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Abstract

Conflicts are central events in history, defining eras and the lives of their peoples. In this
thesis, we demonstrate the use of three quantitative methods to three case studies from his-
torical and conflict modelling. We begin with the application of the bootstrap to the Battle of
Britain. The bootstrap allows us to answer counterfactual questions about the Battle of Britain,
including the importance of targeting and tactical decisions on the final outcome of the battle.
We quantify the final outcome using theoretical prior distributions associated with historical
viewpoints. We next conduct a changepoint analysis of historical battle deaths. This requires
the adaptation of changepoint analysis methods to heavy-tailed data, for which we formulate
an algorithm before applying the algorithm to the case study. We find evidence for changes in
the distribution of battle deaths through time. We finish with a case study of coalescence and
fragmentation modelling, which has been proposed for insurgent-counter-insurgent conflict.
We demonstrate that gel-shatter cycles are a previously unrecognised yet ubiquitous feature
of such systems and discuss the robustness of these systems to perturbations in the underlying
rules. Together, these case studies demonstrate the ability of modern methods to refine and
deepen our understanding of historic conflicts.
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After accepting this PhD but before beginning it, I made the usual rounds of saying goodbye to

family and friends. This led to perhaps the first academic question from someone about the PhD:

why study conflict? At the time, I was confused as the answer had seemed obvious to me: we

study conflict to better understand how it happens with the hopes of reducing its danger, much

like we study disease. They too were confused for different reasons: 2016 had been a year where

many people looked at their friends, families, and neighbours and saw them and their beliefs in

a different and more polarised light. On reflection, their question was more akin to the ethical

questions we require of many disciplines: are you doing good and how do you make sure you are

doing good without (or with minimal) harm?

The material in this thesis covers conflicts at very different levels. We study a prolonged aerial

conflict in preparation for an invasion, the sequence of conflicts and their deaths due to battle as a

dataset, and a recurring theme and model of modern conflicts. In each case we investigated, I was

vaguely surprised by the meta-conflicts that arose. The Battle of Britain is still surrounded by a

national myth that led to a very large, mixed public response and the techniques used therein are

situated in the middle of the debate on (the validity of) counterfactual history. The changepoint

analysis of historical battle deaths was conceived of from the antagonistic tensions amongst those

arguing about trends in the historical data and those arguing whether said data has discrete changes.

Even the more strictly mathematical chapter on coalescence and fragmentation is in tension with

some existing literature, although this tension is perhaps the least dramatic as a natural result of

the scientific process.

In each case, we sought to identify truths about the world to the best of our abilities. By the

nature of each work, we did no harm directly, nor is harm an obvious result of our studies. We did

good by providing tools or evaluating the quality of tools used in scientific study. Our objects of

study are not things that can be used to guide a weapon or take a life. Their primary purpose is

to aid in decision making about models, implicit or explicit. In studying these tools, we may not

have solved conflict, but hopefully we have helped our fellow scientists and decision makers to

better understand their own models and how to interact with them.

My co-authors and I would like to acknowledge the support of several academics relating to

the chapters of this thesis. We thank T. Lucas of the US Naval Postgraduate School; he provided

the initial suggestion for the project discussed in Chapter 3. We thank M. Spagat for a seminar

at York which seeded Chapter 4, and A. Clauset, K. Gleditsch, N. P. Gleditsch, S. Pinker, and M.

Spagat for comments and discussions. Similarly, we thank S. Connor and G. Delius for comments

and discussions regarding Chapter 5. We are also grateful for computational support from the

University of York High Performance Computing service, Viking, and the Research Computing

team. We also acknowledge the anonymous referees for their feedback on the papers that we have

published. Finally, I would like to thank G. Constable and K. Glazebrook for examining the thesis

and providing many helpful comments for refining the chapters.

On a more personal note, I would like to thank my advisors for their help over the last four

years. Niall MacKay and A. Jamie Wood have been extremely supportive in a rather difficult time

and have always made a point of trying their utmost to engage with varied material on a weekly

basis despite their own extraordinarily busy lives. Similarly, I should like to thank Stephen Connor

and Gustav Delius for their feedback as a part of my advisory panel.
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1 Introduction

We all know that art is not truth. Art is a lie that makes

us realize truth, at least the truth that is given us to un-

derstand. – Picasso, 1923

Human history is filled with conflict, whether one merely examines the last two hundred years

or whether one stretches back to the beginnings of our species. Even in just the last two hundred

years, battles in wars alone, neglecting those due to poverty, famine, disease and the like, resulted

in approximately 40.5 million deaths (e.g. Sarkees and Wayman, 2010). At the same time when-

ever two or more nation -states wish it, the human species could be dealt destruction that dwarfs

the losses of our past. Yet clearly, despite such threats, the world continues to survive humanity’s

conflicts with the human species (more or less) intact. Many authors have tried to grapple with

the nature of conflict and its place within both history and human nature. Philosophers aplenty

have debated whether mankind was some brutal savage whose only salvation can be found in the

Hobbesian state or whether instead the state was responsible for all the brutalities that the innocent

suffered. Such debates continue in a variety of forms to this day of course; it would be remiss for

a discussion of conflict to not mention the conflict of the discussions, even if by pen rather than

sword. If one needs an example, one need only consider the controversy surrounding the writings

of popular scientist Steven Pinker on how humanity is improving itself to be, among other things,

less violent [2011; 2018]. Despite his data-driven approach, critics have attacked Pinker from a

variety of directions with more or less vitriol (e.g. Epstein, 2011; Cirillo and Taleb, 2016a).

Pinker has written down a (largely statistical but qualitative in mechanism) model for why

violence has declined, one which can be discussed, replicated, and disputed with attention to

data, methods, and conclusions. Regardless of criticisms of his model, such as cohesiveness,

predictive power, or qualitative nature, the model is written down for all to examine, compare and

contrast (e.g. with the military horizon model of Turney-High (1949)), and debate (e.g. Cirillo

and Taleb (2016b)). Whenever someone tries to determine how something does or might work,

they construct a model, knowingly or not. The challenge is to write down the most explicit model

possible so that each relationship, such as cause and effect, can be examined. As Epstein (2008)

points out, explicit models enable some of the best scientific behaviours that we can ask for.

Explicit models allow us to better explain and convey our beliefs about what is going on, better

enabling collaboration with others and questioning of the models. Such models can also guide us
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to better understand how the phenomenon happens, “illuminat[ing] core dynamics”. The mere fact

that Pinker has written down his model has enriched the debate about the decline of conflict (or

lack thereof). Much like what has occurred with other datasets (e.g. the debate about the possible

decline of battle deaths when comparing and contrasting the Correlates of War and Peace Research

Institute Oslo Battle Deaths datasets: Harrison and Wolf, 2012; Gleditsch and Pickering, 2014;

Harrison and Wolf, 2014), differing researchers can examine the model or dataset and come to

differing conclusions and discuss the results (Spagat, 2015; Cirillo and Taleb, 2016a; Spagat and

Pinker, 2016).

Of course, this thesis is also about modelling various conflicts, rather than just about the pos-

sible decline of conflict. Perhaps the most natural place to start is immediately prior to World War

I. At the time, the soon-to-be belligerents were engaged in a build-up of arms for the ensuing war

and were equally interested in how best to apply their arms, knowing that every advantage would

be needed. In parallel in the United States (Chase, 1902; Fiske, 1916), France (Baudry, 1914),

Russia (Osipov, 1915), and Britain (Lanchester, 1916), a simple model of combat was worked out

for when two forces came into conflict with each other. This family of models is now convention-

ally known as Lanchester’s Laws. The central idea is that when two forces come into contact with

each other, they instantaneously begin attacking and deal damage to the other side in proportion

to their weapons’ effectiveness and some power of their numbers. For modern warfare, the power

is taken to be 1, reflecting the ability to aim and thus concentrate modern firepower to eliminate

the enemy. For ancient warfare, the power is taken to be 0, reflecting instead a set of duels where

combatants cannot readily exploit their numbers. This naturally leads to a set of differential equa-

tions with a conserved quantity, for which the former case is known as the square law and the

latter as the linear law. Due to the model’s simplicity, it has been readily extended and adapted

to numerous contexts, especially within warfare (e.g. spatial models: Spradlin and Spradlin, 2007;

González and Villena, 2011), but also without (e.g. markets: Campbell and Roberts, 1986).

Once one has a model, generally one wants to see how well it matches reality and investigate

it to determine what lessons one can learn from the model. Perhaps ironically given Lanchester’s

original goal of understanding aerial combat (Lanchester, 1916), Lanchester’s Laws do not actu-

ally perform well for modelling aerial campaigns (Johnson and MacKay, 2011; MacKay, 2011;

Horwood et al., 2014). This is a problem we must return to in Chapter 3 where we discuss the

Battle of Britain. Nevertheless, Lanchester’s Laws still offer lessons about the asymmetries be-

tween attacking and defending air space and the importance of the defender’s ability to choose

how to respond to the attacker. The parallel inventors, on the other hand, sought to apply the

model to naval combat (Chase, 1902; Baudry, 1914; Fiske, 1916) or battles on the ground with

mixed unit types (Osipov, 1915). These pursuits have in general been more fruitful for adaptation

and usage. For example, MacKay et al. (2016) applied a stochastic interpretation of Lanchester’s

Laws with approximate Bayesian computation to calibrate and than analyse the likelihood of his-

torical outcomes at the Battle of Dogger Bank in World War I. A classic extension of the ground

battle by Deitchman (1962) combines the aimed fire case (square law) with the unaimed fire case

(which instead has casualties proportional to both forces, but also produces a linear law as in duels

(Lanchester, 1916)). In Deitchman’s work, the insurgents are able to aim effectively, while the

counter-insurgents have to guess their enemy’s location, leading to a mixed conserved quantity.

This allowed Deitchman to explain the dynamics between the forces and advise how to tilt the

system in favour of one side or the other. He compared his model’s parameters to those of then
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recent insurgencies, including Vietnam, and observed the relationship between the force ratio and

the success of the insurgents. This is not the first time that Lanchester’s Laws were used to inform

the military1, MacKay et al. (2016) noted that Admiral Jellicoe, the commander of the British

Grand Fleet, had observed the popularity of the Lanchester’s Laws to Lanchester in 1916 and the

model was also used to debate and justify the sizes of navies in the Washington Conference of

1921-22 (Kahn, 2004).

Whereas Lanchester’s Laws tell us about the application of force, the works of Lewis Fry

Richardson, FRS [1960a; 1960b] tell us more about how force accrues and the consequences of

its application. Richardson was a pacifist polymath who investigated weather, numerical analysis,

geography, fractals, psychology, and war. He was inspired and horrified by the atrocities of World

War II and sought to model how such a terrible war could occur and if this represented some new

normal in humankind’s propensity for “deadly quarrels”, his preferred term. He believed that these

questions needed to be rationally investigated for patterns and explanations, rather than governed

by the horrors of the recent wars. To investigate how the wars might occur, Richardson used the

concept of an arms race: two (or more) countries are in tension with each other and wish to equip

themselves to defend against a first strike. Both countries have some estimate of the amount of

arms the other has and build up their arms in proportion to their would-be opponent’s, but their

current level of arms have costs to maintain and replace. These are taken to be linear terms in

a system of differential equations augmented by a constant level of friendliness (if inclined to

disarm) or grievances (if inclined to build up arms). Standard techniques in dynamical systems

can be used to analyse how the system then progresses for given initial conditions and parameters,

leading to stability, disarmament, or an ever expanding arms race which could break out into a

large scale war (Richardson, 1960a).

Richardson’s work on deadly quarrels is a much more statistical work, in comparison to his

work on arms races, but no less grand in scale. For deadly quarrels, Richardson (1960b) put

together an impressive collection of conflicts from 1820 to 1949, ranging from murders to large-

scale wars, sorted by the magnitude of deaths caused for each event. This allowed him to consider

statistical models and tests of humanity’s violent output. For example, he considered simple

changepoint analyses, in which one looks for the presence of statistical changes in the behaviour

of the data. He conducted an analysis for 1885, which divided the data into two consecutive 65

year intervals (p. 141), and found that there was not significant evidence for a change in frequency.

Similarly, he checked if there might be a change in frequency, controlling for magnitude and time,

after 1920 which was the point of largest contrast (p. 142) and found that wars appeared to

be more frequent afterwards. He also is the first to identify the distribution of deadly quarrels

as power-law, a type of distribution which we discuss more thoroughly in Section 2.1, but which

motivated the study of the logarithm of the magnitude of deaths, rather than the deaths themselves.

His dataset is an important, albeit vastly more general, ancestor of datasets like the Correlates of

War dataset (Sarkees and Wayman, 2010).

Due to his explicit treatment of his models and assumptions within his work, retained from

his background as a physicist, Richardson’s theory can be re-examined (e.g. Wilkinson, 1980)

or extended. Recent letters in Significance (Spagat, 2015; Cirillo and Taleb, 2016a; Spagat and

Pinker, 2016) inspired work to extend Richardson’s naive changepoint analysis. Clauset (2018),

Spagat and van Weezel (2018) and Hjort (2018) all tried to investigate whether large scale conflicts

1Deitchman discussed his life history and advising of the United States military with Sheldon et al. (2010).
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had changed in magnitude. All three proceeded with acknowledgement to Richardson’s power-

law distributions but each applied different methods and came to differing conclusions. Clauset

(2018) relied on simulations, Spagat and van Weezel (2018) applied probability, and Hjort (2018)

used parametric changepoint models2. The first of these failed to reject the null hypothesis for

no change in battle deaths, but the latter two found significant evidence against this hypothesis,

stoking the recent debate. It is thus in the spirit of Richardson that we will present Chapter 4, in

which we contribute to the debate of whether conflicts have changed since the early 1800s using

modern non-parametric methods which only require us to assume that the tail of the distribution

is an important trait of the battle deaths.

Lanchester and Richardson are not the only researchers to try modelling conflicts with tech-

niques from mathematics and physics. Many other models have been proposed to deal with the

asymmetries of modern warfare. We concentrate on the abilities of insurgents to create terrorist

attacks. It has been shown that such events are consistent with power-law distributions with an ex-

ponent parameter of around 2.5 (Clauset et al., 2007, 2009b). This observation alone is suggestive

of various models for generating power-law distributions; classic references include Bak (1996),

Mitzenmacher (2004), and Newman (2005). For example, Clauset et al. (2007) propose a model,

repurposed from the work of Reed and Hughes (2002), in which first a terrorist (group) plans an

attack which can then be stopped by a state. Their central assumptions are that the severity of an

event is proportional to the exponential of the amount of time required to plan the event as well as

that the probability of the event’s success is proportional to the amount of time required to plan it.

The assumption of two exponentials in tension is sufficient to yield a power-law whose exponent

depends on the specific rate constants for the growth of events and their detection and subsequent

failure. Indeed, Clauset et al. (2010) propose another alternative pair of competing exponentials

where population density at a location and the “attractiveness” of the location to terrorists are

supposed to have roughly exponential distributions. These types of explanations are particularly

attractive as models due to their simplicity as well as their agreement with statistical analysis sug-

gesting that the size of a terrorist organisation and the severity of events that it produces are not

related to each other (Clauset and Gleditsch, 2012).

In contrast to the models proposed by Clauset and collaborators, we examine, especially in

Chapter 5, a model of coalescence and fragmentation that has been used by Johnson and collab-

orators to model the size of terrorist attacks (e.g. Johnson et al., 2005; Bohorquez et al., 2009;

Johnson et al., 2016). The general concept is quite simple: a population of insurgents seek to

combine forces to make the largest events possible, but exist in a hostile environment that might

cause them to break-up and go into hiding. This model again produces an appropriate power-law

distribution, and has been compared to event data from multiple conflicts as a form of valida-

tion (Bohorquez et al., 2009). Johnson and collaborators adapted this model from the work of

D’Hulst and Rodgers (2000)3, who used it to model herding in financial markets. For comparison,

financial agents are proposed to coordinate by trading information and break-up when the shared

information is used in a transaction.

Putting aside the appeal of this model for “dynamical analogies”, i.e. its variety of applications

to other contexts (Epstein, 2008), this model is of particular interest for its relationship to graph

2Hjort’s work was later published with co-authors with more Richardsonian parallels (Cunen et al., 2020).
3This chain of citations does not appear to include von Smoluchowski (1916) who first conceived of this type

of model. Instead, citations stem back to the random graph theory of Erdös and Rényi. Aldous (1999) explains the
connection from coalescence and fragmentation to random graphs.
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(equivalently, network) theory. The connections between individuals in society can be thought of

as a graph (in the sense of nodes and edges) along which information, goods, diseases, etc. can

spread. In the context of graph theory, the coalescence and fragmentation model of well-mixed

individuals can be thought of as a graph where each individual is connected to every other indi-

vidual and coalescence represents agreements to coordinate amongst individuals or the spread of

some other state throughout the graph. A natural generalisation is then to consider inhomoge-

neous graphs, but, in order to do so, we must have a full and complete understanding of the base

model’s behaviour and how this behaviour changes in the presence of perturbations. Ideally, such

a model is robust to small perturbations in the underlying rules, similar to how the models of Reed

and Hughes (2002) used by Clauset and collaborators depend only on exponential forms (Clauset

et al., 2007, 2010). Despite the apparent disconnect between the data and the size-severity (Clauset

and Gleditsch, 2012), we expect the analysis of the coalescence and fragmentation model to be

a key step in understanding networks of terrorist support, such as those studied by Johnson et al.

(2016). A natural result of checking for robustness will determine if Bohorquez et al. (2009) suf-

fered from a street-light effect in which one looks only in places one knows well. Bohorquez et al.

claim that the observed data matches with a specific form of coalescence and fragmentation model,

but the data are drawn from various conflicts with different underlying rules for engagement. Is

this just good fortune in that Bohorquez et al. chose precisely the right model and parameters

that match the data, or is the model robust to variations in its parameters and such data could

reasonably emerge from many such variations?

In each of the example models given so far, the models are necessarily applied, calibrated, and

tested against data, but the nature of data in conflicts and, more generally, history is quite different

from the reproducibility of a laboratory setting. No event happens exactly the same way twice in

a historical setting. Each event is contingent on those that came before it and there is very little

chance for, for example, combat to be truly independently and identically distributed (IID) as one

finds commonly assumed in statistics. It would be hard to claim that terrorists the world over were

uninfluenced by the effects of the September 11 attacks on the World Trade Center, nor does it

seem reasonable to assume that World War I and World War II were unrelated. How then does one

surmount such a problem?

One simple way is to suppose the data is sufficiently IID to model them as such anyway. This

is not such a naive approach: a factory machine undergoes wear and tear as it produces its prod-

ucts and eventually can break down without proper maintenance, yet it is still natural to attempt

to model its products as produced in an IID way. We take this approach in Chapter 4 with each

war’s battle deaths assigned to the start date of the war. This approach is taken to prevent improper

aggregation or disaggregation. As we discuss in the chapter, we must rely on consistent data han-

dling in order to maintain this assumption. If the data handling is inconsistent, e.g. if two wars are

separated or combined inappropriately, then we risk introducing artefacts. For example, if wars are

divided up by year instead of being considered discrete events, autocorrelation would be induced

in the dataset (Beard, 2018). Beard (2018) also determines that standard controls for autocorre-

lation are not particularly influential in a regression analysis of battle deaths. This suggests that

using an IID assumption for battle deaths of wars, despite historical justification otherwise, can be

appropriate for modelling. In contrast to our work, one could consider the use of secular cycles in

war and peace (Turchin, 2007) similar to the use of Kondratieff waves (Goldstein, 1985). These

cycles help alleviate the need for an IID assumption. One possibly interesting direction for future
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research might be to reconcile these two ideas. For example, are there sufficiently many of these

cycles between state actors that the resultant wars give the appearance of independence over time?

This is a parallel long timescale problem to the short timescale result which we discuss in Chap-

ter 5, where we find natural cycles arising from the stochasticity in coalescence and fragmentation

systems that are described in terms of power-law distributions. This might be one interesting place

to look for a dynamical analogy as well as to check if dynamics on the short time scale might drive

those of the long.

For Chapter 3, we use similar arguments, but we run afoul of a related issue. Whereas we

argue that battle deaths in war and the days in an aerial campaign are sufficiently IID, such an

assumption is far harder to justify for the actions of leaders which are only taken once for each

scenario, especially when we seek to examine how these actions could have been different. There

is no obvious factory analogy, nor conditions that might imply the usage of an IID assumption.

Instead there is but a single datum from some unknown distribution. This is actually the subject

of acrimonious debate amongst modern historians under the term counterfactual. The concept is

simple enough. From our perspective, in our present, history appears to be a single continuous, if

complicated, narrative in which events naturally lead up to the present. Looking into our future,

many possible paths can unfold however. Both small changes and large can occur: one could

choose to eat a different meal for breakfast or take a different route to work, or one could choose

a different career or different partner. But of course, historical actors make precisely these sorts

of decisions within their own presents, for which the results are only now known in the futures

that the actors created. One might wish to analyse the results of the decisions the historical actors

made by considering the repercussions of the decisions not taken, from which comes the term

counterfactual. Determining the ripples resulting from going forward is where the debate begins.

Evans (2014) presents the standard historiographic view: counterfactual analysis is a limited

tool for historical analysis akin to speculation that at best merely reproduces work that can be done

within the standard historical paradigm. At worst, counterfactual analysis instead results not just

in the introduction of the bias of the author, but the complete capture of the work by said bias.

Evans contends that the result of the analysis performed is merely whatever utopia (or dystopia)

the author wishes. Counterfactual analysis should only ever be used in the most minimal capacity

possible as a result with the acknowledgement that a small amount of counterfactual analysis must

occur to describe why history did not take another course.

Despite the warnings of Evans, counterfactual analysis still has a tantalizing allure. Part of the

allure is due to ease and human nature, for who among us has not contemplated how life might

have been different if only we had taken the other course of action. A larger part stems from the

fact that “small” counterfactuals feel as if they should have large repercussions: what if Archduke

Ferdinand’s driver had taken a different turn and prevented the Archduke’s happenstance assas-

sination prior to World War I, what if German leader Adolf Hitler had gotten into art school, or,

for an even more modern example, what if Democratic presidential candidate Gore had continued

to contest Florida in the 2000 United States presidential election? How can we safely evaluate

the importance of events, without assuming that all events merely reduce to variations around

the observed reality to which these variations must surely converge? It certainly is true that not

all decisions matter, e.g. whether one takes the tuna mayo sandwich over the ploughman’s, but

some seemingly inconspicuous events, e.g. taking a wrong turn or getting rejected by a school,

certainly could. How can we safely apply counterfactual analysis to determine whether events are
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consequential without being consumed by our biases?

Part of an answer to the question of the usability of counterfactual analysis is provided by

Megill (2004). Megill draws a line between “exuberant” counterfactuals and “restrained” coun-

terfactuals. The former is akin to “the world of historically-based game-playing”, in which one

begins right before a critical event and begins to speculate as to what if the factual decisions were

replaced with counterfactual decisions, compounding forward until a new “virtual history” has

been written. On the other hand, restrained counterfactuals can be thought of as moving back-

wards, rather than forwards, in time. One begins with a fixed outcome and then explores how

such an event might have not come to pass, usually by examining each candidate change and how

it influences the event under consideration. This is meant to be a measured thought experiment,

similar to adjusting experimental conditions in a lab setting. For Megill, the question is not the

perhaps philosophical one of agency and freedom or convergence and determinism. It is about

determining the necessary causes for an event, for which the event would not have happened if

one such predecessor event (or sufficiently many of a set) had not occurred as well.

How do we investigate counterfactual decision making, which we are interested in in Chapter

3, in a restrained manner? These thought experiments must be structured to obey rules, and schol-

ars such as Tetlock and Belkin (1996) have studied how to do so. One such way is to combine

existing theoretical models with critical junctures, events which decisively determined the pro-

ceeding course of history (Capoccia and Kelemen, 2007); we adopt this style in Chapter 3 using

the concept of bootstrapping that we discuss in Section 2.2, but other models can be used such

as game theory. The six key attributes of Tetlock and Belkin (1996) for maintaining a consistent

and rational counterfactual connect the why and how of modelling with the processes of history

(Epstein, 2008). First, they list clarity, by which they mean that we must be explicit in identifying

our model, its assumptions, its inputs, and its outputs. Second, there must be a logical consistency,

e.g. one must not assume that an actor is simultaneously weak and strong. Third, there must be

historical consistency: in examining the counterfactual, we must also determine how much of the

past must be rewritten to arrive at the counterfactual. The more of history that must be rewritten,

the more tenuous the counterfactual itself. Fourth and fifth, there should be theoretical and sta-

tistical consistency. For example, we would expect actors to behave rationally and not to rely on

having won the lottery or other low probability events. Finally, the lessons taken from the coun-

terfactual should be projectable and ideally falsifiable. It is inevitably hard to maintain all six of

these principles, which may end up in tension with another (e.g. statistical consistency can come

into conflict with the other principles if the unlikely did actually happen as in the work of MacKay

et al., 2016), but it is necessary to do our utmost to maintain them in order to properly consider

counterfactual scenarios.

A critical juncture to a mathematician is perhaps best described in terms of dynamical sys-

tems. Consider a system, like a Richardson’s arms race selected such that either disarmament

or exponential growth of arms may occur for different initial conditions. We hold the parameters

constant, the level of grievances, the cost of arms, and our reactions to our opponents arms, as they

represent the state we are in on a long time scale. Such things would have needed to be changed

long in our past and prepared for far in advance of the situation itself as they operate on far longer

time scales than our immediate day-to-day decision to arm or disarm. Without stochasticity, or

foresight for that matter, we simply continue on our course, choosing to arm or disarm in reaction

to our perception of our opponent’s decision. If we are near the edge between the arming and
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disarming regimes, however, a critical juncture will arise. In the dynamical systems view, this

juncture looks like a saddle node, a point that attracts trajectories in at least one direction, but also

repels in a different direction. Around this point, many trajectories, with possibly quite varying

starting conditions, will become very near to each other, before rapidly separating as they leave

the area around the point. Precisely one trajectory will approach the point itself: this trajectory

separates those that end in disarmament from those that end in arms race. This is a critical juncture

in that a slight change in our decision making can allow us to move to a nearby curve, of which

there are many, and end up in varying end states. Most changes will not affect the qualitative

outcome of arms race or disarmament, but they can affect the final numbers of arms on both sides.

On the other hand, some decisions at the crucial moment could send us over that critical trajectory

allowing us to choose a different outcome. The presence of saddle nodes, and other regions where

trajectories become tightly packed, are analogous to critical junctures in that they naturally balance

the ideas of historical forces creating a single history against the idea that every event mattered.

Most events, i.e. those far from those regions of dense trajectories due to saddle nodes or similar

features, do not have a significant earth-shattering impact on the final outcome, but some do.

Where do we work with critical junctures in this thesis? The answer is different in each

chapter. Their influence is most directly felt in Chapter 3. In this chapter, we must naturally

handle the problem of finding the Battle’s critical junctures. There are two types that are implicitly

investigated therein. The first is aspects of the preparations for the battle. These include fairly

explicit “great man” counterfactuals, where the personality of Hitler is made substantially more

aggressive and decisive than he was in the actual battle or where Luftwaffe leader Reichsmarschall

Hermann Goering has different beliefs about how best to defeat the British forces, as well as

counterfactuals regarding the amount of information available to the German forces. Great man

theory lived and died in the 19th century (Carlyle, 1840), and it is worth noting criticisms such

as those of Spencer (1896, p. 31): “Before [the great man] can remake his society, his society

must make him.” and that “he is powerless in the absence of... his society.” Nonetheless, it would

be a mistake to discard the personalities of those involved completely from the analysis, for they

clearly had a role (on both sides!) of the Battle of Britain.

The second type of critical juncture investigated in Chapter 3 is the condition for launching the

invasion by which we judge the success or failure of the German forces.4 This critical juncture is

one that is documented as having not occurred. It is conceivable that such a meeting and decision

could have happened, but its absence is a conspicuous point that needs addressing. Due to its

absence, we need to investigate the counterfactual causes of its occurrence and settle on the con-

ditions that would trigger an invasion. While doing so gives our theoretical model a historically

plausible method with which to trigger invasion, we do not have any good information as to how

far we historically were from our counterfactual invasion. As such, we instead ask the reader to

supply their own beliefs which we can then feed into the model. Three theoretical historians are

then used to finish the model, with which we can then simulate counterfactual aerial campaigns.

In Chapter 4, we look for changepoints, which are conceptually similar to the effects of a

critical juncture. Indeed, one might even claim that changepoint analysis within historical data

is merely the data-driven search for critical junctures. Statistically, changepoints are the point at

4The criticality of this decision could be debated, as does Forester (1971). He has a counterfactual historian state
“[I]t is hard to escape the conclusion that Hitler’s decision to attempt the invasion [of Britain] was most important in
shortening the war and hastening his own destruction.” On the other hand, if it had shortened the war, it could be argued
that it was critical for the (quantitative) consequences of the war (e.g. lives or economics) but not the qualitative result.
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which there is a measurable change in the distribution, comparing data before the point to data

after the point. Here, we use a statistic that emphasises the influence of the tail of the battle

deaths distribution. Whereas the critical junctures of Chapter 3 are those which could change

the conclusion of a campaign, Chapter 4 is about the evolution of wars over time. Given the

time span and the global dataset, it is hard to know whether broad historical forces make the

changepoints found inevitable or if a critical juncture is directly responsible, akin to whether the

decline of slavery in the United States was actually prevented by the invention of the cotton gin

or not (and thus influencing the subsequent civil war or not) or whether the fall of the Soviet

Union was guaranteed by historical forces or a result of United States President Ronald Reagan.

This inexactness means that we have no sense nor control for possible delays: we know when the

effects of the proposed critical juncture emerge in the dataset, but we have no idea as to the what or

when of the critical juncture that caused the effects. While we cannot be absolutely certain about

the exact cause of a changepoint, the detection thereof provides historians with lampposts to guide

their searches for factors, whether they be historical forces, major events, or critical junctures that

lead to changes on a global scale.

Finally, we turn to Chapter 5, which has the most theoretical relationship to critical junctures.

Here the model we consider is theoretical in that we are not applying it to real world data, but in-

stead examining properties of the model through mathematical analysis and simulation. The criti-

cal junctures are the decisions which determine the rules of the model. Do the counter-insurgents

choose to pursue clusters of small size? Do the counter-insurgents prioritise clusters of larger

size? How often do the counter-insurgents attempt to eliminate clusters of interest? Similar ques-

tions exist for the insurgents: e.g. do the insurgents try to aggressively recruit the population? In a

reality where the model is true, one would have a military deciding how to engage with insurgent

forces, with each rule’s variation representing the differing approaches. This is analogous to the

usage of war-gaming to make sure that the right decisions are made on the field.

Modelling power-law distributed or historical data is not an easy task, and combining them

does not make the matter simpler. As we shall see in Chapter 2, we will need specific tools

chosen for the their applicability to the tasks at hand. Power-law distributed data has quirks to

its behaviour that need to be incorporated into the model. Not only are large events common

in power-law distributions, but combining samples from such distributions is not a trivial matter.

At the same time, we rarely have a full day-by-day knowledge of distributions of armies and their

interactions. The usage of the bootstrap allows us to circumvent this issue, so long as the data does

not change enough to fail to be considered IID, as we shall discover. This technique also allows

us to, in a restrained manner, investigate counterfactuals, so long as they are sufficiently similar to

the data we factually observed. We also prepare for the interaction of power-law distributions and

historical data with a discussion of changepoint analysis; the presence of power-law distributions

within the historical data necessitates the adoption of modern methods which we discuss. We finish

with a discussion of the development of coalescence and fragmentation models, which prepares

us to study their repercussions on the results of Bohorquez et al. (2009).

The most natural starting point for our contributions to the literature is the most self-contained

and earliest conflict that we study: the Battle of Britain (1940) in Chapter 3. The Battle of Britain

is an excellent example of the application of an explicit model to counterfactual historical anal-

ysis. In this chapter, we present a simple statistical model called the bootstrap in order to create

counterfactual campaigns, but the bootstrap alone is insufficient to move very far from factual his-
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tory. The counterfactuals it makes are necessarily explorations of the variance in the distribution

of combat. Supplemented with historical analysis, we are able to motivate an innovative change

in the model which enables the discussion of counterfactuals further from reality and steeped in

the decisions of the German military machine. We use these counterfactuals to better understand

whether the Germans could have won the Battle of Britain. To our knowledge, this is the first

usage of the bootstrap in historical or counterfactual analysis, and we are excited for its possible

application to other datasets.

In Chapter 4, we turn to a much wider temporal scope and instead study the time series of

battle deaths from wars. Here, an all-encompassing model of conflict would be a heroic, but likely

foolhardy endeavour. Instead, we choose an approach that is motivated solely by qualities that

we know about the data. Richardson (1960b) has already shown that we should expect battle

deaths to be power-law distributed, and recent literature suggests that there is a possible discrete

change involving the World Wars, after which a period called the “long peace” emerged (Gaddis,

1986). These pre-existing models and debates motivate us to study the data using changepoint

analysis calibrated to power-law distributed simulated data. This provides us with a tool that we

are confident can detect changepoints with accuracy, and which we then use to analyse whether

there are changepoints in historical battle deaths. We find that these do exist in most, but not in

all, subsets of the datasets under consideration and conclude that there is evidence that supports

the long peace hypothesis.

Whereas the temporal scope of Chapter 4 was wider, the operational scope of Chapter 5 is

significantly larger, covering a model that has recently been used for modelling insurgent dynamics

but has historically been used for a variety of more physical purposes. This model of coalescence

and fragmentation is assumed to be a model for how insurgents cooperate and share resources

with each other in order to attack larger targets. Questions naturally arise: if this model is true,

how do the insurgent dynamics evolve over time? How best can we intervene to slow or stop the

insurgent organisations? We address these questions and find that, contrary to expectations in the

literature, stochastic cycles or steady-state size distributions form depending on parameters and

that the system is not quite as robust to interventions as it initially might seem.

We conclude this thesis with a discussion of the relationships between the various chapters

and how they weave together to tell us about the various conflicts that we have studied. These

relationships naturally provide ideas for new projects to follow. While we have not closed the

proverbial book on any of the problems we have considered, the introduction of new techniques

and mathematical perspectives will be useful to our fellow researchers.
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2 Methods

The craftsman there, the smith with that metal of his,

with these tools, with these cunning methods, – how lit-

tle of all he does is properly his work! All past inventive

men work there with him; – as indeed with all of us, in

all things. – Carlyle, 1840

2.1 Power-law distributions

Most distributions are fairly well-behaved. They possess means, variances, and obey the Central

Limit Theorem, converging to a normal distribution if there are enough samples. Not all distribu-

tions are so well-behaved. In this section, we discuss power-law and related distributions, which

are well known for not behaving like “common” distributions. This ill-behaviour has repercussions

for the fitting and modelling of such distributions. For most of this section, we use the continuous

power-law distribution, but most of this discussion holds equally well for the discrete power-law

distribution.

The best way to contrast common distributions with exponential tails, e.g. normal distribu-

tions, with those that are heavy-tailed, i.e. distributions that decay slower than an exponential

function such as power-law distributions, is by example. Crook (2006) and Clauset and Wiegel

(2010) provide one such example: human height is approximately normally distribution and, as

such, knowing the mean and standard deviation well-characterises the limits of human height. On

the other hand, income is heavy-tailed. If human height were to follow a power-law with approx-

imately the same average as the factual normal distribution, then we would have “nearly 60,000

individuals... at 2.72 meters”, the tallest human on record, “10,000... as tall as an adult male gi-

raffe, 1 as tall as the Empire State Building (381 meters), and 180 million... a mere 17 centimeters

tall.” Distributions with exponential tails are unlikely to result in data far from the well-defined

mean, while distributions with heavier tails will often have comparatively huge values. In the

case where there is no well-defined mean, these large values will dominate the sample mean as

sampling continues until the next more extreme value is sampled. Comparing cumulative distribu-

tion functions using the poweRlaw R package (Gillespie, 2017; R Core Team, 2018), a standard

normal distribution produces values larger than 1.64 with probability approximately 0.05, but a
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Figure 2.1: A comparison of the heavy-tailed continuous power-law distribution with α = 1.5,
xmin = 1 and a truncated standard normal distribution beginning at xmin = 1. We plot the
complementary cumulative distribution on log-log axes. Exponentially-tailed distributions show a
characteristic drop-off towards 0, while the power-law distribution instead follows a straight line
with slope α− 1 = 0.5 on log-log axes.

continuous power-law with exponent 1.5 beginning at 1 produces values larger than 400 with the

same probability. The same standard normal produces values larger than 5 with probability of

3×10−7, but the aforementioned power-law would be producing values larger than 1011 with that

probability.

Power-law distributions have the scaling Pr (X≥x) ∝ x−α+1 for x ≥ xmin, where α is the

scale parameter and xmin is the location parameter that determines the start of the distribution. The

tail of a power-law distribution, i.e. the behaviour as x → ∞, dominates exponential tails. This

is easiest to see on log-log axes, as in Figure 2.1, where we contrast a truncated standard normal

distribution beginning at xmin = 1 with a continuous power-law with α = 1.5, xmin = 1. Note

that Figure 2.1 shows the complementary cumulative distributions Pr (X ≥ x). The power-law

distribution follows a straight line with slope α− 1 = 0.5 on the log-log axes, while the truncated

normal quickly falls off to infinitesimal values.

The probability density functions for power-law distributions are fairly straightforward to ex-

press. For x ∈ R and x ≥ xmin ≥ 0,

p(x|α, xmin) =
(α− 1)

xmin

(
x

xmin

)−α
, (2.1)

while for x ∈ N≥1 and x ≥ xmin ≥ 1,

p(x|α, xmin) =
x−α∑

i≥xmin
i−α

. (2.2)

Unless the distribution is truncated from above, it is required that α > 1. Otherwise, the functions

will fail to have the standard probability mass property (e.g. α = 1 for the discrete distribution in-

vokes a truncated harmonic series). Similarly, higher moments require higher values of α: the nth

moment requires α > n+ 1 in order to exist. The mean thus requires α > 2 while a well-defined

variance requires α > 3. These properties are precisely why the sampling behaviour discussed
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at the beginning of this section is so strange in comparison to distributions with exponential tails.

While this behaviour is not limited to power-law distributions, other distributions are heavy-tailed

as well, power-law distributions are useful exemplars and are used throughout this text. While we

usually use the full distribution, sometimes we use only a power-law distributed tail when fitting,

as discussed below. Finally, we note that log x
xmin

follows an exponential distribution, which is far

better behaved.

Many authors have been inspired by graphs like Figure 2.1 to fit power-law distribution to

data by fitting a straight line on log-log axes. Unfortunately, the appearance of a straight line on

log-log axes is necessary but not sufficient to conclude the tail of a dataset is power-law distributed

(Clauset et al., 2009b). Maximum likelihood estimation (MLE) can, of course, be used. Given a

realised data set x = (x1, . . . , xi, . . . , xn),

x̂min = min
i
xi α̂ = 1 + n

(
n∑
i=1

ln
xi
x̂min

)−1
. (2.3)

The discrete equivalent requires the solution of a transcendental equation, although numerical

maximisation of the likelihood can be used (Clauset et al., 2009b). Unfortunately, we are often

interested in where the tail of the distribution begins, while the MLE x̂min simply uses the min-

imum of the dataset to begin fitting the exponent in the power-law distribution. (Similarly, if a

distribution is truncated above, the maximum of the dataset is the MLE maximum.) When xmin is

a known quantity, the MLE α̂ has useful properties. It is, for instance asymptotically normal and

approaches the true α as n grows, and its standard error can be calculated and is of order n−1/2

(Clauset et al., 2009a).

A more rigorous approach for estimating the value of xmin when interested in a power-

law distributed tail, which we refer to as Kolmogorov-Smirnov maximum likelihood estimation

(KSMLE) for reasons that will become rapidly apparent, is supplied by Clauset et al. (2009b).

Broadly speaking, their approach is as follows:

1. For each candidate xmin, calculate α̂.

2. Choose the (xmin, α̂) pair that minimises the Kolmogorov-Smirnov (KS) distance between

the cumulative distribution functions of the data and the model beginning at xmin. (Note

that the KS distance is the maximum distance between two cumulative distribution functions

(Clauset et al., 2009b).)

3. Test the best power-law model by comparing the obtained KS distance against those of

artificial data sets. The artificial data sets are drawn using the fitted model’s parameters and

the data below the tail and then refitted using steps 1 and 2. The original power-law model

is rejected if its KS distance is less than 10% of the KS distances of the artificial data sets.

In terms of statistical tests, the null hypothesis is that the power-law is consistent with the

data, and this is rejected, i.e. statistically significantly different, at the 0.10 level.

4. If the power-law model was not rejected, compare it to alternative hypotheses using likeli-

hood ratios.

There are other, subtle ways of encountering problems when working with power-laws. Power-

law distributed sampled sets cannot be trivially combined or sub-sampled even when samples are
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drawn from the same distribution without distorting some of the properties within the set. Cristelli

et al. (2012) demonstrated problems of this type using sets that are expected to follow Zipf’s law,

power-laws with α = 2. If one has a power-law distributed set of size N , then one can order the

objects by their size to create a ranking. For a theoretical power-law distributed set that follows

Zipf’s law (rather than a sample), we write down some of these relationships as follows. For a

rank r and size k, the ratio of successive sizes is

k(r + 1)

k(r)
=

r

r + 1
, (2.4)

but, as a trivial example, if one samples only those objects below some rank r∗, then the new ratio

for the re-ranked objects r′ is
k(r′ + 1)

k(r′)
=

r∗ + r′

r∗ + r′ + 1
. (2.5)

Similarly, the function k(r) is usually

k(r) =
k(1)

r
, (2.6)

but, for the re-ranked sub-sample, it is

k(r′) =
k(r∗)

(r′/r∗) + 1 + (1/r∗)
. (2.7)

Sub-sampling can distort properties of a power-law distributed set and make the sample appear

to have been derived from a different distribution. Similar issues arise when aggregating two

sets; including two copies of the largest size item is expected to strongly distort these internal

structures. Sampling and aggregation need to be conducted carefully in order to preserve the innate

structure of these sets. Part of this problem is that we are dealing with power-law distributed sets,

rather than an independently and identically distributed (IID) sample, which implicitly introduces

a dependence on N (Cristelli et al., 2012). As such, when we create power-law distributed sample

sets, we will analyse them separately rather than combine them to create averaged statistics or sub-

sample them to create bootstrap statistics in order to reduce the likelihood of introducing artefacts

due to structural problems.

