatments are possible through the use of a hydrogel 

as a drug delivery vehicle, administered by injection to meet another desirable clinical 

attribute, reducing the need for invasive procedures to deliver a therapeutic 

treatment.  

 

A concept with desirable clinical attributes, such as reducing the associated 

off-target toxicity, providing a non-invasive delivery or the provision of a tissue 

support structure are favourable treatment methods [363]. The combination of these 

attributes makes the discussed study a clinically advantageous strategy to reduce 

off-target toxicity when treating rheumatoid arthritis and osteosarcoma in the future.  
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6.0 Conclusions 

The project described here has demonstrated a need for new research into 

the therapeutic targeting of rheumatoid arthritis and osteosarcoma, to break the 

deadlock of currently used, outdated therapies. The outlining of new knowledge 

brought forward through the development of novel drug delivery system to kick start 

a resurgence in RA and OS therapeutics, was achieved following research 

objectives, described in Chapter 1.1. Key objectives met included: 

• The establishment of a novel Hydrogel-PCP system 

Synthesis of the Hydrogel-PCP system is the first system to our 

knowledge to conjugate PCP to a biopolymer prior to network 

formation. 

 

• The use of DMTMM as a chemical crosslinker 

Traditionally, the carbodiimide, EDC alongside NHS, has been used 

in the activation of carboxylic acid groups and chemical crosslinking. 

The emerging use of DMTMM in literature has been strengthened 

here, demonstrating itself as a substantial alternative to EDC/NHS.  

 

• A substantial and credible delivery strategy for the newly synthesised 

Hydrogel-PCP system 

The establishment of a minimally invasive, injectable device, which is 

capable of in situ network formation under physiological temperatures, 

looks to overcome the complications of surgical implantation, which 

was originally proposed as a delivery strategy at the beginning of the 

research project.  

 

Peptide-conjugated prodrugs have become advantageous drug delivery 

compounds, which have demonstrated a selective release and a much-reduced risk 

of drug associated off-target toxicity. A key example of this would be ICT2588, 

demonstrating no significant off-target cardiotoxicity in vivo [229]. The use of a 

hydrogel to deliver and anchor a PCP in place at a disease site, was proposed here 

and is thought to further enhance the PCP drug release whilst providing a structural 

tissue support. 

Here, the key objective of the project, to synthesis a novel Hydrogel-PCP 

system was established, through chemically crosslinking a collagen-derived 
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hydrogel, after exhausting crosslinking capabilities in the UV-induced Hydrogel-PCP 

systems. Aiming to the use of a Hydrogel-PCP system, identification of a clinically 

desirable delivery route was another significantly important objective. The 

establishment of an injectable Hydrogel-PCP system, capable of crosslinking under 

physiological temperatures, which provides a novel drug delivery system with a 

targeted and minimally invasive delivery route, whilst crosslinking to provide 

structural support, is possibly the most exciting result of this study, open up several 

future directions of work to expand knowledge within the research field.  

Further investigations are required to define the ideal peptide sequence and 

release mechanism of NAPPCP (Chapter 7), however, the concept of developing an 

in situ forming Hydrogel-PCP system has being demonstrated as well as initial 

investigations into the properties and clinical delivery routes.  

In all, the study provides insights into the design of a novel concept to provide, 

localised and selective drug delivery using a tissue support network as an anchor for 

the drug, which in theory can be applied to the treatment of any disease, not only 

rheumatoid arthritis and osteosarcoma, but indeed any disease overexpressing a 

proteolytic enzyme such as MMP14.  
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7.0 Future works 

The proof of concept study, discussed here provides a strategy foundation for 

several therapeutic directions involving the use of DMTMM-crosslinked gelatin 

hydrogel systems. In this sub-chapter the individual directions will be outlined to 

provide a base from which future work can be carried out.  