2.2 Bootstrapping

For such a simple technique, bootstrapping is surprisingly recent in the history of statistics. In-

troduced by Efron, Efron described the bootstrap as “a more primitive method” than some of

its contemporaries, although ‘primitive’ is not bad here due to the bootstrap’s wide applicability.

Efron (1979a) has been cited over 19,000 times, and An Introduction to the Bootstrap by Efron

and Tibshirani (1993) has been cited over 40,000 times. The recency of the bootstrap stems from

its dependence on modern computing power; explicit formulae are fairly rare in practice. The core

concept of the bootstrap is fairly simple and easily modified: consider a sample from the popula-

tion as a population itself. One can then sample (again) from, or otherwise compute, the original

sample’s distribution without resampling from the initial population. Hence, one can estimate

properties of the sampling distribution, such as the variation in the mean or standard deviation. By

assuming that the original sample is representative of the population, one can then infer proper-
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ties of the original population. In what follows, we write as if we are working exclusively with

continuous distributions, but the ideas hold with minimal modification for discrete distributions as

well.

Informally, the bootstrap proceeds simply. Assume that there is some well-behaved population

from which we have drawn a sample in order to ask some question about the population (that is,

crucially, not about (extremal) rank statistics). The classical question to ask is “what is the popula-

tion mean”, but one could equally ask about the proportion above a fixed value, or to compare with

a different population. The answer can be approximated by asking the question of the sample, e.g.

computing the sample mean. More can be said by exploiting the variation inherent in the sample.

We might want to construct not just an estimate, but also an interval around the estimate to enable

hypothesis testing. The bootstrap solution to constructing such an interval, or answering other

related problems, is to construct a large number of secondary samples by sampling with replace-

ment from the original sample. Since sampling is done with replacement, secondary samples are

different from the original sample with high probability. One can ask the same question of each

secondary sample. This will form a distribution of answers which can then be used to construct

the required interval. Crucially, this procedure is non-parametric, meaning there is no required

assumptions of the distribution or its parameters.

To discuss the bootstrap in more detail, we break up our discussion according to various devel-

opments of the bootstrap. First, we discuss the classic bootstrap and some considerations. Then,

we tackle building confidence intervals; these are crucial to how we discuss our results when

applied to the Battle of Britain in Chapter 3. In order to understand some of the theory of the

weighted bootstrap we use, we then present the Bayesian bootstrap. We finally discuss some re-

cent developments in bootstrap theory by addressing a paper on causality that was developed in

parallel with our work.

Formally, consider n IID random variables X = (X1, . . . , Xi, . . . , Xn) distributed according

to some distribution P . Then our empirical distribution P̃ is the distribution which assigns weight

uniformly to each element of X. Suppose we are trying to obtain an understanding of some

parameter, typically notated θ = t (P), that has some estimator θ̃. Normally, one would obtain

an estimate by observing a realization of X, denoted x, and calculating θ̃ = t̃ (x). The original

application of the bootstrap is to non-parametrically estimate the standard error of θ̃ as follows

(Efron, 1979a; Efron and Tibshirani, 1993, Ch. 6).

1. Create B resamples of x, x∗1, . . . ,x∗B , each of the same size as the original sample by

sampling uniformly at random with replacement from x or, equivalently, by sampling from

the empirical distribution P̃ .

2. For each resample i ∈ [1, B], calculate θ̃∗i = t̃
(
x∗i
)
.

3. Calculate the standard deviation of the resamples as an estimator for the standard error of θ̃:

s̃e =

√√√√√ 1

B − 1

B∑
i=1

θ̃∗i − B∑
j=1

θ̃∗j

B

2

. (2.8)

Note that we are not estimating θ or its properties, but θ̃ or its properties instead. As such,

as B → ∞, the standard error described above tends towards the standard error of θ̃ over the
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empirical distribution P̃ created by x, as opposed to that of θ (Efron and Tibshirani, 1993, Ch. 6).

When t̃ (x) = t (P), the bootstrap estimate is (approximately) unbiased by construction (Efron

and Tibshirani, 1993, Ch. 19). If need-be, the bootstrap can be used again to estimate the bias of θ̃

(Efron and Tibshirani, 1993, Ch. 10).

There is error induced from the variance of the (non-infinite) resampling process that is only

eliminated in the aforementioned B → ∞ limit. Unfortunately, the threshold for reducing this

error is not so cut-and-dry as to have a singular recommendation. Efron (1987, Sec. 9) and Efron

and Tibshirani (1993, Ch. 19) show an example of how this differs, but the crucial point is that

the more θ̃ depends on the tails of P̃ and the larger n is, the larger B must be to compensate.

Fortunately, Efron and Tibshirani indicate that small values of B are quite effective, with B = 50

satisfactory for estimating the standard error, andB = 1,000 satisfactory for estimating confidence

intervals. In practice, the time taken to perform ‘extra bootstraps’ is usually trivial unless operating

in real time. For example, we show that the results of taking B = 100,000 or B = 10,000

in our use case are clearly quite similar, see Figures 3.1 and 3.2 in Section 3.5. Alongside this

primary work on the Battle of Britain, however, we have constructed a tool to aid in producing

similar analyses. For this tool, B = 1,000; empirically, this is the smallest order of magnitude for

which the data appears to be consistently well-behaved. Values larger than this impede the user

experience (30 seconds on our local desktop to perform a bootstrap), while values lower can look

irregular and unsmooth to the layperson.

One standard example of when the bootstrap fails is estimation of the maximum of a uni-

form distribution, for which the empirical distribution does not converge smoothly to the original

distribution (Bickel and Freedman, 1981; Efron and Tibshirani, 1993). Another example, due to

Athreya (1987), is the bootstrap of the sample mean when the original distribution lacks a finite

variance: in this case, the bootstrapped mean does not converge to the sample mean.

With these constraints in mind, a natural question is to ask how we can use bootstrapping to

estimate confidence intervals. In particular, we need to know how to estimate one sided confidence

intervals in Chapter 3 to summarise the counterfactuals scenarios. From the standard Central Limit

Theorem results, it is trivial to estimate a confidence interval when the limiting distribution of the

estimator θ̃ is normal. In this case, one can construct a confidence interval by appeal to a normal

distribution (Efron and Tibshirani, 1993, Ch. 12): given an estimate for θ̃ and the bootstrapped

estimated standard error s̃e of θ̃ and assuming the standard normal distribution relationship

θ̃ − θ
s̃e
∼ N(0, 1),

write the confidence interval for θ as(
θ̃ − s̃e · z(1−

c
2
), θ̃ − s̃e · z(

c
2
)
)
, (2.9)

where z(c) (as in z-score) denotes the 100cth percentile of a standard normal distribution. To relax

the normality assumption we can instead use a t-statistic (and associated t distribution with n− 1

degrees of freedom). While this helps account for the error from estimating the variance, this does

not account for problems due to higher moments of the distribution. Errors due to estimating the

variance or any higher moments can be handled by creating a case-specific t-distribution through

bootstrapping.

To construct the bootstrapped t-distribution, one calculates the bootstrapped t-statistic for the

30



ith bootstrap as
θ̃∗i − θ̃

s̃e∗i
,

where s̃e∗i is the standard error associated to the ith boostrap. We write t(c) as the value below

which there are cB bootstrapped t- statistics. The confidence interval then becomes(
θ̃ − s̃e · t(1−

c
2
), θ̃ − s̃e · t(

c
2
)
)

(2.10)

Unfortunately, this fix for the confidence interval is unwieldy at best. Efron and Tibshirani (1993,

Ch. 12) note that this procedure can be unstable in practice and dependent on the (poorly behaved)

outliers. Furthermore, one needs to estimate s̃e∗i, the standard error of the θ∗i, which can require

a new bootstrap in turn for each bootstrap estimate.

Bootstrap procedures can yield distributions that are sometimes drastically different from a

normal distribution however. One trivial solution is to construct the confidence interval directly

from the bootstrapped data (Efron, 1979b). In this case, we construct the interval to contain

an appropriate amount of the corresponding empirical (bootstrapped) data. For example, suppose

that we have already performed a bootstrap with B = 100 independent estimates of θ̃. In order

to write a 90% confidence interval (and thus c = 0.1), we first order the bootstrap estimates θ̃∗i,

i = 1 . . . B from smallest to largest and denote them as θ̃∗(i). Assuming a central, equally-tailed

interval, we then look for the bootstrap estimates that will contain 90% of the estimated values.

Here, we choose i = Bc/2 = 5 for the lower bound so that the interval begins at the 5th empirical

percentile and i = B(1− c/2) for the upper bound so that the interval ends at the 95th empirical

percentile. [
θ̃∗(B

c
2
), θ̃∗(B(1− c

2
))
]
. (2.11)

This is perhaps the most straightforward way to construct a confidence interval and this is how we

construct our intervals in Section 3.5. It is not the best that one can theoretically do, as its coverage

is less than what is desired (a 95% confidence interval might, for example, only contain the true

value 90% of the time) and it can struggle with bias inherent to the distribution of the estimator

(Efron and Tibshirani, 1993, Ch. 13).

Both construction of the t-distribution from the bootstrapped data and calculation directly from

the bootstrapped data have their flaws. A general improvement over both can be found in the “Bias

Corrected and Accelerated” percentile method (BCa) and approximations (e.g. Approximate Bias

Corrected or ABC) to it (Efron and Tibshirani, 1993, Ch. 14). BCa is so named due to its depen-

dence on a bias-correction parameter, ẑ0, and on an acceleration parameter, â. The bias-correction

forces the distribution to be centred on the original (estimated) median, while the acceleration ac-

counts for the rate of change of s̃e with respect to the estimator. Technical details are presented in

the original publication by Efron (1987).

The Bayesian bootstrap, first proposed by Rubin (1981), homes in on the relationship between

bootstrapping and sampling from a multinomial model, which proves useful in our reweighting

procedure in Chapter 3. As originally stated by Rubin, when calculating the θ̃∗, weights p∗ =

(p1, . . . , pi, . . . , pn) for each datum xi are formulated by first realizing n − 1 uniform random

variables over [0, 1] as u1, . . . , un−1 and taking u0 = 0 and un = 1. The differences of the

ordered u is p∗: pi = u(i) − u(i−1) and θ̃∗ = t̃(p∗). This makes the standard (frequentist)

bootstrap a discrete approximation of the Bayesian bootstrap. While the Bayesian weights may
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vary across [0, 1], the frequentist weights may only take values in
{
i
n : i ∈ N≥0

}
. The frequentist

“approximation” becomes better as n increases.

For our purposes, it is more helpful to note the Bayesian bootstrap’s prior is explicitly a non-

informative Dirichlet distribution, as formulated by Hastie et al. (2009, Ch. 8.4). A Dirichlet

distribution can be thought of as a generalization of the beta distribution to the case of multiple

variables n. Instead of taking values on the line segment [0, 1] (a 1-simplex), it takes values on an

(n − 1)-simplex whose vertices lie at the end of unit vectors. Let ε be an information parameter

that we intend to take to 0 and 1 be a vector of ones of appropriate size. The prior for the weights

P∗ = (P1, . . . , Pn) before observing the data is

P∗ ∼ Dirichlet (ε1) .

If the data has empirical weights P0 such that, for each i, nP̃i is the number of occurrences of

each datum xi, then the posterior is

P∗ ∼ Dirichlet
(
ε1 + nP̃

)
.

Applying the proposed limit ε→ 0 yields

P∗ ∼ Dirichlet
(
nP̃
)
.

(This is analogous to Haldane’s prior in the beta distribution.) In comparison, the frequentist

approach would analogously be sampling from the aforementioned multinomial distribution with

parameters n and P̃ to directly obtain the bootstrapped counts (Hastie et al., 2009).

There are natural critiques of the Bayesian, and thus the frequentist, bootstrap. Rubin (1981)

puts the most important quite simply: “Is it reasonable to use a model specification that effectively

assumes all possible distinct values of X have been observed?” This very criticism is used by

Rubin to predict the issue identified by Athreya (1987): bootstrapped moments are sensitive to

the model’s tail probabilities. This is a recurring criticism of the non-parametric bootstrap and

forces us to assume that everything that could have happened did so as well as that there are

no (unobserved) extraordinary events.5 Additionally, Rubin indicates concerns about smoothness

and independence as well (i.e. that values near each other should be near in probability as well).

Unfortunately, to deal with these problems requires some parametric assumptions on the bootstrap,

rather than using strictly the data from the original sample.

In parallel to the publication of Bootstrapping the Battle of Britain (Fagan et al., 2020a),

several papers on combining causality with bootstrapping were produced. We briefly discuss a

bootstrap for causal parameters using copula to impute missing experimental or observational

outcomes due to Imbens and Menzel (2018). This method is based on the causal framework

advocated by Imbens and Rubin (2015).

Imbens and Menzel (2018) are concerned with uncertainty arising from the differences be-

tween sample construction (e.g. what happens if instead of observing Alice’s and Bob’s reactions

in an experiment, we were to observe Airy’s and Barry’s) and experimental design (e.g. what

happens if instead of assigning Alice to the control group and Bob to the treatment, vice versa

had occurred). The problem is that the bootstrap only considers sampling uncertainty. Imbens

5The popular term for such an event is a ‘black swan’, attributed to Taleb (2007).
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and Menzel view this as a data imputation problem: the bootstrap is imputing to the population

values from the sample, but this cannot trivially be done for the treatment assignment due to the

additional design uncertainty. They propose to proceed as follows.

1. Extend the realised sample (of size n) to generate a population of the same size as the

actual population. Care is taken to obtain a generated population with empirical distributions

approximately equal to the sample’s empirical distributions with error of order n−1. (The

distributions are separated by treatment.)

2. Choose a copula iteratively from the set of all copulas that fit the data by fixing moments

to the least favourable values (i.e. values that minimise the information, usually in the sense

of Fisher) until either a unique copula remains or there is a sufficiently precise copula.

The resulting copula then is conservative. (A copula is a method of coupling marginal

cumulative distribution functions into a joint distribution that share the same correlational

structures.) This copula is then used to impute the missing values in the population, although

the specific copula will determine exactly how the imputation is performed. For a simple

treatment effect model, one can use the rank of the individual’s factual outcome to assign

the same rank for the counterfactual outcome(s).

3. Construct bootstrap replications by repeatedly sampling without replacement from the gen-

erated population. Assign treatment to each sample by Bernoulli trials with probability as

in the realised sample. Sample statistics can be computed on the bootstrap replicates treated

sample.

In practice, Imbens and Menzel (2018, Sec. 4) observe more overcoverage for the standard boot-

strap in contrast to the causal version when constructing confidence intervals. This is due to

the association between treatments. As the causal relationship becomes more complicated, the

bootstrap does see decreasing performance, but consistently via overcoverage, while the causal

bootstrap remains reasonably close to the correct level of coverage.

2.3 Changepoint analysis

Changepoint analysis is a family of statistical techniques for detecting abrupt changes in the dis-

tributions of data and thus breaking a dataset into segments with common properties. We restrict

ourselves to offline changepoint analysis, i.e. analysis of data after the data is finished recording,

as opposed to online changepoint analysis, which tries to estimate the locations of changepoints

as new data is introduced to the dataset. Briefly, the standard tactic is to collect a set of summary

statistics about the data set, then look for places where the summary statistics suddenly change.

The weight of the change then needs to be compared to some form of tolerance. In this section, we

will explore how various forms of changepoint analysis work in practice in preparation for Chap-

ter 4. First, we will talk about a general changepoint analysis, before exploring in more detail

the components that we will use, implemented in the changepoint and changepoint.np R

packages (Killick et al., 2016; Haynes et al., 2016; R Core Team, 2018)

A changepoint analysis is a minimisation problem that can be broken down into three inter-

acting components: the algorithm, the the cost function corresponding to a segment’s model, and

the cost due to segmentation (typically referred to in the literature as a per-segment penalty). We

first give a bottom-up conceptual discussion of changepoint analysis before presenting a top-down

33



discussion in the context of the packages used. Consider first a simple model in which we fit a line

to a dataset. We can compute measures of goodness-of-fit for our line, regardless of how linear

the dataset actually is. This component is comparable to what we will refer to as the cost func-

tion. Adding more parameters makes the fit better, with some form of diminishing returns as we

approach the true model. We can use the measures of goodness-of-fit to compare between mod-

els with the same number of parameters, but it is not apparent how we should compare between

models with differing numbers of parameters. To make this comparison, we will rely on what is

typically called the penalty. Finally, the method with which we expand our model is important.

For example, our line has two parameters, a slope and intercept, but adding another parameter

gives us access to a quadratic as well as a step function: the first and second levels, and the point

at which the levels change. A fourth parameter grants access to cubics, step and line, piecewise

continuous lines, and so on. The specific choices as to how to proceed through these models, not

allowing discontinuities or only using piecewise continuous lines for example, can be thought of

as our fitting algorithm. The main difference here is that, instead of fitting curves to the data of

interest, we are instead interested in fitting distributions.

Proceeding now from the top, the algorithm can be thought of as the strategy for the place-

ment of changepoints and thus the governing strategy for minimising the costs of modelling the

data. Trivial algorithms include changepoints between every datum and changepoints between no

datum. A more commonly encountered and sensible algorithm is to place “at most one change-

point” (AMOC) (Killick et al., 2016). Such a simple algorithm is a natural first step to a recursive

algorithm in which a changepoint is placed and then the algorithm repeats to check if there should

be any new changepoints to the left or right of the one just placed (Scott and Knott, 1974; Sen and

Srivastava, 1975). The algorithm corresponds to the method argument in the changepoint

and changepoint.np R packages.

The cost function, denoted C, assigns to each segment between changepoints a cost to model

the segment. The cost function can be thought of as characterising how well explained or inter-

nally consistent a segment is in that a model that very well explains a segment is quite cheap, while

a model that works poorly is expensive to maintain. The cost function might be thought of as a

“negative benefit” function instead if one considers values like theR2 of a regression or likelihood

of a distribution to be measurements of benefit. Cost functions are commonly parametric, with

assumptions ranging from general, e.g. lower order moments exist (e.g. CSS, Inclán and Tiao,

1994), to specific, such as assuming that each segment is normally distributed. When an explicit

model is expected, such as a normal distribution, the cost function might take the form of the nega-

tive log-likelihood, since this is a minimisation problem, associated with the maximum likelihood

estimated distribution for a given segment (Chen and Gupta, 2000). Another example might be

to measure the quadratic loss as the sum of squared distances to the mean of a segment (Rigaill,

2015). Fully non-parametric options exist as well; one simple example would be as quadratic loss

but to the median of the segment instead. One is not required to use only a single cost function, but

to do otherwise would likely require a specialised knowledge of how to model each segment indi-

vidually. As such, we do not consider it here. The cost function corresponds to the test.stat

argument in the changepoint and changepoint.np R packages.

Given that we have already included costs for modelling inside of the cost function, why do

we need to include an additional cost in the form of a per-segment penalty? The penalty exists

to prevent overly complex segmentations by penalising high numbers of segments, while still
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allowing complexity when the cost function warrants it. In our example of fitting curves, the

penalty serves to truncate the process, rather than trying to find an extremely complex model that

fits all points. After some point, diminishing returns will be dominated by the penalties accrued for

each parameter used. Usually, penalties are of a linear form, e.g. f(m) = (m+1)β wherem is the

number of changepoints and β is the per parameter scaling. With p as the number of parameters

and n as length of the original data, common choices of β include β = 2p (Akaike information

criterion or AIC (Akaike, 1974)), β = p log(n) (Bayesian information criterion or BIC, also

known as Schwarz’s information criterion or SIC (Schwarz, 1978)), or β = 2p log log(n) (Hannan

and Quinn, 1979). The penalty corresponds to the penalty and pen.value arguments in the

changepoint and changepoint.np R packages.

Formally, take x = (x1, . . . , xi, . . . , xn) to be a time-ordered dataset. Suppose further that

1 ≤ m ≤ n − 1 changepoints have been placed at integer time-ordered locations τ 1:m ≡
(τ1,τ2, . . . ,τm), with 1 ≤ m ≤ n − 1. Take τ0 = 0 and τm+1 = n. This segments the data into

m+1 segments, with indices written as the intervals (τ i−1,τ i] with the usual convention for brack-

eting intervals. These correspond to the data segments: {x(τ i−1,τ i] ≡ (x(τ i−1+1), . . . , xτ i)}m+1
i=1 .

Each segment has a cost associated to it, and the penalty is applied over the result, which yields

minimisation Problem (2.12).

min
m,τ1:m

(
m+1∑
i=1

C
(
x(τ i−1,τ i]

)
+ f(m)

)
. (2.12)

Problem (2.12) is usually solved by one of two approaches: exactly or approximately. Approx-

imate algorithms are generally simpler to implement, but are not guaranteed to come to the true

minimum, in contrast to exact approaches. The algorithm employed in Chapter 4 is a modification

of pruned exact linear time (PELT) due originally to Killick et al. (2012). As its name suggests,

PELT is intended to solve Problem (2.12) exactly in linear time with the length of the data via

pruning candidate changepoints during minimisation. PELT is in turn a modification of an exact

searching method for optimal partitioning by Jackson et al. (2005). Killick et al. (2012) take the

optimal partitioning algorithm and add to it a pruning condition, which removes candidate change-

points that cannot lower the cost of segments. This retains the exactness of the original algorithm,

while reducing the cost to linear time.

For the purposes of Chapter 4, we choose to use a non-parametric model. As discussed above,

many cost functions are intrinsically parametric, i.e. require some level of model assumption, but

for Chapter 4, we cannot even necessarily assume that the mean of the underlying distribution

exists. The solution we use is a cost function proposed by Haynes et al. (2017b), extending the

work of Zou et al. (2014). The cost function is based upon integrating the log-likelihood of the

empirical distribution P̂ for the theoretical distribution P . Given cumulative distribution function

(CDF) G(t) and empirical CDF Ĝ(t),

nĜ(t) ∼ Binomial(n,G(t)), (2.13)

with log-likelihood

L(x|t) = n
(
Ĝ(t) logG(t) + (1− Ĝ(t)) log(1−G(t))

)
(2.14)

Maximum likelihood estimation is used to assign a theoretical cost to each segment, with n re-
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placed by the segment length and each G and Ĝ replaced by the segment’s Ĝ:

L(x(τ i−1,τ i]|t) = (τ i − τ i−1)
(
Ĝi(t) log Ĝi(t) + (1− Ĝi(t)) log(1− Ĝi(t))

)
. (2.15)

This is weighted and integrated over the entire dataset to form a cost for each segment:

C(x(τ i−1,τ i]) =

∫ ∞
−∞
−L(x(τ i−1,τ i]|t) (G(t)(1−G(t)))−1 dG(t). (2.16)

Even if the integral were to be tractable, G(t) is not known. The cost function devised by Haynes

et al. (2017b) evaluates Equation (2.16) through the use of empirical quantiles which are preferen-

tially selected from the tail of the distribution. If Q quantiles are to be used, set the qth evaluation

point to

tq =

(
(1 + (2n− 1) exp

(
− log(2n− 1)

Q
(2q − 1)

))−1
(2.17)

and define the final cost function by

C(x(τ i−1,τ i]) =
2 log(2n− 1)

Q

Q∑
q=1

L(x(τ i−1,τ i]|tq). (2.18)

This cost function is implemented in the changepoint.np R package under the test.stat

argument as the empirical distribution option. When combined with PELT, we refer to

this as ED-PELT.

Finally, we address the segment penalty arguments we will primarily use. We use two penal-

ties: the modified Bayesian information criterion (mBIC) (Zhang and Siegmund, 2007) and change-

points over a range of penalties (CROPS) (Haynes et al., 2017a). The former of these is, as its name

implies, a modification of the BIC β = p log(n) (Schwarz, 1978) for the changepoints setting

from the regression setting, which has differing regularity conditions. Approximately, mBIC sets

β = 3
2p log n, but the actual computation incorporates the relative positions of the changepoints

(Zhang and Siegmund, 2007). The mBIC penalty is derived theoretically from the asymptotics

of the Bayes factor for Brownian motion with changing drift, whereas the BIC penalty is derived

without dependence on priors or parameters using asymptotics of a Taylor expansion. Technically,

β becomes nontrivially dependent on m through the (relative) locations of changepoints placed in

the datasets. The incorporation of the placement of the changepoints is guaranteed to add the extra

(relative to BIC) factor of 1
2 in the approximate value of β.

CROPS, on the other hand, is an algorithm for evaluating the effects of varying the penalty over

a continuous range, i.e. varying β ∈ [βmin, βmax] ⊂ R≥0. Penalty values are recursively chosen to

identify when the optimal number of changepoints changes. When no or trivial changes are all that

is left in an interval, the algorithm terminates. This is more computationally complex, partially

due to needing to rerun the algorithm (with its cost function) for each penalty that is chosen. The

result is optimal changepoints over ranges of penalties, but this leaves the user to decide which set

of changepoints is best for their purposes. We adopt the recommendation of Haynes et al. (2017a,

who cite Lavielle (2005)): we select the “elbow” in a plot of the (unpenalised) cost against the

number of changepoints. We use the location of the numerical maximum of the second derivative,

maximising the curvature. Identifying the elbow in the plot is intended to identify the point of

diminishing returns: if the penalty is too weak, we are in danger of false positives, but if the penalty
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is too strong, we are in danger of false negatives. As we shall see in Chapter 4, this elbow does not

always properly exist, for which we will need a solution. These penalty functions are implemented

in the penalty and pen.value arguments in the changepoint and changepoint.np R

packages as MBIC and CROPS.

We finish with a note about a limitation of changepoint analysis. Changepoint analysis looks

for discrete changes in the underlying generative processes. Naturally, not all changes are dis-

crete. It is not surprising that changepoint analysis can then fail in the presence of trends in the

underlying processes. One solution has been to attempt to detrend a dataset, but this requires some

knowledge of the trend (e.g. Serinaldi and Kilsby, 2016). Recent attention has begun to try to

work on changepoint analysis in the presence of trends (e.g. Gallagher et al., 2013), but we are

unaware of publications resulting in a combined changepoint and trend analysis algorithm suitable

for Chapter 4. Due to its applicability, this is a natural direction for future work.

2.4 Coalescence and fragmentation models

As a mathematical field, coalescence (alternatively: aggregation, coagulation) and fragmentation

is just over a century old, having begun with von Smoluchowski (1916). Many developments

have occurred in the past 100 years. We begin our discussions of coalescence and fragmentation

models with a general description of some of these developments in coalescence theory; the reader

is encouraged to consult classical references Dubovski (1994) for a collection of theoretical results

and Aldous (1999) for a discussion of applications and interpretations, especially in probability

theory. We highlight the appearance of gelation, the formation of a particularly large (i.e. of size

comparable to the size of the entire system) or infinite sized particle. We then discuss models with

both coalescence and fragmentation.

Von Smoluchowski sought to better understand the dynamics of colloidal chemistry: chem-

istry involving particles suspended in a fluid, which is usually taken to be well-mixed in coales-

cence and fragmentation modelling. Each particle is a discrete object that can clump, or coalesce,

with other particles to make bigger particles; when a particle is a single atomic object, we refer to it

as a monomer while particles in general will be referred to as clusters. Note that mass is conserved

and only binary collisions are considered. An example of such can be seen in Figure 2.2 (left).

Under assumptions of attraction and Brownian motion leading to mixing, von Smoluchowski was

able to derive coalescence mean-field equations of the form

ṅk(t) =
1

2

k−1∑
i=1

ni(t)nk−i(t)− nk(t)
∞∑
i=1

ni(t) (2.19)

where nk is the density of clusters of size k (k ≥ 1), t ≥ 0 is a rescaling of time, and we denote the

time derivative with a dot. Henceforth, we neglect the time argument when the meaning is clear.

The first term represents gains due to coalescence: clusters of size i interact with clusters of size

k − i to create clusters of size k. The 1/2 prevents double counting (i.e. index i can be both 1 and

k− 1 etc. and when two choices are made from the candidate clusters for i = k− i ). The second

term helps to preserve mass by recording the losses due to coalescence, which can be trivially

seen by taking
∑∞

k=1 kṅk and re-indexing the sums. We might naturally expect the system size

M , the amount of mass (per the fixed system volume) in the system, to be constant, whether the

system has begun coalescing or is strictly monomers at complete disaggregation. Equation (2.19)

37



2

1

3
4

6

1

1

1

1

4

Figure 2.2: Example of coalescences (left) and shattering fragmentation (right).

has solutions of the form

nk = n0
(12n0t)

k−1

(1 + 1
2n0t)

k+1
, (2.20)

where n0 is the number of monomers per unit volume when the initial condition constrains all

mass to monomers and k ≥ 1 (von Smoluchowski, 1916, Eq. 24). These equations are in general

agreement with experiments conducted at the time (von Smoluchowski, 1916).

Equation (2.19) would come to be known as a form of the Smoluchowski coagulation equation

and can be considered an infinite-volume mean-field theory (Aldous, 1999). More general formu-

lations introduce a coalescence rate kernel K(i, j) and can take discrete or continuous (referring

exclusively to cluster sizes, time is regarded usually as continuous) form:

ṅk =
1

2

k−1∑
i=1

K(i, k − i)nink−i − nk
∞∑
i=1

K(i, k)ni, (2.21)

ṅk =
1

2

∫ k

0
K(i, k − i)nink−i di− nk

∫ ∞
0

K(i, k)ni di. (2.22)

Many variant kernels have been considered (examples available in, e.g., Dubovski, 1994; Aldous,

1999), but among them the constant K(i,j) = 1, additive K(i,j) = i + j, and multiplicative

K(i, j) = ij kernels are particularly tractable. A valid kernel can always be written as symmetric

and is a function of the amount of mass in each cluster. Additionally, we neglect the (strictly

positive and time rescaleable) constant when discussing theory (Dubovski, 1994; Aldous, 1999).

The behaviours of mean-field Systems (2.21) and (2.22) depend strongly on the kernel cho-

sen. Solutions for each of the aforementioned kernels are listed for both discrete and continuous

systems by Aldous (1999, Table 2) with citations therein. We call particular attention to von

Smoluchowski’s solution for the constant kernel for the discrete system, Equation (2.20), as well

as to McLeod’s solution for the multiplicative kernel for the discrete system:

nk =
tk−1kk−2 exp(−kt)

k!
, (2.23)

for t ≤ 1 (McLeod, 1962, Eq. 2.5)6. Aside from the obviously different forms, there is a crucial

distinction between Equation (2.20) and Equation (2.23): in the former the solution is valid for all

non-negative t, but for the latter the phenomenon of gelation occurs at t = 1.

Gelation is the formation of a particle of infinite mass (or of size comparable to the size of the

system in a discrete setting), called a gel, within finite time and represents a phase transition. In

contrast, the remainder of the finite system is typically called the sol. Despite beginning with a

6Aldous (1999) identifies Equation (2.23) as a Borel distribution divided by the cluster size.
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finite system, such a cluster can emerge in finite time whenK(i, j) = ij, and more generally when

the degree of the homogeneity of the kernel7 α : ∀c > 0 : K(ci, cj) = cαK(i, j) has α > 1 (Ziff

et al., 1982; Aldous, 1999; Pushkin and Aref, 2002). A useful argument to illustrate the problem

is to analyse the flux of mass through the system (Davies et al., 1999; Wattis, 2006). With flux

Jk =

k∑
i=1

∞∑
j=k+1−i

iK(i,j)ninj (2.24)

for k ≥ 1 and J0 = 0, then the change in mass amongst clusters of size k is

˙(knk) = Jk−1 − Jk (2.25)

and so the change in the total mass, M =
∑

k knk, is

Ṁ = − lim
i→∞

Ji. (2.26)

If equation 2.26 has the limit decay sufficiently fast, then we expect mass to be conserved, but

for gelling kernels, this limit is non-zero (Davies et al., 1999; Wattis, 2006). The loss of mass is

attributed to and used to measure the size of the gel (Dubovski, 1994).

Different strategies have been used to explicitly model the formation of the gel and its inter-

action (or lack thereof) with the sol. In approaches usually attributed to Stockmayer and Flory, a

gel (inert in the approach of Stockmayer, reactive in the approach of Flory or Ziff and Stell (Ziff

and Stell, 1980)) is measured by its effects on the sol (Ziff and Stell, 1980; Lushnikov, 2006). A

different approach is via truncation of the Smoluchowski coagulation Equations (2.21) and (2.22).

The gel is then assumed to absorb any clusters whose size exceeds the truncation (Lushnikov and

Piskunov, 1983; Lushnikov, 2006).

Does a gel still form if we are tracking each cluster, as opposed to their densities? Such a

microscopic system was considered by Marcus (1968) and Lushnikov (1978) and might be con-

sidered the finite-volume mean-field theory in contrast to the differential equations above (Aldous,

1999). Mean-field approaches provide a natural description for the sizes of the clusters, but are

usually ignorant of finite system size, which is more important in microscopic systems where

the explicit number of clusters of each size is tracked, and the probabilities of obtaining specific

configurations are examined. The three kernels mentioned above correspond to probabilistic struc-

tures: K(i,j) = 1 to Kingman’s coalescent, K(i,j) = i + j to the continuum random tree, and

K(i,j) = ij to random graph models of Erdös and Rényi (Aldous, 1999). In the last context, the

gel is the giant component that manifests around the critical time t = 1. The gel is then of the

same scale as the system size8 and the remainder of the system is fairly disaggregated sol with

which the gel reacts in the sense of Flory (Aldous, 1999; Lushnikov, 2006).

So far, we have discussed purely coalescent systems. There are many ways to introduce frag-

mentation, an example of which can be seen in Figure 2.2 (right), both in terms of when it occurs

and its mechanics. Fragmentation can be a part of the same process as coalescence such as when

two asteroids impact each other and may remain together or break each other apart (Tanaka et al.,

1996), fragmentation may occur whenever a cluster gets too large or unstable (Birnstiel et al.,

7Note that homogeneity is not necessarily required, but is a generally useful assumption. Asymptotics for non-
homogeneous kernels are expected to agree (Aldous, 1999).

8In Θ notation, the size of the gel is Θ(M).
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Figure 2.3: Example of (binary) coalescence and (shattering) fragmentation (black lines) moving
mass through the system. Coalescence moves mass to the right towards larger clusters, while
fragmentation moves mass to the left towards smaller clusters. This is expected to form a steady-
state, here depicted as a line of blue dots on log-log axes.

2011), or fragmentation might be an exogenous process such as a state spotting and breaking up a

social group of individuals (Bohorquez et al., 2009; Clauset and Wiegel, 2010). The distribution

of fragments might be a part of the distribution of coalescents, independent and random, or even

fixed. Due to the variety of ways to define fragmentation, the form of the kernel is often ambigu-

ous. In principle, fragmentation inputs some number of clusters and outputs a (usually different)

number of clusters. We will focus on spontaneous or exogenous fragmentation, in which a cluster

breaks apart without interacting with another cluster. Writing the fragmentation kernel as F , a

general form of spontaneous fragmentation (in the discrete case) is then

ṅk =
1

2

k−1∑
i=1

K(i, (k− i))nink−i − nk
∞∑
i=1

K(i, k)ni +
∞∑
i=k

i

k
F (i, k)ni − nk

k∑
i=1

F (k, i). (2.27)

The fragmentation kernel F (i, k) here determines how frequently a cluster of size i fragments

into a cluster of size k. The ik−1 on the third term accounts for the difference in sizes between

the cluster fragmented and the cluster formed. In practice, various authors write the arguments to

reflect their desired emphasis and we are no different. Usually, we will write a single argument

fragmentation kernel F (k) which encodes how a cluster of size k fragments. This is because

we will usually adopt spontaneous and atomising or shattering9 forms of fragmentation, where a

cluster of size k is reduced to k monomers and the destination argument is then implicitly obvious.

Fragmentation is usually seen as providing some form of steady-state to the system although

it is not the only way to achieve equilibrium; for example, one might continuously introduce new

small clusters (Pushkin and Aref, 2002). The reason for why fragmentation might provide such a

steady-state is that fragmentation sends mass to smaller clusters while coalescence sends mass to

larger clusters, as shown in Figure 2.3. In practice, how obvious the steady-state is varies. In the

Becker-Döring model, within which clusters grow and shrink by monomers only, steady-states are

well-known when the rate kernels are sub-linear and the total system mass M is finite (Ball et al.,

1986). When a coalescence and fragmentation system’s reactions are reversible, i.e. fragmentation

9Our usage follows Birnstiel et al. (2011), but shattering has been used to describe the creation of size zero particles,
‘dust’, instead (e.g. McGrady and Ziff, 1987).
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exactly undoes coalescence10, and if the fragmentation and coalescence rates satisfy the detailed

balance condition, then the solutions adopt the same form as those of the Becker-Döring model

(Wattis, 2006).

When fragmentation results in shattering , alternative tools are used to establish a steady state.

We present an abbreviated argument for a steady-state solution which has been presented in various

forms and with various extensions and that holds for gelling coalescence kernels (e.g. D’Hulst and

Rodgers, 2000; Brilliantov et al., 2015; Johnson et al., 2016). Clauset and Wiegel (2010) showed

that this steady-state was approximately correct regardless of the fragmentation kernel F so long

as spontaneous shattering is required. Taking for k ≥ 2 (and k = 1 for completeness)

ṅk =
1

2

k−1∑
i=1

K(i, k − i)nink−i − nk
∞∑
i=1

K(i, k)ni − F (k)nk,

ṅ1=
∞∑
i=1

iF (i)ni − n1
∞∑
i=1

K(i, 1)ni

(2.28)

with K(i, j) = c(ij)α for some c, α ≥ 0, in steady-state ṅk = 0 for all k and using generating

functions11

f(z) ≡
∞∑
k=1

kαnkz
k g(z) ≡

∞∑
k=1

(k)nkz
k, (2.29)

we can write

0 =
1

2
cf2(z)− cf(1)(f(z)− n1z) + g(z). (2.30)

Clauset and Wiegel (2010) argue that the leading orders of magnitude with the system size allow

us to neglect g(z), as the other terms are proportional to M2 rather than just M . Solving for f(z)

yields

f(z) = 2n1(1−
√

1− z), (2.31)

noting that f(1) = 2n1. Power series expansion or Cauchy’s theorem may be used to obtain

coefficients, with the latter yielding the asymptotic result

kαnk ≈
1√
π
n1(k + 1)−3/2. (2.32)

For the case b(k) ∝ k, α = 1, this argument can proceed exactly (D’Hulst and Rodgers, 2000;

Johnson et al., 2016). Furthermore, D’Hulst and Rodgers (2000) and Kyprianou et al. (2018)

showed there exist steady-state solutions when coalescence involves more than two particles as-

suming shattering, a single time scale (by scaling the kernels by M ), and multiplicative (in the

former’s work) or constant (in the latter’s) rate kernels. These steady-state solutions are zero for

impossible cluster sizes (e.g. no clusters of size two if only triples coalesce). The variant of Kypri-

anou et al. (2018) allows multiple types of coalescence and finds only the smallest type (rather

than the fastest) dictates which cluster sizes are non-zero in the steady-state.

While this answers whether there is a theoretical steady-state, it does not tell us about the inter-

10This is usually written as Sa+Sb 
 Sa+b where S· is a type, or species, of cluster and a and b are indices usually
indicating size.

11Note that generating functions are not necessarily concerned with questions of convergence as they are usually
considered formal power series (Stanley, 2011).
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action between the gel and fragmentation. Can fragmentation inhibit or even prohibit gel forma-

tion? As reported by da Costa (1995), the answer is yes, but fragmentation needs to be sufficiently

strong. Da Costa (1995) showed for binary coalescence and binary spontaneous fragmentation,

i.e. a fragmentation kernel F (i, j) that breaks a single (i+ j)-sized cluster into an i-sized cluster

and a j-sized cluster, that fragmentation can prevent gel formation if, given coalescence kernel

K(i,j) ≤ c(ij)α, α ∈
(

1

2
, 1

]
, (2.33)

the fragmentation kernel has the property that ∃γ > α : ∀µ ≥ 1,∃C(µ) > 0 :

b(r−1)/2c∑
j=1

jµF (j, r − j) ≥ C(µ)rγ+µ (2.34)

for all r ≥ 3. As examples, F (i, j) = (i+ j)β and F (i, j) = (ij)β satisfy the above property for

β > −1, dependent on α of course. While not necessarily for our primary use case, this provides

theoretical evidence that fragmentation can act as a balancing force as one might expect.
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3 The Battle of Britain

[The great man] is powerless in the absence of the co-

existing population, character, intelligence, and social

arrangements [of his society]. – Spencer, 1896

3.1 Introducing the Battle

Air campaigns in general, and the Battle of Britain (1940) in particular, have a stationarity to them

that is thoroughly lacking in a traditional land campaign. If longbowmen on one side annihilate

infantry or knights bogged down in marsh, the next day those infantry and knights cannot be

redeployed, that same territory is likely lost, and the battle has shifted its position and terrain.

On the other hand, if opposing aerial squadrons begin to dogfight, both sides can have their pilots

evacuate from the field12, new planes can be ready to be deployed13, and the same airspace is likely

to see multiple dogfights. Over a short enough period of time, even the weather is unchanged.

At its simplest, the Battle of Britain was a World War II air campaign in the summer and

autumn of 1940. It was fought between the Luftwaffe, the German air force, and (British) Royal

Air Force (RAF) Fighter Command in the skies of the English Channel, south-eastern England,

and London. The Luftwaffe sought to deplete Fighter Command forces, while Fighter Command

conversely needed to remain a force in being. Factually, the Luftwaffe had demonstrably failed in

this regard by October, while the RAF was growing stronger.

It has long been folklore that this victory was won on a “narrow margin”, with many books

and articles published on both sides of the debate (e.g. Dempster and Wood, 1961; Bungay, 2000).

Similarly, it is a popular event to consider counterfactually (Forester, 1971; Cox, 1974; Messen-

ger, 2002; Forczyk, 2016); that is, to ask why Britain won, and the German war machine failed

to invade. We too seek to answer this question, but we must acknowledge that “[t]here was no

13Consider the following back of the envelope: the average number of pilots removed from battle per sortie per day
is about 0.01 (from data), while 33% of novice pilots are lost within a month in 501 Squadron during the Battle of
Britain (Bungay, 2000, p. 373). A geometric distribution with a probability of success of about 0.013 on a given trial
would need 30 trials to have about a 33% probability of having a single success. Taking 0.013 as the probability that a
given pilot is removed on a given day and dividing it by the average number of pilots removed per sortie and day gives
about 1.25 sorties which we interpret as the number of sorties flown by a (novice) pilot in a day.

13For example, Dempster and Wood (1961) indicate that, per day, about 400 monoplanes were being produced
compared to about 260 pilots by the British during the Battle of Britain.
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obvious step-change for Fighter Command to make” (Fagan et al., 2020a). As a result, we instead

focus on the decisions of the Germans, and adopt the approach of Forester (1971, p. 131): “[Ger-

man leader Adolf Hitler] must be given in this narrative every possible chance, but none of the

impossible ones”.

For the purposes of this chapter, we consider only the air campaign over England with the

counterfactual invasion campaign and its other prerequisites firmly outside of our scope. There

were, of course, other aspects to the preparations for the invasion of Britain: simultaneously RAF

Bomber Command and the Royal Navy were attacking German ports and craft to prevent the

build-up of an invasion fleet. If an invasion were to be attempted, then the Royal Navy would

have been critical to preventing the arrival of landing craft (Grinnell-Milne, 1958). This does not

mean that the air battle was meaningless, as has been claimed (James, 2006; Cumming, 2010).

Indeed, such a portrayal has been considered ‘a silly season story par excellence’ (Goulter et al.,

2006). The destruction of Fighter Command and the resulting ability of the Luftwaffe to do as

they wished in the skies of England would surely have influenced the remainder of the war.

A defeat of Fighter Command in the air campaign would entail, at a minimum, a gradual

retreat from south-eastern England. RAF 11 Group commander Keith Park had no obvious abrupt

change to make, nor event that would have resulted in such a change. Instead, his fighters would

be more restricted in their appearances before disappearing altogether, granting the Germans a

brief window of opportunity. If the Germans took this opportunity, the RAF would have rallied in

parallel with the ensuing naval action.14

We quantitatively investigate the Battle of Britain with a novel application of the method of

bootstrapping, for which standard methods are discussed in Section 2.2. The novelty stems from a

reweighting scheme in which we analyse the effect on counterfactual aerial campaigns by biasing

the bootstrap to select from days that are representative of the counterfactual under consideration.

To investigate the Battle of Britain quantitatively though, we will need to engineer an invasion

criterion. We begin this investigation by providing more background on the campaign in Section

3.2 before discussing modelling considerations and the bootstrap in Section 3.3. With these factors

in mind, we discuss the data, the invasion criterion, and the counterfactual scenarios in Section 3.4.

This finally allows us to apply the bootstrap in Section 3.5. We present refinements to our analysis

in Section 3.6 before concluding in Section 3.7 and place the chapter in the context of the thesis

in Section 3.8.

3.2 Going into the Battle

Hitler was a victim of his own success in May 1940. His invasion of France had gone exceedingly

well and forced the Allies into a corner. Hitler found himself faced with subjugating the remainders

of the French, attempting to push his advantage against the British, and trying to recover from his

troops’ losses. In late May, he hesitated, frustrating his own troops; Heinz Guderian, the famously

thrusting tank commander, noted that it had “never occurred” to him that Hitler “would now be

the one to be frightened by his own temerity and would order our advance to be stopped at once”

(Guderian, 2009, p. 109). This hesitation, a “halt order” on 24 May, helped stop the German

advance, aiding the Allies in evacuating the French port of Dunkirk.

14Such an invasion has been wargamed by the 1974 Royal Military Academy and subsequently fictionalized by Cox
(1974). Schenk (1990) provides details of German preparations and a summary of the strategic planning is given in the
German Plans (2017).
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Hitler’s hesitations with Britain did not stop there. Nazi Germany needed the British out of the

war, but its leadership was unsure of how to do so. Peace was one possibility: the British could

unite with Germany in their shared Germanic heritage. British leader Winston Churchill may have

had no intention of peace with Nazi Germany, but a broken nation might force the matter. Invasion

was another possibility, but a costly one. To do so would require the construction of transports for

the army, subduing the Royal Navy, and weakening the RAF before even beginning the invasion

proper. All of this would need to be prepared at the same time as the second phase of the Battle of

France against some 200,000 soldiers in June (Alexander, 2007).

Factually the Germans failed in their objectives. There was no cowing of the populace, no

capitulation of the government, and not even a proper attempt at invasion by the German mili-

tary. This renders the quantification of such an invasion immensely difficult and in turn making it

difficult to come to an objective understanding of how close the Germans came to success. Even

whether the Germans truly tried has been debated; some German veterans and historians deny that

the “Battle of Britain” was a singular campaign, suggesting instead that invasion was never the

true intention and that the battle was merely another front of the ongoing struggle on the mainland

(Deighton, 1977, p. 51; Bungay, 2000, p. 33; Kershaw, 2008). Regardless of their “true” inten-

tions, over the next month German high command and Hitler studied the situation before coming

to conclusion. On 16 July, Hitler ordered that preparations for Operation Sea Lion, the invasion of

the United Kingdom, begin.

Two counterfactuals are commonly derived from this approximate point in time, albeit usually

by popular writers as opposed to academic historians. The first, less frequent and more exuberant

counterfactual requires a singularly minded and aggressive Hitler who desires the immediate de-

struction or subjugation of the British. This entails a quick and decisive strike at British defences

in order to exploit the losses and confusion after the evacuation from Dunkirk (Forester, 1971;

Macksey, 1980; Messenger, 2002). This counterfactual is untenable for a few reasons beyond

Hitler’s desire to defeat Britain: the Luftwaffe would need to make French resources and bases

available earlier as well as have suffered fewer losses than they factually did in the first phase

of the Battle of France. Indeed, the Luftwaffe lost “about half its operational strength” in that

campaign and needed to rebuild both its fighters and bombers (Bungay, 2000, p. 104 – 5).

The more restrained counterfactual instead supposes that after a long but ultimately successful

campaign to weaken the British, the Germans find themselves in position to attempt invasion in

September of 1940 (Cox, 1974; Kieser, 1997; Evans and McGeoch, 2004; Forczyk, 2016). To

do so requires that the Germans have control of air space that is defended by “11 Group”, the

RAF forces in charge of the defence of south-eastern England. This counterfactual more closely

matches the German plans for invasion.

Whether Nazi Germany truly intended to invade or not, the Luftwaffe was tasked with achiev-

ing air supremacy over the English Channel, south-eastern England, and London. The Luftwaffe’s

primary goal then was to deplete the forces of RAF’s Fighter Command in the region before too

late in October, when the weather alone would be enough to prevent achieving air supremacy. In

the mind of Luftwaffe leader Reichsmarschall Hermann Goering, this meant drawing up, engag-

ing with, and destroying the enemy fighters in the air (Townsend, 1970). To accomplish this, the

Luftwaffe would employ both fighters and bombers: the bombers would destroy targets on the

ground which the RAF was obliged to defend. The RAF fighters that were scrambled to intercept

the bombers would then be targets for the Luftwaffe’s own fighters.
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Just as the Germans were preparing for the invasion, the RAF was preparing to repel them.

The country was divided into regions, the aforementioned groups, that would be defended by

portions of Fighter Command. The RAF also recognised German air supremacy as necessary for

an invasion and that Fighter Command needed to hold off the Luftwaffe while Bomber Command

and the Royal Navy prevented the build up of German landing craft.

The RAF had a few key advantages that it would leverage in its defence. While the Luftwaffe

could not know how the RAF would respond to its forces due to the asymmetry of attacking versus

defending over foreign soil, the RAF had a strong information-gathering infrastructure in place

to rapidly inform them of and respond to the Luftwaffe’s movements (Holwell and Checkland,

1998; Bungay, 2000). Due to the asymmetry in objectives (the Luftwaffe needed to defeat the

RAF, while the RAF needed to merely not be defeated), the British also could rescue their pilots,

while the Luftwaffe had no accurate way of knowing how much damage their tactics caused.

Furthermore, the British had a high fighter production and could rapidly replace lost aircraft,

while the Luftwaffe were spread thin from repeated conflicts (Deighton, 1977; Bungay, 2000).

Park could not only rapidly respond to threats, but he could also decide exactly how he wanted to

respond, although his available choices in practice were to not respond, respond with small forces,

or to assemble a large force while the Luftwaffe bombed its targets.

The main constraint Park faced instead appears to be pilot training. Data on pilot training

suggests that newly trained pilots were matching losses (due to injury or death) during the bat-

tle (Dempster and Wood, 1961). On the other hand, RAF Fighter Command’s leader Air Chief

Marshal Hugh Dowding strongly believed that neither a novice monoplane fighter pilot, nor an

experienced pilot of other types, was worth a combat-experienced fast monoplane fighter pilot

(Dowding, 2015). Furthermore, such training could not be easily ramped up, as might aircraft

production lines.

Faced with the need to protect his resources, Park chose to use his men sparingly, emulating

guerrilla warfare in the air: Park would receive reports of German numbers and respond with as

few forces as he could to disrupt the enemy bombers and fighters. Perhaps unsurprisingly, Park’s

decision was controversial within the RAF; RAF Air Vice-Marshal and 12 Group commander

Trafford Leigh-Mallory insisted that aircraft be gathered together in a massive flight to engage the

enemy. This tactic, the usage of “Big Wings”, mirrored the belief of Goering that aircraft should

be destroyed in the air (Townsend, 1970). This debate would end up sullying the reputation of

Park, resulting in lack of recognition for leading the bulk of the defence against the Luftwaffe

(Bungay, 2000).

3.3 Modelling the Battle

One major question that can be asked is if Park’s general approach was correct or if Leigh-

Mallory’s approach would have been more effective against the Germans. Questions of this nature

were already being asked before World War II. A particularly important set of models are Lanch-

ester’s Laws, which were formulated specifically to model aerial combat by Lanchester (1916)

and help us understand the scalings of attrition.15 This question was addressed by Johnson and

MacKay (2011) and MacKay (2011), who found that Lanchester’s equations did not fit the data
15Although they bear Lanchester’s name they were not only developed by Lanchester, as discussed in the introduc-

tion. Most of the formulations of the equations are actually for naval warfare (Chase, 1902; Baudry, 1914; Fiske, 1916).
Of particular note is Chase (1902), who developed the idea over a decade earlier and Osipov (1915), who attempted it
for land combat with inhomogeneous forces.
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well. Their results indicate that the aerial combat more closely resembles duels, instead of a

situation where aircraft can combine their fire to quickly destroy the smaller enemy.

The situation is actually even graver for Leigh-Mallory’s approach than we would expect from

the conclusion that aerial combat resembled duels. While combat does more closely resembled

duels than square-law aimed fire, days with more sorties favoured the Luftwaffe. MacKay (2011)

suggests that Park was leveraging the aerial equivalent of guerrilla warfare’s cover and conceal-

ment. Leigh-Mallory would eventually be able to apply his approach over France, which, for a

variety of reasons including lessons not learned by Leigh-Mallory in the Battle of Britain, result

ed in large RAF losses (Bungay, 2000).

More generally, MacKay (2011) and Horwood et al. (2014) argue that, not only is the Battle

of Britain not effectively modelled by Lanchester’s Laws, but air combat in general does not

accept such a model. Johnson and MacKay (2011) highlight a few points that make the Battle of

Britain tractable for non-parametric analysis, however. There is very little obvious change in the

data, although they stop short of a full changepoint analysis and do identify a possible change on

September 15th in the loss-rate per total sortie number. Johnson and MacKay (2011) additionally

observe a strong degree of spatial homogeneity, and the Battle is homogeneous temporally with

respect to the types of units employed (Dempster and Wood, 1961).

The non-parametric tool we use here is the bootstrap, discussed in Section 2.2 (Efron, 1979a;

Efron and Tibshirani, 1993). The core of the bootstrap is to create artificial samples to statistically

analyse by re-sampling with replacement from the original sample, which is viewed as drawn

from a single distribution. This allows one to explore the effects of natural variance on the data if

the data is independently and identically distributed (IID). When the data is days of a campaign,

each artificial sample can be thought of as a counterfactual campaign, in which, more than merely

rearranging the days, we have sampled some days more than once and some days not at all.

This naivety seems unwarranted; in a typical campaign, each day depends steadfastly on the

previous. Each soldier or pilot who is lost is not there the next day and, even worse, some of

these losses would appear to occur multiple times with the lost potentially harming their enemy in

the meantime. We can reconcile the naive approach and historicity however. Instead of viewing

each loss as occurring to a specific individual, we instead view each loss as an event affecting the

strength of a side. In this way, we assume that if a day is drawn twice, its events happen to a

different set of people in subtly different but numerically equivalent ways.

Each day is factually unique and no surprise attack should be able to happen twice. We must

turn to the historical context: the Battle of Britain was fought with consistent equipment, person-

nel, weather, and tactics (Dempster and Wood, 1961). There were no surprise attacks in the Battle

of Britain due to the British information systems, and very little damage was actually done to

this infrastructure. The closest case, argued by Bungay (2000, p. 368–9), is the closure of Biggin

Hill for a few hours. What about the days where the Luftwaffe did very well when bombing in-

frastructure? First, there were many targets for infrastructure, especially given that the Luftwaffe

were unsure as to what infrastructure was being used by the RAF (Bungay, 2000). Hence, the

Luftwaffe could reasonably choose a different target to attack in the same manner with ease. Sec-

ond, the RAF’s damages were due less to the bombing that occurred and more to the dogfighting

that ensued (Ramsey, 1989; Honour Roll). Together, these imply that attacks on airfields were

reproducible in the sense of being draws from the same distribution.

There is still the problem of the possible existence of changepoints in the data. Changepoints
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are a problem in that they mark places where the underlying distribution before and after a point in

time is (statistically significantly) different. To circumvent this problem, we will need to identify

any changepoints, preferably with historical justifications, and treat each segment as distinct. This

motivates a natural order to the data; all data within the first segment should arrive before the

second segment’s data and so on. Note that we do not order the data within a segment and that

the data within each segment then should be IID. Our result then is a counterfactual which will

follow the logic of the original campaign with some variation in the dates of transition between

each phase of the campaign.

Merely bootstrapping a campaign helps us to understand the variations that may have arisen

naturally from the historical actors’ decisions, but it does not help us understand the decisions

themselves. In order to better understand, for example, the costs of Hitler’s hesitance to attack

the British, we need to do something more. We modify the bootstrap by reweighting it: changing

from picking days uniformly at random to picking days with a bias determined by the details of

the day and the details of the counterfactual. These reweightings allow us to bias the bootstrap to

sample more or less data than what factually occurred based on the counterfactual changes to the

historical actors and the orders given. Crucially, we cannot answer our counterfactual questions

directly due to never having observed the true victory condition. We will need to rely on our prior

beliefs in conjunction with the weighted bootstrap and historical context in order to analyse the

counterfactuals we propose.

Due to the constraints of the data and historical context, we cannot, for example, have Leigh-

Mallory lead 11 Group. We do not have robust or extensive data for how he would have led 11

Group and, furthermore, Park’s approach was exclusively defensive and minimal. We can, on

the other hand, examine German decision making. One famous example of such a change is the

switch to targeting London, which has been declared a crucial error by many authors including

contemporary actors (Spaatz, 1946; Churchill, 1950; Townsend, 1970), airpower theorists ( e.g.

Warden, 1989, p. 103), and historians ( e.g. Macksey, 1987, p. 45). The Luftwaffe clearly had

no idea of how to achieve air supremacy (Bungay, 2000, Ch. 30). Each of its targets, Channel

shipping, airfields and aircraft factories, and London, was an attempt by the Luftwaffe to guess

at how best to achieve air supremacy using bombers and fighters. They knew they needed to

destroy RAF Fighter Command’s aircraft, but the Germans had no way of truly knowing which

targets Fighter Command felt it needed to defend and no way of knowing how much damage their

bombers were actually achieving. As such, modifying targets chosen is an obvious counterfactual.

A different alternative is to alter the beliefs of the German leadership. For example, what

would happen if Goering had not shared Leigh-Mallory’s opinion that airframes are to be de-

stroyed in the air in large-scale confrontation? Such a Goering might focus more heavily on

destroying airframes where ever they might be found, in turn concentrating on the airfields. The

success of such a tactic has been disputed in the literature. Bungay (2000) maintains that even

attacks on airfields were ineffective, but Warden (1989) holds it to be the correct concentration

and application of airpower. Goering is not the only German leader whose belief we can alter. We

also consider a more aggressive Hitler, one who clearly prioritises the removal of the British from

the war above the now diminished French forces.

No matter the modifications that we use for the bootstrap, we are still bound by the historical

and physical context. Our aggressive Hitler still must coordinate, plan, and prepare with his army,

navy, and air force. In particular, the Luftwaffe was only able to use appropriate French bases
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during June, so we can bring the campaign forward at most three weeks. Coordination with the

army and navy is also costly, regardless of the counterfactual scenario, due to the need to cross the

Channel. To do so, the invasion force would need neap tides to optimise their odds of surviving

the crossing. Such tides allow the invasion barges freedom of movement, reduce tidal races, and

assist barges with beaching just before dawn with some moonlight (Grinnell-Milne, 1958, Ch.7:

“Time and the Tides”; German Plans, 2017). This constraint results in a fortnightly cycle of viable

invasion dates: within 3 days of the quarter-moons on 26 August, 8 September, 24 September, and

8 October, for which a decision to invade must be made ten days prior. The first of these invasion

dates is only available for counterfactuals where the campaign begins earlier as well, since the

factual first feasible date was mid-September.

3.4 Methods for the Battle

In order to better understand the Battle of Britain, we gathered a variety of data, presented in

Tables B.1 and B.2. Table B.1 consists of British and German total airframe losses (Hurricanes,

Spitfires, or otherwise; and fighters, bombers or otherwise; respectively), British pilot casualties,

and primary target type (C = docks, shipping and coastal, R = reconnaissance merely, A =

aerodromes, L = London, Kent and Thames estuary). Table B.2 additionally provides the number

of British sorties and (British estimates of) German sorties as well as regional weather (W = rain

(W for wet), C = clear, O = overcast).16

We also divide the campaign into four phases in Table B.1, following the official history

(James, 2000). These are (P1): 10 July - 7 August, principally of coastal attacks and armed

reconnaissance; (P2): 8 August - 18 August, of heavy attacks on mostly coastal targets; (P3): 24

August - 6 September, of sustained attacks gradually concentrating on airfields; and finally (P4): 7

September - 31 October, following the Luftwaffe’s switch to London as its principal target. Note

the five-day lull between (P2) and (P3) and denoted 0 in Table B.1; we treat this lull as a separate

phase in our scenarios. We do not include 25 September and 16 October when reweighting based

on target; these days correspond respectively to an attack on Filton and to general German air

sweeps.

In Appendix A, we present an analysis of the IID assumption for this data. We find that we

cannot reject stationarity within each phase for British pilot casualties except for in Phase 4, which

is instead consistent with the presence of a trend. Autocorrelations identified that are significant

appear to be false positives when controlling for the false discovery rate. Hence, the pilot casualty

data appears to be mostly consistent with the IID assumption within phases.

We now need a “victory” criterion, by which we mean a trigger for invasion. Within RAF and

War Cabinet policy there is no one obvious change which might have occurred and would have

constituted the defeat of Fighter Command; the need to retain a force capable of contesting inva-

sion, combined with the ability to withdraw Fighter Command northwards, ensure this. Further,

we find no evidence of a plan for such a single collective withdrawal, which would probably rather

have been gradual, and not immediately obvious to the Germans, who sometimes erroneously as-

sumed that unrelated airfields belonged to Fighter Command (Deighton, 1977, p. 216; Bungay,

2000, p. 208, 211).
16Airframe losses were compiled from Ramsey (1989). British pilot casualties were also compiled from Ramsey

(1989), and were cross-checked with the RAF Battle of Britain Honour Roll and with Wynn (2015). Targets are from
Dowding (1941-1947). Weather is from the RAF Campaign Diaries. Sortie numbers are from James (2000). German
sortie numbers are not generally available before 1st August.
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In terms of the constraints on Fighter Command, it was pilot supply that approached criticality.

British monoplane fighter airframe production, running at about 400 per month (Dempster and

Wood, 1961, p. 104), would always have been sufficient to provide a modern aircraft for every

available pilot. In contrast the supply of newly-trained pilots was running at around 260 per month,

supplemented by non-U.K. volunteers and refugees, and pilots re-allocated from other types. As

noted above, Dowding considered a novice fighter pilot worth less than a combat-experienced

one, and this is consistent with, for example, the 501 Squadron figures (Bungay, 2000, p. 373),

with 33% of novice pilots lost within a month compared with 22% of experienced ones. If we

therefore assign a novice pilot a value of 67%/78% = 0.85 of a pilot lost, a reasonable estimate

of the strength of Fighter Command, BS (t), might therefore be BS (t) := B0 + sbt − BL(t).

Alternative methods of assigning value to novice pilots are, of course, possible. For example, one

might consider ratios of daily survival probabilities or ratios of mean lifetimes (measured in days

or months). We choose to use the 501 figures as presented in the source material so as to minimise

assumptions used. We anticipate, however, that the way we are using the bootstrap should be

insensitive to such choices due to the way we calibrate the bootstrap to prior knowledge.

Here B0 is the initial Fighter Command pilot strength, B0 = 1259 on 6 July 1940 or B0 =

1094 on 15 June, all assumed to be trained and experienced (Dempster and Wood, 1961, Ap-

pendix 11). The new pilot contribution is s = 0.85, b = 11 is the average daily complement of new

pilots, and BL(t) is the total number of British pilots lost so far, so that BS (t) = B0+sbt−BL(t)

is the total Fighter Command pilot strength at time t. Pilot losses BL(t) are computed using data

from a number of sources, given in Table B.1: essentially they include all pilots killed, seriously

wounded or missing in action, and exclude the slightly wounded, who typically returned to action

within a few days if not within the same day. For reference, the total number of (possibly non-

unique) pilot losses, wounded, and slightly wounded over the course of the Battle are 487, 236,

and 165 respectively in our data. In contrast, the number of pilots available in October (dependent

on week) is listed by Dempster and Wood (1961, Appendix 11) as about 1,700. Assuming that

pilots available does not include pilots lost, this suggests around 2,100 pilots were employed over

the Battle of Britain.

We now need to decide how the values of BS (t) might be used to trigger invasion. Let T

(for “T-Tag”) be the planned date of invasion, which we recall must lie within three days either

side of the quarter-moonQ. Recall further that an initial decision for invasion needs to be taken on

T−10. For invasion to be triggered, the Luftwaffe must appear to have been gaining air superiority

during (let us say) the five days before this, and for invasion not to be cancelled or postponed the

same must apply for five days after the initial decision – beyond this, too much effort would have

been put into preparations such as the sowing of minefields for poor air combat reports to cause

cancellation. So we choose some critical value BSC according to the procedure outlined in the

next paragraph, and say that invasion is triggered if BS < BSC throughout the period from T−15

to T −5 for any T betweenQ−3 andQ+3. Thus the latest date for which we simulate air combat

is 6 October. Naturally, some of these assumptions are difficult, if not impossible, to validate. We

again will rely on the calibration of our bootstrap to the prior beliefs of its users in order to provide

robustness to changes in the assumptions.

What critical threshold value BSC of BS would constitute the defeat of Fighter Command?

As noted earlier, the crux of our method is not to attempt to answer this directly, but rather to

calibrate it to prior beliefs using bootstrap methods. Imagine three historians of differing views.
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Left 0.495 0.140 0.832 3.15 0.433
Right 0.186 0.649 1.699 0.967 1.523

Table 3.1: Example sample from a two armed bandit. The true distribution for the left arm is
the absolute value of a normal distribution with zero-mean and a standard deviation of 1.22. The
true distribution for the right arm is an exponential distribution with a rate parameter of 5. Note
that, in truth, the values obtained randomly for the right arm are fairly unusual and underscore the
importance of online learning methods in bandit problems.

One of them believes that the British margin of victory was nil – that the battle was won on a

coin toss – and thus that the Germans had a 50.0% probability of victory. A second believes

that the British had a modest margin of victory, that it would have taken a moderate amount of

deviation from the mean for the Germans to win, and thus that the British probability of victory

was 84.0%, corresponding to one standard deviation σ from the mean in a normal distribution. A

third believes that a German victory was very unlikely, and would have taken a 2σ event or change

and thus that the British probability of victory was 97.7%. We then run a simple bootstrap on the

Battle of Britain as actually fought, which results in a bell curve of outcomes centred on the actual

outcome, and choose the three values of BSC which generate the three historians’ British victory

probabilities specified above. We return to the normality assumption in Section 3.6, but find that

the assumption suffices for our purposes.

We then use these three values of BSC in our counterfactual scenarios, resulting for each

scenario in three new probabilities. These are robust to small changes in the form of the victory

criterion, since this merely mediates between the figures of interest, which are each historian’s

belief (expressed as a victory probability estimate) about the actual battle, and the belief which

it would then be rational for them to assign, on the basis only of the evidence from the actual

fighting, to each counterfactual scenario.17

We next need to map our counterfactual scenarios to the bootstrap, which we will do by re-

weighting sampling of days from uniform sampling. This is particularly simple to accomplish

within the Bayesian framework discussed in Section 2.2. Instead of taking a prior which in the

limit is uninformative, we instead take an informative prior. One simple example is the following:

suppose that we play a two-armed bandit ten times, pulling each arm five times and obtain the

results in Table 3.1 (see, e.g., Slivkins, 2019, for a review of bandit problems and algorithms).

Assuming that each pull is independent, we might be curious about how mixtures affect the number

of draws d to reach a certain score, say 10.

Using n for the number of draws and P̃ as the empirical distribution, the Bayesian unweighted

bootstrap then proceeds by sampling, say, B = 100 times from Dirichlet
(
nP̃
)

. The weighted

version instead uses Dirichlet
(
nP̃ + Be

)
, where Be (as in prior belief) is our vector of prior

weights, analogous to ε1 in Section 2.2. Note that each component of Be must be strictly greater

than the negative of its respective component in nP̃ . We then consider five Be corresponding

to an unweighted 50-50 split, a 25-75 split, and a 0-100 split and vice versa. To determine our

number of draws d for each sample to reach 10, we then use the data x and bootstrapped weights

17That is, to the extent to which they believe that additional days’ fighting would have followed the pattern of actual
days’ results. Since it uses only the actual days of fighting, what the bootstrap cannot do is to include any of the
unlikely things that one could argue might have happened, but did not. There are no “black swans” in bootstrapped
counterfactuals (Taleb, 2007).
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Left-Right Min. 1st Qu. Median Mean 3rd Qu. Max
100-0 4.854 8.191 10.532 10.991 13.036 27.212
75-25 4.815 8.598 10.239 10.589 12.179 21.565
50-50 5.066 8.845 10.314 10.325 11.567 17.232
25-75 5.732 8.798 9.989 10.354 11.576 16.544
0-100 7.576 9.294 10.131 10.276 11.184 14.785

Table 3.2: Example summary statistics for Bayesian bootstrapping a two armed bandit. Boot-
strapping is conducted over the results from Table 3.1 using different weightings. Values reported
correspond to the bootstrapped d∗ from Equation (3.1).

Left-Right Min. 1st Qu. Median Mean 3rd Qu. Max
100-0 4 9 10.5 11.57 14 23
75-25 4 9 11 10.90 13 18
50-50 4 9 11 11.21 13 18
25-75 6 9 10 10.38 12 16
0-100 8 9 10 10.43 11 14

Table 3.3: Example summary statistics for frequentist bootstrapping a two armed bandit. Boot-
strapping is conducted over the results from Table 3.1 using different weightings. Values reported
correspond to the bootstrapped d∗ from Equation (3.2). Compare with the results in Table 3.2.

P∗ to calculate

d∗ =
10

P∗ · xᵀ
. (3.1)

We present some simple summary statistics in Table 3.2. Due to the better median (note that the

means are essentially the same at 1.01 for the left arm and 1.00 for the right arm), we see nicer

tail behaviour if we focus on the right arm, but can drastically decrease our minimum by ‘getting

lucky’ from a few pulls of the left arm.

As the bootstrap becomes more complicated, these complexities can make the system seem

particularly unphysical. For example, why should one be able to get only some proportion of a

draw from an arm, as opposed to whole numbers? A more physical approach is to, analogously

to how we changed Be to a non-zero vector, introduce such a vector in our multinomial model.

The simplest way to do this is to take our multinomial probabilities to be the normalised Dirichlet

parameter vector. This simplification to the frequentist bootstrap has another benefit however.

Since we will be drawing events, it is easier to measure a more physical d∗ that depends on the

order of the draws:

choose d∗ ∈ N :
d∗−1∑
i=1

x∗i < 10 ≤
d∗∑
i=1

x∗i . (3.2)

This conforms more with our physical intuition of the system as well, while retaining the ability

to modify our strategy from the Bayesian bootstrap, albeit at the loss of not being able to sample

from the entire space of possible values. (To accomplish such a “physical” interpretation for the

Bayesian bootstrap would require an additional step of using the sampled distribution as a prior

for a multinomial distribution.) The results from the frequentist approximation are shown in Table

3.3.

Henceforth, we use the frequentist approximation of the weighted bootstrap. Our re-weightings

will come from our counterfactual scenarios, and will be used to preferentially select certain days,

analogous to choosing to pull the left or right arm of the bandit. Here, the arms of our bandits
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Scenario Summary Starting
Date

Bootstrap Reweighting
(Days of Target or Phase)
P1 P2 P3 P4

Real Actual Battle 10th July 29 11 19 30
CF1 No switch to London 10th July 29 11 49 0
CF2 Early Start 16th June 32 18.7 23.8 30
CF3 No London and early start 16th June 32 29.7 37.8 0
Scenario Summary Starting

Date
Airfield Coast London Recon

Real Actual Battle 10th July 16 47 36 13
CF4 Target airfields 10th July 43 33 0 13
CF5 Target airfields and early start 16th June 54 42 0 17

Table 3.4: Summary of counterfactual scenarios.

correspond to the phases or targets used in the actual battle, and each draw is the number of RAF

pilot casualties. Next, we need to determine how each counterfactual affects the strategies used

for pulling the arms of our bandits.

In the most radical counterfactual (CF) fiction the Luftwaffe’s initial hopes of swift achieve-

ment of (at least) air superiority are realized, followed by an early invasion (Forester, 1971; Mack-

sey, 1980; Messenger, 2002). We cannot and do not pursue such ideas: rather our counterfactuals

are air campaigns which depart from the actual campaign in their dates or targeting but which

are built up using data from it. Instead we consider five counterfactuals that can be well-posed in

terms of our bootstrapping method. These are summarized in Table 3.4.

CF1: What if the switch to bombing London had not occurred?

That the Luftwaffe switch to bombing London was an error is a standard argument, as noted

earlier. To capture it here we simply extend P3 to 6 October, eliminating P4 entirely.

CF2: What if Hitler had been fundamentally in favor of invasion from the outset?

In this case we assume that planning would be brought forward: German navy commander

Grand Admiral Erich Raeder’s visit to Hitler on 21 May would, in its effects, have taken the place

of that of 20 June; air campaign planning would have been initiated much earlier than the actual

30 June (Macksey, 1980, p. 13). We take the net result as bringing forward the air campaign

by three weeks – as much as seems reasonable given the Luftwaffe’s need to make the Channel-

littoral airbases operational. Thus we bring forward P1 to 16 June - 17 July, and spread P2 and P3

proportionally over 18 July - 6 September, with P4 thereafter. Since the battle begins early, this

also gives time for the Germans to take advantage of the 26 August neap tides. We anticipate that

this strengthens the German position considerably due to cutting into the number of pilots the RAF

can field and granting the usage of the extra and early neap tides. As we will see in the day-to-day

distributions of the number of pilots (looking ahead to Figure 3.3), the early days of the Battle are

important in building up the strength of the RAF forces.

CF3 combines CF1 (no fourth phase) and CF2 (early onset):

We take CF2, but with no switch to London: bring forward P1 to 16 June-17 July, and spread

proportionally P2 and P3 over 18 July-6 October.

For our next counterfactual we switch from contracting or prolonging phases to alterations of

targeting. Recall that in the actual battle the numbers of days for the principal target types were

(A,C,L,R) = (16, 47, 36, 13).
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CF4: What if Goering and his staff had believed that Fighter Command could be more
easily destroyed on the ground than in the air?

Townsend (1970, p. 325)18 notes the belief of both Goering and staff officer Paul Deichmann

that Fighter Command would be more easily destroyed in the air than on the ground (paralleling

the beliefs of Big Wing advocate Trafford Leigh-Mallory in the RAF). Indeed, Townsend (1970,

p. 360) records Deichmann’s view that the Luftwaffe should not destroy radar stations, whose work

would simply bring the RAF’s fighters to the Luftwaffe’s, facilitating their destruction. Thus for

this counterfactual we take an eighty-nine-day battle terminating on 6 October, withR unchanged,

L untargeted, and A exceeding C, with (A,C,L,R) = (43, 33, 0, 13).

CF5 combines CF2 (an early start) with CF4 (targeting of Fighter Command on the
ground):

We take (A,C,L,R) = (54, 42, 0, 17) to combine a commitment for invasion with a firm

belief in the destruction of Fighter Command on the ground as a prerequisite.

In Section 3.6, we additionally investigate some of the problems caused by trying to determine

the impact of the weather on the Battle of Britain. We use our attempt to create counterfactual

weather for the Battle primarily as a cautionary tale. We also present some work that might be

able to handle these problems with future development.

3.5 Bootstrapping the Battle

Before tackling the counterfactuals, we first need to apply the unweighted bootstrap, creating

many new samples (henceforth we call these re-samples “trials”) of the Battle of Britain from the

actual days’ fighting. We begin with the results of a bootstrap with 100,000 trials. Compared to

a standard 10,000 trials this will allow us to better fit a normal distribution and thereby obtain

suitable critical values BSC . We then compare the effects of bootstrapping to the battle as actually

fought with a standard 10,000 trials. With these baselines in mind, we can then proceed to address

the genuine counterfactuals.

As discussed earlier, to begin exploring the counterfactuals we must first obtain the threshold

values which match various prior beliefs as to the probability of the Luftwaffe’s obtaining air

superiority. To do so, we will impose a normal distribution on the results of a large number of

trials without any reweighting.19 The results of such a calibration run are shown in Figure 3.1. We

observe immediately that the normal distribution provides a good fit (validated further in Section

3.6). Thus we can take the expected value (the average or mean) of the normal distribution as

the 50.0% threshold (median). The standard deviation and second standard deviation to the left

of the average then agree well with our desired 84.0% and 97.7% probabilities of British victory.

The corresponding thresholds are 1,437.5, 1,383, and 1,328.5 pilots respectively. To summarize:

the historian who believes that the German invasion decision was evenly-balanced would use a

threshold pilot strength of 1,437.5 in our victory criterion, while the historians who believe in

moderate and large British margins of victory would use 1,383 and 1,328.5 respectively.20

18Townsend himself is quite clear: “Goering made a crucial error. For Fighter Command was more vulnerable on
the ground than in the air” (p.379).

19To be clear: we are not imposing a normal distribution on the number of pilots BS(t) evaluated on a single day,
nor on one neap cycle’s possible launch dates. Instead, we are imposing a normal distribution on the lowest number
of pilots during any of the three possible neap windows. In this way, we ensure that the probabilities correspond to
whether or not Germany launches an invasion at all during a given trial, and prevent over-counting trials where the
number of pilots remains low multiple times.

20Note that fractional values are possible due to our assigning less value to new pilots in BS(t).
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Figure 3.1: A calibration run in which 100,000 trials are run and then fitted with a normal distribu-
tion (superimposed green curve). We use this run to inform our choices of thresholds, here shown
as the leftmost two superimposed vertical green lines, representing two and one standard devia-
tions below the mean, and the solid black line dividing German victories from British victories,
representing the mean.
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Figure 3.2: Bootstrapping the Battle of Britain with sampling in proportion to the phases as ac-
tually fought. The thresholds correspond to 97.2%, 83.9%, and 49.5% probabilities of British
victories.

Next, we compare our now-calibrated bootstrap to the battle as actually fought. We use the

same number of trials as for our counterfactuals: 10,000. Owing to the lower number of trials, we

should expect more variation, meaning that the results will be less precise and may deviate from

our ideal values. The results of this run can be seen in Figures 3.2 and 3.3. Figure 3.2 is equivalent

to Figure 3.1, but now for the smaller number of trials. Figure 3.3 shows plots of the day-to-day

number of British pilots, with the actual number of pilots (by day) superimposed.21

CF1: What if the switch to bombing London had not occurred?
The results of our first counterfactual, where the Luftwaffe does not switch target to London

(that is, enter into P4), are shown in Figure 3.4. It is immediately clear that the probability of

British victory has significantly decreased. If one believed that the British won the real battle with

probability 50%, the implied threshold now yields a British victory probability of just 9.1%. Our

lowest threshold, which had given the British a victory probability of 97.7% in the real battle,

brings this down to 63.7%. This reinforces the common narrative that the switch to targeting

London was a mistake.

CF2: What if Hitler had been fundamentally in favour of invasion from the outset?
Our second counterfactual is grimmer still for the British: an eager Hitler pushes for an earlier

beginning to the campaign, catching Fighter Command with approximately 165 fewer pilots ini-

21A box-and-whisker plot shows the spread of data by way of five values – the median, quartiles and 5th and 95th
centiles – supplemented by outliers. The middle value is the median, above and below which 50% of the data lie. The
lower (respectively, upper) edges of the boxes correspond to the 1st (resp. 3rd) quartiles, which divide the data into the
lowest 25% (resp. 75%) and highest 75% (resp. 25%). The distance between the 1st and 3rd quartiles is then used
to compute the locations of the whiskers, beyond which all points are considered outliers. As we should expect, the
number of pilots from day to day in the actual battle matches well with the trends of the bootstrap, due to ordering the
days of our trials in order of phase.
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Figure 3.3: Bootstrapping the Battle of Britain with sampling in proportion to the phases as actu-
ally fought. The box-and-whisker plots show the day-to-day distributions of the number of pilots,
the dashed vertical lines show boundaries between the phases of the battle as actually fought, and
the solid curve is the number of pilots in the battle as actually fought.

Figure 3.4: Bootstrapped results of the scenario where the Luftwaffe had not switched to targeting
London by entering the fourth phase. Our thresholds now correspond to 63.7%, 31.2%, and 9.1%
probabilities of British victory.
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Figure 3.5: Bootstrapped results of the scenario where the Luftwaffe began their assault earlier.
Our thresholds now correspond to 18.0%, 3.8%, and 0.3% probabilities of British victory.

tially available. The constant threat allows the Luftwaffe to engage earlier RAF pilots who in the

real battle would have had more training and combat experience. Additionally, it gives the German

forces access to the earliest possible invasion date on 24th August. Figure 3.5 shows the damage

this does to the probability of British victory: the 50% victory possibility has now become 0.3%,

and the most optimistic 97.7% threshold is now just 18.0%.

CF3 combines CF1 (no fourth phase) and CF2 (early onset):
As one might now expect, combining an early attack with no switch to London decreases

further the viability of the British defense. This counterfactual also helps remind us of the prospect

of diminishing returns: British chances are not utterly destroyed by the combined changes. The

probability of British victory is simply reduced further: the 50% victory probability is now 0.1%

(CF2: 0.3%), while the 97.7% is now 8.3% (CF2: 18.0%).

CF4: What if Goering and his staff had believed that Fighter Command could be more
easily destroyed on the ground than in the air?

Instead of a change in the phasing of the battle, we now investigate the effects of not attacking

London at all. We have already mentioned the German belief that it was easiest to destroy the RAF

in the air, lured up by bombers, especially over London. The effects of this belief are brought out

by our fourth counterfactual, in which the Luftwaffe focuses much more on the airfields. Results

are shown in Figure 3.7. The results of CF4 are a more drastic variation of CF1 (no fourth phase),

but are inevitably closely aligned with it. The 50% victory probability is reduced to 1.1% (CF1:

9.1%) and 97.7% to 33.6% (CF1: 63.7%). Not only should the Germans not have made their

early-September switch; they paid dearly by choosing to attack London at all.

CF5 combines CF2 (an early start) with CF4 (targeting of Fighter Command on the
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Figure 3.6: Bootstrapped results of the scenario where the Luftwaffe began their assault early
and did not choose to switch to primarily targeting London by entering the fourth phase. Our
thresholds now correspond to 8.3%, 1.0%, and 0.1% probabilities of British victory.