 

5.3.1 Peptide-conjugated prodrug functionalised gelatin hydrogels 

The most obvious of the future strategies is the continuation of a Hydrogel-

PCP system research using a proteolytic enzyme to trigger drug release. The 

alterations made to the ICT2588 sequence to accommodate synthesis of the gelatin-

NAPPCP system led to the stabilisation of the prodrug in regards to MMP14 

cleavage. The stabilised condition can be altered to produce a more cleavable 

peptide-conjugate by adjusting the peptide sequence [364], allowing for increased 

NAP metabolite release due to MMP14 activity. The establishment of an MMP14 

cleavable NAPPCP would allow for a selective release within a disease, increasing 

the therapeutic index, by reduction of off-target toxicity [365]. Substitution of a single 

amino acid can cause significant effects on the rate of drug release as previously 

seen in MTX-PCPs. Previous work, demonstrated the substitution of β-Ala for Cit 

causes the rate of drug release to increase across all three assessed tissues which 

is an undesirable trait in healthy tissues, such as the liver and kidneys [21]. A balance 

between effective drug release in diseased tissues and the degree of off-target 

toxicity caused to healthy tissues must be established, with the degree of off-target 

toxicity being lower than that of existing therapeutic treatments in order to be clinically 

desirable.  

The design of future Hydrogel-PCP systems of the concept described here, 

requires a careful and systematic approach, using the basis of ICT2588’s peptide 

sequence as a starting point. Initial work, removing the hydrogel component of the 

system may be useful to establish a peptide-conjugate sequence that when coupled 

to naproxen is selectively released by MMP14. This would confirm whether the 

sequence, when conjugated to the hydrogel is unrecognisable due to the hydrogel 

and not the change in drug component to the sequence, reducing the amount of 

resources lost.  Batches of PCP sequences containing single changes could be 

simultaneously synthesised using the SyroXP fully automated peptide synthesiser, 

used here. 
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After successful synthesis and purification, if required, release assessments 

will be carried out either through an MMP14 recombinant assay or an ex vivo assay 

using homogenised tissue with an overexpression of MMP14. Both assays have 

advantages over the other. The recombinant assay demonstrates MMP14 is capable 

of cleaving the peptide sequence releasing a drug metabolite, which in the body 

would be deprotected and open to metabolism, leading to the release of the active 

drug. Selectivity of MMP14 could be determined by follow-up recombinant enzyme 

assays using alternative MMPs. The ex vivo assay would assess release in a tissue 

environment, and could be carried out in a variety of tissues, both healthy and 

diseased to indicate the drug release profile and potential associated toxicity of the 

NAPPCP. The analysis of both assays could be carried out using LCMS and the drug, 

half-life calculated. The biological assay, as a suggestion would be used initially to 

determine peptide cleavage and drug release to efficiently identify the more 

successful PCP release sequences before confirming which expressed MMP carries 

out the initial cleavage – likely to be MMP14 due to the modified ICT2588 sequence. 

If an alternative MMP was identified for the initial cleavage then diseases 

overexpressing the newly identified protease could be investigated further to 

establish a therapeutic treatment. 

With regards to the sequence modifications from the ICT2588 sequence, Arg 

would be an ideal starting point to substitute for an alternative amino acid, due to the 

previously discussed guanidium group of arginine, which would remove the risk of 

the PCP acting as a linker molecule during hydrogel network formation. The 

successful NAPPCP sequences would then be coupled to gelatin and chemically 

crosslinked to form a hydrogel before reassessing the drug release assays to 

compare the changes, if any to the drug release. Should drug-release remain 

unchanged the following steps would involve the hydrogel characterisation, including 

but not limited to, techniques such as rheology, swelling ratio and gel content. 

Ordinarily, assessments of hydrogel properties are carried out prior to the drug 

release assays, shown here, however due to the results and nature of the Hydrogel-

PCP system the logical route is to assess drug release first. If drug release from the 

Hydrogel-PCP system was not possible then there would be no reason to carry out 

hydrogel characterisation as the PCP sequence would require further modifications 

which could affect the hydrogel properties.  
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5.3.2 Acidic release investigation 

As the results of this study confirmed, a drug metabolite, NAP-Arg was 

released in more acidic conditions. Although the method of drug release appears to 

be in response to pH changes, further investigations are required to confirm this. 