Figure 3.7: Bootstrapped results of the scenario where the Luftwaffe neglected to attack London
entirely and had instead focused on the airfields. Our thresholds now correspond to 33.6%, 9.0%,
and 1.1% probabilities of British victory.
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Figure 3.8: Bootstrapped results of the scenario where the Luftwaffe began their assault early as
well as not attacked London and instead focused on the airfields. Our thresholds now correspond
to 0.4%, 0.01%, and almost-nil probabilities of British victory.

ground):

We now come to our last counterfactual: if Hitler had been eager for invasion, giving the Luft-

waffe an early start, and if the Luftwaffe had been dedicated to targets associated with destroying

the RAF on the ground. This is our most negative counterfactual for Britain, as shown in Figure

3.8: if one believes that the probability of British victory in the battle as actually fought was 50%,

or even 84%, then this alternative yields fewer than 1 in 10,000 victories for Britain. If one holds

that the probability of British victory was 97.7%, this situation yields just 0.4% for the British.

However much one might not believe in a “narrow margin” of British victory in the battle actually

fought, the British aerial victory, it seems, depended very strongly on poor German choices. We

summarize the results of all our counterfactuals in Table 3.5.

Scenario Summary Probabilities of British Victory by Threshold
1,437.5 1,383 1,328.5

Real Actual Battle 49.5% 83.9% 97.2%

CF1 No switch to London 9.1% 31.2% 63.7%

CF2 Early Start 0.3% 3.8% 18.0%

CF3 No London and early start 0.1% 1.0% 8.3%

CF4 Target airfields 1.1% 9.0% 33.6%

CF5 Target airfields and early start 0% 0.01% 0.4%

Table 3.5: Summary of counterfactual scenario outcomes.

60



3.6 Refinements

The bootstrap is a flexible tool and can be used to explore more than counterfactuals. We can

also explicitly examine the effects of each of the strategies employed by the Luftwaffe alone.

While these are not counterfactuals per say, they do help us understand the extent to which each

strategy was effective in and of itself. With this knowledge, we can better understand why the

counterfactuals in Section 3.5 have the results that they do.

We begin by noting that each of the histograms in Figures 3.1 – 3.8 presented looks very

normal. One might wonder if this is statistically the case; we consider quantile-quantile plots to

check for normality. Such a plot will appear linear if the empirical distribution is effectively a

rescaling and translation of the reference distribution (here, normal). We apply this method to

each of the seven datasets generated in Figures 3.1 – 3.8 in Figure 3.9. We note that the normality

of the tails in each case is subject to questioning, but that in each case, the center of the distribution

(roughly quantiles [−2, 2] or approximately the central 95% interval) is fairly close to normal.

Next, we consider how the various strategies employed by the Luftwaffe related to its perfor-

mance in battle. Each strategy can be seen in Figures 3.10 – 3.13. As much as London was touted

as a critical failure for the Luftwaffe, it would appear that the Luftwaffe’s worst performance was

actually at the Channel targets, which the Luftwaffe targeted 47 times. Strangely, the Luftwaffe

performed worse when attacking Channel targets than they did when performing mere reconnais-

sance. London was only targeted 36 times, 22 of which were in October, putting many of these

days as out of the range of the final quarter-moon. It is not so much that the switch to London was

an absolutely bad move (the shift indicates it was actually slightly better than the average), but

instead that it was relatively better for the British than attacks on Aerodromes by a wide margin. It

seems that it would have been better for the Luftwaffe to have not attacked the Channel as opposed

to not attacking London.

Furthermore, Figures 3.10 – 3.13 suggest that normality is not guaranteed and should not be

taken for granted with the bootstrap. In this case, normality fails drastically for targeting only the

Channel as can be seen from Figure 3.11 or from Figure 3.14. In this case, we would need to rely

on BCa, see Section 2.2 and discussed shortly in this section, in order to obtain accurate estimates,

although the counterfactuals that these represent are obviously implausible for historical reasons

(e.g. requiring the Germans to commit to performing only reconnaissance in an attempt to obtain

aerial supremacy or otherwise committing to a single tactic when they historically varied their

tactics due to a lack of information).

While the methods used previously are sufficient to give a general idea as to how the bootstraps

behave, there do exist refinements, as discussed in Section 2.2. We construct alternative 95%

confidence intervals with the emphasis on the lower confidence point (since we are interested in

the right confidence interval). For comparison, the intervals are for the unweighted case and are

measured over the lowest number of pilots available during any invasion opportunity across a

single run of the bootstrap. (We use 95% since this is a standard confidence interval size and the

lower confidence point is at 2.5%, which is approximately the 2.3% from two standard deviations

that we used in practice.)

For the bootstrap-t method, we calculate the bootstrap standard errors by a second round of

bootstraps. When calculating the BCa method, we encounter a problem: since our statistic of

interest is based on the data order, performing the jackknife, the usual method of calculating the

acceleration of the standard error, does not make sense. We note that our model generates a single
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Figure 3.9: Quantile plots comparing the counterfactual bootstraps to normal distributions. If the
bootstraps were identical to normal distributions, we would expect them to follow the red line;
deviations from the line are deviations from normality. We see such deviations commonly in the
tails, but the bulk of the distributions are well-behaved.
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Figure 3.10: Histograms of bootstraps conducted using only reconnaissance targets. The vertical
black guiding lines correspond to 1365 (approximately 90% chance of British victory in the orig-
inal Figure 3.1) and 1437.5 (50%); the bars with at least 1437.5 pilots are presented in blue, bars
with at least 1365 are presented in purple, and the remaining bars are presented in red. Smooth
overlaid green lines show a fitted normal distribution. Note the positive shift corresponding to
approximately a 1.2σ shift in the mean.

Figure 3.11: Histograms of bootstraps conducted using only Channel targets. The colors are as in
Figure 3.10. Note the extreme behaviour. The magnitude of the shift in the mean is approximately
2.9σ.
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Figure 3.12: Histograms of bootstraps conducted using only aerodrome targets. The colors are as
in Figure 3.10. Targeting the aerodromes clearly has the deadliest results of the lot for the British.
The magnitude of the shift is approximately 8.5σ.

Figure 3.13: Histograms of bootstraps conducted using only London targets. The colors are as
in Figure 3.10. In contrast to Figures 3.10 – 3.12, London has nearly average behaviour. The
magnitude of the shift is approximately 0.37σ.
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Figure 3.14: Quantile plots comparing the targeting bootstraps to normal distributions. If the
bootstraps were identical to normal distributions, we would expect them to follow the red line;
deviations from the line are deviations from normality. The targeting of only the Channel leads
to large deviations from normality, while reconnaissance and aerodrome targets are extremely
normal.

65



Method Left (2.5%) Right (97.5%)
Original ≈ 1331 ≈ 1544

Percentile 1328.15 1539.91
Normal 1314.36 1525.84
Student’s t 1314.35 1525.85
Bootstrap t 1292.56 1506.18
BCa 1195.15 1477.65

Causal-Overall 1384.05 1490.25
Causal-Phase 1364.50 1500.65

Table 3.6: Results for applying various confidence interval methods for bootstrapping the Battle as
actually fought. The original values are computed using a normal distribution with mean 1437.5,
standard deviation 54.32. Methods are discussed in Section 2.2. Causal bootstrapping receives
additional focus in the text. To calculate the standard error for the bootstrap t, we performed a
second bootstrap for each of the bootstrapped samples.

value though, which means that the acceleration should be approximately the bias-correction â ≈
ẑ0 for large n (Efron and Tibshirani, 1993, Ch. 22.5). We must be cautious about this source

of additional error, especially considering BCa is expected to be more accurate than the other

methods employed (Efron and Tibshirani, 1993, Ch. 14).

The results are available in Table 3.6. Compared to our original lower confidence point, which

we can estimate using a normal distribution as 1331, we see that there is a fair amount of variation

in the exact value that each method reports. Most striking is the BCa method’s large shift in values,

which suggests that more than 100 less pilots are needed to to achieve 97.5% confidence in British

victories. Indeed, its right confidence point 1477.65 is just above the 50% confidence point in

our original bootstrap 1437.5, indicating the sheer scale of the difference. This may be a result of

the â ≈ ẑ0 approximation, but it also might be a result of the properties of BCa. The bootstrap

t and BCa methods are both second-order accurate, but the percentile and BCa methods are both

transformation respecting, i.e. commute with transformations on the bootstrapped data. If both of

these properties result in shifts in the same direction, this might cause the shift we see in the BCa
results.

Despite the theoretical advantages to the alternative thresholds proposed, we maintain that the

results in Section 3.5 are our current standard. If the alternative bootstraps are better, they would

imply our chosen standard is too conservative and that the Germans had less chance of achieving

aerial supremacy than stated before, which is consistent with the standard historiographical views

regarding the margin of the Battle of Britain. On the other hand, the other methods have their

own flaws. The normal and Student’s t distributions both require parametric assumptions that

may not be in line with the asymptotic distribution actually reached (e.g. see Figure 3.11). As

we noted in Section 2.2, the bootstrap-t method can overcome problems due to mismatches in

higher order moments, but, as noted by Efron and Tibshirani (1993, Ch. 12), this method can be

unstable and poorly behaved. The BCa would normally be the best of these methods, but, as noted

above, the standard method for using the BCa method does not appear to be applicable in our

situation. Additionally, as we shall see, it is not naively obvious how to utilise the causality in the

data appropriately to use the causal bootstraps. We thus prefer the percentile method that we used

in Section 3.5, but the theoretically superior BCa and causal bootstraps are excellent avenues for

future research.

In contrast to the other results in Table 3.6, the causal bootstrap appears to have much narrower
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boundaries. We end our discussion of refinements to the bootstrap with the causal bootstrap, as

discussed in Section 2.2. We consider each combination of weather and target as a treatment and

we investigate the difference in treatment effects for each factual day. For simplicity, we use the

simple minimisation copula, although we note that further work could be done on identifying the

most appropriate copula. In contrast to the classic bootstrap, causal bootstrapping proceeds by

randomising the assigned treatment, rather than randomising the days in the sample. One simple

issue that we run into is whether the data imputation should be run over the whole of the dataset

or on each subset phase; for completeness we perform both.

A standard, not reweighted run of the causal bootstrap can be seen in Figure 3.15, comparable

to Figures 3.1 and 3.3. The means are quite similar: our calibration run, Figure 3.1, had a mean of

approximately 1437.3, while the within phase imputation yields 1432.9 and the overall imputation

yields 1437.2. Much of the change we observe is within the estimate of the standard deviation:

originally we had 54.32, but now we have 34.46 and 27.45. This is suggestive of the over-coverage

of the classic bootstrap claimed by Imbens and Menzel (2018): compared to the 1331 number

of pilots required for 97.5% confidence of a British victory, the within phase bootstrap yields

1364.50, while the overall bootstrap has 1384.05. The difference between the within phase and

the overall figures is the amount of data used for the imputation: when imputing by phase, we are

much more likely to have only one or two events of a given type compared to imputing over the

entire data set. It is not clear that the extra information is accurate for each phase though, given

the possibility of changepoints, suggested by the official history by James (2000) and discussed in

Appendix A. The within phase imputation instead respects these proposed distributional changes.

In contrast to the methods in Section 3.6 which are all refinements to the frequentist and

Bayesian bootstraps, the causal bootstrap works under a different statistical paradigm. The central

conceptual difference is whether we are exploring the distribution of potential days or whether

we are exploring the distribution of the effects of treatments. The former requires a less informed

decision as to what is being modelled; the latter requires one to identify the variables that are to

be considered treatments as well as specify a model as to how the treatments relate (in the form

of the copula). For example, it is not obvious that weather should be one of the variables that is

considered a treatment, or merely a variable to control for when applying the imputation. Fur-

thermore, the causal bootstrap requires a deeper statistical knowledge than the standard bootstrap

does. While the causal bootstrap, like the other refinements, is useful future research, we again

consider the standard bootstrap more appropriate, especially given the contrast with traditional

improvements on the bootstrap, as seen in Table 3.6.

In particular, the causal bootstrap might have a particularly useful application when dealing

with confounding variables. The bootstrap relies on the idea that the data is IID. Conversely,

hidden common factors or changes in the distribution can greatly affect the results of a bootstrap.

Weather, despite seeming to be an obvious variable to consider in our analysis, exhibits problems

of this sort. We will attempt to make the weather “more typical” in our bootstrap, but we will

run into problems regarding data quality and mutual dependence on time that make this bootstrap

ill-posed.

We begin with retrieving data, but obtaining properly detailed data has proven difficult. The

data we use here is the 1929-1979 record of sunlight hours from the Meteorological Office’s Ox-

ford weather station, which provides typical ranges of sunlight during July to October, in conjunc-

tion with the more qualitative Meteorological Office 1940 Daily Weather Reports. This procedure
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Figure 3.15: We apply the causal bootstrap to the Battle of Britain data, treating each weather
and target combination as a treatment and using the simple model posed in their work. Above,
we apply this model within each phase, while below we apply it to the overall data set. In each
case, we also fit a normal distribution to the bootstraps. Note the subtle difference in scalings of
the horizontal axis, indicative of the change in scale of the distributions. Compare Figures 3.1 and
3.3. Figure 3.1 has a mean of approximately 1437.3 and standard deviation of 54.32.
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Figure 3.16: Box plots of the monthly hours of sunlight from July through October from 1929
– 1979. We indicate 1940 data with large red dots. Data was obtained from the Meteorological
Office’s Oxford weather station.

Target’s Weather
Phase C O W

1 9 17 3
2 6 5 0
0 0 5 0
3 9 1 4
4 13 25 17

Table 3.7: Contingency table counting the weather of the primary target in each phase.

results in qualitative and geographically restricted data. We then can compare this data with the

weather data from each target attacked during the Battle of Britain. First, we note that the amount

of sunlight, which we will use to help rescale the number of clear days, is not actually that unusual

on a month to month basis for (Oxford in) 1940, seen in Figure 3.16. Furthermore, there is no

natural distinction between months; to bootstrap weather properly, we should instead use daily

estimates, although we were unable to find such.

Next, we can illustrate the problem with time dependence. One might naturally expect that

weather does have an effect on the ability of airframes to do combat, but there is a problem testing

this assumption. We naturally expect seasonal variation, but this seasonal variation takes place

at the same time that the changes in phases occur. We demonstrate this with Table 3.7, which

is a contingency table of phase and target weather. Even ignoring the shortest phase P0, there

are differences in the proportions of, say, rainy days between each phase. As such, it should be

unsurprising that a Pearson’s Chi-squared test rejects the null hypothesis (with p = 0.0015) that

the phase and weather are independent. As for the actual values of each type of weather, we used

the median hours of sunlight for each month to adjust the number of clear days and proportionately

rescale the number of cloudy and rainy days within that month. This rescaling’s effects are shown

in Table 3.8; the change has little obvious effect.
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Original Weather Adjusted Weather
Month Clear Overcast Rainy Clear Overcast Rainy
July 7 12 3 8.0 11.2 2.8
August 13 16 2 11.5 17.3 2.2
September 13 7 10 10.3 8.1 11.6
October 0.8 3.5 1.7 0.8 3.4 1.7

Table 3.8: Attempt at making weather more like the median using hours of sunlight. The July
weather represents the number of days of July actually in the battle. The October values are
averaged over the month and then scaled down to the number of days included in the bootstrap.

Proceeding to bootstrap by trying to make weather more like the median creates only small

changes in the probability of a British victory: the 50% victory probability increases to 58% and

our 97.7% increases to 98.5%. This is likely due to the change in phase sampling however: for

example, the Channel in the middle of August during Phase 0 (P0) was exclusively overcast, and

P0 saw few losses. Increasing the number of overcast days in August would make P0 probabilis-

tically longer, which aids the British. We present this cautionary tale because there is no obvious

way for the bootstrap to inform its user that something has gone wrong. The user is responsible

for verifying the bootstrap’s assumptions.

This is not to say that there is potentially no recourse to handle the weather and its entangle-

ment with phase. The causal bootstrap views the problem as one of data imputation. We have

already imputed the effects of the weather on a specfic day’s results and bootstrapped on the im-

puted data by choosing amongst the weather and target combinations for each day. Now we apply

a reweighting scheme by changing the ratio of treatments to favour those involving better weather,

as suggested by Table 3.8.

In the original reweighting, we observed that the 50% victory probability increased to 58%

and the 97.7% increased to 98.5%, but that this was likely due to the correlation between weather

and phase. Here, phase has not changed, only the treatments by change of weather. The results

can be seen now in Figure 3.17. In comparison to our previous weather attempt, which saw our

50% threshold increase to 58%, the within phase model has 50% increase to 58.6% and the overall

model has 50% to 56.3%. We therefore conclude that, for this simplistic model of weather, the

relationship between phase and weather is not the driver of the increase, as the days and their

phases remain fixed in the bootstraps. Instead, this suggests that the relationship between target

(for which phase would have acted as a proxy) and weather results in the change. Performing a

Pearson’s Chi-squared test sees rejection of the null hypothesis (with p = 0.041) that the target

and its weather are independent, and this result strengthens if the targeting of Filton and the air

sweeps are excluded from the data (p = 0.019). One could, in principle, fix the targets and phase

and bootstrap only on the weather, but we stop here due to the weakness of our weather data.

Improved weather data would make this a natural avenue for future research.

3.7 Discussion

In this chapter, we have discussed applications of the bootstrap and its variations to the Battle of

Britain. At the surface level, our results confirm the standard view that the German Luftwaffe

made a serious mistake when they chose to target London in Phase 4, rather than continue their

assault on aerodromes as in Phase 3. The Battle of Britain appears to have been won on a narrow
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Figure 3.17: Causal bootstrapping the weather of the Battle of Britain. Treatment is as in Figure
3.15, except we counterfactually change the weather to make it more “average”, as suggested by
Table 3.8. The vertical line marks the mean of the normal distribution fitted to the bootstraps from
Figure 3.15. When applying the classic bootstrap counterfactually by changing the proprotions of
days, we had observed that our 50% threshold had increased to 58%. When applying the model
within each phase, we instead see an increase from 50% to 58.6%. When applying the model to
the overall data set, we see an increase from 50% to 56.3%.
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victory, although not perhaps in the sense of barely having superior forces. Rather, the victory

appears to have been narrow in that the Germans had the capability to win, but did not know how

to achieve this victory.

Our results are more nuanced then this, however. While the standard view is that switching to

targeting London was a critical error (Spaatz, 1946; Churchill, 1950; Townsend, 1970; Macksey,

1987; Warden, 1989; Bungay, 2000), this was not the largest mistake of the Germans. Eliminating

London (CF1, Figure 3.5) results in a change of about one standard deviation σ, while targeting

London alone would have been comparable to the battle as actually fought with a shift of about

0.37σ. Two other mistakes seem far more important factors in the Germans’ loss. The Luftwaffe

had its poorest performance when it was instead attacking Channel shipping, which, comparing

strategy to strategy and ignoring confounding relationships with weather (i.e. attacks on the Chan-

nel were far more likely to take place when weather was overcast or clear in comparison to attacks

on London, for which rainy days were more common), had an almost 3σ shift in favour of the

British. Despite the criticism of the switching to London, which had been targeted only 36 times

and many of these too late to matter for an invasion attempt, perhaps criticism should be levied

instead at the continued attacking of Channel targets, which were targeted 47 times early in the

campaign. Of course, more important still is the lack of initiative amongst the German leadership:

an early campaign (CF2, Figure 3.6) yields an almost 3σ effect in favour of the Germans.

Historically speaking, these problems naturally emerge from the Germans’ position. After the

fall of France in 1940, the Germans were surprised to find themselves fighting to subjugate the

French at the same time as forcing the British to capitulate. With their attention split and their

resources diminished, it is unsurprising that the Germans had difficulty focusing on one enemy.

The French were particularly demanding: the Germans were initially repelled and required the

employment of “Blitzkrieg” tactics which in turn divided the Luftwaffe’s attention (Alexander,

2007). At the same time, the Luftwaffe had lost approximately half of its forces, dividing its

strength even further (Bungay, 2000). With German attention so split and forces so weakened,

Macksey (1987) notes, “The basic reason for Germany’s failure to invade Britain in 1940 is... the

lack of any preconceived will or intention to do so.”

While we have quantified the effects of each of our counterfactuals, we cannot quantify how

likely the counterfactual scenarios themselves would have been. On the other hand, we can qual-

ify the scenarios’ chances. In each counterfactual, we have notably given much more information

and much more clarity to German leadership. CF2 requires a Hitler who is not just aggressively

enthusiastic for the defeat of Britain, but who also dedicates significant resources to this battle

even as the battle with France is ongoing despite his anxieties. Similarly, CF1 and CF4 require

a Goering with a great deal more insight as to the effects that Luftwaffe attacks were having on

Britain. Such a Goering must know that the British had not already moved north of the Thames

(Dempster and Wood, 1961, p. 212). Furthermore, Goering must realise that assaults on airbases

are extremely effective for defeating the RAF in comparison to attacks on London, which might

theoretically yield political victories, or attacks on the Channel, coast, and shipping, which theo-

retically support invasion. It requires a highly knowledgeable Goering, who has ready access to

knowledge of what the RAF is doing and how it responds to Luftwaffe attacks, despite factually

having not prepared at all to discover such information. Merely realising that destroying fighters

on the ground and the supporting infrastructure is advantageous is already counterfactual: we have

already noted that staff officer Paul Deichmann believed the Luftwaffe should not destroy the radar
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stations that brought the Luftwaffe’s targets before them.

Given the details of what our counterfactuals entail, it is not perhaps so surprising that such

great turnarounds can be observed (CF3 and CF5). While it is certainly possible for the Germans

to have won the Battle of Britain, to do so would have required far greater resources, knowledge,

and strategic acumen than was available to the Germans. Future research might benefit from

trying to find a crossover between losing and winning the Battle of Britain as a function of the

counterfactual advantages given to the Germans. Presumably, this would start with far less radical

counterfactual advantages and progress to more radical ones to explore the crossover. The British

had acquired each of these with their production of fighters, their information system, and Park’s

usage of his fighters. While the Germans could have won if they had fought the battle more

proficiently, our results support standard historiographical views: the Battle of Britain as actually

fought was not won on a narrow margin.

3.8 Conclusion

Beyond the exploration of the Battle of Britain, this chapter also focuses on applications of the

bootstrap to historical modelling. The bootstrap naturally has some constraints that are antithet-

ical to historical analysis. It ignores any possibility of developing tactical responses, improving

training, or improving technology due to either side’s changed position, as the non-parametric

bootstrap can only draw from the battle as actually fought. It also requires a large amount of sta-

tionary data, a rarity in history. On the other hand, the (weighted) bootstrap provides a powerful

tool for exploring counterfactual realities in an open and transparent way. Both the method of the

alteration and its resultant effects can be presented in intuitive ways to better understand a range

of factual and counterfactual outcomes.

Future work can proceed in a variety of directions. Standard bootstrap techniques, such as the

bootstrap-t method, can be profitably used to explore a historical setting using more computing

power. Implementing the BCa method as a standard tool for exploring data with a time dependent

statistic would also be useful for historical analysis. Moving away from the non-parametric set-

ting, integrating historical models with bootstraps could yield interesting results to, for example,

examine the effects of tactical changes in real time models. A simpler but more widely applicable

direction would be to investigate appropriate copula for various historical environments to make

better usage of the causal bootstrapping technique of Imbens and Menzel (2018). On the other

hand, one could also seek to identify other historical contexts in which the bootstrap could be

applied, such as the Battle of the Atlantic.

Amongst the chapters of this thesis, the bootstrap is perhaps unique in its simplicity, which

greatly facilitates applying it to a historical context, as we have done with the Battle of Britain.

While the bootstrap is useful for its ability to address counterfactual claims, other methods are

more useful when examining different properties of a dataset. As we shall see in the next chapter,

there is a great deal of debate as to how conflicts have changed over time, let alone as to by what

measure a “unit” of conflict even should be measured. Instead of looking towards counterfac-

tual analysis, we instead must begin by looking for whether there even are changes across these

conflicts, to which we turn to changepoint analysis.
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4 Changepoint analysis of historical battle deaths

The occurrence of two world wars in the present century

is apt to leave us with the vague belief that the world

has become more warlike. But this belief needs logical

scrutiny. A long future may perhaps be coming without

a third world war in it. – Richardson, 1960b

4.1 History of conflict

Conflict is a central aspect of human nature, whether discussing disputes of opinion, murder, or

war. Humans have been fighting with one another for the entirety of the history of our species,

whether with sticks and stones or guns and grenades (Keeley, 1996). What is not as clear is

whether violence is an invariant quality of human nature and if our ability and tendency to cause

harm to each other, especially on massive scales, has similarly stayed the same. Some maintain

that humans have always been violent and that such superficial structures as the League of Nations

did not stop or change our nature (Huntington, 1989; Gray, 2012). This is the subject of great

debate: others such as Gat (2013) maintain that, despite our violent heritage, civilisation, with its

states and super-states, has managed to curb our tendency towards conflict. Others still point to

modern developments like bipolarity or the United Nations as evidence of mankind pulling itself

out of its violent past, such as Gaddis (1986) or Goldstein (2011). This sort of question has been

brought to the public by popular books, particularly those of Steven Pinker (Pinker, 2011, 2018).

Pinker contributes a variety of quantitative analysis, including statistics of commerce and conflicts,

and qualitative analysis, including discussions of democracy and rationalism, to conclude that the

likelihood of violent death has greatly declined over the centuries at the very least at the level of

the individual.

Pinker’s contribution, due to its public nature, has been particularly controversial. For exam-

ple, Michael Spagat and Stephen Pinker engaged in a series of letters with Pasquale Cirillo and

Nassim Nicholas Taleb in Significance, the joint US/UK magazine for professional statisticians,

on the merits of the theoretical decline in conflict (Spagat, 2015; Cirillo and Taleb, 2016a; Spa-

gat and Pinker, 2016). The statistical discussion is far older, however. Quaker pacifist Lewis Fry

Richardson, FRS contributed formative work in this arena (Richardson, 1944, 1946, 1952). He
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collected one of the first data sets on what he called “deadly quarrels”, events with violent deaths.

Using power-law distributions, for which we write their density’s exponent parameter as α, he

found that deaths in deadly quarrels are well described by two such distributions, with powers of

approximately 2.4 for murders up to events with about 1,000 dead, and 1.5 for events of more

than 1,000 dead (‘wars’) (Richardson, 1960b, Figure 4). His motivation stemmed from the recent

World Wars and whether they were evidence of some shift in human violence. He concluded that

‘the observed variations [in battle deaths] might be merely random, and not evidence of any gen-

eral trend towards more or fewer fatal quarrels’ (Richardson, 1960b, p. 141). The more recent

controversy since Richardson’s time is due to the post-World War II “long peace” (Gaddis, 1986;

Pinker, 2011), the idea that recent time has been relatively peaceful and devoid of major conflict,

such as what one might have seen had the United States and Union of Soviet Socialist Republics

gone to war. This too is controversial: it has been argued that the early 20th century was unusual

instead due to its “great violence” (Clauset, 2018, p. 4) or ‘hemoclysm’ (Pinker, 2011, p. 229,

attributed to Matthew White).

Recent statistical discussions have centred on whether there has been a decline and how to test

for the differences supposed of recent human history with different approaches reaching different

conclusions. Regarding whether there had been a decline, Sarkees et al. (2003) use the publicly

available Correlates of War dataset, which we also use, and found a ‘disquieting constancy in

warfare’ when studying both inter-state and intra-state (civil) wars. Lacina et al. (2006) dispute

this claim, finding instead that battle deaths ‘declined significantly after World War II and again

after the end of the Cold War’ when examining the Peace Research Institute Oslo (PRIO) Battle

Deaths, based on the UCDP/PRIO Armed Conflict data set (Gleditsch et al., 2002). This debate

has continued between differing groups of authors (Lacina and Gleditsch, 2013; Gohdes and Price,

2013; Harrison and Wolf, 2012; Gleditsch and Pickering, 2014; Harrison and Wolf, 2014).

Regarding how to test for differences in recent human history, techniques from extreme value

theory, when applied to an unpublished dataset of deaths due to war from 60 CE until 2015 CE,

failed to reject a null hypothesis of no change in arrival time or distribution (Cirillo and Taleb,

2016b). More standard statistical techniques using bootstrap testing, applied to the Correlates of

War dataset, have similarly failed to reject a no change null hypothesis (Clauset, 2018). On the

other hand, Spagat and Pinker identify several qualitative changes in line with Pinker (2011) that

indicate possible changes after 1945 and 1989. Additionally, a null hypothesis of no change in

the magnitudes of large wars was rejected by Spagat and van Weezel (2018) for some definitions

of large wars within the Gleditsch data set, also used herein. A parametric single changepoint

analysis with a variety of models was conducted by Cunen et al. (published in parallel with our

work in 2020, see also Hjort (2018)) using the aforementioned Correlates of War dataset and

identified 1965 as the most likely changepoint for a change in the magnitudes of wars.

We apply a full nonparametric changepoint analysis on reputable and freely available histori-

cal battle death data sets. To do so requires adopting modern methods to cope with the well-known

presence of heavy-tails in the battle deaths data sets. The long-standing consensus is that battle

deaths data are power-law distributed (Richardson, 1944, 1960b; Clauset et al., 2009b; González-

Val, 2016; Chatterjee and Chakrabarti, 2017; Clauset, 2018; Martelloni et al., 2018). We demon-

strate recent methods by Killick et al. (2012) and Haynes et al. (2017a,b), discussed in Section 2.3,

are up to the task using simulation studies that mimic historical data. We then use an algorithm

synthesised from these methods to examine the case for changepoints in the distribution of the
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magnitudes of wars using only the data. We do not make use of an informed prior, such as that

World War II is a natural changepoint. One might argue that this ignores modern data, beliefs, and

the value of hindsight, but we would rather our approach be purely data-driven. The algorithm is

a neutral observer, looking for features that seem obvious as well as those that do not using the

strength of the signal in the data alone. This procedure has repercussions on the debate on whether

conflict has changed and if the world has become more peaceful: if a changepoint near World War

II was detected following which we observed less intense deadly events, this would support the

long peace hypothesis.

We begin by discussing the datasets we intend to use in Section 4.2. We establish and conduct

our simulation studies in Section 4.3. This allows us to establish Algorithm 1, which we then

apply in Section 4.4. We end with a discussion of our results and future directions in Section 4.5

and 4.6.

4.2 Battle deaths datasets

Since the pioneering work of Richardson there have been many attempts to create datasets quanti-

fying violence. The construction of these datasets raises a number of important questions, first of

definition and then also of incomplete or biased knowledge. Richardson (1960b, p. xxxvi, 4–12)

was acutely aware of these issues, which is why he chose to focus on deadly quarrels of all sizes

and types. More recent approaches to data collection often focus on sub-types of deadly quarrels,

such as battle deaths above a set threshold, as in the Correlates of War datasets (Sarkees and Way-

man, 2010), or terrorism, as in the Global Terrorism Database (National Consortium for the Study

of Terrorism and Responses to Terrorism (START), 2016, p. 9–10). For recent reviews see the

works of Bernauer and Gleditsch (2012) and Clauset and Gleditsch (2018).

Even if we do settle on an appropriate subset of violence, there are still a number of issues to

be decided. There are complex questions regarding the inclusion of non-combatants, particularly

in asymmetric (typically, insurgent) warfare. An extreme example is the Taiping rebellion in 19th

Century CE China. There is no question that this tragic campaign led to enormous loss of life,

but how many of the dead were combatants? How many civilian deaths have been accounted for?

How does one separate battle deaths from those caused by famine and disease and those caused

in other, simultaneous rebellions? Estimates for this particular event vary over at least an order

of magnitude. It is commonly stated that approximately 20 million died in total in the Taiping

rebellion (Spence, 1996; Reilly, 2004; Fenby, 2013). Sivard (1991) indicates 5 million military

deaths with 10 million total (in comparison to 300,000 due to simultaneous rebellions) using data

due to Eckhardt. Worden et al. (1988) report that 30 million were reported killed over 14 years.

Platt (2012) reports in the epilogue 70 million dead, along with the standard 20 – 30 million figure

and criticisms of both of these numbers. Deng (2003) indicates similar numbers from Chinese

sources, but notes their interrelation with famine. However, the Correlates of War dataset reports

only 26,000 (Chinese), 85,000 (Taipings) and 25 (U.K.) battle deaths – albeit only for the second,

inter-state phase of the war. Battle deaths for the initial phase are listed as unknown. The Gleditsch

dataset is consistent with the Correlates of War values. Particular difficulty arises where there is

disagreement between contemporary (or even political descendants of) participants, and especially

where one or other side has a different level of control or vested interest in the interpretation of the

event (Sarkees, 2010).

A further issue emerges regarding granularity and data aggregation (Cirillo and Taleb, 2016b).
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What constitutes an individual event, and to what extent should individual actions be distinguished

within a larger conflict? For example, should the different fronts in World War II be considered

separate? Should World Wars I and II be considered merely as more active periods within a global

conflagration which encompasses both? This might seem more natural from a Russian or Chi-

nese perspective than from the Anglosphere -– for example, how should we handle the Japanese

invasion of Manchuria and Sino-Japanese War of 1931-1945, or the Russian Civil War of 1917-

1922? And since such events (and related combinations thereof) happen over an extended period,

to which point in time should we assign the combined event? Both inappropriate aggregation and

inappropriate disaggregation can lead to artefacts (Cristelli et al., 2012). Such problems cannot

be wholly avoided, but certainly require that we work only with well-known, publicly available

datasets that handle the data consistently and use clearly stated assumptions on data gathering and

aggregation.

We acknowledge that none of the available datasets is ideal, as each has varying criteria for

inclusion of events; and indeed the available historical data themselves are not ideal, due to, for

instance, biases in the record. The two datasets we use are the Correlates of War (Sarkees and

Wayman, 2010, first version published in 1982, hereafter, CoW) and a dataset due to Gleditsch

(2004, hereafter the Gleditsch dataset). The former has been used by, for example, Clauset (2018)

and Hjort (2018), while the latter has been used by Spagat and van Weezel (2018). We note that

the Gleditsch dataset was originally based upon the CoW dataset, although divergent evolution has

occurred since. The CoW dataset has four different subsets (inter-state, intra-state, extra-state and

non-state), whereas the Gleditsch dataset identifies civil and inter-state wars. For both datasets,

each data point is a war, including its combatants (nation-states or other organisations) and each

combatant’s battle deaths, date(s) of entry, date(s) of exit, alliance, outcome, and status as ini-

tiator (Gleditsch, 2004) and additionally within CoW the location and transition status (Sarkees

and Wayman, 2010). We select these datasets for their availability, continuous maintenance, rep-

utability, and, most importantly for our work, their dedication to consistent application of their

definitions. For example, by focusing exclusively and consistently on battle deaths, instead of

more generally war deaths, uncertainties about their definitions and their definitions’ influence on

numbers in the datasets are kept to a minimum.

In our analysis, for simplicity, we consider each event to have occurred at its start date for the

purposes of ordering. Indeed, not allocating to each war a single point in time has been shown in

the literature to induce autocorrelation (Beard, 2018). Intuitively, if battle deaths are assigned per-

combatant to the date a combatant joins the war, then autocorrelation arises due to the correlations

between battle deaths of the combatants. Similarly, per-year battle deaths are correlated within a

single war (Beard, 2018). Consistent event-based disaggregation is thus increasingly preferred in

political and peace data (Gleditsch et al., 2014; Clayton et al., 2017). A natural future research

direction then would be to develop a more disaggregated dataset using better-resolved events –

battles, perhaps – and perform a changepoint analysis there.

In Figure 4.1, we show the CoW dataset, on the left, and the Gleditsch dataset, right, on a

logarithmic scale for better visual representation of the data. For events that are listed but have

no value recorded, we present the events on the bottom of the plots at their listed time, but do not

include them in the analysis.

A controversial question is whether we should consider the absolute number of deaths caused

in a conflict or the number relative to global population, see e.g. the work of Spagat and van
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Figure 4.1: Datasets on logarithmic axis. Left: CoW dataset. Right: Gleditsch dataset. The World
Wars are labelled for reference. Colours indicate the different subsets defined for each dataset and
are indicated in the respective legends.

Weezel (2018). There are good arguments for each choice reflecting two important questions

about human value. The relative number, favoured by Pinker (2011) and Spagat and van Weezel

(2018), approximates the probability of being killed in a particular event, and thus the significance

of the event to the average person alive at the time. On the other hand, each unit within the data is a

human life so we must acknowledge the criticisms of Epstein (2011) and Cirillo and Taleb (2016b,

p. 16) that one should not be satisfied merely with a decreasing proportion of battle deaths if the

raw values stay high or increase. We therefore conduct our analyses on both raw data and data

normalized by world population, computed using the HYDE 3.2.1 dataset (Klein Goldewijk et al.,

2017). Of course any changepoints in the (normalising) population will interfere with changepoint

detection in the battle deaths dataset, and the two analyses need to be considered separately.

4.3 Simulation study

This section performs an in-depth exploration of the performance of existing segmentation meth-

ods for simulated data specifically chosen to mimic the properties documented for historical battle

deaths. We concentrate on simulating from (multiple) power-law distributions with powers se-

lected to be consistent with those reported in the historical literature (e.g. Richardson, 1960b;

Clauset et al., 2009b).

The wide pool of candidate methods is first narrowed down and thorough testing leads us to

propose a changepoint detection algorithm (Algorithm 1) suitable for our context. Furthermore,

we carry out a simulation study to investigate the effects of data aggregation on the identified

changepoints and perform a sensitivity analysis in order to assess the effects of data normalisation.

In order to compare methods, we consider three metrics: the Hausdorff metric, the adjusted

Rand index (ARI), and the true detection rate (TDR). The first measures segmentation by reporting

the largest (worst) minimum distance between two points in the true and discovered changepoint

sets (Truong et al., 2018). The Rand index measures (cluster) accuracy by comparing the relation-

ships of data in each cluster in the discovered changepoint set to the true (Truong et al., 2018).

We use the adjusted Rand index, implemented in mclust, to account for clustering due to chance
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(Scrucca et al., 2017). Total agreement between clusters results in an ARI of 1, while the expected

value of a random partition of the set is 0. Finally, the true detection rate gives us an understand-

ing of how many changepoints detected are true or false by checking to see if a true changepoint

happened near a detected one (Haynes et al., 2017b). A TDR of 1 indicates that every changepoint

detected is within a given distance of at least one true changepoint, while a TDR of 0 indicates

that every changepoint is outside such a distance. First, for direct comparison, we consider a ra-

dius of acceptance of 0, i.e. exactly identifying the changepoints where a positive radius h would

report a detected changepoint as accepted if it within h data points of a true changepoint (Haynes

et al., 2017b). In order to choose appropriate further radii, we consider the historical context – for

example, World War I might easily have begun a year or two earlier due to conflict in the Balkans,

and the start date of World War II might easily have varied by a year or two, depending on when

the western allies reached the limit of their willingness to accommodate Hitler. On one side of

65.9%, 78.2%, and 77.6% of wars, 3, 5, and 8 new wars will have occurred within 1, 2, or 3 years

respectively. Hence, we use radii of 3, 5, and 8 to roughly represent 1, 2, or 3 years in the historical

dataset. We also do not include the endpoints of the data as changepoints for this calculation.

Note that the metrics above are effectively trying to measure the quality of our fit by whether

there are too many changepoints (overfitting) or too few changepoints (underfitting) and whether

the changepoints are in the right location (low bias) or not. We obtain a low Hausdorff metric if

there is a detected changepoint near every true changepoint, and hence a single changepoint near

a cluster of true changepoints or vice versa is not highly punished. A low ARI suggests that the

detected segments are improperly placed (high bias) or sized (over- or underfit), and is thus a good

all around measurement. A high TDR rewards fits that are very close to correct, while a low TDR

indicates either overfitting (too many positives) or incorrect placement (not a high number of true

positives). Of course, these metrics are not all-encompassing, which is why we present both the

placement of detected changepoints, above, and the percentage of times a particular number of

changepoints was identified, below, in the figures that follow.

All simulation tests were carried out in R (R Core Team, 2018). In particular, data generation

was performed using the poweRlaw R package (Gillespie, 2017), while changepoint analyses

were carried out using the changepoint (Killick et al., 2016) and changepoint.np (Haynes

et al., 2016) R packages. As the name suggests, the extension ?.np in the package name and

associated function stands for the nonparametric approach of Haynes et al. (2017b). Visuals were

compiled using the ggplot2 R package (Wickham, 2016).

To benchmark the various candidate methods, we first screened the possible combinations of

cost and penalty corresponding to different data modelling distributions. Table 4.1 summarises the

available functions and options, as implemented in the changepoint packages above, while noting

restrictions on combinations of methods. Some of the arguments provided require additional in-

formation which we set to be the same across all tests. Specifically: the type I error probability

was set to 0.05; the penalty range for CROPS was set to 100 – 106; the maximum number of

segments in SegNeigh (Auger and Lawrence, 1989) was set to 61, and the maximum number of

changepoints required by BinSeg (Scott and Knott, 1974; Sen and Srivastava, 1975) was set to 60.

We assessed segmentation outcomes across N = 1,000 trials with data of length n = 600

featuring a single changepoint (m = 1) located at τ1 = 300. The first segment consisted of data

simulated from a power-law distribution with parameter α = 2.05, while for the second segment

we chose α = 2.55 (in the range of powers akin to those documented for historical battle deaths).
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Table 4.1: Function options for changepoint and changepoint.np R packages. The first
column corresponds to the R function used, while the other three correspond to arguments that
determine how the analysis is performed. Note that not every combination of options within a
function are valid: SegNeigh (Auger and Lawrence, 1989) cannot be used with mBIC; PELT,
mBIC and Asymptotic cannot be used with CUSUM; PELT and mBIC cannot be used with CSS
(Inclán and Tiao, 1994); Asymptotic cannot be used with Poisson; CROPS was designed for use in
conjunction with PELT. In particular, cpt.np is particularly restricted. Additional descriptions
of the function options are available in Table C.1.

Function penalty method test.stat
cpt.mean SIC/BIC AMOC Normal
cpt.var mBIC PELT CUSUM (cpt.mean only)
cpt.meanvar AIC SegNeigh CSS (cpt.var only)

Hannan-Quinn BinSeg Exponential (cpt.meanvar only)
Asymptotic Poisson (cpt.meanvar only)
CROPS

cpt.np SIC/BIC PELT Empirical Distribution
mBIC
AIC
Hannan-Quinn
CROPS

Across our simulations we set the minimum value attainable by the power-law distribution to be

10 or 1,000. We present the results in the former case; the latter case is nearly equivalent and its

results appear in Appendix D. We note at this time that power-law distributions with α > 2 have

finite means, but α < 3 leaves us with infinite higher moments. As such, we expect occasional

very large events, similar to how the World Wars are considered very large relative to other wars.

Figures 4.2 – 4.5 give illustrative examples of the types of behaviour of the analyses con-

ducted. The bottom subplot of each plot indicates the percentage of trials in which a given number

of changepoints was detected by the analysis. The top subplots are arranged by the number of

changepoints found and use boxplots to show the location of each changepoint so found. The

middle dashed line is placed along the changepoint. Across the tested combinations, most failed

to identify that there was only a single changepoint, let alone to pinpoint its precise location.

We also note that Figures 4.2 – 4.5 do not showcase all possible outcomes. For example, some

combinations result in approximately correct numbers of changepoints but incorrect locations.

Even when using cpt.np overfitting is still common with penalties such as AIC or BIC. PELT

and CROPS are also no guarantee of success; cpt.mean with PELT, CROPS, and a normal

distribution results in preferential selection for even numbers of changepoints, overfitting, and

placement in the middle of the α = 2.05 segment. Of the changepoint methods, ‘at most

one changepoint’ (henceforth, AMOC, Killick et al., 2016) was naturally most successful. It was

tied with itself for second lowest median Hausdorff metric measure (39), third highest median

ARI (0.76), and second highest TDR (0: 0.03, 3: 0.11, 5: 0.16, 8: 0.20). However, it had to be

discarded because of its obvious intrinsic restriction. Based on these findings from our simulations,

we therefore select ED-PELT with CROPS and mBIC to use with the real data (implemented

under function cpt.np in the changepoint.np package). We find appealing not only their

strong behaviour but also the lack of parametric assumptions, suitable for our context. ED-PELT’s

preferential sampling of the tail of the distribution explains its better performance in our power-law

distributed simulated data. That is, if there is a changepoint detected by ED-PELT with CROPS or
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Figure 4.2: Test case with better than average behaviour. The simulation is of two power-law
distributed segments of length 300 with exponents 2.05 and 2.55 respectively. Segmentation gen-
erated using cpt.meanvar with BinSeg, mBIC and an exponential distribution. Whilst there
are good aspects to this finding, the method commonly overfits and tends to assume changepoints
happen in the α = 2.05 segment. This combination has median Hausdorff metric of 189, median
ARI of 0.64, and TDR 0: 0.01, 3: 0.04, 5: 0.05, 8: 0.07.
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Figure 4.3: Test case with worst behaviour. The simulation is as in Figure 4.2. Segmentation
generated using cpt.meanvar with SegNeigh, an asymptotic penalty and a normal distribution.
Results such as this occur with many combinations, and can be regarded as failures. Many com-
binations result in more than 10 false positives and are only stopped by the maximums provided.
This combination has median Hausdorff metric of 294, median ARI of 0.07, and TDR 0: 0.00, 3:
0.01, 5: 0.01, 8: 0.01.
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Figure 4.4: Test case with best behaviour. The simulation is as in Figure 4.2. Segmentation gener-
ated using cpt.np with ED-PELT and CROPS and shows some of the best achievable behaviour.
Although qualitatively similar to the top sub-plot of Figure 4.2, there is improved accuracy in the
positioning of the changepoints and improved precision and accuracy in the number of points so
detected. This combination has the lowest median Hausdorff metric of 15.50, highest median ARI
of 0.90, and highest TDR 0: 0.03, 3: 0.17, 5: 0.24, 8: 0.32.
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Figure 4.5: Test case with second best behaviour. The simulation is as in Figure 4.2. Segmentation
generated using cpt.np with ED-PELT and mBIC. While not as good at detecting changepoints
as CROPS, cpt.np with ED-PELT and mBIC still shows strong potential. This combination has
median Hausdorff metric of 50.5, second highest median ARI of 0.79, and TDR 0: 0.02, 3: 0.09,
5: 0.13, 8: 0.17.
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Table 4.2: Test set parameters. Each column represents a parameter and its options for the
simulated data in Section 4.3. Each test was performed with N = 1000 trials with m = 1
changepoint(s) located at τ1 = s, where n = 2s with generated data with power-law parameters
(α± αmod) and (α∓ αmod) on each segment.

Exponent (α) Exponent Modifier (αmod) Order Segment Length (s)
1.7 0 Low – High 30
2.3 ±0.05 High – Low 100

±0.15 300
±0.25 1000
±0.5

mBIC, then there is statistically significant evidence that the segment before the changepoint has

a different power-law exponent than the segment after the changepoint (Haynes et al., 2017b).

We next examine the performance of our remaining candidates in the presence of at most one

changepoint. In order for our explorations to be relevant to the real battle deaths data, we choose

power-law exponents (α) close in value to Richardson’s law, and test the segmentation robustness

against numerical proximity, order and false positive detection, as detailed in Table 4.2. Some of

our tests have one or both α < 2, which will result in more extreme tail and sampling behaviour.

In general, we found that ED-PELT performs well with both CROPS and mBIC penalties, but

with CROPS outperforming mBIC in most cases. Both benefit from increased segment lengths

with increased precision of number of changepoints detected and increased ARI (in contrast to

the other penalty options, which claim more changepoints occur as segment lengths increase).

Performance for both is consistent regardless of exponent and order.

However, mBIC does outperform CROPS in one notable situation: when the two distributions

are very close, such as αmod ≤ 0.05, or coincide (no changepoint). When this occurs, CROPS

has a tendency to dramatically overfit the number of changepoints whereas mBIC is more likely

to correctly report no changepoints.

Figure 4.6 shows examples where there is no changepoint in the data; mBIC can detect this

reasonably well, but CROPS dramatically overfits. This unique failure mechanism of dramatic

overfitting occurs often: 3 or more changepoints are identified in about 63.9% of the trials when

the exponent is 1.7, and in about 63.3% of the trials when the exponent is 2.3. On the other hand,

mBIC correctly detects 0 changepoints 56.1% of the time when the exponent is 1.7 and 54.6%

of the time when the exponent is 2.3. This important case means that we cannot rely solely on

CROPS to determine our changepoints. Subsequent results should be viewed through the lens of

these limitations.

We now expand our investigations beyond the presence of at most one changepoint and explore

the outcomes obtained when the data feature several (specifically, two, four, or eight) changepoints

controlled for variable segment length and data granularity. Figure 4.7 shows some representative

results of each procedure.

In general, our previous findings extend to the case of multiple changepoints, as can be seen

in the first row of Figure 4.7, where CROPS proves to be more precise and accurate in its identifi-

cation of changepoints (higher median ARI and TDR, lower Hausdorff metric distance), although

sometimes too conservative. The second row of Figure 4.7 illustrates an uncommon case in which

the change across one particular changepoint is so drastic that CROPS identifies it as the only

change, missing the less pronounced changes. In contrast, mBIC mostly successfully identifies
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Figure 4.6: Examples comparing behaviour of CROPS and mBIC with no changepoints present.
Each row is a different scenario using different power-law exponents: 1.7 and 2.3 respectively. The
sequence length is 600. Note that CROPS has pathological behaviour, while mBIC succeeds with
reasonable precision and accuracy. The behaviour of CROPS is due to a known feature: Haynes
et al. (2017b) recommend choosing the optimal number of changepoints for CROPS such that it
maximises the estimated curvature of the penalty as a function of the number of changepoints.
This naturally truncates the data over which the curvature is estimated, removing the possibility of
obtaining 0 changepoints on a potentially flat line.
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Figure 4.7: Examples comparing behaviour of CROPS and mBIC with multiple changepoints.
Each row is a different scenario using power-law distributions. The sequence length is n = 1000
and 575 respectively. In the first row, two changepoints, marking the power-law exponent change
from 2.3 to 1.7 to 2.1, are present, and CROPS gives a more accurate result. Simulations show
this is the common pattern. In the second case four changepoints are present, transitioning across
exponents 2.87, 1.83, 2.49, 1.67, and 1.06. CROPS detects only a single changepoint with high
precision. mBIC outperforms CROPS in this uncommon case.
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these changepoints, showcased in higher ARI and lower Hausdorff metric distances, albeit with a

lower TDR. This uncommon case is more likely to occur when there are a large number of true

changepoints (e.g. 8) and small segment sizes. We thus conclude that one cannot rely solely on

one penalty, but must use the joint findings of CROPS and mBIC to assess the presence of change-

points. The combined use of the two methods gives good confidence in accurately detecting the

correct number of changepoints, as well as their location. When using both methods in tandem,

we preserve the ability of mBIC to identify systems consistent with no changepoints (58.2% of the

time for α = 1.7 and 54.8% for α = 2.3 when used in conjunction with CROPS). Furthermore, we

know from our simulation study that CROPS has the best ability to correctly detect changepoints,

with the almost universally best median ARI, TDR, and Hausdorff metric distances. Indeed, as

the distance between the exponents increases and as the amount of data increases, CROPS detects

increasingly well, with, for example, a 50.7% probability of detecting exactly the changepoint

and a 99.0% probability of being with 8 data points of the changepoint for α = 1.7 ± 0.5 and

s = 300. The combination still has weaknesses that can be improved upon, including improving

performance as α increases, but we are confident that, supplemented with additional testing, the

combination performs well as a tool for detecting changepoints.

In summary, CROPS findings are accurate when small numbers of changepoints are found,

whereas changepoints found only by mBIC should be viewed with caution. Of particular note is

that mBIC appears to have an extremely low false negative rate: if mBIC does not find a clear

break in the data, then we may be confident that no changepoint is present. Where mBIC and

CROPS agree on identified changepoints, we have a high degree of confidence that this marks a

real change of distribution in the data.

In the light of the results above, we propose the following changepoint detection algorithm

(Algorithm 1) to employ on the real battle deaths datasets. This protects against the pathological

CROPS case, i.e. by setting τ = ∅ when |τCROPS| > 2 while |τmBIC| = 0, resulting in increased

TDR when considering the changepoint intersection set, while also allowing for a more liberal in-

terpretation of the union of detected changepoints, such as when CROPS detects only the strongest

changepoints and mBIC detects additional weaker changepoints. As stated, Algorithm 1 is not

fully specified, leaving part of the procedure to the user. This reflects that the patterns that are

found by CROPS and mBIC can be complicated but similar, e.g. if CROPS detects a changepoint

while mBIC detects one on each side and nearby to the one detected by CROPS. Hence, when

presenting results, we will highlight τ as well as τ \ τmBIC and τ \ τCROPS. When using simple

decision metrics in simulation studies, behaviour is similar to our existing results: accepting all re-

sults looks similar to using mBIC alone, while accepting only changepoints recommended by both

CROPS and mBIC looks similar to using CROPS alone except in anomalous cases. Our algorithm

could benefit from future research investigating how one might explicitly build in a tolerance for

(dis)agreement in changepoint detection.

As pointed out in Section 4.2, data aggregation has often been debated in the historical litera-

ture (Cirillo and Taleb, 2016b; Gleditsch et al., 2014; Clayton et al., 2017). Binning data into time

periods affects the size of the tail, which is potentially important in our context as the methods

we use are sensitive to changes in the tail of the distribution (Haynes et al., 2017b, Section 3.1).

Furthermore, the beginnings and ends of conflicts can be hard to distinguish – were the ‘great vio-

lence’ (Clauset, 2018, p. 4) or the Chinese civil wars of the 1860s each coherent singular conflicts

or two sets of discrete wars? Thus for completeness we now empirically address the effects of ag-
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Algorithm 1: Proposed changepoint detection algorithm for power-law distributions.
(Note | · | denotes cardinality.)

Given the time-ordered observations y = {y1, . . . ,yn}, segment y by applying ED-PELT
with penalty

1. mBIC; denote the estimated set of changepoints as τmBIC;

2. CROPS; denote the estimated set of changepoints as τCROPS.

3. Set τ = τmBIC ∩ τCROPS and m = |τ |.
4. For (τmBIC ∪ τCROPS) \ τ , interpretation is required.

gregation of distinct events. In particular, we show that additional, but not an extreme amount of,

aggregation induces an accuracy-precision trade-off, in that aggregation increases the probability

of correctly identifying a changepoint, but decreases information as to its exact location.

Our procedure is a straightforward extension of our previous simulation studies. We again

simulate data with power-law exponents in the range described by historical literature, but once

the data have been generated, we then aggregate adjacent pairs or quartets to replicate the idea

of binning data into time periods or other systematic aggregations. For example, if our data are

X1, X2, X3, X4, . . ., we would instead use the sequenceX1+X2, X3+X4, . . . orX1+X2+X3+

X4, . . . respectively. For brevity, we present one example analysed by CROPS and mBIC with

aggregation of pairs (“aggregation 2”) and aggregation of quartets (“aggregation 4”) in Figures

4.8 – 4.11. These images are directly comparable to Figures 4.4 and 4.5, with which they share

the same underlying distribution(s).

One immediate disadvantage to aggregation is that it makes it harder to use our chosen metrics.

For example, is an exact changepoint achievable if the true changepoint is in the middle of an

aggregation segment? Another example: if the distance in the aggregated data is 6; in the original

data this would be outside our chosen range of 8, so should we include it in the TDR with radius

8? For the ARI, should there be some form of penalty if the changepoint occurs in the middle of an

aggregation segment? In general, these questions can be summarised as: should we disaggregate

(or further aggregate) the data for comparison? We choose not to do so here, and thus rely more

heavily on the information from the figures.

Overall, we note a common trend amongst Figures 4.8 – 4.11 by comparison to Figures 4.4

and 4.5. In each case, the probability of identifying a single (true) changepoint has somewhat

increased, and other simulations largely yield similar results. However, this increase in the prob-

ability of a correct detection is counterbalanced by the decreased amount of information as to

the exact position of the changepoint. The former point seems to indicate that the summation of

power-law distributed samples exaggerates the differences between the samples. For instance, it

might be that, due to the aforementioned problems with power-law samples, the tail behaviour will

dominate any sums in which it is relevant. An interesting future direction might be to see if the

increased probability of detection is maintained if the aggregation has a random component.

In order to fully assess the impact of data presentation on the discovered changepoints, we

also carried out a sensitivity analysis that highlights how changes in the (normalising) population

interfere with the identified changes in the battle datasets. First, we present in Figure 4.12 the

population and its inverse as recorded by Klein Goldewijk et al. (2017). (We only present years

that are present in the CoW dataset.) Both plots make it clear that (i) the population is changing
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Figure 4.8: Test case with CROPS and “aggregation 2”. The simulation is as in Figure 4.2, but with
an aggregation level of 2. Segmentation generated using cpt.np with ED-PELT and CROPS.
Compare with Figure 4.4 and Figure 4.9. The segments in the lower image correspond to the
number of changepoints detected and are guides for the eye only. The probability of correctly
identifying that there is only one changepoint in this case is 94.3% compared to 91.9% in Figure
4.4.

91



Figure 4.9: Test case with CROPS and “aggregation 4”. The simulation is as in Figure 4.2, but with
an aggregation level of 4. Segmentation generated using cpt.np with ED-PELT and CROPS.
Compare with Figure 4.4 and Figure 4.8. The segments in the lower image correspond to the
number of changepoints detected and are guides for the eye only. The probability of correctly
identifying that there is only one changepoint in this case is 93.7% compared to 91.9% in Figure
4.4.
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Figure 4.10: Test case with mBIC and “aggregation 2”. The simulation is as in Figure 4.2, but
with an aggregation level of 2. Segmentation generated using cpt.np with ED-PELT and mBIC.
Compare with Figure 4.5 and Figure 4.11. The segments in the lower image correspond to the
number of changepoints detected and are guides for the eye only. The probability of correctly
identifying that there is only one changepoint in this case is 61.4% compared to 40.0% in Figure
4.5.
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Figure 4.11: Test case with mBIC and “aggregation 4”. The simulation is as in Figure 4.2, but
with an aggregation level of 4. Segmentation generated using cpt.np with ED-PELT and mBIC.
Compare with Figure 4.5 and Figure 4.10. The segments in the lower image correspond to the
number of changepoints detected and are guides for the eye only. The probability of correctly
identifying that there is only one changepoint in this case is 63.6% compared to 40.0% in Figure
4.5.
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Figure 4.12: World population and its inverse. Only dates in the CoW dataset have been plotted.
The inverse is taken to be the multiplicative inverse.

by a factor of approximately 6.5 over the time period of interest and (ii) there are several “kinks”

in the population data, notably those around 1870 and 1950. One might naturally expect that the

normalisation then could induce the appearance of additional changepoints if there is a sudden

change in the world population, as in Figure 4.13, but our simulations demonstrate more complex

effects.

For each simulation, we randomly sample with replacement years from the CoW dataset after

removing ineligible entries (those without a number of deaths specified). The number of years

sampled corresponds exactly to the size of the power-law samples. We then order these years and

convert them to their corresponding populations. The data sampled from the power-law distribu-

tions are then divided by the population samples, making sure to preserve order throughout.

If a population change is induced near a (simulated) changepoint, then highly contrasting

effects are possible – the changepoint may dominate, or it may disappear and possibly induce

another changepoint elsewhere. We show in Figures 4.14 – 4.17 corresponding outcomes. Nat-

urally, since CROPS and mBIC show somewhat different behaviour, with mBIC producing more

changepoints (see Figure 4.17) while CROPS emphasises one detected changepoint (see the other

figures), the repercussions are also complex for Algorithm 1. The resulting behaviour appears to

depend on a number of factors such as power-law intensities and sharpness of population change.

We also note a disagreement on the changepoint locations when combining CROPS and mBIC via

their intersection (see Figures 4.18 and 4.19). This is unlike their behaviour on the raw data, but

unsurprising since the distributional properties of the raw and normalised data are different.

Altogether, this is not necessarily a problem – if changes in the population balance changes in

war, so that the probability of dying does not change even as the battle deaths do, this is certainly

meaningful. But our analysis demonstrates that the sources of a changepoint, in numerator or

denominator, cannot be effectively disentangled. Thus the search for changepoints in raw battle

deaths and the corresponding search in normalised battle deaths must be conducted separately and

subjected to comparative assessment of the findings.
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Figure 4.13: A “no changepoints” simulation divided by population. Note that the algorithm iden-
tifies a median changepoint that corresponds to the years 1948 – 1950, when the world population
experienced a sharp rise (see Figure 4.12).
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Figure 4.14: A one changepoint simulation divided by population (I). In this case, the first 300 data
are sampled from a power-law with exponent 2.2, and the next 300 are sampled from a power-law
with exponent 1.2. Both use minimum values of 10. Despite division by the world population by
year, only the power-law changepoint is detected by CROPS.
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Figure 4.15: A one changepoint simulation divided by population (II). In this case, the first 300
data are sampled from a power-law with exponent 2.8, and the next 300 are sampled from a power-
law with exponent 1.8. Both use minimum values of 10. In contrast to Figure 4.14, in this case
only the world population related changepoint is detected by CROPS due to the division of the
power-law data world population by year. Also compare Figure 4.16, which makes it clear that the
order of the power-laws now matters.
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Figure 4.16: A one changepoint simulation divided by population (III). In this case, the first 300
data are sampled from a power-law with exponent 1.8, and the next 300 are sampled from a power-
law with exponent 2.8. Both use minimum values of 10 and the simulated power-law data is
divided by the world population. In contrast to Figure 4.15 in which the power-law exponents are
switched, in this case CROPS detects a single changepoint in between the power-law changepoint
and the changepoint induced by the world population.
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Figure 4.17: A one changepoint simulation divided by population (IV). In this case, the first
300 data are sampled from a power-law with exponent 1.2, and the next 300 are sampled from
a power-law with exponent 2.2. Both use minimum values of 10 and the simulated power-law
data is divided by the world population. In contrast to Figures 4.14 – 4.16, mBIC detects multiple
changepoints corresponding to the power-law changepoint, one induced by the world population,
and a third changepoint not seen in the previous figures.
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Figure 4.18: The intersection of CROPS and mBIC on raw data. The simulation is of two power-
law distributed segments of length 300 with exponents 2.05 and 2.55 respectively and minimum
value of 10. For each simulation, both CROPS and mBIC are run on the data as in Algorithm 1,
but with only the intersection reported. Here, CROPS and mBIC mostly agree on the presence and
location of a single changepoint. Compare to Figure 4.19, which features normalised data.
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Figure 4.19: The intersection of CROPS and mBIC on normalised data. The simulation is of
two power-law distributed segments of length 300 with exponents 2.05 and 2.55 respectively and
minimum value of 10, divided by the world population by year. For each simulation, both CROPS
and mBIC are run on the data as in Algorithm 1 , but with only the intersection reported. In
contrast to Figure 4.18, CROPS and mBIC are substantially more likely to disagree about the
exact placement of changepoints and thus tend to report that no changepoints were found.
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Figure 4.20: Results from applying Algorithm 1 to CoW for all data subsets. On the left we
use raw data; on the right, data rescaled by world population at the time of the conflict. Vertical
bars indicate detected changepoints annotated by exact years for clarity. A-posteriori power-law
distribution fits suggest that α moves from 1.77 to 1.51 to 1.65 in the raw data.

4.4 Analysis of historical battle deaths

Using the insights gained in the simulation study above, we now apply the proposed algorithm

to the datasets described in Section 4.2. The results indicate with confidence the existence of

changepoints in the data. In the entire raw CoW dataset, shown in Figure 4.20, there are two

changes, just prior to World War I and just after World War II. When scaled by population two

more candidate changepoints emerge, in the late 19th century (1883) and in 1994 (and the post-

World War II point shifts slightly), but there is less confidence in the changepoints overall since

the results are not identical across CROPS and mBIC. The further detected post-World War II

changepoint in particular is likely the result of a sharp change in population in the 1950s. A

similar effect can be observed in Figure 4.13. This supports the proponents of the long peace

hypothesis, albeit via an argument for the great violence.

It is less clear to assign changepoints in the entire Gleditsch raw dataset, but the emerging

1994 changepoint in data scaled by population size is now conclusively found (Figure 4.21). The

broad message is similar, with candidate changepoints found pre-World War I, post-World War

II, and 1994. In contrast to the raw CoW dataset, we find evidence for change in the 1840s. In

addition, the Gleditsch analysis suggests a change in the mid-1930s.

The suggestions made by Cirillo and Taleb (2016b, p. 30, 32) to transform the data in order to

account for the finite upper bound on battle deaths due to having a finite world population appear

to have little impact (see Figure 4.22). Neither transforming the data to impose a size limit of the

2018 world population on any single war, nor doing so with each event bounded by population

at the time of the war, typically changes the number or location of changepoints, especially in

the Gleditsch dataset. Among CoW and its various subsets, an exception is the combined CoW

dataset, as shown in Figure 4.22. The limited sensitivity to such transformations is probably due

both the inherent scale invariance of power-law distributions as well as to the lack of data points

located sufficiently far in the tail of the distribution — no single war results in the death of a high

proportion of world population through battle. These results do suggest some sensitivity within
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Figure 4.21: Results from applying Algorithm 1 to Gleditsch’s combined datasets. On the left we
use raw data; on the right, data rescaled by world population at the time of the conflict. Vertical
bars indicate detected changepoints annotated by exact years for clarity. A-posteriori power-law
distribution fits suggest that α moves from 1.74 to 1.65 when the raw data is partitioned using
CROPS. When the data is partitioned using mBIC, α instead moves between 1.71, 1.44, 1.73, and
2.08.

the CoW combined dataset, in that the 1913 changepoint in the raw data has a similar likelihood

of being identified as the 1936 changepoint in the transformed data.

As noted in Section 4.3, normalisation of power-law distributed data by world population can

obscure or even eliminate what would be considered changepoints in the raw data. As such, we

must consider the analyses as separate, but we can exploit their relationship to understand what we

might reasonably expect if we assumed one or the other analysis was true. To do so, we carry out

a-posteriori robustness checks by assuming the raw segmentation to be true, fitting a power-law

to each segment using the methods of Clauset et al. (2009b, implemented by Gillespie (2015)),

simulating from the now-parametric model, and assessing the identified changepoints.

This analysis reveals that we can be confident in the results for CoW: if the estimated raw

changepoints were true, we would indeed detect an approximate 1910 – 1916 changepoint by

CROPS and mBIC, as well as an approximate 1944 – 1950 changepoint. Similar robustness find-

ings hold for the normalised data, hence if the raw CoW results were indeed true, we should expect

to detect changepoints similar to those we have discovered.

For the raw Gleditsch data, Algorithm 1 does not identify a specific changepoint due to the

failure of CROPS and mBIC to support each other. Instead, we require further analysis and inter-

pretation, and indeed our a-posteriori robustness checks indicate that our observed results would

be extremely unlikely in the absence of a true changepoint. This behaviour is unsurprising, given

the algorithm aims to protect against false positives. For the normalised Gleditsch data, we are

confident that the 1994 changepoint is identified.

Another important consistency check is whether any real datasets exhibit no changepoints.

We recall that we have already demonstrated that the no-changepoints case for our methodology

is evidenced by a particular combination of a large number of (false) positives from CROPS and

few or no (false) positives from mBIC for a wide range of data points, seen in Figure 4.6. Whilst

we have established the robustness of the methods against artificial data, the existence of a dataset
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Figure 4.22: Results from applying Algorithm 1 to the combined CoW dataset, rescaled as recom-
mended by Cirillo and Taleb (2016b, p. 30, 32). On the left, the data is rescaled using the current
(2018) world population. On the right, data is rescaled using the world population at the time of
the conflict. Vertical bars indicate detected changepoints annotated by exact years for clarity.

with no changepoints would clearly help validate our methods while also identifying a setting

consistent with the null hypothesis of no change in the statistical properties. It is therefore worthy

of comment that such a dataset within CoW does exist: the CoW non-state dataset, shown in

Figure 4.23, has a response clearly of the same type as in the bottom row of Figure 4.6, indicating

a potential unchanging underlying mechanistic reason for this phenomenon.

To get a sense of the robustness of our approach and to represent the overall prevalence of

changepoints, in Figure 4.24 we present an internal meta-analysis across all the analyses we have

performed on the CoW and Gleditsch datasets. This figure shows where changepoints are found in

all composing internal data subsets by the proposed algorithm identified in Section 4.3. In the top

panel of each sub-figure, we place a kernel density estimate of the locations of changepoints; the

sub-figures and density estimates were created using a 1/5th adjustment to the default bandwidth

to sharpen the location of changepoints. In the bottom panel of each sub-figure, we present the

data subsets as a time line. Shaded regions, for changepoints over a period of time, and dotted

lines, for changepoints located at a single time, indicate the location of clusters of changepoints

clustered using the k-means algorithm (Wang and Song, 2011). The area under the density es-

timation curve is therefore a rough aggregate measure of the likelihood of a changepoint during

the period, independent of the magnitude of the change. This panel gives a clear sense of the ro-

bustness of the 1994 changepoint, less strongly the robustness of the 1830s changepoints, and the

variations that exist in the period 1910-1950 of the changepoints. The graph shows the location of

individual points but also more finely-grained variation where multiple methods and datasets pro-

duce changepoints at approximately the same point in time. The R package Ckmeans.1d.dp

by Wang and Song (2011) was used for clustering in this context.

4.5 Discussion

In this chapter, we have used simulation studies to highlight a key problem with changepoint anal-

ysis of heavy-tailed data, as well as to come to a solution using a synthesis of modern techniques.
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Figure 4.23: Results from applying Algorithm 1 to the non-state CoW dataset. No changepoints
are found by the mBIC penalty and CROPS finds a large number of tightly clustered points. Note
that this result is extremely indicative of no changepoints. For comparison, see Figure 4.6.

As shown in Section 4.3, many previous techniques result in over-segmentation of power-law dis-

tributed data. Using Algorithm 1, a combination of PELT (Killick et al., 2012) with a cost func-

tion based upon the tail of the empirical distribution (Haynes et al., 2017b) and both the CROPS

(Haynes et al., 2017a) and mBIC (Zhang and Siegmund, 2007), allowed us to arrive at vastly more

accurate segmentations. While we have tested this algorithm on power-law distributed data, it is

theoretically sensitive to when the tails of the empirical distribution sufficiently change due to its

non-parametric approach, which would theoretically make it a general tool for heavy-tailed data.

Algorithm 1 was designed with the distributions of battle deaths in mind, which have long been

known to be power-law distributed (Richardson, 1944, 1960b; Clauset et al., 2009b; González-Val,

2016; Chatterjee and Chakrabarti, 2017; Clauset, 2018; Martelloni et al., 2018). Due to its non-

parametric nature, Algorithm 1 is purely data-driven and provides an absolutely neutral attempt

at looking for changepoints in a field where significant ink has been spilt over the biases of both

authors and their methods. Algorithm 1 does have some natural limitations: it is designed for

detection of abrupt changes in distribution, but continuous changes need to be handled explicitly,

as we have done with the world population. Continuous changes as postulated by Pinker (2011,

2018) are beyond the scope of our work and would be an excellent future research direction.

Applying Algorithm 1 to the CoW and Gleditsch data sets indicated the existence of change-

points. Consistently, 1910-1950 are identified as changepoints, but significant variations exist,

including whether the World Wars are both included, whether they form a pair of changepoints,

and whether the post-World War II period is included. This provides evidence for some form of

long peace, albeit sometimes via argument for the great violence. In particular, the possibility of

a changepoint in the 1930s in the Gleditsch data set might reflect the complex civil wars of that

period. Our results are more vague about the existence of a changepoint in the 19th century in

the CoW dataset. Possible landmark events include revolts around the 1830s, the American Civil

War and Taiping Rebellion of the 1860s, and colonial wars in the 1880s. More precise is the iden-

tification, when normalised by world population, of a segment containing the single point of the

Second Syrian Civil War Phase 2, September 1840. This point is likely an anomaly within the

Gleditsch data set given it has only 10 recorded deaths. The algorithm detects that this point is far

outside of the normal behaviour of either section before and after this point. On the other hand,
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Figure 4.24: Results for internal meta-analyses performed on all changepoints found in any com-
bination of subsets within the datasets. In order, these plots correspond to (i) CoW raw data, (ii)
CoW normalised data, (iii) Gleditsch raw data, and (iv) Gleditsch normalised data. In each plot,
there are two images. The lower of each pair of images is a timeline of events occurring, sorted
by subset. Above it is a density estimation of the locations of changepoints detected. The area
under the curve of the estimate is proportional to the probability of finding a changepoint within
that part of the dataset. Grey bars and dotted lines represent changepoints, in different locations
or the same location respectively, that have been clustered. Numbers below the timelines indicate
the fraction of identified changepoints so clustered.
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there is a much more robust changepoint in 1994, consistently identified by CROPS and mBIC in

the normalised CoW and both normalised and unnormalised Gleditsch data sets. This changepoint

supports the hypothesis of Gurr (2000, see also the work of Cederman et al. (2017)) who identified

a decline in ethnic conflict since the mid-1990s.

4.6 Conclusion

In this chapter, we have discussed the pairing of changepoint analysis with the long peace hy-

pothesis for the decline of war. Our work is a natural extension of existing work in both fields,

but required the development and extension of methods to the case of power-law distributed data.

There are some weaknesses in our technique: we do not explicitly handle every case and we can

only detect discrete changepoints. Nonetheless, our methods are the most up-to-date and have

been shown in a variety of simulation studies to robustly handle power-law distributions, which

have unusual properties that normally hinder changepoint analysis (see Section 2.1 for some such

properties).

While our analysis addresses the existence of changepoints in a controversial and important de-

bate using modern techniques, more work can still be done. Leveraging the design of Algorithm 1

for power-law distributed data also suggests that it could be applied to many other datasets such

as blackouts, book sales, and terrorism (Clauset et al., 2009b). Changepoint analysis could also

be developed specifically for the heavy-tailed multiple changepoint setting. One future possibility

is to examine whether any transformations can make the problem more tractable. For example, as

mentioned in Chapter 2, the logarithm of power-law distributed data normalised by its minimum

would make the data theoretically exponentially distributed. Additional adaptation of our algo-

rithm to the multivariate setting would allow better exploration of the distributions of wars, given

their multi-faceted nature. Duration, arrival time, and war type are all relevant parameters that we

have not explored in this analysis. Our analysis also necessarily does not include both continu-

ous and discrete changes outside of the world population. Development could also continue in

the direction of data collection: producing and investigating a more disaggregated dataset using

better-resolved events.

While changepoint analysis highlights when the effects of a discrete change in a distribution

are felt, it does not and cannot tell us the true nature of the change. We can try to characterise these

changes using various test statistics in our analysis, but this is no guarantee that we have identified

the best test statistic, let alone characterise the effects and driving factors of of the change. To do

so requires an understanding of the generative process of the distribution and how that generative

process changes over time, something that we have avoided in this chapter to be purely data-driven.

In our next chapter, we exchange roles and instead look at one model that has been proposed as a

generative process for terrorism data. This model is coalescence and fragmentation and we seek

to understand how apt and robust this model is for its many applications.
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5 Coalescence and fragmentation

[A]nalogies are more than beautiful testaments to the

unifying power of models: they are headlights in dark

unexplored territory... Models can surprise us, make us

curious, and lead to new questions. – Epstein, 2008

5.1 Introduction

Coalescence and fragmentation models have always had an applied nature, going back even to

their first use by von Smoluchowski (1916). Such is their nature as a collection of reasonably

simple, but extremely flexible and deep models. It is perhaps little surprise that ‘particles’, be they

probabilistic (Aldous, 1999), chemical (von Smoluchowski, 1916; Spicer and Pratsinis, 1996), fish

(Datta et al., 2011), people (D’Hulst and Rodgers, 2000; Bohorquez et al., 2009), banks (Pushkin

and Aref, 2004), or asteroids and dust (Tanaka et al., 1996; Birnstiel et al., 2011), obey similar

rules regarding how they collide and stick together or how they break apart. As discussed in

Section 2.4, these models have interesting emergent properties, such as the presence of gelation,

the formation of a superparticle of infinite size in finite time or even instantaneously (Carr and

da Costa, 1992). Many variations exist that we must neglect in this chapter due to space and time,

such as the spontaneous formation of particles of infinitesimal size (McGrady and Ziff, 1987).

We will limit our discussion to gelation, its consequences, and the system’s robustness for their

repercussions on applications.

Our motivation stems from work done by Bohorquez et al. (2009) and Johnson et al. (2016), in

which a simple well-mixed coalescence and fragmentation model was used to model first terrorist

events and then the evolution of pro-ISIS (Islamic State) networks within the Russia-based social

network VKontakte. In the work of Bohorquez et al. (2009), the overall model is formed of two

parts: the first is coalescence and fragmentation to model the various groups within the (approx-

imately) fixed homogeneous (terrorist) population, while the second is a group consensus model

for when to launch an attack (with sizes proportional to the groups initiating the attack). Coales-

cence corresponds to individuals in the groups agreeing to coordinate resources; each individual is

equally capable of doing so using arbitrary methods with arbitrary ranges and so a multiplicative

coalescence kernel is assumed. This reflects that any individual can coordinate with any other in-
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dividual, which suggests that for two groups of sizes i and j that there are ij ways for two groups

to begin coordinating. Fragmentation is a rare event (Bohorquez et al. (2009) choose their frag-

mentation rate such that there is approximately 1 fragmentation for every 99 coalescence events)

in which an individual in a group perceives danger to cause the entire group to cease co-operation

immediately. As such, we will also work with processes where coalescence is more frequent than

fragmentation, although we will vary the exact probabilities. They claim robustness of the model

with respect to changes in the underlying rules with citation to D’Hulst and Rodgers (2000) , Hui

et al. (2003), and Ruszczycki et al. (2009) as well as by considering the cases of two interact-

ing populations (e.g. insurgents and counter-insurgents) and two interacting populations with one

non-interacting population (e.g. civilians) in their supplemental materials22.

In the latter work by Johnson et al. (2016), single particles are considered to be total number of

‘follows’, while the groups are composed of numbers of follows by followers, due to the bipartite

nature of the networks23 under consideration (Johnson et al., 2016). Despite the bipartite nature,

Johnson et al. (2016) observe that groups on occasion completely absorb other groups. Fragmen-

tation is an exogenous process: an outside force/predator/moderator identifies the pro-ISIS or-

ganisations and shuts them down. Johnson et al. (2016) also observe ‘shark-fin’ dynamics where

there is growth to apparent plateaus before sudden collapse driven by the combined coalescence

and fragmentation dynamics, a critical threshold for moderation below which the pro-ISIS organ-

isations ‘grow exponentially fast into one super-aggregate’, and an intervention strategy based on

targeting (only) medium sized, as opposed to (only) large, organisations. In their supplemental

materials, they provide a table of model variants to which they claim the steady-state and shark-fin

dynamics are robust. This table includes higher order coalescences, fragmentation to fragments

of a single size larger than 1, population fluctuations, a spatial grid, exponents on the number of

groups, and heterogeneous followers.

In both usage cases, we want to understand the appropriateness of applying coalescence and

fragmentation models. While we noticeably are lacking in data on real time terrorist group for-

mations, we use simulations to investigate how robust the model is to changes in the modelling

assumptions. For example, it seemed unlikely to us that an entire group would scatter upon sens-

ing danger or being targeted by a predator and it thus is important to know if making such an

assumption is fundamental to how the model works, or if the system is robust to weakening the

form of the fragmentation used. Similarly, the observation, and prevention, of a ‘super-aggregate’

or gel is a critical feature of a broad class of coalescence models which have fundamentally differ-

ent behaviour than systems lacking gelation. Ideally, we would be able to establish the effects of

changes in the assumptions and robustness, or lack thereof, in the homogeneous population model

before continuing on to consider a networked population, such as the one investigated by Johnson

et al. (2016). From there, many different types of complex networks could be investigated, with

similarly many potential applications.

There are competitor models (e.g. Clauset and Gleditsch, 2012) and these and the group con-

sensus model are outside of the scope of this chapter. We do not cover the whole breadth of the

disciplines of coalescence, fragmentation, their combination, and neighbouring topics; to do so

would require discussions including current analysis, semigroup theory, graph theory, probabil-

22Curiously, the supplemental materials of Bohorquez et al. (2009) also suggest the model is robust to ‘more rigid’
‘larger attack groups’, but this text is invisible and without citation (Figure 2).

23Networks are composed of individuals and organisations. Individuals can follow organisations, but other interac-
tions (e.g. individual-to-individual private messaging) are not observed.
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ity, and other ‘pure’ disciplines alongside discussions of a wide variety of applications. In this

chapter we rely on the overview given in Section 2.4 and instead focus on a few aspects of von

Smoluchowski’s coagulation equation with fragmentation. We discuss in Section 5.2 findings per-

taining to the common steady-state analysis of, e.g., Clauset and Wiegel (2010). In Section 5.3, we

find that the proposed steady-state is not always arrived at in simulations. We discover a new phe-

nomenon in which the system is dominated alternatively by coalescence and fragmentation leading

to gel-shatter cycles. A natural question then arises as to the ubiquity of the cycles we find; we

address this in Section 5.4 before finishing this chapter with a discussion of future directions in

Section 5.5 and placing the chapter in the context of the thesis in Section 5.6.

5.2 Steady-state

In Section 2.4, we presented a now standard argument for the steady-state for systems of the form

ṅk =
1

2

k−1∑
i=1

K(i, k − i)nink−i − nk
∞∑
i=1

K(i, k)ni − F (k)nk, k ≥ 2,

ṅ1 =

∞∑
i=2

iF (i)ni − n1
∞∑
i=1

K(i, 1)ni,

(5.1)

where nk is the number of clusters of size k per unit volume, K(i, j) is the (binary) coalescence

kernel, and F (i) is the shattering fragmentation kernel. For the special case K(i, j) = K̂ij and

F (i) = F̂ i, where K̂ and F̂ are positive constants, we can easily observe a link from the steady-

state, ∀k, ṅk = 0, to a combinatoric construct, the Catalan numbers (The On-Line Encyclopedia

of Integer Sequences). The Catalan numbers have many applications: the easiest might be the

number of ways to (correctly in the standard sense) insert i pairs of brackets in a sequence of

length i+ 1. They have the form

Ci =
i−1∑
k=0

CkCi−1−k =
1

i+ 1

(
2i

i

)
(5.2)

with C0 = 1. To our knowledge this link has not been directly observed in the literature, but

methods used are often similar to the methods used to analyse the Catalan numbers.

At the steady-state with a multiplicative kernel, rearrange for k ≥ 2 and set ρk = knk so that

ρk =
1
2K̂

F̂ + K̂
∑∞

i=1 ρi

k−1∑
i=1

ρiρk−i. (5.3)

Provided that
∑∞

i=1 ρi is well-behaved, this is a (offset) standard recurrence relation for the Catalan

numbers except with a prefactor (Hilton and Pedersen, 1991). Labelling the prefactor in recurrence

relation 5.3, say, γ, and using the generating function

f(z) ≡
∞∑
k=1

ρkz
k (5.4)

yields

f(z)− ρ1z = γf2(z) =⇒ f(z) =
1±
√

1− 4γρ1z

2γ
. (5.5)
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Binomial series expansion of the physical negative branch24 yields

∞∑
k=1

ρkz
k =

∞∑
k=1

(2k − 3)!!