Changes in the pH can trigger drug release [366], due to the changing of molecular 

charges. Investigations into the effect pH changes have on drug release from the gel-

NAPPCP system could allow for a new range of applications to be explored, including 

wound healing. Furthermore, further investigations into the structure of gel-NAPPCP 

may provide insight into the discussed theories surrounding the role NAPPCP plays, 

if any, during network formation. Minor alterations to the peptide sequence could 

enhance the pH-selective release of NAP, should confirmation of pH-sensitive drug 

release be confirmed.  

Exposure of equal mass gel-CT and gel-NAPPCP hydrogels to varying pH 

levels across a range of time points, incubated at 37°C, prior to neutralisation and 

analysis, using LCMS to measure the release of NAP metabolites, would confirm the 

optimal pH for drug release. The effects of alkaline conditions may also be assessed 

in this manner as NAP metabolites may also be released in alkaline conditions.  

Should a pH induced drug release be proven, the system may be deployed in 

an in vitro or in vivo model to further assess the drug release and provide an idea of 

the degree of off-target toxicity associated with this form of drug delivery. 

Comparisons between current NAP treatments and the hypothesised pH-induced 

NAP release could be made in in vivo models to determine whether the pH-induced 

release strategy is more beneficial, clinically, than current NAP treatments.  

 

5.3.3 Cinical device developmental investigations 

The third direction of future research, is the development of the clinical 

delivery device – the injectable, in situ crosslinking Hydrogel-PCP system. Here, we 

have shown the initial steps towards an injectable system by demonstrating that 

network formation is possible under physiological conditions using a networking 

solution of phosphate buffer saline, dissolved gel-NAPPCP and DMTMM, as well as 

injecting it within sawbone to visualise and depict the gelling capability within a bone 

cavity or between two bones. Future research could expand on the progress made 

here, using bovine bone and drilling a series of different cavities to assess gelation 

in a more dynamic range of cavity sizes, whilst assessing gelation in other solution 
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types to optimise gelation times and strength, as the use of a gelation solution may 

affect the strength of the networked hydrogel. Once assessment of in situ gelation 

from an injectable hydrogel solution has been made ex vivo bone, the investigation 

could be carried out in vivo by injecting a series of hydrogel solutions into cavities to 

assess gelation within the model, however this would likely only be at a stage when 

the drug release strategy was ready for in vivo assessments too. 

The investigation into the development of a clinical device is future work which 

would be suitable alongside one of the other two described research directions as 

there is little need to assess the delivery without a means of releasing the therapeutic 

treatment once established within the model.  

 

5.3.4 Peptide-conjugated photo-crosslinked hydrogels 

Future work may also involve the investigations into the failings of the photo-

crosslinking strategy to gain further insight into why the dual functionalisation of 

collagen with 4VBC and NAPPCP led to an inhibition of network formation. 

Furthermore, the theory of how the encapsulated col-NAPPCP yielded no drug after 

complete acid degradation of the encapsulating hydrogel still remains unanswered.  

It may be that dual functionalisation with a photo-active molecule that doesn’t 

contain an aromatic ring such as methacrylate (MA) [54] may be a sufficient enough 

change to allow network formation to occur under UV light, however it is likely that 

due to the suspected steric effects and UV effects on certain amino acids as 

previously described, a complete resequencing of the PCP sequence may be 

required to enable photo-crosslinking capabilities.  

Steric shielding could be investigated using solvent accessible surface area 

analysis [367] and has been used to determine the effect of steric shielding on 

another popular biopolymer, polyethylene glycol (PEG) by Mu et al [368]. This could 

be applied in future works to investigate and confirm the role steric shielding may 

have played in the prevention of network formation through photo-crosslinking 

methods.  

If photo-crosslinking can be achieved, to form a Hydrogel-PCP system, similar 

steps to the ‘Peptide-Conjugated Prodrug Functionalised Gelatin Hydrogels’ direction 

could be carried out produce an implantable clinical delivery route for applications 

such as dentistry. Photo-crosslinking is possible under visible light and has gained 
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much attention in recent years [262] and may be of greater use than a chemically 

crosslinked hydrogel in certain applications, however investigations would be 

required to confirm this.  
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