(2k)!!
22k−1γk−1ρk1z

k, (5.6)

but the terms can be rewritten using the Catalan numbers:

ρk = Ck−1γ
k−1ρk1. (5.7)

Application of Stirling’s law provides the expected truncated power-law exponent −3/2. For the

special case we are considering, the total amount of mass (over the closed and fixed unit system

volume) in the system is expected to be fixed, M =
∑

k ρk =
∑

k knk = f(1), allowing for

straightforward computation, since

γ =
1
2K̂

F̂ + K̂f(1)
, ρ1 = f(1)− γf2(1) =

F̂ + 1
2K̂M

F̂ + K̂M
M.

Relating the coalescence and fragmentation equations to Catalan numbers naturally relates

multiple results together. While our results above make the connection clearly for the multiplica-

tive kernel, similar techniques can be employed for other kernels. For the constant kernel, the

result still holds, although f(1) is no longer the mass of the system, but rather the number of

clusters in the steady-state. Other generalisations are also possible. For example, consider the

generalised Catalan numbers (Hilton and Pedersen, 1991)

pdk =
1

(p− 1)k + 1

(
pk

k

)
, (5.8)

for whichCi = 2di. We hypothesise that the generalised Catalan numbers could be used to reframe

the results for generalised coalescence kernels of D’Hulst and Rodgers (2000) and Kyprianou et al.

(2018), given that these calculations have final forms that are reminiscent of Equation (5.8). This

helps to establish some of the robustness of coalescence and fragmentation systems in applications.

Just as the Catalan numbers are generalisable, we would expect coalescence and fragmentation

systems of the form of System 5.1.

These results about the expected steady-state do not tell us about how much we might expect

to deviate from the steady-state at any given timea critical factor in understanding how much we

might deviate from the analytical solution in practice. Some work for the coagulation equation

has already been done on deviations by van Dongen and Ernst (1987) and van Dongen (1987)

using the system size expansion methods of van Kampen (1992) for the Smoluchowski coagula-

tion equations with multiplicative kernel and constant, additive, and general homogeneous kernels

respectively. Van Dongen and Ernst (1987) identify some problems with application of the system

size expansion to binary fragmentation. For the case of shattering fragmentation, problems can

also arise due to the presence of large (system sized) fluctuations when shattering large clusters. If

the largest cluster size is sufficiently small, such approaches are more tractable. We apply Fourier

24The positive branch has f(0) = γ−1, which conflicts with our definition of f(z). Additionally, we are not
worried about the radius of convergence in terms of z as we will not be evaluating f(z) in the expanded form. It may
be reassuring to note that we will be working with K̂ � F̂ , so γ ≈ 1

2f(1)
. If we do not have a gel, which empirical

steady-state systems support, then ρ1 ≈ f(1)
2

, altogether suggesting that the radius of convergence in terms of z is
|z| < 1. Hence we should expect agreement at f(0).
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analysis to the Langevin equation derived from the system size expansion for small systems, here

with maximum cluster size of 3, following the extension of van Kampen (1992) by McKane et al.

(2007). This approach allows us to look for oscillations in the number of clusters of each size,

which are to be expected in dynamical systems representing interacting chemical or biological

species (McKane and Newman, 2005; McKane et al., 2007). Problems emerge analytically when

the maximum cluster size is allowed to reach the system size, as the higher order fluctuations then

grow, rather than shrink, as the system size increases. Future work may be able to reconcile raising

the maximum cluster size while controlling the higher order fluctuations, but for now we restrict

the maximum cluster size to enable numeric approaches.

Consider a slight variant coalescence and fragmentation system for clusters that can only create

clusters of up to three or disassociate into monomers even for large populations

ṅ3 = 2K(1, 2)n1n2 − F (3)n3

ṅ2 = K(1, 1)n1(n1 − 1)− 2K(1, 2)n1n2 − F (2)n2

ṅ1 = −2K(1, 2)n1n2 − 2K(1,1)n1(n1 − 1) + 2F (2)n2 + 3F (3)n3.

(5.9)

The variation is absorbing the factor of 1/2 into the coalescence kernel and explicitly forbid-

ding self-coalescence, as we will be examining what happens with a limited population. In the

simulation, we set K(i,j) = (1 − Pr (Frag.))i(j − δi,j)/(M(M − i)), noting that we can take

the average of K(i,j) and K(j,i) in calculations. We take M = 100 and size-biased kernels

with K̂ ≈ M−2(1 − Pr (Frag.)), F̂ = M−1Pr (Frag.). We set the probability of fragmentation

Pr (Frag.) = 0.1. An example plot of the (n1, n2) plane can be seen in Figure 5.1 (left). Clearly,

no limit cycle like behaviour appears. On the other hand, sample simulations of this system for

the initial condition (n1, n2) = (50, 25) (and n3 = 0) can be seen in Figure 5.1 (right), in which

oscillations emerge.

This system can also be thought of microscopically as a continuous time Markov process. The

state is the number of clusters of each size allowed in the system. Then we generally speaking

have two types of transitions between states: coalescence between clusters of sizes i and j to form

a cluster of size i + j, whose rate we will write as Coal.i,j,i+j , and shattering fragmentation of a

cluster i into i monomers, whose rate we will write as Frag.i,1. We can write the ‘reactions’ and

their transition rates then as

ni + nj
K(i,j)→ ni+j ,

Coal.i,j,i+j = K(i,j)ninj =

(
1− Pr (Frag.)

2

)(
ini
M

j − δi,j
M − i

+
jnj
M

i− δi,j
M − j

) (5.10)

and

ni
F (i)→ in1, Frag.i,1 = F (i)ni = Pr (Frag.)

ini
M
. (5.11)

Each of the rates incorporates the probability of an event of the appropriate type and the probability

of choosing clusters of the appropriate sizes (iniM−1). There is a (small for most situations we

are concerned with) correction to account for not being able to choose the same cluster twice from

the population in the coalescence terms as well. Technically, this represents a deviation from a

strict multiplicative kernel, but the assumption of a steady-state (about which we are studying the

oscillations) enforces that i,j �M , making the results comparable.

The oscillations can be averaged out or analysed by using the transition rates to write a prob-
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Figure 5.1: Comparison of the dynamical system to stochastic realisation for κ = 3. The dy-
namical system is as in Equations (5.9). (Left) The system is evaluated in Mathematica (Wolfram
Research, Inc., 2019) in a stream plot. The diagonal blue line is the border of the physical region,
while the dot is centred at the initial condition, with the solid red curve representing its trajectory
over time. (Right) We present a stochastic realisation, created with GillesPy2, a Python im-
plementation (Python Software Foundation, 2020) of Gillespie’s stochastic simulation algorithm
(Gillespie, 1977; Abel et al., 2016). Dashed lines correspond to the trajectory in the left plot, while
solid lines represent the values actually attained by a simulation. We take Pr (Frag.) = 0.1 and
M = 100 with initial condition (n1, n2) = (50, 25).

abilistic master equation and utilising the van Kampen system size expansion (McKane and New-

man, 2005). Due to space, we do not present the full equations here for either System (5.9) or

general coalescence and fragmentation. The method is theoretically straightforward and can be

thought of as a power series expansion of the master equation in terms of the size of the system.

The system proceeds under the assumption that changes in the state of the system are small for

large values of the system size (or other appropriate parameter) and that fluctuations are centred

around the (assumed to exist) steady-state. These fluctuations also are assumed to be of a magni-

tude proportional to the square root of the system size parameter. This ansatz on the relationship

between the fluctuations, the steady-state, and the system size is “the essential step”. Additionally,

the problem becomes more difficult if the steady-state is not (globally) stable, which we do not

consider here. If fluctuations grow in time, the analysis naturally fails when they are of the same

order as the steady-state (van Kampen, 1992).

Define the maximum allowed cluster size to be κ. Following van Kampen (1992), introduce

first P (n, t), the probability of being in state n at time t, governed by the probabilistic master

equation

Ṗ =

κ−1∑
i=1

κ−i∑
j=1

(
E i,1Ej,1E i+j,−1 − 1

)
Coal.i,j,i+jP +

κ∑
i=1

(
E i,1E1,−i − 1

)
Frag.i,1P (5.12)

where step operators E i,j indicates a change in index i by amount j in the value of n in the argu-

ment of P , Coal.i,j,i+j represents the rate of coalescences of clusters of sizes i and j into clusters

of size i+ j, and Frag.i,1 represents the rate of shattering of clusters of size i into monomers. The

groups of step operators represent entering the current state, while the subtraction of 1 represents
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leaving the current state with the same type of event. The central ansatz is that the system state n

can be written in terms of the normalised mean-field solution φ and fluctuations ε:

n = Mφ +
√
Mε. (5.13)

The step operators can then be expanded in terms of the system size M :

E i,±1 = 1±M−1/2∂εi +M−1(2!)−1∂2εi + . . . (5.14)

Since the φ solve the deterministic system, we are more interested in studying the fluctuations ε

for which we write P (n, t) = P (Mφ +
√
Mε, t) =Π(ε, t), whose time derivative is related to P :

Ṗ = ∂tΠ−M1/2
κ∑
i=1

dφi
dt
∂εiΠ. (5.15)

Upon performing these substitutions and expansions, terms associated with M1/2 solve the deter-

ministic system.

Terms associated with M0 can then be collected and govern the (highest-order) perturbations

to the deterministic system (assuming κ � M ). They constitute a Fokker-Planck equation of the

form

∂tΠ = −
∑
i,j

Ai,j(t)∂εi {εjΠ}+
1

2

∑
i,j

Bi,j(t)∂εi∂εj {Π} (5.16)

where A corresponds to the Jacobian of the deterministic system and B is symmetric and non-

negative semi-definite (van Kampen, 1992). To study the oscillations using Fourier analysis, we

follow McKane et al. (2007) in converting the Fokker-Planck equation to a Langevin equation

ε̇ = Aε + η(t) (5.17)

where η is multivariate zero-mean Gaussian noise with covariances

〈η(t)η†(t′)〉 = Bδ(t− t′). (5.18)

We use † to denote the conjugate transpose. Neglecting proportionality constants, this allows us

to apply the Fourier transform, with frequency power spectrum

W (ω) = Tr
(

(−iω1−A)−1B(−iω1−A)†
−1)

. (5.19)

(Here, 1 indicates the identity matrix and i, the imaginary unit.)

We note a few details before discussing the results. Due to the de-meaning in Fourier analysis,

the zero frequency signal should have (near) 0 power and we exclude it in what follows to not

distort the plots. Additionally, conducting the above analysis for System (5.9) induces a singular

matrix A, since φ1 + 2φ2 + 3φ3 = 1. Using this relationship to reduce the size of the matrix

removes not only the singularity, but also the direct evaluation of fluctuations in ε3, so we do not

do so here. There is also a proportionality factor missing, so when presenting the power spectrum

directly we scale both the empirical data and theoretical values by the area under the curve (in the

former case, integration between (−0.5, 0.5), but (−∞,∞) in the latter). Each of our simulations

is created by tracking the number of clusters for each size and applying one of coalescence or
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Figure 5.2: Fourier analysis of empirical and theoretical coalescence and fragmentation for
κ = 3, M = 100, and Pr (Frag.) = 0.1, using the average of 1,000 simulations. (Left) Power
spectra for ε1, empirical (‘data’) in blue with theoretical (‘calculated’) in orange. Both spectra are
rescaled by their area and plotted on a logarithmic power (y) axis. The shape is broadly correct,
but the shoulders are higher for the theoretical spectra, possibly due to simulation constraints and
truncation in the theoretical calculation. (Right) Ratios of power spectra for ε2 and ε3 to that of ε1.
Good agreement is observed over the majority of frequencies, with divergences occurring for very
low frequencies. Variations in the empirical results are over a narrow range and can be reduced
with more trials.

fragmentation each discrete time-step using M = 100,Pr (Frag.) = 0.1; impossible coalescences

fail to occur. This is in contrast to the stochastic simulation algorithm used in Figure 5.1, which

attempts to simulate continuous time directly. For a single simulation the results of Fourier analysis

are quite noisy, so we have averaged the power spectra of 1,000 simulations in order to better show

the results.

In Figure 5.2 (left), we contrast the theoretical power spectrum with the average power spec-

trum for the monomer fluctuations on a logarithmic power axis. Other power spectra are similar

in appearance. Broadly speaking, the calculated fluctuations in ε1 have broadly the same shape,

but different shoulders (at high frequencies) and different maximum powers (at low frequencies).

On the other hand, we also examine the relationships between the (unnormalised) fluctuations

in Figure 5.2 (right) in which we divide the fluctuations of clusters of sizes 2 and 3 by those of

monomers. There is rough agreement between the data and the calculated ratios of the fluctua-

tions. The median result for the data is 0.154 for the ratio of the power spectra of ε2 to that of ε1
and 0.128 for ε3 to ε1 with 95% intervals of [0.141, 0.167] and [0.121, 0.137] respectively. The

theoretical ratio evaluated at approximately the same frequencies has median ratios of 0.153 and

0.131 respectively.

Generally the results of Figure 5.2 indicate that there is modest agreement between the em-

pirical and theoretical spectra, but there is strong room for improvement. There are two obvious

sources of error. First, there is the truncation of the Fourier analysis, since time and sampling are

not truly continuous compared to in the theoretical situation. Second, there is the linear approx-

imation in the theoretical calculation, i.e. the truncation of the powers of M . It is not obvious

how these errors necessarily interact, but we conjecture that expanding the theoretical calculation

would improve the peak near the zero frequency as well as the shoulders of the distribution (due

to the area normalisation), while more sampling would improve the shoulders in the data. There

118



is fairly good agreement between the ratios of the power spectra of the fluctuations to each other,

which supports the broad assertion that the theory and data match. If the ratios had not agreed,

that would have suggested that there were systemic deviations that were not accounted for in the

bulk of the theoretical calculation. Instead, deviations occur in the frequencies that additional

powers of M would be expected to influence. We would expect improvement in Figure 5.2 as

M is increased, since errors from both forms of truncation would be mitigated. Of course, in-

creasing M would also reduce the stochasticity in the system and cause the system to deviate less

from the mean, since it would also reduce the effects of the higher powers of M in the theoretical

calculation. This in turn risks potentially eliminating the oscillations that we are trying to study

here.

While we have presented the proposed steady-state, the analysis in this section assumes that

the steady-state exists and is stable in the sense of persistence and attraction of other states. While

there are deviations when simulating a discrete system, those deviations should fall off rapidly as

M is increased, leaving the system to be absorbed into the proposed steady-state. As discussed

in Section 2.4, fragmentation is used to create a steady-state by balancing coalescence, but such

a balance has not been guaranteed. In the next section, we examine the existence of cycles that

emerge when fragmentation does not balance coalescence, which we term gel-shatter cycles.

5.3 Gel-shatter cycles

Despite this wealth of individual results, a clear understanding of the dynamics underlying the

macroscopic power-law steady-state is lacking. As we shall show, cyclicity, beyond what we

would normally expect from stochasticity, is a ubiquitous feature of the system, despite the pre-

sumed existence of a steady-state. This cyclicity appears in the form of the repetition of steady

accumulation followed by sudden shattering.

It is commonly presumed that in the absence of external changes to the system the cluster

size distributions emerging from the tension between coalescence and fragmentation necessarily

tend to a steady-state. However, it has recently been discovered that this does not need to be the

case: perpetual oscillations were observed in the mean-field simulations of a system with a special

choice of coalescence and fragmentation (C-F) rules (Matveev et al., 2017). Most recently, it has

been shown that temporal oscillations can arise via a Hopf bifurcation in a class of C-F processes

where clusters grow or shrink by addition or deletion of monomers (Pego and Velázquez, 2020).

Both findings predicted deterministic oscillations and relied on mean-field descriptions.

In this section, we use simulations to show that stochastic cyclical dynamics, dependent on

system size, emerge for a broad class of C-F processes. We focus on a particularly important class

of multiplicative coalescence and multiplicative fragmentation processes which are widely used

in applications. We provide simple scaling arguments to explain the observed dependence of the

recurrence time on the system size.

Recall Smoluchowski’s equations for C-F, Equation (5.1). In these equations, we have both

a coalescence kernel K and a fragmentation kernel F . In this section, we take the multiplicative

coalescence kernel, which naturally emerges in describing random network growth: when two

nodes are randomly connected by an edge per unit time, two clusters of connected nodes coalesce

at the rate K(i,j) = K̂(i/M)(j/M), where K̂ is constant and the system size M is the total

number of nodes. Similarly, we take the multiplicative fragmentation rate to be proportional to

the cluster size, given by F (i) = F̂ (i/M), where F̂ is constant. This particular case is that of
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shattering, discussed in Section 2.4. These kernels can be conveniently simulated numerically by

picking a random node and, if coalescing, picking another random node and connecting every node

in the corresponding clusters or, if fragmenting, removing every connection within the cluster. In

essence, this is an alternative formulation of the stochastic system that we posed in Section 5.2,

which we can then simulate in either discrete or continuous time.

The typical stochastic dynamics of four such simulations and the emerging cycles are seen

in Figure 5.3(a), which shows a sample of the trajectory in the (kmax,N) plane, where N is the

total number of clusters and kmax is the size of the largest cluster. Each distinct counterclockwise

cycle begins in the top-left with a predominance of monomers. A period of gradual growth of

kmax is accompanied by a decrease in N , taking the trajectory slowly down and to the right before

accelerating rightward through gelation until growth ends in an abrupt random jump back to the

top-left with ∆N ≈ −∆kmax. This clearly evidences that 1) coalescence leads to the formation

of very large clusters during the periods of gradual cluster size growth and 2) such periods end

in shattering of the largest cluster. However, the cycling dynamics is not limited to the growth

and shattering of the largest cluster but involves the whole cluster size distribution. Indeed, our

simulations show that the cluster size distribution is very broad and can be fitted to (truncated)

power laws with the time-dependent exponent α(t) cycling in the range 2.7 − 2.9. During the

period of coalescence, the cluster size distribution is broadening and α decreases appreciably. To

the best of our knowledge, these gel-shatter cycles have not been previously described.

The gel-shatter cycles are strongly dependent on the system sizeM . Figure 5.4 presents a ‘heat

map’25 of the times the simulation spends in different regions of the (kmax,N) plane (normalised

Figure 5.3: Stochastic coalescence-fragmentation cycles. (a) Number of clusters N versus max-
imum cluster size kmax. The counterclockwise trajectory shows periods of relatively gradual
growth of the largest cluster followed by its abrupt shattering. (b) The time-dependent power law
exponent α obtained by fitting the instantaneous cluster-size distribution to a (truncated) power
law using maximum likelihood estimation. The coloured region corresponds to the trajectories
shown in (a). (c) Maximum cluster size as a function of time. (d) For comparison, a deterministic
numerical evaluation of M = 3 × 103 where we plot the normalised N calculated directly from
the equations against simulated kmax. To simulate kmax, we treat the mass as a probability dis-
tribution and repeatedly draw cluster sizes until we the total cluster sizes is greater than M . We
then discard the last cluster drawn and replace it with the remaining mass needed to reach M . The
points are plotted at the median and red triangles are plotted at the mean. The bars represent 95%
of results. Here K̂ = 0.99, F̂ = 0.01 and the total populations is M = 105 in plots (a)-(c).

25A heat map displays the number of times a value is observed in a two dimensional region, analogous to a two
dimensional histogram. Here, darker colours signal more occurrences on a logarithmic scale.
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Figure 5.4: Cluster summary statistics. System sizes are M = 102, 103, 104, and 105 (left to
right), and fragmentation rates F̂ = 10−4, 10−3, 10−2, and 10−1 (top to bottom, with coalescence
rates K̂ = 1− F̂ ). The number of clusters N and the maximum cluster size kmax are normalised
by M . Darker regions represent states that emerge more often. The red border line denotes the
boundary of the region visited by the system.

by M for comparison between different populations). For low fragmentation rates and small

system sizes (top-left corner) the system visits a broad shoulder-like region. The ‘elbow’, the

change in gradient of its lower boundary, corresponds roughly to gelation. As fragmentation rate

and system size increase, the broad distribution collapses to a very small region within which

the stochasticity is not visible as distinct cycles. This shows that the assumption of a steady-

state should not be considered given for all C-F systems. We do not always see the dissipation of

dynamics as the system evolves with time due to the rarity and magnitude of fragmentation events,

which are averaged over in the mean-field system. Furthermore, the necessary components appear

to only be the existence of gelation and sufficiently strong fragmentation, as we shall observe.

Note that, due to the natural coupling between the system size and the maximum cluster size as

well as the lack of the apparent steady-state and persistence with large system size, the methods

employed in Section 5.2 cannot analyse these cycles. (That is, such methods might be applicable

when M = 105 and F̂ = 0.1, but not when F̂ = 10−4, compare and contrast in Figure 5.4.)

The mean recurrence time 〈trec〉 is defined to be the number of computational steps between

successive shatterings of the largest cluster, averaged across simulations with the same parame-

ters. This can be thought of as the average duration of a cycle in the gel-shatter regime. The

dependence of the mean recurrence time 〈trec〉 on system size M for varying fragmentation rates

F̂ shows crossovers between three distinct regimes: for small systems and small fragmentation

rates, 〈trec〉 ∼ M0 while modestly increasing M or F̂ yields 〈trec〉 ∼M1/2, before crossing over

into a regime with superlinear growth of 〈trec〉 with M . Remarkably, these curves, i.e. plotting

functions of 〈trec〉 against functions ofM , show data collapse when F̂ 〈trec〉 is plotted as a function
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Figure 5.5: Observed data collapse in terms of r. Points are plotted for M = 102, 103, 104 and
105, but data were additionally gathered at M = 3× 102, 3× 103 and 3× 104. (a) When plotting
the mean recurrence time 〈trec〉 multiplied by the fragmentation rate F̂ , we see that the middle
region of unforced gel-shatter cycles has strong data collapse following a nearly linear trend on
log-log axes. (b) When plotting the order parameter K, we observe a plateau of K in the region of
unforced gel-shatter cycles.

of the dimensionless parameter

r =
F̂M

K̂
. (5.20)

The physical meaning of r is the ratio of the characteristic times of gelation Tg ∼ M/K̂ and

shattering Tf ∼ 1/F̂ . Figure 5.5(a) demonstrates that

〈tr〉 = F̂−1g(r), (5.21)

where the scaling function g(r) ∼ 1 for r � 0.1. For larger values of r, the scaling function

crosses over to g(r) ∼ r1/2 and this behaviour persists for almost four orders of magnitude of r.

Finally, for r & 103, the scaling breaks down.

In order to explore further the nature of the stochastic gel-shatter cycles and distinguish cycli-

cal dynamics from acyclical stochastic fluctuations, we introduce the cyclicity order parameter K
as the ratio of the number of computational steps that result in growth of kmax minus those that

result in loss to the total number of computational steps. Large K indicates many steps of growth

followed by abrupt collapse, characterizing gel-shatter cycles, and in contrast to generic stochastic

fluctuations which have no preferred sense. The order parameter K depends non-trivially on r,

see Figure 5.5(b). Here K(r) forms hump-shaped curves with the maximum around r = 10. The

order parameter is appreciably large, K > 0.1, for 0.1 < r < 103, which constitutes the middle

regime with 〈tr〉 ∼M1/2.

We can now identify the different scalings as three physical regimes:

(i) Weak fragmentation or forced cycles. Here Tg � Tf and coalescence quickly results in a

single gel cluster. The gel is shattered at the rate F̂ and hence the emerging cycles have the

mean recurrence time 〈tr〉 ∼ F̂−1. This regime is physically unsurprising and we are not the

first to note it (Ruszczycki et al., 2009, p. 301).

(ii) Unforced gel-shatter cycles. Here Tg ∼ Tf and the cycles arise from a non-trivial interplay

between the dynamics of gelation and shattering. The cyclicityK reaches a maximum in this

regime. The presence and extent of this regime in gelling C-F systems is our main finding.
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(iii) Fragmentation-dominance. Here Tg � Tf and fragmentation is so strong as to preclude

formation of large clusters. This annihilates the gel-shattering cycles, leaving only stochastic

variation in a small region.

We now provide a simple heuristic scaling argument to explain the behaviour of the mean

recurrence times and gain further insight into the gel-shatter cycles.

Assume the dynamics are dominated by continuous growth and shattering of the largest cluster.

Let the growth of the largest cluster due to coalescence be approximated by v(t). The probability

P (t) that the largest cluster is not shattered by time t is governed by

dP (t)

dt
= −F̂M−1v(t)P. (5.22)

Hence the probability density for shattering at time t is

p(t) = −dP (t)

dt
= F̂M−1v(t)e−F̂M

−1
∫ t
0 v(τ)dτ . (5.23)

In the forced-cycles regime (i), coalescence quickly leads to a single large cluster of sizeM , hence

v(t) = M and

p(t) = F̂ exp
(
−F̂ t

)
.

This is the exponential distribution with mean 〈trec〉 = F̂−1; thus g(r) ∼ 1, r � 1.

In the unforced gel-shattering cycles regime (ii), assume linear growth v(t) = cK̂t, where

c > 0. Then

p(t) = cF̂ K̂M−1te−cF̂ K̂M
−1t2/2.

This is the Rayleigh distribution with scale parameter
(√

cF̂ K̂M−1
)−1

and mean

〈trec〉 =

√
πM/(2cF̂ K̂). (5.24)

Hence, g(r) ∼ r1/2 in regime (ii). Also, it is straightforward to show that the largest realisable

cluster size scales as
vmax
M
∼ r−1/2.

This scaling explains the shortening of the ‘elbow’ on Figure 5.4 for larger M and F̂ .

In this section, we have described the distinctive new phenomenon of gel-shatter cycles. We

have studied how they emerge as a result of imperfect balance of otherwise independent coa-

lescence and fragmentation processes and provided statistics to characterise the transition from

forced cycles through stochastic unforced gel-shatter cycles to the steady-state anticipated in the

literature. Crucially for applications, these cycles do not emerge in the mean-field limit. In the

next section, we examine the robustness of the steady-state and gel-shatter cycles to explore their

ubiquity in the presence of alterations to the underlying rules of the system.

5.4 Robustness

In the previous section, we characterised different regimes of coalescence and shattering fragmen-

tation systems with multiplicative kernels. We write the binary coalescence kernel as K(i,j) =

K̂(i/M)(j/M) and the shattering fragmentation kernel as F (i, k) = F̂ (i/M)δk,1, where K̂ and
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Figure 5.6: Coalescence and fragmentation summary statistics, M = 104, Pr (Frag.) = 0.20.
Four simulations were conducted (black, blue, red, and purple). Beginning at the top-left and
proceeding counter-clockwise, we present a heatmap of the locations of the simulations in the
(kmax
M , NM ) plane, the time series of kmax, the time series of the MLE α estimate, and the time

series of the KSMLE α estimate. Note we have trimmed very large (> 5) and very small (< 1)
estimates of the KSMLE α; these correspond to failures to fit the system.

F̂ are reaction rates, i, j, and k are cluster sizes, and M is the total system size. We were able to

characterise the different regimes using a dimensionless parameter r = F̂M/K̂, corresponding

to the ratio of time to gelation to time to shatter, and cyclicity order parameter K, which is the

average of the sign of the change in the largest cluster size kmax over time. The three regimes

we characterised were steady-state, in which the system exhibited slight stochasticity in a narrow

region, stochastic gel-shatter cycles, in which the system alternated between growth over a long

period that randomly ends in shattering before repeating, and forced gel-shatter cycles, in which

the system is dominated by only growth until no more growth can occur, at which point the system

shatters and begins anew. In the previous section, these regimes are demonstrated and explored by

varying M and F̂ = 1− K̂ ∈ [0, 1], while the underlying rules of the system were untouched. In

this section, we take the opposite approach: we fix M = 104 and take values of F̂ that result in

two model systems, one that is approximately in steady-state and one that experiences stochastic

gel-shatter cycles. We then perturb these model systems by changing the types of coalescence and

fragmentation processes used.

Multiple results from the literature suggest that the steady-state size distribution of a sys-

tem of coalescence and fragmentation is robust to perturbations (e.g. D’Hulst and Rodgers, 2000;

Ruszczycki et al., 2009; Clauset and Wiegel, 2010; Kyprianou et al., 2018). As such, aside from

the impacts on cyclicity, which we will measure using K, we also will attempt to measure the

impacts on the proposed power-law steady-state. As discussed in Section 2.1, there are a few
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Stat. MLE KSMLE KSMLE
xmin = 1 xmin > 1

0.99 2.95 2.95 2.77
0.95 2.92 2.92 2.73
0.75 2.88 2.88 2.69
Mean 2.86 2.86 2.66
0.50 2.86 2.86 2.66
0.25 2.83 2.83 2.63
0.05 2.80 2.80 2.58
0.01 2.78 2.78 2.54

Figure 5.7: Coalescence and fragmentation exponent summary statistics. We present the distribu-
tion of estimated exponents for Figure 5.6. Together, these simulations constitute 80,000 samples.
(Left) Violin plots compare how the fitted exponents are distributed. (Right) A table showing quan-
tiles and the means for the fitted exponents. The quantiles correspond to the horizontal lines within
the violin plots. MLE α and KSMLE α agree when the KSMLE xmin = 1. When xmin > 1, the
KSMLE α decreases by approximately 0.2. The theoretical result indicates a truncated power-law
distribution with exponent 2.5.

different ways to fit power-law distributions to data. We focus on the fitted exponent α from two

methods, MLE and KSMLE, as well as the empirical largest cluster kmax. (We find that the fitted

minimum xmin is uninformative for discussions of the perturbations.)

In order to characterise the perturbations, we begin by characterising the effectiveness of the

MLE and KSMLE estimates of α. To do so, we will identify our sample steady-state system

and its parameters and the behaviour of the fitting methods. We then can proceed to describe the

influence of various rules perturbations on the steady-state system. After exploring the results for

the steady-state system, we can perform our analysis again on a system selected for its gel-shatter

cycles.

Multiplicative coalescence and fragmentation kernels are together expected to generate a steady-

state that is a truncated power-law distribution with an exponent of (approximately) α = 2.5, see

Section 2.4. As shown in Section 5.3, we need to be careful about selecting an appropriate C-F

system to study, since not all such systems will tend towards a steady-state size distribution. We

take M = 104 and Pr (Frag.) = F̂ = 0.2 = 1 − K̂, which, with size-biased and system size

normalised kernels, yields r = 2.5× 103 > 103. Hence, this system is expected to have a steady-

state due to the frequent fragmentation. The results of four simulations of this system can be seen

in Figure 5.6, where we show, top-to-bottom, left-to-right, a heat map of the locations the sys-

tem visits (after burn-in) in (kmax/M,N/M) space, kmax over time, the KSMLE α values over

time, and the MLE α values over time. In practice, this system has a small amount of cyclicity

K = 0.123 on average across the simulations, which can be seen upon close examination of the

time series. In comparison to Figure 5.4, the region explored is far narrower with kmax/M within

[0.0023, 0.0554] and N/M within [0.6318, 0.7261] across all simulations. Of these simulations,

99% of time steps sampled remained within [0.0035, 0.0276] and [0.6427, 0.7106] respectively,

demonstrating the far steadier results. For comparison, F̂ 〈trec〉 ≈ 120. The average cyclicity and

95% intervals for KSMLE and MLE α are collected in the first row of Table 5.1, within which we

will collect analogous values for each system and perturbation used.

The first question is whether the deviations in the exponent of our model system are issues
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Perturbation Cyclicity K KSMLE (xmin > 1) MLE
Steady-state 0.123 [2.568, 2.754] [2.788, 2.932]

Accretion (3, Uniq.) 0.550 [2.246, 2.685] [1.907, 2.135]

Attrition (3, Uniq.) 0.010 [2.849, 3.047] [3.122, 3.229]

Accr. and Attr. (3, Uniq.) 0.251 [2.341, 2.769] [2.105, 2.256]

Accretion (3) 0.557 [2.248, 2.682] [1.906, 2.136]

Attrition (3) −0.010 [2.118, 4.848] [3.528, 3.635]

Accr. and Attr. (3) 0.168 [2.468, 2.806] [2.178, 2.315]

Coal. Stick-breaking 0.094 [2.534, 2.768] [2.725, 2.829]

Frag. Stick-breaking 0.412 [1.890, 2.166] [2.241, 2.402]

Coal. and Frag. Stick-breaking 0.236 [2.208, 2.393] [2.298, 2.369]

CRP θ = 1.20 0.436 [2.075, 2.257] [2.274, 2.376]

CRP θ = 1.50 0.246 [2.299, 2.426] [2.434, 2.511]

CRP θ = 1.80 0.156 [2.459, 2.620] [2.640, 2.734]

Perturbation Cyclicity K KSMLE (xmin > 1) MLE
Gel-shatter 0.489 [2.474, 2.829] [2.656, 3.163]

Accretion (3, Uniq.) 0.725 [2.248, 2.957] [1.559, 2.800]

Attrition (3, Uniq.) 0.169 [2.615, 2.991] [2.970, 3.316]

Accr. and Attr. (3, Uniq.) 0.567 [2.370, 2.884] [1.960, 2.710]

Accretion (3) 0.718 [1.603, 2.849] [2.261, 3.043]

Attrition (3) −0.064 [2.904, 3.191] [3.276, 3.435]

Accr. and Attr. (3) 0.496 [2.420, 2.883] [2.062, 2.673]

Coal. Stick-breaking 0.497 [2.387, 2.626] [2.495, 2.850]

Frag. Stick-breaking −0.104 [0.686, 1.563] [0.902, 1.440]

Coal. and Frag. Stick-breaking 0.902 [2.216, 2.984] [2.225, 2.650]

CRP θ = 1.20 0.396 [0.979, 1.838] [1.027, 1.956]

CRP θ = 1.50 0.888 [1.875, 2.519] [2.357, 2.964]

CRP θ = 1.80 0.806 [2.362, 2.609] [2.588, 2.799]

Table 5.1: Summary of robustness results in coalescence and fragmentation. In all cases,M = 104

and four simulations were used. For steady-state cases, Pr (Frag.) = 0.20. For gel-shatter cases,
Pr (Frag.) = 0.01. To measure cyclicity, we use the order parameter K from Section 5.3 averaged
over the simulations. The ranges given for KSMLE and MLE estimates of power-law α contain
95% of empirical results. Perturbations used are explained in the text. K > 0.2 is characteristic of
gel-shatter cycling.

For steady-state, without failures to fit (KSMLE α < 0.5 or α > 5) removed, for KSMLE
we instead have [0, 2.759]. Attrition (3, unique) and attrition (3) instead take [0, 18.21] and
[0, 14.545] respectively. Accr. and attr. (3) instead takes [0, 2.807]. Coal. stick-breaking instead
takes [0, 2.735] and coal. and frag. stick-breaking takes [0, 2.390]. CRP θ = 1.50 instead takes
[0, 2.425] and θ = 1.80 takes [0, 2.623].

For gel-shatter cycles, the KSMLE range is [0, 2.840]. Attrition (3, unique) and attrition (3)
KSMLE instead take [0, 3.005] and [0, 20.446]. Coal. stick-breaking KSMLE takes [0, 2.628].
Frag. stick-breaking KSMLE takes [0, 1.492] while MLE takes [0.909,∞). CRP θ = 1.20
KSMLE takes [0, 1.810].
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with the underlying system, problems with fitting, or finite size effects. To begin, we make a note

about the presence of two regions in the KSMLE α plot in contrast to the MLE α plot. This is

due to the sensitivity of the KSMLE α to the calculated xmin for which the power-law distribution

begins. The higher values arise when xmin = 1 is preferred by the algorithm26, while lower values

arise when xmin ≥ 2. All cases where KSMLE technique has xmin = 1 also have the MLE α

equal to the KSMLE α. There is not an obvious relationship between the MLE α and the KSMLE

α when the KSMLE xmin is otherwise, although there is still an expected correlation (0.454). The

KSMLE α and MLE α are then equal 61.6% of the time. The empirical distributions and summary

statistics of the KSMLE α and MLE α can be seen in the violin plots27 and table of Figure 5.7.

Divergence from a normal distribution is only evident in the tails of the distribution.28

Figure 5.8: Coalescence and fragmentation ex-
ponent summary statistics by system size. We fix
the probability of fragmentation to Pr (Frag.) =
0.20 and vary the system size M . For each
system size, we simulate the system four times
and fit exponents using the MLE and KSMLE
methods before displaying the distributions of
the fitted exponents using violin plots. The thick
black line additionally represents the mean in
each case. In each case, as M increases, we see
a reduction of variance and a plateau to estimates
above the theoretical 2.5. Note that r = F̂M

K̂
in-

dicates that we expect gel-shatter cycles for the
simulations M ≤ 3 × 103 as opposed to steady-
states.

In the theoretical solution to the coales-

cence and fragmentation equation, discussed

in Sections 2.4 and 5.2, we observed a trun-

cated power-law with exponent 2.5 for mul-

tiplicative kernels. Here we have values that

are mostly higher: only 3.92% of cases have

KSMLE below 2.5 and, of those, 97.0% have

values below 1, suggesting that there was a

failure to fit a power-law distribution instead

of a normal result. The minimum value of the

MLE, on the other hand, is 2.73. This is not an

uncommon occurrence, as can be seen in Fig-

ure 5.8 where we reproduce the violin plots of

Figure 5.7 for varying M . The empirical dis-

tribution appears to collapse to a narrow set of

values asM increases, but these values are dis-

tinctly above the theoretical 2.5 even for quite

large populations of M = 105. The only time

these values really appear to coincide is for

M = 103, for which r = 250 and we thus have

gel-shatter cycles, suggesting that the model is

not, in fact, in steady-state.

This sort of difference between the fitted

exponent and the theoretical exponent is ac-

tually not surprising. A simple experiment to

demonstrate this is to truncate and normalise

the solution to the theoretical coalescence and

fragmentation equation and then simulate par-

titions from it. Here, we do so by repeatedly

26Note that, as discussed in Section 2.1, that the MLE for the minimum of a distribution is merely the minimum of
the dataset and so we do not see split behaviour when applying the MLE method.

27In a violin plot, empirical densities of (subsets of) the data are fitted and then plotted adjacent to each other. The
densities fitted are usually mirrored about the axis they are fitted on, giving a shape similar to a violin. The intention is
to allow rapid comparison of empirical densities (e.g. between dataset subsets).

28Determined using quantile-quantile plots, not shown. Comparison is against a standard normal distribution, and
divergence is visible to the naked eye beginning two standard deviations away from the mean.
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Stat. MLE KSMLE KSMLE
xmin = 1 xmin > 1

0.99 2.93 2.93 2.77
0.95 2.91 2.91 2.74
0.75 2.88 2.88 2.70
Mean 2.86 2.86 2.66
0.50 2.86 2.86 2.66
0.25 2.84 2.84 2.63
0.05 2.81 2.81 2.59
0.01 2.79 2.79 2.55

Figure 5.9: Coalescence and fragmentation exponent simulated summary statistics. We present
the distribution of summary statistics of 1,000 samples from the theoretical coalescence and frag-
mentation solution with M = 104 and Pr (Frag.) = 0.20. Compare with Figure 5.7 for which we
observe good agreement, suggesting deviations from the expected exponent α = 2.5 are system-
atic.

drawing from the normalised solution until the sum of the cluster sizes drawn would exceed the

amount of mass in the system. We discard the last cluster drawn and add the missing mass as an

additional cluster. While inexact, for large enough systems the difference should be small. When

this procedure is performed 1,000 times, as in Figure 5.9, we observe good agreement with Figure

5.7. A natural consequence is that previous studies that rely on the power-law implementation

of the methods of Clauset et al. (2009b) without taking account of the truncation in the theoret-

ical solution can expect a positive bias in their result unless they happen to use a population of

M = 103.

There is a naturally large variety of possible variations in the microscopic rules that can be

implemented. We will confine our discussion to variations that have interesting effects on the

population and that are plausible for a social group to experience. We begin our variations with

the addition of Becker-Döring type mechanics in conjunction with the existing size-biased coales-

cence and shattering (Ball et al., 1986). For a social group, this might represent natural turn-over

in which individuals leave autonomously (e.g. due to changing beliefs) or join a group without

being actively recruited. We refer to these as attrition, the loss of monomers from clusters, and

accretion, the gain of monomers to clusters, beyond the existing coalescence and fragmentation

structure. On a given time step, attrition and/or accretion can occur to multiple clusters (which

we may require to be unique) at a fixed rate. This adds additional transitions to the underlying

process:

ni
ati→ ni−1 + n1 (5.25)

and

ni
aci→ ni+1 (5.26)

for attrition and accretion respectively. Note that we do not have the rates at and ac dependent on

n1, but to conserve mass we will deduct from n1 when accretion occurs. We will assume that both

attrition and accretion operate on individuals within groups or clusters such that the processes are

size-biased. This can be thought of as a process where the clusters are stable or unstable in contrast

to neutrally reacting with their surroundings. Expanding System 5.1 to account for attrition and
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accretion, we have

ṅk =
1

2

k−1∑
i=1

K(i, k − i)nink−i − nk
∞∑
i=1

K(i, k)ni − F (k)nk

+ at((k + 1)nk+1 − knk) + ac((k − 1)nk−1 − knk), k ≥ 2,

ṅ1 =

∞∑
i=2

iF (i)ni − n1
∞∑
i=1

K(i, 1)ni + (at− ac)

∞∑
i=1

ini − acn1 + 2atn2,

(5.27)

where we use at and ac to represent the attrition and accretion rates. Due to the dependence

of MLE α on xmin = 1, fluctuations in n1 can significantly affect the effectiveness of MLE α,

while we expect KSMLE α to be more robust to the effects of accretion or attrition. We have six

cases we wish to consider: accretion alone, attrition alone, and both in combination, as well as

the requirement that any accretion or attrition be conducted on unique clusters within a time step.

As we shall see, requiring that unique clusters experience accretion or attrition will slow down

these processes in extreme cases resulting in different final distributions29. To discuss whether

these perturbations force the system out of steady-state and into gel-shatter cycles, we recall the

cyclicity order parameter K. As in Section 5.3, K is the ratio of the number of computational

steps that result in growth of kmax minus those that result in loss to the total number of steps. For

our standard system in Figure 5.6, K = 0.123. Values higher than 0.2 are strongly suggestive of

unforced cyclicity, while values nearer 0.1 are near the border of cyclic behaviour and steady-state

behaviour.

Accretion alone does not depend strongly on whether we require unique clusters or not, but the

magnitude of the accretion does have an effect. As predicted, the MLE is more strongly affected

than the KSMLE, but both show declines in the exponent predicted. The parts of state space

encountered are lower in N/M , but higher in kmax/M . Accretion also increases K to 0.550 for

accretion to three unique clusters, suggesting cyclic behaviour, albeit of a different character than

that found in Section 5.3. The primary difference is that the accretion system does not as fully

disaggregate as observed in gel-shatter cycles. In contrast, attrition does depend strongly on the

uniqueness requirement; if uniqueness of clusters chosen to attrit is not required then the largest

clusters can more rapidly deteriorate than they can recuperate. This manifests in the complete lack

of any cycles and the inability of the system to grow a cluster beyond the size of 30 when attriting

3 monomers per time step without a uniqueness requirement. Requiring uniqueness instead allows

dynamics more reminiscent of the original system, but with clusters of size approximately 120 or

less when attriting 3 monomers per time step and K = 0.010. Exponents are also larger than in

the standard system, suggesting a less aggregated system overall.

Combining accretion and attrition, set to the same rate, does not generate results similar to

those found in the original simulations, despite the symmetry in their effects. The number of clus-

ters (monomers included) N decreases substantially as the rates increase, more-so if uniqueness

is required, and recorded kmax are larger. While the effects are not as strong as in the pure accre-

tion case, the effects of accretion and attrition at a rate of 9 per time step are similar to those of

pure accretion at a rate of 3 per time step. Additionally, some cyclicity appears to be present, e.g.

K = 0.251 for a rate of 3 per time step with uniqueness. Example violin plots are available in

29Not requiring uniqueness would be more similar to a standard Gillespie style implementation. The additional
complexity produces variations worth discussing and might reflect reactions of a social group to being spontaneously
joined or spontaneously losing members.
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Figure 5.10 (a). Altogether, this demonstrates the sensitivity of the model to changes in the sizes

of the smallest clusters. For our next set of rules, we consider weakening the coalescence and

fragmentation, instead of strengthening them as we did with accretion and attrition.

In the astrophysics literature, collisions can perform both roles of coalescence and fragmenta-

tion dependent on the interaction between the particles colliding (Tanaka et al., 1996). While we

do not adopt that approach here, we do consider a somewhat similar idea. Instead of coalescence

resulting in the larger cluster completely absorbing the smaller one or fragmentation resulting in

the complete shattering of a cluster, we instead consider partial variations in which a cluster can

break into multiple clusters. In a social group context, this represents a group that does not get

completely broken up, e.g. if some people come as pairs or if a group otherwise scatters into still

organised subunits. In order to represent these variations, we rewrite System 5.1 as

ṅk =
1

2

k−1∑
i=1

K(i, (k − i))nink−i − nk
∞∑
i=1

K(i, k)ni − F (k)nk +
∞∑
i=k

F (i)b(i, k)
i

k
ni, (5.28)

where we now allow k ≥ 1, relying upon
∑0

i=1 = 0, and we use b(i, k) ik to represent how a

fragmented cluster of size i contributes to clusters of size k. The function b(i, k) is normalised

so that
∑i

k=1 b(i, k) = 1 for mass conservation during fragmentation. (The factor of i
k assists in

converting between the different cluster sizes.) We recover the original system for b(i, k) = δ1,k.

The first variation we concentrate on is (discrete) stick-breaking, the process of repeated random

division (Pitman, 2006). The implementation is simple: consider a stick, randomly choose a

location to break it, and store the left half. Repeat on the right half, finishing when the right

half is indivisible. More formally, one might write this process as follows. Take n to be the

length of the stick to be broken up and Xi to be the value of the i-th break. Then we sample

Xi ∼ Unif(1 +
∑i−1

j=1Xj , n) where we write Unif to refer to a discrete uniform distribution

on natural numbers. The lengths of the Xi, i.e. the differences Xi − Xi−1 with X0 = 0, then

correspond to the sizes of the clusters that were fragmented. We then interpret b(i, k)i/k as the

expected number of clusters of size k formed from the fragmentation of a cluster of size i, i.e. the

expected number of parts of size k in a random partition of i. The result is b(i, k) = 1/i. We will

show that the system is particularly sensitive to using stick-breaking as a fragmentation variant,

but the system is also sensitive to stick-breaking the smaller of the pair coalescing.

The distribution of exponents can be seen in Figure 5.10 (b), but these distributions do not

convey the full effect on the system. For the case of stick-breaking fragmentation, we not only

have a drop in exponent (the mean drops to 2.03 from 2.66 in our unmodified case for KSMLE

α with xmin > 1 and to 2.32 from 2.86 for MLE α), but the system has a cluster that contains

at least one third of the system size 6.58% of the time (and reaches a high of 5,438). While

stick-breaking fragmentation can completely change the outputted distribution, the effects of stick-

breaking coalescence are more subtle. There is a slight drop in fitted exponents (mean KSMLE

α with xmin > 1: 2.43, mean MLE α = 2.77) and a drop in the largest kmax (down to 291 from

554). Unlike with stick-breaking fragmentation, where there were obvious visual differences when

comparing to the unmodified system’s output, only the scales appear to change. Stick-breaking

coalescence is also less cyclic, K = 0.094, while stick-breaking fragmentation appears to have

transitioned to a cyclic regime, K = 0.412.
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Figure 5.10: Coalescence and fragmentation ex-
ponent summary statistics across system varia-
tions. We set Pr (Frag.) = 0.20 and M = 104.
For each variant, we simulate the system four
times and analyse the KSMLE α for each time
step, displayed in violin plots with the same area.
Accretion and attrition variants select 3 unique
clusters to add or remove a monomer. For stick-
breaking coalescence, the smaller cluster chosen
to coalesce has the stick-breaking procedure ap-
plied. For power-law fragmentation, the expo-
nent θ used in the fragmentation’s power-law dis-
tribution is listed.

Combining both variants in a single sys-

tem results in an intermediate: exponents are

depressed by a lesser amount than for stick-

breaking fragmentation alone (mean KSMLE

α with xmin > 1: 2.10, mean MLE α =

2.33), but max(kmax) = 703, more closely

resembling (visually and in value) the stick-

breaking coalescence case. On the other

hand, K = 0.236, indicating more cyclicity

than the unmodified and stick-breaking coales-

cence cases, but substantially less than stick-

breaking fragmentation. In both the combined

and solely stick-breaking fragmentation cases,

the increased K suggests that more large clus-

ters that would attract fragmentation (which,

as a reminder, is size-biased) instead of the

strictly largest cluster. Cycling does not, as

in the standard case, result in a fully disaggre-

gated system, similar to the observed problem

with accretion.

What makes the stick-breaking fragmenta-

tion variant so potent? There are a few vari-

ants we have used to explore the issue. We

have considered cases where a fixed propor-

tion of the cluster chosen to fragment is shat-

tered, ranging from one-tenth to nine-tenths.

This does not reproduce such large changes in

the distribution however. An alternative way to

generalise stick-breaking is to instead look at

the uniformity with which the stick is broken.

The uniform distribution is a beta distribution with parameters (1, 1), which allows consideration

of other parameter combinations. The system is slightly sensitive to this variation. A third gener-

alisation is more rewarding however. It is straightforward to prove that stick-breaking a discrete

quantity will provide a bounded power-law distribution with exponent 1 in expectation30.

In order to generalise the usage of stick-breaking to generate partitions with power-law proba-

bilities, we turn to the Chinese Restaurant Process (CRP)31 (Pitman, 2006; Goldwater et al., 2011).

The CRP allows us to explore the influence of the exponent used in power-law fragmentation, call

30Proceed by induction: n = 1 yields 1 with probability 1. For n = 2, Pr (X1 = 2) = 0.5, Pr (X1 = 1) = 0.5. In
the X1 = 1 case, proceed to n = 1 and one thus has two 1’s. Hence, one expects 0.5 2’s and one expects 1 1’s. The
induction proceeds in the obvious way.

31Consider a queue at restaurant of length M . Inside the restaurant are (round) tables which can seat any number
of people. The process begins by seating the first person and offering each person in turn an opportunity to sit at any
occupied table with probability proportional to the number already sitting at the table or to occupy a new table with
probability proportional to a parameter which we fix to 1. The parameter θ, 0 < θ < 1, is then introduced as a penalty
on each occupied table. The penalised mass is then redistributed to a new table (Goldwater et al., 2011). The returned
value is the partition of customers grouped by table. As such, if Xi is the assignment of the i-th customer to table Xi
and zi is the partition of i customers amongst the tables z1 . . . z|zi|, the assembly begins with X1 = 1 and proceeds
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it θ, on the exponent of the fitted power-law distribution, α. It is limited to exponents between

1 and 2 however32. A natural question is what then is the expected number of clusters of size k

generated by CRP fragmentation of a cluster of size i, b(i, k)i/k. Adopting the notation of Pitman

(2006), we define

(x)n↑a := x(x+ a) · · · (x+ (n− 1)a) =

n−1∏
i=0

(x+ ia).

As the size i of the cluster fragmented increases, the expectation of the number of clusters of size

k asymptotically scales as

b(i,k)
i

k
∼
(

(1 + θ)i↑1
θ(2)i−1↑1

− 1

θ

)
θ(1− θ)k−1↑1

k!

(Pitman, 2006, Eq. 3.13 and Lemma 3.11). Results can be seen in Figure 5.10 (c). In combination

with (b) and Figure 5.7, we see a smooth transition as θ increases from 1 to 2 in α from a KSMLE

(xmin > 1) mean of 2.03 in the stick-breaking procedure to a mean of 2.66 in the original unaltered

simulation. Similarly, the cyclicity varies as well: K = 0.412 at θ = 1, 0.436 at 1.2, 0.246 at 1.5,

and 0.156 at 1.8.

To summarise, we began by noting and characterising problems in fitting the proposed theo-

retical power-law and demonstrated that they are endemic to the model considered. Then, while

the process of coalescence and fragmentation is considered to be quite robust in the literature (e.g.

D’Hulst and Rodgers, 2000; Ruszczycki et al., 2009; Clauset and Wiegel, 2010; Kyprianou et al.,

2018), we have identified various perturbations that can substantially change the fitted power-law

distribution. Despite the robustness of the KSMLE α of a power-law distribution to perturbations

in the minimum value of the fitted distribution xmin, adding attrition or accretion of monomers to

clusters can drastically change the exponent of the steady-state and even move the system out of

the steady-state. We also identified a particular form of rules perturbation, power-law distributed

fragmentation, that the system is particularly sensitive to and responds smoothly to. Notably, the

perturbed system appears to coincide with the original system when the fragmentation exponent

θ > 2, which contributes to the argument for robustness in the literature.

Next, we turn to determining how a gel-shatter system responds to the same type of perturba-

tions that we applied to the steady-state system. We again set a common set of parameters, here

F̂ = 0.01 and M = 104 so that r ≈ 101 and we have gel-shatter cycles with K = 0.489. This

system is shown in Figure 5.11 and the violin plots of exponents can be seen in Figure 5.12. We

have seen that we can induce cyclicity with perturbations, seen from the increase in K although

not necessarily resulting in gel-shatter cycles due to the removal of strict shattering and the lack of

access to the most disaggregated regions. We also note that using constant and multiplicative ker-

nels together creates imbalances that are reminiscent of extreme forced cycling or steady-states33

with

Pr (Xi = zj |zi−1, θ) =

{
|zj |−θ
i

1 ≤ j ≤ |zi−1|
|zi−1θ+1

i
j = |zi−1|+ 1.

32Theoretically, one could use Price’s network models to access power-law distributed partitions with exponent
greater than 2 (Newman, 2010). In practice, the results did not converge to the expected exponent when partitioning
small numbers (< 1,000).

33Multiplicative fragmentation without multiplicative coalescence does not result in gelation and prevents the system
from growing large enough to begin cycling. Multiplicative coalescence without multiplicative fragmentation results
in the system gelling into a single cluster in a manner similar to the forced cycles, with fragmentation only serving
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Figure 5.11: Coalescence and fragmentation summary statistics, M = 104, Pr (Frag.) = 0.01.
Plot types are the same as in Figure 5.6. The time series shown for estimates of the exponent are
shorter than those for kmax or those in Figure 5.6 to better show details.

Stat. MLE KSMLE KSMLE
xmin = 1 xmin > 1

0.99 3.28 3.21 2.89
0.95 3.08 3.01 2.77
0.75 2.87 2.82 2.67
Mean 2.82 2.79 2.62
0.50 2.78 2.76 2.62
0.25 2.73 2.72 2.57
0.05 2.68 2.68 2.50
0.01 2.64 2.64 2.44

Figure 5.12: Coalescence and fragmentation exponent summary statistics. Conditions are as in
Figure 5.7, except Pr (Frag.) = 0.01 with simulations shown in Figure 5.11. The theoretical
result, on the other hand, indicates a truncated power law distribution with exponent 2.5.
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while a barrier can be used to reduce the amount of stochasticity in the system. As such, we focus

on the same combinations as in the first part of this section: we begin with a discussion of the

effects of accretion and attrition, before turning to stick-breaking and power-law fragmentation.

Figure 5.13: Coalescence and fragmentation ex-
ponent summary statistics system for variants of
a gel-shatter system. The system is as in Fig-
ure 5.10, but with Pr (Frag.) = 0.01. We present
only α ≤ 3.5, but some tails extend beyond
this point. Attrition is the most affected (0.41%
have α ≥ 3.5) with a maximum of 57.9. Simi-
larly, we truncate the minimum to 0.5, for which
stick-breaking fragmentation is the most affected
(8.67% have α < 0.5 with a minimum non-
zero value of 0.0008). The violins in the stick-
breaking cases are barely visible, but present.

As expected, accretion increases the size

of the largest cluster in a cycle, while attri-

tion decreases the same. As accretion in-

creases, cycles become longer and cyclicity

increases, from K = 0.489 with no accre-

tion to 0.798 with accretion at 9 monomers

per time-step. Attrition with uniqueness heav-

ily reduces cycles, while removing uniqueness

outright eliminates them with K = 0.154 and

−0.004 respectively at 9 monomers per time-

step. In both accretion and attrition, a value

of 1 monomer per time-step causes notable

changes in the cyclicity parameter (a rise or

drop of about 0.2 respectively), but effects on

the MLE exponents fitted are more subtle. Di-

vergence from the norm is more obvious in

the KSMLE fitted exponents; violin plots for

the case with uniqueness and 3 individuals per

time-step are presented in Figure 5.13 (a). Ac-

cretion and attrition combined results in no

change to slight increases in cyclicity with-

out uniqueness with K ranging from 0.491 (1

monomer per time-step) to 0.506 (9). With

uniqueness, more sizeable increases compared

to that of pure accretion are observed, with K
now ranging from 0.485 (1) to 0.725 (9) re-

spectively. In contrast to the reduction in the

number of clusters N observed before, there

is a much wider range of N and kmax visited

stemming from the system’s ability to still gel and shatter. Fitted exponents are similar to those

of the accretion case, which are somewhat lower than the standard system. The general observa-

tion we make about the MLE fits is that accretion and attrition appear to be able to exaggerate or

diminish the observed cycles without making substantial visual changes to the KSMLE fits.

Stick-breaking coalescence has very little in the way of obvious effects above and beyond the

model system we are studying. There is a decrease in the largest observed cluster size, as well as

a decrease in the exponents observed (approximately 0.2 for the center and left tail and 0.3 for the

right tail when using MLE and KSMLE with xmin = 1 and 0.2 throughout when using KSMLE

with xmin > 1), but cyclicity is nearly unaffected K = 0.497. Stick-breaking fragmentation is

to reset the system from this state. With both kernels constant, we instead observe a slow build-up of medium size
clusters that then rapidly combine together in abrupt competition with fragmentation. This last version could be said to
be cyclic due to the kernels’ balance and behaviour, but is of a different nature than the gel-shatter cycles. Examples
for comparison are given at the end of this section in Figure 5.16.
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much more potent, even more so than in the steady-state case. The largest cluster sizes observed

are those of the entire system as the system struggles to escape the fully gelled state. Whether

fitting via KSMLE or MLE, the fitted exponents are strongly different and fairly uniformly sam-

pled34. The system clearly no longer experiences gel-shatter cycles: K = −0.104 signifying that

the system spends more computational time fragmenting than growing. The apparent paradox of

having a low probability of fragmentation yet having fragmentation as the dominant feature of the

system is due to the sampling occurring after computational steps.

Combining these two features, stick-breaking coalescence and stick-breaking fragmentation,

results in a hybrid system, Figure 5.14, despite the lack of an impact by coalescence beforehand.

For example, the largest cluster size now contains approximately 80% of the system size at its

largest. This largest cluster is not sufficiently fragmented to cease acting like a gel. It rapidly

begins coalescing with the other clusters in the system. Stick-breaking coalescence prevents the

immediate return to a fully coalesced state: with each coalescence, the smaller cluster is first

subjected to stick-breaking before the larger cluster receives any portion of the smaller. This slows

the system down and provides the state-space’s unique form compared to those of previous figures.

This combination of rare fragmentation, common large clusters, and ineffective coalescence also

gives rise to a high cyclicity value K = 0.902, reflecting a very consistent process of growth and

disaggregation that is nonetheless distinct from the gel-shatter cycle.

There is also a shift in the values of the fitted exponents compared to stick-breaking coales-

cence. MLE α fits are reduced by an additional 0.3 for the left tail to 0.2 for the center and right

tail. KSMLE α fits, on the other hand, feature a much wider range. For the standard case, the

1st and 99th quantiles were 2.68 and 3.34, but for stick-breaking coalescence they were 2.37 and

2.69 and for stick-breaking both coalescence and fragmentation we instead have 2.12 and 3.09.

Combined with our knowledge of the violin plots, Figure 5.13 (b), we conclude that KSMLE α fits

are not concentrated around a single value as with stick-breaking coalescence alone, but are more

likely to appear in a broader range. The fitted exponents have another deviation from the original

process’s fits however. Whereas Figure 5.11 has fits that decrease with time before fragmentation

forces them upwards, Figure 5.14 shows generally opposite behaviour.

To better understand this behaviour we again turn to other variations of fragmentation. Fixed

proportions fragmented do not result in the change in orientation, nor do they appear to escape the

gel-shatter cycle so much as remove the disaggregated portions (‘top’ tail) of the cycle in state-

space. Varying the beta distribution used in stick-breaking does not make substantive changes

compared to stick-breaking fragmentation. Power-law distributed fragmentation, on the other

hand, again interpolates quite well between the observed results for stick-breaking fragmentation

(θ near 1) through stick-breaking coalescence and fragmentation (θ ≈ 1.5) to the original system

(θ above 2). As can be seen by the values fitted in Figure 5.13, (c) in comparison to (b), this is

an approximate comparison. Nonetheless, studying the power-law distributed fragmentations for

varying θ can give us insight into how the underlying process is behaving. Recall that θ controls

the steepness of the power-law distribution of fragments; higher θ results in fewer large fragments

and more small fragments. For very low θ, the fragmentation can be undone in very few steps.

Performing the CRP 10,000 times for a power-law with θ = 1.2 on a cluster of size 1,000, 52%

34Comparison via quantile-quantile plot against a uniform distribution with the same minimum, e.g. 0.501 for MLE,
and maximum, 1.809, values. Deviations are present in the tails, but a uniform distribution matches the bulk quite well
from 0.8 to 1.6. Unfortunately a Kolmorgorov-Smirnov test should not be used due to the presence of ties which
presumably arise due to the limited configurations possible.
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Figure 5.14: Coalescence and fragmentation summary statistics combining gel-shatter cycles with
stick-breaking coalescence and fragmentation. The system parameters are as in Figure 5.11, but
we have replaced both the coalescence and fragmentation rules with stick-breaking variants, as
described in the text.

have a fragment of size 500 or larger and 95% have less than 30 fragments. Increasing θ to 1.5

drops these to 27% and 7.2% respectively. Hence, the CRP for middle values of θ is similar to

the case of stick-breaking coalescence and stick-breaking fragmentation together in that there are

simultaneously large clusters after fragmentation that require many coalescence events to return

to a fully coalesced system. The key difference between the two is reduced to whether large num-

bers of small clusters are formed during the rare fragmentation event or the common coalescence

events.

How then does the transition from power-law distributed fragmentation to standard coales-

cence and fragmentation gel-shatter cycles occur as θ increases? At θ = 1.80, the KSMLE α

fits with xmin > 1 are similar to those of stick-breaking coalescence: the 1st and 99th quantiles

have 2.35 and 2.66 respectively compared to stick-breaking coalescence’s 2.37 and 2.69 with most

major divergence happening above the 99th quantile. The tails of the distributions are then fairly

similar, but the MLE values are substantially different and there is the aforementioned difference

in whether the fitted exponents increase or decrease leading up to the fragmentation. Power-law

distributed fragmentation has the ‘wrong’ direction for the change in the exponents. Increasing θ

through to 1.95 reveals the transition that occurs. Thinking about the shape of the exponent curves

as ‘U’ shaped, as θ increases the left arm increases in size, while the right arm decreases in size,

with balance appearing to occur around θ ≈ 1.85. By 1.90 the fits appear to have been mirrored

and at 1.95 the continuity of the fits appears to improve. We provide examples for the MLE fitted

exponents at θ = 1.80 and θ = 1.90 in Figure 5.15. KSMLE α fits obey a similar transition, but
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Figure 5.15: Coalescence and fragmentation MLE exponent summary statistics combining gel-
shatter cycles with power-law distributed fragmentation, M = 104, Pr (Frag.) = 0.01, and θ =
1.80, left, and θ = 1.90, right. Four simulations were conducted (black, blue, red, and purple).
Compare with Figures 5.11 and 5.14.

the end results are more damped.

We conjecture that this changeover in proceeding from low-to-high and high-to-low exponents

reflects the sensitivity of the fitting procedure to the center of the distribution. For lower θ and low-

to-high values of α, more mass will be sent to the middle of the distribution, while for high θ and

high-to-low values of α the mass is sent towards the far left tail. In the low-to-high case, that

leads to a larger reservoir of medium sized clusters. As coalescence occurs, there is a slight drain

on the medium sized clusters, but larger clusters experience a ‘large’ (relative) growth. As these

larger clusters grow without impeding the smaller clusters, the exponent falls. In the high-to-low

case though, the largest cluster rapidly depletes the middle, which lacks a suitable reservoir. The

largest cluster grows, acting as an outlier to a distribution that increasingly is formed of only small

clusters. The exponent then increases to accommodate the small clusters.

In this section, we have discussed the robustness of both the steady-state expected in the lit-

erature and the phenomenon of gel-shatter cycles. We began by acknowledging some difficulties

from fitting the distribution using the MLE and KSMLE methods of estimating the exponent α and

used these difficulties to understand potential bias in the estimators. We then discussed the effects

of some simple perturbations to coalescence and fragmentation that can have drastic effects on

the resultant detected distribution, including accretion, attrition, stick-breaking, and variant frag-

mentations. We noted power-law fragmentations for their robust ability to transition between the

standard system and stick-breaking fragmentation. We repeated this analysis for a coalescence

and fragmentation process in the gel-shatter regime, again observing that each variant can have

strong effects. Stick-breaking variants and power-law fragmentation were particularly powerful

and could substantially modify the system and its behaviour. In both steady-state and gel-shatter

regimes, we saw that θ & 2 resulted in a return to the standard systems, indicative of the ro-

bustness discussed in the literature. On the other hand, behaviour was drastically different below

these points, despite a smooth transition. To conclude this section, we present Figure 5.16, which

showcases the changing behaviour in kmax across the variations we have discussed in this section

alongside some mentioned elsewhere in this chapter for gel-shatter cycles. This figure highlights

some of the robustness and sensitivity of the cycles to the exact rules of the simulation.
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Figure 5.16: kmax of variations of the gel-shatter cycles. Each panel represents a single simulation
of a single variation. Each simulation has M = 104 and F̂ = 0.01 (K̂ = 1− F̂ ) except constant
fragmentation with M = 105. Accretion and attrition act on three monomers per time step. Gille-
spie refers to the computational steps of the stochastic simulation algorithm. Stick-breaking refers
to stick-breaking fragmentation with a beta distribution and power-law coalescence is equivalent
to stick-breaking coalescence. Most panels show cyclic behaviour. The exceptions, some of the
power-law distributed fragmentations and stick-breaking, instead have fragmentation that removes
so little of the cluster fragmented that the system almost immediately returns to a single cluster.
Note that scales vary between panels to better show differing cycles.

5.5 Discussion

In this chapter, we have examined a well-known model of coalescence and fragmentation which

has been used in a variety of works to model particles coming together and breaking apart in

a well-mixed volume. We began Section 5.2 by noting a previously unrecognised relationship

between different kernels and methods used to analyse them. In particular, we observed that

the steady-state can be expressed in terms of the Catalan numbers, a well studied sequence with

many results that have been effectively reproduced in the coalescence and fragmentation literature.

We also observed that there are natural stochastic oscillations in the predicted steady-state of the

system. Normally, these stochastic oscillations are computationally complex, but can be computed

for small systems.

In practice, these stochastic oscillations are fairly small in comparison to system-wide gel-

shatter cycles, in which the competition between coalescence and fragmentation is unbalanced due

to rare shattering and frequent gelation and does not lead to the steady-state expected in the liter-

ature. As this lack of balance is exaggerated, the system becomes almost deterministic in forming

gels before shattering to reset the entire system, as seen in Section 5.3 with the forced cycles.

We studied these cycles and discovered that they are characterised by a dimensionless parameter

r representing the ratio of the characteristic times of gelation and shattering and by a cyclicity

order parameter K. The critical regime for gel-shatter cycles to exist empirically appears to be

0.1 < r < 103 and K & 0.1, with cycles as the dominant feature when K > 0.2. This system

is robust to some simple perturbations in the rules, but it also does not take much to disturb the

system, as discussed in Section 5.4. We recognised limitations in the standard methods of fitting
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power-law distributions, either by MLE or by KSMLE, to data from the coalescence and frag-

mentation model, likely due to the presence of a truncated power-law tail. Even with this limited

characterisation, we were able to observe large changes in the fitted exponent α when allow-

ing simultaneous Becker-Döring type dynamics of accretion and attrition. The system, whether

with steady-state parameters or gel-shatter parameters, was also particularly sensitive to power-

law fragmentation, even though it was robust to other types of fragmentation. The power-law

fragmentation exponent θ could smoothly, but non-linearly, interpolate between the standard case

θ > 2 and more exotic variations.

These results have broad consequences for the usage of coalescence and fragmentation models

in terrorist modelling. Due to the observed sensitivity of the resultant distribution on the underly-

ing rules, it quickly becomes important to ascertain the exact rules for how the monomers interact.

For coalescence, this is less of a problem in fields like chemistry where chemical pathways are

well-studied and understood, but is critical for social clusters where the equivalent pathways can

easily be unknown. For fragmentation, the system is strongly sensitive to rules like power-law

fragmentation for θ < 2, and it cannot be assumed that a system automatically shatters upon

encountering fragmentation. For example, for a government wanting to reduce the size of so-

cial clusters within a population that follows a multiplicative coalescence kernel, that government

needs to make sure that it fragments clusters more than a power-law with θ = 2 to replicate the

effectiveness of shattering. Otherwise, the results become complex and depend heavily on how

frequent fragmentation is.

Even beyond questions of robustness, the mere emergence of gel-shatter cycles in place of

a steady-state has profound repercussions for future studies. For example, Johnson et al. (2016)

indicates the presence of reincarnation of clusters of followers in a social network. It is not obvious

that these are necessarily different from gel-shatter cycles, and analysis of the social network data

needs to be done with the knowledge that gel-shatter cycles may be the natural state of the system

as opposed to a steady-state. As such the presence of this non-trivial dynamic instead of the

presumed steady-state and the sensitivity to perturbations in the rules needs to be considered when

models of this type are used in applications and these directions represent useful avenues for future

theoretical research.

5.6 Conclusion

There is still much work to be done in modelling coalescence and fragmentation, which is a highly

divided field with many workers unaware of each other’s work (understandably so, given the field’s

diversity). We have contributed to this vast body of literature first a series of connections between

existing bodies of knowledge, with a discussion of the Catalan numbers. Next, we described both

the expected oscillations, arising from stochasticity, and the unexpected, arising from mismatches

of fundamental rules. Finally, we characterised the robustness of both the expected steady-state

and the new gel-shatter cycles in terms of their responses to simple changes in the rules. While

robust to some changes, there are many simple changes with drastic effects on the cluster size

distribution.

Obvious extensions to our findings would be to better analytically characterise the gel-shatter

cycles or the various perturbations and their effects on the underlying system. The former might

explicitly consider the importance of the (effective) homogeneity of the coalescence kernel in the

formation of the gel-shatter cycle. The homogeneity of the coalescence kernel should also be con-
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trasted with the effects of power-law fragmentation, in addition to the scaling of the fragmentation

rate (e.g. size-biased or constant kernel). Formal analytical results beyond scaling arguments for

the regimes in Section 5.3 would also be welcome, especially if it would allow for understanding

of the inherent variation in the system (e.g. recurrence time). Similarly, formal analytical results

and metrics for perturbations would better characterise the robustness of the systems, which is es-

pecially important given the broad variety of physical systems that coalescence and fragmentation

are used to model.

Having discussed three different systems at three different scales and with three different sets

of techniques, we place coalescence and fragmentation modelling in context as well. Coalescence

and fragmentation modelling is the broadest project in this thesis in terms of its operational scope

due to its microscopic scale. Its simple rules suggest that it might be appropriate to model many

quite different generative processes that are cast as dynamical analogies to each other. Its appro-

priateness as such a model is constrained and informed by our knowledge of what happens at other

scales. We should not desire to use a coalescence and fragmentation model because we observe a

power-law distribution, but instead because the observed behaviour of the system at other scales

resembles coalescence and fragmentation. With these thoughts in mind, we proceed to our con-

clusion, in which we consider relationships both between the chapters of the thesis and stretching

beyond the topics already discussed.
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6 Conclusion

The future will be better tomorrow. – Dan Quayle

The last century has suffered many different conflicts, from classical clashes between armies

and navies, to trenches, to aerial campaigns, to bombing campaigns, and to asymmetrical guerrilla

warfare and to ‘hearts and minds’. These conflicts have been terrifying for its populace, with some

of the deadliest wars, both for those fighting the war, and for those whose homes have become the

battlefront. In this thesis, we have taken case studies representing a cross section of the conflicts

of the last century and applied different and new quantitative methods to them. In Chapter 3, we

began with the Battle of Britain, an aerial campaign which the Germans might have won, if only

they had better intelligence, initiative, and the central desire to defeat the British. We continued in

Chapter 4 with a recent debate over whether the last century has been different from the previous:

has there been a “long peace” or a “great violence”? We answered that, consistently, changepoint

analysis indicated yes, something has changed in the time series of battle deaths data, supporting

the affirmative claim. We finished with Chapter 5, in which we detailed a model that has been

proposed for modern conflict, i.e. how insurgents (or other coalescing units) might come together,

and how counter-insurgent forces (or some other fragmenting force) might be applied in order to

prevent the population from organising itself.

Aside from the most general of relationships, “it is all vaguely conflict modelling!”, how then

do these topics relate? What binds this thesis together? Techniques are one obvious riposte. Each

chapter builds on the same foundational belief of mathematical modelling that we can study the

world around us by studying simple mathematical models. The main tool we used to do so is

stochastic simulation, i.e. that we can prescribe some distribution of events and draw from the

distribution to create a time series that we wish to analyse. Bootstrapping the Battle of Britain is

exactly this, where our distribution is the empirical distribution, while in our changepoint analy-

sis of historical battle deaths, we simulated time series that reflected Richardson’s law for deadly

quarrels to create alternative ‘histories’ (if one is permitted to call a time series such) with known

changepoints to test modern methods upon. The simulations of coalescence and fragmentation

models are similar, but instead of drawing static events, as in the changepoint analysis, or drawing

from a changing pool of events and interpreting their cumulative value, as in the Battle of Britain,
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events are drawn using a plausible mechanistic process on an underlying and dynamic popula-

tion. In each case, random sampling is the simple part of the problem; understanding what the

simulations mean for the system as a whole is where the value is truly drawn.

There are other relationships between the models that could be exploited, as suggested in the

introduction. Consider the interactions between the changepoint analysis and the other two chap-

ters. The changepoint analysis was conducted on historical battle deaths, which were supposed

to be the same regardless of the type of underlying war that was fought, but this is obviously at

odds with the other materials in this thesis. One way to relate these chapters is to consider if

battle deaths datasets have a unifying theory centred on generative processes. For example, we

can employ Lanchester’s Laws and related techniques to understand the scalings of battle deaths

in battles. Battles are then simulated according to war types. For clashes between classical armies

such as in inter-state wars or some civil wars, e.g. the United States civil war, we might combine

Lanchestrian scalings with bootstrapping. When dealing with non-state populations and/or insur-

gents, coalescence and fragmentation modelling can be used to model how an insurgency might

organise itself before battle, such as the War in Afghanistan or the Australian Aboriginal wars

fought between settlers and Aboriginal Australians. When dealing with forces using guerrilla tac-

tics, Bohorquez et al. (2009, supplemental materials) considered using encounters between popu-

lations as fragmentation, and one could then resolve such an encounter using Lanchester’s Laws

as well, e.g. following Deitchman (1962). Lanchester’s Laws might very well be inappropriate,

but this unifying model would be testable and is a good first step for future work.

The methods and ideas of changepoint analysis also feed back into bootstrapping the Battle of

Britain and coalescence and fragmentation modelling. Consider Appendix A, in which we used

changepoint analysis to largely support the official historical phases (James, 2000) that we em-

ployed in Chapter 3. Such work validates our decision to split up the bootstrap in turn by phase,

which is clearly a more natural way of splitting the time series than, say, month. Coalescence and

fragmentation modelling also has a natural time series component. There are multiple systems

where such a component is important: e.g. detecting the introduction of a catalyst in a chemi-

cal system, a change in tactics among an insurgent population, or a change in social grouping

behaviour due to changes in lockdown rules. Additional complexity arises in that there is not

necessarily an obvious instantaneous change in summary statistics for all rules. In Figure 5.15,

for example, one would not necessarily switch orientations immediately, even though the range of

estimated power-law exponents is nearly identical. Rather, it seems more likely that the system

would reorganise internally around the new rule and we would want to detect the beginning of

this ‘burn-in’ period, to borrow the language of Markov chain Monte Carlo. Such a changepoint

analysis would require an understanding of the possible variations induced by the rules as well as

the ability to perform a changepoint analysis of the trends in the population or summary statistics.

What then of the Battle of Britain and insurgency modelling? Are these merely linked via

being conflicts? Recall the discussion of trying to model an aerial campaign with Lanchester’s

Laws, in which Johnson and MacKay (2011) identified that the Battle of Britain did not match

theoretical expectations, but more closely resembled duels. Unaimed fire also resembles duels, in

that they both produce linear laws, but unaimed fire is also used to model the inability of forces

to aim on insurgent forces within hiding. In both cases, the defender has the ability to choose

to engage or retreat more readily than the attacker. RAF 11 Group commander Keith Park was

essentially employing guerrilla tactics: the Luftwaffe, the German air force, was unaware of where
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the RAF forces were located, which aerodromes the RAF were using, and which targets the RAF

felt obliged to defend, while the RAF in turn could choose when to engage, how to engage, and

with how many troops to engage. Given that coalescence and fragmentation modelling has been

used for guerilla tactics, one might seek to combine the two.

As forces approach each other, they have a tactically chosen size distribution (of bombers and

fighters) which then is broken up when the forces come into contact. As the dogfights resolve,

the remaining forces coalesce with each other to try to pursue each other until combat is finished.

If coalescence is sufficiently weak or slow, then the system easily remains fragmented (and thus,

resulting primarily in duels) until the end of the battle, which is consistent with the discussion

by Johnson and MacKay (2011). Such a combined model might also explain the weak benefit

that the Luftwaffe obtained from greater sortie numbers. Luftwaffe fighters were under some

obligation (even if the exact amount is up for debate) to defend their allied bombers, which the

RAF were attempting to prevent from bombing Britain. As such, the Luftwaffe might be more

obliged to remain coalesced. One could imagine using footage of dogfights to determine clustering

and the interactions between the different particle types. Perhaps an agent-based model could be

implemented to replicate the dogfighting itself in a three dimensional space. Questions that this

approach might be able to analyse include how to optimise the size distribution preferred by the

forces before entering the dogfight, as well as why higher sortie numbers might have favoured the

Luftwaffe: was it due to the bombers, the status as attacker, or something else entirely? On the

other hand, this approach might be rapidly falsified with questions like ‘when dogfights resolve, do

victors immediately seek out their allies to assist them or return to formation?’ This model might

also struggle with distances that might result from the dogfights, where the repulsion might make

it extremely unlikely that coalescence might reoccur without directly coding it into the system.

The ability to test the model, that it is falsifiable, is important to prevent the model from being

used simply because it seems obvious (the street-light effect).

There are other things we can learn by applying the theory of one project to the others. Con-

sider the work of Clauset (2018), in which bootstrapping was used to simulate counterfactual time

series to which probabilistic arguments could be applied to estimate the probability of obtaining

something like the long peace. While our method of changepoint analysis is an alternative tech-

nique, the two ideas could be conceptually combined. This is similar to how we conducted our

a-posteriori robustness checks; we supposed that a certain model existed from our changepoint

analysis and drew from it to see how likely such a model would be identified if it were the true

model. One could instead have used the bootstrap again, as opposed to power-law distributions,

in order to verify the results instead. Further analyses similar to those conducted by Clauset could

also be conducted, but with changepoint analysis replacing probabilistic methods to answer ques-

tions such as do the World Wars necessarily induce a segment between them, or can they exist

within the same segment?

On the other hand, using an informed model can improve the bootstrap for a specific applica-

tion. Consider the problem of applying the bootstrap to time series with a constraint much like

coalescence and fragmentation, where only certain transitions are allowed. For a concrete exam-

ple, consider a coalescing and fragmenting population which we know the size distribution of at

multiple points in time and we want to bootstrap the data. Just using a bootstrap alone would

ignore any correlations in the time series (a well-known problem (Efron and Tibshirani, 1993))

so one solution would be to create a bootstrap and then perform a “guided” simulation in be-
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tween each point in the time series bootstrap. For models that do not fit the process generating

the data well, the process will have to make many low likelihood decisions to interpolate, while

a model that fits the process quite well (such as the empirical events in the original data for very

well-sampled processes) would proceed without many such decisions.

We have thus far described some broad interactions between the various chapters in this thesis,

which contain a wide variety of techniques and ideas for modelling, each of which could naturally

be expanded further. Many variants of the bootstrap exist, and determining a best variant for

historical data is perhaps its own reward. Finding datasets and ways to apply the bootstrap to

them is an equally viable direction to go in. Much the same could be said of changepoint analysis

or coalescence and fragmentation modelling; technical developments and datasets to apply the

developments to are always in high demand in applied mathematics. Instead, we close this chapter

and thesis with a discussion of some more specific ideas and avenues for future development.

Some developments lay at the intersection between two projects, while others are continuations.

We begin with the Battle of Britain. A natural first idea that was proposed in the original paper

is the investigation of the Battle of the Atlantic. Instead of thinking about pilot deaths, one would

think about the movements of the convoys as they tried to deliver resources to the United Kingdom

and Soviet Union from Canada and the United States while evading the presence of German and

Italian submarines (U-boats). Some care would need to be taken to understand the appropriate

hierarchy to model with, given possible complications from aerial cover, equipment such as radar,

convoy composition, and tactics. The weighted bootstrap would then be employed within the

hierarchy in much the same way as it was in the Battle of Britain to resolve each convoy’s fate and

determine the importance of the details and decision making of both sides. An obvious omission

in our analysis of the Battle of Britain is our lack of usage of causal techniques. This includes a

well-developed usage of the causal bootstrap (Imbens and Menzel, 2018), but also more generally

includes the omission of techniques advocated by Pearl (2000) or Imbens and Rubin (2015). Such

techniques could be profitably explored both for the Battle of Britain as well as in the Battle of the

Atlantic. They are likely important to properly characterise and utilise a proposed hierarchy.

Focussing on the Battle itself, one intriguing detail that is nevertheless hard to resolve is what

would have happened if the Germans had decided to invade. The temptation is to form a trip-

tych, beginning with bootstrapping the Battle of Britain’s aerial campaign, followed by mod-

elling the subsequent naval encounter (conditioned on the success of the Germans in the previous

project), and finishing with how well the subsequent landing would have gone (again conditioned

on the previous project). The difficulties that arise are related to determining appropriate rules for

wargaming each part of the triptych and then implementing the wargame in an appropriate simu-

lation such that a broad understanding could be gathered. This is obviously not impossible to do

(Cox, 1974), but would be fairly labour intensive and would require more than just a bootstrap.

The bootstrap could be used anywhere where empirical data existed, e.g. if a dataset exists for the

effects of an armament against a type of armour, but it is more likely that distributions would need

to be conjectured from physical and historical observations instead. Understanding the sensitivity

of the model to these parameter assumptions is likely critical, whatever model is used. Implemen-

tation would likely be agent-based, but there is a danger there in estimating the personalities of the

captains of various vessels. One possibility is to look for historical personalities who would have

been likely to be present at the counterfactual Sea Lion and incorporate them as the agents. A dif-

ferent route would be to crowd source the captaining of the larger vessels, turning the model into
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a multiplayer game. A large enough crowd could then grant many realisations of the simulation,

at the cost of longer development time and a greater difficulty of historical consistency, especially

if the crowd begins to coordinate (e.g. using tools outside of the simulation to communicate faster

than would have been historically feasible).

Between the results from the simulated invasion and the historical documentation, one could

then compile what a landing scenario would look like. This is probably the most exuberant pro-

posal, in that it is contingent on the Germans succeeding in both the aerial campaign and the naval

campaign. It is hard to know exactly the best way to model the land invasion, especially as the

results would likely be contingent on just how many troops would be able to land and how much

support they would receive from the air and sea, both of which would likely still be contested

as the land invasion was occurring. Hence, this would rely most on the historical context, such

as the German plans for invasion (German Plans, 2017), and counterfactual, rather than mathe-

matical modelling, principles. Modelling could be used to elucidate specific points, but would

be hard to use to cover the general strategy. A slightly different tactic might be to use the causal

methods (Pearl, 2000; Imbens and Rubin, 2015) in order to organise how the different parts of the

counterfactual might come together.

Regarding the changepoint analysis, again multiple avenues are possible. We anticipate that

the datasets will be refined over time, so adapting to a per battle battle deaths dataset (as opposed

to the per war datasets we used) would be one obvious refinement. As discussed above, one could

also perform additional robustness checks following the lead of Clauset (2018). More interesting

for the mathematical audience would be to incorporate additional information from the battle

deaths datasets to complement the death totals themselves. The battle deaths datasets have fields

such as the type of war, combatants, or location (Gleditsch, 2004; Sarkees and Wayman, 2010).

Performing a (now multivariate) changepoint analysis that incorporates these elements could better

guide us towards looking for spatial changepoints. This in turn addresses questions such as if the

period after the World Wars was characterised by different types of wars, such as proxy wars, or if

the long peace was a particularly western phenomenon. A different but related problem might be to

consider the problem of changepoint analysis of hybrid data, where wars have multiple types that

change over time such as the Taiping Rebellion, or fuzzy data, where the properties of a datum

are not necessarily fully known such as if the number of deaths for each war have a minimum,

maximum, and mode rather than a single point estimate.

More difficult still would be to try to adapt changepoint analysis to more fully address the

long term trends posited by Pinker (2011, 2018). This would require more datasets which cover

the trends postulated and a multivariate changepoint analysis technique that is intended to iden-

tify changepoints in the raw data or in trends throughout the data, which is an ongoing topic of

discussion in changepoint literature. A starting point might be to consider the initial approach

of Richardson (1960b) in which deadly quarrels of all sizes are analysed, rather than just wars.

The more complicated the model, the harder it is to determine which of the moving parts was

responsible for a given outcome, which is perhaps the most damning problem for this direction.

In the opposite direction of Pinker’s work on better angels, one could try to model the gener-

ative process(es) for conflict. Richardson’s law, that deadly quarrels are power-law distributed, is

suggestive here, in that power-law distributions are scale-free. On the other hand, Richardson’s

law actually required the use of two power-law distributions, which might require multiple pro-

cesses before one even begins to consider problems of arms races or differing war types, both in
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the sense of aimed fire and duels or unaimed fire as well as inter-state, etc. Many processes could

be tested. For example, one might consider a large number of exponentials that are paired at ran-

dom following the approach of Clauset et al. (2010, using the model of Reed and Hughes (2002)).

Such an approach might naturally reconcile with the ideas of Kondratieff wave-like cycles in war

and peace (Goldstein, 1985; Turchin, 2007) if there is a cooling off period following the pairing

of exponentials. One possible problem is that this is a well-mixed two-body problem, but defen-

sive pacts and the like arise and space must be considered (as noted by Richardson (1960a) who

considered whether the lengths of shared borders influenced the propensity for war between two

nations). Additionally, there is the question of what drives the exponential dynamics, unlike with

power-law dynamics which appear to be the same ‘all the way down’ due to the scale-free nature.

Instead of beginning with a top-down approach, a bottom up approach, such as coalescence and

fragmentation modelling could be postulated. For example, a spatial coalescence and fragmenta-

tion approach with some sense of dynamic identity amongst the population could be used, where

similar identities prefer to coalesce while differing identities prefer to fragment each other. In this

case, the quandary becomes how to produce multiple power-law results and whether the definition

of the population is de facto changing over time (e.g. do tribal villagers and modern civilians co-

alesce in the same way? Do they produce warriors and soldiers in the same way?). In either case,

identifying the proper model of combat would be important.

Focusing on coalescence and fragmentation modelling, a straightforward task would be to

explore the existence of cycles in coalescence and fragmentation datasets such as the one obtained

by Johnson et al. (2016) or other social media data. The goal would be to fit the coalescence

and fragmentation model to the dataset to determine which regime the dataset belongs to. If the

dataset behaves as expected of the regime, this would help validate the model, especially if cycles

are observed and these cycles are of the same stochastic gel-shatter type as observed in Chapter 5.

Comparing with multiple datasets would obviously be ideal for validation. If the cycles observed

by Johnson et al. (2016) are different in character than those of gel-shatter cycles, characterising

the difference and if they should be expected from the base model would be a good step forward. A

particular challenge can be found in the form of external driving forces. If one investigates cycles

in insurgencies for instance, one might need to rule out political cycles, especially deterministic

ones, amongst either the insurgent or counter-insurgent forces.

One obvious direction is to pursue stronger analytic results, similar to results by Pego and

Velázquez (2020). Topics of interest include analytically describing the three regimes of forced

gel-shatter cycles, stochastic unforced gel-shatter cycles, and a steady-state, establishing the sta-

bility of the cycles, and determining the necessary and sufficient conditions, such as the degree

of homogeneity required. There is a great deal of literature that has already been done on the

steady-state and parallel work currently being done on cyclicity, so this should be a highly com-

petitive direction to pursue research in. We are excited to see what results will be achieved to

better understand cyclicity within coalescence and fragmentation models.

It might also be interesting to examine what happens when varying models are combined. For

example, consider taking the multiple populations coalescence and fragmentation model and com-

bine it with Lanchester’s Laws to create a toy conflict model. In this case, fragmentation would

occur when two different populations encounter each other (Bohorquez et al., 2009, supplemental

materials) and would take place using (a stochastic or deterministic implementation of) Lanch-

ester’s Laws. One can then ask much the same types of questions that we have asked in Chapter 5.
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Does a stable steady-state emerge, or do we instead see cycles? How much imbalance is necessary

to force one population to gel while the other population(s) are forced to remain disaggregated?

What are the effects of using linear law, square law, or asymmetric laws on the system? What are

the effects of using different kernels for different population interactions? A natural starting point

would likely be just to consider the multiple populations case before changing the fragmentation

to something more complicated. Regardless, proposals of this sort seem unlikely to be easily

tractable, and would likely require simulation or other techniques.

Implicit in many of these ideas and interactions is again the nature of a valid restrained coun-

terfactual. For example, the idea of not choosing low likelihood models is a variation of the fifth

rule for counterfactual analysis due to Tetlock and Belkin (1996): we should choose statistically

likely results over those that would rely on the unlikely having occurred. This is a guiding princi-

ple in most statistical work and a principle well-used both within this thesis, e.g. our a-posteriori

robustness checks to see how likely the proposed model would occur if it were true in Chapter 4,

and without, e.g. the work on analysing the long peace by Clauset (2018). The other principles are

no less important though. We have strived throughout this thesis to make clear our assumptions

regarding the systems examined and methods used. Where necessary, we have discussed the logi-

cal consistency of using our methods with the data, crucial especially for Chapters 3 and 4 where

e.g. independently and identically distributed (IID) is not necessarily obvious. The third principle

of historical consistency pairs naturally with statistical consistency in analysing the results of our

re-weighted bootstraps for the Battle of Britain, helping us understand how the Germans squan-

dered the weaknesses of the British before the Battle even began. Where we are able, we have

appealed to theoretical consistency regarding knowledge of past datasets as well as Lanchester’s

Laws and Richardson’s works (e.g. Richardson, 1960a,b). Finally, our results are also falsifiable

in theory, although achieving the correct underlying conditions might prove difficult. One might

need a multi-front war including two balanced aerial powers with which the aerial campaign is

segregated from the other ongoing parts of the conflict to try to project and test lessons from the

Battle of Britain. The ongoing debate on the decline of war might more readily test our results,

just as explicit ‘insider’ knowledge of how insurgents operate and respond to force might readily

test the assumptions and results of the coalescence and fragmentation model. Our gel-shatter cy-

cles are perhaps particularly falsifiable: one would need to find a model system where coalescence

occurs much more rapidly than shattering and study its size distribution over time to see if the

pattern of gelation followed by shattering repeats.

One broad criticism of our methods is that we have extended a ‘small’ amount of data far

beyond its original domain. For example, in the Battle of Britain, we extended airfield targeting

from 16 days in the Battle as actually fought to 54 in CF5. Much of this thesis is about how far we

can safely extend what we know about, or how robust is, a system. Our answers are consistently

quite far, with caveats. For the more than tripling the number of times a type of target was chosen,

we again consider the conditions of the Battle: much of the Battle did not change. There was not

adequate time or ability to change the planes and tools used, nor were there substantial changes

in leadership or pilots or underlying conditions. So long as we believe that each day was drawn

from and is representative of the same distribution, these days represent all that we can know.

Naturally we cannot factor in learning or the development of new tactics, but we also do not have

evidence that those really occurred in the Battle proper. More importantly, the chapters in this

thesis represent jumping off points for thinking about problems. The lessons of this thesis are
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meant to detail how we can think about modelling counterfactual history, or addressing whether

war has declined, or determining if a model is appropriate for its application. We have learned

how to reconcile assumptions with mathematical techniques like the bootstrap. We have learned

how to explore the interrelationships between tools and datasets. Furthermore, we have learned

how to stress-test a model to verify it as a description of a process.

In learning these lessons, this thesis has covered a broad swath of history. We have discussed

the Battle of Britain, and how Hitler could have fared better if only he was not Hitler, how Goering

could have fared better if only he was not Goering, and how the Luftwaffe could have won the

Battle of Britain if only they had understood the battle they were fighting. We have discussed the

time series of battle deaths data, created an algorithm to investigate the data, and found evidence

that there have been changes that coincide with those proposed by the long peace hypothesis. We

have discussed a modern model of coalescence and fragmentation that has been used to describe

the interactions of insurgents and investigated how this model differs in behaviour from predictions

in the literature, both with and without perturbations.

More important than our individual applications is the lessons about what tools are available

and how we can safely use them. We clearly have not closed the book on conflict regardless

of whether Hobbes or Rousseau or both in varying proportions were right about the causes of

conflict. Instead, we have shown how to apply mathematical tools in contexts to which they

were foreign. We have shown the usefulness of the statistical technique of bootstrapping to our

colleagues in history. We have helped introduce changepoint analysis to peace studies where the

primary arguments were made using regressions and probabilistic models. We have brought to

the forefront previously undocumented behaviour of coalescence and fragmentation, which might

drive cycles that are observed elsewhere in the literature without requiring novel explanation. Each

of these applications enriches the literature around it and has laid the groundwork for future work,

both for ourselves as well as our colleagues.
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A Changepoint analysis of the Battle of Britain

The primary assumption of the bootstrap is that the (original) sample must be independently and

identically distributed (IID). Previous analysis of data from the Battle of Britain, however, sug-

gested the existence of a changepoint on September 15th due to the fiercer combat before that

date, with twice as many deaths per total number of sorties (Johnson and MacKay, 2011, Fig. 1).

While we can work around changepoints by considering each segment separately, each segment

needs to be identified and verified as IID. Due to the historical constraints, we are most interested

in the properties of the time series of British pilot casualties, but we also present other varia-

tions for completeness, including airframes and sorties for each side and in total, the difference in

number of sorties, and the airframes and British casualties per total or British number of sorties.

Our initial battery of tests are tests of autocorrelation and stationarity. If data is autocorrelated,

then each datum appears to depend directly on one or more previous data points. If data is non-

stationary, then there would appear to be some form of dependence on time. While autocorrelation

is available in the base implementation of R (R Core Team, 2018), stationarity tests have been

implemented in the tseries R package (Trapletti and Hornik, 2019).

As with all statistical tests, the general results depend on the level of significance a, but broadly

speaking nearly all of our data has significant autocorrelations at the a = 0.05 level, with a

significant lag of 3 amongst all variations considered except the difference in number of sorties

flown. The time series of British pilot casualties has significant autocorrelation for lags of 1, 3, 4,

and 20, with the lags of 3 and 20 significant at the a = 0.01 level.

Controlling the false discovery rate (under the assumption of independence) to correct for the

large number of tests using the procedure due to Benjamini and Hochberg (1995, implemented in

R) indicates that only a lag of 1 of the number of airframes per British sortie and a lag of 3 of the

number of German airframes are significant, and only at the a = 0.05 level. The lags of 3 and 20

for British pilot casualties have an adjusted level of significance of a ≈ 0.15. As this procedure

controls the expected number of false discoveries, it does not necessarily discount the significant

results, but instead suggests that a high proportion of them are false positives. We need to follow

up with additional tests as a result.

We next check for (non-)stationarity using the augmented Dickey-Fuller (ADF) test (Trapletti

and Hornik, 2019). This test adopts the null hypothesis that the data is not stationary and alterna-

tive that it is. Using this test, most of the data can be regarded as consistent with the null hypothesis

that the data is not stationary. Exceptions include a very weak rejection for British pilot casualties

(p = 0.0926) and a more significant rejection for British sortie numbers (p = 0.021).

We can compare the results with the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Trapletti

and Hornik, 2019). This test has the opposite convention: the null hypothesis is that the data are

(level or trend) stationary and the alternative is that they are not. (A process is trend stationary if

it tends to revert to a trend.) Trend stationarity is rejected in most cases except for British sorties

and British pilot casualties per total number of sorties. In the level case, most data sets are con-

sistent with the null hypothesis of stationarity, except for British pilot casualties per British sortie

(p = 0.028) and airframes per British sortie (p < 0.01).

Together this suggests that the majority of (combinations of) data sets contain insufficient

information to conclude whether the data is (level) stationary. The exceptions are that British sortie

numbers are significantly consistent with stationarity, and the British pilot casualties are more
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Figure A.1: Changepoint analysis of the Battle of Britain variables. We abbreviate British as Brit.,
Frames as Fr., Pilots as Pi., and Sorties as Sort. The changepoints found agree excellently with the
historical phases when considering British pilots lost. Phases are those recorded by James (2000).
Agreement is less good, but still roughly present in the other plots.

weakly consistent with stationarity, while British pilot casualties per British sorties and airframes

per British sortie are significantly consistent with non-stationarity.

Obviously, we would like to be more certain about the properties of the data, especially the

British pilot casualties. Instead of viewing the whole of the data as a single sample, we can instead

look for changepoints to create segments to investigate. We borrow a method from Section 2.3: we

apply a non-parametric changepoint analysis using ED-PELT with mBIC as a penalty. Performing

this method for each variable combination of interest, we see that the phases from the official

history (James, 2000) line up quite well with the British pilot casualties, seen in Figure A.1.

Dividing up data according to phases leads to additional problems due to segment lengths.

The second and third phases have only 11 and 14 days associated to them, while Phase 0 is only 5

days long. We note that there has been some limited work discussing the applicability of unit root

and stationarity tests that suggests that the ADF and KPSS tests maintain statistical power (low

probability of false negatives) for short (length 25) time series (Arltová and Fedorová, 2016).

Reapplying the earlier analysis, Phase 1 is broadly uninformative as to stationarity, with fail-

ures to reject on both tests except for a dual rejection for German Sortie numbers and consistency

with stationarity for the British casualties per British sortie and total airframes lost per British

sortie. Phase 2 is more informed: British pilot casualties and lost airframes are both consistent

with stationarity, as are British pilot losses per total or British sortie numbers. On the other hand,

German airframe losses, total airframe losses, and airframe losses per British sortie are all not

consistent with the stationarity hypothesis. We note that Phase 0 lacks sufficient data to come to a

conclusion using the ADF test, and that the KPSS indicates that the data sets generally fail to reject

the stationarity null hypothesis. Phase 3 similarly is unable to reject either null hypothesis. Finally,

Phase 4 is largely consistent with rejection of stationarity: British pilot casualties, airframe losses,

sorties, as well as total airframes lost and total airframes lost per either total or British sorties are

all consistent with rejection of stationarity. Both German airframes lost and the difference in the

number of sorties reject both null hypotheses. In nearly all of these cases, rejections occur only at

the a = 0.10 level.
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In summary, we have found that British pilot casualties, when divided according to the official

historical phases (James, 2000), has insufficient evidence to conclude whether the data is stationary

or not (Phases 1, 0, and 3), is consistent with stationarity in Phase 2, and is consistent with non-

stationarity in Phase 4. The last phase is somewhat concerning for application of the bootstrap.

Further analysis of Phase 4 using the KPSS test fails to reject the trend-stationary null hypothesis.

While our focus in the main text is not on Phase 4, we could control for this further by attempting

to detrend the Phase 4 data. Alternatively, it is possible that the problem stems from the September

15th changepoint detected by Johnson and MacKay (2011) and that there may be another effective

phase that emerges at around that date.

Returning to the autocorrelations, dividing the data according to phases drastically reduces the

autocorrelations present, possibly due to the lack of data. Autocorrelation is still present even to

a = 0.01 level in Phase 1 for British pilots lost per total sortie, the difference in sortie numbers,

and the total sortie numbers for lags of 1 day. Curiously German sorties have a similarly significant

lag of 3 days with an (partial) autocorrelation of 0.504 and airframes per total number of sorties

has significant lags of 2, 4, and 6 days (values−0.648, −0.544, and−0.907). Some other lags are

significant at the 0.10 level, but are larger than 1 day. Phases 2, 0, and 3 have no lags significant

at the 0.01 level, while Phase 4 only has a 5 day lag in German sorties and a 9 day lag in total

airframes per total number of sorties significant at the 0.01 level. Overall then, the data is now

more consistent with an independence assumption, although some weak evidence to the contrary

remains.

British pilot casualties have only a lag of 6 significant at the a = 0.10 level in Phase 1, a lag

of 2 significant at the a = 0.05 level in Phase 2, and a lag of 4 and a lag of 6 significant at the

a = 0.10 and a = 0.05 level in Phase 4. Attempting to control the false discovery rate suggests

that nearly all lags are false discoveries with high probability. As such, we conclude that the data,

divided up by official phase and equipped by historical context appears to largely be consistent

with the IID assumption in terms of stationarity and autocorrelation.
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B Battle of Britain tables

Table B.1: Combat loss and target data. Phases are 1: 10 Jul - 7 Aug, principally of coastal attacks
and armed reconnaissance, 2: 8 Aug - 18 Aug, of heavy attacks on mostly coastal targets, 0: 19th
Aug - 23 Aug, of little interaction between the forces, 3: 24th Aug - 6th Sept, of attacks gradu-
ally concentrating on aerodromes and 4: 7th Sept - 31st Oct, following the switch to principally
bombing London. Primary targets are A: aerodromes, C: docks, shipping and coastal or L: Lon-
don, Kent, and Thames estuary. Note that pilots lost, wounded or slightly wounded are measured
by incident. Thus some values represent pilots receiving a slight wound, flying again, and then
receiving another wound.

Day Date British

Airframe

Losses

German

Airframe

Losses

British

Pilots

Lost

British

Pilots

Wounded

British

Pilots

Slightly

Wounded

Phase Primary

Target

1 10/07/1940 2 11 2 0 0 1 C

2 11/07/1940 6 17 3 1 0 1 C

3 12/07/1940 5 9 4 0 1 1 C

4 13/07/1940 6 6 5 0 1 1 C

5 14/07/1940 1 3 1 0 0 1 C

6 15/07/1940 2 5 0 1 0 1 C

7 16/07/1940 1 4 1 0 0 1 C

8 17/07/1940 1 4 1 1 0 1 C

9 18/07/1940 5 6 4 0 0 1 C

10 19/07/1940 10 5 4 4 0 1 C

11 20/07/1940 9 12 6 0 2 1 C

12 21/07/1940 2 12 1 0 0 1 C

13 22/07/1940 2 4 1 0 0 1 C

14 23/07/1940 2 5 0 1 0 1 C

15 24/07/1940 5 15 3 0 1 1 C

16 25/07/1940 9 19 7 2 2 1 C

17 26/07/1940 1 5 1 0 0 1 C

18 27/07/1940 2 5 2 0 0 1 C

19 28/07/1940 6 11 1 4 1 1 C

20 29/07/1940 6 11 3 1 0 1 C

21 30/07/1940 1 9 0 1 0 1 C

22 31/07/1940 7 7 4 2 0 1 A

23 01/08/1940 4 13 3 0 0 1 C

24 02/08/1940 3 7 1 0 0 1 C

25 03/08/1940 0 6 0 0 0 1 C

26 04/08/1940 1 2 2 0 0 1 C

27 05/08/1940 2 8 1 0 1 1 C

28 06/08/1940 6 6 1 0 1 1 R

29 07/08/1940 4 3 0 0 1 1 R

30 08/08/1940 21 24 17 1 3 2 C

31 09/08/1940 3 6 1 0 0 2 R
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Day Date British

Airframe

Losses

German

Airframe

Losses

British

Pilots

Lost

British

Pilots

Wounded

British

Pilots

Slightly

Wounded

Phase Primary

Target

32 10/08/1940 0 1 0 0 0 2 C

33 11/08/1940 28 38 25 1 3 2 C

34 12/08/1940 18 32 11 6 2 2 C

35 13/08/1940 15 39 4 1 5 2 C

36 14/08/1940 9 20 4 2 1 2 C

37 15/08/1940 35 76 16 8 5 2 C

38 16/08/1940 24 44 9 5 6 2 A

39 17/08/1940 2 5 0 1 0 2 R

40 18/08/1940 33 67 10 11 6 2 A

41 19/08/1940 5 11 2 0 1 0 C

42 20/08/1940 2 8 1 0 0 0 C

43 21/08/1940 4 14 0 0 1 0 C

44 22/08/1940 4 4 2 1 0 0 C

45 23/08/1940 1 8 0 0 0 0 C

46 24/08/1940 20 41 5 7 6 3 R

47 25/08/1940 18 23 11 1 3 3 C

48 26/08/1940 29 42 4 10 9 3 R

49 27/08/1940 7 11 2 0 0 3 A

50 28/08/1940 15 32 6 6 2 3 R

51 29/08/1940 10 24 2 2 4 3 A

52 30/08/1940 25 40 11 4 0 3 A

53 31/08/1940 41 39 9 18 7 3 A

54 01/09/1940 13 16 6 6 0 3 A

55 02/09/1940 14 37 4 10 2 3 A

56 03/09/1940 15 20 6 4 7 3 A

57 04/09/1940 17 28 11 2 4 3 A

58 05/09/1940 20 27 8 7 3 3 A

59 06/09/1940 20 33 8 7 8 3 A

60 07/09/1940 25 41 15 6 7 4 A

61 08/09/1940 5 16 2 2 0 4 A

62 09/09/1940 17 30 6 4 7 4 A

63 10/09/1940 3 13 0 0 0 4 R

64 11/09/1940 29 29 14 8 7 4 L

65 12/09/1940 1 7 1 0 0 4 R

66 13/09/1940 3 7 2 0 1 4 L

67 14/09/1940 13 13 4 7 0 4 L

68 15/09/1940 31 61 16 5 6 4 L

69 16/09/1940 1 10 0 1 0 4 L

70 17/09/1940 6 8 3 1 1 4 L

71 18/09/1940 12 20 4 5 3 4 L
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Day Date British

Airframe

Losses

German

Airframe

Losses

British

Pilots

Lost

British

Pilots

Wounded

British

Pilots

Slightly

Wounded

Phase Primary

Target

72 19/09/1940 0 10 0 0 0 4 L

73 20/09/1940 8 8 5 0 2 4 L

74 21/09/1940 1 11 1 0 0 4 C

75 22/09/1940 1 6 0 0 0 4 L

76 23/09/1940 11 17 3 4 0 4 C

77 24/09/1940 6 11 2 3 3 4 L

78 25/09/1940 6 16 3 1 0 4 (Filton)

79 26/09/1940 8 9 3 2 1 4 C

80 27/09/1940 28 57 20 4 2 4 L

81 28/09/1940 17 12 10 2 2 4 L

82 29/09/1940 6 9 2 3 0 4 C

83 30/09/1940 21 47 6 5 5 4 L

84 01/10/1940 7 9 4 1 0 4 L

85 02/10/1940 2 18 0 1 1 4 L

86 03/10/1940 1 9 1 1 0 4 C

87 04/10/1940 1 15 1 0 0 4 L

88 05/10/1940 7 14 2 3 1 4 L

89 06/10/1940 2 9 2 0 0 4 L

90 07/10/1940 17 19 9 2 4 4 C

91 08/10/1940 8 17 7 0 0 4 L

92 09/10/1940 3 9 3 0 0 4 L

93 10/10/1940 8 12 6 1 0 4 L

94 11/10/1940 9 10 4 4 1 4 C

95 12/10/1940 11 13 5 2 3 4 C

96 13/10/1940 4 6 1 3 0 4 L

97 14/10/1940 1 4 1 0 0 4 R

98 15/10/1940 15 16 6 5 2 4 L

99 16/10/1940 3 15 3 0 0 4 (sweeps)

100 17/10/1940 5 16 5 1 0 4 L

101 18/10/1940 6 14 5 0 0 4 R

102 19/10/1940 1 6 2 0 1 4 L

103 20/10/1940 5 11 3 1 0 4 L

104 21/10/1940 2 7 2 0 0 4 L

105 22/10/1940 6 12 4 1 0 4 L

106 23/10/1940 1 4 1 0 0 4 R

107 24/10/1940 3 12 3 0 0 4 L

108 25/10/1940 14 24 6 5 1 4 L

109 26/10/1940 8 10 5 0 0 4 L

110 27/10/1940 14 16 6 1 1 4 L

111 28/10/1940 0 14 0 0 0 4 L
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Day Date British

Airframe

Losses

German

Airframe

Losses

British

Pilots

Lost

British

Pilots

Wounded

British

Pilots

Slightly

Wounded

Phase Primary

Target

112 29/10/1940 12 28 5 1 2 4 L

113 30/10/1940 9 8 6 1 2 4 L

114 31/10/1940 0 2 0 0 0 4 R
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Table B.2: Sortie and weather data. Entries are NA: not available, for which no estimate exists, C:
clear, O: overcast or cloudy and R: rainy.

Day Date British

Sortie

German

Sortie

Channel &

Coast

Weather

London,

Kent, and

Estuary

Weather

Midlands &

North

Weather

1 10/07/1940 609 NA R R R

2 11/07/1940 452 NA O O R

3 12/07/1940 670 NA O R R

4 13/07/1940 449 NA O O O

5 14/07/1940 593 NA C C C

6 15/07/1940 470 NA O O O

7 16/07/1940 313 NA O O O

8 17/07/1940 253 NA O O O

9 18/07/1940 549 100 O R O

10 19/07/1940 701 150 O O O

11 20/07/1940 611 100 O R R

12 21/07/1940 571 NA C C C

13 22/07/1940 611 100 O O R

14 23/07/1940 470 NA O O R

15 24/07/1940 561 NA O O R

16 25/07/1940 641 NA C C O

17 26/07/1940 581 NA R R R

18 27/07/1940 496 NA C O R

19 28/07/1940 794 NA C C C

20 29/07/1940 758 NA C C C

21 30/07/1940 688 NA R R R

22 31/07/1940 395 NA O C C

23 01/08/1940 659 100 O O C

24 02/08/1940 477 100 O R C

25 03/08/1940 425 50 O O O

26 04/08/1940 261 80 C C C

27 05/08/1940 402 110 O C C

28 06/08/1940 416 60 O O O

29 07/08/1940 393 70 C O C

30 08/08/1940 621 280 C R R

31 09/08/1940 409 110 O O O

32 10/08/1940 336 80 O R R

33 11/08/1940 679 370 O O O

34 12/08/1940 732 440 C C C

35 13/08/1940 700 450 O C C

36 14/08/1940 494 600 C O O

37 15/08/1940 974 650 C C C

38 16/08/1940 776 800 O C C
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Day Date British

Sortie

German

Sortie

Channel &

Coast

Weather

London,

Kent, and

Estuary

Weather

Midlands &

North

Weather

39 17/08/1940 288 50 C C C

40 18/08/1940 755 560 O O O

41 19/08/1940 383 400 O O O

42 20/08/1940 453 200 O O R

43 21/08/1940 589 170 O O O

44 22/08/1940 509 220 O O O

45 23/08/1940 482 270 O O R

46 24/08/1940 936 550 C C R

47 25/08/1940 480 325 O O O

48 26/08/1940 787 440 C C O

49 27/08/1940 288 50 O O R

50 28/08/1940 739 400 C C C

51 29/08/1940 498 390 O R R

52 30/08/1940 1054 600 C C C

53 31/08/1940 978 800 O C C

54 01/09/1940 661 490 C C C

55 02/09/1940 751 750 C C C

56 03/09/1940 711 550 O C R

57 04/09/1940 678 550 O C R

58 05/09/1940 662 460 O C C

59 06/09/1940 987 730 C C C

60 07/09/1940 817 700 O O O

61 08/09/1940 305 200 O O O

62 09/09/1940 466 430 C R R

63 10/09/1940 224 50 O O O

64 11/09/1940 678 500 O C C

65 12/09/1940 247 80 R R R

66 13/09/1940 209 130 R R R

67 14/09/1940 860 400 O R R

68 15/09/1940 705 600 C C C

69 16/09/1940 428 250 R R R

70 17/09/1940 544 350 R R R

71 18/09/1940 1165 800 C C C

72 19/09/1940 237 75 R R R

73 20/09/1940 540 150 O O O

74 21/09/1940 563 260 C C C

75 22/09/1940 158 140 O O O

76 23/09/1940 710 300 C C C

77 24/09/1940 880 500 O O O

78 25/09/1940 668 290 C C C

158



Day Date British

Sortie

German

Sortie

Channel &

Coast

Weather

London,

Kent, and

Estuary

Weather

Midlands &

North

Weather

79 26/09/1940 417 220 C C C

80 27/09/1940 939 850 C R R

81 28/09/1940 770 300 O O C

82 29/09/1940 441 180 C C C

83 30/09/1940 1173 650 C C C

84 01/10/1940 NA NA O O O

85 02/10/1940 NA NA C C C

86 03/10/1940 NA NA R R R

87 04/10/1940 NA NA R R R

88 05/10/1940 NA NA R R R

89 06/10/1940 NA NA R R R

90 07/10/1940 NA NA O O O

91 08/10/1940 NA NA O O O

92 09/10/1940 NA NA R O O

93 10/10/1940 NA NA R R R

94 11/10/1940 NA NA C R C

95 12/10/1940 NA NA O O O

96 13/10/1940 NA NA O O O

97 14/10/1940 NA NA O R O

98 15/10/1940 NA NA O C C

99 16/10/1940 NA NA O O O

100 17/10/1940 NA NA R R R

101 18/10/1940 NA NA O O O

102 19/10/1940 NA NA O O O

103 20/10/1940 NA NA O O O

104 21/10/1940 NA NA O O O

105 22/10/1940 NA NA O O O

106 23/10/1940 NA NA R R R

107 24/10/1940 NA NA O C C

108 25/10/1940 NA NA O O O

109 26/10/1940 NA NA O O R

110 27/10/1940 NA NA O O O

111 28/10/1940 NA NA O O O

112 29/10/1940 NA NA O O O

113 30/10/1940 NA NA R R R

114 31/10/1940 NA NA R O O
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C Other changepoint package arguments

Table C.1: Explanation of function options for changepoint and changepoint.np R-
packages. We use p to indicate the number of parameters in a model and n to indicate the length of
the data when calculating a penalty. Note that mBIC, CROPS, PELT, and ED-PELT are discussed
further in Section 2.3.

Type Name Calculation and Usage
Penalty AIC 2p, intended for model selection problems (Akaike, 1974)

SIC/BIC p log(n), response to Akaike (1974) using Bayesian context
(Schwarz, 1978)

Hannan-Quinn 2p log log(n), intended for auto-regression problems
(Hannan and Quinn, 1979)

Asymptotic For single changepoint detection, use the false positive rate
and asymptotic distribution to approximate a penalty
(Hinkley, 1970)

CROPS Changepoints for a range of penalties (Haynes et al., 2017a)
Method AMOC At most one changepoint (Killick et al., 2016)

SegNeigh Use dynamic programming to exactly calculate an additional
changepoint by calculating optimal models and reusing the
previous calculation, for protein segmentation
(Auger and Lawrence, 1989)

BinSeg Recursively calculate changepoints for detected segments
(Scott and Knott, 1974; Sen and Srivastava, 1975)

PELT Optimal partitioning with pruning (Killick et al., 2012)
Test Statistic Normal The distribution.

Exponential The distribution.
Poisson The distribution.
CUSUM Detect a change in a parameter (e.g. mean) if its cumulative

sum passes a threshold (Page, 1954)
CSS Detect changes in variance if the normalised cumulative

sum of squares passes a threshold (repeatedly)
(Inclán and Tiao, 1994)

Empirical Distribution Tail biased non-parametric quantile PELT
(Haynes et al., 2017b)
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D Changepoint analysis and higher minimum values

In the main text in Section 4.3, we note that we present the simulations with minimum value

attainable by the power-law distribution of 10, as opposed to a minimum value of 1,000 that is

more in-line with the datasets examined. Here, we note some of the differences that one can detect

that are due solely to this change in minimum value.

First, we compare and contrast Figures 4.2 – 4.5 in the main text with Figures D.1 – D.4.

These figures use the same methods, but the simulations are now two power-laws with exponents

2.05 and 2.55 respectively and shared minimum value 1,000. The results are mostly comparable

to the main paper with the exception of Figure D.2. By comparison to Figure 4.3, this combination

greatly benefits from the increased minimum value in that overfitting is drastically reduced, albeit

not to a usable level. The other combinations show very little change.

Figures 4.3 and D.2 illustrate the most dramatic change, but the change can be abruptly seen in

the other direction as well (see Figures D.5 and D.6), perhaps due in both cases to the parametric

assumptions of the relevant methods. These changes never modify our existing judgement of what

are considered good methods, as the changes never give sufficiently large improvements to make

a combination serviceable in our case.
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Figure D.1: Test case with better than average behaviour. The simulation is of two power-law
distributed segments of length 300 with exponents 2.05 and 2.55 respectively and minimum value
of 1,000. Segmentation generated using cpt.meanvar with BinSeg, mBIC and an exponential
distribution. Whilst there are good aspects to this finding, the method commonly overfits and tends
to assume changepoints happen in the α = 2.05 segment. This combination performs slightly
better than its counterpart in Figure 4.2, with median Hausdorff of 186 (compared to 189), median
ARI of 0.63 (0.64), and TDR 0: 0.01 (0.01), 3: 0.05 (0.04), 5: 0.06 (0.05), 8: 0.09 (0.07). The
segments in the lower image correspond to the number of changepoints detected and are guides
for the eye only.

164



Figure D.2: Test case with worst behaviour. The simulation is as in Figure D.1. Segmentation
generated using cpt.meanvar with SegNeigh, an asymptotic penalty and a normal distribu-
tion. Results such as this occur with many combinations, and can be regarded as failures. Many
combinations still result in more than 10 false positives and are only stopped by the maximums
provided. This combination performs significantly better than its counterpart Figure 4.3, although
this is only noticeable from the number of changepoints detected; its median Hausdorff is 294
(compared to 294), median ARI is 0.08 (0.07), and TDRs are 0: 0.00 (0.00), 3: 0.01 (0.01), 5:
0.01 (0.01), 8: 0.02 (0.01).
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Figure D.3: Test case with best behaviour. The simulation is as in Figure D.1. Segmentation gener-
ated using cpt.np with ED-PELT and CROPS and shows some of the best achievable behaviour.
Although qualitatively similar to the top sub-plot of Figure D.1, there is improved accuracy in the
positioning of the changepoints and improved precision and accuracy in the number of points so
detected. Increasing the minimum value improves this combination leading to median Hausdorff
of 13 (compared to 15 in Figure 4.4), median ARI of 0.92 (0.90), and TDR 0: 0.04 (0.04), 3: 0.19
(0.18), 5: 0.28 (0.25), 8: 0.36 (0.33).
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Figure D.4: Test case with second best behaviour. The simulation is as in Figure D.1. Seg-
mentation generated using cpt.np with ED-PELT and mBIC. While not as good at detecting
changepoints as CROPS, cpt.np with ED-PELT and mBIC still shows strong potential. Increas-
ing the minimum value has again improved the statistics slightly compared to Figure 4.5, with
median Hausdorff of 50 (compared to 51.5), median ARI of 0.81 (0.80), and TDR 0: 0.02 (0.02),
3: 0.10 (0.09), 5: 0.15 (0.13), 8: 0.19 (0.17).
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Figure D.5: Example where increasing the minimum value decreases performance (I). The sim-
ulation is as in Figure D.1, but with a minimum value of 10, as in the main text. Segmentation
generated using cpt.mean with binary segmentation and CUSUM. In this case we observe clear
underfitting, but with some occasional overfitting.
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Figure D.6: Example where increasing the minimum value decreases performance (II). The sim-
ulation is as in Figure D.1. Segmentation generated using cpt.mean with binary segmentation
and CUSUM. In this case, we observe only extreme overfitting.
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List of acronyms

Notation Description Page List

ADF Augmented Dickey-Fuller stationarity test 149, 150

AIC Akaike Information Criterion 35, 161

ARI Adjusted Rand Index, measurement of clustering

that accounts for chance

79–86, 89, 90, 164–167

BCa Bias Corrected and Accelerated bootstrap

method

31, 61, 66, 73

BIC Bayesian (or Schwarz’s) Information Criterion 35, 36, 161

C-F Coalescence and Fragmentation 119, 121, 122, 125

CDF Cumulative Distribution Function 35

CF CounterFactual scenario 53, 54, 56, 58, 60, 72,

73

CoW Correlates of War (Sarkees and Wayman, 2010) 78, 79, 90, 95, 103–109

CROPS Changepoints over a Range Of PenaltieS 36, 80, 81, 84–92, 95,

97–99, 103, 104, 106,

109, 161, 166, 167

CRP Chinese Restaurant Process, generates

power-law distributed partitions (Pitman, 2006;

Goldwater et al., 2011)

126, 131, 132, 135, 136

ED-PELT Algorithm to solve changepoint optimisation for

Empirical Distributions using Pruning, Exactly,

and in Linear Time. See also PELT

36, 81, 84–86, 90–94,

150, 161, 166, 167

KPSS Kwiatkowski-Phillips-Schmidt-Shin

non-stationarity test

149–151

KSMLE Kolmogorov-Smirnov Maximum Likelihood

Estimation (Clauset et al., 2009b)

27, 124–137, 139

mBIC Modified Bayesian Information Criterion 36, 81, 85–90, 93–95,

100, 103, 104, 106, 109,

150, 161, 164, 167

MLE Maximum Likelihood Estimation 10, 27, 124–131,

133–137, 139

PELT Algorithm to solve changepoint optimisation

using Pruning, Exactly, and in Linear Time

35, 36, 81, 106, 161,

171

171



Notation Description Page List

RAF (British) Royal Air Force 43–49, 53, 58, 60, 72,

143

TDR True Detection Rate, how many points in one set

are near those of another.

79–86, 89, 90, 164–167
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List of notation

Notation Description Page List

α Theoretical exponent of a power-law distribution 26–28, 80–82, 86, 89,

103, 104, 120, 124–132,

134, 135, 137, 139

B Number of bootstrap resamples 29, 30

BS Effective British (pilot) strength 50, 54, 173

BSC Critical value of BS , below which invasion can

occur

50, 51, 54

·̇ Dot. Time derivative. Usually the time argument

is dropped

37, 38, 40, 41, 113, 115,

116, 129, 130

E i,j Step operator: changes argument index i by

amount j in the subsequent function

116, 117

F (i) Fragmentation rate kernel for clusters of size i 40–42, 113, 115, 119,

123, 129, 130

·̂ Hat. Likelihood related estimator 27, 35, 36

IID Independently and identically distributed 19, 20, 23, 28, 29,

47–49, 67, 147, 149,

151

K Cyclicity order parameter, ratio of computational

steps that result in increases to kmax minus those

that result in decreases, all divided by the total

number of computational steps

122, 124–126, 129–132,

134, 135, 138

κ Maximum attainable cluster size 10, 116–118

K(i,j) Coalescence rate kernel for clusters of sizes i and

j

38–42, 113, 115, 119,

123, 129, 130

kmax Empirical maximum of a coalescence and

fragmentation process

120–122, 124, 125,

129–131, 133, 134, 137,

138, 173

M System size; amount of mass or total number of

possible monomers in simulations, which we

consider to have unit volume. In equations, this

is more appropriately a density.

10, 37, 39–41, 114–129,

131–133, 137, 138

173



Notation Description Page List

N Number of discrete objects or clusters 28, 120, 121, 125, 129,

134

nk Number of objects or clusters of size k 37, 38, 40, 41, 113–116,

129, 130

Pr Probability 10, 26, 115, 116, 118,

124–128, 131–134, 137

r Dimensionless parameter formed from the ratio

of characteristic times of gelation and shattering

122–125, 127, 132, 138

se Standard error 29–31

τ Location of a changepoint 35, 36, 80, 86, 89, 90

·̃ Tilde. Bootstrapping related estimator 29–32

xmin Theoretical minimum of a power-law distribution 10, 26, 27, 125–134,

136
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Shattering Fragmentation in which a cluster is reduced

solely to monomers.

38, 40, 41, 113, 114,

116, 119, 120, 123, 128,

130, 138, 174

Sol The parts of a system that are not a part of the

gel.

38, 39
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